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Abstract. In the Mixed Dominating Set (MDS) problem, we are
given an n-vertex graph G and a positive integer k, and the objective
is to decide whether there exists a set S ⊆ V (G) ∪ E(G) of cardinality
at most k such that every element x ∈ (V (G) ∪ E(G)) \ S is either
adjacent to or incident with an element of S. We show that MDS can be

solved in time 7.465knO(1) on general graphs, and in time 2O(
√

k)nO(1)

on planar graphs. We complement this result by showing that MDS

does not admit an algorithm with running time 2o(k)nO(1) unless the
Exponential Time Hypothesis (ETH) fails, and that it does not admit
a polynomial kernel unless coNP ⊆ NP/poly. In addition, we provide an
algorithm which, given a graph G together with a tree decomposition of
width tw, solves MDS in time 6twnO(1). We finally show that unless the
Set Cover Conjecture (SeCoCo) fails, MDS does not admit an algorithm
with running time O((2− ε)tw(G)nO(1)) for any ε > 0, where tw(G) is the
tree-width of G.

1 Introduction

Dominating (or covering) objects such as vertices and edges in a graph by vertices
or edges give rise to several classic problems, such as Vertex Cover, Edge
Cover, Dominating Set and Edge Dominating Set (see Table 1). All these
problems and their numerous variants have been studied extensively from struc-
tural as well as algorithmic points of view. However, all these problems except
Edge Cover are known to be NP-complete [11,25], and thus, they have been
subjected to intense scrutiny in all the algorithmic paradigms meant for coping
with NP-hardness, including approximation algorithms and parameterized com-
plexity. In this paper we consider a well-studied variant of these problems, where
the objective is to dominate vertices and edges by vertices and edges.

In order to define the problems formally, we first define the notion of dom-
ination, that is, what a vertex or an edge can dominate. A vertex dominates
itself, all its neighbors and all the edges incident with it. On the other hand, an
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Table 1. Different domination problems and their FPT and kernelization status.

Dominating By Problem PC Poly kernel

Vertices Vertices Dominating Set W[2]-hard No

Vertices Edges Edge Cover P O(1)

Edges Edges Edge Dominating Set FPT Yes

Edges Vertices Vertex Cover FPT Yes

Edges+vertices Vertices Vertex Cover FPT Yes

Edges+vertices Edges Edge Cover P O(1)

Edges+vertices Edges+vertices Mixed Dominating Set FPT No

edge dominates its two endpoints, and all the edges incident with either of its
endpoints. We first define the problem of dominating vertices by vertices. A dom-
inating set of a graph G is a set S ⊆ V (G) such that every vertex v ∈ V (G) \ S
is adjacent to at least one vertex in S. In the Dominating Set problem, we
are given an input graph G, a positive integer k, and the objective is to check
whether there exists a dominating set of size at most k. The edge counterpart
of Dominating Set is called Edge Dominating Set. The problem we study
in this paper is a variant of these domination problems. Towards that we first
define the notion of mixed dominating set (mds). Given a graph G, and a set
X ⊆ V (G) ∪ E(G), X is called a mds if every element x ∈ (V (G) ∪ E(G)) \ X
is either adjacent to or incident with an element of X. More formally, we study
the following problem in the parameterized complexity framework.

Mixed Dominating Set (MDS) Parameter: k or tw(G)
Input: A graph G on n vertices and m edges and a positive integer k.
Question: Does there exist a mds of size at most k in G?

The notion of mds (also called total cover) was introduced in the 70 s by
Alavi et al. [1] as a generalization of matching and covering, and after that it
has been studied extensively in graph theory [2,9,20,22]. See the chapter in [14]
for a survey on mds. The algorithmic complexity of MDS was first considered
by Majumdar [18], where he showed that the problem is NP-complete on general
graphs and admits a linear-time algorithm on trees. Hedetniemi et al. [15] and
Manlove [19] showed that MDS remains NP-complete on bipartite and chordal
graphs and on planar bipartite graphs of maximum degree 4, respectively. A
decade and half later, Zhao et al. [26] considered MDS and showed that it
remains NP-complete on split graphs. Unaware of the older result, they also
designed an O(n log n) time algorithm on trees. Lan and Chang [17] extended
this result and gave a linear time algorithm for MDS on cacti (an undirected
graph where any two cycles have at most one vertex in common). Hatami [13]
gave a factor 2 approximation algorithm for MDS on general graphs. Recently,
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Rajaati et al. [23] studied MDS parameterized by the treewidth of the input
graph and designed an algorithm with running time O�(3tw(G)2).1

In this paper we undertake a thorough study of MDS with respect to two
parameters, the solution size and the treewidth of the input graph, and obtain
the following results.

