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Karel Durkota1(B), Viliam Lisý1, Christopher Kiekintveld2, Karel Horák1,
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1 Deptartment of Computer Science, FEE, Czech Technical University in Prague,
Prague, Czech Republic

{karel.durkota,viliam.lisy,karel.horak,branislav.bosansky,
tomas.pevny}@agents.fel.cvut.cz

2 Computer Science Department, University of Texas at El Paso, El Paso, USA
cdkiekintveld@utep.edu

3 Cisco Systems, Inc., Prague, Czech Republic

Abstract. We study the problem of detecting data exfiltration in com-
puter networks. We focus on the performance of optimal defense strate-
gies with respect to an attacker’s knowledge about typical network
behavior and his ability to influence the standard traffic. Internal attack-
ers know the typical upload behavior of the compromised host and may
be able to discontinue standard uploads in favor of the exfiltration. Exter-
nal attackers do not immediately know the behavior of the compromised
host, but they can learn it from observations.

We model the problem as a sequential game of imperfect information,
where the network administrator selects the thresholds for the detec-
tor, while the attacker chooses how much data to exfiltrate in each time
step. We present novel algorithms for approximating the optimal defense
strategies in the form of Stackelberg equilibria. We analyze the scalabil-
ity of the algorithms and efficiency of the produced strategies in a case
study based on real-world uploads of almost six thousand users to Google
Drive. We show that with the computed defense strategies, the attacker
exfiltrates 2–3 times less data than with simple heuristics; randomized
defense strategies are up to 30% more effective than deterministic ones,
and substantially more effective defense strategies are possible if the
defense is customized for groups of hosts with similar behavior.

Keywords: Data exfiltration detection · Game theory · Network
security

1 Introduction

A common type of cyber attack is a data breach which involves the unauthorized
transfer of information out of a system or network in a process called information
exfiltration. Information exfiltration is a major source of economic harm from
cyber attacks, including the loss of credit card numbers, personal information,
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trade secrets, unreleased media content, and other sensitive data. Many recent
attacks on high-profile companies (e.g., Sony Pictures and Target) have involved
large amounts of data theft over long periods of time without detection [7].
Improving strategies for detecting information exfiltration is therefore of great
importance for improving cybersecurity.

We focus on methods for detecting information exfiltration activities based
on detecting anomalous patterns of behavior in user upload traffic. An impor-
tant advantage of this class of detection methods is that it does not require
knowledge of user data or the ability to modify this data (e.g., to use honey
tokens). To better understand the strategic aspects of anomaly detection and
information exfiltration we introduce a two-player game model that captures
the defender and attacker decisions in a sequential game. While we focus mainly
on the information exfiltration example, note that raising alerts based on detect-
ing anomalous behavior is a common strategy for detecting cyber attacks, so our
model and results are relevant beyond just information exfiltration.

One of the novel aspects of our game model is that we consider both insider
and outsider threats. A recent McAfee report [1] states that that 40% of seri-
ous data breaches were caused by insiders trusted by the organization, while the
remaining 60% are due to outside attackers infiltrating the enterprise. Since both
types of attacks are prevalent we consider both cases. There are significant differ-
ences between insiders and outsiders for information exfiltration. One difference
is that an insider knows his typical behavior already and can use this knowledge
to evade detection, while an outsider must learn this behavior from observation.
A second difference is that insiders may be able to replace their normal activity
with malicious activity, while an outsider’s actions will be observed in addition
to the normal activity. We model both of these key differences and examine how
they affect both attacker and defender behavior in information exfiltration.

We introduce a sequential game model in which the objective of the attacker
is to exfiltrate as much data as possible before detection, and the objective of the
defender is to minimize the data loss before detection. The defender monitors
the amount of data uploaded to an external location (e.g., Dropbox or Google
Drive) and raises an alert if the traffic exceeds a (possibly randomized) threshold
in a give time period. Some network companies use only uploaded data volume
as feature to detect the data exfiltration. In our paper we follow this approach,
however, our algorithm allows using more features as well. The defender is con-
strained to policies that limit the expected number of false positives that will be
generated. The attacker chooses the amount of data to exfiltrate in each time
period. We model both insider and outsider attackers, and both additive and
replacing attacks. In the additive attack the total traffic observed is the sum of
the normal user activity and the attack traffic, while in the replacing attack only
the attack traffic is observed by the defender. Outsider attackers also receive an
observation of the user traffic in each time period that can be used to learn the
behavior pattern (and therefore infer something about the likely threshold for
detection).
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Our first main contribution is the exfiltration game model that considers the
differences between insider and outsider attackers. Our second contribution is
a set of algorithms for approximating the optimal strategies for both defender
and attacker players in these games. For outsider attackers, we use Partially
Observable Markov Decision Process (POMDP) to model the learning process
for the attacker. We also consider randomized policies for the defender, since it
has been shown that static decision boundaries can be quickly learned [4] and
randomizing can mitigate successful attacks [11]. Our third main contribution
is an experimental analysis of a case study based on real-world data from a large
enterprise with 5864 users connecting to a Google drive service for 12 weeks. We
compute optimal strategies against different classes of attackers, and examine
the characteristics of the strategies, the effects of randomization and attacker
learning, and the robustness of strategies against different types of attackers.
We show that with the computed defense strategies, the attacker exfiltrates
2–3 times less data than with simple heuristics; randomized defense strategies
are up to 30% more effective than deterministic ones, and substantially more
effective defense strategies are possible if the defense is customized for groups of
hosts with similar behavior.

