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1 Inria GraphIK, LIRMM, Université de Montpellier, Montpellier, France
yun@lirmm.fr

2 CRIL - CNRS, Université d’Artois, Lens, France
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Abstract. This paper proposes a practically-oriented benchmark suite
for computational argumentation. We instantiate abstract argumenta-
tion frameworks with existential rules, a language widely used in Seman-
tic Web applications and provide a generator of such instantiated graphs.
We analyse performance of argumentation solvers on these benchmarks.

1 Introduction

Amongst the plethora of tools for reasoning in presence of inconsistency, argu-
mentation has always held a particular place because of its proximity with real
world interaction (Leite et al. 2015). In this paper, we focus on logic based argu-
mentation where abstract argumentation frameworks (Dung 1995) are instanti-
ated by constructing arguments and attacks from inconsistent knowledge bases.
Logic-based argumentation has been studied with many frameworks proposed :
assumption-based argumentation frameworks (Bondarenko et al. 1993), DeLP
(Garćıa and Simari 2004), deductive argumentation (Besnard and Hunter 2008)
or ASPIC/ASPIC+ (Amgoud et al. 2006; Modgil and Prakken 2014).

Despite argumentation being a mature field, practically inspired benchmarks
are currently missing. As a rare example of a practical argumentation benchmark
consider NoDE1, which contains graphs that model debates from Debatepedia2,
the drama “Twelve Angry Men” by Reginald Rose and Wikipedia revision his-
tory. However, the graphs from this benchmark are small (many of them have
less than 10 arguments) and their structure is simplistic. The lack of benchmark
was acknowledged by the community long time ago, but became obvious with
the appearance of the International Competition on Computational Models of
Argumentation (ICCMA)3. This is why new algorithms are always tested on
randomly generated graphs, e.g. Nofal et al. (2014) and Cerutti et al. (2014).

The goal of this paper is to address this drawback by generating argumen-
tation graphs from knowledge bases and studying their properties empirically
1 http://www-sop.inria.fr/NoDE/.
2 http://debatepedia.org/.
3 http://argumentationcompetition.org/.
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(by running the argumentation solvers). We use an existing logic-based argu-
mentation framework (Croitoru and Vesic 2013; Croitoru et al. 2015) instanti-
ated with existential rules. This language was chosen because of its practical
interest on the Semantic Web (Thomazo and Rudolph 2014; Thomazo 2013;
Zhang et al. 2016). Existential rules generalise Description Logics fragments
(such as DL-Lite, etc.) that are underlying OWL profiles. Therefore, the choice
of this language is significant for Semantic Web applications, notably Ontology-
Based Data Access (OBDA) applications. Given the amount of ontologies and
data sources made available by such applications, the paper positioning within
this language demonstrates its practical interest and relevance for benchmark-
ing argumentation frameworks. Existential rules possess particular features of
interest for logic-based argumentation frameworks such as n-ary (as opposed to
binary only) negative constraints or existential variables in the head of rules.

The contribution of the paper is the first benchmark in the literature that
uses graphs generated from knowledge bases expressed with existential rules
instead of random graphs. Using a suite of parametrised existential rule knowl-
edge bases, we produced the first large scale practically-oriented benchmark in
the literature. Furthermore, we run the top six solvers from ICCMA 2015 on the
generated benchmark and show that the ranking is considerably different from
the one obtained during the competition on randomly generated graphs.

This paper is of interest to both argumentation community and data analysis
community. Indeed, for data analysis, the existence of real benchmarks of argu-
ments could be of interest because it can pave the way for intelligent analysis of
such instances. These results could then further our comprehension of argumen-
tation graphs structural properties.