1. MDS admits an algorithm with running time O�(7.465k). We complement
the FPT result by observing that (a) MDS does not admit an algorithm with
running time 2o(k)nO(1) unless ETH [16] fails; and (b) it does not admit a
polynomial kernel unless coNP ⊆ NP/poly. See the last row of Table 1.

2. We design an algorithm with running time O�(6tw(G)) forMDS parameterized
by tw(G). This algorithm is a significant improvement over the O�(3tw(G)2)
algorithm of Rajaati et al. [23]. We also show that it does not admit an
algorithm with running time O�((2 − ε)tw(G)), for any ε > 0, unless SeCoCo
fails [7].

The algorithm for MDS, parameterized by the solution size, is based on a rela-
tionship between mds and vertex cover (a subset X of vertices such that every
edge has at least one endpoint in X) of the input graph. We use this connection
to gain structural insights into the problem and give an algorithmically useful
characterization of an optimal solution. This characterization leads us to the fol-
lowing algorithm: enumerate all the minimal vertex covers, say C, of size at most
2k of the input graph, guess a subset of C and then solve an appropriate aux-
iliary problem in polynomial time. The algorithm parameterized by treewidth
uses standard dynamic programming approach together with subroutines for
fast computation of cover-product [3]. Both our hardness results (no polyno-
mial kernel and the lower bound on the running time of MDS parameterized by
treewidth) are based on a polynomial time parameter preserving transformation
from an appropriate parameterization of Red Blue Dominating Set [8]. For
references to algorithms and hardness mentioned in Table 1, and for an intro-
duction to parameterized complexity, we refer to [6].

2 Preliminaries

All graphs in this paper are undirected and simple. For a graph G, V (G) and
E(G) denote the set of vertices and edges of G, respectively. An edge between u
and v in a graph G is represented by uv. For a set of edges E′ ⊆ E(G), we denote
by V (E′), the set of vertices that are endpoints of edges in E′. For v ∈ V (G),
NG(v) denotes the set of neighbors of v, and NG[v] = NG(v)∪{v}. Similarly, for
a subset V ′ ⊆ V (G), NG(V ′) = (∪v∈V ′NG(v)) \ V ′ and NG[V ′] = NG(V ′) ∪ V ′.
Also, for V ′ ⊆ V (G), we denote by G[V ], the subgraph of G induced on V ′. For
a graph G and R ⊆ V (G), we use E(R) to denote the set of edges incident with
at least one vertex in R. In this paper, V ′ shall always be a set vertices and E′, a

1 O� notation suppresses the polynomial factor. That is, O(f(k)nO(1)) = O�(f(k)).
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set of edges, unless otherwise specified. We use � to denote the disjoint union of
two sets, i.e., for sets S,A and B, S = A�B means S = A∪B and A∩B = ∅.
Treewidth. Let G be a graph. A tree-decomposition of a graph G is a pair
(T,X = {Xt}t∈V (T)) such that

• ⋃
t∈V (T) Xt = V (G),

• for all xy ∈ E(G) there is a t ∈ V (T) such that {x, y} ⊆ Xt, and
• for all v ∈ V (G) the subgraph of T induced by {t | v ∈ Xt} is connected.

The width of a tree decomposition is maxt∈V (T) |Xt| − 1 and the treewidth of
G is the minimum width over all tree decompositions of G and is denoted by
tw(G).

3 Algorithm for MDS Parameterized by the Solution Size

In this section we design an algorithm for MDS parameterized by the solution
size. We start with a simple observation that vertices and endpoints of edges in
a mds form a vertex cover.

