
Chapter 11
Introduction to Optimization

Milind G. Sohoni

1 Introduction

Broadly, one may describe management science as an interdisciplinary study of
problem solving and decision making in human organizations. Management science
uses a combination of analytical models and behavioral sciences to address complex
business and societal problems. Often, finding a solution involves recognizing
the optimization model at the core of the business application, formulating it
appropriately, and solving it to gain managerial insights. The classic problems of
management science include finding the right mix of inputs to minimize the cost
of producing gasoline (blending problem), production planning in a manufacturing
setup, inventory and workforce optimization to minimize the expected cost of
meeting operating plans for matching supply to demand (aggregate planning),
deciding optimal routes to offer for an airline (network planning), assigning crew
to manage a schedule (crew scheduling), and maximizing the expected return
subject to acceptable levels of variance (portfolio planning). Several textbooks are
available that describe (Bazaraa et al., 2011; Bertsimas and Tsitsiklis, 1997; Chvátal,
1983; Wagner, 1969) these and several of other applications. Moreover, almost
every chapter in this book includes examples of optimization, such as service level
optimization in healthcare analytics and supply chain analytics, portfolio selection
in Financial Analytics, inventory optimization in supply chain analytics as well as
retail analytics, and price and revenue optimization in pricing analytics. The chapter
on simulation provides a glimpse at combining simulation and optimization, for
example, when the objective function is difficult to evaluate but can be specified
using a simulation model. The case studies in this book illustrate the use of
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optimization in diverse settings: insurance fraud detection, media planning, and
airline route planning. Optimization is also embedded in many predictive analytics
methods such as forecasting, least square, lasso and logistics regression, maximum
likelihood estimation, and backpropagation in neural networks.

It is natural to ask: What is meant by optimality? What is an algorithm? Is
there a step-by-step approach that can be used to set up a model? What is the
difference between constrained and unconstrained optimization? What makes these
problems easy or hard to solve? How to use software to model and solve these
problems? There are several books that cover some of these concepts in detail. For
example, Bazaraa et al. (2011), Bertsimas and Tsitsiklis (1997), and Luenberger and
Ye (1984) contain precise definitions and detailed descriptions of these concepts.
In this chapter, we shall illustrate some of the basic ideas using one broad class
of optimization problems called linear optimization. Linear optimization covers
the most widely used models in business. In addition, because linear models are
easy to visualize in two dimensions, it offers a visual introduction to the basic
concepts in optimization. Additionally, we also provide a brief introduction to other
optimization models and techniques such as integer/discrete optimization, non-
linear optimization, search methods, and the use of optimization software.

But before we continue further we briefly touch upon the need to build math-
ematical models. Representing real-world systems as abstract models, particularly
mathematical models, has several advantages. By analyzing the model in a virtual
setting, the modeler is able to decide on actions to follow or policies to implement.
The modeler is able to gain insights into the complex relationships among many
decision variables and inform his/her judgment before selecting/formulating a
policy to bring into action.

Figure 11.1 schematically represents the basic idea of model building. A good
model abstracts away from reality without losing the essence of the trade-off
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that needs to be considered. Once the model is analyzed the output needs to
be interpreted appropriately and implemented in the real world with suitable
modifications.

2 Methods in Optimization: Linear Programming

In this section we focus on a class of analytical models, and their solution
techniques, that capture a real-world problem as a mathematical model (linear
program) and understand how to interpret their analytical solutions and develop
insights. Such mathematical programs are often referred to as (linear) optimization
problems (models). The basic idea behind any optimization model is to find the
“best” (optimal) solution, with respect to some objective, among all possible
(feasible) solutions. While the objective depends on the real-world problem that
is being modeled, it is represented as a mathematical function capturing the trade-
off between the decisions that need to be made. The feasible solutions depend on
the constraints specified in the real-world problem and are also represented by
mathematical functions. A general mathematical program then tries to identify an
extreme point (i.e., minimum or maximum) of a mathematical function that satisfies
a set of constraints. Linear programming (LP) is the specialization of mathematical
programming where both, the function—called the objective function—and the
problem constraints are linear. We explain the notion of linearity in Sect. 2.3. The
type of decision variables and constraints depends on the techno-socio-economic
nature of the real-world application. However, irrespective of the domain of the
application, an important factor for the applicability of optimization methodology
is computational tractability. With modern computing technology, tractability
requirements imply the existence of effective, and efficient, algorithmic procedures
that are able to provide a fast solution to these models in a systematic manner.

The Simplex algorithm is one such powerful computational procedure for LPs
that is readily applicable to very large-scale applications, sometimes including
hundreds of thousands of decision variables. George Dantzig is credited with the
development of the Simplex algorithm in 1947, as one of the first mathematical
programming algorithms. Today, there are numerous successful implementations1

of the Simplex algorithm that routinely solve complex techno-socio-economic
problems. It is noteworthy that the success of the Simplex method, and the wide
application of LP, has led to the broader field of operations research/management
science being accepted as a scientific approach to decision making.

Over the past few decades, techniques to solve linear optimization problems
have evolved significantly. While implementation (and computational speed) of
the Simplex algorithm has improved dramatically in most commercially avail-

1The reader is referred to http://pubsonline.informs.org/journal/inte (accessed on Jul 22, 2018) to
read about several industrial applications of optimization problems.

http://pubsonline.informs.org/journal/inte
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able solvers, newer mathematical algorithms and implementations have also been
developed that compete with the Simplex algorithm effectively. From a business
analytics standpoint, however, understanding the models being built to address the
optimization problem, the underlying assumptions, and pertinent interpretation of
the obtained analytical solutions are equally important. In this chapter, we discuss
these details of the linear modeling. We will try to build our understanding using
a prototypical LP example in Sect. 2.1 and two-dimensional geometry in Sect. 2.4.
The insights gained are valid for higher-dimensional problems too and also reveal
how the Simplex algorithm works. For a detailed description of the Simplex
algorithm and other solution algorithms the reader is referred to Bazaraa et al.
(2011), Bertsimas and Tsitsiklis (1997), and Chvátal (1983).

2.1 A Prototype LP Problem: Glass Manufacturer’s Profit

Consider the following problem2 for a manufacturer who produces two types of
glasses, P1 and P2. Suppose that it takes the manufacturer 6 h to produce 100 cases
of P1 and 5 h to produce 100 cases of P2. The production facility is operational for
60 h per week. The manufacturer stores the week’s production in her own stockroom
where she has an effective capacity of 15,000 ft3. Hundred cases of P1 occupy
1000 ft3 of storage space, while 100 cases of P2 require 2000 ft3 due to special
packaging. The contribution margin of P1 is $5 per case; however, the only customer
available will not accept more than 800 cases per week. The contribution of P2 is
$4.5 per case and there is no limit on the amount that can be sold in the market.
The question we seek to answer is the following: How many cases of each product
should the glass manufacturer produce per week in order to maximize the total
weekly contribution/profit?

2.2 The LP Formulation and Solution

It is important to first notice that this is an optimization problem. The objective is
to maximize the weekly profit. Furthermore, we are going to maximize the glass
manufacturer’s weekly profit by adjusting the weekly production levels for P1 and
P2. Therefore, these weekly production levels are our control/decision variables.
For ease of representation, we denote our decision variables in hundreds of cases of
P1 and P2. Let these decision variables be represented as follows:

2This example is based on the example described in Chapter 1 of “Applied Mathematical
Programming”, by Bradley et al. (1977).
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x1: Number of units (in hundreds of cases) of product P1 produced weekly, and

x2: Number of units (in hundreds of cases) of product P2 produced weekly

Using these decision variables, we can now represent the manufacturer’s objective
function analytically as:

max f (x1, x2) ≡ 500x1 + 450x2. (11.1)

Equation (11.1) is called the objective function, and the coefficients 500 and 450
are called the objective function coefficients.

In our problem description, however, the manufacturer is resource constrained,
i.e., the manufacturer has limited weekly production and storage capacity.
Additionally, the demand for P1 in the market is limited. Hence, we need
to represent these technological constraints in our analytical formulation of
the problem. First, let’s focus on the production constraint, which states
that the manufacturer has 60 h of production capacity available for weekly
production. As mentioned in the problem statement, 100 cases of P1 require
6 h of production time and that of P2 require 5 h of production time. The
technological constraint imposing this production limitation that our total weekly
production doesn’t exceed the available weekly production capacity is analytically
expressed by:

6x1 + 5x2 ≤ 60. (11.2)

Notice that in (11.2) time is measured in hours. Following a similar line of
reasoning, the storage capacity constraint is analytically represented as:

10x1 + 20x2 ≤ 150. (11.3)

From our problem statement, we know that the weekly demand for P1 does not
exceed 800 cases. So we need not produce more than 800 cases of P1 in the week.
Thus, we add a maximum demand constraint as follows:

x1 ≤ 8. (11.4)

Constraints (11.2), (11.3), and (11.4) are known as the technological constraints
of the problem. In particular, the coefficients of the variables xi , i = 1, 2, are known
as the technological coefficients while the values on the right-hand side of the
three inequalities are referred to as the right-hand side (rhs) vector of the constraints.

Finally, we recognize that the permissible value for variables xi , i = 1, 2, must
be nonnegative, i.e.,

xi ≥ 0 ; i = 1, 2, (11.5)
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since these values express production levels. These constraints are known as the
variable sign restrictions. Combining (11.1)–(11.5), the LP formulation of our
problem is as follows:

max 500x1 + 450x2 (11.6)

s.t. 6x1 + 5x2 ≤ 60 : Production constraint,

10x1 + 20x2 ≤ 150 : Storage capacity constraint,

x1 ≤ 8 : Max demand for P1,

x1, x2 ≥ 0 : Non-negativity constraint.

