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Abstract. Many data mining approaches aim at modelling and predict-
ing human behaviour. An important quantity of interest is the quality
of model-based predictions, e.g. for comparative analysis and finding a
competition winner with best prediction performance. In real life, human
beings meet their decisions with considerable uncertainty. Its assessment
and resulting implications for the statistically evident evaluation of pre-
dictive models are in the main focus of this contribution. We identify
relevant sources of uncertainty as well as the limited ability of its accu-
rate measurement, propose an uncertainty-aware methodology for more
evident evaluations of data mining approaches, and discuss its implica-
tions for existing quality assessment strategies. Specifically, our approach
switches from common point-paradigm to more appropriate distribution-
paradigm. The proposed methodology is exemplified in the context of
recommender systems and their established metrics of prediction qual-
ity. The discussion is substantiated by comprehensive experiments with
real users and large-scale simulations.

Keywords: Human uncertainty · User noise · RMSE · Magic barrier ·
Distribution-paradigm
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1 Introduction

A broad range of algorithms and approaches in data mining aims at modelling
and predicting aspects of human behaviour. These efforts are motivated by many
practically relevant applications, including various recommender systems, con-
tent personalisation, targeted advertising, along with many others. The com-
parative assessment of methods usually involves implicit or explicit knowledge
about user behaviour, either by observing user interactions or by asking users
explicitly. In many situations, particular individuals may meet their decisions
with considerable uncertainty. In other words, they would not exactly repro-
duce their decisions when asked twice or multiple times. Consequently, observed
decisions must be seen as single draws from individual “feeling”-distributions,
c© Springer International Publishing AG 2017
A. Bouguettaya et al. (Eds.): WISE 2017, Part I, LNCS 10569, pp. 106–120, 2017.
DOI: 10.1007/978-3-319-68783-4 8



Assessment of Prediction Techniques: The Impact of Human Uncertainty 107

resulting from complex cognition processes, and influenced by multiple factors
(e.g. mood, media literacy, etc.). Moreover, and even more important, our knowl-
edge about such distributions may be very limited due to natural restrictions
of human behaviour, i.e. it is practically not possible to require the necessary
amount of repeated trials for precise location of the underlying distribution para-
meters. The presence of human uncertainty and our incomplete knowledge about
its properties naturally raise the question of assessment validity and reliability.
If some approach R1 shows better results than approach R2 in the sense of a
certain quality metric (prediction accuracy, user satisfaction, etc.) given refer-
ence data, can we consider this as a statistically evident proof that approach
R1 is indeed better? In the common sense of statistical hypothesis testing, the
confident conclusion can be made if the opposite case has a very low probability
(type I error) to happen. Under appropriate accounting for human uncertainty,
such evidence is often hard to reach.

As a motivating example, we consider the task of rating prediction (com-
mon to recommender systems research), along with the Root Mean Square Error
(RMSE) [9] as a widely used metric for prediction quality. In a systematic exper-
iment with real users (described in more detail in the forthcoming sections), indi-
viduals rated certain media items (movie trailers) multiple times. Only 27% of
users have shown constant rating behaviour; 73% of them have given at least two
different ratings to the same item; 49% of users have given three or more differ-
ent responses. Based on the observations made so far, we constructed individual
uncertainty models for every user and thus, the considered quality metric (in our
case, RMSE) became a random quantity, characterized by a certain probability
density function (PDF).

Fig. 1. RMSE as random quantity (Color figure online)

Figure 1 shows corresponding results for two sample recommenders: best pos-
sible prediction R1 (the mean of observed user responses) (red chart) vs. random
predictions around the mean R2 (blue chart); here R1 is supposed to be the bet-
ter system by design. As can be seen, there is a large overlap between both PDFs
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inducing a probability of P (“R2 better than R1”) ≈ 0.33. Insofar, the compar-
ison of point-wise calculated quality metrics in a particular experiment is not
necessarily evident for a statistically sound proof of method advantages. With-
out any loss of generality, the observations made so far can be considered as
an indicative motivation for a more careful analysis of the following research
questions:

Q1: How well is human uncertainty measurable and what are the implications
of its incomplete assessment onto possible model comparisons?

Q2: How well can distinguishability be reached under the human uncertainty
assumption, specifically

(a) What is a natural metric for the distinguishability of two different models?
(b) What kind of statistical evidence indicates that a model can still be improved?
(c) What makes a difference between two models statistically significant?