Lemma 1. Let G be a graph and S = V ′ ∪ E′ be a mds of G. Then V ′ ∪ V (E′)
is a vertex cover of G, of cardinality at most 2|S|.
Proof. Since S = V ′ ∪ E′ is a mds of G, where V ′ ⊆ V (G) and E′ ⊆ E(G),
every edge in G has at least one of its endpoints in V ′ ∪V (E′). This implies that
V ′ ∪ V (E′) is a vertex cover of G, of cardinality at most 2|S|. �	

In order to get a handle on an optimal solution we define what we call a nice
mds.

Among all minimum sized mixed dominating sets of G, pick the one
with the least number of vertices. Such a mds is called a nice mds.
To re-emphasize, a nice mds by definition is minimum sized.

We now prove the following lemma, which forms the crux of our algorithm.

Lemma 2. Let G be a connected graph and V ′ ∪ E′ be a nice mds of G. Then,
there is a minimal vertex cover C of G such that V ′ ⊆ C ⊆ V ′ ∪ V (E′).

Proof. Let S = V ′ ∪ E′. Since S is mds, by Lemma 1, V ′ ∪ V (E′) is a vertex
cover of size at most 2|S|. Any edge incident on v ∈ V ′ dominates v as well as
all the edges incident on v. Therefore, if v is such that S \{v} dominates NG(v),
then by replacing v in S with some edge incident on v (this is possible since G is
connected), we get another minimum sized mds with fewer vertices. This implies
every vertex in V ′ must dominate at least one vertex (other than itself) which
no other element in V ′ ∪E′ dominates. More specifically, for every v ∈ V ′, there
is a vertex v′ ∈ V (G) such that vv′ ∈ E(G) and v′ /∈ NG[(V ′ \ {v})] ∪ V (E′).
This means, every minimal vertex cover contained in V ′ ∪ V (E′) must contain
V ′, because if C ⊆ V ′ ∪ V (E′) does not contain v ∈ V ′, then edge vv′ is not
covered by C. Therefore, if the vertex cover V ′ ∪ V (E′) is not minimal, keep
removing vertices from V (E′) \V ′ until we are left with a minimal vertex cover.

�	
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Let V ′ ∪ E′ be a nice mds and C be a minimal vertex cover such that
V ′ ⊆ C ⊆ V ′ ∪ V (E′). Let I = V (G) \ C. Note that I is an independent set
and it can partitioned into two sets Id and Iu, where Id is the set of vertices
dominated by V ′ and Iu = I \ Id. That is, Id = NG(V ′) ∩ I, and Iu = I \ Id.
Also, let Z = C \ V ′. We thus have a partition of V (G) into V ′, Z, Id and Iu.
We call the quadruple (V ′, Z, Id, Iu) a nice partition of V (G) with respect to the
mds V ′ ∪ E′ and the minimal vertex cover C (see Fig. 1). Also, we refer to the
graph G′ = G[Z ∪ Iu] as the companion graph of G with respect to V ′ and C.

C

I

V ′ Z

Id Iu

Fig. 1. Partition of V (G) into minimal vertex cover C and independent set I, where
C = V ′ � Z and I = Id � Iu.

Now let us define a new kind of domination called special domination. We say
a vertex special dominates only itself, and an edge special dominates its endpoints
as well as all the edges incident to at least one of its endpoints. Consequently,
we can define a special dominating set (sds) as follows. A sds of a graph G′ is
a set Q′ ⊆ V (G′) ∪ E(G′) such that every element x ∈ (V (G′) ∪ E(G′)) \ Q′

is either adjacent to or incident on an edge in Q′. The next lemma shows the
relation between mds and sds.

Lemma 3. Let V ′ ∪ E′ be a nice mds of G and C be a minimal vertex cover of
G such that V ′ ⊆ C ⊆ V ′ ∪V (E′). Let (V ′, Z, Id, Iu) be a nice partition of V (G)
with respect to V ′ ∪ E′ and C. Then G has a mds of size at most k if and only
if G′ = G[Z ∪ Iu] has a sds of size at most k − |V ′|.
Proof. Assume G has a mds of size at most k. Since V ′ ∪ E′ is a nice mds,
|V ′ ∪ E′| ≤ k. We can construct a sds Q′ for G′ as follows. If an edge e ∈ E′

has both its endpoints in V (G′), add e to Q′. If an edge e ∈ E′ has exactly one
endpoint in V (G′), then add that endpoint to Q′.