2.3 The General Form of a LP Formulation

In general, a maximization linear programming problem (LPP) can be represented
analytically as follows:

Objective function:

max f (x1, x2, . . . , xn) ≡ c1x1 + c2x2 + · · · + cnxn (11.7)

s.t. Technological constraints:

ai1x1 + ai2x2 + · · · + ainxn

⎛
⎝

≤
=
≥

⎞
⎠ bi, i = 1, . . . , m, (11.8)

Sign restrictions:

(xj ≥ 0) or (xj ≤ 0) or (xj is unrestricted), j = 1, . . . , n. (11.9)

The formulation (11.7)–(11.9) has the general structure of a mathematical pro-
gramming problem. Moreover, there is a specific structure to this formulation, i.e.,
the functions involved in the problem objective and the left-hand side (lhs) of
the technological constraints are linear. It is the assumptions implied by linearity
that to a large extent determine the applicability of the above model in real-world
applications. To understand this concept of linearity a bit better, assume that the
different decision variables x1, . . . , xn correspond to various activities from which
any solution is eventually constructed. Essentially, the assigned values in a solution
indicate the activity level in the plan considered. Each technological constraint of
(11.8) imposes some restriction on the consumption of a particular resource (similar
to the production and storage resources described in the prototype example (11.6).)
Under this interpretation, the linearity property implies the following:
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Additivity assumption: The total consumption of each resource and the over-
all objective value are the aggregates of the resource consumptions and the
contributions to the problem objective, resulting by carrying out each activity
independently.

Proportionality assumption: The consumptions and contributions for each
activity are proportional to the actual activity level.

Divisibility assumption: Each variable is allowed to have fractional values (con-
tinuous variables).

Certainty assumption: Each coefficient of the objective vector and constraint
matrix is known with certainty (not a random variable).

It is informative to understand how we implicitly applied this logic when we derived
the technological constraints of the prototype example: (1) Our assumption that
the processing of each case of P1 and P2 required constant amounts of time,
respectively, implies proportionality, and (2) the assumption that the total production
time consumed in the week is the aggregate of the manufacturing times required
for the production of each type of glass, if the corresponding activity took place
independently, implies additivity.

It is important to note how the linearity assumption restricts our modeling
capabilities in the LP framework: For example, we cannot immediately model
effects like economies of scale in the problem structure, and/or situations in which
resource consumption of resources by complementary activities takes place. In
some cases, one can approach these more complicated problems by applying some
linearization scheme—but that requires additional modeling effort.

Another approximation, implicit in many LPPs, is the so-called divisibility
assumption. This assumption refers to the fact that for LP theory and algorithms
to work, the decision variables must be real valued. However, in many business
problems, we may want to restrict values of the decision variables to be integers.
For example, this may be the case with the production of glass types, P1 and P2,
in our prototype example or production of aircraft. On the other hand, continuous
quantities, such as tons of steel to produce and gallons of gasoline to consume,
are divisible. That is, if we solved a LPP whose optimal solution included the
consumption of 3.27 gallons of gasoline, the answer would make sense to us; we
are able to consume fractions of gallons of gasoline. On the contrary, if the optimal
solution called for the production of 3.27 aircraft, however, the solution probably
would not make sense to anyone.

Imposing integrality constraints for some, or all, variables in a LPP turns
the problem into a (mixed) integer programming (MIP or IP) problem. The
computational complexity of solving an MIP problem is much higher than that of a
LP. Actually, MIP problems belong to the notorious class of NP-complete problems,
i.e., those problems for which there is no known/guaranteed polynomial bound on
the solution time to find an optimal solution. We will briefly discuss the challenge
of solving MIPs later in Sect. 3.

Finally, before we conclude this discussion, we define the feasible region of the
LP of (11.7)–(11.9), as the entire set of vectors 〈x1, x2, . . . , xn〉 (notice that each
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variable is a coordinate of an n-dimensional vector) that satisfy the technological
constraint (11.8) and the sign restrictions (11.9). An optimal solution to the
problem is any feasible vector that further satisfies the optimality requirement
defined by (11.7).

Before we conclude this section, it is worth mentioning that there are several
commercially available software packages such as Microsoft Excel’s Solver or
XLMiner add-ins, Python, SAS, GAMS, etc. to solve LPPs. However, many
business applications can be easily modeled using Microsoft Excel’s Solver add-
in program because of the convenient spreadsheet interface available. There are a
few online tutorials available to understand how to input a LP model in Solver.
We provide a few weblinks in Appendix. We do not describe the steps involved
in building a spreadsheet-based LP model in Excel Solver. However, in Appendix
section “Spreadsheet Models and Excel Solver Reports” we describe the output
generated from Excel Solver, which is closely linked to the discussion provided
in the rest of this chapter.

2.4 Understanding LP Geometry

In this section, we develop a solution approach for LP problems, which is based on
a geometrical representation of the feasible region and the objective function. While
we will work with our prototype example with two decision variables, the insights
we gain through this exercise will readily carry over to LPPs with n variables. The
number of decision variables in a LP determines the problems dimensionality. A
two-dimensional (2-D) problem can be represented in a Cartesian coordinate system
(two-dimensional space with axes perpendicular to each other) and problems with n

variables can be represented by n-dimensional spaces based on a set of n mutually
perpendicular axes. In particular, the n-dimensional space (think coordinates) to be
considered has each dimension defined by one of the LP variables xj . While a 2-D
problem is easy to represent and visualize, to maintain sanity, it is advisable not to
visualize higher-dimensional spaces beyond three dimensions.

As will be shown later with our prototype example, the objective function, in an
n-dimensional space, is represented by its contour plots, i.e., the sets of points
that correspond to the same objective value. As mentioned earlier, to facilitate
the visualization of the concepts involved, we shall restrict ourselves to the two-
dimensional case. To the extent that the proposed approach requires the visualization
of the underlying geometry, it is applicable only for LPs with up to three variables.

2.4.1 Feasible Region for Two-Variable LPs

The primary idea behind the geometrical representation is to correspond every
vector 〈x1, x2〉, denoting the decision variables of a two-variable LP, to the
point with coordinates (x1, x2) in a two-dimensional (planar) Cartesian coordinate
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system. Remember that the set of constraints determine the feasible region of the
LP. Thus, under aforementioned correspondence, the feasible region is depicted
by the set of points that satisfy the LP constraints and the sign restrictions
simultaneously. Since all constraints in a LPP are expressed by linear inequalities,
we must first characterize the set of points that constitute the solution space of
each linear inequality. The intersection of the solution spaces corresponding to each
technological constraint and/or sign restriction will represent the LP feasible region.
Notice that a constraint can either be an equality or an inequality in LPP. We first
consider the feasible region corresponding to a single equality constraint.

The Feasible Space of a Single Equality Constraint Consider an equality
constraint of the type

a1x1 + a2x2 = b (11.10)

Assuming a2 �= 0, this equation corresponds to a straight line with slope s = a1
a2

and intercept d = b
a2

. In the special case where a2 = 0, the feasible space locus of
(11.10) is still a straight line perpendicular to the x1-axis, intersecting it at the point(

b
a1

, 0
)

. It is noteworthy that an equality constraint restricts the dimensionality of

the feasible space by one degree of freedom, i.e., in the case of a 2-D problem, it
turns the feasible space from a planar area to a line segment.

The Feasible Space of a Single Inequality Constraint Consider the constraint:

a1x1 + a2x2

(≤
≥
)

b (11.11)

The feasible space is one of the closed half-planes defined by the equation of the
line corresponding to this inequality: a1x1 + a2x2 = b. Recollect that a line divides
a 2-D plane into two halves (half-planes), i.e., the portion of the plane lying on
each side of the line. One simple technique to determine the half-plane comprising
the feasible space of a linear inequality is to test whether the point (0, 0) satisfies
the inequality. In case of a positive answer, the feasible space is the half-space
containing the origin. Otherwise, it is the half-space lying on the other side which
does not contain the origin.

Consider our prototype LP Sect. 2.1 described earlier. Figure 11.2 shows the
feasible regions corresponding to the individual technological and nonnegativity
constraints. In particular, Fig. 11.2c shows the entire feasible region as the inter-
section of the half-spaces of the individual constraints. Note that, for our prototype
problem, the feasible region is bounded on all sides (the region doesn’t extend to
infinity in any direction) and nonempty (has at least one feasible solution).

Infeasibility and Unboundedness Sometimes, the constraint set can lead to an
infeasible or unbounded feasible region.
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Fig. 11.2 Feasible region of the prototype LP in 2-D. (a) Feasible region of the production and
nonnegative constraints. (b) Feasible region of the storage and production constraint. (c) The entire
feasible region

An infeasible region implies the constraints are “contradictory” and hence the
intersection set of the half-spaces is empty. An unbounded feasible region may
mean that the optimal solution could go off to −∞ or +∞ if the objective function
“improves” in the direction in which the feasible region is unbounded.

Consider again our original prototype example. Suppose there is no demand
restriction on the number of cases of P1 and the manufacturer requires that at least
1050 cases of P1 are produced every week. These requirements introduce two new
constraints into the problem formulation, i.e.,

x1 ≥ 10.5.
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Fig. 11.3 Infeasible and unbounded feasible regions in 2-D. (a) Feasible region is empty
(Infeasible). (b) Feasible region is unbounded

Figure 11.3a shows the feasible region for this new problem which is empty, i.e.,
there are no points on the (x1, x2)-plane that satisfy all constraints, and therefore
our problem is infeasible (over-constrained).

To understand unbounded feasible regions visually, consider a situation wherein
we change our prototype LP such that the manufacturer must use at least 60 h of
production, must produce at least 500 cases of P1, and must use at least 15,000
units of storage capacity. In this case the constraint set changes to

x1 ≥ 5,

6x1 + 5x2 ≥ 60,

10x1 + 20x2 ≥ 150,

and the feasible looks like the region depicted in Fig. 11.3b. It is easy to see that the
feasible region of this problem is unbounded, Furthermore, in this case our objective
function, 500x1 + 450x2 can take arbitrarily large values and there will always be
a feasible production decision corresponding to that arbitrarily large profit. Such a
LP is characterized as unbounded. It is noteworthy, however, that even though an
unbounded feasible region is a necessary condition for a LP to be unbounded, it is
not sufficient (e.g., if we were to minimize our objective function, we would get a
finite value).

