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Chapter 5
Numerical Simulation on Rotating Detonation 
Engine: Effects of Higher-Order Scheme

Nobuyuki Tsuboi, Makoto Asahara, Takayuki Kojima, and A. Koichi Hayashi

Abstract  The implementation and simulations of the robust weighted compact 
nonlinear scheme (RWCNS) for the two-dimensional rotating detonation engine are 
performed using the detailed chemistry model. The comparison of the MUSCL and 
the 5th-order RWCNS (WCNS5MN) indicates that the shock front and the contact 
surface for the WCNS5MN can be improved with the better resolution than those 
for the MUSCL and that both rotating velocities are approximately 97% of the CJ 
value. Isp for the WCNS5MN is approximately 5 s larger than Isp for the MUSCL 
because the mass flow rates for the WCNS5MN are 2–4% smaller than those for the 
MUSCL.

1  �Introduction

Detonation is a strong explosion phenomenon that propagates at supersonic speed 
(e.g., a hydrogen/air detonation travels at supersonic). Detonation simulation 
requires to predict (i) a large discontinuous wavefront, such as a shock wave and a 
contact surface, and (ii) rapid chemical reaction near a combustion front. Because 
the detonation consists of strong explosion due to triple point collisions, the numeri-
cal scheme is required to be robust as well as numerical accuracy.

In the 1990s, the simulation of detonation was performed by the Harten-Yee total 
variation diminishing (TVD) scheme (Yee 1987) and the Godunov scheme 
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(Godunov 1959). In both cases, spatial accuracy reduces first-order near the discon-
tinuities to add large numerical viscosity. In the 2000s, various numerical methods, 
such as the HLLE scheme (Einfeldt 1988), HLLC scheme (Batten et  al. 1997), 
AUSMDV scheme (Wada et  al. 1994), the weighted essentially non-oscillatory 
(WENO) scheme (Jiang et al. 1996), and the weighted compact nonlinear scheme 
(WCNS) (Deng and Zhang 2000) were applied to the simulation of detonation with 
the development of high-performance computers and computational methods.

Wintenberger and Shepherd (2003) simulated a pulse detonation engine (PDE) 
with the HLLE scheme. When we neglect the fine details of the phenomenon being 
simulated, a robust numerical method such as the HLLE scheme is effective. On the 
other hand, Togashi et al. (2009); Asahara et al. (2012), and Kurosaka and Tsuboi 
(2014) used the AUSMDV scheme for numerical simulation of detonation and 
showed the 2D and 3D wavefront structure in detail. Hu et al. (2005) and Henrick 
et al. (2006) showed the detonation front structure in further detail using a fifth-
order WENO scheme. Schwer and Kailasanath (2013); Zhou and Wang (2012) 
simulated a rotating detonation engine (RDE) with the fifth-order WENO scheme.

Although WENO scheme is robust and superior scheme to simulate for strong 
shock waves with higher-order spatial accuracy, it is difficult to maintain a uniform 
freestream on an arbitrary grid system (Nonomura et al. 2010). WENO scheme is 
also probably not suitable for the simulation using a complex and crusterd 
grid(Nonomura et al. 2010). These problems do not arise in the detonation simula-
tions because most of the detonation simulations with WENO scheme use a orthog-
onal grid system. Furthermore, large numerical dissipation affects the detonation 
structure because the WENO scheme uses the Lax-Friendrich scheme for numerical 
flux evaluation.

The authors simulated the multi-dimensional hydrogen-fueled detonations 
(Asahara et al. 2012; Tsuboi et al. 2002, 2007, 2009, 2008a, b, 2013a, b, 2017; 
Niibo et al. 2016; Eto et al. 2005; Tsuboi and Koichi Hayashi 2007; Eto et al. 2016) 
and hydrocarbon-fueled detonation (Araki et al. 2016) in a micro-scale size, which 
is the order of a millimeter and centimeter. However, three-dimensional simula-
tions on an experimental scale are difficult because of a huge grid points and com-
putational time. The authors pay their attention to a high-resolution scheme that 
can provide enough resolution for a simulation with a reduced number of grid 
points. The present study adopts the weighted compact nonlinear scheme (WCNS) 
(Deng and Zhang 2000; Nonomura et al. 2010; Zhang et al. 2008; Nonomura and 
Fujii 2009) in our in-house detonation simulation program, where the WCNS 
allows the AUSMDV scheme to be used. Some recent simulation results of the 
detonation using the fifth- and seventh-order WCNS scheme are reported by Iida 
et  al. (2014) and Niibo et  al. (2016). Nonomura et  al. (2010) reported that the 
WCNS has three advantages: (i) the WCNS can select a wide variety of flux evalu-
ations, (ii) the WCNS provides high resolution, and (iii) the WCNS can maintain a 
uniform flow on generalized curvilinear coordinates. Although the WCNS has such 
the advantages comparing with the WENO, the WCNS is sometimes failed to sim-
ulate the strong explosion just after the triple point collision in the detonation. The 
robust weighted compact nonlinear scheme (RWCNS) developed by Nonomura 
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and Fujii (2013), which improves robustness near a large discontinuity, succeeds to 
simulate the detonation with a detailed chemical reaction model (Niibo et al. 2016; 
Iida et al. 2014).

