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Abstract. Interpersonal relations facilitate information flow and give
rise to positional advantage of individuals in a social network. We ask
the question: How would an individual build relations with members of
a dynamic social network in order to arrive at a central position in the
network? We formalize this question using the dynamic network building
problem. Two strategies stand out to solve this problem: The first directs
the individual to exploit their social proximity by linking to nodes that
are close-by, while the second tries its best to explore distant regions of
the network. We evaluate and contrast these two strategies with respect
to edge- and distance-based cost metrics, as well as other structural prop-
erties such as embeddedness and clustering coefficient. Experiments are
performed on models of dynamic random graphs and real-world data
sets. We then discuss and test ways that combine these two strategies.

Keywords: Dynamic social networks · Interpersonal ties · Network evo-
lution · Centrality · Exploitation-exploration tradeoff

1 Introduction

The network of social relations entails important properties of individuals. Take,
as an example, the structural construct of centrality [33]. Much has been revealed
about the correlation between centrality and social statues [9,10,23,25]. By occu-
pying a more central position in the social network, an individual may exercise
more control over the flow of information, accessing diverse knowledge and skills,
and hence gaining a higher positional advantage [38]. Exploiting this princi-
ple, individuals may cultivate relationships with others towards improving their
social statues [11]. One famous example is the House of Medici, who rose to
prominence in 15th century Florence through intermarriage with other noble
families [35]. Another example is Moscows growing statues in 12–13th century
Russia thanks to trade relationships with other towns [36]. A third example is
the case of Paul Revere who successfully raised a militia during the American
Revolution by strategically creating social ties [38].

Imagine that an individual tries to embed herself at the center of a social
network through forming new ties. From a structural perspective, this individual
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needs to choose a set of members to build links with. Here we put aside issues
such as attitude, personality, and individual preferences, and focus on a struc-
tural perspective of network building. To this end, the individual may adopt
an exploitative or an exploratory strategy: The former ensures that the individ-
ual exploits existing interpersonal ties and links to those that share a common
social proximity; On the contrary, the latter allows the individual to explore far
and bridge diverse parts of the network. A natural question arises as to which
strategy is more suitable. Moreover, social networks in real life are rarely static,
but rather, they constantly evolve with time. Thus the question has an extra
layer of complexity: How to incrementally build relationships in a network to
gain positional advantage while the network is evolving?

To attempt this question, we should settle several issues: Firstly, we need a
notion that reasonably reflects positional advantage; here centrality metrics may
be of use. Secondly, relation building costs time and effort; one needs to quantify
such costs. Thirdly, one needs models on how a social network evolves.

Contribution. We list the main contributions of the paper:

1. In this paper, we propose the problem of dynamic network building (DNB).
The input to the problem consists of a connected graph G that undergoes
a sequence of updates. The problem asks for a plan that builds edges incre-
mentally between a node v and other nodes so that v gains centrality as G
evolves. (See Sect. 2).

2. To solve this problem, we define exploitative and exploratory strategies and
present heuristics to realize each strategy. (See Sect. 3).

3. We compare the heuristics over various evolution models of social networks
and real-world networks. Exploration often builds less number of new links,
while the exploitative strategy produces better results when other factors,
such as distance and embeddedness is considered (See Sect. 4).

4. Lastly, we propose and evaluate ways that combine the exploitative and
exploratory strategies (See Sect. 5).

This work is meaningful in the following ways: Firstly, the process of social-
ization has been studied intensively in social sciences [21,28,32]. Through for-
malizing and analyzing mechanisms of network building with respect to dis-
tance, embeddedness and clustering, the work quantitatively reveals fundamen-
tal insights in this otherwise rather qualitative problem domain. Secondly, the
exploration-exploitation tradeoff has been a recurring theme in artificial intelli-
gence and management science [2,6,34]. This work discovers an instance of this
tradeoff in the context of social networks. Thirdly, the work opens the door to
many novel applications from engineering information channels on career-based
online social networks to enhancing workplace communication and collaboration
through enterprise management systems.

