
Chapter 17
Deep Learning

Manish Gupta

1 Introduction

Deep learning has caught a great deal of momentum in the last few years. Research
in the field of deep learning is progressing very fast. Deep learning is a rapidly
growing area of machine learning. Machine learning (ML) has seen numerous
successes, but applying traditional ML algorithms today often means spending a
long time hand-engineering the domain-specific input feature representation. This
is true for many problems in vision, audio, natural language processing (NLP),
robotics, and other areas. To address this, researchers have developed deep learning
algorithms that automatically learn a good high-level abstract representation for the
input. These algorithms are today enabling many groups to achieve groundbreaking
results in vision recognition, speech recognition, language processing, robotics, and
other areas.

The objective of the chapter is to enable the readers:

• Understand what is deep learning
• Understand various popular deep learning architectures, and know when to use

which architecture for solving their business problem
• Know how to perform image analysis using deep learning
• Know how to perform text analysis using deep learning
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Introduction to Deep Learning

Wikipedia defines deep learning as follows. “Deep learning (deep machine learning,
or deep structured learning, or hierarchical learning, or sometimes DL) is a branch
of machine learning based on a set of algorithms that attempt to model high-
level abstractions in data by using model architectures, with complex structures or
otherwise, composed of multiple non-linear transformations.” The concept of deep
learning started becoming very popular around 2012. This was mainly due to at least
two “wins” credited to deep learning architectures. In 2012, Microsoft’s top scientist
Rick Rashid demonstrated a voice recognition program that translated Rick’s
English voice into Mandarin Chinese in Tianjin, China.1 The high accuracy of
the program was supported by deep learning techniques. Similarly, in 2012, a deep
learning architecture won the ImageNet challenge for the image captioning task.2

Now deep learning has been embraced by companies in a large number of
domains. After the 2012 success in speech recognition and translation, there
has been across the board deployment of deep neural networks (DNNs) in the
speech industry. All the top companies in machine learning including Microsoft,
Google, and Facebook have been making huge investments in this area in the
past few years. Popular systems like IBM Watson have also been given a deep
learning upgrade. Deep learning is practically everywhere now. It is being used for
image classification, speech recognition, language translation, language processing,
sentiment analysis, recommendation systems, etc. In medicine and biology, it is
being used for cancer cell detection, diabetic grading, drug discovery, etc. In the
media and entertainment domain, it is being used for video captioning, video search,
real-time translation, etc. In the security and defense domain, it is being used for face
detection, video surveillance, satellite imagery, etc. For autonomous machines, deep
learning is being used for pedestrian detection, lane tracking, recognizing traffic
signs, etc. This is just to name a few use cases. The field is growing very rapidly—
not just in terms of new applications for existing deep learning architectures but also
in terms of new architectures.

In this chapter, we primarily focus on three deep supervised learning architec-
tures: multilayered perceptrons (MLPs), convolutional neural networks (CNNs),
and recurrent neural networks (RNNs). This chapter is organized as follows.
In Sect. 2, we discuss the biological inspiration for the artificial neural net-
works (ANN), the artificial neuron model, the perceptron algorithm to learn
the artificial neuron, the MLP architecture and the backpropagation algorithm
to learn the MLPs. MLPs are generic ANN models. In Sect. 3, we discuss
convolutional neural networks which are an architecture specially designed to

1http://deeplearning.net/2012/12/13/microsofts-richard-rashid-demos-deep-learning-for-speech-
recognition-in-china/ (accessed on Jan 16, 2018).
2https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-
networks.pdf (accessed on Jan 16, 2018).

http://deeplearning.net/2012/12/13/microsofts-richard-rashid-demos-deep-learning-for-speech-recognition-in-china/
http://deeplearning.net/2012/12/13/microsofts-richard-rashid-demos-deep-learning-for-speech-recognition-in-china/
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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learn from image data. Finally, in Sect. 4, we discuss the recurrent neural net-
works architecture which is meant for sequence learning tasks (mainly text and
speech).

2 Artificial Neural Network (ANN) and Multilayered
Perceptron (MLP)

2.1 Biological Inspiration and the Artificial Neuron Model

Deep learning is an extension of research in the area of artificial neural networks
(ANNs) as discussed in Chap. 16 on supervised learning. In this section, we
elaborate on training a simple neuron using the perceptron algorithm.

Training an artificial neuron involves using a set of labeled examples to estimate
the values of the weights wi (a vector of the same size as the number of features).
Rosenblatt (1962) proposed the perceptron algorithm to train the weights of an
artificial neuron. It is an iterative algorithm to learn the weight vector. The basic
idea is to start with a random weight vector and to update the weights in proportion
to the error contributed by the inputs. Algorithm 17.1 presents the pseudo-code for
the perceptron algorithm.

Algorithm 17.1: The Perceptron Algorithm
1. Randomly initialize weight vector w0
2. Repeat until error is less than a threshold γ or max_iterations M:

(a) For each training example (xi, ti):

• Predict output yi using current network weights wn

• Update weight vector as follows: wn+1 = wn+η × (ti − yi) × xi

Note that here η is called as the learning rate, ti is the true label for the instance xi,
and yi is the predicted class label for the instance xi. Thus, ti − yi is the error made
by the neuron with the current weight vector on the instance xi. Note that a neuron
also takes a bias term b as part of the weights to be learned. The bias term is often
folded in into the weight vector w by assuming a dummy input and setting it to 1. In
that case, the size of the weight vector is number of features + 1. The correction (or
the update) of the weights using the perceptron algorithm is equivalent to translation
and rotation of the separating hyper-plane for a binary classification problem.