The present research discusses to improve the RWCNS for the reactive com-
pressible fluid codes with multi-component gases and comparison of the two-
dimensional numerical results between the MUSCL and the WCNS on the rotating 
detonation engine.

2  �Governing Equations

Simulations of detonations are generally performed using the Euler equations, 
which include the equations for various chemical species associated with the rele-
vant chemical reactions. As far as species diffusion speed, the effect of gas molecu-
lar diffusion on the momentum and energy equations is low because the propagation 
speed of detonation exceeds 3 < Ma. Based on a consideration of the small effect of 
the boundary layer behind the detonation front, we consider the possibility that the 
effect of viscosity on detonation is small. On the other hand, it is easy to compare 
between numerical schemes in the inviscid flow because the amount of the numeri-
cal viscosity, which depend on the choice of the numerical scheme, affects the reso-
lution in the flowfields. For the above reasons, this study applies the compressible 
Euler equations to the modeling of shock waves and detonation.

The governing equations (the compressible Euler equations) consist of the mass 
conservation law of gases, the momentum conservation law, the energy conserva-
tion law, and the conservation law of each species. In the case of the two-dimensional 
Cartesian coordinate system, the compressible Euler equations are
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where ρ is the density in kg/m3, u and v are the velocity in the x and y directions in 
m/s, e is the total energy per specific volume in J/m3, i is the index of the chemical 
species (i = 1, 2, ⋯, N), N is the total number of species, ρi is the density of the ith 
species in kg/m3, p is the pressure in Pa, and ωi is the production rate of the ith 
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species by the chemical reaction in kg/(m3 ⋅ s), respectively. The total energy per 
specific volume, e, is defined as
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where hi is the specific enthalpy of the ith species in J/kg.
An additional equation is needed to combine with Eq. (5.1) to form a closed 

system. We assume a thermally perfect gas and the equation of state of which is 
given by
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where R  is the gas mixture constant in J/(kg ⋅ K), R is the universal gas constant in 
J/(kmol ⋅ K), T is the temperature in K, and Ri is the gas constant for the ith species 
in J/(kg ⋅ K), which is given by

	
R

R

Wi
i

=
	

(5.5)

where Wi is the molecular weight in kg/kmol. The detonation simulation is calcu-
lated using the system of equations formed by the compressible Euler equations 
(Eq. 5.1) and the equation of state (Eq. 5.4).

The specific enthalpy of the ith species in Eq. (5.6) is given by a fifth-order poly-
nomial function of temperature,
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In the same way, the specific heat at constant pressure of the ith species, Cp , i, is 
defined by a fourth-order polynomial function of the temperature,
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where a1i, a2i, a3i, a4i, a5i, and a6i are the coefficients calculated from the data in the 
JANAF tables (Stull and Prophet 1971). The specific heat ratio γ is written as
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The gas mixture constant, R , the gas mixture specific heat at constant pressure, 
Cp , and the gas mixture specific enthalpy, hi , are defined as
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where
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The speed of sound, c, is calculated from the following frozen speed of sound:
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H in Eq. (5.12) is the total enthalpy.