2 Related Work

In the context of this paper, we exemplify our approach by scenarios from the
field of recommender systems as summarised in [14] and focus specifically on
comparative evaluation metrics. Recommender systems were initially based on
demographic, content-based and collaborative filtering. An overview of these
techniques is given in [4]. As collaborative filtering recently turned out to be
one of the most successful techniques, they rapidly got into the centre of further
research. A roadmap to collaborative filtering as well as a profound discussion
on its predictive performance is provided by [17].

Due to the importance of evaluating those recommender systems in terms
of their model-based prediction quality, different metrics have been introduced,
such as the root mean squared error (RMSE), mean absolute error (MAE), mean
average precision (MAP) and normalized discounted cumulative gain (NDCG)
(see [1]). Further possible quality-related dimensions of interest in recommender
assessment (user satisfaction, precision/recall, etc.) are summarised in [9].

All mentioned quantities have in common the need for human input, either
by asking the users explicitly or by observing their interactions. In both the
cases, human responses may show a considerable degree of uncertainty, resulting
from complex cognition processes and multiple influential factors. Consequently,
the main results shown in this contribution can be easily adopted for general
cases without substantial loss of validity.

The idea of uncertainty is not only related to predictive data mining but also
to measuring sciences such as physics or biology. In this area, a science called
metrology has been developed, which is about accurate and precise measurement.
Recently, a paradigm shift was initiated on the basis of a so far incomplete the-
ory of error (see [7]), so that variables are currently modelled by probability
density functions, and quantities of interest are obtained by means of a convo-
lution of these densities. This model is described in [12]. A feasible framework
for computing these convolutions via Monte-Carlo-simulation is given by [13].
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We employ this model as a basis for our modelling of uncertainty for addressing
similar issues in the field of computer science.

The complexity of human perception and cognition can be addressed by
means of latent distributions (see [18]), resulting in varying observations. This
idea is widely used in cognitive science and in statistical models for ordinal data.
For example, so-called CUB models for ordinal data [10] assume the Gaussian
as a latent response model underlying the observations. We adopt the idea of
modelling user uncertainty by means of individual Gaussians following the argu-
mentation in [10] for constructing our own response models.

The human impact on the prediction quality was noticed in 2009 when [2]
stated, that users are inconsistent in giving feedback and therefore establish
an unknown amount of noise that challenges the validity of collaborative filter-
ing. In consequence, [15] has shown that quality metrics cannot exceed certain
barriers, grounded in the collective uncertainty of observed user decisions. In
order to collect information about human uncertainty, we follow [3] by using
repeated rating scenarios for same users and items within conducted experi-
ments designed in accordance with experimental psychology [6,11]. On the basis
of the information gathered by using this approach, the authors of [3] were able
to develop a preprocessing in order to de-noise the underlying data set of rat-
ings and therefore yield better prediction accuracy. In contrast, we distinguish
between non-significant deviations (natural human noise) and significant ones
(model induced noise). In this paper, we use the same measuring instrument to
collect uncertainty information as in [3] but in this contribution, we also focus
on the influence of this uncertainty on the accuracy of recommender systems
under the view of metrology. We also take the idea of a pre-processing to reduce
the impact of human uncertainty on RMSE under this different perspective.

3 Modelling Human Uncertainty

For evaluating the quality of model-based predictions exemplified by recom-
mender system accuracy, we compare internally computed predictors against real
user ratings. Let I = {1, . . . , I} be the index set of I items and U = {1, . . . , U}
the index set of U users. When several users have rated several items, we obtain
n ≤ U · I pairs (πν , rν) of predictors πν and ratings rν that can be matched
against each other where ν ∈ U ×I is a multi-index. These quantities allow com-
puting single scores of accuracy metrics (e.g. RMSE) which corresponds to the
commonly used point-paradigm. By using the metrologic distribution-paradigm,
we explicitly account for human uncertainty and its resulting rating uncertainty.

