
Effective Multi-robot Spatial Task Allocation
Using Model Approximations

Okan Aşık(B) and H. Levent Akın

Department of Computer Engineering, Boğaziçi University, 34342 Istanbul, Turkey
{okan.asik,akin}@boun.edu.tr

Abstract. Real-world multi-agent planning problems cannot be solved
using decision-theoretic planning methods due to the exponential com-
plexity. We approximate firefighting in rescue simulation as a spatially
distributed task and model with multi-agent Markov decision process. We
use recent approximation methods for spatial task problems to reduce
the model complexity. Our approximations are single-agent, static task,
shortest path pruning, dynamic planning horizon, and task clustering.
We create scenarios from RoboCup Rescue Simulation maps and evalu-
ate our methods on these graph worlds. The results show that our app-
roach is faster and better than comparable methods and has negligible
performance loss compared to the optimal policy. We also show that our
method has a similar performance as DCOP methods on example RCRS
scenarios.

1 Introduction

Real-world multi-agent planning problems have a high complexity due to the
curse of dimensionality. The number of agents also increases the complexity
exponentially. Multi-agent planning can be defined as the coordination of a set
of agents to get the highest possible reward from the environment they act in.
Multi-agent planning has different categories, but in this work we consider only
the centralized control of cooperative agents.

The spatial task allocation problem (SPATAP) is a subclass of multi-agent
planning problems. In the SPATAP, a group of agents try to do the tasks which
are spatially distributed to the environment. From the multi-agent planning
perspective, the SPATAP has two important features; task interdependency,
and agent interdependency. The tasks appear in the environment independently.
Agents move in the environment without affecting each other. Despite these fea-
tures, the SPATAP is still a complex multi-agent planning problem and cannot
be solved using optimal algorithms as shown by Claes et al. [1].

SPATAP is formalized as a Multi-agent Markov Decision Process (MMDP).
The state space is defined by the agent and the task positions. The agents either
move in the environment (such as grid world) or take the action to do the task
at the current location. The reward is defined according to the total task com-
pletion. The complexity of a SPATAP is determined by the state space and the
action space. The optimal MMDP algorithm cannot solve SPATAP problems
c© Springer International Publishing AG 2017
S. Behnke et al. (Eds.): RoboCup 2016, LNAI 9776, pp. 243–255, 2017.
https://doi.org/10.1007/978-3-319-68792-6_20



244 O. Aşık and H.L. Akın

having non-trivial number of locations, agents, tasks and actions. There are two
basic approaches to solve such complex MMDP problems; using approximate
algorithms or approximate models. In this paper, we propose model approxima-
tions which are tailored for the SPATAPs.

The model approximation approach simplifies the given model and finds a
solution for the simplified model as a proxy for the actual problem. The approx-
imations aim to reduce the state space and action space of the actual problem.
Claes et al. [1] propose a series of approximations for SPATAP planning. At
every time step of the decision process, the method gets the current state of the
actual problem and constructs a simpler model using the approximations. The
algorithm calculates a policy for the simple model and the agents act on the
actual decision process using the policy.

The approximations proposed by Claes et al. are subjective approximation,
and phase approximation. The agent calculates the possible future positions of
the agents by the assumption that they are the only agents in the environment.
Then the agent can discount its own future reward according to the possibility of
another agent being on that position. This removes the exponential complexity
due to the number of agents in the state space. The agent assumes that a new
task will not appear in the future. This also reduces the state space complexity
due to the future tasks.

We extend the online planning framework of Claes et al. [1]. We first cluster
tasks based on the distance between the tasks. Then, we first calculate the best
cluster to go using the approximate model. Then, every agent plans only for
the task in the assigned clusters. In these two levels of the planning, we apply
subjective approximation and shortest-path pruning which removes the locations
which are not on the shortest path between the agent and the tasks. We use Value
Iteration [10] algorithm to calculate the best action, but we choose the planning
horizon according to the time step required to reach k tasks.

We also generalize the SPATAP model from grid world to graph world where
locations are represented by the vertices of a graph. We define Rescue Spatial
Task Allocation Problem (Rescue-SPATAP) as an extension of SPATAP, and
solve using SPATAP approximations. We show that the comparison with the
optimal value not as good as pure SPATAP problems, but our method performs
better than other algorithms including the SPATAP algorithm [1]. Finally, we
apply our SPATAP approximations to RoboCup Rescue Simuation (RCRS) sce-
narios and have similar performance to Distributed Constraint Optimization
(DCOP) methods of RMASBench [5].

