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Abstract. Cyber-criminals can distribute malware to control comput-
ers on a networked system and leverage these compromised computers to
perform their malicious activities inside the network. Botnet-detection
mechanisms, based on a detailed analysis of network traffic characteris-
tics, provide a basis for defense against botnet attacks. We formulate the
botnet defense problem as a zero-sum Stackelberg security game, allo-
cating detection resources to deter botnet attacks taking into account
the strategic response of cyber-criminals. We model two different botnet
data-exfiltration scenarios, representing exfiltration on single or multiple
paths. Based on the game model, we propose algorithms to compute an
optimal detection resource allocation strategy with respect to these for-
mulations. Our algorithms employ the double-oracle method to deal with
the exponential action spaces for attacker and defender. Furthermore,
we provide greedy heuristics to approximately compute an equilibrium
of these botnet defense games. Finally, we conduct experiments based on
both synthetic and real-world network topologies to demonstrate advan-
tages of our game-theoretic solution compared to previously proposed
defense policies.

1 Introduction

Cyber-criminals intent on denial-of-service, spam dissemination, data theft,
or other information security breaches often pursue their attacks with bot-
nets: collections of compromised computers (bots) subject to their control
[14,23,30,31,33]. In 2014 testimony, the US Federal Bureau of Investigation
cited over $9 billion of US losses and $110 billion losses globally due to bot-
net activities [7]. The estimated 500 million computers infected globally each
year by botnet activities amounts to 18 victims per second.

The threat of botnets has drawn significant attention from network security
researchers [1,5,6,10–13,32]. Much existing work focuses on detection mecha-
nisms to identify compromised computers based on network traffic characteris-
tics. For example, BotSniffer [13] searches for spatial-temporal patterns in net-
work traffic characteristic of coordinated botnet behavior. Given some underlying
detection capability, the defender faces the problem of how to effectively deploy
its detection resources against potential botnet attacks. For example, Venkatesan
et al. consider the problem of allocating a limited number of localized detection
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resources on a network in order to maximally disrupt data exfiltration attacks,
where the botnet aims to transfer stolen information out of the network [38].
Their first solution allocated resources statically, which could effectively dis-
rupt one-time attacks but is vulnerable to adaptive attackers. They extended
this method to randomize detector placement dynamically to improve robust-
ness against adaptation [37]. In a related work, Mc Carthy et al. address the
additional challenge of imperfect botnet detection [20].

Our work extends these prior efforts by formulating the botnet defense prob-
lem as a Stackelberg security game, thus accounting for the strategic response
of attackers to deployed defenses. In our botnet defense game, the defender
attempts to protect data within a computer network by allocating detection
resources (detectors). The attacker compromises computers in the network to
steal data, and attempts to exfiltrate the stolen data by transferring it out-
side the defender’s network. We consider two formulations of data exfiltration:
(i) uni-exfiltration, where the source bot routes the stolen data along a single
path designated by the attacker; and (ii) broad-exfiltration, where each bot prop-
agates the received stolen data to all other bots in the network.

We propose algorithms to compute defense strategies for these data exfiltra-
tion formulations: ORANI (Optimal Resource Allocation for uNi-exfiltration
Interception) and ORABI (Optimal Resource Allocation for Broad-exfiltration
Interception). Both ORANI and ORABI employ the double-oracle method [21]
to control exploration of the exponential strategy spaces available to attacker
and defender. Our main algorithmic contributions lie in defining mixed-integer
linear programs (MILPs) for the defender and attacker’s best-response oracles.
In addition, we introduce greedy heuristics to approximately implement these
oracles. Finally, we conduct experiments based on both synthetic and real-world
network topologies to evaluate solution quality as well as runtime performance
of our game-theoretic algorithms, demonstrating significant improvements over
previous defense strategies.

2 Related Work

Prior studies of botnet security tend to focus on designing botnet detection
mechanisms [1,5,6,10–13,32] or advanced botnet designs against these detection
mechanisms [29,39]. Some studies provide empirical and statistical analysis on
related cyber-security implications such as the role of Internet service providers
in botnet mitigation [35] or contagion in cyber attacks [2].

Recent work has introduced game-theoretic models and corresponding
defense solutions for various botnet detection and prevention problems [4,17,
27,28]. In these models, cyber criminals intrude by compromising computers in
a network. Users or owners of computers in the network defend by patching or
replacing their computers based on alerts of potential security threats.

Stackelberg security games have been successfully applied to many real-world
physical security problems [3,9,19,26,34]. Jain et al. address a problem in urban
network security partially analogous to uni-exfiltration, as the attacker follows a
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single path to attack its best target in an urban road network [15]. Vaněk et al.
tackle a problem of malicious packet prevention, where the attacker determines
which entry point to access a network to attack a specific target assuming the
corresponding traversing path is fixed [36]. In our botnet defense problem, cyber-
criminals decide not only which computers to compromise but also create an
overlay network over these bots to exfiltrate data from multiple targets in the
network. The additional complexity of considering the exfiltration plan leads to
a distinct and difficult security problem.

