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Abstract. Road accidents are the leading causes of death of youths and
young adults worldwide. Efficient traffic enforcement has been conclu-
sively shown to reduce high-risk driving behaviors and thus reduce acci-
dents. Today, traffic police departments use simplified methods for their
resource allocation (heuristics, accident hotspots, etc.). To address this
potential shortcoming, in [23], we introduced a novel algorithmic solu-
tion, based on efficient optimization of the allocation of police resources,
which relies on the prediction of accidents. This prediction can also
be used for raising public awareness regarding road accidents. How-
ever, significant challenges arise when instantiating the proposed solution
in real-world security settings. This paper reports on three main chal-
lenges: (1) Data-centric challenges; (2) Police-deployment challenges; and
(3) Challenges in raising public awareness. We mainly focus on the data-
centric challenge, highlighting the data collection and analysis, andprovide
a detailed description of how we tackled the challenge of predicting the
likelihood of road accidents. We further outline the other two challenges,
providing appropriate technical and methodological solutions including an
open-access application for making our prediction model accessible to the
public.

1 Introduction

Every year the lives of approximately 1.25 million people are cut short and
between 20 and 50 million people suffer disability or other severe injuries as
a result of severe road accidents (accidents that cause death or injury) [29].
Efficient traffic enforcement can reduce the number and severity of severe road
accidents by giving drivers the feeling that they are likely to be caught and sanc-
tioned when breaking the law [11]. Road safety agencies have already identified
the need for improvement in traffic enforcement and it is now an integral part
of many countries’ road safety policies [12]. Traffic police resources cannot cover
the entire road network given the limited number of police cars and officers [7],
and therefore some allocation mechanism is needed.

To address this challenge, we introduced the Traffic Enforcement Allocation
Problem (TEAP) in a previous work [23]. TEAP is represented as an optimiza-
tion problem which is shown to be NPH for approximation within any constant
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factor. TEAP relies on a pre-defined road network which is associated with two
functions: (1) a function for measuring the likelihood that a severe traffic acci-
dent will occur on any road segment at any time; (2) a function for measuring the
effect that the police allocation (both past and present) has on the risk of acci-
dents occurring on any road at any time. Despite its computational complexity,
realistically sized TEAPs can be solved efficiently using a newly proposed relaxed
optimization technique named ROSE which leverages the TEAPs’ characteris-
tics. Nevertheless, despite its appealing theoretical properties and its practical
promise, several challenges need to be addressed before the proposed model and
solution can be applied in real-world traffic enforcement settings.

This paper presents the challenges that arise from our current effort to apply
the TEAP model and its proposed optimization solution for the Israeli Traffic
Police (ITP). We focus on three main challenges: First, the TEAP assumes that
the road network and all required models which are associated with the road
network are pre-defined and given. Namely, the TEAP assumes that the road
network has already been divided into equally sized road segments, that the risk
that a severe traffic accident will occur on any road at any time is known and that
the effect of police enforcement on the latter is given. We refer to the challenge
of defining and estimating the above as the Data-centric challenge. Second,
several logistical/technical issues need to be addressed. For example, during the
morning shift, the traffic allocation needs to accommodate a lunch break for the
police officers. We refer to these challenges as the Police-deployment chal-
lenges. Lastly, data was gathered during the design and development process.
However, most of the gathered data is confidential and thus cannot be released
to the public. The public may benefit from making some of this data available
in some format which will not jeopardize confidential material. We refer to these
challenges as Challenges in raising public awareness.

In addition to our discussion on the above challenges and the provided techni-
cal and methodological solutions, this paper also provides a “behind the scenes”
view of the process of moving from a theoretical model, tested in lab-settings,
to an actual deployed system in field trials on the roads.

2 Related Work and Background

Recent studies suggest that drivers respect traffic laws mainly due to enforce-
ment concerns, rather than safety concerns (e.g., [24]). As a result, efficient traffic
enforcement has been shown to reduce a wide range of high-risk, illegal driving
behaviors, including driving while under the influence of drugs/alcohol, speed-
ing, lack of seatbelt use and red-light running, and thus reduces road accidents
(e.g., [1,3,25]).

