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Abstract. Despite their great success, deep neural networks (DNN) are
hard to deploy on devices with limited hardware like mobile phones
because of massive parameters. Many methods have been proposed for
DNN compression, i.e., to reduce the parameters of DNN models. How-
ever, almost all of them are based on reference models, which were firstly
trained. In this paper, we propose an approach to perform DNN training
and compression simultaneously. More concretely, a dynamic and adap-
tive threshold (DAT) framework is utilized to prune a DNN gradually
by changing the pruning threshold during training. Experiments show
that DAT can not only reach comparable or better compression rate
almost without loss of accuracy than state-of-the-art DNN compression
methods, but also beat DNN sparse training methods by a large margin.
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1 Introduction

In last few years, deep neural networks (DNNs) have made impressive perfor-
mance on various artificial intelligence tasks like image classification [1,2], speech
recognition [3] and natural language processing [4]. Thus DNNs are promising
to apply to all kinds of intelligent devices. However, DNNs usually have massive
parameters, which result in severe memory overhead and energy consumption [5].
For example, the number of parameters in two popular DNN models AlexNet [1]
and VGG16 [6] are 61 million and 138 million, and the storage cost are 240 MB
and 550 MB respectively, such a large memory usage prevents DNNs to deploy on
mobile devices with limited hardware like smart phones. Therefore, reducing the
parameters of DNNs without significant performance degradation is important
for DNN coming into utility.

It was shown that there existed high redundancy in the overall parameters
of a DNN [7], which means only a small part of parameters are needed to guar-
antee the performance in testing. Since then a lot of methods are proposed to
compress DNNs, almost all of them operate on the reference models like tensor
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decomposition, parameter sharing and network pruning, noting that reference
models were firstly trained on the corresponding datasets. However, for a new
dataset, it is very likely that there are no reference models which are trained
on it, and the training of reference models themselves are time-consuming. For
example, in [5], the training of AlexNet reference model took 75 h on NVIDIA
Titan X, and the subsequent compression process took extra 173 h. So if the two
previously separated steps, training of reference model and compression, can be
combined as one, then significant time will be saved.

Network pruning is quite effective in compressing DNN models. The prun-
ing thresholds play a key role in network pruning. The state-of-the-art pruning
method, dynamic network surgery [8], computes pruning thresholds on reference
models and keeps them fixed throughout the compression phase. With reference
model, this fixed threshold scheme is effective because the weights distribution
has little change during model compression. But it is not true for training, for
example, either Xavier initialization [9] for LeNet-5 or Gaussian initialization for
CIFAR10 CAFFE [10], is far away from compression model as shown in Fig. 1,
which means their pruning thresholds are invalid in the training phase.

In this paper, we propose a dynamic and adaptive threshold framework
(DAT) by which DNN training and compressing can be performed simultane-
ously. Dynamic threshold means we prune parameters gradually. Only a small
part of weights is pruned at the beginning, but as the training goes on, more and
more parameters are pruned. Compared to fixed threshold scheme which prunes
huge number of weighs at the beginning, dynamic threshold is more reasonable

Fig. 1. Weights histogram of LeNet-5 (top) and CIFAR10 CAFFE (bottom). X axis is
the range of weight values, and Y axis means the number of this value. Note that we
only plot weights distribution of convolutional layers 2 (conv2) in above two models
for demonstration, the similar pattern would be found in other layers.
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because it is hard to judge the importance of initialized weights, and a good
way is waiting for a few iterations as dynamic threshold does. Adaptive thresh-
old means the thresholds change according to the weights distribution, noting
that the weights distribution changes drastically over iteration in the training
phase. In DAT framework dynamic threshold allows coarse-grained pruning and
adaptive threshold allows fine-grained pruning. The experiments show that our
proposed DAT framework is effective.

The rest of the paper is as follows. Section 2 presents related works. Prelimi-
nary and our proposed method are introduced in Sect. 3. In Sect. 4, we conduct
comprehensive experiments and report the results. Conclusion and future work
are made in Sect. 5.

2 Related Work

There have been many works aiming at DNN compression. [13] employed a fixed
point implementation of DNN to replace float point scheme; [14] directly used
binary weighs to alleviate the complexity of networks. The other works can be
roughly divided into three categories: weight sharing, tensor decomposition and
network pruning.