Related Works. The establishment of interpersonal ties has been a major
problem in social network analysis. Granovetter’s pioneering work contrasts ties
having high embeddedness (strong ties) with ties that bridge two otherwise dis-
joint social circles (weak ties); while embeddedness reflects important dimen-



Dynamic Relationship Building 77

sions such as trust, commitment and solidarity [18], bridges are important to
the exchange of knowledge and ideas [16]. We extends this discussion to study
strategies for building different types of ties. Network building (NB) has been
studied in [29–31]; The problem studied in this paper has crucial differences
to these works: (a) While NB only operates on static networks, here we focus
on evolving networks, which demand the node to be strategic towards future
changes. (b) While NB focuses on smallest eccentricity, DNB aims for optimal
rank on centrality. (c) DNB considers costs incurred from the distance between
the two nodes when forming an edge. A large literature on strategic network
formation explains tie establishment between rational agents using game the-
ory; these works do not consider stochastic models of network evolution [20].
The general view that interpersonal ties bring social support and cohesion has
been discussed in [24,26]. Lastly, exploratory-exploitative strategies discussed in
this paper parallel the two modes of network formation in [21]; there, “meeting
strangers” means exploratory encounters in the network, and “meeting friends-
of-friends” means exploiting existing social circles.

2 The Dynamic Network Building Problem

Following standard convention, we view a social network as a graph G = (V,E)
where V is a set of nodes and E is a set of undirected edges on V of the form uv
where u �= v ∈ V . Here the undirected edges are abstracted models of channels
of information or transactions. The set Γ (u) = {v | uv ∈ E} denotes the neigh-
borhood of u, consisting of all nodes that are adjacent to u. A path (of length k)
is a sequence of nodes u0, u1, . . . , uk where uiui+1 ∈ E for any 0 ≤ i < k. The
(geodesic) distance between u and v, denoted by distG(u, v), is the length of a
shortest path between u and v. We omit the subscript G writing simply dist(u, v)
when the underlying graph is clear. We also need the following formalism:

– For a node s ∈ V and v �= s, denote by G ⊕s v the expanded network
(V ∪ {v}, E ∪ {sv}) obtained by adding sv to G.

– We assume that the social network G evolves by some (discrete-time) sto-
chastic mechanism, which we define below:

Definition 1. An evolution mechanism M is a function that maps a social net-
work G to a probability distribution of social networks M(G). Starting at G, the
network evolves to a sample outcome of M(G) in the next time step.

Imagine v is a node who wants to build relationships in G; Let’s call v the
newcomer in this paper. We assume that (1) v is a node with few connections in
G; (2) v may create edges from itself to nodes in V by paying costs (see below);
and (3) v has no knowledge regarding how G may evolve.

Abstractly, one can view the interactions between v and the social network G
as a two-player game: v is one player; the other player represents the evolution
mechanism of the network. At each round, v creates an edge with a node in G
(keeping all existing edges). For simplicity, we assume each round allows v to
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create at most one new edge. One may easily generalize this setting to allow v to
create several edges in a single round. The evolution mechanism then modifies the
updated network. Through multiple rounds, v aims to get increasingly integrated
into the network. Note that we assume that v functions independently from the
evolution mechanism to highlight that v builds edges without prior knowledge
of the network evolution mechanism.

Definition 2. An (�-round) network building (NB) process between v and G
consists of a sequence of networks G0 = (V0, E0), G1 = (V1, E1), . . . , G� =
(V�, E�) and a sequence of nodes s0 ∈ V0, s1 ∈ V1, . . . , s�−1 ∈ V�−1 such that
G0 = G and each network Gi+1 is a sample output of M(Gi ⊕si

v).

Definition 3. An NB strategy is a function ϕ that outputs a node ϕ(G) in a
given network G. Any NB process (G0, . . . , G�, s0, . . . , s�−1) is said to be consis-
tent with strategy ϕ if ∀0 ≤ i < � : si = ϕ(Gi).

Closeness centrality amounts to an important index of social capital that cap-
tures a node’s ease in accessing information, social support and other resources
[1,13,37]. Thus we use closeness centrality here to indicate the positional advan-
tage of nodes. For any connected G = (V,E) and v ∈ V , define

CCls(v) =
|V | − 1

∑
u∈V \{v} dist(u, v)

.