Within the Security Games (SG) field, optimal security resource allocation
mechanisms and applications for mitigating various types of crimes have been
developed. The generic SG framework consists of a defender (traffic police) which
has a limited number of resources (police cars) to protect a large set of targets
(road segments) from an adversary (reckless drivers). This approach has led to
a variety of successfully deployed applications for the security of infrastructure
and wildlife [26].
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Other than our previous work [23], Brown et al. [4] is the only work in the
scope of SG which addresses traffic enforcement. The authors model the prob-
lem as a Stackelberg Security Game (SSG) where traffic police seek to apprehend
reckless drivers who in turn seek to avoid apprehension. In a SSG, the traffic
police commit to a mixed strategy that drivers can first observe and then use
in order to best respond. However, several practical issues make existing SG-
based solutions seem unsuitable for the task of mitigating severe car accidents.
First, traffic enforcement seeks to reduce road accidents (and not necessarily to
apprehend reckless drivers) [12]. Second, over 4 decades of traffic enforcement
literature shows that drivers are acting in a less strategical manner, reacting to
observed police presence in the past and the present as well as on the current
road and other roads in the vicinity [9]. While non-strategical adversaries in SG
settings have recently been addressed (e.g., modeled as opportunistic criminals
[32]), existing solutions do not account for the above challenges when combined.
If we translate these seemingly technical issues into theoretical ones, we can
identify that traffic enforcement is in fact a non-Markovian and coupled allo-
cation problem. Namely, past police actions and states influence future states
(non-Markovian), and police cars should coordinate their actions (coupled).

The TEAP model, which we propose in [23], addresses the above issues.
TEAP leverages on the fact that, according to police enforcement experts, if
police cars are stationed at the same place and time, their effectiveness in reduc-
ing road accidents cannot be assumed to be greater than the effectiveness of a
single police car at the same point and time. In a TEAP, the interaction between
drivers and police is modeled as a repeated game over T (< ∞) rounds, which
takes place on a road network, represented as a graph G = 〈V,E〉 where V = {v}
is the set of intersections and E = {e = (u, v)} is the set of road segments. The
graph is then extended into a transition graph such that each vertex v (edge e)
is replicated T times, one for each round, denoted vt (et), assuming that it takes
one unit of time to traverse each road (see [31] for an extended discussion of
the use of transition graphs). Each vt in the transition graph is associated with
the number of police cars that start their trajectories in it minus the number
of police cars that end their trajectory in it, denoted bvt

. The bvt
values are

assumed to be known in advance and cannot be changed by the police. Every
road segment and time, et, is associated with an indicator H[et] which assumes
the value of 1 if a police resource is allocated to et. The allocation history of
the police resources until time t (including) is denoted as Ht. The risk of acci-
dents occurring at et is denoted as risk(et). The risk function measures the
likelihood that a severe traffic accident will occur at et in the absence of police
enforcement (in the [0, 1] range). The effectiveness of enforcement is denoted as
eff(Ht, et). eff measures the effect that the police allocation history has on the
risk of accidents occurring at et. Consequently, the TEAP is formulated as the
following mathematical program:

min
HT

∑

t

∑

et

risk(et) · (1 − eff(et,Ht)) (1)
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s.t
∑

v′
t−1

Ht[(v′
t−1, vt)t−1]

−
∑

v′
t+1

Ht+1[(vt, v′
t+1)t+1] = bvt

∀vt ∈ GT (2)

HT [et] ∈ {0, 1} ∀e, t (3)

Complete details and source code, including a master-slave optimization tech-
nique for solving the TEAP, are presented and evaluated in [23]. We refer the
reader to the original paper for a thorough discussion about the TEAP’s benefits
and limitations.

Generally speaking, security settings are often very dynamic and complex,
which may make it impractical to capture all of the necessary characteristics
of the designated domain in a general game model built in a lab [21]. As a
result, when moving from a theoretical model, tested in lab-settings, to an actual
deployed system in field trials, different challenges arise. Therefore, despite the
evidence showing the benefits of the above TEAP formulation, several data and
logistical challenges prevent it from being implemented in the field as an “off-
the-shelf” product. Furthermore, some of the assumptions made in the original
formulation do not hold in practice, which necessitates the modification of the
proposed formulation.

It is common to consider ARMOR as the first deployed SG system [22].
The system was deployed at the Los Angeles International Airport (LAX) in
2007 in order to randomize checkpoints on the roadways entering the airport as
well as canine patrol routes within the airport terminals. For its deployment,
the authors faced different challenges, mainly in instantiating their model to
the LAX environment and increasing organizational acceptance of the proposed
solution [16]. For example, the defender’s payoffs were hard-coded after a series of
interviews with airport security personnel. In addition, in order to allow security
personnel the needed flexibility to adjust and change the provided allocation, an
“override” option was added to the system. These insights are integrated in this
work as well. Note that ARMOR provides a static allocation of security resources,
which does not account for the spatio-temporal aspects of traffic enforcement.

