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Preface

This volume contains the 31 papers that were presented at WG 2017, the 43rd Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science. The workshop
was held during June 21–23, 2017, at the Kapellerput Conference Hotel in Heeze,
The Netherlands.

WG conferences cover a wide range of areas, and they connect theory and appli-
cations by demonstrating how graph-theoretic concepts can be applied in various areas
of computer science. One of the main goals is to present recent results and to identify
and explore promising directions of future research. WG has a long tradition that goes
back the 1970s. The first three WGs were organized in 1975 by Uwe Pape at TU
Berlin, in 1976 by Hartmut Noltemeier in Göttingen, and in 1977 by Jörg Mühlbacher
in Linz.

WG usually takes place in Europe. WG 2017 was the fifth time the conference was
held in The Netherlands; earlier, WG was held in Amsterdam (1988), Castle Rolduc
(near Heerlen, The Netherlands, and Aachen, Germany, 1989), Arnhem (1993), and
Elspeet (2003). In addition, it has been organized many times in Germany, three times
in France, twice in Austria and twice in Czech Republic, and once in each of England,
Greece, Israel, Italy, Norway, Slovakia, Switzerland, and Turkey.

Three excellent invited lectures at WG 2017 were given by Petra Mutzel
(Dortmund), Remco van der Hofstad (Eindhoven), and Fedor Fomin (Bergen).

We received 71 submissions in total, and out of these the Program Committee
selected 31 papers for presentation at the symposium and for publication in the pro-
ceedings. Each submission was reviewed by at least four Program Committee mem-
bers. We expect the full versions of the papers contained in this volume to be submitted
for publication in refereed journals. The Program Committee also selected the winners
of the Best Paper Award and the Best Student Paper Award:

Best Paper Award
Yijia Chen, Martin Grohe, and Bingkai Lin:
“The Hardness of Embedding Grids and Walls”

The Program Committee decided to split the Best Student Paper Award between the
following two papers:

Best Student Paper Award
Dušan Knop, Martin Koutecky, Tomáš Masařík, and Tomáš Toufar:
“Simplified Algorithmic Metatheorems Beyond MSO: Treewidth and Neighbor-
hood Diversity”

Best Student Paper Award
Steven Chaplick, Martin Töpfer, Jan Voborník, and Peter Zeman:
“On H-Topological Intersection Graphs”



Many individuals and organizations contributed to the smooth running and the
success of WG 2017. In particular our thanks go to:

– All authors who submitted their newest research to WG
– Our reviewers and additional referees whose expertise flowed into the decision

process
– The members of the Program Committee, who graciously gave their time and

energy
– The members of the local Organizing Committee, who made the conference

possible
– The EasyChair conference management system for hosting the evaluation process
– The NWO Gravitation program NETWORKS for financial support
– The Mathematics and Computer Science Department at TU Eindhoven
– The members of the local Organizing Committee
– Springer for supporting the Best Paper Awards
– The invited speakers, the other speakers, and the participants for making WG 2017

an inspiring event

August 2017 Hans L. Bodlaender
Gerhard J. Woeginger
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Counting Graphs and Null Models of Complex
Networks: Configuration Model and Extensions

Remco van der Hofstad(B)

Department of Mathematics and Computer Science,
Eindhoven University of Technology, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
rhofstad@win.tue.nl

http://www.win.tue.nl/~rhofstad

Abstract. Due to its ease of use, as well as its enormous flexibility in
its degree structure, the configuration model has become the network
model of choice in many disciplines. It has the wonderful property, that,
conditioned on being simple, it is a uniform random graph with the
prescribed degrees. This is a beautiful example of a general technique
called the probabilistic method that was pioneered by Erdős. It allows
us to count rather precisely how many graphs there are with various
degree structures. As a result, the configuration model is often used as
a null model in network theory, so as to compare real-world network
data to. When the degrees are sufficiently light-tailed, the asymptotic
probability of simplicity for the configuration model can be explicitly
computed. Unfortunately, when the degrees vary rather extensively and
vertices with very high degrees are present, this method fails. Since such
degree sequences are frequently reported in empirical work, this is a
major caveat in network theory.

In this survey, we discuss recent results for the configuration model,
including asymptotic results for typical distances in the graph, asymptot-
ics for the number of self-loops and multiple edges in the finite-variance
case. We also discuss a possible fix to the problem of non-simplicity,
and what the effect of this fix is on several graph statistics. Further,
we discuss a generalization of the configuration model that allows for
the inclusion of community structures. This model removes the flaw of
the locally tree-like nature of the configuration model, and gives a much
improved fit to real-world networks.

1 Complex Networks and Random Graphs: A Motivation

In this survey, we discuss random graph models for complex networks, which are
large and highly heterogeneous real-world graphs such as the Internet, the World-
Wide Web, social networks, collaboration networks, citation networks, the neural
network of the brain, etc. Such networks have received enormous attention in
the past decades, partly because they appear in virtually all domains in science.
This is also due to the fact that such networks, even though they arise in highly
different fields in science and society, share some fundamental properties. Let us
describe the two most important ones now.
c© Springer International Publishing AG 2017
H.L. Bodlaender and G.J. Woeginger (Eds.): WG 2017, LNCS 10520, pp. 1–17, 2017.
https://doi.org/10.1007/978-3-319-68705-6_1



2 R. van der Hofstad

Scale-Free Phenomenon. The first, maybe quite surprising, fundamental
property of many real-world networks is that the number of vertices with degree
at least k decays slowly for large k. This implies that degrees are highly variable,
and that, even though the average degree is not so large, there exist vertices with
extremely high degree. Often, the tail of the empirical degree distribution seems
to fall off as an inverse power of k. This is called a ‘power-law degree sequence’,
and resulting graphs often go under the name ‘scale-free graphs’. It is visualized
for the AS graph in Fig. 1, where the degree distribution of the Autonomous
System (AS) graph is plotted on a log-log scale. The vertices of the AS graph
correspond to groups of routers controlled by the same operator. Thus, we see a
plot of log k �→ log nk, where nk is the number of vertices with degree k. When
nk is proportional to an inverse power of k, i.e., when, for some normalizing
constant cn and some exponent τ ,

nk ≈ cnk−τ , (1)

then
log nk ≈ log cn − τ log k, (2)

so that the plot of log k �→ log nk is close to a straight line. This is the reason
why degree sequences in networks are often depicted in a log-log fashion, rather
than in the more customary form of k �→ nk. Here, and in the remainder of
this text, we write ≈ to denote an uncontrolled approximation. The power-law
exponent τ can be estimated by the slope of the line in the log-log plot. Vertices
with extremely high degrees are often called hubs, as the hubs in airport net-
works, or super-spreaders, indicating their importance in spreading information,
or diseases. For Internet, log-log plots of degree sequences first appeared in a
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Fig. 1. (a) Log-log plot of the probability mass function of the degree sequence of
Autonomous Systems (AS) on April 2014 on a log-log scale from [27] (data courtesy of
Dmitri Krioukov).
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paper by the Faloutsos brothers [15] (see Fig. 1 for the degree sequence in the
Autonomous Systems graph). Here the power-law exponent is estimated as τ ≈
2.15–2.20. Figure 2 displays the degree-sequence for both the in- as well as the
out-degrees in various World-Wide Web data bases.
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Fig. 2. The probability mass function of the in- and out- degree sequences in the
Berkeley-Stanford and Google competition graph data sets of the WWW in [28].
(a) in-degree; (b) out-degree.

Small-World Phenomenon. The second fundamental network property
observed in many real-world networks is that typical distances between ver-
tices are small. This is called the ‘small-world’ phenomenon (see e.g. the book
by Watts [35]). In particular, such networks are highly connected: their largest
connected component contains a significant proportion of the vertices. Many
networks, such as the Internet, even consist of one connected component, since
otherwise e-mail messages could not be delivered. For example, in the Internet,
IP-packets cannot use more than a threshold of physical links, and if distances
in the Internet would be larger than this threshold, then e-mail service would
simply break down. As seen in Fig. 3(a), the number of Autonomous Systems
(AS) traversed by an e-mail data set, sometimes referred to as the AS-count, is
typically at most 7. In Fig. 3(b), the proportion of routers traversed by an e-mail
message between two uniformly chosen routers, referred to as the hopcount, is
shown to be at most 27.

For pairs of vertices u, v ∈ [n] and a graph G = ([n], E), we let the graph
distance distG(u, v) between u and v be equal to the minimal number of edges
in a path linking u and v. When u and v are not in the same connected com-
ponent, we set distG(u, v) = ∞. We draw U1 and U2 uniformly at random from
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Fig. 3. (a) Proportion of AS traversed in hopcount data. (b) Internet hopcount data.
Courtesy of Hongsuda Tangmunarunkit.

[n], and investigate distG(U1, U2), which is a random variable even for determin-
istic graphs due to the occurrence of the two, uniformly at randomly chosen,
vertices U1, U2 ∈ [n]. Figures 3 and 4 display the probability mass functions of
this random variable for some real-world networks.

The nice property of distG(U1, U2) is that its distribution tells us something
about all possible distances in the graph. An alternative and frequently used
measure of distances in a graph is the diameter diam(G), defined as

diam(G) = max
u,v∈[n]

distG(u, v). (3)

[Often, the maximum in (3) is restricted to pairs of vertices u, v that are con-
nected, i.e., for which distG(u, v) < ∞.] The diameter has several disadvantages,
as it is algorithmically more difficult to compute than the typical distances (since
one has to measure the distances between all pairs of vertices and maximize
over them). Further, it contains far less information than the distribution of
distG(U1, U2). Finally, the diameter is highly sensitive to small changes of the
graph, in that adding a string of connected vertices to a graph may change the
diameter dramatically, while it hardly influences the typical distances.

2 Random Graphs and Real-World Networks

In this section, we discuss how random graph sequences can be used to model
real-world networks. We start by discussing graph sequences:

Graph Sequences. Since many networks are quite large, mathematically, we
model real-world networks by graph sequences (Gn)n≥1, where Gn has size n
and we take the limit n → ∞. Since most real-word networks are such that the
average degree remains bounded, we will focus on the sparse regime, where it is
assumed that the average degree 1

n

∑
i∈[n] di is uniformly bounded.

Other features that many networks share, or rather form a way to distinguish
them, are their degree correlations, measuring the extent to which high-degree
vertices tend to be connected to high-degree vertices, or rather to low-degree
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vertices (and vice versa), their clustering, measuring the extent to which pairs
of neighbors of vertices are neighbors themselves as well, and their community
structure, measuring the extent to which the networks have more dense con-
nected subparts. See e.g., the book by Newman [31] for an extensive discussion
of such features, as well as the algorithmic problems that arise from them, or
[19, Sect. 1.4].

Random Graphs as Models for Real-World Networks. Real-world net-
works tend to be quite complex and unpredictable. Connections often arise rather
irregularly. We model such irregular behaviors through a random process, thus
leading us to study random graphs. By the previous discussion, our graphs will
be large and their size will tend to infinity. In such a setting, we can either model
the graphs by fixing their size to be large, or rather by letting the graphs grow
large. We refer to these two settings as static and dynamic random graphs. Both
viewpoints are useful. Indeed, a static graph is a model for a snapshot of a net-
work at a fixed time, where we do not know how the connections arose in time.
Many network data sets are of this form. A dynamic setting, however, may be
more appropriate when we know how the network came to be as it is. In the sta-
tic setting, we can make assumptions on the degrees so that they are scale free.
In the dynamic setting, we can let the evolution of the graph be such that they
give rise to power-law degree sequences, thus providing possible explanations for
the frequent occurrence of power-laws in real-world networks.
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Fig. 4. Typical distances in the Internet Movie Data base in 2003.

3 Random Graph Models as Null Models

Here, we study random graph models as null models for network data. In such
models, we take certain aspects of real-world networks into account, while ignor-
ing others. This gives a qualitative way of investigating the importance of such
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empirical features in the real world. Often, real-world networks are compared to
uniform random graphs with certain specified properties, such as their number
of edges or even their degree sequence.

3.1 Null Model 1: Uniform Random Graph

The simplest null model is when we take no properties into account at all except
for the size of the network. Then, each of the

(
n
2

)
= n(n−1)/2 edges can be there

or not, giving 2(
n
2) possible graphs. Since we choose the null model uniformly at

random from a specific collection of graphs, each of these graphs G of n vertices
has probability

P(G) =
1

2(n
2)

(4)

to be chosen. This probability distribution is the same as choosing each edge
independently with probability p = 1

2 . The model where edges are present inde-
pendently is sometimes called the Erdős-Rényi random graph. It is the simplest
possible random graph. In it, we make every possible edge between a collection of
n vertices open or closed with equal probability. It has vertex set [n] = {1, . . . , n},
and, denoting the edge between vertices s, t ∈ [n] by st, st is occupied or present
with probability p, and vacant or absent otherwise, independently of all the other
edges. The parameter p is called the edge probability. This above random graph
is denoted by ERn(p), and the uniform random graph corresponds to p = 1

2 .
This model has expected degree (n − 1)/2, which is quite large. As a result, this
model is not sparse at all. We conclude that this is not a good model for complex
networks. Erdős [9] used the uniform random graph to show that most graphs
have a large complete graph of occupied as well as of vacant edges. This was
the first example of the probabilistic method of using probabilistic tools to prove
deterministic properties.

3.2 Null Model 2: Erdős-Rényi Random Graph with Fixed Number
of Edges

In the uniform random graph defined above, we see that there are in expectation
n(n − 1)/4 edges, so that the model is not sparse at all. In this section, we
investigate the second attempt at finding a null model, which arises by fixing
the total number of edges to be equal to m, and choosing any set of m edges
uniformly at random. Particularly, the sparse setting arises when m = 2λn grows
linearly with n for some λ > 0 denoting the asymptotic average degree, fixed.

This gives rise to the combinatorial Erdős-Rényi random graph. It is named
after Erdős and Rényi, who made profound contributions to its study in [11–14].
The so-called binomial model defined in the previous section was first introduced
by Gilbert [18]. Informally, when m = p

(
n
2

)
, the two models behave very similarly,

so that m = 2λn corresponds to p = λ/(n − 1) ≈ λ/n. The combinatorial model
has the nice feature that it produces a uniform graph from the collection of
all graphs with m edges, and thus could serve as a null model for a real-world
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network in which the number of vertices and edges is fixed. For fixed m, there
are

((n
2)
m

)
graphs that have n vertices and m edges. Since we choose the null

model uniformly at random, each of these graphs G of n vertices and m edges
has probability

P(G) =
1

((n
2)
m

) . (5)

We take m = 2λn, and study the graph as λ is fixed while n → ∞. In this
regime, it turns out that the proportion of vertices with degree k converges to
the probability mass function of a Poisson random variable (see [19, Sect. 5.4]),
i.e., for every k ≥ 0,

P (n)

k =
1
n

∑

i∈[n]

1{di=k}
P−→ pk ≡ e−λ λk

k!
, (6)

where di denotes the degree of vertex i ∈ [n] in the model with m = 2λn.
It is well known that the Poison distribution has very thin tails, even thinner
than any exponential, so that we conclude that the Erdős-Rényi random graph
is not a good model for real-world networks with their highly-variable degree
distributions.

3.3 Null Model 3: Fixing All Degrees and the Configuration Model

In the third null model, the degrees of all vertices are fixed beforehand. This way,
we can be sure that the degrees are what we want them to be. Such a model
is more flexible than the Erdős-Rényi random graph, which for example always
has a positive proportion of vertices of degree 0, 1, 2, etc., as easily follows from
(6). One of the difficulties is that it is quite unclear how many such graphs there
are, as well as how to produce one uniformly at random. For example, it is even
non-trivial to figure out which degree sequences are possible. Naturally, the sum
of the degrees needs to be even, which is called the handshake lemma. Erdős
and Gallai [10] gave a precise criterion which degree sequences allow for a simple
graph with these degrees. We will not give more details, as the sparse settings
that we study typically satisfy this criterion when the sum of the degrees is even.

The work-around to the difficulty in studying simple graphs with prescribed
degrees goes under the name of the configuration model, which is a beautiful and
extremely powerful example of the probabilistic method. Rather than aiming
for a simple graph, we construct a multigraph and show that, conditioned on
simplicity (meaning, no multiple edges and self-loops), the realization is uniform
over the set of graphs with those degrees. Fix an integer n that denotes the
number of vertices in the random graph. Consider a sequence of degrees d =
(di)i∈[n]. The aim is to construct an undirected graph with n vertices, where
vertex j has degree dj , chosen uniformly from the collection of all simple graphs
with these degrees. Without loss of generality, we assume that dj ≥ 1 for all
j ∈ [n], since when dj = 0, vertex j is isolated and can be removed from the
graph. For there to exist one such graphs, we must assume that the total degree

�n =
∑

j∈[n]

dj (7)



8 R. van der Hofstad

is even. To construct the multigraph where vertex j has degree dj for all j ∈ [n],
we have n separate vertices and incident to vertex j, we have dj half-edges. Every
half-edge needs to be connected to another half-edge to form an edge, and by
forming all edges we build the graph. For this, the half-edges are numbered in an
arbitrary order from 1 to �n. We start by randomly connecting the first half-edge
with one of the �n − 1 remaining half-edges. Once paired, two half-edges form
a single edge of the multigraph, and the half-edges are removed from the list of
half-edges that need to be paired. Hence, a half-edge can be seen as the left or
the right half of an edge. We continue the procedure of randomly choosing and
pairing the half-edges until all half-edges are connected, and call the resulting
graph the configuration model with degree sequence d, abbreviated as CMn(d).

A careful reader may worry about the order in which the half-edges are
being paired. In fact, this ordering turns out to be completely irrelevant since
the random pairing of half-edges is exchangeable. See e.g., [19, Definition 7.5
and Lemma 7.6] for more details on this exchangeability. Interestingly, one can
compute explicitly what the distribution of CMn(d) is. To do so, note that
CMn(d) is characterized by the random vector (Xij)1≤i≤j≤n, where Xij is the
number of edges between vertices i and j. Here Xii is the number of self-loops
incident to vertex i, and

di = Xii +
∑

j∈[n]

Xij (8)

In terms of this notation, and writing G = (xij)i,j∈[n] to denote a multigraph on
the vertices [n],

P(CMn(d) = G) =
1

(�n − 1)!!

∏
i∈[n] di!

∏
i∈[n] 2xii

∏
1≤i≤j≤n xij !

. (9)

This can be proved by carefully checking how many matchings correspond to
the same graph G. See e.g., [19, Proposition 7.7] for this result. In particular,
P(CMn(d) = G) is the same for each simple G, where G is simple when xii = 0
for every i ∈ [n] and xij ∈ {0, 1} for every 1 ≤ i < j ≤ n. Thus, the configuration
model conditioned on simplicity is a uniform random graph with the prescribed
degree distribution, and is thus equal to the null model that we were after in the
first place. This is quite relevant, as it gives a convenient way to obtain such a
uniform graph, which is a highly non-trivial fact and another beautiful example
of the probabilistic method.

Interestingly, the configuration model was invented by Bollobás in [4] to
study uniform random regular graphs (see also [5, Sect. 2.4]). The introduction
was inspired by, and generalized the results in, the work of Bender and Canfield
[3]. The configuration model with varying degrees, as well as uniform random
graphs with a prescribed degree sequence, were studied in greater generality
by Molloy and Reed in [29,30]. This extension is quite relevant to us, as the
scale-free nature of many real-world applications encourages us to investigate
configuration models with power-law degree sequences.
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We impose some regularity conditions on the degree sequence d. In order to
state these assumptions, we introduce some notation. Let nk denote the number
of vertices with degree k. We assume that the vertex degrees satisfy the following
regularity conditions:

Condition 1 (Regularity conditions for vertex degrees). As n → ∞,
there exists a probability mass function (pk)k≥0 such that

nk

n
→ pk. (10)

Further, we assume that n0 = n1 = 0.
(b) Convergence of average vertex degrees. As n → ∞,

∑

k≥0

k
nk

n
→

∑

k≥0

kpk. (11)

(c) Convergence of second moment vertex degrees. As n → ∞,
∑

k≥0

k2 nk

n
→

∑

k≥0

k2pk. (12)

The possibility of obtaining a non-simple graph is a major disadvantage of
the configuration model. There are two ways of dealing with this complication:

(a) Configuration model conditioned on simplicity. The first solution to
the multigraph problem of the configuration model is to throw away the result
when it is not simple, and to try again. This construction is sometimes called
the repeated configuration model (see [7]). It turns out that, when Conditions
1(a)–(c) hold, then (see [19, Theorem 7.12])

lim
n→∞P(CMn(d) is a simple graph) = e−ν/2−ν2/4, (13)

where

ν =
E[D(D − 1)]

E[D]
(14)

is the expected forward degree and P(D = k) = pk is the random variable with
probability mass function (pk)k≥1 that appears in Condition 1(a). Thus, this is a
realistic option when E[D2] < ∞. Unfortunately, this is not an option when the
degrees obey an asymptotic power law with τ ∈ (2, 3), since then E[D2] = ∞.
This is a pity, as values of τ satisfying τ ∈ (2, 3) occur rather frequently in
real-world networks.

Note that, by (9), CMn(d) conditioned on simplicity is a uniform random
graph with the prescribed degree sequence. Thus, the number of simple graphs
Nn(d) with given degree sequence d is equal to

Nn(d) =
P(CMn(d) is a simple graph)

P(CMn(d) = G)

= P(CMn(d) is a simple graph)
(�n − 1)!!
∏

i∈[n] di!
, (15)
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which, with (13), allows us to compute how many there are, as well as to simulate
one efficiently. This is the probabilistic method at its best!

(b) Erased configuration model. When E[D2] = ∞, or, when τ ∈ (2, 3), we
see from (13) that the probability of obtaining a simple graph vanishes in the
large graph limit. This poses a huge problem. We now propose a highly practical
fix for this problem, which, however, is slightly different from a uniform random
graph with the prescribed degrees.

Indeed, one way of dealing with multiple edges is to erase the problems. This
means that we replace CMn(d) = (Xij)1≤i≤j≤n by its erased version ECMn(d) =
(X(er)

ij )1≤i≤j≤n, where X
(er)
ii ≡ 0, while X

(er)
ij = 1 precisely when Xij ≥ 1. In

words, we remove the self-loops and merge all multiple edges to a single edge. Of
course, this changes the precise degree distribution. However, [19, Theorem 7.10]
shows that only a small proportion of the edges is erased, so that the erasing
does not substantially change the degree distribution. See [19, Sect. 7.3] for more
details. Of course, the downside of this approach is that the degrees are changed
by the procedure, while we would like to keep the degrees precisely as specified.

Let us describe the degree distribution in the erased configuration model in
more detail, to study the effect of the erasure of self-loops and multiple edges. We
denote the degrees in the erased configuration model by D(er) = (D(er)

i )i∈[n], and
denote the related degree sequence in the erased configuration model (P (er)

k )k≥1

by

P (er)

k =
1
n

∑

i∈[n]

1{D
(er)
i =k}. (16)

From the notation it is clear that (P (er)

k )k≥1 is a random sequence, since the
erased degrees (D(er)

i )i∈[n] form a random vector even when d = (di)i∈[n] is
deterministic. Then P (er)

k → pk when Conditions 1(a)–(b) hold, which implies
that we remove only a vanishing proportion of the edges. Thus, the erased con-
figuration model provides a good proxy for a uniform random graph with those
degrees.

Beyond the Finite-Variance Constraint. Interestingly, there are some
results concerning the number of graphs with prescribed degrees even in settings
where τ ∈ (2, 3). For example, Gao and Wormald [17] prove that the number of
simple graphs with degree sequence d equals

(1+ o(1))
(�n − 1)!!
∏

i∈[n] di!
exp

{
−nνn/2−βn/(3n)+3/4+

∑

1≤i<j≤n

log (1 + didj/�n)
}

,

(17)
where

νn = E[Dn(Dn − 1)]/E[Dn], βn = E[Dn(Dn − 1)(Dn − 2)]/E[Dn]. (18)

Here, we write Dn for the random variable with probability mass function
P(Dn = k) = nk/n, we assume that d = (di)i∈[n] satisfies Conditions 1(a)–
(b) and that dmin ≥ 1 and E[D2

n] = o(n1/8). They also prove several related
results under slightly altered assumptions on the degree distribution.
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This result is proved using rewiring methods, by carefully studying how many
graphs remain on being simple upon rewiring a few of their edges. This gives
control on how many simple graphs there are in the first place. While (17)
partially answers the question how many graphs there are with degree sequence
d = (di)i∈[n], it does not yet answer the question how to simulate one. Here, we
still do not know the answer, and this is a major open problem.

A related result concerns the number of self-loops, as proved with Angel et al.
[1]. There, it is proved that the number of self-loops in the configuration model,
for rather general degree distributions such that

∑
k k2nk/n tends to infinity,

is close to a normal distribution with mean and variance equal to E[Dn(Dn −
1)]/(2E[Dn]).

3.4 Small-World Properties of the Configuration Model

Having introduced the configuration model as a convenient and flexible model
for real-world networks with given degree structures, we now investigate some of
its properties. Of course, the scale-free property can be built-in into the model,
so that this no longer requires any extra effort. Thus, we look at the small-
world nature of the model instead, the key question being to which extent these
distances depend on the underlying degree structure. It turns out that the config-
uration model generally is a small world, in the sense that distances are at most
logarithmic in the size of the graph, and in some cases it is even an ultra-small
world.

The first result is with Hooghiemstra and Van Mieghem [21], in the setting
where Conditions 1(a)–(c) hold, and we assume that ν = E[D(D − 1)]/E[D] > 1
(while ν < ∞ by Condition 1(c)). The restriction ν > 1 turns out to be equivalent
to the existence of a so-called giant component, a connected component in the
graph that contains a positive proportion of the vertices. See Molloy and Reed
[29,30] or Janson and Luczak [24] for results concerning the size of the giant
component. When the minimal degree dmin satisfies that dmin ≥ 2, the graph
is almost connected, in the sense that all but a small number of vertices is in
the giant component, while the graph is with high probability connected when
dmin ≥ 3 (see the recent work with Federico and van der Hofstad [16] for these
results). When ν ∈ (1,∞), and conditionally on the two random vertices U1, U2

being connected, [21] shows that

distCMn(d)(U1, U2) ≈ logν(n), (19)

and the random variable is tightly distributed around this asymptotic mean.
Thus, typical distances grow asymptotically as a logarithm of the graph size,
which certainly does not grow too fast. When the degrees are uniformly bounded
by some constant, it is not hard to see that distances cannot grow more slowly
than logarithmically. On the contrary, when considering vertices to be part of a
large nearest-neighbor hypercube (such as a square of width

√
n by

√
n in Z

2),
distances grow much more quickly as n1/d, where d is the dimension of the cube.
Thus, distances in the configuration model grow much more slowly than that.
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The small-world effect becomes even more pronounced when considering
degree sequences that have infinite variance. In this case, ν = ∞, and, under
some extra regularity conditions on the degrees (that in particular guarantee
that the power-law exponent of the degrees equals τ), with Hooghiemstra and
Znamenski [22], we have shown that, for τ ∈ (2, 3),

distCMn(d)(U1, U2) ≈ 2 log log n

| log(τ − 2)| , (20)

so that distances are ultra-small. Anyone who has done numerical experiments
will recognize that it is hard, yet possible, to see that log n → ∞ as n → ∞. It is
nearly impossible, however, to see that log log n → ∞ as n → ∞, since log log n
is still at most 5 when n ≈ 1010. Thus, this might explain why many real-world
networks have such small distances in them, as popularized under the name of
six-degrees-of-separation.

4 Extensions: Other Models

Most of the random graph models that have been investigated in the (exten-
sive) literature are caricatures of reality, in the sense that one cannot with dry
eyes argue that they describe any real-world network quantitatively correctly.
However, these random graph models do provide insight into how any of the
above features can influence the global behavior of networks, and thus provide
for possible explanations of the empirical properties of real-world networks that
are observed. Let us discuss three related models.

Small-World Models. The small-world model was introduced by Watts and
Strogatz [36] as an attempt to show how spurious long-range connections can
shorten distances in complex networks, see also Newman and Watts [32]. In the
simplest version, we start with a cycle containing n vertices. Every vertex is
connected to a certain fixed number of vertices within a given range. After this,
one starts rewiring some edges. The edge (u, v) is rewired and is replaced by
the edge (u, v′), where v′ is chosen uniformly at random from all the vertices.
Thus, the small-world model interpolates between a one-dimensional cycle and
an Erdős-Rényi random graph. It turns out that after rewiring an of the edges,
for all a > 0, the average distances shrink from being of order n to being of order
log n. Thus, the small-world phenomenon can be interpreted as arising through
highly rare long-distance connections. Kleinberg [25,26] investigates how one can
easily find the short paths, which is called the navigability of the graph.

Preferential Attachment Models. Most networks grow in time. Preferen-
tial attachment models describe growing networks, where the numbers of edges
and vertices grow linearly with time. Preferential attachment models were first
introduced by Barabási and Albert [2], whose model we will generalize. Bollobás
et al. [6] studied the model by Barabási and Albert [2], and later many other
papers followed on this, and related, models. See [19, Chap. 8] for details. Here
we give a brief introduction.
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The model that we investigate produces a graph sequence that we denote by
(PA(m,δ)

n )n≥1 and which, for every time n, yields a graph of n vertices and mn
edges for some m = 1, 2, . . . We start by defining the model for m = 1 when the
graph consists of a collection of trees. In this case, PA(1,δ)

1 consists of a single
vertex with a single self-loop. We denote the vertices of PA(1,δ)

n by v(1)
1 , . . . , v(1)

n .
We denote the degree of vertex v(1)

i in PA(1,δ)
n by Di(n), where, by convention, a

self-loop increases the degree by 2.
We next describe the evolution of the graph. Conditionally on PA(1,δ)

n , the
growth rule to obtain PA(1,δ)

n+1 is as follows. We add a single vertex v(1)
n+1 having

a single edge. This edge is connected to a second end point, which is equal to
v(1)

n+1 with probability (1 + δ)/(n(2 + δ) + (1 + δ)), and to vertex v(1)
i ∈ PA(1,δ)

n

with probability (Di(n) + δ)/(n(2 + δ) + (1 + δ)) for each i ∈ [n], where δ ≥ −1
is a parameter of the model.

The above preferential attachment mechanism is called affine, since the above
attachment probabilities depend in an affine way on the degrees of the random
graph PA(1,δ)

n . The model PA(1,δ)
n produces a forest (i.e., a collection of trees). The

general model with m > 1 is defined in terms of the model for m = 1 as follows.
Fix δ ≥ −m. We start with PA(1,δ/m)

mn , and denote the vertices in PA(1,δ/m)
mn by

v(1)
1 , . . . , v(1)

mn. Then we identify or collapse the m vertices v(1)
1 , . . . , v(1)

m in PA(1,δ/m)
mn

to become vertex v(m)
1 in PA(m,δ)

n . In doing so, we let all the edges that are incident
to any of the vertices in v(1)

1 , . . . , v(1)
m be incident to the new vertex v(m)

1 in PA(m,δ)
n .

Then, we collapse the m vertices v(1)
m+1, . . . , v

(1)
2m in PA(1,δ/m)

mn to become vertex
v(m)
2 in PA(m,δ)

n , etc. More generally, we collapse the m vertices v(1)

(j−1)m+1, . . . , v
(1)
jm

in PA(1,δ/m)
mn to become vertex v(m)

j in PA(m,δ)
n . The resulting graph PA(m,δ)

n is a
multigraph with precisely n vertices and mn edges, so that the total degree is
equal to 2mn. The original model by Barabási and Albert [2] focused on the case
δ = 0 only, which is sometimes called the proportional model. The inclusion of
the extra parameter δ > −1 is relevant though.

We write

Pk(n) =
1
n

n∑

i=1

1{Di(n)=k} (21)

for the (random) proportion of vertices with degree k at time n. For m ≥ 1 and
δ > −m, we define (pk)k≥0 by pk = 0 for k = 0, . . . , m − 1 and, for k ≥ m,

pk = (2 + δ/m)
Γ (k + δ)Γ (m + 2 + δ + δ/m)
Γ (m + δ)Γ (k + 3 + δ + δ/m)

(22)

It turns out that (pk)k≥0 is a probability mass function (see [19, Sect. 8.3]). The
probability mass function (pk)k≥0 arises as the limiting degree distribution for
PA(m,δ)

n , i.e., for every k ≥ 1 (see again [19, Sect. 8.3]),

Pk(n) → pk. (23)

By (22) and Stirling’s formula, as k → ∞,

pk = cm,δk
−τ (1 + O(1/k)), (24)
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where

τ = 3 + δ/m > 2, and cm,δ = (2 + δ/m)
Γ (m + 2 + δ + δ/m)

Γ (m + δ)
. (25)

Thus, the preferential attachment model, from a very simple microscopic growth
model, produces graphs with power-law degree sequences. As such, the prefer-
ential attachment mechanism is a possible explanation for the omnipresence of
power-law degree sequences in real-world networks. Many properties of preferen-
tial attachment models have been investigated, such as their distance structure.
See [20] for a summary. Due to its dynamic origin, the preferential attachment
model is much harder to analyze than the configuration model, which has the
simpler representation in terms of uniform matchings.

The Hierarchical Configuration Model. The configuration model has low
clustering in the sense that it has few triangles and cliques, which often makes it
inappropriate in applied contexts. Indeed, many real-world networks, in particu-
lar social networks, have a high amount of clustering instead. A possible solution
to overcome this low clustering is by introducing a community structure. Con-
sider the configuration model CMn(d) with a degree sequence d = (di)i∈[n]

satisfying Condition 1(a)–(b). Now we replace each of the vertices by a small
graph. Thus, vertex i is replaced by a local graph Gi. We assign each of the
di half-edges incident to vertex i to a vertex in Gi in an arbitrary way. Thus,
vertex i is replaced by the pair of the community graph Gi = (Vi, Ei) and the
inter-community degrees d(b) = (d(b)

u )u∈Vi
satisfying that

∑
u∈Vi

d(b)
u = di. The

size of the graph then becomes N =
∑

i∈[n] |Vi|, where n denotes the number of
communities.

This yields a graph with two levels of hierarchy, whose local structure is
described by the local graphs (Gi)i∈[n], whereas its global structure is described
by the configuration model CMn(d). This model is called the hierarchical con-
figuration model. A natural assumption is that the degree sequence d = (di)i∈[n]

satisfies Condition 1(a)–(b), while the empirical distribution of the community
graphs

μn(H,d) =
1
n

∑

i∈[n]

1{Gi=H, (d
(b)
u )u∈Vi

=d} (26)

converges as n → ∞ to some probability distribution on graphs with integer
marks associated to the vertices. See the works with Stegehuis and van Leeuwaar-
den [33,34] for power-law relations in hierarchical configuration models and epi-
demic spread in them, respectively, and [23] for its topological properties, such
as its connectivity, its clustering, etc. This model can be put into practice by
letting a community detection algorithm find the most likely communities, and
then rewiring the edges between the communities that were found. This gives rise
to the hierarchical configuration model (HCM). Of course, this keeps the edges
inside communities unchanged, which makes it a slightly unfair comparison. In
a second model, we also rewire the edges inside the communities, and call the
result HCM∗. Figure 5 shows that when we perform percolation on these models,
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the result is quite similar to that on the original network. In percolation, edges
are randomly removed with a certain probability, here denoted by p. Figure 5
shows the size of the largest connected component in the configuration model
and both HCM as well as HCM∗, and compares this to percolation on the orig-
inal network. Percolation gives a good impression of the mesoscopic properties
of a network. One is tempted to conclude that many real-world networks are
well described by a hierarchical configuration model. Since the HCM (as well as
its close brother HCM∗) inherit the analytic tractability from the configuration
model structure of the inter-community edges, we can provocatively summarize
this statement by saying that most networks are almost tree-like.

Fig. 5. Percolation on Hierarchical Configuration model, configuration model and real-
world networks

Related Models. Many more models have been suggested for real-world net-
works. We refrain from explaining these, and refer instead to Durrett [8], or the
books [19,20] for details.
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14. Erdős, P., Rényi, A.: On the strength of connectedness of a random graph. Acta

Math. Acad. Sci. Hungar. 12, 261–267 (1961)
15. Faloutsos, C., Faloutsos, P., Faloutsos, M.: On power-law relationships of the inter-

net topology. Comput. Commun. Rev. 29, 251–262 (1999)
16. Federico, L., van der Hofstad, R.: Critical window for connectivity in the configu-

ration model. Combin. Probab. Comput. 26(5), 660–680 (2017)
17. Gao, P., Wormald, N.: Enumeration of graphs with a heavy-tailed degree sequence.

Adv. Math. 287, 412–450 (2016)
18. Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30, 1141–1144 (1959)
19. van der Hofstad, R.: Random graphs and complex networks. Cambridge Series

in Statistical and Probabilistic Mathematics, vol. 1. Cambridge University Press,
Cambridge (2017)

20. van der Hofstad, R.: Random graphs and complex networks, vol. 2 (2018+). In
preparation, see http://www.win.tue.nl/∼rhofstad/NotesRGCNII.pdf

21. van der Hofstad, R., Hooghiemstra, G., Van Mieghem, P.: Distances in random
graphs with finite variance degrees. Random Struct. Algorithms 27(1), 76–123
(2005)

22. van der Hofstad, R., Hooghiemstra, G., Znamenski, D.: Distances in random graphs
with finite mean and infinite variance degrees. Electron. J. Probab. 12(25), 703–766
(2007). (Electronic)

23. van der Hofstad, R., van Leeuwaarden, J., Stegehuis, C.: Hierarchical configuration
model. arXiv:1512.08397 [math.PR], Preprint (2015)

http://arxiv.org/abs/1603.07172
http://www.win.tue.nl/~rhofstad/NotesRGCNII.pdf
http://arxiv.org/abs/1512.08397


Counting Graphs and Null Models of Complex Networks 17

24. Janson, S., Luczak, M.: A new approach to the Giant component problem. Random
Struct. Algorithms 34(2), 197–216 (2009)

25. Kleinberg, J.M.: Navigation in a small world. Nature 406, 845 (2000)
26. Kleinberg, J.M.: The small-world phenomenon: an algorithm perspective. In: Pro-

ceedings of the Twenty-Third Annual ACM Symposium on Principles of Distrib-
uted Computing, pp. 163–170, May 2000

27. Krioukov, D., Kitsak, M., Sinkovits, R., Rideout, D., Meyer, D., Boguñá, M.: Net-
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4 Università di Verona, Verona, Italy

Romeo.Rizzi@univr.it
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Abstract. Bubbles are pairs of internally vertex-disjoint (s, t)-paths
with applications in the processing of DNA and RNA data. For exam-
ple, enumerating alternative splicing events in a reference-free context
can be done by enumerating all bubbles in a de Bruijn graph built from
RNA-seq reads [16]. However, listing and analysing all bubbles in a given
graph is usually unfeasible in practice, due to the exponential number of
bubbles present in real data graphs. In this paper, we propose a notion
of a bubble generator set, i.e. a polynomial-sized subset of bubbles from
which all the others can be obtained through the application of a specific
symmetric difference operator. This set provides a compact representa-
tion of the bubble space of a graph, which can be useful in practice
since some pertinent information about all the bubbles can be more con-
veniently extracted from this compact set. Furthermore, we provide a
polynomial-time algorithm to decompose any bubble of a graph into the
bubbles of such a generator in a tree-like fashion.

Keywords: Bubbles · Bubble generator set · Bubble space ·
Decomposition algorithm

1 Introduction

Bubbles are pairs of internally vertex-disjoint (s, t)-paths with applications in the
processing of DNA and RNA data. For example, in the genomic context, genome
assemblers usually identify and remove bubbles in order to remove sequencing
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errors and linearise the graph [10,14,18,22]. However, bubbles can also repre-
sent interesting biological events, e.g. allelic differences (SNPs and indels) when
processing DNA data [7,20,21], and alternative splicing events in RNA data
[11,15–17]. Due to their practical relevance, several theoretical studies concern-
ing bubbles were done in the past few years [1,4,13,15,19], usually related to
bubble-enumeration algorithms, but the literature regarding this mathematical
object remains small when compared to the literature on cycles, i.e. undirected
eulerian subgraphs, which is a related concept.

In practice, due to the high throughput of modern sequencing machines, the
genomic and transcriptomic de Bruijn graphs tend to be huge, usually containing
from millions to billions of vertices. As expected, the number of bubbles also
tends to be large, exponential in the worst case, and therefore algorithms that
deal with them either simplify the graph by removing bubbles, or just analyse
a small subset of the bubble space. Such subsets usually correspond to bubbles
with some predefined characteristics, and may not be the best representative of
the bubble space. More worrying is the fact that all the relevant events described
by bubbles that do not satisfy the constraints are lost. On the other hand, any
algorithm that tries to be more exhaustive, analysing a big part of the bubble
space, will certainly spend a prohibitive amount of time in real data graphs and
will not be applicable. This motivates further work for finding efficient ways to
represent the information contained in the bubble space. In a graph-theoretical
framework, one way to do this is to obtain a compact description of all bubbles.

In this paper, we propose a bubble generator, i.e. a “representative set” of
the bubbles in a graph that allows to reconstruct all and only the bubbles in a
graph. More specifically, we show how to identify, for any given directed graph
G, a generator set of bubbles G(G) which is of polynomial size in the input, and
such that any bubble in G can be obtained in a polynomial number of steps by
properly combining the bubbles in the generator G(G) through some suitably
defined graph operations. We also propose a polynomial-time decomposition
algorithm that, given a bubble B in the graph G, finds a sequence of bubbles
from the generator G(G) whose combination results in B. The latter algorithm
can be applied when one needs to know how to decompose a bubble into its
elementary parts, which are the bubbles in G(G), e.g. when identifying and
decomposing complex alternative splicing events [17] into several elementary
alternative splicing events.