2 Background Notions

In this paper we use the existential rule instantiation of argumentation frame-
works of Croitoru and Vesic (2013). The existential rules language (Cal̀ı et al.
2009) extends plain Datalog with existential variables in the rule head and is
composed of formulae built with the usual quantifiers (∃,∀) and only two connec-
tors: implication (→) and conjunction (∧). A subset of this language, also known
as Datalog±, refers to identified decidable existential rule fragments (Gottlob et
al. 2014; Baget et al. 2011). The language has attracted much interest recently in
the Semantic Web and Knowledge Representation community for its suitability
for representing knowledge in a distributed context such as Ontology Based Data
Access applications (Baget et al. 2011; Thomazo and Rudolph 2014; Thomazo
2013; Magka et al. 2013; Zhang et al. 2016. The language is composed of the
following elements. A fact is a ground atom of the form p(t1, . . . , tk) where p is
a predicate of arity k and ti, i ∈ [1, . . . , k] constants. An existential rule is of the
form ∀−→

X,
−→
Y H[

−→
X,

−→
Y ] → ∃−→

Z C[
−→
Z ,

−→
X ] where H (called the hypothesis) and C

(called the conclusion) are existentially closed atoms or conjunctions of existen-
tially closed atoms and

−→
X,

−→
Y ,

−→
Z their respective vectors of variables. A rule is
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applicable on a set of facts F iff there exists a homomorphism from the hypoth-
esis of the rule to F . Applying a rule to a set of facts (also called chase) consists
of adding the set of atoms of the conclusion of the rule to the facts according to
the application homomorphism. A negative constraint (NC) is a particular kind
of rule where C is ⊥ (absurdum). It implements weak negation. A knowledge
base K = (F ,R,N ) is composed of a finite set of facts F , a set of rules R and
a set of negative constraints N . We denote by C�∗

R(F) the closure of F by R
(computed by all possible rule R applications over F until a fixed point). C�∗

R(F)
is said to be R-consistent if no negative constraint hypothesis can be deduced.
Otherwise C�∗

R(F) is R-inconsistent. Note that different chase mechanisms use
different simplifications that prevent infinite redundancies (Baget et al. 2011).
In fact, C�∗

R(F) is a finite set when we restrict ourselves to recognisable finite
extension set classes (Baget et al. 2011) of existential rules (i.e. those sets of
rules that when applied over a set of facts guarantee a finite closure) and use
a skolem chase (i.e. the rule application operator that replaces every existential
variable with a function depending on the hypothesis’ variables) for saturation
(Marnette 2009).

Example 1. Consider the following simple knowledge base K: James is a cat.
James is affectionate. James is handsome. James is intelligent. All cats are mam-
mals. One cannot be affectionate, handsome and intelligent at the same time4.

Formally, K = (F ,R,N ), where:

F = {cat(James), affectionate(James),
handsome(James), intelligent(James)}.

R = {∀x cat(x) → mammal(x)}.

N = {∀x (affectionate(x) ∧ handsome(x)
∧ intelligent(x) → ⊥)}.

We can see that the set of facts is R-inconsistent. Indeed, by using solely F
we are able to deduce the hypothesis of the negative constraint in N .

An argument (Croitoru and Vesic 2013) in Datalog± is composed of a min-
imal (with respect to set inclusion) set of facts called support and a conclusion
entailed from the support. The Skolem chase coupled with the use of decid-
able classes of Datalog± ensures the finiteness of the proposed argumentation
framework (Baget et al. 2011).

Definition 1. Let K = (F ,R,N ) be a knowledge base. An argument a is a tuple
(H,C) with H a non-empty R-consistent subset of F and C a set of facts such
that:

– H ⊆ F and C�∗
R(H) 	|= ⊥ (consistency)

– C ⊆ C�∗
R(H) (entailment)

– �H ′ ⊂ H s.t. C ⊆ C�∗
R(H ′) (minimality)

4 The example is obviously fictitious.
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The support H of an argument a is denoted by Supp(a) and the conclusion C by
Conc(a). If X is a set of arguments, we denote by Base(X) =

⋃
a∈X Supp(a).

Example 1 (cont.). An example of an argument is a1 = ({affectionate
(James)}, {affectionate(James)}) which states that James is affection-
ate. Moreover, the minimality implies that arguments that possess excess
information in their supports like ({affectionate(James), cat(James)},
{affectionate(James)}) are not considered. Another example of argu-
ment is a2 = ({intelligent(James), handsome(James)}, {intelligent(James),
handsome(James)}). The argument a3 = ({cat(James)}, {mammal(James)})
is another example of an argument.