A more similar system to ours, which also requires transition-based schedul-
ing, is the TRUSTS system which is designed for fare-evasion deterrence in urban
transit systems [31]. Similar to traffic enforcement settings, the TRUSTS sys-
tem also allows defender resources to move across a graph structure over time.
In deploying TRUSTS, several issues had to be addressed, with the prominent
one being execution uncertainty [8]. In real world trials, a significant fraction of
the executions of the pre-generated schedules got interrupted for a variety of rea-
sons (e.g., writing citations, felony arrests, etc.), causing the officers to miss the
train that they were supposed to take. Despite the resemblances between the two
domains, exact timing is of far lesser significance in traffic enforcement as tempo-
ral constraints are more flexible than in transit system enforcement. Specifically,
traffic enforcement officers are not bound to a fixed train schedule and thus
delays have less far-reaching consequences on a planned schedule. According to
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ITP experts, traffic police schedules are usually macro-managed, for example,
enforcement of a road segment is scheduled in hours and not minutes, thus officers
can better plan their actions and adapt to changes in real time. Therefore, delays
do not pose a big concern in our setting. Several parameters of the TRUSTS for-
mulation are estimated from available data such as ridership of different trains.
Other parameters, which are more complex to estimate given available data,
are estimated using non-data-driven methods (e.g., the uncertainty parameter).
Similarly, in this work, most parameters are learned directly from Israeli-based
data such as the risk of accidents occurring at each road segment and time which
are estimated based on 11 years of collected data. Other parameters, such as the
effectiveness of enforcement efforts which are much harder to learn, are estimated
using other sources (in our case, past literature).

To the best of our knowledge, the most recently deployed application is PAWS
[30]. PAWS is designed to combat illegal poaching through the optimization of
human patrol resources. However, initial field tests of PAWS have revealed sev-
eral data-centric and deployment-centric challenges [13]. For example, it turns
out that the PAWS grid-based model does not capture important factors which
may hinder the quality of the provided allocation and even prevents patrollers
from completing their tasks, such as terrain elevation and accessibility. Further-
more, in the original model, PAWS assumed that many parameters are fixed and
known, however, due to animal movement and seasonal changes, this assump-
tion does not hold. Similarly, in this work, in order to deploy the proposed traffic
enforcement solution, important factors are integrated within our modified model
and certain assumptions are relaxed.

Data gathering always poses a great challenge in the development and deploy-
ment of security-based applications. Unfortunately, this data is usually withheld
from the public. In traffic enforcement, one usually encounters aggregated sta-
tistics on the number of accidents and their severity on a monthly or even yearly
basis. Releasing some of the gathered data and its analysis to the public in
an efficient and natural way could potentially help raise public awareness to
road dangers, help drivers trade off travel time, distance and safety, and help in
achieving our main goal – reducing the number of road accidents. In this paper,
we provide such a publicly available system without jeopardizing the police’s
interests.

3 Data-Centric Challenges

Obtaining and leveraging the “right” data is a challenge for most SG-based
systems (e.g., [17,19]). To instantiate the TEAP formulation in Israel, we had
to address four cardinal data-related challenges: (1) building a road network
(Sect. 3.1); (2) extending the road network into a transition graph (Sect. 3.2);
(3 + 4) deriving risk and eff models which are associated with the constructed
graph (Sects. 3.3 and 3.4). The solution for each of the above four challenges
constitutes a component in our solution architecture as illustrated in Fig. 1.
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3.1 Building a Road Network

The TEAP formulation, similar to many other transition-based formulations,
builds on a graph G. In traffic enforcement settings, G represents a road net-
work where the vertices indicate intersections and edges indicate road segments
for enforcement. While it may seem trivial to obtain a network graph from open
source systems such as OpenStreetMap1, the translation of this raw map into a
useful graph raises a number of practical issues and fundamental questions. First,
the ITP does not enforce traffic laws on local roads (e.g., inner-city roads) which
are in the jurisdiction of the local police departments. A näıve solution would
be to omit the roads and intersections in question from the graph. However, this
omission may disconnect the graph, which is undesired. Second, some of a road’s
features such as the speed limit and number of lanes may change over different
parts of the road. In order to construct a suitable prediction model for risk, a
challenge we address in Sect. 3.3, one should be able to identify these features for
each road segment e. Unfortunately, these features are hard to obtain and are
usually aggregated according to some road segmentation by the data collector.
In Israel, this data is collected by both the ITP and the Central Bureau of Sta-
tistics (denoted CBS, www.cbs.org.il). Finally, it is well known that achieving
organizational acceptance of SG-based solutions is a highly complex task (see
Sect. 4). Therefore, using a police-defined road segmentation, when available, is
preferable. Police-based segmentation can also encapsulate other domain spe-
cific knowledge and constraints, for example, on a narrow road segment without
shoulders it may be impossible or highly undesirable to perform enforcement
from the police’s perspective. Therefore, using police-planned enforcement seg-
ments has significant benefits.

