
Chapter 5
Image Evaluation Methods for PIV

This chapter treats the fundamental techniques for the evaluation of PIV recordings.
In order to extract the displacement information from a PIV recording some sort of
interrogation scheme is required. Initially, this interrogationwas performedmanually
on selected images with relatively sparse seeding which allowed the tracking of
individual particles [2, 20]. With computers and image processing becoming more
commonplace in the laboratory environment it became possible to automate the
interrogation process of the particle track images [25, 27, 28, 98]. The application
of tracking methods, that is to follow the images of an individual tracer particle from
exposure to exposure, is best practicable in the low image density case, see Fig. 1.10a.
The low image density case often appears in strongly three-dimensional high-speed
flows (e.g. turbomachinery) where it is not possible to provide enough tracer particles
or in two phase flows, where the transport of the particles themselves is investigated.
Additionally, theLagrangianmotion of a fluid element can be determined by applying
tracking methods [14, 19].

In principle, however, a high data density is desired on the PIV vector fields,
especially if strong spatial flow variations need to be resolved or for the comparison
of experimental data with the results of numerical calculations. This demand requires
a medium concentration of the images of the tracer particles in the PIV recording.
Medium image concentration is characterized by the fact that matching pairs of
particle images – due to subsequent illuminations – cannot be detected by visual
inspection of the PIV recordings, see Fig. 1.10b. Hence, statistical approaches, which
will be described in the next sections, were developed. After a statistical evaluation
has been performed first, tracking algorithms can be applied additionally in order to
achieve sub-window spatial resolution of the measurement, which is known as super
resolution PIV [45].

An overview of the Digital Content to this chapter can be found at [DC5.1].
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Tracking algorithms have continuously been improved during the past decade.
Today, particle tracking is an interesting alternative to statistical PIV evaluation
methods as we will see in more detail in Sect. 5.4.

Comparisons between cross-correlation methods and particle tracking techniques
together with an assessment of their performance have been performed in the frame-
work of the International PIV Challenge [40, 88–90].

5.1 Correlation and Fourier Transform

5.1.1 Correlation

The main objective of the statistical evaluation of PIV recordings at medium image
density is to determine thedisplacement between twopatterns of randomlydistributed
particle images, which are stored as a 2D distribution of gray levels. Looking around
in other areas of metrology (e.g. radars), it is common practice in signal analysis to
determine, for example, the shift in time between two (nearly) identical time signals
by means of correlation techniques. Details about the mathematical principles of the
correlation technique, the basic relations for correlated and uncorrelated signals and
the application of correlation techniques in the investigation of time signals can be
found inmany textbooks [8, 63, 64]. The theory of correlation is easily extended from
the one dimensional (1D time signal) to the two- and three-dimensional (gray level
spatial distribution) case. In Chap. 4 the use of auto- and cross-correlation techniques
for statistical PIVevaluationhas alreadybeen explained.Analogously to spectral time
signal representations, for a 2D spatial signal I (x, y) the power spectrum | Î (rx , ry)|2
can be determined where rx , ry are spatial frequencies in orthogonal directions. The
basic theorems for correlation and Fourier transform known from the theory of time
signals are also valid for the 2D case (with appropriate modifications) [10].

For the calculation of the auto-correlation function two possibilities exist: either
direct numerical calculation or indirectly (numerically or optically), using the
Wiener-Khinchin theorem [8, 10]. This theorem states that the Fourier transform
of the auto-correlation function RI and the power spectrum | Î (rx , ry)|2 of an inten-
sity field I (x, y) are Fourier transforms of each other.

The direct numerical calculation is computationally more intensive and has barely
been used for 2D PIV. It becomes a viable approach for recording with a sparse
distribution of particles, such as encountered in 3D PIV see Sect. 9.3.

Figure5.1 illustrates that the auto-correlation function can either be determined
directly in the spatial domain (upper half of the figure) or indirectly by Fourier
transform FT (left hand side), multiplication, that is the calculation of the squared
modulus, in the frequency plane (lower half of the figure), and by inverse Fourier
transform FT−1 (right hand side).

http://dx.doi.org/10.1007/978-3-319-68852-7_4
http://dx.doi.org/10.1007/978-3-319-68852-7_9
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Fig. 5.1 Sketch of relation between 2D correlation function and spatial spectrum by means of
the Wiener–Khinchin theorem. FT – Fourier transform, FT−1 – inverse Fourier transform, OFT –
optical Fourier transform

5.1.2 Optical Fourier Transform

As already mentioned in Sect. 2.5 the far field diffraction pattern of an aperture
transmissivity distribution is represented by its Fourier transform [26, 47, 68]. A
lens can be used to transfer the image from the far field close to the aperture. For
a mathematical derivation of this result some assumptions have to be made, which
are described by the Fraunhofer approximation. These assumptions (large distance
between object and image plane, phase factors) can be fulfilled in practical optical
setups for Fourier transforms.

Figure5.2 shows two different configurations for such optical Fourier processors.
In the arrangement on the left hand side the object, which would consist of a trans-
parency to be Fourier transformed (e.g. the photographic PIV recording), is placed
in front of the so-called Fourier lens (at -f usually). In the second setup (right hand
side) the object is placed behind the lens. As derived in the book of Goodman [26]
both arrangements differ only by the phase factors of the complex spectrum and
a scale factor. Light sensors (photographic film as well as CCD sensors) are only
sensitive to the light intensity. The intensity corresponds to the squared modulus
of the complex distribution of the electromagnetic field; hence phase differences in
the light wave cannot be detected. Therefore, both arrangements shown in Fig. 5.2
can be used for PIV evaluation. The result of the optical Fourier transform (OFT,
dashed line in Fig. 5.1) is the power spectrum of the gray value distribution of the
transparency.

In the following this will be illustrated for the case of a pair of two particle images.
White (transparent) images of a tracer particle on a black (opaque) background

http://dx.doi.org/10.1007/978-3-319-68852-7_2
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Fig. 5.2 Optical Fourier processor, different positions of object and Fourier lens

will form a double aperture on the photographic PIV recording. With good lens
systems the diameter of an image of a tracer particle on the recording is of the order
of 20 to 30µm. The spacing between the two images of a tracer particle should
be approximately 150–250µm, in order to obtain optimum conditions for optical
evaluation (compare Sect. 3.2). Figure5.3 shows a cross-sectional cut through the
diffraction pattern of a double aperture (parameters are similar to those of the PIV
experiment). The figure at the left side shows several peaks of the light intensity
distribution under an envelope. The envelope represents the diffraction pattern of
a single aperture with the same diameter (i.e. the Airy pattern, see Sect. 2.5). The
intensity distribution will extend in the 2D presentation in the vertical direction,
thus forming a fringe pattern, that is the Young’s fringes. The fringes are oriented
normal to the direction of the displacement of the apertures (tracer images). The
displacement between the fringes is inversely proportional to the displacement of
the apertures (tracer images). If the distance between the apertures (tracer images) is
decreased, the distance between the fringes will increase inversely. This is illustrated
in the center of Fig. 5.3, where the distance between the two apertures is only half
that of the example on the left side. It can be seen that the distance between the
fringes is increased by a factor of two. The same inverse relation, which is due to the
scaling theorem of the Fourier transform, is valid for the envelope of the diffraction
pattern: if the diameter of the aperture (particle images) decreases, the extension of
the Airy pattern will increase inversely (see Fig. 5.3, right side). As a consequence,
more fringes can be detected in those fringe patterns which are generated by smaller
apertures (particle images). This is one reason to explain why small and well focused
particle images will increase the quality and detection probability in the evaluation
of PIV recordings. Due to another property of the Fourier transform, that is the
shift theorem, the characteristic shape of the intensity pattern does not change if the
position of the particle image pairs is changed inside the interrogation spot. Increasing
the number of particle image pairs also does not change the Young’s fringe pattern
significantly. Of course this is not true for the case of just two image pairs: two fringe
systems of equal intensity will overlap, allowing no unambiguous evaluation.

http://dx.doi.org/10.1007/978-3-319-68852-7_3
http://dx.doi.org/10.1007/978-3-319-68852-7_2
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Fig. 5.3 Fraunhofer diffraction pattern of three different double apertures, from left to right, first
the separation between the apertures has been decreased, then – on the right hand side – the diameter
of the apertures has been decreased

5.1.3 Digital Fourier Transform

The digital Fourier transform is the basic tool ofmodern signal and image processing.
A number of textbooks describe the details [8, 10, 36, 109]. The breakthrough of the
digital Fourier transform is due to the development of fast digital computers and to the
development of efficient algorithms for its calculation (Fast Fourier Transformation,
FFT) [8, 10, 12, 109]. Those aspects of the digital Fourier transform relevant for the
understanding of digital PIV evaluation will be described in Sect. 5.3.

5.2 Overview of PIV Evaluation Methods

In the following the different methods for the evaluation of PIV recordings by means
of correlation and Fourier techniques will be summarized.

Figure5.4 presents a flow chart of the fully digital auto-correlation method, which
can be implemented in a straight-forward manner following the equations given
in Chap.4. The PIV recording is sampled with comparatively small interrogation
windows (typically 30–250 samples in each direction). For each window the auto-
correlation function is calculated and the position of the displacement peak in the
correlation plane is determined. The calculation of the auto-correlation function is
carried out either in the spatial domain (upper part of Fig. 5.1) or – in most cases –
through the use of FFT algorithms.

http://dx.doi.org/10.1007/978-3-319-68852-7_4
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Fig. 5.5 Analysis of double frame/single exposure recordings: the digital cross-correlation method

If the PIV recording system allows the employment of the double frame/single
exposure recording technique (see Fig. 3.2) the evaluation of the PIV recordings is
performed by cross-correlation (Fig. 5.5). In this case, the cross-correlation between
two interrogation windows sampled from the two recordings is calculated. As will be
explained later in Sect. 5.3, it is advantageous to offset both these samples according
to the mean displacement of the tracer particles between the two illuminations. This
reduces the in-plane loss of correlation and therefore increases the correlation peak
strength. The calculation of the cross-correlation function is generally computed
numerically by means of efficient FFT algorithms.

Single frame/double exposure recordings may also be evaluated by a cross-
correlation approach instead of auto-correlation by choosing interrogation win-
dows slightly displaced with respect to each other in order to compensate for the
in-plane displacement of particle images. Depending on the different parameters,
auto-correlation peaks may also appear in the correlation plane in addition to the
cross-correlation peak.

Computer memory and computation speed being limited in the beginning of the
eighties, PIV work was strongly promoted by the existence of optical evaluation
methods. The most widely used method was the Young’s fringes method [DC5.2],
which in fact is an optical-digital method, employing optical as well as digital Fourier
transforms for the calculation of the correlation function.

In the next section the most commonly used and very flexible digital evaluation
methods will be discussed in more detail.

5.3 PIV Evaluation

With the wide-spread introduction of digital imaging and improved computing capa-
bilities the optical evaluation approaches used for the analysis of photographic
PIV recordings quickly became obsolete. Initially a desktop slide scanner for the

http://dx.doi.org/10.1007/978-3-319-68852-7_3
http://dc.pivbook.org/youngs_fringes_method
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digitization of the photographic recording replaced the complex opto-mechanical
interrogation assemblies with computer-based interrogation algorithms. Then rapid
advances in electronic imaging further allowed for a replacement of the rather cum-
bersome photographic recording process. In the following we describe the neces-
sary steps in the fully digital analysis of PIV recordings using statistical methods.
Initially, the focus is on the analysis of single exposed image pairs, that is single
exposure/double frame PIV, by means of cross-correlation. The analysis of multiple
exposure/single frame PIV recordings can be viewed as a special case of the former.