We now claim that Q′ is indeed a sds for G′. Since E′ dominates every vertex
in V (E′) ⊇ Z ∪ Iu = V (G′), Q′ special dominates all vertices of G′. If e = uv
is an edge of G′ such that there exists an edge uw ∈ E′ (or vw ∈ E′) for some
w ∈ V (G′), then uw ∈ Q′ (or vw ∈ Q′) and hence Q′ special dominates e.

We claim that Q′ special dominates all the edges in G′. By way of con-
tradiction, suppose e = uv is an edge of G′ such that there is no edge uw′

or vw′ in E′ for any w′ ∈ V (G′). Note that this also means uv /∈ E′. But
u, v ∈ V (E′) ⊇ Z ∪ Iu. In that case, there must exist xu, yv ∈ E′, where
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x, y ∈ V ′ ∪ Id. Then we claim that S = V ′ ∪ ((E′ \ {xu, yv})∪ {uv}) is a mds of
G. Notice that {xu, yv} dominate the set of vertices R = {x, u, y, v} and all the
edges E(R) incident to at least one vertex in R = {x, u, y, v}. Since V ′ ∪ E′ is a
mds of G, to prove S is a mds of G, it is enough to show that S dominates R
and E(R). Since S ⊇ V ′ ∪ {uv} and x, y ∈ Id, we have that x, y ∈ NG[V ′]. This
implies that S dominates R. Now, what is left to prove is, S dominates E(R).
Since uv ∈ S, all the edges incident to at least one of u or v is dominated by
S. Finally, we show that S dominates all the edges incident to at least one of
x or y. Let e be an edge incident on z ∈ {x, y}. If z ∈ V ′, then S dominates e,
because z ∈ V ′ ⊆ S. Otherwise z ∈ Id, because z ∈ {x, y} ⊆ V ′ ∪Id. Let e = zw.
Since z ∈ Id and V ′ ∪ Z is a vertex cover of G, we have that w ∈ V ′ ∪ Z. If
w ∈ V ′, then S dominates e = zw, because w ∈ V ′ ⊆ S. If w ∈ {u, v}, then S
dominates e = zw, because uv ∈ S. Otherwise w ∈ Z \ {u, v} ⊆ V (E′) \ {u, v}.
Since w ∈ V (E′)\{u, v}, there is an edge in E′ \{xu, yv} ⊆ S. This implies that
S dominates e. Thus we have shown that S is a mds of cardinality strictly less
than that of V ′ ∪ E′, a contradiction. Hence we conclude that Q′ is a sds of G′.

To prove the other direction, suppose G′ has a sds Q′ of size atmost k −|V ′|.
We claim that V ′ ∪ Q′ is an mds of G. Note that Q′ dominates all vertices and
edges in graph G′ as well as all edges incident on Z ∪ Iu, and V ′ dominates all
vertices in V ′ ∪ Id as well as all edges incident on V ′. Therefore, V ′ ∪Q′ is a mds
of G of cardinality |V ′| + |Q′| ≤ k. �	

Lemma 3 shows that given a graph G, V ′ and C as defined above, the problem
of deciding whether G has a mds of size at most k boils down to deciding whether
G′ has a sds of size at most k−|V ′|. This results in solving the following problem.

Special Dominating Set (SDS)

Input: An undirected graph G and a positive integer �.
Question: Does there exist a sds of size at most � in G?

In what follows we first design a polynomial time algorithm for SDS. Towards
this, note that an edge has more “special dominating power” than a vertex has,
in the sense that an edge special dominates itself, its endpoints and its adja-
cent edges, whereas a vertex special dominates only itself. Therefore, a natural
strategy is to first try to special dominate as many vertices and all edges with
as few edges as possible, and then add to the solution all those vertices that
are not special dominated by any of the edges. This intuition leads to following
polynomial time algorithm for SDS.

Algorithm-SDS (G, �)
Step 1. Find a maximum matching, say M , in G. Let U = V (G) \ V (M).
Step 2. If |M ∪ U | ≤ �, return Yes; else return No.