Based on the discussion above, we sought to use the police-based segmenta-
tion. However, in the initial stage of the research, the ITP did not allow us access
to their segmentation (see Sect. 4). Therefore, we used the CBS’s road network.
In a much later phase of the research, after the publication of [23] which relied
on the CBS’s road network, more than a year and a half after the project was
initiated, the police segmentation was made available to us. Unfortunately, the
police segmentation is far from perfect. Despite its resemblance to the CBS’s
segmentation, ample effort had to be invested to transform the provided seg-
mentation into a complete, connected and valid road network. Namely, in many
cases, adjunct roads were not marked as such; some road segments were overlap-
ping by mistake while others were disjointed despite being physically connected,
etc. Therefore, we manually processed the police segmentation on the basis of
the CBS’s network (about 40 human hours). We denote the resulting road net-
work graph as G from this point onwards. G consists of several hundred road
segments.

The above is illustrated as Component A in our solution architecture,
Fig. 1.

1 https://www.openstreetmap.org.

www.cbs.org.il
https://www.openstreetmap.org
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Fig. 1. High-level solution architecture

3.2 Extending G into a Transition Graph

According to the TEAP’s original formulation, G is extended into a transi-
tion graph by replicating each vertex and edge T times. Thus, the formulation
assumes that at each time step a police car is assigned to enforce a different
road segment. Namely, each police car can perform a single action at each road
e given that it is present at e. The formulation also assumes that the enforcement
action takes exactly 1 time unit. While this is reasonable in theory, in practice a
police car may either engage in various types of enforcement (e.g., using speed-
guns to catch speeding cars or randomly choosing drivers on whom to perform
breathalyzer tests in order to catch drunk drivers) or in transit (moving across
the road network without enforcement so as to reach the intended enforcement
site). As a result, the solution to the original TEAP does not prescribe which
enforcement should be conducted but only where and when. Furthermore, the
solution is limited to only enforcement actions, which according to ITP experts
take significantly longer than simple transit actions.

In order to adequately extend G into a practical transition graph, we amend
the TEAP formulation in the following way: We denote A = {α1, α2, . . . , αn} as
the set of actions that a police car can take at every road segment and time. Jain
et al. [16] found that providing a very detailed allocation and micro-managing
resources does not get as positive a reception from users. Instead, the authors
suggest using more abstract instructions, which they found to be better received.
Therefore, we simplify the model by assuming two actions, Enforce and Transit,
and leave the investigation of different enforcement options for future work. Let
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l(e, t, αi) denote the time it takes for a police car to perform action αi in road
segment e at time t. Then, G is extended such that each vertex v is replicated
T times, denoted {vt}. If an edge e = (u, v) exists in G, then two types of
edges are added for each t < T to the transition graph. We use the following
procedure: With accordance to ITP standards, enforcement actions are set to
1 h (regardless of e and t), therefore an enforcement edge is drawn from each
ut to vt+60. On the other hand, transit edges depend on the travel duration of
road segment e at time t. Therefore, for each ut an edge is drawn to vt+l(e,t)

where l(e, t) is the estimated travel time to cross e at time t according to Google
Maps (https://maps.google.com).2 Unfortunately, the above procedure does not
suffice when representing the real world. The TEAP formulation relies on the
assumption that no two police cars should enforce the same road segment at
the same time. However, although not common in practice, this rule does not
necessarily apply to transit actions, where more than one police car can be
present on the same road and at the same time. We investigated this issue
empirically, we first duplicated each transit edge by the number of police cars
available. Namely, for each edge e = <u, v> in G and t, we created multiple
transit edges to connect ut and vt+l(e,t). Practically, under various conditions,
we did not encounter any realistic settings in which more than a single police car
was present on the same road segment at the same time in Israel. Therefore, while
theoretically justified, we avoid replicating transit edges for our deployment. We
denote the resulting transition graph as GT from this point onwards. Note that
the notation vt is still used in its usual meaning. However, notation et is not well
defined since GT has multiple edges (et may denote an enforcement edge or a
transit edge), and therefore will not be used from this point onwards.

Per the ITP’s request, we allow all police cars to start and end their routes at
any intersection by introducing a dummy source vertex which is connected to all
intersections at time 0 and a dummy sink vertex, accessible from all intersections
at time T + 1. Thus, we assign each bvt

= 0. Note that in practical deployment
(Sect. 4) bvt

may assume a value other than zero in cases where a police car
is scheduled to visit a specific intersection at a specific time (e.g., due to road
work) or plans to start its route at a certain intersection (e.g., once the road
work is completed). In such cases bvt

is set appropriately.
The above is illustrated as Component B in our solution architecture,

Fig. 1.