3 Game Model: Uni-exfiltration

Our game model for uni-exfiltration is built on the botnet model introduced by
Venkatesan et al. [38]. Let G = (V,E) represent a computer network where the
set of nodes V comprises network elements such as routers and end hosts, and
edges in E connect these nodes. We denote by Vc a set of mission-critical nodes
in the network which contain sensitive data. Data exchange is governed by a
routing algorithm fixed by the network system. For each pair of nodes (u, v),
we denote by P(u, v) the routing path between u and v. In our experiments, we
assume that routing is via the shortest path.

We model the botnet defense problem as a Stackelberg security game (SSG)
[16]. In such a game, the defender commits to a mixed (randomized) strategy
to allocate limited security resources to protect important targets. The attacker
then optimally chooses targets with respect to the distribution of defender allo-
cations. In our context, the defender is the security controller of a computer
network, with limited detection resources. The defender attempts to deploy its
detectors in the most effective way to impede the attack chosen in response.

The attacker in the botnet exfiltration game is a cyber-criminal who attempts
to steal sensitive network data. Compromising a mission-critical node c ∈ Vc

enables the attacker to steal data owned by c. Compromising other nodes in the
network helps the attacker to relay the stolen data to a server Sa outside the net-
work, which he controls. The attacker specifies a sequence of compromised nodes
(bots) to relay stolen data. Routing between consecutive bots in the sequence
follows fixed paths out of the attacker’s control. We call this chain of ordered
bots and nodes on routing paths between consecutive bots an exfiltration path,
denoted by π(c, Sa).

Definition 1 (Exfiltration Prevention). Given a network G = (V,E) and
a set of mission-critical nodes Vc, data exfiltration from c ∈ Vc is prevented by
the defender iff there is a detector on the exfiltration path π(c, Sa).

Though the attacker’s remote server Sa is located outside the network, we assume
the defender is aware of which nodes in the network can relay data to Sa.

In our Stackelberg game model, the defender moves first by allocating detec-
tion resources, and the attacker responds with a plan for compromise and exfil-
tration to evade detection. The defender placement of detectors is randomized,
so any attack plan succeeds with some probability.
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Definition 2 (Strategy Space). The strategy spaces of the players are as
follows:

Defender: The defender has Kd < |V| detection resources available for deploy-
ment on network nodes. We denote by D = {Di | Di ⊆ V, |Di| ≤ Kd} the set of
all pure defense strategies of the defender. Let x = {xi} be a mixed strategy of
the defender where xi ∈ [0, 1] is the probability that the defender plays Di, and∑

i xi = 1.

Attacker: The attacker can compromise up to Ka < |V| nodes. We denote by
A = {Aj = (Bj ,Πj) | Bj ⊆ V, |Bj | ≤ Ka,Πj = {πj(c, Sa) | c ∈ Bj ∩ Vc}} the
set of all pure strategies of the attacker. Each pure strategy Aj consists of: (i) Bj:
a set of compromised nodes; and (ii) Πj: a set of exfiltration paths over Bj.

Fig. 1. An example scenario of the botnet exfiltration game. There are four mission-
critical nodes, Vc = {0, 1, 2, 3}. If Ka = 4, then a possible pure strategy of the attacker
Aj can be: (i) a set of compromised nodes Bj = {0, 2, 5, 7}; and (ii) a set of exfiltration
paths Πj = {πj(0), πj(2)} to exfiltrate data from stealing bots 0 and 2 to the attacker’s
server Sa. These exfiltration paths πj(0) = P(0, 5) ∪ P(5, Sa) and πj(2) = P(2, 7) ∪
P(7, Sa) relay stolen data via relaying bots 5 and 7 respectively, where P(0, 5) = (0 →
4 → 5), P(5, Sa) = (5 → 8 → Sa), P(2, 7) = (2 → 6 → 7) and P(7, Sa) = (7 → 9 →
Sa) are routing paths fixed by the network system. Suppose Kd = 1. If the defender
allocates its one detector to node 9, the attacker fails at exfiltrating data from node 2
since 9 ∈ πj(2) but succeeds from node 0 since 9 /∈ πj(0).

A simple scenario of the botnet defense game is shown in Fig. 1. The model
specification is completed by defining the payoff structure, which we take to be
zero-sum.
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Definition 3 (Game Payoff). Each mission-critical node c ∈ Vc is associ-
ated with a value, r(c) > 0, representing the importance of data stored at that
node. Successfully exfiltrating data from c yields the attacker a payoff r(c), and
the defender receives a payoff −r(c). For prevented exfiltrations, both players
receive zero.

Note that the maximum achievable payoff for a defender is zero, obtained by
preventing all exfiltration attempts. In general terms, let Ua(Di,Aj) denote
the payoff to the attacker if the defender plays Di and the attacker plays Aj .
Since the game is zero-sum, the defender payoff Ud(Di,Aj) ≡ −Ua(Di,Aj).
The payoff can be decomposed across mission-critical nodes,

Ua(Di,Aj) ≡
∑

c∈Vc

r(c)h(c), (1)

where h(c) indicates whether the attacker successfully exfiltrates the data of the
mission-critical node c ∈ Vc. This is determined as follows:

h(c) =

{
1 if c ∈ Bj and Di ∩ πj(c, Sa) = ∅
0 otherwise.