Representing the Objective Function A function of two variables f (x1, x2) is
typically represented as a surface in an (orthogonal) three-dimensional space, where
two of the dimensions correspond to the independent variables x1 and x2, while
the third dimension provides the objective function value for any pair (x1, x2). In
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the context of our discussion, however, we will use the concept of contour plots.
Suppose α is some constant value of the objective function, then for any given range
of α’s, a contour plot depicts the objective function by identifying the set of points
(x1, x2) such that f (x1, x2) = α. The plot obtained for any fixed value of α is a
contour of the function. Studying the structure of a contour identifies some patterns
that depict useful properties of the function. In the case of 2-D LPPs, the linearity of
the objective function implies that any contour can be represented as a straight line
of the form:

c1x1 + c2x2 = α. (11.12)

It is noteworthy that for a maximization (minimization) problem, this starting line
is sometimes referred to as an isoprofit (isocost) line. Assuming that c2 �= 0 (o.w.,
work with c1), (11.12) can be rewritten as:

x2 = −c1

c2
x1 + α

c2
. (11.13)

Consider the objective function 500x1 + 450x2 in our prototype example. Let
us draw the first isoprofit line as 500x1 + 450x2 = α (the dashed red line in
Fig. 11.4), where α = 1000 and superimpose it over our feasible region. Notice that
the intersection of this line with the feasible region provides all those production
decisions that would result in a profit of exactly $1000.

500 x1 + 450 x2 = α = 1000

6 x1 + 5 x2 = 60

10 x1 + 20 x2 = 150

x1 = 8

x2 = 0

x1 = 0
Increasing α

0 2 4 6 8 10 12
0

2

4

6

8

10

12

x1

x 2

Fig. 11.4 Drawing isoprofit lines over the feasible region
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Fig. 11.5 Sweeping the isoprofit line across the feasible region until it is about to exit. An optimal
solution exists at a corner point (vertex)

As we change the value of α, the resulting isoprofit lines have constant slope
and varying intercept, i.e., they are parallel to each other (since by definition
isoprofit/isocost lines cannot intersect). Hence, if we continuously increase α from
some initial value α0, the corresponding isoprofit lines can be obtained by “sliding”
the isoprofit line corresponding to f (x1, x2) = α0 parallel to itself, in the direction
of increasing (decreasing) intercepts, if c2 is positive (negative.) This “improving
direction” of the isoprofit line is denoted by the dashed magenta arrow in Fig. 11.4.

Figure 11.5 shows several isoprofit lines, superimposed over the feasible region,
for our prototype problem.

Finding the Optimal Solution It is easy to argue that an optimal solution to a LPP
will never lie in the interior of the feasible region. To understand why this must
be true, consider the prototype example and let us assume that an optimal solution
exists in the interior. It is easy to verify that by simply increasing the value of either
x1 or x2, or both—as long as we remain feasible—we can improve the objective
value. But this would contradict the fact that the point in the interior is an optimal
solution. Thus, we can rule out the possibility of finding an optimal solution in the
interior of the feasible region. So then, if an optimal solution exists, it must lie
somewhere on the boundary of the feasible region. The “sliding motion” described
earlier suggests a way for finding the optimal solution to a LPP. The basic idea is to
keep sliding the isoprofit line in the direction of increasing α’s, until we cross (or are
just about to slide beyond) the boundary of the LP feasible region. For our prototype
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LPP, this idea is demonstrated in Fig. 11.5. The dashed red lines are the contour lines
and the solid red line is the contour line corresponding to that value of α such that
any further increase would result in the objective line crossing the feasible region,
i.e., an infinitesimal increase in α would result in the contour line moving parallel to
itself but not intersecting the feasible region. Thus, the objective value is maximized
at that point on the boundary beyond which the objective function crosses out of the
feasible region. In this case that point happens to be defined by the intersection of the
constraint lines for the production capacity and storage capacity, i.e., 6x1+5x2 = 60
and 10x1 + 20x2 = 150. The coordinates of the optimal point are x�

1 = 6.43 and
x�

2 = 4.29. The maximal profit is f
(
x�

1, x�
2

) = 5142.86.
In fact, notice that the optimal point (the green dot) is one of the corner points

(the black dots) of the feasible region depicted in Fig. 11.5 and is unique. The
optimal corner point is also referred to as the optimal vertex.

In summary, if the optimal vertex is uniquely determined by a set of intersecting
constraints and the optimal solution only exists at that unique corner point (vertex),
then we have a unique optimal solution to our problem. See Fig. 11.6.

LPs with Many Optimal Solutions A natural question to ask is the following:
Is the optimal solution, if one exists, always unique? To analyze this graphically,
suppose the objective function of our prototype problem is changed to

225x1 + 450x2.

Feasible Region
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Fig. 11.6 A unique optimal solution exists at a single corner point (vertex)
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Fig. 11.7 Multiple optimal solutions along a face (includes corner points)

Notice that any isoprofit line corresponding to the new objective function is parallel
to the line corresponding to the storage constraint:

10x1 + 20x2 = 150.

Therefore, if we try to apply the graphical optimizing technique described earlier, we
get the situation depicted in Fig. 11.7, i.e., every point in the line segment between
points (0,7.5) and (6.43, 4.29), along the storage constraint line, is an optimal point,
providing the optimal objective value of $5142.86.

It is worth noticing that even in this case of many optimal solutions, we have
two of them corresponding to “corner” points of the feasible region, namely, points
(0,7.5) and (6.43, 4.29).

Summarizing the above discussion, we have shown that a two-variable LP can
either have a unique optimal solution that corresponds to a “corner” point of the
feasible region or have many optimal solutions that correspond to an entire “edge”
of the feasible region, or be unbounded, or be infeasible. This is true for general
n-dimensional LPPs too. There is a famous theorem, called the fundamental
theorem of linear programming, which states that if a LP has a bounded optimal
solution, then it must have one that is an extreme point of its feasible region. The
Simplex algorithm (a solution algorithm embedded in most software) essentially
exploits this fundamental result to reduce the space to be searched for an optimal
solution.
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The fundamental theorem of linear programming states the following:

Theorem 1 (The Fundamental Theorem of Linear Programming) If a LP has
a bounded optimal solution, then there exists an extreme point of the feasible region
that is optimal.

Another important fact about the feasible region of a LP is that it is convex. A
convex set is defined as follows: Let y1 and y2 be any two points belonging to a set
S. Then S is a convex set if and only if all points y, belonging to the line segment
joining y1 and y2, also belong to the set S. In mathematical terms y can be expressed
as y = αy1 + (1−α)y2, for all values of α ∈ [0, 1], and the set S is a convex set if y

also belongs to the set S. An example of a convex set is a circle in two dimensions.
The feasible region of a LP is polyhedral because it is defined by linear equalities.

2.4.2 Binding Constraints, LP Relaxation, and Degeneracy

A constraint is binding if it passes through the optimal vertex, and nonbinding
if it does not pass through the optimal vertex. If we increase the rhs value of a ≤
constraint (see Fig. 11.8a) or decrease the rhs value of a ≥ constraint, we “relax”
the constraint, i.e., we enlarge the feasible region to include additional points that
simultaneously satisfy all the constraints of the original LP. Relaxing the LP can
only “improve” optimal objective value, i.e., the inclusion of additional feasible
points in the feasible region does not remove any of the original feasible points
(including the original optimal solution). All that can happen is that one of the new
feasible points may provide a better objective function value. On the other hand,

Feasible region expands

6 x1 + 5 x2 = 60

6 x1 + 5 x2 = 61
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(a)

Feasible region shrinks
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(b)

Fig. 11.8 Relaxing and tightening the feasible region. (a) Relaxing (expanding) the feasible
region. (b) Tightening (shrinking) the feasible region
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if we tighten the LP by decreasing the rhs value of a ≤ constraint or increase
the rhs value of a ≥ constraint (see Fig. 11.8b), the optimal objective value can only
deteriorate. In Fig. 11.8 we demonstrate how the feasible region expands (shrinks) as
we increase (decrease) the rhs value of the production constraint in our prototype LP.

If a constraint is binding, changing its rhs will change the optimal solution and
the objective value. In general, as the rhs of the binding constraint is changed,
the optimal vertex slides along the intersection of changing constraint and, as the
optimal vertex moves, the optimal objective value changes (unless the corner point
or vertex is degenerate, which we will discuss later). If a constraint is not binding,
then tightening it (a bit) or relaxing it (as much as you please) will not change the
optimal solution or the optimal objective value.

A slack variable for nonbinding ≤ constraint is defined to be the difference
between its rhs and the value of the left-hand side of the constraint evaluated at
the optimal vertex (in the n-dimensional space). Suppose the optimal vertex is
represented by 〈x∗

1 , x∗
2 , . . . , x∗

n〉. Formally, the slack si of the ith ≤ constraint is
defined as

si = bi −
n∑

j=1

aij x
∗
j .

Similarly, the surplus associated with a nonbinding ≥ constraint is the extra
value that may be reduced from the constraint’s left-hand side function before
the constraint becomes binding, i.e., the left-hand side equals the rhs. The formal
definition of the surplus variable of an ith ≥ constraint is:

surplusi =
n∑

j=1

aij x
∗
j − bi.

Any LP involving inequality constraints can be converted into an equivalent LP
involving just equality constraints (simply add slack and surplus variables). After
such a conversion, the LP formulation can be written as (here we consider only a
maximization problem and assume that the constraints are of ≤ type):

max
∑n

i=1 cixi

s.t.
⎛
⎜⎜⎜⎝

a11x1 + · · · +a1nxn +s1 +0 +0 + · · · +0 = b1

a21x1 + · · · +a2nxn +0 +s2 +0 + · · · +0 = b2
...

...
...

... +0 +... +si +...
...

