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Abstract. We study a network security game arising in the interdiction
of fare evasion or smuggling. A defender places a security checkpoint in
the network according to a chosen probability distribution over the links
of the network. An intruder, knowing this distribution, wants to travel
from her initial location to a target node. For every traversed link she
incurs a cost equal to the transit time of that link. Furthermore, if she
encounters the checkpoint, she has to pay a fine.

The intruder may adapt her path online, exploiting additional knowl-
edge gained along the way. We investigate the complexity of computing
optimal strategies for intruder and defender. We give a concise encoding
of the intruders optimal strategy and present an approximation scheme
to compute it. For the defender, we consider two different objectives:
(i) maximizing the intruder’s cost, for which we give an approximation
scheme, and (ii) maximizing the collected fine, which we show to be
strongly NP-hard. We also give a paramterized bound on the worst-case
ratio of the intruders best adaptive strategy to the best non-adaptive
strategy, i.e., when she fixes the complete route at the start.

1 Introduction

Network interdiction problems model the control or halting of an adversary’s
activity on a network. Typically, this is modelled as the interaction between two
adversaries—an intruder and a defender—in the context of a Stackelberg game.
The defender allocates (or removes) scarce resources on the network in order to
thwart the objective of the intruder, who—knowing the defender’s strategy—
reacts by choosing the response strategy optimizing his own objective. Such
models are used to great effect in applications such as disease containment
[11,13], drug traffic interdiction [17], airport security [16], or fare inspection [5].

In order to mitigate the intruder’s advantage of observing the defender’s
actions first, the defender may opt to employ a randomized strategy. The intruder
can only observe the probability distribution of the defender’s actions, but she
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does not know the exact realization. In this work, we study a variant of a network
interdiction problem in which the defender employs such randomization, but the
intruder gains additional information about the realization while she is acting,
and may use this information to adapt her strategy.

Our game is played on a network. The defender randomly establishes a secu-
rity checkpoint on one of the arcs. The intruder wants to move from her initial
location to a designated target node, preferably without being detected by the
defender. Her objective is to minimize her expected cost, which consists of move-
ment costs for traversing arcs and a fine, which has to be paid if she traverses
the arc with the checkpoint. Knowing the probability distribution specified by
the defender and that only one arc is subjected to inspection, the intruder gains
additional information while traveling through the network, observing whether
or not the inspected arc was among those she traversed so far. She may use this
information in order to decide which arc to take next. This type of path-finding
strategy is called adaptive, as opposed to a non-adaptive strategy, in which she
commits to an origin-destination-path at the start and does not deviate from it.

In this paper, we investigate the computational complexity of finding opti-
mal adaptive and non-adaptive strategies for the intruder as well as optimal
randomized strategies for the defender, considering two objectives: (i) the zero-
sum objective of maximizing the intruder’s cost and (ii) the profit maximization
objective of maximizing the expected collected fine. We also provide bounds on
the cost ratio between optimal adaptive and non-adaptive strategies and the
impact of adaptivity on the defender’s objective.

1.1 Related Work

Stackelberg games, and in particular network interdiction models, are widely
used in the context of security applications; see the textbook by Tambe for an
overview of applications in airport security [16].

A very basic version of a Stackelberg game is the security game studied
by Washburn and Wood [17]. In this zero-sum game, an inspector strives to
maximize the probability of catching an evader, who chooses a path minimizing
that probability. The authors show that optimal strategies for both players can be
computed by a network flow approach. The optimization problem of maximizing
the defender’s profit has been extensively studied in the context of Stackelberg
pricing games [3,9,14]. Here, the defender sets tolls for a subset of the edges
of the network, trying to collect as much tolls as possible from the intruder,
who chooses a path minimizing the sum of the travel costs plus the tolls. As
opposed to the zero-sum game mentioned above, these pricing games are usually
computationally hard to solve.