2 Related Work

Several previous works focus on detection and prevention of data exfiltration.
A common approach is anomaly detection, e.g., a system can automatically learn
the structure of standard database transactions on the level of SQL queries and
raise alerts if a new transaction does not match this structure [5,10]. An alterna-
tive option is to create signatures of the sensitive data based on their content and
detect if this content is sent out [14]. The signatures should be resilient against
the addition of noise or encryption, such as wavelet coefficients for multime-
dia files, which are resilient against added noise. Data exfiltration can also be
partially mitigated by introducing automatically generating honey-tokes, a bait
documents that rise alarm when are opened or otherwise manipulated [2]. These
works do not consider volume characteristics of the traffic as means of detecting
data exfiltration and do not study the learning process of the external attacker,
which are the focus of this paper. A commonly studied option of exfiltration is to
use a covert channel and hide the communication in packet timing differences of
DNS requests [19]. If the covert channel increases the volume of traffic to some
service, the methods presented in this paper can help with its detection. More
general data exfiltration motivations and best practices to protect the data are
described in [13].

Data exfiltration and similar security problems have been previously studied
in the framework of game theory. Liu et al. [12] propose a high level abstract model
of insider threat in the form of partially observable stochastic game (POSG). They
propose computing players’ strategies using generic algorithms developed for this
class of games, which have very limited scalability. The instance of the game they
analyze in the case study focuses on data corruption and not exfiltration. Our
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work can also be seen as a special instance of POSG, but we provide more scalable
algorithms to solve it and analyze the produced strategies in the context of data
exfiltration.

Similar to our work, [9] investigates selecting thresholds for intrusion detec-
tion systems protecting distinct subsets of a network. The goal is to find optimal
trade-offs between false positives and the likelihood of detection of an attack,
which is simultaneously executed on a several subsets of the network. The
attacker cannot decide what action to execute, only which systems to attack; nor
he has an ability to learn the possible thresholds before the attack is conducted.
McCarthy et al. [15] use POMDP to compute defender’s optimal sequence of
(imperfect) sensors to accumulate enough evidence whether data exfiltration
over Domain Name System queries is happening in the network or not. However,
unlike our paper, they assume non-adaptive attackers. Lisý et al. [11] investi-
gated the effect of randomization of detection thresholds to strength of attacks
and their overall cost to the defender. Our modeling of insider attacks is similar
to this work. In contrast to our work, the attacker has perfect knowledge about
the detector and the attacked system before the attack.

3 Game Theoretic Model

We model the problem of data exfiltration as a dynamic (sequential) game
between the defender (network administrator) and the attacker trying to exfil-
trate data over the network. We first discuss the basic setting of the game
and focus on the fundamental differences between the insider and outsider and
whether their activity is added to or replaces the normal traffic of the host.
Then, we define the exact interaction between the attacker and the defender.

The defender monitors the volume of data uploaded by each network host1

to a specific service over time, in time windows of constant length, e.g., 6 h. His
action is to select a detection threshold θ from the set of available thresholds
Θ. If the volume of the host’s upload surpasses θ in a time window, an alarm is
raised and the activity of the user is inspected by the administrator.

The attacker controls one of the users and tries to upload as much data as
possible to the selected service before being detected. His actions are to choose
the amount of data a ∈ A ⊆ N0 he exfiltrates in the next time window. If
this amount (possibly) combined with the host’s standard activity is below θ,
the attacker immediately receives reward a and the defender suffers a penalty
proportional to a. In this latter case, the attacker can act again in the following
time window.

Since each host in a company may have different pattern of standard activity,
the defender might want to set the threshold for each of them individually.
However, this approach can be laborious in big companies and individual users
rarely produce enough data for creating high quality models of their behavior.
Therefore, it is common to create groups of hosts with similar behaviors and

1 Hosts are non-strategic actors in the game considered to be part of the environment.
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reason about these groups instead. In our models we refer to each group as a host
type λ from a set of all types Λ. We assume both players know the probability
P (λ) that a randomly selected host in the network is of type λ. Each host type
is characterized by its common activity pattern in the form of the probability
P (o|λ) that a host of type λ transfers the amount of data o ∈ O ⊆ N0 in a time
interval. We call these amounts observations, since they are the information
observed by the external attackers.

The standard host’s activity can sometimes surpass the selected threshold even
without any attacker’s activity and the host is still inspected. These false positives
take a lot of time for the administrator to investigate and are typically a key con-
cern in designing IDS. To capture this constraint we require the defender’s strate-
gies to have an expected number of false positives bounded by a constant FP .

3.1 Outsider Vs. Insider

The outsider is an external attacker who compromises a host in the computer
network to exfiltrate data. Although the outsider may know what types (groups)
there are in the company (secretaries, IT admins, etc.), they often do not know
which host type they compromised. However, they can observe the activity of
the compromised host in each time window and update their belief about its
type. Starting an aggressive exfiltration is likely not the best strategy, since once
attacker surpasses a threshold, he is detected and the attack is stopped. However,
conducing too much observation may cause that the host is disconnected or
turned off before any exfiltration was conducted; or that the user’s normal traffic
surpasses the threshold, in which case the host is inspected and the attacker may
be detected; or the data may become useless. We model this risk by discounting
future rewards t time steps ahead with γ, where γ ∈ (0, 1). The outsiders must
cautiously weigh how much to exfiltrate at the current time step versus how
long to learn the host type to increase future rewards. Typically, he would first
emphasize learning with little data exfiltration, and proceed to more aggressive
exfiltration when he is more certain about the host type.

The insiders are the regular users of the network and they know their host
type and the deployed defenses. If the defender sets a fixed threshold for each
host type, an insider can exfiltrate exactly at that threshold (we assume that
the amount of data has to surpass the threshold to trigger the alarm). Such a
defense strategy is not optimal, and the defender should minimize the insiders
certainty about the threshold by randomization of her choices.

