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Preface

Contemporary information and communication technology evolves fast not only in
terms of sophistication, but also in diversity. The increasing complexity, pervasiveness,
and connectivity of today’s information systems raises new challenges to security, and
cyberspace has become a playground for people with all levels of skills and all kinds of
intention (positive and negative). With 24/7 connectivity having become an integral
part of people’s daily life, protecting information, identities, and assets has gained more
importance than ever. While oil and coal have been the most important commodities in
past centuries, information is the commodity of the twenty-first century, and cyber-
warfare is widely about gaining the most of the resource “information,” as much as past
decades have seen wars for land or wealth.

Traditional security has successfully accomplished a long way toward protecting
well-defined goals like confidentiality, integrity, availability, and authenticity (CIA+).
However, the term “security” has evolved into meaning much more than CIA+ these
days. The Internet is surely an indispensable supporting infrastructure, but also an
equally rich source of threats. Around the beginning of the new millennium, a para-
digm extension in the field can be observed, with the first scientific considerations on
how game theory can be used for security. Although the situation between an attacker
and a defender being the most natural incarnation of non-cooperative competition, it
comes somewhat as a surprise that it took until the new millennium for the first
scientific work on game theory applied to security. Ever since then, interest in the field
has grown rapidly, and game theory and decision theory have become a systematic and
well-proven powerful fundament of today’s security research. Indeed, while conven-
tional security aims at preventing an anticipated set of forbidden actions that make up
the respective security model, game theory and decision theory take a different and
more economic viewpoint: Security is not the absence of threats, but the point where
attacking a system has become more expensive than not attacking. Starting from a
game and decision theoretic root thus achieves the most elegant form of security, by
analyzing and creating incentives to actively encourage honest behavior rather than
preventing maliciousness. At the same time, the economic approach to security is
essential as it parallels the evolution of today’s attackers. Cybercrime has grown into a
full-featured economy, maintaining black markets, supply chains, and widely resem-
bling an illegal counterpart of the official software market. Traditional security remains
an important fundament for tackling the issue from below, but game- and decision
theory offer the top—down view by adopting the economic and strategic view of the
attackers too, and as such complements purely technological security means.

The optimum is, of course, achieved when both routes are taken toward meeting in
the middle, and this is what the GameSec conference series initiated in 2010 in Berlin,
Germany. It brings together internationally recognized researchers from the security
field, optimization, economics, and statistics, to discuss challenges and advance solu-
tions to contemporary security issues. Following the success of this first scientific event
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of its kind, subsequent conferences were organized in College Park Maryland (USA,
2011), Budapest (Hungary, 2012), Fort Worth Texas (USA, 2013), Los Angeles (USA,
2014), London (UK, 2015), New York (USA, 2016), and this year in Vienna, Austria,
during October 23-25.

In all these years, GameSec has showcased a continuously increasing number of
novel, high-quality theoretical and practical contributions to address issues like privacy,
trust, infrastructure security, green security, and many more, and densely connected a
scientific community of experts all over the globe and from various fields of computer
science, economics, and mathematics, under the common goal of security. This year
continued this tradition, and we are proud to present a new set of high-quality scientific
contributions to advance security. The program of GameSec 2017 featured 28 full
papers, selected from a total of 71 submissions, based on three reviews per paper.
Submissions were received from all over the world, which underpins the global rele-
vance of security and the methods pursued by the community. In addition, a special
track on “Data-Centric Models and Approaches” was introduced in recognition of the
problem of gathering and analyzing data about security incidents. Companies and
security agencies may be reluctant in releasing such information to protect their rep-
utation or the targets of attack. The special track’s focus was thus on gathering data and
building models from it, and as such contributed to closing this gap between theory and
practice.

We would like to thank the Austrian Institute of Technology for hosting this year’s
event, and we also thank Springer for its continuous support of the conference series,
by publishing this book as part of the Lecture Notes in Computer Science (LNCS)
series. We hope that you enjoy reading as much as we enjoyed compiling this volume.
Let us together take this step toward the next level of security!

October 2017 Stefan Rass
Bo An

Christopher Kiekintveld

Stefan Schauer

Fei Fang
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Optimizing Traffic Enforcement:
From the Lab to the Roads

Ariel Rosenfeld!(®) | Oleg Maksimov?, and Sarit Kraus?

1 Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel
arielrosl@gmail.com
2 Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel

Abstract. Road accidents are the leading causes of death of youths and
young adults worldwide. Efficient traffic enforcement has been conclu-
sively shown to reduce high-risk driving behaviors and thus reduce acci-
dents. Today, traffic police departments use simplified methods for their
resource allocation (heuristics, accident hotspots, etc.). To address this
potential shortcoming, in [23], we introduced a novel algorithmic solu-
tion, based on efficient optimization of the allocation of police resources,
which relies on the prediction of accidents. This prediction can also
be used for raising public awareness regarding road accidents. How-
ever, significant challenges arise when instantiating the proposed solution
in real-world security settings. This paper reports on three main chal-
lenges: (1) Data-centric challenges; (2) Police-deployment challenges; and
(3) Challenges in raising public awareness. We mainly focus on the data-
centric challenge, highlighting the data collection and analysis, and provide
a detailed description of how we tackled the challenge of predicting the
likelihood of road accidents. We further outline the other two challenges,
providing appropriate technical and methodological solutions including an
open-access application for making our prediction model accessible to the
public.

1 Introduction

Every year the lives of approximately 1.25 million people are cut short and
between 20 and 50 million people suffer disability or other severe injuries as
a result of severe road accidents (accidents that cause death or injury) [29].
Efficient traffic enforcement can reduce the number and severity of severe road
accidents by giving drivers the feeling that they are likely to be caught and sanc-
tioned when breaking the law [11]. Road safety agencies have already identified
the need for improvement in traffic enforcement and it is now an integral part
of many countries’ road safety policies [12]. Traffic police resources cannot cover
the entire road network given the limited number of police cars and officers [7],
and therefore some allocation mechanism is needed.

To address this challenge, we introduced the Traffic Enforcement Allocation
Problem (TEAP) in a previous work [23]. TEAP is represented as an optimiza-
tion problem which is shown to be NPH for approximation within any constant

© Springer International Publishing AG 2017
S. Rass et al. (Eds.): GameSec 2017, LNCS 10575, pp. 3-20, 2017.
DOI: 10.1007/978-3-319-68711-7_1
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factor. TEAP relies on a pre-defined road network which is associated with two
functions: (1) a function for measuring the likelihood that a severe traffic acci-
dent will occur on any road segment at any time; (2) a function for measuring the
effect that the police allocation (both past and present) has on the risk of acci-
dents occurring on any road at any time. Despite its computational complexity,
realistically sized TEAPs can be solved efficiently using a newly proposed relaxed
optimization technique named ROSE which leverages the TEAPS’ characteris-
tics. Nevertheless, despite its appealing theoretical properties and its practical
promise, several challenges need to be addressed before the proposed model and
solution can be applied in real-world traffic enforcement settings.

This paper presents the challenges that arise from our current effort to apply
the TEAP model and its proposed optimization solution for the Israeli Traffic
Police (ITP). We focus on three main challenges: First, the TEAP assumes that
the road network and all required models which are associated with the road
network are pre-defined and given. Namely, the TEAP assumes that the road
network has already been divided into equally sized road segments, that the risk
that a severe traffic accident will occur on any road at any time is known and that
the effect of police enforcement on the latter is given. We refer to the challenge
of defining and estimating the above as the Data-centric challenge. Second,
several logistical/technical issues need to be addressed. For example, during the
morning shift, the traffic allocation needs to accommodate a lunch break for the
police officers. We refer to these challenges as the Police-deployment chal-
lenges. Lastly, data was gathered during the design and development process.
However, most of the gathered data is confidential and thus cannot be released
to the public. The public may benefit from making some of this data available
in some format which will not jeopardize confidential material. We refer to these
challenges as Challenges in raising public awareness.

In addition to our discussion on the above challenges and the provided techni-
cal and methodological solutions, this paper also provides a “behind the scenes”
view of the process of moving from a theoretical model, tested in lab-settings,
to an actual deployed system in field trials on the roads.

2 Related Work and Background

Recent studies suggest that drivers respect traffic laws mainly due to enforce-
ment concerns, rather than safety concerns (e.g., [24]). As a result, efficient traffic
enforcement has been shown to reduce a wide range of high-risk, illegal driving
behaviors, including driving while under the influence of drugs/alcohol, speed-
ing, lack of seatbelt use and red-light running, and thus reduces road accidents
(e.g., [1,3,25]).

Within the Security Games (SG) field, optimal security resource allocation
mechanisms and applications for mitigating various types of crimes have been
developed. The generic SG framework consists of a defender (traffic police) which
has a limited number of resources (police cars) to protect a large set of targets
(road segments) from an adversary (reckless drivers). This approach has led to
a variety of successfully deployed applications for the security of infrastructure
and wildlife [26].
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Other than our previous work [23], Brown et al. [4] is the only work in the
scope of SG which addresses traffic enforcement. The authors model the prob-
lem as a Stackelberg Security Game (SSG) where traffic police seek to apprehend
reckless drivers who in turn seek to avoid apprehension. In a SSG, the traffic
police commit to a mixed strategy that drivers can first observe and then use
in order to best respond. However, several practical issues make existing SG-
based solutions seem unsuitable for the task of mitigating severe car accidents.
First, traffic enforcement seeks to reduce road accidents (and not necessarily to
apprehend reckless drivers) [12]. Second, over 4 decades of traffic enforcement
literature shows that drivers are acting in a less strategical manner, reacting to
observed police presence in the past and the present as well as on the current
road and other roads in the vicinity [9]. While non-strategical adversaries in SG
settings have recently been addressed (e.g., modeled as opportunistic criminals
[32]), existing solutions do not account for the above challenges when combined.
If we translate these seemingly technical issues into theoretical ones, we can
identify that traffic enforcement is in fact a non-Markovian and coupled allo-
cation problem. Namely, past police actions and states influence future states
(non-Markovian), and police cars should coordinate their actions (coupled).

The TEAP model, which we propose in [23], addresses the above issues.
TEAP leverages on the fact that, according to police enforcement experts, if
police cars are stationed at the same place and time, their effectiveness in reduc-
ing road accidents cannot be assumed to be greater than the effectiveness of a
single police car at the same point and time. In a TEAP, the interaction between
drivers and police is modeled as a repeated game over T(< oo) rounds, which
takes place on a road network, represented as a graph G = (V| E) where V = {v}
is the set of intersections and E = {e = (u,v)} is the set of road segments. The
graph is then extended into a transition graph such that each vertex v (edge e)
is replicated T times, one for each round, denoted v; (e;), assuming that it takes
one unit of time to traverse each road (see [31] for an extended discussion of
the use of transition graphs). Each v; in the transition graph is associated with
the number of police cars that start their trajectories in it minus the number
of police cars that end their trajectory in it, denoted b,,. The b,, values are
assumed to be known in advance and cannot be changed by the police. Every
road segment and time, e;, is associated with an indicator H|[e;] which assumes
the value of 1 if a police resource is allocated to e;. The allocation history of
the police resources until time ¢ (including) is denoted as Hy. The risk of acci-
dents occurring at e; is denoted as risk(e;). The risk function measures the
likelihood that a severe traffic accident will occur at e; in the absence of police
enforcement (in the [0, 1] range). The effectiveness of enforcement is denoted as
eff(Hy, e;). eff measures the effect that the police allocation history has on the
risk of accidents occurring at e;. Consequently, the TEAP is formulated as the
following mathematical program:

rII}iTn;eztrisk(et) (1 — eff(e, Hy)) (1)
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Complete details and source code, including a master-slave optimization tech-
nique for solving the TEAP, are presented and evaluated in [23]. We refer the
reader to the original paper for a thorough discussion about the TEAP’s benefits
and limitations.

Generally speaking, security settings are often very dynamic and complex,
which may make it impractical to capture all of the necessary characteristics
of the designated domain in a general game model built in a lab [21]. As a
result, when moving from a theoretical model, tested in lab-settings, to an actual
deployed system in field trials, different challenges arise. Therefore, despite the
evidence showing the benefits of the above TEAP formulation, several data and
logistical challenges prevent it from being implemented in the field as an “off-
the-shelf” product. Furthermore, some of the assumptions made in the original
formulation do not hold in practice, which necessitates the modification of the
proposed formulation.

It is common to consider ARMOR as the first deployed SG system [22].
The system was deployed at the Los Angeles International Airport (LAX) in
2007 in order to randomize checkpoints on the roadways entering the airport as
well as canine patrol routes within the airport terminals. For its deployment,
the authors faced different challenges, mainly in instantiating their model to
the LAX environment and increasing organizational acceptance of the proposed
solution [16]. For example, the defender’s payoffs were hard-coded after a series of
interviews with airport security personnel. In addition, in order to allow security
personnel the needed flexibility to adjust and change the provided allocation, an
“override” option was added to the system. These insights are integrated in this
work as well. Note that ARMOR provides a static allocation of security resources,
which does not account for the spatio-temporal aspects of traffic enforcement.

A more similar system to ours, which also requires transition-based schedul-
ing, is the TRUSTS system which is designed for fare-evasion deterrence in urban
transit systems [31]. Similar to traffic enforcement settings, the TRUSTS sys-
tem also allows defender resources to move across a graph structure over time.
In deploying TRUSTS, several issues had to be addressed, with the prominent
one being execution uncertainty [8]. In real world trials, a significant fraction of
the executions of the pre-generated schedules got interrupted for a variety of rea-
sons (e.g., writing citations, felony arrests, etc.), causing the officers to miss the
train that they were supposed to take. Despite the resemblances between the two
domains, exact timing is of far lesser significance in traffic enforcement as tempo-
ral constraints are more flexible than in transit system enforcement. Specifically,
traffic enforcement officers are not bound to a fixed train schedule and thus
delays have less far-reaching consequences on a planned schedule. According to
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ITP experts, traffic police schedules are usually macro-managed, for example,
enforcement of a road segment is scheduled in hours and not minutes, thus officers
can better plan their actions and adapt to changes in real time. Therefore, delays
do not pose a big concern in our setting. Several parameters of the TRUSTS for-
mulation are estimated from available data such as ridership of different trains.
Other parameters, which are more complex to estimate given available data,
are estimated using non-data-driven methods (e.g., the uncertainty parameter).
Similarly, in this work, most parameters are learned directly from Israeli-based
data such as the risk of accidents occurring at each road segment and time which
are estimated based on 11 years of collected data. Other parameters, such as the
effectiveness of enforcement efforts which are much harder to learn, are estimated
using other sources (in our case, past literature).

To the best of our knowledge, the most recently deployed application is PAWS
[30]. PAWS is designed to combat illegal poaching through the optimization of
human patrol resources. However, initial field tests of PAWS have revealed sev-
eral data-centric and deployment-centric challenges [13]. For example, it turns
out that the PAWS grid-based model does not capture important factors which
may hinder the quality of the provided allocation and even prevents patrollers
from completing their tasks, such as terrain elevation and accessibility. Further-
more, in the original model, PAWS assumed that many parameters are fixed and
known, however, due to animal movement and seasonal changes, this assump-
tion does not hold. Similarly, in this work, in order to deploy the proposed traffic
enforcement solution, important factors are integrated within our modified model
and certain assumptions are relaxed.

Data gathering always poses a great challenge in the development and deploy-
ment of security-based applications. Unfortunately, this data is usually withheld
from the public. In traffic enforcement, one usually encounters aggregated sta-
tistics on the number of accidents and their severity on a monthly or even yearly
basis. Releasing some of the gathered data and its analysis to the public in
an efficient and natural way could potentially help raise public awareness to
road dangers, help drivers trade off travel time, distance and safety, and help in
achieving our main goal — reducing the number of road accidents. In this paper,
we provide such a publicly available system without jeopardizing the police’s
interests.

3 Data-Centric Challenges

Obtaining and leveraging the “right” data is a challenge for most SG-based
systems (e.g., [17,19]). To instantiate the TEAP formulation in Israel, we had
to address four cardinal data-related challenges: (1) building a road network
(Sect. 3.1); (2) extending the road network into a transition graph (Sect.3.2);
(3+4) deriving risk and eff models which are associated with the constructed
graph (Sects. 3.3 and 3.4). The solution for each of the above four challenges
constitutes a component in our solution architecture as illustrated in Fig. 1.
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3.1 Building a Road Network

The TEAP formulation, similar to many other transition-based formulations,
builds on a graph G. In traffic enforcement settings, G represents a road net-
work where the vertices indicate intersections and edges indicate road segments
for enforcement. While it may seem trivial to obtain a network graph from open
source systems such as OpenStreetMap’, the translation of this raw map into a
useful graph raises a number of practical issues and fundamental questions. First,
the ITP does not enforce traffic laws on local roads (e.g., inner-city roads) which
are in the jurisdiction of the local police departments. A naive solution would
be to omit the roads and intersections in question from the graph. However, this
omission may disconnect the graph, which is undesired. Second, some of a road’s
features such as the speed limit and number of lanes may change over different
parts of the road. In order to construct a suitable prediction model for risk, a
challenge we address in Sect. 3.3, one should be able to identify these features for
each road segment e. Unfortunately, these features are hard to obtain and are
usually aggregated according to some road segmentation by the data collector.
In Israel, this data is collected by both the ITP and the Central Bureau of Sta-
tistics (denoted CBS, www.cbs.org.il). Finally, it is well known that achieving
organizational acceptance of SG-based solutions is a highly complex task (see
Sect. 4). Therefore, using a police-defined road segmentation, when available, is
preferable. Police-based segmentation can also encapsulate other domain spe-
cific knowledge and constraints, for example, on a narrow road segment without
shoulders it may be impossible or highly undesirable to perform enforcement
from the police’s perspective. Therefore, using police-planned enforcement seg-
ments has significant benefits.

Based on the discussion above, we sought to use the police-based segmenta-
tion. However, in the initial stage of the research, the ITP did not allow us access
to their segmentation (see Sect.4). Therefore, we used the CBS’s road network.
In a much later phase of the research, after the publication of [23] which relied
on the CBS’s road network, more than a year and a half after the project was
initiated, the police segmentation was made available to us. Unfortunately, the
police segmentation is far from perfect. Despite its resemblance to the CBS’s
segmentation, ample effort had to be invested to transform the provided seg-
mentation into a complete, connected and valid road network. Namely, in many
cases, adjunct roads were not marked as such; some road segments were overlap-
ping by mistake while others were disjointed despite being physically connected,
etc. Therefore, we manually processed the police segmentation on the basis of
the CBS’s network (about 40 human hours). We denote the resulting road net-
work graph as G from this point onwards. G consists of several hundred road
segments.

The above is illustrated as Component A in our solution architecture,
Fig. 1.

! https://www.openstreetmap.org.
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3.2 Extending G into a Transition Graph

According to the TEAP’s original formulation, G is extended into a transi-
tion graph by replicating each vertex and edge T times. Thus, the formulation
assumes that at each time step a police car is assigned to enforce a different
road segment. Namely, each police car can perform a single action at each road
e given that it is present at e. The formulation also assumes that the enforcement
action takes exactly 1 time unit. While this is reasonable in theory, in practice a
police car may either engage in various types of enforcement (e.g., using speed-
guns to catch speeding cars or randomly choosing drivers on whom to perform
breathalyzer tests in order to catch drunk drivers) or in transit (moving across
the road network without enforcement so as to reach the intended enforcement
site). As a result, the solution to the original TEAP does not prescribe which
enforcement should be conducted but only where and when. Furthermore, the
solution is limited to only enforcement actions, which according to ITP experts
take significantly longer than simple transit actions.

In order to adequately extend G into a practical transition graph, we amend
the TEAP formulation in the following way: We denote A = {a1, a9, ..., an} as
the set of actions that a police car can take at every road segment and time. Jain
et al. [16] found that providing a very detailed allocation and micro-managing
resources does not get as positive a reception from users. Instead, the authors
suggest using more abstract instructions, which they found to be better received.
Therefore, we simplify the model by assuming two actions, Enforce and Transit,
and leave the investigation of different enforcement options for future work. Let
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l(e,t,a;) denote the time it takes for a police car to perform action a; in road
segment e at time ¢. Then, G is extended such that each vertex v is replicated
T times, denoted {v;}. If an edge e = (u,v) exists in G, then two types of
edges are added for each t < T to the transition graph. We use the following
procedure: With accordance to ITP standards, enforcement actions are set to
1h (regardless of e and t), therefore an enforcement edge is drawn from each
ug to veygp. On the other hand, transit edges depend on the travel duration of
road segment e at time ¢. Therefore, for each u; an edge is drawn to vii (e,
where [(e, t) is the estimated travel time to cross e at time ¢ according to Google
Maps (https://maps.google.com).? Unfortunately, the above procedure does not
suffice when representing the real world. The TEAP formulation relies on the
assumption that no two police cars should enforce the same road segment at
the same time. However, although not common in practice, this rule does not
necessarily apply to transit actions, where more than one police car can be
present on the same road and at the same time. We investigated this issue
empirically, we first duplicated each transit edge by the number of police cars
available. Namely, for each edge e = <u,v> in G and ¢, we created multiple
transit edges to connect u; and v;q (. r). Practically, under various conditions,
we did not encounter any realistic settings in which more than a single police car
was present on the same road segment at the same time in Israel. Therefore, while
theoretically justified, we avoid replicating transit edges for our deployment. We
denote the resulting transition graph as G from this point onwards. Note that
the notation v, is still used in its usual meaning. However, notation e; is not well
defined since Gp has multiple edges (e; may denote an enforcement edge or a
transit edge), and therefore will not be used from this point onwards.

Per the ITP’s request, we allow all police cars to start and end their routes at
any intersection by introducing a dummy source vertex which is connected to all
intersections at time 0 and a dummy sink vertex, accessible from all intersections
at time 7"+ 1. Thus, we assign each b,, = 0. Note that in practical deployment
(Sect.4) b,, may assume a value other than zero in cases where a police car
is scheduled to visit a specific intersection at a specific time (e.g., due to road
work) or plans to start its route at a certain intersection (e.g., once the road
work is completed). In such cases b,, is set appropriately.

The above is illustrated as Component B in our solution architecture,
Fig. 1.

3.3 Modeling risk

The risk function captures the risk of accidents occurring at each road seg-
ment and time. Recently, traffic police forces began implementing the predictive
policing paradigm [20] through which police officers can identify people and loca-
tions which are at increased risk. From a methodological standpoint, the effort
of predicting road accidents has mainly focused on aggregative analysis, most
commonly the prediction of the annual number of severe accidents per road

2 Time was discretized in 10 min time-frames.
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segment, using statistical methods such as empirical Bayes, Poisson or negative
binomial regression models [5,15]. Such aggregation is limited in its use to police
forces as the allocation of traffic police enforcement requires a prediction on a
much more finely grained level. According to experts in traffic enforcement, the
state-of-the-art prediction model is the one used by the Indiana traffic police
https://www.in.gov/isp/ispCrashApp/main.html. The Indiana system does not
consider each road segment separately but instead covers the Indiana state map
(including residential areas) with a grid of 1km by 1km squares and provides a
prediction as to the risk of a severe accident occurring at each square in three-
hour time-frames. According to our discussion with the Indiana traffic police, the
prediction model uses approximately 90 features and achieves an Area Under the
Curve (AUC) of approximately 0.8. In this paper, we were able to construct a
prediction model that provides beneficial predictions for each road segment on
one hour time-frames by using a unique set of 122 features and 11 years of col-
lected data that achieves an AUC of 0.89. Our model is available at http://www.
biu-ai.com/trafficPolice/ in order to encourage other researchers to tackle the
important and challenging task of preventing severe road accidents.

We obtained the records of 11 years of accident reports from the Israeli CBS
(2005-2015). By cross-referencing these reports with additional sources such as
the Israeli GIS database and the Israeli Meteorological Service (IMS, www.ims.
gov.il) weather reports, we were able to characterize each accident using a unique
set of 122 features. The features are divided into 3 categories: (1) infrastructure
features; (2) date and time features; and (3) traffic features. To the best of our
knowledge, this is the largest set of features ever to be used to predict severe car
accidents.

Infrastructure Features. The geography of Israel is very diverse, with desert
conditions in the south and snow-capped mountains in the north. It is customary
to divide Israeli into 3 regions: North, South and Center. These three regions
differ significantly in their population and land use. For example, the central
region is a metropolitan area (e.g., the Tel-Aviv metropolis) characterized by
dense urban building and high-tech land use whereas the southern region is
mostly a desert which consists of rural low-density residential areas for the most
part [3 features]. The ITP further divides Israeli into 15 districts according to
geographic criteria [15 features].

Each road segment is characterized according to its type (e.g., highway) [7
features], its length in km [1 feature], the number of lanes [7 features], the posted
speed limit [5 features|, road signals [2 features], road width [5 features], whether
a traffic light is present on the road segment [2 feature], road surface conditions
(e.g., gravel/paved) [6 features] and whether the road is lit up at night [5 fea-
tures]. Unfortunately, to date, we were unable to obtain additional features that
have been shown to affect the prevalence of road accidents in past literature.
These features include the existence of road shoulders, the road segment’s cur-
vature, incline/decline etc.


https://www.in.gov/isp/ispCrashApp/main.html
http://www.biu-ai.com/trafficPolice/
http://www.biu-ai.com/trafficPolice/
www.ims.gov.il
www.ims.gov.il
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Date and Time Characteristics. We characterize the date using the month
of the year [12 features], day of the week [7 features] and an indicator whether
it is a weekday, weekend, holiday, holiday evening or another type of special day
[5 features]. Time is characterized on an hourly scale [24 features] and by an
indicator of whether it is daytime or nighttime [2 features].

In addition, we characterize the weather in the vicinity of the road segment at
the given time using the publicly available IMS reports and forecasts [4 features].

Traffic Characteristics. While the infrastructure characteristics do not change
frequently, the traffic that goes through the road segments changes rapidly over
time. We characterize the traffic by its volume [1 feature] and average speed [5
features|. Traffic volume is provided by the CBS and average speeds are provided
by the ITP. We further identify the number of severe accidents which have
occurred on that road segment in the prior 30, 90, 180 and 365 days [8 features].

Training a Deep Neural Network. Using more than 30,000 accident records
(accidents that took place between 2005 and 2015 in Israel) and undersampling
the “non-accident” class (see [6]), we trained a deep neural network model. The
model receives, as input, vectors of 122 features (as described above) representing
a road segment and time. The model returns a value in the [0, 1] range, acting
as a proxy to the likelihood of an accident occurring on that road at that time.
Note that severe accidents are sporadic events in both time and space. Therefore,
directly estimating the probability of accidents occurring on any road segment
at any time is extremely challenging.

Our network consists of 3 layers, 1024 x 512 x 1, where the hidden layer uses
the common RelU activation function. Several other architectures were tested
and found to be of lower quality in terms of AUC.

We compared our prediction model to several baseline prediction models,
such as logistic regression, SVM and XGBoost. The latter is currently in use by
the Indiana traffic police for the same task. Our model achieves an AUC of 0.89,
outperforming logistic regression, SVM and XGBoost, which recorded 0.78, 0.77
and 0.82, respectively, using 10-cross validation.

Using entropy-based ranking feature selection [14], we identify 5 groups of
high ranking features in the following order of importance: (1) number of past
accidents; (2) traffic volume; (3) road type; (4) speed limit; and (5) weather. Con-
trary to what the authors initially expected, among the lowest ranking features
one would find: (1) day of the week; (2) month of the year; and (3) enforcement
district. We plan to further analyze these results in order to provide additional
practical suggestions for the ITP.

The above is illustrated as Component C in our solution architecture,
Fig. 1.

3.4 Modeling eff

The eff function measures the effect that the police allocation history has on
the risk of accidents occurring on any road segment at any time. Unfortunately,
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as discussed in Sect. 4, getting the ITP’s allocation history was very difficult.
We only gained access to a single month’s allocation in 2017. Unfortunately,
the allocation was recorded in the format of GPS coordinates which police cars
report once every few minutes while on duty. Translating these GPS coordinates
into a usable format which will allow us to understand when and where a police
car was enforcing the law, driving through a road segment or handling other
events (e.g., a traffic police car may be temporarily assigned to assist police
patrol cars) is extremely complex. For example, a police car may stay for some
time at a gas station. The police car may be refueling, there may be a technical
problem with the police car that needs fixing, or the police may be having a
lunch break or enforcing the law on a nearby road. We are currently working
with the ITP on a methodology to address the above issues in the future.

Isolating the effect that the police allocation has on the likelihood of road
accidents is extremely complex regardless of the above mentioned issues. First,
endogeneity is a big concern. Naturally, police cars are likely to be stationed on
dangerous roads. Naive statistical inference may conclude that the presence of a
police car increases the likelihood of accidents. The endogeneity problem is par-
ticularly relevant in the context of time series analysis of causal processes, which
is the case in traffic enforcement. Even if we assume that eff is independent of
all other factors within a given period, but is influenced by the average speed
of traffic in the preceding period, then eff is exogenous within the period but
endogenous over time, which poses an additional statistical challenge.

As a result of the above discussion, we base our estimation of eff on [28].
The author used a unique database to track the exact location of the Dallas
Police Department’s patrol cars throughout 2009 and cross-referenced it with
the car accidents of that year. To the best of our knowledge, this is the most
recent investigation of the topic. The author found that on a given road at a
given time, if enforced, eff should assume a value of 36%. However, enforcement
effects are not restricted to the specific time and space in which the enforcement
is performed. For example, time halo is the time and the intensity to which
the effects of enforcement on drivers’ behavior continue after the enforcement
operations have been concluded. It has been recorded that longer enforcement
efforts cause more intense time halo effects that can last for hours and influence
the next day(s) or even week(s) during the same time of day as the enforcement.
Distance halo is defined as the distance over which the effects of an enforcement
operation last after a driver passes the enforcement site. The most frequent
distance halo effects are in the range of 1.5-3.5km from the enforcement site
(see [9] for a review). In accordance with the ITP’s expert estimations, we define
time halo effects in the exponential diminishing form ;’—f% where k > 0 is the
hours that have passed since the enforcement effort. To avoid negligible effects,
we prune the effect at & = 3. The distance halo effect is defined to be 5%,
given that the two road segments are adjutant. Given the police allocation, eff
assumes a simple submodular form where eff takes the largest applicable effect
and adds half of each of the smaller appropriate effects to it. For example, if a
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road segment is enforced for two hours straight (and no other time or distance
halo effects are appropriate), eff assumes 45% (=36% + £%).

As discussed before, we are currently working towards a more data-driven
approach for modeling eff in Israel.

The above is illustrated as Component D in our solution architecture,
Fig. 1.

4 Police-Deployment Challenges

In order to deploy our model and solution in Israel, several logistical/technical
issues had to be addressed. In this section we discuss challenges which arise from
our interaction with the ITP and do not focus on data.

4.1 Security Clearance

Before any meaningful intersection with the ITP could take place (e.g., allowing
us access to their data), the authors had to obtain security clearance, includ-
ing a 2-hour background check and interview at the ITP headquarters in the
Israeli capital (Jerusalem). The clearance came through about 6 months into the
process.

The clearance that we obtained allowed us full access to ITP informa-
tion. However, due to bureaucratic reasons, obtaining each piece of information
required a long approval process. As a result, at the moment, we do not have
access in real time to important pieces of information such as average speeds.
Note that the ITP does have accurate estimations thereof using anonymized
cellular reports [2].

4.2 Logistics

In order to deploy our model and solution in the real world, logistical con-
straints need to be addressed. There are three main constraints: First, some
police resources may have specific schedule constraints of the form “Officer X
must arrive at traffic court at 2pm and stay there until 3pm to testify in a trial”.
Such constraints are easily integrated within our model by setting the b values
of the intersections in the transition graph appropriately. Second, according to
the ITP, during an 8-hour shift, each police car should have a break of about 1 h
to eat and reach its next destination. The rationale is that the ITP has arranged
various different places for police officers to eat and therefore no special require-
ments should be implemented as to where a police car should have its break.
This break is scheduled for different times, for example, interleaving during the
4" hour of work so as to avoid having all officers on break at the same time.
Specifically, officers are interleaved as to when they would go on a break during
the 4" hour of work such that at least k police cars are not on break at any
given moment (k is a police defined constant). We amend our model by adding
designated “break” vertices during the 4*" hour. These vertices are accessible
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from any vertex during the 4" hour and are connected to all vertices which are
one hour later. For example, a police car can go on a break from any location at
12:00, and continue its schedule from any vertex at 13:00. This formulation was
specifically tailored at the request of the ITP. To make sure each police car goes
on a single break, nodes during the 4" hour were duplicated such that every
node had two copies — “pre-break” and “post-break”. Then, pre-break nodes
were disconnected from 5** hour nodes and post-break nodes were disconnected
such that they are only accessible from break nodes or other post-break nodes.
Simply put, a police car can only reach the 5 hour of the shift if it goes though
a post-break node. Naturally, the post-break nodes do not allow re-access to a
break node, ensuring that each police car visits only a single break node on its
path. Third, an unexpected event may cause a police car to deviate from its
schedule. For example, a police car may be sent to clear an unexpected road
block, making its schedule infeasible. The ITP claims that there is no easy way
to determine the likelihood of these unexpected events in the real world, making
the MDP-based approach used by TRUSTS inapplicable. We resolve this issue
as proposed in [8], by assuming perfect execution and only after a non-default
transition occurs does the central command resolve the TEAP starting from the
current state. Yet this requires a quick solution, as the ITP would not accept a
long wait time. Given that the original TEAP formulation (as presented in [23])
was modified in this work, we reevaluated the runtime results of the proposed
solution given the new formulation. Similar to our previous findings, the runtime
of the amended solution does not impose a significant concern. Specifically, given
the modified formulation for allocating 10 police cars for 96 h (4 days, 12 shifts)
in a designated district, the proposed solution runs in approximately 1 min, com-
pared to more than 30 min by a naive solver as described in the original paper.
Namely, the modifications proposed in this paper do not jeopardize the solution
method’s superiority over baseline methods.

Note that, given a non-default transition, we recalculate the allocation for all
police cars, as local adjustments may produce suboptimal allocations. We plan
to investigate local methods for adjusting infeasible or undesired allocations in
future work.

4.3 Deployment and Evaluation

As a first step, the ITP wanted to know how different our provided allocations are
from their current hand-crafted, time-consuming allocations. Unfortunately, as
mentioned above, usable records of past police allocations are currently unavail-
able. Instead, we were given a list of road segments which the ITP considers to
be of “special enforcement interest”. The list, which consists of approximately
5% of the road segments, was constructed by the ITP’s researchers and acts as
a guideline as to which road segments are the most important to enforce dur-
ing a given month. Generally speaking, the ITP focuses on these road segments
and their surroundings. We generated a schedule for a whole month using the
modified TEAP formulation as described above, and identified the number of
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times a police car was assigned to one of the designated road segments. On aver-
age, a road segment on the list is enforced 25 times more often than other road
segments. Note that the entire list was associated with very high risk scores,
specifically, if road segments were to be sorted according to their average risk
score on any day or at any time, the entire list would be at the top 15% of all
road segments.

There are many challenges when attempting to evaluate deployed SG-based
systems in the field [27]. Specifically, unlike conceptual ideas, where we can run
thousands of careful simulations under controlled conditions, we cannot conduct
such experiments in the real world [18]. We are currently working towards a head-
to-head comparison of our proposed solution against an expert-generated alloca-
tion. Our controlled experiment would take place in two very similar enforcement
districts. During a period of at least one month, one district will use our system
while the other will use an expert-generated allocation. It is hard to believe that
such a comparison will yield a statistically significant difference, due to the fact
that road accidents are very sporadic. A similar problem was encountered in
PAWS, where the authors faced a similar issue of how to quantify the number
of saved wildlife due to their provided solution. The authors instead use human
and animal signs as indicators that PAWS patrols prioritize areas with higher
animal and poacher activity. In the same spirit, we would also record other sta-
tistics such as the average speeds and the number of citations issued by the
police officers, as well as other statistics, as proxies to the allocation’s quality.
Speed has been identified as a key risk factor in road traffic safety, influencing
both the risk of a road crash and the severity of the injury that results from
crashes [10]. Furthermore, a higher number of issued citations can suggest that
the provided solution can avoid the human-generated predictability. Note that
the benefit of our solution, as well as other deployed solutions such as PAWS,
should be expected in the long-term.

5 Raising Public Awareness

Recently, the World Health Organization (WHO) has released a report on road
traffic injuries and how they can be reduced [29]. The WHO mentioned that
governments should take a more holistic approach to mitigating road acci-
dents, which includes not only better enforcement but also the modification of
infrastructure and the raising of public awareness. The WHO further mentions
the latter as one of its own tasks, “sharing information with the public on (road)
risks...”.

As discussed in Sect. 3.3, the Indiana traffic police has provided a visual tool
that uses color shading to show a low, moderate or high probability of a crash
occurring in each 1-square-kilometer area in the state. This interactive map
predicts where crashes are likely to occur across the state of Indiana, so citizens
and law enforcement can be more proactive in avoiding or preventing accidents.
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Despite its publication in the general media, according to the developers, only a
few citizens use the system. We speculate that there are two main reasons for this
disappointing feedback: First, the use of a grid-cell instead of road segments and
the relatively large time frames (3-hours long) make the system less practical for
drivers. Consider a driver who tries to decide which route to take at 8am from one
point to the other. The driver is interested in the risk associated with the different
route options at 8am rather than grid-cells between 8am and 11am. Second, the
system uses a newly designed interface. However, in creating solutions for people,
we must be cognizant to how difficult it will be for a user to adopt our solution.
Each deviation from existing methodology is a step away from the familiar that
we must convince the user to accept [26].

To address these two issues we provide the www.SafeRoad.today open-access
system, which is mounted on the popular Google maps interface. Users can access
our website and review the risk in each road segment in Israel in 1-hour time
frames discretized into 5 risk levels — “very low”, “low”, “average”, “high” and
“very high”. However, unlike the ITP, drivers may not be interested in the risk
of an accident on a road segment but rather their own risk of being involved
in an accident. Therefore we provide 2 layers, one illustrating the risk function
as described in Sect. 3.3, and the other illustrating the risk function after the
normalization by the expected traffic volume. Users can query the system for
risks associated with any road at any time. Another type of query is a route
query. The user can query the system for routes to take her from one point
to another using the regular Google maps interface. Once a query for a route is
made, in addition to the travel time and distance for each possible route provided
by Google maps, the system provides a risk estimation for each route, enabling
the driver to consider the safety factor in her route selection. An additional
layer allows the user to query the system for past road accidents. Given dates
and locations, provided by the user, all severe accidents that occurred during the
designated time and at the designated locations will appear on the map, each
according to the place of the crash. Each accident appears alongside some basic
information regarding the crash such as the date and time, type of crash (e.g.,
a car and a motorcycle), number of injuries, etc. Note that our system does not
jeopardize the confidentiality of police data — it simply does not contain any
restricted data. To the best of our knowledge, our system is the first of its kind.

The SafeRoad.today system joins existing publicly accessible systems
designed for raising public awareness of other road dangers. For example, WAZE?
provides road danger alerts for drivers such as road work, Sustrans® provides safe
cycle routes, factoring in bike lanes and traffic free routes and Rudder® provides
safe pedestrian routes, factoring in street lighting.

A snapshot of our system is provided in Fig. 2.

3 https://www.waze.com/livemap.
* http://www.sustrans.org.uk/ncn/map.
5 https://walkrudder.com/.
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6 Conclusions

In this paper we present key challenges and solutions in transforming a lab-
based theoretical model for mitigating road accidents through efficient enforce-
ment to an operational system in field trials. We focus on three main challenges:
data, deployment and raising public awareness. These challenges, and specif-
ically the data-centric challenges, are very common in security-based applica-
tions. Two important components of our provided solution include a novel traf-
fic accident prediction model, available at http://www.biu-ai.com/trafficPolice/,
and an open-access risk visualization system, SafeRoad.today, which is available
for public use. Our prediction model provides a state-of-the-art prediction tool,
based on 122 features and 11 years of collected data, that we hope will encourage
other researchers and practitioners to tackle the important and challenging task
of preventing severe road accidents. In addition, our SafeRoad.today system is
designed for and targeted at raising public awareness and allowing drivers to
make better decisions. These components, which amend and extend our police
allocation mechanism from [23], combine to provide a viable tool for mitigating
road accidents in Israel and can be adapted to other countries as well.

This “behind the scenes” paper also provides a unique look into the consid-
erations and decisions that developers of deployed security-based applications
have to face. Since the challenges discussed and addressed in this work are not
unique to traffic enforcement, we hope that the provided discussion and insights
will assist others in the process of deploying their security-based systems in the
real world.
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Abstract. Pay per last N shares (PPLNS) is a popular pool mining
reward mechanism on a number of cryptocurrencies, including Bitcoin.
In PPLNS pools, miners may stand to benefit by delaying reports of
found shares. This attack may entail unfair or inefficient outcomes. We
propose a simple but general game theoretical model of delays in PPLNS.
We derive conditions for incentive compatible rewards, showing that the
power of the most powerful miner determines whether incentives are
compatible or not. An efficient algorithm to find Nash equilibria is put
forward, and used to show how fairness and efficiency deteriorate with
inside-pool inequality. In pools where all players have comparable com-
putational power incentives to deviate from protocol are minor, but gains
may be considerable in pools where miner’s resources are unequal. We
explore how our findings can be applied to ameliorate delay attacks by
fitting real-world parameters to our model.

1 Introduction

Blockchain is a distributed ledger technology with demonstrated potential to rev-
olutionize industry and commerce [10]. A number of popular cryptocurrencies
based on blockchains have been launched in recent years to unprecedented adop-
tion. These include Bitcoin (BTC) [11], Litecoin (LTC) and Zcash (ZEC) [13],
among others [4]. The main technological innovation behind this drive is the
proof-of-work consensus mechanism [7], which allows for the ledger integrity to
be maintained in a distributed fashion. To achieve this level of decentralization,
the system relies on miners who are incentivized to verify transactions. When
incentives are compatible, rational players will find it in their best interest to
stick to protocol. This paper uses game theory to derive conditions under which a
popular mining reward mechanism, Pay per last N shares (PPLNS), is incentive
compatible.

The Blockchain is a public ledger that keeps transaction information in a
sequence of transaction blocks. Each block contains a hash of the previous block,
and the chain grows as new transactions are verified and added to the chain.
Any agent can add a block to the chain, so the approach relies on cryptographic
puzzles, known as proofs of work, in order to reach consensus. The longest chain,
as measured by computational effort exerted, is assumed to be the consensus
chain. The agents solving the cryptographic puzzles are known as miners, and
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they exchange their computational power for new currency and transaction fees.
The puzzle is randomized in such a way that each miner has a probability of
discovering the next block proportional to their share of computational power
in the network [7].

The mining market is very competitive. Individual miners face large vari-
ances in income. Consequently, most miners pool their computational resources,
sharing the rewards of the pool amongst all members in proportion to the com-
putational effort invested in mining [9]. Through pooling, miners ensure a more
stable income flow. Mining pools are managed by an administrator who will often
collect fees from miners, distributing the rewards when blocks are discovered in
the pool. Miners prove their work on behalf of the pool by discovering “shares”,
which are partial proofs of work. It is assumed that every share requires equal
computational effort. In addition to satisfying the requirement for partial proof
of work, every computed share may in addition qualify as full proof of work.
In the latter case, the pool is rewarded by the Bitcoin network, which issues
new coins and transfers them to the pool’s account. The reward obtained by
the pool is then distributed to the members of the pool, according to its reward
scheme and the submission behaviour of all the pool members. Reward mech-
anisms serve to aggregate shares reported in the pool, so as to perform a fair
distribution according to work.

Early reward mechanisms often rewarded miners in proportion to the amount
of shares submitted by a miner in each round [14]. However, since the distribution
of rewards is exponential, under this scheme, miners may increase their reward
expectation by changing pools frequently. This attack is known as pool hopping,
and discourages honest mining to unsustainable rates [3]. Pay per last N shares
(PPLNS) addresses this issue.

In PPLNS, each miner gets a reward that is proportional to the effort exerted
during the last shares preceding a submitted solution. Since solutions are not
predictable, this reward scheme discourages hoppers who risk losing shares out-
side the range given by N. A simplified scheme of PPLNS is shown in Fig. 1.

In Fig. 1, time flows from left to right, so that the right-most share is the most
recent. A discovered block is marked with a $ sign, and not counted as a share in
PPLNS. In this simple example, we consider only two miners forming the pool
with power a; = 0.6 and as = 0.4 for Miner 1 and Miner 2, respectively. The
length of the window N is 8 shares.

PPLNS is used by many Bitcoin pools, such as Kano [8], P2Pool [12],
AntPool, BCMonster [2], among others. While this reward scheme is resilient
to pool hopping attacks, other vulnerabilities are hypothesized to encourage
dishonest mining [5]. In other words, the incentive compatibility of PPLNS is
questionable [15].

We investigate a new type of attack for PPLNS pools. The idea is that
miners can dishonestly increase their revenue by delaying reports of some of the
shares that were obtained during a round. Instead of submitting share(s) to the
pool manager when these are discovered, an attacker submits them at the end
of the mining round, which will happen only if she finds a full solution. The
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Fig. 1. Schematic explanation of mining in PPLNS pool with 2 miners.

purpose of this paper is to model the strategic incentives behind this kind of
attack, as well as to estimate how damaging it can be to the pool. To do so,
we formulate a simple game capturing the incentives of pool mining, and solve
for Nash equilibria. A PPLNS scheme is incentive compatible if there are Nash
equilibria in which miners do not delay their reports.

The rest of this paper is organized as follows: Sect. 2 contains detailed descrip-
tion of the attack and model that can be used to find equilibria. Conditions
for incentive compatibility are discussed in Sect.3, followed by Sect.4, which
addresses how severe attacks may be in pools that are not incentive compatible.
We discuss our results and their implications in Sect. 5.

2 Model

Our model starts by computing the expected revenue of a pool member, given
the pool composition, pool parameters as well as the rest of Bitcoin network. We
consider the puzzle difficulty, D, to be pre-set at the network level. The PPLNS
window size, N, is set by the pool manager. We also assume a given distribution
of mining power 7; for ¢ in 1,...,m, where m is the size of the pool.

Each miner has two actions upon mining every single share: delay or report.
For every miner i, we compute how the expected monetary reward changes
given these options. The marginal profit for every share depends on the previous
decisions made by the miner as well as the strategies of other miners in the pool.

For an attacking miner, there are two separate phases during every round.
During the first phase, a miner collects shares for delay (does not report any
single share). During the second phase, she reports every newly mined share
immediately. For every miner, there is an individual turning point between these
phases, which depends on the marginal profit of the two actions (delay or not).
The turning point corresponds to the condition when the marginal profit for both
actions is equal, or, when the strategy of the miner reaches its natural limit. The
rationale behind these limits dictates that the number of delayed shares cannot
be less than 0 and cannot exceed N. As soon as the individual turning condition
is satisfied, the miner is in the second phase. In terms of time flow, equilibrium
arises when every miner is beyond their turning point. Throughout the paper, we
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Fig.2. Whole network schematic picture of a successful and an unsuccessful delay
attack.

assume that rounds end some time after this turning point (the validity of this
assumption is addressed in Sect. 4). For simplicity, we define an honest miner as
one who is always in the second phase (delays 0). Likewise, attacking miners are
those who delay at least 1 share in the first phase.

We also assume the following order for the submission of the delayed shares:
if an attacker discovers a full solution of the Bitcoin puzzle, she reports all her
delayed shares first, and reveals the full solution immediately after that. In our
model, reporting shares collected during the first phase happens without time
delays in revealing the full solution.

For an honest miner, the expected reward depends on N and D. Parameter
D is the complexity of finding a full solution and can be expressed as the average
number of shares that need to be mined to discover a full block. Every miner
submits a share that he/she has mined and expects that a number of payments
will be received for that share during the period in which the next N shares are
sent by the pool members (a share will carry no value after this period). The
expectation for that number of payments is % and the value of a single payment
is Rew * %, where Rew is a standard monetary reward for discovering a block.
For simplicity, we omit the constant Rew. Therefore, every miner expects that
every submitted share is worth %.

These honest expectations for share payments change under delay attacks. A
player j can delay an amount of x; € N shares. The effective window size is then
N instead of N; and the effective expected number of shares submitted between
two full solutions, found by the pool, is D instead of D. The reasons causing this
are illustrated on Figs.2 and 3. There are several immediate observations: (1)
if an attacker is successful in finding a full solution she will report her delayed
shares first; (2) due to delaying, the majority of the attackers will lose all the
shares collected during the first phase.

Every reported share will be rewarded in a form of monetary payoff from the
pool manager within the next N subsequent steps. Observation (1) above, implies
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Fig. 3. Inside-pool schematic picture showing how D and N are affected by the delay
attack.

that the expected number of steps when a potential reward can be received will
be reduced (Fig.3). This quantity can be computed as follows:

N =Y (N-zj)r + (1-p)N <N, (1)

here, p* is the probability that the solution is discovered by someone inside the
miner’s pool, i.e., p* = Z;n: 1 ;. Expression (1) can be explained as follows: The
first term, Z;n: 1 (N — x;)71;, accounts for the probability 7;, that miner j finds
the full solution and will reduce the effective period for payment to N —x;. The
second term, (1 — p*)N, accounts for the probability of finding the full solution
outside the pool, (1 —p*). In this case, all the attacking miners lose their delayed
shares and the effective period for payment is N.

Because the majority of the attackers will lose all the shares collected during
the first phase, we can conclude that the amount of shares submitted between
the nearest two full solutions is less than D. This is reflected in expression (2),
which specifies the effective expected number D of shares submitted in the pool
between the full solutions.

[) = Z(l‘j_zxk—FD)Tj+(1—p*)(D—ij):D_ij+ ijTj.
k=1

j=1 j=1 j=1 j=1

Expression (2) can be explained as follows. Miner j will be able to publish
her delayed shares with probability 7;. In this case, all shares delayed by other
attackers will be lost, and, expected number of shares (submitted in the pool
since the last full solution was reported) is (z; — Y., xx + D). Summing up
such expectation for all the miners in the pool, we obtain E;": =0 w +
D)r;. In addition, with probability 1—p* all delayed shares in the pool will be lost
(because the full solution is found by miners outside the pool). This is expressed
via term (1 — p*)(D — ZT:l x;). From (1) and (2) it can be noted that when
z; = 0,Yj, then D = D and N = N.
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Previously, it has been stated that if everybody in the pool is honest, the
expected revenue from reporting a share is %. In contrast, when delaying is
possible any miner expects to be paid % by sending her share to the pool.

Nonetheless, for the share obtained during the first phase (and retained until

the end of the mining round) the expectation of the revenue is different. A player
Jj delaying z; — 1 shares, expects the following reward from delaying one more

share: N
Tj 75Cj
- (1 = .
N( D )

This expression balances the expectation % to be paid once for a share, when j

finds a full solution (with probability 7;). If that happens, she will also be paid

% times in the subsequent rounds.

Now, we can sum up: some of the miners may never delay because it is not
profitable for them to delay a single share; some can delay every mined share
until they collect IV; and, some will collect a number between 0 and N. Thus, a
situation in which miners have no incentive to deviate is found by solving:

5 (1 25m), if0 <z <N,
J\Za: (1 Ym) ron fm=0, V@G0, ()
%<1+%>—Ci if z; = N,

This equation can be explained by the following constraints: (i) x; cannot be
negative — it is impossible to delay a negative number of shares; (ii) x; cannot
exceed N because under PPLNS; only the most recent N shares preceding the full
solution (found by that pool) can be paid. The parameter C; here compensates
unequal profitability of delaying versus honest reporting. One can see that at
x; = 0, reporting may be more profitable for the i-th miner. On the other hand,
at ; = N, delaying can be more profitable than reporting.

The symbols listed in Table1 will be used to define incentive compatibility
and to estimate changes in parameters of PPLNS in case the pool is not incentive
compatible (Sects.3 and 4, respectively).

3 Incentive Compatibility

In this section, we will investigate a condition that guarantees honest mining.
From Eq. (3), the only kind of incentive compatible equilibrium is described as

NNé =3 (1 + %)—!—C’i, Vi (x; = 0,C; > 0) which is equivalent to the following

inequality:

N z”(HN;)‘”"),w,xi—o. (4)
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Table 1. Notation and parameters

Notation Meaning

p* Total mining power of the pool

; Power of miner 4 relative to the mining power of the pool

T Absolute power of miner i, e.g., 7 = a;p*

N Window size, parameter of PPLNS

D Complexity Bitcoin network expressed in (average) number of shares
N Expected number of steps when a reported share can be rewarded

by the pool (case of more than 2 miners that may delay more than
1 share)

D Expected number of shares submitted into the pool during the
period between reporting two consequent full solutions in the same
pool (case of more than 2 miners that may delay more than 1 share)

x; Number of shares delayed by miner j

m Number of miners in the pool

m’ Number of miners who delay shares in the pool

Inability to satisfy expression (4) for a single 7, would mean that the pool will
not mine honestly. For a pool of size m, there are 2™ —1 possible types of deviations
from the mining protocol (each miner can either delay or always report). This
yields a brute force search unfeasible for large values of m. Nonetheless, we will
show that in order to verify incentive compatibility, we do not require exhaustive
search. Instead, we derive a condition that can be checked in a linear time.

To derive conditions for incentive compatibility, it is useful to observe the
following:

1. The set of all deviations needs to be reduced to a set F, |F| < m, of the
deviations which (and only which) may produce an equilibrium (based on
Lemmal)

2. We show that if there is an incentive compatible equilibrium as described by
(4), this equilibrium is unique (Lemma2).

3. A single condition is sufficient and necessary to guarantee (4) (Lemma3).

We start discussing cases that differ from (4). It will be demonstrated that
there are only m other profiles that can be equilibria. We point to the fact that a
delay attack requires that at least one miner delays a positive number of shares.
Further, we show that an equilibrium where for a miner with power 7; delays
are only possible when all other miners with 7, > 7; delay too.

Lemma 1. If there is an equilibrium and a set M of delaying miners with power
i, 1 € M, delaying positive number of shares, then a miner with power Ty is
also delaying if 3k ¢ M, 1, > 7; .

(see Appendix for the proof).
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As result, a miner with power 7 should also be added to the set M of
delaying miners. In the rest of the paper, we assume that miners are assigned
indices according to their mining power sorted in descending order, e.g. 7; > 7;41.
This allows us to label an equilibrium compactly — specifying the index of the
least powerful miner who can delay profitably. Since there are only m miners, we
have at most m types of equilibria that differ from (4). The result from Lemma
1, showing that x; > z;41 will be used in Lemmas 2 and 3.

Lemma 2. The conditions that support incentive compatibility are inconsistent
with any other kind of deviation represented by F.

For delaying miners included in set M information about other delaying
miners may be incomplete. Lemma 2 implies that: under certain conditions, a
miner with power 7; will delay a non-negative number of shares irrespectively of
its inclusion in the set of delaying miners M; expressions (8) and (9) (Appendix)
can be used to calculate directly the number of shares delayed by miner 1.

For incentive compatibility, it is necessary that for the most powerful miner
(with power 71) the delay is not profitable. Using Lemmas 1 and 2, we will
show that a sufficient and necessary condition for incentive compatibility can be
expressed in terms of 7.

Lemma 3. For incentive compatible mining under PPLNS it is sufficient and
necessary that T < NNﬁ.

In other words, an incentive compatible pool requires a bound on the com-
putational power of the most powerful miner. This condition for honest mining
is important, but even if pools are not incentive compatible the incentives to
deviate may be small. The next section explores how these incentives change
when we instantiate our model with realistic parameters.

4 Severity of Delay Attacks in the Real World

We propose an algorithm for equilibrium search, and this allows us to show
how the parameters of the pool affect the likelihood of delaying attacks. The
precondition for our algorithm is existence of equilibria.

To quantify the effect of incentive compatibility it is important to find equi-
librium in the form of (3). The main obstacle here is that (3) represents a system
of piece-wise expressions. For every single expression with index i, the choice of
one out of three different domains affects all expressions in the system.

We use an iterative approach. Consider the schematic illustration on Fig. 4.
Here, pool miners are classified into 3 classes (z = {0, (0, N), N}) according to
the power they have. As it has been discussed previously in Lemma 1, miners
with more power can profitably delay a greater number of shares, which cannot
exceed the size of reward window N. Also, the number of shares cannot be
negative. According to (3), to make C; non-negative, for separate cases x; = 0
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Fig. 4. Illustration of iterative algorithm for equilibrium search.

and x; = N the mining power should be 7; < ﬁ]J\ZN and 7; > %,
However, both N and, D depend on the selection of points a and b (see Fig.4).
As soon as a, b are known, values of = for the domain (0, N') can be calculated

by solving a system of linear equations:

respectively.

m m m
N_ijfrj =7 D—ij—i- ZiﬂjTj-l-N—iCi ,Vi,TiG(a,b),
j=1 j=1 j=1

where one should first substitute z = 0 and £ = N for corresponding indices.
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Fig. 5. Distribution of mining power.

The size of the window (a, b) can potentially change from 0 to m. Therefore,
the left endpoint a can be placed in any position between 1 and m — [, | =
length|(a, b)]. This requires > ;- ,(m — l) iterations with each requiring at most
2 computations (at the endpoints) to check validity of the assumption about a
and b for that iteration. If the assumption is correct, the other [ — 2 roots inside
the window should be calculated. In terms of computation complexity, the whole
procedure requires O(m?).
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In our experiments, we used synthetic as well as real-world data for mining
power distributions. In particular, we consider uniform and normal distributions.
For real-world data, we collected distributions of mining power from Kanopool
and F2pool (see Fig. 5).

In the first part of experiment, we compared the number of miners, who
delay exactly IV shares. In most cases of delay attacks it turns out that a = b
which means that miners are either delaying N shares or not delaying at all.
The number of delaying miners is plotted for the left ordinate versus parameter
k, where N = kD. In addition, the right ordinate scale was used to represent

dependency of parameter % from k (Figs.6 and 7).
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Fig. 6. Synthetic data. Fraction of attacking miners (left ordinate) and parameter D
(right ordinate) for different k. Modelled for pool power p* being 0.1%, 1% and 10% of
the whole Bitcoin network, respectively. Equilibrium is symmetric, Vi (z; € {0, N}).

Nonetheless, the question of cumulative extra profit (for the group of attack-
ers) is, perhaps, the most important for honest miners. Because pool mining is a
zero-sum game, extra profit for one group cause loses for another group of honest
miners in that pool. There are several important differences with the concept of
marginal profit for a share that has been used to find equilibrium [6]. In order to
calculate cumulative extra profit one should consider: (a) extra profit is collected
from those rounds where the full solution is submitted by honest miners of that
pool; (b) an assumption about the duration of mining round is important and
its validity is expressed with certain level of confidence (Fig. 8).

Extra profit is examined for the case when every attacker delays exactly N
shares to the end of a round. Since extra profit is discussed in the context of
successful solving of a puzzle by the pool, for each miner ¢ we will refer to the
power «; in relation to the pool (not the whole Bitcoin network).

If one considers only the circumstances when attackers win a round, their
expected profit is proportional to their power and is equal to what they can earn
in fair mining. This is due to the fact that every miner submits N shares before
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Fig. 7. Real-world mining pools. Fraction of attacking miners (left ordinate) and para-
meter D (right ordinate) for different k. Modelled for pool power p* being 0.1%,
1% and 10% of the whole Bitcoin network, respectively. Equilibrium is symmetric,
A4 (:CZ € {0, N})

releasing a full solution. Such reward distribution is equivalent to solo mining
when a miner collects all the revenue in the case of success.

However, if one considers circumstances when honest miners win, it is clear
that each attacker collects a fraction of the reward which is proportional to
her power in that pool. This can be seen as an additional profit (because they
have already collected their fair portion). Such model of extra profit has one
limitation: we assume that every attacker manages to collect her N shares (for
the delay attack), and, after that, submits no less than ;N shares to the pool.
Therefore, a round should last the time which exceeds that estimation. For a
subgroup of attackers, this happens with a probability determined by the least
powerful miner in that subgroup (because collecting N shares for the attack
takes her the most time). Hence, collective extra payment of any subgroup of
attackers can be obtained with certain level of confidence.

It is assumed that a subgroup of attackers of size [ includes all miners with
power greater or equal than o; (see Lemma 1 for support of this assumption).
For every integer | € [1,m/] (m' is the number of attackers in the pool) we
will calculate: (a) collective extra profit Ej; (b) the conditional probability for a
round to last longer than it takes for the {-th miner (time ¢;) to mine N + oy N
shares, given that the round is won by that pool (i.e., probability p(t;|p*)).
In Fig.8, for every value of N we calculated maximum extra profit F; where
conditional probability p(¢;|p*) is greater than or equal to the corresponding
confidence level C.

The subgroup of attackers exploits honest miners, who earn Rew Zz, 1T
where Rew is the current reward for discovering a full solution in the network
(consisting of 12.5 BTC and transaction fees of up to 13.9 BTC on average).

For the subgroup (size {) of attackers whose total power is le «;, the expected
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Fig. 8. Cumulative extra profit versus parameter k. Pool power is 10% of total network.
Different colors represent profit for infinite length of mining round (max), for an average
round with confidence levels 0.95 and 0.99, respectively. (Color figure online)

collective extra profit Ej is

m l
El:Rew<Z TZ’XZOli).
1

m/+1
The value of p(t;|p*) is calculated as follows:
ty

p(tilp*) =1— ; f(t[p*)dt,

where f(t[p*) = D;*e_ﬁ* is the conditional pdf for finding a full solution.
The time ¢;, necessary for [-th miner to collect NV 4+ ;N shares is specified as

14«
t = W Hence, p(t;|p*) = eiN“lJr’fpl*, and, requiring that p(¢;|p*) > C we
arrive to oy (p*InC + k) < —k, N = kD. Considering that «; is positive, there
is an additional requirement k¥ < —p*In C (it can be seen from Fig. 8 that blue
and green plots are rising from zero level only for k < 5 x 1073). If the latter is
satisfied, we further require that «; > —m, N =kD.

For every k and corresponding C', we find [, such that max(alzp* -
m’, and compute E; (other attackers with indices < [ also pass the test and form
the subgroup that has C-confident cumulative extra profit).

As one can see from the graphs, the extra profit of attackers can be quite
substantial in terms of BTC. Remarkably, real-world power distributions (e.g.,
from Kano pool) lead to sufficiently higher levels of vulnerability to the attack,
when compared with a benchmark uniform distribution of power.

i =<
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5 Discussion

Incentive compatibility is an easily verifiable condition. It only requires infor-
mation about the computational power of the most powerful miner in the pool.
This verification can thus happen in linear time O(m).

It should be stressed that known PPLNS pools comply with the require-
ment of incentive compatibility. For the existing majority of the pools, k varies
between 1 and 5. Nonetheless, this parameter is under the sole control of the
pool administrator who may decide to reduce it in order to satisfy requests from
the majority of the miners.

Looking at pool miner forums, one can easily observe that a substantial
number of miners would like to collect their payments faster. That aspect is
especially important for pools that are not very large and infrequently discover
complete solutions. Miners who join such pools during the winning round often
find themselves in unfair and underpaid situations. The only way to satisfy their
expectations fairly is reducing N, which increases the odds for delay attacks.

In pools that are not incentive compatible, our experimental results show
that the fraction of delaying miners decreases with k, regardless of power dis-
tribution. Also, the shapes of the plots for the pools of different size (but same
power distribution), e.g. 0.1%, 1%, 10% of total network power, are similar. How-
ever, a comparison between different pools reveals that for the same value of k,
known real-world pools may have a higher proportion of attackers compared to
artificially simulated data. This is due to the greater inequality in mining power
distribution in real-world pools such as Kano. For instance, the most powerful
member of a pool can sometimes account for up to a quarter of the pools total
power. This may also be a significant obstacle in satisfying the condition for
incentive compatibility, 7 < kiﬂ, in large pools with relatively small k.

Interestingly, D is non-monotonic on k. Obviously, D cannot be greater than
D, however, the position of its minimum reflects differences in distribution of
mining power in different pools. In addition, greater pool size (e.g. 10% vs 0.1%
of network power) allows for attacks with greater k and that causes a greater
decline in D. The non-monotonic behaviour is due to the following property.
For very small &, the changes in D (compared to D) are insignificant because
the amount of shares that are delayed by every miner is negligibly small. For k
close to the maximum, changes in D are also small due to the fact the number
of attackers is small. Interestingly, the position of minimum in D for Kano pool
(modelling 10% of network power) corresponds to the attack when only two most
powerful miners delay. In contrast to that, for simulated data the same effect is
achieved only when a majority of pool miners attack. Drops in the number of
submitted shares (around 5% for large pools) can serve as a flag feature for pool
administrators, who might detect the anomaly even before the attackers collect
their first extra revenue.

Our plots for cumulative extra profit for a subgroup of attackers are also
non-monotonic. That is because attackers exploit honest miners: when honest
miners earn most the fraction of attackers is small; when fraction of attackers is
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large, honest miners earn little. It should be noted that the red plot (for the both
types of power distribution) stands for maximum collective revenue of attackers
when the whole group of attackers can exploit honest miners. That may happen
only if a round is unlimited in time. Comparing extra profit in real pools with
synthetic data one can notice that for high confidence of estimation, uniform
distribution produces insignificant incentives for dishonest miners (even though
the pool is large, 10%). On the other hand, incentives for dishonest miners may
be quite substantial (up to 0.17 BTC) for a pool with power a distribution that
is like that of the Kano pool.

A PPLNS variant that is adopted in several large pools uses the concept
of sharechain [12]. This assumes that every share is included in a simplified
version of the main Blockchain, making delay attacks impossible by protocol.
On the other hand, it may also cause a negative effect on honest miners. If for
some reason (e.g., network latency) a share is out of sync, it is lost. Dead on
Arrival rates can reach up to 15% of all submitted shares with this scheme. This
is a disadvantage for miners whose network connection is unreliable. In that
sense, traditional PPLNS has an advantage and is unlikely to be replaced in the
near future. Hence, aspects of traditional PPLNS scheme should be analysed
with greater attention. Our model shows, in summary, that equitable pools and
smaller pools are more resilient. This in sharp contrast to the state of the Bitcoin
network.

The analysis of incentive compatibility and related strategic models provide
an opportunity to better understand reward functions in the Blockchain. The
mechanism design of reward functions is a nascent and promising application of
non-cooperative game theory. These models are also useful to evaluate imple-
mentation trade-offs. For example, the so-called Block Withholding Attack [1],
may become less attractive for an attacker who can benefit from delaying. An
adversary delaying shares until the end of the round would be unwilling to dis-
card complete solutions. Also note, for example, that the average number of
shares submitted per discovered block, D, decreases with positive delays. This
reduction may be significant from the perspective of computational and network
load on pool administrators.

A Appendix

Al Remarks

In the proofs, several aspects related to the concept of incentive compatibility
are discussed. For that purpose, it is important to show that:

(1) for the current proofs, we will distinguish only two cases (instead of 3 in
Eq.3) 0 < 2 < N and z = 0. That can be explained by the fact that pool
mining is either entirely honest or not (incentive compatibility questions only
that aspect). The state of incentive compatibility when nobody delays can be
derived from Eq. 3, z; = 0, Vi:

N S N —x;
T <1+ bx>+ci, C, > 0.

ND N
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That is equivalent to
NZ’Q(ﬁﬁ*N*(tl),

or, this is equivalent to the requirement

NZTi<D+N—l‘i>,xi§0, Vi, (5)

The latter notation will be used as it allows to analyse conditions for incentive
compatibility using the roots of a system of linear equations.

(2) One should distinguish between two different situations: a miner ¢ may have
incentives to delay a positive number of shares even if ¢ ¢ M; or, a miner ¢
is included in M and definitely has an incentive to delay. It is assumed that
miners in M do not have information about other delaying miners from outside
M. As a result of inclusion (or not inclusion) in the group of delaying miners
M, the incentive may be different. That is easy to see on the following example:
the amounts of the shares delayed by miners in M depend on their information
about M, but, for i-th miner who is not in M the amount of delayed shares
depends on the information about himself (7;) and the information about the
number of shares that are delayed by miners in M. However, in case i is the only
miner in M, e.g. M = {i} the incentive of the miner ¢ is the same as if M = @.

According to the definition, incentive compatibility is an equilibrium when
M = @ and nobody has an incentive to delay. Nonetheless, it is not clear if a pool
with incentive compatible conditions can be in a state of another equilibrium
when M # &, |M| > 1. Information about M may be incomplete, and, answer to
the question about other (delaying) equilibrium may require certain assumption
about M. In order to resolve that obstacle, we will produce some intermediate
results in Lemmas 1 and 2.

A.2 Lemmas

Lemma 1. If there is an equilibrium and a set M of delaying miners 7;, i € M,
delaying positive number of shares, then miner with power 73, is also delaying if
JkEM, 7 >
Proof. Let’s assume that [ = arg n}\i{nn. Considering ONLY delaying by miners
in the system described by set M, we rewrite (5) and express x; as
ZjeM z;7; — N
==+ D+ N-— ; T 6
! . + D+ Z zj + Z TjTj (6)
JEM JEM

Now, we investigate incentive of a miner with 7, k¥ ¢ M, who has information

about delaying miners from M. As previously, we use (5), however, in that case
additional components with index k is included:

TpTr = Z ;7T + ek — N + T <D+N_ Z zj + Z LjTj — Tk +$k7—k>’
JEM JEM jeEM
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> z;Ty — N
xk(lka):%‘FD‘i’N*‘Zl'j‘i‘.ZCEjTj. (7)
jeEM jeM
Right hand sides of (6) and (7) are identical except of the difference in

. > z;7;—N > z;7;—N . .
denominators of terms =M _———— and =2 Mrk’ ?— respectively. Nominator

> jeMET — N is definitely négative. In the opposite case it would mean that at
least one miner g € M, has incentive to delay x4 > NN shares. One can conclude
this from the fact that > jemTi <p* < 1. Delaying x4 > N is clearly irrational

because PPLNS reward scheme considers only the last N submitted shares.

iemTiTi—N > XiemziTi—N
Tk - TL

arrive to xy (1 — 1) > x;, and because z;, (1 — 71) are non-negative, xy is non-

negative. a

Therefore, as long as 7, > 7. Finally, we

Lemma 2: Conditions that support incentive compatibility are inconsistent with
any other kind of deviation represented by F.

Proof. We organize our proof in the following order. First, some M, |[M| =1,
is considered. That can be expanded by adding index [ + 1 which represents a
miner who can delay profitably. As a result, M — M, |/\/l/| =1+ 1. Two
cases of delay attack will be accounted for a miner with 7; 4 1: attack with M,

attack with M. Expressions for the number of delayed shares (a:l/\fl and xlj\i 13

respectively) will be elaborated for the both cases. It will be demonstrated that
if xlf\i 1 is positive, then xlf\i 1 is positive too, and, vice versa.

Second, we are going show that by reducing M we will arrive to M, |M*| =
1, containing only the most powerful miner of that pool with power 7. That
would mean that a single deviation from incentive compatibility is profitable,
which contradicts with the requirement for equilibrium. This conflicts with our
assumption about incentive compatibility.

(1) Recalling (5) and (6) we can write

T;Ty = Zl‘jTj—N-l-Tj D+N—Zl‘j—|— ijTj R

jem jEM jeM
> xjT; — N
iTj
T; = ieM +D+N—ij+2xj7'j.
=
J jeM jEM

There are [ possible variants for the first and the second equation, respec-
tively, where j = 1,2,...,l. Summing up all the [ variations for each of the
equations, one will obtain:

ZQ?jTjZZ ZLE]'Tj—N + D+N—Zl'j+ ZQ?jTj ZT]',

jeM jeEM jEM jeM jeEM

Zl’j: ijTj—N Z%‘i‘l D-i—N—ij—i—ijTj y

jEM jEM jem J jEM jEM
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respectively. For simplicity, we use the following substitutions: X = > jeMTiT),
. 1 .
Y = Zje/\/{ Tj, p= ZjeM Tj, S = Eje/\/l - Solving system

b

X=I(X-N)+p(D+N+X-Y)
Y=SX-N)+I(D+N+X-Y)

in respect to X and Y we will arrive to the answers X = N + %’

Y =2N+D+ Nu*l;f;ﬁ’;{g?gfl*p). The obtained results are for the system
of configuration M and dimensionality [. In order to re-calculate X,Y for con-
figuration M (dimensionality [ + 1) one would need to replace | with [ 4+ 1, p

with p 4+ 7741, S with S + Til For configuration M we express variable xlj\fl

(which is not yet included in the system) in terms of X, Y™ using (7):

XM _N
l'zAfl(l—Tl+1):T+D+N+XM—YM
+1
_ 1 N(I+1-24+7n1(20-5-1))-D@P+mn(1-1)
T 2—1-p(S—-1) '

, ®)

’ . ’ ’ .
For configuration M we express xlj\fl as an in terms of XM | YM using (6):

M/ XM _N

M =2 T Dy N XM M
Ti+1
L N(+1-%+ma@=S-1)-Dl+na(-0 ¥
) 2 . 1 '
I+1 (I+1)°"—1—B+7m+1) (S+n+1—1)

Now, we are going to compare right-hand sides of Eq.(8) and (9). In the
both cases nominators N (I+1—2p+ 741 (20 —5—1)) = D@+ 7141 (1 —1))
are identical. Our task is to prove that denominators in (8) and (9) 1 — 1 —

p(S—1)and (I+1)* =1 — (p+741) (S + - 1), respectively, are of the

Ti+1

same sign.
We show that expression [2 — 1 —p(S—1) = 2 — pS — (1 —p) is nega-

tive. Clearly, — (1 — p) is negative. Further, it will be proven that 12 — pS < 0.

. ! !
That expression can be represented as 12 — =1 T X D L. Component
- - J

22:1 22:1 :—; has [? terms. Exactly [ out of [? terms are :—j = 1. Among the rest

12 —1 (this number is obviously even for any natural [) terms, there are lzT_l pairs

2 2
(ﬂ Q), i # j. We conclude that = + I = Tt > 9 because (1; — 7'j)2 > 0.
ki i

Tj’T{, TiTj

Denominator (I+1)°> =1 — (p+741) (S+ L 1) from (9) is obtained

Ti+1
from [2 — 1 — p (S — 1) by substituting [ with [ + 1, p with p + 741, S with
S+ -1 Therefore, its sign is identical to 12 — 1 —p (S — 1) from (8) because in

Ti41 "

’

the proof we generalized values for [, p, S. Hence, the both of J;l/‘j_‘l and J:l/\_fl are
the numbers of the same sign.
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(2) Further, the following technique will be used. Posit that the same condi-
tions that provide incentive compatibility may be exploited by a set of miners
M, |[M| =1, to delay profitably. Also, let us assume another case of a set M'~1,
IM!=1| = -1, and a miner with power 7; who has information about M!~*.
In those two cases, miner with power 7; delays profitably according to the proof
provided above. For the latter case, the configuration for delaying equilibrium
can be represented as {M'~!, [}. According to the results from Lemma 1, miner
(I —1) € M!~1 also delays profitably. Therefore, we may consider another pos-
sible configuration {M'=2, [ — 1} for whom delaying is definitely profitable.
Finally, we may arrive to the configuration {M?, 2} where M! contains only
1-st miner with power 71, who can delay profitably. In such case he has an incen-
tive to deviate from honest mining even though the information about actions of
others is not taken into account. That clearly contradicts with the assumption
that incentive compatibility is an equilibrium. a

Lemma 3: For incentive compatible mining under PPLNS it is sufficient and
necessary that m < NNﬁ.

Proof. Condition 71 < can be derived from the requirement N >

_N_
N+D
51 (f) + N — xl), x1 = 0, for special case when M = @ meaning that for the
most powerful miner it is not profitable to delay. From the second part of Lemma
2 it is easy to see why such condition is necessary for incentive compatibility. In
addition, it will be illustrated that it is sufficient. We consider M?! which includes
only the 1-st miner. According to Lemma 1, the number of delayed shares for the
second powerful miner with power of 75 (who is not yet included in M%) is not
positive either, xé\/ll (1—-m) < xf/tl < 0. If we consider M? that includes the
1-st and 2- miners, according to Lemma 2, sign of x5 does not change. Hence,
neither further expansion of M nor considering delay from miners that are not
included in M can produce roots that are entirely positive. This means that no
delaying configuration can be in a state of equilibrium. ad
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Abstract. We study a network security game arising in the interdiction
of fare evasion or smuggling. A defender places a security checkpoint in
the network according to a chosen probability distribution over the links
of the network. An intruder, knowing this distribution, wants to travel
from her initial location to a target node. For every traversed link she
incurs a cost equal to the transit time of that link. Furthermore, if she
encounters the checkpoint, she has to pay a fine.

The intruder may adapt her path online, exploiting additional knowl-
edge gained along the way. We investigate the complexity of computing
optimal strategies for intruder and defender. We give a concise encoding
of the intruders optimal strategy and present an approximation scheme
to compute it. For the defender, we consider two different objectives:
(i) maximizing the intruder’s cost, for which we give an approximation
scheme, and (ii) maximizing the collected fine, which we show to be
strongly NP-hard. We also give a paramterized bound on the worst-case
ratio of the intruders best adaptive strategy to the best non-adaptive
strategy, i.e., when she fixes the complete route at the start.

1 Introduction

Network interdiction problems model the control or halting of an adversary’s
activity on a network. Typically, this is modelled as the interaction between two
adversaries—an intruder and a defender—in the context of a Stackelberg game.
The defender allocates (or removes) scarce resources on the network in order to
thwart the objective of the intruder, who—knowing the defender’s strategy—
reacts by choosing the response strategy optimizing his own objective. Such
models are used to great effect in applications such as disease containment
[11,13], drug traffic interdiction [17], airport security [16], or fare inspection [5].

In order to mitigate the intruder’s advantage of observing the defender’s
actions first, the defender may opt to employ a randomized strategy. The intruder
can only observe the probability distribution of the defender’s actions, but she
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does not know the exact realization. In this work, we study a variant of a network
interdiction problem in which the defender employs such randomization, but the
intruder gains additional information about the realization while she is acting,
and may use this information to adapt her strategy.

Our game is played on a network. The defender randomly establishes a secu-
rity checkpoint on one of the arcs. The intruder wants to move from her initial
location to a designated target node, preferably without being detected by the
defender. Her objective is to minimize her expected cost, which consists of move-
ment costs for traversing arcs and a fine, which has to be paid if she traverses
the arc with the checkpoint. Knowing the probability distribution specified by
the defender and that only one arc is subjected to inspection, the intruder gains
additional information while traveling through the network, observing whether
or not the inspected arc was among those she traversed so far. She may use this
information in order to decide which arc to take next. This type of path-finding
strategy is called adaptive, as opposed to a non-adaptive strategy, in which she
commits to an origin-destination-path at the start and does not deviate from it.

In this paper, we investigate the computational complexity of finding opti-
mal adaptive and non-adaptive strategies for the intruder as well as optimal
randomized strategies for the defender, considering two objectives: (i) the zero-
sum objective of maximizing the intruder’s cost and (ii) the profit mazimization
objective of maximizing the expected collected fine. We also provide bounds on
the cost ratio between optimal adaptive and non-adaptive strategies and the
impact of adaptivity on the defender’s objective.

1.1 Related Work

Stackelberg games, and in particular network interdiction models, are widely
used in the context of security applications; see the textbook by Tambe for an
overview of applications in airport security [16].

A very basic version of a Stackelberg game is the security game studied
by Washburn and Wood [17]. In this zero-sum game, an inspector strives to
maximize the probability of catching an evader, who chooses a path minimizing
that probability. The authors show that optimal strategies for both players can be
computed by a network flow approach. The optimization problem of maximizing
the defender’s profit has been extensively studied in the context of Stackelberg
pricing games [3,9,14]. Here, the defender sets tolls for a subset of the edges
of the network, trying to collect as much tolls as possible from the intruder,
who chooses a path minimizing the sum of the travel costs plus the tolls. As
opposed to the zero-sum game mentioned above, these pricing games are usually
computationally hard to solve.

The particular game we study in this article arises from a variation of
two toll/fare inspection models introduced by Borndérfer et al. [2] and Correa
et al. [5], respectively. In these models, the defender, who represents the net-
work operator, decides an inspection probability for each arc, subject to budget
limiting the total sum of inspection probabilities. The intruder (toll evading
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truck drivers/fare evading passengers) tries to get to her destination minimiz-
ing a combined objective of travel time and expected cost for the fine when
being discovered. Correa et al. [5] also study an adaptive version of the problem,
in which the intruders adapt their behavior as they traverse the network. They
propose an efficient algorithm based on a generalized flow decomposition, and
give a tight bound on the adaptivity gap of 4/3; see Sect.5 for details. In both
the above models, the event of an inspection occurring on a given arc is inde-
pendent to that on all other arcs. In contrast, in our model, the checkpoint can
only be located on a single arc, leading to a different optimization problem for
the intruder.

A different notion of adaptive path-finding was previously studied by
Adjiashvili et al. [1] in the so-called Online Replacement Path problem. Here, a
routing mechanism must send a package between two nodes in a network try-
ing to minimize transit cost. An adversary, knowing the intended route, may
make one of the arcs fail. Upon encountering the failed arc, the package may
be rerouted to its destination along a different path. Note that in this setting
the failing arc is chosen by the adversary after the routing has started, whereas
in our settings the inspection probabilities are determined before the intruder
chooses her path. Computationally, adaptive path-finding is related to short-
est path problems in which there is a trade-off between two cost functions. The
restricted shortest path problem [6,8,10] and the parametric shortest path prob-
lem [4,12] are representative examples of such problems.

1.2 Contribution

We study both adaptive and the non-adaptive path-finding strategies for the
intruder. After observing that the non-adaptive intruder’s problem reduces to
the standard shortest path problem, we turn into the adaptive version, which
turns out to be much more intricate. We show that an optimal adaptive strategy
of the intruder can always be represented by a simple, i.e., cycle-free, path. We
then devise fully polynomial time approximation scheme (FPTAS) for computing
the a near-optimal adaptive strategy with adjustable precision.

By using an approximate version of the equivalence of separation and opti-
mization [15], we also obtain an FPTAS for maximizing the defender’s zero-sum
objective. For the profit objective, on the other hand, we show that the defender’s
optimization problem is strongly NP-hard, ruling out the existence of an FPTAS
(unless P = NP).