3.3 Modeling risk

The risk function captures the risk of accidents occurring at each road seg-
ment and time. Recently, traffic police forces began implementing the predictive
policing paradigm [20] through which police officers can identify people and loca-
tions which are at increased risk. From a methodological standpoint, the effort
of predicting road accidents has mainly focused on aggregative analysis, most
commonly the prediction of the annual number of severe accidents per road

2 Time was discretized in 10 min time-frames.

https://maps.google.com
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segment, using statistical methods such as empirical Bayes, Poisson or negative
binomial regression models [5,15]. Such aggregation is limited in its use to police
forces as the allocation of traffic police enforcement requires a prediction on a
much more finely grained level. According to experts in traffic enforcement, the
state-of-the-art prediction model is the one used by the Indiana traffic police
https://www.in.gov/isp/ispCrashApp/main.html. The Indiana system does not
consider each road segment separately but instead covers the Indiana state map
(including residential areas) with a grid of 1 km by 1 km squares and provides a
prediction as to the risk of a severe accident occurring at each square in three-
hour time-frames. According to our discussion with the Indiana traffic police, the
prediction model uses approximately 90 features and achieves an Area Under the
Curve (AUC) of approximately 0.8. In this paper, we were able to construct a
prediction model that provides beneficial predictions for each road segment on
one hour time-frames by using a unique set of 122 features and 11 years of col-
lected data that achieves an AUC of 0.89. Our model is available at http://www.
biu-ai.com/trafficPolice/ in order to encourage other researchers to tackle the
important and challenging task of preventing severe road accidents.

We obtained the records of 11 years of accident reports from the Israeli CBS
(2005–2015). By cross-referencing these reports with additional sources such as
the Israeli GIS database and the Israeli Meteorological Service (IMS, www.ims.
gov.il) weather reports, we were able to characterize each accident using a unique
set of 122 features. The features are divided into 3 categories: (1) infrastructure
features; (2) date and time features; and (3) traffic features. To the best of our
knowledge, this is the largest set of features ever to be used to predict severe car
accidents.

Infrastructure Features. The geography of Israel is very diverse, with desert
conditions in the south and snow-capped mountains in the north. It is customary
to divide Israeli into 3 regions: North, South and Center. These three regions
differ significantly in their population and land use. For example, the central
region is a metropolitan area (e.g., the Tel-Aviv metropolis) characterized by
dense urban building and high-tech land use whereas the southern region is
mostly a desert which consists of rural low-density residential areas for the most
part [3 features]. The ITP further divides Israeli into 15 districts according to
geographic criteria [15 features].

Each road segment is characterized according to its type (e.g., highway) [7
features], its length in km [1 feature], the number of lanes [7 features], the posted
speed limit [5 features], road signals [2 features], road width [5 features], whether
a traffic light is present on the road segment [2 feature], road surface conditions
(e.g., gravel/paved) [6 features] and whether the road is lit up at night [5 fea-
tures]. Unfortunately, to date, we were unable to obtain additional features that
have been shown to affect the prevalence of road accidents in past literature.
These features include the existence of road shoulders, the road segment’s cur-
vature, incline/decline etc.

https://www.in.gov/isp/ispCrashApp/main.html
http://www.biu-ai.com/trafficPolice/
http://www.biu-ai.com/trafficPolice/
www.ims.gov.il
www.ims.gov.il
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Date and Time Characteristics. We characterize the date using the month
of the year [12 features], day of the week [7 features] and an indicator whether
it is a weekday, weekend, holiday, holiday evening or another type of special day
[5 features]. Time is characterized on an hourly scale [24 features] and by an
indicator of whether it is daytime or nighttime [2 features].

In addition, we characterize the weather in the vicinity of the road segment at
the given time using the publicly available IMS reports and forecasts [4 features].

Traffic Characteristics. While the infrastructure characteristics do not change
frequently, the traffic that goes through the road segments changes rapidly over
time. We characterize the traffic by its volume [1 feature] and average speed [5
features]. Traffic volume is provided by the CBS and average speeds are provided
by the ITP. We further identify the number of severe accidents which have
occurred on that road segment in the prior 30, 90, 180 and 365 days [8 features].

Training a Deep Neural Network. Using more than 30,000 accident records
(accidents that took place between 2005 and 2015 in Israel) and undersampling
the “non-accident” class (see [6]), we trained a deep neural network model. The
model receives, as input, vectors of 122 features (as described above) representing
a road segment and time. The model returns a value in the [0, 1] range, acting
as a proxy to the likelihood of an accident occurring on that road at that time.
Note that severe accidents are sporadic events in both time and space. Therefore,
directly estimating the probability of accidents occurring on any road segment
at any time is extremely challenging.

Our network consists of 3 layers, 1024 × 512 × 1, where the hidden layer uses
the common RelU activation function. Several other architectures were tested
and found to be of lower quality in terms of AUC.

We compared our prediction model to several baseline prediction models,
such as logistic regression, SVM and XGBoost. The latter is currently in use by
the Indiana traffic police for the same task. Our model achieves an AUC of 0.89,
outperforming logistic regression, SVM and XGBoost, which recorded 0.78, 0.77
and 0.82, respectively, using 10-cross validation.

