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Abstract. The increasing adoption of new information and communi-
cation technology assets in smart grids is making smart grids vulnerable
to cyber threats, as well as raising numerous concerns about the ade-
quacy of current security approaches. As a single act of penetration is
often not sufficient for an attacker to achieve his/her goal, multistage
cyber attacks may occur. This paper looks at the stochastic and dynamic
nature of multistage cyber attacks in smart grid use cases and develops
a stochastic game-theoretic model to capture the interactions between
the attacker and the defender in multistage cyber attack scenarios. Due
to the information asymmetry of the interactions between the attacker
and the defender, neither of both players knows the exact current game
state. This paper proposes a belief-updating mechanism for both players
to form a common belief about the current game state. In order to assess
threats of multistage cyber attacks, it further discusses the computation
of Nash equilibria for the designed game model.

Keywords: Asymmetric information · Positive stop probability · Sto-
chastic game · Multistage cyber attacks · Smart grid · Threat assessment

1 Introduction

Network security is a critical concern with regard to cyber-physical systems. For
a long time, security operators have been interested in knowing what an attacker
can do to a cyber-physical system and what can be done to prevent or counteract
cyber attacks [3,14]. It is suggested that risk assessment must be integral to the
overall life cycle of the smart grid systems. A cyber threat assessment helps
the system administrator to better understand the effectiveness of the current
network security solution and determine the best approach to secure the system
against a particular threat, or a class of threats. By offering a deep analysis of
existing or potential threats, system administrators are given a clear assessment
of the risks to their systems, while possessing a clear vision about the kind of
security countermeasures that the respective utility should invest in.

Attack scenarios are dynamically changing in smart grid communication net-
works, for example, because of existing of legacy and new systems in smart
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grid communication networks. Multistage cyber attacks, as important threats in
smart grid communication networks, make use of a variety of different exploits,
propagation methods, and payloads, resulting in the emergence of many more
sophisticated cyber attacks. Current protection mechanisms, which rely on iso-
lation techniques, such as firewalls, data diodes, and zoning concepts, are not
sufficiently applicable in cyber-physical systems. For more than a decade, game-
theoretic approaches have been recognized as useful tools to handle network
attacks [2,7,13,15]. Significant results from game theory concerning cyber situa-
tion awareness and network security risk assessment in conventional information
and communication technology (ICT) systems have been reported [14,30]. But
the application of game theory for the assessment of threats from multistage
cyber attacks and the prediction of an attacker’s actions in smart grid commu-
nication networks are still in their infancy nowadays.

Threat assessment for multistage cyber attacks is not straightforward, given
that, at any stage of a cyber attack, the attacker may decide not to proceed or
change his/her attack actions. Since the attacker has motivations (costs versus
benefits) and finite resources to launch a further attack at any stage, the stage at
which the multistage attack stops is not necessary predetermined (stochastic).
This paper accounts for this by adding a stopping time to the stochastic model.
It is to be noted that an attacker who doesnot have any resource limitations
(from an economic point of view) is beyond the scope of this paper. The stop of
the attack or the change of attack actions at any stage makes a threat assessment
extremely challenging, as it is difficult to know what the attacker will do or to
assess possible cyber or physical impacts resulting from his/her attack actions
in the next stage.

Cyber attacks on smart grid communication networks can cause physical
damage to the power grid. Many existing stochastic game-theoretic threat assess-
ment methods assume symmetric information among the players, which implies
that all the players share the same information, i.e., the same signal observed and
the same knowledge about states/payoffs in a game. However, in many situations,
this assumption is unrealistic. There are many games arising out of communica-
tion networks, electronic commerce systems, and society’s critical infrastructures
involving players with different kinds of information about the game state and
action processes over time [11,23,29]. For instance, in cyber-security systems,
the attacker knows his/her own skill set, while the defender knows the current
and planned resource characteristics of the system. In short, the attacker and
the defender do not share their available information with each other.

This paper attempts to design a stochastic game-theoretic model with asym-
metric information and positive stop probabilities in order to assess the threat
of multistage cyber attacks in smart grid communication networks. The positive
stop probability means that the probability of the game to end at any state
is positive. Unlike random failures, attackers have motivations and capabilities
to launch further attacks. Both the attacker and the defender will act in con-
sideration of the consequences of their corresponding actions, with such conse-
quences including satisfactions, risk versus effort, and effectiveness. In each state
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of the game, if launching a further attack would have limited benefits, and take
months of time and huge amount of computers and memory, the attacker will
most probably stop his/her attack. Once the defender observed these phenomena
regarding the attacker, he/she will not deploy any corresponding countermea-
sures. Therefore, this situation will be accounted for by adding a stop probability
to the stochastic model; and such a stop probability is positive. The designed
stochastic game-theoretic model extends an existing stochastic game-theoretic
model with specific characteristics of attacker-defender interactions in smart
grid communication networks. The objectives of this attacker-defender stochas-
tic game-theoretic model is to assess cyber attack scenarios at an early stage
of the attack, where the defender makes correct optimal proactive defence deci-
sions. Therefore, a defence system can be prewarned, security resources can be
better allocated to defeat or mitigate future attacks, and security incidents can
be avoided. This paper considers the worst-case scenario where the attacker has
complete knowledge of the architecture/infrastructure of the system and hosts’
vulnerabilities in the system, and the attacker has full knowledge of the target
smart grid defense configurations. Section 2 provides a non-exhaustive overview
of existing game-theoretic approaches for cyber attacks, while Sect. 3 presents
an attacker-defender stochastic game-theoretic model to represent the attacker-
defender interactions. Section 4 analyses the belief-updating mechanisms and
presents the feasible computation of Nash equilibria. Finally, Sect. 5 concludes
the paper ans discusses future works.

