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Abstract. Ant colony optimization (ACO) has been shown effectiveness
for solving combinatorial optimization problems. Inspired by the basic
principles of ACO, this paper proposes a novel evolutionary algorithm,
called probabilistic learning (PL). In the algorithm, a probability matrix
is created based on weighted information of the population and a novel
random search operator is proposed to adapt the PL to dynamic envi-
ronments. The algorithm is tested on the shortest path problem (SPP) in
both static and dynamic environments. Experimental results on a set of
carefully designed 3D-problems show that the PL algorithm is effective
for solve SPPs and outperforms several popular ACO variants.

Keywords: Probabilistic learning · Ant colony optimization · Dynamic
shortest path problems

1 Introduction

The shortest path problem (SPP) is a classical combinatorial optimization prob-
lem. In this paper, the problem is defined as follows. Given a graph of a set of
nodes linked by directed edges, where each node is connected with eight neigh-
bour nodes, the aim is to find the shortest path from a starting point to a
destination point. It is a simple problem and has been widely applied in many
applications, e.g., robot routing problem, the shortest path in games, the shortest
traffic route, etc.

The Dijkstra algorithm is widely used to find the shortest path in a com-
pletely known environment. However, when the environment is partially known,
unknown or changing, the Dijkstra algorithm seems unsuitable to solve this prob-
lem. To overcome these limitations, many heuristic approaches have been used
to address this problem, such as ant colony optimization (ACO).

Inspired by ACO, this paper proposes a novel probabilistic algorithm, namely
probabilistic learning (PL), for the SPP. A probabilistic matrix is created and
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updated according to weighted values of historical solutions. Each element in the
matrix denotes the probability of an edge to be chosen. Different from ACO, PL
neither follows the basic operations of ACO nor uses any geographical heuristic.
An efficient random search operator is proposed to maintain the population
diversity. The proposed algorithm is competitive in comparison with several
ACO algorithms on the SPP.

The rest of this paper is organized as follows. Section 2 gives a brief review
of related work. Section 3 describes the proposed algorithm in detail. Section 4
presents experimental results and discussions. Finally, conclusions and future
work are discussed in Sect. 5.

2 Related Work

There are many research branches for combinatorial optimization problems.
However, in this section, we mainly focus on the methods related to ACO. ACO
simulates the foraging behavior of real ants for finding the shortest path from
a food source to their nest by exploiting pheromone information. While walk-
ing, ants deposit pheromone chemicals, and follow, in probability, pheromone
previously deposited by other ants.

Ant system (AS) [8] was the first ACO model proposed by Dorigo, and it
has gained huge success. In order to simulate the foraging behavior, each ant
chooses its next node by:

pk
ij(t) =

{
[τij(t)]

α[ηij ]
β

∑
l∈U [τij(t)]

α[ηij ]
β j ∈ U

0 j �∈ U,
(1)

where pk
ij(t) means the possibility of ant k moves from node i to node j. If ant

k has visited node j, pk
ij(t) will be 0; otherwise, the ant will probabilistically

choose a candidate node. τij means the pheromone intensity of edge (i,j). ηij

means the visibility of edge (i,j), which equals to the reciprocal of the length
of this edge. α is the weight of pheromone and β is the weight of the visibility.
After all ants reach the food point, the pheromone matrix is updated by:

τij (t + 1) = ρ ∗ τij (t) +
m∑

k=1

Δτk
ij (t) , (2)

where m is the number of ants, and ρ means the persistence of pheromone. After
this update, all ants go back to the start point and repeat the above procedures
until the algorithm stops.

AS has a strong ability in searching good solutions. However, it has short-
comings: the slow convergence speed and the stagnation issue. Inspired by the
selection principle of genetic algorithms, an elitist AS (EAS) [2] was developed.
Compared to AS, EAS takes an ant which performs best as an “elitist”, and
it leaves more pheromone than other ants. As a result, ants are more likely to
choose the elitist path.



A Probabilistic Learning Algorithm for the Shortest Path Problem 633

The ant colony system (ACS) [7] was proposed based on Ant-Q (AS with
Q-learning) [6]. ACS provides two ways to update global pheromone: the local
online update and the global offline update. The local online update is used
after every ant moves a step, which means the pheromone of the map changes
synchronously. On the other hand, the global offline update is used when all ants
reach the food point, then the best ant is chosen to update the global pheromone.
ACS is quick and it can obtain good solutions, but it is not stable.

