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Abstract. Time series classification has been attracting significant
interests with many challenging applications in the research community.
In this work, we present a novel time series classification method based
on the statistical information of each time series class, called Principal
Shape Model (PSM), which can quickly and effectively classify the time
series even if they are very long and the dataset is very large. In PSM,
the time series with the same class label in the training set are gathered
to extract the principal shapes which will be used to generate the classifi-
cation model. For each test sample, by comparing the minimum distance
between this sample and each generated model, we can predict its label.
Meanwhile, through the principal shapes, we can get the intrinsic shape
variation of time series of the same class. Extensive experimental results
show that PSM is orders of magnitudes faster than the state-of-art time
series classification methods while achieving comparable or even better
classification accuracy over common used and large datasets.
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1 Introduction

Time series research has attracted significant interests in the data mining com-
munity, due to the fact that series data are presented in a wide range of our
daily life. As a fundamental research, time series classification has been studied
extensively and many algorithms have been proposed during the last decade.
Recent empirical evidence has strongly suggested that the simple nearest neigh-
bor classifier is very difficult to beat [5]. Thus, the vast majority of time series
classification research has focused on alternative distance measures for 1-NN
classifiers based on raw data, compression data or smoothing data [20]. In these
kinds of methods, the similarity of time series is a key point for the classification
task. Ding et al. [5] present a good survey of similarity calculation methods for
time series. While the nearest neighbor classifier has the advantages of simplicity
and not requiring extensive parameter tuning, it does have several disadvantages.
© Springer International Publishing AG 2017
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One is its time and space consumption for large datasets, the other is it does not
give us a reasonable explanation about the relationship between a time series
and a class. Unlike the NN-based methods taking all series points into consid-
eration, another kinds of methods treat the subsequences of time series as a
basis for classification. Recent years, the shapelets-based methods [6,14,17,21]
have been studied most, which attempt to find the subsequences with high dis-
criminative power as features of one class. The idea is that the time series in
different classes can be distinguished by their local subsequences instead of the
whole ones. These kinds of methods provide interpretable results, which can help
researchers understand the data.

Due to the influences of many factors, the time series of a class are slightly
different at some time point. It is common for data acquisition. The above two
kinds of methods, i.e., 1-NN classifier and shapelets-based methods, describe
these differences by distance between time series or between subsequences. It
is a reasonable assumption that two time series in the same class have a small
distance. In 1-NN classifier, the distances between the test sample and all train-
ing time series should be calculated first and the one with the minimum value
should have the same label with the test sample. For shapelets-based methods,
all subsequences with any length are shapelet candidates and the most impor-
tant step to find out shapelets is to calculating the distances between a candidate
and all training time series [21]. Even though there are some pruning strategy
to accelerate this process [17], the process of finding the most discriminative
subsequences is computationally expensive.

Unlike existing methods, we utilize an entirely different method and build a
model to describe these differences of the time series of a class. The label of a
test sample can be obtained by comparing the similarity of the instance and the
models. By this way, the large amount of distance calculation is unnecessary.
Moreover, the variation characteristics of time series of a class can also be rep-
resented by the model. In this paper, the variation characteristics of time series
is described by a linear model. Firstly, We extract the intrinsic variation char-
acteristics of each class to generate the principal shapes based on its statistical
information. Then each class corresponds to a model that constructed by its
principal shapes. All time series of a class are considered as a linear combination
of principal shapes. The similarity of a test time series and a class models is
represented by an objective function. By optimizing these objective functions
and comparing the similarity values, we can predict the class label of this test
time series. The experimental results on a large number of time series datasets
demonstrate that our method is orders of magnitudes faster than other methods,
while achieving comparable or even better classification accuracies.

In summary, our contributions include the following:

e We utilize the principal shapes to describe the variation characteristics of
time series in the same class, which gives a good understand for time series.
e The distance between the model constructed by principle shapes and a test
sample is employed to predict the test sample’s label. Compared with 1-NN
based method, this technique can reduce the amount of distance calculation.
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e We empirically validate the performance of our proposed method on com-
monly used time series datasets and some large datasets. The results show
promising results compared to other methods.