2 Background

2.1 Multi-agent Markov Decision Process

A multi-agent Markov Decision Process (MMDP) is a mathematical for-
malization for the multi-agent planning in observable, but uncertain action
environments.



Effective Multi-robot Spatial Task Allocation Using Model Approximations 245

Multiagent MDP is 5-tuple 〈D,S,A, T,R〉 where

– D is the set of agents,
– S is the finite set of states,
– A is the finite set of joint actions (A1 × A2 × . . . × An),
– T is the transition function which assigns probabilities for transitioning from

one state to another given a joint action,
– R is the immediate reward function.

We can solve an MMDP using the standard offline MDP planning algorithms
such as value iteration [10]. The value iteration algorithm iteratively improves
the estimation of the expected value of a state with the following Bellmann
equation:

Q(s, a) = R(s, a) + γ
∑

s′∈S

T (s, a, s′)V (s′) (1)

V (s) = max
a∈A

Q(s, a) (2)

s stands for a state, a stands for a joint action and γ stands for the discount
value to determine how valuable future rewards are.

2.2 Rescue Spatial Task Allocation Problem

Spatial Task Allocation Problem (SPATAP) is introduced by Claes et al. [1].
SPATAP is defined on a location set where a set of different tasks appear on
different locations. Agents have movement actions (to move from one location
to another) and also task actions (required to carry out a specific task). We can
think of a grid world where there are two or more cleaning robots. Cleaning
tasks appear at different cells on the grid world. Agents are supposed to act for
cleaning tasks as efficiently as possible. Although the allocation of agents to their
closest tasks would seem to be the optimal, the authors prove that SPATAP is
as hard as MMDP.

The original SPATAP formulation models tasks as independent. Emergence
of a task at a location is independent of other locations. We introduce the Rescue
Spatial Task Allocation Problem (Rescue-SPATAP) where tasks are defined as
fires and dependent on their neighbors, which makes Rescue-SPATAP harder
than SPATAP. In Rescue-SPATAP, the location of initial tasks/fires are fixed at
the start of the process and new tasks only appear based on the vicinity of the
current tasks. In the SPATAP formulation, every task has the same reward, but
in Rescue-SPATAP, if the agent extinguishes a fire, it gets a reward proportional
to the size of the building. We show that the online approximations proposed
for SPATAPs are also applicable for Rescue-SPATAPs.

The RoboCup Rescue Simulator (RCRS) has four mobile agents: fire
brigades, police forces, ambulances, and civilians. There are also three stationary
center agents which provide a communication channel for fire brigades, polices,



246 O. Aşık and H.L. Akın

and ambulances. There are three types of tasks: rescuing the civilians, firefight-
ing, and removing the blockades on the road. In this study, we target the fire-
fighting problem, but our approach is also applicable for all RCRS tasks because
they can be defined as spatial task allocation problem. The simulator uses a map
of the city. The map defines buildings and roads. The simulator creates a disaster
scenario by defining fire ignition points. Since only buildings are flammable, the
dynamic tasks emerge as the buildings are catching fire. The ultimate aim is to
develop an algorithm to effectively allocate agents to the buildings which are on
fire.

We define a Rescue-SPATAP based on the RCRS. The problem is defined on
a graph world. The graph world has two types of vertices; buildings and roads
as already defined in the RCRS. In the RCRS, buildings have fire levels: no
fire, heating, burning, burnt, extinguished. However, to reduce the complexity,
we define only two states: no fire, and burning. We map the RCRS fire states to
the graph world fire states as follows:

– no fire ← {no fire, burnt, extinguished}
– burning ← {heating, burning}
Since the fire simulator of the RCRS is quite complex to model [7], we model fire
spreading as independent events where the building on fire affects the neighbor
buildings’ fire state. Every neighbor building in the vicinity of d meters will add
p probability to change the state from no fire to burning. The agents move on
the graph by choosing the neighbors of the vertex where the agent is on (same
as RCRS). Also, the building the agent is on stays in no fire state. In RCRS,
agents extinguish fires based on the size of the building and the water the agent
has in its tank. However, we simplify the fire extinguishing behavior by that an
agent extinguishes the fire of the building which the agent is on, regardless of
other factors. The reward is defined as the ratio of the sum of the area of the
buildings which are in no fire state to the area of all buildings.

