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Abstract. To solve the problem of DPC (Clustering by fast search and
find of Density Peaks) that it cannot find the cluster centers coming from
sparse clusters, a new clustering algorithms is proposed in this paper. The
proposed clustering algorithm uses the local standard deviation of point
i to define its local density ρi, such that all the cluster centers no matter
whether they come from dense clusters or sparse clusters will be found as
the density peaks. We named the new clustering algorithm as SD DPC.
The power of SD DPC was tested on several synthetic data sets. Three
data sets comprise both dense and sparse clusters with various number
of points. The other data set is a typical synthetic one which is often
used to test the performance of a clustering algorithm. The performance
of SD DPC is compared with that of DPC, and that of our previous
work KNN-DPC (K-nearest neighbors DPC) and FKNN-DPC (Fuzzy
weighted K-nearest neighbors DPC). The experimental results demon-
strate that the proposed SD DPC is superior to DPC, KNN-DPC and
FKNN-DPC in finding cluster centers and the clustering of a data set.
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1 Introduction

Clustering analysis is to discover the group structure of a data set, and dis-
close the knowledge, patterns and rules hidden in the data [5,7,14,16]. It is
an unsupervised learning process and implemented by grouping similar objects
into same clusters and dissimilar ones in other clusters [1,3–5,10,12,13,16]. Its
applications range from astronomy to bioinformatics, bibliometrics, biomedical,
pattern recognition [1,3–5,11,15]. With the emerging of big data from various
areas in the real world, there have been more and more experts focusing on study-
ing the clustering techniques to try to understand and summarize the complex
data automatically as far as possible and find the potential knowledge and rules
and patterns embedded in the big data without any previous domain knowledge
[1–3,9,11,15].

There are many kinds of clustering algorithms such as partitioning, hierar-
chical, density-based, etc. [1,3–5,12,13,16]. The novel density-based clustering
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algorithm was proposed by Alex Rodŕıguez and Alessandro Laio in [1]. The clus-
tering algorithm can find the clustering of a data set by finding the density peaks
as cluster centers and assign each point except for the density peaks to its near-
est neighbor with higher density. We call the clustering algorithm as DPC for
short. DPC is powerful except for its weaknesses in calculating the densities of
points and its one step assignment strategy [1,12,13]. There are several advanced
density peaks based clustering algorithms [1,8,12,13]. The K nearest neighbors
based density peaks finding clustering (KNN-DPC) [12] and the fuzzy weighted
K nearest neighbor based density peaks finding clustering (FKNN-DPC) [13]
were proposed to remedy the deficiencies of DPC. The extensive experiments
demonstrated the excellent performance of KNN-DPC and FKNN-DPC. How-
ever, because DPC uses the arbitrary cutoff distance dc to define the local den-
sity of a point, which makes the cluster centers from sparse clusters may not
be found for they cannot become density peaks. KNN-DPC and FKNN-DPC
use the K nearest neighbors of a point to define its local density, and can solve
the problem of DPC to some extent, but they did not thoroughly solve it. It
is the common phenomena that there are both dense and sparse clusters in a
date set simultaneously, which make it difficult for the aforementioned clustering
algorithms to find the proper cluster centers and even the clustering as well.

To try to let the cluster centers can become density peaks no matter they
come from dense or sparse clusters by absorbing the distributive information
of points in a data set as far as possible, we propose the heuristic clustering
algorithm by adopting the local standard deviation of a point to define its local
density because it is well known that the local standard deviation of a point
embodies the information of how dense the local area is around the point. As a
result we introduce the new local standard deviation based density peaks finding
clustering algorithm named SD DPC. We tested its power on some special syn-
thetic data sets which are composed of dense and sparse clusters simultaneously.
We also test SD DPC on a typical synthetic dataset from [6]. The experimental
results demonstrate that SD DPC is powerful in finding the cluster center by
finding the local standard deviation based density peaks and the clustering of a
data set, and its performance is superior to DPC, KNN-DPC and FKNN-DPC.

This paper is organized as follows: Sect. 2 introduces the new SD DPC in
detail. Section 3 tests the power of it by special synthetic data sets, and com-
pares its performance with that of DPC, KNN-DPC and FKNN-DPC in terms
of several typical criteria for testing a clustering algorithm, namely clustering
accuracy (Acc), adjusted mutual information (AMI), and adjusted rand index
(ARI). Section 4 is some conclusions.