The only time consuming step in the above algorithm is Step 1 – finding
a maximum matching – and this can be done in time O(m

√
n) [21]. Thus,

Algorithm-SDS runs in polynomial time, and the following lemma shows the
correctness of the algorithm.
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Lemma 4. Let M be a maximum matching in a graph G and let U = V (G) \
V (M). Then M ∪ U is a minimum sized sds of G.

Proof. Since M is a maximum matching, every edge e ∈ E \ M is incident to an
edge in M , and thus M special dominates all edges in G. The set M also special
dominates all vertices in V (M), and the rest of the vertices in G are special
dominated by U . Therefore, M ∪ U is indeed a sds of G.

Now we claim that M ∪ U is a minimum size sds of G. Since V (M) ∩ U = ∅
and V (G) = V (M) ∪ U , we have that |V (G)| = 2|M | + |U |. Towards proving
the minimality of M ∪ U , we show that any sds E1 ∪ V1 of G, where E1 ⊆ E(G)
and V1 ⊆ V (G), has cardinality at least |M ∪ U | = |M | + |U |. Let M1 be a
maximum (w.r.t. E1) matching contained in E1. The total number of vertices
special dominated by E1 is at most 2|M1|+ |E1\M1| ≤ |M1|+ |E1|. Since E1∪V1

is a sds of G, we have

|M1| + |E1| + |V1| ≥ |V (G)|
|E1| + |V1| ≥ |V (G)| − |M1|

≥ 2|M | + |U | − |M1| (because |V (G)| = 2|M | + |U |)
≥ |M | + |U |. (because |M | ≥ |M1|)

This completes the proof of the lemma. �	
Algorithm-SDS together with Lemma 4 results in the following result.

Lemma 5. SDS can be solved in time O(m
√

n).

We are now fully equipped to give our algorithm for MDS.

Algorithm-MDS (G, k)
Step 1. Enumerate all minimal vertex covers of G of size at most 2k. Let C

be the collection of such vertex covers.
Step 2. For each C ∈ C and each V ′ ⊆ C such that |V ′| ≤ k and |C| ≤

2k − |V ′|, use Algorithm-SDS to decide if the companion graph G′

(w.r.t. C and V ′) has a sds of size at most k − |V ′|; if it has, return Yes.
Step 3. Otherwise return No.

The correctness of the algorithm follows from Lemma 3. Now, let us analyze
the running time of Algorithm-MDS. Any graph has at most 22k minimal
vertex covers of size at most 2k. Furthermore, given G and k, all minimal vertex
covers of size at most 2k can be enumerated in time 22knO(1) [10]. This means,
Step 1 can be executed in time 22knO(1).

For each C ∈ C, there are at most 2|C| ≤ 22k choices for V ′. For each such
choice of C and V ′, by Lemma 5, a minimum sds in G′ can be found in polynomial
time. Therefore, the running time of Algorithm-MDS (G, k) can be bounded
by 22k ·22k ·nO(1) = O�(16k). This, however, is a liberal estimate. A finer analysis
shows that the running time can be brought down to O�(7.465k).
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Lemma 6. Algorithm-MDS runs in time O�(7.465k).

Proof. If (G, k) is a yes-instance ofMDS with a nice mds V ′ ∪ E′, where |V ′| = j,
then any minimal vertex cover C such that V ′ ⊆ C ⊆ V (E′) can have size at
most |V ′| + 2|E′| ≤ j + 2(k − j) = 2k − j. Therefore, in Step 2, we only process
those pairs (C, V ′) such that |C| ≤ 2k − j, where |V ′| = j, and there are only
22k−j such C. Thus Step 2 takes time

k∑

j=0

22k−j

(
2k − j

j

)

= 22k
k∑

j=0

2−j

(
2k − j

j

)

.

Since for any x > 0,
(
n
i

)
xi ≤ ∑n

i′=0

(
n
i′
)
xi′

= (1 + x)n, we get
(
n
i

) ≤
(1 + x)n/xi. Using this inequality, for any x > 0,

2−j

(
2k − j

j

)

≤ (1 + x)2k−j

(2x)j
=

(1 + x)2k

((1 + x) · 2x)j .

We choose x = (
√
3−1)
2 so that (1+x) ·2x = 1. This gives (1+x)2k

((1+x)2x)j
≤ (1.3661)2k.