3 Related Work

The teams in RoboCup Rescue Agent Simulation (RCRS) generally uses state-
based strategies in behavioral agent frameworks1. The teams prefer agent frame-
works which enable them to exploit typical scenarios. These agent frameworks
let the teams fine tune their behaviors according to the cases arising over the
trial-error periods. In a recent study, Parker et al. report the performance of
decentralized coalition formation approach for RCRS [8]. The agents use a greedy
algorithm with a utility function which is designed for different tasks. They com-
pare static and dynamic coalition formation with heterogeneous agents. Due to
the different characteristics of every RCRS scenario, they found that different
approaches may work well for different scenarios.

In the literature, the RCRS problem is also modeled as a task allocation
problem. The tasks constitute rescuing a civilian, firefighting, and clearing the
1 http://roborescue.sourceforge.net/blog/2015/08/team-description-papers-tdps/.

http://roborescue.sourceforge.net/blog/2015/08/team-description-papers-tdps/


Effective Multi-robot Spatial Task Allocation Using Model Approximations 247

blockades. The tasks are discovered over time and agents do not know all the
tasks of the current state. This distributed dynamic task allocation problem is
modeled as the distributed constraint optimization problem (DCOP) [11] and
solved using state of the art DCOP algorithms such as MaxSum [3], and DSA [4].
Pujol-Gonzalez et al. improve the computational efficiency of MaxSum by intro-
ducing Binary MaxSum for RCRS [9]. They also introduce a method to integrate
team coordination to DCOPs. The authors show that, by defining coordination
variables for police forces and fire brigades, they are able to improve the perfor-
mance. Although these approaches have reasonable performances, they require a
lot of domain knowledge to design good utility functions with inter-team coordi-
nation variables. Our approach has inherent capacity to represent different agent
types without changing the problem definition.

There are also attempts to solve fire task allocation problem with biologically-
inspired methods [2]. They propose a new algorithm, called eXtreme-Ants, where
agents are modeled as insects which have response thresholds for tasks that
are modeled as stimulus. They show that the performance of the algorithm is
comparable to DCOP methods.

RMASBench is an effort to provide a software repository to easily model
RCRS as a DCOP and benchmark the different algorithms [5]. However, the cur-
rent implementation requires the full state information of the simulation at every
time step and the communication among DCOP agents isolated from RCRS.
This hinders the application of the DCOP methods for RCRS. Also, modeling
RCRS as task allocation problem neglects the dynamic nature of the problem
and introduces the issue of designing good utility functions.

4 Methods

We model the firefighting task of the RoboCup Rescue Simulation (RCRS)
as a Multi-agent Markov Decision Process (MMDP). We create an approxi-
mate MMDP model with single-agent, static task, shortest path pruning, task
clustering, and online planning horizon approximations in our online planning
framework.

The online planning framework gets the current state from the simulator
(either Rescue-SPATAP simulator or RoboCup Rescue Simulator) and creates
a new problem by clustering the near tasks together. Then, the approximations
are applied to the clustered model to have less complex model. The policy for
the approximated model is calculated using the Value Iteration [10] algorithm.
We calculate the target of every agent by following the policies greedily to assign
a cluster to every agent. Since we assigned a cluster to every agent, the model
approximation and policy calculation is carried out considering only the tasks
of the assigned clusters.

4.1 Hierarchical Planning by Task Clustering

Before applying any approximations to the actual model of the problem, we
create clusters to further reduce the complexity. Since fires propagate from the



248 O. Aşık and H.L. Akın

initial ignition points, tasks appear as a cluster. Therefore, we introduce a dis-
tance based task clustering algorithm. The tasks which are closer to each other
more than d meters belong to the same cluster. We assign a cluster for every
agent by model approximations and value iteration algorithm. After every agent
is assigned to a cluster, we plan only for the tasks which belongs to the agent’s
cluster.