Minsky and Papert (1969) proved that a single artificial neuron is no better than
a linear classifier. To be able to learn nonlinear patterns, one can progress in two
ways: change the integration function or consider MLP. One can change the inte-
gration function from a simple linear weighted summation to a quadratic function(
f = ∑m

j=1wjx
2
j − b

)
or a spherical function

(
f = ∑m

j=1

(
xj − wj

)2 − b
)

. We

will discuss MLP next.

http://dx.doi.org/10.1007/978-3-319-68837-4_16
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2.2 Multi-layered Perceptrons (MLPs)

Figure 17.1 shows a typical multilayered perceptron architecture. Interestingly such
a multilayered perceptron can learn very complex boundaries much more beyond
linear boundaries. In fact, it can also learn nonlinear boundaries. It has an input layer,
an output layer, and one or more hidden layers. The number of units (neurons) in the
input layer corresponds to the dimensionality of the input data. The number of units
in the output layer corresponds to the number of unique classes. If there are a large
number of hidden layers, the architecture is called a deep learning architecture. The
“deep” in “deep learning” refers to the depth of the network due to multiple hidden
layers.

In an MLP, each edge corresponds to a weight parameter to be learned. Note
that each neuron in a layer k produces an input for every other neuron in the next
layer k + 1. Thus, this is a case of dense connectivity. Learning the MLP means
learning each of these weights. Note that a perceptron cannot be directly used to
learn weights for an MLP because there is no supervision available for the output of
the internal neurons (neurons in the hidden layers). Thus, we need a new algorithm
for training an MLP.

Given a particular fixed weight vector for each edge in the MLP, one can compute
the predicted value yi for any data point xi. Thus, given a training dataset, one can
plot an error surface where each point on the error surface corresponds to a weight
configuration.

Input layer

Hidden layers

Output layer

…

…

…

…

1

Fig. 17.1 Multilayered perceptron (MLP)
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To learn a good weight vector, we present a gradient descent-based algorithm
which starts with a random point on this error surface and over multiple iterations
moves down the error surface in the hope of finding the deepest valley on this
surface. This means that we start with a randomly initialized weight vector and
update the weight vector so as to always move in the direction of the negative
gradient. Gradient descent algorithms suffer from local minima issues. This means
that the valley that we end up at after the gradient descent converges may not be the
deepest valley globally. However, just like other algorithms with local optima issues,
the problem can be solved by doing multiple runs of gradient descent each with
differently initialized weight vectors and then choosing the one with the smallest
error. Formally the algorithm is called as back propagation algorithm which works
as follows.

Algorithm 17.2: Back Propagation Algorithm
1. Initialize network weights (often small random values).
2. Repeat until error is less than a threshold γ or max_iterations M:

(a) For each training example (xi, ti):

• Predict output yi using current network weights wn (forward pass).
• Compute error at the output unit: error = ti − yi.
• Propagate back error from output units to all the hidden units right until

the input layer (backward error propagation step).
• Update network weights using the gradient descent update equation:

new weight = old weight – η×gradient of the error with respect to the
weight.

The error is backpropagated from a neuron n2 in layer k to a neuron n1 in layer
k − 1 in the ratio of the weight w12 on the edge between n1 and n2 to the weight on
all the inputs to the neuron n2.

There are multiple variants of the backpropagation algorithm. If the weight
update is done after every instance, it is called stochastic gradient descent. Often
times, batch-wise updates lead to quick convergence of the algorithm, where weights
are updated after looking at a batch of instances. In such a case, the algorithm is
called as batch-wise gradient descent.

The weights can be updated using a constant learning rate. However, if the
learning rate is too small, it leads to slow convergence. If the learning rate is too
large, it can lead to divergence rather than convergence. Hence, setting the learning
rate is tricky. This has led to the development of various update methods (e.g.,
momentum, averaging, AdaGrad (Duchi et al. 2011), RMSProp (Hinton et al. 2012),
Adam (Kingma and Ba 2014), and AdaDelta (Zeiler 2012)). Interested readers can
read more about some of these update schedules in the paper by Rumelhart et al.
(1986).
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2.3 Practical Advice When Using ANNs and an Overview
of Deep Learning Architectures

The fundamental difference between ANNs and other traditional classifiers is the
following. For building traditional classifiers, a data scientist first needs to perform
domain-specific feature engineering and then build models on top of featurized data.
This needs domain knowledge, and a large amount of time is spent in coming up
with innovative features that could help predict the class variable. In case of ANNs,
the data scientist simply supplies the raw data to the ANN classifier. The hope is that
the ANN can itself learn both the representation (features) and the weights too. This
is very useful in hard-to-featurize domains like vision and speech. Multiple layers
of a deep ANN capture different levels of data abstraction.

There are multiple hyper-parameters one has to tune for various deep learning
architectures. The best way to tune them is by using validation data. But here
are a few tips in using MLPs. The initial values for the weights of a hidden
layer i could be uniformly sampled from a symmetric interval that depends on
the activation function. For the tanh activation function, the interval could be[
−

√(
6

f anin+f anout

)
,

√(
6

f anin+f anout

)]
where fanin is the number of units in the

(i − 1)-th layer and fanout is the number of units in the i-th layer. For the Sigmoid

function, the suggested interval is

[
−4

√(
6

f anin+f anout

)
, 4

√(
6

f anin+f anout

)]
. This

initialization ensures that, early in training, each neuron operates in a regime of
its activation function where information can easily be propagated both upward
(activations flowing from inputs to outputs) and backward (gradients flowing from
outputs to inputs).

How many hidden layers should one have? How many hidden units per layer?
There is no right answer to this. One should start with one input, one hidden, and one
output layers. Theoretically this can represent any function. Add additional layers
only if the above does not work well. If we train for too long, possible overfitting can
happen—the test/validation error increases. Hence, while training, use validation
error to check for overfitting. Simpler models are better—try them first (Occam’s
razor).

Overview of Deep Learning Architectures
A large number of deep learning architectures have been proposed in the past few

years. We will discuss just a few of these in this chapter. We mention a partial list of
them below for the sake of completeness.