To capture inconsistencies between arguments, we consider the undermining
attack (Croitoru and Vesic 2013): a attacks b iff the union of the conclusion of
a and an element of the support of b is R-inconsistent.

Definition 2. An argument a attacks an argument b denoted by (a, b) ∈ C (or
aCb) iff ∃φ ∈ Supp(b) s.t. Conc(a) ∪ {φ} is R-inconsistent.

Now that we defined the structure of arguments and attacks, the argumenta-
tion graph corresponding to a knowledge base simply consists of all arguments
and attacks that can be generated.

Definition 3. An argumentation graph AS is a tuple (A, C) where A is a set of
arguments and C ⊆ A×A is a binary relation between arguments called attacks.
The argumentation graph instantiated over a knowledge base K is denoted by
ASK, where the set of arguments and attacks follow Definitions 1 and 2 respec-
tively.

Example 1 (cont.). We have that a2 attacks a1 but a1 does not attack a2 (as we
consider a subset of the support of a2 we cannot entail a negative constraint).
This is an example that shows that the graph is not symmetric, which is due to
the presence of n-ary constraints.

The complete graph for the knowledge base of Example 1 is composed
of 27 arguments and 144 attacks and is represented in Fig. 1. For exam-
ple, the argument a7 0 = ({intelligent(James)}, {intelligent(James)}) is
attacked by the argument a5 2 = ({affectionate(James), handsome(James)},
{affectionate(James), handsome(James)}).

When considering an argumentation graph AS = (A, C), one is often inter-
ested in the several consistent viewpoints (or subsets of arguments) that can be
inferred. Let E ⊆ A and a ∈ A. We say that E is conflict-free iff there exists
no arguments a, b ∈ E such that (a, b) ∈ C. E defends a iff for every argument
b ∈ A, if we have (b, a) ∈ C then there exists c ∈ E such that (c, b) ∈ C. E is
admissible iff it is conflict-free and defends all its arguments. E is a complete
(CO) extension iff E is an admissible set which contains all the arguments it
defends. E is a preferred extension (PR) iff it is maximal (with respect to set
inclusion) admissible set. E is a stable extension (ST) iff it is conflict-free and for
all a ∈ A\E, there exists an argument b ∈ E such that (b, a) ∈ C. E is a grounded
extension (GR) iff E is a minimal (for set inclusion) complete extension.



338 B. Yun et al.

Fig. 1. Graph representation of the instantiated argumentation framework constructed
on the knowledge base of Example 1

3 The Benchmark

The aim of this section is to detail the generation of benchmarks based on argu-
mentation graphs instantiated using existential rules. As seen in the previous
section, existential rules, as a logical language, provide many features (n-ary
negative constraints, existential variables in the rule conclusion) that make the
instantiated argumentation graph far from simplistic. Furthermore the instanti-
ated graph is reflecting the structure of OBDA inconsistent knowledge bases and
it is thus justifying its interest as practical benchmark. Generating such graphs
is thus significant for a broader community interested in reasoning in presence
of inconsistency on the Semantic Web.

We explain the generation of the benchmark graphs in Sect. 3.1. Then, in
Sect. 3.2, we run top argumentation solvers on the benchmark and discuss the
results. The goal of this experimental part is to see how the solvers perform on
graphs generated from logical knowledge bases and compare performance with
respect to randomly generated graphs.