5.3.1 Discrete Spatial Correlation in PIV Evaluation

Before introducing the cross-correlation method in the evaluation of a PIV image,
the task at hand should be defined from the point of view of linear signal or image
processing. First of all let us assume we are given a pair of images containing particle
images as recorded from a light sheet in a traditional PIV recording geometry. The
particles are illuminated stroboscopically so that they do not produce streaks in the
images. The second image is recorded a short time later during which the particles
will have moved according to the underlying flow (for the time being ignoring effects
such as particle lag, three-dimensional motion, etc.). Given this pair of images, the
most we can hope for is to measure the straight-line displacement of the particle
images since the curvature or acceleration information cannot be obtained from a
single image pair. Further, the seeding density is too large and homogeneous that
it is difficult to match up discrete particles. In some cases the spatial translation
of groups of particles can be observed. The image pair can yield a field of linear
displacement vectors where each vector is formed by analyzing the movement of
localized groups of particles. In practice, this is accomplished by extracting small
samples or interrogation windows and analyzing them statistically (Fig. 5.6).

From a signal (image) processing point of view, the first image may be considered
the input to a system whose output produces the second image of the pair (Fig. 5.7).
The system’s transfer function, H , converts the input image I to the output image I ′
and is comprised of the displacement function d and an additive noise process, N .
The function of interest is a shift by the vector d as it is responsible for displacing
the particle images from one image to the next. This function can be described, for
instance, by a convolution with δ(x − d). The additive noise process, N , in Fig. 5.7
models effects due to recording noise and three-dimensional flowamong other things.
If both d and N are known, it should then be possible to use them as transfer functions
for the input image I to produce the output image I ′. With both images I and I ′
known the aim is to estimate the displacement field d while excluding the effects of
the noise process N . The fact that the signals (i.e. images) are not continuous – the
dark background cannot provide any displacement information – makes it necessary
to estimate the displacement function d using a statistical approach based on localized
interrogation windows (or samples).
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Fig. 5.6 Conceptual arrangement of frame-to-frame image sampling associated with double
frame/single exposure Particle Image Velocimetry
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Fig. 5.7 Idealized linear digital signal processing model describing the functional relationship
between two successively recorded particle image frames.

One possible scheme to recover the local displacement function would be to
deconvolve the image pair. In principle this can be accomplished by dividing the
respective Fourier transforms by each other. This method works when the noise in
the signals is insignificant. However, the noise associated with realistic recording
conditions quickly degrades the data yield. Also the signal peak is generally too
sharp to allow for a reliable sub-pixel estimation of the displacement.

Rather than estimating the displacement function d analytically, the method of
choice is to locally find the best match between the images in a statistical sense. This
is accomplished through the use of the discrete cross-correlation function, whose
integral formulation was already described in Sect. 4:

http://dx.doi.org/10.1007/978-3-319-68852-7_4
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Fig. 5.8 Example of the formation of the correlation plane by direct cross-correlation: here a
4×4 pixel template is correlated with a larger 8×8 pixel sample to produce a 5×5 pixel correlation
plane

RII(x, y) =
K∑

i=−K

L∑

j=−L

I (i, j)I ′(i + x, j + y) . (5.1)

The variables I and I ′ are the samples (e.g. intensity values) as extracted from the
images where I ′ can be taken larger than the template I . Essentially the template
I is linearly ‘shifted’ around in the sample I ′ without extending over edges of I ′.
For each choice of sample shift (x, y), the sum of the products of all overlapping
pixel intensities produces one cross-correlation value RII(x, y). By applying this
operation for a range of shifts (−M ≤ x ≤ +M,−N ≤ y ≤ +N ), a correlation
plane the size of (2M + 1) × (2N + 1) is formed. This is shown graphically in
Fig. 5.8. For shift values at which the samples’ particle images align with each other,
the sum of the products of pixel intensities will be larger than elsewhere, resulting
in a high cross-correlation value RII at this position (see also Fig. 5.9). Essentially
the cross-correlation function statistically measures the degree of match between the
two samples for a given shift. The highest value in the correlation plane can then be
used as a direct estimate of the particle image displacement which will be discussed
in detail in Sect. 5.3.5.

Upon examination of this direct implementation of the cross-correlation function
two things are obvious: first, the number of multiplications per correlation value
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Fig. 5.9 The cross-correlation function RII (right) as computed from real data by correlating a
smaller template I (32 × 32 pixel) with a larger sample I ′ (64 × 64 pixel). The mean shift of the
particle images is approximately 12 pixel to the right. The approximate location of best match of I
within I ′ is indicated as a white rectangle

increases in proportion to the interrogation window (or sample) size, and second, the
cross-correlationmethod inherently recovers linear shifts only. No rotations or defor-
mations can be recovered by this first order method. Therefore, the cross-correlation
between two particle image samples will only yield the displacement vector to first
order, that is, the average linear shift of the particles within the interrogation window.
This means that the interrogation window size should be chosen sufficiently small
such that the higher-order effects can be neglected.

The first observation concerning the quadratic increase in multiplications with
sample size imposes a quite substantial computational effort. In a typical PIV inter-
rogation the sampling windows cover of the order of several thousand pixel while the
dynamic range in the displacement may be as large as±10 to±20 pixel which would
require up to one million multiplications and summations to form only one correla-
tion plane. Clearly, taking into account that several thousand displacement vectors
can be obtained from a single PIV recording, a more efficient means of computing
the correlation function is required.

5.3.1.1 Frequency Domain Based Calculation of Correlation

The alternative to calculating the cross-correlation directly using Eq. (5.1) is to take
advantage of the correlation theorem which states that the cross-correlation of two
functions is equivalent to a complex conjugate multiplication of their Fourier trans-
forms:

RII ⇐⇒ Î · Î ′∗ (5.2)

where Î and Î ′ are the Fourier transforms of the functions I and I ′, respectively. In
practice the Fourier transform is efficiently implemented for discrete data using the
fast Fourier transform or FFTwhich reduces the computation fromO[N 2] operations
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Fig. 5.10 Implementation of cross-correlation using fast Fourier transforms

to O[N log2 N ] operations [12, 36, 66]. The tedious two-dimensional correlation
process of Eq. (5.1) can be reduced to computing two two-dimensional FFT’s on
equal sized samples of the image followed by a complex-conjugate multiplication
of the resulting Fourier coefficients. These are then inversely Fourier transformed
to produce the actual cross-correlation plane which has the same spatial dimen-
sions, N × N , as the two input samples. Compared to O[N 4] for the direct com-
putation of the two-dimensional correlation the process is reduced to O[N 2 log2 N ]
operations. The computational efficiency of this implementation can be increased
even further by observing the symmetry properties between real valued functions
and their Fourier transform, namely the real part of the transform is symmetric:
Re( Îi ) = Re( Î−i ), while the imaginary part is antisymmetric: Im( Îi ) = −Im( Î−i ).
In practice two real-to-complex, two-dimensional FFTs and one complex-to-real
inverse, two-dimensional FFT are needed, each of which require approximately half
the computation time of standard FFTs (Fig. 5.10). A further increase in computation
speed can of course be achieved by optimizing the FFT routines such as using lookup
tables for the required data, reordering and weighting coefficients and/or fine tuning
the machine level code [22, 23].

The use of two-dimensional FFT’s for the computation of the cross-correlation
plane has a number of properties whose effects have to be dealt with.

Fixed sample sizes: The FFT’s computational efficiency is mainly derived by
recursively implementing a symmetry property between the even and odd coefficients
of the discrete Fourier transform (the Danielson–Lanczos lemma [12, 66]). The most
common FFT implementation requires the input data to have a base-2 dimension (i.e.
16× 16 pixel or 32× 32 pixel samples). For reasons explained below it generally is
not possible to simply pad a sample with zeroes to make it a base-2 sized sample.

Periodicity of data: By definition, the Fourier transform is an integral (or sum)
over a domain extending from negative infinity to positive infinity. In practice how-
ever, the integrals (or sums) are computed over finite domains which is justified by
assuming the data to be periodic, that is, the signal (i.e. image sample) continually
repeats itself in all directions. While for spectral estimation there exist a variety of
methods to deal with the associated artifacts, such as windowing, their use in the
computation of the cross-correlation will introduce systematic errors or will even
hide the correlation signal in noise.
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One of these methods, zero padding, which entails extending the sample size to
four times the original size by filling in zeroes, will perform poorly because the data
(i.e. image sample) generally consists of a nonzero (noisy) background on which the
signal (i.e. particle images) is overlaid. The edge discontinuity brought about in the
zero padding process contaminates the spectra of the data with high frequency noise
which in turn deteriorates the cross-correlation signal. The slightly more advanced
technique of FFT data windowing removes the effects of the edge discontinuity, but
leads to a nonuniform weighting of the data in the correlation plane and to a bias of
the recovered displacement vector. The treatment of this systematic error is described
in more detail below.

Aliasing: Since the input data sets to the FFT-based correlation algorithm are
assumed to be periodic, the correlation data itself is also periodic. If the data of
length N contains a signal (i.e. displacements) exceeding half the sample size N/2,
then the correlation peakwill be folded back into the correlation plane to appear on the
opposite side. For a displacement dx,true > N/2, themeasured value will be dx,meas. =
dx,true − N . In this case the sampling criterion (Nyquist-Shannon sampling theorem)
has been violated causing the measurement to be aliased. The proper solution to this
problem is to either increase the interrogation window size, or, if possible, reduce
the laser pulse delay, Δt .

Displacement range limitation: As mentioned before the sample size N limits
themaximum recoverable displacement range to±N/2. In practice however, the sig-
nal strength of the correlation peak will decrease with increasing displacements, due
to the proportional decrease in possible particle matches. Earlier literature reports a
value of N/3 to be an adequate limit for the recoverability of the displacement vec-
tor [107]. A more conservative, but widely adopted limit is N/4, sometimes referred
to as the one-quarter rule [43]. However, by using iterative evaluation techniques
with window-shifting techniques these requirements are only essential for the first
pass and obsolete for all other passes as we will see later.

Bias error: Another side effect of the periodicity of the correlation data is that
the correlation estimates are biased. With increasing shifts less data are actually
correlated with each other since the periodically continued data of the correlation
template makes no contribution to the actual correlation value. Values on the edge
of the correlation plane are computed from only the overlapping half of the data
and should be weighted accordingly. Unless the correlation values are weighted
accordingly, the displacement estimate will be biased to a lower value (Fig. 5.11).
This error decreases with increasing sample sizes. Larger particle images and along
with it wider correlation peaks are associated with larger bias errors. The proper
weighting function to account for this biasing effect will be described in Sect. 5.3.5.

If all of the above points are properly handled, an FFT-based interrogation algo-
rithm as shown in Fig. 5.10 will reliably provide the necessary correlation data from
which the displacement data can be retrieved. For the reasons given above, this
implementation of the cross-correlation function is sometimes referred to as circular
cross-correlation compared to the linear cross-correlation of Eq. (5.1).
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5.3.1.2 Calculation of the Correlation Coefficient

For a number of cases it may be useful to quantify the degree of correlation between
the two image samples. The standard cross-correlation function Eq. (5.1) will yield
different maximum correlation values for the same degree of matching because the
function is not normalized. For instance, samples with many (or brighter) particle
images will produce much higher correlation values than interrogation windows
with fewer (or weaker) particle images. This makes a comparison of the degree of
correlation between the individual interrogation windows impossible. The cross-
correlation coefficient function normalizes the cross-correlation function Eq. (5.1)
properly:

cII(x, y) = CII(x, y)√
σI(x, y)

√
σI

′(x, y)
(5.3)

where

CII(x, y) =
M∑

i=0

N∑

j=0

[I (i, j) − μI ]
[
I ′(i + x, j + y) − μI′(x, y)

]
(5.4)

σI(x, y) =
M∑

i=0

N∑

j=0

[I (i, j) − μI ]
2 (5.5)

σI
′(x, y) =

M∑

i=0

N∑

j=0

[
I ′(i, j) − μI′(x, y)

]2
. (5.6)

The value μI is the average of the template and is computed only once while
μI′(x, y) is the average of I ′ coincident with the template I at position (x, y). It has
to be computed for every position (x, y). Equation (5.3) is considerablymore difficult
to implement using an FFT-based approach and is usually computed directly in the
spatial domain. In spite of its computational complexity, the equation does permit the
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samples to be of unequal size which can be very useful in matching up small groups
of particles. Nevertheless a first order approximation to the proper normalization is
possible if the interrogation windows are of equal size and are not zero-padded:

Step 1: Sample the images at the desired locations and compute the mean and stan-
dard deviations of each.