We consider all the given ratings to be a family of random variables
Rν ∼ N (μν , σν) which are assumed to be normally distributed as also done
in [10]. From this point of view, a given rating rν can be seen as the output of
a random experiment that is somehow related to human cognition. Hereunder,
human uncertainty is strongly related to statistical randomness and the standard
deviation σν becomes a natural measure of human uncertainty. In this case, the
RMSE becomes a random variable itself, since it is a composition of continuous
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maps of random variables. The distribution emerges as a convolution of n density
functions under the given mathematical model

RMSE =

√ ∑
ν ∈ U×I

(πν − Rν)2

n
. (1)

As an example, we consider all n rating distributions to be i.i.d. with Rν ∼
N (πν , 1) that is, the predictors of our recommender systems perfectly match
with the mean of our rating distributions. With these distributions, we want to
derive the RMSE’s density gradually by specifying the densities for every step
of computation that has to be done for calculating the entire RMSE. First, we
consider the initial step S1

ν := πν − Rν which is a random variable distributed
by N (0, 1). Then as sum of n standard normal distributed random variables, the
second step S2

ν :=
∑

ν(S1
ν)2 yields a χ2(n)-distribution with n degrees of freedom.

Hence, a scaling by 1/n will lead to a gamma distribution S3
ν := 1

n ·S2
ν ∼ Γ (n

2 , 2
n )

and finally for the last step, S4
ν :=

√
Z2

ν ∼ Nakagami(n
2 , 1) yields the Nakagami-

distribution since it is the square root of a gamma-distributed random variable.
Under all these conditions, we yield the RMSE not to be a single point but
rather to be a Nakagami-distributed random variable with density function

f(x) =
2mm

Γ (m)
x2m−1 exp

(−mx2
)

where m = n/2. (2)

whose expectation

E(RMSE) =
Γ (n+1

2 )
Γ (n

2 )

√
2
n

(3)

is the average RMSE score according to the point paradigm when repeating the
rating scenario infinitely. The advantage of this approach is, that it additionally
provides a non-vanishing variance

V(RMSE) = 1 − 2
n

·
(

Γ (n+1
2 )

Γ (n
2 )

)2

(4)

as a measure of the uncertainty that is related to the RMSE. The fact that a
different RMSE score is achieved each time the rating scenario is repeated, corre-
sponds to drawing a random number from a given RMSE distribution within the
distribution-paradigm. Considering a data set of uncertain ratings, two different
recommender systems would obtain different RMSEs on this dataset, denoted X1

and X2. Let fX1(x) and fX2(x) the probability density functions of X1 and X2.
If those densities overlap, then there is also a non-vanishing possibility of error
when building a ranking order by evaluating single scores only (point-paradigm).
Let x1 and x2 denote two realisations of the RMSEs X1 and X2 and let x1 < x2

be the ranking order by using the point-paradigm, then the probability Pε of
error for this decision is given by Pε := P (X1 > X2) with

P (X1 > X2) :=
∫ ∞

−∞
fX2(x)

(
1 − FX1(x)

)
dx ≤ 0.5 (5)
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where FX1(x) :=
∫ x

−∞ fX1(t) dt denotes the cumulative distribution function of
fX1 . Later, it will be shown that a ranking built by using the point-paradigm is
associated with considerable errors caused by human uncertainty. However, this
can virtually be subtracted out in a pre-processing step.

From the view of the distribution-paradigm, each time a given rating is com-
pared with a model-based prediction, we must examine whether the observed
deviations are significant or just in nature of contingency, i.e. the influence of
human uncertainty. In doing so, we divide the set of all deviations into two sub-
sets. One subset contains all the deviations around the predictor πν that can
be considered as human uncertainty and the other subset contains all devia-
tions whose extent cannot be explained by this uncertainty and thus seems to
be induced by the prediction model. In this case, it seems viable to calculate
the RMSE by taking into account only those deviations that are related to the
algorithm rather than to human uncertainty. Similarly to the classic RMSE, we
refer to this more natural metric as the significant RMSE (sRMSE). Following
this approach, we have to use statistical hypothesis testing to decide whether a
realisation rν of the rating distribution Rν is equal to a model-based prediction
πν or not. In mathematical notation, we have to test

H0 : rν = πν vs. H1 : rν �= πν (6)

for every multi-index ν at a given significance level α. For known density func-
tions fRν

of the rating distributions Rν the critical region can be constructed as
the complement of Iα = [πν − a; πν + a] where a is chosen such that

∫ πν+a

πν−a

fRν
(x) dx = 1 − α. (7)

We now yield the probability density function of the sRMSE by a convolution
of the pseudo-restrictions fRν

|I�
95

(x) := II�
95

(x) · fRν
(x) where I is the indicator

function. Due to this definition, the sRMSE grants assessment of different rec-
ommender systems with much lower probabilities of error. This can be explained
by not taking into account the stabilising centre of all the rating-distributions
and as the RMSE amplifies the remaining extreme values by its quadratic term
(see Eq. 1), the distributions rapidly differ under increase of false predictions.
Having in mind this mathematical model of human uncertainty in terms of the
novel metrologic distribution-paradigm, we elaborate on our research questions
by examination of real life scenarios.

