
Bi-objective Water Cycle Algorithm
for Solving Remanufacturing Rescheduling

Problem

Kaizhou Gao1,2, Peiyong Duan3(&), Rong Su2, and Junqing Li1

1 School of Computer, Liaocheng University, Liaocheng, China
2 School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore, Singapore
3 School of Information Science and Engineering,

Shandong Normal University, Jinan, China
duanpeiyong@sdnu.edu.cn

Abstract. This paper researches on the remanufacturing rescheduling problems
(RRP) for new job insertion. The objective is to minimize the total flow time and
the instability at the same time. A bi-objective function is developed for RRP
and water cycle algorithm (WCA) is employed and improved to solve the
problem. A discretization strategy is proposed to make the WCA applicable for
handling the RRP. An ensemble of local search operators is developed to
improve the performance of the discrete WCA (DWCA) algorithm. Six real-life
remanufacturing cases with different scales are solved by DWCA. The results
and comparisons indicate the superiority of the proposed DWCA scheme over
the famous bi-objective algorithm, NSGAII.
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1 Introduction

Flexible job shop scheduling problem (FJSP) is an extension of classical job shop
scheduling problem (JSP) and includes two sub-problem, machine assignment and
operation sequence [1, 2]. Machine assignment is to select a processing machine from a
candidate set for each operation while operation sequence is to schedule all operations
on all machines to obtain feasible and satisfactory schedules. FJSP is complicated and
has been proven to be an NP-hard problem [3, 4].

FJSP exists in many industry fields with many practical and uncertainty related
issues. Wang et al. [5, 6] studied FJSP with fuzzy processing time using artificial be
colony (ABC) algorithm and estimation of distribution algorithm (EDA). Also for the
FJSP with fuzzy processing time, Gao et al. [7] proposed a discrete harmony search
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algorithm and compared against several existing algorithms for minimizing the max-
imum completion time objective. Xiong et al. [8] researched into robust scheduling
multi-objective FJSP with random machine breakdowns. Ahmadi et al. [9] researched
on the multi-objective FJSP with random machine breakdown by using NSGA-II and
NRGA. The stability and makespan are optimized after machine breakdown. Gao et al.
[10] researched on the FJSP with fuzzy processing time using ABC algorithm. Zheng
and Wang [11] and Gao and Pan [12] studied the FJSP with dual resource constrained
and multi-resource constrained by using fruit fly optimization algorithm and migrating
birds optimizer, respectively. Karimi et al. [13] modelled the FJSP with transportation
times and employed imperialist competitive algorithm with simulated annealing based
local search operator to solve makespan objective.

In this study, the remanufacturing rescheduling problems (RRP) is considered as
FJSP with new job insertion. Junior and Filho [14] reviewed the literatures on pro-
duction planning and control in remanufacturing. There are few literatures on repro-
cessing scheduling in remanufacturing. New job insertion is one of seven major
complicating characteristics in remanufacturing [15, 16]. In the real-life shop floor,
rescheduling is necessary after new jobs insertion. The RRP is modelled from pump
remanufacturing. The stability is an important metrics to evaluate the quality of
rescheduling solutions [9]. Hence, how to guarantee the stability in the RRP after new
jobs insertion is a significant topic.

In this study, a simple and novel metaheuristic, named water cycle algorithm
(WCA) is implemented to solve the RRP. The WCA, inspired by the nature water cycle
process, has been proposed as a metaheuristic optimization method [17]. The efficiency
and validity of the WCA has been examined for unconstrained, constrained engineering
design problems, and truss structures [17–19]. Recently, different applications and
improved versions of WCA have been implemented in the literature, finding optimal
operation of reservoir systems [20], urban traffic light scheduling problem [21].

To solve the RRP, a discrete versions of WCA (DWCA) algorithm is developed.
Based on the feature of the RRP, two objective-oriented local search operators and
ensemble of them are proposed to improve the performance of the proposed DWCA.
To test the performance of the proposed DWCA algorithm, six real-life cases with
different scales from pump remanufacturing are solved. A bi-objective for total flow
time and instability is optimized.

