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Abstract. Motivated by the goal recognition (GR) and goal recogni-
tion design (GRD) problems in the artificial intelligence (AI) planning
domain, we introduce and study two natural variants of the GR and GRD
problems with strategic agents, respectively. More specifically, we con-
sider game-theoretic (GT) scenarios where a malicious adversary aims
to damage some target in an (physical or virtual) environment moni-
tored by a defender. The adversary must take a sequence of actions in
order to attack the intended target. In the GTGR and GTGRD settings,
the defender attempts to identify the adversary’s intended target while
observing the adversary’s available actions so that he/she can strength-
ens the target’s defense against the attack. In addition, in the GTGRD
setting, the defender can alter the environment (e.g., adding roadblocks)
in order to better distinguish the goal/target of the adversary.

We propose to model GTGR and GTGRD settings as zero-sum
stochastic games with incomplete information about the adversary’s
intended target. The games are played on graphs where vertices repre-
sents states and edges are adversary’s actions. For the GTGR setting, we
show that if the defender is restricted to playing only stationary strate-
gies, the problem of computing optimal strategies (for both defender and
adversary) can be formulated and represented compactly as a linear pro-
gram. For the GTGRD setting, where the defender can choose K edges
to block at the start of the game, we formulate the problem of computing
optimal strategies as a mixed integer program, and present a heuristic
algorithm based on LP duality and greedy methods. Experiments show
that our heuristic algorithm achieves good performance (i.e., close to
defender’s optimal value) with better scalability compared to the mixed-
integer programming approach.

In contrast with our research, existing work, especially on GRD prob-
lems, has focused almost exclusively on decision-theoretic paradigms,
where the adversary chooses its actions without taking into account the
fact that they may be observed by the defender. As such an assumption
is unrealistic in GT scenarios, our proposed models and algorithms fill a
significant gap in the literature.
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1 Introduction

Discovering the objective of an agent based on observations of its behavior is
a problem that has interested both artificial intelligence (AI) and psychology
researchers for many years [7,23]. In AI, this problem is known as goal recog-
nition (GR) or, more generally, plan recognition [25]. Plan and goal recogni-
tion problems have been used to model a number of applications ranging from
software personal assistants [16–18]; robots that interact with humans in social
settings such as homes, offices, and hospitals [8,26]; intelligent tutoring systems
that recognize sources of confusion or misunderstanding in students through
their interactions with the system [6,12,14,15]; and security applications that
recognize the plan or goal of terrorists [5].

Fig. 1. Example Problem (left) and with Blocked Actions in Red (right).

One can broadly summarize the existing research in GR as one that primarily
focuses on developing better and more efficient techniques to recognize the plan
or the goal of the user given a sequence of observations of the user’s actions. For
example, imagine a scenario shown in Fig. 1 (left), where an agent is at cell E3,
it can move in any of the four cardinal directions, and its goal is one of three
possible goals G1 (in cell B1), G2 (in cell A5), and G3 (in cell C5). Additionally,
assume that it will move along a shortest path to its goal. Then, if it moves left
to cell E2, then we can deduce that its goal is G1. Similarly, if it moves right to
cell E4, then its goal is either G2 or G3.

Existing research has focused on agent GR models that are non-strategic or
partially strategic: The agent’s objective is to reach its goal with minimum cost,
and the agent does not explicitly reason about its interaction with the observer.
However, when the observer’s recognition of the agent’s goal affects the agent
in some way, then it is in the agent’s best interest to be fully strategic – to
explicitly reason about how the agent’s choice affects the observer’s recognition.
As a result, the observer will need to take into account the agent’s strategic
reasoning when making decisions.
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1.1 Game-Theoretic Goal Recognition Problems in Security
Domains

Naturally, GT settings with strategic agents are common in many real-world
(physical and cyber) security scenarios between an adversary and a defender. The
adversary has a set of targets of interests and would be equally happy in attacking
one of them. In physical security domains, the adversary must make a sequence
of physical movements to reach a target; in cyber security domains, this could
be a sequence of actions achieving necessary subgoals to carry out the attack.
In any case, the defender is trying to recognize the adversary’s goal/target. We
coined this the game-theoretic goal recognition (GTGR) problem.