Weight sharing means grouping weights, within each group only one value
or vector is needed like vector quantization [15] and HashedNets [16], which
shares weights using hash buckets. Tensor decomposition is another way of DNN
compression. [7,17] resort to low rank approximation of each layer matrix, [18]
included the nonlinear part in the decomposition, [19] used a global error recon-
struction to replace previous layer-wise decomposition. However, weight sharing
and tensor decomposition will lose severe accuracy if high compression rate is
needed.

By contrast, network pruning is a more promising DNN compression method,
mainly because pruning and network retraining can be combined perfectly. With-
out loss of accuracy, network pruning could reach a very high compression rate.
Moreover, the sparse matrix after pruning can be accelerated by extra hard-
ware [20]. Network pruning set the unimportant weights to zero values, Optimal
Brain Damage [21] and Optimal Brain Surgeon [22] computed hessian matrix
to evaluate weights importance, but they need high computation overhead espe-
cially for DNNs. Magnitude-based methods prune weights whose absolute values
are less than thresholds. This method, although simple, has the computational
complexity of O(n), where n is the number of weights, thus is widely adopted
by [5,8,23]. [23] employed a structured sparsity learning method to compress
the convolutional layers, but as we know that most parameters of DNN are dis-
tributed in fully connected layers. In [5] pruning and retraining are repeated
iteratively to reach a higher compression rate. However, the weight is discarded
forever if be pruned, which constrain the compression and cause inefficient learn-
ing. This problem was solved by [8], which proposed dynamic network surgery
and allowed the recovery of incorrect pruning. By this way, dynamic network
surgery achieves state-of-the-art compression rate.
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It should be emphasized that all methods of these three categories need
reference models. Recently [12] studied l1 and l0 regularization of DNN system-
atically, and concluded that l1 and l0 regularization could lead to considerably
sparse DNN. Note that our proposed DAT also works at the training stage, so
we will compare DAT with regularization techniques in Sect. 4.

3 Dynamic and Adaptive Threshold (DAT)

In this section, we will first introduce dynamic network surgery (DNS) [8] in
Preliminaries, then highlight the dynamic and adaptive threshold framework.
Note that the DAT framework can also be combined with other pruning methods
in addition to dynamic network surgery.

3.1 Preliminaries

Dynamic network surgery maintains a mask Ml for weight matrix Wl in layer l,
where 1 ≤ l ≤ L. Ml takes binary values in which 0 indicates being pruned and
1 indicates being kept, so Wl would keep dense throughout the compression. At
the beginning of one iteration, Ml is updated as:

M
(i,j)
l =

{
0, |W (i,j)

l | < tl

1, |W (i,j)
l | ≥ tl

(1)

and the change of M (i,j)
l from 0 to 1 means splicing, which is vital for DNS. tl is

a layer-wise threshold that is computed before model compression and keep fixed
during the whole compression. After the update of M (i,j)

l , weight matrix Wl is
wrapped into Hl = Wl

⊙
Ml, noting that Hl is not dense because

⊙
indicates

element-wise product. It is Hl, not Wl which plays the role of “weights” in
forward and backward propagation until the update of Wl:

W
(i,j)
l ← W

(i,j)
l − α

∂Loss

∂(W (i,j)
l M

(i,j)
l )

(2)

Note that Eq. 2 is not a standard gradient descent algorithm because the gradient
is partial derivative of loss function to Hl but not Wl, on the other hand,
Eq. 2 also updates the previously pruned entries in Wl, which makes the model
compression dynamic.

3.2 Dynamic and Adaptive Threshold

Recall that our goal is to perform DNN training and compression simultaneously,
now we elaborate how to achieve this goal by introducing a dynamic and adaptive
threshold framework. The fixed threshold scheme computes tl as:

tl = μl + clσl (3)
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where μl = E(|Wl|), σl =
√

V ar(|Wl|) and cl is a layer-wise hyper-parameter.
Obviously this scheme is suitable to Gaussian-like distribution, which is true
for reference models, but not true for initialization models. For example, Xavier
initialization [9], which is used in standard LeNet-5 [11] training procedure of
Caffe [10], initializes Wl by a uniform distribution Wl ∼ U [−a, a], in this case,
we have μ = a

2 , σ =
√
3
6 a, so the choice of c need to be specially careful, c ≥ 2

will cause t = μ + cσ > a and then all weights in this layer will be pruned!
The other problem of fixed threshold scheme is over pruning at the beginning.