We further study the impact of adaptivity on the intruder’s and defender’s
objective. Extending a result by Correa et al. [5], we show that the intruder’s best
non-adaptive strategy is within a factor of 4/3 of the optimal adaptive strategy
and that this ratio decreases for instances where the intruder does not deviate
significantly from her shortest path (which is a natural assumption, e.g., in the
context of transit networks). We also mention that our bound on the adaptivity
gap for the intruder directly translates to several guarantees for the defender’s
zero sum game, e.g., bounding his loss in pay-off when he wrongly believes the
intruder is non-adaptive.
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2 The Model

Before we can describe our model in detail, we establish some notation. Through-
out this article, we are given a directed graph G = (V, E) with n := |V| nodes
and m := |E| arcs. For two nodes u,v € V an u-v-walk in G is a sequence of
edges (e1,...,ex) with e; = (vj—1,v;) € E and vp = v and v, = v. A u-v-path
is a u-v-walk in which no arc or node is repeated, i.e., e; # e; and v; # v; for
i # j. For a u-v-path P, we let V(P) be the set of nodes visited by P and for
u’,v" € V(P) such that P visits v’ before v/, we let P[u’, v'] denote the u'-v'-path
contained in P. We denote the set of all u-v-walks in G by Wy, and the set of
all u-v-paths in G by Pyy.

In our model, the intruder starts at a designated node s and wants to reach a
node ¢ (both nodes are also known to the defender). Each arc e € F is equipped
with a cost ¢, € Z4 that is incurred to the intruder when she traverses e.
Furthermore, there is a fine F', which the defender charges to the intruder, if she
runs into the defender’s security checkpoint. In the first level of our interdiction
game, the defender specifies the random distribution of the checkpoint, i.e., he
specifies for every arc e € E the probability 7. of placing the checkpoint at e. In
the second level, the intruder takes her way from s to t, having full knowledge of
the probability distribution chosen by the defender. We distinguish two variants
of the intruder’s path-finding strategy:

non-adaptive: At the start, the intruder selects an s-t-path P € P, and follows
this path to t. For every arc e € P she pays the transit cost ¢, of that arc.
In addition, if the security checkpoint is located on one of the arcs of P, she
has to pay the fine F.

adaptive: From her current location, the intruder moves along one of the out-
going arcs e to a neighboring vertex, paying the transit cost c.. She observes
whether the security checkpoint is located at the arc she traverses (in which
case she additionally has to pay the fine F'). Knowing this information, she
decides which arc to take next. This procedure continues until she reaches
her destination (after a finite number of steps).

The intruder’s objective is to minimize her expected cost. For a set of arcs S,
we use ¢(S) 1= Y cgCe to denote the sum of the transit times and 7(S) :=
> ecs Te to denote the probability that the security checkpoint is located within
the set of arcs S (note that we can sum up these probabilities since there is a
single checkpoint, so these are disjoint events). Therefore, in the non-adaptive
case, the expected cost of following a path P is

fNa(P)i=c(P)+m(P)F = (cc+mF).
ecP

We denote the optimization problem of finding an optimal non-adaptive strategy
for the intruder by

in fxx(P). (INTN)
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Thus, it is straightforward to note that an optimal non-adaptive strategy for the
intruder is to follow a shortest path with respect to arc weights ¢, + 7. F. Such
a path can be computed efficiently, e.g., using Dijkstra’s Algorithm. Therefore
we conclude the following result.

Proposition 1. INTyN reduces to the Shortest Path Problem and can be solved
i polynomial time.

The optimal adaptive strategy is less obvious. In principle, the intruder’s
choice of where to go next from her current location can depend on the set of
arcs she has visited so far and the information whether the security checkpoint
is located at one of these arcs. Let us consider any such adaptive strategy. Note
that, because the intruder has to reach ¢ after a finite number of steps, for each
fixed realization of the checkpoint location, the strategy determines an s-t-walk.
We distinguish two cases.

First, assume the intruder encounters the checkpoint in every realization.
Then for the given strategy, she pays the fine with probability 1. Obviously, the
non-adaptive strategy of simply following the shortest path with respect to ¢ has
at most the same cost than the considered strategy.

Now assume that there is a realization in which the intruder reaches ¢ without
being inspected. Let W = (ey,...,ex) be the walk she takes in this realization,
with e; = (v;—1,v;), vo = 8, and v = t. Observe that W is the same for all
realizations where the intruder is not inspected, as her decisions are based only
on whether or not she encountered the checkpoint so far. We now define a new
adaptive strategy, in which the intruder follows W starting at s until she either
reaches t or encounters the security checkpoint at some arc e; of W. In the latter
case, after traversing e; she simply follows a shortest path with respect to ¢ from
her current location v; to t. It is easy to check that the cost of the new strategy
is at most the cost of the strategy considered originally.

We have thus shown that for every adaptive strategy there is a strategy of
at most the same cost which is completely defined by an s-t-walk W that the
intruder follows while not being inspected. Note that W can contain cycles and
arcs can appear multiple times along W. Define 7; := 7., if e; # e; for all j < 3,
i.e., the ith position is the first appearance of the arc e; on W, and 7; := 0
otherwise, i.e., if arc e; occurred on W before the ¢th position. Furthermore,
let SP.(v,w) := minpep,, c¢(P) be the length of a shortest path w.r.t. ¢ from
v to w. Then the intruder’s expected cost for following W can be expressed as
follows:

k i k k
famW) =Y 7 [ D ce, + F +SPe(vit) | + <1 - Zﬁi> > e
i=1 j=1 i=1 i=1

Here, each summand of the first sum corresponds to the event that the check-
point is encountered at arc e; (which can only happen if it is the first occurrence
of this arc along the walk). In this case, the intruder traverses the walk W until e;,
pays the fine, and then follows the shortest path from v; to t. The second sum
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Fig. 1. Example network for the intruder’s best response problem. Labels (ce,m.) at
the arcs denote transit times and inspection probabilities. A possible adaptive strategy
for the intruder is to follow s-t-walk s-v-w-s-v-t and deviating to a shortest path when
encountering the security checkpoint. For a fine F' = 7, the expected cost of this strategy
is 9.25, whereas following the underlying simple path s-v-t deviating to a shortest path
after inspection has a higher expected cost of 9.375.

represents the event that none of the arcs in W contains the checkpoint, in which
case the intruder simply traverses W from start to end.

In the above discussion, we assumed that the intruder may walk along cycles
and even traverse arcs multiple times. Although all transit costs are non-negative,
such detours cycles could—in principle—help the intruder, because along the way
she gains additional information. In fact, Fig. 1 depicts an example of an s-t-walk
containing a cycle where the intruder’s expected cost increases when omitting
the cycle. However, one can show that there always exists an optimal adaptive
solution without a cycle, i.e., defined by an s-t-path.

Lemma 1. Let P be a shortest s-t-path w.r.t. c. Then fa (P) < SP.(s,t)+ F.

Lemma 2. There is an s-t-path P such that fa (P) < fa-(W) for all s-t-
walks W.

The problem of finding an optimal adaptive strategy thus reduces to finding
an s-t-path minimizing fa . We denote this optimization problem by

Jin fax(P). (INTA)

3 Approximating the Intruder’s Optimal Strategy

A fully polynomial time approximation scheme (FPTAS) for a minimization
problem is an algorithm that takes as input an instance of the problem as well
as a precision parameter € > 0, and computes in polynomial time in the size
of the input and 1/ a solution to that instance with cost at most (1 + &)OPT,
where OPT denotes the cost of the optimal solution.

In this section, we design such an FPTAS for INT, . The algorithm is based on
a label propagating approach, where each label at node v represents an s-v-path,
that is extended by propagating the label along the outgoing edges of v. In order



46 B. Bahamondes et al.

to keep the number of distinct labels small and achieve polynomial running time,
we discard an s-v-path when we find another s-v-path with similar objective
function value but higher inspection probability (intuitively higher inspection
probability at equal objective value means that any completion of the new path
to an s-t-path will be cheaper than the corresponding completion of the former
path). An additional challenge, that arises when propagating the labels in the
graph, is to ensure that the constructed paths are cycle free. To deal with this
issue we argue that there is a way to avoid cycles without overlooking potentially
good paths.

The Algorithm. Given ¢ > 0, let a := 1 + 5. From Lemma 1, we know that
the cost of an optimal strategy is in the interval [0,SP.(s,t) + F]. We divide
this interval geometrically by powers of . Let K := [log,, (SP.(s,t) + F')] and
define Iy :=[0,1) as well as I, := [a*!, o) for k € {1,..., K}. At every node
v we maintain an array L9, ... ,Lf , where L! is either empty or contains a label
(f,q, P) such that P is an s-v-path with f = fa »(P) € I} and g = 7(P).

Initially, only the label L2 = (0,0, ) is present. In each iteration, the algo-
rithm propagates all labels at each vertex v along all outgoing arcs (v, w).
When propagating label (f,q, P) at node v along arc e = (v, w), we get a label
(f',¢', P') at node w with ' = f 4+ (1 — q)ce + 7e(F + SP.(w, 1)), ¢ = q+ 7o,
and P’ = P U {e}. In order to avoid cycles, the propagation of (f,q, P) along
e = (v, w) only takes place if w ¢ V(P). Moreover, if the propagation of a label
along an arc gives rise to two different labels (f’,¢’, P') and (f”,q"”,P") for
a node such that f/, f” € I, for some k, we discard the label with the lower
inspection probability (breaking ties arbitrarily). The full description is given in
Algorithm 1.

From the previous discussion, the following lemma is straightforward:

Lemma 3. If Algorithm 1 creates a label (f,q, P) in a node v € V', then P is a
(s,v)-path with fa.(P)=f and 7(P) =q.

Now let P* be an s-t-path minimizing fa »(P*). Let (e1,...,ex) be the arcs
of P*, with e¢; = (vi—1,v;), vo = s and vy = ¢. Define f = fa (P*[s,v])
and ¢ := w(P*[s,v;]). For € R, let (z); denote the positive part of z, i.e.
()4 := max{z,0}. We call an iteration of the outer for loop of Algorithm 1
a round. The following lemma can be proved by induction on the rounds of
the algorithm, using a sequence of careful estimates on the cost of paths and
subpaths.

Lemma 4. After round i of Algorithm 1, there is a label (f;,q;, P;) at node v;
with f; < o' ff — (qf — qi) . - c(P*[vi,t]).

Lemma4 in particular implies that, at the end of round n, the algorithm has
found an s-t-path P with fa . (P) < o™ fa »(P*). Note that o = (1 + )" <
(1 +e¢) for all e < 1. Tt is also easy to verify that the algorithm runs in time
polynomial in 1/ and the input size.

Theorem 1. Algorithm 1 is an FPTAS for INTx.
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Algorithm 1. FPTAS for INT,p

1: Compute SP. (’U t) for allv € V.

2: Let a « 14 5= and K « [log, (SPc(s,t) + F)]

3: Let L2+ (0,0,0) and LY « 0 for all (v,k) € V x{0,..., K} \ {(5,0)}
4: fori=1,...,(n—1) do

5: for all e = (v,w) € F and k=0,...,K do

6: if LY # () then

7: pUSH(LE, e)

8: Let (f*,q", P*) € argmin{f : (f,q,P) € L¥ for some k}

9: Return P*

10: procedure PUSH(L = (f,q, P),e = (v, w))
11: if w ¢ V(P) then

12: Let f' + f+ (1 — q)ce + 7e (SPe(w,t) + F)
13: Let ¢/ «+ q+ e

14: Let P' — PU{e}

15: Let k<—min{€€Z+ : f <ae}

16: if L® =0 then

17 Lt — (f,q,P)

18: else

19: Let (f",q",P") — L%

20: if ¢ > ¢’ then

21: Ly, — (f',q,P")

4 Complexity of the Defender’s Problem

We study the defender’s optimization problem for deciding the inspection prob-
abilities on every edge of the network, for both the adaptive and non-adaptive
intruder. We analyze two different objectives: maximizing the minimum expected
intruder’s cost and collecting the highest possible fine from inspections.

4.1 The Zero-Sum Objective

We first consider the defender’s problem of maximizing the intruder’s expected
cost. This problem can be stated as

P DEFE™
max | goin fa(P). ( )
>0

where X € {A,N}, depending on whether the intruder is adaptive or non-
adaptive. Note that for a fixed path P € Py, the function fx ,(P) is affine
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linear in 7, both for X = A and X = N. Therefore, we can reformulate the
defender’s problem as a linear program:

max A
AER,TERE
s.t. A< me—(P) VPeEPy
LPcost
S (LPg)
ecE
e > 0 Vee k.

Note that the number of constraints in the above LP can be exponential in the
size of the network, as it contains one constraint for every path. A standard
way to solve such non-compact LPs is to devise a separation routine: A famous
result by Grotschel, Lovasz, and Schrijver [7] shows that in order to solve a
linear program with the ellipsoid method, it is sufficient to determine for a given
setting of the variables, whether it is a feasible solution, and if not, find a violated
inequality.

Indeed checking whether a given solution (7, \) is feasible for LP™ boils
down to determining whether there is a path P with fx (P) < A. For this, it is
sufficient to determine the intruder’s optimal path. As discussed in Sect. 2, this
can be done efficiently for the non-adaptive setting. We thus obtain the following
theorem.

Theorem 2. DEFS™® can be solved in polynomial time.

For the adaptive intruder problem, we do not know an exact polynomial time
algorithm. However, we can use the FPTAS presented in Sect.3 as an approz-
imate separation routine. This enables us to employ an approximation version
of the equivalence of separation and optimization [15], obtaining an FPTAS for

cost

DEFy

Theorem 3. There is an FPTAS for DEFY".

4.2 The Profit Maximization Objective

Next we address the problem of maximizing the expected fine collected by the
defender through inspections, that is

max Z m F (DEFi;(ne)
eeP
s.t. Zwezl, ™ >0
eckE
P € argmin{fx (P') : P' € P € Py},

where again X € {A,N} specifies whether the intruder employs an adaptive or
non-adaptive path-finding strategy, respectively.
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This problem shares many features with the Stackelberg network pricing
problem, which is defined as follows: in the first stage, the defender sets tolls
on a given subset of “tollable” edges. In the second stage the intruder chooses
a path between two fixed nodes minimizing the sum of travel times plus the
tolls of the traversed arcs. The defender’s objective is to maximize the collected
revenue from the tolls. Roch et al. [14] showed that this problem is NP-hard.

We show that also DEFA"® is NP-hard, even when all arc costs are in {0, 1,2}.
Such a hardness for instances with small input numbers is referred to as strong
NP-hardness. Our reduction resembles that of Roch et al., but we have to intro-
duce some modifications to accommodate for non-tollable arcs, which exist in

the Stackelberg network pricing problem but not in DEF%’IB.

fine

Theorem 4. DEFy " s strongly NP-hard.

Although we do not provide a hardness result for DEF%“G, we expect it to be

NP-hard as well, as the adaptive intruder’s first stage problem becomes as least
as hard than it is in the DEFI™ setting.

5 The Impact of Adaptivity

5.1 Adaptivity Gap for the Follower

Let OPT A and OPTy the optimal values for INT5 and INTy respectively. Correa
et al. [5] showed that for their model (in which inspections are independent
events) the ratio of the best non-adaptive strategy to the best adaptive strategy
is bounded by 4/3. Indeed, their proof does not use the fact that arc inspections
are independent events and thus translates to our setting.

Theorem 5 (Correa et al. [5]). OPTy < 20PTj.

In many real-life scenarios, it is reasonable to assume that the ratio of the
length of the path chosen by the intruder to the shortest path (w.r.t. ¢) is not
too large. E.g., most passengers in transit systems would pay a ticket rather than
choosing a path with twice the transit time just in order to avoid inspection.
We extend the proof by Correa et al. [5] to give a parameterized bound that
takes this ratio into account and gives stronger guarantees for realistic values;
also see Fig. 2.

Theorem 6. IfSP.(s,t) > 0, then OPTx < 5 OPT4, where A :=

A2
(1—A)3/243A-2
SP.(s,t)/c(P*) and P* is an optimal solution to INT4.

Proof. We first observe that OPTx < min{SP.(s,t) + F, ¢(P*) + n(P*)F} as
both following the shortest path or following P* are feasible non-adaptive strate-
gies. On the other hand, observe that OPTx = fa (P*) > (1 — n(P*))c(P*) +
w(P*)(SP.(s,t) + F'), as the total amount of transit cost will always be at least
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Fig. 2. Upper bound on the adaptivity gap OPTx/OPTa given in Theorem 6 parame-
terized by A™! = ¢(P*)/SP.(s,t), where P* is an optimal solution to INT4.

as much as the length of a shortest s-t-path. Defining S := SP.(s,t), C := ¢(P*),
and @ := 7w (P*), we obtain

OPTy _ (1-Q)C+Q(S+F) _ (1-Q)C+Q(AC+F)

OPTx ~ min{S+F,C+QF} min{AC +F, C+QF}’

In order to prove the bound, we fix A and treat C,F,(Q as variables of an
optimization problem subject to @ € [0,1] and F,C > 0.

OPTy . (L-Q)C+QAC+F)
OPTx ~ F,c>0,Qel0,1] min{AC + F, C + QF}"

It is easy to see that in an optimal solution, the minimum in the denominator
is attained by both terms, i.e., AC + F = C + QF'. Substituting F' = %C we
get

OPTa , (1-Q)C o (1-Q)y
> = .
OPTy — Czor,anrel[O,l] (1 N %) c +@Q Qrél[lor}u 1+ AQ +Q

By computing the derivative of the righthand side term, we observe that the
minimum is attained at Q = 1=Y1=24 VAl_A, which gives the desired bound. a

5.2 Defender Gaps

We consider three gaps concerning the defender in the context of the zero-

sum objective. Let m4 and 7wy be the inspection probabilities that maximize

the intruder’s costs against an adaptive and non-adaptive intruder respec-

tively, and let fx(my) := Pnel%:'n fx =y (P) denote the defender’s pay-off, where
st

X,Y € {A,N}.

Adaptivity Gap (n4): This measures the defender’s pay-off loss when the
intruder is adaptive, as opposed to when she is non-adaptive.
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Pay-off Gap (np): When the intruder is adaptive, this gap measures the devi-
ation of the defender’s pay-off from his own estimation if he wrongly assumes
she is non-adaptive.

Approximation Gap (74pp): This is the approximation factor achieved by
the defender against an adaptive intruder when playing the optimal strategy for
non-adaptive intruders my as an approximation for m4.

_ fn(mn) _ fn(mw) _ fa(ma)

M=) T Falen) T falrn)

As a straightforward consequence of Theorem 5, all of these gaps are upper
bounded by 4/3.

6 Conclusion

In this paper, we investigated different variants of a Stackelberg network game in
which the follower can gain and exploit information about the realization of the
leader’s random strategy while traversing the network. In the present work, we
confined ourselves to the model in which a single arc is subjected to inspections.
Future work will focus on the natural generalization in which several checkpoints
are placed simultaneously and possibly in a correlated fashion, getting closer to
real-world security scenarios.
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Abstract. We present new protocols for the verification of space
bounded polytime computations against a rational adversary. For such
computations requiring sublinear space our protocol requires only a ver-
ifier running in sublinear-time. We extend our main result in several
directions: (i) we present protocols for randomized complexity classes,
using a new composition theorem for rational proofs which is of indepen-
dent interest; (ii) we present lower bounds (i.e. conditional impossibility
results) for Rational Proofs for various complexity classes.

Our new protocol is the first rational proof not based on the circuit
model of computation, and the first sequentially composable protocols for
a well-defined language class.

1 Introduction

Consider the problem of Outsourced Computation where a computationally
“weak” client hires a more “powerful” server to store data and perform com-
putations on its behalf. This paper is concerned with the problem of designing
outsourced computation schemes that incentivize the server to perform correctly
the tasks assigned by the client.

The rise of the cloud computing paradigm where business do not maintain
their own IT infrastructure, but rather hire “providers” to run it, has brought
this problem to the forefront of the research community. The goal is to find
solutions that are efficient and feasible in practice for problems such as: How
do we check the integrity of data that is stored remotely? How do we check
computations performed on this remotely stored data? How can a client do this
in the most efficient way possible?

For all the scenarios above, what mechanisms can be designed to incentivize
parties to perform correctly no matter what the cost of the correct behavior
might be?

1.1 Complexity Theory and Cryptography

The problem of efficiently checking the correctness of a computation performed
by an untrusted party has been central in Complexity Theory for the last 30
years since the introduction of Interactive Proofs by Babai and Goldwasser,
Micali and Rackoff [5,14].
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Verifiable Outsourced Computation is now a very active research area in Cryp-
tography and Network Security (see [27] for a survey) with the aim to design
protocols where it is impossible (under suitable cryptographic assumptions) for
a provider to “cheat” in the above scenarios. While much progress has been done
in this area, we are still far from solutions that can be deployed in practice. Part
of the reason is that Cryptographers consider a very strong adversarial model
that prevents any adversary from cheating. A different approach is to restrict
ourselves to rational adversaries, whose motivation is not just to disrupt the
protocol or computation, but simply to maximize a well defined utility function
(e.g. profit).

1.2 Rational Proofs

In our work we use the concept of Rational Proofs introduced by Azar and Micali
in [3] and refined in a subsequent paper [4].

In a Rational Proof, given a function f and an input z, the server returns
the value y = f(z), and (possibly) some auxiliary information, to the client. The
client will in turn pay the server for its work with a reward which is a function of
the messages sent by the server and some randomness chosen by the client. The
crucial property is that this reward is maximized in expectation when the server
returns the correct value y. Clearly a rational prover who is only interested in
maximizing his reward, will always answer correctly.

The most striking feature of Rational Proofs is their simplicity. For example
in [3], Azar and Micali show single-message Rational Proofs for any problem in
#P, where an (exponential-time) prover convinces a (poly-time) verifier of the
number of satisfying assignment of a Boolean formula.

For the case of “real-life” computations, Azar and Micali in [4] consider the
case of efficient provers (i.e. poly-time) and “super-efficient” (log-time) veri-
fiers and present d-round Rational Proofs for functions computed by (uniform)
Boolean circuits of depth d, for d = O(logn).

Recent work [16] shows how to obtain Rational Proofs with sublinear verifiers
for languages in NC. Recalling that L € NL C NC,, one can use the protocol in
[16] to verify a logspace polytime computation (deterministic or nondeterminis-
tic) in O(log® n) rounds and O(log? n) verification.

The work by Chen et al. [9] focuses on rational proofs with multiple provers
and the related class MRIP of languages decidable by a polynomial verifier inter-
acting with an arbitrary number of provers. Under standard complexity assump-
tions, MRIP includes languages not decidable by a verifier interacting only with
one prover. The class MRIP is equivalent to EXPIINP.

1.3 Repeated Executions with a Budget

In [8] we present a critique of the rational proof model in the case of “repeated
executions with a budget”. This model arises in the context of “volunteer com-
putations” [1,22] where many computational tasks are outsourced and provers
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compete in solving as many as possible to obtain rewards. In this scenario assume
that a prover has a certain budget B of “computational effort”: how can one
guarantee that the rational strategy is to provide the correct answer in all the
proof he provides? The notion of rational proof guarantees that if the prover
engages in a single rational proof then it is in his best interest to provide the
correct output. But in [8] we show that in the presence of many computations,
it might be more profitable for the prover to use his budget B to provide many
incorrect answers than to provide a single correct answer. That’s because incor-
rect (e.g. random) answers are “cheaper” to compute than the correct one and
with the same budget B the prover can provide many of them while the entire
budget might be necessary to solve a single problem correctly. If the difference
in reward between correct and incorrect answers is not high enough then many
incorrect answers may be more profitable and a rational prover will choose that
strategy, and indeed this is the case for many of the protocols in [3,4,15,16].

In [8] we put forward a stronger notion of sequentially composable rational
proofs which avoids the above problem and guarantees that the rational strategy
is always the one to provide correct answers. We also presented sequentially
composable rational proofs, but only for some ad-hoc cases, and were not able
to generalize them to well-defined complexity classes.

1.4 Owur Contribution

This paper presents new protocols for the verification of space-bounded polytime
computations against a rational adversary. More specifically, let L be a language
in the class DTISP(T'(n), S(n)), i.e. L is recognized by a deterministic Turing
Machine My, which runs in time 7'(n) and space S(n). We construct a protocol
where a rational prover can convince the verifier that © € L or « ¢ L with the
following properties:

— The verifier runs in time O(S(n)logn)

— The protocol has O(logn) rounds and communication complexity
O(S(n)logn)

— The prover simply runs M ()

Under suitable assumptions, our protocol can be proven to correctly incentivize
a prover in both the stand-alone model of [3] and the sequentially composable
definition of [8]. This is the first protocol which is sequentially composable for a
well-defined complexity class.

For the case of “real-life” computations (i.e. poly-time computations veri-
fied by a “super-efficient” verifier) we note that for computations in sublinear
space our general results yields a protocol in which the verifier is sublinear-
time. More specifically, we introduce the first rational proof for SC (also known
as DTISP(poly(n), polylog(n))) with polylogarithmic verification and logarithmic
rounds.

To compare this with the results in [16], we note that it is believed that
NC # SC and that the two classes are actually incomparable (see [10] for a
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discussion). For these computations our results compare favorably to the one in
[16] in at least one aspect: our protocol requires O(logn) rounds and has the
same verification complexity?.

We present several extensions of our main result:

— Our main protocol can be extended to the case of space-bounded randomized
computations using Nisan’s pseudo-random generator [24] to derandomize the
computation.

— We also present a different protocol that works for BPNC (bounded error
randomized NC) where the Verifier runs in polylog time (note that this class
is not covered by our main result since we do not know how to express NC
with a polylog-space computation). This protocol uses in a crucial way a new
composition theorem for rational proofs which we present in this paper and
can be of independent interest.

— Finally we present lower bounds (i.e. conditional impossibility results) for
Rational Proofs for various complexity classes.

1.5 The Landscape of Rational Proof Systems

Rational Proof systems can be divided in roughly two categories, both of them
presented in the original work [3].

ScORING RULES. The work in [3] uses scoring rules to compute the reward paid
by the verifier to the prover. A scoring rule is used to asses the “quality” of
a prediction of a randomized process. Assume that the prover declares that a
certain random variable X follows a particular probability distribution D. The
verifier runs an “experiment” (i.e. samples the random variable in question) and
computes a “reward” based on the distribution D announced by the prover and
the result of the experiment. A scoring rule is maximized if the prover announced
the real distribution followed by X. The novel aspect of many of the protocols in
[3] was how to cast the computation of y = f(z) as the announcement of a certain
distribution D that could be tested efficiently by the verifier and rewarded by a
scoring rule.

A simple example is the protocol for #P in [3] (or its “scaled-down” ver-
sion for Hamming weight described more in detail in Sect. 2.1). Given a Boolean
formula @(x1,...,x,) the prover announces the number m of satisfying assign-
ments. This can be interpreted as the prover announcing that if one chooses an
assignment at random it will be a satisfying one with probability m - 27". The
verifier then chooses a random assignment and checks if it satisfies @ or not and
uses m and the result of the test to compute the reward via a scoring rule. Since
the scoring rule is maximized by the announcement of the correct m, a rational
prover will announce the correct value.

! We also point out that in [16] a rational protocol for P, polytime computations,
is presented, but for the case of a computationally bounded prover, i.e. a rational
argument.
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As pointed out in [8] the problem with the scoring rule approach is that
the reward declines slowly as the distribution announced by the Prover becomes
more and more distant from the real one. The consequence is that incorrect
results still get a substantial reward, even if not a maximal one. Since those
incorrect results can be computed faster than the correct one, a Prover with
“budget” B might be incentivized to produce many incorrect answers instead of
a single correct one. All of the scoring rule based protocols in [3,4,15,16] suffer
from this problem.

WEAK INTERACTIVE PROOFS. In the definition of rational proofs we require
that the expected reward is maximized for the honest prover. This definition
can be made stronger (as done explicitly in [15]) requiring that every systemat-
ically dishonest prover would incur a polynomial loss (this property is usually
described in terms of a noticeable reward gap). Obviously we can use classical
interactive proofs to trivially obtain this property. In fact, recall standard inter-
active proofs: at the end of the interaction with a prover, the verifier applies a
“decision function” D to a transcript in order to accept or reject the input x.
A verifier may then pay the prover a reward R = poly(|z|) iff D accepts. The
honest prover will clearly maximize its reward since, by definition of interactive
proof, the probability of a wrong acceptance/rejection is negligible. Notice hov-
erer that we can obtain rational proofs with noticeble reward gap even if the
protocol has a much higher error probability. In fact, for an appropriate choice
of a (polynomial) reward R, the error probability can be as high as 1 —n~* for
some k € N. We call an interactive proof with such a high error probability a
weak interactive proof?.

Weak interactive proofs can be turned into strong (i.e. with negligible error)
classical ones by repetition, which however increases the computational cost of
the verifier. But since to obtain a rational proof it is not necessary to repeat
them, we can use them to obtain rational proofs which are very efficient for the
verifier. Indeed, some of the protocols in [3,8] are rational proofs based on weak
interactive proofs. This approach is also the main focus in the present work.

DiscussioN. There are two intriguing questions when we compare the “scoring
rules” approach to build rational proofs, to the one based on “weak interactive
proofs”.

— Is one approach more powerful than the other?
— All the known sequentially composable proofs are weak interactive proofs.
Does sequential composition requires a weak interactive proof?

We do not know the answers to the above questions. For a more detailed discus-
sion we refer the reader to the end of Sect. 7.

2 This is basically the covert adversary model for multiparty computation introduced
in [2].
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1.6 Other Related Work

INTERACTIVE PROOFS. As already discussed, a “traditional” interactive proof
(where security holds against any adversary, even a computationally unbounded
one) would work in our model. In this case the most relevant result is the recent
independent work in [26] that presents breakthrough protocols for the deter-
ministic (and randomized) restriction of the class of language we consider. If
L is a language which is recognized by a deterministic (or randomized) Turing
Machine Mj, which runs in time 7'(n) and space S(n), then their protocol has
the following properties:

— The verifier runs in O(poly(S(n)) + n - polylog(n)) time;

— The prover runs in polynomial time;

— The protocol runs in constant rounds, with communication complexity
O(poly(S(n)n’) for a constant 4.

Apart from round complexity (which is the impressive breakthrough of the result
in [26]) our protocols fares better in all other categories. Note in particular that
a sublinear space computation does not necessarily yield a sublinear-time verifier
n [26]. On the other hand, we stress that our protocol only considers weaker
rational adversaries.

COMPUTATIONAL ARGUMENTS. There is a large class of protocols for arguments
of correctness (e.g. [12,13,19]) even in the rational model [15,16]. Recall that in
an argument, security is achieved only against computationally bounded prover.
In this case even single round solutions can be achieved. We do not consider
this model in this paper, except in Sect.5.2 as one possible option to obtain
sequential composability.

COMPUTATIONAL DECISION THEORY. Other works in theoretical computer sci-
ence have studied the connections between cost of computation and utility in
decision problems. The work in [17] proposes a framework for computational
decision problems, where the Decision Maker’s (DM) utility depends on the algo-
rithm chosen for computing its strategy. The Decision Maker runs the algorithm,
assumed to be a Turing Machine, on the input to the computational decision
problem. The output of the algorithm determines the DM’s strategy. Thus the
choice of the DM reduces to the choice of a Turing Machine from a certain space.
The DM will have beliefs on the running time (cost) of each Turing Machine.
The actual cost of running the chosen TM will affect the DM’s reward. Rational
proofs with costly computation could be formalized in the language of computa-
tional decision problems in [17]. There are similarities between the approach in
this work and that in [17], as both take into account the cost of computation in
a decision problem.

2 Rational Proofs

The following is the definition of Rational Proof from [3]. As usual with neg(-)
we denote a negligible function, i.e. one that is asymptotically smaller than the
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inverse of any polynomial. Conversely a noticeable function is the inverse of a
polynomial.

Definition 1 (Rational Proof). A function f: {0,1}" — {0,1}* admits a
rational proof if there exists an interactive proof (P, V') and a randomized reward
function rew : {0,1}* — R>q such that

1. For any input z € {0,1}", Prlout((P,V)(z)) = f(z)] = 1 — neg(n).
2. For every prover P, and for any input x € {0,1}" there exists a d5(x) > 0
such that Elrew((P,V)(z))] + dp(x) < Efrew((P,V)(x))].

The expectations and the probabilities are taken over the random coins of the
prover and verifier.

We note that differently than [3] we allow for non-perfect completeness: a negli-
gible probability that even the correct prover will prove the wrong result. This
will be necessary for our protocols for randomized computations.

Let e = Prout((P,V)(x)) # f(x)]. Following [15] we define the reward gap as
A(z) = minp«.cp.=1[0p+ ()], i.e. the minimum reward gap over the provers that
always report the incorrect value. It is easy to see that for arbitrary prover P
we have 05(x) > €5 - A(x). Therefore it suffices to prove that a protocol has a
strictly positive reward gap A(z) for all .

Definition 2 [3,4,15]. The class DRMA[r,¢,T] (Decisional Rational Merlin
Arthur) is the class of boolean functions f : {0,1}* — {0,1} admitting a rational
proof I = (P, V,rew) s.t. on input x:

— IT terminates in r(|x|) rounds;

— The communication complexity of P is c¢(|z|);
— The running time of V is T(|z]);

The function rew is bounded by a polynomial;
— II has noticeable reward gap.

Remark 1. The requirement that the reward gap must be noticeable was intro-
duced in [4,15] and is explained in Sect. 5.

2.1 A Warmup Example

Counsider the function f : {0,1}™ — [0...n] which on input = outputs the Ham-
ming weight of x (i.e. ), x; where x; are the bits of x).

In [4] the prover announces a number i which he claims to be equal to m =
f(x). This can be interpreted as the prover announcing that if one chooses an input
bit x; at random it will be equal to 1 with probability p = m/n. The verifier then
chooses a random input bit z; and uses m, x; to compute the reward via a scoring
rule. Since the scoring rule is maximized by the announcement of the correct m, a
rational prover will announce the correct value. The scoring rule used in [4] (and
in all other rational proofs based on scoring rules) is Brier’s rule where the reward
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is computed as BSR(p, ;) where BSR(p,1) = 2p(2 —p) and BSR(p,0) =
2(1 — p?). Notice that p = m/n is the actual probability to get 1 when select-
ing an input bit at random, so the expected reward of the prover is pBSR(p, 1)+
(1 —p)BSR(p,0) which is easily seen to be maximized for p = p, i.e. m = m.

In [8] we propose an alternative protocol for f (motivated by the issues
we discuss in Sect. 5). In our protocol we compute f via an “addition circuit”,
organized as a complete binary tree with n leaves which are the input, and
where each internal node is a (fan-in 2) addition gate — note that this circuit
has depth d = logn. The protocol has d rounds: at the first round the prover
announces m (the claimed value of f(z)) and its two “children” yr,yg in the
output gate, i.e. the two input values of the last output gate G. The Verifier
checks that yr + yr = m, and then asks the Prover to verify that y; or yr
(chosen a random) is correct, by recursing on the above test. At the end the
verifier has to check the last addition gate on two input bits: she performs this
test on her own by reading just those two bits. If any of the tests fails, the verifier
pays a reward of 0, otherwise she will pay R. The intuition is that a cheating
prover will be caught with probability 2~¢ which is exactly the reward gap (and
for log-depth circuits like this one is noticeable). Note that the first protocol is
a scoring-rule based one, while the second one is a weak-interactive proof.

3 Rational Proofs for Space-Bounded Computations

We are now ready to present our protocol. It uses the notion of a Turing Machine
configuration, i.e. the complete description of the current state of the computa-
tion: for a machine M, its state, the position of its heads, the non-blank values
on its tapes.

Let L € DTISP(T'(n), S(n)) and M be the deterministic TM that recognizes
L. On input z, let v1,...,yn (where N = T(|z|)) be the configurations that
M goes through during the computation on input x, where 7,41 is reached
from ~; according to the transition function of M. Note, first of all, that each
configuration has size O(S(n)). Also if © € L (resp. ¢ L) then «yy is an
accepting (resp. rejecting) configuration.

The protocol presented below is a more general version of the one used in [§]
and described above. The prover shows the claimed final configuration 4y and
then prover and verifier engage in a “chasing game”, where the prover “commits”
at each step to an intermediate configuration. If the prover is cheating (i.e. 4y is
wrong) then the intermediate configuration either does not follow from the initial
configuration or does not lead to the final claimed configuration. At each step
and after P communicates the intermediate configuration +', the verifier then
randomly chooses whether to continue invoking the protocol on the left or the
right of 7/. The protocol terminates when V ends up on two previously declared
adjacent configurations that he can check. Intuitively, the protocol works since,
if 45 is wrong, for any possible sequence of the prover’s messages, there is at
least one choice of random coins that allows V to detect it; the space of such
choices is polynomial in size.
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We assume that V has oracle access to the input x. What follows is a formal
description of the protocol.

1. P sends to V:
— 7N, the final accepting configuration (the starting configuration, 71,
is known to the verifier);
— N, the number of steps between the two configurations.
2. Then V invokes the procedure PathCheck(N,v1,vn).

The procedure PathCheck(m,~;,~,) is defined for 1 < m < N as follows:

— If m > 1, then:

1. P sends intermediate configurations 7y, and 7, (which may coincide)
where p = | B2=1 | and ¢ = [H2=1.

2. If p # q, V checks whether there is a transition leading from config-
uration <y, to configuration v,. If yes, V accepts; otherwise V' halts
and rejects.

3. V generates a random bit b € {0,1}

4. If b = 0 then the protocol continues invoking PathCheck(| % |, 1, 7p);
If b = 1 the protocol continues invoking PathCheck(| % |, g, V)

— If m =1, then V checks whether there is a transition leading from con-
figuration 7; to configuration ~,.. If [ = 1, V' checks that ~; is indeed the
initial configuration v;. If r = N, V' checks that ~, is indeed the final
configuration sent by P at the beginning. If yes, V' accepts; otherwise V'
rejects.

Theorem 1. DTISP[poly(n), S(n)] € DRMA[O(logn), O(S(n)logn), O(S(n)logn)]

Proof. Let us consider the efficiency of the protocol above. It requires O(logn)
rounds. Since the computation is in DTISP[poly(n), S(n)], the configurations P
sends to V' at each round have size O(S(n)). The verifier only needs to read the
configurations and, at the last round, check the existence of a transition leading
from ~; to ~y,. Therefore the total running time for V' is O(S(n)logn).

Let us now prove that this is a rational proof with noticeable reward gap.
Observe that the protocol has perfect completeness. Let us now prove that the
soundness is at most 1 — 2718 N — 1 — m. We aim at proving that,
if there is no path between the configurations v; and -y then V rejects with
probability at least 27198V, Assume, for sake of simplicity, that N = 2F for
some k. We will proceed by induction on k. If & = 1, P provides the only
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intermediate configuration 7’ between ~; and «y. At this point V flips a coin
and the protocol will terminate after testing whether there exists a transition
between 77 and 7’ or between ' and ~x. Since we assume the input is not in
the language, there exists at most one of such transitions and V' will detect this
with probability 1/2.

Now assume k > 1. At the first step of the protocol P provides an inter-
mediate configuration /. Either there is no path between v, and v’ or there is
no path between v’ and ~y. Say it is the former: the protocol will proceed on
the left with probability 1/2 and then V' will detect P cheating with probability
2~ %+1 by induction hypothesis, which concludes the proof.

The theorem above implies the results below.
Corollary 1. L € DRMA[O(logn), O(log” n), O(log® n)]

This improves over the construction of rational proofs for L in [16] due to the
better round complexity.

Corollary 2. SC C DRMA[O(logn), O(polylog(n)), O(polylog(n))]

No known result was known for SC before.

3.1 Rational Proofs for Randomized Bounded Space Computation

We now describe a variation of the above protocol, for the case of random-
ized bounded space computations. Let BPTISP[t, s] denote the class of lan-
guages recognized by randomized machines using time ¢ and space s with error
bounded by 1/3 on both sides. In other words, L € BPTISP[poly(n), S(n)] if
there exists a (deterministic) Turing Machine M such that for any x € {0,1}*
Pr,c f0.13e0en [M (2, 7) = L(z)] > 2 and that runs in S(|z|) space and polyno-
mial time. Let p(n) be the maximum number of random bits used by M for
input « € {0,1}"; p(+) is clearly polynomial.

We can bring down the 2/3 probability error to neg(n) by construct-
ing a machine M’. M’ would simulate the M on x iterating the simulation
m = poly(]z|) times using fresh random bits at each execution and taking the
majority output of M (z;-). The machine M’ uses mp(]z|) random bits and runs
in polynomial time and S(|z|) + O(log(n)) space.

The work in [24] introduces pseudo-random generators (PRG) resistant
against space bounded adversaries. An implication of this result is that any ran-
domized Turing Machine M; running in time 7" and space S can be simulated
by a randomized Turing Machine M> running in time O(T"), space O(Slog(T))
and using only O(Slog(T)) random bits® (see in particular Theorem 3 in [24]).

Let L € BPTISP[(poly(n), S(n)] and M’ defined as above. We denote by M the
simulation of M’ that uses Nisan’s result described above.

3 We point out that the new machine M, introduces a small error. For our specific
case this error keeps the overall error probability negligible and we can ignore it.
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By using the properties of the new machine M, we can directly construct
rational proofs for BPTISP(poly(n), S(n)). We let the verifier picks a random
string r (of length O(Slog(T"))) and sends it to the prover. They then invoke a
rational proof for the computation M (z;r).

By the observations above and Theorem 1 we have the following result:

Corollary 3. BPTISP[poly(n), S(n)] € DRMA[log(n), S(n) log?(n), S(n) log?(n)]

We note that for this protocol, we need to allow for non-perfect completeness
in the definition of DRMA in order to allow for the probability that the verifier
chooses a bad random string r.

4 A Composition Theorem for Rational Proofs

In this Section we prove an intuitively simple, but technically non-trivial, com-
position theorem that states that we while proving the value of a function f, we
can replace oracle access to a function g, with a rational proof for g. The tech-
nically interesting part of the proof is to make sure that the total reward of the
prover is maximized when the result of the computation of f is correct. In other
words, while we know that lying in the computation of g will not be a rational
strategy for just that computation, it may turn out to be the best strategy as
it might increase the reward of an incorrect computation of f. A similar issue
(arising in a particular rational proof for depth d circuits) was discussed in [4]:
our proof generalizes their technique.

Definition 3. We say that a rational proof (P,V,rew) for f is a g-oracle ratio-
nal proof if V' has oracle access to the function g and carries out at most one
oracle query. We allow the function g to depend on the specific input x.

Theorem 2. Assume there exists a g-oracle rational proof (PJ?7 Ve, rew‘]’e) for f
with noticeable reward gap and with round, communication and verification com-
plexity respectively r¢,cs and Ty. Let t; the time necessary to invoke the oracle
for g and to read its output. Assume there exists a rational proof (P, Vy,rew,)
with noticeable reward gap for g with round, communication and verification
complexity respectively rq,cq and T,. Then there exists a (non g-oracle) rational
proof with noticeable reward gap for f with round, communication and verifica-
tion complexity respectively vy +14rg,cy +t;r +cg and Ty —t; + Ty

Before we embark on the proof of Theorem 2 we state a technical Lemma
whose simple proof is omitted for lack of space. The definition of rational proof
requires that the expected reward of the honest prover is not lower than the
expected reward of any other prover. The following intuitive lemma states we
necessarily obtain this property if an honest prover has a polynomial expected
gain in comparison to provers that always provide a wrong output.

Lemma 1. Let (P, V) be a protocol and rew a reward function as in Definition 1.

Let f be a function s.t. Yo Prlout(P,V)(x)] = 1. Let A be the corresponding
reward gap w.r.t. the honest prover P and f. If A > ﬁ(n) then (P, V,rew) is a

rational proof for f and admits noticeable reward gap.
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Now we can start the proof of Theorem 2.

Proof. Let rew$ and rewy be the reward functions of the g-oracle rational proof
for f and the rational proof for g respectively. We now construct a new verifier V'
for f. This verifier runs exactly like the g-oracle verifier for f except that every
oracle query to g is now replaced with an invocation of the rational proof for g.
The new reward function rew is defined as: rew(7") = drew$ (77 oygy) + rewy (7).
Here 7 is the complete transcript of the new rational proof, Ty is the transcript
of the oracle rational proof for f, 7, and y, are respectively the transcript and
the output of the rational proof for g. Finally ¢ is multiplicative factor in (0, 1]).
The intuition behind this formula is to “discount” the part of the reward from f
so that the prover is incentivized to provide the true answer for g. In turn, since
rew} rewards the honest prover more when the verifier has the right answer for a
query to g (by hypothesis), this entails that the whole protocol is rational proof
for f.

To prove the theorem we will use Lemma 1 and it will suffice to prove that
the new protocol has a noticeable reward gap.

Consider a prover P that always answer incorrectly on the output of f. Let
pg be the probability that the prover outputs a correct y4. Then the difference

between the expected reward of the honest prover and P is:

5(RO - R?) + (Rg - Rg) = (1)
5(R pgRO ,good(g) (1 . pg)R?wrong(g))
+(Ry = py B — (1= py Ryronsto)) — 2

8(pg (R} — RY=™N) 4 (1= py) (Ry — R™"57))

+pg(Ry — RED) 4 (1 py)(Ry — Ry™89)) > 3)
PgbAG + (1 —pg)(Ay — 0b3(n)) > (4)
min{d A}, A, — 5b%(n)} > (5)
1
poly(n) ©

where the last inequality holds for ¢ = %.

The round, communication and verification complexity of the construc-
tion is given by the sum of the respective complexities from the two rational
proofs modulo minor adjustments. These adjustments account for the additional
round by which the verifier communicates to the prover the requested instance
for g. O

We can use this result as a design tool of rational proofs for a function f: First
build a rational proof for a function g and then one for f where we assume the
verifier has oracle access to g. This automatically provides a complete rational
proof for f.
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Remark 2. Theorem 2 assumes that verifier in the oracle rational proof for f
carries out a single oracle query. Notice however that the proof of the theorem
can be generalized to any verifier carrying out a constant number of adaptive
oracle queries, possibly all for distinct functions. This can be done by iteratively
applying the theorem to a sequence of m = O(1) oracle rational proofs for
functions fi, ..., f;, where the i-th rational proof is f;yi-oracle for 1 <i < m.

4.1 Rational Proofs for Randomized Circuits

As an application of the composition theorem described above we present an
alternative approach to rational proofs for randomized computations. We show
that by assuming the existence of a common reference string (CRS)* we obtain
rational proofs for randomized circuits of polylogarithmic depth and polynomial
size, i.e. BPNC the class of uniform polylog-depth poly-size randomized circuits
with error bounded by 1/3 on both sides.

If we insist on a “super-efficient” verifier (i.e. with sublinear running time) we
cannot use the same approach as in Sect. 3.1 since we do not know how to bound
the space S(n) used by a computation in NC (and the verifier’s complexity in
our protocol for bounded space computations, depends on the space complexity
of the underlying language). We get around this problem by assuming a CRS,
to which the verifier has oracle access.

We start by describing a rational proof with oracle access for BPP and then
we show how to remove the oracle access (via our composition theorem) for the
case of BPNC.

Let L € BPP and let M a PTM that decides L in polynomial time and
p(-) the randomness complexity of M. For € {0,1}* we denote by L, the
(deterministically decidable) language {(z,r) : 7 € {0, 1}*U1DAM (2,7) = L(z)}.

Lemma 2. Let L be a language in BPP. Then there exists a L,-oracle rational
proof with CRS o for L where |o| = poly(n)p(n).

Proof. Our construction is as follows. W.l.o.g. we will assume o to be divided in
¢ = poly(n) blocks 71, ..., 74, each of size p(n).

1. The honest prover P runs M (z, ;) for 1 < i < ¢ and announces m the number
of strings r; s.t. M (z,r;) accepts, i.e. Y . M(x,r;);

2. P sends m to x.

3. The Verifier accepts if m > ¢/2

We note that if we set y; = M (x, r;) then the prover is announcing the Hamming
weight of the string v, ...,ys. At this point we can use the Hamming weight
verification protocol in Sect. 2.1 where the Verifier use the oracle for L, to verify
on her own the value of y;.

4 A common reference string is a string generated by a trusted party to which both
the prover and the verifier have access; it is a common assumption in cryptographic
literature, e.g. Non-Interactive Zero Knowledge [7].
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We note that no matter which protocol is used, round complexity, communica-
tion complexity and verifier running time (not counting the oracle calls) are all
polylog(n).

To obtain our result for BPNC we invoke the following result from [16]:

Theorem 3. NC C DRMA[polylog(n), polylog(n), polylog(n)]
The theorem above, together with Theorem 2 and Lemma 2 yields:

Corollary 4. Let x € {0,1}" and L € BPNC. Assuming the existence of a
(polynomially long) CRS then there exists a rational proof for L with polyloga-
rithmically many rounds, polylogarithmic communication and verification com-
plexity.

Notice that some problems (e.g. perfect matching) are not known to be in NC
but are known to be in RNC C BPNC [20].

5 Sequential Composability

Until now we have only considered agents who want to maximize their reward.
But the reward alone, might not capture the complete utility function that the
Prover is trying to maximize in his interaction with the Verifier. In particular we
have not considered the cost incurred by the Prover to compute f and engage
in the protocol. It makes sense then to define the profit of the Prover as the
difference between the reward paid by the verifier and such cost.

As already pointed out in [4,15] the definition of Rational Proof is sufficiently
robust to also maximize the profit of the honest prover and not just the reward.
Indeed consider the case of a “lazy” prover P that does not evaluate the function:
let R(z),C(z) be the reward and cost associated with P on input z (while
R(x),C(x) are the values associated with the honest prover).

Obviously we want R(z)—C/(x) > R(x)—C(z) or equivalently R(x)—R(x) >
C(x) — C(z). Recall the notion of reward gap: the minimum difference between
the reward of the honest prover and any other prover A(z) < R(x) — R(z). To
maximize the profit it is then sufficient to change the reward by a a multiplier
M = C(x)/A(x). Thus we have that M(R(z) — R(z)) > C(z) > C(z) — C(x) as
desired. This explains why we require the reward gap to be at least the inverse
of a polynomial: this will maintain the total reward paid by the Verifier bounded
by a polynomial.

5.1 Profit in Repeated Executions

In [8] we showed how if Prover and Verifier engage in repeated execution of
a Rational Proof, where the Prover has a “budget” of computation cost that
he is willing to invest, then there is no guarantee anymore that the profit is
maximized by the honest prover. The reason is that it might be more profitable
for the prover to use his budget to provide many incorrect answers than to
provide a single correct answer. That’s because incorrect (e.g. random) answers
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are “cheaper” to compute than the correct one and with the same budget B the
prover can provide many of them while the entire budget might be necessary to
solve a single problem correctly. If incorrect answers still receive a substantial
reward then many incorrect answers may be more profitable and a rational prover
will choose that strategy.

We refer the reader to [8] for concrete examples of situations where this
happens in many of the protocols in [3,4,15,16].

This motivated us to consider a stronger definition which requires the reward
to be somehow connected to the “effort” paid by the prover. The definition
(stated below) basically says that if a (possibly dishonest) prover invests less
computation than the honest prover then he must collect a smaller reward.

Definition 4 (Sequential Rational Proof). A rational proof (P,V) for a
function f : {0,1}" — {0,1}" is (¢, K)-sequentially composable for an input
distribution D, if for every prover ]5, and every sequence of inputs x,x1,...,Tk
drawn according to D such that C(x) > Zle C(z;) and k < K we have that

The following Lemma is from [8].

Lemma 3. Let (P,V) and rew be respectively an interactive proof and a reward
function as in Definition 1; if rew can only assume the values 0 and R for some

constant R, let p, = Prlrew((P,V)(x)) = R]. If for & € D, p, < (Cw) + € then
(P, V) is (K Re, K)-sequentially composable for D.

The intuition behind our definition and Lemma3 is that to produce the
correct result, the prover must run the computation and incur its full cost;
moreover for a dishonest prover his probability of “success” has to be no bigger
than the fraction of the total cost incurred.

This intuition is impossible to formalize if we do not introduce a probability
distribution over the input space. Indeed, for a specific input = a “dishonest”
prover P could have the correct y = f(x) value “hardwired” and could answer
correctly without having to perform any computation at all. Similarly, for cer-
tain inputs x, 2’ and a certain function f, a prover P after computing y = f(x)
might be able to “recycle” some of the computation effort (by saving some state)
and compute y' = f(z’) incurring a much smaller cost than computing it from
scratch. This is the reason our definition is parametrized over an input distrib-
ution D (and all the expectations, including the computation of the reward, are
taken over the probability of selecting a given input ).

A way to address this problem was suggested in [6] under the name of Unique
Inner State Assumption (UISA): when inputs x are chosen according to D,
then we assume that computing f requires cost 7' from any party: this can
be formalized by saying that if a party invests ¢ = 7T effort (for v < 1), then
it computes the correct value only with probability negligibly close to v (since
a party can always have a “mixed” strategy in which with probability v it runs
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the correct computation and with probability 1 — v does something else, like
guessing at random).

Using this assumption [6] solve the problem of the “repeated executions with
budget” by requiring the verifier to check the correctness of a random subset of
the the prover’s answer by running the computation herself on that subset. This
makes the verifier “efficient” only in an amortized sense.

In [8] we formalized the notion of Sequential Composability in Definition 4
and, using a variation of the UISA, we showed protocols that are sequentially
composable where the verifier is efficient (i.e. polylog verification time) on each
execution. Unfortunately that proof of sequential composability works only for
a limited subclass of log-depth circuits.

5.2 Sequential Composability of Our New Protocol

To prove our protocol to be sequentially composable we need two main assump-
tions which we discuss now.

HARDNESS OF GUESSING STATES. Our protocol imposes very weak requirements
on the prover: the verifier just checks a single computation step in the entire
process, albeit a step chosen at random among the entire sequence. We need an
equivalent of the UISA which states that for every correct transition that the
prover is able to produce he must pay “one” computation step. More formally
for any Turing Machine M we say that pair of configuration v,~’ is M-correct
if v/ can be obtained from «y via a single computation step of M.

Definition 5 (Hardness of State Guessing Assumption). Let M be a Tur-
ing Machine and let Ly; be the language recognized by M. We say that the Hard-
ness of State Guessing Assumption holds for M, for distribution D and security
parameter € if for any machine A running in time t the probability that A on
input x outputs more than t, M -correct pairs of configurations is at most € (where
the probability is taken over the choice of x according to the distribution D and
the internal coin tosses of A).

ADAPTIVE VS. NON-ADAPTIVE PROVERS. Assumption5 guarantees that to
come up with t correct transitions, the prover must invest at least ¢ amount
of work. We now move to the ultimate goal which is to link the amount of work
invested by the prover, to his probability of success. As discussed in [8] it is
useful to distinguish between adaptive and non-adaptive provers.

When running a rational proof on the computation of M over an input x, an
adaptive prover allocates its computational budget on the fly during the execu-
tion of the rational proof. Conversely a non-adaptive prover P uses his compu-
tational budget to compute as much as possible about M (x) before starting the
protocol with the verifier. Clearly an adaptive prover strategy is more powerful
than a non-adaptive one (since the adaptive prover can direct its computation
effort where it matters most, i.e. where the Verifier “checks” the computation).

As an example, it is not hard to see that in our protocol an adaptive prover
can succesfully cheat without investing much computational effort at all. The
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prover will answer at random until the very last step when he will compute
and answer with a correct transition. Even if we invoke Assumption5 a prover
that invests only one computational step has a probability of success of 1 —
m (indeed the prover fails only if we end up checking against the initial
configuration — this is the attack that makes Theorem 1 tight.).

Is it possible to limit the Prover to a non-adaptive strategy? As pointed
out in [8] this could be achieved by imposing some “timing” constraints to the
execution of the protocol: to prevent the prover from performing large compu-
tations while interacting with the Verifier, the latter could request that prover’s
responses be delivered “immediately”, and if a delay happens then the Verifier
will not pay the reward. Similar timing constraints have been used before in
the cryptographic literature, e.g. see the notion of timing assumptions in the
concurrent zero-knowedge protocols in [11]. Note that in order to require an
“immediate” answer from the prover it is necessary that the latter stores all the
intermediate configurations, which is why we require the prover to run in space
O(T(n)S(n)) — this condition is not needed for the protocol to be rational in the
stand-alone case, since even the honest prover could just compute the correct
transition on the fly. Still this could be a problematic approach if the protocol
is conducted over a network since the network delay will most likely be larger
than the computation effort required by the above “cheating” strategy.

Another option is to assume that the Prover is computationally bounded (e.g.
the rational argument model introduced in [15]) and ask the prover to commit to
all the configurations in the computation before starting the interaction with the
verifier. Then instead of sending the configuration, the prover will decommit it
(if the decommitment fails, the verifier stops and pays 0 as a reward). If we use a
Merkle-tree commitment, these steps can be performed and verified in O(logn)
time.

In any case, for the proof we assume that non-adaptive strategies are the
only rational ones and proceed in analyzing our protocol under the assumption
that the prover is adopting a non-adaptive strategy.

THE PROOF. Under the above two assumptions, the proof of sequential compos-
ability is almost immediate.

Theorem 4. Let L € NTISP[poly(n),S(n)] and M be a TM recognizing L.
Assume that Assumption 5 holds for M, under input distribution D and para-
meter €. Moreover assume the prover follows a non-adaptive strategy. Then the
protocol of Sect. 3 is a (K Re, K)-sequentially composable rational proof under D
for any K € N, R € R>o.

Proof. Let P be a prover with a running time of ¢ on input «. Let T" be the total
number of transitions required by M on input x, i.e. the computational cost of
the honest prover.

Observe that p, is the probability that V' makes the final check on one of the
transitions correctly computed by P. Because of Assumption 5 we know that the
probability that P can compute more than ¢ correct transitions is €, therefore
an upper bound on p, is % + € and the Theorem follows from Corollary3. O
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6 Lower Bounds for Rational Proofs

In this section we discuss how likely it is will be able to find very efficient non-
cryptographic rational protocols for the classes P and NP.

We denote by BPQP the class of languages decidable by a randomized algo-
rithm running in quasi-polynomial time, i.e. BPQP = J, ., BPTIME[QO(l"gk(”))].
Our theorem follows the same approach of Theorem 16 in [15]°.

Theorem 5. NP Z DRMA[polylog(n), polylog(n), poly(n)] unless NP C BPQP.

Proof Sketch. Assume there exists a rational proof 7y for a language L € NP
with parameters as the ones above. We can build a PTM M to decide L as
follows: (i) M generates all possible transcripts 7 for mp; (i) for each 7, M
estimates the expected reward R associated to that transcript by sampling
rew(7") ¢ times (recall the reward function is probabilistic); (i) M returns the
output associated to transcript 7 = arg maxs Ry

Consider the space of the transcripts with a polylogarithmic number of
rounds and bits exchanged. The number of possible transcripts in such pro-
tocol is bounded by (2PoVlce(n)polylog(n) — gpolylog(n) Tet, A be the (noticeable)
reward gap of the protocol. By using Hoeffding’s inequality we can prove M can
approximate each Ry within A/3 with probability 2/3 after ¢ = poly(n) samples.
Recalling the definition of reward gap (see Remark 1), we conclude M can decide
L in randomized time 2°P°Y1o8(n) O

It is not known whether NP Z BPQP is true, although this assumption has
been used to show hardness of approximation results [21,23]. Notice that this
assumption implies NP Z BPP [18].

Let us now consider rational proofs for P. By the following theorem they

might require w(log(n)) total communication complexity (since we believe P C
BPNC to be unlikely [25]).

Theorem 6. P Z DRMA[O(1), O(log(n)), polylog(n)] unless P C BPNC.

Proof Sketch. Given a language L € P we build a machine M to decide L as
in the proof of Theorem 5. The only difference is that M can be simulated by
a randomized circuit of polylog(n) depth and polynomial size. In fact, all the
possible 20°8(") = poly(n) transcripts can be simulated in parallel in O(log(n))
sequential time. The same holds computing the ¢ = poly(n) sample rewards for
each of these transcripts. By assumption on the verifier’s running time, each
reward can be computed in polylogarithmic sequential time. Finally, the estimate
of each transcript’s expected reward and the maximum among them can be
computed in O(log(n)) depth. O

Remark 3. Theorem 6 can be generalized to rational proofs with round and com-
munication complexities 7 and ¢ such that r - ¢ = O(log(n)).

® Since we only sketch our proof the reader is invited to see details of the proof [15].
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7 Conclusions and Open Problems

We presented a rational proof for languages recognized by (deterministic) space-
bounded computations. Our protocol is the first rational proof for a general class
of languages that does not use circuit representations. Our protocol is secure
both in the standard stand-alone notion of rational proof [3] and in the stronger
composable version in [8].

Our work leaves open a series of questions:

— Can we build efficient rational proofs for arbitrary poly-time computations,
where the verifier runs in sub-linear (or even linear) time?

— Our proof of sequential composability considers only non-adaptive adver-
saries, and enforces this condition by the use of timing assumptions or
computationally bounded provers. Is it possible to construct protocols that
are secure against adaptive adversaries? Or is it possible to relax the tim-
ing assumption to something less stringent than what is required in our
protocol?

— It would be interesting to investigate the connection between the model of
Rational Proofs and the work on Computational Decision Theory in [17].
In particular looking at realistic cost models that could affect the choice of
strategy by the prover particularly in the sequentially composable model.

In Sect. 1.5 we described the two main approaches to Rational Proofs design:
scoring rules and weak interactive proofs. Trying and compare the power of these
approaches, two natural questions arise:

— Does one approach systematically lead to more efficient rational proofs (in
terms of rounds, communication and verifying complexity) than the other?
— Is one approach more suitable for sequential composability than the other?

We believe these two open questions are worth pursuing. Some discussion follows.

Regarding the first question: in the context of “stand-alone” (non sequential)
rational proofs it is not clear which approach is more powerful. We know that for
every language class known to admit a scoring rule based protocol we also have a
weak interactive proof with similar performance metrics (i.e. number of rounds,
verifier efficiency, etc.). Our result is the first example of a language class for
which we have rational proofs based on weak interactive proofs but no example
of a scoring rule based protocol exist®. This suggests that the weak interactive
proof approach might be the more powerful technique. It is open if all rational
proofs are indeed weak interactive proofs: i.e. that given a rational proof with
certain efficiency parameters, one can construct a weak interactive proof with
“approximately” the same parameters.

On the issue of sequential composability, we have already proven in [8] that
some rational proofs based on scoring rules (such as Brier’s scoring rule) are not

5 We stress that in this comparison we are interested in protocols with similar effi-
ciency parameters. For example, the work in [3] presents several large complexity
classes for which we have rational proofs. However, these protocols require a poly-
nomial verifier and do not obtain a noticeable reward gap.
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sequentially composable. This problem might be inherent at least for scoring
rules that pay a substantial reward to incorrect computations. What we can say
is that all known sequentially composable proofs are based on weak interactive
proofs ([4,8]” and this work). Again it is open if this is required, i.e. that all
sequentially composable rational proofs are weak interactive proofs.

Acknowledgments. The authors would like to thank Jesper Buus Nielsen for sug-
gesting the approach of the construction in Theorem 1.
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Abstract. In this paper, we investigate the performance of power line
communication (PLC) network in the presence of jamming attacks. The
legitimate nodes of the PLC network try to communicate with the anchor
node of the network while the jamming node attempts to degrade the
system performance. The fading, attenuation and colored noise of the
PLC channel with dependence on the frequency and transmission dis-
tance are taken into account. To investigate the jamming problem, we
frame the adversarial interaction into a Bayesian game, where the PLC
network tries to maximize the overall expected network capacity and the
jammer node has the opposite goal. In the Bayesian game, both players
have imperfect knowledge of their opponents. We study effects of total
power available to the players on the equilibrium of the game by formu-
lating it into zero-sum and non-zero-sum games, respectively. It is found
that under some network setup, there exists a threshold power for which
the actual gameplay of the legitimate nodes does not depend upon the
actions of the jamming node, and vice versa. This allows us to choose
the appropriate power allocation schemes given the total power and the
action of the jamming node in some cases.

Keywords: Security + Jamming attack - Game theory - Zero-sum
game - Non-zero-sum game - Bayesian nash equilibrium - Power line
communication

1 Introduction

In recent years, power line communication (PLC) has gained increasing interests
from both the industry and academia due to the vision of widespread information
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transmission through power lines. With the advantages of omnipresence of power
line and no need to invest in new infrastructure, PLC is set to be a promising tech-
nology with wide applications in smart grid, home automation and networking,
ete. [1-3].

As in the case of wireless communications, PLC system is inherently based on
broadcast transmission. This open and shared nature of the PLC transmission
medium poses significant challenges for the communication secrecy and privacy
in the presence of potential malicious attacks [4]. The nature of the malicious
attacks generally indicates conflict and cooperation between the participants in
the communication system. These kind of problems can be often addressed with
the game theory approach, which has been widely used by the communication
and networking research community to tackle various problems [5-7]. The anti-
eavesdropping problem in the presence of selfish jamming is studied as a Bertrand
game by assuming the single-channel multi-jammer and multi-channel single-
jammer models in [5]. In [6], the authors consider a scenario where a jammer
attacks one sub-band of a multi-channel wireless communication system. The
strategies for both players are about the sub-channels to transmit or attack.
The dependence of the equilibria of the formulated game on the relative position
of the jammer is investigated. A reactive jamming scenario where the jammer
may not always be able to accurately detect the legitimate transmissions is
considered in [7]. Overall, depending on the specific scenario and the proposed
strategy, different games and solutions can be formulated.

In this paper, we consider the jamming problem of PLC network. The PLC
channel tremendously differs from the wireless channel in terms of the attenua-
tion characteristics, fading distributions, and noise characteristics; the nature of
wire transmission also makes the scenario of jamming different from the wireless
case [8-10]. All these differences make the vast number of analysis and solutions
for the wireless communication systems under malicious attacks inapplicable for
the PLC systems. More specifically, we investigate the PLC system in the pres-
ence of jamming attack, where a malicious node attempts to degrade the network
performance by contrasting the transmission at the physical layer. We interpret
the legitimate nodes of the PLC network as one player (denoted as player L)
with the aim of maximizing the system performance in terms of capacity while
the malicious jamming node is considered as another player (denoted as player J)
with the goal of minimizing the overall system performance. Therefore, the con-
sidered jamming problem can be well framed as a zero-sum game and analyzed
with the game theory approach. Additionally, we consider a setup where the
jammer has a goal of minimizing its losses assuming it can be tracked and then
fined, thus the game becomes non-zero-sum.

The overall capacity of the PLC network, depends on the received signal-
to-noise ratio (SNR) or signal-to-noise-plus-interference ratio (SINR) in case of
jamming attack of each subchannel. The SNR or SINR highly depends upon
the transmission power and the used frequency since the distances from the
legitimate nodes to the anchor node in the PLC network are generally fixed. We
assume that the legitimate nodes can allocate their spectrum depending on its
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power situation and their distances to the anchor node. Any feasible allocation
of the spectrum by the legitimate nodes, we call type of player L. Meanwhile, the
position of the jamming node is determined by its distance to the anchor node,
which is supposed to be the type of the player J. We additionally assume that (i)
the jammer has an imperfect knowledge on a particular spectrum allocation of
the legitimate nodes but it knows all feasible allocations, and (ii) the legitimate
nodes have imperfect information on a particular distance of the jammer to
the anchor node but they have a knowledge on all feasible distances. Under
these assumptions, the investigated game becomes a Bayesian game [11]. In
our analysis, our objective is to investigate the role of the power allocation for
both players and understand the corresponding effects on the resulting Bayesian
equilibrium.

The remainder of the paper is organized as follows. In Sect. 2, we describe the
considered system and PLC channel models. In Sect. 3, the investigated problem
is formulated as Bayesian games (zero-sum and non-zero-sum); the Bayesian
Nash equilibria (BNE) and the equilibrium payoffs to the formulated games are
presented. The numerical results are presented in Sect. 4; and the impact of the
number of sub-bands on the system performance is discussed. Section 5 concludes
the paper.

2 System and Channel Model

PLC channel is tremendously different from the wireless channel. Attenuation in
PLC systems depends on the characteristics of the power cables, length of trans-
mission, and the operating frequency. The wireless channel noise stems from the
thermal noise, which is modeled as additive white Gaussian noise (AWGN) [12].
However, the background noise in the PLC channel is not white but colored. The
amplitude fading statistics in PLC environments are not well established com-
pared to wireless communications. A vast number of measurement results show
that distributions such as Rayleigh, Rician, and lognormal are recommended
for defining the path amplitudes in PLC channels [13]. In our analysis, we will
assume the amplitude following Rayleigh distribution, which was found to be
the best fit for a wealth of PLC field measurements [14-18].
The input/output model of a PLC system over Rayleigh fading channel can
be expressed as
y=h-o+uw, (1)

where x is the channel input with unit energy, i.e., E[|z|?] = 1, w represents
the PLC background noise modeled as colored Gaussian distributed additive
noise, and y is the channel output. The envelope of the channel gain, i.e., |hl, is
Rayleigh distributed with PDF given by

oz 22 <
f‘h|(z)—?-exp(—ftz), z>0. (2)
where ¢ > 0 is the scale parameter of the distribution, which determines the
statistical average and the variance of the random variable as E[|h|] = o+/7/2
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and Var[|h|]] = (2 — 0.57)0?, respectively. In model (1), the average power of
h-x depends on the transmit power P, and the power attenuation a(Dp, f) over
transmission distance Dy, at operating frequency f1!, i.e.,

E[[h]* - |z?] = E[|A|*] = Pr - a(Dv, f)- 3)

Due to the nature of the cable propagation environment, the PLC attenuation
model is significantly different from that of wireless channel and the attenuation
a(D, f) can be modeled by [19]

a(Dy, f) = e>etex )P, (4)
where a1 and oo are constants with dependence on the system configurations;
the exponent k is the attenuation factor with typical values between 0.5 and 1.
It is obvious from (4) that the attenuation increases dramatically with higher
frequency and larger transmission distance.

The widely used assumption of white noise for wireless channel does not hold
for PLC channel. Instead, the background noise is colored and the average power
per unit bandwidth, namely, the power spectral density (PSD), can be written
as [19]

N(f) = Elfw]?] = 10707 vy /Ha), (5)

where (31, (2, and (3 are some constants.
With the aforementioned system, in case of no jamming, the received average
SNR 7 at the transmission distance Dy, and frequency f can be expressed as

T f) = gl

A jammer J is located Dj away from the receiver and is transmitting noise-
like power P; over the concerned channel. To simplify our analysis, we can
approximate the average SINR expression by using the variance of the Jammer’s
channel. This practice leads to an approximation, which is found reasonable in
practice. Then, the corresponding average SINR can be simply expressed as

_ N Pr-a(Dy, f)
’Y(DLaDJaf) ~ PJCL(DJ,f)+N(f)

(6)

(7)
It is well-known that under the Rayleigh fading channel, the instantaneous

SNR or SINR v is distributed according to an exponential distribution given by

1

fv(z) = ~

exp(—:), 220, (8)

where the parameter 7 is expressed in (6) or (7).

! The frequency f is in MHz throughout the paper.
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The ergodic capacity (a.k.a. Shannon capacity) is defined as the expectation
of the information rate over all states of the fading channel. The ergodic capacity
of the PLC channel pertaining to the frequency f is expressed as [20]

- 1 1
C¢(Pr,Dr; Py, Dy) = / log, (1 + 2) fy(2) dz = log,(e) - e7 - By (%)’
0

where the function Ej(-) is the exponential integral of first order given by

Ei(z) = [ <" dt [21].

For transmission over a frequency band B, the corresponding ergodic capacity
per bandwidth becomes

1

Cg(Pr,Dr;P;,Dy) = 18] / logy(e) - e
B

==

- B (%) df, 9)

integrating over all frequencies f within frequency band B, where the average
SNR or SINR 7 is expressed in (6) or (7) depending on the presence of the
jammer [22]. It is not possible to obtain closed-form expressions for the integral
in (9), but it is simple and straightforward to evaluate it numerically using
mathematical softwares such as Matlab and Mathematica.

3 Game-Theoretical Approach of the Jamming Attacks
in PLC Network

3.1 Case of a Zero-Sum Game

We assume that the considered PLC network is represented by a finite set of legit-
imate nodes {1,...,m}, all of which transmit information to an anchor node.
The PLC system operates in the frequency division multiple access (FDMA)
mode by using n > m equal subchannels By,..., B, within the available fre-
quency band B. Denote by B(¢) € {Bji,...,B,} the subchannel assigned to
legitimate node ¢. The legitimate nodes may transmit at different power levels
depending upon its available power and distance. One jammer node exists in
the PLC network which launches “brute-force” hostile attacks at the physical
layer by raising the interference level on the transmitting frequency band. The
jamming node is also intelligent enough to attack different subchannels with dif-
ferent powers. This considered scenario is quite practical as the PLC network
can be readily extended into a core network in future smart grid network (e.g.,
in Fig. 1, the anchor node is the router connecting all devices over power line and
a jamming node can potentially attack the PLC network). As a more practical
illustration of usage, the legitimate node might be a wifi access point within a
room where there exists no fiber or a sensor node which collects data on the sur-
rounding environment, etc. The anchor node might be a router, which transfers
the accumulated information within the PLC network to the data center or the
Internet [23].

For player L, let Dy, £ = 1,...,m, represent the distance between the anchor
node and the fth legitimate node. The total available power for player L is
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Fig. 1. A typical PLC network where jamming security can be an issue. [24]

denoted as P,. As explained in Sect. 1, the uncertainty of the allocation scheme
of the legitimate nodes on B is modeled by a set 71 of different types of alloca-
tion schemes of the spectrum, where |77 is finite. A type t;, € 7, is an assign-
ment profile (B(1),...,B(m)) whose components are subchannels assigned to
legitimate nodes. As the available frequency band B is equally divided into n
subchannels, it is straightforward to see that |7;| = n(n —1)---(n — m + 2).
The corresponding prior probability for the type ¢7, is denoted as pr(t1), and
>t e1, Pr(tr) = 1. For player J, the uncertainty of the distance from the jam-
ming node to the anchor node is also simulated by a set 7; of different types of
the distance, where |7;| is also assumed to be finite. A type t; € 7; describes
the distance D; between the jamming node and the anchor node. Similarly, the
corresponding prior probability for the type ¢; in the finite set 7; is written
as py(ts), and ), ~r ps(t;) = 1. The total available power for player J is
denoted as Pj. The set of types of allocation schemes of the spectrum 77, (for
player L), the set of types of distance 7 (for player J), available powers Pj, and
Pj, distances between legitimate nodes and the anchor node Dy, £ = 1,...,m,
and probabilities pr.(tr), tr € Tz, and p;(ts), t; € T;, are common knowledge.
We suppose that the types of players are selected by Nature, the terminology in
game theory standing for a fictitious player which introduces randomness to the
game, according to the commonly known prior probability distributions [25].
Once the type of the allocation scheme for player L has been assigned by
Nature according to the probability distribution, player L chooses its action
Ap =(Pra,...,Prm) from a finite set of actions Ay, to its advantage subject to
the constraint y_," | Pr, = Pr. Similarly for player J, the type of the distance
from the jamming node to the anchor node is first assigned by Nature according
to the probability distribution, player J takes its action Ay = (Py1,...,Prn)
from a finite set of actions Aj; to its advantage subject to the constraint
Z?Zl Pj; = Pj. 1t should be noted that the strategies, i.e., different power levels
allocated to different nodes for player L or subchannels for player J, should take
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discrete values. This assumption is reasonable since in practical communication
systems, the power generally takes discrete values.

Since the set of power allocation schemes for player L is finite, its strategy
set denoted by Ay, will consist of |Xz| = |.Ar|/7t! pure strategies whose entries
X € Xy are |7.|-tuples assigning a power allocation for L for any possible
type. As an illustration of the action set, we can think of the simplest case
where there are only a single node for player L and |.Ay| = 2 actions, then there
are only two pure strategies for player L. Similarly, for player J, its strategy is
to allocate different powers to m subchannels. Further, since the set of power
allocation schemes for player J is also finite then it is straightforward to see
that its strategy set denoted by X consists of |X;| = |As|I7’] pure strategies
whose entries X; € X are |7;|-tuples assigning a power allocation for J for any
possible type. With the above knowledge, given two power allocation schemes
Ay and Aj for players L and J respectively, we can then represent the expected
ex ante payoff of player L (with its goal to maximize the overall expected network
capacity) as follows

EUL(XL, X)) = Y Y polte) -ps(ts) (10)
tLe€TL t;€Ty

m
X (Z Cg)(PrL.t, De; Py poys DJ)) :

(=1

The capacity for each subchannel used by each legitimate node can be readily
obtained by substituting (6) or (7) into (9). Since player J has the opposite goal
(it aims at minimizing the overall network capacity), its expected payoff can be
expressed as E[U; (X, X ;)] = —E[UL(Xp, X ;)] for all X, € X, and X; € X;.
Thus the problem under consideration can be modeled by means of a zero-sum
game.

In summary, the investigated Bayesian zero-sum game G can be character-
ized as

G={P,7,0,A,U}, (11)
where the parameters are elaborated as follows:

— Player set P = {L, J} consists of two players, namely player L: the all legiti-
mate nodes and player J: the jamming node;

— Type sets 7 = {71,7;}, where the type of player L is determined by the
frequency band allocation scheme, and the type of player J is determined by
the distance from the jamming node to the anchor node;

— Probability set § = {01,0;}, where 61, and 0; are the prior probability dis-
tributions of the types on 77, and 7 assigning probabilities py,(t1.), t € 71,
and py(ty), ty € Ty for players L and J, respectively;

— Action sets A = {Ar, A}, where Ay and A; being the transmitting power
allocations of the available frequency band B of players L and J, respectively;

— Utility functions & = {E[U.], E[U]} where E[U] is determined by (10) and
ElU,] = —E[UL].
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3.2 Bayesian Nash Equilibrium

With a goal to find a BNE, which is a saddle point in a zero-sum game, we
note that the equilibrium may not exist in pure strategies. For this reason, we
introduce a mixed strategy &5, of player L as a probability distribution over set
X, of its pure strategies, where £;,(X 1) denotes the probability of choosing pure
strategy Xr € X with 3y, §0(Xr) = 1. Similarly, a mixed strategy £; of
player J is a probability distribution over set X;, where £;(X ;) stands for the
probability of choosing pure strategy X ; € X; with ZXJE& £5(Xy) = 1. Let
=1 and =; denote the sets of mixed strategies of players L and J, respectively.
Given two mixed strategies £, and &; of players L and J, the expected payoff
of player L (with its goal to maximize the overall expected network capacity) is
given by

BlUL(EL )] =Y D &u(X0)&(X))EUL(XL, X)), (12)

XLEXL Xj€X,

and E[U;(¢1,&5)] = —E[UL(&L,&y)] for all &1, € = and §; € Z;. We call a pair
(61.€3) BNE, i B[UL(61,€))] < EUL(;, €] < E[UL(€},£,)] for any & € =,
and &; € Z;. The expected payoff E[Ur(&;,£%)] for BNE (&5,£%) is called the
value of the game, which we denote by v.

BNE of the zero-sum game can be found with Minmax Theorem, which is
closely related to the linear programming. According to Minmax Theorem, there
exists at least one Nash equilibrium and all equilibria yield the same payoff for
each player [25]. The mixed strategy under BNE ensures that the value v is
maximized in the worst case due to the strategy played by the opponent [26].
This is mathematically expressed as

= i X)E|UL (X, X
v= max min Z L(Xp)EUL(XL, X )]

X EeEX],
o
— i XE X, XJ5)l|. 1
g?ggj XI?gé}éL Z Er(XE[UL(XL, X)) (13)
XjeX;
vy

The above optimization can be further reformulated as the following dual
linear programs:

max vy, (14)
{LEEL, vL
v < Y Cu(Xp)E[Un(Xp, X)), VX;€ Xy,
XLeXxy
subject to > &n(Xp) =1,
XpeXr
§0(Xp) =20, VXL € &,
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and

i 15
e dun (15)

vy 2z 3 &(XJE[UL(XL, X)), VXL € AL,
X EX,
subject toq > £,(X) =1,
XjeXy
fJ(XJ) >0, VX; € AXj.

Let (&5,v3) and (£%,v%) represent the optimal solutions to the above linear
programs (14)—(15). From Minmax Theorem it follows that pair (£7,£&%) is a
BNE in mixed strategies and v = v} = v is the value of the game. The optimal
solutions of the linear programs can be readily obtained using Matlab command
‘linprog()’ [27].

3.3 Case of a Non-Zero-Sum Game

In the previous subsection we formulated and examined the problem of jamming
attacks in the PLC network when legitimate nodes and the jamming node have
opposite goals. However in some cases this approach seems less practical: for
example, players do not necessarily aim at maximizing (minimizing) the overall
network capacity. Below we propose an extension of the formulated problem to
a case of a non-zero-sum game. Let as previously player L transmit the signal
over the distance Dy at the frequency band B with the transmit power Py,
whereas player J being at the distance D; away from the receiver transmit noise
with the transmit power Pj over the concerned frequency band. To be as close
to the previous model as possible and at the same time extending it in line
with [28], we define the payoffs of players L and J as Cp(Pr, Dr; Py, D) and
—(1—9)-Cp(Pr,Dr; Py, Dj) — o F, respectively, where the newly introduced
parameters will be described followingly.

From the definitions of players’ payoffs, we observe that player L still aims at
maximizing its network capacity when transmitting the signal over the distance
Dy at the frequency band B with power level P, under the presence of the
jammer (alternatively, player L maximizes its profit from the transmission of a
signal receiving one unit of utility for providing one unit of capacity). On the
other hand, player J minimizes his expected losses assuming he can be tracked
when transmitting the noise signal over the frequency band B with a given
constant probability ¢ and then fined a constant penalty F' > 0. In practice, the
penalty might be a fine to the jammer by the utility company after finding the
jamming actions (with probability ). Thus the goal of player J is to minimize
the expected losses when transmitting the noise at power level P; being at the
distance D; away from player L. Note that players L and J have completely
opposite goals when the jammer can never be tracked, i.e., when the probability
o0 = 0. In this case the game becomes zero sum.