...

am1x1 + · · · +amnxn +0 +0 +0 · · · +sm = bm

⎞
⎟⎟⎟⎠ ,

xj ≥ 0 j = 1, . . . , n
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with m equality constraints and n variables (where we can assume n > m). Then,
theory tells us that each vertex of the feasible region of this LP can be found by:
choosing m of the n variables (these m variables are collectively known as the basis
and the corresponding variables are called basic variables); setting the remaining
(n − m) variables to zero; and solving a set of simultaneous linear equations to
determine values for the m variables we have selected. Not every selection of m

variables will give a nonnegative solution. Also, enumerating all possible solutions
can be very tedious, though, there are problems where, if m were small, the
enumeration can be done very quickly. Therefore, the Simplex algorithm tries to
find an “adjacent” vertex that improves the value of the objective function. There is
one problem to be solved before doing that: if these values for the m variables are all
>0, then the vertex is nondegenerate. If one or more of these variables is zero, then
the vertex is degenerate. This may sometimes mean that the vertex is over-defined,
i.e., there are more than necessary binding constraints at the vertex. An example of
a degenerate vertex in three dimensions is

x1 + 4x3 ≤ 4

x2 + 4x3 ≤ 4

x1, x2, x3 ≥ 0

The three-dimensional feasible region looks like the region in Fig. 11.9. Notice that
the vertex $(0,0,1)$ has four planes defining it.
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3

4
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4
0
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X1

X2

X 3

Degenerate vertex
(0,0,1)

Fig. 11.9 An example of a degenerate vertex
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For two-dimensional problems degeneracy is not an issue—if there are three
constraints binding at a vertex, then one of them is redundant, i.e., one of the
constraints can be expressed as a linear combination of the other two and hence
removed (not considered). However, in more than two dimensions it may not
be possible to eliminate any of the constraints because they may be linearly
independent. Consequently, the Simplex algorithm may get stuck at a degenerate
vertex (cycling) and may not move to an adjacent vertex that improves the objective
value during execution. There are special methods to overcome this problem with
degeneracy allowing the Simplex algorithm to break out of cycling at a degenerate
vertex.

2.5 Shadow Prices, Reduced Costs, and Sensitivity Analysis

The shadow price, associated with a particular constraint, is the change in
the optimal value of the objective function per unit increase in the rhs
value for the constraint, all other problem data remaining unchanged.
Equivalently, the shadow price is also the rate of deterioration in the objective
value obtained by restricting that constraint. Shadow prices are also called
dual values. Shadow price is discussed in detail in Chap. 23 on Pricing
Analytics.

The reduced cost associated with the nonnegativity constraint for each variable
is the shadow price of that constraint, i.e., the corresponding change in the objective
function per unit increase in the lower bound of the variable. Algebraically, we can
express the reduced cost of activity j as

c̄j = cj −
m∑

i=1

aij yi

where cj is the objective coefficient of activity j , yi is the shadow price (dual value)
associated with constraint i, and aij is the amount of resource i (corresponds to con-
straint i) used per unit of activity j . The operation of determining the reduced cost of
an activity, j , from the shadow prices of the constraints and the objective function is
generally referred to as pricing out an activity. To understand these computations,
consider the prototype LP described earlier. Suppose the manufacturer decides to
add another set of glasses, P3, to his product mix. Let us assume that P3 requires
8 h of production time per 100 cases and occupies 1000 cubic units of storage
space. Further, let the marginal profit from a case of P3 be $6. If x3 represents the
decision of how many hundreds of cases of P3 to produce, then the new LP can be
rewritten as:
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max 500 x1 +450 x2 +600 x3 Shadow prices at optimality↓
Production: 6 x1 +5 x2 +8 x3 ≤ b1 = 60 : y�

1 = 78.57

Storage: 10 x1 +20 x2 +10 x3 ≤ 150, : y�
2 = 2.86

Demand: 1 x1 ≤ 8, : y�
3 = 0

Sign restrictions: x1, x2, x3 ≥ 0.

Suppose, we solve this LP to find the following optimal solution:

Optimal obj. value = 5142.86

Decision variables ↓ Shadow prices ↓
x�

1 = 6.43 First constraint: y�
1 (binding) = 78.57

x�
2 = 4.29 Second constraint: y�

2(binding) = 2.86

x�
3 = 0 Third constraint: y�

3 (non-binding) = 0

The reduced cost of variable x1 (herej = 1) at optimality, i.e., c̄1, is computed
as follows, where c1 = 500, a11 = 6, a21 = 10, a31 = 1.

c̄1 = c1 − (
a11y

�
1 + a21y

�
2 + a31y

�
3

)
,

= 500 − (6 × 78.57 + 10 × 2.86 + 1 × 0) ,

= 0.

Similarly, for variable x3 (j = 3) the reduced cost is (where c3 = 600, a13 = 8,
a23 = 10, a33 = 0)

c̄3 = c3 − (
a13y

�
1 + a23y

�
2 + a33y

�
3

)
,

= 600 − (8 × 78.57 + 10 × 2.86 + 0 × 0) ,

= −57.14.

Now, suppose we want to compute the shadow price of the production constraint.
Let b1 denote the rhs of the production constraint (C1). Currently, b1 = 60 as stated
in the formulation above. Notice that the current optimal objective value is 5142.86
when b1 = 60. Let us define the optimal value as a function of rhs of the production
constraint, i.e., b1 and denote it as Z� (b1). Thus, Z� (60) = 5142.86. Now suppose
we keep all other values the same (as mentioned in the formulation) but change b1
to 61 and recompute the optimal objective value. Upon solving the LP we get the
new optimal objective value of Z�(61) = 5221.43. Then, using the definition of
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the shadow price of a constraint, the shadow price of the production constraint is
computed as follows:

Shadow price of C1 = Z�(61) − Z�(60)

61 − 60

= 5221.43 − 5142.86

1

= 78.57.

Notice that the shadow price is the rate at which the optimal objective changes
with respect to the rhs of a particular constraint all else remaining equal. It
should not be interpreted as the absolute change in the optimal objective value.

Notice two important facts: (1) The reduced cost of basic variables is 0, i.e.,
c̄j equals 0 for all basic xj (see Sect. 2.4.2 for the definition), and (2) Since cj

equals zero for slack and surplus variables (see Sect. 2.4.2 for definition) the reduced
cost of these variables is always the negative of the shadow price corresponding
to the respective constraints. The economic interpretation of a shadow price, yi

(associated with resource i), is the imputed value of resource i. The term
∑m

i=1 aij yi

is interpreted as the total value of the resource used per unit activity j . It is thus
the marginal resource cost for using that activity. If we think of the objective
coefficients cj as being the marginal revenues, the reduced costs, c̄j , are simply
the net marginal revenues.

An intuitive way to think about reduced costs is as follows: If the optimal solution
to a LP indicates that the optimal level of a particular decision variable is zero,
it must be because the objective function coefficient of this variable (e.g., its unit
contribution to profits or unit cost) is not beneficial enough to justify its “inclusion”
in the decision. The reduced cost of that decision variable tells us the amount by
which the objective function coefficients must improve for the decision variable to
become “attractive enough to include” and take on a nonzero value in the optimal
solution. Hence the reduced costs of all decision variables that take nonzero values
in the optimal solution are, by definition, zero ⇒ no further enhancement to their
attractiveness is needed to get the LP to use them, since they are already “included.”
In economic terms, the values imputed to the resources (xj ) are such that the
net marginal revenue is zero on those activities operated at a positive level, i.e.,
marginal revenue = marginal cost (MR = MC).

Shadow prices are only locally accurate (shadow prices are valid over a
particular range, i.e., as long as the set of binding constraints does not change the
shadow price of a constraint remains the same.); if we make dramatic changes in the
constraint, naively multiplying the shadow price by the magnitude of the change
may mislead us. In particular, the shadow price holds only within an allowable
range of changes to the constraints rhs; outside of this allowable range the shadow
price may change. This allowable range is composed of two components. The
allowable increase is the amount by which the rhs may be increased before the
shadow price can change; similarly, the allowable decrease is the corresponding
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reduction that may be applied to the rhs before a change in the shadow price
can take place (whether this increase or decrease corresponds to a tightening or
a relaxation of the constraint depends on the direction of the constraints inequality).
A constraint is binding if it passes through the optimal vertex, and nonbinding if it
does not pass through the optimal vertex (constraint C3 in the example above). For
a binding constraint, the geometric intuition behind the definition of a shadow price
is as follows: By changing the rhs of a binding constraint, we change the optimal
solution as it slides along the other binding constraints. Within the allowable range
of changes to the rhs, the optimal vertex slides in a straight line, and the optimal
objective value changes at a constant rate (which is the shadow price). Once we
cross the limits indicated by the allowable increase or decrease, however, the optimal
vertex’s slide changes because the set of binding constraints change. At some
point the constraint, whose rhs is being modified, may become nonbinding and a
new vertex is optimal. For a nonbinding constraint the shadow price (or dual value)
is always zero.

Consider the prototype LP described earlier where the rhs value of production
constraint is 60. In Fig. 11.10 we show how the feasible region changes and when
the set of binding constraints change as we perturb the rhs value of the production
constraint. Notice that in Fig. 11.10a the storage constraint drops out of the set of
binding constraints and in Fig. 11.10c the demand constraint becomes binding. In
between these two extremes, the set of binding constraints, as shown in Fig. 11.10b,
remains unchanged. The range over which the current optimal shadow price of 78.57
remains unchanged is from 37.5 to 65.5 (allowable increase is 5.5 and allowable
decrease is 22.5). That is, if the rhs of the production constraint were to vary in the
range from 37.5 to 65.5 (values of b1 ∈ [37.5, 65.5]) the shadow price would be
constant at 78.57.

Currently, the value of b1 = 60. In Fig. 11.11 we plot the optimal objective value
Z� (b1) as a function of b1, the rhs of production constraint , when b1 is in the range
[37.5, 65.5]. All other values are kept the same. Notice, as we vary b1, the optimal
objective value changes linearly at the rate of the shadow price, i.e., 78.57.