A rank-based AS (RAS) [1] was proposed by sorting ants based on route
lengths. Like EAS, ants with high rank leave more pheromone than the others as
follows. RAS is more likely to find a better solution than EAS, but its convergence
speed is slower than EAS. A min-max AS (MMAS) [12] was proposed. The
amount of the pheromone of each edge is constrained within a range. Also, like
EAS, only the ant with best performance can leave pheromone on its route. The
rules of the node selection and pheromone update are the same as in EAS, except
that it keeps the pheromone level in a dynamic range. A best-worst AS (BWAS)
[3] was proposed where it rewards the best ant and punishes the worst one. In
each generation, BWAS increases the pheromone level on the best ant’s route
and decreases the pheromone level of the worst route.

Recently, many other improvements for ACO have been proposed, such as
ant colony system with a cooperative learning approach [7], a hybrid method
combining ACO with beam search (Beam-ACO) [9], parallel ant colony opti-
mization (PQACO) [15], a hybrid PS-ACO algorithm with the hybridization of
the PSO [11], a novel two-stage hybrid swarm intelligence optimization algorithm
[4], cooperative genetic ant systems [5], ACO with new fast opposite gradient
search [10], advanced harmony search with ACO [16], and so on.

3 The Proposed Method

This section will introduce the PL algorithm in detail. Before the introduction of
PL, we first describe the problem to be solved in this paper in a game scenario.

3.1 The Map for the SPP

Figure 1-a shows a game map, which is discretized into a grid shown in Fig. 1-b
where each cross point in the grid is represented by a two dimensional integer
coordinate (i, j). The color of the point stands for its height from the highest (red
color) to the lowest (purple color). The yellow point at the left bottom corner is
the home point, and the red point at the right top corner is the food point. The
dotted path obtained is the shortest path from the home point to the food point.
Figure 1-c shows a blue path, which constructed by an ant. Figure 1-d shows 3D
ants moving on the map in the game, where an ant can only be placed on a cross
point. Note that, an ant is only allowed to visit its 8-neighborhood points of the
point where it is.
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Fig. 1. An example of a 3D problem, where the dotted path is the shortest path from
the home point to the food source labelled by the yellow point at the left bottom corner
and the red point at the right top corner, respectively. (Color figure online)

3.2 Probabilistic Learning

In this paper, a population consists of a set of solutions constructed by ants
from the home point to the food point. This paper introduces a probability
matrix (PM) to learn promising edges found by ants. The idea of the PM was
initially proposed in [13] and recently updated in [14] for solving the travelling
sales problem. Each item in the PM denotes the probability of each edge to be
chosen during the construction of a path. In this paper, we build the PM using
a different strategy used in [14] to adapt it to the SPP.

In the SPP, each ant can only visit its 8-neighborhood points and the ant
is allowed to revisit a point. A randomly constructed path may contain many
loops. We need to design a method to avoid these loops to obtain an effective
path.

The Probabilistic Matrix. An element in the PM indicates the frequency of
an edge visited by ants. Initially, ants randomly construct their paths since there
is no information in the PM. Each ant keeps its historical best path so far and
update it once the ant finds a better path. Correspondingly, the PM will be also
updated.

The PM in fact reflects the learning process as the evolutionary process goes
on: (1) The number of good edges in a particular solution increases; (2) The
frequency of appearance of a particular good edge increases in the population.

To implement the above idea, we assume that the shorter the path, the better
the solution. So we use the length of a solution to evaluate its fitness. The fitness
of a solution is obtained by:

Fi =
Lmax − Li + 1

Lmax − Lmin + 1
(3)

where Fi is the fitness of the ith solution, Lmax and Lmin are the maximum
and the minimum length of all the solutions, respectively. We assign each ant i
a weight Wi based on its historical best solution as follow:

Wi =
1

1 + e−Fi
, (4)
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Algorithm 1. Probabilistic Learning Algorithm
1: Initialize a population X=[x1,x2,...,xP S ] with PS ants;
2: Initialize an archive population A;
3: Initialize a probability matrix PM with element values of zero;
4: while (termination criteria not satisfied) do
5: for (each ant xi) do
6: if rand() ≤ ρ then
7: Construct a new solution x′

i by Algorithm 2;
8: else
9: Construct a new solution x′

i by PM ;
10: end if
11: if xi gets better then
12: Update xi’s personal best solution;
13: Update DMi by Algorithm 3;
14: end if
15: end for
16: Update PM based on the archive population A;
17: end while

The higher value of the fitness, the higher value of the weight. Finally, we com-
pute each element pij of the matrix as follows:

pij =
PS∑
k=1

Wk ∗ oij/
PS∑
k=1

Wk, oij =
{

1, edge(i, j) ∈ best pathk

0, else
(5)

where pij means the possibility of each ant moves from node i to node j, PS is
the population size and best routek is the historical best path of ant k.

3.3 Probabilistic Learning Algorithm

The framework of the PL algorithm is presented in Algorithm1. An archive
population is utilized to store the historical best solution of each ant. For each
generation, a solution is constructed from the home point to the food point either
by the PM or by Algorithm2 (introduced later) depending on a probability ρ.
After all ants obtain a valid path, the PM will be updated according to each
ant’s historical best solution.

Random Search Operator. Although an ant is able to construct a solution
based on the PM, it cannot produce new edges. So we need to find an effective
random search operator to maintain the population diversity. The aim is also to
adapt PL to dynamic environments by using the diversity maintaining schemes
as follows.

In this paper, we design two rules for an ant to efficiently construct a random
path from the start point to the end point: (1) Each ant always head to the end
point, which helps it avoid loops on its path. To achieve this, we suppose that
each ant know the position of the end point; (2) The ant walks toward a fix
direction for several steps unless it comes across a visited node, where a step
means an ant moves to one of its 8-neighborhood points. A random direction is
chosen from a set of neighbourhood nodes if

−−−→
NcNe · −−−→

NcNd ≥ 0, where Nc, Ne,
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Algorithm 2. Random search operator
1: Create an archive Cur to store the current position of the ant, which is initially the start point.
2: Create an archive Way to store the path constructed by this algorithm.
3: Add Cur to Way.
4: while Cur is not the end point do
5: Randomly select an integer Len between 1 and the maximum number of the height and the

width of the map.
6: Randomly select a feasible direction Dir which heads to the end point.
7: for i = 1 to Len do
8: if next point is not feasible or C is the end point then
9: exit from the loop

10: end if
11: Update Cur by Dir.
12: Add Cur to Way.
13: end for
14: end while

Algorithm 3. Update Local Distance Matrix
1: Create an archive W based on the path constructed by Algorithm 2.
2: Create an archive D to remember the distance and initialize it to zero.
3: Create an archive C to remember the current position of the ant and initialize it to the end

point.
4: while W is not empty do
5: get the last point P from W.
6: remove P from W.
7: add the distance between C and P to D
8: if D ≤ DM [P ]) then � DM[P] is the distance between P and the end point
9: DM [P ] ← D

10: PreM [P ] ← C � P is the next node of node C
11: else
12: D ← DM [P ]
13: end if
14: C ← P
15: end while

and Nd are positions of the current, ending, and next nodes, respective. An ant
sometime might not be able to move forward since all its neighborhood points
have been visited. In this case, we allow the ant to reconstruct its path.

Using these rules, this paper introduces a new random search operator to
construct an effective path. Algorithm 2 presents the procedures for constructing
a new solution. It works as follows. Each ant re-starts from the start point. It
randomly select a feasible direction which heads to the end point and selects a
random step between 1 and the maximum number between the height and the
width of a map. It will change its direction if the next point has been visited.
The process is repeated until it reaches the end point.

Local Distance Matrix. Although we can construct an effective path by
Algorithm 2, the path may not always get improved since it is randomly cre-
ated. To fully use the information we get during the random searching process,
this paper introduces a matrix for each ant to remember the current shortest
distance from each point in the map to the end point, and we will update the
matrix DM whenever a shorter path is found.
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Adaptation of Parameter ρ. In the beginning of the search, all ants randomly
construct solutions, and learning too much from the PM may not benefit the
search. As the run goes on, the population will improve as the number of good
edges increases, and it will be helpful to increase the probability of learning from
the PM. In this paper, we adaptively adjust ρ by the equation below:

ρ =
S

T
∗ θ (6)

where S is the total number of the points of the best paths found so far by all
ants and T is the total number of points which appear in all the historical best
paths found by all ants. θ is used to set the lowest possibility of random search.