It is worth mentioning that players’ behavior patterns remain unchanged: a
strategy of player L, X, is a power allocation A; among selected subchannels
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based on an assignment profile ¢;, realized with probability pr,(t1,), while a strat-
egy of player J, X, is a power allocation A; among all subchannels within the
available frequency band based on a distance to the anchor node t; selected with
probability ps(t). Given a strategy profile (X, X ;), we represent the expected
payoffs of players. Since the goal of player L is still in the maximization of the
expected network capacity, the expected payoff of L will have the form of (10),
but the expected payoff of player J is given by

E[U; (XL, X,)] Z Z pr(tr) - ps(ty) (16)

tr €T t;€Ty

X ((1 —0) ZCB(Z)(PL,Za Dy; Py ey, D) + ng).
=1

The formulated game is not zero sum and it can be characterized by the same
components as in (11) with the only difference that players’ utility functions U =
{E[UL],E|Us]} represented by their expected payoffs in the PLC network are
determined by (10) and (16), respectively. Similarly, introducing mixed strategies
&1, for player L and & for player J, we can write the expected payoffs of players
as follows

ElUL(EL )] =) D (X)X ))EUL(XL, X)), (17)
XpeXy, Xy€eXy
BlUS (0,0 =Y Y (X0)e(X)EUS (XL, X)), (18)

XreXL X eX;

where &1, (X1) and £;(X ) stand for the probabilities of choosing pure strate-
gies X; € X and X; € X, respectively, with ZXLE& &0(Xp) = 1 and
dox,ex, $1(Xy) = 1, whereas E[UL(X[, X;)] and E[U,; (XL, X )] are defined
by (10) and (16). We call a pair (£},£%) BNE in the non-zero-sum game if
ElUL(¢L,&5)] < E[UL(&,65)] for any &1, € =, and at the same time the rela-
tionship E[U;(£5,&5) < E[Us(&5,€%)] holds for any £; € =;. We denote the
expected equilibrium payoffs E[UL (&5, &%)] and E[U;(€5,£%)] for BNE (£5,£%)
by v} and v%, respectively.

It is well-known that the Nash theorem guarantees the existence of at least
one BNE in the game [25]. Moreover from the theory of non-zero-sum games we
conclude that BNE satisfies the conditions:

JEX
v = max T (Xp)E[Uy (XL, X
7 XJeXJxLZ:eXLfL( L)EUS (X1, X))

For a two-person games with finite sets of strategies, there has been devel-
oped a combinatorial algorithm for finding an equilibrium (so-called the Lemke—
Howson algorithm [29]). The mixed BNE can be obtained using Matlab function
‘LemkeHowson ()’ [30].
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4 Numerical Results

In this section, the analytical results derived in the previous sections are evalu-
ated numerically with the use of Matlab. We adopt the PLC channel parameter
values shown in Table 1, which are the experimental data from field measure-
ments conducted in the industrial environments [31,32]. For simulation purpose,
we investigate the simplest case where there are two nodes for player L. and one
jamming node for player J. Unless stated otherwise, the distances of the two
nodes to the anchor node are D; = 20m, Dy = 28 m. The two frequencies used
by PLC network are B; = [10,20] MHz and By = [20,30] MHz. The frequency
bands are the types of player L, i.e., 7;, = {t11,tr2} where t;; = By, tra = Bo,
which are assigned with probabilities pr,(tr1) = 1/3 and pr(t12) = 2/3. There is
no complete information on the position of the jammer except that it is located
either 21 or 26 m away from the anchor node, thus these two distances are the
types of player J and 7; = {tj1,ts2} where t;; = 21 m, t;5 = 26 m. The
probability distribution is p;(t;1) = 3/7 and ps(tj2) = 4/7.

It is known that P, = 16 dBm/Hz and P; = 12 dBm/Hz. The action
spaces for players are as follows. For player L, A;, = {Ar1, A2} where Ay =
(0.75PL,0.25PL), AL2 = (0.5PL,0.5PL), and AJ = {AJl,AJl} where AJl =
(0.25P;,0.75P;), Ajo = (0.75P;,0.25P;), thus both players have two power allo-
cation schemes. This implies both players’ strategy sets consist of four pure strate-
gies: XL = {XLI,XL27XL3aXL4} and XJ = {XJl,XJQ, XJ3,XJ4}. Players’
strategies should be read as follows. The strategy X, dictates player L to choose
Apiifheisoftypetr; and Ay ifheisof typetps. The strategy X prescribes him
to choose Ay if he is of type t11 and Ajs if he is of type t1,2. When selecting X3,
player L chooses Ay, if he is of type t1; and Ay if he is of type t15. And finally,
when selecting X 3, player L chooses Ay, if heisof typety; and Ay if heis of type
tro. Similarly for player J.

4.1 Results for the Case of Zero-Sum Game

By solving the linear programs (14) and (15), the zero-sum game admits the mixed
Bayesian Nash equilibrium which is given by &5 = (0.0038,0.6224,0,0.3738),
&5 = (0.0424,0.9576,0,0), that is, player L with probability 0.0038 plays X1,
with probability 0.6224 plays X2, and with probability 0.3738 plays X4 whereas
player J with probability 0.0424 chooses X j; and with probability 0.9576 chooses
X jo. The value of the game v* = 1.21912. Figures 2 and 3 show the equilibrium

Table 1. PLC Channel Parameters

Attenuation model parameters

a1 =9.33x10% m™" la =51x10"" s/m k=07
Noise model parameters (industrial environment)

Br = —123 B2 = 40 s =8.6
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mixed strategies {7 and £ for both players as function of P, with the fixed value of
P; = 12 dBm/Hz. We note that under the considered range of values of Py, player
L (J) never uses his strategy X13(Xs3) in any equilibrium, while he starts using
strategy Xr11(X 1) when Pp, exceeds some threshold. At the same time, when Py,
exceeds this threshold, player J stops using strategy X j4 in any equilibrium. Sim-
ilar figures can be provided for £} and &£ as functions of P; with fixed value of Pr,.

Figure 4 shows the PLC system capacity at the Bayesian Nash equilibrium
(the value of the zero-sum game v*) as a function of the PSDs P;, and Pj.
It is clear that in the equilibrium, the system capacity is proportional to the
power of the legitimate nodes and inversely proportional to the power from the
jamming node. In order to compare the system capacity resulting from different
strategies for both players, we investigate the special case of two legitimate
nodes for player L and one jamming node for player J. In this scenario, the
three-dimensional Fig.5 suffices to illustrate all the strategies of both players
as well as the corresponding payoff. The PSDs for the legitimate nodes and the
jamming node are set as P, = 16 dBm/Hz and P; = 12 dBm/Hz, respectively.
It can be seen from Fig. 5 that the system capacity for a fixed strategy of player
L is a convex function of P;; while the capacity becomes a concave function of
Pr 1 with fixed Pj;. We can see that different strategies from both players lead
to quite different system performances. However, there is a saddle point, which
the legitimate nodes and the jammer both have no incentive to deviate. This
saddle point or the Nash equilibrium is achieved while P;; = 6 dBm/Hz and
Pj1 =12 dBm/Hz .

Figure 6 demonstrates the relationship between the value of the game (Nash
equilibrium payoff), the maxmin and minmax payoffs and the available power
to player L, P;,. The maxmin payoff is simply the best payoff for player L when
player J plays the most hostile strategy while the minmax payoff is player L’s
worst payoff when player J plays the least harmful strategy for player L. Clearly,
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Fig. 7. The Bayesian Nash equilibrium
payoff for player L as a function of the
type ts1 with the other type tjo fixed.

the Nash equilibrium payoff is bounded by the maxmin and minmax payoffs.
However, the three payoffs converge while the power available to L is larger than
the threshold, which indicates that player L behaves, in this scenario, almost
independently of player J’s strategy, and vice versa. The similar pattern is pre-
sented in Fig. 7, where the relationship is shown between the value of the game
(Nash equilibrium payoff), the maxmin and minmax payoffs and the one selected
distance (type) of player J, ¢ 1, with the other distance ¢ ;5 being fixed.
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4.2 Results for the Case of Non-Zero-Sum Game

In the case of the non-zero-sum game we additionally assume that the probability
of tracking the jammer equals o = 0.2 and the fine F' = 50. In the non-zero-sum
game the mixed Bayesian Nash equilibrium is given using the Lemke-Howson
algorithm as follows: £; = (0.0424,0.9576,0,0), &5 = (0,0,0.8455,0.1545).
Under this equilibrium profile, player L. with probability 0.0424 plays X1 and
with probability 0.9576 plays Xro whereas player J with probability 0.8455
chooses X ;3 and with probability 0.1545 chooses X ;4. The equilibrium pay-
offs are: vj = 1.21141 and v} = —1.46913. Figures 8 and 9 show the equilibrium
mixed strategies for both players as a function of Pp, with fixed value of P;.
Figures 10 and 11 show the PLC system capacity v; and jammer’s losses
v} at the Bayesian Nash equilibrium as a functions of the PSDs P and Pj.
Again in the equilibrium, the system capacity is proportional to the power of
the legitimate nodes and inversely proportional to the power from the jamming
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node. For the jamming node, the higher the power of the legitimate nodes, the
higher losses of J and the higher the power of J, the less losses it sustains in the
system.

Figures 12 and 13 show the equilibrium payoffs as functions of Pp ; and Py,
for players L. and J, respectively. Here we observe a different pattern of the
equilibrium payoff of L comparing with that in Fig.5 (we recall that the PLC
system capacity is the payoff of L). We see the intervals for Pr; where the
equilibrium payoff of L can be a convex function for a fixed Pj;, whereas in case
of the zero-sum game it is a concave function of Pr, ;. There are also intervals
for Pj; where the equilibrium payoff of L is a concave function for a fixed
Pp 1, whereas in Fig. 5 it is a convex function of Py ;. Similar conclusion can be
made also from Fig. 13 where the equilibrium payoff of player J is demonstrated,
recalling that in the zero-sum game the payoff of J differs of L only in sign.

5 Conclusion

In this paper, we formulate the performance of a PLC network with the presence
of jamming attacks into a Bayesian game. It was assumed that both players of
the game have imperfect knowledge of the opponents, namely the spectrum
allocation scheme for the legitimate nodes and the distance of the jamming node
to the anchor node. Under some assumptions, we derived the Bayesian Nash
equilibrium of the game. We further studied the effects of total power available
to both players on the equilibrium. It is found that the equilibrium is unique
in many setups, where the jamming node adopts a strategy following which it
does not attack the subchannels used by legitimate nodes with specific power
allocation. This allows the PLC network to choose the allocation schemes to its
advantages in some cases.

It should be noted that the present model can be extended to the case when
players have asymmetric information about types: when one player knows his
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own type but does not observe the type of his opponent what seems to be more
practical in most cases. We leave this for future research.
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Abstract. We introduce a new paradigm to the field of control theory:
“secure sensor design”. Particularly, we design sensor outputs cautiously
against advanced persistent threats that can intervene in cyber-physical
systems. Such threats are designed for the very specific target systems
and seeking to achieve their malicious goals in the long term while avoid-
ing intrusion detection. Since such attacks can avoid detection mecha-
nisms, the controller of the system could have already been intervened in
by an adversary. Disregarding such a possibility and disclosing informa-
tion without caution can have severe consequences. Therefore, through
secure sensor design, we seek to minimize the damage of such undetected
attacks in cyber-physical systems while impacting the ordinary opera-
tions of the system at minimum. We, specifically, consider a controlled
Markov-Gaussian process, where a sensor observes the state of the sys-
tem and discloses information to a controller that can have friendly or
adversarial intentions. We show that sensor outputs that are memoryless
and linear in the state of the system can be optimal, in the sense of game-
theoretic hierarchical equilibrium, within the general class of strategies.
We also provide a semi-definite programming based algorithm to design
the secure sensor outputs numerically.

Keywords: Stackelberg games - Stochastic control - Cyber-physical
systems + Security - Advanced persistent threats - Sensor design * Semi-
definite programming

1 Introduction

A cyber-physical system can be considered as a system equipped with sensing
and actuation capabilities in the physical part, and monitoring or controlling
capabilities using computer-based algorithms in the cyber part, e.g., process
control systems, robotics, smart grid, and autonomous vehicles [9]. However,
due to the cyber part, such systems are very prone to cyber-attacks. Reference
[10] reveals such vulnerabilities of the inner vehicle networks to cyber attacks
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experimentally, e.g., an attacker has been able to control the brake system of
a moving vehicle remotely. In 2010, StuxNet worm targeted very specifically
certain supervisory control and data acquisition (SCADA) systems and managed
to cause substantial damage, which was an eye-opener pointing to insufficiency of
the existing, isolation based, security mechanisms for such systems [8]. Recently
in 2014, Dragonfly Malware infiltrated into the cyber-physical systems across
the energy and pharmaceutical industries and intervened in the systems over a
long period of time stealthily [16]. In a nutshell, those experiences show that
once an adversarial attacker infiltrates into the cyber part of the system, he/she
can monitor and control the physical processes away from the system’s desired
target, which can lead to severe consequences. Therefore, developing novel formal
security mechanisms plays a vital role in the security of these systems.

Existing studies mainly focus on characterizing the vulnerabilities of cyber-
physical systems against various attack models. Reference [14] formulates neces-
sary conditions for an undetected attack that can cause unbounded error in the
state estimation. In [18], the authors characterize necessary and sufficient con-
ditions for an undetected attack when the system does not have any sensor and
process noises. In [5,6], the authors formulate the optimal cyber-attacks with
control objectives, where the attacker both seeks to be undetected and drive the
state of the systems according to his/her adversarial goals by manipulating sen-
sor outputs and control inputs together. Recently, Reference [20] has analyzed
the optimal attack strategies seeking to increase the quadratic cost of a system
with linear Gaussian dynamics, while maintaining certain degree of stealthiness.

There are also studies that aim to provide formal security guarantees against
false data injection attacks, where attackers infiltrate into a subset of multiple
sensors and report false outputs into the system. In order to detect and recover
from such attacks, Reference [7] provides a security mechanism for estimation
and control based applications, and in [13], the authors propose a coding scheme
for the outputs of multiple sensors. Apart from these two separate approaches,
i.e., analyzing optimal attacks with control objectives and encoding outputs of
multiple sensors against false data injection attacks, we aim to combine them
together in the secure sensor design framework. Particularly, closed-loop control
is essential in cyber-physical systems due to the uncertainty of the state noise,
i.e., a controller needs the sensor outputs to be able to drive the state toward
his/her desired path [11]. By designing sensor outputs in advance, we seek to
provide security against the attacks with control objectives.

Economics also plays an essential role while developing defense strategies for
cyber-security of systems [4]. As an example, investment on security measures
should not exceed the value of the protected asset. Furthermore, adversarial
attacks are also costly and an attack would be feasible, therefore expected, if the
attack costs the attacker less than the damage at the target. Therefore reducing
the damage that can be caused by such threats as much as possible is crucial
to reduce the feasibility, therefore the likelihood, of such attacks. To this end,
in the secure sensor design framework, we seek to minimize the damage by the
attacks, with minimum impact on the ordinary operations of the system.



Secure Sensor Design 93

We propose a new approach for the security of cyber-physical systems by min-
imizing the damage of cyber-attacks on the system. We focus on undetectable,
or difficult to detect, attacks, which we call “advanced persistent threats”. These
attacks are advanced by targeting very specific systems with knowledge about
the underlying dynamics, and persistent by attacking stealthily, i.e., avoiding
detection mechanisms. Since such attackers can intervene in the system for a
long period of time without being detected, this rises the possibility of adversar-
ial intervention in cyber part of the systems at any time. Therefore, the system
designer should take such possibilities into consideration. However, the designer
should also not take precautions as if the cyber part of the system is compro-
mised due to such a possibility since that would impact the intended operations
of the system substantially. In particular, there is a trade-off between securing
the system and maintaining a certain performance in the system.

In this paper, to obtain explicit results, we specifically consider systems with
linear quadratic Gaussian dynamics and control objectives, which have various
applications in industry [20] from manufacturing processes to aerospace con-
trol. We consider the possibility for adversarial interventions in the controller
by advanced persistent threats, and seek to design sensor outputs cautiously in
advance. Therefore, there is a hierarchical structure between the sensor and the
controller of the system. The controller constructs a closed-loop control input
based on the sensor output, knowing the relationship between the sensor output
and the state. Furthermore, if the controller is an adversary, then the objectives
of the sensor and the controller mismatch. Therefore, we can analyze the interac-
tions between the sensor and the controller through a game-theoretic hierarchical
equilibrium, which implies that, as a sensor designer, we should anticipate the
controller’s reaction by also taking into account that the controller can have both
friendly or adversarial objectives. We show that for controlled Markov-Gaussian
processes, the equilibrium achieving sensor outputs are memoryless and linear in
the underlying state of the system. Additionally, we provide a semi-definite pro-
gramming (SDP) based algorithm to design secure sensor outputs numerically.

The main contributions of this paper are as follows:

— This appears to be the first work in the literature to study sensor design
against advanced persistent threats that can infiltrate into the controller of a
cyber-physical system.

— We provide a formal problem formulation from a game-theoretical perspec-
tive to design sensor outputs cautiously due to the possibility of undetected
interventions in the controllers.

— Given any sensor strategies, we compute the optimal control strategies for
both friendly and adversarial objectives. Note that the adversary seeks to
construct control inputs that are close to the control inputs that would have
been constructed if he/she had a friendly objective in order to avoid detection
and accomplish his/her malicious goals in the long term over the time horizon
by exploiting the uncertainties in the system.

— We show that the optimal sensor strategies in the sense of game-theoretic
hierarchical equilibrium are memoryless and linear in the underlying state.
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Correspondingly, friendly as well as adversarial control strategies are linear
in the sensor outputs.
— We also provide a practical algorithm to design secure sensors numerically.

The paper is organized as follows: In Sect.2, we provide the secure sen-
sor design framework. In Sect. 3, we formulate the associated multi-stage static
Bayesian Stackelberg game. In Sect. 4, we characterize the optimal controller
response strategies for given sensor strategies. We compute the corresponding
optimal sensor strategies in Sect.5. We conclude the paper in Sect.6 with sev-
eral remarks and possible research directions. An Appendix A includes proof of
a technical result.

Notations: For an index-ordered set of variables, e.g., x1,--- ,x,, we define
Ty = Tp, -+ ,x, where 1 < k < [ < n. N(0,.) denotes the multivariate
Gaussian distribution with zero mean and designated covariance. We denote
random variables by bold lower case letters, e.g., . For a vector z and a matrix
A, 2’ and A’ denote their transposes, respectively, and ||z|| denotes the Euclid-
ean (L?) norm of the vector z. For a matrix A, tr{A} denotes its trace. We
denote the identity and zero matrices with the associated dimensions by / and
O, respectively. For positive semi-definite matrices A and B, A = B means that
A — B is also a positive semi-definite matrix.

2 Problem Formulation

Consider a controlled stochastic system [11] described by the following state
equation:
Tpy1 = Az + Bup +vi, k=1,2,...,n, (1)

where! A € R™*™ B € R™*" x; ~ N(0, X). The additive noise sequence {vj}
is a white Gaussian vector process, i.e., v ~ N(0, X,), and is independent of the
initial state ;. The closed loop control vector uy € R" is given by

up = Yk(8[1,1), (2)

where 7. (+) can also be any Borel measurable function from R™* to R", and
s € R™ is the sensor output, which is given by

Sk = 77k(£[1,k]), (3)

where 7,(+) can be any Borel measurable function from R™ to R™.

As seen in Fig. 1, we have two non-cooperating agents: Sensor (S) and Con-
troller (C). C can be a friend or an adversary while S does not know C’s type.
Only S has access to the state £y and can construct sensor output s;. C observes
Sk, knows S’s strategy 7 (-) due to a hierarchy between the agents, and, by using
8[1,k], can construct a closed loop control input uy, which cannot be monitored
by the system.

! Even though we consider time invariant matrices A and B for notational simplicity,
the provided results could also be extended to time-variant cases.
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Fig. 1. Cyber physical system including a sensor and a controller.

Remark 1. A hierarchy between the agents is a reasonable assumption in con-
trol system design since sensors are designed and implemented in advance, and
system engineers design the controllers knowing the relation between the sensor
output and the underlying state.

The agents S and C construct s, and uy according to their own objectives.
In particular, S chooses 7 (-) from the strategy space 1}, which, for each k, is
the set of all Borel measurable functions from R™* to R™, i.e., n, € 1} and
81 = (k). C chooses i (-) from the strategy space I}, which is the set of
all Borel measurable functions from R™* to R”, i.e., v € I, and uj = v (811,1)-

Normally, in a stochastic control scenario [11], S and C would have a common
finite horizon? quadratic loss function

n

L(@ (2, 41): (1. i) = D ki lEg,, + k%, (4)
k=1

where Qg1 € R™*™ is positive semi-definite and Ry € R™*" is positive definite.
Then, S would disclose the state directly so that C could drive the state in their
commonly desired path [11,12]. However, in a cyber physical system, the system
is vulnerable against adversarial attacks that seek to drive the state of the system
away from the system’s desired target. We call such attacks “advanced persistent
threats”, which are advanced by being designed very specifically for the targeted
system, i.e., the attacker knows, or can learn stealthily, the underlying state
recursion, and persistent by avoiding intrusion detection. Therefore, S, i.e., the
sensor designer, should anticipate the likelihood of adversarial intrusions into C,
i.e., the possibility that C can be an adversary, and construct s; accordingly.
We denote the set of all adversarial objectives by (2, the appropriate o-algebra
on {2 by F, and the probability distribution over {2 by P. In particular, we have
the probability space (£2,F,P). And for a point w € {2 drawn from {2 according

2 E.g., horizon length is n.
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to P, the adversarial loss function is given by

La(w,[2,n41]5 8[1,n], U[1,n]) Z||$k+1 = 2()D4 o1 ()
+ HUA,k - u’F,k”%%A,k(w)v (5)
where ua 1, k = 1,...,n, denotes the adversarial action, z : (£2,F) — (R™,B™)

is an (F,B™) measurable function®, Qa k41 : (2,F) — (R™*™ B™X™) is an
(F,B™*™) measurable function such that Q4 x+1(w) € R™*™ is positive semi-
definite, and R4y : (£2,F) — (R™*",B"*") is an (F,B"*") measurable function
such that R4 ,(w) € R™*" is positive definite. Here, for each w € £2, z(w ) denotes
the desired state that the adversary seeks to drive the system to, and u}, ; is the
optimal action that would have been taken if C was a friend so that the adversary
can avoid intrusion detection by being close to uz ;. We further assume that z(w)
is a second-order random vector.

Remark 2. We note that if the control inputs could have been monitored, then
any deviation of the control input from the optimal control input of a friend
type C could have been detected instantly.

3 A Multi-stage Static Bayesian Stackelberg Game

In order to model undetected adversarial interventions, let @ be a Bernoulli
random variable, with a commonly known p, corresponding to the likelihood of
C being an adversary, i.e., P{8 = 1} = p, and 8 = 1 if C is an adversary. Since
the type of C is not known by S, we can consider this incomplete information
scenario as an imperfect information scenario [15]; in which Nature moves first,
draws a realization of @, then if the realization 6 = 1, also draws w € 2, and
reveals these only to C.

Furthermore, the multiple interactions between non-cooperating S and C can
be considered as a multi-stage game [1]. Since S’s actions 8{; ,,) do not depend on
C’s actions u[y ), i.e., S cannot update his/her strategies after observing u;
this is a multi-stage static game. The underlying state recursion is common
knowledge of both S and C (even if C can be an adversary). The type of C and,
if C is an adversary, his/her objective are not known by S. However, S knows
the probability space (§2,F,P) and p, which implies that this is a multi-stage
static Bayesian game. There is also a hierarchy [1,17] between the agents in the
announcement of the strategies such that S leads the game by announcing and
sticking to his/her strategies in advance, i.e., C knows 7[1,n) in advance. There-
fore, we can model such a scheme as a multi-stage static Bayesian Stackelberg
game, in which S is the leader.

Remark 3. Once any adversarial intrusion has been detected due to C’s anom-
alous behavior through external defense mechanisms, this multi-stage static

3 B™ denotes the Borel g-algebra on R™.
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Bayesian Stackelberg game terminates since the uncertainty about C’s type
is removed. The reaction of the system after the detection is beyond this
paper’s scope. Therefore, we consider that the game continues over the hori-
zon and continuation of the game implies that any adversarial intervention has
not been detected while the possibility of undetected adversarial intervention
still exists.

Remark 4. Even though the attacker can also inject false data into the sensor
outputs in order to avoid detection as in integrity attacks, e.g., [5,6], the attacker
still needs the actual sensor outputs, which are designed by the system designer
in advance, in order to construct the optimal control input according to his/her
objective. Therefore, secure sensor design framework also plays a crucial role for
the security of the systems against integrity attacks.

S and C aim to minimize their expected loss functions through the actions
8[1,n] and u[; ) by choosing the strategies n; , and v ,) accordingly. Given
the realizations of S’s actions, i.e., s[1 ], C constructs the control input ug
or ua ) depending on his/her type, Wthh not only depends on s xj, but also
the associated strategies n; x). In order to show this dependence explicitly, we
denote C’s strategies by urr = Yrx(8[1,k); M[1,k)) instead of vr(sp,x)) if C is a
friend, or wa k. = v,k (w, 81,k N)1,k)) instead of v x(w, 8[1, ) if C is an adversary.
Furthermore, given S’s strategies 01 ), we let IIp(np ), a(w, mp1,n)) C R™™
be C’s reaction set. And these reaction sets are given by:

[T () := argmin E{L(Z[2, 1], 8[1.n]> %F,[1.n]) }
’u,pﬁkGRT
k=1,...,n

I (w,np ) == argmin E{LA(w, T2 141, 8[1,n)> WA, [1,n]) }>
ua,kER"
k=1,...,n

where E denotes the expectation taken over {Z1,v[;,}. Due to the positive
definiteness assumptions on Ry and Rap(w), for all w € 2, L and L4 are
strictly convex in C’s actions wp,[1 ), % [1,n)- This implies that the corresponding
reaction sets ITp and Il4 are singletons and the best C actions Up ;U aTe
unique.

Corresponding to the loss functions L and L4, depending on the agents’
actions s; and uy, there exist certain cost functions depending on the agents’
strategies: J(1[1,n),V(1,n)) and Ja(w, MLl Y, n]), while each strategy implicitly
depends on the other. Therefore let ITr and I1 4 be the sets of best C strategies,
as subsets of X7 _; I:

() = argmin J(01,n], VF,[1,n])»
Y,k €Lk
k=1,...,n
Ia(w,mp,m) == argmin  Ja(w, 1,0 YA, 1,0]);
’YAI,CIL(L{)V)EFK'
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which are equivalence classes such that V vz . € Ir (or ¥ Ya,fn € ),
we have up,; = v}iﬂﬁk(s[l)k};n[hk]) (or Ul = *ng’k(w,s[llk];n[l;k])). Therefore, the
pair of strategies [77[“1’”]; (7;’[1,71},727[1’”])} attains the Stackelberg equilibrium
provided that

My g = argmin (1= p)J (0pnls Vi) (5 001.01))

M€Yk,
=1,....n
R NIRRT ) S (6)
V1) (5 01m)) = argmin. J (1 ) Yo, 1,0 (5 771,0))) (6b)
Yr, €Lk,
=1,....n
Vapn (@, i) = argmin (w0, m1,n), YA, 10 (@5 5 10))) - (6c)
’YAI,:(T,‘)EFM
=1,...,n

In the following sections, we analyze these equilibrium achieving strategies,

e, My ap (’Y*p,p,n] ’ VZ,[l,n])} ’

4 Optimal Follower (Controller) Reactions

By (4), for a given 8[; ,, the friendly C also seeks to minimize

S E{llonrld,,, + lurllk, | (7)

k=1

over Yrx € I, k = 1,...,n, such that upr = yri(8sp,k) subject to (1)—(3).
In order to facilitate the subsequent analysis, in the following, we rewrite the
state equations (1)—(2) and the expected loss function (7) without altering the
optimization problem.

Lemma 1. The friendly objective (7) is equivalent to:

i E Kzl +G 8
i, 3 Blury+ K, +. o
k=1,...,n k=1
where
Kk = Alle;{:Qk+1A (93,)
Ak = B/Qk+1B + Rk (gb)
G=tr{31Q1} + Z tr{ X, Qr+1} (9¢)

k=1
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and {Qk} 15 a sequence defined through the following discrete-time Riccati equa-
tion:

Qri1=Qr + A (Qk+1 - Qk-ﬁ-lBA;lB/Qk-H) A, (10a)
Qnt1 = Qns+1 and Q1 = O. (10b)

Proof. This follows from the extensively used “completing the squares” tech-
nique [2,11]. O
Note that in (8), x; depends on the previous control inputs [ j_1]. Through
a change of variables [2], the friendly C’s objective (8) can be written as
n
min > Eluf, + Kpaf |, + G (11)

Yr,k €Lk
k=1,...,n k=1

subject to (9)-(10) and
$z+1:A‘Tz+vka kzl,...ﬂ% andx?zz‘b <123)
uh =upy + KyBupp—1 + KpABupg o+ + Ky A" *Bup;. (12b)

Note also that, now, the process {z{} is independent of the control inputs
ur (and u‘l’,k) Therefore, by (11), given the sensor outputs s[; 5) = s[1,1, the
optimal transformed control input u%¥, (12b) is given by

ugty = —KB{z}[sp ) = s u )

which implies
ugy = —KRE{x}]s11,1} (13)

almost everywhere on R”. By (12b), we have

’:F I K,B - K,A" 2B UF n
Uppn—1 I - K, 1A" B UFn—1
. = . . s
up 1 \__uF"_/l
—— —.
—: u° =: P ‘u

which can also be written as u% = Pup. And (13) leads to

[E{zmsu,n]}]
: : (14)

E{z7|s1}

= K =:

o

I

which yields that the actual optimal control inputs are given by

|ujp = -0 'K & (15)
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While the friendly C has the same objective (4) with S, by (5), for each
w € §2, the adversarial C’s objective is to minimize

S E{lmir = 2@)3, )+ luak vl 0 (6)
k=1

over Yak(w,-) € Iy, k = 1,...,n, such that uar = var(w,8p1,%) subject to
(1)—(3). Next, we aim to rewrite the state equations and the expected loss func-
tions as in Lemma1 and (11) for the minimization of the adversarial objective.

Let duy :=uay — 'u,*F  and instead of (1), consider the following recursion:

Tet1 Al B ]| B B I
up | = g wp |+l Sy + ol vk
[ S — ——

z(w) z(w) -
= A —— _B g
=Xy
which can also be written as
Tpy1 = fl:i:k +B ouy + Evg. (17)

Correspondingly, the objective can be rewritten as

SE{lEild, 0 10kl 0} (18)
k=1

where
Qups1(@) = [ ] Qarni(w)[10-1]

[ Qarti(w) O —QA,k+1(w)]

O O (@)
—QAkt1(w) O Q4 ks1(w)

We point out the resemblance between (7) and (18). Therefore, by Lemma 1
and (11), we have the following transformations:

Lemma 2. The adversary’s objective (18) is equivalent to:

min Y B[ 0wy + KakW)Zl, ) + Galw), (19)
YA, k(w, )€l P ’
k=1,....,n =1
where
Karw) =Aarw) ' B'Qakt1(w)A (20a)
AA7k(w) = B’QA,M_l(w)B + RA7k(w) (2012))
Ga(w) = tr{Z1Qa1(@)} + > _ tr{Z,Qak41(w)}, (20c)
k=1
_ 21 E{z{(u})'} o _
5= | B @) Bup@i)) O } and 2, =[5 3]
(@] O z2(w)z(w)’
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and {Qar(w)} for each w € 2 is a sequence defined through the following
discrete-time Riccati equation:

Qakt1(w) =Qap(w)+ A (QA,kH(W) - QA,kH(W)BAA,k(w)ﬂB/QA,kH(w))A (21a)
Qan+1(@) = Qans1(w) and Qa1 (w) = O. (21b)

And corresponding to (11), the adversarial objective (19) can be written as

min > Bl ouf + Kar(w)z |4, , () +Galw) (22)
'YAk,;k_(;’-’:')EFk 1 ’

subject to (20)—(21) and

£y = AZ) + Bvg, k=1,...,n, and 25 = &1, (23a)
5’11,2 = duy + KAJC(LU)B oup_1+ KA’k(UJ)AB g9+ -+ KA’k(w)Ak72§ ou1. (23b)

Note that in (22), C'a(w) is independent from the adversary’s optimization
arguments even though it depends on u} due to X; in (20c). Furthermore, given
the sensor outputs 81 ] = $[1,x), the optimal transformed adversary action §uf’4*7 &
of (23b) is given by

Su'y = —Kar(W)E{Z}[s10) = spm

which also implies
oup” = —Ka k(W) E{Z} 811,00} (24)

almost everywhere on R”. By (23b), we have

ou I Kan(W)Bn_1 -+ Kan(w)A" 2B ou
duy g N I KA,7L71(UJ)ATL73§ 6'u,T171
= . . . )
Suf I duq
———— ——
=: ju° =: P4 (w) =: ju

which can also be written as Ju® = @ 4(w) du. And (24) leads to

5u0* — _

Ka,n(w)
[ ' (25)

]E{Ez,s[l,n]}‘|

. KA,l(w)‘|

=: KA(UJ)

E{Z7|s:}

Next, we seek to compute E{Z},|s[; x)} in (24). To this end, let us take a closer
look at (23a):
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where we introduce &g, which is given by

8¢

1
#9 = A%, + Buj; +v1 =25+ Bup;

o
T =2

F3 = A%y + Bujy +v2 = A(x3 + Burp) + Bupy +v2 =3 + ABup; + Buj,

Ep =2} + Bu}%’kf1 + ABu*F_’kf2 44 Ak_zBu*F_rl.

Then, we have

En Tn O B AB -« A"72B
En—1 Tpo1 OO0 B - A" 3B
: = : + :

& z° 00 - - o

Let D be partitioned as D = [D), - - - D}]" such that
T, = .’L‘z + Dk’ll,*F

Therefore, E{Z{|s[; 1} can be written as

E{zy |81,k }+DrB{uk]sp i}

E{fﬂsu,k]} = { E{u}(\S[)l,k]}

Furthermore, (14) and (15) lead to
E{up|spp} =07 'K [

Note that we have

E{E{2},[s[1,n) 81,81}

E{E{z7|s1}[s[1,81}

(26)
Uk
U o1
“;1
(27)

| (28)

] | (29)

. E{af]ssu} if 1> k
E{E{x7 s[5} 80,5} = {E{x%ISL l]]} ifl<k’

where the first case, i.e., [ > k, follows due to the iterated expectations with
nested conditioning sets, i.e., {811} 2 {81,1)} if I > k, and the second case, i.e.,
I < k, follows since E{x}|s[; j} is 0-8}; ;) measurable if [ < k. Therefore, (29)

can be written as

E{uplspn}=—-0'K

&, (30)
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where the middle block is the kth block column. Hence, we can rewrite (28) as

E,—Dy® KLy | o
E{Z7[s1,1} = [ k—qﬁElKLk k] z° 4+ {z(?u)}’ (31)
o ——
= Fy =: z(w)
where Ej is the indicator matrix such that E{z}|s;; )} = Ex2°, k= 1,...,n.

Then, by (24), (25), and (31), we have

Fn

o (w) = —Ka(w) [ :

F 1 2% — Kp(w)z(w).

= F

Therefore, the actual optimal adversarial actions are given by

uwh(w) =ujp — Pa(w) " Ka(w)[FE° + z(w)]. (32)

In the following theorem, we recap the results.

Theorem 1. Given S’s strategies sy = m(xp ), k = 1,...,n, C’s optimal
reactions up and ua ,(w) are given by (15) or (32) depending on whether C'is
a friend or an adversary, respectively.

In the following section, we formulate S’s optimal strategies.

5 Optimal Leader (Sensor) Actions

By Theorem 1, S’s objective can be written as

n
min (1-p) Y E{llerild,,, +lupelk, }
Nk €Yk,

k=1,....n k=1

n
0 [ S E{leenl, + s, | ).
k=1

However, we should also take into account that j, evolves according to (1), which
implies that the state ) depends on the control input, and therefore C’s type. In
order to show this explicit dependence, henceforth, we will denote the state by
zp when C is a friend or by £ 4, when C is an adversary. Correspondingly, the
sensor outputs are denoted by sr and s 4 j, respectively. Therefore, an explicit
representation for S’s objective is given by

n
min (1-p) Y E{leneld,., + luril?, |
Nk €Tk,

k=1,....n k=1

3

Y I;E {||a:A k1 (w )H?QkJrl + ||uf47k(w)||§%k } P(dw). (33)
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Even though S constructs a single set of strategies {n; € 1%} without knowing
C’s type, the resulting sensor outputs {sx = nx(2[1,4)} depend on the states,
Z(1x)'s, hence C’s type, ie., x = zpy if Cis a friend or xx = 24 if C is an

adversary.
Let T:= ¢ 'K,
Ta(w) := @71K+@A( )~ IKA( )F
() = Pa(w) T Ka(w)z(w)
such that uy = —-TZ% and u%(w) = —Ta(w)Za — &(w), where Z° :=
[(ifn)’ (:i:f’l)’}/ and &7, = E{z}|s, 1,1}, for © = {F, A}. Note that the
matrices T and Ts(w), for each w € (2, are block upper triangular. Fur-
!
thermore, let &7, := {(i’fk)' - (£71)"| , &(w) be partitioned into {(w) =

[€n(w)’ -+ €1(w)']’, and the block upper triangular matrices T and Ts(w) be
partitioned into the block matrices as

Tnn Thnm—1 - Tnna Tann Tann-1 =+ Tana
T Tn-1n-1 - Th-11 Tan-1n-1 " Tan-11
T1'1 TA,l,l

where we have dropped the argument w for notational simplicity, and Ty =
Tk - Teal, Tarw) == [Tapr(w) -+ Taki(w)]. Then, by Lemmal and
(11), (33) is equivalent to

n
min  (1-p) Y E|Kixf — Te &gl
Nk €T %, ’
k=1,....n k=1

1 [ SCEIRE] - Taaw)8,40) — 6003, P) + . (34
The first summation in (34) can be written as

Ztr{E{xk VYKL ARK G — 2tr{E{ %, (z7) } K AT }

+ tI‘{E{:L‘Fk(i )/}TléAka} (35)
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while the second summation can be written as
étr{E{xzmzy}K;@Aka | 6wy ag@pw)
+ [ B0 83,40 () AT k(o) ()
- 2 [ B85 P TAr () P )
+ 2 [ (B2 ()} () ATasr (o) P ()

— 2/ tI‘{E{.’IIz}Ek(w)/AkKk}P(dw), (36)
0
where the last term is zero since x{, is zero-mean. The following lemma says that
the posterior covariances do not depend on w.

Lemma 3. The posterior £% ;(w) is independent of w. Further, both posteriors
&%, and &9 . are equivalent and given by

87 = 8 = 89(w) = E{af Im(@f),....m(a )} (37)

Proof. Consider the state recursion when C is a friend:
Tpri1 = Azpy + Bup ), + vi,

which can also be written as*

Tp =29

Tpo = Azp1 + Bup, +v1 =25 + Bup,

Tp3 = Axpo + Bup, +v2 = A(x§ + Buj,) + Bup, + v
=3 + ABup; + Buj,

Tpr =) + Bupy | + ABupy o+ -+ Ak_2Bu}’1.

Let My := [B AB --- A" 2B] and ury, := [y, --- wp,]. Then, for k > 1, we
have

Tp) = :cz + Mk_lgﬂk_l. (38)
Furthermore, let
T -+ Tk
Ty = Lo
Ty 1

* Note the resemblance to (26).
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such that urx = —7T) 2%, and (38) can be written as
Trk =% — Mp 1T 125, 1. (39)
Therefore, we have 2%, = E{z}|n(29),..., (29, ..., 2 — ckx)}, for certain
deterministic ¢; ; € R™, 4,5 = 1,...,k, since :i:%’j is 0 — :zrf’1 il measurable.
Correspondingly, we have
Tak(w) =2 — Mp1Tap—1(w) 8) j—1 — Mik—1§, | (w), (40)
where

Takk(w) - Taki(w) §k§w)
Typ(w):= and §, (w) := S

Ta11(w) &1 (w)
which leads to £9 , (w) = E{zg|m (x9), ..., m (2], ..., 2} — dir(w))}, for certain
other deterministic d; j(w) € R™, 4,j = 1,...,k, since 29 ;(w) is o — xh g
measurable.

Next, we employ the following lemma about shifting of random variables in
order to compute £% ,’s and £9 ;(w)’s.

Lemma 4. Let (£2,F,P) be a probability space, where §2 is the outcome space
with an appropriate o-algebra F, and P is a distribution over (2. Let also x :
(2,F) — (R™,B™) be a random variable, h : (R™,B™) — (R™,B™) be a Borel
measurable function, and ¢ € R™ be a deterministic vector. Then, we have

E{z|h(z)} = E{z|h(z + c)}. (41)

Proof. The proof is provided in the Appendix A. |
Therefore, Lemma4 and (51) imply (37) and the proof is concluded. O

Next, by (35), (36), and Lemma 3, (34) can be written as

i SLKL ALK E "A
kni?ﬁ’;;tr{ WKL ARrKk} + pEo{ék(w) Arér(w)}

~ 20 {B{&7(20)'} KL (1~ p)Ti + pEo{Tas()}) }
+ ptr{E{24(&0)'} Eo{Tan(w) MTan(@)} |
+ (- p) e {E{&72(80)} TLAT} + G, (42)

where E, denotes the expectation taken over {2 with respect to the distribution
P and Xy = E{z{(x?)'}.

We note that for I < k, E{2¢(x2)'} = E{£2(x?)'}(A")*! since v, j > I,
and £}, which is 0-s[; ;) measurable, are independent of each other and {vy} is
a zero-mean white noise process. Furthermore, we have

E{2](z7)'} = B{E{ 2] (=) |s;1.0}}
= E{#7(%7)"} (43)
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due to the law of iterated expectations. Let Hy, := E{Z%(&%)’}. Then, we have

H !’
A0 o\/ Hk*I;A/ A0 o\/ HkilA
E{ &7 (27)"} = : CB{E7 (7)) = :
Hl(Al)k—l Hl(A/)k71
and
[E{27(&7)'} - E{23(%9)"}
A0 ([ A0/ . .
E{27(27)'} = : :
LE{&9(&7)'} - E{&7(%%)"}
;T AHp_y - AFT1H,
_ | HepAT Heen o AT (44)
_Hl(A/)k—l Hl(A/)k—2 H1

since for [ < k, we have
E{&7(27)'} = E{E{£{(£}) [s11.0}}
@ E{&PE{£7ls1)')
Y E{8(3)) }(4),

where (a) holds since £ is 0-s}; ; measurable, and (b) follows due to the iterated
expectations with nested conditioning sets, i.e., {s{1,5} € {8[1,x]}-
Next, we can rewrite (42) as

Hy Hy, AHp_4 Ak=1p,
n H A ’ k—2
. = k=1 = Hp 14 Hy_p 0 A Hy | =
min E .:;c) —+ tr . Ep o +tr : - - : Ek ¢ (45)

o1 . . .
Hy(A") Hy(A)YE=1 myalyk=2 . Hy

/ ’ 1
Eg = tr{EkKkAkKk} +pEQ{§k(w) Akgk(w)} + gG

= 2K A (1= p)Ti + pEo{Tar(w)})
k= pEQ{TA7k(w)’AkTA7k(w)} + (1 — p)T,éAka,

I gl

[1

which are independent of the optimization arguments. Hence, the optimization
problem (42) faced by S can be written as an affine function of Hy’s as follows:

n
min tr{ Vi H} + Z°, (46)
Nk €Yk,
k=1,..., n k=1
for certain symmetric deterministic matrices V3, € R™*™ k = 1,...,n, where

20 :=3"1_, 9. Note that as a sensor designer, we seek to solve this infinite-
dimensional optimization problem (46) within the general class of strategies.
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To this end, we employ the approach in [19], which considers a finite-dimensional
optimization problem that bounds the original infinite dimensional one from
below, and then, compute strategies for the original problem, which optimizes
the lower bound. Based on this, the following theorem characterizes equilibrium
achieving strategies of both agents S and C.

Theorem 2. The multi-stage static Bayesian Stackelberg equilibrium between S
and C, i.e., (6), can be attained through linear strategies, i.e., the secure sensor
outputs sp ) are linear in the state x|1 ,,) and the corresponding, friendly or adver-
sarial, control inputs, g, (1 n) OT UA,[1,n), are linear in the sensor outputs sy ,]-

Proof. Based on Lemma 1 in [19], by characterizing necessary conditions on H}’s,
we have
min s esm, Doy tr{ViSk} < min yer,, oy tr{ViHi},
k=1,...,n k=1,....n (47)
s.t. 27' i Sj t ASj_lA/ Vj

where X; := E{z§(x?)'} and S™ denotes the set of m x m symmetric matrices.
Note that the left hand side of (47) is a finite-dimensional optimization, indeed an
SDP, problem. By invoking Theorem 3 in [19], we can characterize the solutions
of this SDP problem, S7,...,S}), as

Sr = AS; A + (Zp — AS; [ ANY2P (5} — ASj_1 A2, (48)

for k = 1,...,n, where S5 = O and Pj’s are certain symmetric idempotent
matrices. Note that by solving the SDP problem numerically, we can compute
the corresponding Pj’s.

Next, say that S employs memoryless linear policies s = ng(Zp k) = C,’Cz Fk
if C is friendly or s, = (4 ,x(w)) = Cl,Z 4 x(w). Then, by Lemma 3, we have

20 = E{z}|C1zS,...,Crxl}.
which can also be written as
=A%, |+ (Xx — AHp 1 A)Cr(CrL(X% — AHk,lA')Ck)JrC,’C(xz — Az} ),

for k=1,...,n, 2°, := 0 and Hy := O. Therefore, H, = E{Z{(&})’} is given
by

Hy = AHp 1A'+ (g — AHy, 1 A')CL(CL(Z), — AHp_1 A)OR)TClL(Z, — AHp_1 A'). (49)

We emphasize the resemblance between (48) and (49). In particular, if we set
Ok = (Ek - AHk_lA/)l/QCk, k= 1, ey Ny (49) yields

H;, = AkalA/ + (Ek — AkalAl)l/QC’k(Cllcék)+éllc(2k - AHk*1A1)1/27

where C,(C},Cy)*C}, is also a symmetric idempotent matrix just like Py, in (48).
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_ Therefore, given Py’s, let Py = Up AU & be the eigen decomposition and set
Cr = UgAyg, i.e., set

Cr = (X — AS; AN YV2U,A,,. (50)

Then, we obtain Hj, = S};, which implies that S’s optimal strategies are mem-
oryless and linear in the underlying state. Correspondingly, the optimal control
inputs for both friendly and adversarial C are linear in the sensor outputs by
(15) or (32). |

In Table1, we provide a numerical algorithm to design secure sensors in
advance.

Table 1. Computation of equilibrium achieving sender policies.

Algorithm: Secure Sensor Design

SDP Problem:
Compute Vi, fork=1,... n, by (7)-(45).
Solve the SDP problem on the left hand side of (47) through a numerical toolbox
and obtain the solutions Si, fork=1,...,n.
Set S = O.
Equilibrium achieving sensor strategies:
Compute the corresponding idempotent matrices P, Vk, by using Si, Vk, and (48).
Compute the eigen decompositions: P, = UkAkUli-

Compute Cy, Yk, by using S;_,, Uy, Ay, and (50).

6 Conclusion

In this paper, we have proposed and addressed secure sensor design problem
for cyber-physical systems with linear quadratic Gaussian dynamics against the
advanced persistent threats with control objectives. By designing sensor outputs
cautiously in advance, we have sought to minimize the damage that can be caused
by undetected target-specific threats. However, this is not an active defense
strategy against a detected threat. Therefore, such a defense mechanism should
also consider the maintenance of the ordinary operations of the system. To this
end, we have modeled the problem formally in a game-theoretical setting. We
have determined the optimal control inputs for both friendly and adversarial
objectives. Then, we have characterized the secure sensor strategies, showing
that the strategies that are memoryless and linear in the underlying state lead
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to the equilibrium. Finally, we have provided an algorithm to compute these
strategies numerically.

Some future directions of research on this topic include secure sensor design
when the sensor has access to the state only partially, e.g., noisy observation,
or when the attackers infiltrate into the controller within the horizon. Note also
that we have only considered the secure sensor design within optimal control
framework. Formulations for, e.g., robust control or feedback stability of the
systems, can also be interesting future research directions.

A Appendix: Proof of Lemma 4

Let y1 = h(z) and y2 = h(z + ¢) be random variables, where ¢ is a deterministic
shift vector of the same dimension as 2. Then, for any B € B?, we have y; ' (B) =
{lwe:y1(w)eB}={weR:hz)(w) € B} ={we N:z(w)eh (B}
Correspondingly, we also have y; *(B) = {w € 2 : ya(w) € B} = {w € 2: h(z+
¢)(w) € B} = {w € 2 :z(w) € h"1(B) — c}. Note that the o-algebras generated
by the random variables y; and yo are given by o(y;) = {y; '(B) : B € B?}, for
i = 1,2 [3]. This implies that o(y;) = {{w € 2 : z(w) € h*(B)} : B € BP}
and o(ys2) = {{w € 2 : z(w) € h"1(B) — ¢} : B € BP}. Furthermore, for each
B € BP, there exists By € B? such that

h~Y(B)=h"'(By) —ceB?
since Borel sets are shift invariant [3]. Therefore, we have

o(y1) = o(y2) (51)

and correspondingly, we obtain (41).
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Abstract. Content sharing in social networks is now one of the most
common activities of internet users. In sharing content, users often have
to make access control or privacy decisions that impact other stakehold-
ers or co-owners. These decisions involve negotiation, either implicitly or
explicitly. Over time, as users engage in these interactions, their own pri-
vacy attitudes evolve, influenced by and consequently influencing their
peers. In this paper, we present a variation of the one-shot Ultimatum
Game, wherein we model individual users interacting with their peers
to make privacy decisions about shared content. We analyze the effects
of sharing dynamics on individuals’ privacy preferences over repeated
interactions of the game. We theoretically demonstrate conditions under
which users’ access decisions eventually converge, and characterize this
limit as a function of inherent individual preferences at the start of the
game and willingness to concede these preferences over time. We provide
simulations highlighting specific insights on global and local influence,
short-term interactions and the effects of homophily on consensus.

1 Introduction

We aim to investigate the impact of multi-party decision sharing in a social net-
work. In highly connected networks, content sharing is frequent and users make
decisions about the amount and type of content they choose to share, as well
as their preferred privacy preferences. Previous work has largely investigated
how to reconcile users’ (possibly conflicting) privacy preferences with respect to
commonly owned (or jointly managed) content [16,34]. For instance, the typical
example used in the literature is that of a photo in which multiple users are
depicted, they have conflicting privacy preferences as to with whom the photo
would be shared in a social network, and they use a (technology-aided) recon-
ciliation method to resolve the conflicts. Despite the amount of work in this
area, the impact of these interactions over time - both on users and on the con-
tent shared - regardless of the reconciliation method, is largely unexplored. In
particular, we are yet to understand how individuals’ sharing decisions change
over time, who are the most influential users, how they benefit from it, and the
privacy gains and losses from a collective perspective.

© Springer International Publishing AG 2017
S. Rass et al. (Eds.): GameSec 2017, LNCS 10575, pp. 112-130, 2017.
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This “research gap” is possibly due to two (related) reasons. First, to our
knowledge, proposed content sharing models to date have not been translated
into practical features or applications: social networks provide minimal support
for multi-party decision making tools. Hence, an exploration in the wild of the
effects of multi-party sharing is fundamentally hard. Second, to date, work that
focuses on multi-party sharing has adopted a micro-scale view of the interac-
tions among users (i.e., one-on-one and one-shot interactions), in an attempt to
minimize discomfort and other security properties from a one-interaction at a
time standpoint.

In this paper, we aim to answer a broader and, we believe, more important set
of questions about the potential longitudinal effects of repeated negotiations over
jointly managed content among users in a social network. We assume, consistent
with reality [3,20,39], that users wish to reach agreement and share content
jointly. Over time, this will lead users to feel pressure to move away from their
individual preferred settings and toward the preferences of their peers. In doing
so, some users will experience sharing loss, while others will experience privacy
loss. In this setting, our specific questions are:

— How does multi-party involvement in access control decisions affect the indi-
vidual behaviors of social network users?

— What are the collective privacy gains and losses associated with multi-user
sharing?

— Bearing in mind that users adopt individual strategies to respond to access
decisions for shared content, which users are more likely to drive group deci-
sions? Likewise, which users are most likely to benefit from repeated interac-
tions?

We model user interactions through a repeated game. Specifically, evidence
indicates that one-shot decisions for multi-party access control may be well-
described using the language of the Ultimatum Game, specifically a natural ten-
sion between selfish preferences (i.e., maximizing a personal utility function) and
a less-tangible desire to cooperate [3,20,34,39]. That is, empirical studies about
multi-party access control showed that users are naturally selfish and seek to
impose their preferences as much as they can even when they know other stake-
holders may not be happy about it [34], but at the same time users do collaborate
[39] as they do not want to cause any deliberate harm to other stakeholders and
would normally consider their preferences and potential objections in a more
cooperative way [3,20].

Accordingly, we present a variation of the one-shot Ultimatum Game, wherein
individuals interact with peers to make a decision on a piece of shared content.
The outcome of this game is either success or failure, wherein success implies
that a satisfactory decision for all parties is made and failure instead implies
that the parties could not reach an agreement. This approach was inspired by
recent work of fairness in the Ultimatum Game [42].

Our proposed game is grounded on empirical data about individuals’ behav-
iour in one-shot, multi-party access control decisions [34,35,39] mentioned above
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to structure repeated pairwise negotiations on jointly managed content in a social
network. We theoretically demonstrate that over time, the system converges
towards a “fair” state, wherein each individual’s preferences are accounted for.
In this state, users’ preferred privacy values approach a constant value that is
dependent on how stubborn individual users are, until all values are within a
window of compromise (which in turn depends on the structure of the network).
We also carry out a series of numerical experiments on simulated data, and pro-
vide insights on a number of interesting cases, e.g., when a number of perfectly
stubborn users (i.e. users unwilling to compromise or adapt to other users’ pref-
erences) are at play, when highly connected users exist in the network, and when
networks are homogeneous.

The paper is organized as follows. In the next section, we highlight our
assumptions and the problem statement. In Sect.3, we present our theoreti-
cal model. We discuss theoretical results in Sect.4 and provide experimental
insights in Sect. 5. We overview related work in Sect. 6. Finally, we conclude the
paper with a discussion of limitations and future work in Sect. 7.

2 Problem Statement

We consider an online social network wherein linked users, i.e., two users con-
nected by an “edge” in the social network graph, may jointly manage content.
While one user is typically first to share a given piece of content, henceforth the
“poster”, other users, henceforth the “stakeholders”, may also be affected by the
content (e.g. a photo in which she is depicted). Users, both posters and stake-
holders, likely differ in both structural and inherent qualities. Structurally, they
have variable numbers of friends, i.e., degree (deg(n)), and variable (closeness,
betweenness) centrality. Inherently, users may differ in propensity for sharing
[22] and stubbornness [2,40].

As a piece of jointly managed content is considered, the stakeholder has the
opportunity to accept or decline the privacy settings selected by the poster —
a decision that is made based on a joint effect of inherent sharing preference,
stubbornness, the personal relationship between the two users and the nature of
the content itself. Access settings, then, are co-determined by posters and stake-
holders using a one-round negotiation, which we model as a one-shot Ultimatum
Game.

An important assumption underlying this game is that the proposer and
responder would like to reach agreement. First, the underlying social network
structure implies that the proposer and responder are friends, acquaintances or
members of a social cohort. Reaching agreement represents social harmony that
is preferable, and empirical evidence tells us that both posters and stakeholders
listen to and consider each others’ preferences and objections [39]. In some cases,
agreement may be required for content to successfully be posted. In other cases,
the proposer may have authority to post content at his desired privacy level
without consent of other stakeholders, but she hesitates to do so understanding
that her cohort may take the same liberty with future content, or because they
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put themselves in the position of stakeholders and understand they may not be
happy with the content shared [34]. In order to reach agreement, both proposer
and stakeholders understand they must concede (part of) their preferences and
move toward some compromise privacy setting [3,20,39]. However, the amount
each party shifts (or concedes) may not be the same, and its likely influenced
by their individual propensity for sharing [22] and stubbornness [2,40] as stated
above.

We study the impact of this variant of one-shot ultimatum games over time,
and specifically, the extent to which these one-shot interactions, wherein users
must compromise (as much as they feel comfortable) in order for content to
be shared, is conducive of a “fair” system. Here, by fair system, we refer to
a system wherein each user is given an equal opportunity to participate in an
interaction, based on his/her current degree in the network graph. Furthermore,
each user is free to respond based on his own preferences and inclinations, and
each user’s response for each game equally influences system dynamics. Given
these equitable rules of the game, answers to the three research questions posed
above may shed light on the ways in which outcomes are and are not as equitable.

Following, we discuss the model and its outcomes with focus on the case of
one poster and one stakeholder, for simplicity of presentation. Note however that
this is not a loss of generality, as k asynchronous players are essentially a specific
ordering of 2-player interactions.

3 The Model

We play a variant of the one-shot ultimatum game [42], repeatedly, amongst pairs
of individuals situated within a social network graph. The rules of the game,
which are formally specified below, reflect the real-world scenario of multi-party
sharing, namely determining access settings for content associated with multi-
ple stakeholders [15,25,33]. These rules formally capture empirical evidence of
concession behaviour in multi-party sharing [33], like being generally accommo-
dating to the preferences of others to reach agreement [3,20,39].

Consider a social network graph G = {V, E} where V is the set of users,
represented as nodes in the graph. The set E of pairwise links between nodes
represents relationships, or more generally, users with some connection who may
both be party to the same content. Links may be weighted according to a weigh
function W;;, where weights between users ¢ and j indicate strength of relation,
or strength of social influence.

Each user ¢ has an inherent, personal comfort C; with sharing and an inherent
stubbornness T; that do not change over the lifespan of the game. Both are
represented as value in [0,1]. In the case of comfort, 0 indicates private and 1
public!; likewise for stubbornness, 0 is least stubborn and 1 most stubborn. Each

! Note that we abstract ourselves from the actual privacy settings or access con-
trol paradigm used by the online social network provider. For each social media
infrastructure or privacy policy language used, a mapping could be defined that
turns available settings into values in [0, 1] and vice versa.
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user is also perpetually endowed with two dynamic values — a “proposal” value
Pi(t), and a “response” value R;(t). These values represent the user’s preferred
settings when acting as the content owner (“poster”) or when party to content
posted by someone else, respectively, which is aligned with empirical evidence
that shows that the perceptions and behaviours of users are significantly different
when they are playing the role of poster or stakeholder [34]. Changes in these
values over time are governed by the set of rules of the game, detailed as follows.
We initialize the proposal value and the response
values for each user as his comfort value, i.e., CASE 1- Success
P;(0) = R;(0) = C;. The intuition here is that, IP(6) = RI(O)| <IN, - §
without the influence of peers (i.e., without play-
ing the game) a user is inclined to both offer and
accept the sharing level for a piece of content
that most closely matches his comfort level.
The game is played for some fixed number
of iterations. At each iteration, a “proposer”
is chosen at random. Intuitively, this is the
owner /poster of a piece of content in which other
users have a stake. A “responder” is selected at
random from among his contacts, namely those
users adjacent on the social network graph. The
proposer offers his proposal value to the respon-
der, i.e. the privacy level or disclosure setting for
the co-owned content to be shared. The respon-
der in turn accepts or declines this offer. Intuitively, the decision to accept or
decline represents the responder’s approval or disapproval of the proposed pri-
vacy setting. This decision is made based on the responder’s willingness to com-
promise, which in turn relies primarily on two factors: (1) the strength of influ-
ence of the proposer on the responder, i.e., their relationship strength (possibly
asymmetric) [10,11], and (2) the sensitivity of the content in question — if a
user feels that an item is very sensitive for her, she will be less willing to approve
sharing [30,38]. Conditions for acceptance and success of an interaction are given
in the next definition and examples of successful and unsuccessful interactions
are depicted in Figs. 1 and 2.

Fig.1l. Example of successful
interaction and update rule

Definition 1 (Successful Interaction Conditions). Let the strength of
influence of user i on user j be represented by a value in IN € [0,1], with
0 indicating most weak and 1 most strong. Likewise, let the sensitivity of the
content be denoted S € [0,1], with 0 most sensitive and 1 least sensitive. An
interaction is successful, i.e., the responder j accepts the proposer’s (i) proposal
if

|Pi(t) — R;(t)] < IN(i,j) x S

and a failure otherwise.
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After each interaction, the involved players’ proposal and response values are
updated [42], as follows:

— If the interaction is successful, the proposer and responder do nothing. Specif-
ically, P; and R; remain the same moving forward in time.

— If the interaction is unsuccessful, the proposer and responder move their pro-
posal and response values, respectively, by some amount modulated by the
stubbornness of each individual user toward the midpoint of the two as a way
of conceding, so that future interactions are more likely to be successful.

+ R;(t)

Pi(t+1)=P(t) x T; + h) 2 x (1-T) (1)

and P R
10 i(t

PO R 4 -1, ®

The rules above capture notions of social influence and empirical evidence of
multi-party access control decisions. In particular, informed by Fredkin’s social
influence theory [13], stating that strong ties are more likely to affect users’
opinions and result in persuasion or social influence, in both Egs. (1) and (2) users
will move toward their peers values. This is consistent with empirical evidence
about multi-party access control

Rj(t'f' ].) = Rj(t) X Tj +

decisions that showed that both pro- CASE 2- Failure
poser and stakeholders are willing IP,(t) = Rz(®)] > INi; - S
to collaborate and make concessions PROPOSER @ @ RESPONDER

toward some compromise privacy

setting [3,20,35,39]. The amount PCrD=POn
each party shifts (or concedes) may
not be the same, as each party may
be influenced by peers only to a cer-
tain point [36] driven by their stub-
bornness [2,40] and degree of selfish-
ness [34].

Of note, the proposer ¢ does not
change his response value and the
responder j does not change his proposal value moving forward, i.e., R;(t+1) =
R;(t) and Pj(t + 1) = Pj(t). Likewise, all players in the game who were not
involved in the interaction undergo no change in either proposal or response.

Pj(t) + Ra(t)
2

a-r)

R(t+1) =R, +-

P (t)J;Rz(t)(1 -1

Fig. 2. Example of failed interaction

4 Theoretical Findings

In this section, we present our theoretical findings for the proposed Ultimatum
Game. We demonstrate that, unless trivially impossible, the system converges
towards a consensus state, wherein each individual’s preferences are accounted
for. In this state, both proposal and response values approach a constant ¢ that
is dependent on the stubbornness values associated with individual users, until
all values are within a window of compromise which depends on the structure
of the network.
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4.1 Energy Conservation on Repeated Iterations

We first derive the following technical lemma on energy conservation, which will
help determine conditions and value of convergence.

Lemma 1. In an ultimatum game, let P; and R; be proposer’s and offeror’s
value for user i, with P; and R; defined according to Egs. (1) and (2), respectively.

When T; # 1V, the quantity ), w is conserved.

Proof. Consider a single Ultimatum game, with proposer ¢ and responderj.

If the proposal is accepted, neither P; nor R; change, and no other proposal
or response values are affected, so every value remains the same, and thus the
weighted sum is unaffected.

If the proposal is rejected, then the new proposal value becomes P/ = T; P, +

(1- Ti)@ and the new response value becomes R = T; R; + (1 — Tj)%
Since no other values are changed, then:

P/ + R, P,+R, P —-P  R,—R; P+ R; P+ R;
21_:@-_1_ -7, 1-7, " 1-1;, 2 ht T =0

This means that regardless of which proposals are given or whether or not

they is accepted, the quantity >, LM+ R

T remains constant. ¢
k2

We will show in the next subsection that the P;(¢) and R;(t) converge to
a given constant c. Using the relation obtained in Lemma 1, we posit that the
constant ¢ must be the unique constant for which this sum is conserved. Therefore

P;(0)+ R;(0
_Zi (1)7Ti() ;
¢ = Z 2 ()
i 1-T;

Next, we define the following vector d(¢). We compute |P;(t) —c| and |R;(t) —
c| for each 4, and sort each difference in non-increasing order. We show that
d(t) constructed in this way decreases in lexicographical order over time, and
therefore P;(t) and R;(t) both approach c. The following Lemma holds.

Lemma 2. At each time step t, the inequality d(t 4+ 1) <je,, d(t) is verified. In
particular, at time t + 1, d(t + 1) <jer d(t) when the conditions of acceptance
per Definition 1, are not met, and P; is rejected by j.

Proof. Consider a single ultimatum game taking place at time ¢, with proposer
¢ and responder j. If the proposal P; is accepted (i.e. acceptance condition per
Definition 1 hold true), no changes are made to P; and R;. Since this proposal
does not affect any other proposal or responder values, d(¢ + 1) = d(¢).

If the proposal is rejected, then let a = max{|P;(t) — c|,|R;(t) — ¢|} and
b =min{|P;(t) — c|, |R;(t) — ¢|}. Note that rejection means that a > b.
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Since we sort these differences (including @ and b) in non-increasing order,
let k be the index of the last occurrence of a in d(t). We note that:

P+ R,
IPi(t+1)— ¢ = TiPi—&—(l—Ti)i—; i,
R .
<TiR-d+-7) B3
1+7T; 1-1T;
< P — e+ Ry —

Assuming T; < 1, |P;i(t + 1) — ¢| < a. Similarly, |R;(t + 1) — ¢| < a. Since
no other values in d(¢) change, this means that di(¢t + 1) = max{|P;(t + 1) —
c,|R;j(t + 1) —¢|,dr+1(¢)}. All of these possibilities are strictly smaller than
dy(t) = a. Since none of indices preceding k are affected, the inequality d(¢t +
1) <iex d(t) holds. ¢

The lemma essentially
shows that so long as there
is a positive probability that
a proposal will fail to be
accepted, d(¢) will converge
towards 0, meaning that P;
and R; will all converge to c.

Next, we formally iden-
tify conditions under which
failure has to be possible. In
this case, unlike Lemmas 1
and 2, the results are influ-
enced by the structure of G,
the sensitivity of content S
and influence between play-
ers I Nj;.

P

4.2 Convergence
Results

Fig. 3. Example of auxiliary graph

We first create an auxiliary

graph wherein we split apart the P; and the R; values for every user . In this
auxiliary graph, each P; and R; is associated with its own vertex. Because every
game iteration involves one P; and one R; value (and never a P; with a R; or
even another P; value), this graph will be bipartite. An example of this type of
graph is reported in Fig. 3.

Definition 2 (Auxiliary Graph). Let (G,V) be a connected graph, wherein
each i € G is associated with values (P;, R;). H is the auziliary graph obtained
by taking 2 copies of the vertices of G. Label the vertices by i* and i respectively.
Then, let it ~g §2,i2 ~g j1 <= i ~g j. We will associate i* with P; and °
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In the general case (i.e. G is connected and not bipartite), there is an odd
cycle iyig . ..ipi; in G. This means that i} is connected to i% in H by the path
i1i3 ...i1i7. Because G is connected, this means that H is also connected.

We will use the notation diam;y(G) to denote the usual diameter of G with
edge weights given by IN. The same is true for H, where the weight of an edge

(i, j?) is the same as the weight in G of (i, ).

Lemma 3. When G is not bipartite, while any of |P; — R;|,|P; — P;|, or |R; —
R;| > inf{s:s e S} -diamyn(H), there is a positive probability that d(t+1) <jeq
d(t).

Proof. Assume that d(t+ 1) = d(¢) with probability 1. By Lemma 2, this means
that every possible ultimatum game (each edge that can be chosen with positive
probability) results in acceptance. This means that for any ¢ and j adjacent,
|Pi — Rj| < s-IN(i,j) forany s € S, so |P; — R;| <inf{s:s &€ S} - w1 j,).
Since there is a path between vertices i and j2 in H (H constructed accord-
ing to Definition?2), then |P; — R;| < inf{s : s € S} - dn(i',j?), and thus
|P; — R;|,|P; — Pj|,|R; — R;j| <inf{s:s e S} diam;y(H) for any i and j.

Per the above lemma, given enough iterations of the game, every value of
P; and R; for all vertices in V' will converge in a window of size inf{s : s €
S} - diamyn(H). Note that since ¢ is a weighted average of these values (see
Eq. 3), ¢ is in the window.

Special considerations must be made for the (rare) case of G being bipartite.
If G is bipartite, then let the partition of the vertices be V; and V5. Note that if
i~ j then il ~ j2 so {v!:v € Vi} and {v? : v € V5} are connected in H, and
in fact form a subgraph H’ of H that is isomorphic to G. Similarly {v? : v € V;}
and {v! : v € V5} also form a subgraph H” of H that is isomorphic to G.

To analyze this case, we use the technique from Lemma 3 on each part of the
disconnected H:

Lemma 4. When G is bipartite, while any of |P; — R;|, |P; — P;|, or |R; — R;j| >
2-inf{s : s € S} -diam;y(G), there is a positive probability that d(t+1) <jer d(t).

Proof. Per Lemma 3, let the partition of the vertices be into sets V7 and V5.
Considering only the {P; : i € V4 } and {R; : i € Va}, we can use Lemmas 1 and
2 to define ¢’ and d’ to only consider those values. We can also define ¢’ and d”
to be defined using only {R; : ¢ € V1} and {P; : i € Va}.

Because we consider only one of each P; and R;, algebraic manipulation shows
that ¢ = C,'gc”. However, since R;(0) = P;(0) for every ¢, we note that ¢’ = ¢”,
and thus both are equal to ¢. This means that vector d is simply a reordering of
the entries of d’ and d”.

Using the same techniques used to prove Lemma 3, it is easy to show that if
d’(t+ 1) = d’'(¢) with probability 1, then all P;(¢) and R;(t) in H' fall within a
window of diameter inf{s : s € S} - diam;n(H') that contains c.

In an identical manner, all P;(t) and R;(t) in H” fall within another window
of diameter inf{s : s € S} - diam;n(H") that also contains ¢. However, since
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both H' and H” are isomorphic to G including edge weights, the union of these
windows is a window of diameter less than 2 - inf{s: s € S} - diam;n(G). ©

By relying on the two lemmas above, we now derive the following theorem
for general values of T;:

Theorem 1. For any graph G, one of the following will occur:

1. If T; £1Vi € V, all P; and R; will eventually converge to a window of size
2-inf{s: s € S} - diam;n(G) orinf{s : s € S} - diam;n(H) as appropriate
around c.

2. If 3 f such that P;(0) = R;(0) = fVi:T; =1, all P; and R; will eventually
converge to a window of size 2 -inf{s : s € S} - diam;n(G) or inf{s : s €
S} - diamyy(H) as appropriate around f.

3. Otherwise, consensus is impossible.

Proof. The proof considers each case. For case 1: If T; # 1Vi € V, then by
Lemmas 3 and 4, there is a positive probability of decrease if this window is
larger than 2 - inf{s : s € S} - diam;n(G) or inf{s : s € S} - diamy(H). This
means that eventually the size of the window will decrease.

With respect to case 2: If 3 f such that P;(0) = R;(0) = fVi: T, =1

P, + R,
Let f/ = ZTT”;I*“IITT be the weighted average value over all the less stubborn
players. ' '

In the same manner as in Lemma 1, f’ is conserved for any outcome of any
ultimatum game between two vertices from the set {i : T; # 1}. Note that the
same is true for any outcome of of any ultimatum game between two vertices
from the set {i : T; = 1}, as well as a game with a vertex from each set where
the ultimatum is accepted.

If we have a game with a vertex from each set where the ultimatum is not
accepted, then without loss of generality, let T; # 1. This means that P;(t + 1)
(or R;(t+ 1)) is a weighted average of P;(t) (or R;(t)) and f, so f'(t+1) is a
weighted average of f and f’(¢). This means that f’ approaches f.

Using the same techniques as Lemmas 2, 3, and 4 with f instead of ¢, all P;
and R; will eventually converge to a window of size 2-inf{s : s € S} -diam;n(G)
or inf{s: s e S} diam;y(H) around f.

Finally, for case 3: if 3 P;(0) = R;(0) # P;(0) = R;(0) for T; = T; = 1, then
for any t, P;(t) = R;(t) # P;(t) = R;(t), so trivially no consensus is possible. ©

In summary, if content sensitivity can be arbitrarily small, unless there is
trivially no way to establish consensus, then all players will converge to a con-
sensus based on their stubbornness values. The rate of convergence will actually
depend on the topology of the network, and on how homogeneous users’ comfort
values and stubbornness levels are. We provide some insights on these dimensions
in the next section.
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5 Empirical Results

Our convergence results guide understanding of behavioral trajectories in a social
network. However, some interesting and more practical issues are unaccounted
for in our analysis, especially with respect to the effects of scale. That is, large
social networks may have multiple stubborn users, users who interact very often,
or those who interact very infrequently. Informed by our theoretical findings, we
can further our understanding of these effects through controlled experiments,
varying specific parameters of the game that we anticipate may play a significant
role in real-world networks.

Through simulation, we explore the effects of specific personal and structural
characteristics (e.g., stubbornness, degree) at the node level as they relate to
short- and long-term evolution of privacy preferences for jointly managed content
throughout the system. We study:

1. The role of the stubborn users, and their evolution in the network (e.g.
how does an extremely opinionated user affect others? Does his/her behavior
change over time?);

2. The role of high-degree users, and their relative rates of successful or failed
interactions (i.e. are popular users more likely to experience successful inter-
actions?); and

3. The short- vs. long-term nature of observed effects (i.e. is convergence to a
fair value possible in the short term? if so, under which conditions)?

5.1 Local Influencers: Stubbornness and Connectivity

Two types of users are likely to affect the dynamics of our system. These
are highly stubborn users (i.e. 7; ~ 1), and highly popular users deg(i) >
avg(deg(n)). Users with high stubbornness (who are slower to concede their
preferences) are influential in their neighborhood. Recall that, per Theorem 1 in
the extreme case of a fully-connected graph with exactly one perfectly stubborn
user (T; = 1), given the conditions of our model described, all users’ proposal
and response values will converge to his comfort level.

In the case that a network has multiple stubborn users, each becomes a local
influencer, with the speed and diameter of influence dependent on local con-
nectivity patterns and proximity to “competing” stubborn users. In this way,
stubborn users typically serve as centers of “communities”, closely aligned with
community structure detected by classic community structure detection algo-
rithms.

We study this case through a simulation through the benchmark Karate
Club network (N = 34) [41]. The Karate Club network is used as a first network
topology as it is well understood and its small size allows for explicit tracking
and visualization at the individual node level. In addition, the close-knit peer
group represents a micro-scale view of a larger social system.

Over this network structure, we start from baseline assumptions that: (1)
Users’ inherent privacy preferences; (2) Users’ stubbornness scores T;; (3) Influ-
ence scores over pairwise links IN (7, ); and (4) Content sensitivity scores are
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all uniformly distributed in [0, 1]. We let zero represent least inclined to share,
least stubborn, least influenced and least public (most sensitive), respectively.

Consider the following representative example (Fig.4). User comfort levels,
i.e., initial proposal and response values for all users are taken from a uniform
random distribution in [0, 1], with the exception that user 1 is seeded with a com-
fort of 0.1 (strict sharing) and user 34 with a comfort of 0.9 (public sharing). In
addition, users 1 and 34 are seeded as perfectly stubborn, i.e., T} = T34 = 1. The
left hand image visualizes initial comforts, equivalently initial proposal values,
for all individuals in the network. Nodes are colored on a temperature scale,
with blue representing 0 and red representing 1. The game is run to convergence
(10K iterations of play), and the resultant final proposal values are reflected on
the right; note that proposal and response values are equivalent in the limit.
Consistent with our theoretical findings, we see convergence around stubborn
users. In this case wherein multiple perfectly stubborn users are present within
a single connected component of the graph, convergence is localized around each
and specific diffusion of influence depends on the local connectivity patterns.

As such, high centrality (degree, betweenness, closeness) users may play an
interesting and notable role in system-wide behaviors. Specifically, we suggest
that users embedded in their local communities may have more rapid influence; in
time-limited real-world scenarios of evolving social graphs, more rapid influence
likely means wider influence as well. In addition, high-degree users “play” more
often (are involved in more shared content and subsequent negotiations); in
the framework we have described, highly connected users may be selected as
responder any time a friend is selected as proposer. In sum, location, degree,
number and extent of stubborn users are interrelated determinants of system-
wide preferences, i.e., proposal and response values, at convergence.

Fig. 4. Initial (left) and converged (right) proposal values on the karate club network.
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5.2 Evolution of the Ultimatum Game at the Slow Time Scale

We have theoretically (Sect. 4) and experimentally described the behavior of the
ultimatum game at the long time horizon. These analyses allowed for a formal
understanding of limit behavior, but were not necessarily realistic in real-world,
time-constrained scenarios. Here, we consider the implications of our findings at
the shorter-term horizon, or for more sparse interactions.

Estimates indicate [5] that Facebook users share on average 0.35 photos per
day, or 1 photo every 3 days (350 million photos per day, divided by 1 billion
active users per day). In our small network of 34 users, we estimate 12 instances
of sharing/interactions per day. Provided a static network structure, over the
course of one month the game is played for 360 iterations. Figure5 illustrates
the influence of one stubborn user (user 3) after 500 iterations of play. We seeded
user 3 with a sharing comfort of 0.9 and all other users with comfort 0.1. User
3 was seeded as perfectly stubborn, 75 = 1, while other users’ stubbornness
values were taking from a uniform distribution on [0, 1]. We have proven that in
this contrived but important extreme case, all users will eventually converge to
proposal and response values at 0.9. However at the shorter horizon, notice the
local influence of user 3, where variants in neighbors’ final values are attributable
to connectivity patters, number of interactions and inherent stubbornness.

Stubborn users, then, seem to be playing a winning strategy. In the long
term, they pull other users toward their own preferences and exhibit greater
influence regionally over time. However, we note one consequence for stubborn
users, namely a greater expectation of failed interactions. As their peers move
more quickly toward compromise and bring their own preferences in line with
their neighbors, stubborn users are slower to narrow this gap. Accordingly, as

Fig. 5. Proposal values after 500 iterations of the ultimatum game. Observe node 3
and its local influence in its neighborhood.
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pairs of less stubborn users reach preferences within the window of consensus
and begin to increase their rate of successful interactions, all else (connectivity,
preferences) being equal, stubborn users continue to fail further into the game.
In addition to less stubborn users, it can also be said that users whose comfort
level is nearer to the mean (in our case, the mean is fixed at 0.5) experience
more successful interactions with their peers. That is, the expected value of the
difference between their own proposal /response value and that of their neighbor
is lesser than the expected value of that difference for a user with a preference
nearer to either end of interval.

5.3 The Importance of Homophily

Our last observation brings us to an important consideration. The examples
we have provided thus far have involved fixing personal preferences and stub-
bornness near extreme values in order to demonstrate effects. However, consider
expected scenarios where connected users have generally similar preferences and
are in general moderately stubborn. The social science literature on homophily
provides evidence that real world social systems are well-modeled using ‘birds of
a feather’ assumptions [23,27].

Consider the same network of Fig.5, wherein initial preferences and stub-
borness are distributed in a uniform (and random) fashion from the interval
[0.3,0.7]. Figure 6 represents the preferences of all 34 users over 5000 rounds of
play. Notice, in this framework, all players’ values tend to converge to a common
small range of values, with less than 0.2 separating the preferences of any two
users in the network.

This tendency toward agreement in more homogeneous communities holds
implications for prototypical real-world social networks wherein densely linked
groups of users tend to be more ‘similar’ by some measure. It is an open question
whether documented instances of homophily in social systems extends to privacy

Offer value

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (Rounds of play)

Fig. 6. Proposal values plotted for 34 players over 5000 iterations of the ultimatum
game for multi-party content.
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preferences as well, but our model would suggest that it may. Furthermore,
anomalous cases for which this tendency is not observed may be indicative of
areas for deeper investigation.

6 Related Work

Our work lies at the crossroad of game theory for modeling social interactions
and multi-user access control.

There is a long history using the ultimatum game to model pairwise interac-
tions amongst individuals seeking to rectify opposing forces of cooperation and
selfishness [8,37]. In particular, in the Ultimatum Game, one player proposes
a division of a sum of money between herself and a second player, who either
accepts or rejects. Based on rational self-interest, responders should accept any
nonzero offer and proposers should offer the smallest possible amount. Tradi-
tional, deterministic models of evolutionary game theory agree: in the one-shot
anonymous Ultimatum Game, natural selection favors low offers and demands.
However, experiments in real populations reveal a preference for fairness. When
carried out between members of a shared social group (e.g., a village, a tribe, a
nation, humanity) people offer “fair” splits close to 50-50, and offers of less than
30% are often rejected [14,28]. There are several theories as to why this differ-
ence between theoretically optimal and practical behaviors may exist, including
reputation and memory effects [6], natural selection [26], empathy and perspec-
tive taking [24]. In [42], we study this phenomenon using a similar model to that
presented in this paper, but in a general setting unrelated to privacy and access
control. Accordingly, the formulation explored in [42] involves a more general rule
set, leaning on notions of greed and charity, rather than consensus-formation.

With respect to privacy and related decision making processes, researchers
from many communities have noted the trade-off between privacy and utility
(e.g., [4,7,21,29,31,32]). The majority of this prior work tends to view the pri-
vacy /utility trade-off as mutually exclusive: an increase in privacy (resp. util-
ity) results in an immediate decrease in utility (resp. privacy). We note that
the interplay of multiple entities in any access control/privacy decision where
privacy and utility are unevenly distributed among the players and context-
dependency results in a complex relationship between these concepts [1,19]. A
growing body of recent work has focused on multi-party access control mecha-
nisms, some of which have used game-theoretical concepts. Chen et al. model
users’ disclosure of personal attributes as a weighted evolutionary game and dis-
cuss the relationship between network topology and revelation in environments
with varying level of risk [9]. Hu et al. tackle the problem of multi-party access
control in [17], proposing a logic-based approach for identification and resolution
of privacy conflicts. In [18] these authors extend this work, this time proposing
adopting a game-theoretic framework, specifically a multi-party control game
to model the behavior of users in collaborative data sharing in OSNs. Another
game-theoretic model is given in [35], in which automated agents negotiate on
behalf of users access control settings in a multi-user scenario. Other very recent



An Ultimatum Game Model for the Evolution of Privacy 127

approaches to multi-party access control mechanism use a mediator [33] or a rec-
ommendation system [12] to suggest the optimal decision in one-shot multiparty
access control scenarios. The primary difference between our work and previous
ones on multi-party access control (whether game-theoretic or not) is our unique
focus on the effects of one-time interactions to a given network, and the related
consequences for users in the network over a number of interactions.