This work was inspired by the studies on cycle bases, which represent a com-
pact description of all the cycles in a graph. The study of cycle bases started
a long time ago [12] and has attracted much attention in the last fifteen years,
leading to many interesting results such as the classification of different types
of cycle bases, the generalisation of these notions to weighted and to directed
graphs, as well as several complexity results for constructing bases. We refer the
interested reader to the books of Deo [5] and Bollobás [2], and to the survey of
Kavitha et al. [8] for an in-depth coverage of cycle bases. However, it is worth
mentioning some characteristics that make the problems related to bubble gen-
erators very different (and more difficult) from the ones related to cycle bases.
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Indeed, a cycle base in a directed graph contains cycles with orientations that
can be arbitrary, so that elements in the base are not even directed cycles in the
original graph [9] (if the graph is strongly connected, then it is possible to find a
cycle base composed only of directed cycles [6]). On the contrary, bubbles impose
a particular orientation of the cycle. Observe that a cycle base composed solely
of bubbles cannot be directly translated into a bubble generator, since such set
represents the cycle space, which is a superset of the bubble space. In order to
obtain a representative set of only the bubble space, it is required to change the
symmetric difference operator, i.e. the operator used to combine two bubbles.
The restriction we impose in this operator is that two bubbles are combinable if
the output is also a bubble, i.e. the operator is undefined if the output is not a
bubble. By imposing such restriction, the bubble space is not closed under the
symmetric difference operator, and thus cannot be represented as a vector space
over Z2, as is the case with the cycle space. As such, the algorithms developed
for cycle bases in undirected and directed graphs do not apply to our problem
with bubbles.

The remainder of the paper is organised as follows. Section 2 present some
definitions that will be used throughout the paper. Section 3 introduces the bub-
ble generator. Section 4 presents a polynomial-time algorithm for decomposing
any bubble in a graph into elements of the generator set. Finally, we conclude
with open problems in Sect. 5.

2 Preliminaries

Throughout the paper, we assume that the reader is familiar with the standard
graph terminology, as contained for instance in [3]. A directed graph is a pair
G = (V,A), where V is the set of vertices, and A is the set of arcs. Given a graph
G, we also denote by V (G) the set of vertices of G, and by A(G) the set of arcs
of G. For convenience, we set n = |V (G)| and m = |A(G)|. In this paper, all
graphs considered are directed, unweighted, without parallel arcs and finite. An
arc a = (u, v) is said to be incident to vertices u and v. In particular, a = (u, v)
is said to be leaving vertex u and entering vertex v. Alternatively, a = (u, v) is
an outgoing arc for u and an incoming arc for v. The in-degree of a vertex v is
given by the number of arcs entering v, while the out-degree of v is the number
of arcs leaving v. The degree of v is the sum of its in-degree and out-degree.

We say that a graph G′ = (V ′, A′) is a subgraph of a graph G = (V,A) if
V ′ ⊆ V and A′ ⊆ A. Given a subset of vertices V ′ ⊆ V , the subgraph of G
induced by V ′, denoted by G[V ′], has V ′ as vertex set and contains all arcs of G
that have both endpoints in V ′. Given a subset of arcs A′ ⊆ A, the subgraph of
G induced by A′, denoted by G[A′], has A′ as arc set and contains all vertices
of G that are endpoints of arcs in A′. Given a subset of vertices V ′ ⊆ V and a
subset of arcs A′ ⊆ A, we denote by G − V ′ the graph G[V \ V ′] and by G − A′

the graph G[A \A′]. Given two graphs G and H, their union G∪H is the graph
F for which V (F ) = V (G)∪V (H) and A(F ) = A(G)∪A(H). Their intersection
G∩H is the graph F for which V (F ) = V (G)∩V (H) and A(F ) = A(G)∩A(H).
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Let s, t be any two vertices in G. A (directed) path from s to t in G is
a sequence of vertices s = v1, v2, . . ., vk = t, such that (vi, vi+1) ∈ A for
i = 1, 2, . . . , k − 1. We also allow a single vertex to be a path. A path is simple
if it does not contain repeated vertices. A path from s to t is also referred to
as an (s, t)-path. The length of a path p is the number of arcs in p and will be
denoted by |p|. We write p ⊆ q if p is a subpath of q. Given a path p1 from
x to y and a path p2 from y to z, we denote by p1 · p2 their concatenation,
i.e. the path from x to z defined by the path p1 followed by p2. For a path
p = v1, v2, . . . , vk, we say that the subpath p1 = v1, . . . , vi (p2 = vj , . . . , vk) is a
prefix (suffix ) of p for some 1 ≤ i ≤ k (1 ≤ j ≤ k). Two paths p = v1, v2, . . . , vk
and q = u1, u2, . . . , ul are vertex disjoint if they share no vertices. Further, if the
subpaths p1 = v2, . . . , vk−1 of p and q1 = u2, . . . , ul−1 of q are vertex disjoint,
we say that p and q are internally vertex disjoint. Throughout this paper, all the
paths considered will be simple and referred to as paths.

Definition 1. Given a directed graph G and two vertices s, t ∈ V (G), not neces-
sarily distinct, an (s, t)-bubble B consists of two (s, t)-paths that are internally
vertex disjoint. Vertex s is the source and t is the target of the bubble. If s = t
then one of the paths of the bubble has length 0, and therefore B corresponds to
a directed cycle. We then say that B is a degenerate bubble.

In the following, we assume that shortest paths are unique. This is without
loss of generality, and indeed there are many standard techniques for achieving
this, including perturbing arc weights by infinitesimals. However, for our goal,
it suffices to use a “lexicographic ordering”. Namely, we define an arbitrary
ordering v1, . . . , vn on the vertices of G. A path p is considered lexicographically
shorter than a path q if the length of p is strictly smaller than the length of q,
or, if p and q have the same length, the sequence of vertices associated to p is
lexicographically smaller than the sequence associated to q. We denote this by
p <lex q.

We denote by B = (p, q) the bubble having p, q as its two internally vertex-
disjoint paths, referred to as legs. We denote by �(B) (resp., by L(B)) the shorter
(resp., longer) between the two legs p, q of B. We also denote by |B| the number
of arcs of bubble B. Note that |B| = |�(B)| + |L(B)|.

Next, we define a total order on the set of bubbles.

Definition 2. Let B1 and B2 be any two bubbles. B1 is smaller than B2 (in
symbols, B1 < B2) if one of the following holds: either (i) L(B1) <lex L(B2); or
(ii) L(B1) = L(B2) and �(B1) <lex �(B2).

3 The Bubble Generator

As with cycle bases in undirected graphs, we define a symmetric difference oper-
ator, but which operands are bubbles. Given two bubbles B1 and B2 of a directed
graph G, the constrained symmetric difference operator Δ is such that B1ΔB2
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is defined if and only if G[(A(B1) ∪ A(B2)) \ (A(B1) ∩ A(B2))] is a bubble. Oth-
erwise, we say that B1ΔB2 is undefined. If B1ΔB2 is defined, we also say that
B1 and B2 are combinable. Given two combinable bubbles B1 and B2, we refer
to B1ΔB2 as the sum of B1 and B2, and denote it also by B1 + B2. We also
say that the bubble B1 + B2 is generated from bubbles B1 and B2, and that it
can be decomposed into the bubbles B1 and B2.

Let G be a directed graph and let B be a set of bubbles in G. The set of all
the bubbles that can be generated starting from bubbles in B is called the span
of B. A set of bubbles B is called a generator if each bubble in G is spanned
by B, i.e. it can be recursively decomposed down to bubbles of B. Due to our
constrained symmetric difference operator Δ, all subgraphs generated by the
elements in B are necessarily bubbles. Since not all pairs of bubbles of G are
combinable, the bubble space is not closed under Δ, and therefore it does not
form a vector space over Z2.

Definition 3. A bubble B is composed if it can be obtained as a sum of two
smaller bubbles. Otherwise, the bubble B is called simple.

For a directed graph G, we denote by S(G) the set of simple bubbles of G.
It is not difficult to see that S(G) is a generator. For now, we are not able to:
(1) prove that S(G) can be found in polynomial time or if it is NP-Hard to do
so; (2) prove that any bubble in G can be obtained in a polynomial number of
steps from bubbles in S(G). Nevertheless, we introduce next another generator
G(G) ⊇ S(G) which can be found in polynomial time and for which we can prove
that any bubble in G can be obtained in a polynomial number of steps from the
bubbles in G(G). Let p : s = x0, x1, . . . , xh = t be a path from s to t and let
0 ≤ i ≤ j ≤ h. To ease the notation, we denote by pi,j the subpath of p from xi

to xj , and refer also to p0,j as ps,j and to pi,h as pi,t. The next theorem provides
some properties of simple bubbles.

Theorem 1. Let B be a simple (s, t)-bubble in a directed graph G. The following
holds:

(1) �(B) is the shortest path from s to t in G;
(2) Let L(B) = s, v1, . . . , vr, t. Then s, v1, . . . , vr is the shortest path from s to

vr in G.

Proof. Let B be a simple (s, t)-bubble: we show that both conditions (1) and
(2) must hold.

We first consider condition (1). If B is degenerate, then it trivially satisfies
condition (1). Therefore, assume that B is non-degenerate and, by contradiction,
that �(B) is not the shortest path from s to t. Let p∗ : s = x0, x1, . . . , xh = t be
the shortest path from s to t in G. For 0 ≤ i ≤ j ≤ h, by subpath optimality, p∗

i,j

is the shortest path from xi to xj . Let k be the smallest index, 0 ≤ k < h, for
which the arc (xk, xk+1) does not belong to either one of the legs of B. Such an
index k must exist, as otherwise p∗ would coincide with a leg of B. Furthermore,
let l, k < l ≤ h, be the smallest index greater than k for which xl ∈ V (B). Such
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a vertex xl must also exist, since xh = t ∈ V (B). In other words, xk is the first
vertex of the bubble B where p∗ departs from B and xl, l > k, is the first vertex
where the shortest path p∗ intersects again the bubble B. By definition of xk

and xl, p∗
k,l is internally vertex-disjoint with both legs of B. We now claim that

B can be obtained as the sum of two smaller bubbles, thus contradicting our
assumption that B is a simple bubble.

To prove the claim, we distinguish two cases, depending on whether xk and
xl are on the same leg of B or not. Consider first the case when xk and xl are
on the same leg p of B (see Fig. 1(a)). Let B1 be the bubble with �(B1) = p∗

k,l

and L(B1) = pk,l. First, note that if either xk �= s or xl �= t, then pk,l is a
proper subpath of a leg of B. Hence, |L(B1)| = |pk,l| < |L(B)|, and B1 < B.
Otherwise, suppose s = xk and t = xl. Then either L(B1) = �(B) <lex L(B),
or L(B1) = L(B) and �(B1) = p∗

k,l = p∗ <lex �(B). In both cases, B1 < B.
Let B2 be the bubble which is obtained from B by replacing pk,l by p∗

k,l (see
Fig. 1(a)). Since p∗

k,l is the shortest path, by subpath optimality, p∗
k,l <lex pk,l,

thus B2 < B. As a result, B can be obtained as the sum of two smaller bubbles
B1, B2, thus contradicting the assumption that B is simple.

Fig. 1. Case (1) of the proof of Theorem 1. The prefix of the shortest path from s to t
is shown as a solid line.

Consider now the case where xk and xl are on different legs of B (see
Fig. 1(b)). Notice that this means xk �= s and xl �= t. Let p be the leg containing
xl and q the one containing xk. Note that p = p0,l · pl,h and q = p∗

0,k · qk,h.
Moreover, let B1 be the bubble such that the two legs of B1 are p∗

0,k · p∗
k,l <lex q

and p0,l, which is a proper subpath of p. Hence, B1 < B. Let B2 be the bub-
ble such that the two legs of B2 are qk,h, which is a proper subpath of q, and
p∗
k,l · pl,h <lex p. Hence, B2 < B, and B = B1 + B2, which implies again that B

is not simple.
We show now that B satisfies also condition (2). Assume, by contradiction,

that B satisfies condition (1) but not (2), and so p = s, v1, . . . , vr (note that p
is equal to L(B) without its last arc) is not the shortest path from s to vr in G.
Let p∗ : s = x0, . . . , xh−1 = vr, p∗ �= p, be such a shortest path in G. Similarly
to the previous case, let k be the smallest index, 0 ≤ k < h − 1, for which the
arc (xk, xk+1) does not belong to either one of the legs of B, i.e. xk is the first
vertex where the shortest path p∗ departs from B. Such an index k must exist, as
otherwise p∗ would coincide with a leg of B. Let l, k < l ≤ h− 1, be the smallest
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index such that xl ∈ V (B). Namely, xl is the first vertex after xk where the
shortest path p∗ intersects again bubble B. Such a vertex xl must always exist,
since xh−1 = vr ∈ V (B). Since k < l, we have that |p∗

k,l| ≥ 1. Furthermore, we
claim that xl must be in L(B) − {s, t}. If this were not the case, we would have
two distinct shortest paths from s to xl in G (p∗

0,l and the subpath of �(B) from
s = x0 to xl), which contradicts our assumption that shortest paths are unique.

We again distinguish two cases: when both xk, xl belong to L(B), and when
xk ∈ �(B) and xl ∈ L(B). We set p = L(B), q = �(B).

In the first case (see Fig. 2(a)), let B1 be the bubble with �(B1) = �(B) and
L(B1) = p∗

0,k · p∗
k,l · pl,h. Since |p∗

k,l| <lex |pk,l| then L(B1) <lex L(B), and thus
B1 < B. Let B2 be the bubble with �(B2) = p∗

k,l, and L(B2) = pk,l. Since
L(B2) ⊂ L(B) (as xk �= t), B2 < B. As a result, B can be obtained as the
sum of two smaller bubbles B1, B2, thus contradicting the assumption that B
is simple.

Fig. 2. Case (2) of the proof of Theorem 1. The shortest path from s to t and the prefix
of the shortest path from s to vr are shown as solid lines.

In the second case (see Fig. 2(b)), let B1 be the bubble with �(B1) = p∗
0,k ·p∗

k,l

and L(B1) = p0,l. Since L(B1) ⊂ L(B), B1 < B. Let B2 be the bubble with
�(B2) = qk,h, and L(B2) = p∗

k,l · pl,h. Since |L(B2)| < |L(B)|, B2 < B. Again, B
can be obtained as the sum of two smaller bubbles B1, B2, thus contradicting
the assumption that B is simple. Finally, notice that this includes also the case
xk = t and the argument holds identically with B2 being a degenerate bubble.
For the sake of clarity, we depicted this case separately in Fig. 2(b1). �

Given a directed graph G, we denote by G(G) the set of bubbles in G satis-
fying conditions (1) and (2) of Theorem1.

Remark 1. Conditions (1) and (2) of Theorem 1 are not sufficient to guarantee
that a bubble is simple, e.g. see Fig. 3. Thus, the generator G(G) is not necessarily
minimal.
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Fig. 3. An example showing that conditions (1) and (2) of Theorem 1 are not sufficient
to guarantee that a bubble is simple. (a) A directed graph G. (b) The three bubbles
B1, B2 and B3 of G satisfying conditions (1) and (2) of Theorem 1, in which B1 and
B2 are simple, but B3 is composed, since B1 < B3, B2 < B3 and B3 = B1 + B2.

Theorem 2. Let G be a directed graph. The following holds:

(1) G(G) is a generator set for all the bubbles of G;
(2) |G(G)| ≤ nm.

Proof. (1) Recall that S(G) is the set of simple bubbles. By Theorem 1, S(G) ⊆
G(G), and thus G(G) is a generator set for all the bubbles of G.
(2) Since every bubble b in G(G), with �(b) = s, u1, . . . , t and L(b) =
s, v1, . . . , vr, t, can be uniquely identified by its vertex s and its arc (vr, t), then
the number of bubbles in G(G) is upper-bounded by nm. �

Remark 2. The upper bound given in Theorem2 is asymptotically tight, as
shown by the family of simple directed graphs on vertex set Vn = {1, 2, . . . , n}
and all possible n(n − 1) arcs in their arc set An = {(u, v) : u �= v, u, v ∈ V }.

Remark 3. Given a directed graph G, a naive algorithm to find G(G) would
consist of the following steps. We start with G(G) as an empty set. We then find
all-pairs shortest paths in G (since G is unweighted, this can be done through n
BFSs). Finally, denoting, for each vertex s ∈ V (G) and each arc (vr, t) ∈ A(G),
by p1 the shortest path from s to t in G and by p2 the shortest path from s to vr
in G concatenated with the arc (vr, t), we add the bubble b = (p1, p2) to G(G)
if p1 and p2 are internally vertex disjoint. Note that if s = t, then b corresponds
to a degenerate bubble. A naive implementation of this algorithm takes O(n2m)
time.

4 A Polynomial-Time Algorithm for Decomposing a
Bubble

The main result of this section is to provide a polynomial-time algorithm for
decomposing any bubble of G into bubbles of G(G). To do so, we make use of a
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tree-like decomposition. We need to take extra care in this decomposition since
a naive approach could generate (several times) all the bubbles that are smaller
than B, yielding an exponential number of steps.

Definition 4. A bubble B is short if it satisfies condition (1) of Theorem1, but
not necessarily condition (2). Namely, let L(B) = s, v1, . . . , vr, t be such that
�(B) is the shortest path from s to t in G but s, v1, . . . , vr is not necessarily the
shortest path from s to vr in G.

We next introduce a measure for describing how “close” is a bubble to being
short:

Definition 5. Given an (s, t)-bubble B, let p∗ be the shortest path from s to t.
We say that B is k-short, for k ≥ 0, if there is a leg p ∈ {�(B),L(B)} for which
p∗ and p share a prefix of exactly k arcs.

Since in our case shortest paths are unique, only one leg of a bubble B can
share a prefix with the shortest path p∗. Furthermore, any bubble B is k-short
for some k, 0 ≤ k ≤ |�(B)|. In particular, a bubble is short if and only if it is
k-short for k = |�(B)|.
Definition 6. Given a k-short bubble, we define the short residual of B as fol-
lows: residuals(B) = |B| − k.

Since 0 ≤ k ≤ |�(B)|, and |B| = |�(B)| + |L(B)|, we have that |L(B)| ≤
residuals(B) ≤ |B|.

We now present our polynomial time algorithm for decomposing a bubble of
the graph G into bubbles of G(G). In the following, we assume that we have done
a preprocessing step to compute all-pairs shortest paths in G in O(n(m + n))
time through n BFSs.

Lemma 1. Let B be an (s, t)-bubble that is not short. Then, B can be decom-
posed into two bubbles B1 and B2 (B = B1 + B2), such that: (a) B1 is short,
and (b) residuals(B2) < residuals(B). Moreover, B1 and B2 can be found in
O(n) time.

Proof. Let B be a k-short (s, t)-bubble, 0 ≤ k < |�(B)|. Let p∗ : s =
x0, x1, . . . , xh = t be the shortest path from s to t in G. To prove (a), we follow a
similar approach to Theorem 1. Since B is k-short, there is a leg p ∈ {�(B),L(B)}
such that p∗ and p share a prefix of exactly k arcs, 0 ≤ k < h. In other terms, leg
p starts with arcs (x0, x1), . . ., (xk−1, xk), the arc (xk, xk+1) is not in leg p, i.e.,
xk is the first vertex where the shortest path p∗ departs from the leg p. Note that
as a special case, k = 0 and xk = x0 = s. Let l, k < l ≤ h, be the smallest index
such that xl ∈ V (B). Namely, xl is the first vertex after xk where the shortest
path p∗ intersects again the bubble B. Such a vertex xl must always exist, since
xh = t ∈ V (B). Since k < l, we have that |p∗

k,l| ≥ 1. We have two possible cases:
either the vertices xk and xl are on the same leg of B (see Fig. 1(a)) or xk and
xl are on different legs of B (see Fig. 1(b)). In either case, we can decompose B
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as B = B1 + B2, as illustrated in Fig. 1. Note that in both cases, the bubble B1

is short since one leg of B1 is a subpath of the shortest path p∗, and hence a
shortest path itself by subpath optimality.

Consider now B2 in Fig. 1. To prove (b), we distinguish among the following
three cases: (1) xk �= s and vertices xk and xl are on the same leg of B; (2) xk �= s
and vertices xk and xl are on different legs of B; (3) xk = s. First, consider case
(1) (see Fig. 1(a)) and note that residuals(B) = |pk,l|+|pl,h|+|q0,h| where q is the
other leg of B different from p. Moreover, residuals(B2) = |pl,h| + |q0,h|. Hence,
residuals(B) − residuals(B2) = |pk,l| ≥ |p∗

k,l| ≥ 1. Consider now case (2), (see
Fig. 1(b)) and note that residuals(B) = |p0,l|+|pl,h|+|qk,h| and residuals(B2) =
|pl,h|+ |qk,h|, and thus residuals(B)−residuals(B2) = |p0,l| ≥ |p∗

0,k|+ |p∗
k,l| ≥ 1.

The proof of case (3) is completely analogous to case (1), with xk = s and
p∗
0,k = ∅, and again residuals(B) − residuals(B2) = |pk,l| ≥ |p∗

k,l| ≥ 1. In all
cases, residuals(B) − residuals(B2) > 0, and thus the claim follows. Finally,
note that in order to compute B1 and B2 from B, it is sufficient to trace the
shortest path p∗. Since all shortest paths are pre-computed in a preprocessing
step, this can be done in O(n) time. �

Lemma 2. Any bubble B can be represented as a sum of O(n) (not necessarily
distinct) short bubbles. This decomposition can be found in O(n2) time in the
worst case.

Proof. Each time we apply Lemma 1 to a bubble B, we produce in O(n) time
a short bubble B1 and a bubble B2 such that residuals(B2) < residuals(B).
Since residuals(B) ≤ |B| ≤ n, the lemma follows. �

We next show how to further decompose short bubbles. Before doing that,
we define the notion of residual for short bubbles, which measures how “close”
is a short bubble to being a bubble of our generator set G(G).

Definition 7. Let B be a short (s, t)-bubble, let �(B) = p∗
1 be the shortest path

from s to t in G, let L(B) = s, v1, . . . , vr, t be the other leg of B, let p∗
2 be the

shortest path from s to vr in G, and let p be the longest common prefix between
L(B) − (vr, t) and p∗

2. Then, the residual of B is defined as residual(B) =
|L(B)| − 1 − |p|.

Since p is a prefix of L(B) − (vr, t), we have that 0 ≤ |p| ≤ |L(B)| − 1. Thus,
0 ≤ residual(B) ≤ |L(B)| − 1.

Lemma 3. Let B be a short (s, t)-bubble such that residual(B) > 0. B can be
decomposed into two bubbles B1 and B2 (B = B1 +B2) such that B1 and B2 are
short and residual(B1) + residual(B2) < residual(B). Moreover, it is possible
to find the bubbles B1 and B2 in O(n) time.

Proof. Since B is a short (s, t)-bubble, it satisfies condition (1) of Theorem1.
Furthermore, as residual(B) > 0, it does not satisfy condition (2). Therefore,
there exists two bubbles B1 < B and B2 < B such that B = B1 + B2 (from
the proof of Theorem 1). Since �(B) is the shortest path from s to t, using



28 V. Acuña et al.

arguments similar to the ones in Theorem 1, it can be shown that B can be
decomposed into B1 and B2 and the only possible cases are the ones depicted in
Fig. 2. Note that in all three cases of Fig. 2, each of the bubbles B1 and B2 has
one leg that is a shortest path. Thus, in all three cases, B1 and B2 are short.
Moreover, in Fig. 2(a), residual(B1) ≤ |pl,h| − 1 and residual(B2) ≤ |pk,l| − 1.
Therefore, residual(B1) + residual(B2) ≤ |pl,h| − 1 + |pk,l| − 1 = residual(B) −
1 < residual(B). Similarly, in Fig. 2(b) and (b1), residual(B1) ≤ |p0,l| − 1,
residual(B2) ≤ |pl,h| − 1, and thus, residual(B1) + residual(B2) ≤ |p0,l| − 1 +
|pl,h| − 1 = residual(B) − 1 < residual(B). In all three cases, B1 and B2 are
short and residual(B1) + residual(B2) < residual(B). The claim thus follows.

Once again, observe that in order to compute B1 and B2 from B, it is suf-
ficient to trace the shortest path from s to t. Since all shortest paths are pre-
computed in a preprocessing step, this can be done in O(n) time. �

Lemma 4. Any short bubble B has a tree-like decomposition into O(n) (not
necessarily distinct) bubbles from the generator G(G). This decomposition can be
found in O(n2) time in the worst case.

Proof. Each time we apply Lemma 3 to a short bubble B, we produce in O(n)
time two short bubbles B1 and B2 such that residual(B1) + residual(B2) <
residual(B). Since |�(B)| + residual(B) ≤ n, this implies that a short bubble
can be decomposed in O(n) bubbles from the generator set G(G) in O(n2) time.

�

Theorem 3. Given a graph G, any bubble B in G can be represented as a sum
of O(n2) bubbles that belong to G(G). This decomposition can be found in a total
of O(n3) time.

Proof. The theorem follows by Lemmas 2 and 4. �

5 Conclusions and Open Problems

Bubbles in de Bruijn graphs represent interesting biological events, like alter-
native splicing and allelic differences (SNPs and indels). However, the set of all
bubbles in a de Bruijn graph built from real data is usually too large to be effi-
ciently enumerated and analysed. Therefore, in this paper we proposed a bubble
generator, which is a polynomial-sized subset of the bubble space that can be
used to generate all and only the bubbles in a directed graph. The concept of
bubble generators is similar to cycle bases, but the algorithms for the latter
cannot be applied as black boxes to find the former because the bubble space
does not form a vector space. As such, this work describes efficient algorithms
to identify, for any given directed graph G, a generator set of bubbles G(G), and
to decompose a given bubble B into bubbles from G(G).

There remain several theoretical open questions. First, our generator G(G)
is not necessarily minimal, i.e. it might happen that there exists three bubbles
B1, B2, B3 ∈ G(G) such that B1 < B3, B2 < B3, and B3 = B1 + B2. Is it possi-
ble to find in polynomial time a generator G′(G) that is minimal or even better,
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to find S(G)? Second, it would be interesting to know if there are polynomial-
time algorithms to decompose any bubble of a graph G into bubbles of such
generators. Third, it would be interesting to find a generator G(G) with some
additional biologically motivated constraints, such as for example on the maxi-
mum length of the legs of a bubble [15]. Given an integer k and a graph G, is it
possible to find a generator G(G) that generates all and only the bubbles of G
which have both legs of length at most k? Fourth, are there faster algorithms to
find a bubble generator? Fifth, this work is related to the research done in the
direction of cycle bases. However, as we already mentioned, our problem displays
characteristics that make it very different from the ones related to cycle bases.
Thus, it may be of independent interest to further investigate the connections
between these problems.

Finally, application of the bubble generator to genomic and transcriptomic
graphs must be explored since it is one of the main motivations for this theoretical
study. Similarly to the case of cycle bases, the simplest application of the bubble
generators is to use it as a preprocessing step in several algorithms to reduce
the amount of work to be done. For example, it can remove from the graph all
unnecessary arcs (i.e. arcs that do not belong to any bubble) in order to lower
the running time of an algorithm that is only interested in bubbles. As another
example, the polynomial-time decomposition algorithm can be useful in the case
where we want to identify and decompose complex alternative splicing events
[17] into their elementary parts. However, exploring possible applications of the
bubble generator is out of the scope of this paper.
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Abstract. In the Critical Node Cut problem, given an undirected
graph G and two non-negative integers k and µ, the goal is to find a set
S of exactly k vertices such that after deleting S we are left with at most
µ connected pairs of vertices. Back in 2015, Hermelin et al. studied the
aforementioned problem under the framework of parameterized complex-
ity. They considered various natural parameters, namely, the size k of the
desired solution, the upper bound µ on the number of remaining con-
nected pairs, the lower bound b on the number of connected pairs to be
removed, and the treewidth tw(G) of the input graph G. For all but one
combinations of the above parameters, they determined whether Crit-
ical Node Cut is fixed-parameter tractable and whether it admits a
polynomial kernel. The only question they left open is whether the prob-
lem remains fixed-parameter tractable when parameterized by k+tw(G).
We answer this question in the negative via a new problem of indepen-
dent interest, which we call SumCSP. We believe that SumCSP can be
a useful starting point for showing hardness results of the same nature,
i.e. when the treewidth of the graph is part of the parameter.

1 Introduction

Consider the following problem, called Critical Node Cut (or CNC for short).
We are given an undirected graph G and two non-negative integers k and μ. The
goal is to determine whether there exists a subset of the vertices of G, say S,
of size (exactly) k such that, in the graph G − S, we are left with at most μ
connected pairs of vertices; G − S denotes the graph obtained from G after
deleting vertices in S and the edges incident on them. Alternatively, if we let
C(G−S) = {C1, . . . , C�}, for some integer �, denote the set of maximal connected
components in G − S, the objective is to guarantee that

∑
C∈C(G−S)

(
C
2

)
≤ μ.

The CNC problem, having many real-world applications such as controlling the
spread of viruses in networks [9], has been investigated from various algorithmic
perspectives, e.g. heuristics [12] and approximation algorithms [13]. Since the
Vertex Cover problem is a special case of CNC, i.e. when μ = 0, the problem
is clearly NP-complete. On the positive side, it is known that CNC can be solved
in polynomial time if we restrict the input graph to trees [4]. More generally, for

Due to space limitations most proofs have been omitted.

c© Springer International Publishing AG 2017
H.L. Bodlaender and G.J. Woeginger (Eds.): WG 2017, LNCS 10520, pp. 32–44, 2017.
https://doi.org/10.1007/978-3-319-68705-6_3



Critical Node Cut Parameterized by Treewidth and Solution Size 33

graphs of bounded treewidth, CNC can be solved in O(|V (G)|tw(G)+1) time [1],
where tw(G) is the treewidth of G. We refer the reader to [9] for a more extensive
survey on CNC and its applications.

Hermelin et al. [9] initiated the study of the parameterized complexity of
CNC. In parameterized complexity [6], we are interested in whether the prob-
lem can be solved in f(κ) ·nO(1) time, for various natural parameters κ and some
function f . Alternatively, one can also ask whether or not CNC admits a poly-
nomial kernel for parameter κ, i.e. whether there is an algorithm that reduces
any instance of CNC in polynomial time to an equivalent instance of size κO(1).
There are quite a few natural choices for κ in this case and the following choices
were considered by Hermelin et al. [9]: The size k of the desired solution, the
upper bound μ on the number of remaining connected pairs, the lower bound
b on the number of connected pairs to be removed, and the treewidth tw(G) of
the input graph G. For all but one combinations of the parameters, Hermelin
et al. determined whether Critical Node Cut is fixed-parameter tractable
(FPT) and whether it admits a polynomial kernel. These results are summa-
rized in Table 1. For more details on parameterized complexity we refer to the
books of Downey and Fellows [6], Flum and Grohe [7], Niedermeier [11], and
Cygan et al. [3].

Table 1. Summary of results due to Hermelin et al. [9].

Parameter Result

k µ b tw(G) FPT Polynomial kernel

� no no

� no no

� yes no

� no no

� � yes yes

� � yes no

� � open no

� � yes yes

� � yes no

� � yes no

� � � yes yes

� � � yes yes

� � � yes no

� � � yes yes

� � � � yes yes

In this work, we complete the table by showing that CNC is W[1]-Hard (or
equivalently not likely to be FPT) when parameterized by k + tw(G). We prove
this result via a new problem of independent interest, which we call SumCSP.
We believe that SumCSP can be a useful starting point for showing hardness
results of the same nature, i.e. when the treewidth of the graph is part of the
parameter.
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Overview of the Reduction. Our starting point is the Partitioned Sub-
graph Isomorphism (PSI) problem, which is known to be W[1]-Hard [8,10]
even when the pattern graph is 4-regular. The problem is formally defined below.

Partitioned Subgraph Isomorphism (PSI) Parameter: |V (P )|
Input: A 4-regular pattern graph P with V (P ) = {p1, p2, · · · , p�}, a host
graph H, and a coloring function col : V (H) → [�].
Question: Does there exist an injective function φ : V (P ) → V (H) such
that for each i ∈ [�], col(φ(pi)) = i and for each pipj ∈ E(P ), we have
φ(pi)φ(pj) ∈ E(H)?

We reduce PSI to SumCSP, which is formally defined next.

SumCSP Parameter: |A(D)|
Input: A directed graph D with vertex set V (D) and arc set A(D), vertex
weight function wV : V (D) → N, arc weight function wA : A(D) → N, and
a list function ϕ : A(D) → 2N×N such that for all a ∈ A(D), and for all
(x, y), (x′, y′) ∈ ϕ(a) we have x + y = x′ + y′ = wA(a).
Question: Does there exists a function ρ : A(D) → N × N such that for
each a ∈ A(D), ρ(a) ∈ ϕ(a) and for each v ∈ V (D),

∑
u∈N+(v) fir(ρ(vu)) +

∑
u∈N−(v) sec(ρ(uv)) = wV (v), where fir((x, y)) = x and sec((x, y)) = y?

Bodlaender et al. [2] introduced a very closely related problem to show that
Planar Capacitated Dominating Set is W[1]-Hard. Planar Capacitated
Dominating Set was the first bidimensional problem to be shown W[1]-Hard
and the reduction was via an intermediate problem called Planar Arc Sup-
ply. The main difference between Planar Arc Supply and SumCSP is the
additional constraint we impose using the arc weight function, i.e. the fact that
all pairs in ϕ(a), a ∈ A(D), must sum to wA(a). This constraint turns out to
be crucial for our reduction. Roughly speaking, the reduction from PSI to Sum-
CSP constructs a directed graph D whose structure is more of less similar to the
pattern graph P (and its size is linear in |V (P )|). Edges of H are encoded using
the vertex and arc weight functions as well as the function ϕ. Having established
the hardness of SumCSP, we then reduce SumCSP to Critical Note Cut.
Let us first state a formal definition of the latter problem.

Critical Node Cut (CNC) Parameter: k + tw(G)
Input: An undirected graph G and integers k and μ.
Question: Does there exist a set S ⊆ V (G) of size (exactly) k such that∑

C∈C(G−S)

(
C
2

)
≤ μ, where C(G − S) = {C1, . . . , C�} denotes the set of

maximal connected components in G − S?

As stated earlier, our reduction from SumCSP to CNC heavily relies on
the arc weight function. Another crucial ingredient is the following proposition
(which follows by the convexity of x(x−1)

2 ).
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Proposition 1. Let x1, . . . , xk be non-negative integers and let x1 + . . . + xk =
kn. Then,

∑i=k
i=1

(
xi

2

)
is minimized if xi = n, for all i. In other words,

∑i=k
i=1

(
xi

2

)

is minimized if
∑i=k

i=1

(
xi

2

)
= k

(
n
2

)
.

At a very high level, starting from an instance of SumCSP, we create a graph G
(of bounded treewidth) where an optimal solution for CNC must separate the
graph into a fixed number of connected components, all having the same size.

2 Preliminaries

We denote the set of natural numbers by N. For k ∈ N, by [k] we denote the set
{1, 2, · · · , k}. For sets X,Y , by X ×Y we denote the set {(x, y) | x ∈ X, y ∈ Y }.
Furthermore, for (x, y) ∈ X × Y , we let fir((x, y)) = x and sec((x, y)) = y, i.e.
the first and second coordinate of the (ordered) pair (x, y), respectively.

We use standard terminology from the book of Diestel [5] for graph-related
terms that are not explicitly defined here. We consider only finite graphs. For a
graph G, by V (G) and E(G) we denote the vertex and edge sets of G, respec-
tively. Similarly, for a directed graph or digraph D, by V (D) and A(D) we
denote the vertex and arc sets of D, respectively. For a graph G and v ∈ V (G),
by NG(v) we denote the set {u ∈ V (G) | vu ∈ E(G)}. For a digraph D and
v ∈ V (D), by N+

D (v) we denote the set {u ∈ V (D) | vu ∈ A(D)}, and by N−
D (v)

we denote the set {u ∈ V (D) | uv ∈ A(D)}. We drop the subscript G (or D)
from NG(v) (or N+

D (v), or N−
D (v)) when the context is clear. For a vertex subset

S ⊆ V (G), by G[S] we denote the subgraph of G induced by S, i.e. the graph
with vertex set S and edge set {vu ∈ E(G) | v, u ∈ S}. By G − S we denote
the graph G[V (G) \ S]. A coloring of a graph G with α ∈ N colors is a function
ϕ : V (G) → [α]. A coloring ϕ of G is said to be a proper coloring if for each
uv ∈ E(G), ϕ(u) �= ϕ(v).

A path in a graph is a sequence of vertices P = v1, v2, · · · , v� such that for
all i ∈ [� − 1], vivi+1 ∈ E(G). We say that such a path is a path between v1
and v� or a v1 − v� path of length � − 1, and vertices v1, v2, · · · , v� lie on the
path P . Two vertices u, v ∈ V (G) are said to be connected if there exists a u− v
path in G. A graph is connected if there is a path between every pair of vertices.
A maximal connected subgraph of G is called a component of G. For a pair of
vertices u, v ∈ V (G), by distG(u, v) we denote the length of the shortest path
between u and v in G. For a graph G, by G2 we denote the graph with vertex
set V (G2) = V (G) and edge set E(G2) = {uv | distG(u, v) ≤ 2}.

A tree decomposition of a graph is a pair (X , T ), where an element X ∈ X is
a subset of V (G), called a bag, and T is a rooted tree with vertex set X satisfying
the following properties: (i) ∪X∈X X = V (G); (ii) For every uv ∈ E(G), there
exists X ∈ X such that u, v ∈ X; (iii) For all X,Y,Z ∈ X , if Y lies on the
unique path between X and Z in T , then X ∩Z ⊆ Y . For a graph G and its tree
decomposition (X , T ), the width of the tree decomposition (X , T ) is defined to
be maxX∈X (|X|− 1). The treewidth of a graph G, tw(G), is the minimum of the
widths of all its tree decompositions.
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3 W[1]-HardNess of SumCSP

Let (P,H, col : V (H) → [�]) be an instance of PSI, where V (P ) = {pi | i ∈ [�]}
and V (H) = {hi | i ∈ [n]}. For i ∈ [�], we let CH

i = {h ∈ V (H) | col(h) = i}. We
make a few assumption and adopt some conventions that will help simplify the
presentation. All numbers that appear in the construction will be represented
in binary. We assume that |V (H)| = n = 2t, for some t ∈ N, i.e. t = log n.
Otherwise, if |V (H)| = 2t′ − δ, for some 0 < δ < 2t′−1, we can construct an
equivalent instance (H ′, P ′, col′ : V (H ′) → [�′]) of PSI with |V (H ′)| = 2t′+3,
where H ′ is obtained from H by taking the disjoint union of H at most 8 times
and adding δ copies of a 4-regular graph on 8 vertices (which exists) to H ′ and
adjusting P to obtain P ′ and col to obtain col′ appropriately. We further assume
that for i, j ∈ [�], where pipj ∈ E(P ), there exists h ∈ CH

i and h′ ∈ CH
j such

that hh′ ∈ E(H), otherwise (P,H, col : V (H) → [�]) is a no-instance of PSI.
Note that P is a 4-regular graph, which implies that it has no isolated vertices.
We assume a fixed cyclic ordering ≺H on the vertices in H and a fixed cyclic
ordering ≺P on the vertices in P . Simply put, we have h1 ≺H . . . ≺H hn ≺H h1

and p1 ≺P . . . ≺H p� ≺H p1. With each vertex hi ∈ V (H), or equivalently
integer i ∈ [n], we assign two binary strings (or bitstrings for short) Bhi

and Bhi

as follows. We let Bi denote the binary representation of integer i and Bi denote
the (bitwise) complement of Bi. We use Oz and 1z to denote the bitstrings of
length z consisting of all zeros and all ones, respectively. We let Bhi

= O4tBiO4t

and Bhi
= O4tBiO4t. Note that Bhi

and Bhi
are of length 9 log n = 9t. The

purpose of the additional zero bits is to allow us to “correctly” handle overflows
when summing binary numbers. For two bitstrings B and B′, we slightly abuse
notation and sometimes treat the result of B +B′ as another bitstring (obtained
after applying the usual binary addition operator) or as an integer (in base 10).

We also assume that, along with instance (P,H, col : V (H) → [�]), we are
given a proper coloring colP 2 : V (P ) → [21] of P 2. Observe that such a coloring
exists and can be computed in time polynomial in the size of the graph P ;
the maximum degree of a vertex in P 2 is bounded by 20 and a graph with
maximum degree d admits a d + 1 proper coloring. For a vertex pi ∈ V (P ), we
let idxi = colP 2(pi). In what follows, we will always deal with bitstrings of length
21 · 2 · 9 · t. A block consists of 9t consecutive bits. We note that two distinct
blocks do not intersect in any bit position. Blocks will usually be set to bistrings
of the form O4tBiO4t, O4tBiO4t, O4t1tO4t, O9t, or 19t, i ∈ [n]. A group consists
of 2·9·t consecutive bits. Two distinct groups do not intersect in any bit position
and a group consists of two blocks. Note that we have exactly 21 groups, which is
equal to the number of colors in colP 2 . The reason why we need colP 2 will become
clearer later. Intuitively, since we will be encoding the possible edges (from H)
between a vertex in P and its four neighbors, we need to make sure that two of its
neighbors do not get assigned the same group in a bitstring. Given a bitstring S of
length γ·2·9·t, for some γ ∈ N, we let block[i](S) denote the ith block of S, and we
let group[j](S) denote the jth group of S. We also use the notation group[i | j](S)
to denote the ith and jth group of S. Finally, we note that, since the length of
bitstrings will be bounded by O(log n), all numbers in the construction will be



Critical Node Cut Parameterized by Treewidth and Solution Size 37

bounded by nO(1). We are now ready to describe the construction of instance
(D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N) of SumCSP. We start
with the description of the edge selection gadget.