To create a cluster, we iterate over all the burning buildings and compare the
distance between the building and the buildings in a cluster. If the building is
closer than d meters to one of the buildings which is in a cluster, the building is
added to the cluster. The clustered buildings and their neighbors are removed.
A new building for every cluster is created with the area equal to the sum of the
area of the buildings in the cluster. Neighbors of the clustered buildings are also
recreated as the neighbors of the cluster as seen in Fig. 1.

In the SPATAP, the actions are taken according to the calculated value func-
tion, but our approach calculates a priority order of tasks for every agent using
the depth-first graph traversal algorithm on the value function (taking the agent
position as the root).

Fig. 1. The illustration of the task clustering. The initial graph (left) results in a
clustered task graph (right).

4.2 Single-Agent Approximation

The state space of multi-agent planning has exponential complexity due to the
number of agents. To reduce this complexity, we plan as a single agent by using
other agents’ positions as an indication of their policies. We calculate a policy
for all agents as if they are the only agent in the environment. Then, for every
agent we calculate the other agents’ total effect which is called presence mass [1].
Presence mass is the probability distribution of other agents’ positions on the
graph world.

The presence mass can be calculated only if we know the policy of the agents.
We calculate a policy for every agent based on their positions on the graph by
assuming that they are the only agent on the world. We use this policy to have
an idea about the most desirable action from the perspective of that agent. To
reflect the uncertainty, we use this policy to calculate a Boltzmann distribution
over actions for every state. We define a Boltzmann distribution over the state-
action values (the expected cumulative reward when an action is taken in a
state). This distribution defines the probability of choosing an action in a state.



Effective Multi-robot Spatial Task Allocation Using Model Approximations 249

The best response of the agent based on the presence mass of other agents
can be computed by changing the discount factor (γ) of the Bellman equation
(see Eq. 1). By changing the discount factor value, we can punish the actions
resulting on a position where other agents have high presence mass. Therefore,
we discount the future expected reward according to presence mass as proposed
by [1]:

Qi(si, ai) = R(si, ai) +
∑

s′
i∈Si

T (si, ai, s
′
i)

[
(1 − fi pmi(s

′
i))Vi(s′

i)
]

(3)

pmi(s
′
i) =

∑

j �=i

Pr(sj = s′
i|s)

Vi(si) = max
ai

Qi(si, ai)

Qi denotes the expected total reward for the agent i if it is in state si, and
takes the action ai. Vi denotes the expected total reward for the agent i from
the state s′

i. pm defines the presence mass of the other agents. The parameter
fi which is used to scale the future value is calculated as the ratio of maximum
reward to the maximum value as suggested by [1].

4.3 Static Task Approximation

We also aim to reduce the exponential complexity due to the fire levels of build-
ings. Therefore, we use the approximation proposed by [1] and redefine the state
space to include only the buildings that are in burning state. Claes et al. [1]
propose this approximation for spatially distributed tasks where the occurrence
of new tasks are independent. In the firefighting problem, there is the effect of
neighbor buildings on the occurrence of new tasks. However, the propagation of
fire on RCRS is slow such that we can plan considering only the buildings that
are on fire without calculating their effects on their neighbors.

The deterministic actions and static task approximations on a graph world
for a single agent MDP results in the following Bellman equation:

V (s) = max
s′∈N(s)

R(s′) + γV (s′) (4)

s denotes the current state, s′ the next state, N the neighbor function, γ
is the discount factor and V stands for the value function. Since the actions
are deterministic, reward function is only depended on the next state, s′, and
transition function (T ) is removed (i.e. the action uniquely identifies the next
state). Note that, we changed (s, a) term with s′ since actions are deterministic.
Every (s, a) term defines an s′ (i.e. every action results in a single next state). N
function defines the set of neighbor vertices of the given vertex (or state). This
recursive equation will be calculated for h times with the initial values V (s) = 0
for h-horizon planning.



250 O. Aşık and H.L. Akın

4.4 The Shortest Path Approximation

The tractability of the Bellman equation depends on the state space and the
transition function (i.e. neighbors). If the agent does not move to the vertex
which is in burning state, the state can only be identified by the position of
the agent. If we remove the neighbors which will not be visited by the agent,
we achieve to reduce the state space and also branching factor of the transition
function. The value iteration algorithm propagates rewards from the goal state,
in our case this is one of the vertices which is in the burning state.