2 The Main Idea of the Proposed Clustering Algorithm

DPC [1] has become the hotspot in machine learning for its strong power in
detecting cluster centers and exclude outliers and recognize the clusters with
any arbitrary shapes and dimensions. The basic assumption in DPC is that the
ideal cluster centers are always surrounded by neighbors with lower local density,
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and they are at a relatively large distance from any other points with higher local
density. To find the ideal cluster centers, DPC introduces the local density metric
of point i in (1) and the distance δi of point i in (2).

ρi = |{dij |dij < dc}| (1)

δi = {maxj {dij}, ρi = maxj{ρj}
min({dij |ρj > ρi}), otherwise

(2)

where dij is Euclidean distance between points i and j, and dc the cutoff distance
given manually. We can see from (1) that the local density ρi of point i is the
number of points j that are closer to i than dc. DPC is robust to dc for large data
sets [1]. The definition in (2) disclose that δi is the maximum distance from point
i to any other point j when point i has got the highest density, otherwise δi is the
minimum distance between point i and any other point j with higher density [1].
It can be seen from (2) that δi is much larger than the nearest neighbor distance
for the points with local or global maxima density. The points with anomalously
large value of δi are to be chosen as cluster centers by DPC.

The most important contribution of DPC is that it proposed the idea of
decision graph which is the collection of points (ρi,δi) in a 2-dimension space
with ρ and δ to be x-axis and y-axis respectively. Cluster centers are the points
with high δ and relatively high ρ, that is the cluster centers are the ones at the
top right corner of the decision graph. The second innovation of DPC is its one
step assignment that it assign each remaining points except for those density
peaks to the same cluster as its nearest neighbor with higher density. This one
step assignment contribution leads the DPC’s efficient execution.

However, everything has two sides. The local density definition of DPC in
(1) may results in the lower density for those cluster centers from sparse clusters
for the arbitrary cutoff distance dc. The very efficient one step assignment of
DPC for remaining points may lead to the similar “Domino Effect” [12,13], that
is once a point is assigned erroneously, then there may be many more points
subsequently assigned incorrectly [12,13], especially in the case where there are
several overlapping clusters.

ρi =
∑

j∈KNNi

exp(−dij) (3)

KNN-PDC [12] and FKNN-DPC [13] introduced new definition of density
ρi for point i by (3). The new definition can be used to any size of data set to
calculate the density ρi of point i. The KNNi in (3) means the data set composed
of the points of the K-nearest neighbors of point i. Furthermore, KNN-DPC
and FKNN-DPC respectively proposed their own two-step assignment strategy,
where FKNN-DPC introduced fuzzy weighted K nearest neighbors theory in
its second step of assignment strategy other than that of KNN-DPC only the
K nearest neighbors theory is used in its two-step assignment strategy. It was
demonstrated that both KNN-DPC and FKNN-DPC are superior to DPC [12,
13]. Due to the contribution of fuzzy weighted K-nearest neighbors that FKNN-
DPC is more robust than KNN-DPC [13].
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Although KNN-DPC and FKNN-DPC have been demonstrated very power-
ful in finding the patterns of data sets, they did not solve the problem of DPC
thoroughly, such as finding the cluster centers from the sparse clusters by finding
density peaks.

To detect the cluster centers from sparse clusters by finding the density peaks,
we try to absorb the distribution information of points in a dataset as far as
possible, so we introduce the new local density ρi for point i in (4) by introducing
the local standard deviation of point i with the knowledge that the local standard
deviation of a point embodying the local information of how dense the local area
is around point i. The KNNi in (4) is the same as that in (3), that is the set of K
nearest neighbors of point i, and dij the Euclidean distance between data points
i and j. Then the new local standard deviation based density peaks finding
clustering algorithm is proposed in this paper and named as SD DPC. The
assignment strategy in SD DPC is the same as that of DPC only to demonstrate
that the local density definition ρi of point i in (4) can solve the problem existing
in DPC that the cluster center of sparse cluster may not be detected by finding
density peaks.

