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Abstract. Clustering coefficient is an important measure in complex graph
analysis. Tracking clustering coefficient on dynamic graphs, such as Web, social
networks and mobile networks, can help in spam detection, community mining
and many other applications. However, it is expensive to compute clustering
coefficient for real-world graphs, especially for large and evolving graphs.
Aiming to track the clustering coefficient on dynamic graph efficiently, we
propose an incremental algorithm. It estimates the average and global clustering
coefficient via random walk and stores the random walk path. As the graph
evolves, the proposed algorithm reconstructs the stored random walk path and
updates the estimates incrementally. Theoretical analysis indicates that the pro-
posed algorithm is practical and efficient. Extensive experiments on real-world
graphs also demonstrate that the proposed algorithm performs as well as a
state-of-art random walk based algorithm in accuracy and reduces the running
time of tracking the clustering coefficient on evolving graphs significantly.
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1 Introduction

In the last decades, clustering coefficient [1] has emerged as an important measure of
the homophily and transitivity of a network. Tracking clustering coefficient for net-
works which are large and evolving rapidly, such as World Wide Web and online
social networks, is an important issue for many real-world applications, such as
detecting spammer for search engines [2] or online video networks [3] and detecting
events in phone networks [4].

However, there are two challenges in tracking clustering coefficient. First, computing
clustering coefficient for evolving graphs with millions or billions of edges is time-
consuming. Especially, the efficient algorithms for static graphs [5, 6] are not sufficient
for evolving graphs. Second, for most real-world networks, such as online social net-
works, the network topology and the size of network are evolving and can not be known
beforehand. Moreover, it is always limited restrictedly to access the underlying network
for the sake of performance or safety. Thus, the basic assumption of “independent random
sampling” in most random sampling based algorithms [7, 8] is not realistic.
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Aiming to track clustering coefficient on large and evolving networks, we propose
an incremental algorithm. The proposed algorithm follows a random walk based
sampling method to estimate clustering coefficient [9], only relying on the public
interface and requiring no prior knowledge. The proposed algorithm reuses previous
random walk and gets result updated via reconstructing partial random walk as the
graph evolves, instead of recomputing from scratch. Both theoretical analysis and
experimental evaluations on real-world graphs demonstrate that the proposed algorithm
reduces the running time significantly comparing with a state-of-art random walk
sampling based algorithm without sacrificing accuracy.

2 Tracking Clustering Coefficient

2.1 Clustering Coefficient

Let G = (V, E) stand for a simple graph with n vertices and m undirected edges. The ith
vertex is donated by vi, 1 � i � n. The edge between vi and vj is donated by eij, or eji.
The degree of vertex vi is donated by di. The adjacency matrix of G, donated by A, is a
n � n symmetric matrix, Ai,j = Aj,i = 1 if and only if there is an edge between vi and vj,
and Ai,j = Aj,i = 0 otherwise. We assume that there are no edges from any arbitrary
vertex vi pointing to itself, thus Ai,i = 0, 1 � i � n.

We define a wedge as a triplet (vj, vi, vk) for any i, j and k ε[1, n], if and only if
Ai,j = Ai,k = 1, and j < k. For any wedge (vj, vi, vk) with Aj,k = 1, we define it a triangle.
Let li stand for the number of triangles with vi lying in the middle. It is obvious that li is
equal to the number of connected edges between vi’s neighbors.

The local clustering coefficient for any node vi, donated by ci, is the ratio of the
number of edges between vi’s neighbors to the maximal possible number of such edges.
For node vi where di � 2, we define ci as 2li=diðdi � 1Þ. For node vi with less than 2
neighbors, ci is defined as 0.

In this paper, we focus on two popular versions of clustering coefficient: the
average clustering coefficient [10] and the global clustering coefficient [10]. The
average clustering coefficient of a graph, donated by a, is the average of the local

clustering coefficient over the set of nodes. It is defined as
Pn
i¼1

ci=n. The global clus-

tering coefficient, also called transitivity in some previous works, is a metric measuring
the probability that two neighbors of a node are connected to one another in global. In
this paper, we donate it by g and define it as 2

Pn
i¼1 li=

Pn
i¼1 di di � 1ð Þ.