2 Related Work

A game consists of players (in this paper, the attacker and the defender), strate-
gies (i.e., actions of players) available to each player, and utilities depending
on the joint decisions of all players. Game theory depicts dynamic interactions
between players, involving a complementary methodology of attack trees and/or
attack graphs in face of changing attack patterns.

Ismail et al. [10] modelled the problem of optimizing the distribution of
defence resources on communication equipment as a one-shot game [22] between
the attacker and the defender. That game took into account the interdependency
between the cyber and physical components in the power grid. It was assumed
that the initial risk, the immediate risk on a node before any incidents or failure
propagations is a positive real number and evaluated using other risk assess-
ment methods. The immediate risk and the future cascading risk from interde-
pendent electrical and communication infrastructures were balanced in [10]. The
interdependency between the electrical and communication infrastructures were
modelled as a weighted directed interdependency graph. Each communication
equipment was associated with a load. The worst-case scenario, where both the
attacker and the defender have complete knowledge of the architecture of the
system, was considered in [10]. The utility functions of both players are composed
of three parts: the reward for an attack, the cost of attacking/defending, and the
impact of redundant communication equipment. The impact of attacks in the
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electric and communication infrastructures was evaluated by solving power flow
equations and using attack graphs, in conjunction with other risk assessment
methods. The dataset of the Polish electric transmission system, provided in the
MATPOWER computational packages, was taken as a case study to validate
the proposed game-theoretic model, while Nash equilibria for the attacker and
the defender for each type of communication equipment in the case study were
presented.

Jiang et al. [30] proposed a two-player non-cooperative, zero-sum, and finite
stochastic game for the attacker and the defender in computer networks. A
Markov chain for a privilege model and a privilege-escalating attack taxonomy
were presented. By making use of the developed stochastic game model, a Markov
chain for the privilege model, and a cost-sensitive model, the attacker’s behaviour
and the optimal defence strategy for the defender were predicted. He et al.
[8] studied a network security risk assessment-oriented game-theoretic attack-
defence model to quantify the probability of threats. The payoff matrix was
formulated from a cost-benefit analysis, where the cost to the defender when
taking actions was made up of the operational cost, the response cost, and the
response negative cost. Combined with the vulnerability associated with the
nodes, risks of the system were computed as the sum of the threat value of all
nodes.

Guillarme et al. [6] presented an attack stochastic game model for adversar-
ial intention recognition for situations featuring strategic interactions between
an attacker and a defender. The attack stochastic game model is a coupling of
discounted stochastic games and probabilistic attack graphs, although it suf-
fers from zero-sum constraints. In the attack stochastic game model, it was
assumed that both the attacker’s action and the defender’s action, as well as the
states experienced by players, were fully observable to both players. This model
was inverted to infer the intention of an attacker from observations of his/her
(sub-)optimal actions. However, this model does not have the ability to detect
intention changes, while the scalability is the principal limitation of this attack
stochastic game model.

Nguyen et al. [21] studied a two-player zero-sum stochastic game-theoretic
approach to provide the defender with guidelines to allocate his/her resources to
secure his/her communication and computer networks. Linear influence networks
[19] were used to present the interdependency of nodes in terms of security assets
and vulnerabilities. He et al. [9] investigated game-theoretic risk assessment in
smart grid communication networks and noticed that the data acquisition and
data interpretation for risk assessment and prediction had not been intensively
explored. Therefore, [9] established a surveillance architecture to monitor mes-
sage transactions in communication networks, while surveillance observations
were further interpreted as Dirichlet-distributed security events with certain
probabilities. By taking the interactions between possible suspicious nodes and
the security operators as a repeated zero-sum transmitting-monitoring game,
a game-theoretic risk assessment framework was established to compute and
forecast the risk of network security impairment. Rass and Zhu [25] presented
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a sequence of nested finite two-player zero-sum games for developing effective
protective layers and designing defence-in-depth strategies against advanced per-
sistent attacks (APTs). In the game-theoretical model, nodes in an infrastructure
were equidistantly separated into different levels according to their layers in the
infrastructure. Within each level, the game structure was determined by the
nodes’ vulnerabilities and their distances from the target node. The authors of
[25] discussed some closed form solutions for their APTs games and analytically
formulated infrastructure design problems to optimize the quality of security
across several layers. Under the framework of the HyRiM project, Rass et al.
[24] investigated an extensive form game as a risk mitigation tool for defend-
ing against APTs. An APT was modelled as a zero-sum one-shot game with
complete information, but uncertainty was observed in the game payoffs. Based
on a topological vulnerability analysis and an established attack graph, all the
attack vectors covered in enumerated attack paths (from the root node to the
target node in the attack graph) made up the attacker’s action space. By defin-
ing players’ payoffs as probability-distributed values, instead of real numbers,
[24] provided a relative new approach to tackling ambiguous and inconsistent
expert opinions in risk management.

The proposed game-theoretic model in this paper differs from the aforemen-
tioned approaches in the sense that the model captures the key characteristics
(e.g., information asymmetry) of the interactions between the attacker and the
defender in smart grid communication networks. None of theses precursor works
has looked at the stochastic and dynamic nature of attacks in smart grid use
cases (modelled as stochastic games). Both decision makers, the attacker and
the defender, have asymmetric information about the underlying system state,
while they both maintain a belief (i.e., a probability distribution) about the
current system state. This paper provides a common belief-updating mecha-
nism for the attacker and the defender to refresh such a belief. The objectives
of this research include contributing towards safety improvements for relevant
stakeholders (e.g., smart grid equipment manufacturers, utility companies) in
power distributed grids and making recommendations about allocating security
resources to reduce cyber security incidents or even safety-related events.