The remainder of this paper is organized as follows: We provide some back-
ground into time series classification and review the common used algorithms
in Sect. 2. Section 3 describes the principal shape model in detail and illustrates
the principal shapes by a toy example. The effectiveness and efficiency of the
proposed method are also discussed. Section 4 demonstrates the PSM is effective
by adequate experiments. Conclusions and future work are drawn in Sect. 5.

2 Background and Related Work

2.1 Time Series Classification

A time series is an ordered set of real-valued variables. Usually, the time series
are recorded in temporal order at fixed intervals of time. Time series classifica-
tion is defined as the problem of building a classifier from a labelled training
time series set to predict the label of new time series. A time series x; with
m values is represented as ®; = (%i1,%i2,...,Tim)’ and an associated class
label [;. The training set is a set of n labelled pairs (x;,l;) with C classes:
X = {(z1,l1), (x2,12), ..., (n,1s)}, where I; € C. For classification algorithm,
the normalization of time series is necessary and the commonly used approach

. .. _ X . .
is z-normalization: norm(x) = %&"g). For ease of explanation, we still use

@ to denote norm(x). Given an unlabelled time series dataset, the objective is
to classify each sample of this dataset to one of the predefined classes.

The main difference between time series classification problems and the gen-
eral classification task is the order of observations is very important. Therefore,
the algorithm for time series classification requires specific techniques to meet
this characteristic. Two kinds of methods are studied in recent years. One is
global-based method by taking the whole time series into account, while the
other considers the usage of time series subsequences, called local-based method.

2.2 Global-Based Methods

In global-based methods, the classifier takes the whole time series as features
and predicts the label of a new time series based on its similarity metrics where
distance is measured directly between time series points. Two kinds of distances,
Euclidean distance (ED) and Dynamic Time Warping (DTW) distance, have
been widely and successfully used as the similarity metrics [10,11,15,18]. ED is
usually time and space efficient, but it often gets a poor classification accuracy
[18]. DTW is considered as a better solution in time series research community
because it allows time series to match even if they are out of phase in the time
axis [12,19]. It has been proved that the 1-NN classifier with DTW is the best
approach for small datasets. However, as the number of time series increases,
the classification accuracy of DTW will converge to ED [5]. As we mentioned in
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Sect. 1, these methods have two drawbacks: high time and space complexity for
large datasets and long time series and results uninterpretable.

2.3 Local-Based Methods

To address the limitations of 1-NN classifier, a new shapelets-based classifica-
tion algorithm is proposed by Ye in 2009 [21]. Informally, shapelets are time
series subsequences which can maximally represent a class in some sense. The
algorithm completes the classification task by constructing a decision tree classi-
fier. The important point is that shapelet offers interpretable features to domain
experts. The utility of shapelets has been confirmed and extended by many
researchers [7]. Nevertheless, since all subsequences of time series could be a
shapelet, finding a good shapelet is a time-consuming task. Although there are
several speedup strategy, e.g., early abandon pruning, entropy pruning [21], intel-
ligent caching and reuse of intermediate results (called Logical Shapelets) [14],
etc., it still takes a long running time, especially in case of large datasets and
long time series. To speed up the process of shapelets discovery, chang et al. [3]
propose to parallelize the distance computations using GPUs. Rakthanmanon et
al. [17] propose a heuristic strategy, called Fast-Shapelets (FSH), to speed up
the searching process by exploiting a random projection method on the SAX
representation of time series to find the potential shapelet candidates [13]. It
is up to orders of magnitudes faster than Logical Shapelets, which reduces the
time complexity from O(n?m3) to O(nm?) (n is the number of time series in
the dataset, and m is the length of the longest time series). Except for decision
tree classifier, some off-the-shelf classifiers like SVM are also used on shapelets
data [8,9], which are transformed by measuring distances between the original
time series and discovered shapelets. It can improve prediction accuracy while
still maintaining the explanatory power of shapelets.