Fig. 1. An illustration of edge selection gadgets and the additional edges between them.

Edge Selection Gagdet. For every (unordered) pair of numbers i, j ∈ [�]
such that pipj ∈ E(P ), we add an edge selection gadget Eij (Eij is a graph
and not an edge set) to D. Note that both Eij and Eji refer to the same edge
selection gadget, which will be responsible for selecting an edge in the host graph
H. Moreover, idxi �= idxj , since colP 2 is a proper coloring of P 2. We assume,
without loss of generality, that i < j. We let V (Eij) = {aij

i , aij
j , bij

i , bij
j , wij}

and A(Eij) = {aij
i aij

j , aij
j wij , wija

ij
i , bij

i bij
j , bij

j wij , wijb
ij
i } (see Fig. 1). We now

describe the construction of ϕ : A(D) → 2N×N and wA : A(D) → N. We assume
that all bitstrings are initialized to O378t. That is, whenever we do not explicitly
specify the value of a group (block) in a bitstring, it is set to all zeros.

– Consider aij
i aij

j ∈ A(Eij). For each u ∈ CH
i and v ∈ CH

j such that uv ∈ E(H),
we create a pair of bitstrings (Suv(aij

i aij
j ), Tuv(aij

i aij
j )) and add it to ϕ(aij

i aij
j ).

We set the following groups:
group[idxi | idxj ](Suv(aij

i aij
j )) = BuBu | BvBv;

group[idxi | idxj ](Tuv(aij
i aij

j )) = BuBu | BvBv;
group[idxi | idxj ](wA(aij

i aij
j )) = O4t1tO4tO4t1tO4t | O4t1tO4tO4t1tO4t.

– Consider aij
j wij ∈ A(Eij). For each u ∈ CH

i and v ∈ CH
j such that uv ∈

E(H), we create a pair of bitstrings (Suv(aij
j wij), Tuv(aij

j wij)) and add it to
ϕ(aij

j wij). We set the following groups:
group[idxi | idxj ](Suv(aij

j wij)) = BuBu | O9tBv;
group[idxi | idxj ](Tuv(aij

j wij)) = BuBu | O9tBv;
group[idxi | idxj ](wA(aij

j wij)) = O4t1tO4tO4t1tO4t | O4tOtO4tO4t1tO4t.
– Consider wija

ij
i ∈ A(Eij). For each u ∈ CH

i and v ∈ CH
j such that uv ∈

E(H), we create a pair of bitstrings (Suv(wija
ij
i ), Tuv(wija

ij
i )) and add it to

ϕ(wija
ij
i ). We set the following groups:
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group[idxi | idxj ](Suv(wija
ij
i )) = O9tBu | BvBv;

group[idxi | idxj ](Tuv(wija
ij
i )) = O9tBu | BvBv;

group[idxi | idxj ](wA(wija
ij
i )) = O4tOtO4tO4t1tO4t | O4t1tO4tO4t1tO4t.

– Consider bij
i bij

j ∈ A(Eij). For each u ∈ CH
i and v ∈ CH

j such that uv ∈ E(H),
we create a pair of bitstrings (Suv(bij

i bij
j ), Tuv(bij

i bij
j )) and add it to ϕ(bij

i bij
j ).

We set the following groups:
group[idxi | idxj ](Suv(bij

i bij
j )) = BuBu | BvBv;

group[idxi | idxj ](Tuv(bij
i bij

j )) = BuBu | BvBv;
group[idxi | idxj ](wA(bij

i bij
j )) = O4t1tO4tO4t1tO4t | O4t1tO4tO4t1tO4t.

– Consider bij
j wij ∈ A(Eij). For each u ∈ CH

i and v ∈ CH
j such that uv ∈ E(H),

we create a pair of bitstrings (Suv(bij
j wij), Tuv(bij

j wij)) and add it to ϕ(bij
i wij).

We set the following groups:
group[idxi | idxj ](Suv(bij

j wij)) = BuBu | O9tBv;
group[idxi | idxj ](Tuv(bij

j wij)) = BuBu | O9tBv;
group[idxi | idxj ](wA(bij

j wij)) = O4t1tO4tO4t1tO4t | O4tOtO4tO4t1tO4t.
– Consider wijb

ij
i ∈ A(Eij). For each u ∈ CH

i and v ∈ CH
j such that uv ∈

E(H), we create a pair of bitstrings (Suv(wijb
ij
i ), Tuv(wij , b

ij
i )) and add it to

ϕ(wijb
ij
i ). We set the following groups:

group[idxi | idxj ](Suv(wijb
ij
i )) = O9tBu | BvBv;

group[idxi | idxj ](Tuv(wij , b
ij
i )) = O9tBu | BvBv;

group[idxi | idxj ](wA(wijb
ij
i )) = O4tOtO4tO4t1tO4t | O4t1tO4tO4t1tO4t.

Compatibility Between Edge Selection Gadgets. We add edges between
various edge selection gadgets to ensure that for each i ∈ [�], the edges selected
by the gadgets are incident on the same vertex in CH

i . The selection of an edge
by a gadget will be determined by the pair of number selected from ϕ(a), where
a ∈ A(Eij) and pipj ∈ E(P ). For each pi ∈ V (P ), we have |NP (pi)| = 4, since P
is a 4-regular graph. For i ∈ [�], let NP (pi) = {pj1 , pj2 , pj3 , pj4}, where we assume
a (fixed and cyclic) ordering on the vertices in NP (pi) based on the ordering ≺P .
That is, we assume pj1 ≺P pj2 ≺P pj3 ≺P pj4 ≺P pj1 . Below we describe the
set of arcs added between Eij1 , Eij2 , Eij3 and Eij4 , we call this set Ai. We also
describe the values assigned by wA(·) and ϕ(·) to arcs in Ai (see Fig. 1).

– We add the arc aij1
i bij2

i to Ai and, for each u ∈ CH
i , we add a pair of bitstrings

(Su(aij1
i bij2

i ), Tu(aij1
i bij2

i )) to ϕ(aij1
i bij2

i ). We set the following groups:
group[idxi](Su(aij1

i bij2
i )) = BuO9t;

group[idxi](Tu(aij1
i bij2

i )) = BuO9t;
group[idxi](wA(aij1

i bij2
i )) = O4t1tO4tO9t.

– We add the arc aij2
i bij3

i to Ai and, for each u ∈ CH
i , we add a pair of bitstrings

(Su(aij2
i bij3

i ), Tu(aij2
i bij3

i )) to ϕ(aij2
i bij3

i ). We set the following groups:
group[idxi](Su(aij2

i bij3
i )) = BuO9t;

group[idxi](Tu(aij2
i bij3

i )) = BuO9t;
group[idxi](wA(aij2

i bij3
i )) = O4t1tO4tO9t.
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– We add the arc aij3
i bij4

i to Ai and, for each u ∈ CH
i , we add a pair of bitstrings

(Su(aij3
i bij4

i ), Tu(aij3
i bij4

i )) to ϕ(aij3
i bij4

i ). We set the following groups:
group[idxi](Su(aij3

i bij4
i )) = BuO9t;

group[idxi](Tu(aij3
i bij4

i )) = BuO9t;
group[idxi](wA(aij3

i bij4
i )) = O4t1tO4tO9t.

– We add the arc aij4
i bij1

i to Ai and, for each u ∈ CH
i , we add a pair of bitstrings

(Su(aij4
i bij1

i ), Tu(aij4
i bij1

i )) to ϕ(aij4
i bij1

i ). We set the following groups:
group[idxi](Su(aij4

i bij1
i )) = BuO9t;

group[idxi](Tu(aij4
i bij1

i )) = BuO9t;
group[idxi](wA(aij4

i bij1
i )) = O4t1tO4tO9t.

This completes the description of the vertices and arcs of D, and the functions
wA : A(D) → N and ϕ : A(D) → 2R×R. We now move to description of the
function wV : V (D) → N.

The Vertex Weight Function. Consider i, j ∈ [�], i < j, we set wV (·) as
follows.

– For all u ∈ {aij
i , aij

j , bij
i , bij

j , }, we set wV (u) to be the bitstring Xu of length
378 log n, where group[idxi](Xu) = O4t1tO4tO4t1tO4t and group[idxj ](Xu) =
O4t1tO4tO4t1tO4t.

– For wij , we set wV (wij) to be the bitstring Xwij
of length 378 log n, which we

construct as follows. We let Y be the bitstring of length t corresponding to
the integer 2t − 2, i.e. a bitstring of length t with the last bit set to zero and
all other bits set to one. Let Y ′ to be the bitstring of length 4t corresponding
to the integer 1, i.e. the bitstring of length 4t with the last bit set to one and
all other bits set to zero. We set group[idxi](Xwij

) = O4t1tO4tY
′Y O4t and

group[idxj ](Xwij
) = O4t1tO4tY

′Y O4t.

This finishes the description of the instance (D,wV : V (D) → N, wA :
A(D) → N, ϕ : A(D) → 2N×N) of SumCSP for a given instance (P,H, col :
V (H) → [�]) of PSI. Below we state some propositions and lemmata that will
be useful in establishing the equivalence of the two instances.

Proposition 2. Let X,Y be two bitstrings of length log q. Then X +Y = 2q −1
if and only if X = Y .

Proposition 3. Let X and Y be two bitstrings each of length 42 · 9 · t and
consisting of 21 groups, where t = log n. Assume that, for each i ∈ [21], group i
in X consists of a bitstring of the form Xi = O4tBxO4t and group i in Y consists
of a bitstring of the form Yi = O4tByO4t, x, y ∈ [n]. Then, X + Y is a bitstring
of length 42 · 9 · t with the ith group equal to Xi + Yi, i ∈ [21].

Lemma 1. Let (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N)
be a yes-instance of SumCSP and ρ : A(D) → N × N be a solution. Consider
pi, pi′ , pj , pj′ ∈ V (P ) such that aij

i bij′
i , aij

j bi′j
j ∈ A(D) and i < j. For u ∈ CH

i and

v ∈ CH
j , we have ρ(aij

i aij
j ) = (Suv(aij

i aij
j ), Tuv(aij

i aij
j )) if and only if ρ(aij

i bij′
i ) =

(Su(aij
i bij′

i ), Tu(aij
i bij′

i )) and ρ(aij
j bi′j

j ) = (Sv(aij
j bi′j

j ), Tv(aij
j bi′j

j )).
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Lemma 2. Let (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N)
be a yes-instance of SumCSP and ρ : A(D) → N × N be a solution. Consider
pi, pi′ , pj , pj′ ∈ V (P ) such that aij′

i bij
i , ai′j

j bij
j ∈ A(D) and i < j. For u ∈ CH

i and

v ∈ CH
j , we have ρ(bij

i bij
j ) = (Suv(bij

i bij
j ), Tuv(bij

i bij
j )) if and only if ρ(aij′

i bij
i ) =

(Su(aij′
i bij

i ), Tu(aij′
i bij

i )) and ρ(ai′j
j bij

j ) = (Sv(ai′j
j bij

j ), Tv(ai′j
j bij

j )).

Lemma 3. Let (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N) be a
yes-instance of SumCSP and ρ : A(D) → N × N be a solution. Let i, j ∈ [�],
where i < j and pipj ∈ E(P ), and let u ∈ CH

i and v ∈ CH
j . Then, the following

three statements are equivalent:

(1) ρ(aij
i aij

j ) = (Suv(aij
i aij

j ), Tuv(aij
i aij

j ));
(2) ρ(wija

ij
i ) = (Suv(wija

ij
i ), Tuv(wija

ij
i ));

(3) ρ(aij
j wij) = (Suv(aij

j wij), Tuv(aij
j wij)).

Lemma 4. Let (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N) be a
yes-instance of SumCSP and ρ : A(D) → N × N be a solution. Let i, j ∈ [�],
where i < j and pipj ∈ E(P ), and let u ∈ CH

i and v ∈ CH
j . Then, the following

three statements are equivalent:

(1) ρ(bij
i bij

j ) = (Suv(bij
i bij

j ), Tuv(bij
i bij

j ))

(2) ρ(wijb
ij
i ) = (S(wij ,bij

i )
uv , T

(wij ,bij
i )

uv );
(3) ρ(bij

j wij) = (Suv(bij
j wij), Tuv(bij

j wij)).

Lemma 5. Let (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N)
be a yes-instance of SumCSP and ρ : A(D) → N × N be a solution. Let
i, j ∈ [�], i < j, pipj ∈ E(P ), and u ∈ CH

i and v ∈ CH
j . Then, ρ(aij

i aij
j ) =

(Suv(aij
i aij

j ), Tuv(aij
i aij

j )) if and only if ρ(bij
i bij

j ) = (Suv(bij
i bij

j ), Tuv(bij
i bij

j )).

Lemma 6. (P,H, col : V (H) → [�]) is a yes-instance of PSI if and only if
(D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N) is a yes-instance of
SumCSP.

Theorem 1. SumCSP is W[1]-Hard when parameterized by the number of ver-
tices in the pattern graph.

Proof. Let (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N) be the
contructed instance of SumCSP given the instance (P,H, col : V (H) → [�])
of PSI. An easy trace of the construction shows that it can be accomplished
in time polynomial in |V (H)| and that all the numbers appearing in the con-
struction are bounded by |V (H)|O(1). Moreover, note that P is 4-regular and
therefore |E(P )| = O(|V (P )|). By construction we have |A(D)| = O(|V (P )|).
These together with Lemma 6 and the W[1]-Hardness of PSI completes the
proof. 
�
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4 W[1]-HardNess of CNC

Let (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N) be an instance
of SumCSP. We let wvmax = maxv∈V (D)(wV (v)), i.e. the maximum weight of
a vertex in D, we let wamax = maxa∈A(D)(wA(a)), i.e. the maximum weight of
an arc in D, and we let wbig = (wamax · wvmax)100. We assume, without loss
of generality, that the number of arcs in D is greater than some constant, say
|A(D)| ≥ 50, wvmax > 2|A(D)|, and wamax > 0 (otherwise we can increase
all numbers in the SumCSP instance appropriately). Moreover, we let W � =
(k + 3)(wbig + wvmax + 2). For each vertex v ∈ V (D), we define a quantity
Wv = W � − (k + 3)(wV (v) + 2) = (k + 3)(wbig + wvmax − wV (v)). We shall
create an instance (G, k, μ) of CNC, where k = 2|A(D)|, μ = |V (D)| ·

(
W �

2

)
, and

tw(G) = kO(1). We now proceed to the construction of the graph G.

Construction. For each vertex v ∈ V (D), we create a clique Kv of size 2(k+3)
and an independent set Iv of size Wv (see Fig. 2). We add all edges between
vertices in Kv and vertices in Iv. For each arc a = uv ∈ A(D), we create a
chain Huv (which will connect Ku and Kv) as follows. Huv consists of wA(a)+1
connecting pairs of vertices Puv = {p0, . . . , pwA(uv)}, i.e. each pair pi ∈ Puv

consists of two (independent) vertices {p1i , p
2
i }. Moreover, we have wA(a) border

walls Buv = {b1, . . . , bwA(a)}, each of size k + 1, i.e. each wall consists of k + 1
(independent) vertices. We add all edges between Ku and pair p0 and we add
all edges between Kv and pwA(uv). Next, we add all edges between pi−1 and bi

and all edges between bi and pi, for i ∈ [wA(a)]. We call the pair p0 the first pair
of Puv and denote it by first(Puv). Similarly, we call the pair pwA(uv) the last
pair of Puv and denote it by last(Puv). Then, we sort all entries (i, j) ∈ ϕ(a) in
increasing order based on the first coordinate. Let {(i1, j1), (i2, j2), . . . , (ir, jr)}
denote the resulting sorted set. We assume, without loss of generality, that the set
contains pairs where no two pairs have the same element in their first (or second)
coordinate. This assumption is justified by the fact that for all (i, j), (i′, j′) ∈
ϕ(a) we have i + j = i′ + j′ = wA(a). We add all edges (if they do not already
exist) between Ku and vertices {p1i1 , p

2
i1

} and all edges between Kv and vertices
{p1ir

, p2ir
}. We call the pair pi1 the left pair of Puv and denote it by left(Puv).

Fig. 2. An illustration of parts of the construction of the graph G.
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Similarly, we call the pair pir
the right pair of Puv and denote it by right(Puv).

Finally, for each two consecutive entries (i, j) and (i′, j′) in the set ϕ(a), we add
all edges between {p1i , p

2
i } and {p1i′ .p2i′}. This completes the construction of the

graph G.

Proposition 4. tw(G) = kO(1).

Below we prove a series of lemmas that allows us to transform any solution S
to an instance (G, k, μ) of CNC into an “equally good” solution S′ having some
“nice” structural properties. We say that a solution S splits a connecting pair
{p1, p2} if |S∩{p1, p2}| = 1. We let C(G−S) = {C1, . . . , C�} denote the maximal
connected components in G−S. We classify a component C ∈ C(G−S) into one
of three types. We say C is a small component whenever C does not contain any
vertices from Kv or Iv, for all v ∈ V (D). We say C is a large component whenever
C intersects at least two (distinct) cliques Ku and Kv, u, v ∈ V (D). Otherwise,
C is a medium component. Note that, for any v ∈ V (D), any solution of size k
cannot separate G[V (Iv) ∪ V (Kv)] into two or more components. Therefore, if
C(G−S) consists of only medium components then |C(G−S)| is exactly |V (D)|
and S includes exactly one connecting pair from each chain Huv, uv ∈ A(D). We
say S is well structured whenever C(G−S) consists of only medium components.

Lemma 7. Let S be a solution to (G, k, μ) and let C(G − S) = {C1, . . . , C�}.
If |S ∩

⋃
u∈V (D)(V (Iu) ∪ V (Ku))| > 0 then there exists a solution S′ such that

|S′| = |S|,
∑

C′∈C(G−S′)

(
C′

2

)
≤

∑
C∈C(G−S)

(
C
2

)
, and |S′ ∩

⋃
u∈V (D)(V (Iu) ∪

V (Ku))| = |S ∩
⋃

u∈V (D)(V (Iu) ∪ V (Ku))| − 1.

By repeated applications of Lemma 7, we can assume that a solution S does
not intersect with V (Iu)∪V (Ku), for all u ∈ V (D). Hereafter, we assume that S
satisfies this property. We show that S does not intersect with any border walls.

Lemma 8. Let S be a solution to (G, k, μ) and let C(G − S) = {C1, . . . , C�}.
If |S ∩

⋃
uv∈A(D) Buv| > 0 then there exists a solution S′ such that |S′| = |S|,

∑
C′∈C(G−S′)

(
C′

2

)
≤

∑
C∈C(G−S)

(
C
2

)
, |S′ ∩

⋃
u∈V (D)(V (Iu) ∪ V (Ku))| = |S ∩

⋃
u∈V (D)(V (Iu) ∪ V (Ku))|, and |S′ ∩

⋃
uv∈A(D) Buv| is strictly less than |S ∩

⋃
uv∈A(D) Buv|.

Lemmas 7 and 8 imply that we can always assume that S includes vertices
from connecting pairs only. We now proceed to showing that S does not split
any connecting pair. We use split(G,S) to denote the number of connecting pairs
split by S in G.

Lemma 9. Let S be a solution to (G, k, μ) such that S ⊆
⋃

uv∈A(D) Puv and let
C(G − S) = {C1, . . . , C�}. If split(G,S) > 0 then there exists a solution S′ such
that |S′| = |S|,

∑
C′∈C(G−S′)

(
C′

2

)
≤

∑
C∈C(G−S)

(
C
2

)
, S′ ⊆

⋃
uv∈A(D) Puv, and

split(G,S′) < split(G,S).
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Lemma 10. Let S be a solution to (G, k, μ) such that S ⊆
⋃

uv∈A(D) Puv and
split(G,S) = 0. Let C(G − S) = {C1, . . . , C�}. Assume that |S ∩ Puv| = 2x ≥ 10,
for some uv ∈ A(D), and hence there exists u1v1, . . . , ux−1vx−1 ∈ A(D) such
that |S ∩ Puivi

| = 0, for i ∈ [x − 1]. Then, there exists S′ such that |S′| =
|S|,

∑
C′∈C(G−S′)

(
C′

2

)
≤

∑
C∈C(G−S)

(
C
2

)
, S′ ⊆

⋃
uv∈A(D) Puv, split(G,S′) =

0, left(Puv) ∪ right(Puv) ∪ first(Puv) ∪ last(Puv) ⊆ S′, |S′ ∩ Puv| = 8, and
|S′ ∩ Puivi

| = 2, for some i ∈ [x − 1].

Since k is even, we know (from Lemma 10 and the fact that split(G,S) = 0)
that, for all uv ∈ A(D), |S∩Puv| ∈ {0, 2, 4, 6, 8}. Moreover, by using an argument
similar to the one for Lemma 10 we can ensure that if for some uv ∈ A(D),
|S ∩ Puv| = 8 then left(Puv) ∪ right(Puv) ∪ first(Puv) ∪ last(Puv) ⊆ S.

Lemma 11. Let S be a solution satisfying the following properties: (1) S ⊆⋃
uv∈A(D) Puv; (2) split(G,S) = 0; (3) |S ∩ Puv| ∈ {0, 2, 4, 6, 8}, for all uv ∈

A(D); (4) If |S∩Puv| = 8, for uv ∈ A(D), then left(Puv)∪right(Puv)∪first(Puv)∪
last(Puv) ⊆ S. Then, there exists a solution S′ satisfying the following properties:
(i) S′ ⊆

⋃
uv∈A(D) Puv; (ii) split(G,S′) = 0; (iii) |S′ ∩ Puv| = 2, for all uv ∈

A(D).

We are now ready to prove the correctness of the reduction, which is implied
by Lemmas 12 and 13 below.

Lemma 12. If (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N) is a
yes-instance of SumCSP then (G, k, μ) is a yes-instance of CNC.

Proof. Let ρ : A(D) → N × N be a solution to the SumCSP instance. We
construct a solution S to the CNC instance by picking one connecting pair
from each chain as follows. Initially, we set S = ∅. For each uv ∈ A(D), we let
Puv = {p0, . . . , pwA(uv)}, we let ρ(uv) = (xuv, yuv), and we set S = S ∪ pxuv

.
It is not hard to see that G − S consists of exactly |V (D)| components (as
we pick one connecting pair from each chain). We associate each component
with some vertex u ∈ V (D). The size of each component is exactly |V (Ku)| +
|V (Iu)| +

∑
v∈N+(u)(k + 3)xuv +

∑
v∈N−(u)(k + 3)yvu = |V (Ku)| + |V (Iu)| +

(k + 3)wV (u) = 2(k + 3) + (k + 3)(wbig + wvmax − wV (v)) + (k + 3)wV (u) =
(k + 3)(wbig + wvmax + 2) = W �. 
�

Lemma 13. If (G, k, μ) is a yes-instance of CNCthen (D,wV : V (D) →
N, wA : A(D) → N, ϕ : A(D) → 2N×N) is a yes-instance of SumCSP.

Proof. Let S be a solution to (G, k, μ). From Lemmas 7 to 11, we know that
S must be well structured i.e. S ⊆

⋃
uv∈A(D) Puv, split(G,S) = 0, and |S ∩

Puv| = 2, for all uv ∈ A(D). We assume that the number of components in
G − S is exactly |V (D)|, otherwise we can find a solution S′ with |S′| = |S| and∑

C∈C(G−S′)

(
C
2

)
≤

∑
C∈C(G−S)

(
C
2

)
. Let C(G − S) = {C1, . . . , C|V (D)|}. Recall

that W � = (k + 3)(wbig + wvmax + 2) and μ = |V (D)| ·
(
W �

2

)
. Therefore, we

have
∑

C∈C(G−S)

(
C
2

)
≤ |V (D)| ·

(
W �

2

)
. Applying Proposition 1, we know that
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each component in C(G−S) has W � vertices. We associate each component with
some vertex u ∈ V (D). Note that Ku contains 2(k + 3) vertices and Iu contains
(k + 3)(wbig + wvmax − wV (u)) vertices. Therefore, W � − |V (Ku)| − |V (Iu)| =
(k + 3)wV (u). Since each chain Huv or Hvu, where uv ∈ A(D) or vu ∈ A(D),
contributes (k + 3)x vertices, for some x, to the component associated with u,
the sum of those contributions must equal (k +3)wV (u). This implies that there
exists ρ : A(D) → N × N such that for each uv ∈ A(D), ρ(uv) ∈ ϕ(uv) and∑

v∈N+(u) fir(ρ(uv)) +
∑

v∈N−(u) sec(ρ(vu)) = wV (u). 
�

Theorem 2. CNC is W[1]-Hard when parameterized by solution size and the
treewidth of the input graph.
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{angelini,bekos}@informatik.uni-tuebingen.de

Abstract. In this paper we consider graphs whose edges are associated
with a degree of importance, which may depend on the type of connec-
tions they represent or on how recently they appeared in the scene, in a
streaming setting. The goal is to construct layouts in which the readabil-
ity of an edge is proportional to its importance, that is, more important
edges have fewer crossings. We formalize this problem and study the
case in which there exist three different degrees of importance. We give
a polynomial-time testing algorithm when the graph induced by the two
most important sets of edges is biconnected. We also discuss interesting
relationships with other constrained-planarity problems.

1 Introduction

Describing a graph in terms of a stream of nodes and edges, arriving and leaving
at different time instants, is becoming a necessity for application domains where
massive amounts of data, too large to be stored, are produced at a very high
rate. The problem of visualizing graphs under this streaming model has been
introduced only recently. In particular, the first step in this direction was per-
formed in [8], where the problem of drawing trees whose edges arrive one-by-one
and disappear after a certain amount of steps has been studied, from the point
of view of the area requirements of straight-line planar drawings. Later on, it
was proved [19] that polynomial area could be achieved for trees, tree-maps,
and outerplanar graphs if a small number of vertex movements are allowed after
each update. The problem has also been studied [14] for general planar graphs,
relaxing the requirement that edges have to be straight-line.

In this paper we introduce a problem motivated by this model, and in partic-
ular by the fact that the importance of vertices and edges in the scene decades
with time. In fact, as soon as an edge appears, it is important to let the user
clearly visualize it, possibly at the cost of moving “older” edges in the more
cluttered part of the layout, which may be unavoidable if the graph is large or
dense. The idea is that the user may not need to see the connection between
two vertices, as she remembers it from the previous steps.

Visually, one could associate the decreasing importance of an edge with its
fading; theoretically, one could associate it with the fact that it becomes more
acceptable to let it participate in some crossings. As a general framework for this
kind of problems, we associate a weight w(e) to every edge e ∈ E and define a
function f : E × E → {YES, NO} that, given a pair of edges e and e′, determines
c© Springer International Publishing AG 2017
H.L. Bodlaender and G.J. Woeginger (Eds.): WG 2017, LNCS 10520, pp. 45–58, 2017.
https://doi.org/10.1007/978-3-319-68705-6_4
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whether it is allowed to have a crossing between e and e′ based on their weights.
Of course, if no assumption is made on function f(·), this model allows to encode
instances of the NP-complete problem Weak Realizability [23], in which
the pairs of edges that are allowed to cross are explicitly given as part of the
input. On the other hand, already the “natural” assumption that, if an edge e
is allowed to cross an edge e′, then it is also allowed to cross any edge e′′ such
that w(e′′) ≤ w(e′), could potentially make the problem tractable.

As a first step towards a formalization of this general idea, we introduce
problem Hierarchical Partial Planarity, which takes as input a graph
G = (V,E = Ep ∪Es ∪Et) whose edges are partitioned into the primary edges
in Ep, the secondary edges in Es, and the tertiary edges in Et. The goal is
to construct a drawing of G in which the primary edges are crossing-free, the
secondary edges can only cross tertiary edges, while these latter edges can also
cross one another. We say that any crossing that involves a primary edge or two
secondary ones is forbidden. We remark that this problem can be easily modeled
under the general framework we described above. Namely, we can say that all
edges in Ep, Es, and Et have weights 4, 2, and 1, respectively, and function f(·)
is such that f(e, e′) = YES if and only if w(e) + w(e′) ≤ 3.

We observe that our problem is a generalization of the recently introduced
Partial Planarity problem [2,24], in which the edges of a certain subgraph of
a given graph must not be involved in any crossings. An instance of this problem
is in fact an instance of our problem only composed of edges in Ep and Et.

Our main contribution is an O(|V |3 · |Et|)-time algorithm for Hierarchical
Partial Planarity when the graph induced by the primary and the secondary
edges is biconnected (see Sect. 4). Our result builds upon a formulation of the
problem in terms of a constrained-planarity problem, which may be interesting in
its own. This formulation also allows us to uncover interesting relationships with
other graph planarity problems, like Partially Embedded Planarity [5,21]
and Simultaneous Embedding with Fixed Edges [9,12] (see Sect. 3). In
Sect. 2 we give definitions, and in Sect. 5 we conclude with open problems.

2 Preliminaries

For the standard definitions on planar graphs, on planar drawings and their faces,
on planar embeddings and on graph connectivity, we point the reader to [22,25].
Let H be a subgraph of a planar graph G, and let G be a planar embedding of
G. The planar embedding of H that is obtained by removing the edges of G \ H
from G (and potential isolated vertices) is the restriction of G to H.

The SPQR-tree T of a biconnected graph G is a labeled tree representing the
decomposition of G into its triconnected components [15,16]. Every triconnected
component of G is associated with a node μ in T . The triconnected component
itself is referred to as the skeleton of μ, denoted by Gskel

μ . A node μ ∈ T can be
of one of four different types. S- and P-nodes describe series and parallel compo-
sitions; R-nodes correspond to triconnected structures; Q-nodes correspond to
the edges of G. The set of leaves of T coincides with the set of Q-nodes, except
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for one arbitrary Q-node ρ, which is selected as the root of T . The edges of Gskel
μ

are called virtual edges and each of them represents a subgraph of G; the virtual
edge whose subgraph contains the edge correponding to ρ is the reference edge
of μ and is denoted by ref(μ). The endvertices of ref(μ) are the poles of μ. The
subtree Tμ of T rooted at μ induces a subgraph Gpert

μ of G, called pertinent. The
SPQR-tree of G is unique and can be computed in linear time [20].

3 Relationships to Other Planarity Problems

In this section we define a problem, called Facial-Constrained Core Pla-
narity, that will serve as a tool to solve Hierarchical Partial Planarity
and to uncover interesting relationships with other important graph planarity
problems. This problem takes as input a graph G = (V,E1 ∪ E2) and a set
W ⊆ V × V of pairs of vertices. Let H be the subgraph of G induced by the
edges in E1, which we call core of G. The goal is to construct a planar embedding
G of G whose restriction H to H is such that, for each pair 〈u, v〉 ∈ W , there
exists a face of H that contains both u and v.

Theorem 1. Problems Facial-Constrained Core Planarity and Hier-
archical Partial Planarity are linear-time equivalent.

Proof (sketch). The correspondence between two instances 〈G′ = (V,E1 ∪
E2),W 〉 and G = (V,Ep ∪ Es ∪ Et) of the two problems is as follows. Graphs
G′ and G have the same vertex set V ; further, E1 = Ep and E2 = Es; finally,
for each two vertices u, v ∈ V , we have (u, v) ∈ Et if and only if 〈u, v〉 ∈ W . To
prove the equivalence note that, in any drawing of G that is a solution for Hier-
archical Partial Planarity, there is no crossing between edges in Ep ∪ Es.
Thus, graph G = (V,Ep ∪Es), which coincides with G′, is planar. Further, since
the edges of Et can cross with each other and with the edges of Es, the only
requirements they impose on the planar embedding of G are the same as those
imposed by the pairs in W on the possible planar embeddings of G′. Details are
given in [1]. 	


In Partial Planarity [2], given a non-planar graph G = (V,E) and a sub-
set F ⊆ E of its edges, the goal is to compute a drawing Γ of G, if any, in which
the edges of F are not crossed by any edge of G. Positive and negative results
are given in [2] if the graph induced by F is a connected spanning subgraph of
G. In [24], the corresponding decision problem is shown to be polynomial-time
solvable. By setting Ep = F , Es = ∅, and Et = E \F , we can model any instance
of Partial Planarity as an instance of Hierarchical Partial Planarity.

Theorem 2. Partial Planarity can be reduced in linear time to Hierar-
chical Partial Planarity.

In Partially-Embedded Planarity [5], given a planar graph G and a
planar embedding H of a subgraph H of G, the goal is to test whether H can
be extended to a planar embedding of G. The problem is linear-time solvable [5]



48 P. Angelini and M.A. Bekos

and characterizable in terms of forbidden subgraphs [21]. We prove that Hier-
archical Partial Planarity can be used to encode instances of Partially-
Embedded Planarity in which H is biconnected. Note that this special case
is a central ingredient in the algorithm in [5] for the general case.

Theorem 3. Partially-Embedded Planarity with biconnected H can be
reduced in quadratic time to Hierarchical Partial Planarity.

Proof. Let 〈G′ = (V,E),H,H〉 be an instance of Partially-Embedded Pla-
narity in which H is biconnected. We construct an instance 〈G = (V,E1 ∪
E2),W 〉 of Facial-Constrained Core Planarity on the same vertex set V
as G′, as follows. Set E1 contains all the edges of E that are contained in H;
set E2 contains the other ones, that is, E2 = E \ E1. Finally, for every pair
of non-adjacent vertices 〈u, v〉 that are on the same face of H, we add a pair
〈u, v〉 to W . This last step requires quadratic time and guarantees that in the
solution of Facial-Constrained Core Planarity, for each face f of H, all
the vertices of f are incident to the same face f ′ of the planar embedding of
the core of G. These vertices appear in the same order along f and f ′, since
H is biconnected and thus this order is unique. Hence, 〈G′,H,H〉 is a positive
instance if and only if 〈G,W 〉 is. The statement follows by Theorem 1. 	


A simultaneous embedding of two planar graphs G1 = (V,E1) and G2 =
(V,E2) embeds each graph in a planar way using the same vertex positions;
edges are allowed to cross only if they belong to different graphs (see, e.g., [9]).
Our problem is related to Simultaneous Embedding with Fixed Edges
(Sefe) [4,6,10–12], in which edges that are common to both graphs must be
embedded in the same way (and hence, cannot be crossed by other edges). So,
these edges correspond to the primary ones. However, to obtain a solution for
Sefe, it does not suffice to assume that the exclusive edges of G1 and G2 are
the secondary and tertiary ones, as we could not guarantee that the edges of
G2 do not cross each other. So, in some sense, our problem seems to be more
related to nearly-planar simultaneous embeddings, where the input graphs are
allowed to cross, as long as they avoid some local crossing configurations, e.g., by
avoiding triples of mutually crossing edges [17]. Note that the Sefe problem has
also been studied in several settings [3,7,13,18]. An interpretation of Partial
Planarity, which also extends to Hierarchical Partial Planarity, in
terms of a special version of Sefe, called Sunflower Sefe [9], was already
observed in [2].

The algorithm of Sect. 4 is inspired by an algorithm to test whether a pair of
graphs admits a Sefe if the common graph is biconnected [6]. The main part of
that algorithm is to find an embedding of the common graph in which every pair
of vertices that are joined by an exclusive edge are incident to the same face;
so, these edges play the role of the pairs in W . In a second step, it checks for
crossings between exclusive edges of the same graph. Since the common graph
is biconnected, these crossings do not depend on the choice of the embedding.

Thus, for instances of our problem in which the core H of G is biconnected,
we can employ the main part of the algorithm in [6] to find a planar embedding
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of H in which every two vertices that either are joined by an edge of E2 or form
a pair of W are incident to the same face of H; note that it is not even needed
to perform the second check for the pairs in W . We extend this result to the
case in which H is not biconnected, but it becomes so when adding the edges of
E2. The main difficulty here is to “control” the faces of H by operating on the
embeddings of the biconnected graph G composed of H and of the edges of E2.
In Sect. 4 we discuss the problems arising from this and our solution.

4 Biconnected Facial-Constrained Core Planarity

In this section, we give a polynomial-time algorithm for instances 〈G = (V,E1 ∪
E2),W 〉 of Facial-Constrained Core Planarity in which G is biconnected.

4.1 High-Level Description of the Algorithm

We perform a bottom-up traversal of the SPQR-tree T of G. At each step of
the traversal, we consider a node μ ∈ T and we search for an embedding Gpert

μ

of Gpert
μ satisfying the following requirements: (R.1) For every pair 〈x, y〉 ∈ W

such that x and y belong to Gpert
μ , vertices x and y lie in the same face of the

restriction Hpert
μ of Gpert

μ to the part of the core H in Gpert
μ . (R.2) For every pair

〈x, y〉 ∈ W such that exactly one vertex, say x, belongs to Gpert
μ , vertex x lies in

the outer face of Hpert
μ (note that y belongs to G \ Gpert

μ ).
In general, there may exist several “candidate” embeddings of Gpert

μ satisfying
R.1 and R.2. If there exists none, the instance is negative. Otherwise, we would
like to select one of them and proceed with the traversal. However, while it
would be sufficient to select any embedding of Gpert

μ satisfying R.1, it is possible
that some of the embeddings satisfying R.2 are “good”, in the sense that they
can be eventually extended to an embedding of G satisfying both R.1 and R.2,
while some others are not. Unfortunately, we cannot determine which ones are
good at this stage of the algorithm, as this may depend on the structure of a
subgraph that is considered later in the traversal. Thus, we have to maintain
succinct information to describe the properties of the embeddings of Gpert

μ that
satisfy R.1 and R.2, so to group these embeddings into equivalence classes.

We denote by x1, . . . , xk the vertices belonging to pairs 〈xi, yi〉 ∈ W such
that xi ∈ Gpert

μ and yi /∈ Gpert
μ . By R.2, x1, . . . , xk must lie on the outer face of

Hpert
μ . We say that μ is non-traversable if there is a cycle Cμ composed of edges

of E1 that contains both poles u and v of μ, at least one edge of Gpert
μ , and at

least one of G \Gpert
μ ; see Fig. 1a. Otherwise, μ is traversable, i.e., either in Gpert

μ

or in G \ Gpert
μ every path between u and v contains edges of E2; see Fig. 1b.

Intuitively, when μ is non-traversable, Cμ splits the outer face of Hpert
μ into

two faces f l
μ and fr

μ of H in any planar embedding of G. Hence, R.2 must be
refined to take into account the possible partitions of x1, . . . , xk with respect to
their incidence to f l

μ and fr
μ. In particular, the structure of Gpert

μ may enforce
dependencies on the relative positions of x1, . . . , xk with respect to f l

μ and fr
μ.

More precisely, let 〈x, y〉, 〈x′, y′〉 ∈ W be two pairs such that x, x′ ∈ Gpert
μ and



50 P. Angelini and M.A. Bekos

Fig. 1. (a–b) Graph Gpert
µ when µ is (a) non-traversable and (b) traversable. (c–d) The

bags of the nodes in (a) and in (b), respectively. A segment between u and v separates
f l
µ and fr

µ; each bag Bi
µ is represented by a circle across the segment, with its pockets

Si
µ and T i

µ on the two sides; the vertices in the special bag Bµ lie along the segment.

y, y′ /∈ Gpert
μ . Then, x and x′ may be enforced to be incident to the same face,

either f l
μ or fr

μ (see x1 and x3 in Fig. 1a), to different faces (see x2 and x3 in
Fig. 1a), or they may be independent in this respect (see x1 and x6 in Fig. 1a).

We encode this information by associating a set of bags with μ, which contain
vertices x1, . . . , xk. Each bag is composed of two pockets; all the vertices in a
pocket must be incident to the same face of H in any candidate embedding of
Gpert

μ , while all the vertices in the other pocket must be incident to the other
face. Vertices of different bags are independent of each other. For the vertices
of {x1, . . . , xk} that are incident to both f l

μ and fr
μ in any embedding (see x4

in Fig. 1a), we add a special bag, composed of a single set containing all such
vertices; note that if a vertex of {x1, . . . , xk} is a pole of μ, then it belongs
to the special bag. See Fig. 1c for the bags of the node in Fig. 1a. When μ is
traversable, the outer face of Hpert

μ corresponds to a single face of H in any
planar embedding of G. Thus, we do not need to maintain any information
about the relative positions of x1, . . . , xk, and we can place all of them in the
special bag. An illustration of the bags of the node represented in Fig. 1b is given
in Fig. 1d.

If the visit of the root ρ of T at the end of the bottom-up traversal is com-
pleted without declaring 〈G,W 〉 as negative, we have that Gpert

ρ = G admits a
planar embedding satisfying R.1 and thus 〈G,W 〉 is a positive instance.

As anticipated in Sect. 3, we discuss two main problems to extend the algo-
rithm in [6] for SEFE to solve our problem when H is not biconnected.

First, when H is biconnected it is always possible to decide the flip of every
child component for every node that is either an R- or a P-node, but not when
it is an S-node. However, since no two S-nodes are adjacent in T , this choice
is always fixed in the next step of the algorithm (refer to visible nodes in [6]).
When H is not biconnected, even the flips of the children of R- and P-nodes may
be not uniquely determined. So, it may be necessary to defer this choice till the
end of the algorithm. Furthermore, in the course of the algorithm, it could be
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required to make “partial” choices for these flips, in the sense that constraints
imposed by the structure of the graph could enforce two or more components to
be flipped in the same way (without enforcing, however, a specific flip for them).
To encode all the possible flips, we introduced the bags.