(2)

The expected utility for the attacker when the defender plays mixed-strategy x is

Ua(x,Aj) =
∑

i
xiU

a(Di,Aj),

which is negated to obtain the expected defender payoff Ud(x,Aj). A defender
mixed strategy that maximizes Ud(x,Aj) given the attacker plays a best
response and breaks ties in favor of the defender constitutes a Strong Stack-
elberg Equilibrium (SSE) of the game.

4 ORANI: An Algorithm for Uni-exfiltration Games

In zero-sum games, the first mover’s SSE strategy is also a maximin strategy
[18]. Therefore, finding an optimal mixed defense strategy can be formulated as
follows:

maxx Ud
∗ (3)

s.t. Ud
∗ ≤ Ud(x,Aj), ∀j (4)

∑

i
xi = 1, xi ≥ 0, ∀i, (5)

where Ud
∗ is the defender’s utility for playing mixed strategy x when the attacker

best-responds. Constraint (4) ensures the attacker chooses an optimal action
against x, that is, Ud

∗ = minj Ud(x,Aj) = maxj Ua(x,Aj). Solving (3)–(5) is
computationally expensive due to the exponential number of pure strategies
of the defender and the attacker. To overcome this computational challenge,
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Algorithm 1. ORANI Algorithm Overview
1 Initialize the sets of pure strategies: A = {Aj} and D = {Di} for some j and i;
2 repeat
3 (x∗,a∗) = MaximinCore(D,A);
4 Do = DefenderOracle(a∗);
5 Ao = AttackerOracle(x∗);
6 A = A ∪ {Ao}, D = D ∪ {Do}
7 until converge;

ORANI applies the double-oracle method [15,21]. Algorithm 1 presents a sketch
of ORANI.

ORANI starts by solving a maximin sub-game of (3)–(5) by considering
only small seed subsets D and A of pure strategies for the defender and attacker
(Line 3). Solving this sub-game yields a solution (x∗,a∗) with respect to the
strategy subsets. ORANI iteratively adds new best pure strategies Do and Ao

to the current strategy sets D and A (Lines 4–6). These strategies Do and
Ao are chosen by the oracles to maximize the defender and attacker utility,
respectively, against the current (in iteration) counterpart solution strategies
a∗ and x∗. This iterative process continues until the solution converges: when
no new pure strategy can be added to improve the defender and the attacker’s
utilities. At convergence, the latest solution (x∗,a∗) an equilibrium of the game
[21]. Following this general methodology, the specific contribution of ORANI
is in defining MILPs representing the attacker and the defender oracle problems
in botnet exfiltration games.

4.1 ORANI Attacker Oracle

The attacker oracle returns a pure strategy for the attacker maximizing utility
against a given defender mixed strategy x∗. Below, we present a MILP exactly
representing the attacker oracle and show that the problem is NP-hard. We then
provide a greedy heuristic to approximately solve the attacker oracle problem.

MILP Representation. We parameterize each pure strategy of the attacker
as follows:

1. bot variables z = {zw | w ∈ V}, indicate whether the attacker compromises
node w (zw = 1) or not (zw = 0), and

2. bot-chain variables q = {qc(u, v) | c ∈ Vc, u ∈ V, v ∈ V ∪ {Sa} \ {c, u}},
represent exfiltration paths.

For each stealing bot c, {qc(u, v)} represents the bot chain to exfiltrate data from
c to Sa. Note that the bot-chain variables employ compromised nodes only. This
means that qc(u, v) = 0 for all (c, u, v) such that zc = 0 or zu = 0 or zv = 0.
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Conversely, when zc = zu = zv = 1, qc(u, v) = 1 iff (u, v) are consecutive bots in
the bot chain for c. This entails that the exfiltration path π(c, Sa) includes the
routing path P(u, v).

Given the attacker’s pure strategy (z,q), we introduce data-exfiltration vari-
ables h = {hi(c)} to describe the outcome of the attack. For stealing bot c ∈ Vc

with zc = 1, hi(c) indicates whether the attacker successfully exfiltrates from c
when the defender plays Di ∈ D. Specifically, hi(c) = 0 if Di includes a detector
on the exfiltration path from node c to Sa. Otherwise, hi(c) = 1. The attacker
utility can be computed based on h = {hi(c)},

Ua(x∗, (z,q)) =
∑

Di∈D

xi

∑

c∈Vc

r(c)hi(c).

The optimization problem for the attacker can now be formulated as a MILP
(6)–(15). Variables z and h are constrained to be binary. Constraints (7)–(9)
enforce that there is only a single exfiltration path from each mission-critical
node c ∈ Vc to Sa if node c is compromised (zc = 1). In particular, when
zc = 1, constraint (7) indicates that there is a single out-exfiltration path from
node c and constraint (8) imposes that there is only a single in-exfiltration path
to the attacker’s server Sa. Otherwise, when c is not compromised (zc = 0), there
is no exfiltration path from c. Constraint (9) ensures, for each c ∈ Vc, that the
total number of in-exfiltration paths to any node v equals the total number
of out-exfiltration paths from that node. Constraints (10) and (11) guarantee
that exfiltration paths are determined using compromised nodes only (i.e., if
either zu = 0 or zv = 0, then qc(u, v) = 0). Constraint (12) ensures that the
number of compromised nodes does not exceed the attacker’s resource limit,
Ka. Finally, constraint (13) enforces hi(c) = 0 when P(u, v) ∩ Di �= ∅ for some
pair of consecutive bots (u, v) on the exfiltration path from c (i.e., such that
qc(u, v) = 1). Constraint (14) ensures hi(c) = 0 when c is not compromised.