Step 2: Subtract the mean from each of the samples.
Step 3: Compute the cross-correlation function using 2D-FFTs as displayed in

Fig. 5.10.
Step 4: Divide the cross-correlation values by the standard deviations of the original

samples. Due to this normalization the resulting values will fall in the range
−1 ≤ cII ≤ 1.

Step 5: Proceed with the correlation peak detection taking into account all artifacts
present in FFT-based cross-correlation.

5.3.2 Correlation Signal Enhancement

5.3.2.1 Image Pre-processing

The correlation signal is strongly affected by variations of the image intensity. The
correlation peak is dominated by brighter particle imageswithweaker particle images
having a reduced influence. Also the non-uniform illumination of particle image
intensity, due to light-sheet non-uniformities or pulse-to-pulse variations, as well as
irregular particle shape, out-of-plane motion, etc. introduce noise in the correlation
plane. For this reason image enhancement prior to processing the image is oftentimes
advantageous. The main goal of the applied filters is to enhance particle image
contrast and to bring particle image intensities to a similar signal level such that all
particle images have a similar contribution in the correlation function [85, 102, 108].

Among the image enhancement methods, background subtraction from the PIV
recordings reduces the effects of laser flare and other stationary image features. This
background image can either be recorded in the absence of seeding, or, if this is not
possible, through computation of an average or minimum intensity image from a
sufficiently large number of raw PIV recordings (at least 20−50). These images can
also be used to extract areas to be masked.

A filter-based approach to image enhancement is to high-pass filter the images
such that the background variations with low spatial frequency are removed leaving
the particle images unaffected. In practice this is realized by calculating a low-passed
version of the original image and subtracting it from the original. Here the filter kernel
width should be larger than the diameter of the particle images: ksmooth > dτ .

Thresholding or image binarization, possibly in combination with prior high-
pass filtering, results in images where all particles have the same intensity and thus
have equal contribution to the correlation function. This binarization, however, is
associated with an increase in the measurement uncertainty.
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The application of a narrow-width, low-pass filter may be suitable to remove high-
frequency noise (e.g. camera shot noise, pixel anomalies, digitization artifacts, etc.)
from the images. It also results in widening of the correlation peaks, thus allowing a
better performance of the sub-pixel peak fitting algorithm (see Sect. 6.2.2). In cases
where images are under-sampled (dτ < 2) it reduces the so-called peak-locking
effect, but also increases the measurement uncertainty.

Range clipping is another method of improving the data yield. The intensity cap-
ping technique [85], which was found to be both very effective and easy to imple-
ment, relies on setting intensities exceeding a certain threshold to the threshold value.
Although optimal threshold values may vary with the image content, it may be cal-
culated for the entire image from the grayscale median image intensity, Imedian, and
its standard deviation, σI : Iclip = Imedian + nσI . The scaling factor n is user defined
and generally positive in the range 0.5 < n < 2.

A similar approach to intensity capping is to perform dynamic histogram stretch-
ing in which the intensity range of the output image is limited by upper and lower
thresholds. These upper and lower thresholds are calculated from the image his-
tograms by excluding a certain percentage of pixel from the either the upper or lower
end of the histogram, respectively.

While the previous two methods provide contrast normalization in a global sense,
the min/max filter approach suggested by Westerweel [102] also adjusts to vari-
ations of image contrast throughout the image. The method relies on computing
envelopes of the localminimumandmaximum intensities using a given tile size. Each
pixel intensity is then stretched (normalized) using the local values of the envelopes.
In order not to affect the statistics of the image the tile size should be larger than
the particle image diameter, yet small enough to eliminate spatial variations in the
background [102]. Sizes of 7 × 7 to 15 × 15 are generally suitable.

A very robustmethod of image contrast enhancement capable of dealingwith non-
uniform image background intensity is to subtract an image based on the local mean
and local standard deviation as proposed in [74]. First a Gaussian filtered version of
the image MI (x, y) is subtracted from the original image I (x, y) and then divided
by an image of the local variance σI (x, y):

Iout(x, y) = I (x, y) − MI (x, y,σ1)

σI (x, y,σ2)
.

where σ1 and σ2 are user defined kernel sizes for the Gaussian filter operations with
typically σ1 < σ2.

Normalization by the time-average image intensity is also an effective technique
to remove stationary background with time-varying intensity. By decomposing a
given raw image sequence into its POD modes Mendez et al. [56] have shown that
the PIV particle pattern can be recovered by filtering out few of the first POD modes
and thus rejecting unwanted features such as wall-reflections, noise and non-uniform
illumination.

http://dx.doi.org/10.1007/978-3-319-68852-7_6
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When PIV time series are available, unwanted light reflections can be removed
via a high pass filter in the frequency domain [83]. A robust approach to suppress
background reflections is based on variants of local normalization method [55]. The
specific problem of near-wall measurements contaminated by surface reflections
requires dedicated approaches, including for instance the treatment of the solid object
region as discussed in [111].

When applying any of the previously described contrast enhancement methods,
it should be remembered that modifications of the image intensities may also affect
the image statistics which in turn can result in increased measurement uncertainties.
This has to be balanced against the increase in data yield. Selective application of
contrast enhancing filters in areas of low data would be the logical consequence.
Also it should be made clear that strong reflections near walls can only be alleviated
through processing as long as the image is not overexposed (saturation) in these
areas. Care should be taken to minimize these reflections while acquiring the PIV
image data.

5.3.2.2 Phase-Only Correlation

Improvement of the correlation signal may be achieved through adequate filters
applied in the spectral domain (Fig. 5.12). Since most PIV correlation implementa-
tions rely on FFT based processing, spectral filtering is easily accomplished with
very little computational overhead. A processing technique proposed by Wernet

[101] called symmetric phase only filtering (SPOF) is based on phase-only filtering
techniques which are commonly found in optical correlator systems. SPOF has been
shown to improve the signal-to-noise ratio in PIV cross-correlation. In practice these
filters also normalize the contribution of all sampled particle images, thus providing
contrast normalization. In addition the influence of wall reflections (streaks or lines)
and other undesired artifacts can be reduced. According to [85] SPOF yields more
accurate results in the presence of DC-background noise, but is not as well suited as
the intensity capping technique in reducing the displacement bias influence of bright
spots with high spatial frequencies.
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Fig. 5.12 Modification of the cross-correlation processor of Fig. 5.10 to more accurately represent
the matched spatial filtering operation as proposed in [101]
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5.3.2.3 Correlation-Based Correction

Another form of improving the signal-to-noise ratio in the correlation plane (e.g. dis-
placement peak detection rate) was proposed by Hart [32]. The technique involves
the multiplication of at least two correlation planes calculated from samples located
close-by, typically offset by one quarter to half the correlation samplewidth. Provided
that the displacement gradient between the samples is not significant the multipli-
cation of the correlation planes will enhance the main signal correlation peak while
removing noise peaks that generally have a more random occurrence. Correlation
plane averaging, that is summation of the of correlation planes instead of multipli-
cation, is more robust when the number of combined correlation planes increases.
The method, however, is less effective in removing spurious correlation peaks [53].

5.3.2.4 Ensemble Correlation Techniques

While the previous method is applied within a given PIV image pair, it can also
be applied to a sequence of images. This PIV processing approach, also known as
ensemble correlation or correlation averaging, was developed in the framework of
micro-PIV applications in an effort to reduce the influence of Brownian motion that
introduces significant noise in data obtained from a single PIV recording. Rather than
obtaining displacement data for each individual image pair, the technique relies on
averaging the correlation planes obtained from a sequence of images. With increas-
ing frame counts a single correlation peak will accumulate for each correlation plane
reflecting the mean displacement of the flow [42, 54, 104]. Although computa-
tionally very efficient, the main drawback of this approach is that all information
pertaining to the unsteadiness of the flow is lost (e.g. no RMS values). Its use with
conventional (macroscopic) PIV recording has been verified by the authors [38, 39].
Among the main benefits of this method are the fast calculation of the mean flow
and the potentially high spatial resolution. Since this processing is very fast, it has
potential as a quasi-online diagnostic tool. To demonstrate the effectiveness of the
ensemble correlation technique, Meinhart et al. compared three different averag-
ing algorithms applied to a series of images acquired from a steady flow through
a microchannel [54]. The signal-to-noise ratio for measurements generated from a
single pair of images was low due to an average of only 2.5 particle images in each
16×64 pixel interrogation window. As a result velocity measurements are noisy and
approximately 20% appear to be erroneous. Three types of average are compared.

• Image averaging: a time average of the first exposure and second exposure image
series are produced that are then correlated (Fig. 5.13). This approach is very effi-
cient and effective when working with low image density (LID) recordings. A
variant of this technique consists in producing a maximum image from a given
series of recordings (image overlapping). An example is given in Fig. 5.14.
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Fig. 5.13 Schematic diagram of cross-correlation from image average

Fig. 5.14 Example of image overlapping: a one of the LID-PIV recordings; and b result of overlap-
ping 9 LID-PIV recordings. Image size: 256 × 256 pixel [100]. Copyright 2002, AIAA. Reprinted
with permission

Especially in μPIV the low image density recordings are evaluated with particle-
tracking algorithms, whereby the velocity vector is determined with only one
particle, and hence the accuracy and reliability of the technique are limited.
In addition, interpolation procedures are necessary to obtain velocity vectors
on the desired regular grid from the randomly distributed particle-tracking data
(Fig. 5.15), which brings additional uncertainties to the final results. The ensem-
ble image permits to evaluate the flow at higher resolution than that allowed by
cross-correlation analysis of the individual image pair. The underlying hypothesis
for this approach is that the flow is stationary and laminar: condition often met in
micro fluidics, but rarely applicable within macroscopic flows.
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(a) (b)

Fig. 5.15 Effect of image overlapping: a results for a single LID-PIV recording pair with a particle-
tracking algorithm; and b results for the overlapped PIV recording pair with a correlation-based
algorithm [100]. Copyright 2002, AIAA. Reprinted with permission

Fig. 5.16 Schematic description of ensemble-averaged cross-correlation

• Correlation field averaging: the correlation function from each image pair is cal-
culated and averaged along the sequence of recordings. This method is computa-
tionally more demanding than the image averaging technique. The benefit is that
it is effective both at low and high level of seeding density (Fig. 5.16).

• Velocity vector averaging: the velocity measurement is calculated for each image
pair and then averaged along the sequence.