A higher value of CCls(v) implies that v is in general closer to other nodes, thus it
occupies a better network position. The Cls-rank of v is the percentage of nodes
whose closeness centrality are higher or equal to CCls(v):

rankCls(v) = | {u ∈ V | CCls(u) ≥ CCls(v)} |/|V |.

We assume that the goal of v is to gain a higher closeness centrality (or a low
rankCls). One way to achieve this is to build a tie between v and all nodes in
the network. However, establishing new relationships requires time, efforts and
resources. To identify realistic solutions, one needs to define costs of relationship
building. Here we consider temporal and establishment costs. Temporal cost is
the number of rounds in the NB process and coincides with the number of edges
created for v. The proximity principle states that ties are generally more difficult
to establish between nodes that are further apart (e.g. reciprocal of distance is
a score for link prediction [27]). We thus define establishment cost as the sum of
distance between v and its linked nodes (prior to edge creation).

Definition 4. Let (G0, G1, . . . , G�, s0, s1, . . . , s�−1) be an NB process. We define
the following costs:

1. The temporal cost is �.
2. The establishment cost is

∑�−1
i=1

∑
u∈Si

distGi
(v, u).



Dynamic Relationship Building 79

We are now ready to present the dynamic network building (DNB) problem:
Given a connected social network G and newcomer v, the problem asks for
an NB strategy ϕ such that any NB process consistent with ϕ will have high
CCls(v) (or small rankCls(v)) value, and low temporal and and establishment costs.
Note that due to restriction to unary NB strategies, the temporal cost coincides
with the number of edges added to the newcomer v. Figure 1 displays a simple
example where the graph evolves with the dynamic BA mechanism (see below);
the newcomer gains a high centrality in three rounds.

Fig. 1. A newcomer adds one edge at each round and achieves high centrality after 3
rounds, while the network is evolving.

The DNB problem differs from building relations in a static networks, which
has been discussed in [29–31]: (1) As the network evolves, the NB process may
last indefinitely where v tries to improves and maintains its centrality; (2) Net-
work evolution forces v to balance between current knowledge with future pre-
dicted outcome. For example, linking to a central node will improve v’s centrality
quickly, but also incurs a high cost; on the other hand, linking to a low-centrality
node may seem undesirable in the current network, but this link may improve
the newcomer’s centrality in the future. In this way, the evolution mechanism
significantly impacts the newcomer’s strategy.

3 Exploratory and Exploitative Strategies

Exploitative Strategy. This strategy utilizes existing social proximity of the
node v and searches for the most promising node that lies within a pre-defined
distance from v. Fix as parameter a centrality index C∗ : V → R for nodes. Let
d ≥ 2 be a proximity threshold. When creating an edge, the strategy traverses
through nodes with distance ≤ d from v, and picks a node found with maximum
C∗ value. Procedure 1 defines one round of the exploitative strategy. For the
choice of C∗, we use standard centrality metrics that reflect aspects of social
capital. The variety of centrality metrics below allow us to examine different
potential heuristics, which may not always correlate [7].

1. Degree: CDeg(u) = {w | uw ∈ E}.
2. Betweenness: CBtw(u) =

∑
s �=u�=t∈V |Pst(u)|/|Pst| where Pst is the set of

shortest paths between s and t, Pst(u) ⊆ Pst is those shortest paths that
contain u.
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3. Closeness: CCls(u).

We denote using Ld-Deg, Ld-Btw and Ld-Cls the local heuristics with centrality
CDeg, CBtw, CCls, resp. When d = 2, the newcomer always links to a “friend-of-
friends”, a strategy studied in [21].

Procedure 1. Ld-∗(G, v): Given G = (V,E), v ∈ V

U ← {u | dist(u, v) ≤ d}
return a node u ∈ U with maximum C∗(u)

Exploratory Strategy. This strategy explores beyond the social proximity of v
and links v with promising nodes in potentially distant parts of the network: The
strategy takes a centrality index C∗ : V → R and a distance threshold γ ∈ N as
parameters. Call all nodes within distance γ from v covered; at each round, the
strategy will pick an uncovered node that has maximum C∗-value. Procedure 2
describes a single round of this strategy. We use Gγ-Deg, Gγ-Btw and Gγ-Cls to
denote the exploratory heuristic that use CDeg, CBtw and CCls, respectively.