max
z,q,h

Ua(x∗, (z,q)) (6)

s.t.
∑

u∈V∪{Sa}\{c}
qc(c, u) = zc,∀c ∈ Vc (7)

∑

u∈V

qc(u, Sa) = zc,∀c ∈ Vc (8)

∑

u∈V\{v}
qc(u, v) =

∑

w∈V∪{Sa}\{v,c}
qc(v, w),∀c ∈ Vc, v ∈ V \ {c} (9)

qc(u, v) ≤ zu,∀c ∈ Vc, u ∈ V, v ∈ V ∪ {Sa} \ {c, u} (10)
qc(u, v) ≤ zv,∀c ∈ Vc, u ∈ V, v ∈ V \ {c, u} (11)
∑

w∈V

zw ≤ Ka, zw ∈ {0, 1},∀w ∈ V (12)

hi(c) ≤ 1 − qc(u, v),∀c ∈ Vc, u ∈ V, v ∈ V ∪ {Sa} \ {u, c}, and (13)
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∀Di ∈ D such that P(u, v) ∩ Di �= ∅
hi(c) ≤ zc,∀c ∈ Vc,Di ∈ D (14)
qc(u, v) ∈ [0, 1], hi(c) ∈ {0, 1},∀c, u, v, i (15)

Theorem 1. A solution to MILP (6)–(15) is an optimal pure strategy for the
attacker against defender mixed strategy x∗.

Proof. Given a solution of (6)–(15), consider each mission-critical node c ∈ Vc

such that hi(c) = 1 for some i. This means that the attacker successfully exfil-
trates data from c given defender pure strategy Di. There must exist a positive
exfiltration path, π+(c), from c to Sa. That is qc(u, v) > 0 for all consecutive bots
(u, v) on π+(c). This conclusion results from the attacker strategy constraints in
(7)–(9). Then an optimal pure strategy for the attacker consists of: (i) the set of
compromised nodes u with zu = 1; and (ii) the set of positive exfiltration paths
{π+(c)} for any c which satisfies hi(c) = 1 with some i.

Solving this MILP may take exponential time. In fact, the problem is NP-hard.

Proposition 1. The attacker oracle problem for data uni-exfiltration is NP-
hard.

The proof is presented in Online Appendix B.1 We introduce a greedy heuristic
to approximately solve the problem.

Attacker Greedy Heuristic. Our greedy heuristic iteratively adds nodes to
compromise until the resource limit Ka is reached. At each iteration, given the
current set of compromised nodes Bc (which is initially empty), the greedy
heuristic selects among uncompromised nodes u ∈ V \ Bc the best next node
for the attacker to compromise. A key step of the algorithm is to determine
optimal exfiltration paths given the compromised set Bc ∪{u} and the defender
strategy x∗.

Overall, the problem of finding an optimal set of exfiltration paths for the
attacker given a set of compromised nodes Bc ∪ {u} and the defender’s strat-
egy x∗ can be represented as a MILP which is a simplification of (6)–(15). In
this MILP simplification, the bot variables z = {zw} are no longer needed. Fur-
thermore, the bot-chain and data-exfiltration variables can be limited to the
current set of compromised nodes Bc ∪ {u}, rather than the whole node set V.
As a result, the total number of variables and constraints involved is reduced
significantly.

4.2 ORANI Defender Oracle

The defender oracle attempts to find a new pure defense strategy which maxi-
mizes the defender utility against the current mixed attack strategy a∗ = {a∗

j}
1 Link: http://hdl.handle.net/2027.42/137970.

http://hdl.handle.net/2027.42/137970
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returned by MaximinCore. Here, a∗
j is the probability that the attacker follows

Aj such that
∑

j a∗
j = 1, a∗

j ∈ [0, 1]. We first present a MILP to exactly solve
this defender oracle problem and then show that the problem is NP-hard.

MILP Representation. We parameterize each pure strategy of the defender
using detection variables z = {zw} where w ∈ V. In particular, zw = 1 if
the defender deploys a detector on node w. Otherwise, zw = 0. In addition,
given that the attacker plays Aj and the defender plays z, we introduce data-
exfiltration variables h = {hj(c)} where c ∈ Vc ∩ Bj , implying whether the
attacker successfully exfiltrates the data of c (i.e., hj(c) = 1) or not (hj(c) = 0).
Given that the attacker plays a∗ and the defender plays z, the defender’s utility
can be now computed based on h as follows:

Ud(z,a∗) = −
∑

Aj∈A

a∗
j

∑

c∈Vc∩Bj

r(c)hj(c) (16)

The problem of finding an optimal pure defense strategy which maximizes the
defender’s utility against the attacker’s strategy a∗ can be now formulated as
the following MILP (17)–(20).

max
z,I

Ud(z,a∗) (17)

s.t. hj(c) ≥ 1 −
∑

w∈πj(c,Sa)

zw,∀c ∈ Vc ∩ Bj ,∀j (18)