When the reduced cost of a decision variable is nonzero (implying that the value
of that decision variable is zero in the optimal solution), the reduced cost is also
reflected in the allowable range of its objective coefficient. In this case, one of the
allowable limits is always infinite (because making the objective coefficient less
attractive will never cause the optimal solution to include the decision variable in
the optimal solution); and the other limit, by definition, is the reduced cost (for it
is the amount by which the objective coefficient must improve before the optimal
solution changes).

2.5.1 One Hundred Percent Rule

While performing sensitivity analysis changes to the objective coefficients, rhs
values, or consumption levels are analyzed one at a time. Changing these objective
coefficients or rhs values simultaneously does not guarantee that the optimal
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Fig. 11.10 A shadow price is valid until the set of binding constraints remains the same. (a)
Decreasing the rhs beyond the range. (b) The range of the rhs for which shadow price remains
constant. (c) Increasing the rhs beyond the range

solution is conserved. Simultaneous changes can be implemented and a conservative
bound on these simultaneous changes can be computed using the 100% rule. First,
we compute the ranges for the rhs values assuming changes are made one at a time.
The 100% rule implies the following: If simultaneous changes are made to the rhs
(or the objective coefficients) values of more than one constraint (variable) in such a
way that the sum of the fractions of allowable range utilized by these changes is less
than or equal to one, the optimal basis (variables that are included in the optimal
decision) remains unchanged. Consider the example described earlier where the rhs
value of constraint C1 is 60. If we solve the LP, it turns out that at optimality the
allowable range for the shadow price of 78.57, in the current optimal solution, is
37.5–65.5. That is, if the rhs of constraint C1 were to be in the range 37.5–65.5
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5142.86 + (b1 – 60)×78.57
Slope=Shadow price
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5575.00 (65.5, 5575.00)

(37.5, 3375.03)
Allowable decrease = 22.5

Allowable increase = 5.5

40 45 50 55 60 65
b1

3000

3500

4000

4500

5000

5500
Z*(b1)

Fig. 11.11 Plot of Z� (b1) vs. b1 for the production constraint, when b1 ∈ [37.5, 65.5]

(values of b1 ∈ [37.5, 65.5]), the shadow price of C1 at optimality would be 78.57
for all these values of the rhs. Further, notice that the current rhs value of constraint
C2 is 150 and the range for its shadow price (2.86, corresponding to the current
optimal solution) is between 128 and 240. Suppose we reduce the rhs value of the
first constraint to bnew

1 ≤ 60 and increase the rhs value of the second constraint
to bnew

2 ≥ 150. The 100% rule suggests that the current solution (basis) remains
optimal as long as

60 − bnew
1

60 − 37.5
+ bnew

2 − 150

240 − 150
≤ 1.

2.6 A Quick Note About LP Optimality

It is evident from the earlier discussion that any optimal solution to a LPP has a very
specific structure. We reiterate the optimal structure of any LPP below:

1. The shadow price of nonbinding constraint is always 0. A binding constraint may
have a nonzero shadow price. Together, this implies

Slack (or surplus) on a constraint × shadow price of the constraint = 0.

2. Every decision variable has a reduced cost associated with it. Basic variables, at
optimality, have a zero reduced cost and nonbasic variables may have a nonzero
reduced cost. This implies that

Reduced cost of a variable × the optimal value of the variable = 0.
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3. Finally, it is easy to verify that for a LP, at optimality

The optimal objective value = Product of the rhs value of a constraint

× the shadow price of the constraint,

summed over all the constraints, i.e.,

n∑
j=1

cj x
�
j =

m∑
i=1

biy
�
i ,

where y�
i is the shadow price of the ith constraint at optimality, bi is the value of

the rhs of constraint i, cj is the objective coefficient of the j th decision variable,
and x�

j is the optimal value of the j th decision variable. For the prototype problem
described earlier,

n∑
j=1

cj x
�
j = (500 × 6.429) + (450 × 4.285) = 5142.8.

m∑
i=1

biy
�
i = (60 × 78.571) + (150 × 2.857) = 5142.8.

Conditions (1) and (2) together are called the complementary slackness conditions
of optimality. All the three conditions, (1), (2), and (3) provide an easily verifiable
certificate of optimality for any LPP. This is one of the fascinating features of
any LP optimal solution—the certificate of optimality comes with the solution.
Thus, combining the search from vertex to vertex and examining the solution
for optimality gives an algorithm (the Simplex algorithm) to solve LPs very
efficiently!

3 Methods in Optimization: Integer
Programming—Enforcing Integrality Restrictions on
Decision Variables

Introducing integrality constraints on decision variables has its advantages. First,
we can model more realistic business requirements (economic indivisibility, for
example) and second, the model allows us more flexibility such as modeling
business logic using binary variables. However, the main disadvantage lies in the
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Fig. 11.12 Integer feasible region for (P)

difficulty of solving the model and guaranteeing optimality of the solution. Let us
consider a simple example to understand where the computational challenge arises.
Consider the following example:

(P) max 3x1 + 4x2

s.t. 5x1 + 8x2 ≤ 24,

x1, x2 ≥ 0 and integer.

What is the optimal solution for this problem?
Notice that the mathematical representation is very similar to the corresponding

LP with the added constraint that both x1 and x2 must be restricted to integral values.
In Fig. 11.12 we represent the feasible region of this problem.

It is noteworthy that the LP relaxation, i.e., when we ignore the integrality
restriction on both the decision variables, is the entire gray region included in
the triangle. However, the integer formulations must restrict any solution to the
lattice points within the LP feasible region. This “smallest” polyhedral set including
all the lattice points is sometimes referred to as the convex hull of the integer
programming problem. It is readily observable that the LP relaxation includes the
integer programming problem’s (IP) feasible region (convex hull) as a strict subset.
One may argue that it should be possible to solve the LP relaxation of (P) and then
simply round up or round down the optimal decision variables appropriately.
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Fig. 11.13 LP solution to (P)—it’s not integral valued
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Fig. 11.14 Finding an integer solution by truncating or rounding-up a LP solution may not work.
(a) Truncating (not optimal). (b) Rounding-up (infeasible)

But as Fig. 11.13 illustrates the corner point, at which the LP will always find its
optimal solution, need not be integer valued. In this examples the LP relaxation
optimal value is found at the vertex (4.8,0). As Fig. 11.14 shows, truncating or
rounding-up the optimal LP solution doesn’t provide the integer optimal solution.
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Fig. 11.15 Had the truncated solution been optimal, the LP would have found it at another corner
point! That’s why it is not optimal

While rounding-up renders the solution infeasible, had the truncated solution
been optimal, the LP would have found at another corner point as shown in
Fig. 11.15.

In this simple example, it turns out that the IP optimal solution is in the interior
of the LP feasible region as shown in Fig. 11.16.

Thus, finding the IP optimal solution is much harder than looking for optimal
solution of the LP relaxation (which is guaranteed to be found at a corner point
of the LP polyhedra if an optimal solution exists) because the solution can lie
in the interior of the corresponding LP feasible region. If it were possible to
get an accurate mathematical (polyhedral) description of the convex hull using
linear constraints, then one could solve the resulting problem (after including these
additional constraints) as a LP and guarantee that the LP corner point solution
would indeed be optimal to the IP too. However, there is no known standard
technique to develop these constraints systematically for any IP and get an accurate
mathematical description of the convex hull. Developing such constraints are largely
problem specific and tend to exploit the specific mathematical structure underlying
the formulation.

So what carries over from LPs to IPs (or MILPs)? The idea of feasibility is
unchanged. One can define and compute shadow price in an analogous fashion. The
linear relaxation to an integer problem provides a bound on the attainable solution
but does not say anything about the feasibility of the problem. There is no way
to verify optimality from the solution—instead one must rely on other methods to
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Fig. 11.16 Unfortunately,
the IP optimal solution is not
at a “corner” point of the
original LP feasible region. It
is much harder to find
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verify optimality. Search methods are used but not going from vertex to vertex!
That’s why IPs are so hard to solve. Of course, this is not to imply that problems
shouldn’t be modeled and solved as IPs. Today’s state-of-the-art algorithms are very
efficient in solving large instances of IPs to optimality but, unlike the case of LPs,
guaranteeing optimality is not possible in general. A detailed study of the theory and
practice of integer programming can be found in Bertsimas and Tsitsiklis (1997),
Nemhauser and Wolsey (1988), and Schrijver (1998).

Next we briefly illustrate a basic branch-and-bound solution technique to
solve IPs.

3.1 The Branch-and-Bound Method

The basic idea behind the naive branch-and-bound (B&B) method is that of divide
and conquer. Notice that the feasible region of the LP relaxation of an IP, i.e., when
we ignore the integrality constraints, is always larger than that of the feasible region
of the IP. Consequently, any optimal solution to the LP relaxation provides a bound
on the optimal IP value. In particular, for a minimization problem the LP relaxation
will result in a lower bound and for a maximization problem it will result in a upper
bound. If Z�

LP denotes the optimal objective value of the LP relaxation and Z�
IP

denotes the optimal solution to the IP, then

Z�
LP ≥ Z�

IP for a maximization problem, and

Z�
LP ≤ Z�

IP for a minimization problem.
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The B&B method divides the feasible region (partitions it) and solves for
the optimal solution over each partition separately. Suppose F is the feasible
region of the IP and we wish to solve min

x∈F
c′x. Consider a partition F1, . . . Fk of

F . Recollect, a partition implies that the subsets are collectively exhaustive and
mutually exclusive, i.e.,

Fi

⋂
Fj = ∅ and

k⋃
i=1

Fi = F.

Then, for a minimization problem (equivalently for a maximization problem),

min
x∈F

c′x = min
1≤i≤k

{
min
x∈Fi

c′x
}

.

In other words, we optimize over each subset separately. The idea hinges on the fact
that if we can’t solve the original problem directly, we might be able to solve the
smaller subproblems recursively. Dividing the original problem into subproblems is
the idea of branching. As is readily observable, a naive implementation of the B&B
is equivalent to complete enumeration and can take a arbitrarily long time to solve.