Let us describe the security games of interests using Fig. 1. Consider the
security scenario in Fig. 1 (left), where an agent (i.e., terrorist) wants to reach
its intended target and carry out an attack, while we, the observer (the defender)
try to recognize the agent’s goal as early as possible. Suppose once we recognize
the agent’s goal, we will strengthen the agent’s target to defend against the
attack. The more time we have between recognition and the actual attack, the
less successful the attack will be. In this scenario, it is no longer optimal for
the agent to simply choose a shortest path to its goal, as that could allow the
observer to quickly identify its goal. On the other hand, the agent still wants to
reach its goal in a reasonably short time, as a very long path could allow the
observer time to strengthen all the targets. So, an optimal agent would need
to explicitly reason about the tradeoffs between the cost of its path (e.g., path
length) and the cost of being discovered early.

1.2 Game-Theoretic Goal Recognition Design Problems in Security
Domains

So far we have been discussing the defender’s task on recognizing goals. However,
the task could become very difficult in general. For instance, going back to our
security example in Fig. 1, if the agent moves up to D3, the observer cannot
make any informed deductions. In fact, if the agent moves along any one of
its shortest paths to goal G3, throughout its entire path, which is of length 4,
we cannot deduce whether its goal is either G2 or G3! This illustrates one of
the challenges with this approach, that is, there are often a large number of
ambiguous observations that can be a result of a large number of goals. As such,
it is difficult to uniquely determine the goal of the agent until a long sequence
of observations is observed.

The work of [9,10] proposed an orthogonal approach to modify the underlying
environment of the agent, in such a way that the agent is forced to reveal its goal
as early as possible. They call this problem the goal recognition design (GRD)
problem. For example, if we block the actions (E3, up), (C4, right), (C5, up) in
our example problem, where we use tuples (s, a) to denote that action a is blocked
from cell s, then the agent can make at most 2 actions (i.e., right to E4 then up to
D4) before its goal is conclusively revealed. Figure 1 (right) shows the blocked
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actions. This problem finds itself relevant in many of the same applications of
GR because, typically, the underlying environment can be easily modified.

As such, in addition to studying the GTGR problem, we consider the
GTGRD problem where the observer can modify the underlying environment
(i.e., adding K roadblocks) as to restrict the actions of the agent.

1.3 Related Work

GR and its more general forms, plan recognition and intent recognition, have
been extensively studied [25] since their inception almost 40 years ago [23].
Researchers have made significant progress within the last decade through syner-
gistic integrations of techniques ranging from natural language processing [3,27]
to classical planning [20–22] and deep learning [15]. The closest body of work to
ours is the one that uses game-theoretic formulations, including an adversarial
plan recognition model that is defined as an imperfect information two-player
zero-sum game in extensive form [13], a model where the game is over attack
graphs [1], and an extension that allows for stochastic action outcomes [4]. The
main difference between these works and ours is that ours focuses on goal recog-
nition instead of plan recognition.

While GR has a long history and extensive literature, the field of GRD is rela-
tively new. Keren et al. introduced the problem in their seminal paper [9], where
they proposed a decision-theoretic STRIPS-based formulation of the problem.
In the original GRD problem, the authors make several simplifying assump-
tions: (1) the observed agent is assumed to execute an optimal (i.e., cost-
minimal) plan to its goal; (2) the actions of the agent are deterministic; and
(3) the actions of the agent are fully observable. Since then, these assumptions
have been independently relaxed, where agents can now execute boundedly-
suboptimal plans [10], actions of the agents can be stochastic [28], and actions
of the agents can be only partially observable [11]. Further, aside from all the
decision-theoretic approaches above, researchers have also modeled and solved
the original GRD problem using answer set programming [24]. The key difference
between these works and ours is that ours introduced a game-theoretic formula-
tion that can more accurately capture interactions between the observed agent
and the observer in security applications.