Another way to find shapelets called Learning Time Series (LTS) is to learn
(not search for) shapelets by optimizing an objective function [6]. The LTS algo-
rithm enables learning near-to-optimal shapelets directly without the need to
try out lots of candidates and can learn true top-k shapelets. It is an entirely
new perspective on time series shapelets. The algorithm can also gain the higher
accuracy in some time series dataset than other methods, but it is space and
time-consuming.

3 Principal Shape Model

3.1 Principal Shapes Extraction from Time Series

If we take a time series as a vector, the vectors of a training set can form
a distribution in m dimensional space. If we model this distribution, we can
generate new series which are similar to those in the original training set, and also
can examine the test time series to decide whether they are plausible examples.
To simplify the problem, we wish to reduce the dimensionality of the training
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data from m to a reasonable dimension k. An effective approach is to apply
Principal Component Analysis (PCA) method. Given a training set of n; time
series with the same class label, the mean time series T; is calculated as: x&; =

n;
= J;(:vj).
The principal shapes of variation in each class, i.e. the ways in which some
points of time series tend to move together, can be found by using PCA. In
order to remove the meaningless distortions, we first calculate the deviations
dr; = x; — ®; of each class. From these deviations, we can get the matrix M
of the i-th class in training set. And then the eigenvectors (also called principal
components), pi,...,Pn,;, and the corresponding eigenvalues, A1,...,A,,, can
be obtained by singular value decomposition method. The variations of time
series points can be described by the principal components and eigenvalues.
Each principal component gives a pattern of variation of time series points. The
first principal component, which is associated with the largest eigenvalue, \q,
describes the largest part of the time series variation. The proportion of total
variance described by the j-th principal component is equal to the A;.

Generally, most of the time series variation can be represented by a small
number & of principal components. The parameter k can be assigned a certain
number, but a more common practice is to choose the first k& principal compo-
nents from a sufficiently large proportion of the total variance of the training set.
The proportion can be decided by the cross validation method for each dataset.

n;
The total variance S is defined as: S = > A;.
i=1

By this way, all time series of a clzjss can be approximated by taking the

mean time series and a weighted sum of the first k& principal components:

x~T+ Pb (1)

where P = (p1, P2, ..., Pk) is the matrix that made up by the first k eigenvectors;
b= (b1,ba,...,b)T is a weight vector.

By only choosing the first £ principal components instead of the whole eigen-
vectors, we can get the principal shapes contained in each class. Besides, the
distortions occasionally occur in one or several time series can be eliminated,
because they are usually related to small principal components.

These above equations allow us to generate new instance of time series by
varying the parameter b within a suitable limit, which should be related with
the training set. Note that the variance of b; on the training set can be given by
Aj, 80 a reasonable limit [16] is

16,11 < 3y/%; (2)

The coefficient 3 is selected because most of the variations lie in 3 standard
deviation of the mean. By applying limits of £3,/A; to the parameter b;, we
can ensure that the generated time series is similar to those in the training set.
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3.2 An Example of Principal Shapes on Toy Dataset

We use Car dataset as our toy dataset, which is one of time series datasets from
UCR archive!, to exhibit the extracted principal shapes and their variations. It is
composed of four classes, which contains 60 training time series and 60 test time
series. Each time series contains 577 real observations. We extract the principle
shapes of each class from training set and the first four principal shapes of each
class are shown in Fig. 1.
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Fig. 1. The principal shapes of 4 classes in toy dataset. The 4 principal shapes of each
class are presented in (a), (b), (¢) and (d), respectively.

From this figure we can see, the principal shapes of each class are differ-
ent, so we can build a model based on these principal shapes for time series
classification. As mentioned above, the vector b defines a set of parameters of
a deformable model. By varying the elements of b, we can vary the principal
shapes. All extracted principal shapes of each class are added up after varying
by an admissible parameter, and then we get the overall shape variation of each
class. Figure 2 shows the range of variation of each class. The shape is a super-
position of all admissible principal shapes. The dotted arrow lines indicate that
all time series of this class can only vary in these scope.