The performance comparison based on synthetic images is illustrated in Fig. 5.17.
The fraction of valid mean velocity vectors is displayed as a function of the number
of image pairs considered for the analysis. Clearly the combination of few record-
ings is very beneficial to the yield of valid vectors. The ensemble average correlation
technique shows the fastest rise towards a totality of valid vectors. Averaging the
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Fig. 5.17 Comparison of the three ensemble interrogation methods: Fraction of valid detected
vectors (left) and the corresponding shift vector uncertainty (right)

velocity vectors gives a similar result, however with a slower convergence. Finally,
averaging the images and then calculating the correlation shows in this case a similar
trend. It shall be retained in mind that image averaging reaches an optimum and then
the number of valid vectors will decline as a result of the drop of image contrast
over long averages. The rms uncertainty of these three techniques indicates again
that cross-correlation averaging is more accurate than vector averaging, followed by
image averaging. An important advantage of correlation averaging and image aver-
aging is that the interrogation window can be reduced when the number of recording
is increased. Therefore correlation averaging and image averaging techniques offer
a higher spatial resolution compared to vector averaging, where the interrogation
window needs to contain a minimum number of pairs at each recording.

5.3.2.5 Single-Pixel Ensemble-Correlation

Following the discussion in Sect. 5.3.1 the discrete correlation can be performed
between a small template (interrogation template or window) to be searched for in
a larger template in the second exposure (search window). The limit case is that the
interrogation template is represented by a single pixel. In this case the interrogation
of a single pair of images cannot yield any reliable information as the multiplication
of the search template by a single value is a replica of itself. When the operation
is repeated for a larger number of recordings (typically 104–105), the ensemble
correlation signal will emerge with a distinct peak and an acceptable signal-to-noise
ratio.

This evaluation method was first applied byWesterweel et al. [104] for station-
ary laminar flows in micro-fluidics and by Billy et al. [9] for the analysis of peri-
odic laminar flows. Later, the approach was extended byKähler and co-workers for
the analysis of macroscopic laminar, transitional, and turbulent flows [42], and for
the analysis of compressible flows at large Mach numbers [38, 80]. Furthermore,
the technique was extended for the analysis of stereoscopic PIV images by Scholz
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Fig. 5.18 Comparison of three evaluation techniques. Top: Spatial cross-correlation analysis yields
instantaneous vector fields at high seeding concentrations by averaging the displacement of small
particle image groups within interrogation windows. Middle: Particle tracking analysis provides
instantaneous velocity information at particle image locations. This approach is best suited for
low and moderate particle image concentrations. Bottom: Ensemble correlation analysis provides
only mean flow fields and the mean intensity of the velocity fluctuations by averaging the corre-
lation planes obtained in many independent measurements. This technique works at any seeding
concentration but the higher the concentration the faster it converges

& Kähler [81]. The product of the pixel intensity and the intensity distribution
in the second frame over a search region is the instantaneous contribution to form-
ing the ensemble correlation signal. Applications of single pixel correlations both
in micro-PIV and aerodynamic flows (combined with long-range microscopy) have
demonstrated the ability tomeasure the time-averaged flowvelocity at unprecedented
spatial resolution (in the order of a micron or less). Further discussion is given in
Chap.10.

Figure5.18 summarizes the input and output expected by applying the techniques
described above. Figure5.19 illustrates schematically the properties of the correlation
signal resulting from single pair analysis, ensemble cross-correlation and single pixel
ensemble correlation. The latter requires typically two to three order of magnitude
more samples to achieve the same signal-to-noise ratio than ensemble correlation for
instance when a window of 32 × 32 pixel is adopted. The position of the maximum
in the ensemble correlation map captures only the mean velocity vector. It is possible
to extract the velocity probability density function from the analysis of the shape of
the correlation peak, if a sufficiently large number of PIV image pairs is available
[1, 3, 38, 80, 87, 106].

http://dx.doi.org/10.1007/978-3-319-68852-7_10


166 5 Image Evaluation Methods for PIV

Fig. 5.19 Comparison of the spatial cross-correlation of an image pair (top), the ensemble-
correlation of a sequence of image pairs with improved resolution (center), and the singe-pixel
ensemble-correlation (bottom)

The correlation function can be regarded as the convolution of the velocity proba-
bility density function (pdf) and the image auto-correlation function. De-convolving
the correlation signal from the auto-correlation function gives an estimate of the
velocity pdf and allows for the estimation of the Reynolds stresses at high spatial
resolution, when the single-pixel ensemble correlation is used.

Figure5.20 shows an example from experiments in a transonic backward-facing
step flow where single-pixel correlation is used. The very steep velocity profile is
better captured with the single-pixel analysis.
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Fig. 5.20 Comparison of mean displacement field and Reynolds shear stress distribution of a
transonic backward facing step flow computed from 10000 PIV double images: a) 16 × 16 pixel
window correlation: every 4th vector in X -direction and each vector in Y -direction is shown.
b) single-pixel ensemble correlation: every 32nd vector in X -direction and every 2nd vector in
Y -direction is shown. The correlation peaks were averaged over 6 × 3 pixel. From Scharnowski

et al. [80]

5.3.3 Evaluation of Doubly Exposed PIV Images

Although the current technology allows PIV recording in single exposure/multiple
frame mode, in some experiments multiple exposed particle images may still be
utilized. This is especially the case when photographic recording with high spa-
tial resolution or digital SLR cameras are used. In the early days of PIV, optical
techniques for extracting the displacement information from the photographs were
utilized. However, desktop slide scanners also make it possible to digitize the pho-
tographic negatives and thus enable a purely digital evaluation. Analysis of double-
exposed recordings also arises when frame separation no longer is possible for digital
cameras, for instance, for the combination of very high-speed flows with high image
magnification.

Essentially the same algorithms utilized in the digital evaluation of PIV image
pairs described before can be used with minor modifications to extract the
displacement field from multiple exposed recordings. The major difference between
the evaluation modes arises from the fact that all information is contained on a sin-
gle frame – in the trivial case a single sample is extracted from the image for the
displacement estimation (Fig. 5.21, case I). From this sample, the auto-correlation
function is computed by the same FFT method described earlier. In fact, the
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Fig. 5.21 The effect of interrogation window offset on the position of the correlation peaks using
FFT based cross-correlation on double exposed images. RD+ marks the displacement correlation
peak of interest, RP is the self-correlation peak. In this case a horizontal shift is assumed

auto-correlation can be considered as a special case of the cross-correlation where
both samples are identical. Unlike the cross-correlation function computed from dif-
ferent samples the auto-correlation function will always have a self-correlation peak
located at the origin (see also the mathematical description in Sect. 4.5). Located
symmetrically around the origin, two peaks with less than one fourth the intensity

http://dx.doi.org/10.1007/978-3-319-68852-7_4
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describe the mean displacement of the particle images in the interrogation area. The
two peaks arise as a direct consequence of the directional ambiguity in the double
(or multiple) exposed/single frame recording method.

To extract the displacement information in the auto-correlation function the peak
detection algorithm has to ignore the self-correlation peak, RP, located at the ori-
gin, and concentrate on the two displacement peaks, RD+ and RD− . If a preferen-
tial displacement direction exists, either from the nature of the flow or through the
application of displacement biasing methods (e.g. image shifting), then the general
search area for the peak detection can be predefined. Alternatively a given number
of peak locations can be saved from which the correct displacement information can
be extracted using a global histogram operator (Sect. 7.15).

The digital evaluation of multiple exposed PIV recordings can be significantly
improved by sampling the image at two positions which are offset with respect to
each other according to the mean displacement vector. This offers the advantage
of increasing the number of paired particle images while decreasing the number of
unpaired particle images. This minimization of the in-plane loss-of-pairs increases
the signal-to-noise ratio, and hence the detection of the principal displacement peak
RD+ . However, the interrogation window offset also shifts the location of the self-
correlation peak, RP, away from the origin as illustrated in Fig. 5.21 (Case II –
Case V).

The use of FFTs for the calculation of the correlation plane introduces a few
additional aliasing artifacts that have to be dealtwith.As the offset of the interrogation
window is increased, first the negative correlation peak, RD− , and then the self-
correlation peak, RP, will be aliased, that is, folded back into the correlation plane
(Fig. 5.21 Case III – Case V). In practice, detection of the two strongest correlation
peaks by the procedure described in Sect. 5.3.5.1 is generally sufficient to recover
both the positive displacement peak, RD+ , and the self-correlation, RP. The algorithm
can be designed to automatically detect the self-correlation peak because it generally
falls within a one pixel radius of the interrogation window offset vector.

5.3.4 Advanced Digital Interrogation Techniques

The transition of PIV from the analog (photographic) recording to digital imaging
along with improved computing resources prompted significant improvements of
interrogation algorithms. The various schemes can roughly be categorized into five
groups:

• single pass interrogation schemes such as presented inWillert & Gharib [107]
• multiple pass interrogation schemes with integer sampling window offset [99,
103].

• coarse-to-fine interrogation schemes (resolution pyramid [33, 86, 105]) or
(flow-)adaptive resolution schemes

http://dx.doi.org/10.1007/978-3-319-68852-7_7
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• schemes relying on the deformation of the interrogation samples according to the
local velocity gradient [76]

• super-resolution schemes and single particle tracking [7, 45, 91]

Especially the combination of the grid refining schemes in conjunction with image
deformation have recently found widespread use as they combine significantly
improved data yield with higher accuracy compared to first-order schemes (rigid
offset of the interrogation sample). The following sections give brief overview of
each of these schemes.

5.3.4.1 Multiple Pass Interrogation

The data yield in the interrogation process can be significantly increased by using
a window offset equal to the local integer displacement in a second interrogation
pass [103]. By offsetting the interrogation windows according to the mean dis-
placement, the fraction of matched particle images to unmatched particle images
is increased, thereby increasing the signal-to-noise ratio of the correlation peak
(see Sect. 6.2.4). Also, the measurement noise or uncertainty in the displacement,
ε, reduces significantly when the particle image displacement is less than half a
pixel (i.e. |d| < 0.5 pixel) where it scales proportional to the displacement [103].
The interrogation window offset can be relatively easily implemented in an existing
digital interrogation software for both single exposure/double frame PIV recordings
or multiple exposure/single frame PIV recordings described in the previous section.
The interrogation procedure could take the following form:

Step 1: Perform a standard digital interrogation with an interrogation window offset
close to the mean displacement in the data.

Step 2: Scan the data for outliers using a predefined validation criterion as described
in Sect. 7.1. Replace outlier data by interpolating from the valid neighbors.

Step 3: Use the displacement estimates to adjust the interrogation window offset
locally to the nearest integer.

Step 4: Repeat the interrogation until the integer offset vectors converge to±1 pixel.
Typically three passes are required.

The speed of this multiple pass interrogation can be increased significantly by com-
paring the new integer window offset to the previous value allowing unnecessary
correlation calculations to be skipped. The data yield can be further increased by
limiting the correlation peak search area in the last interrogation pass.

As pointed out by Wereley &Meinhart [99] a symmetric offset of the inter-
rogation samples with respect to the point of interrogation corresponds to a central
difference interrogationwhich is second-order accurate in time in contrast to a simple
forward differencing scheme that simply adds the offset to the interrogation point
(see Fig. 5.22).

http://dx.doi.org/10.1007/978-3-319-68852-7_6
http://dx.doi.org/10.1007/978-3-319-68852-7_7
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Fig. 5.22 Sampling window shift using a forward difference scheme (left) and central difference
scheme, right (from [76])

5.3.4.2 Grid Refining Schemes

The multiple pass interrogation algorithm can be further improved by using a hierar-
chical approach in which the sampling grid is continually refined while the interro-
gation window size is reduced simultaneously. This procedure, originally introduced
by Soria [86] and Willert [105], has the added capability of successfully utiliz-
ing interrogation window sizes smaller than the particle image displacement. This
permits the dynamic spatial range (DSR) to be increased by this procedure. This is
especially useful inPIV recordingswith both a high imagedensity and ahighdynamic
range in the displacements. In such cases standard evaluation schemes cannot use
small interrogation windows without losing the correlation signal due to the larger
displacements (one-quarter rule, [44]). Instead the offset of the interrogation win-
dow at subsequent iterations allows to circumvent the above rule and obtain good
correlation signal even for interrogation windows smaller than the particle image
displacement. However, a hierarchical grid refinement algorithm is more difficult to
implement than a standard interrogation algorithm. Such an algorithm may look as
follows:

Step 1: Start with a large interrogation sample that is known to capture the full
dynamic range of the displacements within the field of view by observing
the one-quarter rule (p. 156).