4 Experimental Studies

Performance comparison between the proposed algorithm and several ACO vari-
ants is conducted on a set of 3D problems in this section.

4.1 Test Problems

To test the performance of an algorithm in a game scenario, we have carefully
designed a set of 3D maps to simulate real-world environments. Figure 2 shows
15 test problems. We divide these test problems into two groups: asymmetrical
and symmetrical. The difficulty of a problem mainly depends on the number of
curve segments and the degree of the curvature of curve segments on the shortest
path. The asymmetrical problems P00 and P01 have only one global optimum.
P01 is more difficult than P00 due to the steep terrain. The symmetrical prob-
lems (P03-P14) have more than one global optimum because of its symmetrical
characteristics, and are more difficult than the problem in the fist group. These
maps are defined in Table 1, where H and W are the height and width of a map,
respectively.

P00 P01 P02 P03 P04 P05 P06 P07

P08 P09 P10 P11 P12 P13 P14

Fig. 2. The 3D maps for all the problems
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Table 1. Test problems, where H and W are the height and width, respectively.

Problem Description Range

P00 1
10 (W + H)

(
3 + 3.5xy3 − 4.7cos (3x − (2 + x) t) sin (2.5πx)

)
−0.9 ≤ x ≤ 1.2, −1.2 ≤ y ≤ 1.2

P01 1
2 (W + H)

((
4 − 2.1x2 + 1

3 x4
)

xx + xy +
(

−4 + 4y2
)

y2
)

−1.9 ≤ x ≤ 1.9, −1.1 ≤ y ≤ 1.1

P02 rand() ∗ (W + H) −1 ≤ rand() ≤ 1

P03 2 ∗ (W + H) x ∗ exp
(

x2 − y2
)

−2 ≤ x ≤ 2, −2 ≤ y ≤ 2

P04 1
4 (W + H)

√
x2 + y2 −5 ≤ x ≤ 5, −5 ≤ y ≤ 5

P05 2 (W + H) |x| exp
(

−x2 − 4
3 y2

)
−2 ≤ x ≤ 2, −2 ≤ y ≤ 2

P06 1
4 (W + H)

(
x2 − y2

)
−2 ≤ x ≤ 2, −2 ≤ y ≤ 2

P07 (W + H) cos x cos y −4 ≤ x ≤ 4, −4 ≤ y ≤ 4

P08 (W + H)
√∣
∣y − 0.01x2

∣
∣ + 0.01 ∗ |x + 10| −2 ≤ x ≤ 2, −2 ≤ y ≤ 2

P09 (W + H) exp (xx − yy) −4 ≤ x ≤ 4, −4 ≤ y ≤ 4

P10 1
2 (W + H) sin x sin y −3 ≤ x ≤ 3, −3 ≤ y ≤ 3

P11 (W + H) ∗

⎛

⎜
⎜
⎝0.5 +

(

0.5−sin

(√

0.0001+x2+y2
)2
)

(
1+0.001(x2+y2)∗(x2+y2)

)2

⎞

⎟
⎟
⎠ −6 ≤ x ≤ 6, −6 ≤ y ≤ 6

P12 1
2 (W + H) sin (xy) −3 ≤ x ≤ 3, −3 ≤ y ≤ 3

P13 0 -

P14 3
4 (W + H) cos x cos y −8 ≤ x ≤ 8, −8 ≤ y ≤ 8

4.2 Parameter Settings

We set the parameters of ACO variants based on the suggestions of their authors
for TSPs. Parameter settings of involved algorithms are as follows. (1) AS: α =
1.0, β = 5.0, ρ = 0.5, Q = 100, τij (0) = 2