3 Attacker-Defender Stochastic Game-Theoretic Model

To assess threats of multistage attacks, the strategic interactions between the
attacker and the defender are modelled as a stochastic game (which covers the
step occurrence dependency in multistage attacks). In such a game, the possible
actions of the players are restricted, such that there exists an equilibrium point
in which the attacker has no chance to successfully obtain his/her ultimate goal.
This section introduces action spaces and state transition probabilities of the
game between the attacker and the defender. This work designs the attacker-
defender stochastic game-theoretic model by a description of an existing stochas-
tic game model and an extension of this model according to the characteristics
of the interactions of the attacker and the defender in smart grid communication
networks.
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3.1 Players

An attacker and a defender are the key “players” in the designed stochastic
game-theoretic model. There could be many attackers who are trying to launch-
ing attacks and many defenders in the network to protect the system, but this
work abstracts those attackers and defenders as one attacker and one defender,
respectively. The attacker attains his/her ultimate target via multiple stages.
The concept of the defender denotes the security operator (security operator
and system administrator are used interchangeably in this paper) who has the
task of deploying available defence countermeasures to protect the underlying
system, while the attacker attempts to reach the target or the most critical
assets located at the centre of the smart grid. This model considers that each
of the players has some finite resources to perform actions at each stage of the
game. The attacker is considered to be a resource-constrained, determined and
rational player. In this way, the attacker will give up when he/she finds it is out
of his/her capability to launch any further attacks. Furthermore, it is assumed
that once an attack is initiated, the attacker him/herself will never revert the
system to any of the previous state (for example, to recover the system from a
malfunctioning state to a normal operational state). In this work, the attacker
is only able to perform a single action in his/her turn. It is also assumed that
the defender does not know whether or not there is an attacker, as that in real
systems. Furthermore, the attacker is assumed to be always aware of the active
defence mechanisms. Moreover, the defender does not know the objectives and
strategies of an attacker. A successful attack may or may not be observable to
the defender. The attacker strategically and dynamically chooses his/her tar-
gets and attack methods in order to achieve his/her goals, while the defender
defines security policies and implements security measures (including email fil-
tering, detection software, patches to prevent and detect attacks, and repairing
the system after disruption).

3.2 State Transition Probabilities

A multistage attack, by exploiting vulnerabilities, makes the network system tran-
sition from one state to another. However, such a transition also depends on the
active defence mechanisms. Therefore, the probability that the state will transition
from one to another depends on the joint actions of both players. Unlike accidental
failures, an attacker will consider the consequences of his/her actions and compare
the reward versus the cost of each elementary attack action [27]. Therefore, the
transition probabilities from one state to another depend not only on the decisions
of both players to take action, but also the success probability of an attacker going
through with his/her action. The probability of success for the attacker at state
s is denoted as psuc(ys,b) (this work assumes the second player to be the attacker
and ys,b (which will be defined later in Eq. (4)) to be the probability that his/her
action b is taken at state s ∈ S, S is the state space and k = |S| is the number of
game states). Obviously, whether an action by an attacker succeeds depends on the
available exploitable vulnerabilities of an asset in the smart grid communication
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network. For example, attacking an asset with no exploitable vulnerability has zero
probability of success. In the attacker-defender stochastic game-theoretic model,
success probabilities of an attacker’s actions are assigned, based on the intuition
and experience (e.g., case studies, common vulnerability scoring system (CVSS),
knowledge engineering). Principally, the action of the defender also involves a suc-
cess probability (e.g., IDSs have detection rates); to simplify the underlying prob-
lem, however, such a success probability of the defender with his/her actions is
always assumed to be one.

The probability for player 1 (player 1 is the defender) to take action a ∈ AS1

at state s is denotes as xs,a (which will be defined later in Eq. (3)), while the
probability for player 2 (player 2 is the attacker) to take action b ∈ AS2 at state
s is denoted as ys,a. Both players take actions simultaneously, meaning that both
players take action independently of one another. Thus, when actions a ∈ AS1

and b ∈ AS2 are taken from both players, the state transition probability from
game state s ∈ S to state s′ ∈ S can be calculated as

q(s′|s, a, b) = xs,a · ys,b · psuc(ys,b).

For example, if the probability for player 1 to take action “IDS deployment”
is 0.5, the probability for player 2 to take action “Exploit” is 0.4, and the prob-
ability that the attacker will successful obtain his/her (sub)goal is 0.2, the game
will move from state “normal” to state “malfunctioning” with a state transition
probability of

q(malfunctioning|normal, IDS deployment,Exploit) = 0.5 · 0.4 · 0.2 = 0.04.

Depending on the exploitable vulnerabilities, it may be that there is no tran-
sition between certain game states. For example, it may not be possible for the
network to transition from a normal functioning state to a totally failed state
without going through any intermediate states. In this work, infeasible state
transitions are assigned with a transition probability of zero and hence ignored.
Both players make their moves simultaneously, with state transition probabilities
being common knowledge to them.

3.3 Game Formalization

In the previous subsections, this paper elaborates players in a game play. At
each stage of the game for multistage attacks, the play is in a given state, with
every player choosing an action from his/her available action space. With a state
transition probability (which is jointly controlled by both players), the current
state of the game, and the collection of actions that the players choose, the game
will go to another state with an immediate payoff received by each player. Each
player has his/her own costs of executing actions, thus the payoff of the game
cannot only be described by rewards. Although there may be a dependence of
rewards and losses among player’s payoffs, because of players’ own action exe-
cution costs, the payoffs of the attacker and the defender do not sum up to
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zero. Therefore, the interaction between the attacker and the defender is non-
zero-sum. The game is also played with positive stop probabilities in each game
state, since the game will end when the attacker decides to stop his/her attacks
(completely inactive) and the defender keeps his/her defence countermeasures
unchanged. Besides, this paper notices that none of the players knows the exact
state of the system, while both players have different kinds of private informa-
tion about the state and action processes over time. Therefore, in order to apply
game theory to assess multistage attacks in smart grid communication networks,
the asymmetric information, non-zero-sum, and positive stop probability char-
acteristics of the interaction between the attacker and the defender should be
taken into account.