Step 2: Perform a standard interrogation using windows that are large enough to
obey the one-quarter rule.

Step 3: Scan for outliers and replace by interpolation. As the recovered displace-
ments serve as estimates for the next higher resolution level, the outlier
detection criterion should bemore stringent than that for single-step analysis
to prevent possible divergence of the new estimate from the true value [82].

Step 4: Project the estimated displacement data on to the next higher resolution
level. Use this displacement data to offset the interrogation windows with
respect to each other.
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Step 5: Increment the resolution level (e.g. halving the size of the interrogation
window) and repeat steps 1 through 4 until the actual image resolution is
reached.

Step 6: Finally perform an interrogation at the desired interrogation window size
and sampling distance (without outlier removal and smoothing). By limiting
the search area for the correlation peak the final data yield may be further
increased because spurious, potentially stronger correlation peaks can be
excluded if they fall outside of the search domain.

In the final interrogation pass the window offset vectors have generally converged to
±0.5 pixel of the measured displacement thereby guaranteeing that the PIV image
was optimally evaluated. The choice for the final interrogation window size depends
on the particle image density. Below a certain number of matched pairs in the interro-
gation area (typicallyNI < 4) the detection rate will decrease rapidly (see Chap.9).
Figure5.23 shows the displacement data of each step of the grid and interrogation
refinement.

The processing speed may be significantly increased by down-sampling the
images during the coarser interrogation passes. This can be achieved by consoli-
dating neighboring pixel by placing the sum of a block of N × N into a single pixel
(pixel binning) [105]. This allows the use of smaller interrogation samples that are
evaluated much faster. In fact, a constant size of the correlation kernel can be used
regardless of the image resolution (e.g. a 4× down-sampled image interrogated by
a 32 × 32 pixel sampling window corresponds to a 128 × 128 pixel sample at the
initial image resolution).

5.3.4.3 Image Deformation Schemes

The particle image pattern displacement is measured by cross-correlation under the
assumption that the motion of the particles image within the interrogation window
is approximately uniform. In practice this condition is often violated as most flows
of interest produce a velocity distribution with significant velocity gradients due to
shear layers and vortices. In these cases the cross-correlation peak produced by image
pairs with a different velocity becomes broader and it can split into multiple peaks
due to large velocity differences across the window (Fig. 5.24).

As a result, the measurement of velocity in presence of large velocity gradient
(e.g. in the core of a vortex, Fig. 5.23) is affected by larger uncertainty and suffers
from a higher vector rejection rate. The window deformation technique is meant
to compensate the in-plane velocity gradient and the peak broadening effect. Both
can be largely reduced when the two PIV recordings are deformed according to an
estimation of the velocity field. The technique can be implemented within the multi-
grid method [86, 105] described before (see Sect. 5.3.4.2). The main advantage with
respect to themulti-gridwindow shiftingmethod is an increased robustness and accu-
racy over shear flows such as boundary layers, vortices and turbulent flows in general.
The basic principle is illustrated in Fig. 5.25, where a continuous image deforma-

http://dx.doi.org/10.1007/978-3-319-68852-7_9
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(a) (b)

(c) (d)

Fig. 5.23 Iteration steps used in a multiple pass, multi-grid interrogation process. The gray squares
in the lower left of each data set indicate the size of the utilized interrogation window. In the first
pass the original image was downsampled 3 times using pixel binning
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Fig. 5.24 Discrete spatial correlation map in a shear flow. Interrogation with 1-step correlation.
The peak broadens and splits into several individual peaks
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(a) (b) (b’)

Fig. 5.25 Principle of the window deformation technique. Left: tracer pattern in the first exposure.
Right: tracer pattern at the second exposure (solid circles represent the tracers correlated with the
first exposure in the interrogationwindow). In grey deformedwindow according to the displacement
distribution estimated from a previous interrogation

Fig. 5.26 Graphical scheme of the image deformation technique with one multi-grid step. Non-
deformed interrogation windows as solid lines and deformed windows as dashed lines

tion progressively transforms the images towards two hypothetical recordings taken
simultaneously at time t + Δt/2.

In analogy with the discrete window shift technique, this method is referred to
as window deformation; however, the efficient implementation of the procedure is
based on the deformation of the entire PIV recordings, which is sometimes referred
to as image deformation (Fig. 5.26). The two approaches are therefore synonyms of
the same concept. The image deformation technique can be summarized as follows:
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Step 1: Standard digital interrogation with an interrogation window complying with
the one quarter rule (p. 156)

Step 2: Low-pass filtering of the velocity vector field. A filter kernel equivalent to
the window size is sufficient to smooth spurious fluctuations and suppress
fluctuations at sub-window wavelength. Moving average filters or spatial
regressionwith a 2nd order least squares regression are suitable choices [82].

Step 3: Deformation of the PIV recordings according to the filtered velocity vec-
tor field with a central difference scheme. The image resampling scheme
influences the accuracy of the procedure [5]. For typical PIV images with
particle image diameter of 2 to 3 pixel, high order schemes (cardinal inter-
polation, B-splines) yield better results than low order interpolators (bilinear
interpolation) [95, 97].

Step 4: Further interrogation passes on the deformed images with an interrogation
window reduced in size, yet containing at least 4 image pairs.

Step 5: Add the result of the correlation to the filtered velocity field.
Step 6: Scan the velocity vector field for outliers and replace these by interpolation.
Step 7: Repeat steps 2 to 6 two or three times. With each iteration the incremental

change in the displacement field will decrease.

In analogy to the standard cross-correlation function given inEq. (5.1) the equation
used for the spatial cross-correlation for deformed images reads as follows:

RII(x, y) =
K∑

i=−K

L∑

j=−L

Ĩ (i, j) Ĩ ′(i + x, j + y) . (5.7)

where Ĩ (i, j) and Ĩ ′(i, j) are the image intensities reconstructed after deformation
using the predicted deformation field Δs(x) in a central difference scheme:

Ĩ (x) = I

(
x − Δs(x)

2

)
(5.8)

Ĩ ′(x) = I ′
(
x + Δs(x)

2

)
(5.9)

The deformation field Δs(x) is a spatial distribution which generally is not uni-
form and therefore requires interpolation at each pixel in the image. Here a truncation
of theTaylor series at the first order term is commonly sufficient for the reconstruction
of the local displacement:

Δs1(x) = Δs(x0) + ∇[Δs(x0)] · (x − x0) + · · · + O(x − x0)2 (5.10)

Here x0 denotes the position of the center of the interrogation window. Since the
size of the interrogation window normally exceeds the spacing of the displacement
vectors (overlap factor 50–75%) the displacement distribution within the window is
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Fig. 5.27 Correlation map of a shear flow as in Fig. 5.24 with multi-step correlation and window
deformation. A single peak can be clearly distinguished from the correlation noise with a correlation
coefficient of 99.5% compared to 27.3% for the undeformed image

a piecewise linear function resulting in a higher order approximation of the velocity
distribution within the window. Dedicated literature on the performance of velocity
field interpolators indicates that B-splines are an optimal choice in terms of accuracy
and computational cost [4].

When steps 2–6 are repeated a number of times, the distance between particle
image pairs is minimized and Ĩ (i, j) and Ĩ ′(i, j) tend to coincide except for out-of-
plane particle motion and shot-to-shot image intensity variation. As a consequence,
the correlation function returns a peak located at the center of the correlation plane.

The procedure has the additional benefits of yielding a more symmetrical cor-
relation peak, approximately at the origin of the correlation plane, reducing uncer-
tainties due to distorted peak shape or inaccurate peak reconstruction (see Figs. 5.27
and 5.28). Another advantage is that the spatial resolution is approximately dou-
bled with respect to a rigid window interrogation [82], with the caveat of a selective
amplification of wavelengths smaller than the interrogation window (see Fig. 5.29).
The latter needs to be compensated for by low-pass filtering the intermediate
result [82] (see Fig. 5.30).

5.3.4.4 Image Interpolation for PIV

Due to the continuously varying displacement field, the intensity of the deformed
images needs to be resampled (e.g. by interpolation) at non-integer pixel locations,
which increases the computational load of the technique. Depending on the choice
of interpolator significant bias errors may be introduced as shown in Fig. 5.31. The
data was obtained from synthetic images with constant particle image displacement
using the Monte Carlo methods described in Sect. 6.2.1. Polynomial interpolation
produces a significant bias error up to one fifth of a pixel and are not particularly
suited for this purpose.

A review of the topic on the background of medical imaging along with a per-
formance comparison is given by Thévenaz et al. [95]. They suggest the use of
generalized interpolation with non-interpolating basis functions such as B-splines

http://dx.doi.org/10.1007/978-3-319-68852-7_6
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Fig. 5.28 Displacement error as a function of the particle image displacement (32 × 32 pixel
window size). � 1-step cross-correlation; • window deformation

Fig. 5.29 Sine wave test:
normalized amplitude
response as a function of the
normalized window size.
Solid line: theoretical
response (sinc); � 1-step
cross-correlation; • window
deformation with 2nd order
least squares filter; ◦ window
deformation without filtering

or shifted bi-linear interpolation in favor of more commonly used polynomial or
bandlimited sinc-based interpolation.

In contrast to many other imaging applications, a properly recorded PIV image
generally contains almost discontinuous data with significant signal strength
in the shortest wavelengths close to the sampling limit (i.e. strong intensity
gradients). Because of this the image interpolator should primarily be capable
of properly reconstructing these steep intensity gradients. A concise comparison
of various advanced image interpolators for use in PIV image deformation is
provided by Astarita & Cardone [5]. In accordance to the findings reported by
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Fig. 5.30 Block diagram of
the iterative image
deformation interrogation
method with filtered
predictor

Thévenaz et al. [95], they suggest the use of B-splines for an optimum balance
between computational cost and performance. The bias error for B-splines of third
and fifth order shown in Fig. 5.31 clearly supports this. If higher accuracy is required
then sinc-based interpolation, such as Whittaker reconstruction [79], or FFT-based
interpolation schemes [110] with a large number of points should be used. However,
processing time may increase an order of magnitude.

5.3.4.5 Iterative PIV Interrogation and Its Stability

Multi-step analysis of PIV recordings can be seen as comprising of two procedures:
(1) Multi-grid analysis where the interrogation window size is progressively

decreased. This process eliminates the one-quarter rule constraint and usually termi-
nates when the required window size (the smallest) is applied.

(2) Iterative analysis at a fixed sampling rate (grid spacing) and spatial resolution
(window size). This process further improves the accuracy of the image deformation
and enhances the spatial resolution.

In essence the iterative analysis can be described by a predictor-corrector process
governed by the following equation:
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Fig. 5.31 Bias error in
image deformation PIV
processing for three image
interpolation schemes.
Particle image diameter:
dτ = 2.0 (top), dτ = 4.0
(bottom)
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Δsk+1(x) = Δsk(x) + Δscorr(x) (5.11)

where Δsk+1 indicates the result of the evaluation at the kth iteration. The correc-
tion term Δscorr can be viewed as a residual and is obtained by interrogating the
deformed images as calculated by the central difference expression Eq. (5.8). The
procedure can be repeated several times, however two to three iterations are already
sufficient to achieve a converged result with most of the in-plane particle image
motion compensated through the image deformation.