3  �Chemical Kinetic Model

�One- and Two-Step Reaction Model

The most simplified reaction model used for detonation calculation is one-step reac-
tion model. This model describes the combustion with a heat release Q behind a 
shock wave by using the reaction progress parameter Z which varies continuously 
from 1 to 0. On the other hand, the two-step model was developed by Korobeinikov 
et al. (1972) having a structure of two sequences; the induction reaction period and 
heat release period. This model applies for the conservation equation using an 
induction reaction progress parameter α and recombination reaction progress 
parameter β instead of the conservation equation of species, where α and β are unity 
at the initial state before reaction happens. The recombination reaction starts after 
the induction reaction is over and α becomes zero. Kj, nj, lj, mi, Ei (i = 1, 2 and 
j = 1,2,3), and Q are the constants which are obtained empirically. The following 
Eqs. (5.13) and (5.14) are used instead of the species conservation equation in Eq. 
(5.1).
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It is not necessary, in the case that the mixture is assumed as a simple ideal gas, 
to add a change in the energy conservation equations if the heat release Q is put in 
the enthalpy and energy equations as follows:
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(5.17)

where the chemical reaction is not stiff using such two-step mechanism and the 
equations are integrated explicitly.

�One- and Two-Step Reaction Model

In the case using a detailed chemical reaction mechanism for the small mechanism 
of hydrogen/oxygen reaction, the intermediate species such as H, O, OH, HO2, and 
H2O2 are necessary for the calculation besides H2, O2, and H2O. In this case, the 
chemical species are eight and their elementary reactions are about twenty. Two-
dimensional calculation provides triple calculation time comparing with a non-
reacting flow case because of five governing equations and nine more species 
equations. Since the equation system is stiff with a detailed reaction model, its pro-
duction term is integrated implicitly and since heat capacities of species are a func-
tion of temperature, the calculation time becomes totally at least more than three 
times comparing with that without the reaction term.

As far as detonation propagating through a hydrogen/air mixture, it is necessary 
to analyze it using a reaction mechanism with nitrogen, but mostly nitrogen is con-
sidered as a third body because the nitrogen related reactions are rather slow com-
paring with the oxyhydrogen reactions. As for the hydrogen/air reaction model used 
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in detonation calculation, Oran et al. (1979) proposed eight species and 43 elemen-
tary reactions in 1979. They also proposed eight species and 24 elementary reac-
tions (1982) in 1982. Shepherd (1986) also proposed in 1986.  He studied the 
relationship between calculated reaction zone length and measured cell size. This 
reaction model has a set of 23 reactions and 11 species (H2 , O2 , O , H , OH, H2O, 
HO2 , H2O2 , N2 , CO2 , CO).

Recent several detailed chemical kinetic mechanisms of hydrogen combustion 
have been developed and are being updated by many researchers (Petersen and 
Hanson 1999; Mueller et al. 1999; Li et al. 2004; O’Conaire et al. 2004; Konnov 
2008: Davis et  al. 2005; Saxena and Williams 2006; Shimzu et  al. 2011). These 
models have been validated using a wide range of measurements and were generally 
found to agree with experimental data, including ignition delay times with shock 
tubes, reaction behavior in flow reactors, and laminar flame speeds. Rate constants 
and third-body efficiencies for many elementary reactions seem to be evident in 
hydrogen/oxygen systems. However, determining some rate constants characterized 
by high sensitivity at high pressures has remained a challenge.

Although predictions of those models agree quite well with each other and with 
the experimental data of ignition delay times and flame speeds at pressures lower 
than 10 atm, substantial differences are observed between recent experimental data 
of high-pressure mass burning rates and model predictions, as well as among the 
model predictions themselves. Different pressure dependencies of mass burning 
rates above 10 atm in different kinetic models result from using different rate con-
stants in these models for HO2 reactions, especially for H + HO2 and OH + HO2 
reactions. The rate constants for the reaction H + HO2 involving different product 
channels were found to be very important for the prediction of high-pressure com-
bustion characteristics. In order to obtain better performance of the model predic-
tion for the high-pressure combustion of H2, UT-JAXA model (Shimzu et al. 2011) 
adopts more precise values of the rate constants for the following reactions:H + OH 
+ M = H2O + M, O + OH + M = HO2 + M, channel-specific rate constants for H + 
HO2, and the temperature dependence of the OH + HO2 = H2O + O2 reaction.