All experiments presented in this section were performed on a VirtualBox
Linux machine running with a clean Ubuntu installation with one allocated
processor (100%) of an Intel core i7-6600U 2.60GHz and 8GB of RAM. The
result files are available upon request (the files amount to more than 15 GB of
data).
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3.1 Benchmark Generation

Knowledge Base Generation. We generated a total of 134 knowledge bases: 108
different knowledge bases for the set of small graphs (denoted b1 to b108) and 26
for the set of big graphs accessible online at https://github.com/anonymousIDA/
Knowledge bases. This was done in order to have graphs of similar sizes as those
of the 2015 International Competition on Computational Models of Argumen-
tation (ICCMA 2015). The ICCMA benchmark contains two sets of graphs: a
set composed of small graphs (less than 383 arguments) and a set of big graphs
(3783 to 111775 arguments). We define, for a fixed size of generated F (that
varied from 2 to 5), some knowledge bases with binary (respectively ternary
when applicable) constraints in order to obtain an incremental coverage of the
facts. We then add rules in a similarly incremental manner. Table 1 shows the
characteristics of the knowledge bases we selected. For example, if consider-
ing 3 facts a(m), b(m), c(m), we chose a representative of binary constraints as
∀x(a(x) ∧ b(x) → ⊥) or ∀x(a(x) ∧ b(x) → ⊥) or ∀x(a(x) ∧ b(x) → ⊥). We then
chose ∀x(a(x) ∧ b(x) ∧ c(x) → ⊥).

Table 1. Characteristics of the small knowledge bases.

Name
of the KB

Number
of facts

Number
of rules

Number
of NC

Type
of NC

Number
of args

Number
of attacks

b1 to b6 2 to 7 ∅ 1 Binary 2 to 95 2 to 2048

b32 3 ∅ 2 Binary 4 6

b33 to b35 4 ∅ 2 to 3 Binary 7 to 9 24 to 32

b36 to b40 5 ∅ 2 to 3 Binary 14 to 19 56 to 128

b7 to b12 2 1 to 6 1 Binary 4 to 30 5 to 240

b13 to b18 2 2,4 or 6 1 Binary 6 to 30 15 to 450

b19 to b28 2 to 7 1 or 3 1 Binary 11 to 383 32 to 32768

b29 to b31 3 2 1 Binary 16 27 to 30

b57 to b58 3 1 2 Binary 8 13 to 14

b59 to b82 4 3 2 to 4 Binary 22 to 71 123 to 896

b41 to b56 3 to 6 ∅ 1 to 3 Ternary 6 to 55 9 to 752

b83 to b84 3 1 1 Ternary 12 29 to 39

b85 to b87 3 2 1 Ternary 24 93 to 147

b88 to b108 4 3 1 to 2 Ternary 78 to 103 990 to 2496

From Knowledge Bases to Argumentation Graphs. In the argumentation graph
generation process, we only kept knowledge bases whose argumentation frame-
work is not automorphic to a previously generated graph. The KB format is dlgp
(Baget et al. 2015b), allowing translations to and from various Semantic Web

https://github.com/anonymousIDA/Knowledge_bases
https://github.com/anonymousIDA/Knowledge_bases
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languages such as RDF/S, OWL, RuleML or SWRL (Baget et al. 2015a). For
graph generation we made use of the Graal (Baget et al. 2015c) framework, a
Java toolkit for reasoning within the framework of existential rules. Graal was
used for storing the existential rule knowledge bases and for computing conflicts.
On top of Graal we provided a graph generation program that works in three
steps:

1. All possible arguments are generated: R-consistent subsets of F are used as
supports and conclusions are deduced from them (see Definition 1).

2. Non minimal arguments are removed (see Definition 1).
3. Attacks are computed following Definition 2.

The obtained graphs were translated in the Aspartix (apx) format (the same
format used in ICCMA 2015).

Example 2. Let us consider the knowledge base b44 = (F ,R,N ), where F =
{a(m), b(m), c(m), d(m), e(m)},R = ∅ and N = {∀x(a(x) ∧ b(x) ∧ c(x) → ⊥)}.
The corresponding argumentation graph ASK is composed of 26 arguments and
144 attacks and is represented in Fig. 2. We show by this example that some of
our generated graphs also possess a sense of “symmetry”.

Fig. 2. Representation of the argumentation graph corresponding to b44.