Using entropy-based ranking feature selection [14], we identify 5 groups of
high ranking features in the following order of importance: (1) number of past
accidents; (2) traffic volume; (3) road type; (4) speed limit; and (5) weather. Con-
trary to what the authors initially expected, among the lowest ranking features
one would find: (1) day of the week; (2) month of the year; and (3) enforcement
district. We plan to further analyze these results in order to provide additional
practical suggestions for the ITP.

The above is illustrated as Component C in our solution architecture,
Fig. 1.

3.4 Modeling eff

The eff function measures the effect that the police allocation history has on
the risk of accidents occurring on any road segment at any time. Unfortunately,
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as discussed in Sect. 4, getting the ITP’s allocation history was very difficult.
We only gained access to a single month’s allocation in 2017. Unfortunately,
the allocation was recorded in the format of GPS coordinates which police cars
report once every few minutes while on duty. Translating these GPS coordinates
into a usable format which will allow us to understand when and where a police
car was enforcing the law, driving through a road segment or handling other
events (e.g., a traffic police car may be temporarily assigned to assist police
patrol cars) is extremely complex. For example, a police car may stay for some
time at a gas station. The police car may be refueling, there may be a technical
problem with the police car that needs fixing, or the police may be having a
lunch break or enforcing the law on a nearby road. We are currently working
with the ITP on a methodology to address the above issues in the future.

Isolating the effect that the police allocation has on the likelihood of road
accidents is extremely complex regardless of the above mentioned issues. First,
endogeneity is a big concern. Naturally, police cars are likely to be stationed on
dangerous roads. Näıve statistical inference may conclude that the presence of a
police car increases the likelihood of accidents. The endogeneity problem is par-
ticularly relevant in the context of time series analysis of causal processes, which
is the case in traffic enforcement. Even if we assume that eff is independent of
all other factors within a given period, but is influenced by the average speed
of traffic in the preceding period, then eff is exogenous within the period but
endogenous over time, which poses an additional statistical challenge.

As a result of the above discussion, we base our estimation of eff on [28].
The author used a unique database to track the exact location of the Dallas
Police Department’s patrol cars throughout 2009 and cross-referenced it with
the car accidents of that year. To the best of our knowledge, this is the most
recent investigation of the topic. The author found that on a given road at a
given time, if enforced, eff should assume a value of 36%. However, enforcement
effects are not restricted to the specific time and space in which the enforcement
is performed. For example, time halo is the time and the intensity to which
the effects of enforcement on drivers’ behavior continue after the enforcement
operations have been concluded. It has been recorded that longer enforcement
efforts cause more intense time halo effects that can last for hours and influence
the next day(s) or even week(s) during the same time of day as the enforcement.
Distance halo is defined as the distance over which the effects of an enforcement
operation last after a driver passes the enforcement site. The most frequent
distance halo effects are in the range of 1.5–3.5 km from the enforcement site
(see [9] for a review). In accordance with the ITP’s expert estimations, we define
time halo effects in the exponential diminishing form 36

2k
% where k ≥ 0 is the

hours that have passed since the enforcement effort. To avoid negligible effects,
we prune the effect at k = 3. The distance halo effect is defined to be 5%,
given that the two road segments are adjutant. Given the police allocation, eff
assumes a simple submodular form where eff takes the largest applicable effect
and adds half of each of the smaller appropriate effects to it. For example, if a
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road segment is enforced for two hours straight (and no other time or distance
halo effects are appropriate), eff assumes 45% (= 36% + 18

2 %).
As discussed before, we are currently working towards a more data-driven

approach for modeling eff in Israel.
The above is illustrated as Component D in our solution architecture,

Fig. 1.

4 Police-Deployment Challenges

In order to deploy our model and solution in Israel, several logistical/technical
issues had to be addressed. In this section we discuss challenges which arise from
our interaction with the ITP and do not focus on data.

4.1 Security Clearance

Before any meaningful intersection with the ITP could take place (e.g., allowing
us access to their data), the authors had to obtain security clearance, includ-
ing a 2-hour background check and interview at the ITP headquarters in the
Israeli capital (Jerusalem). The clearance came through about 6 months into the
process.

The clearance that we obtained allowed us full access to ITP informa-
tion. However, due to bureaucratic reasons, obtaining each piece of information
required a long approval process. As a result, at the moment, we do not have
access in real time to important pieces of information such as average speeds.
Note that the ITP does have accurate estimations thereof using anonymized
cellular reports [2].