W+H ; (2) ACS: α = 1.0, β = 2.0, ρ =
0.1, Q = 0.9, τij (0) = 2

(W+H)∗Lhunger , Lhunger is the length of path constructed
by hunger strategy, where we construct a path always by choosing the shortest
edges; (3) MMAS: α = 1.0, β = 2.0,ρ = 0.02, length = 20 (the length of the
candidate list), λ = 0.05, τ0

max = 1
ρ∗Lhunger , τ0

min = τ0
max

4.0∗(W+H)where τmax0 and
τmin0 is the initially min pheromone and the max pheromone respectively. For
each iteration, τ t

max = 1
ρ∗Lbest

, where Lbest is the length of global best solution,

τ t
min = τt

max∗(1−exp(
log(0.05)

n ))∗2
exp(

log(0.05)
n )∗(length+1)

, where n is the number of points in the global

best solution.
All algorithms terminate when the number of iterations is greater than Imax

or the population meets Lworst −Lbest ≤1e-5 Lbest, Lenbest and Lenworst are the
current best and worst solutions, respectively. The relative error (RE), which is
used to evaluate the performance of an algorithm, is defined as follows.

RE = (Dis(xbest) − Dis(x∗))/Dis(x∗) (7)

where xbest and x∗ are the best solution found by an algorithm and the global
optimum, respectively. All results are averaged over 30 independent runs in this
paper. To test the statistical significance between the results of algorithms, the
Wilcoxon rank sum test is performed at the significance level α = 0.05 in this
paper.
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4.3 Experimental Results

Minimum Probability. In the PM, the possibility of an edge to be chosen is
zero if it does not appear in any solution. To improve its global search ability,
we set a lowest possibility of each edge to be selected.

In this test, we set W = H = 50, Imax = 1000, and PS = 500. If the possibility
of an edge to be chosen is zero, then we use a minimum possibility λ ∗ Wmax,
where Wmax is the weight of the best so far solution and λ is a parameter to be
tested. Figure 3 presents the effect of varying λ on all the problems.

0 0.5 1 1.5 2 2.5 3 3.5 4

R
E

0

0.05

0.1

0.15

0.2

0.25

P00
P01
P02
P03
P04
P05
P06
P07
P08
P09
P10
P11
P12
P13
P14

Fig. 3. The effect of varying λ.

The experiment shows that as the value of λ increases, the relative error also
increases. The ants in PL will be more likely to perform random search as λ
increase since all neighbour nodes have similar possibilities. For example, when
the λ is small, e.g., between 0 and 4, its performance stays at almost the same
level. In this paper, we set λ = 0.2 to make sure PL can achieve a good result in
a relatively short time on most problems.

Performance Comparison. In this subsection, to compare the global search
capability with AS, ACS, and MMAS, we only use the probability matrix for PL.
In this test, we set W = H = 50, PS = 500, and Imax = 1000. Table 2 shows the
performance comparison of all the algorithms, where Worst, Best, and Mean are
the worst, the best, and the mean of RE over all runs. The Wilcoxons rank sum
test is performed among algorithms on the best mean results on each problem,
Y and N denote that the mean results of the best algorithm are significantly
better than and statistically equivalent to other algorithms, respectively.

The Results show that PL outperforms ACS, AS, and MMAS on most prob-
lems. MMAS performs best on P07, P12, and P14 and ACS on P10 and P11.
Although PL performs best on most problems, it could be improved in compar-
ison with MMAS on hard problems P07, P12, and P14.
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Table 2. Performance comparison of all the algorithms on SPP.