∑

w∈V

zw ≤ Kd (19)

zw ∈ {0, 1}, hj(c) ∈ [0, 1], ∀w ∈ V, c ∈ Vc ∩ Bj ,∀j (20)

In (17)–(20), only z = {zw} are required to be binary. Constraint (18) ensures
that hj(c) = 1 when the attacker successfully exfiltrates from an stealing bot
c ∈ Vc ∩ Bj (i.e., the defender does not deploy a detector on the exfiltration
path of that bot: zw = 0 for all w ∈ πj(c, Sa)). On the other hand, since the
MILP attempts to maximize the defender’s utility (Eq. 16) which is a monotoni-
cally decreasing function of hj(c), then any MILP solver will automatically force
hj(c) = 0 if possible given the bound constraint (20). Constraint (19) guarantees
that the number of detection resources deployed does not exceed the limit Kd.

Finally, Proposition 2 shows the complexity of the defender oracle problem.
Its proof is in Online Appendix C.

Proposition 2. The defender oracle problem corresponding to data uni-
exfiltration is NP-hard.

Defender Greedy Heuristic. We introduce a greedy heuristic to approx-
imately solve the defender oracle problem in polynomial time. Given the
attacker’s mixed strategy a∗ and an initially empty set of monitored nodes Dc,
the greedy heuristic iteratively adds the next best node to monitor to the set Dc

until |Dc| = Kd. At each iteration, given the current set of monitored nodes Dc,
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the greedy heuristic searches over all unmonitored nodes u ∈ V \ Dc to find the
best next node to monitor such that the defender’s utility is maximized. Com-
puting the defender’s utility given a set of monitored nodes and the attacker’s
strategy a∗ is possible in polynomial time (Eqs. 1 and 2), thus our defender
greedy heuristic runs in polynomial time.

5 Data Broad-Exfiltration

In the botnet defense game model with respect to uni-exfiltration (Sect. 3), for
each stealing bot, the attacker is assumed to only select a single exfiltration path
from that bot to exfiltrate data. In this section, we study the botnet defense
game model with respect to the alternative data broad-exfiltration. In partic-
ular, for every stealing bot, the attacker is able to broadcast the data stolen
by this bot to all other compromised nodes via corresponding routing paths.
Once receiving the stolen data, each compromised node continues to broadcast
the data to all other compromised nodes, and so on. The game model for broad-
exfiltration is motivated by the botnet models studied by Rossow et al. [25]. Over-
all, there is a higher chance that the attacker can successfully exfiltrate network
data with broad-exfiltration compared to uni-exfiltration. In the following, we
briefly describe the botnet defense game model with data broad-exfiltration and
the corresponding algorithm, ORABI, to compute an optimal mixed defense
strategy.

5.1 Game Model

In the botnet defense game model with data broad-exfiltration, the strategy
space of the defender remains the same as shown in Sect. 3. On the other hand,
since the attacker now can broadcast the data, we can abstractly represent each
pure strategy of the attacker as a set of compromised nodes Aj ≡ Bj only.
Given a pair of pure strategies (Di,Bj), we need to determine payoffs the players
receive. Note that in the case of broad-exfiltration, given (Di,Bj), the attacker
succeeds in exfiltrating the stolen data from a stealing bot if there is an exfiltra-
tion path among all the possible exfiltration paths over the compromised set Bj

from this bot to Sa which is not blocked by Di. Therefore, the players receive
a payoff computed as in (1) where the binary indicator h(c) for each mission-
critical node c ∈ Vc is now determined as:

h(c) =

⎧
⎪⎨

⎪⎩

1 if ∃c∈Bj & ∃πj(c, Sa)
s.t. Di∩πj(c, Sa)=∅

0 otherwise

In fact, when players plays (Di,Bj), we can determine if there is an exfiltration
path from a stealing bot c ∈ Bj ∩Vc which is not blocked by Di by using depth
or breath-first search over the compromised set Bj , which runs in polynomial
time. We next aim at computing an SSE of the botnet defense games with data
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broad-exfiltration. Based upon the double oracle methodology, we introduce a
new algorithm, ORABI, which consists of new MILPs to exactly solve the
resulting attacker and the defender’s oracle problems. We also provide greedy
heuristics to approximately solve these oracle problems in polynomial time. In
the following, we briefly explain our MILPs in ORABI.

5.2 ORABI Attacker Oracle

MILP Representation. In solving the attacker oracle problem with respect
to data broad-exfiltration, we can extend the MILP (6)–(15) for data uni-
exfiltration as follows. First, each pure strategy of the attacker is now parame-
terized using only bot variables z = {zw} for w ∈ V. Second, although bot-chain
variables {qc(u, v)} are not parts of the attacker’s pure strategies anymore, we
extend these variables q = {qi,c(u, v)} for each pure strategy of the defender
Di. For each mission-critical node c ∈ Vc and for each Di ∈ D, {qi,c(u, v)}
will determine if there is an exfiltration path which successfully exfiltrates stolen
data from c given the attacker’s pure strategy z. Third, the path-exfiltration
constraints in (7)–(11) and the data-exfiltration constraint in (13) are extended
accordingly. Finally, the data-exfiltration and all other constraints and the objec-
tive are kept unchanged. Given the extended bot-chain variables q = {qi,c(u, v)}
and corresponding extended constraints, the resulting extension of (6)–(15) will
search over all possible exfiltration paths with respect to the attacker’s strategy
z to find exfiltration paths which are not blocked by each Di ∈ D. Thus, the
extended MILP of (6)–(15) returns an optimal set of compromised nodes u with
zu = 1 for the attacker.