ρi =
1√

1
K−1

∑
j∈KNNi

d2ij

(4)

Here are the main steps of SD DPC.
step1 calculate the density ρi of point i in (4), and its distance δi in (2);
step2 plot all of points in the 2-dimensional space with their densities ρ and

δ as their x and y coordinates respectively;

Table 1. Description of synthetic data sets

Datasets Number of records Number of attributes Number of clusters

a3 7,500 2 50

dataset1 678 2 3

dataset2 10,900 2 8

dataset3 20,000 2 4

Table 2. The parameters for generating dataset1

Parameter cluster1 cluster2 cluster3

Mean [3, 2] [8, 2] [6, 5.5]

Covariance

[
0.7, 0

0, 0.7

] [
0.7, 0

0, 0.7

] [
1, 0

0, 1

]

Number of points 300 300 78
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Table 3. The parameters for generating dataset2

Parameter cluster1 cluster2 cluster3 cluster4 cluster5 cluster6 cluster7 cluster8

Mean [1, 8] [1, 3] [3, 6] [8, 10] [9, 2] [13, 6] [16, 1] [16, 12]

Covariance

[
0.2, 0

0, 0.2

] [
0.2, 0

0, 0.2

] [
0.2, 0

0, 0.2

] [
1, 0

0, 1

] [
1, 0

0, 1

] [
1, 0

0, 1

] [
0.2, 0

0, 0.2

] [
0.2, 0

0, 0.2

]

Number of

points

2,000 2,000 2,000 300 300 300 2,000 2,000

Table 4. The parameters for generating dataset3

Parameter cluster1 cluster2 cluster3 cluster4

Mean [2, 2] [9, 2] [6, 5.5] x ∈ [0.5, 12.5]

Covariance

[
0.2, 0

0, 0.2

] [
1, 0

0, 1

] [
1.5, 0

0, 1.5

]
y ∈ [8, 9.5]

Number of points 8,000 3,000 3,999 5,001

step3 select those points at the top right corner in the 2-dimensional space,
that is density peaks with relatively higher densities and distances, as cluster
centers of the data set;

step4 assign the remaining points except for the cluster centers to its nearest
neighbor with higher density.

./0123456789:8;(8<-8=>>

8

8

./0123456789:8;(8<-8=>??

8

8

Fig. 1. The clusterings of a3 by 4 clustering algorithms, respectively.
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3 Experiments and Analysis

This section will display the experimental results of SD DPC and the analysis.
In order to test the power of SD DPC, especially its power to detect the cluster
centers from sparse clusters and find the clustering of a data set which has
got both dense and sparse clusters simultaneously, we synthetically generated
data sets with both dense and sparse clusters. In addition, we test the power of
SD DPC by the typical data set a3 from other reference. It should be explained
that for the page limitation we cannot display more experimental results on any
other typical bench mark data sets. The Subsect. 3.1 will display the data sets
used in this paper. The experimental results of SD DPC and the analysis are
shown in Subsect. 3.2. We compared the performance of SD DPC with that of
DPC, KNN-DPC and FKNN-DPC. For the page limitation, the decision graph
and some other experimental results such as the comparison with other clustering
algorithms cannot be included in this paper.

We normalize the data using a min-max normalization given by (5), where
xij is the value of attribute j of point i, and min(xj) and max(xj) are the
minimum and maximum values of attribute j, respectively. The min-max nor-
malization in (5) can preserve the original relationship in data [4], and reduce
the influence on experimental results from different metrics for attributes and

Fig. 2. The clusterings of dataset1 by 4 clustering algorithms, respectively
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reduce the runtime of algorithms’ as well.

xij ← xij − min(xj)
max(xj) − min(xj)

(5)

3.1 Data Sets Description

Table 1 shows the informations of the synthetic data sets used in our experiments.
The data set a3 comes from [6], and the other three data sets are synthetically
generated. The parameters for generating the synthetical data sets are shown
in Tables 2, 3 and 4, respectively. We designed these various size of data sets
with dense and sparse clusters simultaneously only to test the ability and the
scalability of SD DPC in finding the cluster center from a sparse cluster and the
clustering of a data set as well.