1. Deep supervised learning architectures: classification—multilayered percep-
tron (MLP); similarity/distance measure—DSSM, convolutional NN; sequence-
to-sequence—recurrent neural net (RNN)/long short-term memory (LSTM);
question answering and recommendation dialog—memory network (MemNN);
reasoning in vector space—tensor product representation (TPR).
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Table 17.1 Few popular libraries to build deep learning models

Caffe Torch Theano Tensorflow CNTK

Language C++ Lua Python Python C++
Multi-GPU Yes Yes Ok Yes Yes
Readability Yes Yes Very poor Very poor Yes
Complex models No Yes Yes Yes Yes
Visualization No Ok No Yes Yes
Training Windows/

Linux
Linux only Windows/Linux Windows/Linux Windows/Linux

2. Deep unsupervised learning: pre-training—denoising auto-encoder (DA) and
stacked DA; energy-based models—restricted Boltzmann machines (RBM) and
deep belief networks (DBN).

3. Deep reinforcement learning: an agent to play games, Deep Q-Network (DQN).

Training deep learning models is usually a compute-intensive task. Deep learning
models work well when you have large amounts of data to train them. Hence, most
people use graphics processing units (GPUs) to train good models. There are a
few popular libraries to easily build deep learning models. Table 17.1 presents a
comparison of these libraries.

2.4 Summary

ANN is a computational model inspired from the workings of the human brain.
Although a perceptron can simply represent linear functions, multiple layers
of perceptrons can represent arbitrary complex functions. The backpropagation
algorithm can be used to learn the parameters in a multilayered feed-forward neural
network. The various parameters of a feed-forward ANN such as learning rate,
number of hidden layers, and initial weight vectors need to be carefully chosen.
An ANN allows for learning of deep feature representations from raw training data.

2.5 An Example: MNIST Data

The following section explains how to build a simple MLP using the “mxnet”
package in R for the MNIST handwritten digit recognition task. The MNIST data
comprises of handwritten digits (60,000 in training dataset and 10,000 in test
dataset) produced by different writers. The sample is represented by a 28 × 28 pixel
map with each pixel having value between 0 and 255, both inclusive. You may refer
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to the MNIST data website3 for more details. Here, we provide a sample of only
5000 digits (500 per digit) in the training sample and 1000 digits (100 per digit) in
the test dataset. The task is to recognize the digit.

The main stages of the code below are as follows:

1. Download and perform data cleaning.
2. Visualize the few sample digits.
3. Specify the model.

(a) Fully connected
(b) Number of hidden layers (neurons)
(c) Activation function type

4. Define the parameters and run the model.

(a) “softmax” to normalize the output
(b) X: Pixel data (X values)
(c) Y: Dependent variable (Y values)
(d) ctx: Processing device to be used

5. Predict the model output on test data.
6. Produce the classification (confusion) matrix and calculate accuracy.

Sample code “MLP on MNIST.R” and datasets “MNIST_train_sample.csv” and
“MNIST_test_sample.csv” are available on the website.

3 Convolutional Neural Networks (CNNs)

In this section, we discuss a deep learning architecture called as convolutional neural
networks. This architecture is mainly applied to image data. However, there have
also been some use-cases where CNNs have been applied to embedding matrices
for text data. In such cases, a text sequence is mapped onto a matrix where each
word in the sequence is represented as a row using the word embedding for the
word. Further, such an embedding matrix is treated very similar to an image matrix.
We will first talk about ImageNet and various visual recognition problems. After
that, we will discuss the technical details of a CNN.

3.1 ImageNet and Visual Recognition Problems

ImageNet4 is an image dataset organized according to the WordNet (Miller 1995)
hierarchy. Each meaningful concept in WordNet, possibly described by multiple

3http://yann.lecun.com/exdb/mnist/ (accessed on Jan 16, 2018).
4Imagenet dataset is hosted on http://image-net.org/ (accessed on Aug 1, 2018).

http://yann.lecun.com/exdb/mnist/
http://image-net.org/
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Fig. 17.2 A sample image

words or word phrases, is called a “synonym set” or “synset.” There are more than
100,000 synsets in WordNet, majority of them are nouns (80,000+). The ImageNet
project is inspired by a growing sentiment in the image and vision research field—
the need for more data. There are around 14,197,122 images labeled with 21,841
categories.

This dataset is used for the ImageNet Large Scale Visual Recognition Challenge
held every year since 2010. The challenge runs for a variety of tasks including image
classification/captioning, object localization, object detection, object detection from
videos, scene classification, and scene parsing. The most popular task is image
captioning.

The image classification task is as follows. For each image, competing algorithms
produce a list of at most five object categories in the descending order of confidence.
The quality of a labeling is evaluated based on the label that best matches the ground
truth label for the image. The idea is to allow an algorithm to identify multiple
objects in an image and not be penalized if one of the objects identified was in
fact present but not included in the ground truth (labeled values). For example, for
the image in Fig. 17.2, “red pillow” is a good label, but “flying kite” is a bad label.
Also, “sofa” is a reasonable label, although it may not be present in the hand-curated
ground truth label set.

Table 17.2 shows the winners for the past few years for this task. Notice that
in 2010, the architecture was a typical feature engineering-based model. But since
2012 all the winning models have been deep learning-based models. The depth of
these models has been increasing significantly as the error has been decreasing over
time.

CNNs have been used to solve various kinds of vision-related problems including
the image classification challenge. Such tasks include object detection, action clas-
sification, image captioning, pose estimation, image retrieval, image segmentation
for self-driving cars, traffic sign detection, face recognition, video classification,
whale recognition from ocean satellite images, and building maps automatically
from satellite images.
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3.2 Biological Inspiration for CNNs

Hubel and Wiesel (1962) made the following observations about the visual cortex
system. Nearby cells in the cortex represented nearby regions in the visual field.
Visual cortex contains a complex arrangement of cells. These cells are sensitive to
small subregions of the visual field, called a receptive field. The subregions are tiled
to cover the entire visual field and may overlap. These cells act as local filters over
the input space and are well suited to exploit the strong spatially local correlation
present in natural images. Additionally, two basic cell types have been identified.
Simple cells respond maximally to specific edge-like patterns within their receptive
field. Complex cells have larger receptive fields and are locally invariant to the exact
position of the pattern.