7 Conclusions and Future Work

In this paper, we presented a macro-model to describe how individuals’ sharing
decisions change over time, who are the most influential users and how they
benefit from it, along with privacy gains and losses from a collective perspective.
Through a carefully designed ultimatum game, informed by the body of work on
multi-party access control, we were able to capture the most important dynamics
underlying privacy decision making in online social networks. Our results show
users’ overall tendency to converge toward a self-adjusted environment, wherein
successes and failures commensurate with users’ stubbornness and underlying
network dynamics.

This work is the first step toward a more systematic analysis of how people’s
privacy attitudes evolve over time, and change their personal information shar-
ing patterns as a result. As such, we anticipate several extensions and possible
avenues for research.

Further theoretical work may look into the system’s convergence properties
for nonvanishing content sensitivity and study time to convergence (within some
bounds) in network topologies that reflect real-world social structure. Related to
this, convergence in a practical sense will reflect agreement on a discrete privacy
setting and accounting for this will impact these findings.

With respect to discretization of privacy settings, our model is thus far agnos-
tic to the actual privacy settings or access control paradigm used by the online
social network provider. We plan to define a mapping that converts available set-
tings into values in [0, 1] and vice versa. For instance, default Facebook settings
go from private, to friends, to friends of friends, to public. Also, users may choose
particular users or groups. In that case, the comfort value would be the distance
between a user’s desired privacy policy and the one she may finally accept, in
a similar way to [35], in which the euclidean distance is used to compare the
distance between two privacy policies to quantify the actual concession being
made during an access control negotiation

Further empirical, simulated studies may look at larger network graphs and
regimes of influence. That is, we have shown that stubborn users have dispro-
portionate influence in their local neighborhood, but their global influence is
dependent on their place in the network topology. We envision that these consid-
erations may support a full taxonomy of users categorized in multiple dimensions
including centrality, stubbornness and inherent privacy preferences. Ultimately,
categorizing users in this way and developing a common language with which to
discuss different user privacy behaviors will be very useful to further understand
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the interplay between local one-shot decisions and overall sharing dynamics at
the social network in multi-party access control.

Finally, as more detailed data becomes available on instances of multi-
party access control negotiations in the wild, especially longitudinal data about
repeated negotiations over time, either through collected data from popular net-
working sites or through smaller and more targeted user studies, this data may
be used to verify and parameterize the proposed model. We believe that the ulti-
matum game framework is a reasonable starting point, given its fundamental role
in modeling social cooperation broadly and existing evidence on one-shot multi-
party access control decisions. The update rules we have chosen are motivated by
the psychology literature on in-group/out-group behaviors, peer pressure, and
one-shot multi-party access control decisions. However, these rules and para-
meters thereof should be further researched in the specific context of repeated
decisions on multi-party access control settings.
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Abstract. The U.S. Vulnerabilities Equities Process (VEP) is used by
the government to decide whether to retain or disclose zero day vul-
nerabilities that the government possesses. There are costs and bene-
fits to both actions: disclosing the vulnerability allows the vulnerabil-
ity to be patched and systems to be made more secure, while retaining
the vulnerability allows the government to conduct intelligence, offen-
sive national security, and law enforcement activities. While redacted
documents give some information about the organization of the VEP,
very little is publicly known about the decision-making process itself,
with most of the detail about the criteria used coming from a blog post
by Michael Daniel, the former White House Cybersecurity Coordinator.
Although the decision to disclose or retain a vulnerability is often con-
sidered a binary choice—to either disclose or retain—it should actually
be seen as a decision about timing: to determine when to disclose. In
this paper, we present a model that shows how the criteria could be
combined to determine the optimal time for the government to disclose
a vulnerability, with the aim of providing insight into how a more formal,
repeatable decision-making process might be achieved. We look at how
the recent case of the WannaCry malware, which made use of a leaked
NSA zero day exploit, EternalBlue, can be interpreted using the model.

1 Introduction

Governments, for national security, military, law enforcement, or intelligence
purposes, often require an ability to access electronic devices or information
stored on devices that are protected against intrusion. One way this access can
be achieved is through the exploitation of vulnerabilities in the device’s software
or hardware. To this end, governments acquire, through a number of different
methods, knowledge of these vulnerabilities—which are usually unknown to the
software vendor and users—and how they may be successfully exploited.
However, the role a government plays is dual: in addition to the national
security and law enforcement purposes above, which may require the exploitation
of vulnerabilities, the government is also responsible for defending its national

© Springer International Publishing AG 2017
S. Rass et al. (Eds.): GameSec 2017, LNCS 10575, pp. 131-150, 2017.
DOI: 10.1007/978-3-319-68711-7_8



132 T. Caulfield et al.

assets in cyberspace. It has a responsibility to protect its own government and
military networks, the nation’s critical infrastructure, as well as the information
assets of its businesses and citizens. When a government acquires knowledge of
a vulnerability, this dual role presents a conflict. The government must decide
between two competing national security interests: whether to retain the vulner-
ability, keeping it secret so it can be used to gain access to systems for intelligence
purposes, or if it should instead be disclosed to the vendor, allowing it to be fixed
so that the security of systems and software can be improved.

In the United States, this decision is now guided by the Vulnerabilities Equi-
ties Process (VEP), which the government uses to assess whether to retain or
release each vulnerability it acquires. Publicly, relatively little is know the cri-
teria used in this assessment. A Freedom of Information Act request from the
Electronic Frontier Foundation (EFF) saw the release of a redacted version of
a document [4] that describes how the VEP works within the government, but
without any indication of how the decision to retain or disclose is made. A blog
post [5] in April, 2014 by Michael Daniel, the White House Cybersecurity Coor-
dinator, provided some insight, revealing a number of factors that are used in
the decision-making process, but also that ‘there are no hard and fast rules’.

The factors listed in the blog post are very high-level concepts, describing
what decision-makers consider, but not how they do so. For example, some of
these factors describe values, such as ‘the extent of the vulnerable system’s use
in the Internet infrastructure’ or ‘the risks posed and the harm that could be
done if the vulnerability is left unpatched’, and yet no there is no indication of
how they can be quantified or compared against each other. Given the lack of
hard and fast rules, it is not unreasonable to assume that decisions are made on
an ad hoc, case-by-case basis.

There has been some discussion and commentary about the VEP—and about
how vague known information about it is. A June 2016 discussion paper by
Schwartz and Knake [24] examines what is publicly known about the VEP and
makes a number of recommendations to improve the process. Among these is
the recommendation to ‘make public the high-level criteria that will be used
to determine whether to disclose ... or to retain [a] vulnerability’ and that
it is possible to ‘formalize guidelines for disclosure decisions while preserving
flexibility in the decision-making process’. Similarly, a September, 2016 EFF
blog post [3] recommends that the government be more transparent about the
VEP decision-making process, including the criteria used, and that the policy
should be ‘more than just a vague blog post’.

This paper aims to further understanding of how the different factors that
are used in a VEP decision can be included in a more formal decision-making
process. The intent is not to be normative: we do not aim to say, for example,
how much potential harm is an acceptable trade-off for the benefits gained from
exploiting a particular vulnerability. Instead, we look at different possible ways
in which each of the factors may be evaluated or quantified, how the factors
relate to each other, and how this information could be combined to make a
decision. Specifically, we present the government’s decision about whether or
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not to disclose a vulnerability as a timing problem, where the solution is the
optimal amount of time to delay disclosing the vulnerability given the costs and
benefits of doing so. We then look at how how the long delay before the disclosure
of the EternalBlue vulnerability can be interpreted using this model.

Section 2, next, presents background information about vulnerabilities,
exploits, and their increasing use by governments. Next, Sect. 3 introduces the
VEP: its purpose and origins, the factors used in decision-making, and the discus-
sion and debate surrounding the process. Section 4 examines each of the factors
in detail, looking at how they might affect the disclosure decisions, and Sect. 5
looks at how the factors could be combined into a model to determine the opti-
mal time of disclosure. Section 6 then looks at the WannaCry malware and the
timing of the disclosure of the leaked vulnerability it used.

2 Background

During the development of a piece software, flaws—or bugs—may arise in its
design or implementation which cause the software to behave differently than
intended. A bug that can cause behaviour affecting the security of a system is
called a vulnerability. An exploit is a technique or action (for example, a piece
of software or a series of commands) that can be used to take advantage of the
vulnerability. An attack is the use of an exploit to attempt this.

Creating software without bugs is a very difficult challenge and is not eco-
nomically feasible for most software. As such, software often has to be updated
after its initial release in order to fix bugs discovered later on. A vulnerability,
once discovered, may be disclosed—either to the vendor directly, through an
organization such as CERT, which coordinates disclosures with the vendor, or
publicly. Once the developer is aware of the vulnerability, they may work to
create a fix that removes the vulnerability. An updated version of the software
containing the fix, called a patch, is then released; end-users of the software must
then apply this patch to their systems to remove the vulnerability.

The sequence of events including the discover of a vulnerability, the cre-
ation of an exploit for it, the vulnerability’s disclosure, and eventual patching is

Discovery Disclosure Patch available

| Zero day exploit | | Public exploit code | | Malware |

Signature available Patch deployed

Fig. 1. The vulnerability timeline, showing the events that can occur from the discovery
of a vulnerability to its eventual patching. This is a guideline: not all of these events
will occur for every vulnerability, and the order in which they occur may differ.

VEP decision
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known as the vulnerability timeline. Figure 1, adapted from [2], illustrates this
sequence of events. Related to this is the notion of the window of exposure, dis-
cussed in [20], which is the time from the creation of an exploit until systems
are patched during which systems are at risk from a vulnerability. This window
can be reduced by improving the speed with which patches are produced and
deployed. The VEP deals with the government’s decision to disclose or retain
zero day vulnerabilities; these are vulnerabilities that are unknown both publicly
and to the software developer, so named because the developer and end users
have had zero days to fix or mitigate the vulnerability. Disclosing the vulnera-
bility allows a patch to be produced sooner, reducing the window of exposure.
The timeline includes an event for a signature becoming available, which
indicates the the availability of methods to mitigate the vulnerability before the
official patch has been released, including anti-virus or intrusion-detection signa-
tures. There is also a distinction between the public release of exploit code and
the development of malware. The former refers to code that utilizes the exploit—
perhaps as a proof-of-concept or demonstration that the exploit works—but does
not cause significant damage; the latter refers to more sophisticated and damag-
ing uses of the exploit. However, publicly publishing proof-of-concept code can
make it easier for more damaging exploits to be developed. All of the events
in the timeline do not always occur for each vulnerability, and the ordering of
events and the time between them is fluid. For example, there might not be a
zero day exploit, or the patch could be released before any exploit is developed.

2.1 Increasing Use of Vulnerabilities

The exploitation of vulnerabilities by both governments and other parties is
growing—and this is not surprising. The use of digital technologies in all aspects
of life and business continues to grow at an astounding rate and more and more
information is stored on electronic devices. Access to these devices and the infor-
mation stored on them has value. For governments this could be the value of
intelligence, the ability of law enforcement to conduct surveillance, or the ability
to disrupt systems. For criminal actors, access to these systems can enable a
host of different crimes, from theft or ransom of information to sabotage.
Evidence of the increasing importance of vulnerabilities to all parties is the
rise of the market for vulnerabilities. A 2007 paper by Miller [12] documents
the author’s attempts to sell zero day exploits, which was both difficult to do
and not extremely lucrative. A 2012 article in Forbes [8] gave a list of prices
for zero day exploits, including a range of $30,000-$60,000 for Android, and
$100,000-$250,000 for iOS—values that were surprising to Schneier at the time
[22]. Today, the market is even more established, and exploits fetch a much higher
price. Companies such as Zerodium buy exploits from security researchers and
resell them to customers, including governments. Zerodium is currently offering
researchers up to $200,000 for Android exploits and up to $1,500,000 for iOS
exploits [25]. Other products that are less secure (so it is easier to find exploitable
vulnerabilities) or less popular fetch lower prices. This increase in market price
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(and the expansion of the market itself) over the last decade is an indicator of
the increasing demand for and importance of zero day exploits.

Often, exploits can be purchased with an exclusivity agreement, meaning that
it will not be sold to anyone else. However, exclusivity agreements are no guaran-
tee that the vulnerability will remain undiscovered by others. Other researchers,
governments, or criminals may independently discover the same vulnerability.
This is what causes the tension between the dual roles of the government: just
because it it believes it is the only entity with access to a vulnerability does
not mean it will not be used against assets it is charged to protect. Thus, every
decision to retain a vulnerability instead of disclosing it so it can be fixed and
patched increases the risk to systems the government aims to protect.

3 The Vulnerabilities Equities Process (VEP)

The Vulnerabilities Equities Process was created to address the tension between
the offensive and defensive missions of the government. Schwartz and Knake [24]
provide a thorough explanation of the background and origins of the VEP, and
Healey [9] also gives a good overview; we will provide a brief summary here.

President George W. Bush signed a directive [14] in 2008 creating a
government-wide Comprehensive National Cybersecurity Initiative (CNCI). This
initiative required a number of government departments to develop a plan for
coordinating the ‘application of offensive capabilities to defend US information
systems’; which led to the production of the VEP document [4] in February,
2010.

A redacted version of the VEP document was obtained via a Freedom
of Information Act request by the EFF. The document begins by stating its
purpose:

This document establishes policy and responsibilities for disseminating
information about vulnerabilities discovered by the United States Govern-
ment (USG) or its contractors, or disclosed to the USG by the private
sector or foreign allies in Government Off-The-Shelf (GOTS), Commer-
cial Off-The-Shelf (COTS), or other commercial information technology or
industrial control products or systems (to include both hardware or soft-
ware). This policy defines a process to ensure that dissemination decisions
regarding the existence of a vulnerability are made quickly, in full consulta-
tion with all concerned USG organizations, and in the best interest of USG
missions of cybersecurity, information assurance, intelligence, counterintel-
ligence, law enforcement, military operations, and critical infrastructure
protection.

The document also specifies conditions for whether or not a vulnerability
is entered into the VEP: ‘to enter the process a vulnerability must be both
newly discovered and not publicly known’ but that ‘vulnerabilities discovered
before the effective date of this process need not be put through the process’.
The VEP document creates an Equities Review Board (ERB) that makes the
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decision about disclosing or retaining a vulnerability, establishes an Executive
Secretariat, specifies how government agencies that come into possession of a
vulnerability should notify the Executive Secretary, and how agency-designated
Subject Matter Experts (SMEs) hold discussions to evaluate the course of action
for each vulnerability.

In short, the VEP document specifies how the process of submitting vulner-
abilities works, how the various stakeholders have inputs, and how the process
is managed. It does not mention what inputs or factors are used when making
a decision, nor how any such factors would be considered.

3.1 The Daniel Blog Post

Information about the VEP was first released under the Obama Administration
in 2014, in response to allegations by Bloomberg News [18] that the NSA was
aware of and had exploited the Heartbleed vulnerability in OpenSSL, which the
NSA denied. The White House commented, saying that the NSA would have
disclosed the vulnerability, had they known about it, and in most cases would
disclose any vulnerability discovered to allow it to be fixed. Referring to the
VEP: ‘unless there is a clear national security or law enforcement need, this
process is biased toward responsibly disclosing such vulnerabilities’ [15,19].

Further information about the VEP came in the form of a blog post [5] by
Michael Daniel, the White House Cybersecurity Coordinator, responding to the
debate caused by the Heartbleed vulnerability. In it, Daniel discusses the trade-
offs between disclosing and retaining a vulnerability— ‘disclosing a vulnerability
can mean that we forego an opportunity to collect crucial intelligence’ but ‘build-
ing up a huge stockpile of undisclosed vulnerabilities while leaving the Internet
vulnerable and the American people unprotected would not be in our national
security interest’.

Following this, Daniel provides the only public insight into the factors that
are considered when deciding to retain or disclose a vulnerability:

We have also established a disciplined, rigorous and high-level decision-
making process for vulnerability disclosure. This interagency process helps
ensure that all of the pros and cons are properly considered and weighed.
While there are no hard and fast rules, here are a few things I want to
know when an agency proposes temporarily withholding knowledge of a
vulnerability:

— How much is the vulnerable system used in the core internet infrastruc-
ture, in other critical infrastructure systems, in the U.S. economy,
and/or in national security systems?

— Does the vulnerability, if left unpatched, impose significant risk?

— How much harm could an adversary nation or criminal group do with
knowledge of this vulnerability?

— How likely is it that we would know if someone else was exploiting it?

— How badly do we need the intelligence we think we can get from
exploiting the vulnerability?
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— Are there other ways we can get it?

— Could we utilize the vulnerability for a short period of time before we
disclose it?

— How likely is it that someone else will discover the vulnerability?

— Can the vulnerability be patched or otherwise mitigated?

These factors are weighed ‘through a deliberate process that is biased toward
responsibly disclosing the vulnerability’—but what this decision-making process
is remains unknown.

3.2 Debate and Recommendations

The VEP document and the Daniel blog post have been analysed and criticized
a number of times. Schwartz and Knake [24] explore the history of the VEP
and what is known about it from various sources and make recommendations to
improve the process.

Several of the recommendations concern the decision-making process and
are of interest here. First, ‘the principles guiding these decisions, as well as a
high-level map of the process that will be used to make such decisions, can
and should be public’. Next, ‘make public the high-level criteria that will be
used to determine whether to disclose to a vendor a zero day vulnerability in
their product, or to retain the vulnerability for government use’. Finally, if a
vulnerability is not disclosed, the process should ‘ensure that any decision to
retain a zero day vulnerability for government use is subject to periodic review’
and that vulnerabilities should be ‘disclosed to the responsible party once (1)
the government has achieved its desired national security objectives or (2) the
balance of equities dictate that the vulnerability should be disclosed’.

The EFF also makes recommendations about the VEP. In August, 2016, an
entity naming itself ‘The Shadow Brokers’ released a collection of files contain-
ing code for exploiting vulnerabilities in various firewall products from vendors
such as Cisco and Fortinet. These exploits were linked to the NSA and, cru-
cially, were exploiting previously unknown zero day vulnerabilities. The exploit
code was stolen in 2013 and the NSA was aware it had been exposed, but the
vulnerabilities were never disclosed.

In response to this, the EFF wrote in [3]:

We think the government should be far more transparent about its vulner-
abilities policy. A start would be releasing a current version of the VEP
without redacting the decision-making process, the criteria considered, and
the list of agencies that participate, as well as an accounting of how many
vulnerabilities the government retains and for how long. After that, we
urgently need to have a debate about the proper weighting of disclosure
versus retention of vulnerabilities.

Similarly, Mozilla discusses the VEP in response to the Shadow Brokers leak
[6] and makes recommendations, including:
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— All security vulnerabilities should go through the VEP and there should be
public timelines for reviewing decisions to delay disclosure;

— All relevant federal agencies involved in the VEP must work together to
evaluate a standard set of criteria to ensure all relevant risks and interests
are considered;

— Independent oversight and transparency into the processes and procedures of
the VEP must be created. All security vulnerabilities should go through the
VEP and there should be public timelines for reviewing decisions to delay
disclosure.

Common to these three sets of recommendations is the desire for greater
insight into the decision-making process and the factors or criteria that are
used. Additionally, the recommendations from Schwartz and Knake and Mozilla
are both concerned with the timing for reviews of vulnerabilities that have been
retained. Proposed legislation, the Protecting our Ability To Counter Hacking
(PATCH) Act [7], would turn the VEP into law and allows for periodic review of
vulnerabilities—meaning that a vulnerability could be used for a time and then
disclosed. We agree with these recommendations and, in the next two sections, we
examine the factors from the Daniel blog post—to better understand how they
might influence the decisions made—and then present a model for a decision-
making process that utilizes the different factors to determine the optimal time
for disclosure.

4 Factors

The first step in improving understanding of the decision-making process is to
focus on the factors involved and try to understand in greater detail what they
mean and how they can be measured. The next step is then to examine how
they affect the decision. The choice to retain a vulnerability gives a benefit to
the government: it allows the collection of additional information for national
security, intelligence, or law enforcement purposes; it also brings a cost: the
increased risk of harm to its own networks, businesses, and individuals. The
government aims to find the correct balance between these two, and each of the
factors affects the outcome of this decision.

As discussed above, the VEP has two possible outcomes. First, a vulnerability
may be disclosed; if this is the case, then the process ends with the disclosure.
The other outcome is the decision to retain the vulnerability for use. If this is
the case, then according to the process, the decision should be reviewed again at
some point in the future and either disclosed or retained further. The VEP can
be seen, then, as a timing problem: given the costs and benefits associated with
disclosing or retaining a vulnerability, when is the best time time to disclose?

Each of the factors in the decision-making process can then be considered
to have either an accelerating or a retarding effect on the time of disclosure.
For example, if a factor reduces the risks or costs of non-disclosure, it will tend
to delay disclosure; if it increases the risks, then it will move disclosure forward.
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In this section, we will discuss each of the factors from the Daniel blog post,
looking at what they mean and how they can be measured, and examining their
impact on the costs and benefits to the government.

4.1 Extent of Use

How much is the vulnerable system used in the core internet infrastructure, in
other critical infrastructure systems, in the U.S. economy, and/or in national
security systems?

The meaning of this factor is straightforward, as is its measurement. Data
about the number of units sold or deployed for a particular device or piece of
software is not difficult to acquire or estimate. This factor is related to the risks
and harm, below—where and how widely a device with a vulnerability is used
will affect the potential risks and harms.

The extent of use may change over time. For example, end users might switch
to newer devices or upgrade to newer versions of software that are not affected
by the vulnerability.

Effect. This factor affects the decision to disclose in both directions, though not
necessarily equally. First, a vulnerability in a widely-used device or piece of soft-
ware can potentially cause harm to a larger group of individuals, businesses, or
systems; this will have an accelerating effect on the time of disclosure. However,
the opposite is also true: a vulnerability in a more widely-deployed system can
potentially allow the government to access a greater number of systems, which
would delay disclosure.

4.2 Risks and Harm

Does the vulnerability, if left unpatched, impose significant risk? How much harm
could an adversary nation or criminal group do with knowledge of this vulnera-
bility ?

There are many potential ways in which exploitation of the vulnerability by
others could cause harm. At a national level, there are potential harms from the
compromise of government networks or the disruption of critical infrastructure.
For businesses, harms can include direct monetary loss (from fraud, theft, sabo-
tage, or ransomware) or loss of competitive ability (from industrial espionage),
and also reputational harm caused by a breach. Harms to individuals include,
for example, direct losses from crime, identity theft, and loss of privacy.

For each vulnerability, the risks of each of these harms will be different—it
is unlikely, for example, that a vulnerability in an industrial control system will
present much risk of identity theft to individuals, but the same vulnerability
could present a large risk to infrastructure or businesses. The government must
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estimate how likely different harms are for each vulnerability, as well as the mag-
nitude of those harms; this is related to the extent of use: where and how much
devices with the vulnerability are used will affect the likelihood and impact.

Effect. That the government considers risks and harms instead of simply losses
implies that they distinguish between the risk of discovery and use of the vul-
nerability by others and the ‘lumpiness’ of the harm. If the government has an
aversion to substantial harm from single events, then its potential presence makes
the decision to retain the vulnerability costlier, and will accelerate disclosure,
even if the likelihood is low. If the risk of discovery and use is very high, even
if the potential harm is modest in terms of impact on individuals or businesses,
that will also accelerate the decision to disclose.

4.3 Detect Exploitation by Others

How likely is it that we would know if someone else was exploiting it?

This is hard to estimate without knowledge of the government’s capabilities.
A quote from [11] in the aftermath of the Shadow Brokers leak gives an indication
that the NSA does have such an ability:

After the discovery, the NSA tuned its sensors to detect use of any of
the tools by other parties, especially foreign adversaries with strong cyber
espionage operations, such as China and Russia.

That could have helped identify rival powers’ hacking targets, potentially
leading them to be defended better. It might also have allowed U.S officials
to see deeper into rival hacking operations while enabling the NSA itself
to continue using the tools for its own operations.

Because the sensors did not detect foreign spies or criminals using the tools
on U.S. or allied targets, the NSA did not feel obligated to immediately
warn the U.S. manufacturers, an official and one other person familiar with
the matter said.

Effect. If the government has a high confidence in their ability to detect the
exploitation of the vulnerability by others then this will have a delaying effect on
disclosure time. From the quote above, this appears to be the case. If confidence
in the ablity to detect is comparatively lower, then disclosure will happen sooner.
Once use of the exploit has been detected, disclosure should follow immediately.

4.4 TIs the Vulnerability Needed?

How badly do we need the intelligence we think we can get from exploiting the
vulnerability? Are there other ways we can get it?
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This factor is essentially the government’s own estimation of the value of
access to a device and the information it contains. If there are other vulnerabil-
ities than can be exploited—or other methods entirely—with less cost or risk,
then those other methods might be preferable.

Effect. The existence of other, less costly methods of obtaining the desired
information will reduce the value of retaining this vulnerability and accelerate
the timing of the disclosure. The availability of substitute methods depends
on the nature of the information needed: concentrated info might be easier to
acquire with other means, whilst broad-based information, spread over a number
of sources, might not be possible to acquire without the exploitation of the
vulnerability.

4.5 Discovery by Others

How likely is it that someone else will discover the vulnerability?

In a 2013 discussion about the government’s approach to vulnerabilities [17],
Hayden discussed the concept of ‘Nobody But Us’ (NOBUS) vulnerabilities,
which the government believes others are unable to exploit:

If there’s a vulnerability here that weakens encryption but you still need
four acres of Cray computers in the basement in order to work it you kind
of think ‘NOBUS’ and that’s a vulnerability we are not ethically or legally
compelled to try to patch — it’s one that ethically and legally we could
try to exploit in order to keep Americans safe from others.

However, simultaneous discovery of a vulnerability may be relatively common.
Schneier mentions several examples of simulatenous discovery [21]—including
Heartbleed, which was discovered by both Google and Codenomicon. Studies of
vulnerabilities in Microsoft software by Ozmnet [16] also suggest that simultane-
ous independent discovery is likely. More recently, a RAND report by Ablon and
Bogart [1] followed a number of zero day exploits over time, and concluded that
for a given collection of vulnerabilities, after one year 5.7% of them will have been
discovered and disclosed by others. Another recent paper by Herr, Schneier, and
Morris [10] studies a larger number of vulnerabilities and estimates that between
15% and 20% will be rediscovered within a year.

Different types of vulnerabilities probably experience different rates of inde-
pendent discovery. If the government’s ability to detect the use of known vul-
nerabilities by others is sufficient, they may be able to estimate how frequently
simultaneous discovery occurs for different types of vulnerability.

Effect. If the vulnerability is likely to be discovered by others then it will accel-
erate disclosure. However, government confidence in a unique ability to discover
or exploit some vulnerabilities will delay disclosure.
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4.6 Can the Vulnerability Be Used?

Could we wutilize the vulnerability for a short period of time before we disclose it?

This can be interpreted in different ways. First, it may simply not be possible
to develop an exploit for a particular vulnerability—not every bug found in soft-
ware can be successfully exploited. Or, alternatively, this may refer to the time
it takes to develop and utilize an exploit for this vulnerability. If exploit devel-
opment takes a long time, it is more likely that either the information needed
will no longer be obtainable or no longer be of value, or that the vulnerability
will be discovered and disclosed by another party. Another interpretation could
be whether or not there is any benefit that can be gained by exploiting the
vulnerability—perhaps the systems that could be accessed using the vulnerabil-
ity have no intelligence or strategic value.

Effect. If the vulnerability cannot be utilized, then this will accelerate disclosure.
If there is no benefit to be gained from retaining the vulnerability, then disclosing
is the best option.

4.7 Can the Vulnerability Be Patched?

Can the vulnerability be patched or otherwise mitigated?

There are a few reasons why it may not be possible to patch a vulnerabil-
ity: some types of devices or software (for example, industrial control systems,
SCADA systems, PLCs, or embedded devices) are rarely—or never—updated,
and older devices or software may no longer be supported by the vendor. How-
ever, many of these vulnerabilities can be mitigated, if known, through additional
security measures. There are cases when a vulnerability cannot be patched or
mitigated. For example, old Android phones stop receiving security updates, and
little can be done to mitigate this—other than switching to a newer device. In
this case. disclosure of a vulnerability will not help users of the older devices
(unless it encourages them to upgrade), but can help increase the security of
newer devices if they share the same code.

Effect. If a vulnerability can truly never be patched or mitigated in any way,
then it can lead to a considerable delay in disclosure—because doing otherwise
will reveal the vulnerability to potential exploitation when the system can not be
defended. However, this is unlikely. The speed at which a patch can be created
and deployed may also have an effect on the disclosure timing. If patch creation
and deployment is fast, then systems can be made secure more quickly if someone
else discovers the vulnerability, which will delay disclosure.

5 Modelling the Decision-Making Process

In considering whether to reveal the discovery of the vulnerability at any point
in time, the government agency will consider the benefits and costs of the current
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situation—keeping the vulnerability undisclosed—and comparing them the the
possible consequences after they have revealed the vulnerability to the public.

On one hand, retaining the vulnerability will allow the agency to access
the information required for their purposes, and the longer the vulnerability
persists—and the agency is able to exploit it undetected—the greater the poten-
tial accumulated benefit. On the other hand, if the vulnerability is not disclosed
and remains unknown to the vendor and users, there is a chance that others will
be able to exploit it, causing damage to the information assets the government
is charged to protect. This constitutes the expected loss to the government. The
model we present here should be seen as a formalization of a thinking process;
there is no hard data to populate the model, but it shows how the factors would
be considered when making a decision.

In a general form, assuming continuous time, the benefits and costs the gov-
ernment will receive from not disclosing the vulnerability until a particular time,
T, can be expressed as

T T
Br :/ Benefit(t)dt and Cr :/ Cost(t)dt,
0 0

which represent the total benefits and costs received from now until time T'.
The government’s aim is to find the best time to disclose the vulnerability,

ngXVT = BT — CT,

where V; is the value to the government of disclosing at time ¢. This is shown
in Fig. 2, which shows the expected costs and benefits for disclosure at different
times. The costs and benefits increase at different rates. The optimal time for
disclosure maximizes the difference between costs and benefits. If the costs rise
faster than the benefits, then the best action would be to disclose immediately.

optimal disclosure

time

Fig. 2. Total costs and benefits over time. The optimal timing for disclosure maximizes
the difference between benefits and costs.

We relate the different factors discussed in the previous section to these
benefits and costs. Any benefit of the vulnerability depends on the ability to use
it (Can the vulnerability be used? — Fys.). The benefits that the government
expects to receive at time ¢ depend on the extent of use of software (Feptent)-
It is not necessarily known in advance if there will be any use for the exploit at
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a particular time ¢; this depends on whether or not there is information that is
needed at that time, or if there is a system to which the government requires
access at that time. A greater extent of use increases the probability of a need
for the exploit. The perceived value gained from exploiting the vulnerability will
increase the benefits (Is the vulnerability needed? — Fquc)-

The expected cost from not disclosing the vulnerability will be rising with the
extent of use (Fegtent) and the possible harm that can result from its exploitation
by others (Fparm). The ability to detect its exploitation by others reduces the
expected cost to the government (Fjetect). Finally, the ability of others with
high probability to exploit the vulnerability increases the cost of non-disclosure
(Faiscovery)- The speed with which the patch can be developed and deployed
(Fpatcn) reduces the expected cost of non-disclosure.

Immediate disclosure of the vulnerability upon discovery reduces the poten-
tial benefits to zero while minimizing the expected costs due to information
assets damaged. However, this policy does not take into account the impact
of the factors determining expected costs and benefits. Once such considera-
tions are taken into account, the decision of when to disclose the vulnerability
is equivalent to the solution of the problem to calculate the optimal timing for
disclosure. In this context, the government is fully aware of both costs and ben-
efits and their determinants and in effect decides when to exercise the ‘option
to disclose’. Intuitively, the decision will be such that at the time of the dis-
closure the marginal benefits from the retention vulnerability will be equal to
the expected costs. Further delay in disclosing will result in the expected costs
rising above the benefits. Although it is possible that such exact calculations
cannot be made, the adoption of this equality as the organizing principle for the
decision-making seems rational and more importantly, as it contains measurable
quantities, it can be evaluated ex-post.

The analysis above is based on the assumption the the government is moti-
vated ‘equally/in a stable manner’ by both benefits and costs. There are situa-
tions that call into question such a stable weighting. For example, in states of
high alert, the benefits assume a far greater weight than the costs, compared to
a normal situation where such immediacy of danger is not present. In this situ-
ation, the factors determining the benefits assume additional importance in the
decision, resulting in delaying the disclosure of the vulnerability even though the
expected costs are the same. This is because, in the eyes of the government, the
value of the information obtainable through the use of the exploit is far higher.

5.1 Timing Rules

We look at two different timing rules using, for simplicity, a discrete-time model.
The first considers no delay, so disclosure happens at time ¢ = 0. The second
considers some delay, with disclosure at time ¢ = T. For both timing rules,
we can consider the benefits as immediate benefits (received at ¢ = 0) plus
discounted expected future benefits, with the same done for costs: B = By + B¢
and C = Cy + C“.
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For the first case, immediate disclosure, the immediate benefits, By, are zero
because the vulnerability is disclosed at time ¢t = 0, so the government has no
chance to gain from its exploitation. Additionally, there will be no future benefits,
so B° = 0. For the second case, where disclosure is delayed, the government sees
an immediate benefit By. The value of By is determined by two factors, the
value of the information and the ability to use the exploit to gain it, and can be
written By = f(Fyaiue, Fuse)- The expected future benefits, B¢, are

T
B =Y diE[B],
t=1

where dp, is the discount factor applied to future benefits and E[B;] is the
expected value of benefits at time ¢t. These expected benefits depend on all of the
factors and evolve according to the time-evolution of the underlying factors. For
example, were the extent of use to expand in the future, the expected benefits
would increase because the likelihood of being able to access needed information
using the exploit increases. If, in the future, the information that can be col-
lected by exploiting the vulnerability is not needed, the value of future benefits
will decline. The total benefits for retaining the vulnerability until a time 7T is

T
B=DBy+ Y diE[Bi].
t=1

Next, we look at the costs of non-disclosure. Similarly to the benefits, these
can be decomposed into two parts: the initial cost and the costs incurred during
the time period before disclosure. For both immediate and delayed disclosure,
the initial costs Cj are zero, and for immediate disclosure, so are the expected
future costs, C¢. In the case of delayed disclosure, the expected future cost C*¢
acquires a positive value and can be written as

T
Ce =Y d.E[Cy]

t=1

where d.. is the discount factor applied to future costs, and E [C}] is the expected
value of costs at time t. The value of these expected costs will be influenced by
the evolution over time of the factors mentioned above. These factors will affect
both the probability of incurring the costs, which might be increasing with time,
and the value of the losses which also might be functions of time.

Finally, the total costs until a time T' can be written as

T
C=Co+ Y dE[CY.
t=1
5.2 Optimal Timing
The problem of the timing of disclosure can be reduced to the solution of

Vs = m%LX(B -0,
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where Vp« is the net benefit to the government when the vulnerability is disclosed
at the optimal time, 7. Substituting, we get

V- = max (BO +> diE[B] - (CO +> dE [cg)) .

t=1 t=1

Each element By, By, Cy, Cy, of the equation is a function of the different
factors and, in the case of B; and C4, also of time. We consider By to be influenced
primarily by the value of information needed, Fyuyue, and the ability to use the
vulnerability, Fy . At time ¢t = 0, it is known which information is required and
available through use of the exploit, and as such, its value can be determined.
However, if it is not possible to use the exploit (Fyse), then the value of By is
likely to be very low. Future expected benefits, B;, are influenced by the same
factors, but are also influenced by the extent of use Fepten:. At some time in
the future, it may be that there is information needed that is available through
the use of the exploit. If the extent of use is larger, then it is more likely that
such benefits will be available; if the extent is lower, it is less likely. For the
initial costs, Cp, the value is always 0; none of the factors influence this. This
is because costs accrue over time, and at ¢ = 0, no time has passed. Expected
future costs, Ct, are influenced by a host of factors. The extent of use, Feytent, will
influence positively costs as a greater number of information assets are exposed
to the possible exploit. These costs are increasing over time. As the risk and
harm, Fj4m, increases, so will the value of expected future costs. If the risk
of discovery of the exploit by others increases Fiiscovery, this also increases the
expected future costs, while the ability of the government to detect (Fyetect) the
use of the exploits by others will reduce such costs.

Table 1 shows how the different factors affect the benefits and costs, compared
to immediate disclosure, and their influence on the timing of disclosure. This
gives a general picture of how the factors affect timing. With a richer model of
how the costs and benefits arise for each factor, it would be possible to have a
deeper analysis of the timing problem.

Table 1. Influence of factors on the costs and benefits, compared to immediate dis-
closure, and how they affect the timing of disclosure. While Feytent influences both
benefits and costs, it will likely have a greater influence on costs, moving disclosure
forward.

Factor | Feaztent | Fharm | Facteet | Foatue | Faiscovery | Fuse | Fpatch
Benefits | + + +
Costs + + — + -
Timing | —7 — + + — + +
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5.3 Making Decisions

The model above shows how each of the factors can affect the timing of disclosure.
This is useful for understanding, in a general sense, how the decision of when to
disclose depends on the interactions of the different factors, but would not be
useful for actually making such a decision. To make decisions with this type of
model, it must first be parametrized: estimates for how the expected values of
each factor change over time are needed.

Only the government knows how it estimates and weights the different fac-
tors, and making accurate estimations is probably extremely difficult. However,
given that the decision-making process is supposed to be ‘biased toward respon-
sibly disclosing vulnerabilities’, any estimations should err on the side of caution
by overestimating costs and risks, and underestimating the values of benefits.
The same should be done for discount factors: by reducing d;, the discount fac-
tor for benefits, compared to d., the discount factor for costs, future costs will
outweigh potential future benefits, and move the timing decision forward.

Even if it is impossible to determine the exact time for optimal disclosure,
having an estimate can still be useful. If retained vulnerabilities are periodically
reviewed, the estimated optimal time of disclosure could be used to set an upper
bound on the time before the next review. With conservative estimates for the
factors, this would help ensure that retained vulnerabilities can be reconsidered
(with updated information) in good time.

6 EternalBlue and WannaCry

Recent events have shown that the decisions the government makes about
whether to disclose or retain vulnerabilities can have significant repercussions.
The WannaCry malware, which severely affected businesses and hospitals around
the world is an excellent example. The malware used a vulnerability from a NSA-
developed exploit known as EternalBlue, which was leaked to the public by the
ShadowBrokers on April 14, 2017.

The vulnerability used in the EternalBlue exploit would only have been con-
sidered under the VEP if it was discovered after the introduction of the VEP in
2010. According to the Washington Post [13], EternalBlue was used for ‘more
than 5 years’, implying that it would have been considered under the VEP—for
the following discussion, we will assume that this is the case.

In discussions about the VEP (for example, in [23]), there is a tendency
to think of the VEP decision as a binary choice: either disclose or retain. We
have argued that this should be viewed instead as a timing decision: not if a
vulnerability should be disclosed, but when. When the EternalBlue exploit was
leaked to the public in April, Microsoft had already created and released patches
for the 0-day vulnerabilities in March—presumably after being informed by the
NSA it they became aware of the ShadowBrokers leak. The initial decision here
was to retain and use the vulnerability in EternalBlue, but to disclose it when
it became clear it had leaked and could cause losses; it was a matter of timing.
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While we do not know if the government makes decisions using the approach
we described above, it can still be a useful tool for analysing the government’s
disclosure decisions. For the WannaCry/EternalBlue example, there different
possible interpretations. The first case is that the decision was made using a
correct model. This implies that the vulnerability was disclosed at the appro-
priate time, and that the benefits gained from the long-term retention of the
vulnerability were valuable enough that they where not outweighed by the dam-
ages and costs that arose from the leaked vulnerability and resulting malware.
The second case is that the timing of the disclosure was wrong because the
model was missing a factor: the possibility of a vulnerability being leaked. From
the Daniel blog post, we know that the risk of independent discovery is consid-
ered when making a decision, but it is unknown if this also includes the risk
of leaks. If not, then the time of disclosure would have been after the optimal
point. The final case is where the timing of the disclosure was wrong because
the model’s parameters were incorrect. First are the extent of use and patching
factors: even though the patch was released by Microsoft before the WannaCry
malware, many computer systems were still vulnerable, either because the patch
had not yet been applied or because they were running older versions of Win-
dows that were out of support and so did not receive the patch. If the rate at
which patches can be developed and applied is overestimated, or the number
of systems running software that is no longer supported is underestimated in
the model, then the potential costs will be underestimated resulting in a non-
optimal, later time of disclosure. Incorrectly underestimating the probability of
a leak (possibly included in the discovery factor) would also cause such a delay
in disclosure.

Without knowing how much value the government gained from use of the
exploit, a detailed understanding of the factors used when making a decision
and how they are calculated and weighted, it is impossible to know which, if
any, of these cases is true. However, WannaCry caused a lot of damage and
could have caused a lot more, had it not been stopped. It is unlikely that this
was anticipated and accepted, and therefore unlikely that the first case is true.

The remaining two cases suggest some possible improvements to the decision-
making process. First, if the risk of vulnerabilities leaking is not included, it
needs to be added. Second, a better understanding of how systems are patched
over time may be needed when deciding when to disclose. Many older machines
running out of date software are still used in critical processes; the costs of attacks
on these machines must be considered. It may also be beneficial to disclose before
these machines become out-of-support or to reduce potential costs by sponsoring
the creation of patches for out-of-support software still widely in use when the
vulnerability is finally disclosed.

7 Conclusions

Government disclosure of vulnerabilities is important, but so is the ability of the
government to conduct intelligence, offensive national security, and law enforce-
ment tasks. It would be a mistake to immediately disclose every vulnerability
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discovered, but it would also be a mistake to disclose none. Recommendations for
and proposed legislation about the VEP include periodic reviews of any retained
vulnerabilities, allowing them to be used for a time before disclosure.

We have presented a model that shows how the different factors used in the
decision can be combined to determine the optimal time to disclose. Under-
standing how the different factors affect the timing allows the decisions about
vulnerabilities made by the government to be better interpreted. We have looked
at the case of the WannaCry malware, which used a leaked NSA zero day vul-
nerability. The vulnerability was disclosed to Microsoft before the malware was
created, but before that remained undisclosed for 5 or more years.

It is likely that the disclosure came after the optimal time, as many systems
remained unpatched and were vulnerable to WannaCry. The government could
have underestimated or ignored the risk of the vulnerability leaking, or over-
estimated the speed with which systems could be patched. In any case, future
decisions should include or improve the estimation of these factors in order to
better determine the optimal time of disclosure.
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Abstract. Cyber-criminals can distribute malware to control comput-
ers on a networked system and leverage these compromised computers to
perform their malicious activities inside the network. Botnet-detection
mechanisms, based on a detailed analysis of network traffic characteris-
tics, provide a basis for defense against botnet attacks. We formulate the
botnet defense problem as a zero-sum Stackelberg security game, allo-
cating detection resources to deter botnet attacks taking into account
the strategic response of cyber-criminals. We model two different botnet
data-exfiltration scenarios, representing exfiltration on single or multiple
paths. Based on the game model, we propose algorithms to compute an
optimal detection resource allocation strategy with respect to these for-
mulations. Our algorithms employ the double-oracle method to deal with
the exponential action spaces for attacker and defender. Furthermore,
we provide greedy heuristics to approximately compute an equilibrium
of these botnet defense games. Finally, we conduct experiments based on
both synthetic and real-world network topologies to demonstrate advan-
tages of our game-theoretic solution compared to previously proposed
defense policies.

1 Introduction

Cyber-criminals intent on denial-of-service, spam dissemination, data theft,
or other information security breaches often pursue their attacks with bot-
nets: collections of compromised computers (bots) subject to their control
[14,23,30,31,33]. In 2014 testimony, the US Federal Bureau of Investigation
cited over $9 billion of US losses and $110 billion losses globally due to bot-
net activities [7]. The estimated 500 million computers infected globally each
year by botnet activities amounts to 18 victims per second.

The threat of botnets has drawn significant attention from network security
researchers [1,5,6,10-13,32]. Much existing work focuses on detection mecha-
nisms to identify compromised computers based on network traffic characteris-
tics. For example, BotSniffer [13] searches for spatial-temporal patterns in net-
work traffic characteristic of coordinated botnet behavior. Given some underlying
detection capability, the defender faces the problem of how to effectively deploy
its detection resources against potential botnet attacks. For example, Venkatesan
et al. consider the problem of allocating a limited number of localized detection
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resources on a network in order to maximally disrupt data ezfiltration attacks,
where the botnet aims to transfer stolen information out of the network [38].
Their first solution allocated resources statically, which could effectively dis-
rupt one-time attacks but is vulnerable to adaptive attackers. They extended
this method to randomize detector placement dynamically to improve robust-
ness against adaptation [37]. In a related work, Mc Carthy et al. address the
additional challenge of imperfect botnet detection [20].

Our work extends these prior efforts by formulating the botnet defense prob-
lem as a Stackelberg security game, thus accounting for the strategic response
of attackers to deployed defenses. In our botnet defense game, the defender
attempts to protect data within a computer network by allocating detection
resources (detectors). The attacker compromises computers in the network to
steal data, and attempts to exfiltrate the stolen data by transferring it out-
side the defender’s network. We consider two formulations of data exfiltration:
(i) uni-exfiltration, where the source bot routes the stolen data along a single
path designated by the attacker; and (ii) broad-exfiltration, where each bot prop-
agates the received stolen data to all other bots in the network.

We propose algorithms to compute defense strategies for these data exfiltra-
tion formulations: ORANI (Optimal Resource Allocation for uNi-exfiltration
Interception) and ORABI (Optimal Resource Allocation for Broad-exfiltration
Interception). Both ORANI and ORABI employ the double-oracle method [21]
to control exploration of the exponential strategy spaces available to attacker
and defender. Our main algorithmic contributions lie in defining mixed-integer
linear programs (MILPs) for the defender and attacker’s best-response oracles.
In addition, we introduce greedy heuristics to approximately implement these
oracles. Finally, we conduct experiments based on both synthetic and real-world
network topologies to evaluate solution quality as well as runtime performance
of our game-theoretic algorithms, demonstrating significant improvements over
previous defense strategies.

2 Related Work

Prior studies of botnet security tend to focus on designing botnet detection
mechanisms [1,5,6,10-13,32] or advanced botnet designs against these detection
mechanisms [29,39]. Some studies provide empirical and statistical analysis on
related cyber-security implications such as the role of Internet service providers
in botnet mitigation [35] or contagion in cyber attacks [2].

Recent work has introduced game-theoretic models and corresponding
defense solutions for various botnet detection and prevention problems [4,17,
27,28]. In these models, cyber criminals intrude by compromising computers in
a network. Users or owners of computers in the network defend by patching or
replacing their computers based on alerts of potential security threats.

Stackelberg security games have been successfully applied to many real-world
physical security problems [3,9,19,26,34]. Jain et al. address a problem in urban
network security partially analogous to uni-exfiltration, as the attacker follows a
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single path to attack its best target in an urban road network [15]. Vanék et al.
tackle a problem of malicious packet prevention, where the attacker determines
which entry point to access a network to attack a specific target assuming the
corresponding traversing path is fixed [36]. In our botnet defense problem, cyber-
criminals decide not only which computers to compromise but also create an
overlay network over these bots to exfiltrate data from multiple targets in the
network. The additional complexity of considering the exfiltration plan leads to
a distinct and difficult security problem.

3 Game Model: Uni-exfiltration

Our game model for uni-exfiltration is built on the botnet model introduced by
Venkatesan et al. [38]. Let G = (V, E) represent a computer network where the
set of nodes V comprises network elements such as routers and end hosts, and
edges in E connect these nodes. We denote by V€ a set of mission-critical nodes
in the network which contain sensitive data. Data exchange is governed by a
routing algorithm fixed by the network system. For each pair of nodes (u,v),
we denote by P(u,v) the routing path between u and v. In our experiments, we
assume that routing is via the shortest path.

We model the botnet defense problem as a Stackelberg security game (SSG)
[16]. In such a game, the defender commits to a mixed (randomized) strategy
to allocate limited security resources to protect important targets. The attacker
then optimally chooses targets with respect to the distribution of defender allo-
cations. In our context, the defender is the security controller of a computer
network, with limited detection resources. The defender attempts to deploy its
detectors in the most effective way to impede the attack chosen in response.

The attacker in the botnet exfiltration game is a cyber-criminal who attempts
to steal sensitive network data. Compromising a mission-critical node ¢ € V¢
enables the attacker to steal data owned by c¢. Compromising other nodes in the
network helps the attacker to relay the stolen data to a server S outside the net-
work, which he controls. The attacker specifies a sequence of compromised nodes
(bots) to relay stolen data. Routing between consecutive bots in the sequence
follows fixed paths out of the attacker’s control. We call this chain of ordered
bots and nodes on routing paths between consecutive bots an exfiltration path,
denoted by m(c, S%).

Definition 1 (Exfiltration Prevention). Given a network G = (V,E) and
a set of mission-critical nodes VC, data exfiltration from ¢ € V€ is prevented by
the defender iff there is a detector on the ezfiltration path w(c, S®).

Though the attacker’s remote server S* is located outside the network, we assume
the defender is aware of which nodes in the network can relay data to S°.

In our Stackelberg game model, the defender moves first by allocating detec-
tion resources, and the attacker responds with a plan for compromise and exfil-
tration to evade detection. The defender placement of detectors is randomized,
so any attack plan succeeds with some probability.
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Definition 2 (Strategy Space). The strategy spaces of the players are as
follows:

Defender: The defender has K¢ < |V| detection resources available for deploy-
ment on network nodes. We denote by D = {D; | D; C V,|D;| < K%} the set of
all pure defense strategies of the defender. Let x = {z;} be a mixed strategy of
the defender where x; € [0,1] is the probability that the defender plays D;, and
Zi Tr; = 1.

Attacker: The attacker can compromise up to K* < |V| nodes. We denote by
A ={A; =(B;1II;) | B; C V,|B;| < K*II; = {m;(c,5%) | c € B; N V}} the
set of all pure strategies of the attacker. Each pure strategy A consists of: (i) B;:
a set of compromised nodes; and (ii) IL;: a set of exfiltration paths over B;.

Mission-critical nodes

Attacker’s
remote server

Fig.1. An example scenario of the botnet exfiltration game. There are four mission-
critical nodes, V¢ = {0,1,2,3}. If K® = 4, then a possible pure strategy of the attacker
A can be: (i) a set of compromised nodes B; = {0,2,5,7}; and (ii) a set of exfiltration
paths IT; = {m;(0),7;(2)} to exfiltrate data from stealing bots 0 and 2 to the attacker’s
server S®. These exfiltration paths 7;(0) = P(0,5) UP(5,5%) and 7;(2) = P(2,7) U
P(7,5%) relay stolen data via relaying bots 5 and 7 respectively, where P(0,5) = (0 —
4—-5),P055=(56—-8—-5),P2,7)=(2—-6—>7) and P(7,5%) = (7T— 9 —
S?) are routing paths fixed by the network system. Suppose K¢ = 1. If the defender
allocates its one detector to node 9, the attacker fails at exfiltrating data from node 2
since 9 € 7;(2) but succeeds from node 0 since 9 ¢ 7;(0).

A simple scenario of the botnet defense game is shown in Fig. 1. The model
specification is completed by defining the payoff structure, which we take to be
Z€ro-sum.
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Definition 3 (Game Payoff). Each mission-critical node ¢ € V¢ is associ-
ated with a value, r(c) > 0, representing the importance of data stored at that
node. Successfully exfiltrating data from c yields the attacker a payoff r(c), and
the defender receives a payoff —r(c). For prevented ezfiltrations, both players
receive zero.

Note that the maximum achievable payoff for a defender is zero, obtained by
preventing all exfiltration attempts. In general terms, let U*(D;, A;) denote
the payoff to the attacker if the defender plays D; and the attacker plays A;.
Since the game is zero-sum, the defender payoff U4(D;, A;) = —U%(D;, A;).
The payoff can be decomposed across mission-critical nodes,

U Dy, Aj) = Y r(e)h(e), (1)

ceVe

where h(c) indicates whether the attacker successfully exfiltrates the data of the
mission-critical node ¢ € V©. This is determined as follows:

(2)

1 ifceBjand D;Nmj(c,5%) =0
h(c) = .
0 otherwise.

The expected utility for the attacker when the defender plays mixed-strategy x is
U(x,A;) =) z:U*D;, Ay),

which is negated to obtain the expected defender payoff U%(x, A;). A defender
mixed strategy that maximizes U%(x, A;) given the attacker plays a best
response and breaks ties in favor of the defender constitutes a Strong Stack-
elberg Equilibrium (SSE) of the game.

4 ORANI: An Algorithm for Uni-exfiltration Games

In zero-sum games, the first mover’s SSE strategy is also a maximin strategy
[18]. Therefore, finding an optimal mixed defense strategy can be formulated as
follows:

maxXy Uf (3)
st. Ul < U%x, Aj), Vi (4)

S wi=1, 2 >0, Vi, (5)

where U? is the defender’s utility for playing mixed strategy x when the attacker
best-responds. Constraint (4) ensures the attacker chooses an optimal action
against x, that is, U? = min; U%(x, A;) = max; U%(x, A;). Solving (3)—(5) is
computationally expensive due to the exponential number of pure strategies
of the defender and the attacker. To overcome this computational challenge,
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Algorithm 1. ORANI Algorithm Overview

1 Initialize the sets of pure strategies: A = {A;} and D = {D,} for some j and 3;
2 repeat

3 (x*,a") = MaximinCore(D, A);

4 D, = DefenderOracle(a®);

5 A, = AttackerOracle(x");
6
7

A=AU{A,}, D=DU{D,}
until converge;

ORANT applies the double-oracle method [15,21]. Algorithm 1 presents a sketch
of ORANIL

ORANT starts by solving a maximin sub-game of (3)—(5) by considering
only small seed subsets D and A of pure strategies for the defender and attacker
(Line 3). Solving this sub-game yields a solution (x*,a*) with respect to the
strategy subsets. ORANI iteratively adds new best pure strategies D, and A,
to the current strategy sets D and A (Lines 4-6). These strategies D, and
A, are chosen by the oracles to maximize the defender and attacker utility,
respectively, against the current (in iteration) counterpart solution strategies
a* and x*. This iterative process continues until the solution converges: when
no new pure strategy can be added to improve the defender and the attacker’s
utilities. At convergence, the latest solution (x*,a*) an equilibrium of the game
[21]. Following this general methodology, the specific contribution of ORANI
is in defining MILPs representing the attacker and the defender oracle problems
in botnet exfiltration games.

4.1 ORANI Attacker Oracle

The attacker oracle returns a pure strategy for the attacker maximizing utility
against a given defender mixed strategy x*. Below, we present a MILP exactly
representing the attacker oracle and show that the problem is NP-hard. We then
provide a greedy heuristic to approximately solve the attacker oracle problem.

MILP Representation. We parameterize each pure strategy of the attacker
as follows:

1. bot variables z = {z,, | w € V}, indicate whether the attacker compromises
node w (z, = 1) or not (z, = 0), and

2. bot-chain variables q = {g.(u,v) | c € V¢, u € V, v € VU {5} \ {c,u}},
represent exfiltration paths.

For each stealing bot ¢, {g.(u,v)} represents the bot chain to exfiltrate data from
¢ to 5. Note that the bot-chain variables employ compromised nodes only. This
means that ¢.(u,v) = 0 for all (¢,u,v) such that z. = 0 or z, = 0 or z, = 0.
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Conversely, when z, = 2z, = 2z, = 1, ¢.(u,v) = 1 iff (u,v) are consecutive bots in
the bot chain for ¢. This entails that the exfiltration path (¢, S*) includes the
routing path P(u,v).

Given the attacker’s pure strategy (z,q), we introduce data-ezfiltration vari-
ables h = {h;(c)} to describe the outcome of the attack. For stealing bot ¢ € V¢
with z. = 1, h;(c) indicates whether the attacker successfully exfiltrates from ¢
when the defender plays D; € D. Specifically, h;(c) = 0 if D; includes a detector
on the exfiltration path from node ¢ to S®. Otherwise, h;(c) = 1. The attacker
utility can be computed based on h = {h;(c)},

Ua(x*v(zvq)) = Z Ty Z T(c)hi(c).

D;eD ceVe

The optimization problem for the attacker can now be formulated as a MILP
(6)—(15). Variables z and h are constrained to be binary. Constraints (7)—(9)
enforce that there is only a single exfiltration path from each mission-critical
node ¢ € V¢ to S* if node ¢ is compromised (z. = 1). In particular, when
z. = 1, constraint (7) indicates that there is a single out-exfiltration path from
node ¢ and constraint (8) imposes that there is only a single in-exfiltration path
to the attacker’s server S®. Otherwise, when c is not compromised (z. = 0), there
is no exfiltration path from c. Constraint (9) ensures, for each ¢ € V€, that the
total number of in-exfiltration paths to any node v equals the total number
of out-exfiltration paths from that node. Constraints (10) and (11) guarantee
that exfiltration paths are determined using compromised nodes only (i.e., if
either z, = 0 or z, = 0, then g.(u,v) = 0). Constraint (12) ensures that the
number of compromised nodes does not exceed the attacker’s resource limit,
K. Finally, constraint (13) enforces h;(c) = 0 when P(u,v) N D; # 0 for some
pair of consecutive bots (u,v) on the exfiltration path from ¢ (i.e., such that
ge(u,v) = 1). Constraint (14) ensures h;(c) = 0 when ¢ is not compromised.

max U“(x", (z,q)) (6)
z,q,h
s.t. Z ge(c,u) = 2., Ve € V€ (7)
weVU{S*}\{c}

Z qc(u, S%) = z.,Ye € V°© (8)
ueVvV

Z ge(u,v) = Z ge(v,w),Ye € V€, v € V\ {c} (9)
ueV\{v} weVU{S*}\{v,c}
ge(u,v) < 2y, Ve € VS u e Vo e VU{S}\ {c,u} (10)
ge(u,v) < z,,YVe € Ve u € Vo € V\ {c,u} (11)
>z <K%z, €{0,1}Vw eV (12)
weV

hi(c) <1 —gc(u,v),Ye € VS, u e Vo € VU{S*}\ {u,c}, and (13)
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vD; € D such that P(u,v) N D; # 0
hi(c) < z.,YVe € V¢, D; € D (14)
qc(u,v) € [0,1], hi(c) € {0,1},Ve,u, v, (15)

Theorem 1. A solution to MILP (6)-(15) is an optimal pure strategy for the
attacker against defender mized strategy x*.

Proof. Given a solution of (6)—(15), consider each mission-critical node ¢ € V¢
such that h;(c) = 1 for some i. This means that the attacker successfully exfil-
trates data from c given defender pure strategy D;. There must exist a positive
exfiltration path, 7 (c), from ¢ to S®. That is g.(u,v) > 0 for all consecutive bots
(u,v) on T (c). This conclusion results from the attacker strategy constraints in
(7)-(9). Then an optimal pure strategy for the attacker consists of: (i) the set of
compromised nodes v with z, = 1; and (ii) the set of positive exfiltration paths
{m*(c)} for any ¢ which satisfies h;(c) = 1 with some i.

Solving this MILP may take exponential time. In fact, the problem is NP-hard.

Proposition 1. The attacker oracle problem for data uni-exfiltration is NP-
hard.

The proof is presented in Online Appendix B.! We introduce a greedy heuristic
to approximately solve the problem.

Attacker Greedy Heuristic. Our greedy heuristic iteratively adds nodes to
compromise until the resource limit K® is reached. At each iteration, given the
current set of compromised nodes B¢ (which is initially empty), the greedy
heuristic selects among uncompromised nodes u € V \ B¢ the best next node
for the attacker to compromise. A key step of the algorithm is to determine
optimal exfiltration paths given the compromised set B¢ U {u} and the defender
strategy x*.

Overall, the problem of finding an optimal set of exfiltration paths for the
attacker given a set of compromised nodes B¢ U {u} and the defender’s strat-
egy x* can be represented as a MILP which is a simplification of (6)—(15). In
this MILP simplification, the bot variables z = {z,,} are no longer needed. Fur-
thermore, the bot-chain and data-exfiltration variables can be limited to the
current set of compromised nodes B¢ U {u}, rather than the whole node set V.
As a result, the total number of variables and constraints involved is reduced
significantly.

4.2 ORANI Defender Oracle

The defender oracle attempts to find a new pure defense strategy which maxi-
mizes the defender utility against the current mixed attack strategy a* = {a;f}

! Link: http://hdl.handle.net/2027.42/137970.
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returned by MaximinCore. Here, a} is the probability that the attacker follows
Aj such that 7 a; = 1,a] € [0,1]. We first present a MILP to exactly solve
this defender oracle problem and then show that the problem is NP-hard.

MILP Representation. We parameterize each pure strategy of the defender
using detection variables z = {z,} where w € V. In particular, z,, = 1 if
the defender deploys a detector on node w. Otherwise, z,, = 0. In addition,
given that the attacker plays A; and the defender plays z, we introduce data-
exfiltration variables h = {h;(c)} where ¢ € V° N B;, implying whether the
attacker successfully exfiltrates the data of ¢ (i.e., hj(c) = 1) or not (h;(c) =0).
Given that the attacker plays a* and the defender plays z, the defender’s utility
can be now computed based on h as follows:

Ud(z,a*) = — Z aj Z r(c)hj(c) (16)
AjEA  cEVeNB;

The problem of finding an optimal pure defense strategy which maximizes the
defender’s utility against the attacker’s strategy a* can be now formulated as
the following MILP (17)—(20).

max U%(z,a*) (17)
st.hi(e)>1— > 2,,Ve€ VENB,,Yj (18)
wem;(c,5%)
> zw <K (19)
weV
zw € {0,1}, hj(c) € [0,1], Yw € V,c € VSN B,,Vj (20)

In (17)—(20), only z = {z,} are required to be binary. Constraint (18) ensures
that hj(c) = 1 when the attacker successfully exfiltrates from an stealing bot
c € V°NBj (ie., the defender does not deploy a detector on the exfiltration
path of that bot: z,, = 0 for all w € 7;(c,S*)). On the other hand, since the
MILP attempts to maximize the defender’s utility (Eq. 16) which is a monotoni-
cally decreasing function of h;(c), then any MILP solver will automatically force
hj(c) = 0 if possible given the bound constraint (20). Constraint (19) guarantees
that the number of detection resources deployed does not exceed the limit K.

Finally, Proposition 2 shows the complexity of the defender oracle problem.
Its proof is in Online Appendix C.

Proposition 2. The defender oracle problem corresponding to data wuni-
ezfiltration is NP-hard.

Defender Greedy Heuristic. We introduce a greedy heuristic to approx-
imately solve the defender oracle problem in polynomial time. Given the
attacker’s mixed strategy a* and an initially empty set of monitored nodes D¢,
the greedy heuristic iteratively adds the next best node to monitor to the set D¢
until |D€| = K?. At each iteration, given the current set of monitored nodes D€,
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the greedy heuristic searches over all unmonitored nodes v € V \ D€ to find the
best next node to monitor such that the defender’s utility is maximized. Com-
puting the defender’s utility given a set of monitored nodes and the attacker’s
strategy a* is possible in polynomial time (Egs.1 and 2), thus our defender
greedy heuristic runs in polynomial time.

5 Data Broad-Exfiltration

In the botnet defense game model with respect to uni-exfiltration (Sect.3), for
each stealing bot, the attacker is assumed to only select a single exfiltration path
from that bot to exfiltrate data. In this section, we study the botnet defense
game model with respect to the alternative data broad-exfiltration. In partic-
ular; for every stealing bot, the attacker is able to broadcast the data stolen
by this bot to all other compromised nodes via corresponding routing paths.
Once receiving the stolen data, each compromised node continues to broadcast
the data to all other compromised nodes, and so on. The game model for broad-
exfiltration is motivated by the botnet models studied by Rossow et al. [25]. Over-
all, there is a higher chance that the attacker can successfully exfiltrate network
data with broad-exfiltration compared to uni-exfiltration. In the following, we
briefly describe the botnet defense game model with data broad-exfiltration and
the corresponding algorithm, ORABI, to compute an optimal mixed defense
strategy.

5.1 Game Model

In the botnet defense game model with data broad-exfiltration, the strategy
space of the defender remains the same as shown in Sect. 3. On the other hand,
since the attacker now can broadcast the data, we can abstractly represent each
pure strategy of the attacker as a set of compromised nodes A; = B; only.
Given a pair of pure strategies (D;, B;), we need to determine payoffs the players
receive. Note that in the case of broad-exfiltration, given (D;,B;), the attacker
succeeds in exfiltrating the stolen data from a stealing bot if there is an exfiltra-
tion path among all the possible exfiltration paths over the compromised set B;
from this bot to S* which is not blocked by D;. Therefore, the players receive
a payoff computed as in (1) where the binary indicator h(c) for each mission-
critical node ¢ € V¢ is now determined as:

1 if 3eeB; & 3mj(c, 5%)
h(c) = s.t. D;N7j(c, S*) =0
0 otherwise

In fact, when players plays (D;, B;), we can determine if there is an exfiltration
path from a stealing bot ¢ € B; N V¢ which is not blocked by D; by using depth
or breath-first search over the compromised set B;, which runs in polynomial
time. We next aim at computing an SSE of the botnet defense games with data



A Stackelberg Game Model for Botnet Data Exfiltration 161

broad-exfiltration. Based upon the double oracle methodology, we introduce a
new algorithm, ORABI, which consists of new MILPs to exactly solve the
resulting attacker and the defender’s oracle problems. We also provide greedy
heuristics to approximately solve these oracle problems in polynomial time. In
the following, we briefly explain our MILPs in ORABI.

5.2 ORABI Attacker Oracle

MILP Representation. In solving the attacker oracle problem with respect
to data broad-exfiltration, we can extend the MILP (6)-(15) for data uni-
exfiltration as follows. First, each pure strategy of the attacker is now parame-
terized using only bot variables z = {z,,} for w € V. Second, although bot-chain
variables {q.(u,v)} are not parts of the attacker’s pure strategies anymore, we
extend these variables q = {g; c(u,v)} for each pure strategy of the defender
D,. For each mission-critical node ¢ € V¢ and for each D; € D, {g;.(u,v)}
will determine if there is an exfiltration path which successfully exfiltrates stolen
data from c given the attacker’s pure strategy z. Third, the path-exfiltration
constraints in (7)—(11) and the data-exfiltration constraint in (13) are extended
accordingly. Finally, the data-exfiltration and all other constraints and the objec-
tive are kept unchanged. Given the extended bot-chain variables q = {g; .(u, v)}
and corresponding extended constraints, the resulting extension of (6)—(15) will
search over all possible exfiltration paths with respect to the attacker’s strategy
z to find exfiltration paths which are not blocked by each D; € D. Thus, the
extended MILP of (6)—(15) returns an optimal set of compromised nodes u with
zy = 1 for the attacker.

Finally, the attacker oracle problem with broad-exfiltration is NP-hard
(Proposition 3 with proof is in the Online AppendixD). The resulting MILP
involves a larger number of variables and constraints compared to the uni-
exfiltration case due to the extension of bot-chain variables q = {g;..(u,v)}
with respect to the defender’s pure strategies {D;}. In the following, we apply
the greedy approach for solving the attacker oracle problem in polynomial time.

Proposition 3. The attacker oracle problem corresponding to data broad-
ezfiltration is NP-hard.

Attacker Greedy Heuristic. The attacker greedy heuristic with respect to
data broad-exfiltration is similar to the uni-exfiltration case. Nevertheless, given
a mixed defense strategy x* and a set of compromised nodes B¢ U {u}, we no
longer need to find an optimal set of exfiltration paths as in the uni-exfiltration
case. As shown in Sect. 5.1, we can compute the players’ utility given x* and
B¢ U {u} in polynomial time using depth or breadth-first search.

In addition to this heuristic, we propose a modification of the greedy approach
which iteratively adds multiple new pure strategies as follows. Instead of starting
the greedy search with an initial empty compromised set B¢ = (), we create |V¢|
different compromised sets B¢, each consists of a mission-critical node ¢ € V¢
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as a compromised seed node. Then for each initial compromised set B® with
one seed node, we run the greedy search. As a result, we obtain |V¢| different
compromised sets or pure strategies for the attacker. In other words, we add
|V€| new pure strategies for the attacker at each iteration. We call this modified
greedy approach as greedy-multi heuristic. Intuitively, by adding multiple new
pure strategies, we expect ORABI with the greedy-multi heuristic for solving
the attacker oracle problem would potentially converge to a solution close to the
optimal one. Indeed, our experimental results confirm our conjecture.

5.3 ORABI Defender Oracle

MILP Representation. Although we can also extend the MILP (17)—(20) for
uni-exfiltration to represent the defender oracle problem with broad-exfiltration,
solving this extended MILP is impractical. Specifically, in the constraint (18)
of the MILP (17)—(20), we need to iterate over all exfiltration paths to find if
the defender’s pure strategy z can block these exfiltration paths or not. Since
each pure strategy of the attacker with uni-exfiltration only consists of a small
set of exfiltration paths, it is straightforward to iterate over these exfiltration
paths. On the other hand, in the broad-exfiltration case, given a pure strategy
of the attacker which is now a set of compromised nodes, there is an exponential
number of exfiltration paths over these nodes to relay the stolen data. Iterating
over all these exfiltration paths is thus impractical.

Given this computational challenge, ORABI introduces a new MILP to
solve the defender oracle problem. First, we continue to use detection variables
z = {z,} to represent a pure strategy of the defender in which z, = 1 if
the defender deploys a detector on node w. Otherwise, z,, = 0. Second, for
each pure strategy of the attacker B; and the defender’s pure strategy z, we
introduce relaying variables 1 = {l;(u,v)} where u,v € B; are two compromised
nodes, indicating whether the attacker can successfully relay data via the routing
path P(u,v). Specifically, the attacker successfully relays data from u to v (i.e.,
l;j(u,v) = 1) if the defender does not deploy a detector on the routing path
P(u,v). Otherwise, [;(u,v) = 0. Third, we introduce variables s = {s%(w)}
where c € VSNB; and w € B;. By an abuse of variable name, we also call these
new variables as data-exfiltration variables. In particular, for each stolen bot
c € VN B; and w € By, s§(w) indicates if the attacker successfully exfiltrates
data of ¢ to the compromised node w (s§(w) = 1) or not (s§(w) = 0). In other

J

words, s‘;(w) = 1 only when there is an exfiltration path from the stealing bot
¢ € V°N B; to the compromised node w which is not blocked by the defender.

Given s, the defender’s utility is computed as follows:

Ullz,a®) ==Y al > s5(S)r(c) (21)
B

i cEVeNB;

where s5(S%) = 1 indicates that the attacker successfully exfiltrates data of
c € VN B; to §% Otherwise, s$(5*) = 0. We now can formulate the defender
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oracle problem as the following MILP:

max U(z,a*) (22)

s.t. j(u,v) > 1— Z Zw, Vu, v € Bj,u # v,Vj (23)
weP (u,v)

sj(w) = s(w') + 1i(w',w) = 1, (24)
Ve e VENBj,w e B U{S}\ {c},w' € Bj,w #w,Vj
si(c)>1—z,Ye € B; NV, Vj (25)
D 2w < K%z, €{0,1},Yw e V (26)
weV
lj(u,v),s5(w) € [0,1],Yc € V¢, u,v,w € Bj,u # v,Vj (27)

which maximizes the defender’s utility in Eq. 21. Constraint (23) ensures that the
attacker can successfully relay data from compromised node u to compromised
node v (lj(u,v) = 1) if there is no detector of the defender on the routing
path, i.e., z, = 0,Yw € P(u,v). Constraint (24) guarantees that if the defender
does not block the routing path P(w’,w) (i.e., {;(w’,w) = 1), node w receives
data broadcasted by node w’ (i.e., s§(w) > sj(w')). Furthermore, constraint
(25) implies that if the defender does not deploy a detector on a stealing bot
c € B;NVC, then the attacker can steal the data of c. In other words, s§(c) =1
if z. = 0 for all ¢ € B; N'V®. Finally, constraint (26) imposes the requirement of
detection resource limit for the defender.

In our MILP (22)-(27), only the detection variables z = {z,,} are required
to be binary. The relaying variables and the data-exfiltration variables will be
forced to be equal to one by constraints (23)—(25) if the attacker can successfully
exfiltrate the data. Otherwise, since the defender utility in (21) is monotonically
decreasing with respect to the data-exfiltration variables, (22)—(27) will force
these variables to be zero whenever possible. Thus, all the variables are either
zero or one in the optimal solution of (22)—(27). Finally, the defender oracle
problem with respect to broad-exfiltration is NP-hard (Proposition 4 with proof
is in the Online Appendix E).

Proposition 4. The defender oracle problem corresponding to data broad-
ezfiltration is NP-hard.

Defender Greedy Heuristic. We also apply the greedy approach to solve the
defender oracle problem in polynomial time. The idea is similar to the attacker
greedy heuristic.

6 Experiments

We evaluate both solution quality and runtime performance of our algo-
rithms compared with previously proposed defense policies. We conduct exper-
iments based on two different datasets: (i) synthetic network topology—we use
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JGraphT [22], a free Java graph library, to randomly generate scale-free graphs
since many real-world network topologies exhibit the power-law property [8];
and (ii) real-world network topology—we derive different network topologies
from the Rocket-fuel dataset [24]. Each data point in our results is averaged
over 50 different samples of network topologies.

6.1 Synthetic Network Topology

Data Uni-exfiltration We compare six different algorithms: (i) ORANI —
both exact oracles; (ii) ORANI-AttG — exact defender oracle and greedy
attacker oracle; (ili) ORANI-G — both greedy oracles; (iv & v) CWP & ECWP —
heuristics proposed in [37] to generate a mixed defense strategy based on the cen-
trality values of nodes in the network; and (vi) Uniform — generating a uniformly-
mixed defense strategy. We consider CWP, ECWP, and Uniform as the three
baseline algorithms.

In the first four experiments (Figs. 2(a), (b), (¢) and (d)), we examine solution
quality of the algorithms with varying number of nodes, of defender resources, of
attacker resources, and of mission-critical nodes respectively. In Figs. 2(a), (b),
(¢) and (d), the x-axis is the number of nodes, of defender resources, of attacker
resources, and of mission-critical nodes in each graph respectively. In the later
three figures, the number of nodes is 30. The y-axis is the averaged expected util-
ity of the defender obtained by the evaluated algorithms. The data value asso-
ciated with each mission-critical node is generated uniformly at random within
[0, 1]. Intuitively, the higher averaged expected utility an algorithm gets, the bet-
ter the solution quality of the algorithm is. Figures2(a), (b), (c) and (d) show
that all of our algorithms, ORANI, ORANI-AttG, ORANI-G defeat the
baseline algorithms in obtaining a much higher utility for the defender. Moreover,
when the number of defender resources increases, the defender’s expected utility
on average increases quickly and reaches the defender’s highest utility of zero
with just five defender resources. On the other hand, when the number of attacker
resources increases, there is only a small decrease in the defender’s expected
utility on average. Finally, both ORANI-AttG and ORANI-G obtain a lower
average utility of the defender compared to ORANI as expected. Yet, we show
that the greedy heuristics help in significantly reducing the time of solving the
double oracle problem.

In our fifth experiment (Fig. 2(e)), we examine the convergence of the double
oracle used in ORANI. The x-axis is the number of iterations of adding new
strategies for both players until convergence. In addition, the y-axis is the average
of the defender’s expected utility at each iteration with respect to the defender
oracle, the attacker oracle, and the Maximin core. The number of nodes in the
graph is set to 40. Figure 2(e) shows that ORANI converges quickly, i.e., after
approximately 25 iterations. This result implies that there is only a small set of
pure strategies of players involved in the game equilibrium despite an exponential
number of strategies in total. In addition, ORANTI can find this set of pure
strategies after a small number of iterations.
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Fig. 2. Uni-Exfiltration: Random scale-free graphs

In our sixth experiment (Fig.2(f)), we investigate runtime performance. In
Fig. 2(f), the x-axis is the number of nodes in the graphs and the y-axis is the
runtime on average in hundreds of seconds. As expected, the runtime of ORANI
grows exponentially when | V| increases. In addition, by using the greedy heuris-
tics, ORANI-AttG and ORANI-G run significantly faster than ORANI.
For example, ORANTI reaches 1333 seconds on average when |V| = 35 while
ORANI-AttG and ORANI-G reach 1266 and 990 seconds respectively when
V| = 140.

Data Broad-Exfiltration. In the case of data broad-exfiltration, we compare
eight algorithms: (i) ORABI — both exact oracles; (ii) ORABI-AttG — exact
defender oracle and greedy attacker oracle; (iii) ORABI-G — both greedy ora-
cles; (iv) ORABI-AttG-Mul — exact defender oracle and greedy-multi attacker
oracle; (v) ORABI-G-Mul - both greedy-multi oracles; and (vi), (vii) and (viii)
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Fig. 3. Broad-exfiltration: Random scale-free graphs

CWP, ECWP, and Uniform. Our experiment settings for broad-exfiltration are
similar to uni-exfiltration. In the following, we only highlight some key findings.

First, our experimental result on solution quality is shown in Fig.3(a).
Figure3(a) shows that all of our five evaluated algorithms, ORABI,
ORABI-AttG-Mul, ORABI-G-Mul, ORABI-AttG, and ORABI-G
obtain a much higher averaged expected utility for the defender compared to
the baseline algorithms. Furthermore, by adding multiple new strategies at each
iteration, both our algorithms ORABI-AttG-Mul and ORABI-G-Mul per-
form approximately as well as ORABI while outperforming ORABI-AttG,
and ORABI-G.

Furthermore, in the experimental result on runtime performance (Fig. 3(b)),
our algorithms with greedy heuristics can scale up to large graphs. For exam-
ple, when |V| = 1000, the runtime of ORABI-AttG-Mul, ORABI-G-Mul,
ORABI-AttG, and ORABI-G reaches 89, 20, 71, and 2s respectively.
We conclude that ORABI is the best algorithm for small graphs while
ORABI-AttG-Mul and ORABI-G-Mul are proper choices for large-scale
graphs.

Finally, we investigate the benefit to the attacker from broad-exfiltration
compared to uni-exfiltration. We run ORANI and ORABI on the same set of
50 scale-free graph samples generated by uniformly at random with 20, 30, 40
nodes in each graph respectively. Among all the samples, there are only 58%,
72%, and 52% of the 20-node, 30-node, and 40-node graphs respectively for which
the attacker obtains a strictly higher utility by using broad-exfiltration. This
result shows that the attacker does not always benefit from broad-exfiltration.
Indeed, despite broad-exfiltration, the data exchange between any pairs of com-
promised nodes must follow fixed routing paths specified by the network system,
thus constraining the data exfiltration possibilities.

6.2 Real-World Network Topology

Our third set of experiments is conducted on real-world network topologies from
the Rocket-fuel dataset [24]. Overall, the dataset provides router-level topologies
of 10 different ISP networks: Telstra, Sprintlink, Ebone, Verio, Tiscali, Level3,
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Exodus, VSNL, Abovenet, and AT&T. In this set of experiments, we mainly
focus on evaluating the solution quality of our algorithms compared with the
three baseline algorithms. For each of our experiments, we randomly sample
fiftty 40-node sub-graphs from every network topology using random walk. In
addition, we assume that all external routers located outside the ISP can poten-
tially route data to the attacker’s server. Each data point in our experimental
results is averaged over 50 different graph samples. The defender’s averaged
expected utility obtained by the evaluated algorithms is shown in Figs.4 and 5
with respect to data uni-exfiltration and broad-exfiltration respectively.
Figures4 and 5 show that all of our algorithms obtain higher defender
expected utility than the three baseline algorithms. Further, the greedy

Dataset ORANI 0:::?- ORANI-G cwp ECWP Uniform
Telstra -0.42 -0.44 -0.45 -1.9 -1.94 -2.38
Sprintlink -0.43 -0.45 -0.45 -1.84 -1.89 -2.36
Ebone -0.72 -0.73 -0.73 -1.71 -1.75 -2.32
Verio -0.47 -0.47 -0.47 -1.84 -1.84 -2.25
Tiscali -0.59 -0.62 -0.61 -1.97 -1.97 -2.2

Level3 -0.63 -0.64 -0.65 -1.85 -1.89 -2.25
Exodus -0.68 -0.68 -0.68 -1.44 -1.47 -2.34

VSNL -0.67 -0.68 -0.68 -1.69 -1.78 -2.3
Abovenet | -0.62 -0.64 -0.62 -1.77 -1.77 -2.3
AT&T -0.31 -0.32 -0.33 -1.91 -1.96 2.3

Fig. 4. Uni-exfiltration: Defender’s average utility

ORABI- |ORABI-G-| ORABI- .
Dataset | ORABI AttG-Mull  Mul AHG ORABI-G| CwWP ECWP |Uniform

Telstra | -0.41 | -0.41 | -0.41 | -041 | -042 | -1.72 | -1.78 | -2.27
Sprintlin -0.41 | -0.41 | -0.41 | -0.43 | -0.42 | -1.72 | -1.78 | -2.21
Ebone | -0.71 | -0.71 | -0.71 | -0.72 | -0.73 | -1.58 | -1.66 | -2.32
Verio | -0.47 | -0.47 | -047 | -0.5 -05 | -1.81 | -1.85 | -2.26
Tiscali | -0.51 | -0.51 | -0.51 | -0.56 | -0.56 | -1.88 | -1.95 | -2.2
Level3 | -0.67 | -0.67 | -0.67 | -0.69 | -0.68 | -1.99 | -2.03 | -2.37
Exodus | -0.74 | -0.74 | -0.74 | -0.75 | -0.75 | -1.58 | -1.63 | -2.37
VsNL | -0.73 | -0.73 | -0.73 | -0.73 | -0.73 | -1.67 | -1.76 | -2.38
Abovenet -0.67 | -0.67 | -0.68 | -0.69 | -0.68 | -1.81 | -1.88 | -2.41
AT&T | -0.34 | -0.34 | -0.34 | -0.35 | -0.38 | -1.88 | -1.94 | -2.28

Fig. 5. Broad-exfiltration: Defender’s average utility
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algorithms—ORANI-AttG, ORANI-G, and ORABI-AttG, ORABI-G—
are shown to consistently perform well on all the ISP network topologies com-
pared to the optimal ones—ORANI and ORABI respectively. In particular,
the average expected defender utility obtained by ORANI-G is only =~ 3% lower
than ORANTI on average over the 10 network topologies.