Finally, the attacker oracle problem with broad-exfiltration is NP-hard
(Proposition 3 with proof is in the Online Appendix D). The resulting MILP
involves a larger number of variables and constraints compared to the uni-
exfiltration case due to the extension of bot-chain variables q = {qi,c(u, v)}
with respect to the defender’s pure strategies {Di}. In the following, we apply
the greedy approach for solving the attacker oracle problem in polynomial time.

Proposition 3. The attacker oracle problem corresponding to data broad-
exfiltration is NP-hard.

Attacker Greedy Heuristic. The attacker greedy heuristic with respect to
data broad-exfiltration is similar to the uni-exfiltration case. Nevertheless, given
a mixed defense strategy x∗ and a set of compromised nodes Bc ∪ {u}, we no
longer need to find an optimal set of exfiltration paths as in the uni-exfiltration
case. As shown in Sect. 5.1, we can compute the players’ utility given x∗ and
Bc ∪ {u} in polynomial time using depth or breadth-first search.

In addition to this heuristic, we propose a modification of the greedy approach
which iteratively adds multiple new pure strategies as follows. Instead of starting
the greedy search with an initial empty compromised set Bc = ∅, we create |Vc|
different compromised sets Bc, each consists of a mission-critical node c ∈ Vc
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as a compromised seed node. Then for each initial compromised set Bc with
one seed node, we run the greedy search. As a result, we obtain |Vc| different
compromised sets or pure strategies for the attacker. In other words, we add
|Vc| new pure strategies for the attacker at each iteration. We call this modified
greedy approach as greedy-multi heuristic. Intuitively, by adding multiple new
pure strategies, we expect ORABI with the greedy-multi heuristic for solving
the attacker oracle problem would potentially converge to a solution close to the
optimal one. Indeed, our experimental results confirm our conjecture.

5.3 ORABI Defender Oracle

MILP Representation. Although we can also extend the MILP (17)–(20) for
uni-exfiltration to represent the defender oracle problem with broad-exfiltration,
solving this extended MILP is impractical. Specifically, in the constraint (18)
of the MILP (17)–(20), we need to iterate over all exfiltration paths to find if
the defender’s pure strategy z can block these exfiltration paths or not. Since
each pure strategy of the attacker with uni-exfiltration only consists of a small
set of exfiltration paths, it is straightforward to iterate over these exfiltration
paths. On the other hand, in the broad-exfiltration case, given a pure strategy
of the attacker which is now a set of compromised nodes, there is an exponential
number of exfiltration paths over these nodes to relay the stolen data. Iterating
over all these exfiltration paths is thus impractical.

Given this computational challenge, ORABI introduces a new MILP to
solve the defender oracle problem. First, we continue to use detection variables
z = {zw} to represent a pure strategy of the defender in which zw = 1 if
the defender deploys a detector on node w. Otherwise, zw = 0. Second, for
each pure strategy of the attacker Bj and the defender’s pure strategy z, we
introduce relaying variables l = {lj(u, v)} where u, v ∈ Bj are two compromised
nodes, indicating whether the attacker can successfully relay data via the routing
path P(u, v). Specifically, the attacker successfully relays data from u to v (i.e.,
lj(u, v) = 1) if the defender does not deploy a detector on the routing path
P(u, v). Otherwise, lj(u, v) = 0. Third, we introduce variables s = {sc

j(w)}
where c ∈ Vc ∩Bj and w ∈ Bj . By an abuse of variable name, we also call these
new variables as data-exfiltration variables. In particular, for each stolen bot
c ∈ Vc ∩ Bj and w ∈ Bj , sc

j(w) indicates if the attacker successfully exfiltrates
data of c to the compromised node w (sc

j(w) = 1) or not (sc
j(w) = 0). In other

words, sc
j(w) = 1 only when there is an exfiltration path from the stealing bot

c ∈ Vc ∩ Bj to the compromised node w which is not blocked by the defender.
Given s, the defender’s utility is computed as follows:

Ud(z,a∗) = −
∑

Bj

a∗
j

∑

c∈Vc∩Bj

sc
j(S

a)r(c) (21)

where sc
j(S

a) = 1 indicates that the attacker successfully exfiltrates data of
c ∈ Vc ∩ Bj to Sa. Otherwise, sc

j(S
a) = 0. We now can formulate the defender
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oracle problem as the following MILP:

max
z,l,s

Ud(z,a∗) (22)

s.t. lj(u, v) ≥ 1 −
∑

w∈P(u,v)

zw,∀u, v ∈ Bj , u �= v,∀j (23)

sc
j(w) ≥ sc

j(w
′) + lj(w′, w) − 1, (24)