It is clearly that time series of different classes have different shape varia-
tions. The class information of a new time series that we want to predict can be
obtained by fitting these shape variations. The one with the minimum distance
is the best match with the test time series.

3.3 Classifying New Time Series

The principal shapes of class i and the corresponding parameter b’ form a linear
model which we call it principal shape model®. After getting the models of all

! http://www.cs.ucr.edu/~eamonn/time_series_data,.
2 The superscript i denotes that we are dealing with the i-th class.
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Fig. 2. The overall shape variation of each class in toy dataset.

classes, the training time series can be expressed by these models. When doing
the classification task, for a new time series, our purpose is to fit these models
to this time series. More specifically, if a time series belongs to a specific class
i, the corresponding model (P?,b%) must fit it well, otherwise, the model has a
large distance to this time series. Assume y is the time series to be classified, an
objective function to measure the fitting degree of class ¢ is defined by

f(b):§Ily—(ﬂﬁi+Pb)||2 st [05]] < 3y /A (3)

where i € C and &; is the mean of i-th class time series, P? is a matrix of the
first k eigenvectors generated by the i-th class, b’ is the weight vector.

Formula (4) is a least squares problem with an inequality constraint. It has
been proved that f (without constraint) is a strictly downward convex function
and has the only extremum [2]. The best b** is:

bi* _ (PiTPi)—lpiT(y _ f’z) (4)

As we can find that if we want to get the minimum value of objective function, an
inverse operation is necessary. Due to the complexity of matrix inverse operation
and the inequality constraint, we cannot easily get the best parameter vector b’.
An alternative method to solve this problem is the Gradient Descent (GD). With
the help of GD, we can gain the minimum value between a new time series y
and the current model (Z;, P?, b*). Algorithm 1 describes this process.

For gradient descent algorithm, the initial value of b’ is usually set to a
random number and the algorithm should run many times to obtain the best
value. But in this algorithm, due to the characteristic of f: 7 (b)) — piT pi,
there’s no need to repeat the experiment many times to find the minimum value
by setting different initial values of b’. In Algorithm 1, the lines 1 gives a default
value of b’ and the distance between y and the model by using the default b
is obtained in line 3. The constants A and B in line 7 are used to calculate the
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Algorithm 1. Fitting the model to a new time series

Input: y: the time series to be classified; P*: the matrix of eigenvectors of class i
T;: the mean of time series of class 4; A%: eigenvalues of class i

Output: dis: the minimum distance between y and the current model
initialize b*=0;
r= SW;
dis = Yy — (@ + P61
if dis < € then

return dis;
end if
A=P"T(y—x;); B=P"TP,
while true do

A=A+ Bbi;
10: b =b' —aA;
11:if [|bj|| > 7} then
12: b; =r3;
13:  end if
14:  dis2 = Ly — (T + P'bY)||%
15:  if dis2 < ¢ or ||dis — dis2|| < € then
16: return dis2;
17:  end if
18: end while

©

gradient which is completed in line 9 for current b’. The iterative process for
finding the best b** is from line 8 to line 18. Lines 11-13 limit the range of b?,

ie. Hb; | <34/X;. Parameter o in line 10 is the step size. If its value is very small,

the algorithm will converge slowly. Our objective function is a strictly downward
convex function, so we do not need a small step size. In our experiments, « is
set to 0.5 and only after a few iterations, we can get the minimum distance.
For each class, we can get a distance from the objective function. If y is an
instance of this class, the function value must be smaller than other class. After
we find the best parameter vector b** to f for each class and the label of y is
obtained by:
label(y) = argmin f(b™) ieC (5)

K2

3.4 Effectiveness and Efficiency

In PSM, the model is generated by the principal shapes extracted from the
training set. So the ability of these principal shapes is very important for our
model. If the training data is skewed, the principal shapes gained by this training
set can not express the variation of the test time series. In this case, the accuracy
of PSM decreases like other methods.