7  Summary

Many computer networks have suffered from botnet data exfiltration attacks,
leading to a significant research emphasis on botnet defense. Our Stackelberg
game model for the botnet defense problem accounts for the strategic response
of cyber-criminals to deployed defenses. We propose two double-oracle based
algorithms, ORANI and ORABI, to compute optimal defense strategies with
respect to data uni-exfiltration and broad-exfiltration formulations, respectively.
We also provide greedy heuristics to approximate the defender and the attacker
best-response oracles. We conduct experiments based on both random scale-free
graphs and 10 real-world ISP network topologies, demonstrating advantages of
our game-theoretic solution compared to previous strategies.

Acknowledgment. This work was supported in part by MURI grant W911NF-13-1-
0421 from the US Army Research Office.
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Abstract. We study the problem of detecting data exfiltration in com-
puter networks. We focus on the performance of optimal defense strate-
gies with respect to an attacker’s knowledge about typical network
behavior and his ability to influence the standard traffic. Internal attack-
ers know the typical upload behavior of the compromised host and may
be able to discontinue standard uploads in favor of the exfiltration. Exter-
nal attackers do not immediately know the behavior of the compromised
host, but they can learn it from observations.

We model the problem as a sequential game of imperfect information,
where the network administrator selects the thresholds for the detec-
tor, while the attacker chooses how much data to exfiltrate in each time
step. We present novel algorithms for approximating the optimal defense
strategies in the form of Stackelberg equilibria. We analyze the scalabil-
ity of the algorithms and efficiency of the produced strategies in a case
study based on real-world uploads of almost six thousand users to Google
Drive. We show that with the computed defense strategies, the attacker
exfiltrates 2—3 times less data than with simple heuristics; randomized
defense strategies are up to 30% more effective than deterministic ones,
and substantially more effective defense strategies are possible if the
defense is customized for groups of hosts with similar behavior.

Keywords: Data exfiltration detection - Game theory - Network
security

1 Introduction

A common type of cyber attack is a data breach which involves the unauthorized
transfer of information out of a system or network in a process called information
ezfiltration. Information exfiltration is a major source of economic harm from
cyber attacks, including the loss of credit card numbers, personal information,
© Springer International Publishing AG 2017

S. Rass et al. (Eds.): GameSec 2017, LNCS 10575, pp. 171-192, 2017.
DOI: 10.1007/978-3-319-68711-7_10



172 K. Durkota et al.

trade secrets, unreleased media content, and other sensitive data. Many recent
attacks on high-profile companies (e.g., Sony Pictures and Target) have involved
large amounts of data theft over long periods of time without detection [7].
Improving strategies for detecting information exfiltration is therefore of great
importance for improving cybersecurity.

We focus on methods for detecting information exfiltration activities based
on detecting anomalous patterns of behavior in user upload traffic. An impor-
tant advantage of this class of detection methods is that it does not require
knowledge of user data or the ability to modify this data (e.g., to use honey
tokens). To better understand the strategic aspects of anomaly detection and
information exfiltration we introduce a two-player game model that captures
the defender and attacker decisions in a sequential game. While we focus mainly
on the information exfiltration example, note that raising alerts based on detect-
ing anomalous behavior is a common strategy for detecting cyber attacks, so our
model and results are relevant beyond just information exfiltration.

One of the novel aspects of our game model is that we consider both insider
and outsider threats. A recent McAfee report [1] states that that 40% of seri-
ous data breaches were caused by insiders trusted by the organization, while the
remaining 60% are due to outside attackers infiltrating the enterprise. Since both
types of attacks are prevalent we consider both cases. There are significant differ-
ences between insiders and outsiders for information exfiltration. One difference
is that an insider knows his typical behavior already and can use this knowledge
to evade detection, while an outsider must learn this behavior from observation.
A second difference is that insiders may be able to replace their normal activity
with malicious activity, while an outsider’s actions will be observed in addition
to the normal activity. We model both of these key differences and examine how
they affect both attacker and defender behavior in information exfiltration.

We introduce a sequential game model in which the objective of the attacker
is to exfiltrate as much data as possible before detection, and the objective of the
defender is to minimize the data loss before detection. The defender monitors
the amount of data uploaded to an external location (e.g., Dropbox or Google
Drive) and raises an alert if the traffic exceeds a (possibly randomized) threshold
in a give time period. Some network companies use only uploaded data volume
as feature to detect the data exfiltration. In our paper we follow this approach,
however, our algorithm allows using more features as well. The defender is con-
strained to policies that limit the expected number of false positives that will be
generated. The attacker chooses the amount of data to exfiltrate in each time
period. We model both insider and outsider attackers, and both additive and
replacing attacks. In the additive attack the total traffic observed is the sum of
the normal user activity and the attack traffic, while in the replacing attack only
the attack traffic is observed by the defender. Outsider attackers also receive an
observation of the user traffic in each time period that can be used to learn the
behavior pattern (and therefore infer something about the likely threshold for
detection).
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Our first main contribution is the exfiltration game model that considers the
differences between insider and outsider attackers. Our second contribution is
a set of algorithms for approximating the optimal strategies for both defender
and attacker players in these games. For outsider attackers, we use Partially
Observable Markov Decision Process (POMDP) to model the learning process
for the attacker. We also consider randomized policies for the defender, since it
has been shown that static decision boundaries can be quickly learned [4] and
randomizing can mitigate successful attacks [11]. Our third main contribution
is an experimental analysis of a case study based on real-world data from a large
enterprise with 5864 users connecting to a Google drive service for 12 weeks. We
compute optimal strategies against different classes of attackers, and examine
the characteristics of the strategies, the effects of randomization and attacker
learning, and the robustness of strategies against different types of attackers.
We show that with the computed defense strategies, the attacker exfiltrates
2-3 times less data than with simple heuristics; randomized defense strategies
are up to 30% more effective than deterministic ones, and substantially more
effective defense strategies are possible if the defense is customized for groups of
hosts with similar behavior.

2 Related Work

Several previous works focus on detection and prevention of data exfiltration.
A common approach is anomaly detection, e.g., a system can automatically learn
the structure of standard database transactions on the level of SQL queries and
raise alerts if a new transaction does not match this structure [5,10]. An alterna-
tive option is to create signatures of the sensitive data based on their content and
detect if this content is sent out [14]. The signatures should be resilient against
the addition of noise or encryption, such as wavelet coefficients for multime-
dia files, which are resilient against added noise. Data exfiltration can also be
partially mitigated by introducing automatically generating honey-tokes, a bait
documents that rise alarm when are opened or otherwise manipulated [2]. These
works do not consider volume characteristics of the traffic as means of detecting
data exfiltration and do not study the learning process of the external attacker,
which are the focus of this paper. A commonly studied option of exfiltration is to
use a covert channel and hide the communication in packet timing differences of
DNS requests [19]. If the covert channel increases the volume of traffic to some
service, the methods presented in this paper can help with its detection. More
general data exfiltration motivations and best practices to protect the data are
described in [13].

Data exfiltration and similar security problems have been previously studied
in the framework of game theory. Liu et al. [12] propose a high level abstract model
of insider threat in the form of partially observable stochastic game (POSG). They
propose computing players’ strategies using generic algorithms developed for this
class of games, which have very limited scalability. The instance of the game they
analyze in the case study focuses on data corruption and not exfiltration. Our
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work can also be seen as a special instance of POSG, but we provide more scalable
algorithms to solve it and analyze the produced strategies in the context of data
exfiltration.

Similar to our work, [9] investigates selecting thresholds for intrusion detec-
tion systems protecting distinct subsets of a network. The goal is to find optimal
trade-offs between false positives and the likelihood of detection of an attack,
which is simultaneously executed on a several subsets of the network. The
attacker cannot decide what action to execute, only which systems to attack; nor
he has an ability to learn the possible thresholds before the attack is conducted.
McCarthy et al. [15] use POMDP to compute defender’s optimal sequence of
(imperfect) sensors to accumulate enough evidence whether data exfiltration
over Domain Name System queries is happening in the network or not. However,
unlike our paper, they assume non-adaptive attackers. Lisy et al. [11] investi-
gated the effect of randomization of detection thresholds to strength of attacks
and their overall cost to the defender. Our modeling of insider attacks is similar
to this work. In contrast to our work, the attacker has perfect knowledge about
the detector and the attacked system before the attack.

3 Game Theoretic Model

We model the problem of data exfiltration as a dynamic (sequential) game
between the defender (network administrator) and the attacker trying to exfil-
trate data over the network. We first discuss the basic setting of the game
and focus on the fundamental differences between the insider and outsider and
whether their activity is added to or replaces the normal traffic of the host.
Then, we define the exact interaction between the attacker and the defender.

The defender monitors the volume of data uploaded by each network host!
to a specific service over time, in time windows of constant length, e.g., 6 h. His
action is to select a detection threshold 6 from the set of available thresholds
©. If the volume of the host’s upload surpasses 6 in a time window, an alarm is
raised and the activity of the user is inspected by the administrator.

The attacker controls one of the users and tries to upload as much data as
possible to the selected service before being detected. His actions are to choose
the amount of data a € A C Ny he exfiltrates in the next time window. If
this amount (possibly) combined with the host’s standard activity is below 0,
the attacker immediately receives reward a and the defender suffers a penalty
proportional to a. In this latter case, the attacker can act again in the following
time window.

Since each host in a company may have different pattern of standard activity,
the defender might want to set the threshold for each of them individually.
However, this approach can be laborious in big companies and individual users
rarely produce enough data for creating high quality models of their behavior.
Therefore, it is common to create groups of hosts with similar behaviors and

! Hosts are non-strategic actors in the game considered to be part of the environment.



Optimal Strategies for Detecting Data Exfiltration 175

reason about these groups instead. In our models we refer to each group as a host
type A from a set of all types A. We assume both players know the probability
P(A) that a randomly selected host in the network is of type A. Each host type
is characterized by its common activity pattern in the form of the probability
P(o|)) that a host of type A transfers the amount of data o € O C Ny in a time
interval. We call these amounts observations, since they are the information
observed by the external attackers.

The standard host’s activity can sometimes surpass the selected threshold even
without any attacker’s activity and the host is still inspected. These false positives
take a lot of time for the administrator to investigate and are typically a key con-
cern in designing IDS. To capture this constraint we require the defender’s strate-
gies to have an expected number of false positives bounded by a constant F'P.

3.1 Outsider Vs. Insider

The outsider is an external attacker who compromises a host in the computer
network to exfiltrate data. Although the outsider may know what types (groups)
there are in the company (secretaries, IT admins, etc.), they often do not know
which host type they compromised. However, they can observe the activity of
the compromised host in each time window and update their belief about its
type. Starting an aggressive exfiltration is likely not the best strategy, since once
attacker surpasses a threshold, he is detected and the attack is stopped. However,
conducing too much observation may cause that the host is disconnected or
turned off before any exfiltration was conducted; or that the user’s normal traffic
surpasses the threshold, in which case the host is inspected and the attacker may
be detected; or the data may become useless. We model this risk by discounting
future rewards ¢ time steps ahead with -, where v € (0, 1). The outsiders must
cautiously weigh how much to exfiltrate at the current time step versus how
long to learn the host type to increase future rewards. Typically, he would first
emphasize learning with little data exfiltration, and proceed to more aggressive
exfiltration when he is more certain about the host type.

The insiders are the regular users of the network and they know their host
type and the deployed defenses. If the defender sets a fixed threshold for each
host type, an insider can exfiltrate exactly at that threshold (we assume that
the amount of data has to surpass the threshold to trigger the alarm). Such a
defense strategy is not optimal, and the defender should minimize the insiders
certainty about the threshold by randomization of her choices.

3.2 Additivity Vs. Replacement

Consider a situation where the host uploads o MB and has set threshold 6. Then
the attacker can exfiltrate at most 6§ — o, if he does not want to surpass the
threshold. Additivity is important mainly for the external attacker operating
on the host without its user’s knowledge. However, we allow additivity even
for the insider in our model so that we can analyze the effect of incomplete
knowledge of the external attacker with all other conditions equal. Assuming that
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the attacker completely replaces the existing host traffic with the exfiltration
is more natural for the insider. However, even the external attacker can, in
principle, throttle or to completely block the standard user’s traffic to increase
his own bandwidth for exfiltration. We analyze combinations of scenarios when
the attacker is insider/outsider and when the user’s normal traffic is and is not
present.

3.3 Formal Definition of Game Model

We have introduced the following components: A is the set of host types and P()\)
the probability of their occurrence; O (resp. A) is the set of possible amounts of
data that the hosts (resp. attackers) can upload; P(o|\) describes host’s standard
activity; © is the set of thresholds the defender can choose; F'P is the defender’s
maximal false positive rate; v is the discount factor.

In our model, we assume that the network administrator models the user’s
normal traffic using discrete representation, e.g., histograms. In that case, the
attacker and defender’s action are also discrete, as they have no incentive to
choose actions between the discrete values.

Defender’s Strategy. We allow mized (or randomized) strategies in form of
o(0|\), where the defender chooses a probability distribution of thresholds 6
given host-type A. As a special case, the defender may choose a pure strategy v :
A — O, a threshold for each host-type A. Let ¥ and X be the set of all pure and
mixed strategies, respectively. A valid defender strategy o must satisfy the false
positive constraint )\, > g o(O|A)P(A)FP(0|N) < FP, where FP(0|)\) =
Y oco:0sg P(0])) is type X's amount of false positives if threshold is 6.

Attacker’s Strategy. In the course of the attack, the attacker follows a policy
which prescribes what action he should take when he played actions a4, ..., ag
and saw observations o1, ..., 0k so far [3]. We assume, that the defender chooses
his threshold strategy first, and the attacker acts afterwards, knowing the
defender’s strategy (we will discuss it in section Solution Concept. In such a case,
the attacker acts only against the nature, without adversarial actor, and Partial
Observable Markov Decision Processes (POMDPs) can be used to reason about
(approximately) optimal attacker’s policies for the attacker. In the POMDP the
attacker is not required to remember the entire history of his actions and obser-
vations. Instead, he can capture all relevant information he has acquired in the
course of the interaction in the form of a belief state b € A(A x @), which is a
probability distribution over possible host types and threshold settings. We can
then define attacker’s policy based on his belief as 7 : A(A x @) — A. In the
course of the interaction, the attacker keeps track of his belief b using a Bayesian
update rule when he takes the last action and observation into account. Based
on his current belief, he chooses action m(b) to play. We denote the set of all
belief-based policies as I1.
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Note that the insider knows the host type from which he exfiltrates the data
(it is his own host machine), therefore, there is no need to update belief based
on the observation. Therefore, for the insider the attack policy is to choose an
action from A. Mixed strategies are probability distribution among these choices.

Utilities. We define the attacker’s expected utility as wu,(o,7), which is the
discounted total expected amount of exfiltrated data using policy 7 against the
defense strategy o.

We define the defender’s utility as uq(o, 7) = —Cug (o, 7), where C' > 0. That
means, that players have opposing objectives and their payoffs are proportional.
Typically C > 1, which means that the defender suffers more than the attacker
gains.

Solution Concept. Game theory provides a variety of solution concepts and
algorithms for analyzing games with different characteristics. In zero-sum games
and their slight generalizations, such as our payoff structure, many of these
solution concepts lead to the same strategies. We use Kerckhoffs’s principle,
which assumes that the attacker knows the defender’s algorithm or can conduct
surveillance of the defender’s behavior, therefore, knows his strategy. In game
theory, Stackelberg equilibrium corresponds to such assumptions, where leader
(the defender) acts first, by choosing strategy o. Then, follower (the attacker),
plays any best response strategy, which maximizes the attacker’s utility against
leader’s strategy o.

Definition 1 (best response). Attacker plays best response if it mazimizes
the attacker’s expected utility, taking the defender’s strategy as given. Formally,
m € BRy(0) iff Va' € IT : ug(o,7) > ug(o, 7).

In zero-sum games, all attacker’s best responses have the same expected utility to
the defender and the attacker, therefore, there is no need to distinguish between
specific best responses. Because we use approximative algorithm to compute the
attacker’s policy, we focus on finding approximate e-SE. The defender’s strategy
in e-SE guarantees, that the defender’s utility cannot be improved by a factor
of more than 1 + € in the exact SE.

Definition 2 (e-Stackelberg equilibrium (e-SE)). Let € € (0,1]. Solution
profile (o*,7*) where 7* € BRy(0*) belongs to e-SE, if Vo € X ,¥w € BR,(0) :
ug(o,m)—uqg(c™, ™) <e
[ua(o*,m*)] =

Note, that we use multiplicative definition of approximate solution concept [6],
rather then more typical additive approximation. In our opinion, the multiplica-
tive approximation is slightly more reasonable for our domain. However, the
algorithm can be easily modified to return additive e-SE.

4 Algorithms

In this section, we present two algorithms. First algorithm computes exact SE
against the insider. Second algorithm finds e-SE against the outsider.
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4.1 Optimal Defense Strategy Against Insiders

Since we assume that the insider knows from which user type he exfiltrates data
(they have complete information), we can model the interaction between the
attacker and a host type as a normal-form game, where the attacker chooses
a probability distribution over actions A for each host type and the defender
chooses probability distribution over thresholds © for each host type. We for-
malize the game between all host types and the attacker as one problem by
extending the zero-sum normal-form linear program (LP) [17] with multiple
host types and a false-positive constraint.

i e (12)
st (VA€ AVaeA): Y ua(0,a,\)o(0|A) < Ui (1b)
6co
> PNUar < Us (1c)
reA
(VA€ A): ) o0 =1 (1d)
AeA
(VA € AV0 € ©) :5(|\) > 0 (le)
>3 P(Na(BINFPOIN) < FP (1f)
A€EA OO

The variables in the LP are: o(8|)\), U, and U, . The objective (1a) minimizes
the attacker’s expected utility U,, which consists of expected utilities U, » of each
type, weighed by its probability (1c¢). Constraints (1b) ensure that the attacker
plays a best response in each host type against the given defense strategy; (1d)
and (le) ensures that the defender’s strategy is proper probability distribution;
and (1f) makes sure the strategy meets the false-positive rate.

In LP, we need to compute the attacker’s payoff u, (6, a, A) when the defender
plays action 6 and the attacker attacks host type A with action a. For the attacker
with replacement, we compute u, (6, a, ) as follows:

if0>a
otherwise,

uq(0,a,\) = {5—7 (2)

and for the attacker with additivity as follows:

aP(o+a < 6|\)
1—~P(o+a <6|))

ug(0,a,\) = (3)
where P(o +a < 0|A) = > co..10<o P(0|A) is the probability that the user’s
action o combined with the attacker’s action a is below threshold 6 for type .
To compute the defender’s pure strategy, we replace (2d) by (VA € AVl € O) :
o(0)\) € {0,1}.
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4.2 Optimal Defense Strategy Against External Attacker

The outsider observes the activity of the host in an attempt to learn and infer
it’s type. Due to the learning process, the strategies of the attacker are more
complex, compared to the insider case, as the strength of the attack can vary
over time. We can reason about attacker’s behavior under this uncertainty using
Partially Observable Markov Decision Processes (POMDPs) and his optimal,
best-response strategy can be computed by algorithms for solving POMDPs.
Originally, POMDPs were designed to reason about actions of a single decision
maker. However, since the defender only decides the initial belief of the POMDP
and the defender then has no influence on the dynamics of the system, we can
extend the POMDP framework to solve our game-theoretic problem.

The POMDP framework assumes that in every time step, the player chooses
an action and receives an observation from the environment as a result. Based
on this observation he updates his belief over the possible current states of the
environment. Additionally, in each time step the player obtains a reward which
depend on the state of the environment and the action chosen. A solution of the
POMDP is a policy which prescribe an action to use given every possible belief
state. Here, we extend a well-established algorithm for solving POMDPs, Heuris-
tic Search Value Iteration (HSVI) [18] to find an e-Stackelberg Equilibrium, with
key ideas inspired by [8]. The main idea of the algorithm is to iteratively com-
pute the attacker’s and defender’s best response strategies, which will eventually
converge to a Stackelberg equilibrium.

The structure of this section is as follows: first, we define POMDP models for-
mally; then we explain the main ideas of the HSVI algorithm; and lastly, we present
our contribution, the Adversarial HSVI algorithm, aimed to find e-SE in our game.

POMDP Model. Let us now define a POMDP model formally, for a given
defense strategy o, as a tuple (S, A, T, R, O,~,c), where:

— S is set of states, where each state s € S is defined as s = (A, 05), where A is
host-type and 6 is the chosen detection threshold. We also define a terminal
state s, which denotes that the attacker got detected and the attack was
deflected.

— A is the set of attacker’s actions;

— O is the set of observations about the traffic on host attacker tries to exfiltrate;

— T(s,a,s") is the probability that action a in state s leads to new state s’. In
our case, when additivity is considered Vs € S\ {sr} : T(s,a,s) = P(a+0 <
0s), and T'(s,a,s7) = 1 — P(a + o < #;). If there is no additivity, then
Vs € S\ s : T(s,a,s") = ly<p, and T(s,a,s7) = ly>p, otherwise, where
14 =1if A is true and 14 = 0 otherwise is the indicator function.

— R(s,a,s) is the immediate reward the attacker obtains for performing action
a in state s. In our case R(s,a,s’) = a had the attacker not been detected
yet, R(s,a,s’) = 0 otherwise;

— P(ola, s) is the probability of observing o € O when action a is taken in state
s. In our case P(ola,s = (A, 0)) = P(o|)).

— v €(0,1) is the discount factor.
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With £ we denote the attacker’s belief space, i.e. the set of all probability
distributions over the states S. We derive the initial belief by € Z according to
the prior distribution over the host types P(A) and the strategy of the defender,
i.e. bo(s) = P(N)o(0|)\) for state s = (), 6).

POMDP models are usually solved by approximating the optimal value
function v* : 4 — R. This value function represents the utility v*(b) the
attacker can obtain when the current distribution over the states is b € & and
he follows his optimal policy. We can then derive the optimal action to play in
each belief state, i.e. the action 7 (b), by solving the following equation

w(b) = argmax Z Z Pr[s,s’|b,alR(s,a,s’) + v Z Prlolb,a] - v* (7(b, a,0)) (4)

seSs'esS o€e0O

where we account for the immediate rewards (expectation over R(-)) as well
as the expectation over future rewards (represented by the value function v*).
7(b,a,0) stands for a Bayesian update of the belief b based on receiving the
observation o when action a was used by the attacker.

HSVI Algorithm. We now provide an explanation of basic ideas of the HSVI
algorithm, which we complement with illustrations in Fig. 1. For detailed expla-
nation of the HSVI algorithm, we refer the reader to [18]. The algorithm main-
tains the upper and lower bounds on the optimal value function v* for each
point in the belief space %, as depicted in Fig.la. The horizontal axis repre-
sents the belief space Z and the vertical axis represents the expected utility the
attacker can achieve (or lower and upper bounds on this utility, respectively). In
each iteration, HSVI performs a single simulation of depth D, in the course of
which the attacker plays D actions and obtains D observations. This simulation
is conducted according to a forward-exploration heuristic, which aims to select
beliefs which can be reached using the play starting from the initial belief b,
and for which the approximation using the lower and upper bounds is excessively
inaccurate. For these beliefs, we compute the optimal action of the attacker (see
Eq.4) and based on that we refine the bounds on v*. In Fig. 1b we illustrate the
way the lower and upper bounds get refined.

Let us use notation LB(b) and U B(b) to refer to values of the lower and upper
bounds, respectively, in belief b € . The original HSVI algorithm terminates,
when UB(by) — LB(bo) < €nsvi, Where €p,; is the desired approximation error.

Finding e—SE. Recall that the initial belief of the POMDP problem, by(s) =
P(X)o(0]X), can be directly mapped to the defender’s strategy o (and vice versa).
Therefore, we search such initial belief by for the defender, that it meets maximal
false positive constraint and minimizes the attacker’s expected utility (POMDP
upper bound value at bg). In high lever, our approach iteratively alternates
between selecting a promising initial belief by (strategy for the defender) and
solving POMDP at that belief bg. In Fig. 1c we illustrate a subset of valid initial
beliefs that meets the false-positive constraint.
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UB

LB

valid belief space

(a) (b) () (d)

Fig. 1. Original and Adversarial HSVI algorithm: (a) initial upper bound (UB) and
lower bound (LB) on the (unknown) optimal value function v*. HSVI aims to minimizes
the gap between UB and LB in the initial belief bo. (b) After one HSVI iteration, tighter
approximation using LB and UB is computed. (c) In Adversarial HSVI the defender
chooses a new belief b’ where LB has minimal value in every iteration. (d) A possible
scenario when algorithm is converged and a conservative strategy for the defender,
based on bj; 5, is returned.

In detail, to find initial belief in e-SE and the strategy o of the defender, the
Adversarial HSVI algorithm extends the original HSVI algorithm in two ways
(the modified algorithm is presented in Fig.2). First, instead of having fixed
initial belief by, our algorithm chooses a new belief o’ in every iteration. This
belief, ¥ = argmin, LB(b), is chosen to minimize attacker’s lower bound value.
Second, we limit the depth D of the HSVI simulation by +/iter, where iter is
the current iteration number. We do this to emphasize the exploration of the
belief space first, and then focus on the computation of more accurate bounds
later on (Fig. 2). The rest of the algorithm follows the ideas of the original HSVI
algorithm. We refer the reader to Sects. 3.3 and 3.4 of [18] for details about the
implementation of UpdateLB() and UpdateUB() procedures, and the forward
exploration heuristic (lines 3-4 of the EXPLORE procedure).

Let brp = argmin, LB(b) and byp = argmin, UB(b) be the beliefs with
minimal value of lower and upper bounds. We ensure that the algorithm finds
e-SE, by terminating when defender’s and attacker’s strategies have maximum
relative error € and we then return a secure strategy implied by belief byyg. The
attacker can guarantee that he will obtain at least LB(by5), while the defender
can guarantee that he will not lose more than U B(by ). Based on these numbers,
we compute an upper bound on the relative improvement of defender’s strategy

(i.e. if he plays by p instead of by ) as UB(bg‘;)(;UL;(bLB).

Proposition 1. Adversarial HSVI (Fig. 2) returns e-SE.

Proof. Without loss of generality, we assume the game is exactly zero-sum
(i.e., C = 1). When the algorithm terminates and returns o(f|\) induced by
bup, we know that the best response of the attacker to the defender’s strat-
egy induced by by p cannot gain more than UB(byg), hence the defender’s cost
—ug(o(0|N), BR.(c(0|1)\)) < UB(byp). If the defender played any alternative
strategy o/, we know that the attacker would always be able to exfiltrate at
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1: procedure FIND £-SE(¢)

2 brp < minimal Lower bound 1: procedure EXPLORE(D,depth,iter)
3 byp + minimal Upper bound 2 if depth < \/iter then

4: iter < 1 3 a* < best action to explore
5: while W > e do 4 0™ < best observation to explore
6 Explore(by, 1,iter) 5: b+ t(b,a*,0")

7 by p < minimal Lower bound 6: Explore(b’,depth+ 1, iter)
8 byp < minimal Upper bound 7 end if

9: iter < iter+1 8 UpdateLLB()
10: end while 9 UpdateUB()
11: return o(6|A) induced by byp 10: end procedure

12: end procedure

Fig. 2. Adversarial HSVI algorithm to find e-SE.

least LB(br,p) by definition of by, 5, hence —uy(o’, BR,(¢")) > LB(by,p). If the
termination condition is satisfied, UB(bg%)(;fBB)(bLB ) <. Therefore, it is sufficient

to show that the relative error of the computed strategy

ua(0', BRo(0")) = ua(0(8]\), BRu(c(81)) _ UB(bus) — LB(bLp)
[ua(a(0]A), BRa(o(0]7))] - UB(bup)

Since the defender’s utility is always negative, we know |uq(c(0|X), BR,
(a(0|N)] = —uq(a(0|N), BR,(c(68]))). Hence, the above is equivalent to

_ ugq(o’, BRa(0")) <1_ LB(brB) and —ug(o’, BRa(c")) S LB(brB)

ug(o(0|\), BRa(a(0|N)) — UB(bypg) —ug(a(0|\), BRa(c(8|\)) ~ UB(bus)’

This is true, because from left to right in the last inequality, the nominator can
only decrease and the denominator can only increase.

5 Real-World Data

From a large network security company we obtained anonymized data captur-
ing the volumes of upload of 5864 active Google drive users uploaded during 12
weeks. For each user we computed the amount of data that the user uploads in
6 h windows. Next, we created histograms showing how often the user uploaded
certain number of bytes per 6 h, which can be understood as user’s upload prob-
ability distribution.

We used the Partitioning Around Medoids algorithm to find clusters of sim-
ilar behavior of the users where similarity was measured by Earth Mover’s
Distance [16] metric. In Fig.3 we present 7 histograms corresponding to user’s
average behavior in each cluster and their relative membership. The clusters (in
order) contain 25.6%, 5.5%, 17.2%, 8.9%, 11.7%, 11.5% and 19.6% of the total
users.
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cluster 1
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cluster 4
cluster 5
cluster 6

cluster 7

24 2B 212 216 220 - 224 228 232

Uploaded bytes per 6 hours

Fig. 3. Mean upload size histograms of the identified clusters of users.

6 Experiments

We now demonstrate our framework for a case study based on the real-world
data. In all settings we choose: false positive rate F'P = 0.01, the relative error
of the strategy ¢ = 0.2, and discount factor v = 0.9. We chose the set of attacker
actions |A|, the defender’s thresholds |@|, and the observations |O] to be the set
of {20,22,2%, ... 234} bytes.

The structure of this section is as follows: In Sect. 6.1 we evaluate how much
an optimal attacker can exfiltrate under various condition, in Sect. 6.2 we present
a visualization of what optimal defense strategies look like, in Sect. 6.3 we eval-
uate defender strategies against different attacker models. In Sect. 6.4 we show
how the presence of additivity influences the defense strategy, and finally, in
Sect. 6.5 we present scalability results for computing the defense strategies.

6.1 Defender and Attacker Utilities

We now examine how much various attacker types can exfiltrate in our case
study. In Tablel we present a summary of the attacker’s expected utilities
(attacker maximizes and defender minimizes the value) for different types of
attackers. Columns indicate whether the attacker is an insider or outsider and
whether the attack is with replacement or with additivity. The rows indicate
whether the defender plays a mixed or pure defense strategy, or a baseline
defense. We present utilities against the outsider as minimal lower bound and
minimal upper bound values from HSVI algorithm.

Note that the insider with replacement can exfiltrate up to 6 times more
compared to insider with additivity. In in the case with additivity, the typical
traffic of a user is added to the traffic of the attacker; hence, the attacker must
choose a less aggressive strategy (i.e., upload less data) so that the total data
upload does not exceed the threshold. Although the attacks with additivity are
disadvantageous to the attacker, in some cases the additivity is unavoidable, e.g.,
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Table 1. Attacker’s utility for different scenarios: (columns) insider or outsider, with
replacement or additivity and (rows) whether the defender plays optimal pure, optimal
mixed or baseline strategy.

Insider [MB] Outsider [MB]

Replacement | Additivity | Replacement | Additivity
Mixed defense 23.71 3.56 (18.68, 24.81) | (3.11, 3.43)
Pure defense 33.58 5.03 (24.17, 29.87) | (3.78, 4.49)
Baseline single-quantile (mixed) |65.32 12.31 (54.85, 57.58) | (10.39, 10.84)
Baseline single-threshold (mixed) | 68.86 14.54 (65.45, 68.86) | (13.96, 14.56 )
One cluster (mixed) 63.29 12.95 N/A N/A

when different detectors detect whether the user runs standard processes (which
generate a standard traffic). Next, we see that the user type uncertainty caused
around a 7%-12% decrease in the utility (computed from the upper bounds). To
verify that this outcome does not rely on the fact that some of the host-types
have higher prior probability than the others, we additionally ran experiments
with uniform prior probability of the users, and the outsider had about 16%
lower utility compared to the insider. Finally we note that if the defender must
choose a pure strategy (e.g., due to practical deployment reasons) the amount of
data exfiltrated by the attacker can be 24%-42% higher compared to randomized
strategies.

We compare our strategies against two baseline approaches: (i) single-quantile
and (ii) single-threshold. In (i), the defender sets for each host type a threshold
at quantile (1 — FP) of their upload probability distribution. Since we have
discrete thresholds, the defender’s strategy randomizes between two consecutive
thresholds to reach the exact (1 — F'P) false positive rate. The experimental
results show that the attacker can exploit this straightforward strategy and can
exfiltrate about 3-times more data than against the optimal solution. The main
reason is that this strategy chooses high thresholds for the users with large data
upload (e.g., cluster 3) in order to satisfy the false positive constraint. In (ii) the
defender chooses a single threshold for all host types such that the false positive
rate requirement is satisfied. Although the strategy is quite different, it also
performs poorly. The utility is even worse than the single-quantile strategy. This
strategy is exactly contrary to the previous one: it sets the threshold for passive
users (e.g. cluster 7) is too high, and attackers easily exfiltrate from them.

Additionally, we show that it is worth developing different defense strategies
for different user types. We computed the optimal defense strategy where all
users belong to one cluster (instead clustering them into 7 clusters), and utilities
were 2x—3x worse than the optimal defense strategy where users were clustered.
Since there is only one cluster, the attacker does not need to learn the cluster of
the attacked host. Therefore, there is no difference between insiders and outsiders
in this case.
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6.2 Defender’s and Attacker’s Strategies

Insiders. In this section we present the computed optimal strategies of the
defender. Figure4a shows the defender’s (cumulative) probability of selecting
thresholds (x-axis) for each host type against the insider with replacement. The
cumulative distributions show the probability that an attacker exfiltrating data
at a certain rate is detected. In Fig.4b we present the attacker’s expected util-
ity for different attacks on different host types when the defender is using the
strategy depicted in Fig. 4a. The defender’s strategy is computed in such a way
that it makes the attacker indifferent between intervals of actions (e.g., for host
type 1 the attacker is indifferent between actions 222 through 23°), which is typ-
ical for stable strategies. The attacker’s best response is to choose any of the
attack actions that have the highest expected utility. We also note that the host
types with the highest activity (e.g., host type 3 and 1) result in the highest
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Fig. 4. The defender’s strategies and the attacker’s expected utilities for individual
attack actions for: (a,b) mixed defense strategy against insider with replacement; (c,d)
pure defense strategy against insider with replacement; and (e,f) mixed defense strategy
against insider with additivity.
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expected reward for the attacker. Therefore, we suggest that these hosts should
be monitored thoroughly to avoid potentially large data loss.

Figure 4c shows the optimal strategy of the defender when restricted to pure
strategies. For host types 3, 6 and 7, corresponding to the largest and the two
smallest mean upload sizes, the defender chooses threshold 2%2. The threshold of
224 i chosen for all the other types. The expected utility of the attacker depicted
in Fig. 4b has peaks up to 5 MB, since with pure defense strategies it is impossible
to make the attacker indifferent between multiple actions. By randomizing non-
trivially between multiple thresholds the defender can significantly increase his
expected utility.

The defense strategy against the insider with additivity (Fig.4e) is quite
different to the previous ones. With the additivity, the optimal defense strategy
lowers the thresholds of the most active users (host types 1 and 3) to restrict their
large loss, and increases the thresholds of the less active users to compensate the
false-positives.

Outsiders. Optimal defense strategies against the outsider with additivity
(Fig. 5a) (resp. with replacement (Fig. 5b)) are more complex than the strategies
against the insiders. The strategies consider how the attacker attacks and learns
from the observations each time step as well as the fact that the value of the data
decreases over time due to the discount factor. None of the above was considered
against the insider attacker.
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Fig. 5. Defender’s strategy agaist outsider with (a) additivity and (b) replacement; the
(near) optimal attacker’s respone to (a) characterized by (c) the average action played
at certain time step and (d) the probability of reaching the time step when attacking
the given host type.
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To explain how the defense strategy takes into account these aspects we first
examine the attack strategy of the outsider with additivity. In Fig. bc we show
the attacker’s average action in every time step given that the observations are
drawn from a certain host type and that the attacker was not detected until
the previous time step. First, the attacker plays safe action 22° and after the
observation, the attacker strengthens his attack as he learns about the host
type their possible thresholds. Since the defender knows that the first attack
action is 220, he prefers lowering the threshold for host types 6 and 7 (at 220),
which causes the defender to almost certainly detect the attacker during his
first attack action on 31.1% of hosts (see Fig.5d). Not only does it increase the
detection probability, it also prevents the attacker from obtaining information at
the beginning, when it is most valuable due to the discounting. This generates a
lot of false positives, so for highly active users the strategy uses higher thresholds
(host types 2 and 3). The attacker will exfiltrate from these hosts aggressively
in the later phase of the game but the loss will be less important by that time
due to discounting.

This example shows how sophisticated the outsider’s strategies can be as they
must consider a complex behavior of the attacker and all possible sequences of
observations and attacks. To minimize the loss, the defender aims to detect the
attacker as soon as possible. In Fig. 5d we show the probability that the attacker
is detected until given time step. Using the optimal defense strategies, host types
1, 6 and 7 (56.7% of the users) detect the attackers until his third time step with
higher probability than 0.5.

6.3 Different Attacker Models

Computing a defense strategy against the insiders can be done using linear pro-
gramming, which is computationally more efficient than the Adversarial HSVI
algorithm used for outsiders. It rises a question of whether strategies against the
insiders applied against the outsiders are significantly worse than the strategies
optimized against the outsiders. In Table 2 we show the expected attacker’s util-
ities of various defense strategies against different attacker models. The attacker

Table 2. Discounted expected amount of data that the attacker can exfiltrate if defense
strategy (row) is optimized against the attacker in the “Strategy against” column,
played against the different type of attackers (columns). The intervals for the outsiders
represent lower and upper bounds of the optimal value.

Strategy against | Insider, additive | Insider, replacement | Outsider, additive | Outsider, replacement
Mixed | insider, add 3.56 MB 26.58 MB (3.56, 4.84) MB (23.51, 29.5) MB
insider, rep 5.91 MB 23.71 MB (5.59, 8.33) MB | (23.71, 32.72) MB
outsider, add 3.69 MB 27.59 MB (2.67, 3.32) MB (20.24, 27.59) MB
outsider, rep 3.71MB 27.59 MB (2.42, 3.4) MB (18.59, 26.35) MB
Pure |insider, add 5.03MB 33.59 MB (3.58, 4.43) MB (24.54, 29.95) MB
insider, rep 5.03 MB 33.59MB (3.58, 4.43) MB (24.54, 29.96) MB
outsider, add 5.03MB 33.59 MB (3.72, 4.49) MB (24.55, 29.95) MB
outsider, rep 5.03 MB 33.59MB (3.58, 4.42) MB (24.17, 29.87) MB
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of type (columns) plays a best response against the defense strategy (rows),
where each defense strategy was optimized against attackers listed in column
“Strategy against”. For example, if we apply insider with additivity (resp. with
replacement) to the outsider with additivity (resp. replacement), than the loss
is between 24% and 45%. However, if we compute a defense strategy against
the insider with replacement and apply it against the outsider with additivity,
than the defender can lose up to 150% (comparing upper bounds) more than
if the appropriate strategy is used, which is significantly worse. Therefore, it
is beneficial for the network administrator to apply appropriate mixed defense
strategies against different attacker models. The pure strategies do not have such
big utility difference between various attacker models, due to the high similarity
of all defense strategies. However, all of them have quite high loss compared to
mixed strategies.

6.4 Effect of the Additivity

We now analyze how the uncertainty of the attacker’s behavior affects the
defender’s strategy for the choice of thresholds. We created users with behavior
of a normal distribution with varying standard deviation parameter. In Fig. 6
we show how the defense strategy against the insider with additivity changes
given that the standard deviation of the user’s behavior increases. Note that in
the case where the user’s behavior is constant (low standard deviation), it is
optimal to choose a pure strategy with threshold at the user’s mean behavior. If
the attacker chooses any non-zero action, the sum of the observation and action
will exceed the threshold and attacker is detected. If the defender’s behavior
is spread, the pure strategy is ineffective. It would have to be set at quantile
1— F'P due to the false-positive rate, and the attacker has a single best response
action with highest expected reward. By mixing the thresholds, the defender
can decrease the attacker’s expected utility for a specific action and make the
expected utility equal for an interval of actions (similarly, as was done for host
type 3 in Fig. 4f).
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Fig. 6. Optimal defense strategies for users with standard activity of Normal distri-
bution with g = 2%° and standard deviations o = 2¢, where 4 is given parameter.
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This suggests that the users with close to constant behavior can be consid-
ered as the safest, as any exfiltration can be easily detected. For the users with
uncertain behavior, the optimal defense strategies is to randomize among several
thresholds, which forces the attacker to attacker weaker.

6.5 Algorithm Scalability

In Fig. 7a we present runtimes (note the logarithmic scale) for different numbers
of host-types. All experiments were run on an Intel Xeon E5-2650 2.6 GHz with
time limit 2 h. Strategies against the insider were computed in under 1s, as they
require single linear program computation. Adversarial HSVI, which iteratively
improves the solution runs for between ten seconds and two hours, depending on
the parameters of the problem. Even if problem was smaller (see outsider with
two host types), the runtime could take longer than for seven host types. The
reason is that the algorithm can temporarily get stuck in sequences of solutions
with no or very little improvements. This is similar with the original HSVI.
In Fig.8 we show the relative error € in each iteration for one and four host
types. Our algorithm suffers with plateaus even more than HSVI, as the defender
chooses initial belief with the lowest lower bound point every iteration. Despite
the fact that Adversarial HSVI with |A| = 4 has 4 times more states, it is able
to escape the plateau earlier than with |A] = 1. In Fig.7b we show that the
algorithm scales exponentially (note logarithmic y axis) with increasing number
of actions, thresholds and observations.
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All our case study strategies were computed with |A| = |©| = |O| = 15, error
€ = 20% and number of host types |A| = 7 within 2h. This demonstrates that
the algorithm can be used to solve practically large problems. Moreover, HSVI
and therefore Adversarial HSVI algorithms are easy to parallelize, which further
improves the applicability of the presented approach.

7 Conclusion

Since computer networks, deployed defenses, and attacks are becoming more
complex, developing effective decision support tools is critical for improving secu-
rity. It is particularly difficult to consider the impact of all possible attacker’s
counteractions when the network administrator applies new defenses. Game the-
ory provides a means to model these interactions and algorithms to compute the
optimal strategies of the involved parties. We use the framework of game the-
ory to model the problem of data exfiltration as a sequential game between the
attacker and the network administrator. Sequential modeling allows us to model
the decreasing value of data and the increasing chance of detection over time,
as well as the development of attacker’s knowledge about the network and user
behavior and evolving attack strategy.

We propose two algorithms for computing (near) optimal defender strategies
and bounds on their performance. For the case that the attacker does not need to
learn the behavior of the attacked host, we specify a linear programming formu-
lation for computing the optimal strategies. This situation typically corresponds
to attacks by insiders, such as employees, who know the standard behavior of the
hosts in the network. For the more complex situation with an attacker learning
the upload behavior, we developed an algorithm based on recent results in solv-
ing single-player sequential decision-making problems. The algorithm computes
strategies that optimally weigh whether to attack aggressively from the begin-
ning and risk detection or to carefully learn the host type from observations and
focus on exfiltration afterward.

Using real-world user traffic, we validate that the proposed algorithms are
sufficiently scalable to analyze realistic problems. The results of our case study
show that richer models produce substantially better strategies. For example,
when facing the external attacker that does not replace the original traffic, the
simple heuristic defense strategies let the attacker exfiltrate three times more
data than the strategy optimized against a perfectly informed attacker using the
linear program. Similarly, this strategy performs worse than the strategy opti-
mized by Adversarial HSVI against the learning opponent. Our results further
show that randomized defense strategies are up to 30% more effective in pre-
venting data exfiltration compared to deterministic strategies. This is especially
important when the attacker keeps the existing traffic intact, and the amounts
of data transferred by the hosts vary substantially.

The attackers that know the exact behavior of the compromised host can exfil-
trate by 7%-12% more data than the external attackers who have to learn it.
Furthermore, a substantially more effective mitigation of data exfiltration is pos-
sible if the users are clustered into groups with similar behavior and a different
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detection strategy is used for each group. In our case study, the optimal strat-
egy without the clustering allows the attacker to exfiltrate approximately three
times more data than the optimal strategy using the clusters. Finally, we show
that regardless of any other considered assumptions, if the attacker can replace
the standard traffic of the compromised host, he can exfiltrate up to 6 times more
data than the attacker who merely mixes his exfiltration traffic into the host’s typ-
ical behavior. Therefore, monitoring the presence of the standard traffic (e.g., by
expecting fake pre-scheduled transfers) may be a very effective countermeasure
for decreasing the possible harm of data exfiltration.
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Abstract. We present a decision support system to help plan preventive
border patrols. The system represents the interaction between defenders
and intruders as a Stackelberg security game (SSG) where the defender
pools local resources to conduct joint preventive border patrols. We intro-
duce a new SSG that constructs defender strategies that pair adjacent
precincts to pool resources that are used to patrol a location within one
of the two precincts. We introduce an efficient formulation of this prob-
lem and an efficient sampling method to construct an implementable
defender strategy.

The system automatically constructs the Stackelberg game from geo-
graphically located past crime data, topology and cross border informa-
tion. We use clustering of past crime data and logit probability distri-
bution to assign risk to patrol areas. Our results on a simplified real-
world inspired border patrol instance show the computational efficiency
of the model proposed, its robustness with respect to parameters used in
automatically constructing the instance, and the quality of the sampled
solution obtained.

Keywords: Stackelberg games - Security application - Border patrol

1 Introduction

Securing national borders is a natural concern of a country to defend it from the
illegal movement of contraband, drugs and people. The European Union (EU)
created the European Border and Coast Guard in October 2016 in response to
the recent increase in migrant flows into the EU [1]. In the United States the
Department of Homeland Security states as a primary objective that of “pro-
tecting [the] borders from the illegal movement of weapons, drugs, contraband,
and people, while promoting lawful entry and exit” claiming it is “essential to
homeland security, economic prosperity, and national sovereignty” [2].

The task of patrolling the border requires monitoring vast stretches of land
24/7. Given the size of the problem and resource constraints, the global border
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monitoring is constructed by pooling and coordinating resources from different
locations. The European Border and Coast Guard lists as one of its prime objec-
tives “organizing joint operations and rapid border interventions to strengthen
the capacity of the member states to control the external borders, and to tackle
challenges at the external border resulting from illegal immigration or cross-
border crime”.

In this paper we consider the problem of patrolling a border in the pres-
ence of strategic adversaries that aim to cross the border, taking into account
the defender patrolling strategies. We consider a Stackelberg game where the
defender acts as the leader executing a preventive border patrol, which is
observed prior to the optimal response by the strategic adversary, which acts
as the follower. Due to the size of the border patrol problem the defender coor-
dinates local resources to achieve a global defender strategy. Stackelberg Games,
introduced by [3], are an example of bilevel optimization programs [4] where top
level decisions are made by a player — the leader — that takes into account an
optimal response of a second player — the follower — to a nested optimization
problem.

Recent research has used Stackelberg games to model and provide imple-
mentable defender strategies in real life security applications. The Stackelberg
games used in this context are referred to as Stackelberg security games (SSG).
In these games, a defender aims to defend targets from a strategic adversary by
deploying limited resources to protect them. The defender deploys resources to
maximize the expected utility, anticipating that the adversary attacks a target
that maximizes his own utility. Examples of Stackelberg security games applica-
tions include assigning Federal Air Marshals to transatlantic flights [5], determin-
ing U.S. Coast Guard patrols of port infrastructure [6], police patrols to prevent
fare evasion in public transport systems [7], as well as protecting endangered
wildlife [8].

One of the challenges that has to be addressed in solving SSGs is problem
size. When the defender action is to allocate limited resources to various targets,
the set of possible defender actions is exponential in the number of resources
and targets. In [9] a relaxation of the SSG is formulated which determines the
frequency with which each target is protected. This polynomial formulation (in
the number of targets and security resources) is shown to be exact when there
are no constraints on what constitutes a feasible defender action, but it is only
an approximation in the general case.

In this work we tackle a border patrol problem, suggested by the Chilean
National Police Force (known as Carabineros de Chile), where precincts pair
up to jointly patrol border outposts in the presence of strategic attackers
that observe these patrols before attacking. Combining resources from adjacent
precincts provides overall coverage without excessively tasking each precinct. We
use a mixed integer formulation for an SSG on a network, where the decision
variables are two coverage distributions, one over the edges of the network and
one over the targets that need to be protected. Further, we provide an approx-
imate but computationally efficient sampling method that, given these optimal
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coverage distributions, recovers an implementable strategy for the defender, i.e.,
a valid pairing of precincts, and a set of targets to protect. We conduct compu-
tational experiments to measure the performance of our formulation and further
experiments are carried out to measure the quality of the implementable defender
strategies—recovered through the approximate sampling method— with respect to
the optimal coverage probabilities returned by our formulation. In addition, we
describe a case study that tackles the real-life border patrol problem presented
by Carabineros de Chile. We develop a parameter generation methodology to
construct Stackelberg games that model the border patrol setting and we carry
out a sensitivity analysis to study the effect that perturbations in our parameter
generation methodology can have on the solutions provided by our software.

The rest of the paper is as follows. In Sect. 2, we present the problem formula-
tion considered. In Sect. 3 we describe the sampling method proposed to retrieve
an implementable patrolling strategy from the optimal solution obtained. In
Sect. 4 we describe the border patrol case study. In Sect. 5, we provide compu-
tational experiments that evaluate the efficiency of our sampling strategy and
measure the performance of our problem formulation. Finally, we present our
conclusions and discuss future work in Sect. 6.

2 Problem Formulation and Notation

In this section we first introduce the general framework of Stackelberg games,
the notation and a review of benchmark models. Then, we present a Stackelberg
game that seeks to select coordinated defender strategies given heterogeneous
resources when facing strategic attackers.

2.1 Stackelberg Security Games

We consider a general Bayesian Stackelberg game, where a leader is facing a
set K of followers, as introduced in [10]. In this model the leader knows the
probability 7 of facing follower &k € K. We denote by I the finite set of pure
strategies for the leader and by J be the finite set of pure strategies for each of
the followers. A mixed strategy for the leader consists in a vector x = (x;)ier,
such that x; is the probability with which the leader plays pure strategy i.
Analogously, a mixed strategy for follower k € K is a vector q* = (q;?)je J
such that q;“ is the probability with which follower k£ plays pure strategy j. The
payoffs for the agents are represented in the payoff matrices (R¥, C*¥)ycr, where
RF € RIIXI7I gives the leader’s reward matrix when facing follower k € K and
C* € RIIXI1 s the reward matrix for follower k € K. The Rfj (ij) entry gives
the reward for the leader (follower) when the leader takes action ¢ and the k-th
follower takes action j. With these payoff matrices, given a mixed strategy x for
the leader and strategy q" for follower k, the expected utility for follower k is
given by > .o, > et C’sziqf while the expected utility for the leader is given by

dokek Tk Dier 2ojed Ri‘fjwiq?'
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The objective of the game is for the leader to commit to a payoff-maximizing
strategy, anticipating that every follower will best respond by selecting a payoff-
maximizing strategy of their own. The solution concept used in these games is
the Strong Stackelberg Equilibrium (SSE), introduced in [11]. In an SSE, the
leader selects the strategy that maximizes his payoff given that every follower
selects a best response breaking ties in favor of the leader when a follower is
indifferent between several strategies. Therefore, without loss of generality the
SSE concept can consider pure strategies as best response for each follower.

The problem of finding an SSE can be formulated as the following Mixed
Integer Linear Program (MILP), referred to as (D2) [10]:

(D2) Max » wkfh (1)

keK
st. x'1=1,x>0, (2)
qd*'1=1, ¢" € {0,1}) Vk € K (3)
<> REmi+ M1 - gf) Vke K,VjeJ (4

el
0<sb =) Chay <M1 -qf) Vke K,VjedJ, (5)
el

Constraints (2) and (3) indicate that the leader selects a mixed strategy and
each follower responds with a pure strategy. The constant M in Constraints
(4) and (5) is a large positive constant relative to the highest payoff value that
renders the constraints redundant if q}“ = 0. In Constraint (4), f* is a bound
on the leader’s reward when facing the follower of type k € K. This bound is
tight for the strategy j € J selected by that follower. In Constraint (5), s* is a
bound on follower k’s expected payoff. This bound is tight for the best response
strategy for that follower. Together, Constraints (4) and (5) ensure that the
leader’s strategy and each follower’s strategies are mutual best responses. The
objective function maximizes the leader’s expected reward.

The rewards in a Stackelberg game in a security setting only depend on
whether the attack on a target is successful (if it is unprotected) or not (if the
target is protected). Thus, we denote by D*(j|c) the utility of the defender when
an attacker of type k € K attacks a covered target j € J and by D¥(j|u) the
utility of the defender when an attacker of type & € K attacks an unprotected
target j € J. Similarly, the utility of an attacker of type k € K when successfully
attacking an unprotected target j € J is denoted by A (j|u) and that attacker’s
utility when attacking a covered target j € J is denoted by A*(j|c). We express
as j € ¢ the condition that defender strategy ¢ patrols target j. The relationship
between the payoffs in a security game and in a general game are as follows:

v [ DF(jle)ifj €
Rf{ijwﬁj¢i (6)
k(jle) ifj i

. AR
%=t g "
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2.2 SSG for Border Patrol

We now adapt the SG formulation above to a problem where the defender first
pairs up the resources from different precincts to form m combined patrols and
then decides where to deploy these combined patrols. Let V' be the set of police
precincts and let E C V' x V be the set of edges representing the set of possible
precinct pairings, forming an adjacency graph G = (V, E). We denote by §(v) C
E the set of edges incident to precinct v € V, similarly for any U C V, 6(U) C E
denotes the edges between U and V\U, and E(U) C F denotes the edges between
precincts in U. We can then represent the possible combinations of m precincts
pairs as the set of matchings of size m, which is given by:

M, = yE{O,l}lE|:Zye:m7 Z Y <1 YveV

eeE e€d(v)

For every precinct v € V| let J,, be the set of targets to patrol that are inside that
precinct. Note that {.J, },ev is a partition of the set of targets J, i.e., Uyev J, = J
and J,N.J, = () for all u # v. The set of defender strategies selects the m precinct
pairings and for each pairing, further selects a target within the precincts in the
pairing where the resource team for that given pairing is deployed. The combined
patrol from the pairing of precincts v and v can only be deployed to a target in
Ju U J,. For each edge e = (u,v) € E we define J, = J,, U J,. It follows that the
set I of defender strategies can be expressed as

y € Mma
I = , c 0’1 |E| 0’1 [ J] . Z w S Z Ye ng‘/,
(y W) { } 8 { } J€EUveu Jv e€EE(U)US(U)

Zje] wj =m

(8)
For (y,w) € I, the variable y, indicates whether edge e is selected for a precinct
pairing and w; indicates whether target j is patrolled. The first condition indi-
cates that the coverage provided to any subset of targets is bounded by the
coverage on all incident edges to this subset of targets. The second condition
enforces that total target coverage is equal to the required number of resources.
The set of pure strategies for an attacker of type k € K consist in, for each
k € K, selecting a single j € J with probability 1. In our border context q;-“ =1
indicates that a criminal of type k € K attempts to penetrate the border through
target j € J.

The Border Patrol problem can be formulated as (D2) given in (1)—(5) by
explicitly considering the exponentially-many defender pure strategies in the
set (8) with defender and attacker rewards given by (6) and (7), respectively.
This formulation however is computationally challenging as the resulting MILP
considers variables x(, ., for each (y,w) € I, of which there is an exponential
number in terms of targets and edges. We derive a compact formulation following
the formulation presented in [9]. Our formulation is based on the observation that
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if rewards are given by (6) and (7) then the utility of each player only depends
on c;, the coverage at a target j € J. Where this coverage can be expressed as

¢ = Z Ty w) jed. (9)

(y,w)el:w;=1

We further consider the variables

Ze = Z T (y,w) ecF, (10)
(y,w)€l 1 ye=1

Gej = Z T (y,w) ecE,jeJ. (11)

(yw)€l 1 ye=1w;=1

where z. is the coverage on edge e € E and can be obtained by summing over
the pure strategies that assign coverage to that edge. Similarly, g.; represents
the combined coverage on edge e € E and target j € J and can be obtained by
summing over the pure strategies where edge e and target j receive coverage.

Given a graph G = (V, E) with V the set of precincts and F the feasible pair-
ings between precincts, we propose the following SSG formulation for a border
patrol (BP) problem:

(BP)
Max Z ot fk (12)
keK
st. g '1=1,q" e {0, 1}V Vk € K, (13)
ZCj:ZZe:m, (14)
jeJ ecE
Y z<1 Yo €V, (15)
e€d(v)
-1
D, o< 5 YU CV, |U| > 3,|U| odd (16)
ecE(U)
Y gei=g¢ VieJ (17)
ecE:jed,
D Ge =z Vec E (18)
J€Je
¥ < D*(jle)e; + D*(jlu)(1 — ¢))
+(1-q)-M Vje JVk e K, (19)
0 < % — AF(jle)e;
— ARGl (1 =) <A1 —q)) - M Vj e J,Vk € K (20)
ce 0,17, z € [0,1]"", (21)

s,f e R g e [0,1)/EIV. (22)
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Constraints (13) ensure that the each attacker k € K attacks a single target
Jj € J with probability 1. Constraint (14) indicates that the defender uses all his
resources in a feasible solution and that in order to form his resources he pairs
up precincts without exceeding the number of resources he wants to deploy. Con-
straint (15) indicates that a precinct’s contribution to a pairing cannot exceed 1.
Constraints (16) correspond to the Odd Set Inequalities, as introduced in [12],
and together with (14) and (15) enforce that the coverage probabilities on the
edges belong to the convex hull of the matching polytope of size m. Constraints
(17) and (18) enforce the conservation between marginal coverages in nodes and
edges. Finally, Constraints (19) and (20) are the same as in the formulation intro-
duced in [9] and ensure that ¢ and ¢ are mutual best responses. The objective
function in (BP), maximizes the defender’s expected utility.

2.3 Discussion

To ensure the correctness of the formulation (BP) we need to be able to recover
the variables x(, .,y for (y,w) € I-that represent the probability distribution
over the defender pure strategies—from an optimal solution c, z, q, s, f, g to
(BP). In particular, we need to find variables x € [0, 1]/l that satisfy constraint
(10). Note that the odd set inequalities (16) are necessary. We give an example
of z variables for which there does not exist a probability distribution over I that
would satisfy (10). Consider the example in Fig. 1, which shows a non-negative
z that satisfies constraints (14) and (15) for m = 2 but violates the odd set
inequalities (for the set U = {3,4,5}). We observe that this solution cannot
be expressed as a convex combination of pure matchings of size 2, making it
impossible to retrieve an implementable defender strategy x.

Fig. 1. Variables z € [0, 1]'F! that satisfy (14) and (15) but violate (16) for m = 2

Similarly, Constraints (17) and (18) also play a vital role in that they establish
a link between the coverage variables on the edges and on the targets. This
becomes much more apparent if one applies Farkas’ Lemma [13] on the linear
system defined by (17), (18) and g > 0 to understand which conditions on ¢ and
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z guarantee feasibility of the system. Applying Farkas provides the following
necessary conditions on ¢ and z which offer a more direct interpretation:

Yooze= > ¢ YUCV, (23)

e€E:e€E(U) JE€EUueu Ju
’
E cj > E ze VE CE. (24)
J€J:j€Unevices(uynE’ Ju ecE’

Constraint (23) states that given a subset of nodes, the coverage provided on all
targets inside these nodes cannot exceed the weight of the edges incident to these
nodes. Constraint (24) indicates that given a fixed set of edges E’, the weights
on those edges is a lower bound on the coverage of the targets in nodes to which
those edges are incident. Figure2 shows an example of variables z € [0, 1]|E|
and ¢ € [0,1]"7 that satisfy all constraints in (BP) except (17) and (18). The
numbers on the top of the nodes represent total coverage on targets in that node,
> e, Cis and the numbers on the edges represent the coverage probabilities on
the edges, z.. The solution in Fig.2 violates (23) for U = {1,2}. It is also not
possible to find in this example an implementable defender strategy x € [0, 1]” |
related to these variables z and c.

Fig. 2. Variables z € [0,1]'Fl and ¢ € [0,1]"! that do not satisfy (17) and (18) with
m=2

It can in fact be proven that (BP) is a valid formulation for the SSG by
showing that it is equivalent to (D2) in the sense that a feasible solution from
one leads to a feasible solution in the other with same objective value and vicev-
ersa. Given a feasible solution to (D2), one can construct a feasible solution to
(BP), with same objective value, through conditions (9)—(11). Conversely, given
a feasible solution to (BP), a feasible solution to (D2), with same objective value,
can be obtained relying on the fact that the cardinality constrained matching
polytope is integral, [14]. The formal proof is omitted here.

3 Sampling Method

In this section we consider a two-stage approximate sampling method to recover
an implementable mixed strategy x € [0, 1]/l which complies with the optimal
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probabilities on targets and edges, (c*, z*) as given by (BP). The quality of the
proposed sampling method is later tested in Sect. 5.

Given z*, the coverage vector over |E| of size m, we discard all the edges
in E such that z, = 0. We then select m of the remaining edges according to
a uniform random variable U(0,m). This, in itself, could provide edges that do
not form a matching. Therefore, let M be the set of m edges we have sampled.
Now, solve the following optimization problem:

Max Z 25 Ye

eeM
st. yeMm

Out of all matchings of size m, the objective function guarantees that we pick a
maximum weight matching. The optimization problem either returns an optimal
solution, in which case the edges in M admit a matching of size m, or, the
problem is infeasible and such a matching cannot be constructed. If the problem
is infeasible, we sample a new edge which we add to the set M and we re-optimize
the optimization problem above. The sampled matching respects the optimal
coverages if our algorithm returns the required matching after one iteration.
Otherwise, the matching will deviate from the optimal coverages. We proceed
in this iterative fashion until we construct a matching of size m. Note that this
algorithm will produce a matching in at most |E| — m iterations, as we know
that such a matching exists in the original graph.

Having obtained M*, the sampled matching of size m, the second stage of our
sampling consists in sampling an allocation of resources to targets that satisfies
the optimal target coverage probability returned by our formulation. To do so,
we discard targets j that belong to precincts which are not paired. For each
target j that belongs to a paired pair of precincts, say v and v, we normalize
their coverage probability by the weight of the total coverage provided by the
optimal coverage vector ¢* in the two areas v and v that are paired and denote
it by ¢;: )

E*f:# V(u,v) =e € M*.

2 jeraut, G

This way, we ensure that one resource is available per paired pairs of precincts.
The defender’s coverage on targets is composed by sampling over the newly
constructed ¢*.

4 Case Study: Carabineros de Chile

In this section, we describe a realistic border patrol problem proposed by Cara-
bineros de Chile. In this problem, Carabineros considers three different types of
crime, namely, drug trafficking, contraband and illegal entry. In order to mini-
mize the free flow of these types of crime across their borders, Carabineros orga-
nizes both day shift patrols and night shift patrols along the border, following
different patterns and satisfying different requirements.
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We are concerned with the specific actions that Carabineros can take during
night shift patrols. The region is divided into several police precincts. Due to
the vast expanses and harsh landscape at the border to patrol and the lack of
manpower, for the purpose of the defender actions under consideration, a num-
ber of these precincts are paired up when planning the patrol. Furthermore,
Carabineros have identified a set of locations along the border of the region
that can serve as vantage points from where to conduct surveillance with tech-
nical equipment such as night goggles and heat sensors (Figs.3 and 4). A night
shift action consists in deploying a joint detail with personnel from two paired
precincts to conduct vigilance from 22h00 to 04h00 at the vantage point located
within the territory of the paired precincts. Due to logistical constraints, for a
given precinct pair, Carabineros deploys a joint detail from every precinct pair
to a surveillance location once a week.

Fig.3. A Carabinero conducts Fig. 4. Harsh border landscape
surveillance

Carabineros requires a schedule indicating the optimal deployment of details
to vantage points for a given week. Figure 5 depicts a defender strategy in a game
with m = 3 pairings, |V| = 7 precincts and |J| = 10 locations. Table 1 shows a
tabular representation of the implemented strategy for that week.

T~

Monday ~—

_— 4 | 7\
)

Pairing 2

Monday

Y Precinct HQ
@ sorderoutpost
9
i Sunday
Pairing 3 \

Pairing 1 1
/ \

Fig. 5. Feasible schedule for a week
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Table 1. Tabular representation for the feasible schedule in Fig. 5

Pairing/outpost |12 |3|4|5 [6|7|8|9 10
Pairing 1 M

Pairing 2 M

Pairing 3 Su

Therefore, we have an adjacency graph G(V,E) where V is the set of
police precincts and E are the edges that represent valid pairing of precincts.
Further, the set of vantage points that need to be protected, corresponds to
the set of targets J. Furthermore, the vantage points are partitioned among
the different vertices of G, such that for a given v € V, J, contains all
the vantage points inside precinct u. The set of attacker types is given by
K = {Drugs, Contraband, Illegal entry}. In this setting, the pairings among
precincts is fixed at the beginning of each month. Therefore, the game is sepa-
rable into different standard SSG within every pair of paired precincts and one
can use a standard SSG formulation such as the one presented in [9] to solve
the different subproblems. Within each subproblem, the defender has a single
resource to allocate to one of the different vantage points on a given day of the
week. Given a coverage strategy over the targets, an adversary of type k € K
plays the game with probability 7% and tries to cross the border through the
vantage point j € J and on the day of the week that maximizes his payoff. It
remains to construct the payoffs of the game for the problem described. To that
end, Carabineros supplied us with arrest data in the region between 1999 and
2013 as well as other relevant data discussed next. In the following section, we
discuss a payoff generation methodology.

4.1 Payoff Estimation

An accurate estimation of the payoffs for the players is one of the most crucial
factors in building a Stackelberg model to solve a real-life problem. For each
target in the game, we need to estimate 12 different values corresponding to
a reward and penalty for Carabineros and the attacker for each type of crime
ke K.

We tackle this problem in several steps. First, we use QGIS [15], an open
source geographic information system, to determine what we call action areas
around each vantage point provided by Carabineros, based on the visibility range
from each outpost. Such an action area represents the range of a detail stationed
at a vantage point, i.e., the area within which the detail will be able to observe
and intercept a criminal.

Further, consider, for each type of crime k € K, a network G*(V*, £¥) that
models that type of crime’s flow from some nodes outside the border to some
nodes inside the border, crossing the border precisely through the action areas
previously defined. As nodes of origin for the different types of crime, we consider
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cross border cities. As destination nodes we consider the locations inside Chile
where Carabineros has performed an arrest of that type of crime. In order to have
a more manageable sized network, we consider a clustering of these destination
nodes. We later show that our methodology is robust versus changes in the
number of cluster nodes.

Specifically, for a crime of type k € K, let us define S¥ C V* as the nodes
of origin situated outside the borders, F¥ C V¥ as the nodes of destination and
J as the set of action areas along the border. Each destination node, f € FF,
resulting from a clustering procedure is then assigned a demand b(f) which
corresponds to the number of destination nodes which are contracted into f. We
use the k-means model to cluster crime data. For each k € K, the edge set £F is
constructed as follows. All nodes of origin are linked to all action areas. These
areas are then linked to all of the destination nodes for crime k£ € K. Figure6
is a representation of such a network. The nodes to the left represent the points
of origin of crime and the three nodes to the right are clusters of destination
nodes for those crime flows. Note that crime enters the country through the four
action areas marked as squares along the border.

Foreign country / Nation

\\g/~ - Drug traffic
% Contraband

Fig. 6. Three crime flow networks, one per type of crime

We propose the following attractiveness parameter for a given action area
j € J for a criminal of type k € K attempting to move from node s € S* to
node f € F* through action area j:

Ui — Kilometers of roads inside action area j
d dsj + djy

s b
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where d,,, is the distance in kilometers between nodes u € V¥ and v € VF.
This attractiveness parameter is proportional to the total length of roads inside
a given action area and it is inversely proportional to how much an attacker
moving from s* to f* has to travel in order to cross the border through area j.

We model the flow of crime k& € K through a single route from s € S* to
f € F* passing through j € J as follows:

J
AU

i
> sresk Zj/eJ e

The flow of crime k € K through a route (s, j, f) is expressed as a proportion
with respect to the flow of crime k € K through all routes leading into the same
destination point f € F¥. The parameter A € R, provides a proxy of how the
defender expects crime to behave. A value of A = 0 means that crime k € K
between any node of origin and destination distributes itself evenly among the
different action areas. A high value of A\, however, is consistent with a flow of
that type of crime through those action areas j € J with a higher attractiveness
parameter U’ 5o It follows that the total flow of crime of type k € K through j € J

x(57j’f’k) =

b(f)-

can be computed by summing over all origin nodes s € S* and all destination
nodes f € F*:

AUY

Gk =Y ¢ b(f) VjeJVkeK.

AUY,
seSk feFk ZSIESk Zj’eJe s'f

Based on this parameter, we propose the following values for the players’ payoff
values:

AF(jlu) = z(j, k) - AG (k) Vj e J vk e K,
A¥(jle) = —=(j, k) - OC(k) Vje J vk e K,
Dk

jle)=0 Vj e JVEk € K,
jlu) = —x(j,k) - AG(k) Vj e J,Vk € K,

where AG(k) denotes the average gain of successfully committing crime k € K,
and OC(k) the opportunity cost of being captured while attempting to perpe-
trate a crime k € K. Note that the reward Carabineros perceives when capturing
a criminal is 0, irrespective of the crime. Carabineros is only penalized when a
crime is successfully perpetrated on their watch. These values were calculated
following open source references [16-18] and where then vetted by Carabineros
to ensure that our estimates were realistic.

4.2 Building Software for Carabineros

We provide Carabineros with a graphical user interface developed in PHP to
determine optimal weekly schedules for the night shift actions for a set of border



206 V. Bucarey et al.

precincts in the XV region of Chile. The software provided for Carabineros is
divided into two parts: a first part devoted to the parameter generation of the
game according to the indications of the previous section, and a second part,
which solves for the optimal deployment of resources. We discuss the two parts
separately.

Parameter Estimation Software. The objective of the parameter estimation
software is to construct the payoff matrices for the SSG. This software allows
for the matrices to be updated when new criminal arrests are recorded in Cara-
bineros’ database. The input for this software is a csv data file with arrest data
which is uploaded to the software. The main screen of the software shows a map
of the region to the left and the following options to the right:

1. Crimes: Shows all criminal arrests in the area, color-coded according to the
type of crime.

2. Nodes of origin: Shows the nodes of origin used in the networks constructed
to determine the crime flow through the action areas.

3. Cluster: Clusters the criminal arrest points and constructs the crime flow
networks joining nodes of origin, action areas and the clustered arrest points,
which are the destination nodes for the different types of crime. It displays
the payoff matrices for the different action areas.

4. Input file and update: Allows to upload a csv data file with arrest data. One
then re-clusters to obtain new destination points and to construct the new
crime flow networks that lead to new payoff matrices.

Deployment Generation Software. The deployment generation software is
the part of the software that optimizes the SSGs and returns an implementable
patrols strategy for Carabineros. The user is faced with a screen that on the left
shows a map of the region where the different action areas are color-coded along
the border, and on the right shows different available user options. Clicking
on an action area reveals the payoff values for that area. The values can be
modified on-screen although this is discouraged. The user can additionally select
the number of resources in a given paired pair of precincts. Increasing the number
of resources can be used to model that a joint detail can perform a night-shift
patrol as many times during a week as the number of resources he has. Further,
the user can select the number of weekly schedules that are to be sampled from
the optimal target coverage distribution, allowing him to change the weekly
schedule to a monthly schedule. Once all parameters are set, clicking on solve
returns the desired patrol schedule such as the one shown in Table 1.

Once a patrol strategy has been returned, the user can perform several
actions. If the patrol is not to the planner’s liking, he can re-sample based on
the optimal coverage distribution returned by the optimization. This produces
a different patrol strategy that still complies with the same coverage distribu-
tion over targets. The user can further impose different types of constraints on
each paired pair of precincts to model different requirements such as forcing a
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deployment on a given day of the week or to a particular target. Similarly, the
user can forbid a deployment on a given day of the week, or forbid deployment
to a given target. Further, the user can ensure that at least one of a subset of
targets is protected or that deployment to a given target happens on at least one
out of a subset of days. Solving the game under these constraints and sampling
will produce a deployment strategy that complies with the user’s requirements.

4.3 Robustness of Our Approach

We study the robustness of the solutions produced by our software to varia-
tions in the payoff matrices. Specifically, we study the robustness of our method
against variations of two key parameters in the payoff generation methodology:
A, which models the defender’s belief on how crime flows across the border and
b(f), which indicates the number of nodes clustered into a given destination node
f. Equivalently, one can consider variations in a vector h = (hy, ho, hg) which
determines the number of cluster nodes for the three types of crime considered.
We study the effects of variations in the parameter A and in the vector of cluster
nodes h separately.

As a base case, we generate payoffs for the players by setting A = 50 and
h = (6,6,6). This appears reasonable given the size of the problem and dis-
tribution and number of arrests per type of crime in the studied region. Let
A€ A = {0.5)X0.75)\,1.25\,1.50} and h € H = {(hy,ha,h3) € N* : hy =
hi+s,t€{1,2,3}, s €{0,1,2,3}}. We denote by c(), h), the optimal coverage
probabilities on the targets when the payoffs have been defined according to A
and h. Given two vectors p,q € ]R‘_[_]‘, we consider the usual distance function
between them:

d(p,q) = > (pj — ;)
Jj€J
We identify \* € argmax{d(c(\,h),c(\,h))} and h* € argmax{d(c(},h),
c(\, h))} and plot ¢(\, h), ¢(A\*, k) and (X, h*).

Figure 7 shows the optimal coverage probabilities c(, h), ¢(A\*, h) and c(X, h*)
for a game with five paired police precincts and twenty targets. One can see that
the optimal probabilities are very robust towards variations in the number of
clusters. As one could expect, they are less robust to variations in the para-
meter A. Recall that a low value of A constructs the payoff matrices under the
assumption that crime distributes itself uniformly among the different action
areas j € J. It is therefore understandable that the optimal coverage probabili-
ties reflect this by trying to cover the targets uniformly. On the other hand the
optimal coverage probabilities tend to be more robust for higher values of .

5 Computational Experiments

In this section we run computational experiments to explore the quality of the
two-stage sampling method described in Sect. 3 that recovers an implementable
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Fig. 7. Robustness of the solution method to variations in the parameters A and h

defender strategy given an optimal solution to (BP). Further, we analyze the
performance of the proposed formulation (BP) against solving the game, that
results from explicitly enumerating all the defender pure strategies, with formu-
lation (D2).

5.1 Performance of the Alternative Sampling Method

To evaluate the performance of the proposed alternative sampling method, con-
sider an optimal solution to (BP). In particular, (¢*, z*) are the optimal cover-
age distributions over targets and edges. Repeated executions of the sampling
method will lead to estimates on said distributions (¢, 2). In this section, we
describe how to construct these estimates and study how close the estimated
coverage distributions are to the optimal distributions.

Consider z* and construct 2 as follows. Sample ¢ = 1,..., N matchings of size
m according to the first stage of the sampling method. In our experlments N =
1000. For each edge e € E, its estimated coverage is given by Z. = & Zl 1265
where 2! € {0,1} depending on whether or not edge e € E was sampled in
sampling ie{l,...,N}.

We use the Kullback-Leibler divergence [19] to measure the closeness of the
two distributions z* and Z over instances with n nodes where n € {5, 25,50, 100}.
For each instance size, we generate 30 estimations Z and plot the results as box
diagrams as shown in Fig. 8.

Observe that the Kullback-Leibler distance between z* and 2 is very small,
below 0.2 over all instances, which is a good indicator that 2 is a good estimator
for z*. in particular we observe that the larger the set of nodes in an instance the
better an estimator Z appears to be. Further, for instances with 100 nodes, most
of the Z have a Kullback-Leibler distance to z* which is below 0.02. We performed
the same analysis to measure the closeness of the optimal coverage distribution
over targets ¢, to an estimated distribution ¢, obtained from N samplings in the
second stage of our sampling method, but omit it here due to space limitations.
Our analysis reveals that ¢ is a good estimator for c¢*.
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Fig. 8. Kullback-Leibler distance between z* and % over instances of different size

5.2 Performance of (BP)

We study the performance of the proposed formulation (BP) on randomly gener-
ated instances against using the formulation (D2) to solve the Stackelberg game
that results from explicitly enumerating all the defender pure strategies. The
instances we consider are generated as follows. We consider random graphs with
n nodes, where n € {5,6,...,22} and edges such that the graphs are connected
and that, in average, each node has degree three. Further, we consider four tar-
gets inside each node. The set of targets, J, is thus of size |.J| = 4n. We consider
|K| = 3. We then uniformly generate payoff values for the defender and each
attacker type by considering for each player, rewards D*(j|c) and A*(j|u) for
all k € K and j € J in the range [0,100] and penalties D*(j|u) and A*(j|c) for
all k € K and j € J in the range [—100, 0].

In Fig.9, we show the running time of the different solution methods over
the generated instances. On the left hand side, we consider instances where the
number of pairings is 2. On the right hand side, we consider instances where
the number of pairings is 3. For these last instances, we only consider graphs
with up to 20 nodes. In both plots, for each instance size, we record the average
solving time of 30 randomly generated instances. Our compact formulation (BP)
outperforms (D2). The set of leader strategies grows exponentially and (D2) can
only explicitly enumerate these strategies for very small graphs of less than 12
nodes. For graphs that both methods can handle, (BP) solves instances much
faster than (D2). Our compact formulation (BP) scales much better than (D2)
being able to comfortably handle instances on graphs with up to 20-21 nodes.
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Fig. 9. Solving time (s) vs. number of nodes. Comparing (D2) and (BP)

6 Conclusions

In this paper, we have studied a special type of SSG played on a network. In
this game, the defender has to commit to a mixed strategy which consists of two
distribution strategies, one over the edges of the network, representing pairings
between nodes, and one over the targets of the game which are inside the nodes.
The defender can pair m nodes and protect m targets. Further, coverage on a
target can only occur if the node in which the target is contained, is incident to
a covered edge.

We have provided a compact formulation for the SSG network problem
presented and also provided a sampling method to recover an implementable
defender strategy given the optimal coverage distributions. In addition, we have
described a real-life border patrol problem and have presented a parameter gen-
eration methodology that takes into account past crime data and geographical
and social factors to construct payoffs for the Stackelberg game. Robustness
tests have shown that the solutions our software provides are fairly robust to the
networks we generate as well as to minor changes in the flow of crime along the
border. Computational tests have shown that the two-stage sampling method we
describe, provides implementable strategies that do not deviate much from the
optimal coverage distributions. Further computational tests have shown (BP)
to have smaller solution times and better scaling capabilities than the extensive
formulation (D2) on randomly generated security instances.

There are many promising lines of future work. First, from a Mathematical
Programming perspective, we intend to develop decomposition approaches for
(BP)—which has an exponential number of the so-called odd set inequalities—to
allow it to efficiently solve instances on larger graphs. Second, from a modeling
perspective several enhancements could be addressed. In the model presented, a
single security resource is available to patrol a target in a pairing of precincts,
as it happens in the border patrol problem studied. A natural extension is to
consider that different pairings of precincts have different numbers of security
resources available to patrol. Further, our payoff estimation methodology could
be enhanced in different ways. Temporal weighing of crime data would increase
the relative importance of the more recent crimes. Our estimation methodology
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currently builds the attractiveness of the action areas for a certain type of crim-
inal based on road density around the action area and distances to be traveled
by the criminals from source to destination. Other environmental factors such
as maximum altitude or availability of shelter along a route or distance of set-
tlements from a route could be taken into account to compute a more realistic
attractiveness of an outpost. The research question that remains is verifying
whether these modeling enhancements can lead to a better payoff estimation
and, thus, to a better representation of the game. Finally, we plan to evalu-
ate the proposed patrol planner following deployment. This evaluation should
include both a comparison of crime rate data before and after the deployment of
this system and the expert validation that Carabineros de Chile will undertake.
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Abstract. The Global Positioning System (GPS) is commonly used
in civilian Unmanned Aerial Vehicles (UAVs) to provide geolocation
and time information for navigation. However, GPS is vulnerable to
many intentional threats such as the GPS signal spoofing, where an
attacker can deceive a GPS receiver by broadcasting incorrect GPS sig-
nals. Defense against such attacks is critical to ensure the reliability and
security of UAVs. In this work, we propose a signaling game framework
in which the GPS receiver can strategically infer the true location when
the attacker attempts to mislead it with a fraudulent and purposefully
crafted signal. We characterize the necessary and sufficient conditions
of perfect Bayesian equilibrium (PBE) of the game and observe that
the equilibrium has a PLASH structure, i.e., pooling in low types and
separating in high types. This structure enables the development of a
game-theoretic security mechanism to defend against the civil GPS sig-
nal spoofing for civilian UAVs. Our results show that in the separating
part of the PLASH PBE, the civilian UAV can infer its true position
under the spoofing attack while in the pooling portion of the PLASH
PBE, the corresponding equilibrium strategy allows the civilian UAV to
rationally decide the position that minimizes the deviation from its true
position. Numerical experiments are used to corroborate our results and
observations.

Keywords: Game theory - Signaling game - GPS spoofing - Cyberse-
curity

1 Introduction

The unmanned aerial vehicle (UAV) is the next generation of aerial platform
in various domains. Apart from the military applications, the civilian UAVs are
anticipated to play an essential role in commercial applications including business
to business (B2B) and business to consumer (B2C) purposes, especially for the
delivery systems with logistics services and supply chain support. Prime Air, for
example, is a delivery system, currently in development by Amazon, using fully
autonomous GPS-guided UAVs to provide rapid parcel delivery (Fig. 1 shows an
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Fig. 1. llustration of a GPS-guided UAV conducts delivery mission between two loca-
tions. The attacker in the lower-right corner indicates that the mission is under threat.

example), showing a great potential to improve the efficiency and safety of the
overall supply chain system [1].

Emerging applications that primarily depend on autonomous UAV requires
a dependable and trustworthy navigation system. Global Positioning System
(GPS) is the most common and popular navigation sensor used in the navigation
system of UAVs to achieve high-performance flights. In military applications,
GPS signals are encrypted to prevent unauthorized use and imitation. However,
the current civilian GPS signal is transparent and easily accessible worldwide,
which makes the civilian GPS-guided infrastructures vulnerable to different types
of GPS spoofing attacks.

It has been shown by researchers in recent literature [22] that civilian UAVs
can be easily spoofed. For example, in 2002 researchers from Los Alamos National
Laboratory have successfully performed an simplistic GPS spoofing attack [24].
In 2012, Humphreys et al. have shown the spoofing of a UAV by sending the
false positional data to its GPS receiver and thus misled the UAV to crash into
the sand [7].