The remainder of this paper is organized as follows. Section 2 describes the
mathematical model of RRP. The standard WCAalgorithm is introduced in Sect. 3. In
Sect. 4, the proposed DWCA algorithm is described in detail. Section 5 represents the
experimental setup, comparisons and discussions of the obtained optimization results.
Finally, Sect. 6 gives the conclusions of this study and potential future works.

2 Problem Model

2.1 FJSP

In a flexible job shop, each job consists of a sequence of operations. An operation can
be executed on only one machine out of a set of candidate machines. Each operation of
a job must be processed only on one machine at a time, while each machine can process
only one operation at a time.

672 K. Gao et al.



The following notations and assumptions are used for the formulation of FJSP.
Let J ¼ fJig, 1� i� n, index i, be a set of n jobs to be scheduled. qi denotes the

total number of operations of job i. Let M ¼ fMkg, 1� k�m, index k, be a set of m
machines. Each job Ji consists of a predetermined sequence of operations. Let Oi;h be
operation h of Ji. Each operation Oi;h can be processed without interruption on one of
the set of candidate machines MðOi;hÞ. Let Pi;h;k be the processing time of Oi;h on
machine Mk. Decision variables

xi;h;k ¼ 1; if machine k is selected for the operationOi;h

0; otherwise

�
ð1Þ

ci;h denotes the completion time of the operation Oi;h and ci denotes the completion
time of the job Ji. The objective considered in this paper is total flow time: The total
flow time, denoted by TM , is the total completion time of all jobs.

MinCTotal ¼
X

1� i� n
ci ð2Þ

where ci is the completion time of job Ji.

2.2 Rescheduling and Stability Metrics for New Job Insertion

To explain RRP problem with a new job insertion more clearly, an example is shown in
Fig. 1. Figure 1(a) shows the result with no rescheduling after inserting Job4 directly.
Existing scheduling scheme is retained and the Job4 is scheduled when the last
operation on each machine is completed. Figure 1(b) shows rescheduling solution.
Both new Job4 and all non-started operations of existing jobs are rescheduled when
Job4 is inserted at time 3.

The stability metrics is to evaluate how many operations of existing jobs will be
remained on the original assigned machine in rescheduling phase. More operations
remaining the original machine means higher stability of rescheduling. For example, in
Fig. 1(a), the operations of existing jobs are remained, the operations of new job, Job4,
are scheduled after finishing the existing operations. The stability of the schedule is
very high. If other scheduling objectives are considered, the stability of rescheduling
solution may be decreased. For example, in Fig. 1(b), the Makespan is 11 which is less
than that (15) in Fig. 1(a). The operation O2;2 is moved from M3 to M1 and the stability
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Fig. 1. An example of new job insertion
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is decreased. To describe the stability metrics more clearly, a model about instability of
rescheduling solutions are proposed as follows:

F ¼ 100�
Pn

i¼1

Pqi
h¼1 xi;hPn

i¼1 h ið Þ % ð3Þ

xi;h ¼ 0;Mk is remained for Oi;h

1;Mk is changed for Oi;h

�
ð4Þ

where qi is the operation number of job i and Mk is the process machine of operation
Oi;h. The objective is to minimize the instability of rescheduling solution. The job
number n here is the number of existing jobs before new job insertion. It is clear that
smaller instability value means better stability of rescheduling solution.

2.3 Bi-objective Function

A multi-objective optimization problem can be stated as follows:

MinF Xð Þ ¼ f1 xð Þ; f2 xð Þ; � � � ; fm xð Þð ÞT ð5Þ

Subject toX 2X ð6Þ

where the decision vector x ¼ x1; x2; � � � ; xnð Þ belongs to the decision space X. The
objective function vector F : X ! K consists of multiple objectives. In this study,
functions f1 is set as the total flow time mentioned in Sect. 2.1 while the instability of
rescheduling solution is set as the fifth function f2.

f1 : CTotal ¼
X

1� i� n
ci ð7Þ

f2 : F ¼ 100�
Pn

i¼1

Ph ið Þ
h¼1 xi;hPn

i¼1 h ið Þ % ð8Þ

Bi-objective function about instability f2 and f1 is defined as follows:

Min F Xð Þ ¼ f1 xð Þ; f2 xð Þð ÞT ð9Þ

Here, a widely used strategy, Pareto domination, is employed to compare and rank
solutions for bi-objective function. For two solutions x ¼ x1; x2; � � � ; xnð Þ and x0 ¼ x

0
1;

�
x
0
2; � � � ; x

0
nÞ, x domimates x0 (denotes as x � x0) if and only if 8p 2 1; 2f g; fp xð Þ� fp x0ð Þ

and 9q 2 1; 2f g; fq xð Þ\fq x0ð Þ. Solution x is an optimal in the Pareto set if there is not
any solution x0 which dominates x. The Pareto optimal set is the collection of all Pareto
optimal solutions and the corresponding image in the objective space is the Pareto
front. In this paper, an archive set (AS) is used to record the non-dominated solutions
during the iterations. During the search process in the following introduced algorithms,
if a new solution dominates one or more solutions in AS, the new solution will replace
the dominated solutions.
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3 Water Cycle Algorithm

The idea of water cycle algorithm (WCA) [17] is inspired by the nature and observation
of water cycle process, how rivers and streams flow downhill towards the sea in nature.
Similar to other metaheuristic algorithms, the WCA begins with an initial population so
called the population of streams. First, we assume that we have rain or precipitation.
After that, the best individual (i.e., best stream) is chosen as a sea. Then, a number of
good streams after sea (Nsr) are chosen as rivers. Indeed, Nsr is the summation of rivers
and a sea. The original idea and the design details can be found in the literate [17]. The
steps of WCA is shown as follows:

Step 1: Initializing population (including streams, rivers, and sea) and parameters.
Step 2: Calculate the cost of all solutions in population
Step 3: Streams flow to rivers
Step 4: Rivers flow to the sea which is the best solution in current iteration number.
Step 5: Evaporation and raining to avoid getting trapped in local optimal.
Step 6: If the stop criterion is satisfied, output the sea; otherwise, go to Step3.

Depending on their magnitude of flow (i.e., cost/fitness function), rivers and sea
absorb water from streams. Indeed, streams flow to rivers and rivers flow to the sea.
Also, some streams directly flow to the sea. Therefore, the new positions for streams
and rivers have been proposed as follows [17].

~Xi
Streamðtþ 1Þ ¼ ~Xi

StreamðtÞþ rand � C � ð~Xi
SeaðtÞ �~Xi

StreamðtÞÞ; ð10Þ
~Xi
Streamðtþ 1Þ ¼ ~Xi

StreamðtÞþ rand � C � ð~Xi
RiverðtÞ �~Xi

StreamðtÞÞ; i ¼ 1; 2; 3; . . .;NStream ð11Þ
~Xi
Riverðtþ 1Þ ¼ ~Xi

RiverðtÞþ rand � C � ð~Xi
SeaðtÞ �~Xi

RiverðtÞÞ; i ¼ 1; 2; 3; . . .; ðNsr � 1Þ ð12Þ

where rand is a uniformly distributed random number between 0 and 1 (1 < C < 2). If
the solution given by a stream is better than its connecting river, the positions of river
and stream are exchanged. Such exchange can similarly happen for rivers and sea, and
sea and streams. For exploration phase, if norm distances among rivers, streams, and
sea are smaller than a predefined value (dmax), new streams are generated flowing into
the rivers and sea (i.e., evaporation condition) [19]. The schematic view of the WCA is
demonstrated in Fig. 2, where circles, stars, and the diamond correspond to the streams,

Fig. 2. Schematic view of the WCA

Bi-objective Water Cycle Algorithm for Solving RRP 675



rivers, and sea, respectively. Moreover, detailed comparisons concerning similarities
and differences between the PSO, WCA, and other optimizers have been given in the
literature [22].