The next concern is on the game type that appropriately captures the players’
interactions in the case of multistage cyber attacks. Both players do not know the
exact state of the game, but maintain a belief about the current state of the game
(where a belief is a probability distribution over the possible states of the game).
Taking a two-player non-zero-sum two-stage game for instance, suppose the game
has two states and both players do not know the current state of the game (either
in state s1 or state s2), but they have a belief ρ1 = (ρ1(s1), ρ1(s2)) = (0.8, 0.2)
about the current state, that is, there is a 80% likelihood that the current game
at stage 1 is in state s1, while there is a 20% likelihood that the current game at
stage 1 is in state s2. The most relevant existing game model that can partially
solve this problem is the stochastic game with lack of information on one side
(SGLIOS) with positive stop probabilities. Thus, this paper considers SGLIOS
with positive stop probabilities as a basic game model and extends it to include
the non-zero-sum and information asymmetry of the interactions between the
attacker and the defender in smart grid communication networks.

This work starts with the definition of SGLIOS with positive stop probabili-
ties described in [18]. The model of SGLIOS with positive stop probabilities is a
two-person zero-sum game and states are a finite set S = {s1, s2, · · · , s�, · · · , sk}
(k = |S| denotes the number of states). Associated with each state s� (� ∈
{1, 2, · · · , k}) is a matrix game G{s�} of size m1 × m2, where m1 = |AS1| (the
number of actions of player 1), m2 = |AS2| (the number of actions of player 2),
and G{s�} = {g{s�}(a, b) : AS1×AS2 → R|a = 1, 2, · · · ,m1; b = 1, 2, · · · ,m2; � =
1, 2, · · · , k}. Additionally, ∅ is adjoined to S, where ∅ represents the end of the
game. In SGLIOS with positive stop probabilities, at any stage N , there is a
probability distribution over states in S. throughout this paper, N takes values
from N and N is the set of natural number. Player 1 is informed about such
a probability distribution at every game stage, but player 2 is never informed
about that. There is a probability ρ1 ∈ Δ(S) about the initial state, where Δ(S)
is the set of all probability distributions on S. State transition probabilities are
denoted as q(·|s, a, b), which depends on the current state s and actions a and
b taken by the defender and the attacker, respectively. Because of the positive
stop probability assumption, the sum of transition probabilities from state s to
all possible next game state s′ is less than one, i.e.,

∑
s′∈{S−∅} q(s′|s, a, b) < 1,

∀a ∈ AS1, b ∈ AS2. Both players make their moves simultaneously and both
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of them are informed of their choices (a, b). The game will either end with a
probability of q(∅|s, a, b) > 0 or transition to a new state s′ with a probability of
q(s′|s, a, b) > 0. Although both players remember actions taken by them, player
2 is not informed of the received immediate payoff g{s}(a, b) (which only player 1
knows) of the game. SGLIOS with positive stop probabilities is played with per-
fect recall (i.e., at each stage each player remembers all past actions chosen by all
players and player 1 knows all past states that have occurred). There is a common
knowledge among both players before they move at stage N and such a common
knowledge is a sequence of the form hN =

{
(a1, b1), (a2, b2), · · · , (aN−1, bN−1)

}

(where a� ∈ AS1 is the action chosen from player 1 at the � stage, b� ∈ AS2

is the action chosen from player 2 at the � stage, and � ∈ {1, 2, · · · , N − 1}).
The common knowledge hN is also called history and it represents the choices
of actions (i.e., pure strategies) of the two players up to (and excluding) stage
N . SGLIOS with positive stop probabilities restricts its attention to behavioural
strategies [12].

When the game is in state s at stage N , the action chosen by the players can
be deterministic or randomized. A mixed strategy corresponds to a distribution
over actions (i.e., pure strategies). Let xs (s ∈ S) denote the mixed strategy
of player 1 in state s and ys (s ∈ S) denote the mixed strategy of player 2 at
state s. The strategies xs and ys in state s are used to assign probabilities over
the action set AS1 and AS2 with cardinality m1 and m2, respectively. And the
mixed strategies xs and ys are defined as

xs := {(xs,1, · · · , xs,a, · · · , xs,m1) ∈ R
m1
+ |

m1∑

a=1

xs,a = 1, 0 ≤ xs,a ≤ 1}, (1)

ys := {(ys,1, · · · , ys,b, · · · , ys,m2) ∈ R
m2
+ |

m2∑

b=1

ys,b = 1, 0 ≤ ys,b ≤ 1}, (2)

where

xs,a := P(a|s, hN ), (3)
ys,b := P(b|s, hN ), (4)

and xs,a and ys,b represent the probability that player 1 takes action a and
player 2 takes action b, respectively. It is to be noted that actions of players are
independently chosen among each other, since both players are playing simul-
taneously. Let x = (xs1 ,xs2 , · · · ,xs�

, · · · ,xsk
) be a vector of mixed strategies

for player 1 and x ∈ Ωm1 (Ωm1 is the set of all probability vectors of length
m1). Correspondingly, let y = (ys1 ,ys2 , · · · ,ys�

, · · · ,ysk
) be a vector of mixed

strategies for player 2 and x ∈ Ωm2 (Ωm2 is the set of all probability vectors
of length m2). Let E be a random variable representing the stage the game
ends and hN be the common knowledge among players up to (and excluding)
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stage N . At each stage N , if player 1 takes action a and player 2 took action b,
player 1 receives an immediate payoff g{sN }(a, b), The total payoff function H(·)
(with strategies from both players as parameters) in SGLIOS with positive stop
probabilities is given as

H(x,y) =
∞∑

N=1

RN (x,y) (5)

=
∞∑

N=1

Ex,y

(
ρN (s)G{s}|E > N

) · P(E > N),

where P(E > N) means that the game does not end at stage N and the stage E
where game ends is longer than N . The expectation operator Ex,y