4 User Study and Simulations

In practice, the application of the previously described model is technically chal-
lenging. Let the rating distributions Rν ∼ N (μν , σν) be not necessarily equal
for every ν. As it has been shown in [5], the sum of squared deviations receives
the density of a non-central χ2-distribution. At this point, it is quite hard to
find a closed form for the RMSE density. It turns out that efficient dealing with
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the RMSE’s distribution can only be maintained by using statistical simulations
when general cases are taken into account. In this paper we use Monte-Carlo-
Simulations (MC) as described in [13]: For every input variable Rν ∼ N (μν , σν)
we take a sample S(Rν) := {r1ν , . . . , rτ

ν} of τ pseudo-random numbers (trials)
that are drawn from this specific distribution. Due to the randomness, further
computations may fluctuate slightly, but his effect diminishes for a high number
of trials. In our analyses, we reached stable results by setting τ = 106. With
these samples we compute S(RMSE) by

S(RMSE) =

⎧
⎨

⎩
yj =

√
√
√
√

∑

ν

(πν − rj
ν)2

n
: j = 1, . . . , τ

⎫
⎬

⎭
. (8)

Post hoc illustration of this sample by a normalised relative histogram with b
bins lead to an approximation of the RMSE’s density. Our analyses often focus
on the error probability Pε as described in Eq. 5. In the following numerical
simulations this probability is efficiently computed by

Pε = P (RMSE1 > RMSE2) = |A|/τ (9)

where A is the set of all (ri, sj) ∈ S(RMSE1)×S(RMSE2) holding the condition
ri > si for i = 1, . . . , τ . For modelling human uncertainty, we assume a set of
known rating distributions, based on perceptions about real user behaviour from
comprehensive user experiments.

User Experiments

Our experiment is set up with Unipark’s1 survey engine whilst our partici-
pants were committed from the crowdsourcing platform Clickworker2. During the
experiment, participants watched theatrical trailers of popular movies and televi-
sion shows and provided ratings on a 5-star scale multiple times in random order.
The submitted ratings have been recorded for five out of ten fixed trailers so that
the remaining trailers act as distractors triggering the misinformation effect, i.e.
memory is becoming less accurate because of interference from post-event infor-
mation. Altogether, we received a rating tensor Ru,i,t with dim(R) = (67, 5, 5),
having N = 1675 data points in total, where the coordinates (u, i, t) encode the
rating that has been given to item i by user u in the t-th trial. From this dataset
we derive a unique rating distribution for every user-item-pair by considering
tensor-slices in trial-dimension Ru,i := Ru,i,• = {Ru,i,t|t = 1, . . . , 5} which can
be easily depicted in a relative histogram and modelled by a certain rating dis-
tribution. In our experiment, only few tensor slices contain constant ratings and
hence lead to a vanishing variance. Performing an item-wise analysis, the frac-
tion of tensor slices with non-zero variance ranges from 50 to 90% that is, only
every second participant is able to reproduce its own decisions for the best case.
1 http://www.unipark.com/de/.
2 https://www.clickworker.de/.

http://www.unipark.com/de/
https://www.clickworker.de/
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For the worst case, only one out of ten participants is able to precisely repro-
duce a rating. All tensor slices containing a non-vanishing variance are checked
for normality by a KS-test at α = 0.05. The null hypothesis was never rejected,
allowing to keep the Gaussian distribution as a possible model (rationally, it
exhibits maximum entropy among all distributions with finite mean/variance
and support on R).