3.2 Results and Analysis

Figures 1, 2, 3 and 4 respectively display the clusterings of data sets from Table 1
by 4 clustering algorithms. The square point in each cluster is the cluster center
detected by the related algorithm. Table 5 displays the quantity results of the

Fig. 3. The clusterings of dataset2 by 4 clustering algorithms, respectively
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aforementioned clustering algorithms in terms of Acc, AMI and ARI, and the
number of clusters discovered by each algorithm and the number of clusters
covering the cluster centers by F/P, where F refers to the number of cluster
centers found by algorithms and P the number of clusters in which the cluster
centers lie. The parameters pre-specified for each algorithm are also shown in
Table 5 by Par.

From the clusterings of a3 and dataset1 by 4 clustering algorithms respec-
tively shown in Figs. 1 and 2, we can say that all of the 4 clustering algorithms
can detect all of the cluster centers and the clustering of a3 and dataset1. The
difference between the clusterings by 4 algorithms only comes from the border
points between clusters. The quantity comparison between the clustering results
of 4 clustering algorithms on a3 and dataset1 will be displayed in Table 5 in
terms of Acc, AMI and ARI.

The clusterings shown in Fig. 3 disclose that the cluster centers of three
sparse clusters in dataset2 cannot be detected by DPC, while the other three
algorithms can detect all the cluster centers by finding density peaks. However,
the cluster centers found by 4 clustering algorithms are not completely same, and
border points between cluster5 and cluster6 are grouped into different clusters
by KNN-DPC, FKNN-DPC and SD DPC. The clustering by SD DPC is the

Fig. 4. The clusterings of dataset3 by 4 clustering algorithms, respectively
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Table 5. Comparison of 4 clustering algorithms on 4 synthetic data sets.

Algorithm a3 dataset1

Acc AMI ARI F/P Par Acc AMI ARI F/P Par

DPC 0.989 0.986 0.977 50/50 1.25 0.978 0.896 0.946 3/3 5

KNN-DPC 0.989 0.986 0.978 50/50 10 0.981 0.907 0.953 3/3 12

FKNN-DPC 0.987 0.985 0.975 50/50 10 0.973 0.877 0.934 3/3 12

SD DPC 0.989 0.986 0.979 50/50 6 0.978 0.896 0.946 3/3 7

Algorithm dataset2 dataset3

Acc AMI ARI F/P Par Acc AMI ARI F/P Par

DPC 0.917 0.864 0.895 5/5 2 0.848 0.810 0.779 4/4 2

KNN-DPC 0.999 0.997 0.999 8/8 10 0.959 0.908 0.931 4/4 12

FKNN-DPC 0.999 0.996 0.998 8/8 12 0.968 0.918 0.947 4/4 12

SD DPC 0.999 0.997 0.999 8/8 13 0.982 0.940 0.965 4/4 8

best one compared to original pattern of dataset2, which is not displayed for the
page limitations.

The clusterings of dataset3 by 4 clustering algorithms shown in Fig. 4 demon-
strate the power of our SD DPC. From the results in Fig. 4, it can be seen that
DPC cannot detect the clustering of dataset3, while the other three algorithms
can. KNN-DPC and FKNN-DPC are much better than DPC in finding the clus-
tering of dataset3, but they are not as good as our SD DPC for the mistakes
they made in finding the cluster2 and cluster3 of dataset3. The detail quantity
evaluation of the 4 clustering algorithms on dataset3 will be shown in Table 5.

The clustering results in Table 5 reveal that our SD DPC has got the best per-
formance among the 4 clustering algorithms while it was defeated by KNN-DPC
on dataset1. Our previous study KNN-DPC is also a good clustering algorithm.
DPC only has got comparable performance on a3.

The overall analysis demonstrate that our proposed SD DPC is powerful in
finding the cluster centers and the clustering of a data set no matter the clusters
are dense or sparse and with any arbitrary shapes. So we can conclude that the
proposed local density of a point based on its local standard deviation is valid.

4 Conclusions

This paper proposed to adopt the local standard deviation of point i to define its
local density ρi, so that the distribution information of points in a data set can
be absorbed as much as possible to overcome the problem of DPC which may
not detect the cluster center of a sparse cluster by finding density peaks. As a
consequence the heuristic clustering algorithms named SD DPC has been intro-
duced. The performance of SD DPC was tested on several synthetic data sets
and compared with that of DPC, KNN-DPC, FKNN-DPC. The experimental
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results demonstrate that the proposed SD DPC is superior to DPC, KNN-DPC
and FKNN-DPC.
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