1.4 Our Contributions

As a result of the strategic interaction in the GTGR and GTGRD scenarios,
the concept of cost-minimal plan (the solution concept in GR problem) and
worst-case distinctiveness (the solution concept in GRD problem) are no longer
a suitable solution concept since it does not reflect the behavior of strategic
agents. Instead, our objective here is to formulate game-theoretic models of the
agent’s and observer’s interactions under GR and GRD settings. More specifi-
cally, we propose to model GTGR and GRGRD settings as zero-sum stochastic
games with incomplete information where the adversary’s target is unknown to
the observer. For the GTGR setting, we show that if the defender is restricted to
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playing only stationary strategies, the problem of computing optimal strategies
(for both defender and adversary) can be formulated and represented compactly
as a linear program. For the GTGRD setting, where the defender can choose K
edges to block at the start of the game, we formulate the problem of computing
optimal strategies as a mixed integer program, and present a heuristic algorithm
based on LP duality and greedy methods. We perform experiments to show that
our heuristic algorithm achieves good performance (i.e., close to defender’s opti-
mal value) with better scalability compared to the mixed-integer programming
approach.

2 Preliminary: Stochastic Games

In our two-player zero-sum single-controller stochastic game G, we have a finite
set S of states, and an initial state s0 ∈ S. The first player acts as an adversary
attempting to reach some target within the environment, while second player acts
as the observer of the environment. Given a state s ∈ S, there exist finite action
sets Js and Is for the adversary and the observer respectively. Given a state s ∈ S
and j ∈ Js, a single-controller transition function χ(s, j) deterministically maps
state and action to a new state. Given a state s ∈ S, j ∈ Js, i ∈ I, and intended
target of the adversary θ, we define a reward function r(s, i, j, θ) ∈ R. Since
this is a zero-sum game, without loss of generality, we define r as the reward
for the observer and the additive inverse of the reward for the adversary. We
consider a two-player zero-sum single-controller stochastic game where observer
has incomplete information. In particular, the game consists of a collection of
zero-sum single-controller stochastic games {Gθ}θ∈B and a probability distrib-
ution P ∈ Δ(B) over B. For our setting, we assume that each stochastic game
Gθ could have different reward function rθ, but all of the games G′

θs have the
same sets of states, actions, and transition rules. The game is played in stages
over some finite time. First, a game Gθ is drawn according to P . The adversary
is informed of θ while the observer does not know θ, but rather a set of states
B of which θ is a part of. At each stage of game t with current state st ∈ S,
the adversary selects jt ∈ Js and the observer selects it ∈ I, and st+1 is reached
according to χ(st, jt). However, we assume that the adversary does not know it,
and both of the players do not know rθ(st, it, jt). Note that observer can infer
the action of the adversary given the new state since our transition function is
deterministic. Hence, the observer knows jt, it, and st+1.

The strategies of the players can be based on their own history of the previous
states and strategies. In addition, player 1 can condition his strategies based on θ.
We consider a finite timestep to be at most T . Let h1

t = (s0, j0, s1, j1, ..., jt−1, st)
and h2

t = (s0, j0, i0, s1, ...., jt−1, it−1, st) to denote a possible history of length
t of player 1 and player 2 where jk ∈ Jsk

and ik ∈ I for k = 1, ..., t. Let H1
st

and H2
st

be the set of all possible histories of length t ended up at state st.
Then, the sets of deterministic strategies for player 1 and player 2 are therefore∏

t=0≤T,st∈S,h1
st

∈H1
st

Jst
and

∏
t=0≤T,st∈S,h2

st
∈H2

st

I, respectively. Indeed, for each
possible history, the players need to select some actions. Naturally, the players
mixed strategies are distributions over the deterministic strategies.
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Definition 1. Given θ ∈ B, 0 ≤ t ≤ T , st ∈ S, h1
st

∈ H1
st
, player 1’s behav-

ioral strategy σ1(θ, h1
st

, jst
) returns the probability of playing jst

∈ Jst
such that∑

jst ∈Jst
σ1(θ, h1

st
, jst

) = 1. (Player 2’s behavioral strategy σ2 is defined similarly
and does not depend on θ).

Definition 2. A behavioral strategy σ is stationary if and only if it is inde-
pendent of any timestep t and depends only on the current state (i.e., σ1(θ,
h1

s, js) = σ1(θ, h̄1
s, js) such that h1

s and h̄1
s have the same last state and σ2 can

be defined similarly).