The question is how to encode these biological observations into typical MLPs.
Fukushima and Miyake (1982) proposed the neocognitron, which is a hierarchical,
multilayered artificial neural network, and can be considered as the first CNN in
some sense.

Besides the visual cortex system, in general, we tend to think in terms of hierar-
chy, for example, the vision hierarchy (pixels, edges, textons, motifs, parts, objects),
the speech hierarchy (samples, spectral bands, formants, motifs, phones, words), and
the text hierarchy (character, word, phrases, clauses, sentences, paragraphs, story).
To encode this hierarchical behavior into a neural framework, we will study CNNs
in this section.

Why cannot we rely on MLPs for image classification? Consider a simple task
where you want to learn a classifier to detect images with dogs versus those without.
In the popular CIFAR-10 image dataset, images are of size 32 × 32 × 3 (32 wide, 32
high, 3 color channels) only, so a single fully connected neuron in a first hidden layer
of a regular neural network would have 32 × 32 × 3 = 3072 weights. A 200 × 200
image, however, would lead to neurons that have 200 × 200 × 3 = 120,000 weights.
Such network architecture does not take into account the spatial structure of data,
treating input pixels which are far apart and close together on exactly the same
footing. Clearly, the full connectivity of neurons is wasteful in the framework of
image recognition, and the huge number of parameters quickly leads to overfitting.
This motivates us to build specific architecture to deal with images, as discussed
below.

3.3 Technical Details of a CNN

Figure 17.3 shows four kinds of layers that a typical CNN has: the convolution
(CONV) layer, the rectified linear units (RELU) layer, the pooling (POOL) layers,
and the fully connected (FC) layers. FC layers are the ones that we have seen so far
in MLPs. In this section, we will discuss the other three layers (CONV, RELU, and
POOL) in detail one by one.



580 M. Gupta

Fig. 17.3 ConvNet: CONV, RELU, POOL, and FC layers

Fig. 17.4 Convolution layer (Source: CS231N Stanford course slides)

CONV Layer

Let us start by understanding the convolution layer. Given an original image, the
convolution layer applies multiple filters on the image to obtain feature maps. Filters
are rectangular in nature and always extend the full depth of the input volume. For
example, in Fig. 17.4, the input image has a size of 32 × 32 × 3, and a filter of size
5 × 5 × 3 is being applied. To get the entire feature map, the filter is convolved with
the image by sliding over the image spatially and computing the dot products. The
sliding can be done one-step or multiple steps at a time; this is controlled using a
parameter called the stride. Filters are like features defined over the input volume.
Rather than just using one filter, we could use multiple filters. The final output
volume depth depends on the number of filters used. For example, if we had six
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5 × 5 × 3 filters, we will get six different activation maps each of size 28 × 28 × 15

leading to an output volume size of 28 × 28 × 6. Note that an activation map can
also be seen as a 28 × 28 sheet of neuron outputs where each neuron is connected
to a small region in the input, and all of them share parameters.

The elements of the filters are the weights that are learned using backpropagation
during training. The convolution layer helps us implement two important concepts
in a CNN:

1. Sparse Connectivity: Convolution layer enforces a local connectivity pattern
between neurons of adjacent layers. The inputs of hidden units in layer m are
from a subset of units in layer m − 1, units that have spatially contiguous
receptive fields.

2. Shared Weights: In CNNs, each filter is replicated across the entire visual field.
These replicated units share the same parameterization (weight vector and bias)
and form a feature map. Gradient descent can still be used to learn such shared
parameters, with only a small change to the original algorithm. The gradient
of a shared weight is simply the sum of the gradients of the parameters being
shared. Replicating units in this way allows for features to be detected regardless
of their position in the visual field. Weight sharing increases learning efficiency
by greatly reducing the number of free parameters being learnt.

Convolution can be done by sliding the filter across the entire space of the input
volume with a stride of 1 or larger stride values. Larger stride values lead to small
output volumes. Also, sometimes, the original input volume is padded with zeroes at
the border to prevent the loss of information at the border. In general, it is common
to see CONV layers with stride 1, filters of size F × F, and zero padding with
(F − 1)/2. For example, if a 32 × 32 × 3 image is padded by two zeros all around,
then the activation map size will be ((36 − 5)/1) + 1 = 32. So now there is no loss
of the information (at the borders) because the whole image is covered.

Due to weight sharing, the number of weights to be learned in a CONV layer is
much lesser compared to the weight in a layer in an MLP.

RELU Layer

Next, we discuss about the RELU (rectified linear units) layer. This is a layer
of neurons that applies the activation function f(x) = max(0,x). It increases the
nonlinear properties of the decision function and of the overall network without
affecting the receptive fields of the convolution layer. Other functions are also used
to increase nonlinearity, for example, the hyperbolic tangent f(x) = tanh(x) and the
sigmoid function. This layer clearly does not involve any weights to be learned.

POOL Layer

There are several nonlinear functions to implement pooling among which max pool-
ing is the most common. It partitions the input image into a set of nonoverlapping

5Activation Map Size = ((image size − filter size)/stride) + 1. Here, Image size is 32. Filter Size
is 5. Stride = 1. Activation Map size = ((32 − 5)/1) + 1 which is equal to 28.
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Fig. 17.5 Pooling example

rectangles and, for each such subregion, outputs the maximum. The intuition is that
the exact location of a feature is less important than its rough location relative to
other features. The pooling layer serves to progressively reduce the spatial size of
the representation, to reduce the number of parameters and amount of computation
in the network, and hence to also control overfitting. Figure 17.5 shows an example
of max pooling with a pool size of 2 × 2.

Finally, after several convolutional and max pooling layers, the high-level
reasoning in the neural network is done via fully connected layers. Neurons in a
fully connected layer have connections to all activations in the previous layer, as
seen in regular MLPs.