4.2 Logistics

In order to deploy our model and solution in the real world, logistical con-
straints need to be addressed. There are three main constraints: First, some
police resources may have specific schedule constraints of the form “Officer X
must arrive at traffic court at 2pm and stay there until 3pm to testify in a trial”.
Such constraints are easily integrated within our model by setting the b values
of the intersections in the transition graph appropriately. Second, according to
the ITP, during an 8-hour shift, each police car should have a break of about 1 h
to eat and reach its next destination. The rationale is that the ITP has arranged
various different places for police officers to eat and therefore no special require-
ments should be implemented as to where a police car should have its break.
This break is scheduled for different times, for example, interleaving during the
4th hour of work so as to avoid having all officers on break at the same time.
Specifically, officers are interleaved as to when they would go on a break during
the 4th hour of work such that at least k police cars are not on break at any
given moment (k is a police defined constant). We amend our model by adding
designated “break” vertices during the 4th hour. These vertices are accessible
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from any vertex during the 4th hour and are connected to all vertices which are
one hour later. For example, a police car can go on a break from any location at
12:00, and continue its schedule from any vertex at 13:00. This formulation was
specifically tailored at the request of the ITP. To make sure each police car goes
on a single break, nodes during the 4th hour were duplicated such that every
node had two copies – “pre-break” and “post-break”. Then, pre-break nodes
were disconnected from 5th hour nodes and post-break nodes were disconnected
such that they are only accessible from break nodes or other post-break nodes.
Simply put, a police car can only reach the 5th hour of the shift if it goes though
a post-break node. Naturally, the post-break nodes do not allow re-access to a
break node, ensuring that each police car visits only a single break node on its
path. Third, an unexpected event may cause a police car to deviate from its
schedule. For example, a police car may be sent to clear an unexpected road
block, making its schedule infeasible. The ITP claims that there is no easy way
to determine the likelihood of these unexpected events in the real world, making
the MDP-based approach used by TRUSTS inapplicable. We resolve this issue
as proposed in [8], by assuming perfect execution and only after a non-default
transition occurs does the central command resolve the TEAP starting from the
current state. Yet this requires a quick solution, as the ITP would not accept a
long wait time. Given that the original TEAP formulation (as presented in [23])
was modified in this work, we reevaluated the runtime results of the proposed
solution given the new formulation. Similar to our previous findings, the runtime
of the amended solution does not impose a significant concern. Specifically, given
the modified formulation for allocating 10 police cars for 96 h (4 days, 12 shifts)
in a designated district, the proposed solution runs in approximately 1 min, com-
pared to more than 30 min by a näıve solver as described in the original paper.
Namely, the modifications proposed in this paper do not jeopardize the solution
method’s superiority over baseline methods.

Note that, given a non-default transition, we recalculate the allocation for all
police cars, as local adjustments may produce suboptimal allocations. We plan
to investigate local methods for adjusting infeasible or undesired allocations in
future work.

4.3 Deployment and Evaluation

As a first step, the ITP wanted to know how different our provided allocations are
from their current hand-crafted, time-consuming allocations. Unfortunately, as
mentioned above, usable records of past police allocations are currently unavail-
able. Instead, we were given a list of road segments which the ITP considers to
be of “special enforcement interest”. The list, which consists of approximately
5% of the road segments, was constructed by the ITP’s researchers and acts as
a guideline as to which road segments are the most important to enforce dur-
ing a given month. Generally speaking, the ITP focuses on these road segments
and their surroundings. We generated a schedule for a whole month using the
modified TEAP formulation as described above, and identified the number of
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times a police car was assigned to one of the designated road segments. On aver-
age, a road segment on the list is enforced 25 times more often than other road
segments. Note that the entire list was associated with very high risk scores,
specifically, if road segments were to be sorted according to their average risk
score on any day or at any time, the entire list would be at the top 15% of all
road segments.

There are many challenges when attempting to evaluate deployed SG-based
systems in the field [27]. Specifically, unlike conceptual ideas, where we can run
thousands of careful simulations under controlled conditions, we cannot conduct
such experiments in the real world [18]. We are currently working towards a head-
to-head comparison of our proposed solution against an expert-generated alloca-
tion. Our controlled experiment would take place in two very similar enforcement
districts. During a period of at least one month, one district will use our system
while the other will use an expert-generated allocation. It is hard to believe that
such a comparison will yield a statistically significant difference, due to the fact
that road accidents are very sporadic. A similar problem was encountered in
PAWS, where the authors faced a similar issue of how to quantify the number
of saved wildlife due to their provided solution. The authors instead use human
and animal signs as indicators that PAWS patrols prioritize areas with higher
animal and poacher activity. In the same spirit, we would also record other sta-
tistics such as the average speeds and the number of citations issued by the
police officers, as well as other statistics, as proxies to the allocation’s quality.
Speed has been identified as a key risk factor in road traffic safety, influencing
both the risk of a road crash and the severity of the injury that results from
crashes [10]. Furthermore, a higher number of issued citations can suggest that
the provided solution can avoid the human-generated predictability. Note that
the benefit of our solution, as well as other deployed solutions such as PAWS,
should be expected in the long-term.