3.2 Additivity Vs. Replacement

Consider a situation where the host uploads o MB and has set threshold θ. Then
the attacker can exfiltrate at most θ − o, if he does not want to surpass the
threshold. Additivity is important mainly for the external attacker operating
on the host without its user’s knowledge. However, we allow additivity even
for the insider in our model so that we can analyze the effect of incomplete
knowledge of the external attacker with all other conditions equal. Assuming that
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the attacker completely replaces the existing host traffic with the exfiltration
is more natural for the insider. However, even the external attacker can, in
principle, throttle or to completely block the standard user’s traffic to increase
his own bandwidth for exfiltration. We analyze combinations of scenarios when
the attacker is insider/outsider and when the user’s normal traffic is and is not
present.

3.3 Formal Definition of Game Model

We have introduced the following components: Λ is the set of host types and P (λ)
the probability of their occurrence; O (resp. A) is the set of possible amounts of
data that the hosts (resp. attackers) can upload; P (o|λ) describes host’s standard
activity; Θ is the set of thresholds the defender can choose; FP is the defender’s
maximal false positive rate; γ is the discount factor.

In our model, we assume that the network administrator models the user’s
normal traffic using discrete representation, e.g., histograms. In that case, the
attacker and defender’s action are also discrete, as they have no incentive to
choose actions between the discrete values.

Defender’s Strategy. We allow mixed (or randomized) strategies in form of
σ(θ|λ), where the defender chooses a probability distribution of thresholds θ
given host-type λ. As a special case, the defender may choose a pure strategy ψ :
Λ → Θ, a threshold for each host-type λ. Let Ψ and Σ be the set of all pure and
mixed strategies, respectively. A valid defender strategy σ must satisfy the false
positive constraint

∑
λ∈Λ

∑
θ∈Θ σ(θ|λ)P (λ)FP (θ|λ) ≤ FP , where FP (θ|λ) =∑

o∈O:o>θ P (o|λ) is type λ’s amount of false positives if threshold is θ.

Attacker’s Strategy. In the course of the attack, the attacker follows a policy
which prescribes what action he should take when he played actions a1, . . . , ak

and saw observations o1, . . . , ok so far [3]. We assume, that the defender chooses
his threshold strategy first, and the attacker acts afterwards, knowing the
defender’s strategy (we will discuss it in section Solution Concept. In such a case,
the attacker acts only against the nature, without adversarial actor, and Partial
Observable Markov Decision Processes (POMDPs) can be used to reason about
(approximately) optimal attacker’s policies for the attacker. In the POMDP the
attacker is not required to remember the entire history of his actions and obser-
vations. Instead, he can capture all relevant information he has acquired in the
course of the interaction in the form of a belief state b ∈ Δ(Λ × Θ), which is a
probability distribution over possible host types and threshold settings. We can
then define attacker’s policy based on his belief as π : Δ(Λ × Θ) → A. In the
course of the interaction, the attacker keeps track of his belief b using a Bayesian
update rule when he takes the last action and observation into account. Based
on his current belief, he chooses action π(b) to play. We denote the set of all
belief-based policies as Π.
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Note that the insider knows the host type from which he exfiltrates the data
(it is his own host machine), therefore, there is no need to update belief based
on the observation. Therefore, for the insider the attack policy is to choose an
action from A. Mixed strategies are probability distribution among these choices.

Utilities. We define the attacker’s expected utility as ua(σ, π), which is the
discounted total expected amount of exfiltrated data using policy π against the
defense strategy σ.

We define the defender’s utility as ud(σ, π) = −Cua(σ, π), where C > 0. That
means, that players have opposing objectives and their payoffs are proportional.
Typically C > 1, which means that the defender suffers more than the attacker
gains.

Solution Concept. Game theory provides a variety of solution concepts and
algorithms for analyzing games with different characteristics. In zero-sum games
and their slight generalizations, such as our payoff structure, many of these
solution concepts lead to the same strategies. We use Kerckhoffs’s principle,
which assumes that the attacker knows the defender’s algorithm or can conduct
surveillance of the defender’s behavior, therefore, knows his strategy. In game
theory, Stackelberg equilibrium corresponds to such assumptions, where leader
(the defender) acts first, by choosing strategy σ. Then, follower (the attacker),
plays any best response strategy, which maximizes the attacker’s utility against
leader’s strategy σ.

Definition 1 (best response). Attacker plays best response if it maximizes
the attacker’s expected utility, taking the defender’s strategy as given. Formally,
π ∈ BRa(σ) iff ∀π′ ∈ Π : ua(σ, π) ≥ ua(σ, π′).

In zero-sum games, all attacker’s best responses have the same expected utility to
the defender and the attacker, therefore, there is no need to distinguish between
specific best responses. Because we use approximative algorithm to compute the
attacker’s policy, we focus on finding approximate ε-SE. The defender’s strategy
in ε-SE guarantees, that the defender’s utility cannot be improved by a factor
of more than 1 + ε in the exact SE.

Definition 2 (ε-Stackelberg equilibrium (ε-SE)). Let ε ∈ (0, 1]. Solution
profile (σ∗, π∗) where π∗ ∈ BRa(σ∗) belongs to ε-SE, if ∀σ ∈ Σ,∀π ∈ BRa(σ) :
ud(σ,π)−ud(σ

∗,π∗)
|ud(σ∗,π∗)| ≤ ε.

Note, that we use multiplicative definition of approximate solution concept [6],
rather then more typical additive approximation. In our opinion, the multiplica-
tive approximation is slightly more reasonable for our domain. However, the
algorithm can be easily modified to return additive ε-SE.