For the first step of our method, we get the eigenvalues and eigenvectors of
each class by using SVD. It takes O(min{mn;?, m?n;}) time, where m is the
length of the time series, n; is the number of time series in i-th class of training
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set. In Algorithm 1, the parameter matrix A requires O(km) computation time
where k is the number of the selected principal shapes and k < min(m,n;). And
B needs a matrix multiplication, which requires O(k?m) computation time. In
each iterative process of fitting the model, the most time-consuming step is the
distance calculation for a new b. It take O(km) time. So the Algorithm 1 needs
O(max{k?m, kmt}) time in total where ¢ is the the number of iterations. Usually,
we only use a small number of principal shapes to build our model, so k is very
small. As we mentioned above, t is also very small because the objective function
f is strictly convex. Thus, the total time complexity is O(min{mn;2, m?n;}+
maz{k*m, kmt}).

4 Experiments and Results

4.1 Datasets and Baselines

In order to test the classification performance of our PSM method, we first per-
form the experiments on the commonly used UCR (See footnote 1) and UEA3
datasets (called common datasets in this paper) as other literatures [6,8,9,17].
They provide diverse characteristics with different lengths and number of the
classes and different numbers of time series instances and Table1 gives the
details. We use the default train and test data splits, which is the same as
the baselines.

Table 1. Common datasets used in the experiments

Name #Train/test | Length | #Classes | Name #Train/test | Length | #Classes
Adiac 390/391 176 37 Lighting7 70/73 319 7
Beef 30/30 470 5 Medicallmages | 381/760 99 10
Chlorine. |467/3840 166 3 MoteStrain 20/1252 84 2
Coffee 28/28 286 2 MP_Little 400/645 250 3
Diatom. 16/306 345 4 MP_Middle 400/645 250 3
DP_Little |400/645 250 3 Herring 64/64 512 2
DP_Middle [400/645 250 3 PP _Little 400/645 250 3
DP_Thumb | 400/645 250 3 PP_Middle 400/645 250 3
ECGFive. |23/861 136 2 PP_Thumb 400/645 250 3
FaceFour |24/88 350 4 SonyAIBO. 20/601 70 2
Gun_Point |50/150 150 2 Symbols 25/995 398 6
ItalyPower. | 67/1029 24 2 Synthetic. 300/300 60 6

To verify the performance of our method on large and long time series
datasets, we use extra 8 datasets from UCR archives (see footnote 1) (called
large datasets) to do our experiments. The details are shown in Table 2.

3 https://www.uea.ac.uk/computing/machine-learning /shapelets /shapelet-data.
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Table 2. Large datasets for experiments

Name #train/test | Length | #classes | Name #train/test | Length | #classes
CinC_ECG_torso |40/1380 1639 |4 MALLAT |55/2345 1024 8
ECG5000 500/4500 140 |5 NonlInvas.1|1800/1965 | 750 |42
FordB 810/3636 500 |2 Nonlnvas.2 |1800/1965 | 750 42
HandOutlines 370/1000 |2709 |2 wafer 1000/6174 | 152 2

We compare our method with other 8 baselines. One is 1-NN classifier with
DTW which has been proved it is very difficult to beat [1]. The other methods
are: standard shapelet-based classifier with information gain (IG) [21], Kruskal-
Wallis statistic (KW) and F-statistic (FS) [8]; The Fast-shapelets algorithm with
the help of SAX representation (FSH) [17]; Learning Time Series which is the
state-of-the-art algorithm for accuracy (LTS) [6]; Shapelet-transform algorithm
which transforms the shapelets into feature vectors for the first time (IGSVM)
[8] and FLAG which is known as the fastest shapelet-based algorithm [9]. All
experiments are performed on a computer with intel i7 CPU and 16GB memory.

4.2 Accuracy and Running Time on Common Datasets

We first compare our method against the selected baselines in terms of classi-
fication accuracy and running time on common datasets of Table 1. The results
are shown in Tables 3 and 4 respectively and the best method of each dataset is
highlighted in bold. The symbol “-” denotes that we cannot get the method’s
result in a reasonable time (over 24 h).