3.4 Summary

In summary, we have discussed an interesting deep learning architecture, CNNs,
for images in this section. CNNs are very popular these days across a large variety
of image processing tasks. Convolution networks are inspired by the hierarchical
structure of the visual cortex. Things that differentiate CNNs from DNNs are sparse
connectivity, shared weights, feature maps, and pooling.

3.5 An Example: MNIST Data (Similar to MLP Approach)

The main stages of the code are as follows:

1. Download and perform data cleaning.
2. Visualize few sample digits.
3. Specify the model:

(a) First convolution layer and specifying kernel
(b) Activation function type
(c) Pooling layer and specifying the type of pooling (max or average)
(d) Second convolution layer, activation function, and pooling layer
(e) First fully connected and specifying the number of hidden layers (neurons)
(f) Second fully connected
(g) Applying softmax to normalize the output
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4. Define the parameters and run the model:

(a) lenet: pointer to the last computation node in the network definition
(b) X: pixel data (X values)
(c) Y: dependent variable (Y values)
(d) ctx: processing device to be used
(e) num.round: maximum number of iterations over the dataset
(f) array.batch.size: batch size for batch-wise gradient descent
(g) Learning rate
(h) Momentum: for momentum based gradient descent updates
(i) WD: weight decay

5. Predict the model output on test data.
6. Produce confusion matrix and calculate accuracy.

The sample code helps understand how to build a CNN using the
“mxnet” R package. The code “Mxnet-MNIST_CNN.R” and the datasets
“MNIST_train_sample.csv” and “MNIST_test_sample.csv” are available on the
website.

4 Recurrent Neural Networks (RNNs)

In this section, we will discuss a deep learning architecture to handle sequence data,
RNNs. We will first motivate why sequence learning models are needed. Then we
will talk about technical details of RNNs (recurrent neural networks) and finally
discuss about their application to image captioning and machine translation.

4.1 Motivation for Sequence Learning Models

Sequences are everywhere. Text is a sequence of characters. Speech is a sequence of
phonemes. Videos are sequences of images. There are many important applications
powered by analytics on top of sequence data. For example, machine translation is
all about transforming a sequence written in one language to another. We need a
way to model such sequence data using neural networks. Humans do not start their
thinking from scratch every second. As you read this section, you understand each
word based on your understanding of previous words. You do not throw everything
away and start thinking from scratch again. Your thoughts have persistence. Thus,
we need neural networks with some persistence while learning. In this chapter,
we will discuss about RNNs as an architecture to support sequence learning tasks.
RNNs have loops in them which allow for information to persist.

Language models are the earliest example of sequence learning for text
sequences. A language model computes a probability for a sequence of words:
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P(w1, . . . , wm). Language models are very useful for many tasks like the following:
(1) next word prediction: for example, predicting the next word after the user
has typed this part of the sentence. “Stocks plunged this morning, despite a
cut in interest rates by the Federal Reserve, as Wall ...”; (2) spell checkers: for
example, automatically detecting that minutes has been spelled incorrectly in
the following sentence. “They are leaving in about fifteen minuets to go to her
house”; (3) mobile auto-correct: for example, automatically suggesting that the
user should use “find” instead of “fine” in the following sentence. “He is trying
to fine out.”; (4) speech recognition: for example, automatically figuring out that
“popcorn” makes more sense than “unicorn” in the following sentence. “Theatre
owners say unicorn sales have doubled...”; (5) automated essay grading; and (6)
machine translation: for example, identifying the right word order as in p(the cat
is small) > p(small the is cat), or identifying the right word choice as in p(walking
home after school) > p(walking house after school).

Traditional language models are learned by computing expressing probability
of an entire sequence using the chain rule. For longer sequences, it helps to
compute probability by conditioning on a window of n previous words. Thus,
P (w1, . . . , wm) = �m

i=1P (wi |w1, . . . wi−1) ≈ �m
i=1P

(
wi |wi−(n−1), . . . , wi−1

)
.

Here, we condition on the previous n values instead of previous all values. This
approximation is called the Markov assumption. To estimate probabilities, one may
compute unigrams, bigrams, trigrams, etc., as follows, using a large text corpus with
T tokens.

Unigram model: p (w1) = count(w1)
T

Bigram models: p (w2|w1) = count(w1,w2)
count(w1)

Trigram models: p (w3|w1, w2) = count(w1,w2,w3)
count(w1,w2)

Performance of n-gram language models improves as n for n-grams increases.
Smoothing, backoff, and interpolation are popular techniques to handle low fre-
quency n-grams. But the problem is that there are a lot of n-grams, especially as n
increases. This leads to gigantic RAM requirements. In some cases, the window of
past consecutive n words may not be sufficient to capture the context. For instance,
consider a case where an article discusses the history of Spain and France and
somewhere later in the text, it reads, “The two countries went on a battle”; clearly
the information presented in this sentence alone is not sufficient to identify the name
of the two countries.

Can we use MLPs to model the next word prediction problem? Figure 17.6 shows
a typical MLP for the next word prediction task as proposed by Bengio et al. (2003).
The MLP is trained to predict the t-th word based on a fixed size context of previous
n − 1 words. This network assumes that we have a mapping C from any word i
in the vocabulary to a distributed feature vector like word2vec.6 Thus, if m is the

6Word2vec is an algorithm for learning a word embedding from a text corpus. For further details,
read Mikolov et al. (2013).
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Fig. 17.6 MLP for next word prediction task (Source: Bengio et al. 2003)

dimension for the feature vector representation, and |V| is vocabulary size, C is a
|V| × m sized matrix. C(wt − i) is the vector representation of the word that came
i words ago. C could also be learned along with the other weights in the network.
Further, the model contains a hidden layer with a nonlinearity. Finally, at the output
layer, a softmax is performed to return the probability distribution of size |V| which
is expected to be as close as possible to the one-hot encoded representation of the
actual next word.