In the next section, we run the top 6 argumentation solvers on the proposed
benchmark and discuss the obtained results.
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3.2 Benchmark Solvers Results

We recall that the graphs used in the ICCMA 2015 benchmark were separated
in three sets: a first set of large graphs (1152 to 9473 arguments) with large
grounded extensions and an average density of 1.00%5, a second set of smaller
graphs (141 to 400 arguments) with numerous complete/preferred/stable exten-
sions and an average density of 3.68% and a third set of medium graphs (185
to 996 arguments) with rich structure of strongly connected components and an
average density of 7.75%. Our benchmark graphs are denser, having an average
density of 31.27% for small graphs and 29.69% for large graphs.

To see if the proposed benchmark graphs behave in a similar manner as the
randomly generated graphs of ICCMA 2015, we ran the top six solvers of the
competition: CoQuiAAS, ArgSemSAT (ArgS.SAT), LabSATSolver (LabSATS.),
ASGL, ASPARTIX-D and ArgTools (ArgT.). We used the solvers to complete
two computational tasks: SE (given an abstract argumentation framework, deter-
mine some extension) and EE (given an abstract argumentation framework,
determine all extensions). These two computational tasks were to be solved with
respect to the following standard semantics: Complete Semantics (CO), Pre-
ferred Semantics (PR), Grounded Semantics (GR) and Stable Semantics (ST).

In order to have similar assessment conditions, we used exactly the same
ranking method as ICCMA 2015. The solvers were ranked with respect to the
number of timeouts on these instances and ties were broken by the actual run-
time on the instances. Table 2 shows the average time needed for each solver to
complete each task for each semantics in the case of small graphs. There were no
errors or time-outs thus the average time reflects the actual ranking (see Tables 3
and 4).

For large instances, many solvers did not support large inputs resulting in
several crashes/errors. Ties were broken by the average time of successfully
solved instances (Table 5). Please note that for large graphs, for some tasks,
some solvers timed out for all instances resulting in equal rankings (EE-CO:
ASGL and ArgTools for instance).

It is noticeable that CoQuiAAS comes first in the two batches of generated
graphs. As an explanation, please note that CoQuiAAS is based on MiniSAT
solver, which is known to work well in the presence of structured information
(i.e. symmetries). It might be the case that the generated graphs keep some
of their structure even after being translated into a SAT instance which could
explain the obtained result.

In order to see how different the solver ranking on the random benchmark
used by ICMMA 20156 is from the solver ranking on the knowledge base bench-
mark, we used the normalised Kendall tau distance7. The distance outputs 0

5 Graph density for a directed G = (V,E) is equal to |E|
|V |(|V |−1)

where V is the set of
nodes and E the set of arcs.

6 http://argumentationcompetition.org/2015/results.html.
7 This distance is equal to the number of pairwise disagreements between two ranking

lists and is normalised by dividing by n(n−1)
2

, where n is the number of solvers.

http://argumentationcompetition.org/2015/results.html
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Table 2. Average time for small instances (in sec).

ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.

SE-CO 0,0138 0,1719 0,0059 0,0249 0,0031 0,3644

SE-PR 0,0165 0,2137 0,0059 0,4445 0,0007 0,2906

SE-GR 0,0339 0,2101 0,0057 0,3217 0,0010 0,1944

SE-ST 0,0148 0,2194 0,0060 0,0279 0,0018 0,2520

EE-CO 0,0694 0,2282 0,0096 0,0247 0,0024 0,2908

EE-PR 0,0517 0,1660 0,0085 0,5763 0,0029 0,3765

EE-GR 0,0325 0,1861 0,0052 0,3239 0,0016 0,2262

EE-ST 0,0486 0,1661 0,0065 0,0231 0,0027 0,3151

Table 3. Corresponding ranking on small graphs.

ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.

SE-CO 3 5 2 4 1 6

SE-PR 3 4 2 6 1 5

SE-GR 3 5 2 6 1 4

SE-ST 3 5 2 4 1 6

EE-CO 4 5 2 3 1 6

EE-PR 3 4 2 6 1 5

EE-GR 3 4 2 6 1 5

EE-ST 4 5 2 3 1 6

Table 4. Number of timeouts on the generated large graphs.

ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.