Therefore, it is imperative to develop an appropriate defense mechanism to
make the civilian GPS dependable for UAVs. Cryptography is one prospective
approach. However, the encryption of civilian GPS signals requires high level of
secrecy, expense, and scalability. It will create a significant computational and
communication overhead when widely used, which can be impractical and limit
the scope of its applications. Moreover, the cryptographic keys can be leaked to or
stolen by a stealthy adversary who launches an advanced persistent threat (APT)
attacks that exploit zero-day exploits and human vulnerabilities. Therefore, an
alternative protection mechanism is needed to build a trust mechanism that
allows UAV to mitigate the risk of UAV by anticipating the spoof attacks.

To this end, we propose a two-player game-theoretic framework to capture
the strategic behaviors of the spoofer and the GPS receiver in which the spoofer
aims to inject a counterfeit signal to the UAV to mislead its command and con-
trol while the receiver aims to decide whether to estimate the true signal upon
receiving the signal. In the two-player game, the receiver does not know the true
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signal while the adversary knows the correct signal and is able to generate a
counterfeit one. To capture the information asymmetry, we use a continuous-
kernel signaling game model in which the receiver does not completely know its
current location but can form a belief given the received GPS signal. The loca-
tion of the UAV can be taken as the private information of the sender and hence
it is taken as the type of the sender, which is a continuous variable unknown to
the receiver. This treatment aligns with the literature in the games of incom-
plete information. The objective of the receiver is to estimate the correct location
based on the received signal and the risk of trusting it. The spoofer, on the other
hand, designs a deceptive scheme to manipulate the UAV to move toward an
adversarial direction. The spoofer can act stealthily by carefully crafting a signal
that takes into account the response of the receiver. The equilibrium analysis of
the two-stage game with information asymmetry provides a fundamental under-
standing of the risk of a UAV under spoofing attacks and yields a strategic trust
mechanism that can defend against a rational attacker.

Our results show that the perfect Bayesian equilibrium (PBE) of the game is
pooling in low types and separating in high types (PLASH), known as a PLASH
PBE. In the separating part of the PLASH PBE, the UAV can strategically
infer its true position under the spoofing attack; while in the pooling part of
the PLASH PBE, the civilian UAV could not infer its true position exactly, but
the corresponding equilibrium strategy enables the civilian UAV to rationally
decide the position that minimizes the deviation from its true position. When
the deception cost is small enough relative to the level of deviation of aimed by
the spoofer, the PLASH PBE becomes a fully pooling PBE (PPBE); while the
deception cost is sufficiently large compared to the level of deviation, the PLASH
PBE becomes a fully separating PBE (SPBE). These two PBEs coincide with
the intuition that the spoofer prefers pooling (resp. separating) strategy when
the deception cost is low (resp. high). The main contributions of this paper are
summarized as follows:

(i) We model the deceptive spoofing using a continuous-kernel signal game
framework and capture the information asymmetry between the sender and
the receiver through the private type.

(ii) We develop a risk-based defense mechanism in which the GPS receiver can
strategically trust the received messages by taking into account the spoofing
threat that a civilian UAV is subject to.

(iii) We characterize the PLASH perfect Bayesian equilibrium (PBE) of the sig-
naling game between the GPS spoofer and the UAV, which has implications
in developing defense mechanisms.

1.1 Related Work

There have been a number of approaches based on cryptography proposed to
defend against GPS spoofing attacks. For example, spreading code encryption
(SCE) [6,18] is currently the only cryptographic technique in widespread use,
exclusively in military applications [21]. Techniques based on SCE have provided
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a very high degree of resistance to the GPS spoofing attacks; however, the high
level of secrecy, expense, and scalability of such approach makes it impractical
for the civilian GPS [21]. Kuhn et al. [12] have used short sequences of spread
spectrum security codes to modify the GPS signal to suit the civilian application;
however, the modification in the standard signal protocols makes it impractical
to be widely use [21]. Other cryptographic techniques include the navigation
message authentication (NMA) [18,25,27], which allows both the uncertified
and certified GPS receivers to read navigation messages with different levels of
security; however, it has shown that NMA can be fully circumvented by powerful
spoofers [6,16].

There has also been a significant amount of work on GPS spoofing defense
techniques based on signaling processing [5]. For example, receiver autonomous
integrity monitoring (RAIM) is the most widely used approach to detecting
GNSS spoofing attacks [8,13]; RAIM is successful in any spoofing attacks that
confined to one or two aberrant satellites, but fails when the attacks are confined
to the entire constellation [21]. Another line of anti-spoofing work lies in the cor-
relation with other GNSS sources. For example, the external sources of position
and timing information such as inertial measurement unit (IMU) is one of the
possible sources for the verification of the GPS position data [8,13]. These tech-
niques can accumulate errors due to the inaccuracy of external sources compared
to the GPS signal, thereby causing a quick drift from the accurate information.
There are also anti-spoofing techniques using machine learning. For example,
Wang et al. [23] have developed a machine learning classifier to detect time
synchronization attack in cyber-physical systems.

Game theory has been widely applied in the intrusion detection systems [31],
and the cyber security systems in various fields, including wireless networks
[10,20], mobile networks [19], and control systems [17,29,30]. Signaling game
has attracted attention in the field of cyber security [2,3,28]. Xu et al. [2§],
for example, have proposed an impact-aware defense mechanism using a cyber-
physical signaling game. Casey et al. [2] provided a game-theoretical model to
simultaneously study systems properties and human incentives.

In this work, we use the signaling game to capture the strategic interactions
between the sender and the receiver. The GPS receiver does not have complete
location information and the spoofer aims to send signals to mislead the UAV to
another location. The game-theoretic defense provides an algorithmic solution
that can be implemented on the embedded system in the UAV against GPS
spoofings.

1.2 Organization

This paper is organized as follows. Section2 presents the problem statement
and develops a signaling game model. In Sect.3, we analyze signaling game,
define the PLASH PBE, and provide the necessary and sufficient conditions
of the equilibrium. The numerical results are shown in Sect. 4. Finally, Sect.5
concludes the paper.
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2 Problem Statement

In this section, we formulate the game-theoretic model for UAV spoofing. First,
we describe the dynamic state-space control model of the UAV and show that the
UAV can be manipulated by controlling the source of the position information.
Then, we describe the GPS signal spoofing attack model. Finally, we develop a
signaling game model for the strategic defence mechanism.

2.1 State-Space Model of UAV

Consider an autonomous UAV that conducts a delivery mission from the origin to
the destination as shown in Fig. 1. Suppose that the navigation of the UAV is
fully supported by the GPS, and there is no other infrastructure such as radar
that can provide navigation information. For each specific mission, the UAV
flies along a prescribed flight path. Without loss of generality, we assume that
the UAV flies at the same altitude; thus we focus on the 2-dimensional (2-D)
navigation model with longitude and latitude.

Let t = [ty, ty], v = [vg,vy] and X = [Az, Ay] be position, velocity and accel-
eration of the UAV, respectively, where J, and J, are the 2 and y components
of J € {t,v,\}. Note that we use ¢t to denote the position, which is referred as
the type in the signaling game or the incomplete information of the game. The
linear state-space model for the UAV plant is described as:

Xz = AXz + B/\za

where x, = [i]\j , Xz = {Z’j , for z € {z,y}, A = [8 (1)] , B = [(1)] . Thus,

the state x is driven by an acceleration A, which is the control input. The con-
trol objective of the UAV is to track a prescribed flight path. Let t = [t;,t,],
0 = [03,7y], and A = [A;, Ay] be the prescribed reference position, velocity, and
acceleration, respectively. Similarly, the double integrator dynamics of the pre-
scribed reference model is X, = AX. + B\,, where Y, = [;\z] y Xz = B’Z} , for
z z

z € {z,y}. We model the controller of the UAV by a Proportional-Derivative
(PD) compensator A\, = —K(x. — X»), where K = [K,, K ] is the gain matrix
with K, K4 > 0 such that the closed-loop control system is stable. Thus, the
continuous-time linear state space model of the UAV can be written as:

=P ]+ 8] (1)

We consider the case when GPS is the only source of navigation information.
Suppose the UAV receives a GPS signal indicating a current position ¢t = (¢, t,)
that shows a deviation of the UAV from the prescribed flight path. The controller
adjusts the velocity v and the acceleration A according to the state space model
(1) as: v, = (A+ BK)t, + BKt,, and A = (A — BK)v, + BK&,, for z € {z,y}.
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As shown in Sect. 2.2, a GPS spoofer aims to mislead the UAV to a wrong destina-
tion via creating a reset flight path by GPS signaling spoofing. The GPS spoofer
starts a spoofing attack by sending a fake GPS signal indicating a wrong position
t' = (t,, t;) that shows a fake deviation. The reset flight path is determined based
on the first spoofing signal. In this paper, we only consider that once the reset
flight path is determined, it is fixed during the entire delivery mission. If the UAV
is naive, its controller completely accept ¢’ = (t;,,t;). The corresponding v, and
AL are then obtained; the GPS spoofer continues spoofing the GPS signal based on
the first spoofed signal to lead the UAV to fly on the reset flight path towarding the
wrong destination while making the controller believe it is the original prescribed
flight path. We model the communication between the GPS spoofer and the UAV
by a signaling game, and show that the strategic acceptance of t' = (¢}, ) will
significantly reduce or completely avoid the damage that might be caused by the

spoofing attack.

2.2 GPS Signal Spoofing

In this paper, we consider a GPS signal spoofer located from a distance as shown
in Fig. 2. At time 7 during one mission, the spoofer starts to launch an spoofing
attack. The spoofer is capable of capturing the authentic navigation message
for the UAV from all visible GPS satellites and sends the counterfeit navigation
message to the UAV as shown in Fig.2. The navigation message from GPS
satellites does not directly reveal the 2D position; instead, the message contains
the time and the orbital information of the GPS satellites for computing the
2D position by the GPS receiver of the UAV via 2D trilateration. The spoofer
aims to make the GPS receiver of the UAV report the current location as the
simulated position ¢ = [t/ ;] while the true position is ¢ = [t,,,].

Starting from time 7, the spoofer continuously sends the UAV the counterfeit
navigation messages such that the UAV would be deceived to fly along the reset
flight path as shown in Fig. 3. The deviation between the true path and the reset
path depends on the simulated position chosen by the adversary at time 7.
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Fig. 2. Illustration of a GPS spoofing attack targeting a GPS-guided UAV.
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Fig. 3. Illustration of a complete GPS spoofing procedure. 1: True position of the UAV;
2: Counterfeit GPS signal makes the UAV think that its current position is deviated
from the original path; 3: UAV control system adjusts the velocity and acceleration
to return to the original path; 4: Actual move of the UAV; 5: Reset path; 6: Original
path; 7: Wrong destination; 8: Correct destination.

2.3 Signaling Game

In this sub-section, we propose a game-theoretic cyber-security mechanism to
capture the receiver’s uncertainties on the received GPS signals, which can be
either the true locations or the counterfeit ones. The analysis of the game yields
a defense mechanism that allows the UAV to strategically minimize its risk and
deal with the GPS signal spoofing without terminating the mission or resorting
to other costly navigation infrastructures.

Signaling games are a class of the incomplete information games, in which
one player has more information than the other. Specifically, the more informed
player strategically decides to signal the private information called type, which is
unknown to the opponent; the less informed player decides how to respond to the
signal received [9,15]. In this paper, we model the communications between the
GPS spoofer and the UAV by the signaling game and propose a game-theoretic
approach to dealing with the GPS deception.

In our scenario, the role of GPS spoofer is the signal sender, denoted as S,
and the role of GPS receiver of the UAV is the signal receiver, denoted as R. It
is clear that the GPS spoofer is the more informed player and the UAV is the
less informed counterpart. To capture the information asymmetry, we use the
signaling game framework in which the navigation message (thus the position
information) is only known to S. The position is viewed as type t = [tg,t,] € T,
where t, and ¢, are the latitude and longitude, respectively, in the form of
decimal degrees, and T' = [t7*,¢2] x [t;, t}'] is the 2D location space with ¢7"
and tM are the minimum and maximum values of z € {x, y}, respectively, which
are determined based on the mission of the UAV. Note that the position or the
type t takes a continuum of values in set 7. Hence the game is a continuous-kernel
signal game.

Let m € M be the navigation message sent by S. We denote 2(m) =
[£2,(m), $2y,(m)] : M — T as the 2D trilateration function to compute the 2D
position. The output of the computation is ¢’ = [t} ¢!] = £2(m) is the position

x) Yy
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Fig. 4. Illustration of the signaling game model. The procedure represented by the
solid blue line is equivalent to the procedure represented by the dashed blue line, i.e.,
the strategy 6 generates a message m that tells R the position t' = 2(m) = s, where
s is the signal generated by the signal strategy a.

claimed in message m. This process is illustrated in Fig. 4. The procedure of 2D
trilateration is a pure mathematical computation and there is no strategic activ-
ity involved; thus, we can equivalently regard the action of generating message
m as the action of generating a signal s = [s,, s,] € T, i.e., choosing s = t’ means
is equivalent to generating a message m that indicates t' = [t},,t;] = 2(m).

The signaling game is played at 7, which is chosen by the spoofer, S. Since the
choice of 7 contains no strategic activity, we assume that 7 is chosen according
to a uniform distribution. Suppose a UAV, R, is flying at position ¢ = [t,, t,] at
time 7. Here, we assume that ¢, and ¢, are drawn independently according to
a uniform distribution over a credible interval to the receiver. After capturing
the authentic navigation message for R from the GPS satellites, S generates a
counterfeit message m € M leading to ' = 2(m) or, equivalently, generates
a signal s = ¢. Then, S sends message m to R (equivalently sends signal s
to R). Sender S tells the truth if s = ¢; otherwise, s = ¢/, for ¢’ # ¢. Once s
is observed by the receiver, R can strategically estimate the true location ¢ by
taking an action a = [ag,a,] € A. It is natural to take A = T. The receiver
then estimates the position of the UAV based on its belief and the received
message. The navigation system of the UAV then adjusts the direction and
speed according to the estimated position.

S has the cost function C*(a,t,s) = C4(a,t) + ki CP(t,8) : AxT x T — R,
where C4(a,t) : AT — Ris the action-related cost, and CP(t,s) : TxT — Ris
the deception cost, and k1 > 0 is a constant scaling the intensity of the deception
cost. The signal s (thus the message m) is only cost relevant to S in CP. R has
the cost function C¥(a,t) : A x T — R. The goal of S is to choose a message to



Strategic Defense Against Deceptive Civilian GPS Spoofing 221

minimize the cost function by anticipating the action of R, while the goal of R
is to take an action to minimize the cost function based on the belief about the
true type after observing the signal s.

Suppose that the true type is t = [t,,t,]. S chooses the message m claiming
t' = 2(m) based on the pure strategy, which is a measurable function 6(t) =
[05(tz),0y(ty)] : T — M. Equivalently, we define a measurable function a(t) =
[ax(t.),ax(t,)] := T — T as the signal strategy, based on which S chooses the
signal s. The aforementioned relationship between s and m yields «(t) = t’. The
interpretation is that the signal strategy «(¢) indicates the position S wants R
to believe. R chooses its action a = [as,a,] using a pure strategy F(£2(m)) :
M — T. Based on the action, the strategically chosen position is sent to the
UAV control system. The signaling game model is illustrated in Fig. 4.

Due to the fact that no GPS satellite is in a geostationary orbit, all the
GPS satellites are moving all the time with respective to the ground; thus, there
exists a message subspace M; such that for each pair of different messages m;,
m; € My, we have £2(m;) = £2(m;) = t. Thus, every message m € M, gives
2(m) = t. Clearly, M = U; M; and |M;| = co. Therefore, S can send an infinite
number of messages for any strategy 0(t). Equivalently, we can claim that for
every specific signal strategy a(t) = ¢, there is an infinite number of messages
m € My that S can choose.

3 Signaling Game Analysis

In this section, we define the cost functions of the sender S and the receiver R
and analyze the solution of the signaling game based on the perfect Bayesian
equilibrium (PBE).

3.1 Cost Function and Strategy
Let C4(a,t) =|| a —t— L ||?> and CP(t,m) =|| s —t ||> +p || s ||>. The cost
function of S is defined as:
CS(a,t,s) = Ca,t) + k1CP(t, )
=la—t=LI?+ki( | s=t*+p ] s?)
- [(az —te — 1)+ /’91((53c —z)? + psi)]
+ [(ay —ty — ly)2 + k1 ((Su —y)?+ psz)],

where L = (l;,l,) with I;,l, > 0 represents the malignity of S that models
the conflict of interests between S and R. Therefore, the optimal action that
minimizes the cost function of R leads to a strictly positive C4, p || s ||? with
p > 0 models the other cost including message generation cost and transmission
cost, and k; > 0 parameterizes the intensity of the cost CP.

The cost function of R is defined as:

Cf(a,t) = ka [l @ =t |*= ka(as — ta)? + ka(ay — t,)?, 3)
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where ky > 0 is a constant. Let C* = (a, —t, — [,)% + kl((sz —t.)% + psi),
for z € {z,y}, and let CT® = ky(a, — t,)?and CY = kq(a, — t,)%. Therefore,
R chooses an action a = (as, ay) to solve the following problem

min C¥(a,t) := CB* + CB, (4)

a€A

S aims to choose a message m to solve the following problem

; S — (5 Sy
grél%lC (a,t,s) :=C>% +C°Y. (5)

Since t, and t, are generated independently. Thus, min, C%* and min, C5Y
are independent to each other and can be solved independently and so are

. . : R _ : R,z : R,y
min,, CR= and ming,, C®Y. Therefore, Ianelgl C™(a,t) = nann CH + naun c™Y,
3 T Y

.S .S - S
and Igg,}}c (a,t,m) = HSHDC o +rrSunC’ Y. Then, (4) and (5) are equivalent
x y

to the following

min O™ (a,,t.) = kala, — 1), (6)
and min,, C%*(a,,t,,s,) = C4*(a,,t,) + k1CP*(t,,s.), where C*(a,,t,) =
(a, —t, —1,)% and CP=*(t,,s,) = (s, — t.)? + ps2, for z € {z,y} (hereafter).
The function C4+#(-,-) and CT#(-,-) are double differentiable at both arguments
with C{5* < 0 < C{}7 and Cf5* < 0 < C[2%; thus, C4* and CF* are convex
in action a, and super-modular in (a.,t,). Let a}‘%)z(tz) := arg min,, C* = ¢,
and a’g’z(tz) := argmin,, C%* = t, + [, respectively, be the most preferred

action (taken by R) for R and S with % > 0 for J € {R,S}; and

ag.(tz) < ag.(t:) that coincides with the existence of conflict of interest.

CP#(.,.) is double differentiable for both arguments and Cl)* < 0 < C5,
which implies that given a type t., a larger s, leads to a larger deception cost.

Based on the pure strategy «(t), S chooses a signal s(t) = (sz(tz), sy(ty))
and sends a corresponding message m. After observing the signal s,, R updates
its posterior belief about t,, denoted as g, (t.|s.), using Bayes’ rule. Using the
pure strategy 5(s) = (8z(8z), By(sy)), R takes an action a = (a,, ay). Let p,(t.)
be the prior belief of R about type t.. Let ¢%*(s.)|t.) and ¢**(a.|s.) be the
probability distributions induced by «, (¢.) and 3, (s, ), respectively, which satisfy

/ qsyz(sz“z)dsz =1, / qR’Z(azlsz)daz =1.
s.€T @

Our solution concept to deal with the GPS signal deception in the signaling
game model is the perfect Bayesian equilibrium, which is defined as follows.

Definition 1. The strategy profile (a(t), B(s(t)) with the belief g.(t.|s(t)) of the
signaling game is a the perfect Bayesian equilibrium (PBE) if
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~ (Consistent belief) for all s,

Pz (tZ)qS'z(SZ‘tZ) S z
go(talsn) = 4 v i pe(t)a (selte)dt >0,

any distribution otherwise.

- (Sequential rationality)

o(t) € argmin C%(B(s:), -, 52),
sE
0.(s.) € argmin/ gz(tz\sz)CR’Z(az,tz)dtz.
a. t

Remark 1. There are two pure strategy equilibria. One is the separating PBE
(SPBE), in which S chooses strategies for different types and the other one is
the pooling PBE (PPBE), in which S uses the same strategy for different types.

3.2 Equilibrium Analysis

In this section, we characterize the equilibrium of the signaling game model. In
our scenario of GPS signal deception, S aims to lead R to believe the type that
is actually deviated from the true type. In this paper, we focus on the pure PBE
strategy, and consider the case when daj (t:) > 0.

First, we consider if there exists a SPBE. In any differentiable SPBE, the cost
function C%# and the signal strategy a. have to satisfy the following necessary
first-order condition for optimality based on the sequential rationality:

daf . (t:)
dt,

do,(t,)

L. =0. (7)

01872(0,7%7Z(tz)7 teyas(ts)) + Oég’Z(aE,z(tZ)a teyas(ts))

However, since do‘(;f(t 2 > 0 and C’SZ(aRZ(t )itz az(ts)) = 2(ap () =t

—1,) = =2, is mdependent of «,(t;), there is no strategy such that

CszdaRdtz(t ) = 0 when C = 0. Instead, we rearrange (7) and obtain the
following differential equation:

Z/ % da’, (ts
daz(tz) — Cf) (aR,z(tz)atzaaz(tz))%T(t) _ I,
. CF (o tmant)) R pJanlle) 1)

to circumvent the case when CBS’Z = 0. Let a*(t) = argmin, C” be the signal
strategy of choosing a signal s*(t) = (s; (t ), sy (ty)) that minimizes the deception
function. Then, s%(t,) = 1+p (t )

of the strategy ., (t,) in any separatlng reglme of the type space in the following
lemma.

> (0. We summarize the property
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Lemma 1. We say that in the type space (t3,tL) C [t7,tM], the signaling game

zr7z z 17z

has a monotone SPBE with strategy . (t.) if for each t, € (t3,tL), a.(t.) >
53(t2), and

daz(tz) o lz
dt: k(1 +p)as(t.) —t.)

Proof. See the proof in Appendix A.1.

(®)

Based on Lemma 1, we can conclude the following theorem.

Theorem 1. There exists a unique SPBE portion [t,tM] C [t7,tM] with initial

z 'z
condition o (M) = tM  where o (t,) is the solution to (8).

Proof. See the proof in Appendix A.2.

Since do‘;t(tZ) > 0, dagt(tZ) > 0, which means that in any separating region,
the SPBE strategy of S is strictly increasing; thus, according to (8), we must

have o (t,) > f_i = s%(t,). Since S tells the truth if the type is t} at the time 7

(when S launches a spoofing attack), i.e., o, (t}) = M if M is in the separating
region, o} (tM) = tM | which satisfies o (tM) = tM > fip
existence of a full SPBE in the following corollary.

. We summarize the

Corollary 1. Let ai(t,) be the unique separating signal strategy given the initial
condition o (tM) = t™. There erists a single SPBE in the entire type space
[t M1, if of (t7) = t™, which depends on the values of I, and k.

Proof. See the proof in Appendix A.2.

Corollary 1 shows that for certain values of [, and k; there exists a unique

single SPBE in the entire type space [t7,t}]. However, when there is no single
SPBE existing, we are interested in a class of pooling strategy. For the sepa-
rating region, Theorem 1 shows that there exists a continuous and increasing
separating signal strategy function a(t,) that solves (8) with initial condition
ai(tM)y =tM for all t, € [Afz,ty], where ¢, € (t7,tM) has a well-defined unique
SPBE signal strategy aZ(t,) = t7*. In this case, the maximal feasible interval of
separating types is [t.,tM], while for all t, € [t™,1.], a.(t,) = t7". Before analyz-
ing the pooling strategy, we first define the following equilibrium by introducing
a boundary type . € [t.,tM].
Definition 2. Let t™ = (ti',t") and t* = (o (tz),a;(t:)). A strategy 0 and
the corresponding signal strategy o, is a PLASH (Pooling in Low types And
Separating in High types) strategy if there exists a boundary type t, € [t,,tM]
such that:

1. (Pooling strategqy) 0(t) € Mym and a,(t,) =t™ for all t, € [t™,1,),
2. (Separating strategy) 0(t) € My and a,(t,) = a(t,) for all t, € [t.,tM].
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In the pooling type interval, any type ¢, € [t7*,,] induces the equal deception
cost since the signal strategy o, (¢,) = t7* is chosen for all t, € [t7,1,]. Therefore,
we can regard the communication in [¢7*,7,] as a cheap talk [26]. However, as
shown in Sect.2.3, all the message m € Mn give the same value of signal
s, = £2,(m); then, it is possible for S to choose the same signal strategy a.(¢,)
but different message-related strategy 6 so that R can choose distinct actions
for different types in the pooling interval [t7*,%,]. Let [t,,t. ] C [t7", t.]. Suppose
that based on the message m, R only knows that ¢, lies in [t,,¢,] for each type
t, € [t.,t.]. Let a.(t,,t.) be defined as follows:

"
"

t ’

’ " z t "

@z(tzvtz)=argnéax/f O™ (az,t.)dt, = ;L =,
z tz

Thus, R takes the same action a, t/z, t/Z/) for each type t, € [t/ t”}. Therefore,

z) 'z

it is possible for R to choose é.(t,,t,) for different intervals [t,,t.] C [t7,L.].

Indeed, Crawford and Sobel [4] has shown that there exists a pooling-
partition for [¢7*,%,]. Specifically, for a boundary type t., [t7*,,] can be parti-
tioned into multiple pooling sub-intervals, which can be represented by a strictly
increasing sequence [t2,t1,....tY], where t2 = ¢™ and ¢ = ¢,. Thus, for all
n € {1,2,..., N — 1}, the cost for S satisfies

O™ (ax (1271 12), 12, 8.(82)) = CF*(aa (12, 4271, 42, 5. (1)) (9)

Note that the deception cost is the same for every type t, € [t7,1,], (9)
implies  C4#(a,(t71,t7),t7) = CA*(a,(t7,t7+1),¢7). The interpretation is
that, for each t, € (#271,¢7), S sends the same message m, € Mim, and R
takes the same action a,(t271,¢7?). S can send either m,, or m,1 for the con-
necting type ¢7. Note that «,(t,) is the same for all types t, € [t7,t,], but
my, # mj for n # j and m; € Myn; thus S uses the same signal for all types
t, € [t7,¢,] but different messages for types in different pooling sub-intervals
and all the messages are chosen from the set M.

The necessary and sufficient conditions for the existence of PLASH equilib-
rium are summarized in the following theorem.

Theorem 2 (Necessary condition). In any PLASH equilibrium, there exists
a boundary type t. € [t.,tM] such that the pooling interval [t7",1.] can be
partitioned into multiple pooling sub-intervals, denoted by a strictly increasing
sequence [t9,tL, .. tN] with O =7 and t¥ =t,, such that

z'%z

CA%(a,(t" 1 17),t7) = C4% (a (¢, 7T 1), 1), Yn € {1,..., N — 1} (10)

zZ)7z

C¥%(a(t) 1 1), 6,17 = C¥%(af . (E.), b, 0k (E)), i f. < t2). (11)

(Sufficient condition). Given any boundary type and a pooling-partition shown
in (10) and (11), and
Co%(ax(t) 1 1), 2 47) < O%%(af , (27), 627, 621, ift. = 2. (12)

z Yz z 'z
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There exists a PLASH equilibrium.

In any PLASH equilibrium, both players must play on the equilibrium.
Specifically, R chooses strategy 3.(£2,(m,,)) and takes the action a, (¢t?~1,¢7) for
any mp, E th with 6(t) = m,, and t = [t,,t,] forall t, € (t771,¢7); while for any
t, € (t,,tM], R chooses B:(£2.(0(¢))) = ok .(t.) with ¢ = [t;,t,]. S chooses the
signaling strategy o, (t,) = a(t,) for all ¢, € (£,,t}], and chooses a(t,) = t7
for all ¢, € [t7",.], and sends message m, € My for any t. € (t2~',t2); for
t. € (271 ¢1), S sends message m; # my,, but £2,(m;) = 2.(m,) = 7.

Remark 2. In the separating PBE regime, S chooses the signal strategy o (t.),
which induces action aj , of R; thus, the signal strategy o’ (t.) reveals the true
type; yet this signal strategy is costly since of(t,) > st (tz), which means that
it does not minimize the deception cost C'”+*. However, if S chooses the least
costly strategy a.(t.) = s%(t.), it would cause adverse inferences from R since
R expects a certain degree of deception at separating PBE and rationally infers
the true type.

4 Numerical Experiments

In this section, we simulate a simple scenario of GPS spoofing and construct a
signaling game model in which the UAV plays the receiver (R) and the GPS
spoofer plays the sender (S). In the numerical experiments, we set the minimum
value and the maximum value of latitude or longitude as t™ = 1 and t¥ = 10,
respectively, and set the constant parameters p = 1 and ko = 1. The differential
equation (8) becomes

da,(t,) I,

dt,  ky(20.(ts) —t.) (13)

Let ¢ = 2—217 w = 2a,(t,) — t., then v’ = 2a.(¢,) — 1; thus dajt(t S +1
substituting w to (13) yields 5-*—dw = dt., which can be 1ntegrated and yleld
the solution form ¢, + 0 = —w — 2¢In(2¢ — w), where o is a constant to be
found. We assume that when the UAV reaches the maximum value of latitude
(longitude), the spoofer does not spoof on the value of latitude (longitude).
Therefore, we have the initial condition «(10) = 10, and then can determine

o = —20 — 2¢In(2¢ — 10). Thus, the solution of (13) o satisfies

—10k;
e = ki /21 —k1 o
L (22— 200t + 1) = e TR 14
21271()]@1(1@1 oz (t=) + ¢ (14)

The solutions of (14) are shown in Fig. 5e—f. Since a*(f,) = 1, the value of
t, can be determined as
L 2-108 o I,
A S - S L3 (15)

kL
T k1
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Fig.5. ba—d: Examples of UAV scenarios at PLASH equilibrium. The orange circle
represents the place where both players take actions. (a) naive UAV (R) at the region
where SPBE exists; (b) naive UAV at the region where PPBE exists; (c) strategic UAV
at SPBE; (d) strategic UAV at PPBE. 5e—f: Examples of UAV scenarios at PLASH
equilibrium (e): PLASH strategies of the GPS spoofer: PLASH (f): PLASH strategies
of the GPS spoofer with different deception costs (relative to the malignity of the
sender). 5g: Change of ¢, as a function of ’f—l for ki1, . > 0. PLASH equilibrium exists
for all 1 < ¢, < 2 (above the red line). (Col(z)r figure online)
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Since a(t,) > % is required in the separating region, 1 < ., < 2. As shown in

Fig. 5g, t, decreases with respect to lf—l, for all k; > 0 and I, > 0. Also, £, = 1

if ’f—l ~ 0.154; it implies that a single SPBE exists if k is large enough relative
to [, (’;—1 > 0.154), and a single pooling PBE exists if k is small enough relative

to L. (2 — 0); the plot of £, = 1 coincides with the intuition that when the
deceptign is cheap (resp. expensive) relative to the level of deviation aimed by
the attacker, S prefers the pooling (separating) strategy.

From (10), we have: t7 — 2~ 1 4 41, = t7+1 —¢7; thus, £, —t)V =1 =7 —
tn =1+ 4(N —n)l,, for all n € {1,2,..., N — 1}. Equation (11) yields:

N-1_ 7 ) B B _ _
B ) - = (02~ B - (LB 4 (1 - (a2(E))P)),

if £, <t =10. Also, from (12), we arrive at ¢ =1 > 10 + 21, — 2,/12 + 18k,
if £, = tM = 10. Since 10 + 21, — 2,/12 + 18k; < tM =10, V=1 < tM is well
defined. Thus, both the necessary and the sufficient conditions of Theorem 2 are
satisfied. Therefore, there exists a PLASH equilibrium.

Figure 5a—d shows the behaviors of the UAV under different strategies. In
each figure, the orange dashed line represents the planned flight path, the blue
solid line represents the reset flight path created by the spoofer, and the red
solid line represents the actual flight path of the UAV. The signaling game
starts at the place marked by an orange circle, where the UAV and the GPS
spoofer take actions. Based on the action of the GPS spoofer, the controller
of the UAV strategically accepts the current position coordinates and adjusts
the velocity v and A according to (1). Figure5a and b show the behaviors of a
naive UAV in the regions where SPBE and PPBE, respectively, exist. A naive
UAV is credulous, i.e., unconditionally trusting the received signal, s,. Therefore,
the controller of the naive UAV completely accept the literal current position
coordinates according to the GPS signal, and the corresponding v and \ make
the UAV deviate to the reset path (shown in blue) that is totally determined
by the spoofed GPS signal. Figure5c shows the behavior of a strategic UAV
at the SPBE. Since the GPS spoofer’s SPBE strategy aj(t,) reveals the true
position in the SPBE, the controller of the UAV can obtain the correct current
position coordinates (ay . (tz),ak,(ty)) based on the SPBE strategy, and the
corresponding v and A keep the UAV fly on the original flight path. Figure 5d
shows the behavior of a strategic UAV at the PPBE. In the PPBE, the GPS
spoofer plays the PPBE strategy «.(t,) = t7'. However, in the PPBE region
the spoofer can send different navigation messages m, € M;» that induce the
same value of signal s, = t7* (position coordinates) due to the existence of
multiple pooling sub-intervals. The controller of the strategic UAV takes the
current position coordinates as (a, (7 =1, t%), a, (¢ =1, ) when the UAV is in
the region (t7~1 ¢7), the corresponding v and A\ make the UAV fly on a path
shown in solid orange in Fig. 5d. As can be seen, the strategy of the UAV in the
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multiple pooling region cannot always obtain the exactly true position but per-
forms better than being credulous.

5 Conclusion

Civilian UAVs primarily guided by GPS have been shown to be readily spoofa-
ble by researchers. Failing to detect and defend the civil GPS spoofing could
cause a significant hazard in the national airspace and sabotage the businesses
primarily based on UAVs. Thus, it is critical to design a security mechanism.
We have proposed a signaling game-based defense mechanism against the civil
GPS spoofing attacks for the civilian UAVs. Our focus is on the case when the
position information is spoofed while the velocity and the time are assumed to
be accurate. However, our method can be further extended to the spoofing of
the velocity and time information.

We have defined a perfect Bayesian equilibrium (PBE) pooling in low types
and separating in high types (PLASH). We have also shown that there can be a
unique full separating PBE if the deception cost is sufficiently small compared
to the malice of the GPS spoofer. A full pooling PBE can exist if the deception
cost is sufficiently large. We have also shown that the pooling portion of the
PLASH can be partitioned into multiple pooling subintervals such that the GPS
spoofer chooses messages to for different pooling subintervals.

The simulation results have shown that in the separating portion of the
PLASH, the GPS spoofer chooses a strategy that yields the optimal action of
the UAV that reveals the true position and completely defends the spoofing.
In the pooling portion, the UAV cannot exactly infer its true position, but the
equilibrium action can reduce the deviation between the estimated position and
the true position, thus mitigating the potential loss caused by the spoofing.

Acknowledgement. This research is partially supported by NSF grants CNS-
1544782, CNS-1720230 and the DOE grant DE-NE0008571.

A  Appendix

A.1 Appendix A: Proof of Lemma 1

Proof. Since we require QZ(tZ) >0, the Strategy a,(t,) in the separating portion
must satisfy «, (t,) > si(t, ) = 1+
@ C (t5,t.)), then there exists some type t, € @ such that S can send a signal

z) 7z
s,(t,+0) with 6 > 0 indicating a slightly higher type t,+4 € @ without inducing
the additional deception cost, which contradicts the hypothesis of separating
equilibrium in Lemma 1; therefore, a, is strictly increasing on (t5,t1); thus,
oz € (E7, ) for any . € (2, 1L).

The incentive compatibility of SPBE requires that for any t, €
(t3,t1), a.(t,) € argmin,, C%*(t,,t,,s.). (8) is obtained by differentiating

zr7z

Csz(tz,tz,sz), which can be done only if «a,(t,) is differentiable. In order to

is constant on some interval
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prove that a,(t,) on (t5,tL), we first prove that a,(t,) > argming CP* and

zr7z

a,(t.) is continuous for all ¢, € (¢5,¢L).
We prove o, (t,) > st = 1pr forall ¢, € 7(152, tL) in two steps as follows.
Step 1: Suppose a,(7.) = si(T.) = 7, for some 7. € (t5,L). Then,

CP*(t,,a.(7.)) = 0. Let 6 > 0 be a position constant with small enough |4]. Let
U(68) be the expected change in the cost for type 7, — § € (t5,t)) by changing
from «, (7, — 0) to (7). Then,

U@0) =C5*(7.,7. — §,85(72)) — C%% (7. — 6,72 — 6, . (72 — )
:[C’A’Z(@,fz —8) —CM (R — 6,7 — 8)]
+ ki [CP3 (7 — 8,55(T2)) — O (7 — 6, 0.(7: — 9))].

Since C4*(7,,7, — §) < CA*(7, — 6,7, — 6) and CP*(7, — 6,8%(7. — 0)) <
CP=(7, — 6,0, (7, — 9)), U(6) < 0, which implies that S strictly prefers to use
the strategy a.(7,) when the type is 7, — J; this means that S uses the strategy
a,(7,) for both type 7, — 0 and type 7., which contradicts the hypothesis of
SPBE for 7,. Thus, a,(7,) # s5(72).

Step 2: Suppose there exists a 7, € (t5,t)) such that a,(7,) < si(£.) < 7..
From (8), we have do‘;if(%) < 0. Thus, the strict monotonicity of a,(t,) gives
that (7, — &) > a.(7.) for all § > 0. Then for small enough § > 0, we have
CP2(7, —d,a.(%,)) < CP*(7, — §,a.(%, — §)). Also, we have C4#(7,, 7, — §) <
CA% (7, — §,7, — 8). As a result, C¥*(7,,7, — 0,a.(%.)) < C¥*(F, — 6,7, —
d,a,(7, — 6)). Therefore, S prefers to use the same strategy o, (7,) for 7, — 3
as for 7,, which contradicts the hypothesis of SPBE for 7,. Thus, Step 1 and 2
yield that o, (t,) > si(t,).

Now we prove the continuity of o, (t.) on t, € (t5,t.). Suppose that there
exists a discontinuity point at some ¢, € (¢5,t.). Let a(t.) > lim,_ - =a,.
Then,

—t

: Az _ _ _ Az _ —
613&[0 (t: — 6, . (t. — 8)) — CV*(t, — 6, .(1.))] = 0.

Since a is strictly increasing and s%(t,) < &, < a,(t.), we also have

lim [CP (8 =6, 0z (2 = 8) = O (= 8,0:(12))] = CP (12, &z) — O (12, a2 (82)) < 0.

Therefore, the cost of (¢, —¢) is less than «,(t,); thus, S prefers to use the
same strategy «,(t, — ) for t, as for t, —§ for small enough § > 0, which contra-
dicts the hypothesis of SPBE. Similar proof for the case o, (t,) < lim, .+ =a.
can show that S prefers to use the same strategy o, (¢, + 0) for ¢, as for ¢, + 4§
for small enough ¢ > 0, contradicting the SPBE. Therefore, «, (t,) is continuous
on (t5,tL).

Based on the same argument of the Proposition2 in the Appendix of
Mailath’s work in [14] (also see the proof of [9]), «, is differentiable. Therefore,
Lemma 1 is proved.
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A.2 Appendix B: Proof of Theorem 1

In this part, we prove that there exists a unique solution on [£,tM] to (8) with
initial condition of (M) = tM = 5, (tM) and & ) > 0.

Proof. Step 1: Local uniqueness and existence
Let B,(t., s.) be the inverse initial value problem and let 7, (s,) be the solution
of B,(t,,s,). Then,

CSZ('UZJTZ:SZ)

, with n. (s5(t2)) = ¢, 16
T e s n:(s(t:")) (16)

7]; = Bz(U275z) =

From the definition of C*Z%, B, is Lipschitz continuous on 7" x T. Then, from

the existence and uniqueness theorems [11], we can find some § > 0 such that
$.(t) — 0 > si(ty) = 1pr and there exists a unique solution 7, to (16) on
[5.(tM) —6,5.(tM)), and 17, is continuously differentiable on [3, (tM) 5, 5. (tM)).
From the definition of §,(tM), we have B, (tM,35,(tM)) > 0, B,(tM, s:(t)) =0

and §;1(tM) = m > 0; ¢ can be small enough such that s, < §,(1.(s2))

for all s, (sz(tM) — 0, sz(tM))); and thus 7.(s,) > 0. Let &, = 7; ! be a
solution to 8 on (t,,tM] for some £, < tM with ‘(ii‘jz > 0. Since the solution 7j,
to the inverse initial value problem is locally unique, the solution to the initial

value problem (8) is locally unique.

Step 2: Suppose @&, is the a solution to (8) with initial condition a(tM) =
tM =5, (tM) and M >0, on (t,,tM]. Let a, = limg, .4 G.. As been proved

above, &, > si(t,) for all (¢,,tM], and a, > s%(t,). Suppose a, = sk (¢ ) Then,

z) "z
[J—

C5* = 0, which yields lim¢, .y, = oo. Let ¢ = sup, ¢y 4ar)(s3(22))" = m < o0.

Since &, tM) > 0 exists, there exists a t. > t. such that a.(t,) > ¢ for all
t. € [t.,t.]. Let e > 0 such that &.(t.) > s*(t, ) + €. Since a, = limg, 4/ G, it
follows

"
t

z " t,
a, = G (t, ) + lim aL(T)dr > si(t,) +e +/ ol (1)dr
t,

tz‘)t ts
7

1" tZ
>s:<tz>+/ (s5(r)) dr + e = s3(£)) + €,
t

’
z

which contradicts that @&, = s%(t,). Therefore, we have &, > s¥(t,).
If the solution @.(t.) is well defined on (¢,,¢2] with limg .y . (t.) >

zr7z

S,z
tM | then —gSZ is Lipschitz continuous and bounded in a neighborhood of

(a,t.). Accordlng to the existence and uniqueness theorems, there exists a
unique differentiable solution &, to (8) on (¢, — €,t}M] for some ¢ > 0 with
limg .y e G (t:) > s3(t, — €) for ¢, € (¢7,t2).

Clearly, t, = sup{#, : &, is well defined on (7., tM]}, and setting . (t,) = t™
finishes the proof of Theorem 1.
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Abstract. Enforcing security in a network always comes with a trade-
off regarding budget constraints, entailing unavoidable choices for the
deployment of security equipment over the network. Therefore, finding
the optimal distribution of security resources to protect the network is
necessary. In this paper, we focus on Intrusion Detection Systems (IDSs),
which are among the main components used to secure networks. However,
configuring and deploying IDSs efficiently to optimize attack detection
and mitigation remain a challenging task. In particular, in networks pro-
viding critical services, optimal IDS deployment depends on the type of
interdependencies that exists between vulnerable network equipment. In
this paper, we present a game theoretical analysis for optimizing intrusion
detection in such networks. First, we present a set of theoretical prelim-
inary results for resource constrained network security games. Then, we
formulate the problem of intrusion detection as a resource constrained
network security game where interdependencies between equipment vul-
nerabilities are taken into account. Finally, we validate our model numer-
ically via a real world case study.

Keywords: Intrusion detection - Optimization + Non-cooperative game
theory

1 Introduction

As the amount of network communications keeps growing and the complexity of
architectures keeps increasing, designing secure networks has become more chal-
lenging. One critical aspect of network security is optimizing the distribution of
security resources given a constrained defense budget. In addition to firewalls,
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reverse proxies, or application level countermeasures, Intrusion Detection Sys-
tems (IDSs) allow network administrators to substantially refine security man-
agement by analyzing data flows dynamically. However, analyzing all the traffic
in the network can be complex and costly. Therefore, an optimal IDS deployment
strategy to maximize the overall probability of detecting attacks is needed.

In general, based on the data they store, some equipment in a network will
be more attractive to attack than others. The interdependencies of equipment
vulnerabilities need also to be taken into account. For example, accessing a user
workstation is generally not very useful for an attacker unless if it allows him to
get access to sensitive equipment more easily. Therefore, it is important to take
into account such sequence of attacks in realistic approaches, as the actions of
an attacker are not limited to independent atomic attacks.

In addition to classic security approaches, approaches based on game theory
were recently used to study and analyze network security problems [1], and more
specifically intrusion detection [2]. One of the first game theoretical approaches
for intrusion detection was proposed by Alpcan and Basar in [3]. The authors
describe and solve a static nonzero-sum imperfect information game where the
attacker targets subsystems in the network and the defender tries to optimize
the sensitivity of the IDS in each subsystem. This work was later extended in [4]
with a zero-sum stochastic game formulation that aims to take into account the
uncertainty of attack detection. The authors analyze the equilibria in the case
of perfect and imperfect information, and compare the performances of various
Q-learning schemes in the case of imperfect information.

Chen and Leneutre [2] consider the intrusion detection problem under budget
constraints in a network comprised of independent nodes with different security
assets. Nguyen et al. [5] address the same problem, but take into account node
interdependencies, both in terms of vulnerabilities and security assets, mod-
eled using linear influence networks [6]. Following the formalism introduced
in [7], Nguyen et al. formulate the problem as a two-player zero-sum stochas-
tic game where the states of the game are characterized by the state of each
node, either compromised or healthy. Though we also take node interdependen-
cies into account in this paper, formulating the problem as a static game allows
us to manipulate more complex utility functions in order to remain as realistic
as possible while keeping the solution tractable.

Another approach for the resource allocation problem consists in finding the
optimal sampling rate of the IDS on each link in the network under budget
constraints. Kodialam and Lakshman in [8] describe the problem as an attacker
injecting malicious packets from a fixed entry node and trying to reach a target
node without being detected. They formulate the problem as a zero-sum static
game, where the attacker aims at choosing the path that minimizes the detection
probability over all possible paths from the entry node to the target node. This
work was later extended in [9,10] where the sampling rate problem under bud-
get constraints and in the case of fragmented malicious packets are addressed
respectively.
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The paper proceeds as follows. In Sect. 2, we present a class of security games
which we refer to as Resource Constrained Network Security (RCNS) games. The
aim of this section is to present a generic framework that will serve as a basis
for the analysis of different types of security games. In Sect. 3, we define our
game theoretic model, which is as a subclass of RCNS games, for optimizing
the allocation of defense resources in a network, focusing on intrusion detection
in which the equipment interdependent vulnerabilities are taken into account.
We pay a particular attention to the evaluation of the model parameters, as
they are chosen in order to be naturally derived from information security risk
assessment methods and correspond to what a chief information security officer
would expect to find. We analyze the behavior of the attacker and the defender
at the Nash Equilibrium (NE). In Sect. 4, we validate our model numerically via
a case study. Finally, we conclude the paper in Sect. 5.

2 Resource Constrained Network Security Games

In this section, we introduce a new class of security games which we will refer
to as Resource Constrained Network Security (RCNS) games. Before giving the
definition of a RCNS game, we will introduce a number of simple intermediary
games. In the remaining of this section, we will refer to a network as a set of
interconnected nodes that could also be security-wise interdependent. The nodes
can refer to the set of equipment in the network or the set of services running
on equipment. Therefore, allocating a set of defense resources on a node refers
to the set of defense resources used to monitor the node for any sign of security
intrusion. This abstraction of the notion of a network node will allow us to cover
a wide spectrum of use cases for applying our formal model.

2.1 Attack/Defense Game
Let A be a network consisting of 7" nodes.

Definition 1 (AD game). A simple Attack/Defense (AD) game is a static
game played on a node i in the network N between two players: an attacker and
a defender. The attacker’s actions are restricted to { Attack/Not attack} while
the defender’s actions are restricted to { Defend/Not defend}.

An AD game is a simple game played between the attacker and the defender.
It is restricted in the sense that the actions of each player are restricted to a
single node in the network. The strategic form of a general AD game is given in
Table 1.

Assumption 1. In an AD game, we can have u; < t;, s} < uj, r; —s; < t; — uy,
and 7} — t; > si — ul.

Definition 2 (Realistic AD game). A realistic AD game is an AD game
satisfying Assumption 1.
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Table 1. Strategic form of the AD game for node i

Defend | Not defend
Attack i, Th |t

Not attack | s;, s} | wi, uj

We suppose that a realistic AD game satisfies u; < t; since the attacker will
get a higher payoff when attacking a node that is not defended. Similarly, we
have s} < u} since the defender is better off defending a node when that node
is under attack. Moreover, the difference in payoff for the attacker between the
Attack/Not attack actions is higher when the defender chooses not to defend,
which translates to r; — s; < t; — u;. Similarly, on the defender’s side, we have
ri —t, > s, — u}. We also note that in general, the attacker’s payofls r;, s;, ¢,
and u; are nonnegative real numbers and the defender’s payoffs 7}, si, ¢;, and ]
are nonpositive real numbers.

Let (p;,1 — p;) and (g;, 1 — ¢;) be the mixed strategy Nash equilibrium of
the attacker and the defender for choosing the actions {Attack/Not attack}
and {Defend/Not defend} respectively. Given the strategic form of the game
shown in Table 1, the utility function u(p;, g;) of the attacker can be written
as u'y(pi, @) = aipi + 0i¢; + Vipiqi + 0;, where o; = t; — w;, 0; = s; — u;,
v =ri — 8; — t; + u;, and &; = u;. Similarly, the utility function u’,(p;, ¢;) of the
defender can be written as u’, (p;, ¢;) = &}p;+0.qi+7.piqi+9., where o, = t;—ul,
o, = s, —u;, v, =1, —s; —t; +u,, and 0, = u;. We have the following lemma,
which follows directly from Assumption 1:

Lemma 1. In a realistic AD game, we have a;; > 0, v; <0, o, <0, and v, > 0.

2.2 Network Security Game

Let n = |7| be the number of nodes in the network A. We define a network
security game as follows:

Definition 3 (NS game). A Network Security (NS) game is a game in which
the attacker and the defender play n independent AD games on each node of the
network N .

We also refer to a NS game where Assumption 1 holds in each of the n
AD games as a realistic NS game. The NS game can be as well viewed as a
game played between n attackers and n defenders where the attackers and the
defenders do not cooperate with each other.

Since a NS game is just a set of AD games played in parallel between
the attacker and the defender, the utility of the attacker can be expressed
as Ua(p,q) = > u4(pi,qi), where u%(pi,q;) is the utility the attacker

i1e€T
gets from playing the AD game on node ¢, p = (p1,...,0n) € [0,1]", and



238 7. Ismail et al.

a=(q1,.,qn) € [0,1]™. Similarly, the utility of the defender can be expressed

as Up(p.aq) = Y. up(pi@i)-
€T

2.3 Resource Constrained Network Security Game

In a NS game, the choices of actions in the AD game played on node i is inde-
pendent of any other AD game played on node j # i. However, in realistic inter-
actions between a defender and an attacker targeting the network, the choice of
an action on a node depends on the choices of actions on other nodes as well. For
example, given two target nodes, the attacker may assess the success likelihood
of his attack and its potential payoff and decide to attack only one of these nodes.
In practice, one of the main factors that play a role in the attacker’s decision
process is the set of attack resources at his disposal. Similarly, a constrained
defense budget will influence the defender’s allocation of security resources on
network nodes. This observation leads us to define the class of resource con-
strained network security games.

Definition 4 (RCNS game). A Resource Constrained Network Security
(RCNS) game is a non-cooperative two player, static, complete information game
between an attacker and a defender. The game features a set T of n targets.
Let p = (p1,--,pn) € [0,1]™ and q = (q1,---,qn) € [0,1]™ be the strategies of
the attacker and the defender, where p; and q; refer to the attack and defense
resources allocated on mode i respectively. The game features the resource con-
straints >, pi<P<land Y ¢ <Q<1.
iET ieT

A RCNS game can be seen as a NS game where the allocation of attack
and defense resources p; and ¢; on node ¢ refer to the mixed strategy NE of
an AD game played on node 4. In fact, for the NS game, we have Us(p,q) =
S uby(pisqi) = Y aipi+0iq; +7ipiqi + 0;. Similarly, for the defender, we have
i€T i€T
Up(p,q) = >, alpi+oiq+7ipigi+9.. By just looking at the shape of Us(p, q)

€T

and Up(p, q), it is as if we have a game in which the attacker and the defender
are trying to find strategies p = (p1, ..., pn) € [0,1]" and q = (¢1, .-, ¢n) € [0, 1]™
respectively. This is similar to what we have defined in the RCNS game in
Definition 4. However, while p; and ¢; for each node i in the NS game are
defined as probabilities, these variables refer to the attack and defense resources
allocated on node 7 in the RCNS game respectively. Therefore, p; and ¢; differ
only semantically in these two types of games. In addition, in a RCNS game, we
have constraints related to the set of resources available to each player.

Definition 5 (Realistic RCNS game). 4 realistic RCNS game is a RCNS
game where u; < t;, s, <), r;—s; <t;—u;, andr,—t; > s, —ul, Vi € T, and
there exists at least one j € T s.t. a; + v;q; >0, ¢; € [0,1].

We can notice that the first set of conditions in Definition 5 are similar to the
set of conditions in the definition of realistic AD games. In a realistic RCNS game,
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we assume that there exists at least one target node j € T s.t. aj +7v;q; > 0.
Otherwise, by analyzing the utility of the attacker, we can notice that he will
not have any incentive to attack any target. Therefore, the conditions defined in
a realistic RCNS game ensure that the attacker will play along by giving him an
incentive to allocate a set of his attack resources to target nodes in the network.
We note that in a realistic RCNS game, we have «; > 0 and ~; < 0, Vi.

2.3.1 Nash Equilibrium Analysis
Many network security games, such as [2,11,12], can be formulated as RCNS

games. The resource constraints > p; < P and > ¢; < Q represent con-
ieT iET

straints on players’ budgets. In the rest of this section, we present a necessary

condition for the existence of a NE in this type of games. In particular, we show

that when v; < 0 and ~} > 0, at least the attacker has to use all his resources

for a NE to exist.

Theorem 1. A necessary condition for (p*,q*) to be a Nash equilibrium in a
realistic RCNS game where y; < 0 and v, > 014s >, pf = P.
€T

Proof. We consider a realistic RCNS game. We have v; < 0 and 4, > 0. First,
we analyze the case where v; = 0. If 7; = 0, then the hypothesis t; > u; implies
r; > s;. In this case, the attacker will always decide to attack node i since the
payoff is higher independently from the behavior of the defender. This case being
of no interest, we will suppose for the rest of this section that 7; < 0. Similarly,
we can show that when v/ = 0, the defender always gets a higher payoff by
choosing not to defend. In the rest of this section, we suppose v, > 0.

Let 7s, be the set of targets on which the defender will allocate defense
resources. For example, in a network, the defender monitors a subset of the
network nodes to detect intrusions. Similarly, let 7g, denote the target set that
will be attacked by the attacker. In general, we note that 7g, N 7g, # @.

The conditions for the existence of a NE vary according to the hypothesis
madeon Y p;and Y g;.Inthe general case where > p; < Pand . ¢; < Q,
i€T i€T i€ET iET
if a NE (p*, q*) exists, p* is a best response strategy to the defender strategy
and q* is a best response strategy to the attacker strategy. Since the utility of
the attacker is linear with respect to the attacker’s strategy p, if a solution to the
attacker’s optimization problem exists, then an optimal solution at an extreme
point of the feasible set defined by > p; < P exists (when Y p, = P). A

ieT ieT
similar analysis can be conducted for ‘fhe case of the defender. ©

Case 1: >, p,=Pand ) ¢ =0Q
ieT iET
From the definitions of 7g, and 7g,, the constraints on the attack and defense
resources become >, p; = P and Y ¢ = Q. From the Karush-Kuhn-
S Tsa 1€ TSd

Tucker (KKT) conditions, there exists A > 0 s.t. %Up“‘ = Xand X > 0 st.




240 7. Ismail et al.

Tm{}? = )\'. We have TaUA = «; + v;q;- Therefore, o; +v,q; > 0= ¢q; < _’T =
Q< X _70,"'. Since a; > 0 and 7; < 0, we have > =% > 0. Similarly,
. 1 . ’72
1€ Tsd 1€ Tsd
/
considering WUp _ =0/ +1p;, we have P> 3. —%&. Since o/ < 0 and v, > 0,
aq ) i€Ts, Vi
!
we have > ’;{i > 0. We have already established that if a NE solution
1 €Tg, i
exists, it must exist at least when 3. p; = P and > ¢; = Q. Therefore,
ieT iET

from the results above, the necessary conditions for the existence of a NE are
!/
Q< X O,”andP> PO—Y

i€ Tsd 1€ TS ,Yl
Case 2: > p;=Pand > ¢ <Q
1€T 1e€T
Similarly to Case 1, we can verify that the conditions for the existence of a
/
NE are @ < > _,YO,” and P = > %
icTs, ' i€ T, T#Ts, Vi
Case 3: > pi<Pand > ¢ <Q
i€l 1e€T
ou Q; Qy
We h A — (. Theref ;= —2% = ; = — =t. H
e have < erefore, ¢; i i;T q i;T ~; - However,
from the first case, we have Q < > _7% < 3 % >~ ;. Therefore,
i€Ts, ier i€T
Q@ < > g; which contradicts the fact that > ¢; < Q. As a result, the scenario
€T ieT
in which )" ¢; < Q and ) p; < P does not admit a NE. O
ieT iET

Table 2 exhibits the possible scenarios for the existence of a NE with respect
to the assumptions about the resources of the attacker and the defender. In
particular, given the conditions that P and @ must satisfy, a NE cannot be

found when Y ¢; <@ and ) p; < P.
iET iET

Table 2. Conditions for the existence of the NE in a realistic RCNS game

Conditions
!
Y a=Q, _p=P Q< ¥ FE, P> 3 —F
ieT i€T iETSd i€Tg f
7
La<Q, Zp=PR< 3 =%, P= X o
ieT i€Ts, i€ T, T#Tg. Vi
> ¢ <Q, > pi <P |Impossible
ieT ieT
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2.3.2 Stackelberg Equilibrium Analysis
In a Stackelberg game, a leader chooses his strategy first. Then, the follower,
informed by the leader’s choice, chooses his strategy. In this section, we analyze
the scenario where the defender is the leader and the follower is the attacker. In
this case, the defender tries to anticipate the attacker’s strategy and chooses a
strategy that minimizes the potential impact of attacks on the system.
Stackelberg games are generally solved by backward induction and the solu-
tion is known as Stackelberg Equilibrium (SE). We start by computing the best
response strategy of the follower as a function of the leader’s strategy. Then,
according to the follower’s best response, we compute the best strategy of the
leader.
The attacker solves the following optimization problem:

p(q) = argmax Uy (p, q) s.t. Z pi <P
pelo1]” ieT

On the other hand, the defender solves the following optimization problem:

a(p) = argmaxUp(p(a),q) s.t. » ¢ < Q
acio” =

Assumption 2. The attacker’s resource allocation strategy on a node i depends
only on the defender’s strategy on that node.

As a result of Assumption 2, we have p;(q) = pi(¢;) Vi € 7. In the rest of
this section, we suppose that Assumption 2 holds. In what follows, we present
necessary conditions for the existence of a Stackelberg equilibrium in a realistic
RCNS game. In particular, we have the following theorem:

Theorem 2. In a realistic RCNS game, the necessary conditions for the exis-
tence of a Stackelberg equilibrium are as follows, Vi € T :

Ifa;=7;=0,Yj € T s.t. v; = a; =0, we have o} = o’;. Otherwise, if a # 0
or vl #0, 37" >0 s.t. the strategy of the attacker p; have the following form:

/ /
T —O0; (

/
a;

o + 74
0 ifv,=0,0;#0

!/
0 z’fv;>o,a;zo,qz-¢‘ji

i

where p = p;(0) and D; = 0 ifr>0.0l<0.q € {O,min (—aé’Q) [

Pi ZP?

/
20/— . _a7i
il > 0,00 < 0.0 € Jmin (S7.Q). @)

Proof. Let p(q) be the strategy of the attacker. Next, we establish the conditions
that p(q) must satisfy for a Stackelberg equilibrium for the RCNS game to exist
in the presence of constraints on the attack and defense budgets.
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From Assumption 2, we have p;(q) = pi(¢;) Vi € 7T. The utility of the
defender is therefore given by:

Up(p(a),a) = Y &ipi(a:) + oja; +vipi(ai)ai + 0
ieT
We have the following constraint . ¢; < Q. From the KKT conditions, there
€T
oUp

i

Opi

exists 77 > 0 s.t. = 7/. Therefore, we have oa; (o +vigi) +vipi + ol =7'.

Let p;(0) = pf.

Case 1: v, =0and o, =0

In this case, 7/ = of. However, if there are two nodes 7 and j in which
v =} =0, 7; = o = 0 and o] # 0}, then a Stackelberg equilibrium does not
exist.

Case 2: v, =0and o #0

. o 7 T —dl
In this case, we have J ~ o = p; = o qi + p;
/
Case 8: v, >0 and ¢; # %
i / / /
In this case, we have gp d , Vi —p; = " % This first order differ-
9 o+ 4 o + i

ential equation has a unique solution s.t. p;(0) = p{ and is given by:

0 FO-F@) o [T T T PPy
pi =pie + ¢ o
0o a4 tVT

/
where F(z) = /idt = log(|a; + viz|).

ol + it
’ a
Therefore, plef (O —Fla) — 0| Y d/ #eF(l)_F(qz')dx —
& + 7% 0 Q; +%T
G ol ol 4
[ e
o o tYT ot 74

Case 3.1: o, > 0

qi A ! ! ! !

. T —0; [ o+ T — 0,
In this case, we have / Vi 2 7 7} dr = s
0 0+ YT\ o+

?;,Q)[andaggo

Case 3.2: q; € [O,min(
i

Similar to Case 3.1.

/
Case 3.3: q; € } min (&,Q)Q} and of <0
i
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In this case, we have:

’
—o

[ v ol a;+v;xldx:/vé '~ (ol-vw),
/Z T — 0, (ai—i_’yix)dm_ T 0 (+ %
i i

T

’

- o+l o Vg o+ g !

Combining the 3 cases comf)letes the proof. O

7

Theorem 3. Vi € T s.t. o # 0 and v, = 0. If the conditions in Theorem 2 are
satisfied, a necessary condition for the uniqueness of the players’ strategies on
node i at the Stackelberg equilibrium is that 37 > 0 s.t.:

{F(aé)((ai —7)(7 —0}) — ai(yip} — 03)) <0
I(ag)aiyi(m" —oj) >0

where I' : R — {1,—1} s.t. I'(z) =1 if 2 > 0 and —1 otherwise.

Proof. The utility function of the attacker is given by: Ua(p,q) = > a;p; +
ie€T

0iq; + Vipiq; + ;- To find the Stackelberg equilibrium, the attacker solves the

following maximization problem:

p(q) = argmax Ua(p,q)s.t. Y p; < P
pefo,1]Ne ieT

Let I' 1R — {1,—1} s.t. I'(z) =1 if x > 0 and —1 otherwise.

Case 1: v, =0,a} #0

From Theorem 2, we know that a necessary condition for the existence of a
/ !

Stackelberg equilibrium is that 37/ > 0 s.t. p; = p{ + T o_/ Tig,.

%

Case 1.1: 7' = 0]

In this case, the attacker’s strategy p; on node i is independent from the
defender strategy g;. Therefore, the strategy of the defender on node i has no
influence on the attacker’s strategy on that node. In this case, we may have an
unlimited number of Stackelberg equilibriums. We note that if Vi € 7, 7/ = o,
the study of this type of games is not interesting.

Case 1.2: 7' # o]
. o (pi —p?) " .
In this case, we have ¢; = #. From the KKT conditions, there exists

7
7 > 0 s.t. %[ZJ;A = 7. Therefore, we have 2p;a; (7" — o}) + (7' — o) ((o; — 7) (7" —

3
ol) — ofyp) + o) = 0. We have p; € [0,1] Vi € T. Therefore, a necessary
condition for the existence of a unique strategy on node i at the Stackelberg
equilibrium in this case is that I'(o}) ((o; — 7)(7" — 0}) — & (ip? — 7)) < 0 and
I'(af)ody (1" —af) > 0. 0
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Theorem 4. Vi € T s.t. v, > 0 and o} # 0, there exists at most two possible
couple of strategies (pf,q;) and (piT,q}L) at the Stackelberg equilibrium on each
node 1.

Proof. There are 3 possible cases to analyze.

r_
T g,

!
Case 1:7£>0,a220,qi7é&,andpi7é ;
i i
app} (7' —al)q
! / + /7 /
& +%d Ot
the attack budget > p; < P. Therefore, from the KKT conditions, 37 > 0 s.t.

i€T
%[IJ)A = 7. Therefore, we have:

In this case, we have p; = L. We have a constraint on

0 1~ / ! A0
D — o (T — o)) — aiyip;
a; —l—aé%‘(, .pz ( ,pl /)> + (o3 +%‘p¢)< Z(, ) z,%%> =T
vipi = (1" = 0j (Yipi — (7 = o))

which can be written as A;p? + B;p; + C; = 0 where A; = 72-2/ (o — T) — abvyiv,
Bi = 2(7" — o})(ajyi — vi(e; — 7)), and C; = (7" — o)) (s — 7)(7" — 0}) —
ofypy + afo;) — alyjop?. This quadratic equation has at most 2 solutions,
which concludes the proof for this case.

! / !
Case 2: v, > 0,a; <0,q; € {O,min (_TO,%,Q) [7 and p; # T — o

Similar to Case 2.

/ / /
Case 3: v, > 0,a; <0,q; € ]min (%,Q),Q}, and p; # T ’y,Uz‘
Similary to Case 1, from the partiall derivative of Uy w.r.t. Zpi, we can find

that the strategy of the attacker is the solution of the quadratic equation A;p? +
/

20/
Bipi +C} = 0 where C} = (7' — o) (i — 7)(7' — 0%) — &lyip? —7i(7' — o))t —

/

i
/ V) 0
o) — Ao - o

Lemma 2. A realistic RCNS game can have an infinite number of Stackelberg
equilibriums if 3i € T s.t. v, = 0,0} # 0, and 7" = o). Otherwise, a realistic
RCNS game can have at most 2™ Stackelberg equilibriums.

Lemma 2 follows directly from Theorems 3 and 4.

2.3.3 Maximin Strategy

In this section, we will be interested in analyzing the mazimin strategy of the
attacker. For space limitations, we will omit the analysis of the mazimin strategy
of the defender, which can be analyzed similarly.

A player’s maximin strategy is a strategy in which he tries to maximize
the worst payoff he can get for any strategy played by the other player. The
attacker’s maximin strategy is therefore given by p = argmaxm&n Ua(p',q).

o
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We will study the attacker’s mazimin strategy under different constraints on
the attacker’s and defender’s budgets > p; and > ¢; respectively.

ieT ieT
Theorem 5. For each strategy of the attacker, there exists a sensible target set
Rp that will be of interest to the defender.

Proof. For a given attacker strategy p, the defender tries to compute

minUx(p,q) = min (Y a;p; + 8 + ¢;(0; +7ip;)). In the case of unconstrained
q 1 ieT

defense budget, there exists a sensible target set Rp where Vi € Rp, we have
¢i =1 and o; +vip; <0, and Vj € T\Rp, we have ¢g; = 0 and o; + v;p; > 0.
In case of constrained defense budget > ¢; = @, the sensible target set Rp is

ieT
defined s.t. ¥{i,k} € Rp, o + vipi = 0k + Ykpr and ¢ = argmin(o; + v;p;). O
jeT

Theorem 6. In the case of unconstrained defense budget, for a given sensible
target set Rp, there exists either 1 or an infinite maximin strategies for the
attacker.

Proof. Let ¢ be the set of targets ¢ s.t. a; +v; = 0. Let Legpr = 1 if expr is true
and 0 otherwise. In the case of unconstrained attacker budget, if ( = @, there
exists a unique attacker mazimin strategy where the attack resource on node %
is determined by analyzing r; —t; and o;. This can be found easily by analyzing
the attacker’s payoff «;p; +9; + (0; +7:pi)¢; on each target i. Otherwise, if { # &,
there exists an infinite number of attacker mazimin strategies yielding at least
a payoff of ) d; 4 0,14, <o for targets in ¢. O
JEC

In the rest of this section, we will analyze the attacker’s maximin strategy
in the presence of constraints on the defender’s budget.

Let S be a large positive number. By analyzing the attacker’s utility function
Ua(p,q), we have the following lemma:

Lemma 3. If Y ¢; = Q and in the absence of constraints on the attacker’s
€T

budget, finding a maximin strategy for the attacker is equivalent to solving the

following Mized Integer Quadratic Program (MIQP):

max Ua(p,q)
P,q,y,;b

s.t. (yz - 1)S < b— 0; — YiDs <0
¢ < yiS
> 6 =Q
€T
Yi € {Oal}a pi € [Oa 1]7 q; € [OvQ]a be R

Lemma 4. In the presence of constraints on the defender budget 3 ¢ = Q,
ieT

for any sensible target set Rp, assuming that the defender will focus on defending

only one target in Rp will not change the impact of the defender’s strategy on

the maximin strategy of the attacker.
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Proof. Tt > g; = @, the defender will allocate his resources on the set of target
ieT

¢ with the lowest o; + v;p;. In addition, we have o; + v;p; = om + YmPm,

V{j,m} € Rp. By analyzing the attacker’s utility function, we can notice that

instead of setting ¢; # 0 Vj € Rp, the attacker can pick m € Rp and set ¢, = Q

without that changing the attacker’s payoff. O

Lemma 5. In the presence of constraints on the attacker and defender budgets
(resp. Y. p; =P and Y qi = Q), finding a maximin strategy for the attacker
ieT i€T
is equivalent to solving the following Mixed Integer Linear Program (MILP):
max (i Y @ji+ 0i + (owyi + 7i2ii)Q)
yxbier jer
s.t. (ylfl)Sgbfalf% Z Lj4 SO

JET
> yi=1
i1€7T

yiP < Y a; <P
JET

Z .CCZjSP

ieT

> X wy=P

ieTjieT

Y; € {071}, Tij € [O,P], belR

Proof. From Lemma 4, we can assume that the defender will defend 1 target with
aresource Q. Let y; € {0,1} Vi € 7. The maximin strategy of the attacker can
then be found by maximizing > a;p; + 0; + (07 + Vip:)y:Q w.rt. p, y, and b

ieT
st. (v —1)S<b—o0; —vipi <0, > y; =1, > p; =P, and be R. We can
ieT iET
linearize this Mixed Integer Quadratic Program through the change of variables
Tij = YiPj V{’L,j} e 7. O

3 Intrusion Detection Game

3.1 Game Model and Parameters

In this section, we introduce an intrusion detection game, which is a specific
case of a RCNS game. We consider a heterogeneous network comprised of n
interdependent equipment referred to as nodes in the remaining of this paper.
The network can be represented as a weighted directed graph G = (7,&,0),
where 7 = {1, ...,n} is the set of network nodes, and £ is a particular subset of
7?2 and referred to as the edges of G. In particular, an edge (i,5) exists between
node 4 and node j if compromising node i makes it easier for the attacker to
compromise node j. Finally, a weight 6] € ©, 6] € ]0,1], is associated to each
edge (i,7) € &, quantifying the vulnerability dependency from node i to node j.

We model the intrusion detection problem as a non-cooperative static game
with two players, an attacker and a defender. We assume that both players are
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rational. The objective of the attacker is to compromise targets in the network
without being detected, whereas the defender’s objective is to distribute monitor-
ing resources on network nodes in order to detect attacks. For each node i € T,
the attacker and the defender actions are limited to Attack/Not Attack and Mon-
itor/Not Monitor respectively. The attacker’s strategy is represented by a vector
p = (p1,...,pn) € [0,1]", where p; is the probability of targeting node 4. Simi-
larly, the defender’s strategy is represented by a vector q = (q1, ..., ¢n) € [0,1]",
where g; is the probability of monitoring node i. The resource constraints on the
attacker and the defender budgets are P and @ respectively. Therefore, we have
n n
S pi<Pand ) ¢ <Q, where P<1and Q < 1.

i=1 i=1
We associate to each node i € 7 the following parameters:

— The security asset W; > 0 representing the importance of services provided
by node 7 to the network. Security assets are assumed to be independent,
since the existing correlations between security assets may have already been
taken into account through a formal risk analysis evaluation process.

— The intrinsic vulnerability V? € [0,1] quantifying local vulnerabilities of
services on node 1.

— The detection probability a; € [0,1] representing the probability of detect-
ing an attack on node i considering the current configuration of the defense
system.

We assume that the costs of attacking and monitoring a node i € 7 are
proportional to the security asset W;. In addition, these costs are affected by
the intrinsic vulnerability V° on node i. In particular, the cost of attacking
node i is inversely proportional to V,?, while the cost of monitoring node i is
proportional to V2. Therefore, the costs to attack and monitor node i are given
by C,(1—-V)W; and C,, V,W; respectively, where C,, and C,,, € [0, 1]. Let C% =
Co(1 =V and C!, = C,,VL. Finally, we introduce a dependency parameter
8 € [0,1]. 5 is used to assess the impact of interdependencies between network
nodes in the utilities of the attacker and the defender. For example, 8 = 0 is
equivalent to the case where interdependencies between network nodes are not
taken into account in the model.

3.2 Utility Functions

Let '~ (i) and I'*(4) refer to the set of predecessors and the set of successors of
node 7 in the network graph G respectively. The effect of interdependencies on
node i is defined as A; =5 > ( )9§ijj(1 —ajq;j). 4; is the sum of the effect
jer—g
of interdependencies on node i from all its predecessors j that have been attacked
(hence the p; factor) without being detected (hence the (1 — a;q;) factor) while
taking into account the vulnerability dependency 9; € 10,1] from node j to i.
Table 3 presents the payoff matrix for both players in strategic form for a
node i € 7. A successful (i.e. undetected) attack on node ¢, which happens with
probability 1—a;, gives the attacker and the defender the payoffs W;(1—a;) and
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Table 3. Payoff matrix in strategic form for node ¢

Monitor Not monitor

Attack Wi(1—2ai—Ca(1—ViO))+Ai, Wi(l—Ca(l—ViO)) + Ai,
Wi(2ai —1- C’mViO) — Al —Wi — Al

Not attack | A; , —Cm‘/iOWZ‘ — A; A; s —A;

—W;(1—a;) respectively. However, if the attack is detected, which happens with
probability a;, the payoffs for the attacker and the defender are given by —W;a;
and W;a; respectively. We take into account the impact of interdependencies
between vulnerable network nodes. For example, even though the attacker can
choose not to attack node i directly, he can benefit from the impact of attacks on
the set of nodes whose compromise can affect his state on node i (e.g. in terms
of information or privileges the attacker could decide to make use of).

The utilities U4 and Up of the attacker and the defender respectively are as
follows:

n

Ualp,q) = > (piQi(Wi(l —2a; —CL) + A;) + (1 — p)gidi + pi(1 — q;)(Wi(1

i=1
—CH+A)+ (1 -p)(1-— %)Ai) =Y piWi(1 —2a;q; — C¥) + A,
i=1
Up(p,aq) = _21 a;Wi(2a;p; — Cp,) — piWi — 4A;

3.3 Solving the Game

3.3.1 Node Distribution

The values of the security assets and the impact of the interdependencies between
nodes can affect the strategies of the attacker and the defender. In this section,
we identify the set 7s of sensible targets that are attractive to the attacker
and needs therefore to be monitored by the defender. Let 7y, refer to the set
of unattractive nodes that will not be the target of attacks. Therefore, we have
T=TsUTy Let ;= (1—-C.+B> 60))and p; =a;(2+ 35 67),Vi € T.

JeT () Jjer+(

Definition 6. The sensible target set Tg and the set Ty are defined as follows:

Wi > €Vi SE where f _ keTs
Wi)\i<€ViETU o Z ( 1 )
kETs \ VR

The case where W;\; = £ does not need to be taken into account. In fact, this
case happens with very low probability. Therefore, should this case happen, and
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since these values rely on estimations, replacing for instance W; with a slightly
different estimation W; 4+ € or W; — € would be enough to solve the problem.

For the rest of this paper, we suppose that network nodes are numbered
according to the following rule: ¢ < j <& W;A; > WjA;.

Lemma 6. Given a network comprised of n nodes, Tg is uniquely determined
and consists of ng nodes with the highest W;\; values. The set Tg can be deter-
mined using Algorithm 1.

Proof. We need to prove that 7g consists of the d highest W;\; values, where d =
ng and the cases where d < ng and d > ng cannot be achieved. First, it is easy
to prove that if i € 7g, then Vj < i, j € Tg. We prove that d = ng with a proof

ns
by contradiction. Let us suppose that d < ng, we have: Wy Apg > (Wkl#k> -
k=1

ns
> M > Z ’\k —@Q. Noticing that W, Ang < Wi, Vi < ngandd < ng, we
k=d+1

have: Wd+1>\d+12 (Wkuk) > /\nsz (wkuk) = Wns/\nsZ (Wkll«k)
7Wﬂs)\nsk=§d:+1 (W’“lA’“ ’““) Wnsn i (W’“l“’“) 7k=§§+1<%) g kzi:1 (%) N

2 Gr)-e

1
k=1<Wko
tradiction shows that it is impossible to have d < ng. Similarly, we can show
that it is impossible to have d > ng. Therefore, d = ng and 7g is uniquely
determined. O

Q. However, from Definition 6, we have Wy 1 g4+1 < . This con-

Algorithm 1. FindSensibleTargetSet

Data: The set of nodes T
Result: The sensible target set 7g

begin
W/ «—— SortInDescendingOrder(Wy ;) As(s))
ng «—n
g
while ns > 1 & W, < f;li do
2 (Wxilﬂk)

k

Il
-

‘ ns «—ng — 1
end

Ts ={o(i) € T :i € [1,ns]}

end
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Theorem 7. A rational attacker has no incentive to attack any node i € Ty.

Proof. For space limitations, we only provide a sketch of the proof. The proof
consists of showing that regardless of the defender’s strategy q, for any p € [0, 1]™
s.t. 3i € Ty, p; > 0, we can construct another strategy p’ s.t. p, =0, Vi € Ty
and Ua(p,q) < Ua(p’,q). If 7y = @, the theorem holds. We focus in our proof
on the case where 7y # @. We consider a vector q° = (¢, 49, ..., ¢%) s.t.:

- 5. (2)

Ai .
0o __ heTs 1 + - Vi€ Tg
q; Wi,ufi Z (ltka) Hi
keTs
0 VieT —Tg
It holds that > ¢ = @, and ¢ > 0, Vi. Let q = (g1, ...,¢n) denote a
i€Tg
defender strategy s.t. Y. ¢; < Q. By the pigeonhole principle, it holds that
i€Ts

Im € Ts s.t. qm < ¢°,.
We consider an attacker strategy p = (p1, ..., pn) satisfying > p; > 0, ie.
€Ty
the attacker attacks at least one target outside the sensible target set 7g with
nonzero probability. We construct another attacker strategy profile p’ based on

p s.t.:

Di 1€Tg and i #m
¢ J€TU
0 iGTU

After some algebraic operations, it is possible to show that Ua(p,q) <
Ua(p’,q). Therefore, the attacker is always better off attacking nodes in the
sensible target set 7g. O

Theorem 7 shows that the attacker only needs to attack nodes that belong
to 7g in order to maximize his utility. Therefore, the defender has no incentive
to monitor nodes that do not belong to 7g. As a consequence, valuable defense
resources would be wasted by monitoring nodes in 7. Therefore, a rational
defender only needs to monitor nodes in 7g.

3.3.2 NE Analysis

A strategy profile (p*,q*) is a Nash Equilibrium of the intrusion detection
game if each player cannot improve his utility by deviating from his strategy
unilaterally. Let >~ pf = Pand Y ¢f = Q. In this case, the attacker/defender

ieT ieT

uses all his resources to attack/defend the network. The game can be seen as
a resource allocation problem, in which each player’s objective is to maximize
his/her utility given the action of the other player. The strategies of the attacker
and the defender at the NE are as follows:
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k
Poy (%) -5 ()
. k;fs Hk C:n Q k;’s Hk )\’L
Vi € Tg, pf = : +M and ¢f = ; +M—
Wie 3 (i) | W 5 (i)
it kez;'s Wit i kezﬂ:'s Wi

Vie Ty, pf =0and ¢f =0

The necessary conditions for the obtained result to be a NE are:

Wi(2aip} — Ch) + fWiaip] 3> 6] =0 P> 5 (%)
_ JEI(4) 4 N i€Ts ¢

Wi(l = 2a,qf — Co) + BWi(1 —aiqf) > 6] >0 Q< Y L)
JErT () i&7s

In this case, the attacker and the defender focus on attacking and monitoring
a subset 7g of nodes in the network. These nodes yield the maximum payoff for
the attacker and therefore need to be monitored.

If >>p; < Pand > ¢f < @, both the attacker and the defender do not
icT icT

use all the available resources to attack and defend the network respectively.

According to Theorem 1, in a realistic instance of this game, no NE exists.

4 Numerical Analysis

We consider a network comprised of n = 10 nodes. The type of the nodes and
the values of some of the model parameters are depicted in Tables4 and 5. The
nodes in both tables are already sorted and numbered according to decreasing
Wi \; values as described in Sect. 3.

Table 4. Node types and individual parameters

Number | Node type Wi ViO a;

1 Business App. A 0.75/0.6 | 0.7
2 Intranet Portal 0.75]0.6|0.6
3 Mailing Server 0.75/0.3/0.6
4 Webmail Server 0.4 10.3/0.1
5 Business App. B 0.5 10.60.7
6 Intranet Common Services | 1 0.6 0.1
7 Storage Area Network 1 0 |01
8 Office Server 0.4 10.3/0.7
9 Authority Station 0.1 |1 |08
10 User Station 0.1 |1 |08
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Table 5. Node interdependencies 6’

i\jl1 2 3 4 5 6 7 8 9/10
1 0 1 0 0 0 051 0 |0
2 0 (0 0 [0 0 09090 |0
3 /0 0 0 0 0 081 0 0
4 /o 1 /1 0 0 091 0 0
5 0 /1 0 0 0 051 0 |0
6 0 0 0 0 0 0 0 0 O
7 0 /0 0 0 0 0 O 0 |0
8 |0 0 0 0 0 05090 0
9 0809030108090 030
10 1050502010509/ 0 020

We study the NE strategies of both players in two different scenarios. In
the first scenario, we consider a typical network in which the attack and defense
costs are relatively high compared with the security assets of the nodes (i.e. C, =
Cy, = 0.1). In addition, the use of the interdependencies between nodes in the
attack process is not considered of high criticality (i.e. 8 = 0.5). In this scenario,
the attacker may not be tempted to fully exploit the node interdependencies
in his attack. The resource constraints for the attacker and the defender are
set to P = 0.8 and Q = 0.9 respectively, which means that the budget of
the defender is slightly superior to the budget of the attacker. In the second
scenario, the values of nodes security assets outweigh attack and defense costs
(ie. C, = Cp, = 0.001), and exploiting the interdependencies between nodes
can play a significant role in the attack process (i.e. § = 1). In addition, due
to the security requirements of such critical networks, the detection rate a; on
each node ¢ is assumed to be a; > 0.5. Finally, we consider that the attack and
defense resource constraints are set to P =1 and @ = 1 respectively.