After initialization, the magnitude of weights distributes randomly, it is difficult
to evaluate the importance of weights. If we prune a large part of weights this
moment as fixed threshold scheme does, many important weights will be pruned
and the performance of DNN models may suffer serious damage. We propose that
these problems can be solved by making cl dynamic. More concretely, cl should
be a function of iteration i. It is expected that cl would range from −cl,max to
cl,max as the iteration increases. We find the transformed tanh function meeting
our expectation perfectly, that is,

cl(i) = cl,max · tanh(
i − i0

λ
) (4)

in which i0 makes cl(i) equal to 0, and λ is a scaling factor. It should be noted that
the threshold is low at the beginning, indicating only few weights are pruned. i0
is an important demarcation point. When i < i0, cl(i) takes negative values and
the threshold tl takes no more than μl, in this case, not too much weights are
pruned. However, if i ≥ i0, tl increases rapidly and approaches its extreme value,
and most weights would be pruned. So in order to waiting for weights to exhibit
their own importance, i0 can not be too small. In this work, we empirically set
i0 to imax/4. Note that there may exist other functions that are suitable for
cl(i). However, in this work, we mainly want to demonstrate the effectiveness of
a dynamic strategy, but not which strategy is best.

Considering the dramatic change of weight distribution during training, the
fixed μl and σl computed from the initialization cannot cover the whole com-
pression, which is different from compression with reference model, so μl and
σl need to be adaptive instead of staying fixed. That is, μl and σl should also
be the function of iteration i. Perhaps the easiest way to threshold adaption is
employing

μl(i) = E(|Wl(i)|) (5)

σl(i) =
√

V ar(|Wl(i)|) (6)

however, this strategy will cause drastic change of DNN structure, resulting in
training inefficiency. So we adopt a smoother adaption method:

μl(i) ← μl(i) + ε · Δμl(i) (7)
σl(i) ← σl(i) + ε · Δσl(i) (8)

in which Δμl(i) and Δσl(i) are computed as:
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Algorithm 1. Dynamic and Adaptive Threshold (DAT)
Input: {X ,y}: training datum, imax: maximum iterations
Output: W ,M = {Wl,Ml : 1 ≤ l ≤ L}: weight and mask matrices of the compressed

model
1: Initialize: Wl, μl = E(|Wl|), σl =

√
V ar(|Wl|), ∀1 ≤ l ≤ L

2: repeat
3: for l = 1 to L do
4: Compute Δμl(i), Δσl(i) by Eq. 9, Eq. 10
5: Update μl(i), σl(i) by Eq. 7, Eq. 8
6: Compute cl(i) by Eq. 4
7: Compute threshold tl(i) = μl(i) + cl(i) · σl(i)
8: end for
9: Update M by Eq. 1 and forward propagation

10: Back propagation and update W by Eq. 2
11: i = i + 1
12: until convergence or i ≥ imax

Δμl(i) = (E(|Wl(i)|) − E(|Wl(i − 1)|)) · ei/imax (9)

Δσl(i) = (
√

V ar(|Wl(i)|) −
√

V ar(|Wl(i − 1)|)) · ei/imax (10)

Now μl(i) and σl(i) can still be updated by the change of weight distribution,
but the step is controlled by ε, thus this strategy is smoother. The exponential
term is designed to impose more importance to the update near maximum of
iteration, because at that time cl(i) becomes almost saturated, and update of
μl and σl should be more sensitive to the change of weights distribution. The
whole algorithm procedure is summarized in Algorithm 1.

4 Experiments

In this section, comprehensive experiments are conducted on MNIST [11] and
CIFAR-10 [26] to evaluate the performance of our proposed DAT framework.
We claim that DAT is firstly a DNN compression method, so we compare DAT
with state-of-the-art DNN compression methods, which include iterative network
pruning (INP) [5] and dynamic network surgery (DNS) [8], noting that INP and
DNS need reference models but DAT does not need. Then we compare DAT
with DNN sparse training methods like l1 and l0 regularization [12].

4.1 Experimental Setting

Datasets and Reference Models. Both MNIST and CIFAR-10 have 50000
training images and 10000 testing images of 10 classes. MNIST is a handwritten
digits database and CIFAR-10 is a natural images database. For MNIST, the
classical LeNet-5 [11] is trained on it, and LeNet-5 has 4 learnable layers. For
CIFAR-10, we choose CIFAR10 CAFFE which is defined in Caffe [10] and has 5
learnable layers. Both reference models are trained using standard protocols in
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Caffe community. Finally, the LeNet-5 reference model achieves an accuracy rate
of 99.09% using 10000 iterations, and the CIFAR10 CAFFE reference model
achieves 75.54% accuracy rate using 5000 iterations.