Hence, Step 2 can be executed in time 22k · 1.36612k · nO(1) ≤ (7.465)k · nO(1). �	
Thus, we get the following theorem.

Theorem 1. MDS parameterized by k can be solved in time O�(7.465k).

4 Outline of Algorithm for MDS Parameterized by
Treewidth

In this section we only give a brief outline of our algorithm for MDS parame-
terized by treewidth of the input graph. Due to space constraint, we omit the
complete description of the algorithm and its analysis. Here, the input is graph
G and a tree decomposition of G of width tw(G).

To design an algorithm we first prove that there is a minimum sized mixed
dominating set S of G such that (i) the edges in S form a matching, and (ii) the
set of endpoints of the edges in S is disjoint from the vertices in S.

We now give an informal description of our algorithm. Let G be the input
graph and (T,X = {Xt}t∈V (T)) be the given tree decomposition of G. Any
standard dynamic programming over tree decomposition has three ingredients:
for any node t ∈ T (i) defining partial solution, (ii) defining equivalence classes
among partial solutions (or in other words defining states of DP table according
to partial solutions), and (iii) computing a ‘best partial solution’ for each state
from previously computed values. Normally, for any node t ∈ T, partial solutions
are defined according to the properties of the intersection of solutions with the
graph Gt. In our case, a partial solution will be a subset of V (Gt) ∪ E(Gt).
When we define equivalence classes of partial solutions, one of the factors under
consideration is the intersection of these partial solutions with the bag Xt. Since
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partial solutions contain edges, at the first blush, the number of choices for
these partial solutions seems to be at least 2O(tw2). Instead, we prove that it has
an equivalent characterization in terms of pairs of vertices which allows us to
bound the number equivalence classes. Recall that there is a minimum mixed
dominating set S = V ′ ∪ E′, where V ′ ⊆ V (G) and E′ ⊆ E(G), with the
following properties:

(a) E′ is a matching, and
(b) V ′ ∩ V (E′) = ∅.

Let V ′ ∪ E′ be a solution satisfying conditions (a) and (b). Consider the
pair (V ′, V (E′)). Since V ′ ∪ E′ is a solution, we have that (i) (V ′, V (E′)) is a
vertex cover of G, (ii) NG[V ′] ∪ V (E′) = V (G), and (iii) G[V (E′)] has a perfect
matching. In fact, one can show that any pair of vertex subsets that satisfies
these three properties can be turned into a mixed dominating set. That is, these
two notions are equivalent. As a result, for any node t in the tree decomposition
we define partial solutions and equivalence classes among partial solutions as
follows. A partial solution is a tuple (X,F, Y ) satisfying the following conditions,
where X ⊆ V (Gt), F ⊆ E(Gt), Y ⊆ Xt:

• X � Y � V (F ) is a vertex cover of Gt,
• V (Gt) \ Xt ⊆ NGt

[X] ∪ V (F ).

The intuitive meaning of (X,F, Y ) is that there will potentially be a solution S
such that X ∪ F ⊆ S and for each u ∈ Y , there will be an edge uv ∈ S \ E(Gt).

We now define equivalence classes of partial solutions corresponding to a node
t in the tree decomposition. We define Pt[f ], where f : Xt → {1, 2, 2′, 3, 3′} as
the set of partial solutions (X,F, Y ), which satisfy the following.

1. Xt ∩ X = f−1(1),
2. Xt ∩ V (F ) = f−1(2),
3. Y = f−1(2′), and
4. (NGt

(X) ∩ Xt) \ (Y ∪ V (F )) ⊇ f−1(3).

Informally, each partial solution imposes a partition of Xt, which is defined by
f . The set f−1(1) is the set of vertices from Xt which are part of solution. The
set f−1(2) is the set of vertices from Xt such that there are edges in the solution
which are incident on vertices in f−1(2) and are present in the graph Gt. The set
f−1(2′) is the set of vertices from Xt such that there are edges in the solution
which are incident on vertices in f−1(2′) and these edges are not present in
the graph Gt. Here, the condition 4 implies that the set f−1(3) is the set of
vertices in Xt, which are not part of solution vertices or end points of solution
edges in the partial solution, but they are already dominated. The set f−1(3′)
is the set of vertices in Xt which are not yet dominated and not in f−1(2′). The
number of equivalence classes is bounded by 5tw(G). Thus, a standard dynamic
programming, coupled with fast computation of cover product [3], results in the
the following theorem.
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Theorem 2. Given a graph G together with a tree decomposition of width tw,
MDS can be solved in time O�(6tw).