Second, the order of the vertices along the faces of H is not unique if H
is not biconnected. For Facial-Constrained Core Planarity, this is not
an issue, as it is enough that the vertices belonging to the pairs in W share a
face. Note that, if we were able to also control these orders, we could provide an
algorithm for Sefe when one of the two graphs is biconnected, which would be
a significant step ahead for this problem. We recall that an efficient algorithm
for this case would imply an efficient algorithm for all the instances in which the
common graph is connected (and no restriction on the two input graphs) [4].

4.2 Detailed Description of the Algorithm

Let T be the SPQR-tree of G, rooted at a Q-node ρ. First, we compute for
each node μ ∈ T , whether μ is traversable or not. We traverse T bottom-up to
compute for each node μ whether there exists a path composed of edges of H
between the poles of μ in Gpert

μ , using the same information computed for its
children. Then, with a top-down traversal, we search for the path in G \ Gpert

μ ,
using the information computed in the first traversal; see also [5].

The main part of our algorithm consists of a bottom-up traversal of T . For a
node μ ∈ T , let 〈x1, y1〉, . . . , 〈xk, yk〉 be all pairs of W such that xi ∈ Gpert

μ and
yi /∈ Gpert

μ . We denote by B1
μ, . . . , Bq

μ the bags of μ and by Bμ its special bag;
these bags determine a partition of the vertices x1, . . . , xk that are required to
be on the outer face of Hpert

μ by R.2. The vertices of each bag Bi
μ = 〈Si

μ, T i
μ〉

are partitioned into its two pockets Si
μ and T i

μ; all vertices of Si
μ must lie in the

same face of H, either f l
μ or fr

μ, while all those of T i
μ must lie on the other face.

We first describe an operation, called merge-bags , to modify the bags of
a node μ so to satisfy the constraints that may be imposed by R.1 when there
exists a pair 〈x, y〉 ∈ W such that x, y ∈ Gpert

μ . Refer to Figs. 2a–2b. In particular,
if at least one of x and y belongs to the special bag Bμ (see 〈x4, x6〉 in Fig. 2),
or if x and y belong to the same pocket of a bag Bi

μ, then we do not modify any
bag. If x ∈ Si

μ and y ∈ T i
μ, for some 1 ≤ i ≤ q, or vice versa, then we declare

the instance negative. Otherwise, we have x ∈ Bi
μ and y ∈ Bj

μ, for some i �= j,
and we merge Bi

μ and Bj
μ into a single bag Bμ = 〈Sμ, Tμ〉, i.e., we merge into Sμ

the pockets of Bi
μ and Bj

μ containing x and y, respectively, and we merge into
Tμ the other two pockets; see 〈x2, x5〉 in Fig. 2. We remove 〈x, y〉 from W and,
if there is no other pair in W containing x (resp., y), we remove it from its bag.

At each step, we consider a node μ, with poles u and v, and children
ν1, . . . , νh. We denote by ei, for i = 1, . . . , h, the virtual edge of Gskel

μ corre-
sponding to νi.

Suppose that µ is a Q-node. If any of the two poles of μ belongs to
{x1, . . . , xk}, then we add it to Bμ, independently of whether μ is traversable or
not.
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Fig. 2. (a) The bags of a node µ and two pairs 〈x2, x5〉, 〈x4, x6〉 ∈ W (orange curves).
(b) The bags of µ after operation merge-bags. Pair 〈x2, x5〉 merged two bags, while
〈x4, x6〉 did not modify any bag, since x4 ∈ Bµ. (c) Initialization of the bags of an S-
node µ. (d) The bags of µ after merge-bags. The instance is negative, as pair 〈x1, x5〉
is such that x1 ∈ S1

µ and x5 ∈ T 1
µ . (Color figure online)

Suppose that µ is an S-node. We initialize Bμ = Bν1 ∪· · ·∪Bνh
. Note that if μ

is traversable, then all of its children are traversable. So, in this case, we already
have that all vertices x1, . . . , xk are in Bμ. Further, if μ is non-traversable, we
add to the set of bags of μ all the non-special bags of its children; see Fig. 2c.
Finally, as long as there exists a pair 〈x, y〉 ∈ W such that both x and y belong to
Gpert

μ , we apply operation merge-bags to 〈x, y〉. This may result in uncovering
a negative instance, but only when μ is non-traversable. See Fig. 2d.

Suppose that µ is an R-node. See Fig. 3a. Let Hskel
μ be the graph composed

of the vertices of Gskel
μ and of the virtual edges corresponding to non-traversable

children of μ, plus ref(μ) if μ is non-traversable; see Fig. 3b. Let Hskel
μ be the

restriction of the unique planar embedding of Gskel
μ to Hskel

μ . Note that, for each
traversable child νi of μ, virtual edge ei is contained in one face fνi

of Hskel
μ ;

in Fig. 3b, (w4, w6) is contained in face {w3, w4, w5, w6}. For a non-traversable
child νi, denote by f1

νi
and f2

νi
the two faces of Hskel

μ virtual edge ei is incident
to. For a vertex x ∈ V that is not in Gskel

μ , we denote by eμ(x) either the virtual
edge ei, if x ∈ Gpert

νi
, or the reference edge ref(μ), if x ∈ G \ Gpert

μ .
Suppose that μ is non-traversable (i.e., ref(μ) ∈ Hskel

μ ); see Fig. 3c. Let f l
μ

and fr
μ be the two faces of Hskel

μ incident to ref(μ). Any other virtual edge ei of
Hskel

μ such that {f1
νi

, f2
νi

} = {f l
μ, fr

μ} is 2-sided ; see (w2, w3), (v, w6) in Fig. 3c.
We consider each pair 〈x, y〉 ∈ W such that x ∈ Gpert

νi
and y /∈ Gpert

νi
. Let

ex = eμ(x) and ey = eμ(y). A necessary condition for R.1 and R.2 is that ey is
either contained in or incident to face fνi

(if νi is traversable) or one of f1
νi

and
f2

νi
(if νi is non-traversable). Otherwise, we declare the instance negative.
Another constraint imposed by this pair is the following. Suppose that x

belongs to a pocket, say Sνi
, of a bag Bνi

of νi (this can only happen if νi
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Fig. 3. (a) Graph Gpert
µ when µ is a non-traversable R-node. (b) Graph Hskel

µ (solid)
and the traversable children (dashed) of µ. (c) Blue (green) pockets are associated with
fr
µ (f l

µ). Red pockets are not associated. Gray pockets belong to 2-sided children, but
are associated with fr

µ and f l
µ. (d) The bags of µ. (Color figure online)

is non-traversable). If ex and ey share exactly one face, say f1
νi

, then all pairs
〈x′, y′〉 ∈ W with x′ ∈ Sνi

must be such that eμ(y′) is either contained in or
incident to fν1 ; also, all the pairs 〈x′′, y′′〉 ∈ W with x′′ ∈ Tνi

must be such that
eμ(y′′) is either contained in or incident to fν2 . This is due to the fact all the
vertices in the same pocket must be incident to the same face of Hskel

μ . So, if this
is not the case, we declare the instance negative. Otherwise, we associate Sνi

with f1
νi

and Tνi
with f2

νi
. If ex and ey share both faces f1

νi
and f2

νi
, instead, we

have to postpone the association of Sνi
and Tνi

, as at this point we cannot make
a unique choice. Note that an association for these pockets may be performed
later, due to another pair of W . Suppose now that x belongs to the special bag
Bνi

of νi. Then, we associate Bνi
to either fνi

, if νi is traversable, or to both f1
νi

and f2
νi

, if it is non-traversable. This completes the process of pair 〈x, y〉.
Once all children ν1, . . . , νh of μ have been considered, there may still exist

pockets that are not associated. Let Sνi
be one of such pockets, and consider

each pair 〈x, y〉 ∈ W such that x ∈ Sνi
. Note that eμ(x) shares both faces f1

νi

and f2
νi

with eμ(y). If y belongs to a pocket, say Tνj
, that is associated with

one of f1
νi

and f2
νi

, say f1
νi

, then we associate Sνi
with f1

νi
and Tνi

with f2
νi

. In
fact, the association of Tνj

with f1
νi

implies that y will be incident to f1
νi

in any
embedding of G that is a solution for 〈G,W 〉. If two pairs determine different
associations for Sνi

and Tνi
, we declare the instance negative.

We repeat this process as long as there exist pockets that can be associated.
This does not necessarily result in an association for all pockets. Consider any
of the remaining pockets Sνi

. If νi is not 2-sided, then we associate Sνi
with f1

νi

and Tνi
with f2

νi
, since the effect of this association is limited to Gpert

μ and not
to G\Gpert

μ . Then, we propagate this association to other pockets by performing
the procedure described above. We repeat this process until the only pockets
that are not associated, if any, belong to bags of 2-sided children of μ.
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Based on the association of ν1, . . . , νh with the faces of Hskel
μ , we determine

the bags of μ; see Fig. 3d. The special bag Bμ of μ contains the poles of μ, if
they belong to {x1, . . . , xk}, and the union of the special bags of the 2-sided
children of μ. Next, we create a bag Bμ = 〈Sμ, Tμ〉, such that Sμ and Tμ contain
all the vertices of the pockets associated with f l

μ and fr
μ, respectively. Finally,

we add to the set of bags of μ the non-special bags of the 2-sided children of μ
whose pockets have not been associated with any face of Hskel

μ (this allows us to
postpone their association). Then, we apply operation merge-bags to all pairs
〈x, y〉 ∈ W such that both x and y belong to Gpert

μ in order to merge the bags
of different 2-sided children of μ (again this may result in uncovering a negative
instance). This completes the case in which μ is non-traversable.

In the simpler case in which μ is traversable, reference edge ref(μ) /∈ Hskel
μ ;

hence f l
μ and fr

μ do not exist, and none of the children of μ is 2-sided. This implies
that performing all the operations described above results in an association of
each pocket and of each special bag of the children of μ with some face of Hskel

μ .
Recall that, since μ is traversable, μ has only its special bag Bμ. We add to Bμ

all the vertices of the pockets and of the special bags that have been associated
with the outer face of Hskel

μ . This concludes the R-node case.

Suppose that µ is a P-node. See Fig. 4. We distinguish three cases, based on
whether μ has (i) zero, (ii) one, or (iii) more than one non-traversable child.

In Case (i), we have that μ is traversable. So, it has only its special bag Bμ, in
which we add all the vertices of the special bags of its children. Since all virtual
edges in Gskel

μ are incident to the same face of Hpert
μ , R.1 and R.2 are satisfied.

Fig. 4. The case in which µ is a P-node with: (a-b) one, and (c-e) more than one non-
traversable children. The color-scheme of this figure follows the one of Fig. 3 (Color
figure online)

In Case (ii), let ν1 be the non-traversable child of μ; see Fig. 4a. In this case,
μ is non-traversable, since the path of G \ Gpert

ν1
composed of edges of H also

belongs to G \ Gpert
μ . We initialize the set of bags of μ to the one of ν1. For each

traversable child νi, with i = 2, . . . , h, we add to μ a new bag Bi
μ, where Si

μ

contains all the vertices in Bνi
, while T i

μ is empty; see Fig. 4b. This represents
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the fact that all the vertices in Gpert
νi

must lie on the same side of the cycle
passing through Gpert

ν1
and G \ Gpert

μ to satisfy R.2. Finally, we apply operation
merge-bags to all pairs 〈x, y〉 ∈ W such that both x and y belong to Gpert

μ .
Finally, we consider Case (iii), in which μ has more than one non-traversable

child; see Figs. 4c–e. We construct an auxiliary graph Gaux with a vertex vi

for each child νi of μ, which is colored black if νi is non-traversable and white
otherwise. Graph Gaux also has a vertex v corresponding to ref(μ), which is
colored black if μ is non-traversable and white otherwise. Then, we consider
every pair 〈x, y〉 ∈ W such that x ∈ Gpert

νi
, for some child νi of μ. If y ∈ Gpert

νj
,

for some j �= i, then we add edge (vi, vj) to Gaux, while if y ∈ G \ Gpert
μ , then

we add edge (vi, v) to Gaux. If Gaux has multiple copies of an edge, we keep
only one of them. We assume w.l.o.g. that no two white vertices are adjacent in
Gaux, as otherwise we could contract them to a new white vertex. In fact, the
virtual edges representing traversable children of μ corresponding to adjacent
white vertices must be contained in the same face of Hpert

μ , due to R.1.
If a white vertex w of Gaux has more than two black neighbors, we declare the

instance negative, as the virtual edge of the traversable child of μ corresponding
to w should share a face in Hpert

μ with more than two virtual edges representing
non-traversable children of μ. If w has at most one black neighbor, we remove w
from Gaux. Finally, if w has exactly two black neighbors b and b′, then we remove
w and we add edge (b, b′) to Gaux (if not present). Once we have considered all
white vertices, the resulting graph Gaux has only black vertices.

We check whether Gaux is either a cycle through all its vertices or a set
of paths (some of which may consist of single vertices). The necessity of this
condition can be proved similar to [6]. The only difference is in the edges between
black vertices that are introduced due to degree-2 white vertices. Let (b, b′) be
one of such edges and let w be the white vertex that was adjacent to b and
b′. Also, let eb, eb′ , and ew be the virtual edges representing the children of μ
(or virtual edge ref(μ), if μ is non-traversable) corresponding to b, b′, and w,
respectively. Then, eb and eb′ must share a face in Hpert

μ , and this face must
contain ew, due to R.1 and R.2. If the above condition on Gaux is not satisfied,
then we declare the instance negative; otherwise, we fix an order of the black
vertices of Gaux based either on the cycle or on an arbitrary order of the paths.

We now construct graph Hskel
μ in the same way as for the R-node. Since the

order of the black vertices of Gaux induces an order of the virtual edges of Hskel
μ ,

the embedding Hskel
μ of Hskel

μ is fixed. We will again use Hskel
μ to either determine

whether the instance is negative or to construct the bags of μ.
The case in which μ is traversable is identical to the R-node case. When μ is

non-traversable, we have ref(μ) ∈ Hskel
μ , and thus there exist the two faces f l

μ and
fr

μ incident to ref(μ). However, since μ has at least two non-traversable children,
every two virtual edges share at most one face, and thus no child is 2-sided.

We now consider each traversable child νi of μ. Contrary to the R-node
case, the face of Hskel

μ in which νi is contained is not necessarily defined, as the
embedding of Gskel

μ is not unique. Recall that νi corresponds to a white vertex vi

of Gaux. If vi has exactly two black neighbors, then they must be connected by
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an edge in Gaux after the removal of vi. So, they are consecutive in the order of
the black vertices that we used to construct Hskel

μ . Thus, the two virtual edges of
Hskel

μ corresponding to them share a face in Hskel
μ , and we say that ei is contained

in this particular face. If vi has exactly one black neighbor in Gaux, then ei may
be contained in any of the two faces of Hskel

μ incident to the virtual edge e
corresponding to this black vertex. However, we cannot make a choice at this
stage, as this may depend on other pairs whose vertices belong to the subgraph
of G represented by e (that is, Gpert

νj
, if e = ej , for some 1 ≤ j ≤ h, and G\Gpert

μ ,
if e = ref(μ)). If e = ej , then we add a new bag Bνj

to the child νj of μ, so that
Sνj

contains all the vertices of the special bag of νi, while Tνj
is empty. The

association of Sνj
with one of the two faces incident to ej , to be performed later,

will determine the face in which ei is contained. In the case in which e = ref(μ),
virtual edge ei should be contained either in f l

μ or in fr
μ, but again we cannot

determine which of the two. Furthermore, we cannot even delegate this choice
to the association of the pockets, since ref(μ) does not correspond to a child of
μ. Thus, we do not associate it to any face, but we will use it to create the bags
of μ. Finally, when vi has no black neighbors, its special bag is empty.

Once all traversable children have been considered, we associate the special
bags and the pockets of the non-special bags with the faces of Hskel

μ , as in the
R-node case. Then, we construct the bags of μ. We add the poles of μ to its
special bag, if they belong to {x1, . . . , xk}. As in the R-node case, we add to μ a
bag Bμ, whose pockets Sμ and Tμ have all the vertices of the special bags and of
the pockets associated with f l

μ and fr
μ, respectively. Finally, for each traversable

child νi of μ that has not been associated, we add a new bag Bi
μ so that Si

μ

contains all the vertices of the special bag of νi, while T i
μ is empty. Finally, we

apply operation merge-bags to all pairs 〈x, y〉 ∈ W such that both x and y
belong to Gpert

μ . Hence, R.1 and R.2 are satisfied by any embedding Gpert
μ of Gpert

μ

that is described by the bags of μ. This concludes the P-node case.
At the end of the traversal, if root ρ has been visited without declaring the

instance negative, the fact that Gpert
ρ = G admits a planar embedding satis-

fying R.1 implies that 〈G,W 〉 is a positive instance. We summarize the above
discussion in the following theorem; for details refer to [1].

Theorem 4. Problem Hierarchical Partial Planarity can be solved in
O(|V |3 · |Et|) time for instances G = (V,Ep ∪ Es ∪ Et) such that the graph
induced by the edges in Ep ∪ Es is biconnected.

5 Open Problems

The main open problem raised by our work is to determine the complexity in
the general case, where the biconnectivity restriction is relaxed. It is also of
interest to broaden the study towards the case in which there exist more than
three levels of importance for the edges. As a first step, one could consider the
case in which there are four levels and the first two form a biconnected graph.
Finally, the relationship with Sefe should be further investigated to understand
whether our techniques can be applied to solve some of its open cases.
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Abstract. A graph is k-planar (k ≥ 1) if it can be drawn in the plane
such that no edge is crossed k + 1 times or more. A graph is k-quasi-
planar (k ≥ 2) if it can be drawn in the plane with no k pairwise crossing
edges. The families of k-planar and k-quasi-planar graphs have been
widely studied in the literature, and several bounds have been proven on
their edge density. Nonetheless, only trivial results are known about the
relationship between these two graph families. In this paper we prove
that, for k ≥ 3, every k-planar graph is (k + 1)-quasi-planar.

1 Introduction

Drawings of graphs are used in a variety of application domains, including soft-
ware engineering, circuit design, computer networks, database design, social sci-
ences, and biology (see e.g. [16,17,27,30,41,43]). The aim of graph visualizations
is to clearly convey the structure of the data and their relationships, in order
to support users in their analysis tasks. In this respect, and independent of the
specific domain, there is a general consensus that graph layouts with many edge
crossings are hard to read, as also witnessed by several user studies on the sub-
ject (see e.g. [26,38,39,46]). This motivation has generated lots of research on
finding bounds on the number of edge crossings in different graph families (see
e.g. [37,40,45]) and on the problem of automatically computing graph layouts
with as few crossings as possible (see e.g. [5,13]). We recall that, although it is
linear-time solvable to decide whether a graph admits a planar drawing (i.e. a
drawing without edge crossings) [11,25], minimizing the number of edge crossings
is a well-known NP-hard problem [22].
c© Springer International Publishing AG 2017
H.L. Bodlaender and G.J. Woeginger (Eds.): WG 2017, LNCS 10520, pp. 59–74, 2017.
https://doi.org/10.1007/978-3-319-68705-6_5
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(a) (b) (c) (d)

Fig. 1. (a) A crossing configuration that is forbidden in a 3-planar topological graph.
(b) A 3-planar topological graph. (c) A crossing configuration that is forbidden in a
4-quasi-planar topological graph. (d) A 4-quasi-planar topological graph obtained from
the one of Figure (b) by suitably rerouting the thick edge.

An emerging research area, informally recognized as beyond planarity (see
e.g. [24,28,31]), concentrates on different models of graph planarity relaxations,
which allow edge crossings but forbid specific configurations that would affect
the readability of the drawing too much. Forbidden crossing configurations can
be, for example, a single edge that is crossed too many times [36], a group of
mutually crossing edges [21,42], two edges that cross at a sharp angle [18], a
group of adjacent edges crossed by another edge [15], or an edge that crosses
two independent edges [6,10,29]. Different models give rise to different families
of “beyond planar” graphs. Two of the most popular families introduced in this
context are the k-planar graphs and the k-quasi-planar graphs, which are usually
defined in terms of topological graphs, i.e., graphs with a geometric representation
in the plane with vertices as points and edges as Jordan arcs connecting their
endpoints. A topological graph is k-planar (k ≥ 1) if no edge is crossed k + 1
times or more, while it is k-quasi-planar (k ≥ 2) if it can be drawn in the
plane with no k pairwise crossing edges. Figure 1a shows a crossing configuration
that is forbidden in a 3-planar topological graph. Figure 1b depicts a 3-planar
topological graph that is not 2-planar (e.g., the thick edge is crossed three times).
Figure 1c shows a crossing configuration that is forbidden in a 4-quasi-planar
topological graph. Figure 1d depicts a 4-quasi-planar topological graph that is
not 3-quasi-planar. A graph is k-planar (k-quasi-planar) if it is isomorphic to
some k-planar (k-quasi-planar) topological graph. Clearly, by definition, k-planar
graphs are also (k + 1)-planar and k-quasi-planar graphs are also (k + 1)-quasi-
planar. This naturally defines a hierarchy of k-planarity and a hierarchy of k-
quasi-planarity. Also, the class of 2-quasi-planar graphs coincides with that of
planar graphs. Note that 3-quasi-planar graphs are also called quasi-planar.

The k-planarity and k-quasi-planarity hierarchies have been widely explored
in graph theory, graph drawing, and computational geometry, mostly in terms
of edge density. Pach and Tóth [36] proved that a k-planar simple topological
graph with n vertices has at most 1.408

√
kn edges. We recall that a topological

graph is simple if any two edges cross in at most one point and no two adjacent
edges cross. For k ≤ 4, Pach and Tóth [36] also established a finer bound of
(k + 3)(n − 2) on the edge density, and prove its tightness for k ≤ 2. For k = 3,
the best known upper bound on the edge density is 5.5n − 11, which is tight
up to an additive constant [7,34].
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Concerning k-quasi-planar graphs, a 20-year-old conjecture by Pach et al. [35]
asserts that, for every fixed k, the maximum number of edges in a k-quasi-planar
graph with n vertices is O(n). However, linear upper bounds have been proven
only for k ≤ 4. Agarwal et al. [3] were the first to prove that 3-quasi-planar
simple topological graphs have a linear number of edges. This was generalized
by Pach et al. [33], who proved that all 3-quasi-planar graphs on n vertices have
at most 65n edges. This bound was further improved to 8n−O(1) by Ackerman
and Tardos [2]. For 3-quasi-planar simple topological graphs they also proved
a bound of 6.5n − 20, which is tight up to an additive constant. Ackerman [1]
also proved that 4-quasi-planar graphs have at most a linear number of edges.
For k ≥ 5, several authors have shown super-linear upper bounds on the edge
density of k-quasi-planar graphs (see, e.g., [14,20,21,35,44]). The most recent
results are due to Suk and Walczak [42], who proved that any k-quasi-planar
simple topological graph on n vertices has at most ckn log n edges, where ck is a
number that depends only on k. For k-quasi-planar topological graphs where two
edges can cross in at most t points, they give an upper bound of 2α(n)cn log n,
where α(n) is the inverse of the Ackermann function, and c depends only on k
and t.

Despite the many papers mentioned above, the relationships between the
hierarchies of k-planar and k-quasi-planar graphs have not been studied yet and
only trivial results are known. For example, due to the tight bounds on the
edge density of 3-planar and 3-quasi-planar simple graphs, it is immediate to
conclude that there are infinitely many 3-quasi-planar graphs that are not 3-
planar. Also, it can be easily observed that, for k ≥ 1, every k-planar graph
is (k + 2)-quasi-planar. Indeed, if a k-planar graph G were not (k + 2)-quasi-
planar, any topological graph isomorphic to G would contain k + 2 pairwise
crossing edges; but this would imply that any of these edges is crossed at least
k + 1 times, thus contradicting the hypothesis that G is k-planar.

Contribution. In this paper we focus on simple topological graphs and prove
the first non-trivial inclusion relationship between the k-planarity and the k-
quasi-planarity hierarchies. We show that every k-planar graph is (k + 1)-quasi-
planar, for every k ≥ 3. In other words, we show that every k-planar simple
topological graph can be redrawn to become a (k +1)-quasi-planar simple topo-
logical graph (k ≥ 3). For example, the simple topological graph of Fig. 1b is
3-planar but not 4-quasi-planar. The simple topological graph of Fig. 1d, on
the other hand, is a 4-quasi-planar graph obtained from the one of Fig. 1b by
rerouting an edge (but it is no longer 3-planar).

The proof of our result is based on the following novel methods: (i) A gen-
eral purpose technique to “untangle” groups of mutually crossing edges. More
precisely, we show how to reroute the edges of a k-planar topological graph in
such a way that all vertices of a set of k + 1 pairwise crossing edges lie in the
same face of their arrangement. (ii) A global edge rerouting technique, based
on a matching argument, used to remove all forbidden configurations of k + 1
pairwise crossing edges from a k-planar simple topological graph, provided that
these edges are “untangled”.
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The remainder of the paper is structured as follows. In Sect. 2 we give some
basic terminology and observations that will be used throughout the paper.
Section 3 describes our general proof strategy. Sections 4 and 5 provide details
about methods (i) and (ii), respectively. Conclusions and open problems are in
Sect. 6. Some proofs and technicalities are omitted in this extended abstract and
can be found in [4].

2 Preliminaries

We only consider graphs with no parallel edges no self-loops. Also, we will
assume our graphs to be connected, as our results immediately carry over to
disconnected graphs. A topological graph G is a graph drawn in the plane with
vertices represented by points and edges represented by Jordan arcs connecting
the corresponding endpoints. In notation and terminology, we do not distinguish
between the vertices and edges of a graph, and the points and arcs representing
them, respectively. Two edges cross if they share one interior point and alternate
around this point. A topological graph is almost simple if any two edges cross
at most once. An almost simple topological graph, such that no two adjacent
edges cross each other, is called simple. A topological graph divides the plane
into topologically connected regions, called faces. The unbounded region is the
outer face. Note that the boundary of a face can contain vertices of the graph
and crossing points between edges.

If G and G′ are two isomorphic graphs, we write G � G′. A graph G′ is
k-planar (k-quasi-planar) if there exists a k-planar (k-quasi-planar) topological
graph G � G′.

Given a subgraph X of a graph G, the arrangement of X, denoted by AX , is
the arrangement of the curves corresponding to the edges of X. We denote the
vertices and edges of X by V (X) and E(X), respectively. A node of AX is either
a vertex or a crossing point of X. A segment of AX is a part of an edge of X that
connects two nodes, i.e., a maximal uncrossed part of an edge of X. A fan is a
set of edges that share a common endpoint. A set of k vertex-disjoint mutually
crossing edges in a topological graph G is called a k-crossing. A k-crossing X
is untangled if all nodes corresponding to vertices in V (X) are incident to a

Fig. 2. (a) An untangled 3-crossing; all vertices belong to the same face of the arrange-
ment (the outer face). (b) A tangled 3-crossing; the circled vertices and the solid vertices
belong to distinct faces of the arrangement.
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common face of the arrangement AX of X. Else, it is tangled. For example, the
3-crossing in Fig. 2a is untangled, whereas the 3-crossing in Fig. 2b is tangled.
Note that each edge in a (k+1)-crossing X crosses each of the remaining k edges
in E(X), hence the next observation easily follows.

Observation 1. Let G = (V,E) be a k-planar simple topological graph and let
X be a (k + 1)-crossing in G. An edge in E(X) cannot be crossed by any other
edge in E \ E(X). In particular, for any two (k + 1)-crossings X �= Y in G,
E(X) ∩ E(Y ) = ∅ holds.

3 Edge Rerouting Operations and Proof Strategy

We introduce an edge rerouting operation that will be a basic tool for our proof
strategy. Let G be a k-planar simple topological graph and consider an untangled
(k + 1)-crossing X in G. Without loss of generality, the vertices in V (X) lie in
the outer face of AX .

Let e = {u, v} ∈ E(X) and let w ∈ V (X) \ {u, v}. Let A′
X denote the

arrangement obtained from AX by removing all nodes corresponding to vertices
in V (X) \ {u, v, w}, together with their incident segments, and by removing the
edge (u, v). The operation of rerouting e = {u, v} around w consists of redrawing
e sufficiently close to the boundary of the outer face of A′

X , choosing the routing
that passes close to w, in such a way that e crosses the fan incident to w, but
not any other edge in E \ E(X). See Fig. 3b for an illustration. More precisely,
let D be a topological disk that encloses all crossing points of X and such that
each edge in E(X) crosses the boundary of D exactly twice. Then, the rerouted
edge keeps unchanged the parts of e that go from u to the boundary of D and
from v to the boundary of D. We call the unchanged parts of a rerouted edge
its tips and the remaining part, which routes around w, its hook.

Fig. 3. The rerouting operation for dissolving untangled (k+1)-crossings. (a) An untan-
gled (k+1)-crossing X. (b) The rerouting of the dashed edge (u, v) around the marked
vertex w. The arrangement A′

X is thin red, the removed nodes and segments are gray.
Note that the dashed curve is part of A′

X . (Color figure online)

Lemma 1. Let G be a k-planar simple topological graph and let X be an untan-
gled (k + 1)-crossing in G. Let G′ � G be the topological graph obtained from G
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by rerouting an edge e = {u, v} ∈ E(X) around a vertex w ∈ V (X) \ {u, v}. Let
d be the edge of E(X) incident to w. Graph G′ has the following properties: (i)
Edges e and d do not cross; (ii) The edges that are crossed by e in G′ but not in
G form a fan at w; (iii) G′ is almost simple.

Proof. Conditions (i) and (ii) immediately follow from the definition of the
rerouting operation and from the fact that edge e can be drawn arbitrarily close
to the boundary of the outer face of A′

X . Since G is simple, in order to prove that
G′ is almost simple, we only need to show that edge e does not cross any other
edge more than once. The only part of e that is drawn in G′ differently than in
G is the one between the intersection points of e and the boundary B(D) of the
topological disk D that (a) encloses all crossing points of X and such that (b)
each edge in E(X) crosses the boundary of D exactly twice. Since G is simple,
by (b) and by the definition of the rerouting operation, the two crossing points
between an edge e′ ∈ E(X) and B(D) alternate with the two crossing points
between any edge e′ �= e′′ ∈ E(X) and B(D) along B(D). Hence, by redraw-
ing edge e sufficiently close to any of the two parts of B(D) between the two
intersection points of edge e and B(D), we encounter each edge in E(X) \ {e}
exactly once. Thus, edge e crosses all the edges in E(X) \ {e, d} exactly once.
This concludes the proof. 
�

Lemma 1 does not guarantee that the graph G′ is simple. Indeed, if the edge
(u,w) or the edge (v, w) existed in G, then the rerouted edge e = (u, v) would
cross such an edge. We will show in Sect. 5 how to fix this problem by redrawing
(u,w) and (v, w).

We are now ready to describe our general strategy for transforming a k-
planar simple topological graph G into a simple topological graph G′ � G that
is (k + 1)-quasi-planar. The idea is to pick from each (k + 1)-crossing X in G
an edge eX and a vertex wX not adjacent to eX , and to apply the rerouting
operation simultaneously for all pairs (eX , wX), i.e., rerouting eX around wX .
This operation, which we call global rerouting, is well defined since the (k + 1)-
crossings are pairwise edge-disjoint by Observation 1.

There are however several constraints that have to be satisfied in order for
such a global rerouting to have the desired effect. First of all, as mentioned
above, the rerouting operation can only be applied to untangled (k+1)-crossings.
Thus, as a first step, we will show that, in a k-planar simple topological graph,
all tangled (k + 1)-crossings can be removed, leaving the resulting graph simple
and k-planar. More precisely, given a tangled (k + 1)-crossing X, it is possible
to redraw the whole graph so that either at least two edges of X do not cross or
X becomes an untangled (k +1)-crossing, and, furthermore, any two edges cross
only if they crossed before the redrawing. The technical details for this operation
are described in Sect. 4. Notice that, even assuming that all (k + 1)-crossings
are untangled, there are further problems that can occur when performing all
the rerouting operations independently of each other. Specifically, the resulting
topological graph G′ may be non-simple and/or the rerouting may create new
(k + 1)-crossings. We explain how to overcome these issues in Sect. 5.
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4 Removing Tangled (k + 1)-Crossings

The proof of the next lemma describes a technique to “untangle” all (k + 1)-
crossings in a k-planar simple topological graph. This technique is of general
interest, as it gives more insights into the structure of k-planar simple topological
graphs.

Lemma 2. Let G be a k-planar simple topological graph. There exists a k-planar
simple topological graph G′ � G without tangled (k + 1)-crossings.

Proof. We first show how to untangle a (k + 1)-crossing X in a k-planar simple
topological graph G by neither creating new (k + 1)-crossings nor introducing
new crossings.

Let X be a tangled (k +1)-crossing and let AX be its arrangement. For each
face f of AX , let Vf denote the subset of vertices of V (X) incident to f . Since
in X all vertices have degree 1, the sets Vf form a partition of V (X).

For each inner face f of AX , let Gf denote the subgraph of G consisting of the
vertices of Vf , and of the vertices and edges of G that lie in the interior of f . Refer
to Fig. 4a for an illustration. Since G is k-planar and X is a (k+1)-crossing, there
exists no crossing between a segment in Gf and a segment not in Gf . Therefore,
the boundary of f corresponds to the boundary of a topological disk Df so that
Gf is k-planarly embedded inside Df : only the vertices of Vf lie on the boundary
of Df . For the external face h, graph Gh consists of the vertices of Vh, and of
the vertices and edges of G that lie outside AX . In this case, the topological disk
Dh is obtained after a suitable inversion of Gh, if needed. We can rearrange and
deform each Df such that: (i) the vertices in V (X) lie on a common circle C;
(ii) for any two distinct faces f and g of AX , the topological disks Df and Dg

do not intersect; (iii) the interior of the circle C is empty. Then, the k +1 edges
of X are redrawn as straight-line segments inside C. This construction implies
that X is untangled (and some of its edges may not cross anymore). Also, each
subgraph Gf remains topologically equivalent to its initial drawing. Thus, two

Fig. 4. Illustration of the untangling procedure in the proof of Lemma 2: (a) A 3-planar
simple topological graph with a 4-crossing X (thicker edges). (b) The topological graph
resulting from the procedure that untangles X.
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edges cross after the transformation only if they crossed before, which ensures
that the resulting graph is simple and no new (k + 1)-crossing is created.

We apply the above transformation sequentially to each subgraph Gf of the
new topological graph until all (k + 1)-crossings are untangled. This concludes
the proof. 
�

An illustration of the untangling procedure described in the proof of Lemma2
is given in Fig. 4. Figure 4a shows an example of a 3-planar simple topological
graph G with a tangled 4-crossing X; the edges of X are thicker. Faces f , g,
and h are the three faces of AX whose union contains the vertices of V (X).
Subgraphs Gf , Gg, and Gh are schematically depicted. Figure 4b shows G after
the transformation that untangles X.

5 Removing Untangled (k + 1)-Crossings

Let G be a k-planar simple topological graph with k ≥ 3. By Lemma 2, we may
assume that G has no tangled (k + 1)-crossings. In Sect. 5.1, we show how to
transform G into a (possibly not almost simple) (k + 1)-quasi-planar topological
graph G′ � G. Then, in Sect. 5.2, we describe how to make G′ simple without
introducing (k + 1)-crossings.

5.1 Obtaining (k + 1)-Quasi-Planarity

We first show the existence of a global rerouting such that no two edges of
G are rerouted around the same vertex (Lemma 5). Then, we show that any
global rerouting of G with this property yields a topological graph G′ with no
(k + 1)-crossings (Lemma 9).

The existence of this global rerouting is proved by defining a bipartite graph
composed of the vertices of G and of its (k + 1)-crossings, and by showing that
a matching covering all the (k + 1)-crossings always exists. Let G be a k-planar
simple topological graph and let S be the set of (k+1)-crossings of G. We define
a bipartite graph H = (A∪B,E), where E ⊆ A×B, as follows. For each (k+1)-
crossing X ∈ S, the set A contains a vertex v(X) and the set B contains the
endpoints of E(X) (that is, B =

⋃
X∈S V (X)). Also, the set E contains an edge

between a vertex v(X) ∈ A and a vertex v ∈ B if and only if v ∈ V (X). A
matching from A into B is a set M ⊆ E such that each vertex in A is incident
to exactly one edge in M and each vertex in B is incident to at most one edge
in M . For a subset A′ ⊆ A, let N(A′) denote the set of all vertices in B that
are adjacent to a vertex in A′. We recall that, by Hall’s theorem, graph H has
a matching from A into B if and only if |N(A′)| ≥ |A′| for each set A′ ⊆ A. We
have the following (the proof is omitted).

Lemma 3. The graph H = (A ∪ B,E) is a simple bipartite planar graph. Also,
each vertex in A has degree 2k + 2.

Lemma 4. The graph H = (A ∪ B,E) has a matching from A into B.
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Proof. Let A′ ⊆ A and let H ′ be the subgraph of H induced by A′∪N(A′). Since
the vertices in A have degree 2k+2, by Lemma 3, we have |E(H ′)| = (2k+2)|A′|.
Also, since H (and thus H ′) is bipartite planar, by Lemma3, we have |E(H ′)| ≤
2(|A′| + N(A′)) − 4 [32, Corollary 1.2]. Thus, |N(A′)| ≥ k|A′| + 2 > |A′|, and
Hall’s theorem applies. 
�
Lemma 5. Let G be a k-planar simple topological graph. It is possible to perform
a global rerouting on G such that no two edges are rerouted around the same
vertex.

Proof. Let S = {X1,X2, . . . , Xh}, with h > 0, be the set of (k + 1)-crossings
of G. By Lemma 4, it is possible to assign a vertex vi ∈ V (Xi) to each (k + 1)-
crossing Xi in such a way that no two distinct (k +1)-crossings are assigned the
same vertex. The statement follows by considering a global rerouting such that,
for each (k+1)-crossing Xi, any edge in Xi not incident to vi is rerouted around
vi. 
�

Let G′ be a topological graph obtained from G by performing a global rerout-
ing as in Lemma 5. We prove that G′ has no (k + 1)-crossings. To this aim, we
first give some important structural insights for G′ (Lemmas 6–8).

Lemma 6. Let e and d be two edges that cross in G′ but not in G. Then, one
of e and d has been rerouted around an endpoint of the other.

Proof. Since e and d do not cross in G, we may assume that one of them, say e,
has been rerouted. Suppose first that the hook of e crosses d. We claim that e has
been rerouted around an endpoint of d. In fact, if d has not been rerouted, then
the claim is trivially true; see Fig. 5b. On the other hand, if d has been rerouted,
then the crossing with e must be on a tip of d, and not on its hook, since no two
edges have been rerouted around the same vertex in the global rerouting; see
Fig. 5c. Thus, the claim follows. Suppose now that a tip of e crosses d. Then, this
crossing must be with the hook of d, and the same argument applies to prove
that d has been rerouted around an endpoint of e. 
�

Fig. 5. (a) Two edges rerouted around the same vertex. (b)–(c) Different cases of edges
that do not cross before a global rerouting operation but cross afterwards. The vertices
used for rerouting are filled green. (d) A 3-crossing arising from redrawing three edges.
(Color figure online)
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The next two lemmas can be proved by using Lemma 6.

Lemma 7. Every non-rerouted edge e is crossed by at most three rerouted edges
in G′. Further, if e is crossed by exactly three rerouted edges, then two of them
have been rerouted around distinct endpoints of e.

Lemma 8. If G′ contains a (k + 1)-crossing X ′, then X ′ contains at most one
edge that has not been rerouted.

Altogether the above lemmas can be used to prove the following.

Lemma 9. Graph G′ does not contain any (k + 1)-crossing.

Proof. Assume for a contradiction that G′ contains a (k + 1)-crossing X ′. By
Lemma 8, X ′ contains at most one non-rerouted edge.

Suppose that X ′ contains such an edge e. By Lemma 7, there are at most
three rerouted edges crossing e in G′. Since k ≥ 3, there are exactly three such
rerouted edges, say d, h, and l. By Lemma 7, two of them, say d and h, have
been rerouted around (distinct) endpoints of e. Thus, d and h do not cross in
G, by Observation 1, as they belong to different (k + 1)-crossings. Hence, they
can cross in G′ only if one of them has been rerouted around an endpoint of
the other, by Lemma 6. This is not possible as d and h, belonging to the same
(k + 1)-crossing in G, do not share an endpoint.

Suppose that X ′ contains only rerouted edges. Let e be any edge of X ′ and
let w be the vertex used for rerouting e. Since at most one edge in X ′ can be
incident to w and since k ≥ 3, there are two edges d, h in X ′ that have been
rerouted around distinct endpoints of e. As in the previous case, we can prove
that d and h do not cross. 
�

For k = 2, Lemma 9 does not hold, as some 3-crossings may still appear
after the global rerouting; see Fig. 5d for an illustration and refer to Sect. 6 for
a discussion.

5.2 Obtaining Simplicity

Lemmas 2, 5, and 9 imply that, for k ≥ 3, any k-planar simple topological graph
G can be redrawn so that the resulting topological graph G′ � G contains no
(k+1)-crossings and no two edges are rerouted around the same vertex. However,
the graph G′ may not be simple or even almost simple. We first show how to
remove pairs of edges crossing more than once from G′, without introducing
(k + 1)-crossings, thus leading to a (k + 1)-quasi-planar almost-simple graph
(Lemma 11). Then we show how to remove crossings between edges incident to a
common vertex, still without introducing (k + 1)-crossings (Lemma 12). We will
use the following auxiliary lemma.