Since exploration creates edges to nodes that may be far away from v, this
strategy by definition bridges different parts of the network more quickly than
exploitation. Indeed, this can be verified using a simple example: Fix a large
natural number n. Consider the path graph L2n+1 with 2n + 1 nodes (with
nodes v1, v2, . . . , v2n+1 and edges v1v2, v2v3, . . . , v2nv2n+1). Say v1 is the new-
comer. Assuming the network is static, G2-Cls builds O(1) edges from v1 (e.g. to
vn+1, vn−2, vn+2) and gives v1 the highest closeness centrality. On the contrary,
the exploitative strategy will create Ω(n) new edges to have the highest close-
ness centrality. In the next section, we compare the two strategies above through
experiments on standard network evolution mechanisms and real-world data.

Procedure 2. Gd-∗(G, v): Given G = (V,E), v ∈ V

Find maximum γ′ ≤ γ with V �= {u | dist(v, u) ≤ γ′}
U ← V \ {u ∈ V | dist(v, u) ≤ γ′}
return a node u ∈ U with maximum C∗(u)

4 Contrasting Exploitative and Exploratory Strategies

4.1 Network Evolution Mechanisms

We consider three standard network formation models. Originally, each of these
model were used to generated static networks. Here we extend them so that they
entail mechanisms for network generation and evolution.
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(a) Dynamic ER Model. The Erdös-Renyi (ER) random graph model adds
edges between nodes as Bernoulli random variables with probability p. The
degree distribution in the resulting graph thus follows a binomial distribution
B(n−1, p) [8]. We extend the model to a death-birth evolution model: Start from
an ER random graph and introduce parameter r ∈ [0, 1]. At each round, first
remove a randomly chosen set of nodes of size rn (i.e., death); then, add rn new
nodes and link them with nodes in the graph with probability p (i.e., birth). It is
clear that the operation preserves the binomial degree distribution B(n − 1, p).

(b) Dynamic BA Model. The Barabási-Albert model generates scale-free net-
works through a preferential attachment mechanism [4]. To define an evolving
network model, we follow Barabási’s dynamic extension. The key ideas include
growth, link establishment and node deletion [3]. (a) Growth takes a rate g ∈ [0, 1]
and adds gn new nodes; adds m edges from each new node to an existing node
with probability ki/

∑
vj∈V kj where kj is the degree of vj , ∀vj ∈ V . (b) Link

establishment takes a parameter λ ∈ [0, 1]; selects λn pairs of nodes in the
current graph and randomly creates edges between these pairs; the probability
of creating edge vivj is proportional to kikj . (c) Node deletion takes a rate
d ∈ [0, 1]; picks dn nodes, and remove each of them (say, vi) with probability

1/ki∑
j 1/kj

.

(c) Dynamic WS-Model. The Watts-Strogatz model starts from a regular
lattice, and performs random edge rewirings (with probability β) to obtain small-
world networks, which have high levels of clustering and low average path length
[39]. We extend the process to an evolution mechanism: after initialization, the
network evolves in each round by rewiring those previously-rewired edges to a
random node. This dynamic network preserves the small-world property.

Table 1 summarizes the parameters used in our experiments. We choose these
values either because they are standard choices used by others (e.g. m = 2 for
dynamic BA [4]), or they ensure a gradual and smooth change at each round
(e.g. for dynamic ER and WS models).

Table 1. Parameters for evolving network models.

Evolving Model Parameters

Dynamic ER r = 5%, np = 4

Dynamic BA m = 2, λ = 4%, g = 5%, d = 2%

Dynamic WS β = 0.2

Experiment 1 (Costs). Through simulating DNB processes, we compare the
temporal and establishment costs between the exploitative and exploratory
strategies. DNB processes are generated by applying the heuristics in conjunc-
tion with the ER,BA and WS models. As a DNB process may have indefinite
length, we need a termination condition to specify when the simulation stops.
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A natural method is to set a (high) threshold on centrality CCls(v), or set a
(small) threshold on rankCls(v), such that the process terminates once the thresh-
old is met. There are problems with this approach: (1) It is difficult to determine
a desired CCls(v) that facilitates fair comparisons across all evolving models. (2)
In certain cases (e.g. WS model), closeness centrality of nodes are distributed
within a small range; Hence, a node with low centrality may still have a small
rankCls. These concerns motivate us to set a termination condition based on the
ratio g(v) = CCls(v)/rankCls(v); we introduce a threshold ζ such that the process
terminates at the first round when g(v) ≥ ζ is satisfied.