SE-CO 15 26 16 1 0 11

SE-PR 18 1 17 26 0 11

SE-GR 17 0 18 26 0 11

SE-ST 15 0 18 2 0 11

EE-CO 22 26 26 9 2 21

EE-PR 21 26 26 26 15 21

EE-GR 16 26 17 26 0 11

EE-ST 15 23 17 1 1 11

if two rankings are identical and 1 if one ranking is the reverse of the other.
Table 7 shows the normalised Kendall tau distance between the rankings of the
generated graphs and the competition ranking. What comes out is that:
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Table 5. Ranking on the generated large graphs.

ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.

SE-CO 4 6 5 2 1 3

SE-PR 5 2 4 6 1 3

SE-GR 4 2 5 6 1 3

SE-ST 5 2 6 3 1 4

EE-CO 4 5 5 2 1 3

EE-PR 2 4 4 4 1 3

EE-GR 3 5 4 5 1 2

EE-ST 4 6 5 2 1 3

– Although the ranking of the ICCMA 2015 benchmark and the one for large
graphs for the task EE-GR is slightly different (we can not break the tie
between ASPARTIX-d and ASGL), they are identical with respect to Kendall
tau.

– We have the same normalised Kendall tau distance for the small graphs and
the large graphs for the tasks SE-CO, SE-PR and SE-GR.

– The small graphs have a higher normalised Kendall tau distance than the large
graphs for the tasks SE-ST, EE-CO, EE-PR and EE-GR.

– The small graphs have a lower normalised Kendall tau distance than the large
graphs for the task EE-SET.

– In average, the results are more similar for the large graphs than for the small
graphs.

This benchmark is interesting because it shows that for the instantiated
graphs we generated, it is strongly advised to use CoQuiAAS as the solver. For
relatively small graphs, the choice of the solver can be bypassed as the differences
are negligible. However, for larger graphs, we noticed several issues:

Table 6. Rankings extracted from the ICCMA 2015 website.

ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.

SE-CO 4 2 5 3 1 6

SE-PR 1 4 6 5 3 2

SE-GR 3 5 4 6 1 2

SE-ST 2 5 6 1 4 3

EE-CO 2 5 6 1 3 4

EE-PR 1 4 6 5 2 3

EE-GR 3 5 4 6 1 2

EE-ST 2 4 5 1 3 6
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Table 7. Normalised Kendall tau distance between the rankings of the generated
graphs and the competition ranking.

Small graphs Large graphs

SE-CO 0.400 0.400

SE-PR 0.467 0.467

SE-GR 0.200 0.200

SE-ST 0.600 0.467

EE-CO 0.467 0.200

EE-PR 0.400 0.067

EE-GR 0.267 0.000

EE-ST 0.333 0.400

Average 0.392 0.275

– It seems that ASGL uses a different algorithm for SE-GR and EE-GR (this is
very noticeable by the difference in the number of timeouts).

– ASGL is not suitable for finding complete extensions (Table 6).
– Aspartix-D is not suitable for finding preferred and grounded extensions.
– There are 15 instances that were too big to perform the task EE-PR for all

solvers.

4 Discussion

This paper starts from the observation that benchmarks of argumentation graphs
generated from knowledge bases are currently missing in the literature. We thus
propose to consider logic based argumentation frameworks instantiated with
existential rules. We provided a tool for generating such graphs out of existen-
tial rule knowledge bases. We ran top argumentation solvers on the generated
benchmark and analysed their performance with respect to performance on ran-
domly generated graphs.

Note that constructing all the arguments from the knowledge base might
result in a big number of arguments. One could reduce the number of arguments
by preserving only some of them, i.e. by keeping only the so called core (Amgoud
et al. 2014). In the present paper, we do not use the notion of a core because we
do not want the choice of the core (there are several possibilities) to influence the
results of this first study. As it is not convenient to generate too many arguments
in practice, investigating benchmark generation using different notions of core is
part of future work.

Acknowledgments. Srdjan Vesic benefited from the support of the project
AMANDE ANR-13-BS02-0004 of the French National Research Agency (ANR).
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