The iterative scheme introduced above appears very logical and its simplicity
makes it straightforward to implement, which probably explains why it has been so
broadly adopted in the PIV community [21, 35, 78, 79, 99]. However, when such
iterative interrogation is performed without any spatial filtering of the velocity field,
the process produces spurious oscillations of small amplitude that grow with the
number iterations. The instability arises from the sign reversal in the sinc shape of
the response function associated to the top-hat function of the interrogation window.
For instance, taking two almost identical images except for artificial pixel noise, the
displacement field measurement after some iterations begins to oscillate at a spatial
wavelength λunst ≈ 2/3DI and yields a wavy pattern [82].
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The above result is consistent with the response function of a top-hat weighted
interrogation window being rs = sin(x/DI)/(x/DI). Therefore wavelengths in
the range with negative values of the sinc function are systematically amplified.
The iterative process requires stabilization by means of a low-pass filter applied to
the updated result (Fig. 5.30), which damps the growth of fluctuations at wavelengths
smaller than the window size. A moving average filter with a kernel size correspond-
ing to that of the interrogation window is more than sufficient to stabilize the process.

However, filtering with a second order least-squares spatial regression allows to
both maximize spatial resolution and minimize the noise. Other means of stabi-
lization are based on interrogation window weighting techniques (e.g. Gaussian or
LFC [58]). A numerical simulation using a sine-modulated shear flow shows that
the single-pass cross-correlation amplitude modulation (empty squares in Fig. 5.29)
follows closely that of a sinc function with a 10% cut-off occurring when the window
size is about one-quarter the spatial wavelength (DI/λ = 0.25). The iterative inter-
rogation (full circles in Fig. 5.29) delays the cut off at DI/λ = 0.65. This implies
that with a window size of 32 pixel the single-step cross-correlation is only capable
of accurately recovering fluctuations with a wavelength larger than 120 pixel. The
minimum wavelength reduces to 50 pixel with the iterative deformation interroga-
tion. The higher response of the iterative interrogation without filter (empty circles
in Fig. 5.29) is only hypothetical because the process is unstable and the error is
dominated by the amplified wavy fluctuations.

In conclusion the spatial resolution achieved with iterative deformation is about
twice as high than that of the single-step or window-shift procedure. It should be
retained in mind that the increase in resolution becomes only effective when the
velocity field is sampled spatially at a higher rate, that is, increasing the overlap
factor to 75% between adjacent windows instead of 50%. Otherwise, the error com-
mitted when evaluating for instance the velocity spatial derivatives is dominated by
numerical truncation due to the large distance between neighboring vectors.

5.3.4.6 Adaptive Interrogation Techniques

The iterative multi-grid interrogation may help in increasing the spatial resolution
by decreasing the final window size. However, in several cases the flow and the flow
seeding distribution are not homogeneous over the observed domain. In this case,
the optimization rules for interrogation can only be satisfied in an average sense
and local non-optimal conditions may occur such as poor correlation signal or too
low flow sampling rate. Moreover, the window filtering effect can be minimized
when the flow exhibits variations along a preferential direction. For instance, in case
of stationary interfaces an adaptive choice of the interrogation volume shape and
orientation may contribute to achieve further improvements especially when dealing
with shear layers [93] or shockwaves [94]. Themain rationale behind adaptive choice
of the interrogation window is that, maintaining its overall size, one can reduce its
length in one direction and compensate it enlarging the window in the orthogonal
direction. The parameter governing this choice can be the velocity gradient or higher
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Fig. 5.32 Examples of adaptive shape and orientation of the interrogation window. A coin like
shape is mostly useful to improve resolution in the wall-normal direction of a boundary layer. Cigar
like shape improves the resolution in the core of a vortex

spatial derivative [77], but also more simply the direction of a solid surface nearby.
Spatial adaptivity is particularly attractive for 3DPIVwhere the interrogation volume
can be shaped as flat as a coin or elongated as a cigar depending on the velocity
gradient topology [59] (Fig. 5.32).

5.3.4.7 Non-correlation-Based Interrogation Techniques

Other interrogation algorithms exist that do not rely on cross-correlation. Most work
has been devoted to image motion estimation, also referred to as optical flow, which
is a fundamental issue in low-level vision and has been the subject of substantial
research for application in robot navigation, object tracking, image coding or struc-
ture reconstruction [6, 34]. These applications are commonly confronted with the
problem of fragmented occlusion (i.e. looking through branches of a tree) or depth
discontinuities in space, which are analogous to shocks within fluid flows.

Optical flow for the analysis of PIV images was first reported by Quenot

et al. who investigated a thermally driven flow of water [67]. Further implemen-
tations of optical flow adapted to the evaluation of PIV images have been reported by
Ruhnau et al. [72, 73]. The potential of optical flow for achieving high spatial res-
olution and accurate results in high-gradient regions was demonstrated in the scope
of the “International PIV-Challenge” [88–90]. One known deficiency of established
optical flow techniques available in computer vision is their instability in the presence
of out-of-plane motion of particles that is associated with a loss of image correspon-
dence. Therefore additional constraints have to be implemented in the algorithms
to successfully apply them to PIV recordings [72, 73]. The latter can potentially
be resolved by the application of optical flow techniques to 3D experiments, which
remains to date a topic of research.

The degree of image matching can be evaluated not only by intensity multiplica-
tion as in the case of cross-correlation, but also by calculating the difference between
two patterns. The method of minimum quadratic differences (MQD) is based on
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the difference between the reference and search template. The application to PIV
has been investigated by Gui & Merzkirch [29, 30] among others. The method
performs similar to cross-correlation analysis in terms of accuracy of displacement
estimation. The potential advantage of the method is that the operation of difference
can be more easily accelerated than the multiplication with dedicated micropro-
cessors. One of the shortcomings of MQD is the higher sensitivity to variations in
the illumination between the two exposures, which needs to be accounted for with
intensity equalization.

The least-squares matching algorithm is based on MQD operations, but the func-
tion to be minimized is not defined in the physical space of spatial shift, but in that
of the coefficients of affine transformations (shift, rotation, dilation, shear) [46]. The
method is therefore also very well suited to the analysis of flows with a variety
of length scales where the deformation in between the two recordings cannot be
neglected.

Earlier work from Tokumaru & Dimotakis [96] presented the image corre-
lation velocimetry (CIV), followed by a number of optimizations by Fincham &

Delerce [21] leading to an algorithm performing iterative window refinement,
including the deformation, comparable to that based on cross-correlation.

5.3.5 Cross-Correlation Peak Detection

One of the most crucial, but not necessarily easily understood features of digital PIV
evaluation, is that the position of the correlation peak can be estimated to subpixel
accuracy. Estimation accuracies of the order of 1/10–1/20th of a pixel are realistic
for 32 × 32 pixel samples from 8-bit digital images. Simulation data such as those
presented in Sect. 6.1 can be used to quantify the achievable accuracy for a given
imaging setup.

Since the input data itself is discretized, the correlation values exist only for
integral shifts. The highest correlation value would then permit the displacement
to be determined only with an uncertainty of ±1/2 pixel. However, with the cross-
correlation function being a statistical measure of best match, the correlation values
themselves also contain useful information. For example, if an interrogation sample
contains ten particle image pairs with slightly varying shift of 2.5 pixel on average,
then from a statistical point of view, five particle image pairs will, for instance
contribute to the correlation value associated with a shift of 2 pixel, while the other
five will indicate a shift of 3 pixel. As a result, the correlation values for the 2 pixel
and 3 pixel shifts will have the same value. An average of the two shifts will yield an
estimated shift of 2.5 pixel. Although rather crude, the example illustrates that the
information hidden in the correlation values can be effectively used to estimate the
mean particle image shift within the interrogation window.

A variety of methods of estimating the location of the correlation peak have been
utilized in the past. Centroiding, which is defined as the ratio between the first order
moment and zeroth order moment, is frequently used, but requires a method of

http://dx.doi.org/10.1007/978-3-319-68852-7_6
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defining the region that comprises the correlation peak. Generally, this is done by
assigning a minimum threshold value separating the correlation peak signal from the
background noise. The method works best with broad correlation peaks where many
values contribute in themoment calculation. Nevertheless, separating the signal from
the background noise is not always straightforward.

A more robust method is to fit the correlation data to some function. Especially
for narrow correlation peaks, the approach of using only three adjoining values to
estimate a component of displacement has become wide-spread. The most common
of these three-point estimators are listed in Table5.1, with the Gaussian peak fit
most frequently implemented. The reasonable explanation for this is that the particle
images themselves, if properly focused, describe Airy intensity functions which are
approximated very well by a Gaussian intensity distribution (see Sect. 2.5.1). The
correlation between twoGaussian functions can be shown also to result in a Gaussian
function.

The three-point estimators typically work best for rather narrow correlation peaks
formed from particle images in the 2–3 pixel diameter range. Simulations such as
those shown in Fig. 6.12 indicate that for larger particle images the achievable mea-
surement uncertainty increases which can be explained by the fact that, while the
noise level on each correlation value stays nearly the same, the differences between
the three adjoining correlation values become too small to provide a reliable shift
estimate. In other words, the noise level becomes increasingly significant while the
differences between the neighboring correlation values decrease. In this case, a cen-
troiding approach may be more adequate since it makes use of more values around
the peak than a three-point estimator. If in turn, when the particle images become too
small (dτ < 1.5 pixel), the three-point estimators will also perform poorly, mainly
because the values adjoining the peak are hidden in noise, see Chap.6.

In the remainder we describe the use and implementation of the three-point esti-
mators, which were used for almost all the data sets presented as examples in this
book. The following procedure can be used to detect a correlation peak and obtain a
subpixel accurate displacement estimate of its location:

Step 1: Scan the correlation plane R = RII for the maximum correlation value R(i, j)

and store its integer coordinates (i, j).
Step 2: Extract the adjoining four correlation values: R(i−1, j), R(i+1, j), R(i, j−1) and

R(i, j+1).
Step 3: Use three points in each direction to apply the three point estimator, generally

a Gaussian curve. The formulas for each function are given in Table5.1.

Two alternative peak location estimators also deserve to be mentioned in this context
as they provide even higher accuracy than the previously mentioned methods. First,
the fit to a two-dimensional Gaussian, as introduced by Ronneberger et al. [70], is
capable of using more than the immediate values neighboring the correlation maxi-
mum and also recovers the aspect ratio and skew of the correlation peak. Therefore,
it is well suited in the position estimation of non-symmetric (e.g. elliptic) correlation
peaks.

http://dx.doi.org/10.1007/978-3-319-68852-7_2
http://dx.doi.org/10.1007/978-3-319-68852-7_6
http://dx.doi.org/10.1007/978-3-319-68852-7_6
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Table 5.1 Three-point estimators for determining the displacement from the correlation data at the
subpixel level

Fitting function Estimators

Peak centroid
f (x) = first order moment

zero order moment

x0 = (i − 1)R(i−1, j) + i R(i, j) + (i + 1)R(i+1, j)

R(i−1, j) + R(i, j) + R(i+1, j)

y0 = ( j − 1)R(i, j−1) + j R(i, j) + ( j + 1)R(i, j+1)

R(i, j−1) + R(i, j) + R(i, j+1)

Parabolic peak fit
f (x) = Ax2 + Bx + C

x0 = i + R(i−1, j) − R(i+1, j)

2 R(i−1, j) − 4 R(i, j) + 2 R(i+1, j)

y0 = j + R(i, j−1) − R(i, j+1)

2 R(i, j−1) − 4 R(i, j) + 2 R(i, j+1)

Gaussian peak fit

f (x) = C exp
[−(x0−x)2

k

] x0 = i + ln R(i−1, j) − ln R(i+1, j)

2 ln R(i−1, j) − 4 ln R(i, j) + 2 ln R(i+1, j)

y0 = j + ln R(i, j−1) − ln R(i, j+1)

2 ln R(i, j−1) − 4 ln R(i, j) + 2 ln R(i, j+1)

f (x, y) = I0 exp

[
−(x − x0)2

(1/8) dτ x
2 − (y − y0)2

(1/8) dτ y
2 − kxy(x − x0)(y − y0)

dτ x dτ y

]
(5.12)

The expression given in Eq. (5.12) contains a total of six coefficients that need to be
solved for: dτ x and dτ y define the correlation peak widths along x and y respectively,
while kxy describes the peak’s ellipticity. The correlation peak maximum is located
at position coordinates x0 and y0 and has maximum peak height of I0. The solution of
Eq. (5.12) can usually only be achieved by nonlinear regressionmethods, utilizing for
instance a Levenberg-Marquardt least-squares minimization algorithm [66]. If only
3 × 3 points are used the coefficients in Eq. (5.12) can also be solved for explicitly
in a least squares sense [57].