The production rate of each species relevant to the two-body reaction, ωi, in Eq. 
(5.1) is given by
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where χi is the chemical symbol for the ith species (e.g., hydrogen: χ = H2), νi
′  is the 

stoichiometric coefficient of the reactants for the ith species, νik
″  is the stoichiomet-

ric coefficient of the products for the ith species, the subscript k is the index of the 
elementary reactions (k = 1, 2, . . ., K), K is the total number of elementary reactions, 
kf , k is the forward specific reaction-rate constant of the kth elementary reaction, and 
kb , k is the backward specific reaction-rate constant for the kth elementary reaction, 
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respectively. The forward specific reaction-rate constant of the kth elementary reac-
tion is given by the modified Arrhenius rate law:
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where Ak is the frequency factor of the kth elementary reaction, nk is the exponent 
that determines the power-law relationship between the temperature and the for-
ward specific reaction-rate constant, and Ea , k is the activation energy per unit mass 
of the kth elementary reaction in cal/mol. Values for Ak, nk, and Ea , k are provided by 
the detailed reaction model by UT-JAXA model (Shimzu et al. 2011). kb , k, the back-
ward reaction rate constant of kth reaction which is related with the forward reaction 
rate constant is given as follows

	
k k Kb k f k ck, , ,/=

	
(5.20)

where Kck
 is the concentration equilibrium constant of kth reaction. When Kpk

 is 
the pressure equilibrium constant,
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where patm = 1(atm) and R is the universal gas constant with an unit of T/Patm. Kpk
 

is shown in the next Eq. (5.22) which is related with enthalpy and standard entropy.
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The frequency of three-body reactions is promoted by the fact that the third body 
(that is, the third molecule) absorbs energy from the other two molecules. By mul-
tiplying the production rate of the two-body reaction, given in Eq. (5.18), by the 
mole concentration of the third body, CM, the production rate of the three-body reac-
tion is obtained to be
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The mole concentration of the third body, CM, is given by
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where αik is the collision coefficient of the third body for the ith species. The values 
of these collision coefficients are indicated by the UT-JAXA detailed reaction model 
(Shimzu et al. 2011).

4  �Numerical Methods

In the detonation simulation in this study, an explicit method is used to solve the 
convective term and a point implicit method is applied to solve the source term of 
the chemical reaction, respectively. For the time integration, a third-order total vali-
dation diminishing Runge-Kutta scheme (TVDRK) (Gottlieb and Shu 1998) is 
used. The convective term is calculated by the AUSMDV scheme using flux evalu-
ation with conservative variables that are interpolated at high orders by the WCNS. In 
the source term, a Crank-Nicholson type point implicit method is used. The inver-
sion of Jacobian matrix in the source term is carried out by Gauss-Jordan elimina-
tion (Odlyzko 1985). The details are shown as follows.

�Time Integration

In order to solve the governing equations of reactive flow in Eq. (5.1), a splitting 
technique into two parts is applied to treat for the difference of chemical kinetic 
time scale and fluid dynamic time scale. The partial equation for the fluid dynamic 
is solved by the TVDRK and the ordinary differential equation for the chemical 
kinetics is solved by the point implicit method. The detail of the procedure is shown 
as follows:
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Because of the superposition of the solution obtained from each differential 
operator, Eq. (5.25) corresponds to solving the following equations:
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Here, Eq. (5.26), which serves as the partial differential equation for fluids, is 
applied to a following three-stage third-order TVDRK:

	
Q Q Q1( ) = + ( )n ntL∆
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These equations yield conservative variables that represent the solution of the 
differential equation for the fluid at t + Δt.

�Spatial Discretization Method

The method of evaluating the spatial differential term (∂E/∂x) in Eq. (5.26) is shown 
below along the computational procedure in the simulation code. In this study, the 
WCNS is implemented to provide nonlinear interpolation to improve the accuracy 
of the simulation, and a robust linear difference scheme suggested by Nonomura 
and Fujii (2013) is used. The present schemes are summarized in Table. 5.1.

�Nonlinear Interpolation

Interpolation is a method of constructing new data points within the range of a dis-
crete set of known data points. In this case, the conservative variables Qj on the grid 
point j are used to calculate Qj

L
+1 2/  and Qj

R
+1 2/ , i.e. on the left and right sides of the 

cell interface in Fig. 5.1.
The WCNS is the nonlinear interpolation method used to determine the value at 

the computational cell interface, which is needed to evaluate the numerical flux. The 
WCNS uses the value at the node point. A previous study of the WCNS (Nonomura 
et al. 2012) indicated that the interpolation by using primitive variables is robust 
against the oscillation in the vicinity of the interference, where gas species vary 
drastically, and that the interpolation by conservative variables is robust to the 

Table 5.1  Simulation methods for present scheme

Nonlinear 
interpolation

Flux
evaluation Linear Interpolation

MUSCL 2nd-order MUSCL AUSMDV 2nd-order central difference with minmod 
limiter[49]

WCNS5MN6 5th-order RWCNS AUSMDV Eq. (5.47) with 6th-order coefs
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oscillation around shock waves. The detonation front structure is constructed by the 
complicated shock waves so that the interpolation by conservative variables is suit-
able for the simulation of detonation. From this perspective, the conservative vari-
ables are used in the interpolation of the WCNS.