We generate 10 networks of each size n = 100, 200, 500, 1000 using any net-
work models above. We compare the exploitative with the exploratory strategies
by running L2-∗, L3-∗ and G2-∗ heuristic on each graph. Note that L2-∗ only
links v to her “friends-of-friends” which amounts to the most “local” exploita-
tive strategy; L3-∗ reaches beyond this local proximity and results in a different
performance (see below); G2-∗ is an exploratory strategy which tries its to link
v to nodes outside of her local proximity. We do not include results for G3-∗ as
they are very similar to G2-∗. For any generated graph G and heuristic, we do
the following: (1) Build an edge between the newcomer v and a randomly chosen
node in G. (Here we run the same experiment while linking v with initial nodes
of different Cls-rank (10%–90%). The resulting temporal and establishment costs
are very similar. This shows that the rank of the initial node does not signifi-
cantly affect the performance of the strategies.) (2) Apply the heuristic to the
evolution mechanism (corresponding to the network formation model) to gener-
ate 100 DNB processes; the threshold ζ is 33. Here, the value ζ = 33 reflects the
fact that the desired CCls(v) ≈ 1/3 and rankCls(v) ≈ 1%. Other outcomes with
g(v) = 33 that have either considerably lower centrality and Cls-rank, or consid-
erably higher centrality and Cls-rank (e.g. (CCls(v), rankCls(v)) is (1/6, 0.5%) or
(1, 3%)) have been empirically shown to be unlikely. (3) After the DNB process
terminates, measure the resulting temporal and establishment costs. (4) Finally,
record the average costs among all DNB processes of the same evolving network
model, initial network size, and heuristic.

A few facts stand out from the results in Fig. 2: (i) Temporal costs are mostly
below 10, suggesting that a small number of edges are built by the strategies, even
when the size of the network becomes 1000. (ii) For ER and WS, exploration
results in a lower temporal cost compared to the exploitation. (iii) For the
scale-free model BA, the number of edges built decreases as n increases. This
may be due to the expanding nature of the dynamic BA model and the skewed
degree distribution. As a result, exploitation creates less or similar numbers of
edges than exploration. (iv) In general, exploration results in a much higher
establishment costs. This is easy to understand: the strategy links to distant
nodes from v. The L3 heuristics builds less edges than L2 due to the ability to
traverse to a wider part of the graph. (v) The effects of the centrality metrics
C∗ vary with graph models: For ER, closeness centrality is in general preferred,
while for BA, degree centrality is slightly more preferred. For WS, CBtw is better
for exploration, while CCls is better for exploitation as the graph becomes large.
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Fig. 2. Average temporal and establishment costs of simulated DNB processes by
different heuristics on networks of different sizes.

We then plot v’s Cls-rank as new edges are created during the DNB process;
See Fig. 3. rankCls(v) reaches <1% after 10 rounds under all heuristics. G2
improves Cls-rank faster than L2 heuristics. This is most evident for L2-Deg and
L2-Cls in WS-graphs: the high level of clustering may make it hard for exploita-
tion to get out of a dense cluster, but clustering does not seem to pose a problem
for L2-Btw.

Fig. 3. Changes to rankCls(v) (solid lines) and the establishment costs (dashed lines)
during 10 rounds of the DNB process. The network starts with 1000 nodes and v
initially connects to a node with the lowest centrality.