5 Raising Public Awareness

Recently, the World Health Organization (WHO) has released a report on road
traffic injuries and how they can be reduced [29]. The WHO mentioned that
governments should take a more holistic approach to mitigating road acci-
dents, which includes not only better enforcement but also the modification of
infrastructure and the raising of public awareness. The WHO further mentions
the latter as one of its own tasks, “sharing information with the public on (road)
risks. . . ”.

As discussed in Sect. 3.3, the Indiana traffic police has provided a visual tool
that uses color shading to show a low, moderate or high probability of a crash
occurring in each 1-square-kilometer area in the state. This interactive map
predicts where crashes are likely to occur across the state of Indiana, so citizens
and law enforcement can be more proactive in avoiding or preventing accidents.
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Despite its publication in the general media, according to the developers, only a
few citizens use the system. We speculate that there are two main reasons for this
disappointing feedback: First, the use of a grid-cell instead of road segments and
the relatively large time frames (3-hours long) make the system less practical for
drivers. Consider a driver who tries to decide which route to take at 8am from one
point to the other. The driver is interested in the risk associated with the different
route options at 8am rather than grid-cells between 8am and 11am. Second, the
system uses a newly designed interface. However, in creating solutions for people,
we must be cognizant to how difficult it will be for a user to adopt our solution.
Each deviation from existing methodology is a step away from the familiar that
we must convince the user to accept [26].

To address these two issues we provide the www.SafeRoad.today open-access
system, which is mounted on the popular Google maps interface. Users can access
our website and review the risk in each road segment in Israel in 1-hour time
frames discretized into 5 risk levels – “very low”, “low”, “average”, “high” and
“very high”. However, unlike the ITP, drivers may not be interested in the risk
of an accident on a road segment but rather their own risk of being involved
in an accident. Therefore we provide 2 layers, one illustrating the risk function
as described in Sect. 3.3, and the other illustrating the risk function after the
normalization by the expected traffic volume. Users can query the system for
risks associated with any road at any time. Another type of query is a route
query. The user can query the system for routes to take her from one point
to another using the regular Google maps interface. Once a query for a route is
made, in addition to the travel time and distance for each possible route provided
by Google maps, the system provides a risk estimation for each route, enabling
the driver to consider the safety factor in her route selection. An additional
layer allows the user to query the system for past road accidents. Given dates
and locations, provided by the user, all severe accidents that occurred during the
designated time and at the designated locations will appear on the map, each
according to the place of the crash. Each accident appears alongside some basic
information regarding the crash such as the date and time, type of crash (e.g.,
a car and a motorcycle), number of injuries, etc. Note that our system does not
jeopardize the confidentiality of police data – it simply does not contain any
restricted data. To the best of our knowledge, our system is the first of its kind.

The SafeRoad.today system joins existing publicly accessible systems
designed for raising public awareness of other road dangers. For example, WAZE3

provides road danger alerts for drivers such as road work, Sustrans4 provides safe
cycle routes, factoring in bike lanes and traffic free routes and Rudder5 provides
safe pedestrian routes, factoring in street lighting.

A snapshot of our system is provided in Fig. 2.

3 https://www.waze.com/livemap.
4 http://www.sustrans.org.uk/ncn/map.
5 https://walkrudder.com/.

https://www.waze.com/livemap
http://www.sustrans.org.uk/ncn/map
https://walkrudder.com/
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Fig. 2. A snapshot from SafeRoad.today system. Risk illustration is as follows:
Red = “Very High”, Orange = “High”, Azure = “Low” and Dark Blue = “Very Low”.
Average risks are not depicted. (Color figure online)

6 Conclusions

In this paper we present key challenges and solutions in transforming a lab-
based theoretical model for mitigating road accidents through efficient enforce-
ment to an operational system in field trials. We focus on three main challenges:
data, deployment and raising public awareness. These challenges, and specif-
ically the data-centric challenges, are very common in security-based applica-
tions. Two important components of our provided solution include a novel traf-
fic accident prediction model, available at http://www.biu-ai.com/trafficPolice/,
and an open-access risk visualization system, SafeRoad.today, which is available
for public use. Our prediction model provides a state-of-the-art prediction tool,
based on 122 features and 11 years of collected data, that we hope will encourage
other researchers and practitioners to tackle the important and challenging task
of preventing severe road accidents. In addition, our SafeRoad.today system is
designed for and targeted at raising public awareness and allowing drivers to
make better decisions. These components, which amend and extend our police
allocation mechanism from [23], combine to provide a viable tool for mitigating
road accidents in Israel and can be adapted to other countries as well.

This “behind the scenes” paper also provides a unique look into the consid-
erations and decisions that developers of deployed security-based applications
have to face. Since the challenges discussed and addressed in this work are not
unique to traffic enforcement, we hope that the provided discussion and insights
will assist others in the process of deploying their security-based systems in the
real world.

http://www.biu-ai.com/trafficPolice/
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