4 Algorithms

In this section, we present two algorithms. First algorithm computes exact SE
against the insider. Second algorithm finds ε-SE against the outsider.
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4.1 Optimal Defense Strategy Against Insiders

Since we assume that the insider knows from which user type he exfiltrates data
(they have complete information), we can model the interaction between the
attacker and a host type as a normal-form game, where the attacker chooses
a probability distribution over actions A for each host type and the defender
chooses probability distribution over thresholds Θ for each host type. We for-
malize the game between all host types and the attacker as one problem by
extending the zero-sum normal-form linear program (LP) [17] with multiple
host types and a false-positive constraint.

min
σ(θ|λ)

Ua (1a)

s.t. : (∀λ ∈ Λ,∀a ∈ A) :
∑

θ∈Θ

ua(θ, a, λ)σ(θ|λ) ≤ Ua,λ (1b)

∑

λ∈Λ

P (λ)Ua,λ ≤ Ua (1c)

(∀λ ∈ Λ) :
∑

λ∈Λ

σ(θ|λ) = 1 (1d)

(∀λ ∈ Λ∀θ ∈ Θ) :σ(θ|λ) ≥ 0 (1e)
∑

λ∈Λ

∑

θ∈Θ

P (λ)σ(θ|λ)FP (θ|λ) ≤ FP (1f)

The variables in the LP are: σ(θ|λ), Ua and Ua,λ. The objective (1a) minimizes
the attacker’s expected utility Ua, which consists of expected utilities Ua,λ of each
type, weighed by its probability (1c). Constraints (1b) ensure that the attacker
plays a best response in each host type against the given defense strategy; (1d)
and (1e) ensures that the defender’s strategy is proper probability distribution;
and (1f) makes sure the strategy meets the false-positive rate.

In LP, we need to compute the attacker’s payoff ua(θ, a, λ) when the defender
plays action θ and the attacker attacks host type λ with action a. For the attacker
with replacement, we compute ua(θ, a, λ) as follows:

ua(θ, a, λ) =
{ a

1−γ if θ ≥ a

0 otherwise,
(2)

and for the attacker with additivity as follows:

ua(θ, a, λ) =
aP (o + a ≤ θ|λ)

1 − γP (o + a ≤ θ|λ)
(3)

where P (o + a ≤ θ|λ) =
∑

o∈O:a+o≤θ P (o|λ) is the probability that the user’s
action o combined with the attacker’s action a is below threshold θ for type λ.
To compute the defender’s pure strategy, we replace (2d) by (∀λ ∈ Λ∀θ ∈ Θ) :
σ(θ|λ) ∈ {0, 1}.
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4.2 Optimal Defense Strategy Against External Attacker

The outsider observes the activity of the host in an attempt to learn and infer
it’s type. Due to the learning process, the strategies of the attacker are more
complex, compared to the insider case, as the strength of the attack can vary
over time. We can reason about attacker’s behavior under this uncertainty using
Partially Observable Markov Decision Processes (POMDPs) and his optimal,
best-response strategy can be computed by algorithms for solving POMDPs.
Originally, POMDPs were designed to reason about actions of a single decision
maker. However, since the defender only decides the initial belief of the POMDP
and the defender then has no influence on the dynamics of the system, we can
extend the POMDP framework to solve our game-theoretic problem.

The POMDP framework assumes that in every time step, the player chooses
an action and receives an observation from the environment as a result. Based
on this observation he updates his belief over the possible current states of the
environment. Additionally, in each time step the player obtains a reward which
depend on the state of the environment and the action chosen. A solution of the
POMDP is a policy which prescribe an action to use given every possible belief
state. Here, we extend a well-established algorithm for solving POMDPs, Heuris-
tic Search Value Iteration (HSVI) [18] to find an ε-Stackelberg Equilibrium, with
key ideas inspired by [8]. The main idea of the algorithm is to iteratively com-
pute the attacker’s and defender’s best response strategies, which will eventually
converge to a Stackelberg equilibrium.

The structure of this section is as follows: first, we define POMDP models for-
mally; then we explain the main ideas of the HSVI algorithm; and lastly, we present
our contribution, the Adversarial HSVI algorithm, aimed to find ε-SE in our game.

POMDP Model. Let us now define a POMDP model formally, for a given
defense strategy σ, as a tuple 〈S,A, T,R,O, γ, σ〉, where:

– S is set of states, where each state s ∈ S is defined as s = (λs, θs), where λ is
host-type and θ is the chosen detection threshold. We also define a terminal
state sT , which denotes that the attacker got detected and the attack was
deflected.

– A is the set of attacker’s actions;
– O is the set of observations about the traffic on host attacker tries to exfiltrate;
– T (s, a, s′) is the probability that action a in state s leads to new state s′. In

our case, when additivity is considered ∀s ∈ S \ {sT } : T (s, a, s) = P (a + o ≤
θs), and T (s, a, sT ) = 1 − P (a + o ≤ θs). If there is no additivity, then
∀s ∈ S \ sT : T (s, a, s′) = 1a≤θs

and T (s, a, sT ) = 1a>θs
otherwise, where

1A = 1 if A is true and 1A = 0 otherwise is the indicator function.
– R(s, a, s′) is the immediate reward the attacker obtains for performing action

a in state s. In our case R(s, a, s′) = a had the attacker not been detected
yet, R(s, a, s′) = 0 otherwise;

– P (o|a, s) is the probability of observing o ∈ O when action a is taken in state
s. In our case P (o|a, s = (λ, θ)) = P (o|λ).

– γ ∈ (0, 1) is the discount factor.



180 K. Durkota et al.

With B we denote the attacker’s belief space, i.e. the set of all probability
distributions over the states S. We derive the initial belief b0 ∈ B according to
the prior distribution over the host types P (λ) and the strategy of the defender,
i.e. b0(s) = P (λ)σ(θ|λ) for state s = (λ, θ).

POMDP models are usually solved by approximating the optimal value
function v∗ : B → R. This value function represents the utility v∗(b) the
attacker can obtain when the current distribution over the states is b ∈ B and
he follows his optimal policy. We can then derive the optimal action to play in
each belief state, i.e. the action π(b), by solving the following equation

π(b) = argmax
a∈A

⎡
⎣∑
s∈S

∑
s′∈S

Pr[s, s′|b, a]R(s, a, s′) + γ
∑
o∈O

Pr[o|b, a] · v∗(τ(b, a, o))

⎤
⎦ (4)

where we account for the immediate rewards (expectation over R(·)) as well
as the expectation over future rewards (represented by the value function v∗).
τ(b, a, o) stands for a Bayesian update of the belief b based on receiving the
observation o when action a was used by the attacker.