In all conventional language models, the memory requirements of the system
grow exponentially with the window size n making it nearly impossible to model
large word windows without running out of memory. But in this model, the RAM
requirements grow linearly with n. Thus, this model supports a fixed window
of context (i.e., n). There are two drawbacks of this model: (1) the number of
parameters increase linearly with the context size, and (2) it cannot handle contexts
of different lengths. RNNs help address these drawbacks.

4.2 Technical Details of RNNs

RNNs is a deep learning neural architecture that can support next word prediction
with variable n. RNNs tie the weights at each time step. This helps in conditioning
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Fig. 17.7 Basic RNN architecture

the neural network on all previous words. Thus, the RAM requirement only scales
with the number of words in the vocabulary. Figure 17.7 shows the architecture of
a basic RNN model with three units. U, V, and W are the shared weight matrices
that repeat across multiple time units. Overall the parameters to be learned are U,
V, and W.

RNNs are called recurrent because they perform the same task for every element
of a sequence. The only thing that differs is the input at each time step. Output is
dependent on previous computations. RNNs can be seen as neural networks having
“memory” about what has been calculated so far. The information (or the state)
ht at any time instance t is this memory. In some sense, ht captures a thought
that summarizes the words seen so far. RNNs process a sequence of vectors x by
applying a recurrence formula at every time step: ht = fU,W (ht − 1, xt), where ht is
the new state, fU,W is some function with parameters U and W, ht − 1 is the old state,
and xt is the input vector at current time step. Notice that the same function and the
same set of parameters are used at every time step.

The weights for an RNN are learned using the same backpropagation algorithm,
also called as backpropagation through time (BPTT) in the context of RNNs.
The training data for BPTT should be an ordered sequence of input-output pairs
〈x0, y0〉,〈x1, y1〉, . . . ,〈xn − 1, yn − 1〉. An initial value must be specified for the hidden
layer output h0 at time t0 . Typically, a vector of all zeros is used for this purpose.
BPTT begins by unfolding a recurrent neural network through time. When the
network is unfolded through time, the unfolded network contains k instances of a
unit, each containing an input, a hidden layer, and an output. Training then proceeds
in a manner similar to training a feed-forward neural network with backpropagation,
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except that each epoch must run through the observations, yt, in sequential order.
Each training pattern consists of 〈ht, xt, xt+1, xt+2, . . . , xt+k − 1, yt+k〉. Typically,
backpropagation is applied in an online manner to update the weights as each
training pattern is presented. After each pattern is presented, and the weights
have been updated, the weights in each instance of U, V, and W are averaged
together so that they all have the same weights, respectively. Also, ht+1 is calculated
as ht+1 = fU,W (ht, xt+1), which provides the information necessary so that the
algorithm can move on to the next time step, t + 1. The output yt is computed
as follows: yt = softmax(V ht). Usually the cross entropy loss function is used
for the optimization: Given an actual output distribution yt and a predicted output
distribution ŷt , cross entropy loss is defined as −∑|V |

j=1yt,j log ŷ(t,j). Note that yt is
the true vector; it could be a one-hot encoding of the expected word or a word2vec
representation of the expected word at the t-th time instant.

4.3 Example: Next Word Prediction

The following pseudo-code shows how to build an RNN using the “mxnet” R
package for the next word prediction task. Below are the main code stages:

1. Download the data and perform cleaning.
2. Create Word 2 Vector, dictionary, and lookup dictionary.
3. Create multiple buckets for training data.
4. Create iterators for multiple buckets data.
5. Train the model for multiple bucket data with the following parameters:

(a) Cell_type = “lstm” #Using lstm cell which can hold the results
(b) num_rnn_layer = 1
(c) num_embed = 2
(d) num_hidden = 4 #Number of hidden layers
(e) loss_output = “softmax”
(f) num.round = 6

6. Predict the output of the model on “Test” data.
7. Calculate the accuracy of the model.

The sample code helps understand how to build an RNN using the
“mxnet” R package. The code “Next_word_RNN.R” and the datasets “cor-
pus_bucketed_train.rds” and “corpus_bucketed_test.rds” are available on the
website.

The basic RNN architecture can be extended in many ways. Bidirectional RNNs
are RNNs with two hidden vectors per unit. The first hidden vector maintains the
state of the information seen so far in the sequence in the forward direction, while
the other hidden vector maintains the state representing information seen so far in
the sequence in the backward direction. The number of parameters in bidirectional
RNNs is thus twice the number of parameters in the basic RNN.
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RNNs could also be deep. Thus, a deep RNN has stacked hidden units, and the
output neurons are connected to the most abstract layer.

4.4 Applications of RNNs: Image Captioning and Machine
Translation

Recurrent networks offer a lot of flexibility. Thus, they can be used for a large
variety of sequence learning tasks. Such tasks could be classified as one-to-
many, many-to-one, or many-to-many depending on the number of inputs and the
number of outputs. An example of a one-to-many application is image captioning
(image → sequence of words). An example of many-to-one application is sentiment
classification (sequence of words → sentiment). An example of “delayed” many-to-
many application is machine translation (sequence of words → sequence of words).
Finally, an example of the “synchronized” many-to-many case is video classification
on frame level.

In the following, we will discuss two applications of RNNs: image captioning
and machine translation. Figure 17.8 shows the neural CNN-RNN architecture for
the image captioning task. First a CNN is used to obtain a deep representation for
the image. The representation is then passed on to the RNN to learn captions. Note
that the captions start with a special word START and end with a special word END.
Unlike image classification task where the number of captions is limited, in image
captioning, the number of captions that can be generated are many more since rather
than selecting one of say 1,000 captions, here the task is to generate captions.