The second estimator is based on signal reconstruction theory and is often referred
to as Whittaker or cardinal reconstruction [49, 69]. The underlying function is a
superposition of shifted sinc functions whose zeroes coincide with the sample points.
Values between the sample points (i.e. correlation values) are formed from the sum
of the sinc functions. Since the reconstructed function is continuous, the position of
the peak value between the sample points has to be determined iteratively using for
instance Brent’s method [66]. In principle all correlation values of the correlation
plane could be used for the estimation, but in practice it suffices to perform one-
dimensional fits on the row and column intersecting the maximum correlation value.
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5.3.5.1 Multiple Peak Detection

To detect a given number of peaks, n, within the same correlation plane, a different
search algorithm is necessary which sorts out only the highest peaks. In this case it is
necessary to extract local maxima based on neighborhood analysis. This procedure
is especially useful for correlation data obtained from single frame/multiple exposed
PIV recordings.Also,multiple peak information is useful in caseswhere the strongest
peak is associated with an outlier vector. An easily implemented recipe based on
looking at the adjoining five or nine (3 × 3) correlation values is given here:

Step 1: Allocate a list to store the pixel coordinates and values of the n highest
correlation peaks.

Step 2: Scan through the correlation plane and look for values which define a local
maximum based on the local neighborhood, that is, the adjoining 4 or 8
correlation values.

Step 3: If a detected maximum can be placed into the list, reshuffle the list accord-
ingly, such that the detected peaks are sorted in the order of intensity. Con-
tinue with Step 2 until the scan through the correlation plane has been
completed.

Step 4: Apply the desired three-point peak estimators of Table5.1 for each of the
detected n highest correlation peaks, thereby providing n displacement esti-
mates.

5.3.5.2 Displacement Peak Estimation in FFT-Based Correlation Data

As already described in Sect. 5.3.1.1 the assumption of periodicity of both the data
samples and resulting correlation plane brings in a variety of artifacts that need to be
dealt with properly.

The most important of these is that the correlation plane, due to the method of
calculation, does not contain unbiased correlation values, and results in the displace-
ment to be biased to lower magnitudes (i.e. bias error, p. 156). This displacement bias
can be determined easily by convolving the sampling weighting functions, generally
unity for the size of the interrogation windows, with each other. For example, the
circular cross-correlation between two equal sized uniformly weighted interrogation
windows results in a triangular weighting distribution in the correlation plane. This
is illustrated in Fig. 5.33 for the one-dimensional case.

The central correlation value will always have unity weight. For a shift value of
N/2 only half the interrogation windows’ data actually contribute to the correla-
tion value such that it carries only a weight of 1/2. When a three-point estimator is
applied to the data, the correlation value closer to the origin is weighted more than
the value further out and hence the magnitude of the estimated displacement will
be too small. The solution to this problem is very straightforward: before applying
the three-point estimator, the correlation values RII have to be adjusted by divid-
ing out the corresponding weighting factors. The weight factors can be obtained by
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Fig. 5.33 Effective correlation value weighting in FFT-based ‘circular’ cross-correlation calcula-
tion: a for interrogation windows of equal size, and b for interrogation windows of unequal size
(using zero-padding on signal f )

convolving the image sampling function with itself – generally a unity weight, rect-
angular function – as illustrated in Fig. 5.33a. In the case where the two interrogation
windows are of unequal size a convolution between these two sampling functions
will yield a weighting function with unity weighting near the center (Fig. 5.33b).
The extension of the method to nonuniform interrogation windows is of course also
possible.

On a related note it should be mentioned that many FFT implementations result
in the output data to be shuffled. Often the DC-component is found at index (0) with
increasing frequencies up to index (N/2−1). The next index, (N/2), is actually both
the highest positive frequency and highest negative frequency. The following indices
represent the negative frequencies in descending order such that index (N −1) is the
lowest negative frequency component. By periodicity, the DC component reappears
at index (N ). In order to achieve a frequency spectrum with the DC component in
the middle, the entire data set has to be rotated by (N/2) indices. As illustrated in
Fig. 5.34 two-dimensional FFT-data has to be unfolded in a corresponding manner.

For correlation planes calculated by means of a two-dimensional FFT, the zero-
shift value (i.e. origin) would initially appear in the lower left corner which would
make a similar unfolding of the resulting (periodic) correlation data necessary. With-
out unfolding, negative displacement peaks will actually appear on the opposite side.
However, a careful implementation of the peak finding algorithm allows proper peak
detection and shift estimation without having to unscramble to the correlation plane
first.
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Fig. 5.34 Spatially folded output from a two-dimensional FFT routine (a) requires unfolding to
the place the origin back at the center of the correlation plane (b)

5.3.6 Interrogation Techniques for PIV Time-Series

The availability of high-speed PIV hardware (see Sect. 3.1.5) makes it possible to
record several subsequent images with short time separation such that one can ana-
lyze the motion of the tracers over more than just two recordings. The interrogation
of time-series takes advantage of two fundamental aspects: first, the time between
exposures can locally varied, such to avoid the case of too small or too large displace-
ment [31]; secondly, the availability of more time samples enables a time-accurate
analysis that takes into account the time-varying behavior of the particles veloc-
ity [50]. Some techniques that have exploited these advantages are briefly described
below.

Multi-frame cross-correlation: The time separation between images for cross
correlation can be varied at choice for instance obtaining an almost constant dis-
placement even for flows with large velocity variations, as outlined in Fig. 5.35. By
this technique, the time separation between frames can be chosen freely, such that the
particle image displacement remains within a favorable range (typically between 5
and 10 pixel) [31]. As a result, also regions at low velocity are represented with large
enoughdisplacement and the overall dynamic range of the technique is increased. The
separation between frames needs to obey also additional constraints, most notably
out-of-plane motion and in-plane velocity gradient [31].

Sliding Average cross-correlation: When multiple frames are used for cross-
correlation the random error can be reduced if the correlation maps are combined
(see Fig. 5.36). If constant time separation is applied, the method refers to sliding
average correlation.Averaging several correlationmaps has a beneficial effect similar
to the correlation based correction method [32] or the ensemble correlation [75] with
a significant increase of signal-to-noise ratio and a reduction of the random error
component. A simple criterion to select the maximum number of frames is that the
fluid motion during the overall time does not exceed the length of the interrogation
window, otherwise spatio-temporal averaging effects will become significant.

Pyramid correlation algorithm: The beneficial aspects of multi-frame analysis
and correlation averaging are combined in the pyramid correlation algorithm [84].

http://dx.doi.org/10.1007/978-3-319-68852-7_3


188 5 Image Evaluation Methods for PIV

Fig. 5.35 Single-pair cross-correlation withmulti-frame analysis. The particle image displacement
is maintained constant varying the time separation Δt between frames. Velocity dynamic range is
increased

Fig. 5.36 Sliding average cross-correlation. The correlation map from successive pairs at fixed
time separation Δt is averaged. Signal-to-noise ratio is increased

In this case, cross-correlation is evaluated between all possible pairs within a chosen
group of subsequent frames. First, the correlation maps obtained at fixed time sep-
aration are averaged. Subsequently, the combination of correlation maps obtained
at different heights of the pyramid (i.e. with different time separation) requires a
rescaling (homothetic transformation) before being averaged again. As a result, the
method offers an increased signal-to-noise ratio along with a higher dynamic range.

The above methods can be implemented making use of the image deformation
technique after a first evaluation step is made to estimate the in-plane displacement
and deformation field.

The fluid trajectory correlation (FTC) technique [50] is based on multi-frame
analysis. The technique takes a short sequence of recordings. Cross-correlation is
applied from a given frame (typically in the middle of the series) to the other frames.
With an iterative procedure (predictor-corrector) the path of the fluid element cor-
responding to the tracers inside the window, is built with cross-correlation. This
algorithm offers the advantage of a high velocity dynamic range, based on the longer
time of the sequence. Since FTC is based on aLagrangian cross-correlation approach,
it allows a longer time kernel compared to the above techniques, based on a Eulerian
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Fig. 5.37 Fluid trajectory correlation. The velocity along a finite interval of fluid path is estimated
by cross correlation among the (time) center window and the preceding and successive recordings.
The high-dynamic range results from the long kernel used and the lower truncation errors due to
high-order trajectory modeling

(local) analysis scheme. As a result, the measurement precision error scales as N−3/2

where N is the number of considered frames (Fig. 5.37).
A further improvement on this approach is given by the fluid trajectory ensemble

evaluation (FTEE) [37] which realizes the objectives of FTC with a more robust
ensemble cross-correlation based on the pyramid scheme.

5.4 Particle Tracking Velocimetry

The spatial resolution in PIV evaluation can be even further increased by eventually
tracking the individual particle images, a procedure referred to as super-resolution
PIV by Keane et al. [44] who applied the technique to double-exposure images.
A similar procedure was also implemented for image pairs by Cowen & Moni-

smith [18] for the study of a flat plate turbulent boundary layer.
The working principle of PTV can be briefly by the following operations:

1. Detectionof particle images fromeach recording.This is usually doneby eliminat-
ing background intensity and analyzing the images in search of a local maximum.

2. Forming a vector of particle positions at each of the two time instants with sub-
pixel accuracy. The same procedure as discussed above for the correlation peak
fit is usually followed.

3. Pairing particle images corresponding to the same physical tracer. Here the most
common criterion for a simple analysis is that the image pair with closest distance
corresponds to the correct pair.

Although the above approach works on a pair of images it becomes generally
much more reliable when working with image sequences, because the probability of
spurious pairing over a sequence becomes much smaller than that for a single pair
of images. PTV schemes applied to single image pairs can only rely on additional
information and constraints such as the time regularity of particle image intensity.

Predictor-corrector schemes where a-priori knowledge of the velocity field is
imposed to match particle images have been applied in numerous versions and they
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can be used to make the technique more robust. The latter are often based on the
availability of more robust PIV analysis for the large scale motions. While many
implementations rely on detection and position estimation of particle images prior
to matching, other schemes prefer to use cross-correlation of small samples (typ.
8 × 8 pixel) centered on the detected individual particle image. The existence of a
matched pair is confirmed by applying the procedure in reverse by starting from the
second particle image. The main advantage of the correlation- based approach is the
increased robustness in presence of overlapping images, and thus more suited for
high particle image density data.

The PTV analysis offers a number of advantages. First, the velocity information
is obtained with higher spatial localization as a velocity vector pertains to a single
particle image, which is significantly smaller than the interrogation window used
for cross-correlation. The measurements are therefore not affected by bias errors
due to spatial averaging [39]. Consequently, the technique is well suited to analyze
flows with strong velocity gradient, such as for instance turbulent boundary layers.
Second, PTV is less prone to bias errors in the case of inhomogeneous seeding
distributions. This is important for near wall flow measurements for instance, as
the seeding concentration drops towards the wall due to the Saffman effect (see
Sect. 2.1.3).