Theorem 3. MDS on planar graphs can be solved in time O�(2O(
√

k)).

Proof. By Planar Excluded Grid Theorem [12,24], treewidth of a planar graph
that has a vertex cover of size 2k is smaller than (9/2)

√
4k + 2. So graphs of

treewidth larger than (9/2)
√
4k + 2 are No-instances of MDS. To exploit it algo-

rithmically, we use the algorithm of Bodlaender et al. [4] which takes as input
an n-vertex graph and an integer � > 0, runs in time 2O(�)n, and either conclude
that treewidth of G is more than � or gives a tree decomposition of with 5�+ 4.
For convenience, let us call this algorithm Alg-A.

We runAlg-A on input G and � = (9/2)
√
4k + 2. If it outputs that treewidth

of G is greater than �, then we conclude that G is a No-instance of MDS.
Otherwise Alg-A will output a tree decomposition of G of width 5� + 4 =
(45/2)

√
4k + 2+4. Then, we apply Theorem 2. Both algorithm Alg-A and the

algorithm mentioned in Theorem 2 run in time O�(2O(
√

k)). This completes the
proof of the theorem. �	

5 Lower Bounds

In this section first we prove the following theorem.

Theorem 4. Unless ETH fails, MDS cannot be solved in time O�(2o(�)) , where
� is either the solution size or the treewidth of the input graph.

Proof. Lan and Chang [17] gave a polynomial time reduction from Modified

Vertex Cover (MVC), an NP-complete problem, to MDS on split graphs.
There is a reduction from an instance (G, k) of Vertex Cover to an instance
(G′, k′) ofMVC and a reduction from an instance of (G′, k′) ofMVC to an equiv-
alent instance (G′′, k′′) of MDS in [17]. Here, the input size and the parameter
of the instances change as follows. Let |V (G)| = n. Then, |V (G′)| = n′ ≤ n + 2,
k′ = k, |V (G′′)| = |V (G′) ∪ E(G′)|, k′′ = (n′ + k − 1)/2 ≤ (n + k + 1)/2, where
G′′ is a split graph with treewidth at most n′.

ETH implies that Vertex Cover on a graph with n vertices and m edges
can not be solved in time 2o(n+m) [16]. As a result from the above mentioned
reductions, we get that, unless ETH fails, MDS has no 2o(�)nO(1) algorithm,
where � is the solution size or treewidth of the input graph. �	

Now we prove a kernel lower bound for MDS. That is, we show that unless
coNP ⊆ NP/poly, MDS does not admit a polynomial kernel when parameterized
by k. We do this by a polynomial parameter transformation from an appropriate
parameterization of Red Blue Dominating Set (RBDS).

Definition 1 ([5]). Let P and Q be two parameterized problems. A polyno-
mial parameter transformation (PPT, for short) from P to Q is a polynomial
time algorithm, which given an instance, say (x, k) of P , produces an equivalent
instance (y, k′) of Q such that k′ ≤ p(k) for some polynomial p(·).
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Proposition 1 ([5]). If there is a PPT from P to Q and P has no polynomial
kernel, then Q has no polynomial kernel.

In the RBDS problem, the input is a bipartite graph G with bipartition
R � B and a positive integer �, and the question is whether there exists a set
X ⊆ R of size at most �, which dominates the set B, i.e., N(X) = B. (Such a set
X is called a red-blue dominating set (rbds, for short) of G). This problem when
parameterized by |R| is the same as Small Universe Hitting Set (see [8])
and thus from [8] we get the following result.

Lemma 7 ([8]). RBDS parameterized by |R| and � has no polynomial kernel
unless coNP ⊆ NP/poly.

Theorem 5. MDS parameterized by the solution size has no polynomial kernel,
unless coNP ⊆ NP/poly.