In order to calculate the conservative variables at the computational cell inter-
face, stencils Sj + 1/2 of 2r − 1 points are used to construct the conservative variables 
Qj

L
+1 2/  and Qj

R
+1 2/  with a (2r − 1)th-order interpolation:

	
S x x xj j r j j r+ − + + −= { }12 1 1,,,, ,,,, ,,,, ,,,, 

. 	
(5.30)

For example, if r = 3, five points (j − 2 , j − 1 , j , j + 1 , j + 2) are required and a 
5th-order interpolation is performed in Fig. 5.2.

Fig. 5.1  Interpolation in 
the computational cell with 
2r-1 stencil points

Fig. 5.2  Stencil at the point j for r = 3 (5th-order interpolation)
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The first step is to transform the conservative variables Q in the stencil to the 
characteristic variables qj, m by multiplying the left eigenvector, yielding the 
expression

	
qj m j m j, , ,= l Q

	
(5.31)

where the mth left eigenvectors of the Jacobian matrix ∂E/∂Q are lj , m and the mth 
characteristic variables are qj, m. The second step is to construct polynomials consist-
ing of (r substencils. The r substencils are composed of r cell centers in Fig. 5.3. 
The kth substencil Sj + 1/2 , k(k = 1,⋯ , r) is written as

	
S x x xj k j k r j j k+ + − + −= { }12 1, .

,,,, ,,,, ,,,, ,,,, 

	
(5.32)

Then, points of each substencil are combined to calculate an (2r − 1)th-order 
interpolation in Fig. 5.4.

The characteristic variables in the kth polynomials qj k m
L
+1 2/ , ,  are computed as

	
q c qj k m

n

l

r

n k l j k r l m, , , , , .
( )

=
+ − + −= ⋅∑

1
1

	
(5.33)

Fig. 5.3  Substencils for interpolation at the point j for r = 3 (5th-order interpolation)
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Here, the details of coefficients cn, k, l are shown in Nonomura and Fujii [5.33]. 
For example, the approximation of the 1st derivative of the mth characteristic vari-
able at the 1st substencil (n = 1, r = 3) is expressed as:

	
q c q c q c qj m j m j m j m, , , , , , , , , , , .1

1
1 1 1 2 1 1 2 1 1 1 3

( )
− −= ⋅ + ⋅ + ⋅

	
(5.34)

By reproducing the same calculation for other kth substencils and other nth 
derivatives with their own c coefficients, we can obtain a full data set to calculate the 
weighted characteristic variables for each substencil at the cell interface as 
follows:

	
q q

n

x
qj k m

L
j m

n

r n

j k m
n

+
=

−
( )= + 













∑1 2

1

1 1

2/ , , , , ,!
.

∆

	
(5.35)

This calculation is based on the Taylor expansion method which represents a 
function as an infinite sum of terms that are calculated from the values of the func-
tion’s derivatives at a single point. In the case of r = 3(5th-order), the mth weighted 
characteristic variable for the k substencils can be written as:

	
q q

x
q

x
qj k m

L
j m j k m j k m+

( ) ( )= + +1 2
1

2
2

2

1

2 4/ , , , , , , , .
∆ ∆

	
(5.36)

Fig. 5.4  5th-order interpolation by combination of each substencil (r = 3)
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If we consider the 1st substencil, the above equation becomes:

	

q q
x

c q c q c qj k m
L

j m j m j m j+ − −= + ⋅ + ⋅ + ⋅1 2 111 2 11 2 1 11 32/ , , , , , , , , , , , ,

∆
mm

j m j m j m

x
c q c q c q

 

+ ⋅ + ⋅ + ⋅ − −

∆ 2

2 11 2 2 1 2 1 2 1 38 , , , , , , , , , .
	