Implementation Details. We conduct experiments using Caffe platform and
the open source code from [8] on NVIDIA GTX TITAN X graphics card. More-
over, we follow the default setting of corresponding .prototxt files in Caffe unless
otherwise specified. The random number seed is fixed when we initialize a model
for fair comparison. We employ classification accuracy and compression rate as
the evaluation metrics, in which compression rate is defined as total number of
weights divided by number of weights after compression.

4.2 Demonstration of DAT’s Effectiveness

We firstly demonstrate the effectiveness of our proposed DAT framework, includ-
ing dynamic threshold scheme alone and the whole DAT scheme. Dynamic net-
work surgery (DNS) [8] is taken as the comparative method. Although DNS is
designed to work on reference models, in this subsection all methods are used
for training from scratch for fair comparison. Because large scale pruning would
inevitablely result in loss in performance, more iterations are needed to ensure
the recovery of accuracy. For example, the number of iterations is increased
from 10000 to 16000 for training LeNet-5, and from 5000 to 8000 for training
CIFAR10 CAFFE respectively. Note that drastic pruning will happen after i0,
so the learning rate from i0 is increased for better compensating for the loss of
accuracy, especially for LeNet-5 that originally adopts a monotone decreasing
learning policy in Caffe. For each method, we explore the best cmax and then
plot accuracy and compression rate curves over iterations in Fig. 2.

As is shown in Fig. 2, both dynamic threshold scheme alone and the whole
DAT scheme can reach a rather high compression rate almost without loss of
accuracy, which proves that our proposed method is highly effective in DNN
compression. For both models, the dynamic only and DAT followed the same
pattern in accuracy curves, they undergo a small drop after i0, noting that
for LeNet-5 i0 = 4000 and for CIFAR10 CAFFE i0 = 2000. Eventually the
dynamic only and DAT reached the accuracy of 99.11% and 99.09% for LeNet-
5, 75.30% and 75.33% for CIFAR10 CAFFE. These results are comparable to
reference models (red dash line in Fig. 2), and they are much better than those of
DNS, which are only 98.70% and 72.39%. This is also true for compression rate
curve, i.e., the compression rates of the dynamic only and DAT are much higher
than those of DNS. Different from accuracy curves, the dynamic only and DAT
begin to rise in compression rate after i0, and then exhibit different behaviours.
DAT can reach a higher compression rate for both models, which is mainly due
to the adaptive threshold scheme’s adaptability to weight distribution.

In this subsection, it is shown that DAT can outperform DNS in both accu-
racy and compression rate, which demonstrate the effectiveness of our proposed
dynamic and adaptive threshold framework clearly.
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(a) LeNet-5

(b) CIFAR10 CAFFE

Fig. 2. Accuracy and compression rate comparison of different methods on LeNet-5
(a) and CIFAR10 CAFFE (b). Note that for each subfigure, accuracy curves (left) and
compression rate curves (right) are plotted. (Color figure online)

4.3 Comparison with DNN Compression Methods

In this subsection, DAT is compared with state-of-the-art DNN compression
methods. Under the condition of compression without accuracy loss, network
pruning is a more efficient method than others like weight sharing and tensor
decomposition, so we choose state-of-the-art DNN pruning methods, i.e., itera-
tive network pruning (INP) [5] and dynamic network surgery (DNS) [8], as the
compared methods. As for the evaluation metrics, overall iterations is used, in
addition to accuracy and compression rate. For INP and DNS, overall iterations
equals to the number of iterations in training phase plus that in compression
phase, and for DAT, overall iterations is just the maximum number of itera-
tions. The iterative number in INP is fixed to 3, which means the procedure of
pruning and retraining are repeated 3 times.

Generally we keep the accuracy being comparable with that of reference
model and then compare the compression rate of different methods, due to the
tradeoff between accuracy and compression rate. For CIFAR10 CAFFE, this
target is a little bit difficult because the range of accuracy is relatively large,



866 C. Jiang et al.

which is different from LeNet-5. As a result, the accuracy of INP, DNS and DAT
do not strictly equal to that of reference model, i.e. 75.54%.