Fig. 17.8 CNN-RNNs for image captioning task
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Fig. 17.9 RNNs for machine translation

As shown in Figure 17.8, a CNN trained on the ImageNet data is first used.
Such a CNN was discussed in Sect. 3. The last fully connected layer of the CNN is
thrown away, and the result from the CNN’s penultimate layer is fed to the first unit
of the RNN. One-hot encoding of the special word START is fed as input to the first
unit of the RNN. At the training time, since the actual image captions are known,
the corresponding word representations are actually fed as input for every recurrent
unit. However, at test time, the true caption is unknown. Hence, at test time, the
output of the k-th unit is fed as input to the (k + 1)-th unit. This is done for better
learning of the order of words in the caption. Cross entropy loss is used to compute
error at each of the output neurons. Microsoft COCO7 is a popular dataset which
can be used for training such a model for image captioning. The dataset has about
120K images each with five sentences of captions (Lin et al. 2014).

Lastly let us discuss about application of RNNs to machine translation. Figure
17.9 shows a basic encoder–decoder architecture for the machine translation task
using RNNs. The encoder RNN tries to encode all the information from the source
language into a single hidden vector at the end. Let us call this last hidden vector
of the encoder as the “thought” vector. The decoder RNN uses information from
this thought vector to generate words in the target language. The architecture tries
to minimize the cross entropy error for all target words conditioned on the source
words.

There are many variants of this architecture as follows. (1) The encoder and
the decoder could use shared weights or different weights. (2) Hidden state in the
decoder always depends on the hidden state of the previous unit, but it could also
optionally depend on the thought vector and predicted output from the previous unit.
(3) Deep bidirectional RNNs could be used for both encoder and decoder.

Beyond these applications, RNNs have been used for many sequence learning
tasks. However, RNNs suffer from vanishing gradients problem. In theory, RNN

7Microsoft COCO dataset http://www.mscoco.org/ (accessed on Aug 1, 2018) or http://
cocodataset.org/ (accessed on Aug 1, 2018).

http://www.mscoco.org/
http://cocodataset.org/
http://cocodataset.org/
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can memorize in hidden state, that is, ht, all the information about past inputs.
But, in practice, standard RNN cannot capture very long-distance dependency.
Vanishing/exploding gradient problem in backpropagation: gradient signal can end
up being multiplied a large number of times (as many as the number of time
steps) by the weight matrix associated with the connections between the neurons
of the recurrent hidden layer. If the weights in transition weight matrix are small
(or, more formally, if the leading eigenvalue of the weight matrix is smaller than
1.0), it can lead to vanishing gradients where the gradient signal gets so small that
learning either becomes very slow or stops working altogether. It can also make
more difficult the task of learning long-term dependencies in the data. Conversely,
if the weights in this matrix are large (or, again, more formally, if the leading
eigenvalue of the weight matrix is larger than 1.0), it can lead to a situation
where the gradient signal is so large that it can cause learning to diverge. This
is often referred to as exploding gradients. A solution to this problem is long
short-term memory (LSTM) which are deep learning architectures similar to RNNs
but with explicit memory cells. The main idea is to keep around memories to
capture long-range dependencies and to allow error messages to flow at different
strengths depending on the inputs. The intuition is that memory cells can keep
information intact, unless inputs make them forget it or overwrite it with new
input. The memory cell can decide to output this information or just store it.
The reader may refer to Hochreiter and Schmidhuber (1997) for further details
about LSTMs.

4.5 Summary

In summary, recurrent neural networks are powerful in modeling sequence data.
But they have the vanishing/exploding gradient problem. LSTMs are better since
they avoid the vanishing/exploding gradient problem by introducing memory cells.
Overall, RNNs and LSTMs are really useful in many real-world applications like
image captioning, opinion mining, and machine translation.

5 Further Reading

The advances being made in this field are continuous in nature due to the practice
of sharing information as well as cooperating with researchers working in labs and
in the field. Therefore, the most recent information is available on the Web and
through conferences and workshops. The book8 by Goodfellow et al. (2016), the

8https://www.deeplearningbook.org/ (accessed on Aug 1, 2018).

https://www.deeplearningbook.org/
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deep learning tutorials,9 and specialization in deep learning10 offered by Andrew
Ng are good starting points for learning more.

Additional reference material (accessed on Aug 1, 2018):

• Good Introductory Tutorial: http://web.iitd.ac.in/∼ sumeet/Jain.pdf
• A Brief Introduction to Neural Networks: http://www.dkriesel.com/en/science/

neural_networks

CNN feature visualization:

• http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html?path=image
netCNN

• http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-
introduction-to-rnns/

• http://karpathy.github.io/2015/05/21/rnn-effectiveness/
• http://colah.github.io/posts/2015-08-Understanding-LSTMs/
• Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Com-

putation, 9(8), 1735–1780. http://www.bioinf.jku.at/publications/older/2604.pdf
• http://jeffdonahue.com/lrcn/
• https://github.com/kjw0612/awesome-rnn#theory

Electronic Supplementary Material

All the datasets, code, and other material referred in this section are available in
www.allaboutanalytics.net.

• Data 17.1: MNIST_train_sample.csv
• Data 17.2: MNIST_test_sample.csv
• Data 17.3: corpus_bucketed_test.rds
• Data 17.4: corpus_bucketed_train.rds
• Code 17.1: MLP_MNIST.R
• Code 17.2: MXNET_MNIST_CNN.R
• Code 17.3: Next_word_RNN.R

Exercises

Ex. 17.1 Which of these is false?

(a) Deep learning needs large amounts of data for learning.

9http://deeplearning.net/reading-list/tutorials/ (accessed on Aug 1, 2018).
10https://www.coursera.org/specializations/deep-learning (accessed on Aug 1, 2018).

http://web.iitd.ac.in/~sumeet/Jain.pdf
http://www.dkriesel.com/en/science/neural_networks
http://www.dkriesel.com/en/science/neural_networks
http://people.csail.mit.edu/torralba/research/drawCNN/drawNet.html?path=imagenetCNN
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.bioinf.jku.at/publications/older/2604.pdf
http://jeffdonahue.com/lrcn/
https://github.com/kjw0612/awesome-rnn#theory
www.allaboutanalytics.net
http://deeplearning.net/reading-list/tutorials/
https://www.coursera.org/specializations/deep-learning
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(b) Deep learning classifiers are all linear in nature.
(c) Deep learning needs a lot of compute power.
(d) Deep learning consists of multiple model architectures.