4 Proposed Discrete WCA Algorithm

4.1 Framework of Discrete WCA

For RRP, the presented solution in Fig. 3 is a river or the sea or a stream in discrete
WCA (DWCA). An ensemble of two local search operators is combined with the
DWCA to improve the local search performance. Indeed, the raining process of the
DWCA is replaced with the ensemble for solving the RRP. The framework of DWCA
with the ensemble are shown in Fig. 3. The design details of DWCA are described in
Sects. 4.2, 4.3 and 4.4.

4.2 Encoding and Decoding

In DWCA, one candidate solution includes both machine assignment and operation
sequence for the RRP. An example of candidate solution is shown in Fig. 4. There are
4 jobs, 3 machines and 10 operations. Each element in the solution includes three
values, which are job number, operation number and the number of processing

 Streams flow to the rivers

 The convergence criterion is satisfied?

Yes

No

 Initializing population and parameters

Calculate the cost of each individual (streams, rivers, and sea)

 Rivers flow to the sea

 Streams directly flow to the sea

Update streams, rivers and sea

Output

Ensemble of local search

Fig. 3. The framework of the proposed DWCA
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machine. The first element (1, 1, 3) means that the first operation of job 1 is processed
on machine 3. The total number of elements is the total number of operations. In this
encoding strategy, both operation sequence and machine assignment are considered at
the same time. If the four jobs are new jobs inserted in to existing schedule at time 30
and the start time of three machines for rescheduling are 32, 34, and 33, respectively,
the new jobs and the non-started operations of existing jobs will be rescheduled and the
rescheduling solution can be decoded to a Gantt chart shown in Fig. 5.

4.3 Discretization Strategy

In the standard WCA, the generated solutions (i.e., streams) have been compared with
the sea (i.e., the best temporal solution) and/or corresponding rivers (e.g., second or
third best temporal solutions). Therefore, there is no comparison between the updated
solutions (i.e., streams/rivers) with their current positions. This comparison has been
taken into account in the current discrete version of WCA considered as an
improvement in the solution quality for the RRP. Indeed, using this strategy, more
exploitations (local search) have been performed around the best solution. After
assigning each stream to rivers and sea based on their intensity of flow, for each
iteration, the DWCA generates a random binary matrix of zero and one with size of
(Npop − 1) � D.

The randomly generated matrix of zero and one is used for decision criterion of
whether accepting the components of sea (i.e., best solution) or not. One means
“Replace” and zero means “Do not replace”. Therefore, for the new solutions, values
corresponding to the one from sea/rivers are replaced with the corresponding com-
ponents in the new solutions (e.g., new streams/rivers). Also, the pseudo-code of the
DWCA in detail is shown as follows.

(3,1,2) (3,3,1)(4,2,1)(1,3,2)(2,2,2)(2,1,2)(3,2,3)(1,2,3) (4,1,1)(1,1,3)

Operation sequence

Processing machine
Operation number

Job number

Fig. 4. An example for decoding

O41

O11 O12

O31

7

O32

O42

O21 O13

O33

O22

M1

M2

M3

30 32 34

33 Existing operation

Fig. 5. An example for rescheduling solution decoding
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4.4 Objective-Oriented Ensemble of Local Search Operators

To improve the exploitation performance of DWCA algorithm, two objective-oriented
local search operators are proposed for total flow time and instability. According to the
encoding strategy shown in Sect. 4.1, the operation sequence would be updated or
improved in each iteration. To balance the machine assignment and operation
sequence, the local search operators focus on machine assignment part. Considering the
computing complexity, the local search operators will be stopped once the objective is
improved. The two local search operators are presented as follows.

LS1: Local search operator for total flow time

----------------------------------------------------------------------------
For t ≤ Max_Iteration   %  Updating Equations

For i = 1 to Npop %  Npop stands for population size
For Streams flow into the Sea
Vector = Random binary (NStream, D) {0,1}

New Stream (Vector == 1) = Sea (Vector == 1)
End For
For Streams flow into the Rivers
Vector = Random binary (NStream, D) {0,1}

New Stream (Vector == 1) = River (Vector == 1)
End For
For Rivers flow into the Sea
Vector = Random binary (Nsr, D) {0,1}

New River (Vector == 1) = Sea (Vector == 1)
End For

End For
End For
----------------------------------------------------------------------------
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LS2: Local search operator for instability

To match the bi-objective function in Sect. 2.3, an ensemble is developed by
integrating the local search operator for instability (LS2) and other local search oper-
ators (LS1). The detail procedures of the ensemble is shown as follows.