To reduce the computational time most B&B procedures employ an idea called
pruning. Suppose we assume that each of our decision variables have finite upper
and lower bounds (not an unreasonable assumption for most business problems).
Then, any feasible solution to our minimization problem provides an upper bound
u(F ) on the optimal IP objective value.3 Now, after branching, we obtain a lower
bound b (Fi) on the optimal solution for each of the subproblems. If b (Fi) ≥ u (F ),
then we don’t need to consider solving the subproblem i any further. This is
because we already have a solution better than any that can be found in partition
Fi . One typical way to find the lower bound b (Fi) is by solving the LP relaxation.
Eliminating exploring solution in a partition by creating an appropriate bound is
called pruning. The process of iteratively finding better values of b (Fi) and u (F )

is called bounding. Thus, the basic steps in a LP-based B&B procedure involve:

LP relaxation: first solve the LP relaxation of the original IP problem. The result
is one of the following:

1. The LP is infeasible �⇒ IP is infeasible.
2. The LP is feasible with an integer solution �⇒ Optimal solution to the IP.
3. LP is feasible but has a fraction solution �⇒ Lower bound for the IP.

In the first two cases of step 1, we are done. In the third case, we must branch and
recursively solve the resulting subproblems.

Branching: The most common way to branch is as follows: Select a variable
i whose value xi is fractional in the LP solution. Create two subproblems: in

3Typically, we could employ a heuristic procedure to obtain an upper bound to our problem.
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one subproblem, impose the constraint xi ≥ �xi�. In the other subproblem,
impose the constraint xi ≤ �xi�. This is called a branching rule (it is the
simplest branching rule). Notice that doing so creates two subproblems yet does
not eliminate any integer feasible solutions to the original problem. Hence, this
branching rule is valid, i.e., the constraints generated are valid inequalities.

Pruning: After branching we solve the subproblems recursively. Now we con-
sider the following: if the optimal objective value of the LP relaxation is greater
than the current upper bound, we need not consider the current subproblem
further (pruning), that is, if Zi�

LP > ZIP , then prune subproblem i. This is the
key to the potential efficiency of the problem.

Before we summarize the steps of the B&B algorithm, we describe some imple-
mentation terminology. If we picture the subproblems graphically, they form a
search tree. Each subproblem is linked to its parent and eventually to its children.
Eliminating a problem from further consideration is called pruning. The act of
bounding and then branching is called processing. A subproblem that has not yet
been considered is called a candidate for processing. The set of candidates for
processing is called the candidate list. Using this terminology, the LP-based B&B
procedure (for a minimization problem) can be summarized as follows:

1. To begin, we find an upper bound U using a preprocessing/heuristic routine.
2. We start with the original problem on the candidate list.
3. Select problem S from the candidate list and solve the LP relaxation to obtain the

lower bound b(S).

(a) If LP is infeasible �⇒ candidate is pruned.
(b) Otherwise, if b(S) ≥ U �⇒ candidate is pruned.
(c) Otherwise, if b(S) < U and the solution is feasible for the IP �⇒ update

U ← b(S).
(d) Otherwise, branch and add the new subproblem to the candidate list.

4. If the candidate list is nonempty, go to step 2. Otherwise, the algorithm is done.

There are several ways to select a candidate in step 2. The best-first technique
chooses a candidate with the lowest lower bound. Other possibilities are to use a
depth-first or breadth-first technique. The depth-first technique is most common.
The depth-first and breadth-first techniques differ in the way the B&B search tree
is traversed to select the next candidate to the explored. The reader is referred to
Nemhauser and Wolsey (1988) for details on the search procedures. Detail of the
B&B algorithm and other procedures such as the cutting plane algorithm can also
be found in Wolsey (1998). It is noteworthy that most commercial solvers build on
the basic B&B procedure described here and combine it with generating constraints
automatically, reducing the number of binary/integer variables used, and using pre-
and postprocessing heuristics to generate “good” (from a business implementation
standpoint) and feasible IP solutions quickly. For a partial list of LP and IP solvers
available to solve large IPs, the reader is referred to https://neos-server.org/neos/
solvers/index.html (accessed on Jul 22, 2018).

https://neos-server.org/neos/solvers/index.html
https://neos-server.org/neos/solvers/index.html
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3.2 A B&B Solution Tree Example

To illustrate the implementation of the LP-based B&B algorithm, consider the
following binary variable problem:

(P1)max 8x1 + 11x2 + 6x3 + 4x4,

s.t. 5x1 + 7x2 + 4x3 + 3x4 ≤ 14,

xi ∈ {0, 1} ∀ i = 1, . . . , 4.

The linear relaxation of optimal solution is x� = {1, 1, , 0.5, 0} with an objective
value of 22. Notice that this solution is not integral. So we choose a fractional
variable to branch on, which is x3. Essentially, we generate two subproblems: one
with the constraints x3 = 0 and the other with the constraint x3 = 1. We illustrate
the entire B&B solution tree in Fig. 11.17.

The solution tree shows the LP-relaxation upper bounds (since this is maximiza-
tion problem) at each node (subproblem) and the variables that were branched on
at each iteration (these are the fractional valued variables in the LP solution at that
node). The integer valued solutions are marked in red, which provide the lower
bounds. We employ the depth-first search process to select candidates to solve

Frac�onal:
Z = 22

Frac�onal: 
Z = 21.65 Frac�onal: 

Z = 21.85

X3=0
X3=1

Integer: 
Z = 18

Frac�onal: 
Z = 21.8

X2=0
X2=1

Integer: 
Z = 21

Infeasible: 

X1=0
X1=1

Op�mal Solu�on
x = {0, 1, 1, 1}

Solu�on
x = {1, 0.714, 1, 0}

Solu�on
x = {0.6, 1, 1, 0}Solu�on

x = {1, 0, 1, 1}

Solu�on
x = {1, 1, 0 , 0.667}

Fig. 11.17 LP-based B&B solution tree for problem P1
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iteratively and always choose the “right-side” child candidate. Thus, we begin by
branching on x3 followed by x2 and then x1. Notice that by fixing x1 = x2 = x3 = 1
we arrive at an infeasible solution at the rightmost node of the tree (fourth level).
However, the left child candidate at the same level, i.e., when x3 = x2 = 1 and
x1 = 0, gives us an integer feasible solution with objective value ZIP = 21. This is
the best IP lower bound solution we have so far—our incumbent IP solution (0,1,1).
Now, when we step one level higher to explore the node when x3 = 1 and x2 = 0,
we get a LP solution with an objective value 18 (also happens to be integer valued),
which is lesser than 21, our incumbent IP solution. Hence, we prune the sub-tree
(not shown in the figure) rooted at that node (where the optimal objective value is
18). Similarly, we don’t need to explore the sub-tree to the left of the root node, i.e.,
when we fix x3 = 0 because that sub-tree can never get us a better integer solution
than what we already have with our incumbent solution.

4 Methods in Optimization: Nonlinear Optimization Models

A vast majority of problems in real business applications are essentially nonlinear
in nature. In fact, linear programming models are a subset of nonlinear models. One
may also consider LP models to be an approximation of the real problem. In this
section, we discuss a few examples of nonlinear optimization models in statistics,
econometrics, and data analytics. However, we do not discuss the algorithmic details
of the nonlinear solution techniques. For a detailed discussion on the theory and
application of nonlinear programming we refer the readers to Bazaraa et al. (2013),
Bertsekas (1999), and Boyd and Vandenberghe (2004). We begin by illustrating the
use of optimization in simple linear regression.

4.1 Estimating Coefficients in an Ordinary Least Squares
Regression

Optimization plays a very important role in the estimation of coefficients in linear
regression models. Consider the method of ordinary least squares (OLS) where,
using sample data, we wish to estimate the parameters of a linear relationship
between the dependent (response) variable Y = 〈Y1, . . . , Y n〉 and the correspond-
ing independent (predictor) variable X = 〈X1, . . . , Xn〉, i.e., using the sample
observations we try to fit a linear relationship:

yi = β̂1 + β̂2xi + ε̂i ∀ i = 1, . . . , n. (11.14)
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In (11.14), εi is the random error (residual) associated with the ith observation

and
(
β̂1, β̂2

)
are unbiased estimates of the (true) parameters of the linear function

(β1, β2). Alternately, the relationship can be expressed as Yi = E [Y | xi] + εi,

where E [Y | xi] = β1 + β2xi is the conditional expectation of all the responses,
Yi , observed when the predictor variable takes a value xi . It is noteworthy that
capital letters indicate random variables and small letters indicate specific values
(instances). For example, suppose we are interested in computing the parameters
of a linear relationship between a family’s weekly income level and its weekly
expenditure. In this case, the weekly income level is the predictor (xi) and the
weekly expense is the response (yi). Figure 11.18a shows a sample of such data
collected, i.e., sample of weekly expenses at various income levels. The scatterplot
in Fig. 11.18b shows the fitted OLS regression line.

In order to construct the unbiased estimates
(
β̂1, β̂2

)
OLS involves minimizing

the sum of squared errors, i.e.,

min
n∑

i=1

ε2
i =

n∑
i=1

(
yi − β̂1 − β̂2xi

)2
. (11.15)
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Fig. 11.18 Fitting an OLS regression line. (a) Weekly expenditure at various income levels. (b)
Weekly expenditure as a function of weekly expense
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For a give sample, notice that
[∑n

i=1 yi

]
,
[∑n

i=1 yixi

]
,
[∑n

i=1 x2
i

]
,
[∑n

i=1 y2
i

]
are

constants. Hence, (11.15) is a simple quadratic function of the parameters, i.e.,

−2β̂1

[
n∑

i=1

yi

]
− 2β̂2

[
n∑

i=1

yixi

]
+

(
β̂2

)2
[

n∑
i=1

x2
i

]
+

[
n∑

i=1

y2
i

]

and represents an unconstrained quadratic optimization problem. There are two
ways of solving this problem. One, we can use differential calculus and solve it by
setting derivatives to equal zero. We get what are known as normal equations (see
Chap. 7 on linear regression). Gujarati (2009) also provides a detailed description of
the analytical solution to this nonlinear parameter estimation optimization problem.
Two, we can use a descent method as follows:

Step 1: We start with an initial solution (may be computed using a heuristic
approach).