( · |E > N
)

is
used to mean that player 1 plays strategy x and player 2 plays strategy y, under
the condition that the game does not end at stage N . Equation (5) assumes that
the game stage can go to infinite (∞). However, because of the positive stop
probability assumption, the game will end after a finite number of stages [28].
Therefore, the game of SGLIOS with positive stop probabilities is a finite game.
The fundamental tool in SGLIOS with positive stop probabilities is an updating
mechanism which gives at each stage N the belief ρN , the posterior distribution
on the state space given the history hN up to stage N . Player 1 is informed about
the belief ρN but player 2 does not. The updating mechanism for the belief ρN

is working in this way: initially both players choose strategies x and y and give
them to chance (chance is a special player, who can be the environment of the
system) who then at stage 1 chooses s1 according to ρ1. Then the action pair
(a1, b1) is chosen according to (xs1 ,ys1) and an immediate payoff g{s1}(a1, b1)
is received by player 1. Provided that the game does not end, chance chooses
another state s2 according to ρ2(s2) := P(s2|a1, b1, E > 2) or decides to end
the game according to P(E = 2|a1, b1). At stage N , chance decides the game
to go to state sN according to ρN (sN ) := P(sN |hN , E > N) or ends the game
according to P(E = N |E > N − 1, hN ). The value ρN (s) represents that the
chance believes that the current game state is s ∈ S. It is proved in [18] that
the value of the game of SGLIOS with positive stop probabilities exists and is a
continuous function on the state space; and there exists also a stationary optimal
strategy for the informed player, i.e., player 1. The optimal strategy of player
1 depends only on the updated probability of the current state which he/she
independently knows.

Since the interaction between the attacker and the defender in smart grid use
cases is non-zero-sum, it is needed to extend SGLIOS with positive stop proba-
bilities (which is zero-sum) to non-zero-sum cases. The game matrices should be
first identified. Each player (player 1 or player 2) has his/her own game matrix,
which is composed of two parts: his/her reward/loss as the result of an attack
and the cost of carrying out his/her action. Essentially, both two players are with
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contradictory objectives and they are competing with each other. The objective
of each player is to maximize his/her own total payoff with strategies x and y

H1(x,y) =
∞∑

N=1

R1,N (x,y) =
∞∑

N=1

Ex,y

(
ρN (s)G{1,s}|E > N

) · P(E > N), (6)

H2(x,y) =
∞∑

N=1

R2,N (x,y) =
∞∑

N=1

Ex,y

(
ρN (s)G{2,s}|E > N

) · P(E > N). (7)

The reason why both the attacker and the defender share the same belief
value ρN (s) will be given out in Sect. 4.1. Another characteristic of the interaction
between the defender and the attacker is the information asymmetry, where each
player has private information about the state of the network system, while such
private information among players is asymmetric. The asymmetry stems from
the fact that the attacker has knowledge of a particular vulnerability which can
be exploited; while the defender knows how to use resources to defend against
all possible attacks. In other words, one player either deliberately distorts or
does not disclose all the relevant information to another player, during their
interaction phases. Since no player completely knows the exact state s of the
game, it is assumed that each player (player 1 or player 2) observes a private
local state s{1} or s{2} of the game and the state of the game is composed of
both private local states s = {s{1}, s{2}}. Each player has to form a belief about
the exact state s up to stage N . It is assumed that each player knows all past
states that have occurred, which means when the game goes to next state, the
previous one state will be publicly known to all players. Provided that the game
has not ended, the history hN is common information available to both players
whereas private information is only available to that specific player.

According to [18], players can forget the sequence of previous states. So with-
out loss of generality, it is assumed that the state of the two-player game at N +1
stage (assuming that the game does not end at N stage) evolves according to
the current state sN and all previous strategies from both players. Similarly, the
private local state of each player is evolving according to the current local state
s{1,N} for player 1 or s{2,N} for player 2 and all previous strategies from both
players. It is obviously that, at any stage N , the local state s{1,N} for player 1 is
independent of the local state s{2,N} for player 2. Therefore, when both players
have taken actions a ∈ AS1 and b ∈ AS2, the state transition probability in the
case of information asymmetry among players is defined as

q(sN |sN−1.a, b) := P(sN |sN−1, a, b)
= P(s{1,N}|s{1,N−1}, a, b) · P(s{2,N}|s{2,N−1}, a, b). (8)

The choice of actions for each player at stage N may depend on all past
strategies from both players and the player’s current local state (the local state
is one part of the game state sN = {s{1,N}, s{2,N}}), which is consistent with
Eqs. (3) and (4). Given the fact that no player can observe the current game
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state sN (sN ∈ S) at stage N and each player observes only a private local
current game state s{1,N} or s{2,N}, the probability for player 1 to choose action
a and the probability for player 2 to choose action b at stage N are defined as

xs{1,N},a := P(a|s{1,N}, hN ) (9)

and
ys{2,N},b := P(b|s{2,N}, hN ), (10)

respectively.
It is to noteworthy that by knowing the strategy of the other player, one

player can make inference about the other player’s private information s{1,N} (if
this player is player 2) or s{2,N} (if this player is player 1) from observing their
actions. If a player knows the local private state of the other player, he/she can
further predict the action of the other player in next stage. Provided that the
game continues, state sN is chosen according to ρN (sN ) = P(sN |hN , E > N),
the immediate payoff g{1,sN }(aN , bN ) is received at player 1(correspondingly,
g{2,sN }(aN , bN ) is received at player 2), and both two players computes his/her
belief ρN+1(sN+1) on next game state sN+1.