∀c ∈ Vc ∩ Bj , w ∈ Bj ∪ {Sa} \ {c}, w′ ∈ Bj , w
′ �= w,∀j

sc
j(c)≥ 1 − zc,∀c ∈ Bj ∩ Vc,∀j (25)
∑

w∈V

zw ≤ Kd, zw ∈ {0, 1},∀w ∈ V (26)

lj(u, v), sc
j(w) ∈ [0, 1],∀c ∈ Vc, u, v, w ∈ Bj , u �= v,∀j (27)

which maximizes the defender’s utility in Eq. 21. Constraint (23) ensures that the
attacker can successfully relay data from compromised node u to compromised
node v (lj(u, v) = 1) if there is no detector of the defender on the routing
path, i.e., zw = 0,∀w ∈ P(u, v). Constraint (24) guarantees that if the defender
does not block the routing path P(w′, w) (i.e., lj(w′, w) = 1), node w receives
data broadcasted by node w′ (i.e., sc

j(w) ≥ sc
j(w

′)). Furthermore, constraint
(25) implies that if the defender does not deploy a detector on a stealing bot
c ∈ Bj ∩Vc, then the attacker can steal the data of c. In other words, sc

j(c) = 1
if zc = 0 for all c ∈ Bj ∩Vc. Finally, constraint (26) imposes the requirement of
detection resource limit for the defender.

In our MILP (22)–(27), only the detection variables z = {zw} are required
to be binary. The relaying variables and the data-exfiltration variables will be
forced to be equal to one by constraints (23)–(25) if the attacker can successfully
exfiltrate the data. Otherwise, since the defender utility in (21) is monotonically
decreasing with respect to the data-exfiltration variables, (22)–(27) will force
these variables to be zero whenever possible. Thus, all the variables are either
zero or one in the optimal solution of (22)–(27). Finally, the defender oracle
problem with respect to broad-exfiltration is NP-hard (Proposition 4 with proof
is in the Online Appendix E).

Proposition 4. The defender oracle problem corresponding to data broad-
exfiltration is NP-hard.

Defender Greedy Heuristic. We also apply the greedy approach to solve the
defender oracle problem in polynomial time. The idea is similar to the attacker
greedy heuristic.

6 Experiments

We evaluate both solution quality and runtime performance of our algo-
rithms compared with previously proposed defense policies. We conduct exper-
iments based on two different datasets: (i) synthetic network topology—we use
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JGraphT [22], a free Java graph library, to randomly generate scale-free graphs
since many real-world network topologies exhibit the power-law property [8];
and (ii) real-world network topology—we derive different network topologies
from the Rocket-fuel dataset [24]. Each data point in our results is averaged
over 50 different samples of network topologies.

6.1 Synthetic Network Topology

Data Uni-exfiltration We compare six different algorithms: (i) ORANI –
both exact oracles; (ii) ORANI-AttG – exact defender oracle and greedy
attacker oracle; (iii) ORANI-G – both greedy oracles; (iv & v) CWP & ECWP –
heuristics proposed in [37] to generate a mixed defense strategy based on the cen-
trality values of nodes in the network; and (vi) Uniform – generating a uniformly-
mixed defense strategy. We consider CWP, ECWP, and Uniform as the three
baseline algorithms.

In the first four experiments (Figs. 2(a), (b), (c) and (d)), we examine solution
quality of the algorithms with varying number of nodes, of defender resources, of
attacker resources, and of mission-critical nodes respectively. In Figs. 2(a), (b),
(c) and (d), the x-axis is the number of nodes, of defender resources, of attacker
resources, and of mission-critical nodes in each graph respectively. In the later
three figures, the number of nodes is 30. The y-axis is the averaged expected util-
ity of the defender obtained by the evaluated algorithms. The data value asso-
ciated with each mission-critical node is generated uniformly at random within
[0, 1]. Intuitively, the higher averaged expected utility an algorithm gets, the bet-
ter the solution quality of the algorithm is. Figures 2(a), (b), (c) and (d) show
that all of our algorithms, ORANI, ORANI-AttG, ORANI-G defeat the
baseline algorithms in obtaining a much higher utility for the defender. Moreover,
when the number of defender resources increases, the defender’s expected utility
on average increases quickly and reaches the defender’s highest utility of zero
with just five defender resources. On the other hand, when the number of attacker
resources increases, there is only a small decrease in the defender’s expected
utility on average. Finally, both ORANI-AttG and ORANI-G obtain a lower
average utility of the defender compared to ORANI as expected. Yet, we show
that the greedy heuristics help in significantly reducing the time of solving the
double oracle problem.

In our fifth experiment (Fig. 2(e)), we examine the convergence of the double
oracle used in ORANI. The x-axis is the number of iterations of adding new
strategies for both players until convergence. In addition, the y-axis is the average
of the defender’s expected utility at each iteration with respect to the defender
oracle, the attacker oracle, and the Maximin core. The number of nodes in the
graph is set to 40. Figure 2(e) shows that ORANI converges quickly, i.e., after
approximately 25 iterations. This result implies that there is only a small set of
pure strategies of players involved in the game equilibrium despite an exponential
number of strategies in total. In addition, ORANI can find this set of pure
strategies after a small number of iterations.
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Fig. 2. Uni-Exfiltration: Random scale-free graphs

In our sixth experiment (Fig. 2(f)), we investigate runtime performance. In
Fig. 2(f), the x-axis is the number of nodes in the graphs and the y-axis is the
runtime on average in hundreds of seconds. As expected, the runtime of ORANI
grows exponentially when |V| increases. In addition, by using the greedy heuris-
tics, ORANI-AttG and ORANI-G run significantly faster than ORANI.
For example, ORANI reaches 1333 seconds on average when |V| = 35 while
ORANI-AttG and ORANI-G reach 1266 and 990 seconds respectively when
|V| = 140.