Algorithm Problem Mean STD T Problem Mean STD T Problem Mean STD T

ACS P00 6.28e−2 1.41e−2 Y P01 1.27e−1 1.77e−2 Y P02 9.59e−2 1.04e−2 Y

AS 4.03e−1 2.78e−2 Y 6.06e−1 3.25e−2 Y 3.82e−2 1.75e−2 Y

MMAS 1.12e−2 4.70e−3 Y 5.02e−3 5.62e−3 Y 1.95e−2 7.51e−3 Y

PL 6.36e−3 3.54e−3 N 5.24e-4 1.21e−3 N 1.59e−3 3.18e−3 N

ACS P03 4.60e−2 1.20e−2 Y P04 3.40e−2 9.86e−3 Y P05 1.19e−1 1.61e−2 Y

AS 2.43e−1 4.92e−2 Y 2.26e−1 2.52e−2 Y 3.38e−1 8.24e−2 Y

MMAS 6.10e−3 2.98e−3 Y 7.27e−3 8.14e−4 Y 8.69e−2 2.10e−3 Y

PL 1.09e−3 6.84e−4 N 5.37e−3 1.51e−3 N 8.56e−2 0.00e−0 N

ACS P06 9.21e−2 3.00e−2 Y P07 2.82e−2 6.39e−3 Y P08 4.53e−2 1.60e−2 Y

AS 3.63e−1 3.27e−2 Y 2.10e−1 5.40e−2 Y 2.75e−1 3.20e−2 Y

MMAS 2.22e−2 5.83e−3 Y 1.12e−2 6.88e−3 Y 8.98e−3 6.18e−3 Y

PL 2.54e−3 1.40e−3 N 3.03e−2 6.99e−3 N 1.93e−3 1.43e−3 N

ACS P09 3.96e−2 1.44e−2 Y P10 4.92e−2 1.44e−2 Y P11 2.89e−2 8.96e−3 Y

AS 2.82e−1 3.08e−2 Y 2.98e−1 1.95e−2 Y 2.82e−1 6.41e−2 Y

MMAS 2.02e−3 1.02e−3 Y 5.50e−2 1.19e−2 Y 6.49e−2 3.92e−3 Y

PL 4.32e−5 1.24e−4 N 5.91e−2 9.65e−3 N 5.98e−2 3.88e−3 N

ACS P12 1.59e−2 5.42e−3 N P13 9.55e−2 1.20e−2 Y P14 7.08e−3 7.51e−3 Y

AS 2.76e−1 1.15e−1 Y 3.86e−1 1.65e−2 Y 1.37e−1 7.00e−2 Y

MMAS 4.95e−3 2.95e−3 Y 1.52e−2 6.33e−3 Y 5.71e−4 1.72e−3 Y

PL 1.24e−2 7.34e−3 N 0.00e−0 0.00e−0 N 4.41e−2 2.10e−2 N

The Possibility to Learn from PM. The PM helps PL quickly find a solution,
which often is a local optimum. The random search operator has a strong global
search capability but it takes a long time to converge. In this subsection, we
test the sensitivity of parameter θ. Figure 4 presents the effect on varying θ on
the performance of PL regarding the RE and the average number of iterations
which PL takes. In this test, we set W = H= 500, PS = 50, and Imax = 20000.
The results show that the PL takes less number of iterations to converge as
θ increases, but it more likely get stuck at local optima, and vice versa for
decreasing θ. From the results, the random search operator does help PL to
improve the RE at the price of increasing the number of iterations. From the
results, we suggest to take θ = 0.2.

Fig. 4. The effect of varying parameter θ.
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Experiment on Dynamic SPP. In this subsection, we carry out experiments
on dynamic SPP, where the food point changes to a random location on the map
every a certain number of iterations Ig. Given the knowledge that a large value
of θ helps PL achieve a fast convergence speed, we set θ = 0.9. The random
search operator is enabled. In this test, we set W =H = 500 and PS = 50. The
change interval Ig varies from 5 to 100.

Table 3 shows the results of PL on all problems with different change frequen-
cies. From the results, we can have a common observation: the RE gets better
as the change interval increases. It is reasonable since a greater change interval
means a longer time for PL to search. PL achieves a good performance even in
frequently changing environments. Take Ig = 5 for example, where the food point
changes every five iterations, PL is able to achieve a small RE on most prob-
lems, e.g., RE < 1e−2. Thanks to the random search operator, the PL is able to
maintain the population diversity during the runtime. On the other hand, the

Table 3. Results of PL on dynamic SPP with different change frequencies.