Finally, the spatial resolution ofmean velocity distribution can be virtually achieve
sub-pixel level. This is made possible by determining the particle location with sub-
pixel precision. This holds true until the resolution becomes comparable to the parti-
cle image diameter. The final resolution of the measurement is ultimately determined
by the diameter of the tracer particle and therefore flow structures smaller than the
diameter cannot be resolved. However, the latter limit is only reached for high mag-
nification imaging in microfluidics or by using a long-range microscope.

A final interesting feature of the PTV technique is that it can be applied for
measurements at low seeding concentration, thereby reducing the contamination of
the flow facilities due to excessive seeding. On the other hand, the analysis of particle
images with PTV technique is notably less robust than that based on cross correlation
due to the possibility of spurious pairing between particle images.

5.4.1 Particle Image Detection and Position Estimation

Generally, the particle tracking technique is well suited for accurate flow field mea-
surements at any magnification, provided the seeding concentration is sufficiently
low for a reliable particle image matching between subsequent frames. At high seed-
ing concentrations two major sources of errors can occur. First, the likelihood of
matching non-corresponding particle images increases. This problem can be solved
by using sophisticated particle tracking approaches or by evaluating time resolved
data. However, both strategies require sufficiently smooth flow variations in space
or time, such that spatial homogeneity or temporal smoothness assumptions can
be applied locally. Second, the random error increases, as the likelihood of overlap-

http://dx.doi.org/10.1007/978-3-319-68852-7_2
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Fig. 5.38 Ratio of the
number of overlapping
particle images No versus the
total number of particle
images Np for different
particle image distances L
and particle image
concentrations Nppp in
particles per pixel (from
Cierpka et al. [16])

ping particle images arises with increasing particle image densities. This is caused by
larger uncertainties in the particle image location determination, since themodel used
for the sub-pixel position estimation, normally a Gaussian intensity distribution, is
not appropriate in case of overlapping particle image patterns [17]. Furthermore, the
correct identification of two slightly overlapping particle images becomes increas-
ingly difficult with increasing overlap between particle images. Finally, even if the
positions of both overlapping particle images can be determined, the correct particle
track identification becomes ambiguous, yielding larger uncertainties. Maas [51]
derived an expression connecting the number of individual particle images NP with
the number of overlapping particle images N0 for circular particle images that are
randomly distributed on a sensor with size A.

N0 = (NP − 1) + A

Acrit
·
(
exp

−(NP − 1)Acrit

A
− 1

)
(5.13)

Acrit is the critical area in which a particle image starts to overlap with the boundaries
of another particle image. The boundaries of the particle images are defined to be
at the radial location where the intensity has decreased to e−2 of the peak intensity
value. Thus, the critical area is Acrit = πD2, since particle images share the same
boundary if the centers have a distance of D. If a critical particle image overlap of
50% corresponding to L = D/2 is assumed, the critical area reduces to Acrit = πL2,
with L being the distance of particle image centers that can be separated. Figure5.38
illustrates the ratio of overlapping particle images as a function of L for different
particle image densities Nppp.
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Fig. 5.39 Left, RMS-uncertainty and ratio of valid vectors to total vectors and detected particles
to the number of generated particles for increasing particle image density (D = 5 pixel). Right:
random error of the estimated displacement using PTV and single pixel ensemble-correlation (from
Kähler et al. [40])

For particle image diameters of 2.5 pixel, this results in a fraction of about 20%
overlapping particle images. At a diameter of 5 pixel, the overlap ratio would reach
80% for comparison. Compared to PIV processing, the particle image density can be
reduced by a factor of 6–10 to get almost the same number of vectors. In this case,
only 5% of the particle images overlap at a diameter of 2.5 pixel and 0.005 ppp. One
can either accept these 5% as a loss of information by detecting and rejecting them
or one can use special algorithms like the one of Lei et al. [48] that showed a reliable
position determination for particle images that overlap up to 50% (see Cierpka et
al. [16] for details).

5.4.2 Particle Pairing and Displacement Estimation

The probability of correct particle pairing R12 (Fig. 5.39-left, right axis) decreases
rapidly with the particle image density, whereas, the RMS uncertainty (left axis)
achieves a stable value beyond an image density Ap/Ai = 0.4 [40]. The uncertainty
of the displacement measurement for two different particle image detection methods
is compared to single pixel ensemble correlation [40] showing that for high-quality
imaging conditions, the uncertainty of the particle tracking is rather low and little
dependent upon the particle image diameter as long as D > 2pixel.

5.4.3 Spatial Resolution

One of the commonly adopted tests for spatial resolution is the step-response.
Figure5.40(left) shows that strong flow gradients can be nicely resolved using parti-
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Fig. 5.40 Left, Response to a step-like displacement profile for different digital particle image
sizes computed with PTV algorithms. Right, Step response width of the estimated displacement
with respect to the digital particle image diameter (from Kähler et al. [40])

cle tracking even in case of large particle images, which are typical in microfluidics.
Although the raising uncertainty with increasing particle image diameter is visible,
bias errors due to spatial averaging do not exist, unlike for PIVmethods. The right plot
illustrates that correct measurements can be obtained over a large range of particle
image diameters. In the case of single pixel ensemble-correlation the spatial resolu-
tion is limited by the size of the particle image and in case of spatial cross-correlation
analysis by the size of the interrogation window.

It is evident that the precise determination of the particle image location is an
important aspect of all PTV techniques. To achieve sub-pixel accuracy the dis-
crete particle image distribution is typically approximated by a continuous Gaussian
fit function, where the maximum denotes the particle image center precisely. This
approach is well suited for macroscopic imaging. However, in microscopic domains
with large magnifications different models might be more suitable [71]. A compari-
son of different center determination methods indicated that a Gaussian fit provides
the best trade-off between accuracy and processing time. For a signal to noise ratio of
SNR = 10, the center determination yielded an uncertainty of about 0.05pixel [15].
Peak locking is largely avoidedwhen the particle image diameter is larger than 2 pixel
(see Sect. 6.3 for further details).

5.4.4 Performance of Particle Tracking

Once the positions of the particle images are determined, the challenge of identifying
the correct partners in subsequent frames has to be solved. The most straightforward
method to match corresponding particle images is a nearest neighbor PTV algo-
rithm [52]. This algorithm is suited for very low particle image densities, since the
particle displacements must be smaller than the inner distance between neighboring

http://dx.doi.org/10.1007/978-3-319-68852-7_6
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particles.More elaborate approaches allow increasing theparticle imagedensities and
in turn the information density. These methods comprise artificial neural networks
or relaxation methods that minimize a local or global cost function [65]. Alterna-
tively, Okamoto et al. [61] presented a spring force model, where particle pairs
were identified by searching for the smallest spring force calculated over particles in
a certain neighborhood. Probabilistic approaches that take the motion of neighboring
particles into account show a very high vector yield at larger particle image densities,
however at the expense of spatial resolution as the motion of neighboring particles
must be correlated. Another method to improve the detection of corresponding par-
ticle pairs is the use of a predictor for the displacement. A predictor can significantly
decrease the search area in the second frame and thus improve the match probability
of particles. In general, such predictors can be based on theoretically known velocity
distributions or experimentally obtained PIV evaluations [13, 18, 45, 92]. Brevis
et al. [11] combined a PIV predictor with a relaxation PTV algorithm to further
enhance the performance. However, in comparison with PIV, the gain in resolution is
onlyminor and does not justify the effort inmany cases. A fully PTV-based algorithm
was presented by Ohmi & Li [60], where a case sensitive search radius in the second
frame is used to identify possibly matching particles. This is done for all particles
detected reliably in the first frame. For each possiblematch, the algorithm updates the
probabilities of similar neighbor vectors iteratively. The threshold for the common
motion of the neighboring particles is another parameter that needs to be specified.
To address this drawback, Fuchs et al. [24] introduced a robust and user-friendly
tracking algorithm, where only the displacement limits need to be specified, while
all other parameters do not require any adjustment.

For the identification of the correct displacement of a certain particle, the his-
tograms of all possible displacements of the particle of interest and its neighbors
lying within the specified displacement range are analyzed. The resulting displace-
ment to the subsequent frame showing the lowest deviation from themaximumvalues
of the histogram in each spatial direction is considered to be the most probable dis-
placement for the particle of interest. The algorithm is computationally efficient,
since it does not need to iteratively update probabilities.

Moreover, this non-iterative tracking method (NIT) is capable of yielding reliable
tracking results for large particle image densities. Thus, the method is assessed by
means of the analysis of the first image pair of the synthetic data set 301 (ppp = 0.06),
provided byOkamoto et al. [62]. Figure5.41 gives an overview of the displacement
field of the using the NIT method and clearly only few outliers are yielded, even in
regionswhere the displacements are significantly larger than the distance between the
particles. A closer look on the tracking performance is given Table5.2, comparing
a nearest neighbor (NN) algorithm, the NIT algorithm, and the iterative tracking
(IT) algorithm of Ohmi & Li [60]. The nearest neighbor algorithm fails to provide
reliable tracking results at this high particle image density, as it can only identify 868
out of 4042 actual tracks. Furthermore, the number of invalid and not detected tracks
is large. Both, the IT and the NIT algorithm, show a good tracking performance
with a large number of valid vectors (3846 and 3940, respectively) and only a low
number of invalid and not detected tracks. Thus, the NIT algorithm comes close to
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Fig. 5.41 Displacement field of the first image pair of the synthetic data set 301, provided by
Okamoto et al. [62]. Using the non-iterative algorithm introduced by Fuchs et al. [24], the dis-
placements can be determined reliably, even in regions where the displacements are significantly
larger than distance between the particles (from Fuchs et al. [24])

Table 5.2 Tracking performance for the analysis of the first frame of the synthetic data set 301
(Okamoto et al. [62]). Comparison among nearest neighbor (NN), non-iterative (NIT) and iterative
(IT) (Ohmi & Li [60])

Tracks: 4042 NN NIT IT

Valid 868 3846 3940

Invalid 1840 91 50

Not detected 3174 196 102

Fig. 5.42 Schematic of the
working principle of a
four-frame method. The
circles indicate the search
area for the corresponding
frames (from Cierpka

et al. [16])

the IT algorithm in terms of performance, while offering the advantage being less
user dependent, which is an important feature for new and inexperienced users.
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5.4.5 Multi-frame Particle Tracking

The accuracy and the robustness of double-frame methods are limited by the fact
that only two recordings are available. Approaches to further enhance the precision
in estimating the flow velocity are based on multi-pulse or multi-frame techniques,
which rely upon the temporal smoothness of the particle trajectory and regularity of
the image signal.Multi-pulse ormulti-frame PTV techniques improve the probability
for correct particle matching by tracking particles over more than two successive
frames [16]. Furthermore, trajectory curvature can be accounted for considering
curved particle pathfitting the particle image positions (seeFig. 5.42). The sameholds
for tangential acceleration along the particle trajectory. The accurate determination
of the local acceleration of the flow is important for unsteady flows and for pressure
estimation from the velocity field (see Sect. 7.6.4).

In a multi-frame algorithm the displacement between the first two particle images
can be reliably obtained making the time interval between frame one and two small
enough (for instance 4–8 pixel). The estimated velocity vector is used as predictor to
point to frame three and similarly towards frame four. The approach can be extended
to more frames when the hardware allows recording longer sequences. The large
observation time interval and thus large displacement yield a high dynamic velocity
range.
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