Data Broad-Exfiltration. In the case of data broad-exfiltration, we compare
eight algorithms: (i) ORABI – both exact oracles; (ii) ORABI-AttG – exact
defender oracle and greedy attacker oracle; (iii) ORABI-G – both greedy ora-
cles; (iv) ORABI-AttG-Mul – exact defender oracle and greedy-multi attacker
oracle; (v) ORABI-G-Mul – both greedy-multi oracles; and (vi), (vii) and (viii)
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Fig. 3. Broad-exfiltration: Random scale-free graphs

CWP, ECWP, and Uniform. Our experiment settings for broad-exfiltration are
similar to uni-exfiltration. In the following, we only highlight some key findings.

First, our experimental result on solution quality is shown in Fig. 3(a).
Figure 3(a) shows that all of our five evaluated algorithms, ORABI,
ORABI-AttG-Mul, ORABI-G-Mul, ORABI-AttG, and ORABI-G
obtain a much higher averaged expected utility for the defender compared to
the baseline algorithms. Furthermore, by adding multiple new strategies at each
iteration, both our algorithms ORABI-AttG-Mul and ORABI-G-Mul per-
form approximately as well as ORABI while outperforming ORABI-AttG,
and ORABI-G.

Furthermore, in the experimental result on runtime performance (Fig. 3(b)),
our algorithms with greedy heuristics can scale up to large graphs. For exam-
ple, when |V| = 1000, the runtime of ORABI-AttG-Mul, ORABI-G-Mul,
ORABI-AttG, and ORABI-G reaches 89, 20, 71, and 2 s respectively.
We conclude that ORABI is the best algorithm for small graphs while
ORABI-AttG-Mul and ORABI-G-Mul are proper choices for large-scale
graphs.

Finally, we investigate the benefit to the attacker from broad-exfiltration
compared to uni-exfiltration. We run ORANI and ORABI on the same set of
50 scale-free graph samples generated by uniformly at random with 20, 30, 40
nodes in each graph respectively. Among all the samples, there are only 58%,
72%, and 52% of the 20-node, 30-node, and 40-node graphs respectively for which
the attacker obtains a strictly higher utility by using broad-exfiltration. This
result shows that the attacker does not always benefit from broad-exfiltration.
Indeed, despite broad-exfiltration, the data exchange between any pairs of com-
promised nodes must follow fixed routing paths specified by the network system,
thus constraining the data exfiltration possibilities.

6.2 Real-World Network Topology

Our third set of experiments is conducted on real-world network topologies from
the Rocket-fuel dataset [24]. Overall, the dataset provides router-level topologies
of 10 different ISP networks: Telstra, Sprintlink, Ebone, Verio, Tiscali, Level3,
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Exodus, VSNL, Abovenet, and AT&T. In this set of experiments, we mainly
focus on evaluating the solution quality of our algorithms compared with the
three baseline algorithms. For each of our experiments, we randomly sample
fifty 40-node sub-graphs from every network topology using random walk. In
addition, we assume that all external routers located outside the ISP can poten-
tially route data to the attacker’s server. Each data point in our experimental
results is averaged over 50 different graph samples. The defender’s averaged
expected utility obtained by the evaluated algorithms is shown in Figs. 4 and 5
with respect to data uni-exfiltration and broad-exfiltration respectively.

Figures 4 and 5 show that all of our algorithms obtain higher defender
expected utility than the three baseline algorithms. Further, the greedy

Fig. 4. Uni-exfiltration: Defender’s average utility

Fig. 5. Broad-exfiltration: Defender’s average utility
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algorithms—ORANI-AttG, ORANI-G, and ORABI-AttG, ORABI-G—
are shown to consistently perform well on all the ISP network topologies com-
pared to the optimal ones—ORANI and ORABI respectively. In particular,
the average expected defender utility obtained by ORANI-G is only ≈ 3% lower
than ORANI on average over the 10 network topologies.

7 Summary

Many computer networks have suffered from botnet data exfiltration attacks,
leading to a significant research emphasis on botnet defense. Our Stackelberg
game model for the botnet defense problem accounts for the strategic response
of cyber-criminals to deployed defenses. We propose two double-oracle based
algorithms, ORANI and ORABI, to compute optimal defense strategies with
respect to data uni-exfiltration and broad-exfiltration formulations, respectively.
We also provide greedy heuristics to approximate the defender and the attacker
best-response oracles. We conduct experiments based on both random scale-free
graphs and 10 real-world ISP network topologies, demonstrating advantages of
our game-theoretic solution compared to previous strategies.

Acknowledgment. This work was supported in part by MURI grant W911NF-13-1-
0421 from the US Army Research Office.
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