The particular game we study in this article arises from a variation of
two toll/fare inspection models introduced by Borndörfer et al. [2] and Correa
et al. [5], respectively. In these models, the defender, who represents the net-
work operator, decides an inspection probability for each arc, subject to budget
limiting the total sum of inspection probabilities. The intruder (toll evading
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truck drivers/fare evading passengers) tries to get to her destination minimiz-
ing a combined objective of travel time and expected cost for the fine when
being discovered. Correa et al. [5] also study an adaptive version of the problem,
in which the intruders adapt their behavior as they traverse the network. They
propose an efficient algorithm based on a generalized flow decomposition, and
give a tight bound on the adaptivity gap of 4/3; see Sect. 5 for details. In both
the above models, the event of an inspection occurring on a given arc is inde-
pendent to that on all other arcs. In contrast, in our model, the checkpoint can
only be located on a single arc, leading to a different optimization problem for
the intruder.

A different notion of adaptive path-finding was previously studied by
Adjiashvili et al. [1] in the so-called Online Replacement Path problem. Here, a
routing mechanism must send a package between two nodes in a network try-
ing to minimize transit cost. An adversary, knowing the intended route, may
make one of the arcs fail. Upon encountering the failed arc, the package may
be rerouted to its destination along a different path. Note that in this setting
the failing arc is chosen by the adversary after the routing has started, whereas
in our settings the inspection probabilities are determined before the intruder
chooses her path. Computationally, adaptive path-finding is related to short-
est path problems in which there is a trade-off between two cost functions. The
restricted shortest path problem [6,8,10] and the parametric shortest path prob-
lem [4,12] are representative examples of such problems.

1.2 Contribution

We study both adaptive and the non-adaptive path-finding strategies for the
intruder. After observing that the non-adaptive intruder’s problem reduces to
the standard shortest path problem, we turn into the adaptive version, which
turns out to be much more intricate. We show that an optimal adaptive strategy
of the intruder can always be represented by a simple, i.e., cycle-free, path. We
then devise fully polynomial time approximation scheme (FPTAS) for computing
the a near-optimal adaptive strategy with adjustable precision.

By using an approximate version of the equivalence of separation and opti-
mization [15], we also obtain an FPTAS for maximizing the defender’s zero-sum
objective. For the profit objective, on the other hand, we show that the defender’s
optimization problem is strongly NP-hard, ruling out the existence of an FPTAS
(unless P = NP ).

We further study the impact of adaptivity on the intruder’s and defender’s
objective. Extending a result by Correa et al. [5], we show that the intruder’s best
non-adaptive strategy is within a factor of 4/3 of the optimal adaptive strategy
and that this ratio decreases for instances where the intruder does not deviate
significantly from her shortest path (which is a natural assumption, e.g., in the
context of transit networks). We also mention that our bound on the adaptivity
gap for the intruder directly translates to several guarantees for the defender’s
zero sum game, e.g., bounding his loss in pay-off when he wrongly believes the
intruder is non-adaptive.
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2 The Model

Before we can describe our model in detail, we establish some notation. Through-
out this article, we are given a directed graph G = (V,E) with n := |V | nodes
and m := |E| arcs. For two nodes u, v ∈ V an u-v-walk in G is a sequence of
edges (e1, . . . , ek) with ei = (vi−1, vi) ∈ E and v0 = u and vk = v. A u-v-path
is a u-v-walk in which no arc or node is repeated, i.e., ei �= ej and vi �= vj for
i �= j. For a u-v-path P , we let V (P ) be the set of nodes visited by P and for
u′, v′ ∈ V (P ) such that P visits u′ before v′, we let P [u′, v′] denote the u′-v′-path
contained in P . We denote the set of all u-v-walks in G by Wuv and the set of
all u-v-paths in G by Puv.