To tell the significant difference in accuracy of different methods of Table 3,
a non-parametric Friedman test based on ranks [4] described as a critical differ-
ence diagram is employed. Figure 3 shows the results on common datasets. The
horizontal line, called cliques, denotes that the related methods has no signifi-
cant difference [4]. As can be seen, PSM has a better classification accuracy than
most baselines. Although PSM has a slight low accuracy than LTS and FLAG,
there is no significant difference in rank with these two methods based on the
cliques of critical difference diagram recommend.

Time-consuming is another evaluation criterion for different methods. Based
on the running time shown in Table4, PSM is fastest on most datasets and it
is 3-4 orders of magnitude faster than most baselines. Recall that LTS has the
best accuracy, but it is much slower than PSM in all datasets.

In general, our method PSM is fastest and outperforms almost all of baselines
according to the running time while it has comparable accuracy. More precisely,
PSM has a clear higher accuracy and less time consuming than NNDTW, IG,
KW, FS and FSH methods in terms of the Friedman test and running time.
When compared with IGSVM, PSM also has a slight accuracy advantage while
it is 34 orders of magnitude faster on most datasets. LTS and FLAG is better
than PSM on classification accuracy, but they are slow, especially that LTS takes
much more running time for slightly larger datasets.
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Table 3. Classification accuracy (%) on common datasets. The best method for each
dataset is highlighted in bold.

Name NNDTW |IG |KW |FS |FSH | IGSVM | LTS |FLAG | PSM
Adiac 58.8 29.9 126.2|15.6 |57.5 | 23.5 519 | 75.2 | 724
Beef 56.7 50 33.3/56.7 |50 |90 76.7 |83.3 |83.3
Chlorine. 62.7 58.8 |52 |53.5 |58.8 |57.1 73 76 86.1
Coffee 96.4 96.4 |85.7/100 |92.9 100 100 | 100 100
Diatom. 95.8 76.5 |62.1|76.5 |87.3 |93.1 94.2 196.4 |93.5
DP _Little 47.9 - - - 60.6 | 66.6 73.4/68.3 |61.1
DP_Middle 62 - - - 58.8 | 69.5 74.1|71.3 |71

DP_Thumb 57.5 - - - 63.4 | 69.6 75.2|70.5 |74.1
ECGFive. 78.9 77.5 187.2]99 99.8 199 100 |92 95.7
FaceFour 84.1 84 44.3 |75 92 97.7 94.3 190.9 83

Gun_Point 92 89.3 |94 1953 |94 |100 99.6 196.7 |90.7
ItalyPower. 94.7 89.2 |91 |93.1 |91 | 93.7 95.8 1946 |97.3
Lighting7 78.1 49.3 148 |41.1 |65.2 |63 79 |76.7 |71.2
Medicallmages | 77.2 48.8 147.1|50.8 |64.7 | 52.2 71.3 |71.4 |64.9
MoteStrain 87.3 82.5 |84 |84 |83.8 88.7 90 [88.8 |87.2
MP _Little 64.7 - - - 56.9 | 70.7 74.3/69.3 |71

MP _Middle 63.1 - - - 60.3 | 76.9 77.5 |75 74.6
Herring 54.7 67.2/60.9 | 57.8 |60.9 64.1 59.4 |64.1 65.6
PP _Little 63.1 - - - 57.6 | 72.1 71 67.1 71.2
PP_Middle 61.6 - - - 61.6 |75.9 749 738 |74

PP_Thumb 56.7 - - - 55.8 | 75.5 70.5 674 |T71.6
SonyAIBO. 71 85.7 | 72.7195.3 |68.6 |92.7 91 929 879
Symbols 94.4 78.4 |55.7/90.1 |92.4 | 84.6 94.5 875 [92.9
Synthetic. 98.7 94.3 190 |95.7 |94.7 |87.3 97.3 199.7 |97.3

4.3 Accuracy and Running Time on Large Datasets

We now test the performance of our method PSM on large datasets. In this
experiments, we discard the comparison with IG, KW, FS and IGSVM methods
because these methods are too slow to get the results in a reasonable time on
these datasets. The results of PSM and other baselines are shown in Table 5 and
Figure 4 gives the critical difference diagram.