Lemma 10. The graph G′ is almost-simple if and only if there is no pair of
edges such that either of them is rerouted around an endpoint of the other.
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Fig. 6. (a) A double crossing between two edges e, d, due to a global rerouting. (b)
Solving the configuration in (a) by redrawing e. (c) Edges crossing e after the trans-
formation.

Lemma 11. There is a (k + 1)-quasi-planar almost simple topological graph
G∗ � G′.

Proof. We assume that G′ is not almost simple, as otherwise the statement would
follow with G∗ = G′. By Lemma 10, there exist pairs of edges in which each of
the two edges has been rerouted around an endpoint of the other; see Fig. 6a.
For each such pair e, d, we remove the two crossings by redrawing one of the
two edges, say e, by following d between the two crossings. More precisely, we
redraw the tip of e crossed by the hook of d by following the tip of d crossed by
the hook of e, without crossing it; see Fig. 6b. In the following we prove that the
graph G∗ obtained by applying this operation for all the pairs does not contain
new (k + 1)-crossings and is almost simple.

Observe first that each edge tip is involved in at most one pair, since no
two edges are rerouted around the same vertex. Thus, no tip of an edge is
transformed twice in G∗ and no two tips of transformed edges cross each other.
Also, a transformed edge can participate to a (k+1)-crossing in G∗ only through
its tips. Hence, any (k+1)-crossing in G∗ would contain exactly one transformed
edge. We prove that this is not possible.

Let e be an edge that has been redrawn due to a double crossing with an
edge d, and let Xe and Xd be the (k + 1)-crossings of G containing e and d,
respectively. The edges crossing e in G∗ are (see Fig. 6c): (i) a set X ′

d of edges
in Xd crossing the tip of d that has been used to redraw e; (ii) a set X ′

e of edges
in Xe crossing the tip of e not crossed by d; (iii) a set Ew of edges incident to
the vertex w around which e has been rerouted (and thus they cross the hook of
e). Note that X ′

d contains all the edges that cross e in G∗ and not in G′. These
edges do not cross those in X ′

e, since they are non-rerouted edges belonging to
distinct (k + 1)-crossings of G. Also, they do not cross edges in Ew, since Xd

does not contain any edge incident to w other than d. Finally, there are at most
k − 1 edges in X ′

d, since Xd contains k +1 edges and at least two of them do not
cross e, namely d and the edge incident to the endpoint of e around which d has
been rerouted. Thus, the edges in X ′

d are not involved in any (k + 1)-crossing
with e. To see that the same holds for the edges in X ′

e and in Ew, note that
any (k + 1)-crossing in G∗ involving these edges and e would also appear in G′

(because the tip of e crossed by X ′
e has not been transformed), which is however

(k + 1)-quasi-planar.
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To prove that G∗ is almost simple, we show that any edge d′ in X ′
d is crossed

only once by e. Recall that d′ does not cross e in G′. Also, since each tip is
involved in at most one transformation, d′ crosses the tip of d (and hence the
tip of e that has been redrawn) only once. On the other hand, it could be that
also the other tip of e has been transformed by following the tip of an edge h
and that this transformation introduced a new crossing between e and d′. But
then d′ would cross both d and h in G′, and hence by Lemma 6 also in G. This
is however not possible, since both d and h have been rerouted, and hence they
belong to different (k + 1)-crossings in G. 
�

Fig. 7. (a), (c) Topological graphs that are not simple. (b), (d) Avoiding the non-
simplicity in (a) and (c) by redrawing one of the two edges.

Lemma 12. There is a (k + 1)-quasi-planar simple topological graph G � G∗.

Proof. We assume that G∗ is not simple, as otherwise the statement would follow
with G = G∗. Let e = (u, v) and e′ = (u,w) be two crossing edges that share an
endpoint u. Since G is simple, at least one of them has been redrawn, say e.

We distinguish two cases, based on whether (i) e has been rerouted but not
transformed afterwards, or (ii) e has also been transformed, due to a double
crossing.

In case (i), edge e crosses e′ with its hook, see Fig. 7a. We redraw e′ by
following e till reaching u, as in Fig. 7b. This guarantees that e and e′ no longer
cross and that e′ does not cross any edge twice, since e′ crosses only edges that
cross the tip of e incident to u. Also, no (k + 1)-crossing is introduced. Indeed,
any new (k +1)-crossing should contain e′, but then also e would be part of this
(k +1)-crossing, which is impossible since e and e′ do not cross and G∗ does not
contain (k + 1)-crossings.

In case (ii), let d be the edge that crosses e twice in G′; note that d has
not been transformed, see Fig. 7c. Recall that, by Lemma 10, e and d have been
rerouted one around an endpoint of the other. Suppose that the endpoint of e
around which d has been rerouted is v, the case in which it is u can be treated
analogously. This implies that e′ crosses a tip of d, and therefore e′ and d are
part of a (k+1)-crossing in G, namely the one that caused the rerouting of d. We
redraw the part of e′ from u to its crossing point with e by following e, without
crossing it, and leave the rest of e′ unchanged, as in Fig. 7d. This guarantees



On the Relationship Between k-Planar and k-Quasi-Planar Graphs 71

that e and e′ no longer cross, and that any new crossing of e′ is with an edge
that also crosses e. As in case (i), this implies that e′ does not cross any edge
twice and that no new (k + 1)-crossing has been generated. 
�

The next theorem summarizes the main result of the paper.

Theorem 1. Let G be a k-planar simple topological graph, with k ≥ 3. Then,
there exists a (k + 1)-quasi-planar simple topological graph G � G.

Proof. First recall that, by Lemma 2, we can assume that G does not contain any
tangled (k + 1)-crossing. We apply Lemma 5 to compute a global rerouting for
G in which no two edges are rerouted around the same vertex. By Lemma 9, the
resulting topological graph G′ � G is (k + 1)-quasi-planar. Also, by Lemma11,
if G′ is not almost simple, then it is possible to redraw some of its edges in
such a way that the resulting topological graph G∗ � G′ is almost simple and
remains (k + 1)-quasi-planar. Finally, by Lemma12, if G∗ is not simple, then it
can be made so, again by redrawing some of its edges, while maintaining (k+1)-
quasi-planarity. This concludes the proof that there exists a (k + 1)-quasi-planar
simple topological graph G � G. 
�

6 Conclusions and Open Problems

We proved that, for any k ≥ 3, the family of k-planar graphs is included in the
family of (k + 1)-quasi-planar graphs. This result represents the first non-trivial
relationship between the k-planar and the k-quasi-planar graph hierarchies, and
contributes to the literature that studies the connection between different fami-
lies of beyond planar graphs (see, e.g. [9,10,12,19]). Our proof strategy does not
immediately apply to the case of k = 2, due to the possible existence of three
rerouted edges that are pairwise crossing after a global rerouting (as in Fig. 5d).
This problem has been recently solved by Hoffmann and Tóth [23], who proved
that 2-planar graphs are quasi-planar.

Interesting problems remain open. Among them:

(i) For k ≥ 3, one can also ask whether the family of k-planar graphs is included
in the family of k-quasi-planar graphs. For k = 2 the answer is trivially
negative, as 2-quasi-planar graphs coincide with the planar graphs. On the
other hand, optimal 3-planar graphs are known to be (3-)quasi-planar [8]. We
recall that an n-vertex 3-planar graph is optimal if it has 5.5n−11 edges. For
sufficiently large values of k, one can even investigate whether every k-planar
simple topological (sparse) graph G is f(k)-quasi-planar, for some function
f(k) = o(k).

(ii) One can study non-inclusion relationships between the k-planar and the
k-quasi-planar graph hierarchies, other than those that are easily derivable
from the known edge density results. For example, for any given k > 3, can
we establish an integer function h(k) such that some h(k)-planar graph is not
k-quasi-planar?
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Abstract. The extension complexity xc(P ) of a polytope P is the min-
imum number of facets of a polytope that affinely projects to P . Let G
be a bipartite graph with n vertices, m edges, and no isolated vertices.
Let STAB(G) be the convex hull of the stable sets of G. It is easy to
see that n � xc(STAB(G)) � n + m. We improve both of these bounds.

For the upper bound, we show that xc(STAB(G)) is O( n2

logn
), which is

an improvement when G has quadratically many edges. For the lower
bound, we prove that xc(STAB(G)) is Ω(n log n) when G is the inci-
dence graph of a finite projective plane. We also provide examples of
3-regular bipartite graphs G such that the edge vs stable set matrix of
G has a fooling set of size |E(G)|.

1 Introduction

A polytope Q ⊆ R
p is an extension of a polytope P ⊆ R

d if there exists an
affine map π : R

p → R
d with π(Q) = P . The extension complexity xc(P ) of P

is the minimum number of facets of any extension of P . If Q is an extension of
P such that Q has significantly fewer facets than P , then it is advantageous to
run linear programming algorithms over Q instead of P .

One example of a polytope that admits a much more compact represen-
tation in a higher dimensional space is the spanning tree polytope, Psp.trees(G).
Edmonds’ [5] classic description of Psp.trees(G) has 2Ω(|V |) facets. However, Wong
[16] and Martin [11] proved that for every connected graph G = (V,E),

|E| � xc(Psp.trees(G)) � O(|V | · |E|).

Fiorini et al. [7] were the first to show that many polytopes arising from NP-
hard problems (such as the stable set polytope) do indeed have high extension
complexity. Their results answer an old question of Yannakakis [17] and do not
rely on any complexity assumptions such as P �= NP.
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On the other hand, Rothvoß [12] proved that the perfect matching polytope
of the complete graph Kn has extension complexity at least 2Ω(n). This is some-
what surprising since the maximum weight matching problem can be solved in
polynomial-time via Edmond’s blossom algorithm [4]. By now many accessible
introductions to extension complexity are available (see [1,2,9,13]).

Let G = (V,E) be a (finite, simple) graph with n := |V | and m := |E|. The
stable set polytope of G, denoted STAB(G), is the convex hull of the characteristic
vectors of stable sets of G. As previously mentioned, STAB(G) can have very high
extension complexity. In [7], it is proved that if G is obtained from a complete
graph by subdividing each edge twice, then xc(STAB(G)) is at least 2Ω(

√
n).

Very recently, Göös et al. [8] improved this to 2Ω(n/ log n), via a different class of
graphs. For perfect graphs, Yannakakis [17] proved an upper bound of nO(log n),
and it is an open problem whether Yannakakis’ upper bound can be improved
to a polynomial bound.

In this paper we restrict our attention to bipartite graphs. Let G = (V,E)
be a bipartite graph with n vertices, m edges and no isolated vertices. By total
unimodularity,

STAB(G) = {x ∈ R
V | xu � 0 for all u ∈ V, xu + xv � 1 for all uv ∈ E},

and so n � xc(STAB(G)) � n+m. In this case xc(STAB(G)) lies in a very narrow
range, and it is a good test of current methods to see if we can improve these
bounds.

The situation is analogous to what happens with the spanning tree poly-
tope of (arbitrary) graphs, where as previously mentioned, we also know that
xc(Psp.trees(G)) lies in a very narrow range. Indeed, a notorious problem of Goe-
mans (see [10]) is to improve the known bounds for xc(Psp.trees(G)), but this is
still wide open.

However, for the stable set polytopes of bipartite graphs, we are able to give
an improvement. Our main results are the following.

Theorem 1. For all bipartite graphs G with n vertices, the extension complexity
of STAB(G) is O(n2/ log n).

Note that Theorem 1 is an improvement over the obvious upper bound when
G has quadratically many edges.

Theorem 2. There exists an infinite class C of bipartite graphs such that every
n-vertex graph in C has extension complexity Ω(n log n).

These are the first known examples of stable set polytopes of bipartite graphs
where the extension complexity is more than linear in the number of vertices.
For instance, xc(STAB(Kn/2,n/2)) = Θ(n). To the best of our knowledge, even
for general perfect graphs G, the previous best lower bound for xc(STAB(G))
was the trivial bound |V (G)|.
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Paper Organization. In Sect. 2 we define rectangle covers and fooling sets and
we give examples of 3-regular graphs with tight fooling sets. We prove Theorem1
in Sect. 3 and Theorem 2 in Sect. 4. In Sect. 5 we show that it is impossible to
prove a better lower bound with the approach in Sect. 4. Thus, to further improve
the lower bound, different methods (or different graphs) are required.

2 Rectangle Covers and Fooling Sets

Consider a polytope P := conv(X) = {x ∈ R
d | Ax � b}, where X :=

{x(1), . . . , x(n)} ⊆ R
d, A ∈ R

m×d and b ∈ R
m. The slack matrix of P (with

respect to the chosen inner and outer descriptions of the polytope) is the matrix
S ∈ R

m×n
�0 having rows indexed by the inequalities A1x � b1, . . . , Amx � bm and

columns indexed by the points x(1), . . . , x(n), defined as Sij := Aix
(j) − bi � 0.

Yannakakis [17] proved that the extension complexity of P equals the non-
negative rank of S. In this work, we only rely on a lower bound that fol-
lows directly from this fact. For a matrix M , we define the support of M as
supp(M) := {(i, j) | Mij �= 0}. A rectangle is any set of the form R = I × J ,
with R ⊆ supp(M). A size-k rectangle cover of M is a collection R1, . . . , Rk of
rectangles such that supp(M) = R1 ∪ · · · ∪ Rk. The rectangle covering bound of
M is the minimum size of a rectangle cover of M , and is denoted rc(M).

Theorem 3. (Yannakakis, [17]). Let P be a polytope with dim(P ) � 1 and let
S be any slack matrix of P . Then, xc(P ) � rc(S).

A fooling set for M is a set of entries F ⊆ supp(M) such that Mi� · Mkj = 0
for all distinct (i, j), (k, �) ∈ F . The largest size of a fooling set of M is denoted
by fool(M). Clearly, rc(M) � fool(M).

Let G be a bipartite graph. The edge vs stable set matrix of G, denoted
M(G), is the 0/1 matrix with a row for each edge of G, a column for each stable
set of G, and a 1 in position (e, S) if and only if e ∩ S = ∅ (as usual, we regard
edges as pairs of vertices). We say that G has a tight fooling set if M(G) has
a fooling set of size |E(G)|. Note that if G has a tight fooling set, then the
non-negative rank of M(G) is exactly |E(G)|. Also observe that the property of
having a tight fooling set is closed under taking subgraphs.

It is easy to check that even cycles have tight fooling sets. We now give an
infinite family of 3-regular graphs that have tight fooling sets. A graph is C4-free
if it does not contain a cycle of length four.

Theorem 4. Let G = (V,E) be a 3-regular, C4-free bipartite graph. Then G has
a tight fooling set.

Proof. For X ⊆ V , we let N(X) denote the set of neighbours of X. Let V = A ∪ B
be a bipartition of the vertex set, and let φ : E → {1, 2, 3} be a proper edge
coloring of G, which exists by 3-regularity and König’s edge-coloring theorem (see
e.g. [14, Theorem 20.1]). For each vertex a ∈ A, we name its neighbors a1, a2, a3 ∈
B so that φ(aai) = i. For each a ∈ A, consider the following stable sets:
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Saa1 := A \ {a}
Saa2 := {a1} ∪ {a′ ∈ A | a′ /∈ N(a1)}
Saa3 := B \ {a3}.

This defines a stable set Se disjoint from e, for every edge e ∈ E. Since φ is
proper, no two of these stable sets are equal. We claim that {(e, Se) | e ∈ E} is
a fooling set in the edge vs stable set matrix of G.

Let e and f be distinct edges. We want to show that Se intersects f or Sf

intersects e. Consider the following three cases. Let e = aai, where i = φ(e).

Case 1. If φ(e) = 1, then Se = Saa1 intersects f unless f = aai for some
i ∈ {2, 3}. In both cases we have a1 ∈ Sf ∩ e.

Case 2. If φ(e) = 3, then Se = Saa3 intersects f unless f = a′a3 for some a′ ∈ A.
Either φ(f) = 1 and Sf intersects e (as in Case 1), or φ(f) = 2. In the last
case, since G is C4-free, we have a /∈ N(a′

1). It follows that Sf = Sa′a3 = Sa′a′
2

intersects e.
Case 3. If φ(e) = 2, then we may also assume φ(f) = 2 since otherwise by

exchanging the roles of e and f we are back to one of the previous cases.
Let a′ denote the endpoint of f in A, so that f = a′a′

2. Because φ is proper,
a′ �= a and a′

1 �= a1. Since G is C4-free, we have a /∈ N(a′
1) or a′ /∈ N(a1).

Hence, a ∈ Sf ∩ e or a′ ∈ Se ∩ f . �	
Note that there are infinitely many 3-regular, C4-free bipartite graphs. For

example, we can take a hexagonal grid on a torus.

3 An Improved Upper Bound

In this section we prove Theorem 1. We use the following result of Martin [11].

Lemma 5. If Q is a nonempty polyhedron, γ ∈ R, and

P = {x | 〈x, y〉 � γ for every y ∈ Q},

then xc(P ) � xc(Q) + 1.

The edge polytope Pedge(G) of a graph G is the convex hull of the incidence
vectors in R

V (G) of all edges of G. The second ingredient we need is the following
bound on the extension complexity of the edge polytope of all n-vertex graphs
due to Fiorini et al. [6, Lemma 3.4]. This bound follows from a nice result of
Tuza [15], which states that every n-vertex graph can be covered with a set
of bicliques of total weight O(n2/ log n), where the weight of a biclique is its
number of vertices.

Lemma 6. For every graph G with n vertices, xc(Pedge(G)) = O(n2/ log n).

Proof of Theorem 1. Let G = (V,E). Since

STAB(G) = R
V
�0 ∩ {x ∈ R

V | 〈x, y〉 � 1 for every y ∈ Pedge(G)},

By Lemmas 5 and 6, the extension complexity of STAB(G) is O(n2/ log n). �	
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4 An Improved Lower Bound

In this section we prove Theorem 2. The examples we use to prove our lower
bound are incidence graphs of finite projective planes. We will not use any the-
orems from projective geometry, but the interested reader can refer to [3].

Let q be a prime power, GF(q) be the field with q elements, and PG(2, q) be
the projective plane over GF(q). The incidence graph of PG(2, q), denoted I(q),
is the bipartite graph with bipartition (P,L), where P is the set of points of
PG(2, q), L is the set of lines of PG(2, q), and p ∈ P is adjacent to � ∈ L if and
only if the point p lies on the line �. For example, PG(2, 2) and its incidence
graph I(2) are depicted in Fig. 1.

Fig. 1. PG(2, 2) and its incidence graph I(2).

Before proving Theorem 2 we gather a few lemmas on binomial coefficients.
The first two are well-known, so we omit the easy proofs.

Lemma 7. For all integers h and c with h � c � 0

h∑

j=c

(
j

c

)
=

(
h + 1
c + 1

)
.

Lemma 8. For all positive integers x, y, and h,

h∑

j=0

(
x + j

j

)(
h + y − j

h − j

)
=

(
x + y + h + 1

h

)
.

Lemma 9. Let q, c, t be positive integers with c + t � q + 1. Then

t

q+1−t∑

k=c

1
k

(
q + 1 − t − c

k − c

)(
q

k

)−1

=
(

t + c − 1
t

)−1

� 1
c
.
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Proof. We have that

t

q+1−t∑

k=c

1
k

(
q + 1 − t − c

k − c

)(
q

k

)−1

=
t(q + 1 − t − c)!

q!

q+1−t∑

k=c

(k − 1)!(q − k)!
(k − c)!(q + 1 − t − k)!

=
t(q + 1 − t − c)!

q!
(c − 1)!(t − 1)!

q+1−t∑

k=c

(
k − 1
c − 1

)(
q − k

t − 1

)
.

Moreover,

q+1−t∑

k=c

(
k − 1
c − 1

)(
q − k

t − 1

)
=

q+1−t−c∑

j=0

(
c − 1 + j

c − 1

)(
q − c − j

t − 1

)

[h = q + 1 − t − c, x = c − 1, y = t − 1] =
h∑

j=0

(
x + j

j

)(
h + y − j

h − j

)

[by Lemma 8] =
(

x + y + h + 1
h

)

=
(

q

q + 1 − t − c

)
.

We conclude that

t

q+1−t∑

k=c

1
k

(
q + 1 − t − c

k − c

)(
q

k

)−1

=
t(q + 1 − t − c)!

q!
q!(c − 1)!(t − 1)!

(q + 1 − t − c)!(t + c − 1)!

=
(

t + c − 1
t

)−1

.

The number of t-subsets of a set of size t + c − 1 is at least c, since it includes
all t-subsets containing a fixed set of size t − 1. Hence,

(
t+c−1

t

)−1 � 1
c . �	

From the definition of PG(2, q) it follows that that I(q) is (q + 1)-regular,
|V (I(q))| = 2(q2 + q +1), and |E(I(q))| = (q +1)(q2 + q +1). Let n = q2 + q +1
and note that I(q) has 2n vertices. We let P and L denote the set of points and
lines of PG(2, q). We also use the fact that I(q) is C4-free.

We denote the edge vs stable set incidence matrix of I(q) by Sq. Each 1-entry
of Sq is of the form (e, S) where e ∈ E, S ⊆ V is a stable set, and e ∩ S = ∅.
To prove Theorem 2 we will assign weights to the 1-entries of Sq in such a way
that the total weight is at least Ω(n log n), while the weight of every rectangle
is at most 1. The only entries that will receive non-zero weight are what we call
special entries, which we now define.
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Definition 10. A 1-entry of Sq is special if it has the form (e, S(X)) where

• e = p� with p ∈ P, � ∈ L,
• X ⊆ N(�) \ {p}, X non-empty,
• S(X) = X ∪ (L \ N(X)).

We also need the following compact representation of maximal rectangles.

Definition 11. Let R be a maximal rectangle. Then R is determined by a pair
(PR,LR) with PR ⊆ P, LR ⊆ L, where the rows of R are all the edges between
PR and LR and the columns of R are all the stable sets S ⊆ V \ (PR ∪ LR).

We are now ready to prove Theorem 2 in the following form.

Theorem 2. Let q be a prime power and n = q2 + q + 1. Then there exists a
constant c > 0 such that

xc(STAB(I(q))) � cn log n.

Proof. Let n = q2 + q + 1. Let V = P ∪ L be the vertices of I(q), and E be the
edges of I(q). To each special entry (e, S(X)) we assign the weight

w(e, S(X)) =
1

|X|( q
|X|

)
(q + 1)

.

All other entries of Sq receive weight zero.

Claim 12. w(Sq) :=
∑

(e,S) w(e, S) � cn log n for some constant c.

Subproof. We have that

∑

(e,S)

w(e, S) =
∑

(e,S(X)) special

w(e, S(X)) =
∑

e∈E

q∑

k=1

(
q

k

)
1

k
(

q
k

)
(q + 1)

=
|E|

q + 1

q∑

k=1

1
k

= n

q∑

k=1

1
k

> cn log n.

The claim follows. �

Let R = (PR,LR) be an arbitrary maximal rectangle. We finish the proof by
showing that w(R) :=

∑
(e,S)∈R w(e, S) � 1. Together with Claim 12 this clearly

implies Theorem 2. We will need the following obvious but useful Claim.

Claim 13. A special entry (p�, S(X)) is covered by R = (PR,LR) if and only if
X ∩ PR = ∅, LR ⊆ N(X), p ∈ PR, and � ∈ LR.

We consider two cases. First suppose that LR = {�} for some �. Then the
only special entries covered by R are of the form (p�, S(X)), with X ⊆ N(�)\PR.
Let N(�) ∩ PR = {p1, . . . , pt}, where 1 � t � q + 1. To compute w(R) we have



82 M. Aprile et al.

to sum over all edges pi� and over all subsets X ⊆ N(�) \ {p1, . . . , pt}. It follows
that

w(R) =
t∑

i=1

q+1−t∑

k=1

(
q + 1 − t

k

)
1

k
(

q
k

)
(q + 1)

= t

q+1−t∑

k=1

(q + 1 − t)!
k!(q + 1 − t − k)!

k!(q − k)!
kq!(q + 1)

=
t(q + 1 − t)!(t − 1)!

(q + 1)!

q+1−t∑

k=1

(
q − k

q + 1 − t − k

)
1
k

=
1(

q+1
t

)
q+1−t∑

k=1

(
q − k

t − 1

)
1
k

� 1(
q+1

t

)
q−1∑

j=t−1

(
j

t − 1

)
=

1(
q+1

t

)
(

q

t

)
� 1,

where the last equality follows from Lemma 7.
The remaining case is if |LR| � 2. For � ∈ LR such that (p�, S(X)) is covered

by R for some p,X, define

k� = min{|X| | there exist p,X : (p�, S(X)) is a special entry covered by R}.

Claim 14. Let (p�, S(X)) be a special entry covered by R such that |X| = k�.
Then for each p′, Y such that R covers (p′�, S(Y )), we have X ⊆ Y .

Subproof. For each �′ ∈ LR \ {�} (there is at least one since |LR| > 1), we have
�′ ∈ N(X) by Claim 13. That is, there is x = x(�′) ∈ X adjacent to �′. Similarly,
since �′ ∈ N(Y ), there is y = y(�′) ∈ Y adjacent to �′. Now, if x(�′) �= y(�′),
then I(q) contains a 4-cycle, which is a contradiction. Hence we must have
x(�′) = y(�′) for all �′ ∈ LR \ {�}. Now if there is an x ∈ X such that x �= x(�′)
for every �′ ∈ LR \ {�}, then (p�, S(X \ {x})) is still covered by R, contradicting
the minimality of X. We conclude X ⊆ Y , as required. �

Now fix � ∈ LR, and let

w(�) =
∑

{w(p�, S(X)) | (p�, S(X)) special}.

Claim 15. For every � ∈ LR,

w(�) � 1
(q + 1)k�

.

Subproof. Let N(�)∩PR = {p1, . . . , pt}, where 1 � t � q+1. Let X be such that
(p�, S(X)) is a special entry covered by R and |X| = k�. By Claim 14, the only
special entries appearing in the above sum are of the form (pi�, S(Y )) where
i ∈ [t] and X ⊆ Y ⊆ (P \ PR) ∩ N(�). Therefore

w(�) � t

q+1−t∑

k=k�

(
q + 1 − t − k�

k − k�

)
1

k
(

q
k

)
(q + 1)

� 1
(q + 1)k�

,

where the last inequality follows from Lemma 9 with c = k�. �
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Claim 16. For every � ∈ LR, |LR| � (q + 1)k�.

Subproof. Again, let X be such that (p�, S(X)) is covered by R and assume that
|X| = k�. By Claim 13, we have LR ⊆ N(X).

Hence |LR| � |N(X)| � (q + 1)|X| = (q + 1)k�. �
By Claims 15 and 16, for every � ∈ LR, w(�) � 1

|LR| . But clearly w(R) =∑
�∈LR

w(�), and so w(R) � 1, as required. This completes the entire proof. �	

5 A Small Rectangle Cover of the Special Entries

In this section we show that the submatrix of special entries considered in
the previous section has a rectangle cover of size O(n log n). Combined with
Theorem 2, this implies that a minimal set of rectangles that cover all the spe-
cial entries always has size Θ(n log n). Thus, to improve our bound, we must
consider a different set of entries of the slack matrix, or use a different set of
graphs.

This cover will be built from certain labeled trees which we now define. Note
that the length of a path is its number of edges.

Definition 17. For every integer k � 1, we build a tree T (k) recursively:

• The tree T (1) consists of a root r and a single leaf attached to it.
• For k > 1, we construct T (k) by first identifying one end of a path P1 of

length k1 :=
⌈

k
2

⌉
to another end of a path P2 of length k2 :=

⌊
k
2

⌋
along a

root vertex r. Let λi be the end of Pi that is not r. We then attach a copy of
T (ki) to λ3−i, identifying λ3−i with the root of T (ki). We call P1 and P2 the
main paths of T (k).

The next Lemma follows easily by induction on k.

Lemma 18. For all k � 1,

(i) T (k) has O(k log k) vertices;
(ii) T (k) has k leaves;
(iii) every path from the root r to a leaf has length k.

Definition 19. We recursively define a labeling ϕk : V (T (k)) \ {r} → [k] as
follows:

• Let v be the non-root vertex of V (T (1)) and set ϕ1(v) := 1.
• For k > 1, let P1 and P2 be the main paths of T (k). We name the vertices

of P1 as r, v1, . . . , v� k
2  and P2 as r, v� k

2 +1, . . . , vk, where these vertices are

listed according to their order along P1 and P2. Set k1 :=
⌈

k
2

⌉
and k2 :=

⌊
k
2

⌋
.

Note that V (T (k)) =
⋃

i=1,2(V (Pi) ∪ V (Bi)), where Bi is a copy of the tree
T (k3−i). We define (Fig. 2)

ϕk(v) =

⎧
⎪⎨

⎪⎩

i, if v = vi

ϕk2(v) + k1, if v ∈ V (B1) \ V (P1)
ϕk1(v), if v ∈ V (B2) \ V (P2)
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Fig. 2. Examples of the labeling function.

For each vertex v ∈ T (k) we let P (v) be the path in T (k) from r to v.

Lemma 20. Let ϕk, B1, and B2 be as in Definition 19.

(i) If L is the set of leaves of T (k), then ϕk(L∩V (B1)) = {⌈k
2

⌉
+1, . . . , k} and

ϕk(L ∩ V (B2)) = {1, . . . ,
⌈

k
2

⌉}.
(ii) For every leaf λ of T (k), ϕk(V (P (λ)) \ {r}) = [k].
(iii) Each label i ∈ [k] occurs at most �log k + 1 times in the labeling of T (k).

Proof. We proceed by induction on k. Property (i) follows directly from the
recursive definition of the labeling ϕk.

For (ii), let λ be a leaf and let the (ordered) vertices of P (λ) be r, p1, . . . , pk =
λ. Suppose that λ ∈ V (Bi). Then P (λ) := Pi ∪ P ′, where Pi is a main path of
T (k) and P ′ is the path in Bi going from the root of Bi to λ. Property (ii) now
follows by induction and the definition of ϕk.

For (iii), first suppose that the label i is in [k1]. Then i appears exactly
once in the labeling of the main path P1 of T (k), it does not in the labeling
of the nodes V (P2) ∪ (V (B1) \ V (P1)), and, by the inductive step, it occurs
�log�k

2  + 1 = �log k times in ϕk(B2). The thesis follows. A similar argument
settles the remaining case i ∈ [k] \ [k1]. �	

Henceforth, we simplify notation and denote the labeling ϕk of T (k) as ϕ.
We now recall some notation from the previous section. Let q be a prime power
and Sq be the edge vs stable set incidence matrix of I(q).

A maximal rectangle R = (PR,LR) is centered if |LR| � 2 and there is a
point c ∈ P \ PR such that c is incident to all lines in LR. We call c the center
of R. Note that the center is unique and its existence implies that |LR| � q + 1.

One way to create centered rectangles is as follows. Let � be a line, c be a
point on �, and Y ⊆ N(�) with c ∈ Y . We let c, �, Y be the centered rectangle
R = (PR,LR) where PR = N(�) \ Y and LR = N(c). Note that a special entry
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of the form (p�, S(X)) is covered by the centered rectangle c, �, Y if and only
if p /∈ Y and c ∈ X ⊆ Y .

We now fix a line � ∈ PG(2, q) and let N(�) = {p1, . . . , pq+1}. We will use the
labeling ϕ of T (q + 1) to provide a collection of centered rectangles that cover
all special entries of the form (p�, S(X)). Recall that for a vertex v of T (q + 1),
P (v) denotes the path in T (q + 1) from r to v. If v is neither the root nor a leaf
of T (q + 1), we define

Y (v) := {pϕ(u) | u is a non-root vertex of P (v)}.

Lemma 21. Fix a line � ∈ PG(2, q) and let N(�) = {p1, . . . , pq+1}. Let R� be
the collection of all centered rectangles pϕ(v), �, Y (v) where v ranges over all

non-root, non-leaf vertices of T (q + 1). Then every special entry (e, S) with �
incident to e is covered by some rectangle R ∈ R�.

Proof. Let (pi�, S(X)) be such a special entry and let λ be the (unique) leaf of
T (q + 1) such that ϕ(λ) = i. Name the vertices of P (λ) as r, u1, . . . , uq+1 = λ
(ordered away from the root).

Define j = max{i | pϕ(ui) ∈ X}. Since pϕ(λ) /∈ X, note j < q + 1. By
Lemma 20, X ⊆ Y (uj). Also, by construction, pϕ(uj) ∈ X and p /∈ Y (uj). We

conclude that the centered rectangle pϕ(uj), �, Y (uj) covers the special entry

(pi�, S(X)), as required. �	
By Lemma 21, for each line �, there is a set R� of O(q log q) centered rectangles

that cover all special entries of the form (p�, S(X)). By taking the union of all
R�, we get a cover R of size O(nq log q) for all the special entries. To prove the
main theorem of this section, we now reduce the size of R by a factor of q.

Theorem 22. There is a set of O(n log n) centered rectangles that cover all the
special entries.

Proof. If R1 := c, �1, Y1 , . . . , Rk := c, �k, Yk are centered rectangles with the

same center c, we let
∑k

i=1 Ri = R be the maximal rectangle with PR =⋃k
i=1 N(�i) \ ⋃k

i=1 Yi and LR = N(c). Note that
∑k

i=1 Ri is also a centered
rectangle with center c.

Claim 23. If R1 := c, �1, Y1 , . . . , Rk := c, �k, Yk are centered rectangles such

that �1, . . . , �k are all distinct, then
∑k

i=1 Ri covers all special entries covered by⋃k
i=1 Ri.

Subproof. Let (p�, S(X)) be a special entry covered by some c, �j , Yj . Clearly

c ∈ X ⊆ Yj ⊆ ⋃k
i=1 Yi. By contradiction, suppose p ∈ ⋃k

i=1 Yi. Since p /∈ Yj ,
p ∈ Yj′ ⊆ N(�j′) for some j′ �= j. But then c�jp�j′ is a 4-cycle in I(q), which is
a contradiction. Hence the entry (p�, S(X)) is also covered by

∑k
i=1 Ri. �
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We iteratively use Claim 23 to reduce the number of rectangles in our covering
R. For each point c, name the q+1 lines through c as �, �1, . . . , �q, so that among
R�,R�1 , . . . ,R�q

, the collection R� has the most rectangles with center c. Note
that, by Lemma 20, R� contains O(log q) rectangles with center c.

Fix i ∈ [q] and for each rectangle R ∈ R�i
with center c choose a rectangle

fi(R) with center c in R� such that fi(R) �= fi(R′) if R �= R′. For each R ∈ R�

we let

f−1(R) = {R} ∪
q⋃

i=1

{R′ ∈ R�i
| fi(R′) = R}.

We then remove all rectangles with center c that appear in R�,R�1 , . . . ,R�q

and replace them with all rectangles of the form
∑

R′∈f−1(R) R′, where R ranges
over all rectangles in R� with center c. In doing so, we obtain at most O(log q) =
O(log n) rectangles with center c. Repeating for every c ∈ P gives us O(n log n)
rectangles in total. �	
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Abstract. Let Tn,k be the number of labeled graphs on n vertices and
treewidth at most k (equivalently, the number of labeled partial k-trees).
We show that(

c
k 2kn

log k

)n

2− k(k+3)
2 k−2k−2 � Tn,k �

(
k 2kn

)n

2− k(k+1)
2 k−k,

for k > 1 and some explicit absolute constant c > 0. Disregarding lower-
order terms, the gap between the lower and upper bound is of order
(log k)n. The upper bound is a direct consequence of the well-known
formula for the number of labeled k-trees, while the lower bound is
obtained from an explicit construction. It follows from this construc-
tion that both bounds also apply to graphs of pathwidth and proper-
pathwidth at most k.

Keywords: Treewidth · Partial k-trees · Enumeration · Pathwidth ·
Proper-pathwidth

1 Introduction

Given an integer k > 0, a k-tree is a graph that can be constructed starting
from a (k+1)-clique and iteratively adding a vertex connected to k vertices that
form a clique. They are natural extensions of trees, which correspond to 1-trees.
A formula for the number of labeled k-trees on n vertices was first found by
Beineke and Pippert [1], and alternative proofs were given by Moon [18] and
Foata [8].

Theorem 1. The number of n-vertex labeled k-trees is equal to
(

n

k

)
(kn − k2 + 1)n−k−2. (1)
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A partial k-tree is a subgraph of a k-tree. For integers n, k with 0 < k+1 � n,
let Tn,k denote the number of n-vertex labeled partial k-trees. While the number
of n-vertex labeled k-trees is given by Theorem 1, it appears that very little is
known about Tn,k. Indeed, to the best of our knowledge, only the cases k = 1
(forests) and k = 2 (series-parallel graphs) have been studied. The number of
n-vertex labeled forests is asymptotically Tn,1 ∼ √

enn−2 [21], and the number
of n-vertex labeled series-parallel graphs is asymptotically Tn,2 ∼ g · n−5/2γnn!
for some explicit constants g and γ ≈ 9.07 [2].

Partial k-trees are exactly the graphs of treewidth at most k. Let us recall the
definition of treewidth. A tree-decomposition of width k of a graph G = (V,E)
is a pair (T,B), where T is a tree and B = {Bt | Bt ⊆ V, t ∈ V (T)} such that:

1.
⋃

t∈V (T) Bt = V .
2. For every edge {u, v} ∈ E there is a t ∈ V (T) such that {u, v} ⊆ Bt.
3. Bi ∩ B� ⊆ Bj for all {i, j, �} ⊆ V (T) such that j lies on the unique path from

i to � in T.
4. maxt∈V (T) |Bt| = k + 1.

The sets of B are called bags. The treewidth of G, denoted by tw(G), is the
smallest integer k such that there exists a tree-decomposition of G of width k.
If T is a path, then (T,B) is also called a path-decomposition. The pathwidth of
G, denoted by pw(G), is the smallest integer k such that there exists a path-
decomposition of G of width k.

The following lemma is well-known and a proof can be found, for instance,
in [16].

Lemma 1. A graph has treewidth at most k if and only if it is a partial k-tree.

In this article we are interested in counting n-vertex labeled graphs that have
treewidth at most k. By Lemma 1, this number is equal to Tn,k, and actually
our approach relies heavily on the definition of partial k-trees.

An easy upper bound on Tn,k is obtained as follows. Since every partial k-
tree is a subgraph of a k-tree, and a k-tree has exactly kn − k(k + 1)/2 edges,
Theorem 1 gives

Tn,k � 2kn− k(k+1)
2

(
n

k

)
(kn − k2 + 1)n−k−2. (2)

Simple calculations yield, disregarding lower-order terms, that

Tn,k � (k2kn)n2− k(k+1)
2 k−k � (k2kn)n. (3)

We can provide a lower bound with the following construction. Starting from
an (n − k + 1)-vertex forest, we add k − 1 apices, that is, k − 1 vertices with
an arbitrary neighborhood in the forest. Every graph created in this way has
exactly n vertices and is of treewidth at most k, since adding an apex increases
treewidth by at most one. The number of labeled forests on n − k + 1 vertices
is at least the number of trees on n − k + 1 vertices, which is well-known to
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be (n − k + 1)n−k−1. Since each apex can be connected to the ground forest in
2n−k+1 different ways, we obtain

Tn,k � (n − k + 1)n−k−12(k−1)(n−k+1). (4)

If we assume that n/k tends to infinity then asymptotically

Tn,k �
(
2k−1n

)n−o(1)
. (5)

We conclude that Tn,k is essentially between (2kn)n and (k2kn)n. These bounds
differ by a factor kn. For constant k this does not matter much since (except
when k = 1, 2) we do not have a precise estimate on Tn,k. However, when k goes
to infinity, the gap kn is quite significant. Our main result considerably reduces
the gap.

Theorem 2. For integers n, k with k ≥ 2 and k + 1 � n, the number Tn,k of
n-vertex labeled graphs with treewidth at most k satisfies

Tn,k �
(

1
128e

· k2kn

log k

)n

2− k(k+3)
2 k−2k−2. (6)

It follows that Tn,k is asymptotically between
(

k
log k2kn

)n

and (k2kn)n when n

and k grow. Thus the gap is now of order (log k)n instead of kn.
In order to prove Theorem 2, we present in Sect. 2 an algorithmic construction

of a family of n-vertex labeled partial k-trees, which is inspired by the definition
of k-trees. When exhibiting such a construction toward a lower bound, one has
to play with the trade-off of, on the one hand, constructing as many graphs as
possible and, on the other hand, being able to bound the number of duplicates;
we perform this analysis in Sect. 3. Namely, we first count the number of elements
created by the construction, and then we bound the number of times that the
same element may have been created. We conclude in Sect. 4 with some remarks
and a discussion of further research.

2 The Construction

Let n and k be fixed positive integers with 0 < k � n − 1. In this section we
construct a set Rn,k of n-vertex labeled partial k-trees. We let Rn,k = |Rn,k|.
In Sect. 2.1 we introduce some notation and definitions used in the construction,
in Sect. 2.2 we describe the construction, and in Sect. 2.3 we prove that the
treewidth of the graphs generated this way is indeed at most k. In fact, we prove
a stronger property, namely that the graphs we construct have proper-pathwidth
at most k, where the proper-pathwidth, defined later, is a graph invariant that
is at least the pathwidth, which is at least the treewidth.
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2.1 Notation and Definitions

For the construction, we use a labeling function σ defined by a permutation of
{1, . . . , n} with the constraint that σ(1) = 1. Inspired by the definition of k-
trees, we will introduce vertices {v1, v2, . . . , vn} one by one following the order
σ(1), σ(2), . . . , σ(n) given by σ. If i, j ∈ {1, . . . , n}, then i is called the index of
vσ(i), the vertex vσ(i) is the i-th introduced vertex and, if j < i, the vertex vσ(j)

is said to be to the left of vσ(i).
In order to build explicitly a class of partial k-trees, for every i � k + 1 we

define:

1. A set Ai ⊆ {j | j < i} of active vertices, corresponding to the clique to which
a new vertex can be connected in the definition of k-trees, such that |Ai| = k.