Research Question Q1: Measurability of Human Uncertainty

Description: Based on our user study, we assume Rν ∼ N (μν , σν). Since this
study only surveyed a sample rather than an entire population, point estimates
for the distribution parameters would be inappropriate. Instead, confidence inter-
vals have to be specified. Following [8], the confidence interval for the parameter
μν can be received by

μν ∈
[

x̄ν − t(1− α
2 ;n−1)

sν√
n

; x̄ν + t(1− α
2 ;n−1)

sν√
n

]

(10)

where x̄ and s are the point estimates for the mean and bessel-corrected standard
deviation and t(p;k) represents the p-quantile of the t-distribution with k degrees
of freedom. Following [16], the confidence interval of σν is given by

σ ∈
[
s
√

(n − 1)/χ2
(1− α

2 ;n−1) ; s
√

(n − 1)/χ2
(α
2 ;n−1)

]
(11)

where χ2
(p;k) is the p-quantile of the χ2-distribution with k degrees of freedom.

This means that we can not simply determine a single rating distribution for
each data set. Instead, a variety of rating distributions needs to be computed
for each user-item-pair where the associated parameters are drawn from the cor-
responding confidence interval. Even for large-scale computations, the resulting
RMSE does not possess a stable density function. However, we can consider bor-
derline cases which reveal the maximum span in which we can expect results for
the density function of the RMSE. On this basis we run three simulations:

(a) Best Case (b) Worst Case

Fig. 2. Borderline cases of RSME for different recommender systems



114 K. Jasberg and S. Sizov

Simulation 1: In Simulation 1 we compute these borderline cases by assign-
ing the parameters μν and σν as the lower limits of the corresponding confidence
interval and the upper limits respectively. In doing so, we first build six recom-
mender systems by defining their predictors via where k denotes the k-th rec-
ommender systems. Then, for every recommender systems we compute a sample
S(RMSE(R k)) for all borderline cases as described in Eq. 8 and generate the
ML-density functions. In this simulation we use τ = 106 MC-trials for steadiness
of histograms as well as b = 55 bins for accurate display of densities. Figure 2
shows the impact of the uncertainty of the re-rating-proceeding. Whilst we can
recognise a good resolution for three groups of RMSEs in the minimum case,
this is virtually no longer possible for the maximum case. The true distributions
of the individual RMSEs can vary between these two thresholds but remain
unknown to us on the basis of the information collected. In short, with only five
re-ratings it is not possible to get high-quality uncertainty information, but it
must be said that this phenomenon is not grounded within the point-paradigm
itself. In practice, we have to distinguish between two different types of uncer-
tainty: On the one hand, there is the human uncertainty (leading from scores
to distributions) which is in the main focus of this contribution. But on the
other hand, there is also a kind of measurement error which we call the method
uncertainty. The variability for the RMSE distributions in Fig. 2 is completely
explained by the impact of this method uncertainty.

Simulation 2: The method uncertainty can be reduced by decreasing the width
of the confidence intervals that scale with 1/nq for some q ∈ R. To this end, it
is necessary to increase the number of re-ratings. Accordingly, the borderline
cases of the RMSE converge to a stationary state for large n. In this Simulation
we estimate the number of re-ratings in order to get stable results, so we can
speak of the true RMSE. As a measure of this convergence, we calculate the
intersection area of the minimum and maximum density for each recommender
system. As can be seen from Fig. 3(a), we need about 1000–2000 re-ratings, so
that both distributions converge to a steady state by more than 90%. This means
that users in a real rating scenario would have to re-evaluate the same item at
least 1000 times in order to locate the RMSE-distribution accurately.

Simulation 3: If it is not feasible to calculate the stationary state with the
re-rating-proceeding, then it might be sufficient to only gather samples as large
as to exclude the high error probabilities of the maximum case. This is sim-
ulated by fixing the point estimates x̄ and s and artificially increasing the
sample size n to calculate the boundary points of our confidence intervals in
Eqs. 10 and 11. With those, we determine the error probabilities for a point-
paradigm ranking of recommender system 1 to all the other recommender sys-
tems for each of the borderline cases. Figure 3(b) depicts the error probabilities
Pε = P (RMSE(R1) > RMSE(R3)) for the minimum and the maximum case. All
the other cases of Pε = P (RMSE(R1) > RMSE(R k)) lead to equivalent results
for k �= 1. As we can see, we would need about 500 re-ratings to regard the
RMSE approximation to be satisfactory, if we accept a maximum of Pε ≈ 0.10.
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(a) Convergence of minimum and
maximum RMSE

(b) Example of convergence of error
probabilities

Fig. 3. Convergence into the stationary state

Research Question Q2b: Statistical Evidence for Improvements

Here, we examine the conditions under which a single recommender system can
not be distinguished from a theoretically optimal recommender system by means
of the RMSE. The idea of this investigation is to create a copy of a given rec-
ommender system and to distort this copy by artificial uniform-noise. This is
done by resampling its predictors π1 ∈ [(1−p)π0 ; (1+p)π0] assuming a uniform
distribution. In this case, a noise fraction of p means that those new predictors
deviate from the originals by 100p%. The RMSE thereby receives a shift on the
x-axis so that it’s possible to build a ranking along with its associated error
probability. We can apply these as a function of the noise component. Noise
is, in this context, a specific quantity for inducing differences in recommender
system quality in a controlled manner.