4 Game Analysis

This section analyses the previously specified game model and finds Nash equi-
libria to construct an attack scenario in which the adversary cannot succeed in
performing multistage cyber attacks and arriving at his/her ultimate target. In
the previously specified game model, players have asymmetric information about
the current state of the game, therefore, each player has to form a belief about
the current state of the game. In SGLIOS with positive stop probabilities, player
1 (who can be assumed to be the defender) is informed about the belief value
on the current game state but player 2 (who can be assumed to be the attacker)
does not. Under the assumption that the true state of the game is independent of
the action taken by player 2, the belief value in SGLIOS with positive stop prob-
abilities is not conditional on the strategy taken by player 2 [18]. However, this
assumption is not applicable in attacker-defender games where strategies from
both player decide the state and the process of the game. Therefore, new belief
system updating mechanisms should be described and belief system updates
account for a central technical contribution in this paper. To assist equilibria
computation for the designed attacker-defender stochastic game-theoretic model,
this section first provides the belief update mechanism and then elaborates an
easy-to-follow method for Nash equilibria computation.

4.1 Belief System Updates

Actions taken by both players can be summarized through a belief ρN of game
states. For example, in SGLIOS with positive stop probabilities, under the
assumption that the current state of the game is independent of player 2’s
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actions, the belief ρN summarizes actions taken by player 1 [18]. In the game of
asymmetric information, at stage N , the current game state is unknown to both
players; player 1 privately observes a local state s{1,N} and player 2 privately
observes another local state s{2,N}. To consist with [18] and the recent work on
stochastic game with asymmetric information [23,29], in this work, belief ρN on
the current state sN of the game is defined as ρN (sN ) := P(sN |hN , E > N).

Provided that the game does not end at N stage, which means the condition
P(E > N) satisfies, for any history hN =

{
(a1, b1), (a2, b2), · · · , (aN−1, bN−1)

}
,

it can be observed that player’s belief about the current game state sN is

ρN (sN ) := P(sN |hN )
= P(s{1,N}, s{2,N}|hN ). (11)

Because of the independence of private local states s{1,N} and s{2,N}, Eq. (11)
can be further written as

ρN (sN ) = P(s{1,N}, s{2,N}|hN ) (12)
= P(s{1,N}|hN ) · P(s{2,N}|hN ).

The probability P(s{1,N}|hN ) can be viewed as the probability that player
2 believes that player 1 will be in state s{1,N} based on the history hN of
past actions taken from both players. Player 2 might also derive this proba-
bility P(s{1,N}|hN ) at N stage based on his/her private local states, however,
since the private local states s{1,N} and s{2,N} (N ∈ N) are independent,
the probability P(s{1,N}|hN , s{2,1}, s{2,2}, · · · , s{2,N−1}) would be the same as
the probability P(s{1,N}|hN ). Therefore, knowledge of private state informa-
tion (s{2,1}, s{2,2}, · · · , s{2,N−1}) from player 2 does not affect the probability
P(s{1,N}|hN ). For player 2, the probability P(s{2,N}|hN ) can be viewed as the
probability that player 2 believes that his/her private local state at stage N
is s{2,N} based on the history of actions from both players. It is to be noted
that player 2 knows his current private local state s{2,N}. However, this paper
assumes that after taking any action and before arriving in state s{2,N}, player 2
can also has a probability P(s{2,N}|hN ) about his/her private local state s{2,N}.
Based on probabilities that player 1 will in state s{1,N} and he/she him/herself
will be in state s{2,N} at stage N , player 2 can derive the probability ρN (sN )
that the current game state is sN at stage N . Similarly, player 1 can also derive
the probability that player 2 will be in state s{2,N} at stage N with probabil-
ity P(s{2,N}|hN ) and the probability that he/she him/herself will be in state
s{1,N} with probability P(s{1,N}|hN ). Therefore, both players can obtain the
same belief value that the game play is in state sN at stage N .
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4.2 Finding Nash Equilibria

When dealing with strategic players with inter-dependent payoffs (for example,
the attacker’s rewards might somehow be losses of the defender), investigating
equilibria, mostly notably Nash equilibria, is a method of predicting players’
decisions. If we restrict our attention to pure strategies (i.e., actions), a Nash
equilibrium may not exists, this is the reason that this work considers only
behaviour strategies and the probability used by both players to choose among
pure strategies. The attacker-defender game with asymmetric information has
finite states and the action spaces AS1 and AS2 are finite. The major differ-
ences between this attacker-defender game and the SGLIOS with positive stop
probabilities are that this attacker-defender game is a non-zero-sum one and the
belief system updates in this attacker-defender game are jointly conditioned on
strategies from both players. In the SGLIOS with positive stop probabilities,
the belief is conditioned only on the strategy of the informed player; while in
the attacker-defender game, the belief is conditioned on strategies of both play-
ers. If the probability that taking action bN−1 is zero, the history hN will not
be observed, which will not happen under the assumption that the game does
not end at N − 1 stage. It was said that the belief in the SGLIOS with posi-
tive stop probabilities is continuous [17]. The same continuity property extends
to the belief in the proposed attacker-defender game. In the designed attacker-
defender game, both players are informed about the belief of game states. Hence,
each player can be taken as the informed player in the SGLIOS with positive
stop probabilities. It is proved in [18] that the informed player has a stationary
optimal strategy. However, [18] does not provide a systematic way to find such
optimal strategies.