(5.37)

The idea is that a weight is assigned to each of the k substencils. It determines 
the contribution of the substencil to the final approximation of the cell-edge value 
qj + 1/2, m in Fig. 5.5. The obtained variables in Eq. (5.37) are rth order cell-edge inter-
polated values.

The third step is to combine these characteristic variables qj k m
L
+1 2/ , ,  together with 

a new final weight coefficient wk to calculate a final (2r − 1)th-order accurate inter-
polation value qj m

L
+1 2/ ,  at the cell interface. This combination is done as follows:

	
q w qj m
L

k

r

j k m j k m
L

+
=

+ += ⋅∑1 2
1

1 2 1 2/ , / , , / , , ,
	

(5.38)

where

	

wj k m

j k m

l

r

j l m

+
+

= +

=
∑

1 2

1 2

1 1 2

/ , ,

/ , ,

/ , ,

,
α

α
	

(5.39)

Fig. 5.5  Weighted characteristic variable at the left edge of the cell from each substencil (r = 3, 
5th-order interpolation)
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α
ε

j k m
k

j k m

C

IS
+

+

=
( ) +

1 2

1 2
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/ , ,

,

	

(5.40)

	
IS qj k m

l

r

j k m
n

+
=

+
( )= ( )∑1 2

1
1 2

2

/ , , / , , .
	

(5.41)

In Eq. (5.40), ϵ is a very small value ϵ = 1 × 10−6, which avoids the division by 
zero. The meaning of Eqs. (5.39), (5.40) and (5.41) is that if a polynomial of the 
form of Eq. (5.35) becomes smooth, i.e. in continuous regions, wj + 1/2, k, m approaches 
to Ck. On the other hand, near discontinuities, wj + 1/2, k, m decreases to prevent from 
numerical oscillations. This may result in a slight loss of accuracy but the stability 
of the calculation is improved. wj + 1/2, k, m has to satisfy the following equation:

	
∑
=

+ =
k

r

j k mw
1

1 2 1/ , , .
	

(5.42)

Finally, multiplying Eq. (5.38) by the right eigenvectors of the matrix ∂E/∂Q, rj, m, 
the conservative variables, Qj + 1/2, can be calculated:

	
Q rj

L

m
j m
L

j mq+ += ⋅∑1 2 1 2/ / , , .
	

(5.43)

When Q j
L
+1 2/  is calculated, Q j

R
+1 2/  can be obtained symmetrically with a similar 

way.

�Flux Evaluation

By using the conservative variables at the computational cell interface Q j
L
+1 2/  and 

Q j
R
+1 2/  in Eq. (5.43), the numerical flux at the computational cell interface, E

˜

/j+1 2 , 
is calculated. The equation used for the flux evaluation in the AUSMDV scheme is

	
E I
˜

,j R L R Lu u p+ = ( ) +( ) − ( ) +( ){ } +12
12 12 12 2

1

2
ρ ρΨ Ψ Ψ Ψ

	
(5.44)

where
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(5.45)
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The methods used to evaluate the pressure term, mass flux term, and momentum 
flux term are described in the original paper (Wada and Liou 1994).

�Linear Difference

An approximation of flux derivative 
∂
∂

E
x j







 is evaluated from E
˜

/j+1 2 . A general 

form of the explicit midpoint-to-node differencing (MD) scheme in Fig. 5.6 is writ-
ten as follows:

	

∂
∂

E
E E

x x
a

j k

r

k j k j k







 = −( )

=

−

+ + + −∑1

0

1

1 2 1 2∆
 

/ / .

	

(5.46)

On the other hand, the robust scheme for the RWCNS that Nonomura and Fujii 
(2013) improved as a midpoint-and-node-to-node difference (MND) in Fig. 5.7 is 
given by

Fig. 5.6  Midpoint-to-node linear differentiation

Fig. 5.7  Midpoint and node-to-node linear differentiation
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(5.47)
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(5.48)

where the true flux at the node point is Ej ± k/2. The coefficients of ak and bk are shown 
in the original article by Nonomura and Fujii (2013). When Eq. (5.48) is substituted 
into Eq. (5.47), the true flux is interpolated into the numerical viscosity term.

This scheme in Eq. (5.47) prevents the negative numerical viscosity around the 
shock wave and improves stability more than the original scheme in Eq. (5.46). 
Thus, the difference between the WCNS and the RWCNS is the linear interpolation. 
The present research uses the nonlinear interpolation as 5th-order RWCNS and lin-
ear interpolation as Eq. (5.47) with 6th-order coefficients.