In our model, the intruder starts at a designated node s and wants to reach a
node t (both nodes are also known to the defender). Each arc e ∈ E is equipped
with a cost ce ∈ Z+ that is incurred to the intruder when she traverses e.
Furthermore, there is a fine F , which the defender charges to the intruder, if she
runs into the defender’s security checkpoint. In the first level of our interdiction
game, the defender specifies the random distribution of the checkpoint, i.e., he
specifies for every arc e ∈ E the probability πe of placing the checkpoint at e. In
the second level, the intruder takes her way from s to t, having full knowledge of
the probability distribution chosen by the defender. We distinguish two variants
of the intruder’s path-finding strategy:

non-adaptive: At the start, the intruder selects an s-t-path P ∈ Pst and follows
this path to t. For every arc e ∈ P she pays the transit cost ce of that arc.
In addition, if the security checkpoint is located on one of the arcs of P , she
has to pay the fine F .

adaptive: From her current location, the intruder moves along one of the out-
going arcs e to a neighboring vertex, paying the transit cost ce. She observes
whether the security checkpoint is located at the arc she traverses (in which
case she additionally has to pay the fine F ). Knowing this information, she
decides which arc to take next. This procedure continues until she reaches
her destination (after a finite number of steps).

The intruder’s objective is to minimize her expected cost. For a set of arcs S,
we use c(S) :=

∑
e∈S ce to denote the sum of the transit times and π(S) :=∑

e∈S πe to denote the probability that the security checkpoint is located within
the set of arcs S (note that we can sum up these probabilities since there is a
single checkpoint, so these are disjoint events). Therefore, in the non-adaptive
case, the expected cost of following a path P is

fN,π(P ) := c(P ) + π(P )F =
∑

e∈P

(ce + πeF ) .

We denote the optimization problem of finding an optimal non-adaptive strategy
for the intruder by

min
P∈Pst

fN,π(P ). (IntN)
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Thus, it is straightforward to note that an optimal non-adaptive strategy for the
intruder is to follow a shortest path with respect to arc weights ce + πeF . Such
a path can be computed efficiently, e.g., using Dijkstra’s Algorithm. Therefore
we conclude the following result.

Proposition 1. IntN reduces to the Shortest Path Problem and can be solved
in polynomial time.

The optimal adaptive strategy is less obvious. In principle, the intruder’s
choice of where to go next from her current location can depend on the set of
arcs she has visited so far and the information whether the security checkpoint
is located at one of these arcs. Let us consider any such adaptive strategy. Note
that, because the intruder has to reach t after a finite number of steps, for each
fixed realization of the checkpoint location, the strategy determines an s-t-walk.
We distinguish two cases.

First, assume the intruder encounters the checkpoint in every realization.
Then for the given strategy, she pays the fine with probability 1. Obviously, the
non-adaptive strategy of simply following the shortest path with respect to c has
at most the same cost than the considered strategy.

Now assume that there is a realization in which the intruder reaches t without
being inspected. Let W = (e1, . . . , ek) be the walk she takes in this realization,
with ei = (vi−1, vi), v0 = s, and vk = t. Observe that W is the same for all
realizations where the intruder is not inspected, as her decisions are based only
on whether or not she encountered the checkpoint so far. We now define a new
adaptive strategy, in which the intruder follows W starting at s until she either
reaches t or encounters the security checkpoint at some arc ei of W . In the latter
case, after traversing ei she simply follows a shortest path with respect to c from
her current location vi to t. It is easy to check that the cost of the new strategy
is at most the cost of the strategy considered originally.