Ig Problem Mean STD Problem Mean STD Problem Mean STD

5 P00 4.87e−2 1.57e−2 P01 2.96e−2 1.02e−2 P02 7.02e−1 4.21e−2

10 1.04e−2 2.82e−3 1.24e−2 3.95e−3 2.53e−1 1.50e−2

20 2.49e−3 1.14e−3 7.80e−4 2.46e−4 1.37e−1 1.42e−2

50 2.90e−4 6.88e−5 1.20e−3 5.59e−4 9.65e−3 1.63e−3

100 1.41e−4 2.71e−5 1.13e−4 2.47e−5 5.40e−3 1.26e−3

5 P03 3.96e−3 1.45e−3 P04 1.18e−4 2.83e−5 P05 1.52e−2 4.94e−3

10 1.51e−3 4.00e−4 1.02e−4 2.80e−5 8.58e−3 3.76e−3

20 1.49e−4 1.78e−5 9.43e−5 6.16e−8 3.32e−4 8.65e−5

50 1.18e−4 1.56e−5 1.06e−4 6.70e−7 8.62e−3 6.55e−8

100 1.10e−4 4.58e−6 8.62e−5 6.55e−8 9.63e−5 2.81e−7

5 P06 3.64e−3 6.45e−3 P07 1.31e−1 1.85e−2 P08 2.24e−3 1.41e−3

10 3.70e−4 6.70e−4 3.97e−2 5.17e−3 1.01e−4 1.48e−5

20 1.08e−4 3.39e−5 4.01e−3 7.14e−4 1.11e−4 1.37e−5

50 9.03e−5 2.27e−7 3.77e−3 1.52e−3 8.87e−5 5.33e−6

100 1.05e−4 6.41e−6 9.00e−4 3.52e−4 8.03e−5 2.52e−9

5 P09 6.21e−4 1.74e−4 P10 7.65e−4 6.33e−4 P11 2.82e−2 4.30e−3

10 4.13e−4 1.28e−4 1.07e−4 1.86e−5 6.65e−3 7.87e−4

20 1.75e−4 4.17e−5 9.69e−5 6.62e−6 1.79e−3 4.45e−4

50 1.26e−4 2.31e−5 9.21e−5 2.51e−6 2.23e−4 4.33e−5

100 1.13e−4 7.78e−6 9.32e−5 2.30e−6 1.94e−4 3.91e−5

5 P12 1.14e−2 2.66e−3 P13 1.11e−4 1.56e−15 P14 6.64e−1 3.93e−2

10 3.98e−3 1.33e−3 9.55e−5 1.21e−15 2.58e−3 2.26e−2

20 3.78e−4 8.73e−5 9.99e−5 1.17e−15 1.32e−1 1.49e−2

50 3.40e−4 1.19e−4 1.01e−4 1.11e−15 3.34e−2 4.18e−3

100 8.96e−5 1.16e−5 1.02e−4 1.09e−15 8.83e−3 3.44e−3
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PM helps PL quickly find a reasonable solution. These two components make PL
easily adapt to dynamic environments without using extra dynamism handling
techniques.

Compared with ACOs, PL has only two parameters (λ and θ) to set and it
outperforms the ACOs on most problems. To handle dynamic problems, ACO
should reconstruct the pheromone matrix or use some strategies to update its
matrix. While PL calculates its matrix based on the ants’ best solutions, which
will change as the problem changes. Therefore, PL is more suitable to solve
dynamic SPP than ACOs.

5 Conclusions

This paper proposes a probabilistic learning algorithm with a random search
operator for solving the dynamic SPP. A set of 3D problems are also designed.
PL shows competitive performance in comparison with several peer algorithm on
static SPP and it also shows good performance on dynamic SPP. In the future,
we will compare PL with other algorithm equipped with dynamism handling
techniques.

Acknowledgement. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 61673355.

References

1. Bullnheimer, B., Hartl, R.F., Strauss, C.: A new rank based version of the ant
system. A computational study (1997)

2. Bullnheimer, B., Hartl, R.F., Strauss, C.: An improved ant system algorithm for
thevehicle routing problem. Ann. Oper. Res. 89, 319–328 (1999)

3. Cordon, O., de Viana, I.F., Herrera, F., Moreno, L.: A new ACO model integrating
evolutionary computation concepts: the best-worst ant system (2000)

4. Deng, W., Chen, R., He, B., Liu, Y., Yin, L., Guo, J.: A novel two-stage hybrid
swarm intelligence optimization algorithm and application. Soft. Comput. 16(10),
1707–1722 (2012)

5. Dong, G., Guo, W.W., Tickle, K.: Solving the traveling salesman problem using
cooperative genetic ant systems. Expert Syst. Appl. 39(5), 5006–5011 (2012)

6. Dorigo, M., Gambardella, L.M.: A study of some properties of Ant-Q. In: Voigt,
H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol.
1141, pp. 656–665. Springer, Heidelberg (1996). doi:10.1007/3-540-61723-X 1029

7. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning app-
roach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66
(1997)

8. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 26(1), 29–41
(1996)
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