The results are presented in Table 1. It is obvious that DAT and DNS outper-
form INP in compression rate by a large margin. Besides, INP need much more
iterations to compress a DNN model, which is consistent with the results in [5]
and [8]. Our proposed DAT is comparable with DNS in both accuracy and com-
pression rate. For LeNet-5, DAT reaches a compression rate of 110×, which is
slightly better than 108× of DNS. For CIFAR10 CAFFE, DAT is slightly worse
than DNS in compression rate with 15.6× versus 16.0×, and is better than DNS
in accuracy with 75.33% versus 75.19%. However, the biggest difference between
DAT and DNS is that DAT does not need reference model, which results in
dramatic decrease in overall iterations.

Table 1. Comparison of DAT and state-of-the-art DNN compression methods including
iterative network pruning (INP) and dynamic network surgery (DNS). Note that the
accuracy of reference model is 99.09% for LeNet-5 and 75.54% for CIFAR10 CAFFE.

Method Accuracy Overall Compression Need reference

iterations rate model?

LeNet-5 INP 99.09% 70 K 20× YES

DNS 99.09% 26 K 108× YES

DAT 99.09% 16K 110× NO

CIFAR10 CAFFE INP 75.78% 23 K 8.8× YES

DNS 75.19% 13 K 16.0× YES

DAT 75.33% 8K 15.6× NO

4.4 Comparison with DNN Sparse Training Methods

Finally we compare DAT with two well-known DNN sparse training methods,
i.e., l1 and l0 regularization. Note that most weights w satisfy |w| < 1, thus their
l1 regularization will be significantly larger than their l2 regularization, so the
weight decay factor should be much smaller. In experiments, the weight decay is
set to 1/10 of the original value for LeNet-5 and 1/5 for CIFAR10 CAFFE [10].
The other problem of l1 regularization is that l1 encourages many weights near
zero, but does not output exactly zero value weights! Therefore, for fair com-
parison, we add a pruning process after training while keeping the accuracy not
decreasing. The l0 regularization [12] directly set all weights to zero except the t
largest-magnitude ones every n iterations. The main target of this subsection is
the comparison between DAT and l1, l0 regularization, and for simplicity we use
the same training iterations as the reference models, that is, 10000 for LeNet-5
and 5000 for CIFAR10 CAFFE.

The accuracy curve over iterations is plotted in Fig. 3. For LeNet-5, only
DAT can meet the accuracy of reference model (the red dash line in Fig. 3), and
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Fig. 3. Accuracy curves of different DNN sparse training methods on LeNet-5 (left)
and CIFAR10 CAFFE (right). Note that the training iterations are 10000 for LeNet-5
and 5000 for CIFAR10 CAFFE. (Color figure online)

Table 2. Comparison of DAT with l1 and l0 regularization.

LeNet-5 CIFAR10 CAFFE

Method Accuracy Compression rate Accuracy Compression rate

l1 99.0% 10× 73.55% 2.3×
l0 98.88% 10× 70.92% 2.1×
DAT 99.10% 63× 74.52% 10.8×

for CIFAR10 CAFFE, no methods can reach the accuracy of reference model,
mainly because of reduction of iterations. Besides, the accuracy of l0 drop a
lot for both models, compared with accuracy of DAT and reference model,
which is mainly due to the fixed hard constraint t adopted by l0 regulariza-
tion.As for the compression rate, DAT reaches 63× and 10.8× for LeNet-5 and
CIFAR10 CAFFE respectively as shown in Table 2. These results are surprising
because the compression rate of DAT is several times better than the other two
methods. Considering the accuracy of DAT is also higher, so we can draw the
conclusion that DAT is quite an effective DNN sparse training method.

5 Conclusion

In this paper, we explore to compress DNN models without using reference
models. A dynamic and adaptive threshold (DAT) framework is proposed to
prune a DNN gradually by changing the pruning threshold during training, thus
DNN training and compression can be performed simultaneously. Experiment
results demonstrate that DAT can compress LeNet-5 and CIFAR10 CAFFE by
a factor of 110× and 15.6× respectively, without the usage of reference models
and almost without loss of accuracy. These compression rates are comparable
or better than state-of-the-art DNN compression method. Also, DAT can beat
DNN sparse training methods like l1 and l0 regularization by a large margin.
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Although effective, our proposed method imports some hyper parameters and
the searching of these hyper parameters is time-consuming. Therefore, in the
future we plan to explore DNN compression from scratch with fewer parameters.
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