We have thus shown that for every adaptive strategy there is a strategy of
at most the same cost which is completely defined by an s-t-walk W that the
intruder follows while not being inspected. Note that W can contain cycles and
arcs can appear multiple times along W . Define π̃i := πei

if ei �= ej for all j < i,
i.e., the ith position is the first appearance of the arc ei on W , and π̃i := 0
otherwise, i.e., if arc ei occurred on W before the ith position. Furthermore,
let SPc(v, w) := minP∈Pvw

c(P ) be the length of a shortest path w.r.t. c from
v to w. Then the intruder’s expected cost for following W can be expressed as
follows:

fA,π(W ) :=
k∑

i=1

π̃i

⎛

⎝
i∑

j=1

cej
+ F + SPc(vi, t)

⎞

⎠ +

(

1 −
k∑

i=1

π̃i

)
k∑

i=1

cei

Here, each summand of the first sum corresponds to the event that the check-
point is encountered at arc ei (which can only happen if it is the first occurrence
of this arc along the walk). In this case, the intruder traverses the walk W until ei,
pays the fine, and then follows the shortest path from vi to t. The second sum
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Fig. 1. Example network for the intruder’s best response problem. Labels (ce, πe) at
the arcs denote transit times and inspection probabilities. A possible adaptive strategy
for the intruder is to follow s-t-walk s-v-w-s-v-t and deviating to a shortest path when
encountering the security checkpoint. For a fine F = 7, the expected cost of this strategy
is 9.25, whereas following the underlying simple path s-v-t deviating to a shortest path
after inspection has a higher expected cost of 9.375.

represents the event that none of the arcs in W contains the checkpoint, in which
case the intruder simply traverses W from start to end.

In the above discussion, we assumed that the intruder may walk along cycles
and even traverse arcs multiple times. Although all transit costs are non-negative,
such detours cycles could—in principle—help the intruder, because along the way
she gains additional information. In fact, Fig. 1 depicts an example of an s-t-walk
containing a cycle where the intruder’s expected cost increases when omitting
the cycle. However, one can show that there always exists an optimal adaptive
solution without a cycle, i.e., defined by an s-t-path.

Lemma 1. Let P be a shortest s-t-path w.r.t. c. Then fA,π(P ) ≤ SPc(s, t) + F .

Lemma 2. There is an s-t-path P such that fA,π(P ) ≤ fA,π(W ) for all s-t-
walks W .

The problem of finding an optimal adaptive strategy thus reduces to finding
an s-t-path minimizing fA,π. We denote this optimization problem by

min
P∈Pst

fA,π(P ). (IntA)

3 Approximating the Intruder’s Optimal Strategy

A fully polynomial time approximation scheme (FPTAS) for a minimization
problem is an algorithm that takes as input an instance of the problem as well
as a precision parameter ε > 0, and computes in polynomial time in the size
of the input and 1/ε a solution to that instance with cost at most (1 + ε)OPT,
where OPT denotes the cost of the optimal solution.

In this section, we design such an FPTAS for IntA. The algorithm is based on
a label propagating approach, where each label at node v represents an s-v-path,
that is extended by propagating the label along the outgoing edges of v. In order
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to keep the number of distinct labels small and achieve polynomial running time,
we discard an s-v-path when we find another s-v-path with similar objective
function value but higher inspection probability (intuitively higher inspection
probability at equal objective value means that any completion of the new path
to an s-t-path will be cheaper than the corresponding completion of the former
path). An additional challenge, that arises when propagating the labels in the
graph, is to ensure that the constructed paths are cycle free. To deal with this
issue we argue that there is a way to avoid cycles without overlooking potentially
good paths.

The Algorithm. Given ε > 0, let α := 1 + ε
2n . From Lemma 1, we know that

the cost of an optimal strategy is in the interval [0,SPc(s, t) + F ]. We divide
this interval geometrically by powers of α. Let K := �logα (SPc(s, t) + F )� and
define I0 := [0, 1) as well as Ik :=