The NE strategies of the attacker and the defender are depicted in Table6.
In both scenarios, the attacker/defender uses all his available resources to
attack/defend. We note that both players focus on a sensible target set com-
prised of nodes 1, 2, 3, and 4in the first scenario, and nodes 1, 2, 3, 4, and 5in
the second scenario. It is interesting to note that nodes 9 and 10 are not sensitive
nodes despite having many dependencies stemming from them, as they have low
security assets values to be worth attacking or defending. On the contrary, nodes
6 and 7 are not part of the sensible target set despite their relatively high secu-
rity assets and the absence of dependencies stemming from them. In the second
scenario, the sensible target set increased by one node (node 5). This is most
probably due to the fact that the attacker has additional available resources
and that node 4 had its detection probability a; raised from 0.1 to 0.5, hence
discouraging the attacker from spending too many resources to attack this node.
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Table 6. Nash equilibrium for scenarios 1 and 2

Scenario 1 Scenario 2

= 0.0712, ¢f =0.3135 | p} =0.1377, ¢F = 0.3762
p5 =0.0931, g5 =0.2088 ps =0.1903, g5 =0.2127
p3=0.0758, g3 =0.1915 p3 =0.1901, ¢35 =0.2126
pi=0.5599, ¢ =0.1862 | p}=0.2754, ¢} = 0.1897

p5=0, =0 ps =0.2065, g5 =0.0088
ps =0, g6=0 ps=0,qs=0
p7=0,g7=0 p7=0, ¢ =0
ps =0, gg=0 ps=0, g5 =0
ps =0, gg=0 ps=0,q5=0
Pio=0, gip=0 Pio= 0, gio =0

Ua = 0898, Up = —0.953|Ua = 1.736, Up = —1.737

The Security Information and Event Management (SIEM) software used in
this industrial case study defines a metric to quantify the overall security of the
network. This metric, which cannot be described in detail due to confidentiality
reasons, consists in assessing, for each node, the types of attacks that can be
mitigated given the current IDS configuration while taking into account the
interdependencies between nodes in the evaluation process. After applying the
optimal allocation of defense resources obtained at the NE, which translates in
practice in configuring more efficient IDSs on critical nodes, we were able to
notice a significant improvement of the overall security of the network, hence
confirming the validity of our approach.

Sensitivity to 0? . We analyze the impact of 9{ estimation errors on the identity
of nodes that belong to the sensible target set 7g. In both scenarios, nodes 8 to 10,
due to their low security assets, remain in the set 7y; even with a 20% estimation
error on the values of each #7. In our model, the importance of a node is quantified
by the value W;\;, where \; mainly depends on § and the interdependencies 9{ .
Therefore, inaccurate assessment of the interdependencies can have a significant
impact on the results when the values of 8 and W; are high. In our case study,
when nodes 1, 2 and 3 have slightly erroneous interdependencies evaluations, we
do not note any change in the sets 7¢ and 7. However, at the NE, we observe
a small increase and decrease in the attacker and defender utilities respectively.
For example, if on node 2, which has a relatively high security asset (W, =
0.75), >. 65 was overestimated by 0.4 (i.e. a 16% estimation error), Uy
Jer+(2)
increases by 10% and Up decreases by 5%. On the other hand, overestimating
> 6 by 0.1 (i.e. a 4% error) in scenario 1 is enough to include node 5 in
JETT(5)
7Ts. However, the impact of the error on U and Up remains very low (<1%).
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Similarly, underestimating > 9% by 0.1in scenario 2 leads to the exclusion
JET*(5)
of node 5 from 7g. At the NE, the attacker leverages this situation and targets
node 5. However, it is interesting to note that the impact on the players’ utilities
remains inferior to 1% in this case as well. This shows that in some cases, an
approximate construction of the sensible target set 7g does not necessarily entail
a sudden substantial utility gain (resp. loss) for the attacker (resp. defender).
These observations demonstrate that our model is robust enough to deal with
slight inaccuracies in the evaluation of interdependencies parameters. However,
given the number of parameters 6] to evaluate in large networks, important
estimation errors on these parameters could have a significant impact on the
strategies of the attacker and the defender, hence justifying the need for a more
formal and rigorous evaluation method of these parameters.

5 Conclusion

In this paper, we introduced a set of security games that we refer to as Resource
Constrained Network Security (RCNS) games and studied the necessary condi-
tions for the existence of NE, Stackelberg equilibrium, and mazimin strategies
for this type of games. We then presented a game theoretical model for opti-
mizing the allocation of monitoring resources to detect attacks in a network
while taking into account nodes’ vulnerabilities interdependencies. Finally, we
validated our model via a real world case study. Our numerical study showed
that the result of the analysis is sensitive to the values of parameters quantifying
the interdependencies between network nodes. Therefore, elaborating a rigorous
evaluation method for these parameters will be the subject of future work. In
addition, we plan to investigate the impact of imperfect information in the gen-
eral framework of RCNS games on the existence and uniqueness of equilibrium
solutions.
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Abstract. Motivated by the goal recognition (GR) and goal recogni-
tion design (GRD) problems in the artificial intelligence (AI) planning
domain, we introduce and study two natural variants of the GR and GRD
problems with strategic agents, respectively. More specifically, we con-
sider game-theoretic (GT) scenarios where a malicious adversary aims
to damage some target in an (physical or virtual) environment moni-
tored by a defender. The adversary must take a sequence of actions in
order to attack the intended target. In the GTGR and GTGRD settings,
the defender attempts to identify the adversary’s intended target while
observing the adversary’s available actions so that he/she can strength-
ens the target’s defense against the attack. In addition, in the GTGRD
setting, the defender can alter the environment (e.g., adding roadblocks)
in order to better distinguish the goal/target of the adversary.

We propose to model GTGR and GTGRD settings as zero-sum
stochastic games with incomplete information about the adversary’s
intended target. The games are played on graphs where vertices repre-
sents states and edges are adversary’s actions. For the GTGR setting, we
show that if the defender is restricted to playing only stationary strate-
gies, the problem of computing optimal strategies (for both defender and
adversary) can be formulated and represented compactly as a linear pro-
gram. For the GTGRD setting, where the defender can choose K edges
to block at the start of the game, we formulate the problem of computing
optimal strategies as a mixed integer program, and present a heuristic
algorithm based on LP duality and greedy methods. Experiments show
that our heuristic algorithm achieves good performance (i.e., close to
defender’s optimal value) with better scalability compared to the mixed-
integer programming approach.

In contrast with our research, existing work, especially on GRD prob-
lems, has focused almost exclusively on decision-theoretic paradigms,
where the adversary chooses its actions without taking into account the
fact that they may be observed by the defender. As such an assumption
is unrealistic in GT scenarios, our proposed models and algorithms fill a
significant gap in the literature.
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1 Introduction

Discovering the objective of an agent based on observations of its behavior is
a problem that has interested both artificial intelligence (AI) and psychology
researchers for many years [7,23]. In Al, this problem is known as goal recog-
nition (GR) or, more generally, plan recognition [25]. Plan and goal recogni-
tion problems have been used to model a number of applications ranging from
software personal assistants [16-18]; robots that interact with humans in social
settings such as homes, offices, and hospitals [8,26]; intelligent tutoring systems
that recognize sources of confusion or misunderstanding in students through
their interactions with the system [6,12,14,15]; and security applications that
recognize the plan or goal of terrorists [5].

1 2 3 4 5 1 2 3 4 5
A G2 A G2
B G1 B Gl
C G3 C G3
D D
E E

Fig. 1. Example Problem (left) and with Blocked Actions in Red (right).

One can broadly summarize the existing research in GR as one that primarily
focuses on developing better and more efficient techniques to recognize the plan
or the goal of the user given a sequence of observations of the user’s actions. For
example, imagine a scenario shown in Fig. 1 (left), where an agent is at cell E3,
it can move in any of the four cardinal directions, and its goal is one of three
possible goals G1 (in cell B1), G2 (in cell A5), and G3 (in cell C5). Additionally,
assume that it will move along a shortest path to its goal. Then, if it moves left
to cell £2, then we can deduce that its goal is G1. Similarly, if it moves right to
cell £4, then its goal is either G2 or G3.

Existing research has focused on agent GR models that are non-strategic or
partially strategic: The agent’s objective is to reach its goal with minimum cost,
and the agent does not explicitly reason about its interaction with the observer.
However, when the observer’s recognition of the agent’s goal affects the agent
in some way, then it is in the agent’s best interest to be fully strategic — to
explicitly reason about how the agent’s choice affects the observer’s recognition.
As a result, the observer will need to take into account the agent’s strategic
reasoning when making decisions.
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1.1 Game-Theoretic Goal Recognition Problems in Security
Domains

Naturally, GT settings with strategic agents are common in many real-world
(physical and cyber) security scenarios between an adversary and a defender. The
adversary has a set of targets of interests and would be equally happy in attacking
one of them. In physical security domains, the adversary must make a sequence
of physical movements to reach a target; in cyber security domains, this could
be a sequence of actions achieving necessary subgoals to carry out the attack.
In any case, the defender is trying to recognize the adversary’s goal/target. We
coined this the game-theoretic goal recognition (GTGR) problem.

Let us describe the security games of interests using Fig. 1. Consider the
security scenario in Fig.1 (left), where an agent (i.e., terrorist) wants to reach
its intended target and carry out an attack, while we, the observer (the defender)
try to recognize the agent’s goal as early as possible. Suppose once we recognize
the agent’s goal, we will strengthen the agent’s target to defend against the
attack. The more time we have between recognition and the actual attack, the
less successful the attack will be. In this scenario, it is no longer optimal for
the agent to simply choose a shortest path to its goal, as that could allow the
observer to quickly identify its goal. On the other hand, the agent still wants to
reach its goal in a reasonably short time, as a very long path could allow the
observer time to strengthen all the targets. So, an optimal agent would need
to explicitly reason about the tradeoffs between the cost of its path (e.g., path
length) and the cost of being discovered early.

1.2 Game-Theoretic Goal Recognition Design Problems in Security
Domains

So far we have been discussing the defender’s task on recognizing goals. However,
the task could become very difficult in general. For instance, going back to our
security example in Fig. 1, if the agent moves up to D3, the observer cannot
make any informed deductions. In fact, if the agent moves along any one of
its shortest paths to goal G3, throughout its entire path, which is of length 4,
we cannot deduce whether its goal is either G2 or G3! This illustrates one of
the challenges with this approach, that is, there are often a large number of
ambiguous observations that can be a result of a large number of goals. As such,
it is difficult to uniquely determine the goal of the agent until a long sequence
of observations is observed.

The work of [9,10] proposed an orthogonal approach to modify the underlying
environment of the agent, in such a way that the agent is forced to reveal its goal
as early as possible. They call this problem the goal recognition design (GRD)
problem. For example, if we block the actions (E3,up), (C4,right), (C5,up) in
our example problem, where we use tuples (s, a) to denote that action a is blocked
from cell s, then the agent can make at most 2 actions (i.e., right to E4 then up to
D4) before its goal is conclusively revealed. Figure 1 (right) shows the blocked
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actions. This problem finds itself relevant in many of the same applications of
GR because, typically, the underlying environment can be easily modified.

As such, in addition to studying the GTGR problem, we consider the
GTGRD problem where the observer can modify the underlying environment
(i.e., adding K roadblocks) as to restrict the actions of the agent.

1.3 Related Work

GR and its more general forms, plan recognition and intent recognition, have
been extensively studied [25] since their inception almost 40years ago [23].
Researchers have made significant progress within the last decade through syner-
gistic integrations of techniques ranging from natural language processing [3,27]
to classical planning [20-22] and deep learning [15]. The closest body of work to
ours is the one that uses game-theoretic formulations, including an adversarial
plan recognition model that is defined as an imperfect information two-player
zero-sum game in extensive form [13], a model where the game is over attack
graphs [1], and an extension that allows for stochastic action outcomes [4]. The
main difference between these works and ours is that ours focuses on goal recog-
nition instead of plan recognition.

While GR has a long history and extensive literature, the field of GRD is rela-
tively new. Keren et al. introduced the problem in their seminal paper [9], where
they proposed a decision-theoretic STRIPS-based formulation of the problem.
In the original GRD problem, the authors make several simplifying assump-
tions: (1) the observed agent is assumed to execute an optimal (i.e., cost-
minimal) plan to its goal; (2) the actions of the agent are deterministic; and
(3) the actions of the agent are fully observable. Since then, these assumptions
have been independently relaxed, where agents can now execute boundedly-
suboptimal plans [10], actions of the agents can be stochastic [28], and actions
of the agents can be only partially observable [11]. Further, aside from all the
decision-theoretic approaches above, researchers have also modeled and solved
the original GRD problem using answer set programming [24]. The key difference
between these works and ours is that ours introduced a game-theoretic formula-
tion that can more accurately capture interactions between the observed agent
and the observer in security applications.

1.4 Owur Contributions

As a result of the strategic interaction in the GTGR and GTGRD scenarios,
the concept of cost-minimal plan (the solution concept in GR problem) and
worst-case distinctiveness (the solution concept in GRD problem) are no longer
a suitable solution concept since it does not reflect the behavior of strategic
agents. Instead, our objective here is to formulate game-theoretic models of the
agent’s and observer’s interactions under GR and GRD settings. More specifi-
cally, we propose to model GTGR and GRGRD settings as zero-sum stochastic
games with incomplete information where the adversary’s target is unknown to
the observer. For the GTGR setting, we show that if the defender is restricted to
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playing only stationary strategies, the problem of computing optimal strategies
(for both defender and adversary) can be formulated and represented compactly
as a linear program. For the GTGRD setting, where the defender can choose K
edges to block at the start of the game, we formulate the problem of computing
optimal strategies as a mixed integer program, and present a heuristic algorithm
based on LP duality and greedy methods. We perform experiments to show that
our heuristic algorithm achieves good performance (i.e., close to defender’s opti-
mal value) with better scalability compared to the mixed-integer programming
approach.

2 Preliminary: Stochastic Games

In our two-player zero-sum single-controller stochastic game G, we have a finite
set S of states, and an initial state so € S. The first player acts as an adversary
attempting to reach some target within the environment, while second player acts
as the observer of the environment. Given a state s € .S, there exist finite action
sets Js and I for the adversary and the observer respectively. Given a state s € .S
and j € Js, a single-controller transition function x(s,j) deterministically maps
state and action to a new state. Given a state s € S, j € Jg, i € I, and intended
target of the adversary 6, we define a reward function r(s,%,7,0) € R. Since
this is a zero-sum game, without loss of generality, we define r as the reward
for the observer and the additive inverse of the reward for the adversary. We
consider a two-player zero-sum single-controller stochastic game where observer
has incomplete information. In particular, the game consists of a collection of
zero-sum single-controller stochastic games {Gy}ocp and a probability distrib-
ution P € A(B) over B. For our setting, we assume that each stochastic game
Gy could have different reward function 7%, but all of the games GJs have the
same sets of states, actions, and transition rules. The game is played in stages
over some finite time. First, a game Gy is drawn according to P. The adversary
is informed of 6 while the observer does not know 6, but rather a set of states
B of which 0 is a part of. At each stage of game ¢ with current state s; € .S,
the adversary selects j; € J; and the observer selects iy € I, and s;41 is reached
according to x(s, j:). However, we assume that the adversary does not know i,
and both of the players do not know r%(s;, i, j;). Note that observer can infer
the action of the adversary given the new state since our transition function is
deterministic. Hence, the observer knows j;, iy, and s;41.

The strategies of the players can be based on their own history of the previous
states and strategies. In addition, player 1 can condition his strategies based on 6.
We consider a finite timestep to be at most T'. Let h} = (S0, jo, S1, J1, -+, J¢—1, St)
and h? = (80,0, %0, 81, -+ jt_1,%t_1,5¢) to denote a possible history of length
t of player 1 and player 2 where ji € Js, and i, € I for k = 1,...,¢. Let Hslt
and H SQt be the set of all possible histories of length ¢ ended up at state s;.
Then, the sets of deterministic strategies for player 1 and player 2 are therefore
[lico<rs,es. n,em, Js. and [[,_g<r ,e5. w2 emz, L respectively. Indeed, for each
possible hlstory7 the players need to select some actions. Naturally, the players
mixed strategies are distributions over the deterministic strategies.
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Definition 1. Given 8 € B, 0 <t < T, s; € S, h;t € Hslt, player 1’s behav-
ioral strategy o1(0, h;,,vjsf,) returns the probability of playing js, € Js, such that
sttert o1(0, hit,jst) = 1. (Player 2’s behavioral strategy o2 is defined similarly
and does not depend on 0).

Definition 2. A behavioral strateqy o is stationary if and only if it is inde-
pendent of any timestep t and depends only on the current state (i.e., o1(0,
hl.js) = o1(0, hl,js) such that hl and hl have the same last state and oo can
be defined similarly).

Given a sequence {(s¢,it,75:)}2_; of actions and states, the total reward for
player 2 is rp = Zthl 79 (54,44, j¢). Thus, the expected reward yr (P, so, 01, 02) =
Ep s, 01,0, [77] is the expectation of 7 over the set of stochastic games {Gg}oen
given the the fixed initial state sy under P, o1, and o3, respectively.

Definition 3. The behavioral strategy oo is a best response to o1 if and only if
for all oy, yr(P, s0,01,02) > yr(P, s0,01,0%). The behavioral strategy o1 is a
best response to oo if and only if for all o, yr (P, so,01,02) < y1(P, s0,07,02).

For two-player zero-sum games, the standard solution concept is the max-min
solution: max,, min,, vr(P, sg,01,02). One can also define min-max solution
min,, maxq, yr (P, 89, 01,02). For zero-sum games, the max-min value, min-max
value, and Nash equilibrium values all coincide [2]. For simultaneous-move games
this can usually be solved by formulating a linear program. In this work, we will
be focusing on computing the max-min solution.

3 Game Model

We begin by describing our settings and introducing the GTGR and GTGRD
models.

3.1 Game-Theoretic Goal Recognition Model

Consider a deterministic environment such as the one in the introduction. We
can model the environment with a graph in which the nodes correspond to the
states and the edges connect neighboring states. Given the environment and
the graph, as in many standard GR problems, the agent wants to plan out a
sequence of moves (i.e., determining a path) to reach its target location of the
graph. The target location is unknown to the observer, and the observer’s goals
are to identify the target location based on the observed sequence of moves and
to make preventive measure to protect the target location.

We model this scenario as a two-player zero-sum game, between the agent/
adversary and the observer. Given the graph G = (L, E) of the environment,
the adversary is interested in a set of potential targets B C L and has a starting
position sy € L\ B. The adversary’s aim is to attack a specific target 6 € B,
which is chosen at random according to some prior probability distribution P.
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The observer does not know the target 6, and only the adversary knows its target
0. However, the observer knows the set of possible targets B and the adversary’s
starting position sg. For any s € L, we let v(s) is the set of neighbors of s in the
graph G.

The sequential game is played over several timesteps where both players move
simultaneously. Each timestep, the observer selects a potential target in B to
protect, and the agent moves to a neighboring node. We consider the zero-sum
scenario: With each timestep, the adversary and the observer will lose and gain
a value d, respectively. In addition, if the observer protects the correct target
location 6, an additional value of ¢ will be added to the observer and subtracted
from the adversary. The game ends when the attacker reaches its target 6, a value
of u’ will be added to the adversary’s overall score, and u? will be subtracted
from the observer’s overall score. Notice that during the play of the game, the
adversary does not observe the observer’s action(s), and the players do not know
of their current scores.

Because of the potentially stochastic nature of the adversary’s moves at each
timestep, and the uncertainty of adversary’s target in the system, our setting
is most naturally modeled as a stochastic game with incomplete information as
defined in Sect. 2. More specifically, the set of states is L with an initial state sg.
Given a state s € S, v(s) is the action set for the adversary and B is the action set
for the observer. Given a state s € S and j € v(s), the single-controller transition
function x(s,j) = j. Indeed, the transition between states are controlled by the
adversary only and is deterministic: From state s, where s # 6, given attacker
action j € v(s), the next state is j. The state 6 is terminal: Once reached, the
game ends. Given a state s € S, j € v(s), and i € B, we define the reward
function 7%(s,i,5) = r(s,i,j,0) from the observer’s point of view as

d jFO&iIFO
. d+ j#£0 &i=10
7(s,4,7,0) = d_ge gie&l#e (1)

d+q—u’ j=0&i=0.

While, in theory, the game could go on forever if the adversary never reaches
his target 0, because of the per-timestep cost of d, any sufficiently long path for
the adversary would be dominated by the strategy of taking the shortest path
to 6. Eliminating these dominated strategies allows us to set a finite bound for
the duration of the game, which grows linearly in the shortest distance to the
target that is furthest away. Even in games where the value of d is set to 0,
the defender could potentially play a uniformly random strategy that imposes a
cost of ﬁ per timestep. Therefore, an adversary strategy taking forever would
achieve a value of —oo against the uniformly random defender strategy. In any
Nash equilibrium the attacker will always reach their target in finite time.

We call this the game-theoretic goal recognition (GTGR) model. All of the
definitions in Sect. 2 follow immediately for our games.
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3.2 Game-Theoretic Goal Recognition Design Model

As mentioned in the introduction, we also consider the game-theoretic goal recog-
nition design (GTGRD) model. Formally, before the game starts, we allow the
observer to block a subset of at most K actions from the game. In our model,
that corresponds to blocking at most K edges from the graph. In one variant of
the model, blocking an edge effectively removes that edge, i.e. the adversary can
no longer take that action. In another variant, blocking an edge does not prevent
the adversary from taking the action, but the adversary would incur a cost by
taking that action. After placing the blocks, the game proceeds as described in
Sect. 3.1.

4 Computation

4.1 Game-Theoretic Goal Recognition Model

With the game defined, we are interested in computing the solution of the game:
What is the outcome of the game when both players behave rationally? Before
defining rational behavior, we first need to discuss the set of strategies. In a
sequential game, a pure strategy of a player is a deterministic mapping from
the current state and the player’s observations/histories leading to the state,
to an available action. For the adversary, such observations/histories include
its own sequence of prior actions and its target 6; the observer’s observa-
tions/histories include the adversary’s sequence of actions and the observer’s
sequence of actions. A mixed strategy is a randomized strategy, specified by a
probability distribution over the set of pure strategies. The strategies are defined
more formally in Sect. 2 and Definition 1.

As mentioned earlier, we are interested in computing the max-min solution,
which is equivalent to the max-min value, min-max value, and Nash equilibrium
value of the game. For simultaneous-move games this can usually be solved
by formulating a linear program. However, for our sequential game, each pure
strategy need to prescribe an action for each possible sequence of observations
leading to that state and, as a result, the sets of pure strategies are exponential
for both players.

To overcome this computational challenge, we focus on stationary strategies,
which depend only on the current state (for the adversary, also on #) and not on
the history of observations (see Definition 2). While for stochastic games with
complete information, it is known that there always exist an optimal solution
that consists of stationary strategies [2], it is an open question whether the same
property holds for our setting, which is an incomplete-information game. Nev-
ertheless, there are some heuristic reasons that stationary strategies are at least
good approximations of optimal solutions: The state (i.e., adversary’s location)
already captures a large amount of information about the strategic intention of
the adversary.

An intuitively optimal non-stationary strategy in which the observer assigns
resources to the target with maximal probability, determined through observing
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the actions of the adversary, presents additional challenges. An optimal strategy
of this nature would require information regarding adversary’s strategy from
the beginning of the game, so as to determine the likelihood of a given action
assuming a particular target for the adversary. Making such assumptions is a
straightforward process when restricting the observer to stationary strategies.
Later in this paper we will demonstrate how given a stationary strategy for the
observer, there exists a best response strategy for the adversary that is also
stationary.

Restricting to stationary strategies, randomized strategies now correspond
to a mapping from state to a distribution over actions. We have thus reduced
the dimension of the solution space from exponential to polynomial in the size
of the graph. Furthermore, our game exhibits the single-controller property: The
state transitions are controlled by the adversary only. For complete information
stochastic games with a single controller, a linear programming (LP) formulation
is known [19]. We adapt this LP formulation to our incomplete information
setting.

We define V(0,s) to be a variable that represents the expected payoff to
the observer at state s and with adversary’s intended target 6. We use P(6) to
denote the prior probability of § € B being the adversary’s target such that
> 9ep P(0) = 1. The observer’s objective is to find a (possibly randomized)
strategy that maximizes his expected payoff given the prior distribution over the
target set B, the moves of the adversary, and the adversary’s starting location.
The following linear program computes the utility of the observer in a max-min
solution assuming both players are playing a stationary strategy.

. EB:P(G)V(& o) (2)
V(0,s) < Zr(s, i,5,0)fi(s) +V(0,7) VO€B,Vs|s#0,Yicv(s) (3)
V(0,s) = ZJEB when s =0  (4)

> fils) =1 Vs (5)
l fils) >0 Vs,i  (6)

In the above linear program, (2) is the objective of the observer. The f;(s)’s
represent the probability of the observer taking an action i € B given the state
s. To ensure a well defined probability distribution for each state of the games,
(5) and (6) impose the standard sum-equal-to-one and non-negative conditions
on the probability of playing each action i € B. The Bellman-like inequality (3)
bounds the expected value for any state using expected values of next states
plus the expected current reward, assuming the adversary will choose the state
transition that minimizes the observer’s expected utility. Finally, (4) specifies
the base condition when the adversary has reached their destination and the
game ends. The size of the linear program is polynomial in the size of the graph.

The solution of this linear program prescribes a randomized stationary strat-
egy fi(s) for the observer and, from the dual solutions, one can compute a
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stationary strategy for the adversary. In more detail, the dual linear program is

minZt (7)
ts >Z/\ r(s,1,7,0) Vs, i (8)

Lo PO)+ > Z X VOeBYs#£0  (9)

s'#6:s€v(s’) jev(s)
N o>0 vh,s,5  (10)

S]—

where I;—, is the indicator that equals 1 when s = sy and 0 otherwise. The
dual variables )\‘9 s,; can be interpreted as the probability that adversary type ¢
takes the edge from s to j. These probabilities satisfies the flow conservation
constraints (9): given 6, the total flow into s (the left hand side) is equal to
the probability that type 0 visits s, which should equal the total flow out of s
(the right hand side). The variables ¢ can be interpreted as the contribution to
defender’s utility from state s, assuming that the defender is choosing an optimal
action at each state (ensured by constraint (8)).

Given the dual solutions \? ., we can compute a stationary strategy for the

adversary: let 7(j]0,s) be the probablhty that the adversary type 0 chooses

j at state s. Then for all § € B and s # 6, n(j|¢,s) = Zl\iJ/\ It is
il Ev(s) Ns, 40
straightforward to verify that by playing the stationary strategy m, the adversary

type 6 will visit each edge (s, j) with probability )\g)]

Lemma 1. Given a stationary strategy for the defender, there exists a best
response strategy for the adversary that is also a stationary strategy.

Proof (Sketch). Given a stationary defender strategy f;(s), each adversary type 6
now faces a Markov Decision Process (MDP) problem, which admits a stationary
strategy as its optimal solution.

More specifically, since the state transitions are deterministic and fully con-
trolled by the adversary, each type 6 faces a problem of determining the shortest
path from sq to 6, with the cost of each edge (s,j) as ), g fi(s)r(s,1,5,0).
Looking into the components of r(s,i,,0), since the adversary reward u® for
reaching target 6 occurs exactly once at the target 6, it can be canceled out
and the problem is equivalent to the shortest path problem from sq to 6 with
edge cost d+ fg(s)g. Since edge costs are nonnegative the shortest paths will not
involve cycles.

What this lemma implies is that if the defender plays the stationary strategy
prescribed by the LP (2), the adversary cannot do better than the value of the
LP by deviating to a non-stationary strategy.

Corollary 1. If the defender plays the stationary strategy fi(s) given by the
solutions of LP (2), the adversary’s stationary strategy m as prescribed by LP
(7) is a best response, i.e., no non-stationary strategies can achieve a better
outcome for the adversary.
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While it is still an open question whether the defender has an optimal sta-
tionary strategy, we have shown that if we restrict to stationary strategies for
the defender, it is in the best interest of the adversary to also stick to stationary
strategies and our LP (2) does not overestimate the value of the game.

4.2 Game-Theoretic Goal Recognition Design Model

One can solve this GTGRD problem by brute-force, i.e., try every subset of edges
to block and then for each case solve the resulting LP. The time complexity of
this approach grows exponentially in K. Instead, we can encode the choice of
edge removal as integer variables added to the LP formulation, resulting in a
mixed-integer program (MIP). For example, we could replace (3) with

V(07S) SZT(S,Z,],G)J[‘,(S)+V(9,j)+MZ(S,]) (11)
i€B

where M is a positive number, and z(s,j) is a 0-1 integer variable indicating
whether the action/edge from s to j is blocked. M thus represents the penalty
that the attacker incurs if he nevertheless chooses to take the edge from s to j
while it is blocked. By making M sufficiently large, we can make the actions of
crossing a blocked edge dominated and therefore effectively removing the edges
that we block. We also add the constraint »__ ; z(s, j) < K.

Dual-Based Greedy Heuristic. The MIP approach scales exponentially in
the worst case as the size of the graph and K grows. We propose a heuristic
method for selecting edges to block. We first solve the LP for goal recognition
and its dual. In particular, we look at the dual variable /\9 s,; for the constraint
(3). This dual has the standard interpretation as the shadow price: it is the rate
of change to the objective if we infinitesimally relax constraint (3).

Looking at the MIP, in particular constraint (11), we see that by blocking off
an action from s to j we are effectively relaxing the corresponding LP constraints
(3) indexed by 6, s, j for all € B. These are the adversary’s incentive constraints
for going from s to j, for all adversary types 6.

Utilizing the shadow price interpretation of the duals, the sum of the duals
corresponding to the edge from s to j: > 55 A ; gives the rate of change to the
objective (i.e. defender’s expected utility) if the edge (s, ) is blocked by an infin-
itesimal amount. Choosing the edge that maximizes this, argmax, ; > )5 )\g’j
we get the maximum rate of increase of our utility. These rates of changes hold
only when the amount of relaxation (i.e., M) is infinitesimal. However, in prac-
tice we can still use this as a heuristic for choosing edges to block.!

1 Another perspective: from the previous section we see that )\g,j is the probability
that adversary type 0 traverses the edge s, j. Then if the adversary and defender do
not change their strategies after the edge (s, 7) is blocked, the defender would receive
an additional utility of M >, p /\2, ; from the adversary’s penalty for crossing that
edge.



Game-Theoretic Goal Recognition Models 267

When K > 1, we could choose the K edges with the highest dual sums. Alter-
natively, we can use a greedy approach: pick one edge with the maximum dual
sum, place a block on the edge and solve the updated LP for goal recognition, and
pick the next edge using the updated duals, and repeat. In our experiments, the
latter greedy approach consistently achieved significantly higher expected utili-
ties than the former. Intuitively, by re-solving the LP after adding each edge, we
get a more accurate picture of the adversary’s adaptations to the blocked edges.
Whereas the rates of changes used by the former approach are only accurate
when the adversary do not adapt at all to the blocked edges (see Footnote 1).
Our greedy heuristic is summarized as follows.

—fori=1...K:

e Solve LP (2), updated with the current blocked edges. If edge (s,J)
blocked, the corresponding constraint (3) indexed s, j, 6 for all § are mod-
ified so that M is added to the right hand side. Get the primal and dual
solutions.

e Take an edge (s*,j*) € argmax, ;Y ycp /\‘z’j, and add it to the set of
blocked edges.

— return the set of blocked edges, and the primal solution of the final LP as the
defender’s stationary strategy.

5 Experiments

Experiments were run on a machine using OSX Yosemite version 10.10.5, with
16 GB of ram and a 2.3 GHz Intel Core i7 processor, and were conducted on
grid environments such as the one seen in Fig.2. In these environments, the
adversary is allowed to move to adjacent nodes connected by an edge. S denotes
the starting location of the adversary while T'1 and T2 denote the locations of
two potential targets.

In Fig.2, targets T1 and T2 each have a equal likelihood of being the
adversary’s intended target. The adversary’s timestep penalty d and completion

Fig. 2. An instance of GTGR/GTGRD games used in experiments.
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reward uf are both set to 0. The defender’s reward for correctly guessing the
adversary’s intended target ¢ is set to 10. The attacker penalty value for cross-
ing an edge penalized by the observer is set to 10. The observer is permitted to
penalize 3 edges.

5.1 A Comparison of MIP and Greedy Solutions

As seen in Figs.3 and 4, the mixed integer program and greedy heuristic can
yield different results. The mixed integer program yields an expected outcome
of 43.3 for the observer, while utilizing the greedy heuristic yields an outcome of
40.0 for the observer. The default expected outcome for the observer (in which
no edges are penalized) is 30.0. The following experiments averaged the results
of similar grid problems.

Fig. 3. MIP solution Fig. 4. Greedy solution

5.2 Running Time and Solution Quality

Results from the following experiments were averaged over 1000 grid environ-
ments. For each experiment, the adversary’s timestep penalty d and completion
reward u’ were set to 0. For each environment, the starting location of the adver-
sary and all targets are placed randomly on separate nodes. Additionally, each
target 6 is assigned a random probability P(0) such that ) ,.; P(f) = 1. In all
of our figures below, the greedy heuristic for the GTGRD is graphed in orange,
the MIP is graphed in blue, and the default method (LP) for GTGR is graphed
in grey, in which the game is solved with no penalized edges. The defenders
reward for correctly guessing the adversary’s intended target ¢ was set to 10.
The attacker penalty value for crossing an edge penalized by the observer was
set to 10. Each game, the observer was permitted to penalize 2 edges.
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Various Potential Target Sizes. In this set of experiments, we want to inves-
tigate the effect of different potential target sizes (i.e., |B|) to the running time
(Fig. 5) and solution quality (Fig.6) of our algorithms. The results are averaged
over 1000 simulations of 6 by 6 grids. Each game, the observer was permitted to
penalize 2 edges.
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As indicated in Fig.5, the MIP running time increases exponentially while
the greedy heuristic running time remains sublinear as we increase the number of
potential targets. Moreover, the solution quality (measured by defender’s utility)
as seen in Fig. 6 suggests that MIP’s solution is closely aligned with our greedy
heuristics. This gives evidence that our greedy heuristic provides good solution
quality while achieving high efficiency. It is no surprise that the defender’s utility
is higher in the GTGRD setting compared to those of GTGR.

Various Instance Sizes. In this set of experiments, we investigate the effect
of different instance sizes (i.e., grids) to the running time (Fig.7) and solution
quality (Fig.8) of our algorithms.

Unlike our earlier observations on various target sizes, the average running
times for both the MIP and our greedy heuristic increase significantly as we
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increase the instance sizes (see Fig. 7). This is not surprising as now we have more
variables and constraints in the integer programs. Despite this, the defender’s
utilities generated by greedy heuristic are relatively similar to those generated
using MIP (see Fig. 8).

01
40
009 g 3
0.08 8 I
7007 3 ot
5 006 5
g 0.05 2 20
2 3]
g 00t § 15
S 0.03 © 10
002 5
001 °
1 2 3

1 2 3

barriers penalized edges

=@M Time «==@==Greedy Time ®MiOutcome M Greedy Outcome M Default Outcome
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Various Number of Barriers/Blocks. In this set of experiments, we want to
investigate the effect of different number of barriers (i.e., K) to the running time
(Fig.5) and solution quality (Fig.6) of our algorithms in the GTGRD models.
The results are averaged over 1000 simulations of 6 by 6 grids.

It turns out that as we increase the number of barriers, the running times
of our greedy heuristic are longer than the MIP as shown in Fig. 9. Nonetheless,
as in the earlier experiments, both algorithms have similar solution quality as
shown in Fig. 10.

Various Edge Penalties. Finally, consider the effect of different edge penalties
to the solution quality of our greedy heuristic. The results are averaged over 1000
simulations of 6 by 6 grids. As indicated in Fig. 11, the solution gap between the
MIP and greedy heuristic as we increase the edge penalty.
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Abstract. Due to the sophisticated nature of current computer sys-
tems, traditional defense measures, such as firewalls, malware scanners,
and intrusion detection/prevention systems, have been found inadequate.
These technological systems suffer from the fact that a sophisticated
attacker can study them, identify their weaknesses and thus get an advan-
tage over the defender. To prevent this from happening a proactive cyber
defense is a new defense mechanism in which we strategically engage the
attacker by using cyber deception techniques, and we influence his actions
by creating and reinforcing his view of the computer system. We apply
the cyber deception techniques in the field of network security and study
the impact of the deception on attacker’s beliefs using the quantitative
framework of the game theory. We account for the sequential nature of
an attack and investigate how attacker’s belief evolves and influences his
actions. We show how the defender should manipulate this belief to pre-
vent the attacker from achieving his goals and thus minimize the damage
inflicted to the network. To design a successful defense based on cyber
deception, it is crucial to employ strategic thinking and account explic-
itly for attacker’s belief that he is being exposed to deceptive attempts.
By doing so, we can make the deception more believable from the per-
spective of the attacker.

1 Introduction

As computer systems and devices are becoming increasingly connected and com-
plex in their functionalities, traditional cyber defense technologies (e.g. firewalls,
malware scanners, and intrusion detection/prevention systems) have been found
inadequate to defend critical cyber infrastructures [23]. Moreover, sophisticated
adversaries such as the advanced persistent threats (APTs), can use a combi-
nation of social engineering and software exploits to infiltrate the network and
inflict cyber and/or physical damages of the defended systems. Therefore, to
defend against a sophisticated adversary, we have to accept that the adversary
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can study and evade technology-based defenses [20,25]. To move away from the
defense paradigm where the attacker has the advantage to the one of defender’s
advantage, proactive cyber defense is a new defense mechanism in which systems
strategically engage the attacker and learn and influence his behaviors.

Cyber deception is a key component of the proactive cyber defense that
can create and reinforce attacker’s view of the network by revealing or con-
cealing artifacts to the attacker. The attacker needs to pay attention to iden-
tifying deceptive artifacts in order to devise the right attack sequence. This
becomes challenging in an adversarial environment and the attacker’s progress
thus becomes slower and less effective. Deception mechanisms, such as honey-
pots [22,32], honeytokens [3,17], camouflaging [21,28] and moving target defense
[12,13,29] are methods that have been used to manipulate the attacker’s belief
on system parameters and increase their cost of information acquisition.

Understanding deception in a quantitative framework is pivotal to provide
rigor, predictability, and design principles. To this end, we analyze deception
through a game-theoretic framework [2,16,19,30]. This framework allows making
quantitative, credible predictions, and enables the study of situations involving
free choice (the option to deceive or not to deceive) and well-defined incentives.
Specifically, the class of dynamic games of incomplete information allows mod-
eling the multi-round interactions between an attacker and a defender as well as
the information asymmetry that forms the essential part of deception.

In this work, we focus on the applications of cyber deception techniques in the
field of network security. Strong proactive incident response strategies can only
be devised if we understand the impact of deceptive operations on the attacker’s
beliefs. To this end, we employ the framework of competitive Markov models with
imperfect information, or partially observable stochastic games [10,11], to reason
about the uncertainties of the two sides of the cyber warfare—the defender of the
network and the attacker—and understand how this uncertainty influences their
behavior. This framework provides a mathematical formalism of the attacker’s
belief state to capture his level of engagement and allows the defender to take
defensive actions based upon attacker’s state of mind.

When the presence of the attacker in the network environment is detected by
the sensing systems, the defender can attempt to engage the attacker and start
actively deceiving him by taking proactive deceptive (and defensive) actions aimed
to combat the upcoming attack scenario. He can use the sensing systems to track
attacker’s further progress and often, by inspecting the log records and/or analyz-
ing the past communication with attacker’s command and control servers [5,9], he
can also reconstruct a significant part of the history of the attack — thus getting a
near-perfect information about the attacker’s point of view. We assume that the
defender can reconstruct this view perfectly which allows us to apply the framework
of one-sided partially observable stochastic games [11].

To make the deception effective in the long run, we need to make it difficult
for the attacker to identify that the deception is employed. An attacker will try
to reason about and recognize our deceptive attempts and will adapt his attack
plan accordingly—and thus mitigate the impact of the deception. We provide a
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model which explicitly reasons about attacker’s belief about the deception state
and we show how important it is for the defender to carefully manipulate this
belief to maximize the defensive impact of the cyber deception. We conduct a
case study to illustrate the consequences of strategic deception on the security
level of the network. Namely, we make the following important observations
about cyber deception. First, we observe that the standard incident-response
approach which relies on excluding the attacker from the network immediately
is inefficient from the perspective of the deception. In fact, it may render the
network more vulnerable as it does not take attacker’s beliefs into account (we
term this phenomenon as the curse of exclusion). Second, we observe that it is
easier to deceive the attacker when he had already dedicated significant effort to
accomplish his goals as he is more greedy about realizing his intents (we term
this phenomenon as the demise of the greedy).

The rest of the paper is organized as follows. In Sect. 2, we introduce related
work on cyber deception and introduce the game-theoretic framework we use.
In Sect.3, we provide a generic approach for reasoning about the deception
which accounts for the necessary aspects of the deception, i.e. the informational
asymmetry, sequential nature of deception problems and which accounts for
the strategic nature of the deception. In Sect. 4, we state the problem from the
perspective of cyber deception in network security. Next, we provide a case study
illustrating the impact of cyber deception on attacker’s beliefs and his ability to
inflict damage in Sect. 5. Finally, in Sect.6 we summarize our main results.

2 Related Work

Typical attacks conducted by advanced attackers consist of multiple stages [24]
that can be broadly summarized as reconnaissance and realization of attacker’s
primary goals, e.g. data exfiltration. Underbrink [26] classifies deception tech-
niques into two broad categories — passive and active deception. The pas-
sive deception is targeted against attacker’s reconnaissance efforts and relies
on a proactively deployed static infrastructure of decoy systems, e.g. honey-
pots [14,22] or fake documents [4]. Unlike the legitimate users, the attacker does
not know about their deceptive nature and may thus reveal his presence by
inadvertently interacting with them. The active deception, on the other hand,
attempts to interactively engage the attacker who has been already detected by
the sensing systems. The defender attempts to anticipate probable future actions
of the attacker and takes proactive countermeasures against them to prevent the
attacker from achieving his goals.

A lot of work has been dedicated to understanding both technological [1,27]
and strategical [6,18,31,32] aspects of passive deception techniques and decoy
infrastructures. Considerably less attention has been, however, paid to the active
deception. To the best of our knowledge, very few works have focused on the strate-
gical aspects of active deception. [26] has introduced the concept of active deception
and the Legerdemain approach to active deception was described. The Legerde-
main approach secretly manipulates critical assets in the network (such as data files
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or access credentials) to confuse the attacker and prevent him from getting access to
critical resources. A dynamic game model, based on two coupled Markov decision
processes, is used to assist the defender in designing the actively deceptive strategy.
The model, however, assumes that the attacker will never realize that mechanisms
of active deception are applied against him — which simplifies solving the game but
makes the model not realistic. In fact, we show that accounting for attacker’s belief
about the deception is critical for designing strong deceptive strategies.

Our approach reasons explicitly about the belief the attacker has and thus
avoids the drawback of the Legerdemain approach. To this end, we use the frame-
work of one-sided partially observable stochastic games (one-sided POSGs) [11].
In this class of games, one of the players is assumed to be perfectly informed
about the course of the game, which is not the case for the other player. This
game-theoretic model has been originally devised to reason about robust defen-
sive strategies by assuming that attacker is able to get a perfect picture of the
game. In this work, we provide a novel application of this model to reason about
the active deception by assuming that the defender (or deceiver) has already
detected the attacker (and thus is able to track his progress) while the attacker
(or deceivee) lacks some information about the game (and thus is vulnerable to
defender’s deceptive attempts). We discuss the way we use this class of games
to reason about deception in Sects. 3 and 4 in greater detail.

3 Deception Game Framework

The asymmetry of information plays a major role in many conflicts seen in the
real world, starting from the warfare and ending with conflicts as innocent as
card games. The success in these operations typically depends on the way we
handle the information and in particular on the way we protect our informational
advantage. Deception has even evolved to be vital for the survival of many wild-
life species, such as chameleons, and has been adopted by armies worldwide.

We cannot, however, expect that a simple presence and naive use of the
deceptive techniques is sufficient to guarantee success — the way we employ them
is important to explore. As an example, consider that we have two colored balls,
red and blue, and we do not want others to know which one of them we are
carrying. To this end, it may seem reasonable to paint each of these balls to the
opposite color beforehand and pretend that the red one is, in fact, blue (and
vice versa). In such a case, however, other actors will soon discover the principle
we use to manipulate the truth and realize that the ball we are carrying is in
fact of the opposite color — and hence our attempt to disguise others becomes
unsuccessful.

When deciding on the use of deceptive techniques we have to think in a
strategic way. We need to understand what impact our deception strategy op
has on the beliefs of other actors as they will learn and eventually understand
the way we misrepresent the truth. The deceived players will derive a counter-
deception strategy o4 with the aim to understand the signals they receive and
reconstruct the truth (or at least reconstruct how likely each possibility is to be
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true). Both of these strategies have to account for the beliefs of the players and
are thus essentially functions of these beliefs.

We focus on the deception problems where there are two sides of the conflict
(or two players). We assume that one side of the conflict, the deceiver, knows
the truth (i.e. state s of the system), while the other side, the deceivee, aims to
recognize that. This type of knowledge is often seen in reality. For example, in
security problems, the defender usually knows the parameters of the system he
is about to defend, e.g., he knows the plans of the facility or the topology of
the computer network, and he knows where the important assets are located. In
addition, he is equipped with monitoring facilities which allow him to monitor
attacker’s actions (or, at least, allow him to analyze these actions retrospec-
tively). On the other hand, the attacker is uninformed about the true system
parameters and he has to recognize these parameters to plan his activities prop-
erly. This setting underlies the need for reasoning about the information and
beliefs of the uninformed player as the information is the only advantage we
have.

3.1 Deception in a Sequential Setting

We study the deception in a sequential setting, where both the players take
sequences of actions to either deceive the adversary, or attempt to recognize the
truth, respectively. In each step ¢t > 1, both the deceiver and the deceivee take an
action (ap and ay4). As a matter of result, the deceivee gets an observation about
the true state of the system (e.g. that the ball is painted red) and the state of the
system may change (which is then known only to the deceiver again). Moreover
the deceiver has to pay a cost associated with his deceptive action and possibly
other costs associated with the choice of actions ap and a4, denoted 1®. We
characterize these costs using a loss function Lp.

The goal of the deceiver is to keep the losses [(¥) as low as possible — or
at least mitigate them by delaying them in time. This is characterized by the
discounted-sum objective when the aggregated loss of the deceiver is

L= Z"Yt_l : l(t)7 (1)
t=1

where 0 < v < 1 is a constant termed the discount factor. In our case, the
deceiver is the defender of the system and we aim to devise robust deceptive
strategies that account for the worst case scenario, hence we assume that the
goal of the deceivee is to maximize the loss L. We also term such games as
zero-sum.

We aim to understand the value of deception V and the value of counter-
deception V. — and the strategies that induce these values. We define V as the
expected loss of the deceiver when he is forced to commit himself to a deception
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strategy op which is then observed by the deceivee who tries to identify the
weaknesses of op, i.e.

V =infsup L(op,04) (2)

ap oA

where L(op,o4) stands for the expected discounted loss when strategies op
and o4 are followed by the players. Similarly, we define the value of counter-
deception V as the value where the deceivee is forced to commit himself first to
a counter-deceptive strategy o4 he uses to combat the deception and then the
deceiver decides what deceptive techniques he uses, i.e.

V =supinf L(op,c4). (3)

op 9D

Note that the deceiver can guarantee that the loss will be no higher than V,
while V is the minimum loss the deceivee can enforce.

3.2 Game-Theoretic Model

We propose to formulate deception as a partially observable stochastic game
with one-sided information (one-sided POSG) [11]. This model has been orig-
inally devised to reason about robust strategies of the defender by assuming
that the adversary is perfectly informed. The asymmetric nature of the infor-
mation present in the model, however, makes it convenient to reason about the
deception. A deception game based on the model of one-sided POSGs is a tuple
(S, An, Ap, T, Lp,04,b"), where

— S s a finite set of states of the system (recall that the true state of the system
is known to the deceiver, while the deceivee does not know it). A state may
for example represent where both the players have deployed their units in a
warfare.

— Ap is a finite set of actions the deceiver can use to deceive the adversary.

— Ay is a finite set of actions the adversary, the deceivee, can use to learn more
about the system, or potentially in security problems to inflict damage.

~ T : (SxAsxAp) — A(O x 8) is a transition function representing possible
changes to the system (e.g. movements of the units) and observations the
deceivee can receive in a probabilistic way.

- Lp: (SxAsxAp) — R is defender’s loss function and describes how much
the defender loses in each step of the deception game.

— Q4 is a finite set of observations the attacker can get about the state of the
system.

— 1% € A(S) (where A(S) is a probability distribution over S) is the initial belief
of the deceivee, where by(s) denotes the probability that the initial state of the
deception game is s. As an example, the deceivee may know where his units
are located, but he may lack the information about the position of deceiver’s
units. Thus he forms a belief over possible positions of the deceiver in the
form of a probability distribution over states that match the current (known)
position of units of the deceivee.
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A play in the deception game proceeds as follows. First, an initial state of the
game s° is drawn from b°. Then, in each step ¢, players decide simultaneously
their actions (a%),a’y) € Ap x Aa. Based on their choice, the deceiver loses
1) = L£p(st1, a4, aty). Then the deceivee receives an observation o' and the
game state changes to s' with probability 7 (s'=1, a%, a%)) (o, s').

Deceiver observes the course of the deception game perfectly, hence he knows
what the past states, actions and observations were. He can use all this informa-
tion to make an informed decision about his next action. He makes this decision
based on his deception strategy op : (SApAL04)*S — A(A), where op(w, ap)
denotes the probability that the deceiver chooses an action ap € Ap when the
current history is w.

The deceivee only observes the observations o' and remembers the actions a’y
he made. He cannot thus make use of the complete information available to the
deceiver. The attacker thus proceeds according to a counter-deception strategy
o4 (AL0)" — A(Aa), when o4(w,as) stands for the probability that the
deceivee uses action a4 given that w € (A,40)* are the actions and observations
he has used and seen previously.

The results in [11] show that the players need not remember the histories
of the play to make decisions. Instead, they can just keep track of the belief
b € A(S) over the states S of the deception game and play according to one-step
strategies 7T(Db) : S — A(Ap) and ﬂff) € A(A4) which are directly functions
of beliefs. This emphasizes the fact that the deceivee forms a belief which then
directly drives his decisions. The players keep track of the belief using a Bayesian
update rule characterized by the following equation:

/ 1 /
7(b,a,0,7p)(s') = > b(s)-mp(s,ap)-T(s,an,ap,0,5)  (4)
sap ESAp

where 7(b,a4,0,7p) stands for the updated belief of the deceivee given that
the previous belief was b, he played action a4 and received observation o, and
the deceiver followed a deception strategy mp. K stands for the normalization
constant.
In the case of zero-sum deception game, the value of deception V and the
value of counter-deception V. have been shown to be equal [11], i.e.
infsup L(c'y,0p) = supinf L(o 4, 07). (5)
9D g/, oA Op
We represent the values of deception (or counter-deception) using a convex
value function v* : A(S) — R which maps beliefs over the system states to
the expected value of deception for that belief. This value function satisfies the
following fixpoint equation

,U*(b) - TFD:SrLliAn(ﬂD)TrAénAa();(A) |:5aAZaD b(s) ’ ’R—A(O’A) : ﬂ—D(SﬂaD) : LD(s,aAyaD)
+72Pr[aA0\b,7rA,ﬂ'D] -v*(7(b,aa,0,mp))|. (6)

apo
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One of the ways to reason about the value of the deception and the associated
optimal strategies of the players is to approximate the value function v* using an
approximate value iteration algorithm presented in [11]. We can then derive the
optimal strategy for the deceiver by considering the maximizing 7p of Eq. (6) in
each step of the interaction.

Remark 1. The convexity of the value function v* supports our intuition that
the deceivee never gets satisfied with being deceived. The value of his counter-
deception would never get lower, had he got additional information. For example,
assume that the deceivee recognized the true state of the system before he is
about to act (i.e. his belief changes from b to bs, where by is a belief where the
attacker knows the true state). Then, since b = ) _¢b(s) - by and due to the
convexity of v*, we get

S 0(s) 0" (b) > 0" (Z b(s) - m) , (7)

seS seS

i.e. if the attacker recognizes the true state (i.e. with probability b(s) he recog-
nizes that the true state is s) and plays accordingly, the loss he is able to cause
is greater or equal than in the situation where he has to reason about the state
he is in (i.e. his belief is b).

4 Game-Theoretic Approach to Cyber Deception

The ideas we have presented so far are general enough to be applied to reason
about the deception in a wide range of scenarios. We are going, however, to
focus on the use of the deception in the context of computer networks to improve
the security of networked systems. The deception over the networks possesses
certain features which allow us to make the model of deception game more
specific. Namely, the attacker who is going to be deceived does not know two
key properties of the networked system. First, he does not know the topology of
the network which he needs to understand to target his attack properly. Second,
he does not know whether the defender, the deceiver, already knows about his
presence in the network. Understanding both of these aspect is critical from
attacker’s perspective — and concealing this information from attacker’s view is
important for the defender to devise strong defensive strategies.

In this section, we describe a general idea how we can use one-sided partially
observable stochastic games to reason about active deception in network security,
where the defender interactively decides about the actions to mislead the attacker
in the course of an attack and mitigate the possible damage to the network. Our
model accounts for the uncertainties of the attacker about the topology of the
network, whether he has been detected and about defender’s actions — both
past and upcoming ones. To this end, we represent the states of the game as
S=Nx X4 xXp xD where

— N is a set of possible network topologies the defender can choose from based
on a fixed distribution £ € A(N)
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— Xa is a set of possible attack vectors representing the state of an attack (e.g.
privileges the attacker has already acquired); ) € X4 denotes that the attack
has not started yet

— Xp is a set of possible defense vectors representing the state of defense
resources (e.g. dynamic decoy systems deployed in the network); ) € Xp
denotes that the defender has not deployed any dynamic resources yet

— D is a set of possible detection states; we assume D = {true, false} denoting
whether the attacker has been detected or not by the sensing systems

We denote a state of the game as (n,z4,zp,d).

The defender initially chooses a network topology he is going to defend
according to a probability distribution { € A(N). We then derive the initial
belief of the underlying one-sided POSG by € A(S) as b(n, 0,0, false) = £(n)
and bo(-) = 0 otherwise. This means that we draw the initial network topology
from £(n) and make both the attack and defense vectors empty, and the attacker
is initially undetected.

Once the attacker gets detected by the sensing systems (i.e. d = true), the
defender may start taking actively actions ap € Ap to combat the attacker’s
presence in the network. His actions may manipulate the defense vector (e.g.
by deploying new defense resources), interfere with actions of the attacker, or
they may restrict attacker’s access to the network (defense action block € Ap).
We assume that in such case, the attacker is able to change his identity and
attack the network again (therefore x4 is set to ) and d to false as we lost
track of the attacker when he changed his identity, and the game continues). If
the attacker has not been detected yet, however, the defender cannot take any
active counteraction (i.e. active deception techniques are not available to him)
and he is forced to use action ap = noop. The fact that the defender cannot
use any action other than noop when the attacker has not been detected yet
allows us to assume a perfect information of the defender, i.e. make the defender
be the perfectly informed player in the one-sided partially observable stochastic
game. The defender cannot leverage the extra information about the attacker
(he would not have in reality) up to the point when the attacker gets detected.

The attacker can choose from attempting to acquire new privileges (and thus
manipulating the attack vector z4), changing his identity (i.e. making x4 = ()
and d = false) and leveraging his current privileges to cause damage — or
combination of any of these. Each action of the attacker is associated with the
risk of alerting the defender, we denote the probability of triggering an alert
when using action a4 in network n by pirig(n, aq).

The transition function 7 respects the actions the players have taken, i.e.
describes possible changes to vectors x4, zp and the detection state d in a
probabilistic way. Furthermore the attacker receives an observation (z/4,0) € O4.
The attacker is always aware of his current attack vector, i.e. for any z'y # 2/}
the following holds

T((n,za,xp,d),aa,ap)((2'y,0), (n, 2y, 25,d")) = 0. (8)
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Moreover, once the network topology is chosen it never be changes, i.e. for any
n#n'

T((nvaaxD7d),aAv aD)((m;h 0)7 (n/’x;hx/Dv d/)) =0. (9)

The detection probabilities (i.e. the probability of transitioning from d = false
to d’ = true) are independent of action effects, i.e.

> (.00 T ((n, 4,0, false), an, noop)((z)y,0), (n, 7y, 0, true)) = pirig(n, aa)

(10)

The losses Lp for individual transitions can be set arbitrarily to match

the costs (and eventually possible gains if we succeed in exploiting attacker’s

actions) in the real network and the costs of the deception. We only require

that Lp((n,z4,0,false),as,ap) = M for every ap # noop where M is a large

constant to ensure that the defender does not use active deception techniques
when the attacker has not yet been detected.

5 Manipulating Attacker’s Belief Using Active Deception

The use of the active deception can significantly improve the security level of
the network. In this section, we provide a case study based on a simple game
with sets N and Xp containing only one element (i.e., N = {n} and Xp = {0})
to illustrate the concept of active deception. In the case of this game, we use
the deception only to manipulate attacker’s belief over being detected (i.e. the
D part of the state) and we try to make him uncertain about the progress of the
attack and eventually take a wrong action. We show that we cannot, however,
rely solely on the deceptive actions if we want to maximize the effectiveness of
the deceptive operation. The deception is the most effective if it is stealthy and
the attacker remains unaware that we are trying to deceive him, or, at least, if
we make him uncertain about the state of deception.

As soon as the attacker realizes that we are trying to deceive him, his behavior
changes significantly. He will attempt to take evasive actions in attempt to lose
defender’s attention (e.g. by changing his network identity), or, as a matter of
last resort, he may opt to inflict severe damage based only on the information
he collected so far. These decisions of the attacker make the defender’s attempts
to contain the attack substantially harder and should be averted (if possible).

To preserve the stealthy nature of the deception, it is crucial that the attacker
thinks that the signals he receives are not too good to be true. The defender has
to manipulate attacker’s belief about the deception state carefully if he wants to
make the attacker believe that no deceptive operation is taking place and keep
him engaged in the network.

5.1 Network Topology and the Anatomy of an Attack

We illustrate the concept of active deception using a network topology n € N
depicted in Fig.1. We use it as an abstraction of a multilayer network which
is commonly adopted in critical network operations, such as power plants or
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production facilities [15]. Our example network consists of three layers. The
outermost layer of the network (Layer 1) is directly exposed to the Internet via
demilitarized zones (DMZs) and provides less sensitive services that are used to
communicate with the customers and business partners, such as web or email
Servers.

P less valuable assets more valuable assets _

-« |

outside Layer 1 Layer 2 Layer 3
of the network

3 [ ] [ ] []

WWW, EMAIL DATABASE ACTUATORS
& SENSORS

Fig. 1. Network topology (attacker starts outside of the network and attempts to gain
access to the most valuable assets in the network)

More critical assets are located in the deeper layers of the network. In our
case, the second layer consists of data stores containing confidential data the loss
of which may have a severe impact on the company. The third layer is the most
critical one since it provides an access to physical devices, such as actuators and
sensors, the integrity of which is absolutely essential for the secure operation of
the facility. Breach of assets in the Layer 3 of the network may even pose a risk
of physical damage, such as in the case of the Stuxnet attack [7,8].

Attack Options. We assume that an attack is initiated from a computer out-
side of the network (x4 = 0)). In this section we describe attacker’s actions (set of
actions A4 ) which he can use to acquire new privileges and penetrate deep into
the network and to cause damage to it. The attacker attempts to take control of a
system in Layer 1 (x4 = layer,) and then escalates his privileges to take control
of the computers located deeper in the network (i.e. acquiring x4 = layer,) by
compromising them (hence we refer to this action of the attacker as compromise).
At any point, the attacker can either wait or leverage the current access. Apart
from attempting to compromise a host in the next layer, he has two options:

The first option is to cause significant immediate damage, such as eliminating
a physical device in Layer 3 (having the attacker had access to it) — we refer
to this action as takedown. Such an action surely attracts the attention of the
defender and will lead to the detection of the attacker’s presence. Therefore, the
attacker is forced to quit the network and possibly repeat his attack later (hence
24 =0 and d = false as a result).

The second option is to cause smaller amount of damage while attempting
not to attract defender’s attention. The actions the attacker can use to this
purpose include, e.g., a stealthy exfiltration of data or a manipulation of the
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records in the database — for simplicity we refer to them collectively using the
exfiltrate action. Nevertheless, even these careful options run into a small risk
of being detected. Moreover these options run into the risk that the defender will
avert the damage resulting from them by means of active deception and possibly
even use the fact that the attacker uses the exfiltrate action for his benefit
(e.g., to collect evidence; see discussion in Sect.5.2). This makes it critical for
the attacker to understand whether he is deceived or not.

Detection System. An intrusion detection system (IDS) is deployed in the
network and can identify malicious actions of the attacker. This detection is not
reliable. We assume that the attacker’s presence is detected with probability
Pirig(n, compromise) = 0.2, if he escalates his privileges and penetrates deeper
in the network using the compromise action. If the attacker performs stealthy
exfiltration of the data (exfiltrate action), we detect him with probability
Dirig (1, exfiltrate) = 0.1. We have chosen these probabilities based on a dis-
cussion with an expert, however, the model is general enough to account for any
choice of these parameters.

Active Deception. We assume that the passive defensive systems, such as
IDS and honeypots, are already in place and we focus on the way the defender
can actively deceive the attacker when his presence has been detected. We take
an abstracted view on defender’s actions (set Ap) to focus on the main idea
of deception, however, our model is general and these actions can be refined to
account for any actions the defender can use. In our example, he can either use a
stealthy deceptive action and attempt to engage the attacker in the network, or
he can attempt to exclude the attacker from the network (non-deceptive block
action). We assume that the block action really achieves its goal and all the
privileges of the attacker get revoked, and the attacker thus has to start his
attack from scratch (i.e. 24 becomes ), and d = false). If it were not the case
and the block action was less powerful, blocking the attacker would have been
less tempting and hence the use of deception we are advocating would have
been even more desirable. By engaging the attacker we attempt to anticipate
the action of the attacker and minimize (or even eliminate) the damage caused
by his stealthy damaging action of exfiltrate. We cannot, however, contain
the more damaging takedown action by engaging the attacker — the only way to
prevent that kind of damage is to block the attacker in time. Note that both
of these actions of the defender can only be used once the attacker got detected
— otherwise, the defender has to rely on the infrastructure of passive defensive
systems (i.e., use noop action) as the attacker has to be detected first.

5.2 Game Model

We analyze the active deception in the context of the network presented in
Sect. 5.1 using a game-theoretic model of one-sided partially observable stochas-
tic games (see Sect. 3) and we capture the interaction between the defender and
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the attacker using a transition system depicted in Fig.2. The state space is
divided into two parts. In the upper half, the presence of the attacker in the net-
work has not yet been revealed by the IDS (d = false), therefore, the defender
cannot take active countermeasures yet. Triggering an IDS alert switches the
game states into the bottom part (d = true) and thus gives the defender an
opportunity to decide between engage and block actions.
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£ Layer 1 Layer 2 Layer 3
g O
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Fig. 2. Transition system of a partially observable stochastic game representing attack
on the network from Fig. 1. The attacker can use the takedown action in every layer.
The wait action of the attacker has been omitted for clarity and is always applicable.

The arrows in the diagram represent individual transitions in the game (i.e.
represent the transition function 7). We assume that the transitions in the game
are deterministic, except for the transitions between d = false and d = true
that are defined using priq. The attacker never receives an observation that
would reveal him some information about the detection state d (i.e. he only gets
to know the new attack vector x4).

If the attacker uses compromise action, he penetrates deeper in the network.
If he opts for exfiltrate, he stays in the current layer of the network while
possibly gaining access to confidential information. And finally, he can decide to
do the immediate damage by the takedown action at any time. In such a case he
gets detected and thus returns to the initial state, outside of the network. The
defender can stop all this from happening by taking the block action (had he
detected the attacker) when the defender is pushed out of the network as well.

The attacker knows his current attack vector 4 and can identify the layer he
has penetrated (i.e. he knows the “column” of the transition system where he is
located), but he does not know whether he has been detected or not (i.e. whether
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the game is in the upper or lower half). The defender also does not have perfect
information about the state of the attack in reality — namely, he does not know
anything about the attacker until the IDS generates an alert. After the alert is
generated, however, we assume that he can get a close to perfect information
about the attacker by studying the traces he has created in the system. Since the
defender cannot make use of the information about the attacker in states where
d = false (he cannot take any active countermeasures), we can safely assume
that the defender has a perfect information in the whole game, which results in
a type of information asymmetry we discussed in Sect. 3.

Game Utilities. We associate a loss (or cost) of the defender to each action
the attacker performs (i.e. each transition in Fig.2). Since the attacker takes
his actions sequentially, a sequence of costs (1), 1) ... is generated, and we use
discounting to obtain the aggregated loss of the defender using the formula

L=> 471, (11)
t=1

The use of discounting (in our case, we use v = 0.95) reflects the attacker’s
impatience during an attack as he does not want to wait forever to achieve his
goals as the value of information he can steal diminishes.

Each of the costs () depends on the current state of the attack (what layer
the attacker has penetrated and whether he has been detected), the action the
attacker performs and the counteraction of the defender (if applicable). Note
that in our case, we have just one network n and one defense vector xp so we do
not account for these explicitly. This utility model is general enough to capture
any kind of preferences of the defender. The costs we use in our case study are
based on a discussion with an expert and are summarized in Table 1. Recall that
the players take their action simultaneously and the costs thus depend on their
joint action.

The compromise action does not cause any immediate harm to the defender
and only leaks information to the defender (e.g. about an exploit used) so the
loss of the defender is negative (Ly = L7 = —2). Note that a negative loss is in
fact a gain. Moreover, if the defender is already aware of attacker’s presence and
engages him in the network, he can better understand the techniques used by
the attacker and thus his loss is (Ly = —4).

The exfiltrate action is already harmful to the defender. If the defender
does not take any active countermeasures, the attacker accesses confidential data
which implies a significant damage to the defender. Since the assets located
deeper in the network are more valuable, we account for this by defining the
cost for the defender of L = 15i for losing data located in the i-th layer.

If the defender realizes that he is dealing with a malicious user, he can min-
imize or eliminate the risk of losing sensitive data, e.g. by presenting (partly)
falsified data to the attacker, using the engage action. The attacker then receives
useless data and only provides the defender with time to collect the forensic evi-
dence. The loss of the defender is, therefore, negative (Ls = —2) if the attacker
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Table 1. Game costs for the game represented in Fig. 2. In each time step, the players
take their actions simultaneously and the loss of the defender in the current time step
is determined according to their joint action.

State (s'71) Action Defender’s loss
Attacker’s Detected (d) | Attacker (a%) | Defender (a%) | Lp(s'™' aly,ab)
position (z4)

any no compromise — -2 (= L)
layer, no exfiltrate — 15¢ (= LY)
layer, no takedown — 25¢ (=L%)
any yes compromise engage —4 (= La)
layer, yes exfiltrate engage -2 (= Ls)
layer, yes takedown engage 251 (= L)
any yes compromise block -2 (=L7)
any yes exfiltrate block 0 (= Ls)
any yes takedown block 0 (= Lo)

exfiltrates data while being engaged. The defender can also prevent the data
exfiltration by restricting attacker’s access to the network (action block), how-
ever, by doing so, he loses the option to collect the evidence and hence the reward
is Lg =0.

If the attacker decides to cause significant immediate damage by the
takedown action, the only option of the defender to prevent this from happening
is to block the attacker (if applicable) when the loss is Lg = 0. Otherwise, the

cost for the defender is L} = L§ = 25i (when i represents the layer the attacker
is in).

5.3 Optimal Defense Strategy

Once the defender succeeds in detecting the presence of the attacker, he can
investigate log records to analyze past attacker’s actions and estimate his belief
about being detected. The defender can make use of this belief to reason about
the defensive measures he should apply and to design an optimal defense strategy.
We are aware that in real world deployments, accurate tracking of attacker’s
belief need not be possible and we discuss this in Sect. 5.5.

The optimal defense strategy incurs expected long-term discounted loss of the
defender of 282.154. This is a significant improvement over the common practice
nowadays of attempting to block the attacker immediately after he is detected.
The always-block strategy where the defender is restricted to play only block
action once he detects the attacker leads to an expected loss of 429.375. It is
also, however, not good to keep the attacker engaged in the network forever (and
try to deceive him by never blocking him, and always use the engage action —
we refer to this strategy as always-engage). Such an approach would not make
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the deception believable, and the attacker would rather cause the damage and
forfeit his current attack attempt, than battle the deception.

We represent the optimal defensive strategy as a mapping from the current
position of the attacker (i.e. the layer of the network he penetrated) and his belief
about being detected (and thus being deceived). Since the defender has only two
actions available, we express the probability of playing the engage action only
(had he succeeded in detecting the attacker), op(4,b), where ¢ € {1,2,3} is the
current layer and b € [0,1] is the attacker’s belief about the detection state.
Note that op(i,b) corresponds to mp((n,layer,,zp,true), engage), where mp
is the minimax solution of Eq. (6) evaluated for v*(b), b(n, layer;,xp,true) = b,
b(n,layer,, xp,false) = 1 — b. The optimal defense strategy op(i,b) for each
of the layers is depicted in Fig. 3.

1.0 f—m—m—————-----

0.8

0.6

0.4+

Probability of playing 'engage’

0.0 &1 | .
0.0 0.2 0.4

0.6 0.8 1.0

Belief about being detected - b

Fig. 3. Optimal defense strategy op for the network from Fig. 1. The optimal strategy
of the defender is randomized and depends on the current position of the attacker (the
layer he penetrated) and his belief about the detection state.

The optimal defense strategy prescribes the defender to always keep the
attacker in the network when the attacker is highly confident that he has not been
detected yet. In such a situation, the attacker will opt for data exfiltration, which
we can prevent, e.g. by providing him with fake data. At a certain point, however,
the attacker starts being worried about being detected and starts considering to
cause immediate damage, incur a high loss to the defender and leave the network
(i.e. use the takedown action). The defender has to react to this development
and think about blocking the attacker by decreasing the probability of keeping
the attacker in the network.

Remark 2 (Demise of the greedy). We can observe that the closer the attacker
is to his primary goals (or at least the closer he thinks to be), the less concerned
he is about the fact that he might be detected and the more greedy he is about
realizing his intents. It is thus easier for the defender to deceive the attacker in
such a situation. This is caused by the fact that the attacker must have put more
effort to get into deeper layers of the network and the damage he can possibly
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cause now is more significant—thus he is willing to take a greater risk of being
detected. This in turn allows the defender to deceive him more efficiently. While
in the Layer 1, the attacker starts considering the takedown action when he
thinks that he is detected with probability 0.298 (and the defender has to react
accordingly), in the Layer 3 he delays this decision up to the point when his belief
about the detection state is 0.442. We conjecture that this type of behavior of
the deceivee can be seen in a wide range of deception problems and the deceiver
can capitalize on that.

To better understand the implications of the optimal defense strategy and the
need for precise randomization between engage and block actions, we simulate
an attack on the network and depict attacker’s belief about being detected when
applying the optimal, always-block and always-engage strategies.

After performing an action and getting feedback from the network, the
attacker updates his belief about the detection state from b to b’. Assume that
the attacker was in Layer ¢ and he used action a4 € {compromise,exfiltrate}
in the last step and he didn’t get blocked. In order to be detected at the cur-
rent time step, the attacker could have either triggered an alert using his last
action (which happens with probability (1 — b)psrig(n,a4)), or he must have
been already detected and the defender must have decided not to block the
attacker (the probability of which is bo(i,b)). The probability of not getting
blocked equals to 1 — b(1 — o (i,b)). We can thus derive a belief update formula
(see Eq. (4)) specifically for this game when the updated belief of the attacker
b’ is the probability of being detected in the next time step:

1- b)ptrig (ny aA) + bO’(i, b)

r_
b= 1—0b-[1—0(i,b)]

(12)

We assume that the attacker conducts an attack that consists of penetrating
to the deepest layer of the network using three consecutive compromise actions
and then the attacker exfiltrates data forever. The comparison of the evolution
of attacker’s belief while the defender uses the optimal strategy with the always-
block and always-engage strategies is shown in Fig. 4.

First of all, we explain why the current best practice in incident response rep-
resented by the always-block strategy is inferior. Whenever the attacker realizes
that he has not been blocked and his access to the network has not been restricted
(or limited), he knows that he cannot have been detected in the previous time
step (since otherwise, the defender would have blocked him according to his
always-block strategy). His belief about being detected thus depends solely on the
detection rate of IDS — which in our experiments is pirig(n, compromise) = 0.2
when the attacker uses compromise action to penetrate deeper into the net-
work (first 3 steps) and py,iq(n, exfiltrate) = 0.1 afterward. Since the attacker
remains highly confident that he is not detected at each time step, he can cause
a lot of harm by a long-term data exfiltration.

The always-engage strategy suffers from playing engage action even at times
when the attacker becomes highly confident that he has been detected and thus
realizes that the data he exfiltrates may be useless. At that point, the attacker
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Fig. 4. Evolution of attacker’s belief over time. If we block the attacker immediately
after detection, he remains highly confident that we cannot employ deceptive actions
which allows him to perform long-term data exfiltration. If we always attempt to deceive
the attacker by engaging him, he realizes that he likely faces a deception and decides to
cause immediate damage — which cannot be prevented by the deceptive engage action.

deviates from the assumed attack plan and opts for causing immediate damage
and leaving the network temporarily (before launching a new attack).

The optimal defense strategy, on the other hand, stabilizes attacker’s belief
about being detected at the value of b = 0.4968. This is the right belief where
the attacker still thinks that it is worth attempting to cause a long term damage
by data exfiltration, despite being vulnerable to defender’s deceptive attempts.

Remark 3 (Curse of exclusion). This result draws one important conclusion
about the use of deception to manipulate attacker’s belief. The decision to
exclude the attacker from the network (or even more importantly the decision
not to block him) leaks a valuable piece of information to the attacker. If we
do not think about blocking the attacker in a strategic way, the attacker can
capitalize on getting this information to devise a powerful attack plan. We have
to weigh the use of stealthy and non-stealthy defensive actions carefully not to
alert the attacker to the use of deception. The optimal defensive strategy (unlike
the always-block and always-engage strategies) achieves a belief point where no
further information leaks to the attacker and the malicious effects of attacker’s
actions are minimized.

5.4 Engaging the Attacker

In Sect. 5.3 we have shown that the common practice in incident response deploy-
ments of blocking the attacker immediately after detection is susceptible to severe
drawbacks. We proposed an alternative strategy, based on a game-theoretic
model, that postpones the decision to block the attacker to minimize the long-
term damage to the network. The key motivation for using this strategy is that by
anticipating malicious actions of the attacker, we can minimize negative impacts
of his actions and delay his progress. On the other hand, excluding the attacker
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from the network is only temporary. The attacker is potentially able to reenter
the network and cause significant damage before we manage to detect him again.

Our strategy has, however, one more significant advantage since it can be
leveraged to decrease false positive rates of the IDS. False detections can have
a considerable negative impact on the network operations. By engaging a sus-
picious user in the network, we can make use of the extra time given by our
deceptive strategy to identify the user, infer their objectives and take proper
defense actions to reduce the impact of the network defense system on legiti-
mate users. To this end, we can use various types of deceptive signals that do
not influence legitimate users considerably, but make the progress of an attacker
difficult. These signals are not explicitly captured in our example, but the model
is general enough to account for them.

We conducted an experimental evaluation of our game-theoretic strategy to
determine the average time between the first IDS alert and the time we decide
to block the user. We evaluated our strategy against an advanced attacker who
plays a best response to strategy op and we considered only the attacks where
the attacker does not decide to quit the network himself. We found out that
the average time between detection and the time we decide to restrict attacker’s
access is in our case 4.577 time steps. In this time window, the defender gets
additional alerts from the IDS which may help him to decide about the credibility
of the alert better and thus assure that he is about to block a malicious user.

5.5 Robustness of the Model

In real world setups, it need not be possible for the defender to keep track
of attacker’s belief accurately as a result of failing to reconstruct the exact
history of the attacker and/or deficiencies in the model of the network. In
this section, we focus on the impact of not knowing the exact IDS detection
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Fig.5. Expected loss of the defender when using a strategy originating from
an inaccurate model. Strategy is computed while assuming detection probability
Dirig(n, exfiltrate) and this strategy is evaluated in a network with the detection
probability of pirig(n, exfiltrate) = 0.1.
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probabilities. We compute the optimal strategy of the defender based on a model
where pj,.;,(n, exfiltrate) does not match the detection probability in the real
network. We then evaluate the resulting strategy in the network where the detec-
tion probability is pirig(n, exfiltrate) = 0.1. Since the model is no longer accu-
rate, the resulting strategies need not be optimal. The experimental evaluation of
these strategies is shown in Fig. 5. The experimental results show that our strat-
egy provides significant room for the error in the design of the model, especially
if we are pessimistic about the detection rates.

6 Conclusions

We have provided a principled analysis of cyber deception in network security
based on game-theoretic foundations. First, we have introduced a generic game-
theoretic model for strategic reasoning about deception, then we applied this
model to the network security, and we illustrated the impact of active deception
on the security level of the network in a case study. Our results have shown that
the use of cyber deception techniques can reduce the risks associated with net-
work operations and minimize the damage a sophisticated attacker can inflict to
the network. The deceptive operation, however, achieves the maximum efficiency
if the attacker is unaware of being deceived. While this result is not surprising,
our analysis provides theory supporting this result.

Our work serves as a proof of concept to motivate the interest in thinking
about active cyber deception in a strategic way. We used a simplified exam-
ple to introduce main ideas and discuss the need for reasoning about the belief
and adaptation process of the adversary. In the future work, however, we plan
to address computational challenges introduced by large networks by leveraging
the structure and symmetries found in the problem. An interesting, and also nat-
ural, continuation of our work is to relax the assumption that the defender can
reconstruct the view of the attacker perfectly. In general, the two-sided imper-
fect information presents significant theoretical and computational challenges,
however, we believe that it is possible to identify significant subclasses relevant
for the network security that allow for efficient solution techniques.
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Abstract. The increasing adoption of new information and communi-
cation technology assets in smart grids is making smart grids vulnerable
to cyber threats, as well as raising numerous concerns about the ade-
quacy of current security approaches. As a single act of penetration is
often not sufficient for an attacker to achieve his/her goal, multistage
cyber attacks may occur. This paper looks at the stochastic and dynamic
nature of multistage cyber attacks in smart grid use cases and develops
a stochastic game-theoretic model to capture the interactions between
the attacker and the defender in multistage cyber attack scenarios. Due
to the information asymmetry of the interactions between the attacker
and the defender, neither of both players knows the exact current game
state. This paper proposes a belief-updating mechanism for both players
to form a common belief about the current game state. In order to assess
threats of multistage cyber attacks, it further discusses the computation
of Nash equilibria for the designed game model.

Keywords: Asymmetric information - Positive stop probability + Sto-
chastic game + Multistage cyber attacks - Smart grid - Threat assessment

1 Introduction

Network security is a critical concern with regard to cyber-physical systems. For
a long time, security operators have been interested in knowing what an attacker
can do to a cyber-physical system and what can be done to prevent or counteract
cyber attacks [3,14]. It is suggested that risk assessment must be integral to the
overall life cycle of the smart grid systems. A cyber threat assessment helps
the system administrator to better understand the effectiveness of the current
network security solution and determine the best approach to secure the system
against a particular threat, or a class of threats. By offering a deep analysis of
existing or potential threats, system administrators are given a clear assessment
of the risks to their systems, while possessing a clear vision about the kind of
security countermeasures that the respective utility should invest in.

Attack scenarios are dynamically changing in smart grid communication net-
works, for example, because of existing of legacy and new systems in smart
© Springer International Publishing AG 2017
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grid communication networks. Multistage cyber attacks, as important threats in
smart grid communication networks, make use of a variety of different exploits,
propagation methods, and payloads, resulting in the emergence of many more
sophisticated cyber attacks. Current protection mechanisms, which rely on iso-
lation techniques, such as firewalls, data diodes, and zoning concepts, are not
sufficiently applicable in cyber-physical systems. For more than a decade, game-
theoretic approaches have been recognized as useful tools to handle network
attacks [2,7,13,15]. Significant results from game theory concerning cyber situa-
tion awareness and network security risk assessment in conventional information
and communication technology (ICT) systems have been reported [14,30]. But
the application of game theory for the assessment of threats from multistage
cyber attacks and the prediction of an attacker’s actions in smart grid commu-
nication networks are still in their infancy nowadays.

Threat assessment for multistage cyber attacks is not straightforward, given
that, at any stage of a cyber attack, the attacker may decide not to proceed or
change his/her attack actions. Since the attacker has motivations (costs versus
benefits) and finite resources to launch a further attack at any stage, the stage at
which the multistage attack stops is not necessary predetermined (stochastic).
This paper accounts for this by adding a stopping time to the stochastic model.
It is to be noted that an attacker who doesnot have any resource limitations
(from an economic point of view) is beyond the scope of this paper. The stop of
the attack or the change of attack actions at any stage makes a threat assessment
extremely challenging, as it is difficult to know what the attacker will do or to
assess possible cyber or physical impacts resulting from his/her attack actions
in the next stage.

Cyber attacks on smart grid communication networks can cause physical
damage to the power grid. Many existing stochastic game-theoretic threat assess-
ment methods assume symmetric information among the players, which implies
that all the players share the same information, i.e., the same signal observed and
the same knowledge about states/payoffs in a game. However, in many situations,
this assumption is unrealistic. There are many games arising out of communica-
tion networks, electronic commerce systems, and society’s critical infrastructures
involving players with different kinds of information about the game state and
action processes over time [11,23,29]. For instance, in cyber-security systems,
the attacker knows his/her own skill set, while the defender knows the current
and planned resource characteristics of the system. In short, the attacker and
the defender do not share their available information with each other.