Step 2: We then find a value improving direction and move along that direction
by changing β̂1 and β̂2, slightly.

Step 3: Repeat the steps 1 and 2, until the gain from such a move is very small
(stopping criteria).

Like in LPPs, this problem does not have local optimal solutions—in other words,
once we are unable to improve the solution we know we are at or close to the global
optimal solution.

4.2 Estimating Coefficients Using Maximum Likelihood
Estimation

As described in Sect. 4.1 we consider a two-variable model:

yi = β̂1 + β̂2xi + εi

where Yi is the response variable and xi is the predictor variable. The method of
maximum likelihood estimation (MLE), like the OLS method, helps us estimate the

linear regression parameters
(
β̂1, β̂2

)
. In the MLE approach, we assume that the

sample collected is made of independent and identically distributed observations
(yi, xi) and that the error terms follow a normal distribution with mean zero and
variance σ 2. This implies that Yi are normally distributed with mean β1 + β2xi and
variance σ 2. Consequently, the joint probability density function of Y1, . . . , Yn can
be written as

f
(
Y1, . . . , Yn | β1 + β2xi, σ 2

)
.
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But given that the sample points are drawn independently, we express the joint
probability density function as a product of the individual density functions as

f
(
Y1, . . . , Yn | β1 + β2xi, σ 2

)

= f
(
Y1 | β1 + β2xi, σ 2

)
f
(
Y2 | β1 + β2xi, σ 2

)
· · · f

(
Yn | β1 + β2xi, σ 2

)

where

f (Yi) = 1

σ
√

2π
e

[
− 1

2
(Yi−β1−β2xi )

2

σ2

]

which is the density function of a normally distributed random variable. For

given values of the response variable the likelihood function, LF
(
β̂1, β̂2, σ

2
)

, is

written as

LF
(
β̂1, β̂2, σ

2
)

= 1

σn
(√

2π
)n e

⎡
⎢⎣− 1

2

n∑
i=1

(Yi−β̂1−β̂2xi)
2

σ2

⎤
⎥⎦
.

The method of MLE computes
(
β̂1, β̂2

)
such that the probability of observing

the given y = 〈y1, . . . , yn〉 is maximum (as high as possible.) Notice that this is a
nonlinear optimization problem that maximizes the likelihood function over β̂1and
β̂2. One natural way to solve this problem is to convert LF function into its log
form, i.e.,

ln LF
(
β̂1, β̂2, σ

2
)

= −n ln σ − n

2
ln (2π) − 1

2

n∑
i=1

(
Yi − β̂1 − β̂2xi

)2

σ 2
,

= −n

2
ln σ 2 − n

2
ln (2π) − 1

2

n∑
i=1

(
Yi − β̂1 − β̂2xi

)2

σ 2 .

Maximizing the log-likelihood function is a simple unconstrained quadratic opti-
mization problem (just as seen in Sect. 4.1). Once again we refer the readers to
Gujarati (2009) for details about the analytical solution to this optimization problem.
MLE is also covered in detail in Chap. 8 (advanced regression and missing data) of
this book.
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4.3 The Logit Model for Classification

Unlike the case discussed in Sect. 4.1, sometimes we encounter situations wherein
the response variables take binary outcomes. For example, consider a binary model,
in which xi (predictor) is the price of a product and yi (response) is whether a
customer purchased a product. In this case, the response variable yi ∈ {0, 1}. Fitting
an OLS regression model, in this case, may not be appropriate because the response
variable must be restricted to the interval [0, 1] and there exists no such restriction
in the standard linear regression model. Instead, we use a binary outcome model
that tries to estimate the conditional probability that yi = 1 as a function of the

independent variable, i.e., Pr {Yi = 1 | xi} = F
(
β̂1 + β̂2xi

)
, where the function

F (·) represents the cumulative density function of a probability distribution. One
common model used is the logit model, where F(·) is the logistic distribution
function, i.e.,

F
(
β̂1 + β̂2xi

)
= e

[
β̂1+β̂2xi

]

1 + e

[
β̂1+β̂2xi

] .

Assuming that the observations in the sample data are independent of each other,
the conditional likelihood of seeing the n outcomes in our sample data is given by

n∏
i=1

Pr {Y = yi | xi} =
n∏

i=1

F
(
β̂1 + β̂2xi

)yi ×
[
1 − F

(
β̂1 + β̂2xi

)](1−yi )

because yi ∈ {0, 1} and 〈y1, . . . , yn〉 represents a sequence of Bernoulli trials. As
described in Sect. 4.2, a natural way to solve this problem is to convert the likelihood
function into its log form, i.e.,

ln LF
(
β̂1, β̂2

)
=

n∑
i=1

yi ln F
(
β̂1 + β̂2xi

)
+

n∑
i=1

(1 − yi) ln
[
1 − F

(
β̂1 + β̂2xi

)]
,

=
n∑

i=1

yi ln

⎡
⎣ e

[
β̂1+β̂2xi

]

1 + e

[
β̂1+β̂2xi

]

⎤
⎦ +

n∑
i=1

(1 − yi) ln

⎡
⎣ 1

1 + e

[
β̂1+β̂2xi

]

⎤
⎦,

=
n∑

i=1

yi

[
β̂1 + β̂2xi − ln

(
1 + e

[
β̂1+β̂2xi

])]

−
n∑

i=1

(1 − yi)

(
ln

(
1 + e

[
β̂1+β̂2xi

]))
,

=
n∑

i=1

yi

[
β̂1 + β̂2xi

]
−

n∑
i=1

ln

(
1 + e

[
β̂1+β̂2xi

])
.
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The optimization problem reduces to choosing the parameters (coefficients)

β̂1 and β̂2 to maximize the log-likelihood function, ln LF
(
β̂1, β̂2

)
. This is a

nonlinear optimization problem but cannot be solved analytically using stan-
dard differential calculus. We may have to resort to approximately solving it
numerically (e.g., see Newton’s method in Bazaraa et al., 2013). It is notewor-
thy that this type of formulation can be used for making multi-class predic-
tions/classifications, where Y can take on more than two values (not just binary).
See Chaps. 15, 16, and 17 on machine learning techniques for discussion on
these types of problems. Several specialized algorithms have been developed
to solve this problem efficiently. Moreover, it is somewhat straightforward to
connect this to a machine learning problem! The multi-class prediction can be
seen to be equivalent to a single-layer neural network using softmax loss func-
tion (see Chaps. 16 and 17 on Supervised Learning and Deep Learning). The
connection between learning and optimization is an advanced topic well worth
pursuing.

As described in this section, the techniques and solution methodologies for solv-
ing nonlinear optimization problems can be varied. For a partial list of algorithmic
procedures to solve nonlinear problems the reader is referred to https://neos-guide.
org/algorithms (accessed on Jul 22, 2018).

5 Discussion

In this chapter, we touched upon the basics of optimization. In particular, we focused
on formulating, solving, and interpreting solutions of LPPs. LPs have been used in
a large number of business and scientific applications over the last few decades.
It is important to understand that while the LP methodology is very efficient and
easy to model, there are larger classes of optimization techniques that help model
business and scientific applications even more closer to reality, integer programming
being one of them. Finally, we briefly described nonlinear optimization models
and showed a few examples that are closely related to often-used econometric
models.

For a complete taxonomy of the types of mathematical programs/optimization
techniques encountered in theory and practice, we refer the readers to NEOS guide.4

With data sciences, machine learning, and analytics gaining importance, the use
of LPs (and optimization methods in general) will continue to grow. In a sense,
optimization models will eventually become ubiquitous.

4https://neos-guide.org/content/optimization-taxonomy (accessed on Jul 22, 2018).

https://neos-guide.org/algorithms
https://neos-guide.org/algorithms
https://neos-guide.org/content/optimization-taxonomy
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Appendix

Spreadsheet Models and Excel Solver Reports

There are a few online tutorials available to understand how to input a LP model in
Solver. The two commonly used websites are Solver5 and Microsoft support6 page.
This section describes the various fields in the LP reports generated by Microsoft
Solver and how to locate the information related to shadow prices, reduced costs,
and their ranges after the model has been solved. We use the prototype example
referred earlier to describe these reports.

The Answer Report

Figure 11.19 shows the answer report generated by Excel Solver for our prototype
problem. We describe the entries in this report.

Target Cell The initial value of the objective function (to be maximized or
minimized), and its final optimal objective value.

Adjustable Cells The initial and final values of the decision variables.

Constraints Maximum or minimum requirements that must be met, whether they
are met just barely (binding) or easily (not binding), and the values of the slacks
(excesses) leftover. Binding constraints have zero slacks and nonbinding ones have
positive slacks.