HSVI Algorithm. We now provide an explanation of basic ideas of the HSVI
algorithm, which we complement with illustrations in Fig. 1. For detailed expla-
nation of the HSVI algorithm, we refer the reader to [18]. The algorithm main-
tains the upper and lower bounds on the optimal value function v∗ for each
point in the belief space B, as depicted in Fig. 1a. The horizontal axis repre-
sents the belief space B and the vertical axis represents the expected utility the
attacker can achieve (or lower and upper bounds on this utility, respectively). In
each iteration, HSVI performs a single simulation of depth D, in the course of
which the attacker plays D actions and obtains D observations. This simulation
is conducted according to a forward-exploration heuristic, which aims to select
beliefs which can be reached using the play starting from the initial belief b0,
and for which the approximation using the lower and upper bounds is excessively
inaccurate. For these beliefs, we compute the optimal action of the attacker (see
Eq. 4) and based on that we refine the bounds on v∗. In Fig. 1b we illustrate the
way the lower and upper bounds get refined.

Let us use notation LB(b) and UB(b) to refer to values of the lower and upper
bounds, respectively, in belief b ∈ B. The original HSVI algorithm terminates,
when UB(b0) − LB(b0) < εhsvi, where εhsvi is the desired approximation error.

Finding ε−SE. Recall that the initial belief of the POMDP problem, b0(s) =
P (λ)σ(θ|λ), can be directly mapped to the defender’s strategy σ (and vice versa).
Therefore, we search such initial belief b0 for the defender, that it meets maximal
false positive constraint and minimizes the attacker’s expected utility (POMDP
upper bound value at b0). In high lever, our approach iteratively alternates
between selecting a promising initial belief b0 (strategy for the defender) and
solving POMDP at that belief b0. In Fig. 1c we illustrate a subset of valid initial
beliefs that meets the false-positive constraint.
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valid belief space

b′ b∗

(c)

b∗
UB

UB

LB

b∗
LB

(d)

Fig. 1. Original and Adversarial HSVI algorithm: (a) initial upper bound (UB) and
lower bound (LB) on the (unknown) optimal value function v∗. HSVI aims to minimizes
the gap between UB and LB in the initial belief b0. (b) After one HSVI iteration, tighter
approximation using LB and UB is computed. (c) In Adversarial HSVI the defender
chooses a new belief b′ where LB has minimal value in every iteration. (d) A possible
scenario when algorithm is converged and a conservative strategy for the defender,
based on b∗

UB , is returned.

In detail, to find initial belief in ε-SE and the strategy σ of the defender, the
Adversarial HSVI algorithm extends the original HSVI algorithm in two ways
(the modified algorithm is presented in Fig. 2). First, instead of having fixed
initial belief b0, our algorithm chooses a new belief b′ in every iteration. This
belief, b′ = argminb LB(b), is chosen to minimize attacker’s lower bound value.
Second, we limit the depth D of the HSVI simulation by

√
iter, where iter is

the current iteration number. We do this to emphasize the exploration of the
belief space first, and then focus on the computation of more accurate bounds
later on (Fig. 2). The rest of the algorithm follows the ideas of the original HSVI
algorithm. We refer the reader to Sects. 3.3 and 3.4 of [18] for details about the
implementation of UpdateLB() and UpdateUB() procedures, and the forward
exploration heuristic (lines 3–4 of the Explore procedure).

Let bLB = argminb LB(b) and bUB = argminb UB(b) be the beliefs with
minimal value of lower and upper bounds. We ensure that the algorithm finds
ε-SE, by terminating when defender’s and attacker’s strategies have maximum
relative error ε and we then return a secure strategy implied by belief bUB . The
attacker can guarantee that he will obtain at least LB(bLB), while the defender
can guarantee that he will not lose more than UB(bUB). Based on these numbers,
we compute an upper bound on the relative improvement of defender’s strategy
(i.e. if he plays bLB instead of bUB) as UB(bUB)−LB(bLB)

UB(bUB) .

Proposition 1. Adversarial HSVI (Fig. 2) returns ε-SE.

Proof. Without loss of generality, we assume the game is exactly zero-sum
(i.e., C = 1). When the algorithm terminates and returns σ(θ|λ) induced by
bUB , we know that the best response of the attacker to the defender’s strat-
egy induced by bUB cannot gain more than UB(bUB), hence the defender’s cost
−ud(σ(θ|λ), BRa(σ(θ|λ)) ≤ UB(bUB). If the defender played any alternative
strategy σ′, we know that the attacker would always be able to exfiltrate at
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Fig. 2. Adversarial HSVI algorithm to find ε-SE.

least LB(bLB) by definition of bLB , hence −ud(σ′, BRa(σ′)) ≥ LB(bLB). If the
termination condition is satisfied, UB(bUB)−LB(bLB)

UB(bUB) ≤ ε. Therefore, it is sufficient
to show that the relative error of the computed strategy

ud(σ′, BRa(σ′)) − ud(σ(θ|λ), BRa(σ(θ|λ))
|ud(σ(θ|λ), BRa(σ(θ|λ))| ≤ UB(bUB) − LB(bLB)

UB(bUB)
.

Since the defender’s utility is always negative, we know |ud(σ(θ|λ), BRa
(σ(θ|λ))| = −ud(σ(θ|λ), BRa(σ(θ|λ)). Hence, the above is equivalent to

1 − ud(σ
′, BRa(σ′))

ud(σ(θ|λ), BRa(σ(θ|λ)) ≤ 1 − LB(bLB)

UB(bUB)
and

−ud(σ
′, BRa(σ′))

−ud(σ(θ|λ), BRa(σ(θ|λ)) ≥ LB(bLB)

UB(bUB)
.