Unlike the results on common datasets, PSM not only has the least time-
consuming but also gets the best classification accuracy than other baselines on
these large datasets. The reason is that the model built by PSM greatly depends
on the training set. If the training set gives a good variation representation of
the whole dataset, PSM can get a higher classification accuracy. For these large
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Table 4. Running time (in seconds) on common datasets. The best method for each
dataset is highlighted in bold

Name NNDTW |IG |KW |FS |FSH|IGSVM LTS |FLAG |PSM
Adiac 11.5 3287 1349 |1513 [288 |706 80596 2.78 |1.43
Beef 0.4 471 484 576 |154 |435 414 |1.15 |0.03
Chlorine. 148 9751 |3213 |3050 617 |1181 |556 |6.88 |10.51
Coffee 0.1 22.3 [21.8 |21.9 [16.5 |15.9 76 0.13 |0.01
Diatom. 1.2 9.3 1899 (9.2 [13.7/9.3 88 0.41 |0.28
DP_Little 42.1 - - - 1131(9516 803 |[1.81 |0.6
DP_Middle 43.2 - - - 1286|7041 6082 [1.78 |0.45
DP_Thumb  |41.8 - - - 1105(11353 1006 [3.14 |0.42
ECGFive 1.1 19 18.4 |18.6 |4.6 (11353 [9.1 |0.08 |0.25
FaceFour 0.6 1021 1012 [1010 |75 |410 116 0.26 |0.05
Gun_Point 0.4 116.4 [112 |148.9 (7.6 |74.8 14.1 |0.07 |0.04
ItalyPower. 0.4 0.38 [0.22 [0.22 [0.5 |0.22 7.3 10.03 0.23
Lighting7 1.2 3442 |3438 (3584 (307 (1473 |965 |0.31 |0.17
Medicallmages | 9.2 4347 2625 [2616 164 [1547 [2199 |1.69 |1.01
MoteStrain 0.6 1.41 [1.29 |1.29 1.4 |0.84 6 0.04 0.29
MP _Little 42.1 - - - 1297|7394 5233 [2.95 |0.38
MP_Middle  |42.9 - - - 118612102 724 [2.23 |0.28
Herring 2.1 1786418166 17789 183 (8536  |264 |1.25 |0.03
PP_Little 42.2 - - - 1107|8142 4805 [3.91 |0.45
PP_Middle 43 - - - 1135(4753 3406 [2.19 |0.34
PP_Thumb 41.9 - - - 1172(8209 6638 [4.2 0.42
SonyAIBO. 0.2 1.17 [1.02 |1.02 |1.1 |0.75 25.4 |0.04 0.13
Symbols 7.5 3325 3318 (3622 [59.4 1263 |528 [0.85 0.56
Synthetic. 1.6 291|164 |161 [39.4 |922 293 026 |0.25
cD
9 87 6 5 4 3 2 1
[ AP N PO A P P |

KW LTS

FS 69583 FLAG

IG 69583 PSM

FSH IGSVM

NNDTW

Fig. 3. Critical difference diagram for different methods on common datasets.
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Table 5. Classification accuracy (%) and running time (s) on large datasets. The best
method for each dataset is highlighted in bold