Experiment 2 (Embeddedness and clustering). Experiment 1 implies that,
to some extend, exploitation and exploration perform on par with each other
from a centrality perspective. In building relationship, trust, tie strength and
role integrity are other important dimensions not captured by centrality alone
[17]. These notions are closely affected by two concepts:
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1. Embeddedness in a social network refers to the degree to which an individual
is constrained by social relationships and is often viewed as a platform for
trust [18]. The embeddedness of an edge between x, y is defined as the size
of their shared neighborhoods D(x) ∩ D(y) [12]. We define embed(v) as a
normalized sum of embeddedness:

embed(v) =
∑

vu∈E |{w ∈ V | wu,wv ∈ E}|
(|V | − 1)(|V | − 2)

.

Note that the highest embed(v) is 1 when v is a node in a complete graph.
2. Clustering coefficient of a node measures the probability of two randomly

chosen friends of the node are also friends and relates to the self-identify of
individuals [5]:

cc(v) =
2 · |{uw ∈ E | uv ∈ E, vw ∈ E}|

deg(v)(deg(v) − 1)
.

We measure embed(v) and cc(v) during DNB processes; See Fig. 4. Remark-
ably, embed(v) increases drastically with exploitation, while staying close to 0
with exploration. The clustering coefficient cc(v) also stays close to 0 with explo-
ration, while with exploitation, it quickly rises to a very high level in the first
few rounds, and drops down to below 0.1 after 10–15 rounds. This highlights
the newcomer’s ability to cut across different clusters. Overall, this experiment
demonstrates the crucial difference between the strategies: while both strategies
improve v’s closeness centrality, exploitation enables a higher embeddedness and
clustering coefficient which positively correlates with tie strength and trusts on
its social relations.

4.2 Real-World Evolving Networks

We next take real-world evolving network data as case studies.

Experiment 3 (Contact networks). We take two evolving physical contact
networks: The first data set records face-to-face contacts among roughly 110
attendees of ACM Hypertext 2009 conference during a 2.5-day period [19]. The
second records contacts among roughly 100 employees in a French workplace
June 24 to July 3, 2013 [14]. In both data sets, contacts are updated every 20
seconds. We ask the question: If a newcomer attends the conference, or joins the
workplace, how does she utilize face-to-face contacts to reach a central position
of the network?

We simulate DNB processes on the accumulated network, i.e., networks con-
structed by accumulating edges in previous times, using the G2 and L2 heuristics.
For the first data set, an edge is built every 15 min, and for the second data set,
an edge is built very hour. Figure 5 plots the changes on the newcomer’s Cls-
rank. All heuristics have similar results in terms of improving the Cls-rank as
time progresses. As the networks are relatively small and edges are accumulated,
the heuristics somehow fail to improve newcomer’s rank in the last three days of
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Fig. 4. Changes to v’s embeddedness and cc as edges are added to v. The network
starts with 1000 nodes where v is connected to a node with the lowest centrality.

the second network beyond 20%. The exploitative strategy, however, gives much
smaller establishment costs. On the other hand, exploitation leads to consider-
ably higher embeddedness and clustering coefficient than exploration.

Fig. 5. The Cls-rank and establishment cost resulted from running the heuristics on
(a) ACM Hypertext 2009 contact network; (b) French workplace contact network.

5 Balancing Exploitation with Exploration with UBC

As demonstrated above, exploration usually brings faster improvement to the
newcomer v’s centrality, while exploitation by definition incurs less establish-
ment cost. The trade-off between the two strategies is further complicated by
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the evolving nature of the network (e.g. exploitation exhibits lower temporal
costs than exploration in general on scale-free networks). As in many scenarios
of reinforcement learning, to obtain an optimal solution one needs to strike a
balance between exploitation and exploration. In this section, we adopt upper
confidence bound (UBC), a well-known reinforcement learning method for resolv-
ing the exploitation-exploration dilemma to build relations by integrating the
two strategies.