This is true, because from left to right in the last inequality, the nominator can
only decrease and the denominator can only increase.

5 Real-World Data

From a large network security company we obtained anonymized data captur-
ing the volumes of upload of 5864 active Google drive users uploaded during 12
weeks. For each user we computed the amount of data that the user uploads in
6 h windows. Next, we created histograms showing how often the user uploaded
certain number of bytes per 6 h, which can be understood as user’s upload prob-
ability distribution.

We used the Partitioning Around Medoids algorithm to find clusters of sim-
ilar behavior of the users where similarity was measured by Earth Mover’s
Distance [16] metric. In Fig. 3 we present 7 histograms corresponding to user’s
average behavior in each cluster and their relative membership. The clusters (in
order) contain 25.6%, 5.5%, 17.2%, 8.9%, 11.7%, 11.5% and 19.6% of the total
users.
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Fig. 3. Mean upload size histograms of the identified clusters of users.

6 Experiments

We now demonstrate our framework for a case study based on the real-world
data. In all settings we choose: false positive rate FP = 0.01, the relative error
of the strategy ε = 0.2, and discount factor γ = 0.9. We chose the set of attacker
actions |A|, the defender’s thresholds |Θ|, and the observations |O| to be the set
of {20, 22, 24, . . . , 234} bytes.

The structure of this section is as follows: In Sect. 6.1 we evaluate how much
an optimal attacker can exfiltrate under various condition, in Sect. 6.2 we present
a visualization of what optimal defense strategies look like, in Sect. 6.3 we eval-
uate defender strategies against different attacker models. In Sect. 6.4 we show
how the presence of additivity influences the defense strategy, and finally, in
Sect. 6.5 we present scalability results for computing the defense strategies.

6.1 Defender and Attacker Utilities

We now examine how much various attacker types can exfiltrate in our case
study. In Table 1 we present a summary of the attacker’s expected utilities
(attacker maximizes and defender minimizes the value) for different types of
attackers. Columns indicate whether the attacker is an insider or outsider and
whether the attack is with replacement or with additivity. The rows indicate
whether the defender plays a mixed or pure defense strategy, or a baseline
defense. We present utilities against the outsider as minimal lower bound and
minimal upper bound values from HSVI algorithm.

Note that the insider with replacement can exfiltrate up to 6 times more
compared to insider with additivity. In in the case with additivity, the typical
traffic of a user is added to the traffic of the attacker; hence, the attacker must
choose a less aggressive strategy (i.e., upload less data) so that the total data
upload does not exceed the threshold. Although the attacks with additivity are
disadvantageous to the attacker, in some cases the additivity is unavoidable, e.g.,
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Table 1. Attacker’s utility for different scenarios: (columns) insider or outsider, with
replacement or additivity and (rows) whether the defender plays optimal pure, optimal
mixed or baseline strategy.

Insider [MB] Outsider [MB]

Replacement Additivity Replacement Additivity

Mixed defense 23.71 3.56 (18.68, 24.81) (3.11, 3.43)

Pure defense 33.58 5.03 (24.17, 29.87) (3.78, 4.49)

Baseline single-quantile (mixed) 65.32 12.31 (54.85, 57.58) (10.39, 10.84)

Baseline single-threshold (mixed) 68.86 14.54 (65.45, 68.86) (13.96, 14.56 )

One cluster (mixed) 63.29 12.95 N/A N/A

when different detectors detect whether the user runs standard processes (which
generate a standard traffic). Next, we see that the user type uncertainty caused
around a 7%–12% decrease in the utility (computed from the upper bounds). To
verify that this outcome does not rely on the fact that some of the host-types
have higher prior probability than the others, we additionally ran experiments
with uniform prior probability of the users, and the outsider had about 16%
lower utility compared to the insider. Finally we note that if the defender must
choose a pure strategy (e.g., due to practical deployment reasons) the amount of
data exfiltrated by the attacker can be 24%–42% higher compared to randomized
strategies.

We compare our strategies against two baseline approaches: (i) single-quantile
and (ii) single-threshold. In (i), the defender sets for each host type a threshold
at quantile (1 − FP ) of their upload probability distribution. Since we have
discrete thresholds, the defender’s strategy randomizes between two consecutive
thresholds to reach the exact (1 − FP ) false positive rate. The experimental
results show that the attacker can exploit this straightforward strategy and can
exfiltrate about 3-times more data than against the optimal solution. The main
reason is that this strategy chooses high thresholds for the users with large data
upload (e.g., cluster 3) in order to satisfy the false positive constraint. In (ii) the
defender chooses a single threshold for all host types such that the false positive
rate requirement is satisfied. Although the strategy is quite different, it also
performs poorly. The utility is even worse than the single-quantile strategy. This
strategy is exactly contrary to the previous one: it sets the threshold for passive
users (e.g. cluster 7) is too high, and attackers easily exfiltrate from them.