We calculate the shortest path between the agent and the vertices that are
in burning state, and also all possible burning vertex pairs. Since the actions are
deterministic and tasks are static, the optimal policy will result in a movement
of the agent on the shortest path from its own position to the one of the tasks.

4.5 Online Dynamic Planning Horizon

The running time of the value iteration algorithm for the finite horizon problems
also depends on the planning horizon which determines the number of iterations
of the algorithm. If we consider Rescue-SPATAP, we should plan according to
the current time step of RCRS for the optimal performance. The RCRS sim-
ulation runs for 300 time steps. For example, if we are in 30th time step, we
should construct our approximate model and plan with the value iteration for
300 − 30 = 270 time steps. However, since we already approximated the prob-
lem, it might not increase the performance after a certain horizon. Therefore,
we propose to determine the planning horizon based on the reachability of the
vertices that are in burning state.

As shown by Claes et al. [1], if the agents plan only for the k closest tasks, the
algorithm still has reasonable performance. In the value iteration algorithm, the
reward propagates from the vertex that is in burning state since the agent gets
higher reward when it can change the state of the vertex from burning to no fire.
For example, we can consider a graph world with the initial state shown in Fig. 2.
There are five vertices where the agent is located on the vertex 1 and the vertex
5 is in burning state. The agent should choose an action based on the values of
the vertices 2 and 3. The three iterations of the value iteration algorithm for the
example graph world can be seen in Fig. 2. The values of the vertices correspond
to the states where the agent is on that vertex location. After the first and the
second iterations of the algorithm, the agent cannot differentiate between the
actions A1 and A2. However, after the third iteration of the algorithm, the agent

1.0

0.80.8

0.8

0.8

First Iteration

2.0

2.01.6

1.6

1.6

Second Iteration
3.0

3.02.8

2.8

2.8

Third IterationInitial state

A1
A2

Agent
1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Fig. 2. Three iterations of the value iteration algorithm on a graph world.



Effective Multi-robot Spatial Task Allocation Using Model Approximations 251

can differentiate two vertices based on the value propagated to the vertex 2 and
3. In our small graph, three iterations of the algorithm is enough to differentiate
two actions, but as the distance of the vertices that are in burning state increases,
the minimum number of iteration of the algorithm will increase.

To calculate the planning horizon (i.e. the minimum number of iterations),
we use the breath first graph traversal algorithm. We set the vertex of the agent
as the root of the graph, and traverse the graph. When we find k numbers of
burning vertices, we end the traversal and choose the last level of the tree as our
planning horizon and remove the vertices which are not visited from our graph
world.

5 Experiments and Results

We evaluate the effectiveness of our approach on the sampled graphs from RCRS
maps. All the experiments are implemented using the BURLAP [6] library.

5.1 Comparison with the Optimal Policy

To measure the feasibility of our approach, we developed a Rescue-SPATAP
simulator. We create 10 random scenarios having 8 buildings from five city graphs
of RoboCup Rescue Simulation (RCRS), namely Istanbul, Berlin, Eindhoven,
Joao Pessoa, and Kobe. The graph sampling can be seen as the random extraction
of districts from a city map (see Fig. 3).

We define three random ignition points and two agents which are positioned
on random locations. In the initial state, ignition buildings are in the burning
state. The distance of the building to propagate the fire is d = 50 m and burning
buildings add p = 0.05 probability to their neighbors’ fire ignition. For example, if
a building has 2 neighbor burning buildings, the probability of changing the state
from no fire to burning will be (0.05 + 0.05) = 0.1. During all the experiments,
we use the nearest burning building parameter as k = 3. Since we calculate
the optimal policy for these simple graph worlds, we model agents’ actions as
deterministic to reduce the complexity. This assumption also complies with the
RCRS in that the movement noise of agents is almost negligible, if we neglect
the congestion of the roads.