2.2 Problem Definition

Let G(t) stand for a snapshot of an evolving graph at time t, 0 � t. G(0) is the initial
graph. For t > 0, G(t) is a graph with an arbitrary edge inserted into (or removed from)
G(t − 1). The average and global clustering coefficient of G(t) are donated by a(t) and
g(t) respectively. Their estimates are donated by a_ tð Þ and g_ tð Þ respectively. Our goal is
to compute a_ tð Þ and g_ tð Þ efficiently, 0 < t.
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It is supposed that a_ 0ð Þ and g_ 0ð Þ are computed via the algorithm in [9] (hereinafter
referred to as baseline algorithm). It generates a random walk with r steps, donated by
R(0) = {x1(0), x2(0),…, xr(0)}. A variable uk(t) is defined as Axk�1 tð Þ;xkþ 1 tð Þ; 2� k
� r � 1; 0� t. There are another four variables defined as follows. Ua(0) is defined as

r � 2ð Þ�1Pr�1
k¼2 /k 0ð Þ dxk 0ð Þ � 1

� ��1
, Wa(0) is defined as r�1 Pr

k¼1 dxk 0ð Þ
� ��1

, Ug(0) is

defined as r � 2ð Þ�1Pr�1
k¼2 /k 0ð Þdxk 0ð Þ and Wg(0) is defined as r�1 Pr

k¼1 dxk 0ð Þ � 1
� �

.
The approximate average and global clustering coefficient for G(0), are defined as
Ua 0ð Þ=Wa 0ð Þ and Ug 0ð Þ=Wg 0ð Þ respectively. It is assumed that for any t (0 < t), R(t
−1), Ua(t−1), Wa(t−1), Ug(t−1) and Wg(t−1) are stored.

2.3 Tracking Clustering Coefficient Incrementally

Without loss of generality, we present how the proposed algorithm works at time
t (0 < t). It is supposed that euv is added at time t. The proposed algorithm checks
whether vu and vv accessed by the stored path R(t − 1). If neither vu nor vv is accessed,
it returns the previous results a_ t � 1ð Þ and g_ t � 1ð Þ without any updating. Otherwise,
the proposed algorithm finds set of steps in R(t − 1) where either vu or vv accessed,
donated by X(t − 1). X(t − 1) = {xk(t − 1) | xk(t − 1) = vu || xk(t − 1) = vv}. For each
entry xk(t − 1) in X(t − 1), it takes a chance to reroute the random walk and update the
estimates. The probability of rerouting the random walk is 1=dxk t�1ð Þ.

As rerouting the random walk R( t−1 ) from the kth step, there are two phases, as
shown in Fig. 1. Firstly, the proposed algorithm undoes the random walk from xk( t− 1),
removing r − k steps in R(t − 1) from xk(t − 1). Secondly, the proposed algorithm
regenerates random walk with (r − k) steps starting form the (k + 1)th step and gets the
estimates updated. As vu (or vv) is accessed at the kth step, the proposed algorithm picks
vv (or vu) at the regenerated (k + 1)th step, then moves to one of its neighbors uniformly
at random and repeats such random movement for (r − k − 1) times.

Steps Removed

Steps Regenerated

R(t-1)

1st kth

u

R(t)rth

x y’

k+1th

v

1st kth

u

rth

x y

k+1th

z

1st kth

ux

Phase 1

Phase 2

Fig. 1. Two phases in rerouting the random walk
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We donate the set of removed steps by R− = {xh(t-1)} and the added steps by R+=
{xh(t)}, where k < h � r. R(t) = R(t − 1) − R− + R+. And the variables are updated as
follows.

Ua tð Þ ¼ Ua t � 1ð Þ � r � 2ð Þ�1
X

xk2R� /k t � 1ð Þ dxk � 1ð Þ�1 þ r � 2ð Þ�1
X

xk2Rþ /k tð Þ dxk � 1ð Þ�1 ð1Þ

Wa tð Þ ¼ Wa t � 1ð Þ � r�1
X

xk2R� dxkð Þ�1 þ r�1
X

xk2Rþ dxkð Þ�1 ð2Þ

Ug tð Þ ¼ Ug t � 1ð Þ � r � 2ð Þ�1
X

xk2R� /k t � 1ð Þdxk þ r � 2ð Þ�1
X

xk2Rþ /k tð Þdxk
ð3Þ

Wg tð Þ ¼ Wg t � 1ð Þ � r�1
X

xk2R� dxk � 1ð Þþ r�1
X

xk2Rþ dxk � 1ð Þ ð4Þ

To make how the proposed algorithm works clear, we provide an example. As
depicted in Fig. 2, G(t) = G(t − 1) + {e25} and R(t − 1) = {v3, v6, v2, v1}. The pro-
posed algorithm reroutes R(t − 1) at the third step (where v2 accessed) with 1/3
probability. Supposing we reroutes R(t − 1), we remove R−={v1} and pick R+={v5} to
take the place of the removed steps. Finally we get the random walk updated R
(t) = {v3, v6, v2, v5} and the estimates are updated according to the forementioned
equations respectively.