This paper attempts to design a stochastic game-theoretic model with asym-
metric information and positive stop probabilities in order to assess the threat
of multistage cyber attacks in smart grid communication networks. The positive
stop probability means that the probability of the game to end at any state
is positive. Unlike random failures, attackers have motivations and capabilities
to launch further attacks. Both the attacker and the defender will act in con-
sideration of the consequences of their corresponding actions, with such conse-
quences including satisfactions, risk versus effort, and effectiveness. In each state



A Stochastic Game-Theoretic Model 297

of the game, if launching a further attack would have limited benefits, and take
months of time and huge amount of computers and memory, the attacker will
most probably stop his/her attack. Once the defender observed these phenomena
regarding the attacker, he/she will not deploy any corresponding countermea-
sures. Therefore, this situation will be accounted for by adding a stop probability
to the stochastic model; and such a stop probability is positive. The designed
stochastic game-theoretic model extends an existing stochastic game-theoretic
model with specific characteristics of attacker-defender interactions in smart
grid communication networks. The objectives of this attacker-defender stochas-
tic game-theoretic model is to assess cyber attack scenarios at an early stage
of the attack, where the defender makes correct optimal proactive defence deci-
sions. Therefore, a defence system can be prewarned, security resources can be
better allocated to defeat or mitigate future attacks, and security incidents can
be avoided. This paper considers the worst-case scenario where the attacker has
complete knowledge of the architecture/infrastructure of the system and hosts’
vulnerabilities in the system, and the attacker has full knowledge of the target
smart grid defense configurations. Section 2 provides a non-exhaustive overview
of existing game-theoretic approaches for cyber attacks, while Sect.3 presents
an attacker-defender stochastic game-theoretic model to represent the attacker-
defender interactions. Section4 analyses the belief-updating mechanisms and
presents the feasible computation of Nash equilibria. Finally, Sect.5 concludes
the paper ans discusses future works.

2 Related Work

A game consists of players (in this paper, the attacker and the defender), strate-
gies (i.e., actions of players) available to each player, and utilities depending
on the joint decisions of all players. Game theory depicts dynamic interactions
between players, involving a complementary methodology of attack trees and/or
attack graphs in face of changing attack patterns.

Ismail et al. [10] modelled the problem of optimizing the distribution of
defence resources on communication equipment as a one-shot game [22] between
the attacker and the defender. That game took into account the interdependency
between the cyber and physical components in the power grid. It was assumed
that the initial risk, the immediate risk on a node before any incidents or failure
propagations is a positive real number and evaluated using other risk assess-
ment methods. The immediate risk and the future cascading risk from interde-
pendent electrical and communication infrastructures were balanced in [10]. The
interdependency between the electrical and communication infrastructures were
modelled as a weighted directed interdependency graph. Each communication
equipment was associated with a load. The worst-case scenario, where both the
attacker and the defender have complete knowledge of the architecture of the
system, was considered in [10]. The utility functions of both players are composed
of three parts: the reward for an attack, the cost of attacking/defending, and the
impact of redundant communication equipment. The impact of attacks in the
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electric and communication infrastructures was evaluated by solving power flow
equations and using attack graphs, in conjunction with other risk assessment
methods. The dataset of the Polish electric transmission system, provided in the
MATPOWER computational packages, was taken as a case study to validate
the proposed game-theoretic model, while Nash equilibria for the attacker and
the defender for each type of communication equipment in the case study were
presented.

Jiang et al. [30] proposed a two-player non-cooperative, zero-sum, and finite
stochastic game for the attacker and the defender in computer networks. A
Markov chain for a privilege model and a privilege-escalating attack taxonomy
were presented. By making use of the developed stochastic game model, a Markov
chain for the privilege model, and a cost-sensitive model, the attacker’s behaviour
and the optimal defence strategy for the defender were predicted. He et al.
[8] studied a network security risk assessment-oriented game-theoretic attack-
defence model to quantify the probability of threats. The payoff matrix was
formulated from a cost-benefit analysis, where the cost to the defender when
taking actions was made up of the operational cost, the response cost, and the
response negative cost. Combined with the vulnerability associated with the
nodes, risks of the system were computed as the sum of the threat value of all
nodes.

Guillarme et al. [6] presented an attack stochastic game model for adversar-
ial intention recognition for situations featuring strategic interactions between
an attacker and a defender. The attack stochastic game model is a coupling of
discounted stochastic games and probabilistic attack graphs, although it suf-
fers from zero-sum constraints. In the attack stochastic game model, it was
assumed that both the attacker’s action and the defender’s action, as well as the
states experienced by players, were fully observable to both players. This model
was inverted to infer the intention of an attacker from observations of his/her
(sub-)optimal actions. However, this model does not have the ability to detect
intention changes, while the scalability is the principal limitation of this attack
stochastic game model.

Nguyen et al. [21] studied a two-player zero-sum stochastic game-theoretic
approach to provide the defender with guidelines to allocate his/her resources to
secure his/her communication and computer networks. Linear influence networks
[19] were used to present the interdependency of nodes in terms of security assets
and vulnerabilities. He et al. [9] investigated game-theoretic risk assessment in
smart grid communication networks and noticed that the data acquisition and
data interpretation for risk assessment and prediction had not been intensively
explored. Therefore, [9] established a surveillance architecture to monitor mes-
sage transactions in communication networks, while surveillance observations
were further interpreted as Dirichlet-distributed security events with certain
probabilities. By taking the interactions between possible suspicious nodes and
the security operators as a repeated zero-sum transmitting-monitoring game,
a game-theoretic risk assessment framework was established to compute and
forecast the risk of network security impairment. Rass and Zhu [25] presented
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a sequence of nested finite two-player zero-sum games for developing effective
protective layers and designing defence-in-depth strategies against advanced per-
sistent attacks (APTs). In the game-theoretical model, nodes in an infrastructure
were equidistantly separated into different levels according to their layers in the
infrastructure. Within each level, the game structure was determined by the
nodes’ vulnerabilities and their distances from the target node. The authors of
[25] discussed some closed form solutions for their APTs games and analytically
formulated infrastructure design problems to optimize the quality of security
across several layers. Under the framework of the HyRiM project, Rass et al.
[24] investigated an extensive form game as a risk mitigation tool for defend-
ing against APTs. An APT was modelled as a zero-sum one-shot game with
complete information, but uncertainty was observed in the game payoffs. Based
on a topological vulnerability analysis and an established attack graph, all the
attack vectors covered in enumerated attack paths (from the root node to the
target node in the attack graph) made up the attacker’s action space. By defin-
ing players’ payoffs as probability-distributed values, instead of real numbers,
[24] provided a relative new approach to tackling ambiguous and inconsistent
expert opinions in risk management.

The proposed game-theoretic model in this paper differs from the aforemen-
tioned approaches in the sense that the model captures the key characteristics
(e.g., information asymmetry) of the interactions between the attacker and the
defender in smart grid communication networks. None of theses precursor works
has looked at the stochastic and dynamic nature of attacks in smart grid use
cases (modelled as stochastic games). Both decision makers, the attacker and
the defender, have asymmetric information about the underlying system state,
while they both maintain a belief (i.e., a probability distribution) about the
current system state. This paper provides a common belief-updating mecha-
nism for the attacker and the defender to refresh such a belief. The objectives
of this research include contributing towards safety improvements for relevant
stakeholders (e.g., smart grid equipment manufacturers, utility companies) in
power distributed grids and making recommendations about allocating security
resources to reduce cyber security incidents or even safety-related events.

3 Attacker-Defender Stochastic Game-Theoretic Model

To assess threats of multistage attacks, the strategic interactions between the
attacker and the defender are modelled as a stochastic game (which covers the
step occurrence dependency in multistage attacks). In such a game, the possible
actions of the players are restricted, such that there exists an equilibrium point
in which the attacker has no chance to successfully obtain his/her ultimate goal.
This section introduces action spaces and state transition probabilities of the
game between the attacker and the defender. This work designs the attacker-
defender stochastic game-theoretic model by a description of an existing stochas-
tic game model and an extension of this model according to the characteristics
of the interactions of the attacker and the defender in smart grid communication
networks.
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3.1 Players

An attacker and a defender are the key “players” in the designed stochastic
game-theoretic model. There could be many attackers who are trying to launch-
ing attacks and many defenders in the network to protect the system, but this
work abstracts those attackers and defenders as one attacker and one defender,
respectively. The attacker attains his/her ultimate target via multiple stages.
The concept of the defender denotes the security operator (security operator
and system administrator are used interchangeably in this paper) who has the
task of deploying available defence countermeasures to protect the underlying
system, while the attacker attempts to reach the target or the most critical
assets located at the centre of the smart grid. This model considers that each
of the players has some finite resources to perform actions at each stage of the
game. The attacker is considered to be a resource-constrained, determined and
rational player. In this way, the attacker will give up when he/she finds it is out
of his/her capability to launch any further attacks. Furthermore, it is assumed
that once an attack is initiated, the attacker him/herself will never revert the
system to any of the previous state (for example, to recover the system from a
malfunctioning state to a normal operational state). In this work, the attacker
is only able to perform a single action in his/her turn. It is also assumed that
the defender does not know whether or not there is an attacker, as that in real
systems. Furthermore, the attacker is assumed to be always aware of the active
defence mechanisms. Moreover, the defender does not know the objectives and
strategies of an attacker. A successful attack may or may not be observable to
the defender. The attacker strategically and dynamically chooses his/her tar-
gets and attack methods in order to achieve his/her goals, while the defender
defines security policies and implements security measures (including email fil-
tering, detection software, patches to prevent and detect attacks, and repairing
the system after disruption).

3.2 State Transition Probabilities

A multistage attack, by exploiting vulnerabilities, makes the network system tran-
sition from one state to another. However, such a transition also depends on the
active defence mechanisms. Therefore, the probability that the state will transition
from one to another depends on the joint actions of both players. Unlike accidental
failures, an attacker will consider the consequences of his/her actions and compare
the reward versus the cost of each elementary attack action [27]. Therefore, the
transition probabilities from one state to another depend not only on the decisions
of both players to take action, but also the success probability of an attacker going
through with his/her action. The probability of success for the attacker at state
s is denoted as psye(ys,p) (this work assumes the second player to be the attacker
and y, ; (which will be defined later in Eq. (4)) to be the probability that his/her
action b is taken at state s € S, S is the state space and k = |S] is the number of
game states). Obviously, whether an action by an attacker succeeds depends on the
available exploitable vulnerabilities of an asset in the smart grid communication
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network. For example, attacking an asset with no exploitable vulnerability has zero
probability of success. In the attacker-defender stochastic game-theoretic model,
success probabilities of an attacker’s actions are assigned, based on the intuition
and experience (e.g., case studies, common vulnerability scoring system (CVSS),
knowledge engineering). Principally, the action of the defender also involves a suc-
cess probability (e.g., IDSs have detection rates); to simplify the underlying prob-
lem, however, such a success probability of the defender with his/her actions is
always assumed to be one.

The probability for player 1 (player 1 is the defender) to take action a € AS;
at state s is denotes as z;, (which will be defined later in Eq. (3)), while the
probability for player 2 (player 2 is the attacker) to take action b € ASs at state
s is denoted as ¥, ,. Both players take actions simultaneously, meaning that both
players take action independently of one another. Thus, when actions a € AS;
and b € ASs are taken from both players, the state transition probability from
game state s € S to state s’ € S can be calculated as

Q(Sl|87 a, b) = Ts,a " Ys,b* psuc(ys,b)-

For example, if the probability for player 1 to take action “IDS deployment”
is 0.5, the probability for player 2 to take action “Exploit” is 0.4, and the prob-
ability that the attacker will successful obtain his/her (sub)goal is 0.2, the game
will move from state “normal” to state “malfunctioning” with a state transition
probability of

g(malfunctioning|normal, IDS deployment, Exploit) = 0.5 - 0.4 - 0.2 = 0.04.

Depending on the exploitable vulnerabilities, it may be that there is no tran-
sition between certain game states. For example, it may not be possible for the
network to transition from a normal functioning state to a totally failed state
without going through any intermediate states. In this work, infeasible state
transitions are assigned with a transition probability of zero and hence ignored.
Both players make their moves simultaneously, with state transition probabilities
being common knowledge to them.

3.3 Game Formalization

In the previous subsections, this paper elaborates players in a game play. At
each stage of the game for multistage attacks, the play is in a given state, with
every player choosing an action from his/her available action space. With a state
transition probability (which is jointly controlled by both players), the current
state of the game, and the collection of actions that the players choose, the game
will go to another state with an immediate payoff received by each player. Each
player has his/her own costs of executing actions, thus the payoff of the game
cannot only be described by rewards. Although there may be a dependence of
rewards and losses among player’s payoffs, because of players’ own action exe-
cution costs, the payoffs of the attacker and the defender do not sum up to
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zero. Therefore, the interaction between the attacker and the defender is non-
zero-sum. The game is also played with positive stop probabilities in each game
state, since the game will end when the attacker decides to stop his/her attacks
(completely inactive) and the defender keeps his/her defence countermeasures
unchanged. Besides, this paper notices that none of the players knows the exact
state of the system, while both players have different kinds of private informa-
tion about the state and action processes over time. Therefore, in order to apply
game theory to assess multistage attacks in smart grid communication networks,
the asymmetric information, non-zero-sum, and positive stop probability char-
acteristics of the interaction between the attacker and the defender should be
taken into account.

The next concern is on the game type that appropriately captures the players’
interactions in the case of multistage cyber attacks. Both players do not know the
exact state of the game, but maintain a belief about the current state of the game
(where a belief is a probability distribution over the possible states of the game).
Taking a two-player non-zero-sum two-stage game for instance, suppose the game
has two states and both players do not know the current state of the game (either
in state s; or state s3), but they have a belief p1 = (p1(s1), p1(s2)) = (0.8,0.2)
about the current state, that is, there is a 80% likelihood that the current game
at stage 1 is in state s, while there is a 20% likelihood that the current game at
stage 1 is in state s3. The most relevant existing game model that can partially
solve this problem is the stochastic game with lack of information on one side
(SGLIOS) with positive stop probabilities. Thus, this paper considers SGLIOS
with positive stop probabilities as a basic game model and extends it to include
the non-zero-sum and information asymmetry of the interactions between the
attacker and the defender in smart grid communication networks.

This work starts with the definition of SGLIOS with positive stop probabili-
ties described in [18]. The model of SGLIOS with positive stop probabilities is a

two-person zero-sum game and states are a finite set S = {s1, 892, , 8¢, , Sk}
(k = |S| denotes the number of states). Associated with each state sp (£ €
{1,2,--- ,k}) is a matrix game Gy,,} of size my X mso, where m; = |AS| (the

number of actions of player 1), mg = |ASs| (the number of actions of player 2),
and G,,3 = {9(s,3(a,b) : AS1 x ASy = Rla=1,2,--- ,;my;0=1,2,--- ;ma;{ =
1,2,--- ,k}. Additionally, 0 is adjoined to S, where () represents the end of the
game. In SGLIOS with positive stop probabilities, at any stage N, there is a
probability distribution over states in S. throughout this paper, N takes values
from N and N is the set of natural number. Player 1 is informed about such
a probability distribution at every game stage, but player 2 is never informed
about that. There is a probability p; € A(S) about the initial state, where A(S)
is the set of all probability distributions on S. State transition probabilities are
denoted as ¢(-|s, a,b), which depends on the current state s and actions a and
b taken by the defender and the attacker, respectively. Because of the positive
stop probability assumption, the sum of transition probabilities from state s to
all possible next game state s’ is less than one, i.e., ZS,E{S%} q(s'|s,a,b) < 1,
Ya € AS1, b € ASs. Both players make their moves simultaneously and both
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of them are informed of their choices (a,b). The game will either end with a
probability of q(@|s, a, b) > 0 or transition to a new state s’ with a probability of
q(s']s,a,b) > 0. Although both players remember actions taken by them, player
2 is not informed of the received immediate payoff g4} (a,b) (which only player 1
knows) of the game. SGLIOS with positive stop probabilities is played with per-
fect recall (i.e., at each stage each player remembers all past actions chosen by all
players and player 1 knows all past states that have occurred). There is a common
knowledge among both players before they move at stage N and such a common
knowledge is a sequence of the form hy = {(al,bl), (ag,b3),- - ,(aN,l,bN,l)}
(where a; € AS] is the action chosen from player 1 at the ¢ stage, by € ASs
is the action chosen from player 2 at the ¢ stage, and ¢ € {1,2,--- ,N — 1}).
The common knowledge hy is also called history and it represents the choices
of actions (i.e., pure strategies) of the two players up to (and excluding) stage
N. SGLIOS with positive stop probabilities restricts its attention to behavioural
strategies [12].

When the game is in state s at stage IV, the action chosen by the players can
be deterministic or randomized. A mixed strategy corresponds to a distribution
over actions (i.e., pure strategies). Let x, (s € S) denote the mixed strategy
of player lin state s and y, (s € S) denote the mixed strategy of player 2 at
state s. The strategies x5 and y, in state s are used to assign probabilities over
the action set AS; and ASy with cardinality m, and mo, respectively. And the
mixed strategies x; and y, are defined as

mi
Xs = {(.%‘5,1, oy Tsay 7$S’m1) € RTllzxs’a = 1’0 < Ts,a < 1}’ (1)

a=1
ma
Ys i= {(ys,h 5y Ysby 7ys7m2) S RT2| Zys,b = 170 < Ys,b < 1}) (2)
b=1
where
Ts.q = P(als, hy), (3)
Ysb = P(bls, hn), (4)

and z,, and y,; represent the probability that player 1 takes action a and
player 2 takes action b, respectively. It is to be noted that actions of players are
independently chosen among each other, since both players are playing simul-

taneously. Let x = (Xs,,Xsy, " , X5y, " »Xs,) D€ a vector of mixed strategies
for player 1 and x € 2™ (2™ is the set of all probability vectors of length
myq). Correspondingly, let ¥ = (¥s,,¥s0s" " »¥ss» -+ »¥s,) De a vector of mixed

strategies for player 2 and x € 2™2 (2™2 is the set of all probability vectors
of length mg). Let E be a random variable representing the stage the game
ends and Ay be the common knowledge among players up to (and excluding)
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stage N. At each stage IV, if player 1 takes action a and player 2 took action b,
player 1 receives an immediate payoff g¢, 1 (a,b), The total payoff function H(-)
(with strategies from both players as parameters) in SGLIOS with positive stop
probabilities is given as

H(X7 Y) = R (Xv y) (5)

M2 10

Ex,y(PN(S)G{s}|E > N) ]P(E > N),

2

=1

where P(E > N) means that the game does not end at stage N and the stage E
where game ends is longer than N. The expectation operator Exy (- |E > N) is
used to mean that player 1 plays strategy x and player 2 plays strategy y, under
the condition that the game does not end at stage N. Equation (5) assumes that
the game stage can go to infinite (co). However, because of the positive stop
probability assumption, the game will end after a finite number of stages [28].
Therefore, the game of SGLIOS with positive stop probabilities is a finite game.
The fundamental tool in SGLIOS with positive stop probabilities is an updating
mechanism which gives at each stage N the belief py, the posterior distribution
on the state space given the history hy up to stage N. Player 1 is informed about
the belief py but player 2 does not. The updating mechanism for the belief py
is working in this way: initially both players choose strategies x and y and give
them to chance (chance is a special player, who can be the environment of the
system) who then at stage 1 chooses s; according to p;. Then the action pair
(a1,b1) is chosen according to (X,,ys,) and an immediate payoff gy, (a1,b1)
is received by player 1. Provided that the game does not end, chance chooses
another state so according to pa(s2) := P(sz]a1, b, F > 2) or decides to end
the game according to P(E = 2|aj,by1). At stage N, chance decides the game
to go to state sy according to py(sy) := P(sy|hn, E > N) or ends the game
according to P(E = N|E > N — 1,hy). The value pn(s) represents that the
chance believes that the current game state is s € S. It is proved in [18] that
the value of the game of SGLIOS with positive stop probabilities exists and is a
continuous function on the state space; and there exists also a stationary optimal
strategy for the informed player, i.e., player 1. The optimal strategy of player
1 depends only on the updated probability of the current state which he/she
independently knows.

Since the interaction between the attacker and the defender in smart grid use
cases is non-zero-sum, it is needed to extend SGLIOS with positive stop proba-
bilities (which is zero-sum) to non-zero-sum cases. The game matrices should be
first identified. Each player (player 1 or player 2) has his/her own game matrix,
which is composed of two parts: his/her reward/loss as the result of an attack
and the cost of carrying out his/her action. Essentially, both two players are with
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contradictory objectives and they are competing with each other. The objective
of each player is to maximize his/her own total payoff with strategies x and y

Hi(x,y) = Y Rin(xy) =Y Exy(on(s)G1y|E > N)-P(E > N), (6)
N=1 N=1
Ho(x,y) = Y Ran(xy) = Y Exy(on(s)Gag|E> N) -P(E > N). (7)

=2
I

1 N=1

The reason why both the attacker and the defender share the same belief
value pn(s) will be given out in Sect. 4.1. Another characteristic of the interaction
between the defender and the attacker is the information asymmetry, where each
player has private information about the state of the network system, while such
private information among players is asymmetric. The asymmetry stems from
the fact that the attacker has knowledge of a particular vulnerability which can
be exploited; while the defender knows how to use resources to defend against
all possible attacks. In other words, one player either deliberately distorts or
does not disclose all the relevant information to another player, during their
interaction phases. Since no player completely knows the exact state s of the
game, it is assumed that each player (player 1 or player 2) observes a private
local state sg1y or sgoy of the game and the state of the game is composed of
both private local states s = {s{1}, 512} } Each player has to form a belief about
the exact state s up to stage N. It is assumed that each player knows all past
states that have occurred, which means when the game goes to next state, the
previous one state will be publicly known to all players. Provided that the game
has not ended, the history Ay is common information available to both players
whereas private information is only available to that specific player.

According to [18], players can forget the sequence of previous states. So with-
out loss of generality, it is assumed that the state of the two-player game at N+1
stage (assuming that the game does not end at N stage) evolves according to
the current state sy and all previous strategies from both players. Similarly, the
private local state of each player is evolving according to the current local state
sq1,ny for player 1 or sgy ny for player 2 and all previous strategies from both
players. It is obviously that, at any stage N, the local state s{;, vy for player 1 is
independent of the local state sy ) for player 2. Therefore, when both players
have taken actions a € AS; and b € ASs, the state transition probability in the
case of information asymmetry among players is defined as

q(sn|sn-1.a,b) :=P(sn|sn-1,a,b)
= P(S{l,N}|5{17N71}a a,b) 'P(S{Q,N}|5{2,N71}a a,b). (8)
The choice of actions for each player at stage N may depend on all past
strategies from both players and the player’s current local state (the local state

is one part of the game state sy = {sy1 n},5¢2,n}}), Which is consistent with
Egs. (3) and (4). Given the fact that no player can observe the current game
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state sy (sy € S) at stage N and each player observes only a private local
current game state sy y} or sgo n}, the probability for player 1 to choose action
a and the probability for player 2 to choose action b at stage N are defined as

Ts(y nyoa = Plalsginy, hy) (9)

and
Ysony b = P(blsg2, Ny, N, (10)

respectively.

It is to noteworthy that by knowing the strategy of the other player, one
player can make inference about the other player’s private information sg; ny (if
this player is player 2) or sgo nyy (if this player is player 1) from observing their
actions. If a player knows the local private state of the other player, he/she can
further predict the action of the other player in next stage. Provided that the
game continues, state sy is chosen according to py(sy) = P(sylhn, E > N),
the immediate payoff g(y ,3(an,bn) is received at player 1(correspondingly,
9{2,sn}(an,bn) is received at player 2), and both two players computes his/her
belief py11(sny+1) on next game state sy41.

4 Game Analysis

This section analyses the previously specified game model and finds Nash equi-
libria to construct an attack scenario in which the adversary cannot succeed in
performing multistage cyber attacks and arriving at his/her ultimate target. In
the previously specified game model, players have asymmetric information about
the current state of the game, therefore, each player has to form a belief about
the current state of the game. In SGLIOS with positive stop probabilities, player
1 (who can be assumed to be the defender) is informed about the belief value
on the current game state but player 2 (who can be assumed to be the attacker)
does not. Under the assumption that the true state of the game is independent of
the action taken by player 2, the belief value in SGLIOS with positive stop prob-
abilities is not conditional on the strategy taken by player 2 [18]. However, this
assumption is not applicable in attacker-defender games where strategies from
both player decide the state and the process of the game. Therefore, new belief
system updating mechanisms should be described and belief system updates
account for a central technical contribution in this paper. To assist equilibria
computation for the designed attacker-defender stochastic game-theoretic model,
this section first provides the belief update mechanism and then elaborates an
easy-to-follow method for Nash equilibria computation.

4.1 Belief System Updates

Actions taken by both players can be summarized through a belief py of game
states. For example, in SGLIOS with positive stop probabilities, under the
assumption that the current state of the game is independent of player 2’s
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actions, the belief py summarizes actions taken by player 1 [18]. In the game of
asymmetric information, at stage N, the current game state is unknown to both
players; player 1 privately observes a local state s{; n} and player 2 privately
observes another local state sy 1. To consist with [18] and the recent work on
stochastic game with asymmetric information [23,29], in this work, belief py on
the current state sy of the game is defined as pn(sn) :=P(sn|hn, E > N).

Provided that the game does not end at N stage, which means the condition
P(E > N) satisfies, for any history hy = {(al,bl), (ag,b2), - ,(aN_l,bN_l)},
it can be observed that player’s belief about the current game state sy is

pn(sn) :=P(sn|hn)
= P(£{1,N}73{2,N}|hN)' (11)

Because of the independence of private local states sg,n} and stz ny, Eq. (11)
can be further written as

pn(sn) = P(sp1 Ny, sp2,83 1) (12)
= P(S{l,N}|hN) . P(S{Q’N}|h]\7).

The probability P(s{y,n}|hn) can be viewed as the probability that player
2 believes that player 1 will be in state sg; yy based on the history hy of
past actions taken from both players. Player 2 might also derive this proba-
bility P(s{1,n3|hn) at N stage based on his/her private local states, however,
since the private local states sy} and sgpny (N € N) are independent,
the probability P(s¢1 n}|hn,S{2,1},5{2.2}, " »S{2,8—1}) Wwould be the same as
the probability P(sg; ny|hn). Therefore, knowledge of private state informa-
tion (5{271},3{2,2},--- ,5{2,N—1}) from player 2 does not affect the probability
P(s¢1,n}|hn). For player 2, the probability P(s;a ny|hn) can be viewed as the
probability that player 2 believes that his/her private local state at stage N
is syp v} based on the history of actions from both players. It is to be noted
that player 2 knows his current private local state sgo ny. However, this paper
assumes that after taking any action and before arriving in state ss ), player 2
can also has a probability P(s¢ n1|hn) about his/her private local state sgo ny.
Based on probabilities that player 1 will in state s¢; ;1 and he/she him/herself
will be in state sz ny at stage N, player 2 can derive the probability py(sn)
that the current game state is sy at stage V. Similarly, player 1 can also derive
the probability that player 2 will be in state sz yy at stage N with probabil-
ity P(sgo,ny/hn) and the probability that he/she him/herself will be in state
s{1,ny with probability P(s¢i ny|hn). Therefore, both players can obtain the
same belief value that the game play is in state sy at stage N.
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4.2 Finding Nash Equilibria

When dealing with strategic players with inter-dependent payoffs (for example,
the attacker’s rewards might somehow be losses of the defender), investigating
equilibria, mostly notably Nash equilibria, is a method of predicting players’
decisions. If we restrict our attention to pure strategies (i.e., actions), a Nash
equilibrium may not exists, this is the reason that this work considers only
behaviour strategies and the probability used by both players to choose among
pure strategies. The attacker-defender game with asymmetric information has
finite states and the action spaces AS; and ASjy are finite. The major differ-
ences between this attacker-defender game and the SGLIOS with positive stop
probabilities are that this attacker-defender game is a non-zero-sum one and the
belief system updates in this attacker-defender game are jointly conditioned on
strategies from both players. In the SGLIOS with positive stop probabilities,
the belief is conditioned only on the strategy of the informed player; while in
the attacker-defender game, the belief is conditioned on strategies of both play-
ers. If the probability that taking action by _1 is zero, the history hy will not
be observed, which will not happen under the assumption that the game does
not end at N — 1 stage. It was said that the belief in the SGLIOS with posi-
tive stop probabilities is continuous [17]. The same continuity property extends
to the belief in the proposed attacker-defender game. In the designed attacker-
defender game, both players are informed about the belief of game states. Hence,
each player can be taken as the informed player in the SGLIOS with positive
stop probabilities. It is proved in [18] that the informed player has a stationary
optimal strategy. However, [18] does not provide a systematic way to find such
optimal strategies.

The designed attacker-defender game is non-zero-sum. It is stated in [20]
that every non-zero-sum stochastic game has at least one (not necessary unique)
Nash equilibrium in stationary strategies and finding these equilibria is non-
trivial. The attacker-defender game with uncertainty about current game state
for both players makes it extremely challenging. Given the strategies of both
players, players continue to accumulate the immediate payoffs. Once the end
state of the game is reached, the game is over and no more accumulations are
possible. Each player wishes to maximize his/her expected payoff at state sy.
This maximization, in turn, yields player’s value of the game. Hence, if the
value of the game Iy exists, let the vector of values for player 1 be vy, where

Vi = (V1,515 V1,89, " »Ulsgs " »VU1,s,) (V1,s, 1S Player 1’s value of the game in
state s; ¢ and v15, € R (¢ € {1,2,--- ,k})) and the vector of values for player
2 be va, where Vo = (V2,5,, U2 55, "+ s V2,505 "+ > V2,5, ) (V2,s, i player 2’s value of

the game in state s; and vy 5, € R (€ € {1,2,--- ,k})). The value of each player
(either the attacker or the defender) includes both short-term (i.e., immediate)
payoff and long-term payoff (which is given by the expected value of the sum
of state payoffs from the current state) [4]. Taking the value for player 1 for
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instance, his/her value can be recursively defined as (that for player 2 can be
defined in the same way)

V1,55 (PN (SN)) := max min Z (PN (sN)Gi1sxy + Ti(sn, V), (13)

XN YN XN.YN
where matrix T (sy, V) is used to represent the long-term payoff (i.e., the future
payoff) in a matrix form. The vector v is a value vector (a sub-vector of the game
value vector that is defined above) for player 1 and it depends on the states that
the current state sy can transition to.
A pair of strategy sequence (x*,y*) forms (Nash) equilibria with strategy
pair (x5,.,¥7, ) if

Hi(x*,y") > Hi(x,¥7%),Vx € 2™,
Ha(x",y") > Ha(x",y), Yy € 272,

where > is used to mean at every stage N, the left-hand-side with strategy
profile (x} ,y%,) is greater than the right-hand-side with strategy (Xsy,¥yx,)
or strategy (X}, ,¥sy ). Therefore, the pair of strategy profile (x}, ,y:,) (N € N)
is said to be a Nash equilibrium strategy. At this equilibrium, there is no incentive
for either player to deviate from his/her equilibrium strategy x3  or y;  at any
stage N of the game. In each pair of equilibrium strategies, a strategy for one
player is a best-response to the other player and vice versa. A deviation means
that one or both of them may have a lower expected payoff, i.e., Hi(x,y*) or
Ha (X*7 Y)'

In order to find Nash equilibria for the designed attacker-defender non-
zero-sum game in smart grid communication networks, based on the formed
work [5,26], this paper studies nonlinear programming (NLP) formulation of the
attacker-defender non-zero-sum stochastic game with finite number of strategies
and asymmetric information. The theorem and proof of a global minimum to be
a (Nash) equilibrium with equilibrium payoff can be found in [1,5], this work is
not going to repeat them here again, whereas it provides here an easy-to-follow
method to find such (Nash) equilibria in the designed attacker-defender game.

Assuming the game has M stage, where the game ends after the M stage
(ie, E > M, M > 1 and M € N). The equilibrium solution (x*,y*) for M-
stages games can be obtained by solving the following nonlinear programming
problem:

M-—1
Ce . T
minimize E : (ULSZVI — X PM(SIW) : Gl,SM Y T V2,60 — Xspy P]W(SM)'
N=1

Gaysy Yo, +01sy — Xsy - (pn(s8)Grsy + Ti(sn, V) - yiy
+U2,5N — Xsn (pN(sN)G2,sN + TZ(SNvV)) : YZN) )
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subject to

@) pr(sa)Gisu¥ay < Visn T,

(i) pa(sm)Gy oy Xty < V260 d s

(iii) pn(sn)Grsyyely + Ti(sn, V)yL, <visydh, VN €{1,2,--- M —1},
(iv) PN(SN)GQT,SNXZN + To(sn, v)TxL, <wo e JL VN €{1,2,--- M -1},

SN —
mi
(v) szN,a =1 Vae AS;,N €{1,2,--- , M},
a=1

(Vi) @oya>0 Vae€AS,N€{1,2,-- M},

ma
(Vi) Y ey =1 Vbe ASy, N €{1,2,---, M},
b=1
(viii) ysyp >0 Vb€ ASy, N € {1,2,---, M},
(IX) pN(SN):P(SN|hN7E>M)7N€{1325"'aM}~

Constraints (i) and (iv) are the value bounds for the attacker-defender game,
which are satisfied for any pair of strategy profile. The mixed strategies xs,
and ys, (N ={1,2,---,M}) are defined in Egs. (1) and (2), respectively. Con-
straints (v)—(viii) are conditions that the probability z;, , to select action a for
player 1in state sy and the probability ys, s to select action b for player 2in
state sy is greater than zero and the sum of all such probabilities for each player
is one. Any pair of strategy profile satisfies constraints (v)—(viii). The constraint
(ix) is a prior belief constraint and the belief p; for the first stage, which is
presumed to be known to both players, is a probability distribution over state
space S, i.e., p1 € A(S). Because of the recursion definition of belief values of
constraint (ix) and the recursive optimization involved in the long-term payoff
(i.e., T1(sn, V) or Ta(sy, v)) of constraints (iii) and (iv), it is non-trivial to find
global minima.

In an one-stage game, each player (either the attacker or the defender) would
play with the stationary strategy that maximizes his/her expected immediate
payoff at the current game stage. Hence (x}, ,y% ) will be one optimal strategy
profile. There can be mutiple stationary Nash equilibria in each game state and
hence there will be multiple global minima. For example, for a stochastic game
with one stage and the payoff matrix for player 1 (who has three actions: A, B
and C) and player 2 (who has two actions: D and E) is Gyy5,3 and Gya 5,3,
respectively (to be noted that those values in payoff matrices are artificial num-
bers for illustration)

D E D E

A6 2 A4 3

G{l,sl} = Bl1 3 ,and G{Q,sl} = Bl1 5°
Cl5 4 Cl2 2
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Presuming that each player knows that the probability distribution pq(sy1) is 1,
and the game value for player 1 (the row player) and player 2 (the column
player) are denoted as v, and v, respectively. Therefore, the nonlinear
programming formulation of this one-stage game can be expressed as

62 43
minimize | vy, —Xg, - [13 -yST1 + V25, —Xg - |15 -yST1 ,
54 22
subject to
62 .
0 |18 y7 <v, 1117,
54
431" .,
(i) |15] xI <woy [11],
22
3
(i) Y 2.=1 Vae{AB,C}
a=1

(iv) 25,0>0 Vae{A,B,C},

2
(v) > wap=1 Vbe({D E}

b=1
(vi) z5,5>0 Vbe{D,E}.

There are three stationary mixed equilibria available for this one-stage game
(by solving a constrained minimization problem), which are shown in Table 1
with their corresponding values for each player. All Nash equilibria and game
values in Table 1 are further verified by the Gambit software tool [16]. Suppose
that the first player is the defender of a system and the second player is the
attacker. For the first Nash equilibrium in Table 1, to obtain maximum payoffs
(“6” for the defender and “4” for the attacker, as shown in Table 1), the defender
is suggested play the pure strategy “A” with a probability of 1 (i.e., play the
action “A” in all game repetitions) and the attacker play the pure strategy “D”
with a probability of 1. The same interpretation can be applied to the third Nash
equilibrium, i.e., the defender plays the pure strategy “C” with a probability of
1 and the attacker plays the pure strategy “E” with a probability of 1 to max-
imise their payoffs. Regarding the second Nash equilibrium, the game suggests
that the defender play his/her pure strategy “C” with a probability of 1, while
it suggests that the the attacker play his/her pure strategy “D” with a proba-
bility of approximately 0.67 and his/her pure strategy “E” with a probability of
approximately 0.33. If actions (i.e., pure strategies) are continuously and taking

21
daily (24h), the mixed Nash equilibrium strategy 33 for the attacker can
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Table 1. Nash equilibria and their corresponding game values in the sampled game.

# of Nash equilibrium | Player 1 | Player 2 | Game value

A|/B|C|D |E |Player1|Player 2
1 1/0/0/1 0 |6 4
2 0/0/11{2/3/1/3|14/3 2
3 0/0j1 /0 |1 |4 2

also be interpreted that the attacker temporarily runs the pure strategy “D” for
approximately 16 h and runs the pure strategy “E” for the remainder of the day.
If the actions “D” and “E” are instantaneous actions (which are taken at discrete

21
time instants), the mixed Nash equilibrium strategy (3, 3) for the attacker can

be interpreted as the (asymptotic) frequency with which the strategies “D” and
“E” are chosen in the game. After obtaining the mixed Nash equilibrium, the
defender and the attacker can subsequently use it in the following way: when
the game begins, both players (the defender and the attacker) randomly choose
actions (i.e., pure strategies) from their corresponding action spaces, a game
payoff from the chosen action pair will be received at each player. When the
game is played again, both players again randomly choose actions from their
corresponding action spaces in this round. It is to be noted that the actions
from both players in this round may be different from that taken in the pre-
vious one. A game payoff will again be received at each player. The actions in
each round are chosen randomly, however, the player should be aware of that
the (asymptotic) frequency of chosen actions must be that suggested from the
mixed Nash equilibrium. Therefore, when averaging payoffs in all repetitions of
the game, the average payoff is optimal for each player only if the actions are
chosen with their frequencies that are prescribed by the equilibrium strategy.
For example, for the attacker, in any game round, he/she should always aware
of that the (asymptotic) frequency of choosing actions “D” and “E” in all game

repetitions should be 3 and 37 respectively.

5 Conclusion and Future Work

To assess the threat of multistage cyber attacks in smart grid communication
networks, this paper designs a stochastic game-theoretic model according to the
characteristics of the interactions between the attacker and the defender in smart
grid use cases. Firstly, the majority of the existing game-theoretic threat and
risk assessment models are reviewed. Then, this paper elaborates players and
state transition probabilities of the designed stochastic game-theoretic model.
Since each player has partial knowledge of the game state, a belief-updating
mechanism for both players to form a common belief about the current state
of the game is proposed. Moreover, this paper discusses the use of nonlinear
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programming for Nash equilibria computation. One important aim of future work
is the application of the proposed stochastic game-theoretic model to evaluate a
multistage cyber attack scenario. Additionally, cyber attacks can also introduce
disruptive events in power grids. Therefore, further studies of payoff formulation
with an understanding of cascading effects of multistage cyber attacks would be
of great significance.
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Abstract. We propose a Stackelberg game model for Moving Target
Defense (MTD) where the defender periodically switches the state of a
security sensitive resource to make it difficult for the attacker to identify
the real configurations of the resource. Our model can incorporate various
information structures. In this work, we focus on the worst-case scenario
from the defender’s perspective where the attacker can observe the previ-
ous configurations used by the defender. This is a reasonable assumption
especially when the attacker is sophisticated and persistent. By formu-
lating the defender’s problem as a Markov Decision Process (MDP), we
prove that the optimal switching strategy has a simple structure and
derive an efficient value iteration algorithm to solve the MDP. We fur-
ther study the case where the set of feasible switches can be modeled as
a regular graph, where we solve the optimal strategy in an explicit way
and derive various insights about how the node degree, graph size, and
switching cost affect the MTD strategy. These observations are further
verified on random graphs empirically.

1 Introduction

In cybersecurity, it is often the case that an attacker knows more about a defender
than the defender knows the attacker, which is one of the major obstacles to
achieve effective defense. Such information asymmetry is a consequence of time
asymmetry, as the attacker often has abundant time to observe the defender’s
behavior while remaining stealthy. This is especially the case for incentive-driven
targeted attacks, such as Advanced Persistent Threats (APT). These attacks are
highly motivated and persistent in achieving their goals. To this end, they may
intentionally act in a “low-and-slow” fashion to avoid immediate detection [1].
Recognizing the shortage of traditional cyber-defense techniques in the face
of advanced attacks, Moving Target Defense (MTD) has been recently proposed
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as a promising approach to reverse the asymmetry in information or time in
cybersecurity [2]. MTD is built upon the key observation that to achieve a suc-
cessful compromise, an attacker requires knowledge about the system configu-
ration to identify vulnerabilities that he is able to exploit. However, the system
configuration is under the control of the defender, and multiple configurations
may serve the system’s goal, albeit with different performance security tradeoffs.
Thus, the defender can periodically switch between configurations to increase
the attacker’s uncertainty, which in turn increases attack cost/complexity and
reduces the chance of a successful exploit in a given amount of time. This high
level idea has been applied to exploit the diversity and randomness in various
domains, including computer networks [3], system platforms [4], runtime envi-
ronment, software code, and data representation [5].

Early work on MTD mainly focus on empirically studies of domain specific
dynamic configuration techniques. More recently, decision and game theoretic
approaches have been proposed to reason about the incentives and strategic
behavior in cybersecurity to help derive more efficient MTD strategies. In par-
ticular, a stochastic game model for MTD is proposed in [6], where in each
round, each player takes an action and receives a payoff depending on their joint
actions and the current system state, and the latter evolves according to the
joint actions and a Markov model. Although this model is general enough to
capture various types of configurations and information structures and can be
used to derive adaptive MTD strategies, solutions obtained are often compli-
cated, making it difficult to derive useful insights for practical deployment of
MTD. Moreover, existing stochastic game models for MTD focus on Nash Equi-
librium based solutions and do not exploit the power of commitment for the
defender. To this end, Bayesian Stackelberg games (BSG) has been adapted to
MTD recently [7]. In this model, before the game starts, the defender commits to
a mixed strategy — a probability distribution over configurations — and declare it
to the attacker, assuming the latter will adopt a best response to this randomized
strategy. Note that, the defender’s mixed strategy is independent of real time
system states, so does the attacker’s response. Thus, a BSG can be considered
as a repeated game without dynamic feedback. Due to its simplicity, efficient
algorithms have been developed to solve BSG in various settings, with broad
applications in both physical and cyber security scenarios [8]. However, a direct
application of BSG to MTD as in [8] ignores the fact that both the attacker and
the defender can adapt their strategies according to the observations obtained
during the game.

In this paper, we propose a non-zero-sum Stackelberg game model for MTD
that incorporates real time states and observations. Specifically, we model the
defender’s strategy as a set of transition probabilities between configurations.
Before the game starts, the defender declares its strategy to the attacker. Both
players take rounds to make decisions and moves. In the beginning of each round,
the defender moves from the current configuration to a new one (or stay on the
current one) according to the transition probabilities. Note that this is more
general than [8], where the defender picks the next configuration independently



A Stackelberg Game and Markov Modeling of Moving Target Defense 317

of the current one. Our approach also allows us to model the long-term switching
cost in a more accurate way. Moreover, we assume that the attacker can get some
feedback during the game. This is especially true for advanced attacks. In this
paper, we consider the extreme case where the attacker knows the previous
configuration used by the defender in the beginning of each round (even if it
fails in the previous round). This is the worst-case scenario from the defender’s
perspective. However, our model can be readily extended to settings where the
attacker gets partial feedback or no feedback.

To derive the optimal MTD strategy for the defender, we model the defender’s
problem as a Markov decision process (MDP). Under the assumptions that all the
configurations have the same value to the defender and require the same amount
of effort to compromise for the attacker, we prove that the optimal stationary
strategy has a simple structure. Based on this observation, we derive efficient
value iteration algorithm to solve the MDP. We further study the case where
the switching cost between any pair of configurations is either a unit or infinite.
In this case, the configuration space can be modeled as a directed graph. When
the graph is regular, we derive the optimal strategy in an explicit way and prove
that it is always better to have a higher degree in the graph, but the marginal
improvement decreases when the diversity increases. This observation is further
verified on random graphs empirically.

We have made the following contributions in this paper

— We propose a Stackelberg game model for moving target defense that com-
bines Markovian defense strategies and realtime feedback.

— We model the defender’s problem as a Markov decision process and derive
efficient algorithms based on some unique structural properties of the game.

— We derive various insights on efficient MTD strategies using our models. In
particular, we study how the diversity of the configuration space affects the
effectiveness of MTD, both analytically and empirically.

The remainder of the paper is organized as follows. We introduce the related
work in Sect.2 and propose the game model in Sect. 3. Detailed solutions for
optimal strategies and a special case study are presented in Sect. 4. The perfor-
mance of optimal strategies under different scenarios are evaluated via numerical
study in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Related Work

As a promising approach to achieve proactive defense, MTD techniques have
been investigated in various cybersecurity scenarios [2-5]. A fundamental chal-
lenge of large scale deployment of MTD, however, is to strike a balance between
the risk of being attacked and the extra cost introduced by MTD including
the extra resource added, the migration costs and the time overhead. To this
end, game theory provides a proper framework to analyze and evaluate the key
tradeoffs involved in MTD [9].
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In this paper, we propose a non-zero-sum Stackelberg game model for MTD
where the defender plays as the leader and the attacker plays as the follower and
both players make their decision sequentially. Sequential decision making with
limited feedback naturally models many security scenarios. Recently, inspired
by poker games, an efficient sub-optimal solution for a class of normal-form
games with sequential strategies is proposed in [10]. However, the solution is
only applicable to zero-sum games, while the MTD game is typically non-zero-
sum as the defender usually has a non-zero migration cost.

Stackelberg game models have been extensively studied in cybersecurity as
they capture the fact that a targeted attacker may observe a finite number
of defender’s actions and then estimate the defender’s strategy [11]. This is
especially true for an APT attacker. By exercising the power of commitment,
the defender (leader) can take advantages of being observed to alert the attacker.

In the context of MTD, several Stackelberg game models have been pro-
posed [7,8,12]. In particular, a Stackelberg game is proposed for dynamic plat-
form defense against uncertain threat types [7]. However, this work does not
consider the moving cost for platform transitions, which should be taken into
consideration on strategy design. A Stackelberg game for MTD against stealthy
attacks is proposed in [12], where it is shown that MTD can be further improved
through strategic information disclosure. One limitation of this work is that the
authors only consider a one-round game.

More recently, a Bayesian Stackelberg Game (BSG) model is proposed for
MTD in Web applications [8], where multiple types of attackers with different
expertise and preferences are considered. Both theoretical analysis and exper-
imental studies are given in [8]. However, to adapt the classic BSG model to
MTD, the defender’s strategy is defined as a probability distribution over states
and is 7.7.d. over rounds, which is a strong limitation. In contrast, we defined the
defender’s strategy as the set of transition probabilities between states. Such a
Markovian strategy is not only more natural in the context of MTD, but also
allows us to incorporate real time feedback available to the players.

Our model is similar in spirit to stochastic game models [6] and recent Markov
models for MTD [13,14]. However, existing stochastic game models for MTD
focus on Nash Equilibria instead of Stackelberg Equilibria. Moreover, solutions
to stochastic games are often complicated and hard to interpret. More recently,
several Markov models for MTD have been proposed [13,14]. Due to the com-
plexity of these models, only preliminary analytic results for some special cases
are provided. In particular, these work focus on analyzing the expected time
needed for the attacker to compromise the resource under some simple defense
strategies.

3 Game Model

In this section, we formally present our MTD game model. There are two players
in the game who fight for a security sensitive resource. The one who protects the
resource is called the defender while the one who tries to comprise the resource is
called the attacker. Below we discuss each element of the game model in details.
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Resource: We consider a single resource with N features, where for the -th
feature, there are m; possible configurations that can be chosen by the defender,
denoted by c¢; with |c;| = m;. We define the state of the resource at any time as
the set of configurations of all the features, s = {¢; € ¢;,i = 1,2,--- ,N}. For
example, the resource can represent a critical cyber system with features such
as its processor architecture, operating system, storage system, virtual machine
instances, network address space, and communication channels, etc. Each fea-
ture has several possible configurations such as Windows/Linux for operating
system, a range of IP addresses for network address space and so on. Moreover,
the concept of resource is not limited to the cyber world. It can also represent
physical entities such as military units, vulnerable species, and antiques.

We define a state as wvalid if it is achievable by the defender and the resource
can function properly under that state. Although the maximum possible states
of the resource can be Hf\]:l m;, typically only a small number of them are valid.
For instance, consider a mobile app that with two features: {program language €
{Objective-C, Java, JavaScript}, operating system € {iOS, Android} }. The max-
imum number of states for the app is 6. However, since a Java based app is
incompatible with iOS, and an Objective-C based app is incompatible with
Android, there are only 4 valid states. We denote the set of valid states as
V= {1727 7|V|}

Defender: To protect the resource, the defender periodically switches the state
to make it difficult for the attacker to identify the real state of the resource. A
switch is achieved by changing the configurations of one or more features and is
subject to a cost. Note that not all the switches between valid states are feasible
as it can be extremely difficult or even impossible to switch between two valid
states in some cases.

Attacker: We assume that the attacker can potentially attack all the valid states
of the resource. Note that if the defender knows that the attacker does not have
technical expertise to attack certain states, then the defender should always keep
the resource in those states. We leave the case where the defender is uncertain
about the attacker’s capability in the future work.

Before each attack, the attacker selects an attack scheme that targets at a
specific configuration combination (state) of the resource. We assume that the
attacker can compromise the resource successfully if and only if the selected
attack scheme matches the real state of the resource. Due to this 1-1 correspon-
dence, we simply define the attacker’s action space as the set of valid states V.
We further assume that the attacker can only observe and exploit the state of
the resource but cannot modify it through successful attacks. That is, the state
of the resource is completely under the control of the defender.

The rules of the MTD game are introduced below.

1. The game is a turn based Stackelberg Game in which the defender plays as
the leader and the attacker plays as the follower.

2. The game starts at turn ¢ = 0 with the resource initially in state so € V'
(chosen by the defender), and lasts for a possibly infinite number of turns 7.
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3. Each turn begins when the defender takes action. We assume that the
defender moves periodically and normalize the length of each turn to a unit.

4. At the beginning of turn ¢, the defender switches the resource from s; to s;11
with a switching cost cs,s, ,, and the attacker selects one state a; € V' to
attack. We assume that the attacker attacks once each turn. Moreover, both
switching and attacking are effective instantly.

5. If the attacker is successful at turn ¢ (that is, if a; = s;11), he obtains a
reward of 1, while the defender incurs a loss of 1 (not including the switching
cost). Otherwise, there is no reward obtained or loss incurred.

A Graphical View: We can model the set of states and state switches as a
directed graph. For example, Fig. 1a shows a fully connected graph with the set
of states as nodes and state switches as links. We then eliminate some invalid
states and invalid switches to get Fig.1b. The defender chooses one node as
initial state sg at the beginning of the game. The attacker selects one node a; as
the target in each turn. Every valid state has a self loop meaning that no switch is
always one option for the defender. We define the outdegree (or degree for short)
of a node as the number of outgoing links from the node, or equivalently, the
number of states that can be switched to from the state. We define the neighbor
of state s as a set N(s) = {s’ € Vlcssr # o0}, Vs € V. The degree of node s is
equal to |N(s)].

(a) A fully connected graph  (b) A subgraph after elimination of
invalid states and valid links

Fig. 1. All the possible switch pairs modeled by a graph

The graph can be uniquely determined by V' and a matrix C = {css }v|x|v|s
where ¢, Tepresents the switching cost between two states s and s’. There is
no link between s and s’ if c,or = 00, and ¢z = 0 if 8" = 5. We expect that the
switching costs can be learned from history data and domain knowledge [8].

Consider again the example given above. There are four valid states corre-
sponding to four nodes. Let nodes 1,2,3 and 4 represent {Objective-C,i0OS},
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{JavaScript, i0S}, {JavaScript, Android} and {Java, Android}, respectively. An
example of the cost matrix C and the corresponding graph are given in Fig. 2. In
this example, if the current state of the resource is at node 1, the defender may
keep the state at node 1 without any expense, or switch the state from node 1
to node 2 or node 3 with a switching cost 0.8 and 1.5, respectively. However, the
defender cannot switch the resource from node 1 to node 4in one step as there
is no direct link between them.

@Objec(ive—c. i0S} ‘4—.{ 2: {JavaScript, 10@
0 0.81.5 c© ><

0.7 0 0.6 1.6
C= 1305 0 04 @(Jma.Andrlod) }4—»‘ 3:(JavaScnpl,Andr@

o 1204 0

Fig. 2. A resource with 4 states and 14 switch pairs

3.1 Attacker’s Strategy

We define the attacker’s strategy and payoff in this subsection. In order to decide
at, the attacker forms a prior belief q; = {¢s | s € V'} regarding the probability
distribution of states according to the feedback obtained during the game and
the previous actions (to be discussed). For the sake of simplicity, we assume that
the attacking cost is identical for all the states and it is always beneficial to
attack. Thus, the attacker always selects a; = argmax,cy qs at turn ¢.

3.2 Defender’s Strategy and Cost

The defender’s objective is to strike a balance between the loss from attacks and
the cost of switching states. To this end, the defender commits to a strategy and
declares it to the attacker before the game starts. As in Bayesian Stackelberg
Games, the defender should adopt a randomized strategy taking into account the
possible response of the attacker. In this work, we define the defender’s strategy
as a set of transition probabilities P = {pss }|v|x|v|, where p,y is the probability
of switching the resource to s’ given that the current state is s. The defender
commits to an optimal P in the beginning and then samples the state in each
turn according to P. We require that pss = 0 if cse = 00 and Y, oy pssr = 1,
Vs € V. Given a pair of states s¢, s;11, the defender’s cost at turn ¢ can be then
defined as follows:

C(St’ 3t+1) = 1{at:5t+1} + Csisiqa (1)

The first term in (1) represents the loss from being attacked where 174,—,,,,3 = 1
if a; = s¢41 and is 0 otherwise. The second term depicts the switching cost.
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3.3 Feedback During the Game

The main purpose of MTD is to reverse information asymmetry. Thus, it is
critical to define the information structure of the game. We assume that both
players know the defender’s strategy and all the information about the resource
such as V and C before the game starts. However, the players have different
feedback during the game:

— Defender: As the leader of Stackelberg game, the defender declares her strat-
egy P and initial state sy to the public. The defender would not change P
and C during the game. In each turn, the defender knows if the attacker has
a successful attack or not.

— Attacker: As the follower of Stackelberg game, the attacker knows P and sg.
After attacking at any turn ¢, the attacker knows if the attack is successful or
not. If the attack is successful, the attacker knows s; immediately. Otherwise,
we assume that the attacker spends this turn to learn s; and will know s; at
the end of this turn. In both cases, q; = ps,, where ps, represents the s;-th
row in P. This is the worst-case scenario from the defender’s perspective. We
will leave the case where attacker only gets partial feedback or no feedback
to the future work.

3.4 Defender’s Problem as a Markov Decision Process

Given the feedback structure defined above, we have a; = argmax,cy ps,s for
any t. Hence, the defender’s expected loss at turn t is:

E [1{at:St+1}] =F |:1{St+1:argmaxs€Vpsts}:| = Maxps, (2)
Therefore, given P and s;, the defender’s expected cost at turn ¢ is

CP(St) = Est+1 [C(Sta St+1)]

= ma’XpSt + Z pStSt+1cStSt+1 (3)
st+1EN (s¢)

In this work, we consider the defender’s objective to be minimizing its long-
term discounted cost defined as y,° a‘c(s;) where o € (0,1) is the discounted
factor. One interpretation of « is that the defender would prefer to minimize
the cost at current turn rather than future turns because she is not sure if the
attacker will attack at the next turn. A higher discount factor indicates that the
defender is more patient.

For a given P and an initial state sg, the state of the resource involves
according to a Markov chain with V' as its state space and P as the transition
probabilities. Thus, the defender’s problem can be considered as a discounted
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Markov decision problem where the defender’s strategy and the transition prob-
abilities coincide. We can rewrite the defender’s long-term cost with the initial
state sg = s as follows:

Cp(s) = ZCP(St)
t=0

oo
=cp(s) + « Z pssr B Z ale(sig, Si40) | 51 =8
s’EN(s) t=0

=cp(s) + o Z PssrCp(s') (4)

s’€N(s)

3.5 Discussion About the MTD Model

In the BSG model for MTD in [8], the defender’s strategy is defined as a prob-
ability distribution x = {x, | Vs € V'} over states, and the expected switching
cost is defined as 2573,6V Css'Tsxs . This model implies that at each turn, the
defender samples the next state independent of the current state of the resource.
In contrast, we define the defender’s strategy as a set of transition probabilities
between states. Our choice is not only more natural for MTD, but also consid-
ers a richer set of defense strategies. Note that different transition probability
matrices may lead to the same stationary distribution of states, but with differ-
ent switching costs, which cannot be distinguished using the formulation in [8].
Our approach provides a more accurate definition of the defender’s real cost.
We show that by modeling the problem as a MDP, we can still find the optimal
defense strategy in this more general setting. Moreover, the MDP can be solved
in an explicit way under certain system settings, which provides useful insights
to the design of MTD strategies, as we discuss below.

4 Defender’s Optimal Strategy and Cost

In this section, we solve the defender’s optimal strategy as well as the optimal
cost under different scenarios. Recall that the defender’s problem is to find a
strategy such that the cost in (4) is minimized from any initial state. Let C*(s)
denote the defender’s optimal cost with an initial state s, where

C*(s) = m};n Cp(s) (5)

According to the theory of MDP, it is possible to find an optimal strategy
P* that simultaneously optimizes the cost for any initial state s € V; that is,

P* = argminpCp(s),Vs € V (6)
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4.1 Algorithms for Solving the MDP

According to (3) and (4), we expand Cp(s) in (5) and rewrite C*(s) in the
following form,

C*(s) :m]in maxps =+ ;( )(Css’ + aCP(S/))pss' (7)
s’e€N(s

In order to solve (7), we employ the standard value iteration algorithm to find
the defender’s optimal cost as well as the optimal strategy. Algorithm 1 shows
the value iteration algorithm, where C7(s) is the cost at state s in the 7—th
iteration. Initially, the value of C7(s) is set to 0 for all s. In each iteration, the
algorithm updates C7(s) by finding the optimal strategy that solves (7) using
the costs in the previous iteration (step 1), which involves solving a Min-Max
problem.

Although the value iteration algorithm is standard, solving the Min-Max
problem in step 1 of Algorithm 1 directly is computationally expensive. Note
that the decision variables pgs can take any real value in [0,1]. One way to
solve the problem is to approximate the search space [0,1] by a discrete set
{0, ﬁ, %, - %, 1} where M is a parameter. The search space over all the
neighbors of s has a size of O(M!V]). A suboptimal solution can be obtained by
searching over this space, which is expensive when M and |V| are large. Rather
than solving it directly, we first derive some properties of the MDP, which helps
reduce the computational complexity significantly.

Algorithm 1. Value Iteration Algorithm for the MTD game
Input: V,C, «, €.
Output: P*, C*(s).
1: Set 7=0,C7(s) =0, Vs € V; {C7(s) is the cost at state s in the T—th iteration}
repeat
T=7+1;
p; = argmin,_ [maxps + ZS/EN(S) Dos’ (css’ + aC’Tﬁl(s’))], Vs eV;
C7(s) = Cp=(s), Vs € V;
until 3 [C7(s) — C™is)| < e
:C*(s)=C"(s),Vs eV

Before presenting the results, we first give some definitions. Fix a state s.
For any s’ € N(s), let 0y = css +aC™~1(s") denote the coefficient of p,y in the
second term of the Min-Max problem in the 7-th iteration. Let s!,s2, ..., sV ()
denote the set of neighbors of s sorted according to their 6 values nondecreasingly.
We abuse the notation a little bit and let 6; = 6.:.

The following lemma shows that the Min-Max problem can be simplified as

a minimization problem.
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Lemma 1. Let P be the optimal solution to the Min-Max problem in the T-th
iteration of Algorithm 1. We have pge1 = max ps.

Proof. Assume pgo1 < ps. Let pyi = maxpg for some s° € N(s) and pyy =
psst + €1 for some €; > 0. By the definition of s!, there is €3 > 0 such that
0; = 01 + €o. From the definition of P and s*, we have

CT(S) = Pssi T Z pssjej
sTEN(s)

= psslel + Dssi (1 + 01) + Z pssjej
sTEN(s)\{st,s*}

= psslel + (p551 + 61) (1 + 91 + 62) + Z DPssi ej

sTEN(s)\{s',s7}
> (pssl + E1)(1 + 01) + Dsst (91 + 62) + Z pssjej
sTEN(s)\{s',s*}

= Pssi (1 + 91) + psslei + Z Pssi 9j (8)

SIEN(\{s1,57}
The value in (8) can be obtained by a strategy P’ that switches the values of

psst and pggi while keeping everything else in P unchanged. This contradicts the
optimality of P.

According to Lemma 1, the Min-Max problem in the 7-th iteration can be
simplified as follows:

C7(s) =min |pga + Z 0;Dssi
sTEN(s)

= mgn (1 + el)pssl + » Z ejpssj (9)
sTEN(s)\{s'}

The following lemma gives a further relation among the elements in the optimal
solution to the Min-Max problem.

Lemma 2. Let P be the optimal solution to the Min-Max problem in the T-th
iteration of Algorithm 1. If i < j, then pyg > Deei Vs, 87 € N(s).

Proof. Assume p,,: < pgei for some i < j. Then we have p,,; = pgs: + € for some
€ > 0. It follows that

CT(S) = maxps + Z ekpssk
skeN(s)

= maxps + Hipssi + ej (pssi + 6) + Z ekpssk

skeN(s)\{st,s7}

> maxps + Hi (pssi + 6) + ejpssi + Z ekpssk (10)
skeN(s)\{s%,s7}
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The value in (10) can be obtained by a strategy P’ that switches pyyi and p,g;
while keeping everything else in P unchanged. This contradicts the optimality
of P.

From Lemmas1 and 2, we can obtain a complete characterization of the
optimal solution to the Min-Max problem, as stated in the following proposition.

Proposition 1. Let P be the optimal solution to the Min-Max problem in the
7-th iteration of Algorithm 1. Let k < |N(s)| be the smallest positive integer such

30 0 1\, .
that O+ > —51—, then we have pggi = 1, Vi < k and pgei = 0,Vi > k. If

no such k exists, pgg = |N(s , Vi e N(s).

Proof. First note that since 7 < 1 + 61, we must have k > 1 (if it exists). We
first show that p,ei = 0 Vi > k. Assume p,,; = € > 0 for some j > k. From
Lemma 1, we have

CT(S) = Psst + Z ejpssf
sTEN(s)
k
Z Psst + Z eipssi + 6]'6

i=1

1 +Zf:1 92'6

k
> Ppsst + Z eipssi + k+1

=1
k
6 €

i=1

Consider another strategy P" where p/_; = pgo1t + 555 +1 for all i <k and pl;, =0

for all i > k. According to (11), a smaller cost (psst + 757) +Zi:1 i(Pssi + 757)
can be obtained by adopting P’. This contradicts the optimality of C7(s).

We then show that p,,: = % for all ¢ < k. To this end, we first prove the
following claim: 6; < 1+ 6 for all i < k. We prove the claim by induction. For
i =1, it is clear that #; < 1+ 6;. Assume the claim is true for all i < m—1 < k.
We need to show that 6, <1+ 6;. Since 6,, < %, we have (m —1)8,, <
146+ 5750 <1461+ (m—2)(1+6;) = (m — 1)(1 + 61), which implies
Om <14 65.

To show that p,, = for all i < k, it suffices to show that pg1 = %
Assume Cp(s) obtains the mlnlmum value at P* where pg1 > k Without loss of
generality, assume py1 > pyg2. Then there exists an € > 0 such that Pgsl — € > 1
and pgg1 — € > psgz + €. Consider another strategy P” where p”, = ps —
Pl = pss2 + € Dl = pggi for i > 3. We have

sst

7

k
CP"(S) = Psst —€+ 01 (pssl - 6) + 62(]7552 + 6) + Z eipssi
1=3
= CP*(S) — (1 + 607 — 02)6
< Cp~ (S) (12)
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where the last inequality follows from the claim above. This contradicts the
optimality of P. Therefore, pso1 = %, which implies that p,,: = % for all 7 < k.

kg
If 6, < H_E%l'% for all k < |N(s)|, we can use a similar argument as above
to show that Cp(s) > ps1 + 61, where the equality can be achieved by setting
Pesl = m, which implies that p,,: = % for all 1.

Proposition 1 has several important implications. First, each row of the opti-
mal P has at most two different values 0 and %, where k is bounded by the degree
of the corresponding node. This implies that the defender may move the resource
to several states with the same switching probability even if their switching costs
are different. Second, depending on the structure of the state graph, the defender
may prefer switching to a state with larger cost or never switch the resource from
one state to another even if there is a link between them. Third, for any state s,
the value of k in the (7 + 1)—th iteration only depends on the s-th row of C and
{C7(s)|s € V} from the 7-th iteration. Thus, the minimization problem in (9)
can be easily solved. Forth, according to the proof of Proposition 1, if 8 < 1+6,
for Vk € [1,|N(s)[], then pyo = m Otherwise, pss1 = 1.

According to the above observations, we can derive an efficient solution to
the step 4 in Algorithm 1, as shown in Algorithm 2.

Algorithm 2. Solving the Min-Max problem in the 7-th iteration of Algorithm 1
Input: V,C, C7!("), a.
Output: P*.

1: for s €V do

2: {s',s%...,s"N!} — a nondecreasing ordering of s’ € N(S) in terms of ¢, +

aCTH(s");
3 0; « cgi +aC™TH(sY),Vs" € N(s);
4 k—1;
. 1+ e

5:  while 011 < —15— and k < [N(s)| do
6: k—k+1
7.
8
9

end while
Doplu=1t foralli <k, pf, =0, foralli>k+1;
: end for

The running time of Algorithm 2 is dominated by sorting the neighbors of
a node according to their 6 values. Thus, the complexity of the algorithm is
bounded by O(|V|*log|V|). This is much faster than the searching approach
with complexity of O(MIV1).

4.2 Solving the MDP in Regular Graphs

In this section, we consider a special case of the MTD game where each state has
K + 1 neighbors (including itself) and the switching costs between two distinct
switchable states have the same value ¢ > 0 as the beginning step. In this case,
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the state switching graph becomes a regular graph (with self loops on all the
nodes). Intuitively, the regular graphs are hard to attack since all the vertices
(states) look the same. It will be beneficial for the defender to construct regular
or approximately regular graphs to protect the resource if this hypothesis is
true. We will show that explicit formulas can be obtained for the MDP under
this scenario.

Due to the symmetric nature of the regular graph, it is easy to see that the
defender has the same optimal cost at every state. Let C) denote the optimal
cost when each state has K + 1 neighbors. We have

C) = max ps + Z pss’(css’ + aC(K))
s’€N(s)

(i) Pes(1+ OéC(K)) + Z Pssr(C+ aC(K)) (13)
s’€N(s)\s

where (a) is due to the fact that c,s + aC) = aCF) < ¢, + aCE) for
any s’ # s, which implies that pss is the maximum element in ps according to
Lemmal. If ¢ > 1, then 65 = c+aC ) > 1+aC(K)+C+aC(K) = 1+9§+92 We have
pss = 1 and pge = 0 for all s’ # s according to Prop051t10n1 and C(K ﬁ
In this case, the defender will keep the resource at the original state all the time.

If ¢ < 1, then 6 < HZ’%G’“ for all kK < K + 1. We have pgy = K+1

s' € N(s) according to Proposition 1. In this case, we can solve the value of Cc(K)
as

for all

1 K
K) — _— (K) (K)
C +1(1+aC )+ (c+ aC'™™))
1+ Kec
o) - ___ "7
¢ (1—a)(1+K) (14)

Putting the two cases together, we have

# ife>1
oK) — ) T-a 1 )
ey e <L

Assume ¢ < 1 in the rest of this section. It is clearly that C'!) is increasing
with ¢. Taking the partial derivative of C%) w.r.t. K, we have
00 K) B 1—c
0K  (1—-a)(1+K)2

<0 (15)
Therefore, C%) is strictly decreasing with K. Further, we find that C%) is a
convex function of K by taking the second partial derivative of C%) w.r.t. K,

92CK) 1-c
0K2  (1—a)(1+K)3

>0 (16)
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which implies that for larger K, the marginal decrease of C) is smaller. We
further notice that C®) is independent of the number of valid states |V| and total
links in the graph. Hence, adding more states and switching pairs is not always
helpful. For example, in a 8-node regular graph with K = 2, the defender has
an optimal cost of 3%14;2;) However, given the same switching cost and discount
factor, the defender has a smaller cost of 4%1+f;) in a 4-node regular graph with
K =3.

5 Numerical Results

In this section, we examine our proposed model with numerical study under
different system scenarios and configurations.

5.1 Warm-up Example

We first use a simple example to illustrate the defender’s optimal strategy P*
and optimal cost C*. We consider a resource with n = |V| valid states and
model the valid state switches as an Erdés - Rényi G(n,p) random graph [15],
where every possible link between two distinct states occurs independently with
a probability p € (0,1).

Figure 3a shows a small state switching graph sampled from G(10,0.6) (we
also add self links to all the nodes). The switching costs between any two distinct
connected states follow the uniform distribution U(0,2) as shown in Fig. 4, and
the discount factor is set to 0.5. Figure gives the defender’s optimal strategy
P* and optimal cost C*(s). The s-th row of C* represents the optimal cost
with an initial state s. Figure 3b highlights the optimal strategy P*, where from
a current state s, the resource may switch to any of the neighboring states
connected by red links with an equal probability. From the optimal P* given in

©—C)

(a) State switching graph (b) A graphical view of P*

Fig. 3. An example of the MTD game where the state switching graph is sampled from
the Erdés - Rényi random graph G(10, 0.6).
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[0.00 1.48 091 095 1.64 1.12 o 1.82 023 o]
0.60 0.00 o 0.07 028 0.60 o 0.16 o 143
0.50 o 0.00 0.08 128 0.90 o 152 0.64 1.05
191 0.61 0.69 0.00 o 042 158 056 1.59 @
1.37 039 1.63 o 0.00 058 0.30 0.07 o ©

c= 1.75 1.56 0.55 134 129 0.00 1.22 0.15 o 0.98

© © o 194 147 123 0.00 1.75 1.82 0.44

1.39 1.69 124 001 028 148 099 0.00 o 033

1.31 w 1.67 0.58 © o 1.93 w 0.00 0.17

[ o« 187 106 0 o 130 088 1.95 1.02 0.00 |

Fig. 4. Switching cost matrix

[0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00] [1.2401]
0.00 025 0.00 025 0.25 0.00 0.00 0.25 0.00 0.00 0.8639
0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 1.1009
0.00 025 0.00 025 0.00 025 0.00 025 0.00 0.00 1.1511
pr|000 033 000 000 033 000 000 033 0.00 000| . _|09463
0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 1.0798
0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.50 1.5231
0.00 0.00 0.00 0.33 0.33 0.00 0.00 033 0.00 0.00 0.9358
0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 033 0.33 1.2668
[0.00 0.00 025 0.00 0.00 0.00 025 0.00 0.25 0.25] | 1.6877 |

Fig. 5. The defender’s optimal strategy P* and the corresponding optimal cost C*(s)

Fig. 5, we can make some interesting observations. First, the defender abandons
some switching pairs and only switches the resource to the rest of states with
equal probability. Second, the defender may prefer switching to a state with
larger switching cost. For example, when the resource is currently at state 5, the
probability of switching to state 2 is higher than the probability of switching
state 7, even though cso > c¢57 (c52 = 0.39,¢57 = 0.30). Third, a state s with
more neighbors does not necessarily has smaller C*(s). For instance, state 2 has
7 neighbors and state 6 has 9 neighbors, but C*(2) = 0.8639 < C*(6) = 1.0798.

5.2 Evaluation of the Optimal MTD Strategy

We then conduct large scale simulations to evaluate our MTD strategies and
investigate how the structure of the state switching graph affect the defender’s
cost.

We first compare our strategy with two baseline strategies: (1) A simple
uniform random strategy (URS) where the defender switches the resource to each
neighbor of the current state with the same probability. This is the simplest MTD
strategy one can come up with. (2) A simple improvement of the uniform random
strategy (IRS) where the transition probabilities are inversely proportional to

the switching costs. More concretely, we set pss = m and ensure that psg Cssr

is a constant for all s’ € N(s)\s. The objective is to compare the average cost
over all the states achieved by our algorithm and the two baselines.

The state switching graph is sampled from G(50,0.1). 100 samples are gen-
erated. We set the discount factor o = 0.5. The switching costs between two
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distinct connected nodes follow an uniform distribution U|0, 2a] where a varies
between 0.2 and 1.

Figure 6 shows the mean average cost over all the random graphs generated.
As we expected, the optimal strategy (OS) has significant better performance
than the two baselines, especially when the mean switching cost becomes larger.
One thing to highlight is that, although URS is the simplest strategy that one
can think of, it may actually perform better than a more complicated strategy
such as IRS in certain scenarios. Hence, one has to be careful when adapting a
heuristic based strategy to MTD. This observation also indicates the importance
of developing optimal strategies for MTD.

—-0S

S
©

Mean Average Cost
B

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mean Switching Cost

Fig. 6. Mean average cost vs. mean switching cost

5.3 Impact of Switching Graph Structures

In Sect. 4.2, we have derived explicit relations between the optimal defense cost
and the structure of the switching graph when the graph is regular. It is inter-
esting to know if such relations hold in more general settings. In this section,
we conduct simulations to answer this question for random graphs. To have a
fair comparison between regular graphs and random graphs, we set the switch-
ing costs between distinct connected nodes to a constant ¢ in this section. We
consider two scenarios.

We first fix |V| = 128 and the switching cost ¢ = 0.5, and vary the average
degree K of the switching graph, by using different values of p in the G(128,p)
model. We compare this case with a regular graph with the same K. Figure 7a
gives the mean average costs for the two models. We observe that when the aver-
age degree increases, the defender’s optimal cost follows a similar trend in both
models. In particular, the cost reduces sharply in the small degree regime, which
is consistent with our analysis in Sect.4.2. In addition, the defender’s perfor-
mance in regular graphs is always better than that in random graphs, especially
when the average degree is small. This can be explained by the convexity of
C%) over K shown in Sect.4.2. More specifically, the degree distribution of a
random graph is more diverse than that of a regular graph with the same aver-
age degree. Due to the convexity of C¥), we have CE+9) 4 (K=o » 9C(K)
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(e is a small positive integer), which implies that a graph where the degree
distribution is more concentrated has better performance. In addition, the gap
between C(K+9) 1 CK=9) and 2C(5) is bigger for smaller K. Hence, regular
graphs perform much better than random graphs when the average degree is

small.

We then fixe the average degree K = 8 and vary |V| and the switching cost
c. From Fig. 7b, we observe that the defender’s optimal costs in different |V| are
almost the same when both the average degree and the switching cost are fixed.
Moreover, by increasing the switching cost, the defender’s optimal cost in the
random graph model increases linearly. Both observations are consistent with

our analysis for the regular model in Sect. 4.2.

Mean Average Optimal Cost
w

2 4 8 16 32 64
Average Degree

(a) Same switching cost, varying aver-

age degree

[ G(128,n) Random
I 128-node K-Regular

BG40, 0.2)
[ G (200, 0.04)

k%)
IS [C16(1000,0.008)
= 3.5/ Il 8-Regular
£ 3
k=3
O 25
Q
g 2
2is
Z
§ 1
[
2 05
0 01 02
(b) Same

switching cost

0.3

average

04 05 06
Switching Cost

degree,

Fig. 7. Mean average optimal cost under different settings

5.4 Rate of Convergence

Previous studies have analyzed the convergence rate of discounted MDP [16]. We
will examine the convergence speed of proposed Algorithm 1 using simulations
with a similar setup as in Sect.5.3. In Fig. 8a, we vary both |V| and the mean

0.7

0.8

varying

t

Average Optimal Cost

_,G(100,0.2); 0= 0.5;
Switching Cost = 0.5
G(100,0.5); 0= 0.5;
Switching Cost = 0.5
G(1000, 0.5);0.= 0.5
- S\ivitchmg czm =05
G(100, 0.5); 0= 0.5;
Switching Cost = 0.2

Average Optimal Cost

a— G(100,0.5); = 0.8;

Switching Cost = 0.5

G(100, 0.5); 0= 0.2;
Switching Cost = 0.5

15
Iteration

(a)

15 20
Iteration

(b)

Fig. 8. Rate of Convergence with different parameters
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switching cost ¢, while fixing the discount factor a = 0.5. We observe that each
curve converges to a relative stable value after 8 iterations. We then fix |V, p,
and mean switching cost ¢, while varying the discount factor «. From Fig. 8b, we
observe that the convergence speed gets slower with larger o, which is expected.
We draw the conclusion that the main factor that affects the convergence rate
of Algorithm 1 is the discount factor.

5.5 Suggestions to the Defender

Based on the results and observations above, we make the following suggestions
to the defender for holding a more secured resource:

— Due to the fact that the defender’s cost is largely determined by the average
degree of the switching graph, adding more switching pairs can help reduce
the cost. In particular, for a given number of states, the average degree can be
maximized adopting a complete graph where the resource can switch between
any two states.

— Since the defender’s cost is approximately convex with the average degree
and linear with the switching cost, the defender should pay more attention to
increasing the number of states rather than reducing the switching cost if the
average degree is small. While if the average degree is already large enough,
reducing switching cost is more useful.

— Introducing a large number of states is not always helpful. The main reason is
that the attacker could obtain full feedback about the previous configuration
used by the defender in our model. Under this assumption, adding more
states does not necessarily means that the defender has more choice to switch.
Instead of increasing the number of states, adding more switching pairs is
more beneficial to the defender.

6 Conclusion

In this paper, we propose a Stackelberg game model for Moving Target Defense
(MTD) between a defender and an attacker. After fully characterizing the
player’s strategies, payoffs and feedback structures, we model the defender’s
problem on optimizing the switching strategy as a Markov Decision Process
(MDP) and further derive an efficient value iteration algorithm to solve the MDP.
By employing a directed graph to illustrate the pattern of switching states, we
obtain the relation between defender’s performance and the properties of the
graph in an explicit way when the graph is regular. Similar results are further
verified on random graphs empirically. Through theoretical analysis and numer-
ical study of the proposed model, we have derived several insights and made
suggestions to the defender towards more efficient MTD.
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Abstract. While the Internet of things (IoT) promises to improve areas
such as energy efficiency, health care, and transportation, it is highly
vulnerable to cyberattacks. In particular, distributed denial-of-service
(DDoS) attacks overload the bandwidth of a server. But many IoT
devices form part of cyber-physical systems (CPS). Therefore, they can
be used to launch “physical” denial-of-service attacks (PDoS) in which
IoT devices overflow the “physical bandwidth” of a CPS. In this paper,
we quantify the population-based risk to a group of IoT devices tar-
geted by malware for a PDoS attack. In order to model the recruitment
of bots, we develop a “Poisson signaling game,” a signaling game with
an unknown number of receivers, which have varying abilities to detect
deception. Then we use a version of this game to analyze two mech-
anisms (legal and economic) to deter botnet recruitment. Equilibrium
results indicate that (1) defenders can bound botnet activity, and (2)
legislating a minimum level of security has only a limited effect, while
incentivizing active defense can decrease botnet activity arbitrarily. This
work provides a quantitative foundation for proactive PDoS defense.

1 Introduction to the IoT and PDoS Attacks

The Internet of things (IoT) is a “dynamic global network infrastructure with
self-configuring capabilities based on standard and interoperable communication
protocols where physical and virtual ‘things’ have identities, physical attributes,
and virtual personalities” [2]. The IoT is (1) decentralized, (2) heterogeneous,
and (3) connected to the physical world. It is decentralized because nodes have
“self-configuring capabilities,” some amount of local intelligence, and incentives
which are not aligned with the other nodes. The 10T is heterogeneous because
diverse “things” constantly enter and leave the IoT, facilitated by “standard
and interoperable communication protocols.” Finally, IoT devices are connected
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Fig. 1. Conceptual diagram of a PDoS attack. (1) Attack sponsor hires botnet herder.
(2) Botnet herder uses server to manage recruitment. (3) Malware scans for vulnerable
IoT devices and begins cascading infection. (4) Botnet herder uses devices (e.g., HVAC
controllers) to deplete bandwidth of a cyber-physical service (e.g., electrical power).

to the physical world, i.e., they are part of cyber-physical systems (CPS). For
instance, they may influence behavior, control the flow of traffic, and optimize
home lighting.

1.1 Difficulties in Securing the Internet of Things

While the IoT promises gains in efficiency, customization, and communication
ability, it also raises new challenges. One of these challenges is security. The
social aspect of IoT devices makes them vulnerable to attack through social
engineering. Moreover, the dynamic and heterogeneous attributes of the IoT
create a large attack surface. Once compromised, these “things” serve as vectors
for attack. The most notable example has been the Mirai botnet attack on Dyn
in 2016. Approximately 100,000 bots—largely belonging to the (IoT)—attacked
the domain name server (DNS) for Twitter, Reddit, Github, and the New York
Times [15]. A massive flow of traffic overwhelmed the bandwidth of the DNS.

1.2 Denial of Cyber-Physical Service Attacks

Since IoT devices are part of CPS, they also require physical “bandwidth.” As
an example, consider the navigation app Waze [1]. Waze uses real-time traffic
information to find optimal navigation routes. Due to its large number of users,
the app also influences traffic. If too many users are directed to one road, they can
consume the physical bandwidth of that road and cause unexpected congestion.
An attacker with insider access to Waze could use this mechanism to manipulate
transportation networks.

Another example can be found in healthcare. Smart lighting systems (which
deploy, e.g., time-of-flight sensors) detect falls of room occupants [22]. These sys-
tems alert emergency responders about a medical situation in an assisted living
center or the home of someone who is aging. But an attacker could potentially
trigger many of these alerts at the same time, depleting the response bandwidth
of