Additionally, we show that it is worth developing different defense strategies
for different user types. We computed the optimal defense strategy where all
users belong to one cluster (instead clustering them into 7 clusters), and utilities
were 2x–3x worse than the optimal defense strategy where users were clustered.
Since there is only one cluster, the attacker does not need to learn the cluster of
the attacked host. Therefore, there is no difference between insiders and outsiders
in this case.
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6.2 Defender’s and Attacker’s Strategies

Insiders. In this section we present the computed optimal strategies of the
defender. Figure 4a shows the defender’s (cumulative) probability of selecting
thresholds (x-axis) for each host type against the insider with replacement. The
cumulative distributions show the probability that an attacker exfiltrating data
at a certain rate is detected. In Fig. 4b we present the attacker’s expected util-
ity for different attacks on different host types when the defender is using the
strategy depicted in Fig. 4a. The defender’s strategy is computed in such a way
that it makes the attacker indifferent between intervals of actions (e.g., for host
type 1 the attacker is indifferent between actions 222 through 230), which is typ-
ical for stable strategies. The attacker’s best response is to choose any of the
attack actions that have the highest expected utility. We also note that the host
types with the highest activity (e.g., host type 3 and 1) result in the highest

Fig. 4. The defender’s strategies and the attacker’s expected utilities for individual
attack actions for: (a,b) mixed defense strategy against insider with replacement; (c,d)
pure defense strategy against insider with replacement; and (e,f) mixed defense strategy
against insider with additivity.
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expected reward for the attacker. Therefore, we suggest that these hosts should
be monitored thoroughly to avoid potentially large data loss.

Figure 4c shows the optimal strategy of the defender when restricted to pure
strategies. For host types 3, 6 and 7, corresponding to the largest and the two
smallest mean upload sizes, the defender chooses threshold 222. The threshold of
224 is chosen for all the other types. The expected utility of the attacker depicted
in Fig. 4b has peaks up to 5 MB, since with pure defense strategies it is impossible
to make the attacker indifferent between multiple actions. By randomizing non-
trivially between multiple thresholds the defender can significantly increase his
expected utility.

The defense strategy against the insider with additivity (Fig. 4e) is quite
different to the previous ones. With the additivity, the optimal defense strategy
lowers the thresholds of the most active users (host types 1 and 3) to restrict their
large loss, and increases the thresholds of the less active users to compensate the
false-positives.

Outsiders. Optimal defense strategies against the outsider with additivity
(Fig. 5a) (resp. with replacement (Fig. 5b)) are more complex than the strategies
against the insiders. The strategies consider how the attacker attacks and learns
from the observations each time step as well as the fact that the value of the data
decreases over time due to the discount factor. None of the above was considered
against the insider attacker.

Fig. 5. Defender’s strategy agaist outsider with (a) additivity and (b) replacement; the
(near) optimal attacker’s respone to (a) characterized by (c) the average action played
at certain time step and (d) the probability of reaching the time step when attacking
the given host type.
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To explain how the defense strategy takes into account these aspects we first
examine the attack strategy of the outsider with additivity. In Fig. 5c we show
the attacker’s average action in every time step given that the observations are
drawn from a certain host type and that the attacker was not detected until
the previous time step. First, the attacker plays safe action 220 and after the
observation, the attacker strengthens his attack as he learns about the host
type their possible thresholds. Since the defender knows that the first attack
action is 220, he prefers lowering the threshold for host types 6 and 7 (at 220),
which causes the defender to almost certainly detect the attacker during his
first attack action on 31.1% of hosts (see Fig. 5d). Not only does it increase the
detection probability, it also prevents the attacker from obtaining information at
the beginning, when it is most valuable due to the discounting. This generates a
lot of false positives, so for highly active users the strategy uses higher thresholds
(host types 2 and 3). The attacker will exfiltrate from these hosts aggressively
in the later phase of the game but the loss will be less important by that time
due to discounting.

This example shows how sophisticated the outsider’s strategies can be as they
must consider a complex behavior of the attacker and all possible sequences of
observations and attacks. To minimize the loss, the defender aims to detect the
attacker as soon as possible. In Fig. 5d we show the probability that the attacker
is detected until given time step. Using the optimal defense strategies, host types
1, 6 and 7 (56.7% of the users) detect the attackers until his third time step with
higher probability than 0.5.

6.3 Different Attacker Models

Computing a defense strategy against the insiders can be done using linear pro-
gramming, which is computationally more efficient than the Adversarial HSVI
algorithm used for outsiders. It rises a question of whether strategies against the
insiders applied against the outsiders are significantly worse than the strategies
optimized against the outsiders. In Table 2 we show the expected attacker’s util-
ities of various defense strategies against different attacker models. The attacker

Table 2. Discounted expected amount of data that the attacker can exfiltrate if defense
strategy (row) is optimized against the attacker in the “Strategy against” column,
played against the different type of attackers (columns). The intervals for the outsiders
represent lower and upper bounds of the optimal value.

Strategy against Insider, additive Insider, replacement Outsider, additive Outsider, replacement

Mixed insider, add 3.56MB 26.58MB (3.56, 4.84)MB (23.51, 29.5)MB

insider, rep 5.91MB 23.71MB (5.59, 8.33)MB (23.71, 32.72)MB

outsider, add 3.69MB 27.59MB (2.67, 3.32)MB (20.24, 27.59)MB

outsider, rep 3.71MB 27.59MB (2.42, 3.4)MB (18.59, 26.35)MB

Pure insider, add 5.03MB 33.59MB (3.58, 4.43)MB (24.54, 29.95)MB

insider, rep 5.03MB 33.59MB (3.58, 4.43)MB (24.54, 29.96)MB

outsider, add 5.03MB 33.59MB (3.72, 4.49)MB (24.55, 29.95)MB

outsider, rep 5.03MB 33.59MB (3.58, 4.42)MB (24.17, 29.87)MB
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of type (columns) plays a best response against the defense strategy (rows),
where each defense strategy was optimized against attackers listed in column
“Strategy against”. For example, if we apply insider with additivity (resp. with
replacement) to the outsider with additivity (resp. replacement), than the loss
is between 24% and 45%. However, if we compute a defense strategy against
the insider with replacement and apply it against the outsider with additivity,
than the defender can lose up to 150% (comparing upper bounds) more than
if the appropriate strategy is used, which is significantly worse. Therefore, it
is beneficial for the network administrator to apply appropriate mixed defense
strategies against different attacker models. The pure strategies do not have such
big utility difference between various attacker models, due to the high similarity
of all defense strategies. However, all of them have quite high loss compared to
mixed strategies.