Ensemble:

5 Experiments and Comparisons

5.1 Experimental Setup

Six cases from the real-life orders are solved. The scales are from 10 jobs, 6 machines
and 81 operations to 20 jobs, 15 machines and 355 operations. There are 13 new jobs
inserted into existing schedule of six instances with different inserting time, job number
and operation number. The DWCA algorithm is compared to NSGAII [23]. Two
algorithms are coded in C++ and run on an Intel 3.40 GHz PC with 8 GB memory. The
population size and maximum iteration number are set to 50 and 1000 for the sake of
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having fair comparisons. All experiments are carried out with 30 replications. For each
algorithm, the non-dominated solutions in 30 repeats are used to generate a new
non-dominated solution set which is used for the following comparisons.

A widely used performance indicator, inverted generational distance (IGD) [24] is
used to evaluate the quality of non-dominated solutions. For each algorithm, there is a
set of non-dominated solutions in 30 runs. The actual Pareto front (PF) is unknown for
RRP. Here, the approximation of the PF is obtained by comparing non-dominated
solutions by two algorithms. Let P� be the set of uniformly distributed points in PF
while P is the set of non-dominated solutions by compared algorithms. The IGD is
defined as follows:

IGD P�;Pð Þ¼
P

v2P� d v;Pð Þ
Pj j ð13Þ

where, d v;Pð Þ is the minimum Euclidean distance in the objective v and the points in P.
To have a low IGD value, P must be very close to the PF.

The PF is obtained by comparing all non-dominated solutions of two algorithms.
One algorithm has better performance if this algorithm can found larger number of
solutions in PF. Hence, the proportion of the solutions in PF found by the ith algorithm
is evaluated by the following equation.

P ið Þ¼ n ið ÞNon�domi

N Allð ÞNon�domi
� 100 ð14Þ

where, the N Allð ÞNon�domi is the number of solutions in PF, n ið ÞNon�domi is the number
of solutions in PF which are found by ith algorithm. It is obvious that the larger P ið Þ
means the better performance.

5.2 Comparisons and Discussions

To show the differences of the non-dominated solutions by NSGAII and DWCA, the
non-dominated results are shown in Fig. 6. It can be seen from Fig. 6 that the DWCA
obtains better solutions than NSGAII. With the increasing of case-scale, the superiority
of DWCA is more obvious.

The IGD and proportion metrics values of NSGAII and DWCA are shown in
Table 1. It can be reported from Table 1 that the IGD values of NSGAII are non-zero
for all cases while the corresponding values of DWCA are zero for all cases. It means
that all non-dominated solutions by DWCA are in Pareto front (PF). The number of
non-dominated solutions by DWCA is the same to that in PF for each case. For the
proportion metrics, the values of NSGAII are zero for call cases while the values of
DWCA are 100 for all cases. It means that all results by DWCA are those in PF and the
NSGAII cannot find the results in PF.

Based on the above comparisons and discussions, it is clear that the proposed
DWCA with ensemble of local search operators has better performance than the
NSGAII for solving RRP.
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6 Conclusions

This study researched on remanufacturing rescheduling problem (RRP) by using dis-
crete water cycle algorithm (DWCA). A bi-objective function related to total flow time
and instability were optimized. A discretization strategy was proposed to make DWCA
applicable for RRP. An ensemble of objective-oriented local search operators was
proposed to improve the performance of the DWCA. The DWCA was verified by
comparing against NSGAII. It can be concluded that the DWCA is effective and
efficiency for solving the RRP.

As the future studies, the following directions will be considered. 1. Solve the
remanufacturing rescheduling problem with more different objectives. 2. Develop more
problem feature based local search operators and ensembles to improve the conver-
gence of the DWCA. 3. Develop more heuristics for RRP.
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