Fig. 3. Example sample graphs from Istanbul (left) and Kobe (right) maps having eight
buildings (blue) and also road (gray) vertices. The yellow vertices denote the ignition
points and the green vertices denotes the position of the agents. (Color figure online)



252 O. Aşık and H.L. Akın

Table 1. The average reward per time step and its percentage with respect to the
average optimal value

Random SA Greedy SPATAP SPATAP-Ext Optimal

0.365 ± 0.154 0.623 ± 0.176 0.625 ± 0.189 0.621 ± 0.170 0.654 ± 0.176 0.712 ± 0.147

51.423% 87.56% 87.75% 87.15% 91.88% 100%

We show the average expected reward per time step over a horizon of 20 steps
in Table 1. We present the results for random agent, single-agent approximation,
greedy agent, SPATAP and SPATAP-Ext agents for 50 randomly generated sce-
narios and 100 samples for every scenario. Single-agent algorithm plans using the
value iteration algorithm as if they were the only agent in the world and act this
way. Greedy agent chooses to go to the closest vertex that is in burning state.
Random agents choose random actions. SPATAP denotes the online approxima-
tions proposed by Claes et al. [1]. The online approximations proposed in this
study as an extension to SPATAP is shown as SPATAP-Ext. For single-agent
and SPATAP algorithms, we coordinate the selection of vertices when two agents
are at the same position so that two agents do not choose the same best action.
For greedy algorithm and SPATAP-Ext, we coordinate the choice of the target
so that two agents do not go to the same target. We show that our approach
is better than other algorithms. All the competing algorithms achieve 87% of
optimal average reward, but the SPATAP-Ext achieves 92%.

5.2 Scalability

In Fig. 4a, we show the average reward per time step for scenarios having different
number of buildings. These scenarios have five agents and three random ignition
points. The values are averaged over 50 runs and every run is set for 50 horizon.

(a) The average reward per time step versus
the number of vertices

(b) The average size of the state versus the
time step

Fig. 4. Scalability comparison



Effective Multi-robot Spatial Task Allocation Using Model Approximations 253

We can see that SPATAP-Ext performs better or equal compared to Greedy
algorithm. Depending on the ignition points, agents’ positions and graph, the
difference between two algorithms might increase or decrease.

Due to the approximations, we are able to have linear running time increases
when the number of agents or the number buildings increases. The shortest
path pruning and the dynamic planning horizon approximations result in further
reduction in the size of the state space. We show the effect of these extensions
in terms of the state space in Fig. 4b. Our approach reduces the state space by
thousandfold compared to SPATAP only approximations. We use 10 runs of a
sample scenario having 10 buildings and 2 agents.

5.3 RoboCup Rescue RMASBench

To benchmark SPATAP-Ext, we created 10 scenarios on the test map (having
37 buildings) of the RCRS. All of the scenarios2 have five to ten ignition points,
8 agents in random positions and 100 horizon3. The agents do not act before
the 20th time step of the simulation to ensure the propagation of the fire. The
score of the RCRS at the end of the simulation is shown in Table 2. Since the
fire propagation behavior is not randomized, we report results over a single run.
This score represents the percentage of the damage on the city. We compare
the performance of the SPATAP-Ext with DCOP algorithms (Greedy, DSA,
BinaryMaxSum) of the RMASBench [5]. Although DCOP methods generally
perform better than SPATAP-Ext, they have the advantage of well-tuned utility
function. Another important factor affecting the performance of SPATAP-Ext
is the assumption that a single agent can extinguish a fire in a single time step

Table 2. The comparison of the algorithms for 10 randomly created scenarios on the
test map of RCRS.

Scenario SPATAP-Ext Greedy DSA BMS

1 0.875 0.866 0.878 0.866

2 0.796 0.814 0.805 0.801

3 0.821 0.844 0.844 0.844

4 0.776 0.798 0.798 0.810

5 0.746 0.814 0.816 0.816

6 0.840 0.868 0.865 0.867

7 0.872 0.885 0.874 0.874

8 0.729 0.738 0.731 0.745

9 0.896 0.890 0.890 0.890

10 0.881 0.881 0.884 0.881

2 Test scenarios: https://github.com/okanasik/spatial task allocation.
3 An example run can be seen here: https://youtu.be/nuj8s9aFAlg.

https://github.com/okanasik/spatial_task_allocation
https://youtu.be/nuj8s9aFAlg


254 O. Aşık and H.L. Akın

irrespective of the size of the building. This results in the distinct targets for
every agent and increases the chances of the propagation of the fire. In RCRS,
if more agents act to extinguish a fire, the faster the fire will be extinguished.
When we analyze the results, we see that even DCOP greedy agent performs
better than other methods, this suggest that reflex behavior is more important
for such small maps.