2. A vertex ai ∈ Ai, called the anchor, whose role will be described in the next
paragraph.

3. An element f(i) ∈ Ai, called the frozen vertex, which corresponds to a vertex
that will not be active anymore.

4. A set N(i) ⊆ Ai, which corresponds to the indices of the neighbors of vσ(i)

to the left.

The construction works with blocks of size s, for some integer s depending
of n and k, to be specified later. Namely, we insert the vertices by consecutive
blocks of size s, with the property that all vertices of the same block share the
same anchor and are adjacent to it.

In the description of the construction, we use the term choose for the elements
for which there are several choices, which will allow us to provide a lower bound
on the number of elements in Rn,k. This will be the case for the functions σ, f ,
and N . As will become clear later (see Sect. 3), once σ, f , and N are fixed, all
the other elements of the construction are uniquely defined.

For every index i � k + 2, we impose that

|N(i)| � k + 1
2

,

in order to have simultaneously enough choices for N(i) and enough choices for
the frozen vertex f(i), which will be chosen among the vertices in N(i − 1). On
the other hand, as will become clear later, the role of the anchor vertices is to
determine uniquely the vertices belonging to “its” block. To this end, when a
new block starts, its anchor is defined as the smallest currently active vertex.

2.2 Description of the Construction

We say that a triple (σ, f,N), with σ a permutation of {1, . . . , n}, f : {k +
2, . . . , n} → {1, . . . , n}, and N : {2, . . . , n} → 2{1,...,n}, is constructible if it is
one of the possible outputs of the following algorithm:
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Choose σ, a permutation of {1, . . . , n} such that σ(1) = 1.
for i=2 to k do

Choose N(i) ⊆ {j | j < i}, such that 1 ∈ N(i).
for i=k+1 do

Define Ak+1 = {j | j < k + 1}.
Define ak+1 = 1.
Choose N(k + 1) ⊆ {j | j < i}, such that 1 ∈ N(k + 1).

for i=k+2 to n do
if i ≡ k + 2 (mod s) then

Define f(i) = ai−1.
Define Ai = (Ai−1 \ {f(i)}) ∪ {i − 1}.
Define ai = min Ai.
Choose N(i) ⊆ Ai such that ai ∈ N(i) and |N(i)| � k+1

2 ; cf. Fig. 1.
else

Choose f(i) ∈ (Ai−1 \ {ai−1}) ∩ N(i − 1).
Define Ai = (Ai−1 \ {f(i)}) ∪ {i − 1}.
Define ai = ai−1.
Choose N(i) ⊆ Ai such that ai ∈ N(i) and |N(i)| � k+1

2 ; cf. Fig. 2.

Fig. 1. Introduction of vσ(i) with k + 2 � i � n and i ≡ k + 2 (mod s), s = 4, and
k = 5. We assume that i1 < i2 < i3 < i4 < i5 < i6 < i, and note that i5 = i − 2
and i6 = i − 1. We have defined f(i) = vσ(i1) and ai = vσ(i2). The frozen vertex
f(i) is marked with a cross, and the anchor ai is marked with a circle. We choose
N(i) = {i2, i3, i5}.

Let (σ, f,N) be a constructible triple. We define the graph G(σ, f,N) =
(V,E) such that V = {vi | i ∈ {1, . . . , n}}, and E = {{vσ(i), vσ(j)} | j ∈ N(i)}.
Note that, given (σ, f,N), the graph G(σ, f,N) is well-defined. We denote by
Rn,k the set of all graphs G(σ, f,N) such that (σ, f,N) is constructible.
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Fig. 2. Introduction of vσ(i) with k + 2 � i � n and i �≡ k + 2 (mod s), s = 4, and
k = 5. We assume that i1 < i2 < i3 < i4 < i5 < i6 < i, and note that i5 = i − 2 and
i6 = i − 1. We have defined ai = ai−1 = vσ(i1). The frozen vertex f(i) is marked with
a cross, and the anchor ai is marked with a circle. We choose f(i) = vσ(i3), assuming
vσ(i3) is a neighbor of vσ(i5), and N(i) = {i1, i2, i5}.

2.3 Bounding the Treewidth

We start by defining the notion of proper-pathwidth of a graph. This parameter
was introduced by Takahashi et al. [22] and its relation with search games has
been studied in [23].

Let G be a graph and let X = {X1,X2, . . . , Xr} be a sequence of subsets of
V (G). The width of X is max1�i�r |Xi| − 1. X is called a proper-path decompo-
sition of G if the following conditions are satisfied:

1. For any distinct i and j, Xi �⊆ Xj .
2.

⋃r
i=1 Xi = V (G).

3. For every edge {u, v} ∈ E(G), there exists an i such that u, v ∈ Xi.
4. For all a, b, and c with 1 � a � b � c � r, Xa ∩ Xc ⊆ Xb.
5. For all a, b, and c with 1 � a < b < c � r, |Xa ∩ Xc| � |Xb| − 2.

The proper-pathwidth of G, denoted by ppw(G), is the minimum width over
all proper-path decompositions of G. Note that if X satisfies only conditions 1-4
above, then X is a path-decomposition as defined in Sect. 1.

From the definitions, for any graph G it clearly holds that

ppw(G) � pw(G) � tw(G). (7)

Let us show that any element of Rn,k has proper-pathwidth at most k. Let
(σ, f,N) be constructible such that G(σ, f,N) ∈ Rn,k and let Ai be defined as
in Subsect. 2.2. We define for every i ∈ {k + 1, . . . , n} the bag Xi = {vσ(j) |
j ∈ Ai ∪{i}}. The sequence X = {Xk+1,Xk+2, . . . , Xn} is a path-decomposition
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satisfying the five conditions of the above definition, and for every i ∈ {k +
1, . . . , n}, |Xi| = k + 1. It follows that G(σ, f,N) has proper-pathwidth at most
k, so it also has treewidth at most k, and therefore G(σ, f,N) is a partial k-tree
by Lemma 1.

3 Proof of the Main Result

In this section we analyze our construction and give a lower bound on Rn,k. We
first start by counting the number of constructible triples (σ, f,N) generated by
the algorithm, and then we provide an upper bound on the number of dupli-
cates. Finally, we determine the best choice for the parameter s defined in the
construction.

3.1 Number of Constructible Triples (σ, F, N)

We proceed to count the number of constructible triples (σ, f,N) created by the
algorithm given in Subsect. 2.2. As σ is a permutation of {1, . . . , n} with the
constraint that σ(1) = 1, there are (n − 1)! distinct possibilities for the choice
of σ. The function f can take more than one value only for k + 2 � i � n

and i �≡ k + 2 (mod s). This represents n − (k + 1) − n−(k+1)
s � cases. In each

of these cases, there are at least k−1
2 distinct possible values for f(i). Thus,

we have at least (k−1
2 )(n−(k+1)−�n−(k+1)

s �) distinct possibilities for the choice of
f . For every i ∈ {2, . . . , k + 1}, N(i) can be chosen as any subset of i − 1
vertices containing the fixed vertex vσ(1). This yields

∏k+1
i=2 2i−2 = 2

k(k−1)
2 ways

to define N over {2, . . . , k + 1}. For i � k + 2, N(i) can be chosen as any subset
of size at least k+1

2 of a set of k elements with one element that is imposed.
This results in

∑k
i=� k+1

2 �
(
k−1
i−1

)
� 2k−2 possible choices for N(i). Thus, we have

2
k(k+1)

2 2(n−(k+1))(k−2) distinct possibilities to construct N .
By combining everything, we obtain at least

(n − 1)!
(

k − 1
2

)n−(k+1)−�n−(k+1)
s �

2
k(k−1)

2 2(n−(k+1))(k−2) (8)

distinct possible constructible triples (σ, f,N).

3.2 Bounding the Number of Duplicates

Let H be an element of Rn,k. Our objective is to obtain an upper bound on the
number of constructible triples (σ, f,N) such that H = G(σ, f,N).

Given H, we start by reconstructing σ. Firstly, we know by construction
that σ(1) = 1. Secondly, we know that f(k + 2) = 1 and so, for every i > k + 1,
1 �∈ Ai, implying that 1 �∈ N(i). It follows that the only neighbors of vσ(1) are
the vertices {vσ(i) | 1 < i � k +1}. So the set of images under σ of {2, . . . , k +1}
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is uniquely determined. Then we guess the function σ over this set {2, . . . , k+1}.
Overall, this results in k! possible guesses for σ.

Thirdly, assume that we have correctly guessed σ on {1, . . . , k + 1 + ps} for
some non-negative integer p with k +1+ps < n. Then ak+1+ps+1 is the smallest
active vertex that is adjacent to at least one element that is still not introduced
after step k + 1 + ps. Then the neighbors of ak+1+ps+1 over the elements that
are not introduced yet after step k + 1 + ps are the elements whose indices are
between k + 1 + ps + 1 and k + 1 + (p + 1)s, and these vertices constitute the
next block of the construction; see Fig. 3 for an illustration. As before, the set
of images by σ of {k + 1 + ps + 1, . . . , k + 1 + (p + 1)s} is uniquely determined,
and we guess σ over this set. We have at most s! possible such guesses. Fourthly,
if k + 1 + (p + 1)s > n (that is, for the last block, which may have size smaller
than s), we have t! possible guesses with t = n − (k + 1) − s�n−(k+1)

s �.

Fig. 3. The current anchor vσ(i1) is connected to all the s vertices of the current block
but will not be connected to any of the remaining non-introduced vertices.

We know that the first, the second, and the fourth cases can occur only
once in the construction, and the third case can occur at most �n−(k+1)

s � times.
Therefore, an upper bound on the number of distinct possible guesses for σ is
k!(s!)� n−(k+1)

s �t!, where t = n − (k + 1) − s�n−(k+1)
s �.

Let us now fix σ. Then the function N is uniquely determined. Indeed, for
every i ∈ {1, . . . , n}, N(i) corresponds to the neighbors of vσ(i) to the left. It
remains to bound the number of possible functions f . In order to do this, we
define for every i > 1, Di = {j ∈ N(i) | ∀j′ > i, {vσ(j), vσ(j′)} �∈ E(H)}. Then,
for every i � k + 2, by definition of f(i), f(i) ∈ Di−1. Moreover, for i, j > k + 1
with i �= j, it holds that, by definition of Di and Dj , Di∩Dj = ∅. Indeed, assume
w.l.o.g. that i < j, and suppose for contradiction that there exists a ∈ Di ∩ Dj .
As a ∈ Dj , it holds that a ∈ N(j), but as a ∈ Di, for every j′ > i, a �∈ N(j′),
hence a �∈ N(j), a contradiction.
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We obtain that the number of distinct functions f is bounded by
∏n

i=k+1 |Di|.
As Di ∩ Dj = ∅ for every i, j � k + 1 with i �= j and Di ⊆ {1, . . . , n} for every
i � k+1, we have that

∑n
i=k+1 |Di| � n. Let I = {i ∈ {k+1, . . . , n} | |Di| � 2},

and note that |I| � k. By the previous discussion, it holds that
∑

i∈I |Di| � 2k.
So it follows that, by using Cauchy-Schwarz inequality,

n∏
i=k+1

|Di| =
∏
i∈I

|Di| �
(∑

i∈I |Di|
k

)k

�
(

2k

k

)k

= 2k. (9)

To conclude, the number of constructible triples that can give rise to H is at
most 2k(s!)� n−(k+1)

s �t! where t = n − (k + 1) − s�n−(k+1)
s �. Thus, we obtain that

Rn,k ≥ (n − 1)!
(

k−1
2

)n−(k+1)−�n−(k+1)
s �

2
k(k−1)

2 2(n−(k+1))(k−2)

2kk!(s!)� n−(k+1)
s �(n − (k + 1) − s�n−(k+1)

s �)!
. (10)

For better readability, we bound separately each of the terms on the right-hand
side:

• (n − 1)! � (n
e )n2−n, 2

k(k−1)
2 2(n−(k+1))(k−2) � 2kn− k(k+3)

2 2−2n.
• (k − 1)(n−(k+1)−�n−(k+1)

s �) � 2−nk(n−n
s −k−2), since k ≥ 2.

• 2kk! � 2nkk, (s!)� n−(k+1)
s �(n − (k + 1) − s�n−(k+1)

s �)! � sn.

Applying these relations to (10) gives

Rn,k �
(

1
64e

· k2kn

k1/ss

)n

2− k(k+3)
2 k−2k−2. (11)

3.3 Choosing the Parameter s

We now discuss how to choose the size s of the blocks in the construction. In
order to obtain the largest possible lower bound for Rn,k, we would like to choose
s minimizing the factor k1/ss in the denominator of (11). To be as general as
possible, assume that s is a function s(n, k) that may depend on n and k, and
we define t(n, k) = s(n,k)

log k . With this definition, it follows that

log
(
k

1
s(n,k) s(n, k)

)
=

log k

s(n, k)
+ log s(n, k) =

1
t(n, k)

+ log t(n, k) + log log k.

(12)

It is elementary that the minimum of 1
t(n,k) + log t(n, k) is achieved for

t(n, k) = 1. Thus, we obtain that s(n, k) = log k is the function that maximizes
the lower bound given by Eq. (11). Therefore, we obtain that

Rn,k �
(

1
128e

· k2kn

log k

)n

2− k(k+3)
2 k−2k−2, (13)

concluding the proof of Theorem2, where we assume that k � 2.
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4 Concluding Remarks and Further Research

Comparing Eqs. (3) and (6), there is still a gap of (128e · log k)n in the dominant
term of Tn,k, and closing this gap remains an open problem. The factor (log k)n

appears because, in our construction, when a new block starts, we force the frozen
vertex to be the previous anchor. Therefore, this factor is somehow artificial, and
we believe that it could be avoided.

One way to improve the upper bound would be to show that every partial
k-tree with n vertices and m edges can be extended to at least a large number
α(n,m) of k-trees, and then use double counting. This is the approach taken
in [19] for bounding the number of planar graphs, but so far we have not been
able to obtain a significant improvement using this technique.

As mentioned before, our results also apply to other relevant graph para-
meters such as pathwidth and proper-pathwidth. For both parameters, besides
improving the lower bound given by our construction, it may be also possible
to improve the upper bound given by Eq. (3). For proper-pathwidth, a modest
improvement can be obtained as follows. It follows easily from the definition of
proper-pathwidth that the edge-maximal graphs of proper-pathwidth k, which
we call proper linear k-trees, can be constructed starting from a (k + 1)-clique
and iteratively adding a vertex vi connected to a clique Kvi

of size k, with the
constraints that vi−1 ∈ Kvi

and Kvi
\ {vi−1} ⊆ Kvi−1 . From this observation,

and taking into account that the order of the first k vertices is not relevant and
that there are 2k initial cliques giving rise to the same graph, it follows that the
number of n-vertex labeled proper linear k-trees is equal to

n!kn−k−1 1
(2k)k!

. (14)

From this and the fact that a k-tree has kn − k(k+1)
2 edges, an easy calculation

yields that the number of n-vertex labeled graphs of proper-pathwidth at most
k is at most

(
k2kn

c

)n

, for some absolute constant c � 1.88.
It would be interesting to count graphs of bounded “width” in other cases.

For instance, branchwidth seems to be a good candidate, as it is known that, if we
denote by bw(G) the branchwidth of a graph G and |E(G)| � 3, then bw(G) �
tw(G) + 1 � 3

2bw(G) [20]. Other relevant graph parameters are cliquewidth,
rankwidth, tree-cutwidth, or booleanwidth. For any of these parameters, a first
natural step would be to find a “canonical” way to build such graphs, as in the
case of partial k-trees.

Our results find algorithmic applications, specially in the area of Parame-
terized Complexity [6]. When designing a parameterized algorithm, usually a
crucial step is to solve the problem at hand restricted to graphs decomposable
along small separators by performing dynamic programming (see [14] for a recent
example). For instance, precise bounds on Tn,k are useful when dealing with the
Treewidth-k Vertex Deletion problem, which has recently attracted sig-
nificant attention in the area [9,12,15]. In this problem, given a graph G and a
fixed integer k > 0, the objective is to remove as few vertices from G as possible
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in order to obtain a graph of treewidth at most k. When solving Treewidth-k
Vertex Deletion by dynamic programming, the natural approach is to enu-
merate, for any partial solution at a given separator of the decomposition, all
possible graphs of treewidth at most k that are “rooted” at the separator. In
this setting, the value of Tn,k, as well as an explicit construction to generate such
graphs, may be crucial in order to speed-up the running time of the algorithm.
Other recent algorithmic applications of knowing the precise number of graphs
of bounded treewidth are finding path- or tree-decompositions with minimum
number of bags [4] and subgraph embedding problems on sparse graphs [5].

Finally, a challenging open problem is to count the number of unlabeled
partial k-trees, for which nothing is known except for some results concerning
random models [3,13,17]. Note that the number of unlabeled k-trees was an
open problem for long time, until it was recently solved by Gainer-Dewar [10]
(see also [7,11]).

Acknowledgement. We would like to thank Dimitrios M. Thilikos for pointing us to
the notion of proper-pathwidth, and the anonymous referees for helpful remarks that
improved the presentation of the paper and for suggesting several relevant references.
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19. Osthus, D., Prömel, H.J., Taraz, A.: On random planar graphs, the number of

planar graphs and their triangulations. J. Comb. Theory, Ser. B 88(1), 119–134
(2003)

20. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-
decomposition. J. Comb. Theory, Seri. B 52(2), 153–190 (1991)
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Abstract. A matching in a graph is uniquely restricted if no other
matching covers exactly the same set of vertices. This notion was defined
by Golumbic, Hirst, and Lewenstein and studied in a number of arti-
cles. Our contribution is twofold. We provide approximation algorithms
for computing a uniquely restricted matching of maximum size in some
bipartite graphs. In particular, we achieve a ratio of 5/9 for subcubic
bipartite graphs, improving over a 1/2-approximation algorithm pro-
posed by Mishra. Furthermore, we study the uniquely restricted chro-
matic index of a graph, defined as the minimum number of uniquely
restricted matchings into which its edge set can be partitioned. We pro-
vide tight upper bounds in terms of the maximum degree and character-
ize all extremal graphs. Our constructive proofs yield efficient algorithms
to determine the corresponding edge colorings.

Keywords: Uniquely restricted matching · Bipartite graph · Approxi-
mation algorithm · Edge coloring · Subcubic graph

1 Introduction

Matchings in graphs are among the most fundamental and well-studied objects
in combinatorial optimization [25,32]. While classical matchings lead to many
efficiently solvable problems, more restricted types of matchings [30] are often
intractable; induced matchings [3,6,7,10,11,15,18–20,26] being a prominent
example. Here we study the so-called uniquely restricted matchings, which were
introduced by Golumbic et al. [14] and studied in a number of papers [13,21–
23,27,29]. We also consider the corresponding edge coloring notion.

Before we explain our contribution and discuss related research, we collect
some terminology and notation (cf. e.g. [8] for undefined terms). We consider
finite, simple, and undirected graphs. A matching in a graph G [25] is a set of
pairwise non-adjacent edges of G. For a matching M , let V (M) be the set of
vertices incident with an edge in M . A matching M in a graph G is induced [10]
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if the subgraph G[V (M)] of G induced by V (M) is 1-regular. Golumbic et al. [14]
define a matching M in a graph G to be uniquely restricted if there is no matching
M ′ in G with M ′ �= M and V (M ′) = V (M), that is, no other matching covers
exactly the same set of vertices. It is easy to see that a matching M in G is
uniquely restricted if and only if there is no M -alternating cycle in G, which
is a cycle in G that alternates between edges in M and edges not in M . Let
the matching number ν(G), the strong matching number νs(G), and the uniquely
restricted matching number νur(G) of G be the maximum size of a matching, an
induced matching, and a uniquely restricted matching in G, respectively. Since
every induced matching is uniquely restricted, we obtain

νs(G) ≤ νur(G) ≤ ν(G)

for every graph G.
It is worth mentioning that, as discussed by Golumbic et al. [14], maximum

uniquely restricted matchings in bipartite graphs correspond to largest possi-
ble upper triangular submatrices that can be obtained by permuting rows and
columns of a given matrix. Upper triangular submatrices are interesting objects,
since they allow the associated systems of linear equations to be solved quickly;
see [14] for more details.

Each type of matching naturally leads to an edge coloring notion. For a
graph G, let χ′(G) be the chromatic index of G, which is the minimum number
of matchings into which the edge set E(G) of G can be partitioned. Similarly,
let the strong chromatic index χ′

s(G) [11] and the uniquely restricted chromatic
index χ′

ur(G) of G be the minimum number of induced matchings and uniquely
restricted matchings into which the edge set of G can be partitioned, respectively.
A partition of the edges of a graph G into uniquely restricted matchings is a
uniquely restricted edge coloring of G. Another related notion are acyclic edge
colorings, which are partitions of the edge set into matchings such that the union
of every two of the matchings is a forest. The minimum number of matchings in
an acyclic edge coloring of a graph G is its acyclic chromatic index a′(G) [1,12].
Exploiting the obvious relations between the different edge coloring notions, we
obtain

χ′(G) ≤ a′(G) ≤ χ′
ur(G) ≤ χ′

s(G) (1)

for every graph G.
Stockmeyer and Vazirani [30] showed that computing the strong match-

ing number is NP-hard. Their result was strengthened in many ways, and also
restricted graph classes where the strong matching number can be determined
efficiently were studied [3,6,7,26]. Golumbic et al. [14] showed that it is NP-hard
to determine νur(G) for a given bipartite or split graph G. Mishra [27] strength-
ened this by showing that it is not possible to approximate νur(G) within a
factor of O(n

1
3−ε) for any ε > 0, unless NP= ZPP, even when restricted to bipar-

tite, split, chordal or comparability graphs of order n. Furthermore, he showed
that νur(G) is APX-complete for subcubic bipartite graphs.
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On the positive side, Golumbic et al. [14] described efficient algorithms that
determine νur(G) for cacti, threshold graphs, and proper interval graphs. Solving
a problem from [14], Francis et al. [13] described an efficient algorithm for νur(G)
in interval graphs. Solving yet another problem from [14], Penso et al. [29] showed
that the graphs G with ν(G) = νur(G) can be recognized in polynomial time.
Complementing his hardness results, Mishra [27] proposed a 2-approximation
algorithm for cubic bipartite graphs.

While χ′(G) of a graph G of maximum degree Δ is either Δ or Δ + 1 [31],
Erdős and Nešetřil (see, e.g., [11]) conjectured χ′

s(G) ≤ 5
4Δ2, and much of the

research on the strong chromatic index is motivated by this conjecture. Building
on earlier work of Molloy and Reed [28], Bruhn and Joos [4] showed χ′

s(G) ≤
1.93Δ2 provided that Δ is sufficiently large. For further results on the strong
chromatic index we refer to [2,11,16,17].

Fiamčik [12] and Alon et al. [1] conjectured that every graph of maximum
degree Δ has an acyclic edge coloring using no more than Δ+2 colors. See [5,9]
for further references and the currently best known results concerning general
graphs and graphs of large girth.

In view of the famous open conjectures on χ′
s(G) and a′(G), the inequality

chain (1) motivates to study upper bounds on χur(G) in terms of the maximum
degree Δ of a graph G.

Our contribution is twofold. We present approximation algorithms for νur(G)
in some bipartite graphs in Sect. 2 and tight bounds on χ′

ur(G) in Sect. 3.
Improving on Mishra’s approximation algorithm [27], we describe a 5/9-

approximation algorithm for computing νur(G) of a given bipartite subcubic
graph G. Our algorithm requires some complicated preprocessing based on
detailed local analysis, and due to space limitations its proof can be found only
in the full version of this article [arXiv:1611.06815]. In order to illustrate our
general approach in a cleaner setting, we describe here in full detail an approxi-
mation algorithm for C4-free bipartite graphs of arbitrary maximum degree.

Concerning the uniquely restricted chromatic index, we achieve best-possible
upper bounds in terms of the maximum degree, and even characterize all
extremal graphs. Since our proofs are constructive, it is easy to extract efficient
algorithms finding the corresponding edge colorings.

We conclude with some open problems in Sect. 4.

2 Approximation Algorithms for Bipartite Graphs

Before we proceed to our main result in this section, Theorem 2, we describe
an approximation algorithm for the C4-free case. The proof of the next lemma
contains the main algorithmic ingredients. Note that the size of the smaller par-
tite set in a bipartite graph is always an upper bound on the uniquely restricted
matching number.

For an integer k, let [k] denote the set of positive integers between 1 and k.
For a graph G, let n(G) denote its number of vertices.

http://arxiv.org/abs/1611.06815
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Lemma 1. Let Δ ≥ 3 be an integer. If G is a connected C4-free bipartite graph
of maximum degree at most Δ with partite sets A and B such that every vertex in
A has degree at least 2, and some vertex in B has degree less than Δ, then G has
a uniquely restricted matching M of size at least (Δ−1)2+(Δ−2)

(Δ−1)3+(Δ−2) |A|. Furthermore,
such a matching can be found in polynomial time.

Proof: We give an algorithmic proof of the lower bound such that the running
time of the corresponding algorithm is polynomial in n(G), which immediately
implies the second part of the statement. Therefore, let G be as in the statement.
Throughout the execution of our algorithm, as illustrated in Fig. 1, we maintain
a pair (U,M) such that

(a) U is a subset of V (G),
(b) M is a uniquely restricted matching with V (M) ⊆ U ,
(c) every vertex in B ∩ U has all its neighbors in A ∩ U ,
(d) every vertex in B \ U has a neighbor in A \ U ,
(e) if

s vertices in A ∩ U are incident with an edge in M ,
d vertices in A ∩ U are not incident with an edge in M but have a neighbor
in B \ U , and
f vertices in A ∩ U are neither incident with an edge in M nor have a
neighbor in B \ U , then

(Δ − 1)2
(
(Δ − 2)s − (d + f)

)
≥ (Δ − 2)f. (2)

A

B

M

U

s f d

Fig. 1. Example for Δ = 3 of the parameters defined in the proof of Lemma 1. The set
U is dashed, and the uniquely restricted matching M corresponds to the thicker edges.

Initially, let U and M be empty sets. Note that properties (a) to (e) hold.
As long as U is a proper subset of V (G), we iteratively replace the pair (U,M)

with a pair (U ′,M ′) such that U is a proper subset of U ′, M is a proper subset
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of M ′, and properties (a) to (e) hold for (U ′,M ′). Let s′, d′, and f ′ denote the
updated values considered in (e). Once U = V (G), we have s = |M |, d = 0, and
f = |A| − |M |, and (2) implies the stated lower bound on |M |.

We proceed to the description of the extension operations. Therefore, suppose
that U is a proper subset of V (G). Since G is connected, and some vertex in B
has degree less than Δ, some vertex u in B\U has less than Δ neighbors in A\U ,
that is, if dŪ (u) = |NG(u) \ U |, then 1 ≤ dŪ (u) ≤ Δ − 1, where the existence of
u and the first inequality follow from property (d). We choose u ∈ B \ U such
that dŪ (u) is as small as possible.

Case 1: dŪ (u) = 1.
Let v be the unique neighbor of u in A \ U . Let {u1, . . . , uk} be the set of
all vertices u in B \ U with NG(u) \ U = {v}, and note that 1 ≤ k ≤ Δ.
Let U ′ = U ∪ {u1, . . . , uk, v}. For some integer � ≤ k, we may assume that
{u1, . . . , u�} is the set of those ui with i ∈ [k] such that ui has a neighbor in
A ∩ U , and no neighbor of ui in A ∩ U is incident with M . Note that every
vertex ui with i ∈ [k] \ [�] either has no neighbor in A ∩ U or has some neighbor
in A ∩ U that is incident with M .

First, suppose that � ≥ 2. Let M ′ arise from M by adding, for every i ∈ [�], an
edge between ui and a neighbor wi of ui in A ∩ U . Note that all these neighbors
wi in A ∩ U are distinct. Indeed, if two vertices ui and uj have a common
neighbor w in A ∩ U , then the set of vertices {v, ui, uj , w} would induce a C4

in G. Note also that M ′ is indeed a uniquely restricted matching, as if there
exists an edge uiwj with i, j ∈ [�] and i �= j that could potentially create an
M ′-alternating cycle, then the set of vertices {v, ui, uj , wj} would again induce
a C4 in G. Clearly, replacing (U,M) with (U ′,M ′), we maintain properties (a)
to (d), and s′ = s + �. Let nd be the number of vertices in A ∩ U that are not
incident with an edge in M ′, have a neighbor in B\U , but do not have a neighbor
in B \ U ′; note that each such vertex has a neighbor in the set {u1, . . . , uk}. As
every vertex in {u1, . . . , uk} is neighbor of v and of a vertex incident with an
edge in M ′, it holds that nd ≤ k(Δ − 2) ≤ Δ(Δ − 2). If v has a neighbor in
B \U ′, then d′ = d−nd +1 and f ′ = f +nd, and, if v has no neighbor in B \U ′,
then d′ = d − nd and f ′ = f + nd + 1. In both cases d′ + f ′ = d + f + 1 and
f ′ ≤ f + nd + 1. Since (Δ−1)2

Δ−2

(
(Δ − 2)� − 1

)
≥ Δ(Δ − 2) + 1 ≥ nd + 1, property

(e) is maintained.
Next, suppose that � ≤ 1. Let M ′ arise from M by adding the edge u1v.

Clearly, replacing (U,M) with (U ′,M ′), we maintain properties (a) to (d), and
s′ = s + 1. Defining nd exactly as above, we obtain nd ≤ k(Δ − 2) + � ≤ Δ(Δ −
2) + 1, d′ = d − nd, and f ′ = f + nd. Since (Δ−1)2

Δ−2 (Δ − 2) ≥ Δ(Δ − 2) + 1 ≥ nd,
property (e) is maintained.

Case 2: 2 ≤ dŪ (u) ≤ Δ − 1.
Let {v1, . . . , vk} = NG(u) \ U and let U ′ = U ∪ {u, v1, . . . , vk}. Note that 2 ≤
k ≤ Δ − 1.

First, suppose that u has a neighbor v in A ∩ U , and that no neighbor of
u in A ∩ U is incident with M . Let M ′ arise from M by adding the edge uv.
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Clearly, replacing (U,M) with (U ′,M ′), we maintain properties (a) to (c), and
s′ = s + 1. Let us prove that property (d) is also maintained. Since G has no C4

and k ≥ 2, no vertex in B \ U that is distinct from u can have more than one
neighbor among v1, . . . , vk. Since we are in Case 2, every vertex in B \ U has
more than one neighbor in A \ U , hence property (d) remains true. Similarly as
above, let nd be the number of vertices in A ∩ U that are not incident with an
edge in M ′, have a neighbor in B \ U , but do not have a neighbor in B \ U ′.
Note that nd ≤ Δ − k − 1, d′ = d + k − nd − 1, and f ′ = f + nd. Since
(Δ−1)2

Δ−2

(
(Δ − 2) − (k − 1)

)
≥ Δ − k − 1 ≥ nd, property (e) is maintained.

Next, suppose that u has no neighbor in A ∩ U or some neighbor of u in
A∩U is incident with M . Let M ′ arise from M by adding the edge uv1. Clearly,
replacing (U,M) with (U ′,M ′), we again maintain properties (a) to (d), and
s′ = s + 1. Note that, in the case where u has a neighbor in A ∩ U , v1 does not
have neighbors in V (M) because of property (c), which guarantees that M ′ is
indeed a uniquely restricted matching. Defining nd exactly as above, we obtain
nd ≤ Δ−k−1. Indeed, if u has no neighbor in A∩U , then nd = 0. On the other
hand, if u has a neighbor in A∩U that is incident with M , then nd ≤ Δ−k −1.
As k ≤ Δ − 1, in both cases it holds that nd ≤ Δ − k − 1. Also, we get that
d′ = d + k − nd + 1 and f ′ = f + nd, and the same calculation as above implies
that property (e) is maintained.

Since the considered cases exhaust all possibilities, and in each case we
described an extension that maintains the relevant properties, the proof is com-
plete up to the running time of the algorithm, which we proceed to analyze.
One can easily check that each extension operation takes time O(Δn), where
n = n(G). As in each extension operation, the size of U is incremented by at
least one, it follows that the overall running time of the algorithm is O(Δn2). 	


With Lemma 1 at hand, we proceed to our first approximation algorithm.

Theorem 1. Let Δ ≥ 3 be an integer. For a given connected C4-free bipar-
tite graph G of maximum degree at most Δ, one can find in polynomial time a
uniquely restricted matching M of G of size at least (Δ−1)2+(Δ−2)

(Δ−1)3+(Δ−2)νur(G).

Proof: Let α = (Δ−1)2+(Δ−2)
(Δ−1)3+(Δ−2) and let G be the set of all C4-free bipartite graphs

G of maximum degree at most Δ such that every component of G has a vertex
of degree less than Δ. First, we prove that, for every given graph G in G, one
can find in polynomial time a uniquely restricted matching M of size at least
ανur(G). Therefore, let G be in G.

If G has a vertex u of degree 1, and v is the unique neighbor of u, then
let G′ = G − {u, v}. Clearly, νur(G′) ≥ νur(G) − 1, and if M ′ is a uniquely
restricted matching of G′, then M ′ ∪ {uv} is a uniquely restricted matching
of G. Note that G′ belongs to G. Let G′′ be the graph obtained from G′ by
removing every isolated vertex. Clearly, νur(G′′) ≥ νur(G′), if M ′′ is a uniquely
restricted matching of G′′, then M ′′ is a uniquely restricted matching of G′, and
G′′ belongs to G.

Iteratively repeating these reductions, we efficiently obtain a set M1 of edges
of G as well as a subgraph G2 of G such that G2 ∈ G, νur(G2) ≥ νur(G) − |M1|,
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M1 ∪ M2 is a uniquely restricted matching of G for every uniquely restricted
matching M2 of G2, and either n(G2) = 0 or δ(G2) ≥ 2. Note that if G has
minimum degree at least 2, then we may choose M1 empty and G2 equal to G.
Now, by suitably choosing the bipartition of each component K of G2, and
applying Lemma 1 to K, one can determine in polynomial time a uniquely
restricted matching M2 of G2 with |M2| ≥ ανur(G2). Since the set M1 ∪ M2

is a uniquely restricted matching of G of size at least |M1| + ανur(G2) ≥
|M1| + α(νur(G) − |M1|) ≥ ανur(G), the proof of our claim about G is
complete.

Now, let G be a given connected C4-free bipartite graph of maximum degree
at most Δ. If G is not Δ-regular, then G ∈ G, and the desired statement already
follows. Hence, we may assume that G is Δ-regular, which implies that its two
partite sets A and B are of the same order. By [29], we can efficiently decide
whether νur(G) = ν(G). Furthermore, if νur(G) = ν(G), then, again by [29],
we can efficiently determine a maximum matching that is uniquely restricted.
Hence, we may assume that νur(G) < ν(G). This implies that νur(G) < |A|,
and, hence, there is some vertex u ∈ V (G) with νur(G − u) = νur(G). Since
G − u ∈ G for every vertex u of G, considering the n(G) induced subgraphs
G−u for u ∈ V (G), one can determine in polynomial time a uniquely restricted
matching M of G with |M | ≥ max{ανur(G − u) : u ∈ V (G)} = ανur(G). The
desired statement follows.

Our next result shows that – at least for Δ = 3 – C4-freeness is not an
essential assumption. The proof can be found in [arXiv:1611.06815].

Theorem 2. For a given connected subcubic bipartite graph G, one can find in
polynomial time a uniquely restricted matching of G of size at least 5

9νur(G).

We believe that Theorem 2 extends to larger maximum degrees, that is, the
conclusion of Theorem 1 should hold without the assumption of C4-freeness.

3 Upper Bounds on χ′
ur(G)

Our first result in this section applies to general graphs, and its proof relies
on a natural greedy strategy. Faudree et al. [10] conjectured χ′

s(G) ≤ Δ2 for a
bipartite graph G of maximum degree Δ, and our Theorem 3 can be considered
a weak version of this conjecture. Theorem 4 below shows that excluding the
unique extremal graph from Theorem 3, the uniquely restricted chromatic index
of bipartite graphs drops considerably.

Theorem 3. If G is a connected graph of maximum degree at most Δ, then
χ′

ur(G) ≤ Δ2 with equality if and only if G is KΔ,Δ.

Proof: Since no two edges of KΔ,Δ form a uniquely restricted matching in this
graph, we obtain χ′

ur(KΔ,Δ) = |E(KΔ,Δ)| = Δ2. Now, let G be a connected
graph of maximum degree at most Δ. We first show that χ′

ur(G) ≤ Δ2. In a
second step, we show that χ′

ur(G) < Δ2 provided that G is not KΔ,Δ.

http://arxiv.org/abs/1611.06815
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We consider the vertices of G in some linear order, say u1, . . . , un. For i from
1 up to n, we assume that the edges of G incident with vertices in {u1, . . . , ui−1}
have already been colored, and we color all edges between ui and {ui+1, . . . , un}
using distinct colors, and avoiding any color that has already been used on a
previously colored edge incident with some neighbor of ui. Since ui has at most
Δ neighbors, each of which is incident with at most Δ edges, this procedure
requires at most Δ2 many distinct colors.

Suppose, for a contradiction, that some color class M is not a uniquely
restricted matching in G. Since M is a matching by construction, there is an
M -alternating cycle C. Let C : ur1us1ur2us2 . . . urk

usk
ur1 be such that r1 is the

minimum index of any vertex on C, and ur1usk
∈ M . These choices trivially

imply r1 < s1 and r1 < r2. If r2 > s1, then ur1usk
∈ M implies that, when

coloring the edge us1ur2 , some edge incident with the neighbor ur1 of us1 would
already have been assigned the color of the edges in M , and the above proce-
dure would have avoided this color on us1ur2 . Therefore, since ur1usk

∈ M and
ur2us1 ∈ M , the coloring rules imply r2 < s1, that is, r1 < r2 < s1. Now, suppose
that ri < ri+1 < si for some i ∈ [k −1]. Since uri+1usi

∈ M and uri+2usi+1 ∈ M ,
the coloring rules imply in turn

• ri+2 < si+1, since otherwise we would have colored uri+2usi+1 differently, and
• ri+1 < ri+2, since otherwise we would have colored uri+1usi

differently.

It follows that ri+1 < ri+2 < si+1, where we identify rk+1 with r1. Now, by an
inductive argument, we obtain r1 < r2 < · · · < rk < r1, which is a contradiction.

Altogether, we obtain χ′
ur(G) ≤ Δ2.

Now, let G be distinct from KΔ,Δ, and we want to prove that χ′
ur(G) < Δ2.

Among all uniquely restricted edge colorings of G using colors in [Δ2], we choose
a coloring for which the number of edges with color 1 is as small as possible.
Clearly, we may assume that some edge uv has color 1, as otherwise we already
have that χ′

ur(G) < Δ2.
If there is a color α in [Δ2] \ {1} such that no edge incident with a neighbor

of u has color α, then changing the color of uv to α yields a uniquely restricted
edge coloring of G with less edges of color 1, which is a contradiction. In view
of the maximum degree, this implies that every vertex in NG[u] has degree Δ,
the set NG(u) is independent, and, for every color α in [Δ2], there is exactly one
edge incident with a neighbor of u that has color α.

Since G is not KΔ,Δ, some neighbor x of u has a neighbor y that does not lie
in NG(v). Without loss of generality, let ux have color 2, and let xy have color
3. Let M be the set of edges with color 3.

If G does not contain an M -alternating path of odd length (number of edges)
at least 3 between x and a vertex in NG(v)\{u} that contains the edge xy, then
changing the color of uv to 3 yields a uniquely restricted edge coloring of G with
less edges of color 1, which is a contradiction. Hence, G contains such a path,
which implies that two edges incident with neighbors of y have color 3.

If there is a color α in [Δ2] \ {1} such that no edge incident with a neighbor
of y has color α, then changing the color of xy to α and the color of uv to 3
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yields a uniquely restricted edge coloring of G with less edges of color 1, which
is a contradiction. Similarly as above, this implies that, for every color α in
[Δ2] \ {1, 3}, there is exactly one edge incident with a neighbor of y that has
color α. Now, changing the color of uv to 2, the color of ux to 3, and the color
of xy to 2 yields a uniquely restricted edge coloring of G with less edges of color
1, which is a contradiction. This completes the proof. 	


As observed above, the proof of Theorem 3 is algorithmic; the simple greedy
strategy considered in its first half efficiently constructs uniquely restricted edge
colorings using at most Δ2 colors. Furthermore, also its second half can be
turned into an efficient algorithm that finds uniquely restricted edge colorings
using at most Δ2 − 1 colors for connected graphs of maximum degree Δ that
are distinct from KΔ,Δ; the different cases considered in the proof correspond to
simple manipulations of a given uniquely restricted edge coloring that iteratively
reduce the number of edges of color 1 down to 0. Golumbic et al. [14] showed
that deciding whether a given matching is uniquely restricted can be done in
polynomial time, and their algorithm can be used to decide which of the simple
manipulations can be executed.

Our next goal is to improve Theorem 3 for bipartite graphs. The following
proof was inspired by Lovász’s [24] elegant proof of Brooks’ Theorem.

Lemma 2. If G is a connected bipartite graph of maximum degree at most Δ ≥ 4
that is distinct from KΔ,Δ, and M is a matching in G, then M can be partitioned
into at most Δ − 1 uniquely restricted matchings in G.