Accuracy (%) Time (s)
Name NNDTW |FSH | LTS |[FLAG PSM |NNDTW |FSH |LTS |FLAG|PSM
CinC_ECG. |75.2 56.5 169.9 |91.1 |93.4 483 1995 4911 [34.69 |2.41
ECG5000 92.8 92 193.7 |91.9 |94.1|1581 1681 13571 /6.72 |3.22
FordB 59 77.4 |89.8|77.6 [83.4 (2121 8953 4757 |95.68 |5.44
HandOutlines | 79.4 86.5 |- 83.1 |86.7 10382 11652 |- 56.27 |0.75
MALLAT 91.4 93.2 |- 96.2 |94.3 |351 1042 |- 11.99 3.04
Nonlnvasive.1|77.4 73.9 |- 93.6 |90.3 | 38602 47045 |- 83.15 |33.57
Nonlnvasive.2 | 84.8 75.9 |- 94.2 |93.1 3826 41836 |- 79.62 |25.52
wafer 98.6 99.7/99.7/99.2 |99.5 |371 214 396 [11.31 |3.13
CD
5 4 3 2 1
| N I I I |
NNDTW PSM
LTS 3625 25 FLAG
3375 FgH

Fig. 4. Critical difference diagram for different methods on large datasets.

datasets, the abundant training samples basically contain the main variation of
time series of datasets, so we get good results.

4.4 Scalability

In this section, we use the time series dataset StraLightCurves in the UCR
archives (see footnote 1) to test the scalability of PSM. This dataset contains
9,236 starlight time series of length 1,024 and 3 types of star objects. The train-
ing set has 1,000 time series in default partition. Two key factors for testing the
scalability are the number of training sample and the length of each sample.
We first fix the length to 1,024 and vary the number of training set from 100
to 1,000. In this case, IG, KW, FS and IGSVM methods are too slow to be run
and LTS also cannot be run because of the large memory requirement. So we
drop them from the comparison. We have only 4 results for NNDTW because it
is also to slow when the number over 400. The running time and classification
accuracy of different methods are shown in Fig.5. As the number of training
samples increasing, our method has a distinct advantage while other methods
take much more running time, which has the same trends as Tables4 and 5.
One thing we should note that the time consuming of PSM is almost the same
when the number of training samples increasing. The reason is that the principal
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shapes are extracted from the same size of covariance matrix when the training

time series have the same length. This suggests that the time consumption of
PSM is mainly related to the number of test samples.

0~ NNDTW ‘
~v-FLAG

FsH |
—e—psMm 90!
10° — b o——0
S ——NNDTW

= < ~¥-FLAG
by z 80 FSH
g g —&—=PSM
et 3

10 2

200 400 600 800 1000 200 400 600 800 1000

Number of time series Number of time series

(a)Time (b)Test accuracy

Fig. 5. Time and test accuracy when varying the number of training time series.

Now, we test the effect of the length of time series for different methods.
In this experiment, the number is fixed to 1,000 and the length is varied from
100 to 1,024. When length over 300, LTS cannot be run in our computer for
the memory constraint and we only get 3 results. For NNDTW, it is too slow
when length over 800. Figure6 gives the results. PSM is still fastest and it is
almost linear increase with the length of time series. It’s worth noting that PSM

can still get a good accuracy when the length is very short while LTS, FSH and
FLAG have low accuracy.

—0—~NNDTW
—v-FLAG
FSH
10" —L1s 90
—=—PSM

——=NNDTW
~¥-FLAG
ESH
——LTS
—&-PSM

Accuracy (%)

10 \/'—_'—N//‘
10!
[/W/A__MM P

200 400 600 800 1000 200 400 600 800 1000
Length of time series Length of time series

(a)Time (b)Test accuracy

Fig. 6. Time and test accuracy when varying the length of time series.

5 Conclusion and Future Work

In this work, we propose a statistical method, PSM, to find the principal shapes
of a time series dataset. With the principal shapes of each class, we can pre-
dict the class information of unlabeled time series quickly. Experimental results
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show that PSM is faster than other time series classification methods while
it gains comparable classification accuracy compared with the state-of-the-art
method on the commonly used time series datasets. Moreover, our method gets
highest accuracy on large time series datasets, which fully demonstrates that
the extracted principal shapes represent the intrinsic shape variation effectively
when we have sufficient training data. Note that we still employ ED as the metric
and do not consider the phase shift in time dimension. We propose to consider
this situation in the future.
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