Target Cell (Max)
Cell Name Original Value Final Value

$K$34 PROFIT Z 0 5142.86

Adjustable Cells
Cell Name Original Value Final Value

$G$33 Objective:  max 500 x1 + 450 x2 X1 0.00 6.43
$H$33 Objective:  max 500 x1 + 450 x2 X2 0.00 4.29

Constraints
Cell Name Cell Value Formula Status Slack

$I$36 Production 60.000 $I$36<=$K$36 Binding 0
$I$37 Storage 150.000 $I$37<=$K$37 Binding 0
$I$38 Demand 6.429 $I$38<=$K$38 Not Binding 1.571428571

Fig. 11.19 Answer report

5https://www.solver.com/excel-solver-online-help (accessed on Jul 22, 2018).
6https://support.office.com/en-us/article/define-and-solve-a-problem-by-using-solver-5d1a388f-
079d-43ac-a7eb-f63e45925040 (accessed on Jul 22, 2018).

https://www.solver.com/excel-solver-online-help
https://support.office.com/en-us/article/define-and-solve-a-problem-by-using-solver-5d1a388f-079d-43ac-a7eb-f63e45925040
https://support.office.com/en-us/article/define-and-solve-a-problem-by-using-solver-5d1a388f-079d-43ac-a7eb-f63e45925040
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Adjustable Cells
Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease
$G$33 Objective:  max 500 x1 + 450 x2 X1 6.43 0.00 500 40 275
$H$33 Objective:  max 500 x1 + 450 x2 X2 4.29 0.00 450 550 33.33

Constraints
Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease
$I$36 Production 60.000 78.571 60 5.5 22.5
$I$37 Storage 150.000 2.857 150 90 22
$I$38 Demand 6.429 0.000 8 1E+30 1.57

Fig. 11.20 Sensitivity report (shadow prices and validity range)

The Sensitivity Report

Figure 11.20 shows the sensitivity report generated by Excel Solver for our
prototype problem. Below we describe the entries in this report.

Adjustable Cells The decision variables, their cell addresses, names, and optimal
values.

Reduced Cost This relates to decision variables that are bounded, from below (
such as by zero in the nonnegativity requirement), or from above (such as by a
maximum number of units that can be produced or sold). Recollect:

1. A variable’s reduced cost is the amount by which the optimal objective value
will change if that bound was relaxed or tightened.

2. If the optimal value of the decision variable is at its specified upper bound, the
reduced cost is the amount by which optimal objective value will improve (go up
in a maximization problem or go down in a minimization problem) if we relaxed
the upper bound by increasing it by one unit.

3. If the optimal value of the decision variable is at its lower bound, its reduced cost
is the amount by which the optimal objective value will be hurt (go down in a
maximization problem or go up in a minimization problem) if we tightened the
bound by increasing it by one unit.

Objective Coefficient The unit contribution of the decision variable to the objec-
tive function (unit profit or cost).

Allowable Increase and Decrease The amount by which the coefficient of the
decision variable in the objective function can change (increase or decrease) before
the optimal solution (the values of decision variables) changes. As long as an
objective coefficient changes within this range, the current optimal solution (i.e., the
values of decision variables) will remain optimal (although the value of the objective
function optimal objective value will change as the objective coefficient changes,
even within the allowable range).
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Shadow Price Recollect:

1. The shadow price associated with each constraints measures the amount of
change in the optimal objective value optimal objective value that would result
from changing that constraint by a small amount.

2. In general, it is the increase in optimal objective value resulting from an increase
in the right-hand side of that constraint.

3. Its absolute value measures the marginal (or incremental) improvement in
optimal objective value (i.e., an increase in the maximum profit or a decrease
in the minimum cost) if that constraint was relaxed (i.e., if the lower limit was
reduced or the upper limit was increased) by one unit. Similarly, it is the marginal
degradation in optimal objective value (i.e., if the lower limit was raised or the
upper limit was reduced) by one unit. For example, if the constraint represents
limited availability of a resource, its shadow price is the amount by which the
optimal profit will increase if we had a little more of that resource and we used it
in the best possible way. It is then the maximum price that we should be willing
to pay to have more of this resource. Equivalently, it is the opportunity cost of
not having more of that resource.

Allowable Increase and Decrease Recollect:

1. This is the amount by which the constraint can be relaxed or tightened before its
shadow price changes. if the constraint imposes an upper limit, and it is relaxed
by increasing this limit by more than the “allowable increase,” the optimal
objective value will still improve but at a lower rate, so the shadow price will
go down below its current value. Similarly, if the upper limit on the constraint
is decreased by more than the “allowable decrease,” the optimal objective value
will degrade at an even higher rate and its shadow price will go up.

2. If the constraint imposes a lower limit and that constraint is relaxed by decreasing
the limit by more than the “allowable decrease,” the optimal objective value will
still improve but only at a lower rate and the shadow price will decrease. If , on the
other hand, the lower limit is increased by more than the “allowable increase,”
the constraint becomes tighter, the optimal objective value will degrade faster,
and the shadow price will increase. Thus, there are decreasing marginal benefits
to relaxing a constraint, and increasing marginal costs of tightening a constraint.

It should be noted that all of the information in the sensitivity report assumes that
only one parameter is changed at a time. Thus, the effects of relaxing or tightening
two constraints or changing the objective coefficients of two decision variables
cannot be determined from the sensitivity report. Often, however, if the changes
are small enough to be within the respective allowable ranges, the total effect can be
determined by simply adding the individual effects.

In an Excel report degeneracy can be spotted by looking at the rhs values of
any of the constraints. If the constraints (for the range over which the optimal
shadow price is valid) have an allowable increase or allowable decrease of
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zero, then the LP is degenerate. One has to be careful while interpreting optimal
solutions for degenerate LPs. For example:

1. When a solution is degenerate, the reduced costs may not be unique. Addition-
ally, the objective function coefficients for the variable cells must change by at
least as much (and possibly more than) their respective reduced costs before the
optimal solution would change.

2. Shadow prices and their ranges can be interpreted in the usual way, but they are
not unique. Different shadow prices and ranges may apply to the problem (even
if the optimal solution is unique).

Exercises

Ex. 11.1 (LP Modeling)

Ex. 11.1.1 Retail Outlet Staffing
Consider a retail shop that is open 7 days a week. Based on past experience, the
number of workers needed on a particular day is given as follows:

Day Mon Tue Wed Thu Fri Sat Sun

Number 15 12 17 16 19 14 11

Every employee works five consecutive days and then takes off two days, repeating
this pattern indefinitely. Our goal is to minimize the number of employees that staff
the outlet. Define your variables, constraints, and objective function clearly.
Develop a Solver model and solve for the optimal staffing plan.

Ex. 11.1.2 Managing a Portfolio
We are going to manage an investment portfolio over a 6-year time horizon. We
begin with |1,000,000, and at various times we can invest in one or more of the
following:

(a) Savings account X, annual yield 6%
(b) Security Y , 2-year maturity, total yield 14% if bought now, 12% thereafter
(c) Security Z, 3-year maturity, total yield 17%
(d) Security W , 4-year maturity, total yield 22%

To keep things simple we will assume that each security can be bought in any
denomination. We can make savings deposits or withdrawals anytime. We can buy
Security Y any year but year 3. We can buy Security Z anytime after the first year.
Security W , now available, is a one-time opportunity. Write down a LP model
to maximize the final investment yield. Assume all investments must mature on
or before year 6 and you cannot sell securities in between. Define your decision
variables and constraints clearly.
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Ex. 11.2 (Interpreting the Sensitivity Report)
AC manufactures two television models, Astros and Cosmos. Each Astro set sells
for $300 and each Cosmo sells for $250 a set. AC purchases components for an
Astro set for $260 and components for a Cosmo set cost $190.

Production of each model involves circuit board fabrication, picture tube con-
struction, and chassis assembly. There are two separate and completely automated
lines for circuit board fabrication, one for Astro and one for Cosmo. However, the
picture tube and chassis assembly departments are shared in the production of both
sets.

The capacity of the Astro circuit board fabrication line is 70 sets per day, while
that of the Cosmo line is 50 sets per day. The picture tube department has 20
workstations, while the chassis department has 16 workstations. Each workstation
can process one TV set at a time and is operated 6 h a day. Each Astro set takes 1 h
for chassis assembly and 1 h for tube production. Each Cosmo set requires 2 h for
picture tube production and 1 h for chassis assembly.

Workers in the picture tube and chassis assembly departments are paid $10 an
hour. Heating, lighting, and other overhead charges amount to $1000 per day.

1. How many Astros and Cosmos should AC produce each day? What will be the
maximum profit?

2. How should they allocate the available resources among the two models? Where
are the bottlenecks?

3. Suppose that due to raw material shortage AC could make only 30 circuit boards
for Cosmos each day. What will be the effect on their operation?

4. Suppose workers in the picture tube department are willing to work overtime
for a premium of $21 an hour. How many hours of overtime, if any, should they
employ? How will they use it ?

5. If a workstation in the picture tube department breaks down, how will it affect
AC’s production and profit ?

6. If a chassis assembly workstation breaks down, how will it affect AC’s
production plan and profit?

7. How much would you be willing to pay to increase Astro’s circuit board
capacity?

8. Suppose AC has developed a new model that uses same circuit boards as a
Cosmos and requires 3 h of the picture tube time. If its profit margin is expected
to be a high $42, should they produce it?

9. If the profit margin on Astro goes up to $40 a set, how would it affect the firm’s
production plan and the daily profit? What if it goes down by $10 a set?

10. How much must Cosmos’s price increase before you will consider producing
more Cosmos?

Ex. 11.3 (Modeling with Binary Variables)

1. Consider the knapsack set X1 = {x1, } . . . , x5 ∈ {0, 1} : 3x1 − 4x2 + 2x3 −
3x4 + x5 ≤ 2. Is the constraint x2 + x4 ≥ 1 a valid inequality? Why or why not?
Note: Suppose we formulate an integer program by specifying a rational
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polyhedron P = {
x ∈ R

n+| Ax ≤ b
}

and define S = Z
n ∩ P , where Z

n+ is the
n-dimensional set of nonnegative integers. Thus, S = {

x ∈ Z
n+| Ax ≤ b

}
and

conv(S) is the convex hull of S, i.e., the set of points that are convex combinations
of points in S. Note that conv (S) ⊆ S; “Ideal” if conv(S) = S. An inequality
πT x ≤ π0 is called a valid inequality if it is satisfied by all points in S.

2. Solve using the branch-and-bound (B&B) algorithm. Draw the B&B tree, show
your branches, LP solutions, lower and upper bounds. You may simply branch in
sequence x1followed by x2 and so on.

max 9x1 + 3x2 + 5x3 + 3x4

s.t. 5x1 + 2x2 + 5x3 + 4x4 ≤ 10

x1, . . . , x4 ∈ {0, 1}.
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