Proof: Let A and B be the partite sets of G, and let R = V (G) \ V (M). Note
that M is perfect if and only if R is empty. Whenever we consider a coloring
of the edges in M , and α is one of the colors, let Mα be the set of edges in M
colored with α.

First, we assume that R is empty, and that G is not Δ-regular. By symmetry,
we may assume that some vertex a in A has degree less than Δ. Let ab ∈ M . Let
T be a spanning tree of G that contains the edges in M . Contracting within T
the edges from M , rooting the resulting tree at the vertex corresponding to the
edge ab, and considering a breadth-first search order, we obtain the existence of a
linear order a1b1, . . . , anbn of the edges in M such that ab = anbn, and, for every
i ∈ [n − 1], there is an edge between {ai, bi} and {ai+1, bi+1, . . . , an, bn}. Since
an has degree less than Δ, this implies that, for every i ∈ [n], some vertex ui

in {ai, bi} has at most Δ − 2 neighbors in {a1, b1, . . . , ai−1, bi−1}. Now, we color
the edges in M greedily in the above linear order. Specifically, for every i from 1
up to n, we color the edge aibi with some color α in [Δ − 1] such that, for every
j ∈ [i − 1], for which ui ∈ {ai, bi} has a neighbor in {aj , bj}, the edge ajbj is not
colored with α. By the degree condition on ui, such a coloring exists. Suppose,
for a contradiction, that Mα is not uniquely restricted for some color α in [Δ−1].
Let the edge aibi in Mα be such that it belongs to some Mα-alternating cycle C,
and, subject to this condition, the index i is maximum. If the neighbor of ui on
C outside of {ai, bi} is in {aj , bj}, then the choice of the edge aibi implies j < i,
and the coloring rule implies that the edge ajbj is not colored with α, which is
a contradiction. Altogether, the statement follows.
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Next, we assume that R is non-empty. Let K be a component of G − R. Let
MK be the set of edges in M that lie in K. Since G is connected, the graph K
is not Δ-regular. Therefore, proceeding exactly as above, we obtain a coloring of
the edges in MK using the colors in [Δ−1] such that each color class is a uniquely
restricted matching in K. If K1, . . . ,Kk are the components of G − R, and Mi

is a uniquely restricted matching in Ki for every i ∈ [k], then M1 ∪ · · · ∪ Mk is
a uniquely restricted matching in G. Therefore, combining the colorings within
the different components, we obtain that also in this case the statement follows.

At this point, we may assume that G is Δ-regular, and that M is perfect.
Next, we assume that there are two distinct edges e and e′ in M such

that V ({e, e′}) is a vertex cut of G. This implies that we can partition the
set M \ {e, e′} into two non-empty sets M1 and M2 such that there is no edge
between V (M1) and V (M2). For i ∈ [2], let Gi be the subgraph of G induced by
V ({e, e′} ∪ Mi). Since G is connected, the graph Gi is not Δ-regular. In view
of the above, this implies that there is a coloring ci of the edges of the perfect
matching {e, e′} ∪ Mi of Gi using the colors in [Δ − 1] such that each color class
of ci is a uniquely restricted matching in Gi. If ci(e) �= ci(e′) for both i in [2],
then we may assume that c1 and c2 assign the same colors to e and e′, and it is
easy to verify that the common extension c of c1 and c2 to M has the property
that every color class of c is a uniquely restricted matching in G. Hence, we may
assume that necessarily c1(e) = c1(e′). Note that this implies in particular that
at least one of the two possible edges between V ({e}) and V ({e′}) is missing.

Let c1(e) = α. Let e = ab, e′ = a′b′, and U = {a, b, a′, b′}. For every vertex
u ∈ U , let C1(u) be the set of colors β for which M1 contains an edge vw with
c1(vw) = β such that u is adjacent to v or w. If there is some u ∈ U and some
color β ∈ ([Δ − 1] \ {α}) \ C1(u), then changing the color of the unique edge in
{e, e′} incident with u from α to β yields a coloring c′

1 of the edges in {e, e′}∪M1

using the colors in [Δ−1] such that each color class of c′
1 is a uniquely restricted

matching in G1. Furthermore, c′
1(e) �= c′

1(e
′), which is a contradiction. This

implies that [Δ − 1] \ {α} ⊆ C1(u) for every u ∈ U . In particular, each vertex u
in U has at least Δ − 2 neighbors in V (M1), and, hence, at most one neighbor
in V (M2). Let C2(u) for u ∈ U be defined analogously as above. Clearly, the set
C2(a) ∪ C2(a′) contains at most two distinct colors. Since Δ − 1 ≥ 3, we may
assume that c2 is such that the set C2(a) ∪ C2(a′) does not contain the color α.
Now, let c′

2 be a coloring of the edges in {e, e′} ∪ M2 that coincides with c2 on
M2 and colors e and e′ with color α. It is easy to see that each color class of c′

2

is a uniquely restricted matching in G2. Let c be the common extension of c1
and c′

2 to M . Suppose, for a contradiction, that the color class Mβ of c is not
uniquely restricted for some color β in [Δ − 1]. Clearly, we have β = α. Let C
be an Mα-alternating cycle in G. It is easy to see that C contains both edges e
and e′ Furthermore, since at least one of the two possible edges between {a, b}
and {a′, b′} is missing, it follows that C contains an edge between {a, a′} and
V (M2). Since c coincides with c2 on M2, and C2(a)∪C2(a′) does not contain α,
we obtain a contradiction.
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Altogether, we may assume that there are no two distinct edges e and e′ in
M such that V ({e, e′}) is a vertex cut of G.

Now, we show the existence of three edges ab, a′b′, and a′′b′′ in M such
that some of the two possible edges between {a′, b′} and {a′′, b′′} is missing,
and either a is adjacent to b′ as well as b′′ or b is adjacent to a′ as well as a′′.
Therefore, let a1b1 be an edge in M . Let a2b2, . . . , aΔbΔ be the edges in M such
that NG(a1) = {b1, . . . , bΔ}. We may assume that {a2, b2, . . . , aΔ, bΔ} induces a
complete bipartite graph KΔ−1,Δ−1; otherwise, we find the three edges with the
desired properties. Since G is not KΔ,Δ, the vertex b1 is non-adjacent to some
vertex ai in {a2, . . . , aΔ}. Now, if aj ∈ {a2, . . . , aΔ} \ {ai}, then one of the two
possible edges between {a1, b1} and {ai, bi} is missing, and bj is adjacent to a1

as well as ai. Altogether, we obtain three edges ab, a′b′, and a′′b′′ in M with the
desired properties.

By symmetry, we may assume that a is adjacent to b′ and b′′, and a′ is
non-adjacent to b′′. In view of the above, the graph G′ = G − V ({a′b′, a′′b′′})
is connected, and M ′ = M \ {a′b′, a′′b′′} is a perfect matching of G′. Let T ′

be a spanning tree of G′ that contains the edges in M ′. Contracting within T ′

the edges from M ′, rooting the resulting tree in the vertex corresponding to the
edge ab, and considering a breadth-first search order, we obtain the existence of a
linear order a3b3, . . . , anbn of the edges in M ′ such that ab = anbn, and, for every
i ∈ [n−1]\[2], there is an edge between {ai, bi} and {ai+1, bi+1, . . . , an, bn}. Now,
we color the edges in M greedily in the linear order a1b1, a2b2, a3b3, . . . , anbn,
where a1b1 = a′′b′′ and a2b2 = a′b′. Note that, for every i ∈ [n − 1] \ [2], some
vertex ui in {ai, bi} has at most Δ − 2 neighbors in {a1, b1, . . . , ai−1, bi−1}. We
color a1b1 and a2b2 with the same color. For every i from 3 up to n−1, we color
the edge aibi with a color α in [Δ − 1] such that, for every j ∈ [i − 1], for which
ui has a neighbor in {aj , bj}, the edge ajbj is not colored with α. By the degree
condition on ui, such a coloring exists. Finally, since an has neighbors in the two
edges a1b1 and a2b2 that are colored with the same color, there is some color α
in [Δ − 1] for which no edge aibi with i ∈ [n − 1] such that an is adjacent to bi,
is colored with α, and we color the edge anbn with that color α. Suppose, for
a contradiction, that Mβ is not uniquely restricted for some color β in [Δ − 1].
Let the edge aibi in Mβ be such that it belongs to some Mβ-alternating cycle C,
and, subject to this condition, the index i is maximum. Since a′ is non-adjacent
to b′′, we have i ≥ 3. Let un = an. If the neighbor of ui on C outside of {ai, bi}
is in {aj , bj}, then the choice of the edge aibi implies j < i, and the coloring rule
implies that the edge ajbj is not colored with β, which is a contradiction. This
completes the proof. 	


Lemma 2 fails for Δ = 3; the matching {a1b1, a2b2, a3b3, a4b4, a5b5} of the
graph G in Fig. 2 cannot be partitioned into two uniquely restricted matchings.
Note that the matching {a1b3, a2b1, a3b5, a4b2, a5b4} though is the union of the
two uniquely restricted matchings {a1b3, a3b5} and {a2b1, a4b2, a5b4}.

Lemma 2 also fails for non-bipartite graphs; in fact, if G arises from the
disjoint union of two copies of KΔ by adding a perfect matching M , then every
partition of M into uniquely restricted matchings requires Δ sets.
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Fig. 2. A bipartite graph G.

With Lemma 2 at hand, the proof of our final result is easy.

Theorem 4. If G is a connected bipartite graph of maximum degree at most
Δ ≥ 4 that is distinct from KΔ,Δ, then χ′

ur(G) ≤ Δ2 − Δ.

Proof: Since G is bipartite, its edge set can be partitioned into Δ matchings [25].
By Lemma 2, each of these matchings can be partitioned into Δ − 1 uniquely
restricted matchings. This completes the proof. 	


Note that the graph G in Fig. 2 also satisfies χ′
ur(G) ≤ Δ2 − Δ = 9 − 3 = 6.

In fact, the uniquely restricted matchings {a1b1, a4b2, a5b4}, {a1b2, a2b4, a5b5},
{a2b1, a3b3, a4b5}, {a1b3, a4b4}, {a2b2, a3b5}, and {a3b1, a5b3} partition E(G).

4 Concluding Remarks

Our results motivate several open problems. As stated above, we believe that
the conclusion of Theorem 1 holds without the assumption of C4-freeness. We
also believe that better approximation factors are possible, and that approxima-
tion lower bounds in terms of the maximum degree could be proved. One could
study the approximability of the uniquely restricted matching number in other
classes of graphs. Finally, complexity results concerning the uniquely restricted
chromatic index should be provided.
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Abstract. In Defective Coloring we are given a graph G and two
integers χd, Δ∗ and are asked if we can χd-color G so that the maximum
degree induced by any color class is at most Δ∗. We show that this nat-
ural generalization of Coloring is much harder on several basic graph
classes. In particular, we show that it is NP-hard on split graphs, even
when one of the two parameters χd, Δ∗ is set to the smallest possible
fixed value that does not trivialize the problem (χd = 2 or Δ∗ = 1).
Together with a simple treewidth-based DP algorithm this completely
determines the complexity of the problem also on chordal graphs.

We then consider the case of cographs and show that, somewhat sur-
prisingly, Defective Coloring turns out to be one of the few natural
problems which are NP-hard on this class. We complement this nega-
tive result by showing that Defective Coloring is in P for cographs
if either χd or Δ∗ is fixed; that it is in P for trivially perfect graphs; and
that it admits a sub-exponential time algorithm for cographs when both
χd and Δ∗ are unbounded.

1 Introduction

In this paper we study the computational complexity of Defective Color-
ing, which is also known in the literature as Improper Coloring: given a
graph and two parameters χd,Δ

∗ we want to color the graph with χd colors
so that every color class induces a graph with maximum degree at most Δ∗.
Defective Coloring is a very natural generalization of Graph Coloring,
which corresponds to the case Δ∗ = 0. As a result, since the introduction of
this problem more than thirty years ago [2,13] a great deal of research effort has
been devoted to its study. Among the topics that have been investigated are its
extremal properties [1,10,18,20,30,31], especially on planar graphs and graphs
on surfaces [4,12,14,25], as well as its asymptotic behavior on random graphs
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[28,29]. Lately, the problem has attracted renewed interest due to its applica-
bility to communication networks, with the coloring of the graph modeling the
assignment of frequencies to nodes and Δ∗ representing some amount of tolera-
ble interference. This has led to the study of the problem on Unit Disk Graphs
[24] as well as various classes of grids [3,5,7]. Weighted generalizations have also
been considered [6,23]. More background can be found in the survey by Frick
[17] or Kang’s Ph.D. thesis [27].

Our main interest in this paper is to study the computational complexity of
Defective Coloring through the lens of structural graph theory, that is, to
investigate the classes of graphs for which the problem becomes tractable. Since
Defective Coloring generalizes Graph Coloring we immediately know
that it is NP-hard already in a number of restricted graph classes and for small
values of χd,Δ

∗. Nevertheless, the fundamental question we would like to pose
is what is the additional complexity brought to this problem by the freedom to
produce a slightly improper coloring. In other words, we ask what are the graph
classes where even though Graph Coloring is easy, Defective Coloring is
still hard (and conversely, what are the classes where both are tractable). Though
some results of this type are already known (for example Cowen et al. [14] prove
that the problem is hard even on planar graphs for χd = 2), this question is not
well-understood. Our focus on this paper is to study Defective Coloring on
subclasses of perfect graphs, which are perhaps the most widely studied class of
graphs where Graph Coloring is in P. The status of the problem appears to
be unknown here, and in fact its complexity on interval and even proper interval
graphs is explicitly posed as an open question in [24].

Our results revolve around two widely studied classes of perfect graphs: split
graphs and cographs. For split graphs we show not only that Defective Col-
oring is NP-hard, but that it remains NP-hard even if either χd or Δ∗ is a
constant with the smallest possible non-trivial value (χd ≥ 2 or Δ∗ ≥ 1). To
complement these negative results we provide a treewidth-based DP algorithm
which runs in polynomial time if both χd and Δ∗ are constant, not only for
split graphs, but also for chordal graphs. This generalizes a previous algorithm
of Havet et al. [24] on interval graphs.

We then go on to show that Defective Coloring is also NP-hard when
restricted to cographs. We note that this result is somewhat surprising since rel-
atively few natural problems are known to be hard for cographs. We complement
this negative result in several ways. First, we show that Defective Coloring
becomes polynomially solvable on trivially perfect graphs, which form a large
natural subclass of cographs. Second, we show that, unlike the case of split
graphs, Defective Coloring is in P on cographs if either χd or Δ∗ is fixed.
Both of these results are based on dynamic programming algorithms. Finally,
by combining the previous two algorithms with known facts about the relation
between χd and Δ∗ we obtain a sub-exponential time algorithm for Defective
Coloring on cographs. We note that the existence of such an algorithm for split
graphs is ruled out by our reductions, under the Exponential Time Hypothesis.
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Table 1. Summary of results

Table 1 summarizes our results. For the reader’s convenience, it also depicts an
inclusion diagram for the graph classes that we mention.

2 Preliminaries and Definitions

We use standard graph theory terminology, see e.g. [16]. In particular, for a graph
G = (V,E) and u ∈ V we use N(u) to denote the set of neighbors of u, N [u]
denotes N(u)∪{u}, and for S ⊆ V we use G[S] to denote the subgraph induced
by the set S. A proper coloring of G with χ colors is a function c : V → {1, . . . , χ}
such that for all i ∈ {1, . . . , χ} the graph G[c−1(i)] is an independent set. We
will focus on the following generalization of coloring:

Definition 1. If χd,Δ
∗ are positive integers then a (χd,Δ

∗)-coloring of a graph
G = (V,E) is a function c : V → {1, . . . , χd} such that for all i ∈ {1, . . . , χd}
the maximum degree of G[c−1(i)] is at most Δ∗.

We call the problem of deciding if a graph admits a (χd,Δ
∗)-coloring, for

given parameters χd,Δ
∗, Defective Coloring. For a graph G and a coloring

function c : V → N we say that the deficiency of a vertex u is |N(u)∩c−1(c(u))|,
that is, the number of its neighbors with the same color. The deficiency of a
color class i is defined as the maximum deficiency of any vertex colored with i.

We recall the following basic facts about Defective Coloring:

Lemma 1 [27]. For any χd,Δ
∗ and any graph G = (V,E) with χd · Δ∗ ≥ |V |

we have that G admits a (χd,Δ
∗)-coloring.

Lemma 2 [27]. If G admits a (χd,Δ
∗)-coloring then ω(G) ≤ χd · (Δ∗ + 1).

Let us now also give some quick reminders regarding the definitions of the
graph classes we consider in this paper.

A graph G = (V,E) is a split graph if V = K ∪ S where K induces a
clique and S induces an independent set. A graph G is chordal if it does not
contain any induced cycles of length four or more. It is well known that all split
graphs are chordal; furthermore it is known that the class of chordal graphs
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contains the class of interval graphs, and that chordal graphs are perfect. For
more information on these standard containments see [11].

A graph is a cograph if it is either a single vertex, or the disjoint union of two
cographs, or the complete join of two cographs [33]. A graph is trivially perfect
if in all induced subgraphs the maximum independent set is equal to the number
of maximal cliques [21]. Trivially perfect graphs are exactly the cographs which
are chordal [34], and hence are a subclass of cographs, which are a subclass of
perfect graphs. We recall that Graph Coloring is polynomial-time solvable in
all the mentioned graph classes, since it is polynomial-time solvable on perfect
graphs [22], though of course for all these classes simpler and more efficient
combinatorial algorithms are known.

We will also use the notion of treewidth for the definition of which we refer
the reader to [9,15].

3 NP-Hardness on Cographs

In this section we establish that Defective Coloring is already NP-hard on
the very restricted class of cographs. To this end, we show a reduction from
4-Partition.

Definition 2. In 4-Partition we are given a set A of 4n elements, a size
function s : A → N

+ which assigns a value to each element, and a target integer
B. We are asked if there exists a partition of A into n sets of four elements
(quadruples), such that for each set the sum of its elements is exactly B.

4-Partition has long been known to be strongly NP-hard, that is, NP-hard
even if all values are polynomially bounded in n. In fact, the reduction given in
[19] establishes the following, slightly stronger statement.

Theorem 1. 4-Partition is strongly NP-complete if A is given to us parti-
tioned into four sets of equal size A1, A2, A3, A4 and any valid solution is required
to place exactly one element from each Ai, i ∈ {1, . . . , 4} in each quadruple.

Theorem 2. Defective Coloring is NP-complete even when restricted to
complete k-partite graphs. Therefore, Defective Coloring is NP-complete on
cographs.

Proof. We start our reduction from an instance of 4-Partition where the set
of elements A is partitioned into four equal-size sets as in Theorem 1. We first
transform the instance by altering the sizes of all elements as follows: for each
element x ∈ Ai we set s′(x) := s(x) + 5iB + 55n2B and we also set B′ :=
B +B ·∑4

i=1 5i +4 · 55n2B. After this transformation our instance is “ordered”,
in the sense that all elements of Ai+1 have strictly larger size than all elements
of Ai. Furthermore, it is not hard to see that the answer to the problem did
not change, as any quadruple that used one element from each Ai and summed
up to B now sums up to B′. In addition, we observe that in the new instance
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the condition that exactly one element must be used from each set is imposed
by the element sizes themselves: a quadruple that contains two or more elements
of A4 will have sum strictly more than B′, while one containing no elements of
A4 will have sum strictly less than B′. Similar reasoning can then be applied
to A3, A2. We note that the element sizes now have the extra property that
s′(x) ∈ (B′/4 − 5B′/n2, B′/4 + 5B′/n2).

We now construct an instance of Defective Coloring as follows. We set
Δ∗ = B′ and χd = n. To construct the graph G, for each element x ∈ A2 ∪
A3 ∪ A4 we create an independent set of s′(x) new vertices which we will call
Vx. For each element x ∈ A1 we construct two independent sets of s′(x) new
vertices each, which we will call V 1

x and V 2
x . Finally, we turn the graph into a

complete 5n-partite graph, that is, we add all possible edges while retaining the
property that all sets Vx and V i

x remain independent.
Let us now argue for the correctness of the reduction. First, suppose that

there exists a solution to our (modified) 4-Partition instance where each
quadruple sums to B′. Number the quadruples arbitrarily from 1 to n and
consider the i-th quadruple (x1

i , x
2
i , x

3
i , x

4
i ) where we assume that for each

j ∈ {1, . . . , 4} we have xj
i ∈ Aj . Hence, s′(x1

i ) is minimum among the sizes
of the elements of the quadruple. We now use color i for all the vertices of the
sets Vxj

i
for j ∈ {2, 3, 4} as well as the sets V 1

x1
i
, V 2

x1
i
. We continue in this way

using a different color for each quadruple and thus color the whole graph (since
the quadruples use all the elements of A). We observe that for any color i the
vertices with maximum deficiency are those from V 1

x1
i

and V 2
x1
i
, and all these

vertices have deficiency exactly x1
i + x2

i + x3
i + x4

i = B′. Hence, this is a valid
solution.

For the converse direction of the reduction, suppose we are given a (χd,Δ
∗)-

coloring of the graph we constructed. We first need to argue that such a coloring
must have a very special structure. In particular, we will claim that in such a
coloring each independent set Vx or V i

x must be monochromatic. Towards this
end we formulate a number of claims.1

Claim 1 (�). Every color i is used on at most 5B′/4 + 25B′/n2 vertices.

Because of the previous claim, which states that no color appears too many
times, we can also conclude that no color appears too few times.

Claim 2 (�). Every color i is used on at least 5B′/4 − 50B′/n vertices.

Given the above bounds on the size of each color class we can now conclude
that each color appears in exactly five independent sets Vx.

Claim 3 (�). For each color i the graph induced by c−1(i) is complete 5-partite.

Claim 4 (�). In any valid solution every maximal independent set of G is
monochromatic.

1 Due to space restrictions, the proofs of statements marked with (�) are omitted.
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We are now ready to complete the converse direction of the reduction. Con-
sider the vertices of c−1(i), for some color i. By the previous sequence of claims
we know that they appear in and fully cover 5 independent sets Vx or V i

x . We
claim that for each j ∈ {2, 3, 4} any color i is used in exactly one Vx with
x ∈ Aj . This can be seen by considering the deficiency of the vertices of the
smallest independent set where i appears. The deficiency of these vertices is
equal to x1

i + x2
i + x3

i + x4
i , which are the sizes of the four larger independent

sets. By the construction of the modified 4-Partition instance, any quadruple
that contains two elements of A4 will have sum strictly greater than B′. Hence,
these elements must be evenly partitioned among the color classes, and with
similar reasoning the same follows for the elements of A3, A2 and A1.

We thus arrive at a situation where each color i appears in the independent
sets Vx4

i
, Vx3

i
, Vx2

i
as well as two of the “small” independent sets. Recall that all

“small” independent sets were constructed in two copies of the same size V 1
x , V 2

x .
We would now like to ensure that all color classes contain one small independent
set of the form V 1

x1
i
. If we achieve this the argument will be complete: we construct

the quadruple (x4
i , x

3
i , x

2
i , x

1
i ) from the color class i, and the deficiency of the

vertices of the remaining small independent set ensures that the sum of the
elements of the quadruple is at most B′. By constructing n such quadruples we
conclude that they all have sum exactly B′, since the sum of all elements of the
4-Partition instance is (without loss of generality) exactly nB′.

To ensure that each color class contains an independent set V 1
x we first

observe that we can always exchange the colors of independent sets V 1
x and

V 2
x , since they are both of equal size (and monochromatic). Construct now an

auxiliary graph with χd vertices, one for each color class and a directed edge
for each x ∈ A1. Specifically, if for x ∈ A1 the independent set V 1

x is colored i
and the set V 2

x is colored j we place a directed edge from i to j (note that this
does not rule out the possibility of self-loops). In the auxiliary directed graph,
each vertex that does not have a self-loop is incident on two directed edges. We
would like all such vertices to end up having out-degree 1, because then each
color class would contain an independent set of the form V 1

x . The main obser-
vation now is that in each connected component in the underlying undirected
graph that contains a vertex u with out-degree 0 there must also exist a vertex
v of out-degree 2. Exchanging the colors of V 1

x and V 2
x corresponds to flipping

the direction of an edge in the auxiliary graph. Hence, we can take a maximal
directed path starting at v and flip all its edges, while maintaining a valid color-
ing of the original graph. This decreases the number of vertices with out-degree
0 and therefore repeating this process completes the proof. 	


4 Polynomial Time Algorithm on Trivially
Perfect Graphs

In this section, we complement the NP-completeness proof from Sect. 3 by giv-
ing a polynomial time algorithm for Defective Coloring on the class of triv-
ially perfect graphs, a well-studied subclass of cographs and interval graphs. We



Defective Coloring on Classes of Perfect Graphs 119

will heavily rely on the following equivalent characterization of trivially perfect
graphs given by Golumbic [21]:

Theorem 3. A graph is trivially perfect if and only if it is the comparability
graph of a rooted tree.

In other words, for every trivially perfect graph G, there exists a rooted tree
T such that making every vertex in the tree adjacent to all of its descendants
yields a graph isomorphic to G. We refer to T as the underlying rooted tree of
G. We recall that it is known how to obtain T from G in polynomial (in fact
linear) time [34].

We are now ready to describe our algorithm. The following observation is
one of its basic building blocks.

Lemma 3. Let G = (V,E) be a trivially perfect graph, T its underlying rooted
tree, and u ∈ V be an ancestor of v ∈ V in T . Then N [v] ⊆ N [u].

Theorem 4. Defective Coloring can be solved in polynomial time on triv-
ially perfect graphs.

Proof. Given a trivially perfect graph G = (V,E) with underlying rooted tree
T = (V,E′) and two non-negative integers χd and Δ∗, we compute a coloring
of G using at most χd colors and with deficiency at most Δ∗ as follows. First,
we partition the vertices of T (and therefore of G) into sets V1, . . . , V�, where
� denotes the height of T , such that V1 contains the leaves of T and, for every
2 ≤ i ≤ �, Vi contains the leaves of T \ (

⋃i−1
j=1 Vj). Observe that each set Vi is an

independent set in G. We now start our coloring by giving all vertices of V1 color
1. Then, for every 2 ≤ i ≤ �, we color the vertices of Vi by giving each of them
the lowest color available, i.e., we color each vertex u with the lowest j such that
u has at most Δ∗ descendants colored j. If for some vertex no color is available,
that is, its subtree contains at least Δ∗ + 1 vertices colored with each of the
colors {1, . . . , χd}, then we return that G does not admit a (χd,Δ

∗)-coloring.
This procedure can clearly be performed in polynomial time and, if it returns

a solution, it uses at most χd colors. Furthermore, whenever the procedure uses
color i on a vertex u it is guaranteed that u has deficiency at most Δ∗ among
currently colored vertices. Since any neighbor of u that is currently colored with
i must be a descendant of u, by Lemma 3 this guarantees that the deficiency of
all vertices remains at most Δ∗ at all times.

It now only remains to prove that the algorithm concludes that G cannot be
colored with χd colors and deficiency Δ∗ only when no such coloring exists. For
this we will rely on the following claim which states that any valid coloring can
be “sorted”.

Claim. If G admits a (χd,Δ
∗)-coloring, then there exists a (χd,Δ

∗)-coloring c
of G such that, for every two vertices u, v ∈ V (G), if v is a descendant of u, then
c(v) ≤ c(u).
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It follows from the previous claim that if a (χd,Δ
∗)-coloring exists, then a

sorted (χd,Δ
∗)-coloring exists where ancestors always have colors at least as

high as their descendants. We can now argue that our algorithm also produces
a sorted coloring, with the extra property that whenever it sets c(u) = i we
know that any sorted (χd,Δ

∗)-coloring of G must give color at least i to u. This
can be shown by induction on i: it is clear for the vertices of V1 to which the
algorithm gives color 1; and if the algorithm assigns color i to u, then u has
Δ∗ + 1 descendants which (by inductive hypothesis) must have color at least
i − 1 in any valid sorted coloring of G. 	


5 Algorithms on Cographs

In this section we present algorithms that can solve Defective Coloring on
cographs in polynomial time if either Δ∗ or χd is bounded; both algorithms rely
on dynamic programming. After presenting them we show how their combina-
tion can be used to obtain a sub-exponential time algorithm for Defective
Coloring on cographs.

5.1 Algorithm for Small Deficiency

We now present an algorithm that solves Defective Coloring in polyno-
mial time on cographs if Δ∗ is bounded. Before we proceed, let us sketch the
main ideas behind the algorithm. Given a (χd,Δ

∗)-coloring c of a graph G,
we define the type of a color class i, as the pair of two integers (si, di) where
si := min{|c−1(i)|,Δ∗ + 1} and di is the maximum degree of G[c−1(i)]. In other
words, the type of a color class is characterized by its size (up to value Δ∗ + 1)
and the maximum deficiency of any of its vertices. We observe that there are at
most (Δ∗ + 1)2 possible types in a valid (χd,Δ

∗)-coloring, because si only takes
values in {1, . . . , Δ∗ + 1} and di in {0, . . . , Δ∗}.

We can now define the signature of a coloring c as a tuple which contains one
element for every possible color type (s, d). This element is the number of color
classes in c that have type (s, d), and hence is a number in {0, . . . , χd}. We can
conclude that there are at most (χd + 1)(Δ

∗+1)2 possible signatures that a valid
(χd,Δ

∗)-coloring can have. Our algorithm will maintain a binary table which
states for each possible signature if the current graph admits a (χd,Δ

∗)-coloring
with this signature. The obstacle now is to describe a procedure which, given
two such tables for graphs G1, G2 is able to generate the table of admissible
signatures for their union and their join.

Theorem 5 (�). There is an algorithm which decides if a cograph admits a
(χd,Δ

∗)-coloring in time O∗
(
χd

O((Δ∗)4)
)
.
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5.2 Algorithm for Few Colors

In this section we provide an algorithm that solves Defective Coloring
in polynomial time on cographs if χd is bounded. The type of a color class
i is defined in a similar manner as in the first paragraph of Sect. 5.1, with
the only difference that the first coordinate of the output pair takes val-
ues in {0, . . . , Δ∗ + 1}. The signature S of a coloring c is now a function
S : {1, . . . , χd} → {0, . . . , Δ∗ + 1} × {0, . . . , Δ∗}, which takes as input a color
class and returns its type. Once again, we should maintain a table T of size less
than (Δ∗ +2)2χd for which T (S) = 1 if and only if there is a (χd,Δ

∗)-coloring of
signature S for the current graph G. As in the previous section, we shall describe
how to compute table T of a graph G which is the union or the join of two graphs
G1 and G2 whose tables T1 and T2 are known.

Theorem 6 (�). There is an algorithm which decides if a cograph admits a
(χd,Δ

∗)-coloring in time O∗ (
(Δ∗)O(χd)

)
.

5.3 Sub-Exponential Time Algorithm

We now combine the algorithms of Sects. 5.1 and 5.2 in order to obtain a sub-
exponential time algorithm for cographs.

Theorem 7 (�). Defective Coloring can be solved in time n
O
(

n
4/5
)

on
cographs.

6 Split and Chordal Graphs

In this section we present the following results: first, we show that Defective
Coloring is hard on split graphs even when Δ∗ is a fixed constant, as long as
Δ∗ ≥ 1; the problem is of course in P if Δ∗ = 0. Then, we show that Defective
Coloring is hard on split graphs even when χd is a fixed constant, as long as
χd ≥ 2; the problem is of course trivial if χd = 1. These results completely
describe the complexity of the problem when one of the two relevant parameters
is fixed. We then give a treewidth-based procedure through which we obtain
a polynomial-time algorithm even on chordal graphs when χd,Δ

∗ are bounded
(in fact, the algorithm is FPT parameterized by χd + Δ∗). Hence these results
give a complete picture of the complexity of the problem on chordal graphs: the
problem is still hard when one of χd,Δ

∗ is bounded, but becomes easy if both
are bounded.

Let us also remark that both of the reductions we present are linear. Hence,
under the Exponential Time Hypothesis [26], they establish not only NP-
hardness, but also unsolvability in time 2o(n) for Defective Coloring on
split graphs, for constant values of χd or Δ∗. This is in contrast with the results
of Sect. 5.3 on cographs.
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6.1 Hardness for Bounded Deficiency

In this section we show that Defective Coloring is NP-hard for any fixed
value Δ∗ ≥ 1. We first show hardness for Δ∗ = 1, then we tweak our reduction
in order to make it work for larger Δ∗.

We will reduce from 3CNFSAT. Suppose we are given a CNF formula f where
X = {x1, . . . , xn} are the variables and C = {c1, . . . , cm} are the clauses and
each clause contains exactly 3 literals. We construct a split graph G = (V,E),
where {U,Z} is a partition of V with U inducing a clique of 4n vertices and Z
inducing an independent set of m + 4n vertices, such that having a satisfying
assignment s : X → {T, F} for f implies a (2n, 1)-coloring c : V → {1, . . . , 2n}
for G and vice versa.

The construction is as follows. For every variable xi, i ∈ {1, . . . , n} we con-
struct a set of four vertices Ui = {uA

i , uB
i , uC

i , uD
i } which are part of the clique

vertices U (that is, for all i ∈ {1, . . . , n} and k ∈ {A,B,C,D}, vertices uk
i

are fully connected). For each i ∈ {1, 2, . . . , n}, we also construct four vertices
Zi = {zA

i , zB
i , zC

i , zD
i } in the independent set Z. Furthermore, for each clause

cj , j ∈ {1, . . . , m} we construct a vertex vj in the independent set. Lastly we
add every edge between U and Z save for the following non-edges: for every
i ∈ {1, . . . , n}, k ∈ {A,B,C,D}, zk

i does not connect to vertices uk′
i , k′ �= k and

for every i ∈ {1, . . . , n}, j ∈ {1, . . . , m}, if clause cj contains variable xi then:
if xi appears positive then vj does not connect to uA

i , uB
i , whereas if it appears

negative then vj does not connect to uA
i , uC

i . This completes the construction.

Lemma 4. Given a satisfying assignment s : X → {T, F} for f we can always
construct a (2n, 1)-coloring c : V → {1, . . . , 2n}.
Proof. Let us first assign colors to the clique vertices. We are going to use two
distinct colors for every quadruple Ui. The way we choose to color vertices in Ui

should depend on the assignment s(xi): if s(xi) = T then c(uA
i ) = c(uB

i ) = 2i−1
and c(uC

i ) = c(uD
i ) = 2i; if s(xi) = F then c(uA

i ) = c(uC
i ) = 2i − i and

c(uB
i ) = c(uD

i ) = 2i. Observe that we have consumed the entire supply of the 2n
available colors on coloring U and for every color l ∈ {1, . . . , 2n} we have that
|c−1(l) ∩ U | = 2.

In order to finish coloring the independent set Z, we can only reuse colors
that have already appeared in U . If for some z ∈ Z there exists a color l such
that c−1(l) ∩ N(z) = ∅, that is if both vertices of color l in U are non-neighbors
of z, then we can assign c(z) = l. Remember that a vertex in Zi is a non-
neighbor of exactly three vertices in Ui, thus two of them should be using the
same color. Additionally, if s is a satisfying assignment for f , then for every cj

there is at least one satisfied literal, say (¬)xi and by the construction of G and
the assignment of colors on U we should be able once again to find two vertices
in Ui having the same color that vj does not connect to, these should be uA

i and,
depending on s, either uB

i or uC
i . 	


Lemma 5. Given a (2n, 1)-coloring c : V → {1, . . . , 2n} of G, we can produce
a satisfying assignment s : X → {T, F} for f .
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Proof. First, observe that, since Δ∗ = 1, for any color l ∈ {1, . . . , 2n} we have
that |c−1(l) ∩ U | ≤ 2. Since there are at most 2n colors in use and |U | = 4n,
that means that the color classes of c should induce a matching of size 2n in the
clique. The above imply that for any z ∈ Z with c(z) = l there exist u, u′ ∈ U
with c(u) = c(u′) = l which are non-neighbors of z.

We can now make the following claim:

Claim. For any u, u′ ∈ U , if c(u) = c(u′) then there exists i such that u, u′ ∈ Ui.

Proof. This is a consequence of vertices in Zi having exactly three non-neighbors
in U all of them belonging to Ui. More precisely, for any k ∈ {A,B,C,D},
c(zk

i ) = l for some color l implies that ∃k1, k2 �= k such that c(uk1
i ) = c(uk2

i )(= l).
Similarly, the fact that c(zk1

i ) = l′ for some color l′ together with the fact that
|c−1(l) ∩ U | = 2 gives us that c(uk

i ) = c(uk′
i )(= l′), where of course uk

i , uk′
i are

the only vertices of U colored l′. 	

The above claim directly provides the assignment: if c(uA

i ) = c(uB
i ) then set

s(xi) = T , else s(xi) = F .

Claim. The assignment s as described above satisfies f .

Proof. By construction, for all j ∈ {1, . . . , m}, vertex vj should be a non-
neighbor to six vertices of U . At least two of them, call them u, u′ should have
the same color as vj . From the previous claim, u, u′ should belong to the same
group Ui. By construction u = uA

i and u′ ∈ {uB
i , uC

i }. Consider that u′ = uB
i

(similar arguments hold when u′ = uC
i ). Since c(uA

i ) = c(uB
i ), the assignment

should set s(xi) = T . Observe now that cj , which by construction contains literal
xi, should be satisfied.

This concludes the proof. 	

Lemmata 4 and 5 prove the following Theorem:

Theorem 8. Defective Coloring is NP-hard on split graphs for Δ∗ = 1.

To show hardness for Δ∗ ≥ 2, all we need to do is slightly change the above
construction so that we are now forced to create bigger color classes. Namely,
we add 2(Δ∗ − 1)n more vertices to U which we divide into 2n sets UD

i and UA
i

and which we fully connect to each other and to previous vertices of U . We also
remove vertices zB

i , zC
i from Zi. Last, for k ∈ {A,D}, we connect vertices of Uk

i

to all vertices in Z save for the following: UD
i does not connect to zA

i and UA
i

does not connect to zD
i and to vj if variable xi appears in clause cj .

Lemma 6 (�). Given a satisfying assignment s for f we can always construct
a (2n,Δ∗)-coloring c.

Lemma 7 (�). Given a (2n,Δ∗)-coloring c, we can produce a satisfying assign-
ment s for f .

The main theorem of this section follows from Lemmata 6, 7 and Theorem 8.

Theorem 9. Defective Coloring is NP-hard on split graphs for any fixed
Δ∗ ≥ 1.
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6.2 Hardness for Bounded Number of Colors

Theorem 10 (�). Defective Coloring is NP-complete on split graphs for
every fixed value of χd ≥ 2.

6.3 A Dynamic Programming Algorithm

In this section we present an algorithm which solves the problem efficiently on
chordal graphs when χd and Δ∗ are small. Our main tool is a treewidth-based
procedure, as well as known connections between the maximum clique size and
treewidth of chordal graphs.

Theorem 11 (�). Defective Coloring can be solved in time (χdΔ
∗)O(tw)

nO(1) on any graph G with n vertices if a tree decomposition of width tw of G is
supplied with the input.

We now recall the following theorem connecting ω(G) and tw(G) for chordal
graphs.

Theorem 12 [8,32]. In chordal graphs ω(G) = tw(G) + 1. Furthermore, an
optimal tree decomposition of a chordal graph can be computed in polynomial
time.

Together with Lemma 2 this gives the following algorithm for chordal graphs.

Theorem 13. Defective Coloring can be solved in time (χdΔ
∗)O(χdΔ∗)

nO(1) in chordal graphs.

Proof. We use Theorem 12 to compute an optimal tree decomposition of the
input graph and its maximum clique size. If ω(G) > χd(Δ∗ + 1) then we can
immediately reject by Lemma 2. Otherwise, we know that tw(G) ≤ χd(Δ∗ + 1)
from Theorem 12, so we apply the algorithm of Theorem11. 	


7 Conclusions

Our results indicate that Defective Coloring is significantly harder than
Graph Coloring, even on classes where the latter is easily in P. Though we
have completely characterized the complexity of the problem on split and chordal
graphs, its tractability on interval and proper interval graphs remains an inter-
esting open problem as already posed in [24].

Beyond this, the results of this paper point to several potential future direc-
tions. First, the algorithms we have given for cographs are both XP parameter-
ized by χd or Δ∗. Is it possible to obtain FPT algorithms? On a related question,
is it possible to obtain a faster sub-exponential time algorithm for Defective
Coloring on cographs? Second, is it possible to find other natural classes of
graphs, beyond trivially perfect graphs, which are structured enough to make
Defective Coloring tractable? Finally, in this paper we have not considered
the question of approximation algorithms. Though in general Defective Col-
oring is likely to be quite hard to approximate (as a consequence of the hardness
of Graph Coloring), it seems promising to also investigate this question in
classes where Graph Coloring is in P.
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Abstract. Let I be an independent set of a graph G. Imagine that a
token is located on every vertex of I. We can now move the tokens of I
along the edges of the graph as long as the set of tokens still defines an
independent set of G. Given two independent sets I and J , the Token
Sliding problem consists in deciding whether there exists a sequence of
independent sets which transforms I into J so that every pair of consec-
utive independent sets of the sequence can be obtained via a single token
move. This problem is known to be PSPACE-complete even on planar
graphs.

In [9], Demaine et al. asked whether the Token Sliding problem can
be decided in polynomial time on interval graphs and more generally on
chordal graphs. Yamada and Uehara [20] showed that a polynomial time
transformation can be found in proper interval graphs.