Proof. The proof is by a polynomial parameter transformation from RBDS para-
meterized by |R| and �. Given an instance (G = (R � B,E), �) of RBDS, we
construct an equivalent instance (G′, |R|+ �+1) of MDS. If B ⊆ V (G) contains
an isolated vertex, then note that G has no rbds (of any size), so take G′ to be a
|R|+ �+2-sized matching. Otherwise, if B has no isolated vertices, then proceed
as follows (see Fig. 2).

1. Add all vertices and all edges of G to G′, i.e., V (G′) ⊇ V (G) and E(G′) ⊇
E(G).

2. Corresponding to every vertex vi ∈ R, add vertices xi and yi, and add edges
vixi and xiyi in G′.

3. Add a vertex z and add edges zyi, for all yi.
4. Add |R| + � + 2 additional neighbors to z.

...
...

...
...

...
...

...

R B R Bxisyis

z

G G′

|R
|+

�
+

2
n
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Fig. 2. PPT from RBDS to MDS

We claim that G has a rbds of size at most � if and only if G′ has a mds
of size at most |R| + � + 1. Let X ⊆ R be a rbds of G of size at most �. Then
X ∪ {xivi : i = 1, 2, . . . , |R|} ∪ {z} is a mds of size at most |R| + � + 1.
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Conversely, assume that G does not have any rbds of size at most �. Let S
be a minimum sized mds of G′. Let S′ be the set of all elements x ∈ S such that
x dominates some element(s) of B. Let S′ = S1 � S2 � S3, where S1 = S′ ∩ B,
S2 = S′ ∩ E(G′) and S3 = S′ ∩ R. Construct S′′ ⊆ R as follows: (i) for every
v ∈ S1, add a neighbor of v to S′′, (ii) for every edge ww′ ∈ S2, where w ∈ R and
w′ ∈ B, add w to S′′, and (iii) add all vertices of S3 to S′′. Clearly, |S′′| ≤ |S′|
and S′′ is a rbds of G. By assumption, |S′′| > � which implies that |S′| > �.

Thus, S′ is a subset of the minimum sized mds S and |S′| > �. Assume that
z ∈ S, otherwise |S| ≥ |R| + � + 2. Note that neither the elements of S′ nor z
can dominate any of the |R| edges xiyi. And at least |R| elements are required
to dominate all of them. Therefore,

|S| ≥ |{z}| + |{the |R| elements that dominate edges xiyi}| + |S′|
> 1 + |R| + �.

That is, G′ does not have a mds of size at most |R|+ �+ 1. Hence, the theorem
follows from the given reduction, Proposition 1 and Lemma 7. �	

Now we present an improved lower bound for MDS when parameterized
by the treewidth of the input graph. We can reduce an instance of Set Cover

problem (U,F , �) to an equivalent instance of RBDS, (R�B,E, �), where R = F
and B = U . Edge set E consists of edges between F ∈ R and x ∈ B if and
only if x ∈ F . We now apply the reduction given in the proof of Theorem 5
to an instance of RBDS, (R � B,E, |R| + �) to get an equivalent instance of
MDS, (G, |R| + � + 1). Notice that graph G has treewidth at most 1 + |B| =
1 + |U |. The Set Cover Conjecture [7] states that Set Cover cannot be solved
in O�((2 − ε)|U |) time for any ε > 0. We thus have the following theorem.

Theorem 6. Unless the Set Cover Conjecture fails, MDS does not admit an
algorithm with running time O�((2 − ε)tw(G)).

6 Conclusion

In this paper we initiated a systematic study of MDS from the viewpoint of
parameterized complexity and designed algorithms parameterized by the solu-
tion size and the treewidth of the input graph. The algorithm for MDS para-
meterized by the treewidth significantly improved the known algorithm for the
problem. It is curious to note that our algorithm runs in time O�(5pw) on graphs
of pathwidth pw, while the same algorithm runs in time O�(6tw) on graphs of
treewidth tw. It will be interesting to close this gap as well as prove an optimal
lower bound under the Strong Exponential Time Hypothesis (SETH). Another
research avenue will be to find families of graph classes on which the problem
does admit polynomial kernels. Designing a non-trivial exact exponential time
algorithm is another interesting problem.
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