Given a sequence {(st, it, jt)}T
t=1 of actions and states, the total reward for

player 2 is rT =
∑T

t=1 rθ(st, it, jt). Thus, the expected reward γT (P, s0, σ1, σ2) =
EP,s0,σ1,σ2 [rT ] is the expectation of rT over the set of stochastic games {Gθ}θ∈B

given the the fixed initial state s0 under P , σ1, and σ2, respectively.

Definition 3. The behavioral strategy σ2 is a best response to σ1 if and only if
for all σ′

2, γT (P, s0, σ1, σ2) ≥ γT (P, s0, σ1, σ
′
2). The behavioral strategy σ1 is a

best response to σ2 if and only if for all σ′
1, γT (P, s0, σ1, σ2) ≤ γT (P, s0, σ

′
1, σ2).

For two-player zero-sum games, the standard solution concept is the max-min
solution: maxσ2 minσ1 γT (P, s0, σ1, σ2). One can also define min-max solution
minσ1 maxσ2 γT (P, s0, σ1, σ2). For zero-sum games, the max-min value, min-max
value, and Nash equilibrium values all coincide [2]. For simultaneous-move games
this can usually be solved by formulating a linear program. In this work, we will
be focusing on computing the max-min solution.

3 Game Model

We begin by describing our settings and introducing the GTGR and GTGRD
models.

3.1 Game-Theoretic Goal Recognition Model

Consider a deterministic environment such as the one in the introduction. We
can model the environment with a graph in which the nodes correspond to the
states and the edges connect neighboring states. Given the environment and
the graph, as in many standard GR problems, the agent wants to plan out a
sequence of moves (i.e., determining a path) to reach its target location of the
graph. The target location is unknown to the observer, and the observer’s goals
are to identify the target location based on the observed sequence of moves and
to make preventive measure to protect the target location.

We model this scenario as a two-player zero-sum game, between the agent/
adversary and the observer. Given the graph G = (L,E) of the environment,
the adversary is interested in a set of potential targets B ⊆ L and has a starting
position s0 ∈ L \ B. The adversary’s aim is to attack a specific target θ ∈ B,
which is chosen at random according to some prior probability distribution P .
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The observer does not know the target θ, and only the adversary knows its target
θ. However, the observer knows the set of possible targets B and the adversary’s
starting position s0. For any s ∈ L, we let ν(s) is the set of neighbors of s in the
graph G.

The sequential game is played over several timesteps where both players move
simultaneously. Each timestep, the observer selects a potential target in B to
protect, and the agent moves to a neighboring node. We consider the zero-sum
scenario: With each timestep, the adversary and the observer will lose and gain
a value d, respectively. In addition, if the observer protects the correct target
location θ, an additional value of q will be added to the observer and subtracted
from the adversary. The game ends when the attacker reaches its target θ, a value
of uθ will be added to the adversary’s overall score, and uθ will be subtracted
from the observer’s overall score. Notice that during the play of the game, the
adversary does not observe the observer’s action(s), and the players do not know
of their current scores.

Because of the potentially stochastic nature of the adversary’s moves at each
timestep, and the uncertainty of adversary’s target in the system, our setting
is most naturally modeled as a stochastic game with incomplete information as
defined in Sect. 2. More specifically, the set of states is L with an initial state s0.
Given a state s ∈ S, ν(s) is the action set for the adversary and B is the action set
for the observer. Given a state s ∈ S and j ∈ ν(s), the single-controller transition
function χ(s, j) = j. Indeed, the transition between states are controlled by the
adversary only and is deterministic: From state s, where s �= θ, given attacker
action j ∈ ν(s), the next state is j. The state θ is terminal: Once reached, the
game ends. Given a state s ∈ S, j ∈ ν(s), and i ∈ B, we define the reward
function rθ(s, i, j) ≡ r(s, i, j, θ) from the observer’s point of view as

r(s, i, j, θ) =

⎧
⎪⎪⎨

⎪⎪⎩

d j �= θ & i �= θ
d + q j �= θ & i = θ
d − uθ j = θ & i �= θ
d + q − uθ j = θ & i = θ.