[
αk−1, αk

)
for k ∈ {1, . . . , K}. At every node

v we maintain an array L0
v, . . . , LK

v , where Li
v is either empty or contains a label

(f, q, P ) such that P is an s-v-path with f = fA,π(P ) ∈ Ik and q = π(P ).
Initially, only the label L0

s = (0, 0, ∅) is present. In each iteration, the algo-
rithm propagates all labels at each vertex v along all outgoing arcs (v, w).
When propagating label (f, q, P ) at node v along arc e = (v, w), we get a label
(f ′, q′, P ′) at node w with f ′ = f + (1 − q)ce + πe(F + SPc(w, t)), q′ = q + πe,
and P ′ = P ∪ {e}. In order to avoid cycles, the propagation of (f, q, P ) along
e = (v, w) only takes place if w /∈ V (P ). Moreover, if the propagation of a label
along an arc gives rise to two different labels (f ′, q′, P ′) and (f ′′, q′′, P ′′) for
a node such that f ′, f ′′ ∈ Ik for some k, we discard the label with the lower
inspection probability (breaking ties arbitrarily). The full description is given in
Algorithm 1.

From the previous discussion, the following lemma is straightforward:

Lemma 3. If Algorithm1 creates a label (f, q, P ) in a node v ∈ V , then P is a
(s, v)-path with fA,π(P ) = f and π(P ) = q.

Now let P ∗ be an s-t-path minimizing fA,π(P ∗). Let (e1, . . . , ek) be the arcs
of P ∗, with ei = (vi−1, vi), v0 = s and vk = t. Define f∗

i := fA,π(P ∗[s, vi])
and q∗

i := π(P ∗[s, vi]). For x ∈ R, let (x)+ denote the positive part of x, i.e.
(x)+ := max{x, 0}. We call an iteration of the outer for loop of Algorithm1
a round. The following lemma can be proved by induction on the rounds of
the algorithm, using a sequence of careful estimates on the cost of paths and
subpaths.

Lemma 4. After round i of Algorithm1, there is a label (fi, qi, Pi) at node vi

with fi ≤ αif∗
i − (q∗

i − qi)+ · c(P ∗[vi, t]).

Lemma 4 in particular implies that, at the end of round n, the algorithm has
found an s-t-path P with fA,π(P ) ≤ αnfA,π(P ∗). Note that αn = (1 + ε

2n )n ≤
(1 + ε) for all ε < 1. It is also easy to verify that the algorithm runs in time
polynomial in 1/ε and the input size.

Theorem 1. Algorithm1 is an FPTAS for IntA.
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Algorithm 1. FPTAS for IntA

1: Compute SPc(v, t) for all v ∈ V .
2: Let α ← 1 + ε

2n
and K ← �logα (SPc(s, t) + F )�

3: Let L0
s ← (0, 0, ∅) and Lk

v ← ∅ for all (v, k) ∈ V × {0, . . . , K} \ {(s, 0)}
4: for i = 1, . . . , (n − 1) do
5: for all e = (v, w) ∈ E and k = 0, . . . , K do
6: if Lk

v �= ∅ then
7: push(Lk

v , e)

8: Let (f∗, q∗, P ∗) ∈ argmin
{
f : (f, q, P ) ∈ Lk

t for some k
}

9: Return P ∗

10: procedure push(L = (f, q, P ), e = (v, w))
11: if w /∈ V (P ) then
12: Let f ′ ← f + (1 − q)ce + πe (SPc(w, t) + F )
13: Let q′ ← q + πe

14: Let P ′ ← P ∪ {e}
15: Let k ← min

{
� ∈ Z+ : f ′ < α�

}

16: if Lk
w = ∅ then

17: Lk
w ← (f ′, q′, P ′)

18: else
19: Let (f ′′, q′′, P ′′) ← Lk

w

20: if q′ > q′′ then
21: Lk

w ← (f ′, q′, P ′)

4 Complexity of the Defender’s Problem

We study the defender’s optimization problem for deciding the inspection prob-
abilities on every edge of the network, for both the adaptive and non-adaptive
intruder. We analyze two different objectives: maximizing the minimum expected
intruder’s cost and collecting the highest possible fine from inspections.