To increase the performance of SPATAP-Ext agents on RCRS, we also create
a set of buildings in unit sizes to enable more agents to extinguish the same
building. Although this improved the performance, we see that agents are more
likely to choose the closer buildings.

6 Conclusion

We show the application of online approximations for one of the challenging
multi-agent planning problems. Our approach extends SPATAP framework with
the introduction of the shortest path pruning, dynamic planning horizon and
task clustering approximations for a harder problem Rescue-SPATAP. We show
that our approach is better than Greedy approach and has similar performance
to SPATAP, but requires less computation.

As a future work, we plan to extend this framework for heterogeneous agents
to model whole RCRS problem. By introducing partial observability, commu-
nication, and decentralized planning, we plan to fully implement online plan-
ning framework for RCRS. We will also reduce the complexity by introducing
macro-actions.

References

1. Claes, D., Robbel, P., Oliehoek, F.A., Tuyls, K., Hennes, D., van der Hoek,
W.: Effective approximations for multi-robot coordination in spatially distributed
tasks. In: Proceedings of the 14th International Conference on Autonomous Agents
and Multiagent Systems, pp. 881–890 (2015)

2. Dos Santos, F., Bazzan, A.L.: Towards efficient multiagent task allocation in the
robocup rescue: a biologically-inspired approach. Auton. Agent. Multi-agent Syst.
22(3), 465–486 (2011)

3. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination
of low-power embedded devices using the max-sum algorithm. In: Proceedings of
the 7th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 639–646 (2008)

4. Fitzpatrick, S., Meertens, L.: Distributed coordination through anarchic optimiza-
tion. In: Distributed Sensor Networks: A Multiagent Perspective, pp. 257–295
(2003)

5. Kleiner, A., Farinelli, A., Ramchurn, S., Shi, B., Maffioletti, F., Reffato, R.: Rmas-
bench: benchmarking dynamic multi-agent coordination in urban search and res-
cue. In: Proceedings of the 2013 International Conference on Autonomous Agents
and Multi-agent Systems, AAMAS 2013, pp. 1195–1196. International Foundation
for Autonomous Agents and Multiagent Systems, Richland (2013)



Effective Multi-robot Spatial Task Allocation Using Model Approximations 255

6. MacGlashan, J.: Burlap library (2016). http://burlap.cs.brown.edu
7. Nüssle, T.A., Kleiner, A., Brenner, M.: Approaching urban disaster reality: the

ResQ firesimulator. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J.
(eds.) RoboCup 2004. LNCS, vol. 3276, pp. 474–482. Springer, Heidelberg (2005).
doi:10.1007/978-3-540-32256-6 42

8. Parker, J., Nunes, E., Godoy, J., Gini, M.: Exploiting spatial locality and hetero-
geneity of agents for search and rescue teamwork. J. Field Rob. 33(7), 877–900
(2016). Wiley Online Library

9. Pujol-Gonzalez, M., Cerquides, J., Farinelli, A., Meseguer, P., Rodriguez-Aguilar,
J.A.: Efficient inter-team task allocation in RoboCup rescue. In: Proceedings of the
14th International Conference on Autonomous Agents and Multiagent Systems, pp.
413–421 (2015)

10. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (2014)

11. Scerri, P., Farinelli, A., Okamoto, S., Tambe, M.: Allocating tasks in extreme teams.
In: Proceedings of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 727–734. ACM (2005)

http://burlap.cs.brown.edu
http://dx.doi.org/10.1007/978-3-540-32256-6_42

	Effective Multi-robot Spatial Task Allocation Using Model Approximations
	1 Introduction
	2 Background
	2.1 Multi-agent Markov Decision Process
	2.2 Rescue Spatial Task Allocation Problem

	3 Related Work
	4 Methods
	4.1 Hierarchical Planning by Task Clustering
	4.2 Single-Agent Approximation
	4.3 Static Task Approximation
	4.4 The Shortest Path Approximation
	4.5 Online Dynamic Planning Horizon

	5 Experiments and Results
	5.1 Comparison with the Optimal Policy
	5.2 Scalability
	5.3 RoboCup Rescue RMASBench

	6 Conclusion
	References