(1)

While, in theory, the game could go on forever if the adversary never reaches
his target θ, because of the per-timestep cost of d, any sufficiently long path for
the adversary would be dominated by the strategy of taking the shortest path
to θ. Eliminating these dominated strategies allows us to set a finite bound for
the duration of the game, which grows linearly in the shortest distance to the
target that is furthest away. Even in games where the value of d is set to 0,
the defender could potentially play a uniformly random strategy that imposes a
cost of q

|B| per timestep. Therefore, an adversary strategy taking forever would
achieve a value of −∞ against the uniformly random defender strategy. In any
Nash equilibrium the attacker will always reach their target in finite time.

We call this the game-theoretic goal recognition (GTGR) model. All of the
definitions in Sect. 2 follow immediately for our games.
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3.2 Game-Theoretic Goal Recognition Design Model

As mentioned in the introduction, we also consider the game-theoretic goal recog-
nition design (GTGRD) model. Formally, before the game starts, we allow the
observer to block a subset of at most K actions from the game. In our model,
that corresponds to blocking at most K edges from the graph. In one variant of
the model, blocking an edge effectively removes that edge, i.e. the adversary can
no longer take that action. In another variant, blocking an edge does not prevent
the adversary from taking the action, but the adversary would incur a cost by
taking that action. After placing the blocks, the game proceeds as described in
Sect. 3.1.

4 Computation

4.1 Game-Theoretic Goal Recognition Model

With the game defined, we are interested in computing the solution of the game:
What is the outcome of the game when both players behave rationally? Before
defining rational behavior, we first need to discuss the set of strategies. In a
sequential game, a pure strategy of a player is a deterministic mapping from
the current state and the player’s observations/histories leading to the state,
to an available action. For the adversary, such observations/histories include
its own sequence of prior actions and its target θ; the observer’s observa-
tions/histories include the adversary’s sequence of actions and the observer’s
sequence of actions. A mixed strategy is a randomized strategy, specified by a
probability distribution over the set of pure strategies. The strategies are defined
more formally in Sect. 2 and Definition 1.

As mentioned earlier, we are interested in computing the max-min solution,
which is equivalent to the max-min value, min-max value, and Nash equilibrium
value of the game. For simultaneous-move games this can usually be solved
by formulating a linear program. However, for our sequential game, each pure
strategy need to prescribe an action for each possible sequence of observations
leading to that state and, as a result, the sets of pure strategies are exponential
for both players.

To overcome this computational challenge, we focus on stationary strategies,
which depend only on the current state (for the adversary, also on θ) and not on
the history of observations (see Definition 2). While for stochastic games with
complete information, it is known that there always exist an optimal solution
that consists of stationary strategies [2], it is an open question whether the same
property holds for our setting, which is an incomplete-information game. Nev-
ertheless, there are some heuristic reasons that stationary strategies are at least
good approximations of optimal solutions: The state (i.e., adversary’s location)
already captures a large amount of information about the strategic intention of
the adversary.

An intuitively optimal non-stationary strategy in which the observer assigns
resources to the target with maximal probability, determined through observing
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the actions of the adversary, presents additional challenges. An optimal strategy
of this nature would require information regarding adversary’s strategy from
the beginning of the game, so as to determine the likelihood of a given action
assuming a particular target for the adversary. Making such assumptions is a
straightforward process when restricting the observer to stationary strategies.
Later in this paper we will demonstrate how given a stationary strategy for the
observer, there exists a best response strategy for the adversary that is also
stationary.

Restricting to stationary strategies, randomized strategies now correspond
to a mapping from state to a distribution over actions. We have thus reduced
the dimension of the solution space from exponential to polynomial in the size
of the graph. Furthermore, our game exhibits the single-controller property: The
state transitions are controlled by the adversary only. For complete information
stochastic games with a single controller, a linear programming (LP) formulation
is known [19]. We adapt this LP formulation to our incomplete information
setting.