Fig. 4. Error probabilities as a function of artificial predictor noise

Simulation 4: The expected value of a random variable is the value which is
obtained on average in the case of infinite repetitions of the random experiment
and thus has the smallest sum of squared deviations. Theoretically, this property
makes the arithmetic mean x̄u,i of the data series Ru,i the optimal predictor.
Hence, we define the optimal recommender system by setting πu,i := x̄u,i, so
statements can be generated which are correct for very large investigations on
the average. To this optimum, we additionally create a copy which we distort by
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artificial uniform-noise as described and specify that two recommender systems
can be distinguished significantly if the error probability is less than 5%. In this
simulation we again use τ = 106 MC-trials for each of the 106 data points (p, Pε),
having 1012 trials in total. Figure 4(a) shows the curve of the error probability
where the width of this graph is an artefact of the uniform-noise. We can see
that the error probability drops below the 5% mark in a range of 21% to 24%,
i.e. only then distinctions to the optimum can be reliably detected. This proves
the existence of a certain barrier of prediction quality so that any superior rec-
ommender system can not be differentiated from the best possible recommender
system anymore.

Research Question Q2c: Significant Differences of two Models

In real life, assessments compare several recommender systems among each other.
This is taken into account in the following simulations.

Simulation 5: We generate two copies of an optimal recommender, with differ-
ent proportions of added noise in such a way that the relative noise difference of
both copies remains constant. Then, we compute the resulting RMSEs for both
copies together with an error probability for the point-paradigm ranking. By
increasing the noise for both copies whilst keeping their relative difference con-
stant, we generate an offset (deviation from the optimum or prediction quality)
and can thus plot the error probabilities against this offset for different noise
ratios. This simulation was performed with 1012 data points. Figure 5 depicts
the family of curves mapping the noise offset to the corresponding error proba-
bilities. The offset represents background noise and is a measure of the deviation
from the best possible recommender system, i.e. the larger the offset, the worse
the prediction quality of the recommender system. The colours encode the rela-
tive difference Δ of two recommender systems among each other. For the green
curve (representing 10% noise of difference), an x-value of 0.15 means that RS1
has a noise of 15% whereas RS2 has a noise of 25%. The corresponding y-value
indicates the error probability for ranking both of these recommender systems
using the point paradigm. It is apparent from this Figure, that two systems can
not be brought into a ranking order without considerable error probability if
their relative difference is below 15%, regardless of their basic prediction quality.
Figure 5 also reveals that only for noise differences of more than 20%, two dif-
ferent systems can be distinguished starting from a certain quality. As a result,
we recognise the following: The better a system becomes, the more improvement
does a revision need in order to be detected with statistical evidence.

Simulation 6: In order to make our results more tangible and comparable to
current competitions (e.g. the Netflix Prize), we define the RMSE difference as
the relative difference in the expectation values of both distributions for this
difference uses to be the best estimation for an infinitely repeated rating sce-
nario. We rerun the last simulation, but now determine the RMSE distances
by using adaptive noise: We only add so much noise until we reach the desired



Assessment of Prediction Techniques: The Impact of Human Uncertainty 117

(a) artificial noise as a measure for
recommender difference

(b) relative RMSE-differences as a
measure for recommender difference

Fig. 5. Error Probabilities for two suboptimal recommender systems

RMSE difference. Then we compare the error probabilities by means of those
RMSE distances. For the RMSE distances, a similar result is obtained. Two
systems differing by 10% in terms of RMSE must deviate more than 40% from
the optimum to be distinguished significantly. In reverse, if the closeness of two
systems to the theoretical optimum (i.e. the offset) remains unknown - which is
probably always the case in real life assessment - then both systems would only
be distinguishable with statistical evidence, if they differ at least 20% in terms
of the RMSE (since only the 20%-curve is below the 5%-mark for any offset).