4.1 The Zero-Sum Objective

We first consider the defender’s problem of maximizing the intruder’s expected
cost. This problem can be stated as

max∑
e∈E πe=1

π≥0

min
P∈Pst

fX,π(P ), (DefcostX )

where X ∈ {A,N}, depending on whether the intruder is adaptive or non-
adaptive. Note that for a fixed path P ∈ Pst, the function fX,π(P ) is affine
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linear in π, both for X = A and X = N. Therefore, we can reformulate the
defender’s problem as a linear program:

max
λ∈R,π∈RE

λ

s.t. λ ≤ fX,π(P ) ∀ P ∈ Pst
∑

e∈E

πe = 1

πe ≥ 0 ∀ e ∈ E.

(LPcost
X )

Note that the number of constraints in the above LP can be exponential in the
size of the network, as it contains one constraint for every path. A standard
way to solve such non-compact LPs is to devise a separation routine: A famous
result by Grötschel, Lovasz, and Schrijver [7] shows that in order to solve a
linear program with the ellipsoid method, it is sufficient to determine for a given
setting of the variables, whether it is a feasible solution, and if not, find a violated
inequality.

Indeed checking whether a given solution (π, λ) is feasible for LPcost
X boils

down to determining whether there is a path P with fX,π(P ) < λ. For this, it is
sufficient to determine the intruder’s optimal path. As discussed in Sect. 2, this
can be done efficiently for the non-adaptive setting. We thus obtain the following
theorem.

Theorem 2. DefcostN can be solved in polynomial time.

For the adaptive intruder problem, we do not know an exact polynomial time
algorithm. However, we can use the FPTAS presented in Sect. 3 as an approx-
imate separation routine. This enables us to employ an approximation version
of the equivalence of separation and optimization [15], obtaining an FPTAS for
DefcostA .

Theorem 3. There is an FPTAS for DefcostA .

4.2 The Profit Maximization Objective

Next we address the problem of maximizing the expected fine collected by the
defender through inspections, that is

max
∑

e∈P

πeF (DeffineX )

s.t.
∑

e∈E

πe = 1, π ≥ 0

P ∈ argmin {fX,π(P ′) : P ′ ∈ P ∈ Pst},

where again X ∈ {A,N} specifies whether the intruder employs an adaptive or
non-adaptive path-finding strategy, respectively.
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This problem shares many features with the Stackelberg network pricing
problem, which is defined as follows: in the first stage, the defender sets tolls
on a given subset of “tollable” edges. In the second stage the intruder chooses
a path between two fixed nodes minimizing the sum of travel times plus the
tolls of the traversed arcs. The defender’s objective is to maximize the collected
revenue from the tolls. Roch et al. [14] showed that this problem is NP-hard.

We show that also DeffineN is NP-hard, even when all arc costs are in {0, 1, 2}.
Such a hardness for instances with small input numbers is referred to as strong
NP-hardness. Our reduction resembles that of Roch et al., but we have to intro-
duce some modifications to accommodate for non-tollable arcs, which exist in
the Stackelberg network pricing problem but not in DeffineN .

Theorem 4. DeffineN is strongly NP-hard.

Although we do not provide a hardness result for DeffineA , we expect it to be
NP-hard as well, as the adaptive intruder’s first stage problem becomes as least
as hard than it is in the DeffineN setting.

5 The Impact of Adaptivity

5.1 Adaptivity Gap for the Follower

Let OPTA and OPTN the optimal values for IntA and IntN respectively. Correa
et al. [5] showed that for their model (in which inspections are independent
events) the ratio of the best non-adaptive strategy to the best adaptive strategy
is bounded by 4/3. Indeed, their proof does not use the fact that arc inspections
are independent events and thus translates to our setting.

Theorem 5 (Correa et al. [5]). OPTN ≤ 4
3OPTA.