We define V (θ, s) to be a variable that represents the expected payoff to
the observer at state s and with adversary’s intended target θ. We use P (θ) to
denote the prior probability of θ ∈ B being the adversary’s target such that∑

θ∈B P (θ) = 1. The observer’s objective is to find a (possibly randomized)
strategy that maximizes his expected payoff given the prior distribution over the
target set B, the moves of the adversary, and the adversary’s starting location.
The following linear program computes the utility of the observer in a max-min
solution assuming both players are playing a stationary strategy.

max
V,{fi(s)}i,s

∑

θ

P (θ)V (θ, so) (2)

V (θ, s) ≤
∑

i∈B

r(s, i, j, θ)fi(s) + V (θ, j) ∀θ ∈ B, ∀s | s �= θ, ∀j ∈ ν(s) (3)

V (θ, s) = 0 when s = θ (4)
∑

i

fi(s) = 1 ∀s (5)

fi(s) ≥ 0 ∀s, i (6)

In the above linear program, (2) is the objective of the observer. The fi(s)’s
represent the probability of the observer taking an action i ∈ B given the state
s. To ensure a well defined probability distribution for each state of the games,
(5) and (6) impose the standard sum-equal-to-one and non-negative conditions
on the probability of playing each action i ∈ B. The Bellman-like inequality (3)
bounds the expected value for any state using expected values of next states
plus the expected current reward, assuming the adversary will choose the state
transition that minimizes the observer’s expected utility. Finally, (4) specifies
the base condition when the adversary has reached their destination and the
game ends. The size of the linear program is polynomial in the size of the graph.

The solution of this linear program prescribes a randomized stationary strat-
egy fi(s) for the observer and, from the dual solutions, one can compute a
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stationary strategy for the adversary. In more detail, the dual linear program is

min
∑

s

ts (7)

ts ≥
∑

θ,j

λθ
s,jr(s, i, j, θ) ∀s, i (8)

Is=s0P (θ) +
∑

s′ �=θ:s∈ν(s′)

λθ
s′,s =

∑

j∈ν(s)

λθ
s,j ∀θ ∈ B,∀s �= θ (9)

λθ
s,j ≥ 0 ∀θ, s, j (10)

where Is=s0 is the indicator that equals 1 when s = s0 and 0 otherwise. The
dual variables λθ

s,j can be interpreted as the probability that adversary type θ
takes the edge from s to j. These probabilities satisfies the flow conservation
constraints (9): given θ, the total flow into s (the left hand side) is equal to
the probability that type θ visits s, which should equal the total flow out of s
(the right hand side). The variables ts can be interpreted as the contribution to
defender’s utility from state s, assuming that the defender is choosing an optimal
action at each state (ensured by constraint (8)).

Given the dual solutions λθ
s,j , we can compute a stationary strategy for the

adversary: let π(j|θ, s) be the probability that the adversary type θ chooses

j at state s. Then for all θ ∈ B and s �= θ, π(j|θ, s) = λθ
s,j∑

j′∈ν(s) λθ
s,j′

. It is

straightforward to verify that by playing the stationary strategy π, the adversary
type θ will visit each edge (s, j) with probability λθ

s,j .

Lemma 1. Given a stationary strategy for the defender, there exists a best
response strategy for the adversary that is also a stationary strategy.

Proof (Sketch). Given a stationary defender strategy fi(s), each adversary type θ
now faces a Markov Decision Process (MDP) problem, which admits a stationary
strategy as its optimal solution.

More specifically, since the state transitions are deterministic and fully con-
trolled by the adversary, each type θ faces a problem of determining the shortest
path from s0 to θ, with the cost of each edge (s, j) as

∑
i∈B fi(s)r(s, i, j, θ).

Looking into the components of r(s, i, j, θ), since the adversary reward uθ for
reaching target θ occurs exactly once at the target θ, it can be canceled out
and the problem is equivalent to the shortest path problem from s0 to θ with
edge cost d+fθ(s)q. Since edge costs are nonnegative the shortest paths will not
involve cycles.

What this lemma implies is that if the defender plays the stationary strategy
prescribed by the LP (2), the adversary cannot do better than the value of the
LP by deviating to a non-stationary strategy.

Corollary 1. If the defender plays the stationary strategy fi(s) given by the
solutions of LP (2), the adversary’s stationary strategy π as prescribed by LP
(7) is a best response, i.e., no non-stationary strategies can achieve a better
outcome for the adversary.
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While it is still an open question whether the defender has an optimal sta-
tionary strategy, we have shown that if we restrict to stationary strategies for
the defender, it is in the best interest of the adversary to also stick to stationary
strategies and our LP (2) does not overestimate the value of the game.