We adapt the UCB1 algorithm proposed in [2] which has a guaranteed log-
arithm regret uniformly over the number of rounds. Here, exploitative and
exploratory strategies are regarded as two actions, 0 and 1, respectively and
dynamic network building is viewed as a 2-armed bandit problem. In each round
of the DNB process, v evaluates plausible Cls-rank achieved through performing
each action i ∈ {0, 1} using past experience, and then selects the strategy that
seems to be the best. To estimate the plausible mean Cls-rank of a strategy,
we introduce the following notations: Let (G0, G1, . . . , Gt, s0, s1, . . . , st−1) be a
t-round DNB process. For m < �, we use rank(m) to denote the Cls-rank of v
in the graph Gm+1. The estimate on the expected Cls-rank resulted by choosing
action i ∈ {0, 1} at round � + 1 is defined by

Υ(i) =

∑ni

j=1 rank(rij − 1) − rank(rij)
ni︸ ︷︷ ︸

average function

+
√

2 ln t

ni︸ ︷︷ ︸
padding function

(1)

where t is the number of rounds passed, ni is the times that strategy i is selected,
rij is the jth round that action i is selected. We use the difference of v’s Cls-rank
between two contiguous rounds to define the reward that v receives after each
round. Then Average function denotes average reward that v has got so far by
choosing action i. Padding function denotes an estimated uncertainty on i; the
more times that i is selected, the less uncertainty it has.

At the beginning of a DNB process, we apply exploration and exploitation in
the first and the second round, resp. Then, in subsequent rounds, we select the
strategy that achieves the highest Υ(i) value (as (1)). See Procedure 3, which we
call DNB UCB. Note that the algorithm again requires fixing a centrality measure
C∗ and a distance threshold γ ∈ N as parameters as for L and G heuristics.

Procedure 3. DNB UCBγ-∗(G, v): Given G = (V,E), v ∈ V

Initialization: Select Lγ-∗ and Gγ-∗ at round 0 and round 1 resp.
if Υ(Lγ- ∗ (G, v)) ≥ Υ(Gγ- ∗ (G, v)) then

Find maximum γ
′ ≤ γ with V �= {u ∈ V | dist(v, u) ≤ γ

′}
U ← V \ {u ∈ V | dist(v, u) ≤ γ

′}
return a node u ∈ U with maximum C∗(u)

else
U ← {u ∈ V | dist(u, v) ≤ γ}
return a node u ∈ U with maximum C∗(u)

end if
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We implement the algorithm and evaluate its performance over dynamic
network models. At the beginning, all networks have 1000 nodes, and the para-
meters used by the evolution mechanisms are the same as in Sect. 4. Figure 6
plots the change in Cls-rank as well as the resulting establishment costs after
running both the pure (exploratory or exploitative) strategies, and the mixed
strategy during a fixed number of rounds. In all three types of random networks,
the speed that DNB UCB improves Cls-rank sits between the exploitative and
exploratory strategies. The improvement is most evident in WS where DNB UCB
performs similarly well to exploration. On the other hand, DNB UCB also results
in a significant reduction of the establishment costs than exploratory strategy.

Fig. 6. The Cls-rank and establishment cost resulted from running the pure and
mixed strategies on the dynamic BA, WS and ER networks. The speed that DNB UCB
improves Cls-rank sits between the exploitative and exploratory strategies. On the other
hand, DNB UCB significantly reduces the establishment costs than exploration alone.

6 Conclusion and Future Work

The paper proposes dynamic network building problem and concentrates on
exploratory-exploitative strategies and their combinations. The focus is on intro-
ducing the algorithmic framework: Many methods exist for the multi-armed ban-
dit problem; A natural future work is to compare these methods with DNB UCB.
Furthermore, despite closeness centrality’s importance in capturing social sup-
port and access to resources, other measures of social capital, e.g. betweenness,
eigenvector centrality, can be used as a goal for the newcomer v as well.
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Other future works that we will consider include: (1) designing strategies
that build relations while respecting bounded capacity of individuals, i.e., v has
only a bounded number of links so severing ties may be needed. (2) investigat-
ing network building on attributed networks where pairs of nodes have different
likelihood of being connected due to features such as personality, common inter-
ests, etc. (3) Studying information diffusion and influence maximization through
network building. (4) A crucial future work is on applications of the presented
framework. In particular, the work develops a foundation of new functionality
on the Web that engineers optimal links among OSN users to enhance commu-
nication and capability. Here, a possible scenario is to recommend information
agencies to a user on a career-based OSN to boost their access to resources and
enhance career-prospect. Another possible scenario is to provide social support
to those that are in need through social network building [40].
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