There’s a little difference in the case of edge removal. It is supposed that euv is
removed at time t. The proposed algorithm updates the stored random walk if and only
if euv is passed by the previous random walk. Approach of updating the random walk
and estimates is analogous with the case of edge addition.

3 Correctness and Complexity

3.1 Correctness

Here we prove the proposed algorithm is correct via comparing the proposed algorithm
with the baseline algorithm on a same graph. We demonstrate that the set of random
walks generated by the proposed algorithm on graph G(t) is equal to the set of random
walks generated by the baseline algorithm.

v1 v2

v4 v5 v6

v3

v7

va

Edge added at t

Edge existing at t-1

Node in a random 
walk at t-1

At t the random walk may be updated as R(t) = (v3, v6, v2, v5).

Fig. 2. An example of a random walk on a graph with an edge added
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Proof. First, we prove that for any random walk R(t) generated by the baseline
algorithm on G(t), there is an equal random walk R(t)’ generated by the proposed
algorithm on the same graph. There are two cases. In the first case, we suppose that
R(t) doesn’t access either vu or vv. The proposed algorithm inherits the random walk
R(t − 1) generated by baseline algorithm on G(t − 1). And we could always find a
random walk path R(t)’ = R(t − 1) which is equal to R(t). In the second case, we
consider situations that R(t) accesses either vu or vv. Let’s suppose that R(t) accesses vu
at its kth step. Similar as the first case, we could always find a path R(t − 1) who is
equal to R(t) at the first k steps. At the (k + 1)th step, it takes 1/du probability to access
each neighbor of vu (including vv) in R(t). At the (k + 1)th step of R(t)’, it takes 1/du
probability to access vv (rerouting R(t − 1) from the (k + 1)th step) and (du − 1)/du
probability to access one of vu’s neighbors except vv (inheriting from R(t − 1) without
rerouting). Thus it is easy to find a random walk R(t)’ which is equal to R(t) from the
(k + 1)th step to the end of the random walk path. In summary, for any random walk
generated by the baseline algorithm there’s always an equal random walk generated by
the proposed algorithm on the same graph.

In a similar way, it is easy to prove that for any random walk generated by the
proposed algorithm, there’s an equal random walk generated by the baseline algorithm
on the same graph. Thus, the sets of random walk path generated by the proposed
algorithm and the baseline algorithm respectively are equal. So the proposed algorithm
is correct, due to it is demonstrated that the baseline algorithm is correct in [9, 11].

3.2 Computing Complexity

Here we analysis the complexity of updating estimate of clustering coefficient as graph
evolves all the time. Assuming euv is the edge added at time t and Mt is the number of
random walks rerouted. Then we have E Mt½ � � an=m, where an = r, the length of a
random walk path.

Proof. It is intuitive that most edges in the graph are not accessed by the random walk.
A random walk needs to be updated only if it accesses vu (or vv) at time t − 1 and
chooses vv (or vu) as the next step. For an arbitrary vertex vu, the expectation of the
number of times vu is accessed by a random walk is pur. The probability that node vu is
accessed at each step of a random walk, donated by pu, is equal to du/D, which is
proved in [9].The probability of choosing vv as the next step of vu is 1/du. Thus,
consider the expectation of Mt, which can be expressed as Eq. (5). As a random walk
updated, the amount of work is O(r) at most. In summary, we could get that the upper
bound of expected amount of work that the proposed algorithm needs to do is O((an)2/
m) as an arbitrary edge arrives randomly.

E Mt½ � ¼ r
X
i;j

pi=di þ pj
�
dj

� �
Pr i ¼ u; j ¼ v½ � � 2r

X
i

di=diDð ÞPr i ¼ u½ � ¼ 2r=D ¼ an=m ð5Þ
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4 Evaluations

4.1 Experiment Setup

In experiments, we mainly compare the accuracy and performance of the proposed
algorithm with the baseline algorithm [9], a state-of-art algorithm estimating the
clustering coefficient via random walk. We implement both of the algorithms by Java.
Our experiments all run on a machine with Intel(R) Core (TM) i7-2600 CPU and 8 GB
RAM. The graphs used in the experiments are some public datasets downloaded from
SNAP [12]. We deal with all of them as undirected graphs by ignoring the direction of
directed edges. Table 1 lists the main characteristics of the graphs.

For generating the evolving graphs, we randomly remove 100000 edges from each
graph and use the rest part as the initial graph in our experiments. The initial estimates
are computed by the baseline algorithm. Then we add the removed edges one by one
and estimate the average and global clustering coefficient respectively via the proposed
algorithm and its competitor. For all experiments, we set r = 0.02n by default, which is
enough for getting accurate approximations [9, 11]. Moreover, we run the experiments
for 100 times on each graph and use the average results in our evaluations.