4.2 Game-Theoretic Goal Recognition Design Model

One can solve this GTGRD problem by brute-force, i.e., try every subset of edges
to block and then for each case solve the resulting LP. The time complexity of
this approach grows exponentially in K. Instead, we can encode the choice of
edge removal as integer variables added to the LP formulation, resulting in a
mixed-integer program (MIP). For example, we could replace (3) with

V (θ, s) ≤
∑

i∈B

r(s, i, j, θ)fi(s) + V (θ, j) + Mz(s, j) (11)

where M is a positive number, and z(s, j) is a 0–1 integer variable indicating
whether the action/edge from s to j is blocked. M thus represents the penalty
that the attacker incurs if he nevertheless chooses to take the edge from s to j
while it is blocked. By making M sufficiently large, we can make the actions of
crossing a blocked edge dominated and therefore effectively removing the edges
that we block. We also add the constraint

∑
s,j z(s, j) ≤ K.

Dual-Based Greedy Heuristic. The MIP approach scales exponentially in
the worst case as the size of the graph and K grows. We propose a heuristic
method for selecting edges to block. We first solve the LP for goal recognition
and its dual. In particular, we look at the dual variable λθ

s,j for the constraint
(3). This dual has the standard interpretation as the shadow price: it is the rate
of change to the objective if we infinitesimally relax constraint (3).

Looking at the MIP, in particular constraint (11), we see that by blocking off
an action from s to j we are effectively relaxing the corresponding LP constraints
(3) indexed by θ, s, j for all θ ∈ B. These are the adversary’s incentive constraints
for going from s to j, for all adversary types θ.

Utilizing the shadow price interpretation of the duals, the sum of the duals
corresponding to the edge from s to j:

∑
θ∈B λθ

s,j gives the rate of change to the
objective (i.e. defender’s expected utility) if the edge (s, j) is blocked by an infin-
itesimal amount. Choosing the edge that maximizes this, arg maxs,j

∑
θ∈B λθ

s,j

we get the maximum rate of increase of our utility. These rates of changes hold
only when the amount of relaxation (i.e., M) is infinitesimal. However, in prac-
tice we can still use this as a heuristic for choosing edges to block.1

1 Another perspective: from the previous section we see that λθ
s,j is the probability

that adversary type θ traverses the edge s, j. Then if the adversary and defender do
not change their strategies after the edge (s, j) is blocked, the defender would receive
an additional utility of M

∑
θ∈B λθ

s,j from the adversary’s penalty for crossing that
edge.
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When K > 1, we could choose the K edges with the highest dual sums. Alter-
natively, we can use a greedy approach: pick one edge with the maximum dual
sum, place a block on the edge and solve the updated LP for goal recognition, and
pick the next edge using the updated duals, and repeat. In our experiments, the
latter greedy approach consistently achieved significantly higher expected utili-
ties than the former. Intuitively, by re-solving the LP after adding each edge, we
get a more accurate picture of the adversary’s adaptations to the blocked edges.
Whereas the rates of changes used by the former approach are only accurate
when the adversary do not adapt at all to the blocked edges (see Footnote 1).
Our greedy heuristic is summarized as follows.

– for i = 1 . . . K:
• Solve LP (2), updated with the current blocked edges. If edge (s, j)

blocked, the corresponding constraint (3) indexed s, j, θ for all θ are mod-
ified so that M is added to the right hand side. Get the primal and dual
solutions.

• Take an edge (s∗, j∗) ∈ arg maxs,j

∑
θ∈B λθ

s,j , and add it to the set of
blocked edges.

– return the set of blocked edges, and the primal solution of the final LP as the
defender’s stationary strategy.

5 Experiments

Experiments were run on a machine using OSX Yosemite version 10.10.5, with
16 GB of ram and a 2.3 GHz Intel Core i7 processor, and were conducted on
grid environments such as the one seen in Fig. 2. In these environments, the
adversary is allowed to move to adjacent nodes connected by an edge. S denotes
the starting location of the adversary while T1 and T2 denote the locations of
two potential targets.