Human Accuracy Metrics

At this point, we investigate the resolution properties of two recommender sys-
tems by means of the sRMSE. This is performed by a hypothesis test as described
in Sect. 3 and considering only significant deviations from the rejection range
to compute an RMSE. As a result, the sRMSE could theoretically distinguish
between two recommender systems even with fewer deviations.

Simulation 7: In practice, the hypothesis test is performed by constructing
a symmetric interval around the predictor πν within the rating distribution of
Rν until the density’s area over this interval sums up to 0.95. All values in
this interval do not represent any significant deviations and are not taken into
account in the sRMSE. We hence generate pseudo-random numbers according
to Rν until we have τ = 106 values in the rejection range and use these to
compute the sRMSE distribution. For these density functions, we now repeat
the procedure from simulation 4. The results are depicted in Fig. 4(b). Here we
see error curves under noise in the form of a comparison of RMSE and sRMSE. It
can be seen that the sRMSE grants substantially faster distinguishability from
an optimum with statistical evidence than the traditional RMSE. Using this
metric, a recommender system can already be distinguished from a theoretical
optimum with 10% of noise whereas the RMSE would probably need more than
20%. A repetition of simulation 5 and 6 leads to equivalent results. This proves
the better distinguishing features of the sRMSE as predicted by theory.
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5 Discussion

The lessons learned so far can be summarised as follows:

1. Due to the blur of the RMSE, an ordering relation is sometimes very difficult
to define; we can only give probabilities for the existence of a particular order
relation: The probability Pε := P (R1 > R2|E(R1) < E(R2)) for making
an error when following the point-paradigm has proven to be an intuitive
and very good metric. It correlates positively with the overlap of two RMSE
distributions and is hence a good measure for the distinguishability of two
recommender systems and also serves as a p-value for hypothesis testing.

2. A recommender system is only to be significantly distinguished from an opti-
mum if it differs by more than 21 to 24% in terms of noise. Below this limit,
it cannot be distinguished with evidence.

3. The distinguishability of two systems is not dependent solely on its (noise)
difference, but also on their basic quality, that is, from their distance to a
theoretical optimum. The worse two recommender systems predict, the less
they have to differ in order to be distinguished evidently and vice versa.

4. Methods for collecting uncertainty information are yet to imprecise; the para-
meters of the rating distributions have such wide confidence intervals, that
specifying RMSE densities is not reliable. We need between 500 and 1000 re-
ratings to exclude the worst case and about 2000 re-ratings for stable results.
The method of re-rating-proceeding must, therefore, be improved.

The most notable results are 2 and 3, since they show a natural limit for
the resolution of evaluation metrics (which is also always present in the point
paradigm but can not be made accessible). Result (2) implies the existence of
an equivalence class of optimal recommenders because all recommender systems
below a certain RMSE value are no longer to be distinguished from the opti-
mum. Result (3) generalises this fact and raises the fundamental question of
assessment evidence. On the basis of our results, the suggested solution of using
the sRMSE has proven to be quite fruitful for evaluating prediction quality. In
the our simulations, the sRMSE outperformed the traditional RMSE by far, i.e.
the resolution capability for two recommender systems was doubled.

6 Conclusion and Future Work

It has been shown that accounting for natural human uncertainty is essential for
objective and statistically evident interpretation of ratings and their predictions.
In this contribution, we considered recommender systems and their assessment
by means of the RMSE, as a characteristic evaluation scenario. It can be assumed
that similar influences might be observed for other metrics accounting for uncer-
tain inputs, such as ratings and browsing behaviour. For example, the results
presented here could be reproduced in an equivalent form for the metrics average
absolute deviation and mean signed deviation. Similar influences might be found
not only in recommender systems but also anywhere in predictive data mining
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where human behaviour is to be analysed. We were, therefore, able to provide
initial indications that human uncertainty may have a striking influence on the
predictive data mining and thus on all the areas that build upon it. On this basis,
further research may lead into various directions: For theoretical research, the
overall goal is to develop a complete mathematical model of human uncertainty
providing large connectivity for practical applications. For practical research,
it would be quite profitable to assimilate technical approaches and sensitising
them for human uncertainty. This could be done by developing Bayesian predic-
tion models with informative priors based on advanced experiments.
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