In many real-life scenarios, it is reasonable to assume that the ratio of the
length of the path chosen by the intruder to the shortest path (w.r.t. c) is not
too large. E.g., most passengers in transit systems would pay a ticket rather than
choosing a path with twice the transit time just in order to avoid inspection.
We extend the proof by Correa et al. [5] to give a parameterized bound that
takes this ratio into account and gives stronger guarantees for realistic values;
also see Fig. 2.

Theorem 6. If SPc(s, t) > 0, then OPTN ≤ Δ2

2(1−Δ)3/2+3Δ−2
OPTA, where Δ :=

SPc(s, t)/c(P ∗) and P ∗ is an optimal solution to IntA.

Proof. We first observe that OPTN ≤ min{SPc(s, t) + F, c(P ∗) + π(P ∗)F} as
both following the shortest path or following P ∗ are feasible non-adaptive strate-
gies. On the other hand, observe that OPTA = fA,π(P ∗) ≥ (1 − π(P ∗))c(P ∗) +
π(P ∗)(SPc(s, t) + F ), as the total amount of transit cost will always be at least
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Fig. 2. Upper bound on the adaptivity gap OPTN/OPTA given in Theorem 6 parame-
terized by Δ−1 = c(P ∗)/SPc(s, t), where P ∗ is an optimal solution to IntA.

as much as the length of a shortest s-t-path. Defining S := SPc(s, t), C := c(P ∗),
and Q := π(P ∗), we obtain

OPTA

OPTN
≥ (1 − Q)C + Q(S + F )

min{S + F, C + QF} =
(1 − Q)C + Q(ΔC + F )
min{ΔC + F, C + QF} .

In order to prove the bound, we fix Δ and treat C,F,Q as variables of an
optimization problem subject to Q ∈ [0, 1] and F,C ≥ 0.

OPTA

OPTN
≥ min

F,C≥0,Q∈[0,1]

(1 − Q)C + Q(ΔC + F )
min{ΔC + F, C + QF} .

It is easy to see that in an optimal solution, the minimum in the denominator
is attained by both terms, i.e., ΔC + F = C + QF . Substituting F = 1−Δ

1−QC we
get

OPTA

OPTN
≥ min

C≥0,Q∈[0,1]

(1 − Q)C
(
1 + Q 1−Δ

1−Q

)
C

+ Q = min
Q∈[0,1]

(1 − Q)2

1 + ΔQ
+ Q.

By computing the derivative of the righthand side term, we observe that the
minimum is attained at Q = 1−√

1−Δ
Δ , which gives the desired bound. ��

5.2 Defender Gaps

We consider three gaps concerning the defender in the context of the zero-
sum objective. Let πA and πN be the inspection probabilities that maximize
the intruder’s costs against an adaptive and non-adaptive intruder respec-
tively, and let fX(πY ) := min

P∈Pst

fX,πY
(P ) denote the defender’s pay-off, where

X,Y ∈ {A,N}.

Adaptivity Gap (ηA): This measures the defender’s pay-off loss when the
intruder is adaptive, as opposed to when she is non-adaptive.
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Pay-off Gap (ηP ): When the intruder is adaptive, this gap measures the devi-
ation of the defender’s pay-off from his own estimation if he wrongly assumes
she is non-adaptive.

Approximation Gap (ηApp): This is the approximation factor achieved by
the defender against an adaptive intruder when playing the optimal strategy for
non-adaptive intruders πN as an approximation for πA.

ηA =
fN (πN )
fA(πA)

, ηP =
fN (πN )
fA(πN )

, ηApp =
fA(πA)
fA(πN )

.

As a straightforward consequence of Theorem 5, all of these gaps are upper
bounded by 4/3.

6 Conclusion

In this paper, we investigated different variants of a Stackelberg network game in
which the follower can gain and exploit information about the realization of the
leader’s random strategy while traversing the network. In the present work, we
confined ourselves to the model in which a single arc is subjected to inspections.
Future work will focus on the natural generalization in which several checkpoints
are placed simultaneously and possibly in a correlated fashion, getting closer to
real-world security scenarios.
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