In Fig. 2, targets T1 and T2 each have a equal likelihood of being the
adversary’s intended target. The adversary’s timestep penalty d and completion

Fig. 2. An instance of GTGR/GTGRD games used in experiments.
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reward uθ are both set to 0. The defender’s reward for correctly guessing the
adversary’s intended target q is set to 10. The attacker penalty value for cross-
ing an edge penalized by the observer is set to 10. The observer is permitted to
penalize 3 edges.

5.1 A Comparison of MIP and Greedy Solutions

As seen in Figs. 3 and 4, the mixed integer program and greedy heuristic can
yield different results. The mixed integer program yields an expected outcome
of 43.3 for the observer, while utilizing the greedy heuristic yields an outcome of
40.0 for the observer. The default expected outcome for the observer (in which
no edges are penalized) is 30.0. The following experiments averaged the results
of similar grid problems.

Fig. 3. MIP solution Fig. 4. Greedy solution

5.2 Running Time and Solution Quality

Results from the following experiments were averaged over 1000 grid environ-
ments. For each experiment, the adversary’s timestep penalty d and completion
reward uθ were set to 0. For each environment, the starting location of the adver-
sary and all targets are placed randomly on separate nodes. Additionally, each
target θ is assigned a random probability P (θ) such that

∑
θ∈B P (θ) = 1. In all

of our figures below, the greedy heuristic for the GTGRD is graphed in orange,
the MIP is graphed in blue, and the default method (LP) for GTGR is graphed
in grey, in which the game is solved with no penalized edges. The defenders
reward for correctly guessing the adversary’s intended target q was set to 10.
The attacker penalty value for crossing an edge penalized by the observer was
set to 10. Each game, the observer was permitted to penalize 2 edges.
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Fig. 5. Average time given targets. Fig. 6. Average outcome given targets.

Various Potential Target Sizes. In this set of experiments, we want to inves-
tigate the effect of different potential target sizes (i.e., |B|) to the running time
(Fig. 5) and solution quality (Fig. 6) of our algorithms. The results are averaged
over 1000 simulations of 6 by 6 grids. Each game, the observer was permitted to
penalize 2 edges.

Fig. 7. Average time given size. Fig. 8. Average outcome given size.

As indicated in Fig. 5, the MIP running time increases exponentially while
the greedy heuristic running time remains sublinear as we increase the number of
potential targets. Moreover, the solution quality (measured by defender’s utility)
as seen in Fig. 6 suggests that MIP’s solution is closely aligned with our greedy
heuristics. This gives evidence that our greedy heuristic provides good solution
quality while achieving high efficiency. It is no surprise that the defender’s utility
is higher in the GTGRD setting compared to those of GTGR.

Various Instance Sizes. In this set of experiments, we investigate the effect
of different instance sizes (i.e., grids) to the running time (Fig. 7) and solution
quality (Fig. 8) of our algorithms.

Unlike our earlier observations on various target sizes, the average running
times for both the MIP and our greedy heuristic increase significantly as we
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increase the instance sizes (see Fig. 7). This is not surprising as now we have more
variables and constraints in the integer programs. Despite this, the defender’s
utilities generated by greedy heuristic are relatively similar to those generated
using MIP (see Fig. 8).

Fig. 9. Average time given penalized
edges.

Fig. 10. Average outcome given penal-
ized edges.

Various Number of Barriers/Blocks. In this set of experiments, we want to
investigate the effect of different number of barriers (i.e., K) to the running time
(Fig. 5) and solution quality (Fig. 6) of our algorithms in the GTGRD models.
The results are averaged over 1000 simulations of 6 by 6 grids.

It turns out that as we increase the number of barriers, the running times
of our greedy heuristic are longer than the MIP as shown in Fig. 9. Nonetheless,
as in the earlier experiments, both algorithms have similar solution quality as
shown in Fig. 10.

Various Edge Penalties. Finally, consider the effect of different edge penalties
to the solution quality of our greedy heuristic. The results are averaged over 1000
simulations of 6 by 6 grids. As indicated in Fig. 11, the solution gap between the
MIP and greedy heuristic as we increase the edge penalty.

Fig. 11. Average outcome given penalty value.
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