5  �Simulation Conditions

The simulation conditions and grid system used in this study are presented in 
Table 5.2. The computational regions for the x- and y- directions are 3 mm × 6 mm.

The ambient conditions behind the exit are pressure pe of 0.01 MPa and tempera-
ture of 300  K.  The reason to use low ambient pressure is the comparison of Isp 
between the present simulation and H2/O2 conventional rocket engine without noz-
zle under vacuum condition. The simulation conditions in the stagnation chamber 
are pressure p0 of 2–6 MPa and temperature of 300 K. The micro-nozzle area ratios 
of the throat to nozzle exit at the injection port, A∗/A, are 0.02. The stoichiometric 
H2/O2 gas mixture is supplied through the micro-nozzles. The numerical setup of 
the present simulation and boundary conditions are shown in Fig. 5.8.The numerical 

Table 5.2  Simulation conditions and computational grids (constant resolution)

p0, MPa
L, mm
(imax)

H, mm
(jmax)

Δx , Δy,
μma1 Aa/A

2 3.0
(1201)

6.0
(2401)

2.5 0.2

3 3.0
(1451)

6.0
(2901)

2.07 0.2

4 3.0
(1543)

6.0
(3087)

1.95 0.2

5 3.0
(1593)

6.0
(3187)

1.89 0.2

a1: approximately five grid points in H2 half reaction length
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result of the one-dimensional detonation is used for the ignition in the two-
dimensional simulation. As the stagnation pressure is lower than 2 MPa, the rotating 
detonation becomes failure. Although the successful of the detonation ignition will 
depend on the stoichiometric ratio and stagnation temperature in the injection gas, 
the present simulations does not estimate the effect of them yet.

There are two boundary condition systems for the mixture injection: the super-
sonic and subsonic inlets. The supersonic inlet condition is used for most of the 
simulations because the inlet nozzles for premixed gas typically have a choked con-
dition at the exits of small nozzles. However, a supersonic inlet condition exists in 
many real cases because of the high pressure in the combustion chamber. The sub-
sonic inlet condition is discussed by Zhdan et al. (2007). The present calculations 
are performed based on the following four conditions:

	1.	 The pressure is extrapolated, and velocity is set to zero when the inlet pressure is 
higher than the manifold pressure. This case means that the gas injection is 
impossible.

	2.	 The pressure is extrapolated when the pressure just before the inlet is lower than 
the manifold pressure and higher than the pressure just behind the inlet. In this 
case, there is no choking at the throat with a subsonic gas injection.

	3.	 The pressure is extrapolated when the inlet pressure is higher than the supersonic 
condition and lower than the subsonic condition. In this case, a normal shock 
wave is generated in the nozzle with the subsonic injection.

Fig. 5.8  Numerical setup and boundary conditions
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	4.	 The pressure achieves a supersonic value and the premixed gas is accelerated 
due to isentropic expansion with supersonic injection when the inlet pressure is 
higher than the supersonic condition.

The outlet boundary conditions are given at the exit of the RDE by two patterns, 
but the flow cannot go backwards from the downstream to the upstream:

	1.	 The exit pressure of the RDE is set to the ambient pressure when the exhaust gas 
speed is subsonic.

	2.	 The exit pressure of the RDE is extrapolated from the values in the combustion 
chamber when the exhaust gas speed is supersonic.

The effects of the grid resolution on the MUSCL are discussed by Tsuboi et al. 
(2013, 2015, 2017). As the grid resolution increases in 2D and 3D RDE simulations, 
a cellular structure appears near the detonation head. However, the effects of the 
grid resolution on the Isp is approximately a few seconds.

6  �Results and Discussions

�Basic Flow Structure

The comparison of the density gradient between the MUSCL and the WCNS5MN 
is presented in Fig. 5.9. The injection conditions are A∗/A= 0.2 and p0= 2.0 MPa. For 
both cases, some triple points appear near the detonation front. The rotating 

Fig. 5.9  Instantaneous density gradient contours and flow structure for p0= 2 MPa
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detonation head produces some shock waves and a slip line. The WCNS5MN can 
resolve the slip line with small vortices better than the MUSCL.