The designed attacker-defender game is non-zero-sum. It is stated in [20]
that every non-zero-sum stochastic game has at least one (not necessary unique)
Nash equilibrium in stationary strategies and finding these equilibria is non-
trivial. The attacker-defender game with uncertainty about current game state
for both players makes it extremely challenging. Given the strategies of both
players, players continue to accumulate the immediate payoffs. Once the end
state of the game is reached, the game is over and no more accumulations are
possible. Each player wishes to maximize his/her expected payoff at state sN .
This maximization, in turn, yields player’s value of the game. Hence, if the
value of the game ΓN exists, let the vector of values for player 1 be v1, where
v1 = (v1,s1 , v1,s2 , · · · , v1,s�

, · · · , v1,sk
) (v1,s�

is player 1’s value of the game in
state s1,� and v1,s�

∈ R (� ∈ {1, 2, · · · , k})) and the vector of values for player
2 be v2, where v2 = (v2,s1 , v2,s2 , · · · , v2,s�

, · · · , v2,sk
) (v2,s�

is player 2’s value of
the game in state s� and v2,s�

∈ R (� ∈ {1, 2, · · · , k})). The value of each player
(either the attacker or the defender) includes both short-term (i.e., immediate)
payoff and long-term payoff (which is given by the expected value of the sum
of state payoffs from the current state) [4]. Taking the value for player 1 for
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instance, his/her value can be recursively defined as (that for player 2 can be
defined in the same way)

v1,sN
(ρN (sN )) := max

xN

min
yN

∑

xN ,yN

(
ρN (sN )G{1,sN } + T1(sN ,v)

)
, (13)

where matrix T1(sN ,v) is used to represent the long-term payoff (i.e., the future
payoff) in a matrix form. The vector v is a value vector (a sub-vector of the game
value vector that is defined above) for player 1 and it depends on the states that
the current state sN can transition to.

A pair of strategy sequence (x∗,y∗) forms (Nash) equilibria with strategy
pair (x∗

sN
,y∗

sN
) if

H1(x∗,y∗) ≥ H1(x,y∗),∀x ∈ Ωm1 ,

H2(x∗,y∗) ≥ H2(x∗,y),∀y ∈ Ωm2 ,

where ≥ is used to mean at every stage N , the left-hand-side with strategy
profile (x∗

sN
,y∗

sN
) is greater than the right-hand-side with strategy (xsN

,y∗
sN

)
or strategy (x∗

sN
,ysN

). Therefore, the pair of strategy profile (x∗
sN

,y∗
sN

) (N ∈ N)
is said to be a Nash equilibrium strategy. At this equilibrium, there is no incentive
for either player to deviate from his/her equilibrium strategy x∗

sN
or y∗

sN
at any

stage N of the game. In each pair of equilibrium strategies, a strategy for one
player is a best-response to the other player and vice versa. A deviation means
that one or both of them may have a lower expected payoff, i.e., H1(x,y∗) or
H2(x∗,y).

In order to find Nash equilibria for the designed attacker-defender non-
zero-sum game in smart grid communication networks, based on the formed
work [5,26], this paper studies nonlinear programming (NLP) formulation of the
attacker-defender non-zero-sum stochastic game with finite number of strategies
and asymmetric information. The theorem and proof of a global minimum to be
a (Nash) equilibrium with equilibrium payoff can be found in [1,5], this work is
not going to repeat them here again, whereas it provides here an easy-to-follow
method to find such (Nash) equilibria in the designed attacker-defender game.

Assuming the game has M stage, where the game ends after the M stage
(i.e., E > M , M ≥ 1 and M ∈ N). The equilibrium solution (x∗,y∗) for M -
stages games can be obtained by solving the following nonlinear programming
problem:

minimize
M−1∑

N=1

(
v1,sM

− xsM
· ρM (sM ) · G1,sM

· yT
sM

+ v2,sM
− xsM

· ρM (sM )·

G2,sM
· yT

sM
+ v1,sN

− xsN
· (ρN (sN )G1,sN

+ T1(sN ,v)) · yT
sN

+ v2,sN
− xsN

· (ρN (sN )G2,sN
+ T2(sN ,v)) · yT

sN

)
,
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subject to

(i) ρM (sM )G1,sM
yT

sM
≤ v1,sM

JT
m1

,

(ii) ρM (sM )GT
2,sM

xT
sM

≤ v2,sM
JT

m2
,

(iii) ρN (sN )G1,sN
yT

sN
+ T1(sN ,v)yT

sN
≤ v1,sN

JT
m1

,∀N ∈ {1, 2, · · · ,M − 1},

(iv) ρN (sN )GT
2,sN

xT
sN

+ T2(sN ,v)TxT
sN

≤ v2,sN
JT

m2
,∀N ∈ {1, 2, · · · ,M − 1},

(v)
m1∑

a=1

xsN ,a = 1 ∀a ∈ AS1, N ∈ {1, 2, · · · ,M},

(vi) xxN ,a ≥ 0 ∀a ∈ AS1, N ∈ {1, 2, · · · ,M},

(vii)
m2∑

b=1

ysN ,b = 1 ∀b ∈ AS2, N ∈ {1, 2, · · · ,M},

(viii) ysN ,b ≥ 0 ∀b ∈ AS2, N ∈ {1, 2, · · · ,M},

(ix) ρN (sN ) = P(sN |hN , E > M), N ∈ {1, 2, · · · ,M}.

Constraints (i) and (iv) are the value bounds for the attacker-defender game,
which are satisfied for any pair of strategy profile. The mixed strategies xsN

and ysN
(N = {1, 2, · · · ,M}) are defined in Eqs. (1) and (2), respectively. Con-

straints (v)–(viii) are conditions that the probability xsN ,a to select action a for
player 1 in state sN and the probability ysN ,b to select action b for player 2 in
state sN is greater than zero and the sum of all such probabilities for each player
is one. Any pair of strategy profile satisfies constraints (v)–(viii). The constraint
(ix) is a prior belief constraint and the belief ρ1 for the first stage, which is
presumed to be known to both players, is a probability distribution over state
space S, i.e., ρ1 ∈ Δ(S). Because of the recursion definition of belief values of
constraint (ix) and the recursive optimization involved in the long-term payoff
(i.e., T1(sN ,v) or T2(sN ,v)) of constraints (iii) and (iv), it is non-trivial to find
global minima.