6.4 Effect of the Additivity

We now analyze how the uncertainty of the attacker’s behavior affects the
defender’s strategy for the choice of thresholds. We created users with behavior
of a normal distribution with varying standard deviation parameter. In Fig. 6
we show how the defense strategy against the insider with additivity changes
given that the standard deviation of the user’s behavior increases. Note that in
the case where the user’s behavior is constant (low standard deviation), it is
optimal to choose a pure strategy with threshold at the user’s mean behavior. If
the attacker chooses any non-zero action, the sum of the observation and action
will exceed the threshold and attacker is detected. If the defender’s behavior
is spread, the pure strategy is ineffective. It would have to be set at quantile
1−FP due to the false-positive rate, and the attacker has a single best response
action with highest expected reward. By mixing the thresholds, the defender
can decrease the attacker’s expected utility for a specific action and make the
expected utility equal for an interval of actions (similarly, as was done for host
type 3 in Fig. 4f).

Fig. 6. Optimal defense strategies for users with standard activity of Normal distri-
bution with μ = 220 and standard deviations σ = 2i, where i is given parameter.
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This suggests that the users with close to constant behavior can be consid-
ered as the safest, as any exfiltration can be easily detected. For the users with
uncertain behavior, the optimal defense strategies is to randomize among several
thresholds, which forces the attacker to attacker weaker.

6.5 Algorithm Scalability

In Fig. 7a we present runtimes (note the logarithmic scale) for different numbers
of host-types. All experiments were run on an Intel Xeon E5-2650 2.6 GHz with
time limit 2 h. Strategies against the insider were computed in under 1 s, as they
require single linear program computation. Adversarial HSVI, which iteratively
improves the solution runs for between ten seconds and two hours, depending on
the parameters of the problem. Even if problem was smaller (see outsider with
two host types), the runtime could take longer than for seven host types. The
reason is that the algorithm can temporarily get stuck in sequences of solutions
with no or very little improvements. This is similar with the original HSVI.
In Fig. 8 we show the relative error ε in each iteration for one and four host
types. Our algorithm suffers with plateaus even more than HSVI, as the defender
chooses initial belief with the lowest lower bound point every iteration. Despite
the fact that Adversarial HSVI with |Λ| = 4 has 4 times more states, it is able
to escape the plateau earlier than with |Λ| = 1. In Fig. 7b we show that the
algorithm scales exponentially (note logarithmic y axis) with increasing number
of actions, thresholds and observations.

Fig. 7. (a) Runtime for increasing number of host types. (b) Runtime for increasing
number of actions, thresholds, and observations.

Fig. 8. ε error progress during computation strategies for outsider with replacement
with 1 and 4 number of types.
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All our case study strategies were computed with |A| = |Θ| = |O| = 15, error
ε = 20% and number of host types |Λ| = 7 within 2 h. This demonstrates that
the algorithm can be used to solve practically large problems. Moreover, HSVI
and therefore Adversarial HSVI algorithms are easy to parallelize, which further
improves the applicability of the presented approach.

7 Conclusion

Since computer networks, deployed defenses, and attacks are becoming more
complex, developing effective decision support tools is critical for improving secu-
rity. It is particularly difficult to consider the impact of all possible attacker’s
counteractions when the network administrator applies new defenses. Game the-
ory provides a means to model these interactions and algorithms to compute the
optimal strategies of the involved parties. We use the framework of game the-
ory to model the problem of data exfiltration as a sequential game between the
attacker and the network administrator. Sequential modeling allows us to model
the decreasing value of data and the increasing chance of detection over time,
as well as the development of attacker’s knowledge about the network and user
behavior and evolving attack strategy.

We propose two algorithms for computing (near) optimal defender strategies
and bounds on their performance. For the case that the attacker does not need to
learn the behavior of the attacked host, we specify a linear programming formu-
lation for computing the optimal strategies. This situation typically corresponds
to attacks by insiders, such as employees, who know the standard behavior of the
hosts in the network. For the more complex situation with an attacker learning
the upload behavior, we developed an algorithm based on recent results in solv-
ing single-player sequential decision-making problems. The algorithm computes
strategies that optimally weigh whether to attack aggressively from the begin-
ning and risk detection or to carefully learn the host type from observations and
focus on exfiltration afterward.

Using real-world user traffic, we validate that the proposed algorithms are
sufficiently scalable to analyze realistic problems. The results of our case study
show that richer models produce substantially better strategies. For example,
when facing the external attacker that does not replace the original traffic, the
simple heuristic defense strategies let the attacker exfiltrate three times more
data than the strategy optimized against a perfectly informed attacker using the
linear program. Similarly, this strategy performs worse than the strategy opti-
mized by Adversarial HSVI against the learning opponent. Our results further
show that randomized defense strategies are up to 30% more effective in pre-
venting data exfiltration compared to deterministic strategies. This is especially
important when the attacker keeps the existing traffic intact, and the amounts
of data transferred by the hosts vary substantially.

The attackers that know the exact behavior of the compromised host can exfil-
trate by 7%–12% more data than the external attackers who have to learn it.
Furthermore, a substantially more effective mitigation of data exfiltration is pos-
sible if the users are clustered into groups with similar behavior and a different
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detection strategy is used for each group. In our case study, the optimal strat-
egy without the clustering allows the attacker to exfiltrate approximately three
times more data than the optimal strategy using the clusters. Finally, we show
that regardless of any other considered assumptions, if the attacker can replace
the standard traffic of the compromised host, he can exfiltrate up to 6 times more
data than the attacker who merely mixes his exfiltration traffic into the host’s typ-
ical behavior. Therefore, monitoring the presence of the standard traffic (e.g., by
expecting fake pre-scheduled transfers) may be a very effective countermeasure
for decreasing the possible harm of data exfiltration.
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