Figure 5.10 plots the pressure along the lines near the injection, as shown in 
Fig.  5.9. The pressure behind the rotating detonation along lines i = 50 − 900 
decreases because of the strong expansion in the unconfined region. Both pressure 
profiles show similar feature.

Fig. 5.10  Instantaneous 
pressure profile along 
y-directions in Fig. 5.9 for 
p0= 2 MPa
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�Close-Up View Near Detonation Front

This subsection discusses the effects of the high-resolution scheme near the rotating 
detonation front. Figures 5.11, 5.12, 5.13 and 5.14 show the instantaneous pressure, 
temperature, OH mass fraction, and local heat release contours near the rotating 
detonation front. Both schemes can capture some triple points near the rotating deto-
nation front in the present grid resolution. Some disturbance in the temperature and 
OH mass fraction contours are captured behind the rotating detonation front for the 
WCNS5MN. The instantaneous profiles along i = 50∼300 are shown in Figs. 5.15, 
5.16 and 5.17. The WCNS5MN can capture the large discontinuity near the detona-
tion front better than the MUSCL as shown in Fig. 5.15. However, there are small 
difference on temperature and OH mass fraction in Figs. 5.16 and 5.17 because the 
WCNS5MN improves spatial resolution for fluid and this scheme does not improve 
resolution for chemical reaction as shown in Eqs. (5.25), (5.26) and (5.27).

Fig. 5.11  Instantaneous pressure contours for p0= 2 MPa
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�Detonation Velocity

Figure 5.18 shows the comparison of the rotating detonation velocity between the 
MUSCL and the WCNS5MN. The detonation velocity for both schemes is 2849 m/s 
and 97% of DCJ. In the experimental data (Bykovskii et al. 2006), the rotating deto-
nation velocities are 80–95% of DCJ because of incomplete mixing and unconfined 
effects. The detonation velocity deficit in Hishida’s 2D RDE simulation (Hishida 
et al. 2009) is approximately 5% because of the unconfined detonation effects. The 
present results agree well with those in Hishida’s results (Hishida et al. 2009) .

Fig. 5.12  Instantaneous temperature contours for p0= 2 MPa
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Fig. 5.13  Instantaneous OH mass fraction contours for p0= 2 MPa

�Thrust Performance

Figure 5.19 shows the comparison of Isp between the MUSCL and the 
WCNS5MN. This figure also includes the calculated Isp for a H2/O2 rocket engine 
without a diverging nozzle, assuming a chemical equilibrium state under a vacuum 
environment. This value is calculated using the Gordon and McBride method 
(Gordon and McBride 1971). This figure shows that Isp for the WCNS5MN is 
approximately 5 sec larger than Isp for the MUSCL. Isp for both schemes is actually 
greater than Isp of a conventional rocket engine.
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Fig. 5.14  Instantaneous heat release contours for p0= 2 MPa

The time-averaged thrust per cycle for both schemes is also proportional to the 
mass flow rate, as shown in Fig. 5.20. Because the mass flow rates for the WCNS5MN 
are 2–4% smaller than those for the MUSCL, Isp for the WCNS5MN is 5 s larger 
than Isp for the MUSCL in Fig. 5.19.

N. Tsuboi et al.



101

Fig. 5.15  Instantaneous 
pressure profiles near 
rotating detonation front 
along y-direction in 
Fig. 5.11 for p0= 2 MPa
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Fig. 5.16  Instantaneous 
temperature profiles near 
rotating detonation front 
along y-direction in 
Fig. 5.12 for p0= 2 MPa
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Fig. 5.17  Instantaneous 
OH mass fraction profiles 
near rotating detonation 
front along y-direction in 
Fig. 5.13 for p0= 2 MPa
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7  �Conclusions

The implementation and simulations of the robust weighted compact nonlinear 
scheme (RWCNS) for the two-dimensional rotating detonation engine are performed 
using the detailed chemistry model. The comparison of the MUSCL and the 5th-order 
RWCNS (WCNS5MN) indicates that the shock front and the contact surface for the 
WCNS5MN can be improved with the better resolution than those for the MUSCL 
and that both rotating velocities are approximately 97% of the CJ value. However, Isp 
for the WCNS5MN is approximately 5 sec larger than Isp for the MUSCL because the 
mass flow rates for the WCNS5MN are 2–4% smaller than those for the MUSCL.

Acknowledgements  This research was done in collaboration with Cybermedia Center using the 
Osaka University supercomputer system.
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