In an one-stage game, each player (either the attacker or the defender) would
play with the stationary strategy that maximizes his/her expected immediate
payoff at the current game stage. Hence (x∗

s1
,y∗

s1
) will be one optimal strategy

profile. There can be mutiple stationary Nash equilibria in each game state and
hence there will be multiple global minima. For example, for a stochastic game
with one stage and the payoff matrix for player 1 (who has three actions: A, B
and C) and player 2 (who has two actions: D and E) is G{1,s1} and G{2,s1},
respectively (to be noted that those values in payoff matrices are artificial num-
bers for illustration)

G{1,s1} =

D E
A 6 2
B 1 3
C 5 4

, and G{2,s1} =

D E
A 4 3
B 1 5
C 2 2

.
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Presuming that each player knows that the probability distribution ρ1(s1) is 1,
and the game value for player 1 (the row player) and player 2 (the column
player) are denoted as v1,s1 and v2,s1 , respectively. Therefore, the nonlinear
programming formulation of this one-stage game can be expressed as

minimize

⎛

⎝v1,s1 − xs1 ·
⎡

⎣
6 2
1 3
5 4

⎤

⎦ · yT
s1

+ v2,s1 − xs1 ·
⎡

⎣
4 3
1 5
2 2

⎤

⎦ · yT
s1

⎞

⎠ ,

subject to

(i)

⎡

⎣
6 2
1 3
5 4

⎤

⎦yT
s1

≤ v1,s1

[
1 1 1

]T
,

(ii)

⎡

⎣
4 3
1 5
2 2

⎤

⎦

T

xT
s1

≤ v2,s1

[
1 1

]T
,

(iii)
3∑

a=1

xs1,a = 1 ∀a ∈ {A,B,C},

(iv) xs1,a ≥ 0 ∀a ∈ {A,B,C},

(v)
2∑

b=1

xs1,b = 1 ∀b ∈ {D,E},

(vi) xs1,b ≥ 0 ∀b ∈ {D,E}.

There are three stationary mixed equilibria available for this one-stage game
(by solving a constrained minimization problem), which are shown in Table 1
with their corresponding values for each player. All Nash equilibria and game
values in Table 1 are further verified by the Gambit software tool [16]. Suppose
that the first player is the defender of a system and the second player is the
attacker. For the first Nash equilibrium in Table 1, to obtain maximum payoffs
(“6” for the defender and “4” for the attacker, as shown in Table 1), the defender
is suggested play the pure strategy “A” with a probability of 1 (i.e., play the
action “A” in all game repetitions) and the attacker play the pure strategy “D”
with a probability of 1. The same interpretation can be applied to the third Nash
equilibrium, i.e., the defender plays the pure strategy “C” with a probability of
1 and the attacker plays the pure strategy “E” with a probability of 1 to max-
imise their payoffs. Regarding the second Nash equilibrium, the game suggests
that the defender play his/her pure strategy “C” with a probability of 1, while
it suggests that the the attacker play his/her pure strategy “D” with a proba-
bility of approximately 0.67 and his/her pure strategy “E” with a probability of
approximately 0.33. If actions (i.e., pure strategies) are continuously and taking

daily (24 h), the mixed Nash equilibrium strategy

(
2
3
,
1
3

)

for the attacker can
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Table 1. Nash equilibria and their corresponding game values in the sampled game.

# of Nash equilibrium Player 1 Player 2 Game value

A B C D E Player 1 Player 2

1 1 0 0 1 0 6 4

2 0 0 1 2/3 1/3 14/3 2

3 0 0 1 0 1 4 2

also be interpreted that the attacker temporarily runs the pure strategy “D” for
approximately 16 h and runs the pure strategy “E” for the remainder of the day.
If the actions “D” and “E” are instantaneous actions (which are taken at discrete

time instants), the mixed Nash equilibrium strategy

(
2
3
,
1
3

)

for the attacker can

be interpreted as the (asymptotic) frequency with which the strategies “D” and
“E” are chosen in the game. After obtaining the mixed Nash equilibrium, the
defender and the attacker can subsequently use it in the following way: when
the game begins, both players (the defender and the attacker) randomly choose
actions (i.e., pure strategies) from their corresponding action spaces, a game
payoff from the chosen action pair will be received at each player. When the
game is played again, both players again randomly choose actions from their
corresponding action spaces in this round. It is to be noted that the actions
from both players in this round may be different from that taken in the pre-
vious one. A game payoff will again be received at each player. The actions in
each round are chosen randomly, however, the player should be aware of that
the (asymptotic) frequency of chosen actions must be that suggested from the
mixed Nash equilibrium. Therefore, when averaging payoffs in all repetitions of
the game, the average payoff is optimal for each player only if the actions are
chosen with their frequencies that are prescribed by the equilibrium strategy.
For example, for the attacker, in any game round, he/she should always aware
of that the (asymptotic) frequency of choosing actions “D” and “E” in all game

repetitions should be
2
3

and
1
3
, respectively.

5 Conclusion and Future Work

To assess the threat of multistage cyber attacks in smart grid communication
networks, this paper designs a stochastic game-theoretic model according to the
characteristics of the interactions between the attacker and the defender in smart
grid use cases. Firstly, the majority of the existing game-theoretic threat and
risk assessment models are reviewed. Then, this paper elaborates players and
state transition probabilities of the designed stochastic game-theoretic model.
Since each player has partial knowledge of the game state, a belief-updating
mechanism for both players to form a common belief about the current state
of the game is proposed. Moreover, this paper discusses the use of nonlinear
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programming for Nash equilibria computation. One important aim of future work
is the application of the proposed stochastic game-theoretic model to evaluate a
multistage cyber attack scenario. Additionally, cyber attacks can also introduce
disruptive events in power grids. Therefore, further studies of payoff formulation
with an understanding of cascading effects of multistage cyber attacks would be
of great significance.
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