Ex. 17.2 What is the algorithm used to train a single neuron?

(a) Backpropagation
(b) Forward propagation
(c) Perceptron
(d) None of the above

Ex. 17.3 How can you make an artificial neuron learn nonlinear patterns?

(a) Change integration function to be nonlinear
(b) Use multilayered perceptrons
(c) Both of the above
(d) None of the above

Ex. 17.4 What is the weight update equation in perceptron?

(a) New w = old w + (learning rate) × (error) × (instance vector)
(b) New w = old w - (learning rate) × (error) × (instance vector)
(c) New w = (learning rate) × (error) × (instance vector)
(d) New w = (learning rate) × (error) × (instance vector)

Ex. 17.5 If an MLP has an input layer with 10 features, hidden layer with 20
neurons, and output layer with 1 output, how many parameters are there?

(a) 10 × 20 + 20 × 1
(b) (10 + 1) × 20 + (20 + 1) × 1
(c) (10 − 1) × 20 + (20 − 1) × 1
(d) 10 × 20

Ex. 17.6 Why cannot the perceptron algorithm work for MLPs?

(a) We never discussed this in the class!
(b) MLPs have too many parameters, and perceptron is not very efficient when

there are too many parameters.
(c) Supervision is not available for neurons in the hidden layers of an MLP.
(d) Perceptrons are meant to learn only linear classifiers, while MLPs can learn

more complex boundaries.

Ex. 17.7 We discussed three different activation functions. Which of the following
is not an activation function?

(a) Step function
(b) Spherical function
(c) Ramp function
(d) Sigmoid function

Ex. 17.8 What is false among the following?
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(a) MLPs have fully connected layers, while CNNs have sparse connectivity.
(b) MLPs are supervised, while CNNs are usually used for unsupervised algo-

rithms.
(c) MLPs have more weights, while CNNs have fewer number of weights to be

learned.
(d) MLP is a general modeling architecture, while CNNs specialize for images.

Ex. 17.9 Given an image of 32 × 32 × 3, a single fully connected neuron will have
how many weights to be learned?

(a) 32 × 32 × 3 + 1
(b) 32
(c) 3
(d) 32 × 32

Ex. 17.10 What is the convolution operation closest to?

(a) Jaccard similarity
(b) Cosine similarity
(c) Dot product
(d) Earth mover’s distance

Ex. 17.11 How many weights are needed if the input layer has 32 × 32 inputs and
the hidden layer has 20 × 20 neurons?

(a) (32 × 32 + 1) × 20 × 20
(b) (20 + 1) × 20
(c) (32 + 1) × 20
(d) (32 + 1) × 32

Ex. 17.12 Consider a volume of size 32 × 32 × 3. If max pooling is applied to it
with pool size of 4 and stride of 4, what are the number of weights in the pooling
layer?

(a) (32 × 32 × 3 + 1) × (4 × 4)
(b) 4 × 4 + 1
(c) 0
(d) 32 × 32 × 3

Ex. 17.13 Which among the following is false about the differences between MLPs
and RNNs?

(a) MLPs can be used with fixed-sized sequences, while RNNs can handle variable-
sized sequences.

(b) MLPs have more weights, while RNNs have fewer number of weights to be
learned.

(c) MLP is a general modeling architecture, while RNNs specialize for sequences.
(d) MLPs are supervised, while RNNs are usually used for unsupervised algo-

rithms.
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Ex. 17.14 We looked at two neural models for next word prediction: an MLP and an
RNN. Given a vocabulary of 1000 words, and a hidden layer of size 100, a context
of size 6 words, what are the number of weights in an MLP?

(a) (6 × 1000 + 1) × 100 + (100 + 1) × 1000
(b) (1000 + 1) × 100 + (100 + 1) × 100 + (100 + 1) × 1000
(c) (6 × 6 + 1) × 100 + (6 × 6 + 1) × 1000
(d) (1000 + 1) × (100 + 1) × 6

Ex. 17.15 How does backpropagation through time differ from typical backpropa-
gation in MLPs?

(a) Weights on edges supposed to have shared weights must be averaged out and
set to the average after every iteration.

(b) Backpropagation in MLPs uses gradient descent, while backpropagation
through time uses time series modeling.

(c) Backpropagation in MLPs has two iterations for every corresponding iteration
in backpropagation through time.

(d) None of the above.

Answer in Length

Ex. 17.16 Define deep learning bringing out its five important aspects.

Ex. 17.17 Describe the backpropagation algorithm.

Ex. 17.18 RNNs need input at each time step. For image captioning, we looked at a
CNN-RNN architecture.

(a) What is the input to the first hidden layer of the RNN?
(b) Where do the other inputs come from?
(c) How is the length of the caption decided?
(d) Does it generate new captions by itself or only select from those that it had seen

in training data?
(e) If vocab size is V, hidden layer size is h, and average sequence size is “s,” how

many weights are involved in an RNN?

Hands-On Exercises

Ex. 17.19 Create a simple logistic regression-based classifier for the popular iris
dataset in mxnet.

Ex. 17.20 Create an MLP classifier using three hidden layers of sizes 5, 10, 5 for
the MNIST digit recognition task using mxnet. (Hint: Modify the code from Sect.
2.5 appropriately).
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Ex. 17.21 Create a CNN classifier using two CONV layers each with twenty 5 × 5
filters with padding as 2 and stride as 1. Also use pooling layers with 2 × 2 filters
with stride as 2. Do this for the MNIST digit recognition task using mxnet. (Hint:
Modify the code from Sect. 3.5 appropriately).

Ex. 17.22 Train an RNN model in mxnet for the next word prediction task. Use a
suitable text corpus from https://en.wikipedia.org/wiki/List_of_text_corpora. (Hint:
Modify the code from Sect. 4.2 appropriately).
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