4.2 Accuracy

We use RMSE (Root Mean Square Error) to measure the accuracy, which is defined as
Eq. (6), where c stands for the exact clustering coefficient and ĉ stands for its estimate.
We computed the exact clustering coefficient by a node-iteration based method [13].
Table 2 provides a comparison of the average RMSE.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ĉ=c� 1ð Þ2
h ir

ð6Þ

Table 1. Main parameters of data sets

Graph Background Nodes Edges a g

amazon0601 Amazon product co-purchasing 403K 3.4M 0.4177 0.1656
as-Skitter Internet topology 1.6M 11.1M 0.2581 0.0054
cit-Patents Citation network among US Patents 3.7M 16.5M 0.0757 0.0671
com-DBLP DBLP collaboration network 317K 1.0M 0.6324 0.3064
com-Youtube Youtube online social network 1.1M 3.0M 0.0808 0.0062
higgs-twitter Followers graph on Twitter 457K 14.9M 0.1887 0.0102
soc-Pokec Pokec online social network 1.6M 30.6M 0.1094 0.0468
web-Google Web graph from Google 875K 5.1M 0.5143 0.0552
wiki-Talk Wikipedia talk network 2.4M 5.0M 0.0526 0.0033
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The results demonstrate that the proposed algorithm performs as well as the
baseline algorithm in accuracy. The proposed algorithm achieves smaller RMSE in
two-thirds of the experiments. RMSE of the proposed algorithm is about 12% smaller
than the baseline algorithm in the best case and it is about 6% bigger than the baseline
algorithm in the worst one. In summary, the proposed algorithm achieves close (or
even smaller) RMSE comparing with the baseline algorithm for all experiments, which
means the proposed algorithm performs as well as the baseline algorithm.

4.3 Performance

We measure the running time and the number of random walk rerouting of the pro-
posed algorithm to evaluate the performance. We also define the speedup as the ratio of
the running time of the baseline algorithm to the running time of the proposed algo-
rithm. Table 3 provides a detailed comparison of the running time, the number of
random walk rerouting and the speedup of the proposed algorithm on each graph.

Table 2. Comparison of RMSE

Graph Average clustering
coefficient

Global clustering
coefficient

Proposed Baseline Proposed Baseline

amazon0601 0.0424 0.0424 0.0959 0.0912
as-Skitter 0.0477 0.0486 0.1928 0.1989
cit-Patents 0.0285 0.0297 0.0328 0.0313
com-DBLP 0.0385 0.0409 0.1373 0.1300
com-Youtube 0.0708 0.0808 0.1622 0.1649
higgs-twitter 0.0782 0.0790 0.1881 0.1920
soc-Pokec 0.0481 0.0512 0.0395 0.0390
web-Google 0.1025 0.1117 0.1125 0.5312
wiki-Talk 0.0399 0.0377 0.3526 0.3483

Table 3. Comparison of the running time and number of times the random walk rerouted

Graph Average clustering coefficient Global clustering coefficient
Running
time (s)

Number of
rerouting

Speedup Running
time (s)

Number of
rerouting

Speedup

amazon0601 1.97 28661 186.9 1.97 28865 187.9
as-Skitter 22.41 26250 356.2 23.43 26000 353.3
cit-Patents 22.80 37800 217.9 22.83 37456 216.4
com-DBLP 1.62 40080 209.6 1.74 40169 194.6
com-Youtube 12.52 43595 305.1 12.63 42915 180.6
higgs-twitter 6.20 6692 531.1 6.22 6825 524.1
soc-Pokec 6.41 13204 520.6 6.23 13144 549.1
web-Google 4.88 29991 163.9 5.02 30194 181.8
wiki-Talk 125.45 73340 129.5 125.88 73385 115.8
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It is obvious that the proposed algorithm reduces the running time significantly for
dealing with large and evolving graphs. The speedup of the proposed algorithm
comparing with the baseline algorithm for dealing with graph with 100000 evolving
edges is in the range of 115 to 549. We also find that estimating the average and global
clustering coefficient on a graph via the proposed algorithm cost similar running time.

5 Conclusion

In this paper, we propose an incremental algorithm for tracking approximate clustering
coefficient on dynamic graph via random walk method. As an arbitrary edge is added
and/or removed, our algorithm replaces partial random walk path around the evolving
part and updates the estimate based on previous result. The accuracy and performance
improvement of the proposed algorithm are verified through analysis in theory and
experiments on real-world graphs. It is demonstrated that the proposed algorithm
improves the performance effectively comparing with the state-of-art algorithm based
on random walk.
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