In this paper, we answer the first question of Demaine et al. and gen-
eralize the result of Yamada and Uehara by showing that we can decide
in polynomial time whether an independent set I of an interval graph
can be transformed into another independent set J . Moreover, we answer
similar questions by showing that: (i) determining if there exists a token
sliding transformation between every pair of k-independent sets in an
interval graph can be decided in polynomial time; (ii) deciding this lat-
ter problem becomes co-NP-hard and even co-W[2]-hard (parameterized
by the size of the independent set) on split graphs, a sub-class of chordal
graphs.

1 Introduction

Reconfiguration problems consist in finding step-by-step transformations
between two feasible solutions such that all intermediate results are also feasible.
Reconfiguration problems model dynamic situations where a given solution is in
place and has to be modified, but no property disruption can be afforded. Two
types of questions naturally arise when we deal with reconfiguration problems:
(i) when can we ensure that there exist such a transformation? (ii) What is the
complexity of finding such a reconfiguration? In the last few years reconfigura-
tion problems received a lot of attention for various different problems such as
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proper colorings [1,11], Kempe chains [4,12], satisfiability [14] or shortest paths
[5]. For a complete survey on reconfiguration problems, the reader is referred to
[19]. In this paper our reference problem is independent set.

In the whole paper, G = (V,E) is a graph where n denotes the size of V
and k is an integer. For standard definitions and notations on graphs, we refer
the reader to [10]. A k-independent set of G is a subset S ⊆ V of size k of
pairwise non-incident vertices. The k-independent set reconfiguration graph is
a graph where vertices are k-independent sets and two independent sets are
incident if they are “close” to each other. In the last few years, three possible
definitions of adjacency between independent sets have been introduced. In the
Token Addition Removal (TAR) model [2,17,18], two independent sets I, J are
adjacent if they differ on exactly one vertex (i.e. if there exists a vertex u such
that I = J ∪ {u} or the other way round). In the Token Jumping (TJ) model
[7,16,17], two independent sets are adjacent if one can be obtained from the
other by replacing a vertex with another one (in particular it means that we only
look at independent sets of a given size). In the Token Sliding (TS) model, first
introduced in [15], tokens can be moved along edges of the graph, i.e vertices can
only be replaced with vertices which are adjacent to them (see [6] for a general
overview of the results for all these models).

In this paper we concentrate on the Token Sliding (TS) model. Given a graph
G, the k-TS reconfiguration graph of G, denoted TSk(G), is the graph whose
vertices are k-independent sets of G and where two independent sets are incident
if we can transform one into the other by sliding a token along an edge. More
formally, I and J are adjacent in TSk(G) if J \ I = {u}, I \J = {v} and (u, v) is
an edge of G. We then say that the token on u is slid ontov (or, informally, that u
is slid ontov or that we slide from u to v). Hearn and Demaine proved in [15] that
deciding if two independent sets are in the same connected component of TSk(G)
is PSPACE-complete, even for planar graphs. On the positive side, Kaminski et
al. gave a linear-time algorithm to decide this problem for cographs (which are
characterized as P4-free graphs) [17]. Bonsma et al. [7] showed that we can decide
in polynomial time if two independent sets are in the same connected component
for claw-free graphs. Demaine et al. [9] described a quadratic algorithm deciding
if two independent sets lie in the same connected component for trees. Yamada
and Uehara showed in [20] that a polynomial transformation exists in proper
interval graphs.

Our Contribution. In their paper, Demaine et al. [9] asked if determining whether
two independent sets are in the same connected component of TSk(G) can be
decided in polynomial time for interval graphs and then more generally for
chordal graphs. An interval graph is a graph which can be represented as an
intersection graph of intervals in the real line. Chordal graphs, that are graphs
without induced cycle of length at least 4, strictly contain interval graphs. In this
paper, we prove the first conjecture. Moreover we answer related questions by
proving that (i) the connectivity of TSk(G) can be decided in polynomial time
if G is an interval graph (ii) deciding if TSk(G) is connected for chordal graphs
is co-NP-hard and co-W [2]-hard parameterized by the size k of the independent
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set even for split graphs, a subclass of chordal graphs. More formally, the paper
is devoted to proving the three following results:

First we answer a question raised by Demaine et al. [9] and Yamada and
Uehara [20]:

Theorem 1. Given an interval graph G and two independent sets I and J of
size k, one can decide in polynomial time if I and J are in the same connected
component of TSk(G).

We then show that the method can be adapted in order to prove the following:

Theorem 2. Given an interval graph G and an integer k, the connectivity of
TSk(G) can be decided in polynomial time.

In light of the two first results, we ask the following question. The clique-tree
degree of a chordal graph G is the smallest maximum degree of a clique-tree
of G.

Question 1. Let D be a fixed constant. For any integer k and any chordal graph
G of clique-tree degree at most D, can the connectivity of TSk(G) be decided
in polynomial time?

We finally prove the following hardness result.

Theorem 3. The following problem is co-NP-hard and co-W [2]-hard parame-
terized by the size of the independent set.

Token Sliding in Split Graphs
Input: A split graph G, an integer k.
Output: YES if and only if TSk(G) is connected.

A problem is FPT parameterized by k if it can be decided in time f(k) · nc

where c is a constant and n is the size of the instance. An FPT algorithm is
deterministic, thus we have FPT = co-FPT. Moreover, the class W [2] is conjec-
tured to strictly contain the class. In particular it means that this problem is
unlikely to be solved in FPT-time parameterized by the size of the solution. For
more information on parameterized complexity the reader is referred to [13].

2 Hardness Results

This section is devoted to prove Theorem 3. A graph G = (V,E) is a split graph
if the vertices of G can be partitioned into two sets V1, V2 such that the graph
induced by V1 is a clique and the graph induced by V2 is an independent set.
There is no restriction on the edges between V1 and V2. One can easily notice
that split graphs do not contain any induced cycle of length at least 4 since two
non-adjacent vertices of such a cycle would belong to V1, a contradiction. Thus
split graphs are chordal graphs.
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S

Fig. 1. The set S is blocking: no vertex in N(S) is in the neighborhood of precisely
one vertex of S. Note however that S is not a dominating set.

Let G = (V,E) be a graph. The neighborhood of a vertex v, denoted by N(v)
is the set of vertices which are adjacent to v. The closed neighborhood of v,
denoted by N [v] is the set N(v)∪{v}. A subset S of vertices is a dominating set
of G if V =

⋃
s∈S N [s]. Deciding the existence of a dominating set of size k (where

k is part of the input) is NP-complete and W [2]-complete when parameterized
by k.

Let S be a subset of vertices. A vertex x is a private neighbor of s ∈ S if
x ∈ N(s) and x /∈ N [s′] for every s′ ∈ S \ {s}. We then say that s has a private
neighbor with respect to S. A set S is blocking if no vertex of S has a private
neighbor with respect to S. A graph G is k-blocking if it contains a blocking set
of size at most k. In Fig. 1, the set S is blocking, thus the graph is 4-blocking.
Let us consider the following problem which is a variation of the domination
problem:

Dominating Set in Non-Blocking Graphs
Input: An integer k, a graph G such that G is not (2k − 1)-blocking.
Output: YES if and only if G has a dominating set of size k.

Lemma 1. Dominating Set in Non-Blocking Graphs is NP-complete and
W [2]-complete.

Proof. Checking whether a set is dominating can be performed in polyno-
mial time. Thus Dominating Set in Non-Blocking Graphs is in NP. In
the remainder part of this proof, we argue that Dominating Set in Non-
Blocking Graphs is NP-complete. Let us show that there exists a polynomial-
time reduction from Dominating Set to Dominating Set in Non-Blocking
Graphs.

Let G = (V,E) be a graph with vertex set {v1, . . . , vn} and k be an integer.
If k ≥ n or k ≤ 3, the problem can be decided in polynomial time. Thus we can
assume that n > k and that k ≥ 4.

We will construct a new graph G′ such that:

1. G′ has no blocking set of size at most 2k − 1.
2. G′ has a dominating set of size at most k if and only if G has.

The graph G′ is constructed as follows.

– Let H be the disjoint union of k copies G1, . . . , Gk of G. We denote by vi
� the

copy of v� in Gi. Let H ′ be the graph obtained from H by adding an edge
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between any two vertices that are copies of the same vertex or of two adjacent
vertices in G (i.e. we add the edges (vi

�, v
j
� ) and (vi

�, v
j
m) for any i, j ≤ k and

�,m ≤ n such that (v�, vm) ∈ E(G)).
– Let U be the disjoint union of n induced paths on 4k vertices, and for every

i ∈ {1, . . . , n}, let wi be an arbitrary endpoint of the ith path. Let U ′ be the
disjoint union of k(k − 1) copies Ui,j (i, j ∈ {1, . . . , k} with i �= j) of U . We
denote by wi,j

� the copy of w� ∈ U in Ui,j .
– Let G′ be the graph obtained from the disjoint union of H ′ and U ′ by adding

edges as follows. For every i, j, p, we add an edge between every vertex of Gi

and every vertex of Ui,j for every j �= i, and between vi
� and wj,i

� for every
j �= i. In other words, wi,j

� is adjacent to all the vertices of Gi and exactly
one vertex of Gj for j �= i, namely vj

� . The other vertices in Ui,j are adjacent
only to all the vertices of Gi.

Let us briefly explain why (1) and (2) hold. For (1), we essentially show that
the lengths of the paths ensure that blocking sets must contain vertices in G′.
The vertices of G′ are k copies of the vertices of G. One can easily prove that
any blocking set contains at least two vertices in each Gi. Thus a blocking set
of size at most 2k − 1 contain at most one vertex in some Gi, which leads to a
contradiction. For (2), we show that (1) and the sparsity between the sets H ′

and U ′ will ensure a k-dominating set of G′ is contained in H ′ and then is a
dominating set of G.

Note that the graph G′ can be constructed in polynomial time and that
the parameter does not change. Due to space restriction, the proofs of the two
following claims are not included in this extended abstract. A complete version
can be found on [3].

Claim. The graph G′ does not contain any blocking set of size at most 2k − 1.

Claim. The graph G has a dominating set of size k if and only if G′ has a
dominating set of size k.

The combination of the two claims ensure that Lemma 1 holds.

2.1 Split Graphs

A k-independent set I is frozen in TSk(G) if I is an isolated vertex of TSk(G).
In other words, no token of I can be slid. Note that I is frozen if and only
if I is blocking. Indeed, if a vertex u of I has a private neighbor v then the
independent set I ∪ v \ u is incident to I in TSk(G): the token of u can be slid
ontov. Conversely, if I and J are incident in TSk(G) then a vertex of I has a
private neighbor. Indeed, assume that J is incident to I and let u = I \ J and
v = J \ I. Then (u, v) is an edge. Since J is an independent set, no vertex of
I \ u is incident to v, and then v is a private neighbor of u.

Theorem 4. Token Sliding in Split Graphs is co-NP-hard.
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Proof. Let us prove that there is a reduction from Dominating Set in Non-
Blocking Graphs to Token Sliding in Split Graphs such that the first
instance if positive if and only if the second one is negative. Since Dominating
Set in Non-Blocking Graphs is NP-complete by Lemma 1, it implies that
Token Sliding in Split Graphs is co-NP-hard.

K1 S1

K S

Fig. 2. K is the clique and S is the independent set. The dashed part corresponds to
the edges of the graph G. Then we add k+1 vertices on each side (left one inducing a
clique) with a matching between the two sides. Finally the bottommost vertex of S is
the vertex wn+k+2 which is connected to all the vertices of K1.

Let G be a graph on vertex set {v1, . . . , vn} that is not (2k − 1)-blocking.
We construct a split graph G′ on vertex set K ∪ S where K induces a clique of
size n + k + 1 and S induces an independent set of size n + k + 2 (Fig. 2). The
vertices of K are denoted by u1, . . . , un+k+1 and the vertices of S are denoted by
w1, . . . , wn+k+2. Moreover we will denote by K1 (resp. S1) the subset of K (resp.
S) u1, . . . , un (resp. w1, . . . , wn). The edges of the graph G′ are the following:

– For every i, j ≤ n, ui is incident to wj if i = j or (vi, vj) is an edge of G. In
other words, the graph induced by (K1, S1) simulates the incidences in the
graph G.

– For every n + k + 1 ≥ j ≥ n + 1, wj is the unique neighbor of uj in the
independent set.

– The vertex wn+k+2 is connected to the whole set u1, . . . , un.

The proofs that the graph TSk+1(G′) is connected if and only if G has no
dominating set of size k can be found in [3].

In the proof of Theorem 4, the difference between the size of the dominating
set of G in the original graph and the size of the independent sets we want
to slide in the split graph is one. As a by-product, we immediately obtain the
following corollary:

Corollary 1. Token Sliding in Split Graphs is co-W[2]-hard.
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2.2 Bipartite Graphs

Theorem 5. Token Sliding in Bipartite Graphs is co-NP-hard and co-
W[2]-hard.

The construction and the proofs are largely inspired from the proof of Theorem 4
with slight modifications. The complete proof of this theorem can be found in [3].

3 Interval Graphs

This section is devoted to the proof of Theorem 2. A graph G is an interval graph
if G can be represented as an intersection of segments on the line. More formally,
each vertex can be represented with a pair (a, b) (where a ≤ b) and vertices
u = (a, b) and v = (c, d) are adjacent if the intervals (a, b) and (c, d) intersect.
Let u = (a, b) be a vertex; a is the left extremity of u and b the right extremity
of u. The left and right extremities of u are denoted by respectively l(u) and
r(u). Given an interval graph, a representation of this graph as the intersection of
intervals in the plane can be found in O(|V |+ |E|) time by ordering the maximal
cliques of G (see for instance [8]). Actually, interval graphs admit clique paths
and are thus a special case of chordal graphs. Using small perturbations, we can
moreover assume that all the intervals start and end at distinct points of the line.
In the remainder of this section we assume that we are given a representation of
the interval graph on the real line.

3.1 Basic Facts on Independent Sets in Interval Graphs

Leftmost independent set. Let G = (V,E) be an interval graph with its repre-
sentation on the line. There are two natural orders on the vertices of an interval
graph: the left order denoted by ≺l and the right order denoted by ≺r. We have
u ≺l v if and only if l(u) ≤ l(v) Note that by our small perturbations assump-
tion, we never have l(u) = l(v), thus ≺l defines a total order on V . Similarly,
u ≺r v if r(u) ≤ r(v). Note that these two orders do not necessarily coincide.
We denote by α(G) the maximum size of an independent set of G. The value
α(G) is called the independence number of G.

Let u and w be two vertices of G. The graph Gu is the graph induced by all
the vertices v such that l(v) > r(u). In other words, Gu is the graph induced by
the intervals located at the right of u that do not intersect the interval u (see
Fig. 3 for an illustration). Similarly, Gw is the graph induced by all the vertices
v such that r(v) < l(w) (the graph induced by the intervals located at the left
of w that do not intersect the interval w). The graph Gw

u is the graph induced
by all the vertices v where u ≺l v ≺l w and both (u, v) and (v, w) are not edges.
In other words, Gw

u is the graph induced by the intervals located between u and
w. We can alternatively define Gw

u as the graph induced by the vertices both in
Gu and Gw.

We define the first vertex of G, denoted fv(G), as the vertex u that maximizes
the number of vertices in Gu. Note that for any two vertices u and v such that
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a b

c
d e

f

Fig. 3. The leftmost independent set is {a, d, e} while the rightmost one is {c, d, f}.
The graph Gc is restricted to the vertices d, e, f and Ge

c is restricted to the single
vertex d.

r(u) < r(v), we have that Gv is an induced subgraph of Gu. In other words,
the first vertex of G can be equivalently defined as the vertex u with minimum
r(u). The leftmost independent set of G, denoted LM(G), is ∅ if G is empty and
{u} ∪ LM(Gu) otherwise, where u = fv(G).

Given an independent set u1, . . . , uk, if l(ui) < l(uj) then r(ui) < l(uj). So
there is a natural order on the vertices of an independent set which corresponds
to both ≺l and ≺r. In the following, we say that the independent set is ordered
if r(ui) < l(ui+1) for every i ≤ k − 1. Moreover, by abuse of notation, when we
say that l1, . . . , lp is the leftmost independent set, we assume that the vertices
are ordered.

Remark 1. Let l1, . . . , lp be the leftmost independent set of G. If {u1, . . . , uk} is
an ordered independent set of size k, then for every j < k, r(uj) ≥ r(lj).

From the definition of fv(G), it follows that α(G) ≥ 1 + α(Gfv(G)). We first
point out that the way Gfv(G) is constructed from G is quite specific.

Remark 2. The graph induced in G by {fv(G)} ∪ N(fv(G)) is a clique.

Indeed, every interval in N(fv(G)) starts before r(fv(G)), and ends after
r(fv(G)), thus they all overlap at that point. Note that {fv(G)} ∪ N(fv(G))
is even the unique maximal clique containing fv(G). We obtain that α(G) ≤
1 + α(Gfv(G)), hence the following remark.

Remark 3. The leftmost independent set of G has size α(G).

Remark 3 ensures that (i) TSk(G) is empty if k is larger than the size of
the leftmost independent set (ii) TSk(G) is connected iff one can transform any
independent set of size k into the k first vertices of the leftmost independent set.
Our proof technique will precisely be based on point (ii).

Token moves. By Remark 1, we can define the first vertex of an independent
set I as the minimum vertex of I for both ≺l and ≺r. More generally, for any
integer �, the �th vertex of I is the �th vertex u of I for both ≺l and ≺r. The
integer � is said to be the position of u in I.

Before stating the next lemma, let us first make an observation on the rep-
resentation of an independent set reconfiguration. We can represent a reconfigu-
ration sequence as a sequence of independent sets I1, . . . , Im where |Ii \ Ii+1| =
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|Ii+1 \ Ii| = 1 and the unique vertex of Ii \ Ii+1 is incident to the unique vertex
of Ii+1 \ Ii. Let us denote by u the unique vertex in Ii \ Ii+1 and by v the unique
vertex in Ii+1 \ Ii. Thus the adjacency between these two independent sets can
also be represented as the edge (u, v). We say that a token is slid from u to
v and that (u, v) is the move from Ii to Ii+1. Thus the reconfiguration of an
independent set can be seen either as a sequence of adjacent independent sets
in TSk(G) or as a sequence of moves.

Let I0 be an independent set and u ∈ I0. Let I0, . . . , Is be a reconfiguration
sequence of independent sets. We define the token of origin u in Ik as follows:
the token of origin u in I0 is u. For t the token of origin u in Ik−1, the token of
origin u in Ik is either t (if t ∈ Ik) or the vertex v such that (t, v) is the move
from Ik−1 to Ik (if t �∈ Ik).

On an interval graph, the first token of I is the token on the first vertex of I.
More generally, there is a natural order on the tokens on vertices of I, as there is
a natural order on the vertices of an independent set. The �th token is the token
on the �th vertex of I. The next remark ensures that the order is preserved by
token sliding, i.e. we cannot “permute” tokens during a reconfiguration of an
interval graph. A similar remark was observed in [20].

Remark 4. Let G be an interval graph and I, J be two k-independent sets of G.
Let u be the �th vertex of I. For any reconfiguration from I to J , the �th token
of J is the token of origin u.

Consider two k-independent sets I and J in G and a reconfiguration sequence
P from I to J . The leftmost location of the �th token in the sequence P is the
vertex u with minimal r(u) among all vertices that host the �th token in an
independent set of P (the rightmost location is the symmetric, with maximal
l(u)). If we delete the first vertex of every independent set in the sequence and
omit the moves where the first token is slid, we obtain a reconfiguration sequence
from I \ u to J \ v in G, where u and v respectively denotes the first vertices
of I and J . The following lemma ensures that such a sequence also exists in a
well-chosen subgraph of G.

Lemma 2. Let I and J be two k-independent sets such that there exists a trans-
formation from I to J and let � < k. Let w be the leftmost location of the �th
token in the sequence between I and J . In Gw, there exists a sequence between
I minus its � first vertices and J minus its � first vertices.

As an immediate corollary, we obtain the following lemmas, which we state
formally as we use them several times.

Lemma 3. Let I and J be two independent sets such that there exists a trans-
formation from I to J . Let u, v, w be the first token of I, the first token of J and
the leftmost location of the first token in the sequence, respectively. There exists
a transformation from I \ u into J \ v in Gw.

Lemma 3 is in particular true if the first vertex is never slid. In other words,
if there is a sequence from I to J where the first vertex u of I is never slid, then
there is a transformation from I \ u to J \ u in Gu.
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The following lemma also is a corollary of Lemma 2 if we consider the interval
graph from the right to the left rather than from the left to the right (note that
the ≺r order then becomes ≺l order).

Lemma 4. Let I and J be two k-independent sets such that there exists a
sequence P from I to J . Let w be the rightmost location of the second token
all along the sequence between I and J . The first token of I and the first token
of J are in the same connected component of Gw.

We finally make an easy observation that will be widely used all along the
proof.

Remark 5. Let u and v be two vertices and I and J be two k-independent sets
of Gu that are in the same connected component of TSk(Gu). If r(v) < l(u),
then I ∪ {v} and J ∪ {v} are in the same connected component of TSk+1(G).

3.2 Reachability

Let H be an interval graph and I an independent set of H of size k. We denote
by CH,k(I) the connected component of I in TSk(H). Given an independent set
J , we denote by fv(J) the first vertex of J . Let

RM(I,H) = max≺l

{
fv(J) : J ∈ CH,k(I)

}
.

The value of RM(I,H) is the rightmost possible (for ≺l) first vertex of J amongst
all the independent sets J in CH,k(I). Therefore, if we try to push the first vertex
to the right, we cannot push it further than RM(I,H).

We define the symmetric notion consisting in pushing the first vertex to the
left (for ≺r).

LM(I,H) = min≺r

{
fv(J) : J ∈ CH,k(I)

}
.

Note that when we want to push an independent to the left, we want to minimize
≺r while when we want to push an independent to the right we want to maximize
≺l. The proof of the following lemma can be found in [3].

Lemma 5. Let I1 and I2 be two k-independent sets of an interval graph G, with
k ≥ 2. The independent sets I1 and I2 are in the same connected component of
TSk(G) if and only if:

1. LM(I1, G) and LM(I2, G) are the same, and
2. The independent sets I1 \{fv(I1)} and I2 \{fv(I2)} are in the same connected

component of TSk−1(GLM(I1,G)).

Lemma 5 guarantees us that there is a polynomial-time algorithm to decide
whether two k-independent sets I1 and I2 of some interval graph G are in the
same connected component of TSk(G), if and only if there is a polynomial-time
algorithm to compute LM(I1, G). The rest of this subsection is precisely devoted
to this.
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Let I be a k-independent set of an interval graph H. A subset J of I is a right
subset of I if J corresponds to the restriction of I to some Hb: in other words,
when J contains a vertex x ∈ I, then J also contains all the vertices of I larger
than x (for both ≺r and ≺l). Let us prove that we can compute in polynomial
time RM(J,Hb) and LM(J,Hb) for any right subset J of I included in Hb. Note
that there are only k right subsets of I (the empty one is not interesting), and
n choices of b. We proceed by dynamic programming, and simply argue how to
obtain the values for the right subset of I of size p assuming constant-time access
to the values for the right subsets of size at most p−1. For an independent set J
of size 1, we can compute RM(J,Hb) and LM(J,Hb) in quadratic time (linear
in the number of edges) by Lemma 6, as follows. Due to space restriction, all the
proofs of this section can be found in the long version.

Lemma 6. Let H be a graph, and u and v be two vertices of H. The independent
sets {u} and {v} are in the same connected component of TS1(H) if and only if
u and v are in the same connected component of H.

In other words, to compute RM(J,Hb) and LM(J,Hb) for an independent
set J of size 1, it is enough to compute the leftmost and rightmost vertices in the
connected component of Hb that contains the only element of J . These values
can indeed be computed in polynomial time.

Now, to compute LM(I,H) when I contains at least two vertices, it may not
suffice to push the first element of I to the left. We may need to push the rest of I
to the right, then try again to push the first element to the left, and keep going as
long as progress is made. Pushing the rest of I to the right means reconfiguring
I \ {fv(I)} into an independent set whose first vertex is RM(I \ {fv(I)},Hfv(I)).
Trying again to push fv(I) to the left means, according to Lemma 6, looking at
the leftmost element of its connected component in HRM(I\{fv(I)},Hfv(I)). Making
progress means being able to slide the token from fv(I) to a vertex with smaller
right index – possibly in more than one step – without reconfiguring the rest of
I. Let us consider what happens when no progress is made.

Lemma 7. Let H be an interval graph and I be a k-independent set of H, with
k ≥ 2. If the vertex fv(I) is the leftmost element of its connected component in
HRM(I\{fv(I)},Hfv(I)), then LM(I,H) = fv(I).

Lemma 7 guarantees us that the procedure informally described will output
LM(I,H) after a linear number of steps. Let us now argue how to obtain the
value of RM(I,H).

Lemma 8. Let H be an interval graph and I be a k-independent set of H,
with k ≥ 2. The rightmost vertex (for ≺l) of the connected component of
HRM(I\{LM(I,H)},HLM(I,H)) that contains LM(I,H) is RM(I,H).

We are ready to formalize the algorithm, and introduce Procedure 1.
Let us first point out that by definition, r can only decrease, so r takes at

most n different values, and each iteration is done in O(m) operations. Therefore,
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Procedure 1. Computing (LM(J,Hb), RM(J,Hb)) assuming constant-time
access to values for proper right subsets of J .

c := fv(J).
r := +∞.
while r �= c do

r = c.
j = RM(J \ {fv(J)}, Hc)
c = the minimal vertex (for ≺r) in the connected component of c in Hj

b .
d = the maximal vertex (for ≺l) in the connected component c in Hj

b .
end while
return (c, d)

assuming constant-time access to values for proper right subsets of the indepen-
dent set being considered, Procedure 1 runs in O(n · m). However, as pointed
out earlier, for a given input interval graph and k-independent set, there are at
most k · n possible combinations of right subsets and subgraphs that we might
run Procedure 1 on. Lemmas 7 and 8 guarantee that once Procedure 1 ends, the
variables c and d correspond to LM(J,Hb) and RM(J,Hb), respectively. There-
fore, for any interval graph H on n vertices and any k-independent set J , we
can compute (LM(J,H), RM(J,H)) in O(k · n2 · m) operations. And then by
Lemma 5, we can compute whether any two k-independent sets I and J of some
interval graph G are in the same connected component of TSk(G) in O(k ·n2 ·m)
operations.

3.3 Connectivity

We established in Sect. 3.2 that we can decide in polynomial time whether two
given independent sets of some interval graph can be reconfigured one into the
other through a series of token slidings. Roughly speaking, the technique consists
in pointing out that there is a natural total order on the k-independent sets, com-
puting the leftmost independent set that can be reached from each, and checking
whether the two match. Now, we have a broader goal: decide whether it holds
that any k-independent set can be reconfigured into any other. To that pur-
pose, we push a bit further the notions of LM(I,H) and RM(I,H) introduced
in Sect. 3.2. Informally, instead of handling a specific independent set, we will
think about the worst possible behaviour of an independent set that we could be
handling. With these generalizations of LM(I,H) and RM(I,H) we can show
using similar arguments that it is possible to decide in polynomial time the
TS-connectivity problem on interval graphs. All the details can be found in [3].
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17. Kamiński, M., Medvedev, P., Milaniĉ, M.: Complexity of independent set recon-
figurability problems. Theoret. Comput. Sci. 439, 9–15 (2012)

18. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the para-
meterized complexity of reconfiguration problems. In: 8th International Sympo-
sium on Parameterized and Exact Computation, IPEC 2013, pp. 281–294 (2013)

19. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S.,
Wildon, M. (eds.) Surveys in Combinatorics 2013, pp. 127–160. Cambridge Uni-
versity Press, Cambridge (2013)

20. Yamada, T., Uehara, R.: Shortest reconfiguration of sliding tokens on a caterpillar.
In: Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 236–
248. Springer, Cham (2016). doi:10.1007/978-3-319-30139-6 19

http://dx.doi.org/10.1007/978-3-319-12340-0_9
http://dx.doi.org/10.1007/978-3-319-12340-0_9
http://dx.doi.org/10.1007/978-3-319-08404-6_8
http://dx.doi.org/10.1007/978-3-319-13075-0_31
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1007/978-3-319-30139-6_19


Computing Maximum Cliques in B2-EPG
Graphs

Nicolas Bousquet1 and Marc Heinrich2(B)

1 G-SCOP (CNRS, Univ. Grenoble-Alpes), Grenoble, France
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Abstract. EPG graphs, introduced by Golumbic et al. in 2009, are edge-
intersection graphs of paths on an orthogonal grid. The class Bk-EPG
is the subclass of EPG graphs where the path on the grid associated to
each vertex has at most k bends. Epstein et al. showed in 2013 that com-
puting a maximum clique in B1-EPG graphs is polynomial. As remarked
in [Heldt et al. 2014], when the number of bends is at least 4, the class
contains 2-interval graphs for which computing a maximum clique is an
NP-hard problem. The complexity status of the Maximum Clique prob-
lem remains open for B2 and B3-EPG graphs. In this paper, we show
that we can compute a maximum clique in polynomial time in B2-EPG
graphs given a representation of the graph.

Moreover, we show that a simple counting argument provides a
2(k + 1)-approximation for the coloring problem on Bk-EPG graphs
without knowing the representation of the graph. It generalizes a result
of [Epstein et al. 2013] on B1-EPG graphs (where the representation was
needed).

1 Introduction

An Edge-intersection graph of Paths on a Grid (or EPG graph for short) is a
graph where vertices can be represented as paths on an orthogonal grid, and
where there is an edge between two vertices if their respective paths share at
least one edge. A turn on a path is called a bend. EPG graphs were introduced
by Golumbic et al. [11]. They showed that every graph can be represented as an
EPG graph. The number of bends on the representation of each vertex was later
improved in [13]. EPG graphs have been introduced in the context of circuit
layout, which can be modeled as paths on a grid. EPG graphs are related to
the knock-knee layout model where two wires may either cross on a grid point
or bend at a common point, but are not allowed to share an edge of the grid.
In [11], the authors introduced a restriction on the number of bends on the
path representing each vertex. The class Bk-EPG is the subclass of EPG graphs
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where the path representing each vertex has at most k bends. Interval graphs
(intersection graphs of intervals on the line) are B0-EPG graphs. The class of
trees is in B1-EPG [11], outerplanar graphs are in B2-EPG [14] and planar
graphs are in B4-EPG [14]. Several papers are devoted to prove structural and
algorithmic properties of EPG-graphs with a small number of bends, see for
instance [1,2,7,10].

While recognizing and finding a representation of a graph in B0-EPG (inter-
val graph) can be done in polynomial time, it is NP-complete to decide if a graph
belongs to B1-EPG [6] or to B2-EPG [15]. The complexity status remains open
for more bends. Consequently, in all our results we will mention whether the
representation of the graph is needed or not.

Epstein et al. [8] showed that the k-coloring problem and the k-independent
set problem are NP-complete restricted to B1-EPG graphs even if the represen-
tation of the graph is provided. Moreover they gave 4-approximation algorithms
for both problems when the representation of the graph is given. Bougeret et al.
[4] proved that this there is no PTAS for the k-independent set problem on
B1-EPG graphs and that the problem is W [1]-hard on B2-EPG graphs (para-
meterized by k). Recently, Flavia et al. [3] showed that every B1-EPG graph
admits a 4-clique coloring and provides a linear time algorithm that finds it,
given the representation of the graph.

Fig. 1. A complete graph K6 minus a matching.

Maximum Clique problem on EPG graphs. A claw of the grid is a set of three
edges of the grid incident to the same point. Golumbic et al. proved in [11] that a
maximum clique in a B1-EPG graph can be computed in polynomial time if the
representation of the graph is given. This algorithm is based on the fact that, for
every clique X of a B1-EPG graph, either there exists an edge e of the grid such
that all the vertices of X contain e, or there exists a claw T such that all the
vertices of X contain at least two of the three edges of T . In particular, it implies
that the number of maximal cliques in B1-EPG graphs is polynomial. Epstein
et al. [8] remarked that the representation of the graph is not needed since the
neighborhood of every vertex is a weakly chordal graph. When the number of
bends is at least 2, such a proof scheme cannot hold since there might be an
exponential number of maximal cliques. Indeed, one can construct a complete
graph minus a matching in B2-EPG (see Fig. 1) which has 2n/2 maximal cliques.
So to compute a maximum clique on Bk-EPG graphs for k ≥ 2, a new proof
technique has to be introduced.

EPG graphs are closely related to two well known classes of intersection
graphs, namely k-interval graphs, and k-track interval graphs on which the max-
imum clique problem have been widely studied. A k -interval is the union of k
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distinct intervals in the real line. A k-interval graph, introduced in [16], is the
intersection graph of k-intervals. A k-track interval is the union of k intervals on
k-distinct lines (called tracks). A k -track interval graph is an intersection graph
of k-track intervals (in other words, it is the edge union of k interval graphs on
distinct lines). One can easily check, as first observed in [13], that B3k−3-EPG
graphs contain k-track interval graphs and B4k−4-EPG graphs contain k-interval
graphs.

Since computing a maximum clique in a 2-interval graph is NP-hard [9], the
Maximum Clique Problem is NP-hard on B4-EPG graphs. So the complexity
status of the Maximum Clique problem remains open on Bk-EPG graphs for
k = 2 and 3. In this paper, we prove that the Maximum Clique problem can be
decided in polynomial time on B2-EPG graphs when the representation of the
graph is given. The proof scheme of [11] cannot be extended to B2-EPG graphs.
Indeed, there cannot exist a bijection between local structures, like claws, and
maximal cliques since there are examples with an exponential number of different
maximum cliques. Our proof is divided into two main lemmas. The first one
ensures that we can separate so-called Z-vertices (vertices that use paths on
two rows) from U-vertices (vertices that use edges of two columns). The second
ensures that if a graph only contains Z-vertices, then all the maximal cliques are
included in a polynomial number of subgraphs; subgraphs for which a maximum
clique can be computed in polynomial time.

Coloring Bk-EPG graphs. We also provide an upper bound on the number of
edges of Bk-EPG graphs for any value of k. This bounds ensures that there is
a polynomial time algorithm that colors the graph with 2(k + 1) · χ(G) colors
in polynomial time without knowing the representation of the graph, where
χ(G) is the chromatic number of G. In particular, it provides a simple coloring
algorithm using at most 4 times the optimal number of colors on B1-EPG graphs
without knowing its representation. It improves the algorithm of [8] where the
representation was needed.

A class of graphs C is χ-bounded if there exists a function f such that
χ(G) ≤ f(ω(G)) for every graph G of C with ω(G) the size of a maximum
clique in G. Combinatorial bounds on the chromatic number of generalizations
of interval graphs received a considerable attention initiated in [12]. The bound
on the degeneracy of the graph ensures that the class Bk-EPG is χ-bounded and
χ(G) ≤ 2(k + 1) · ω(G). As a by-product, it also ensures that graphs in Bk-EPG
contain either a clique or a stable set of size

√
n

2(k+1) which improves a result of

[2] in which they show that every B1-EPG graph admits a clique or a stable set
of size O(n1/3).

2 Preliminaries

Let a, b be two real values with a ≤ b. The (closed) interval [a, b] is the set
of points between a and b containing both a and b. The interval that does not
contain b is represented by [a, b) and the one that does not contain a by (a, b].
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An interval graph is an intersection graph of intervals in the line. More for-
mally, vertices are intervals and two vertices are incident if their respective inter-
vals intersect. Let H be an interval graph with its representation. Let u ∈ V (H).
The left extremity of u is the leftmost point p of the line such that u contains
p. The right extremity of u is the rightmost point p of the line such that u
contains p.

Let G be an EPG graph with its representation on the grid. In what follows,
we will always denote by roman letters a, b, . . . the rows of the grid and by greek
letters α, β, . . . the columns of the grids. Given a row a (resp. column α) of
the grid, the row a − 1 (resp. α − 1) denotes the row under a (resp. at the left
of α). Given a row a and a column α, we will denote by (a, α) the grid point
at the intersection of a and α. By abuse of notation, we will also denote by α
(for a given row a) the point at the intersection of row a and column α. Let
u ∈ V (G). We denote by Pu the path representing u on the grid. The vertex u
of G intersects a row (resp. column) if Pu contains at least one edge of it.

3 Typed Intervals and Projection Graphs

Let G be a B2-EPG graph with its representation on the grid. Free to slightly
modify the representation of G, we can assume that the path associated to every
vertex has exactly 2 bends. Indeed, if there is a vertex u such that Pu has less
than two bends, let (a, α) be one of the two extremities of Pu. Up to a rotation
of the grid, we can assume that the unique edge of Pu incident to (a, α) is the
horizontal edge e between (a, α) and (a, α + 1). Then create a new column β
between α and α+1, and replace the edge e by two edges, one between α and β
on row a, and another one going up at β. This transformation does not modify
the graph G. So we will assume in the following that for every vertex u, the path
Pu has exactly two bends.

A Z-vertex of G is a vertex that intersects two rows and one column. A U-
vertex is a vertex that intersects one row and two columns. The index of a vertex
u is the set of rows intersected by u. The vertex u contains a in its index if a is
in the index of u.

Let u be a vertex containing a in its index. The extremities of u on a are
the points of the row a on which Pu stops or bends. Since Pu has at most two
bends, Pu has exactly two extremities on a and the subpath of Pu on row a is the
interval of a between these two extremities. The a-interval of u, denoted by P a

u ,
is the interval between the two extremities of u on a. Note that since the index
of u contains a, P a

u contains at least one edge. Let α ≤ β be two points of a.
The path P a

u intersects non-trivially [α, β] if P a
u ∩ [α, β] is not empty or reduced

to a single point. The path P a
u weakly contains [α, β] if [α, β] is contained in P a

u .

3.1 Typed Intervals

Knowing that P a
u = [α, β] is not enough to understand the structure of Pu.

Indeed whether Pu stops at α, or bends (upwards or downwards) at α, affects
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the neighborhood of u in the graph. To catch this difference we introduce typed
intervals that contain information on the “possible bends” on the extremities of
the interval.

We define three types namely the empty type , the d-type and the u-type
. A typed point (on row a) is a pair x, α where x is a type and α is the point

at the intersection of row a and column α. A typed interval (for row a) is a pair
of typed points (x, α) and (y, β) (on row a) with α ≤ β denoted by [xα, yβ].
Informally, a typed interval is an interval [α, β] and indications on the structure
of the bends on the extremities. A typed interval t is proper if α �= β or if α = β,
x = y, and x ∈ { , }.

Let t = [xα, yβ] and t′ = [x′α′, y′β′] be two typed intervals on a row a.
Denote by zγ one of the endpoints of t′. We say that t is coherent with the
endpoint zγ of t′ if one of the following holds: (i) γ is included in the open
interval (α, β), or (ii) z = , and [α, β] contains the edge of [α′, β′] adjacent to
γ, or (iii) z �= , and zγ ∈ {xα, yβ}. We can remark in particular that if t is

coherent with an endpoint zγ, then γ is in the closed interval [α, β]. The typed
interval t contains t′ if [α′, β′] ⊂ [α, β], and t is coherent with both endpoints
of t′. The typed interval t intersects t′ if [α, β] intersects non trivially [α′, β′]
(i.e. the intersection contains at least one grid-edge), or t is coherent with an
endpoint of t′, or t′ is coherent with an endpoint of t. Note that, if t′ contains t
then in particular it intersects t.

Let u be a vertex containing a in its index. The t-projection of u on a is the
typed interval [xα, yβ] where α, β are the extremities of P a

u and the type of an
extremity γ ∈ {α, β} is if Pu stops at γ and (resp. ) if P a

u bends downwards
(resp. upwards) at γ. Note that this typed interval is proper since it contains
at least one edge. The path Pu contains (resp. intersects) a typed interval t
(on a) if the t-projection of u on a contains t (resp. intersects t). By abuse of
notation we say that u contains or intersects t. Note that by definition, the path
Pu contains the t-projection of u on a. Moreover if a vertex u contains a typed
interval t = [xα, yβ], then the path Pu weakly contains [α, β]. If u intersects
t, then the path Pu intersects the segment [α, β] (possibly on a single point)
(Fig. 2).

Fig. 2. Examples of typed intervals on the same row. In this example, the interval t3
is reduced to a single point. The interval t2 is coherent with the right extremity of t1,
the extremities of t3 and the left extremity of t4. It is not coherent with the extremities
of t5. Moreover, t2 intersects t1, t3 and t4 but not t5. And t2 contains t3.
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The following simple lemma motivates the introduction of typed intervals.
Due to space restrictions, the following proof cannot be included in this extended
abstract. A proof can be found in the full version [5].

Lemma 1. Let G be a B2-EPG graph, let u, v be two vertices whose index con-
tain a, and t be a proper typed interval of a. If u contains t and v intersects t,
then u and v are adjacent.

Lemma 2. Let G be a B2-EPG graph. If the t-projections of u and v on a
intersect, then uv is an edge of G. Moreover if u and v are two vertices containing
a in their index and have no other row in common, then uv is an edge of G if
and only if the t-projections of u and v on a intersect.

Proof. Let u and v be two vertices containing a in their index. The first part of
the statement is just a corollary of Lemma 1 since v intersects the t-projection
of u on a.

Assume that there is no other row b contained in the index of both u and v.
And suppose moreover that the t-projections of u and v on a do not intersect.
Suppose by contradiction that u and v are adjacent in G. The two vertices cannot
share a common edge on row a, otherwise their projections would intersect. By
assumption they cannot share an edge on another row. Consequently, they must
have a common edge e on a column, and let α this column. By symmetry, we
can assume that e is below the row a. Since the paths Pu and Pv have at most
two bends, both path must bend downwards at the intersection of row a and
column α, to intersect the edge e. However, this implies that the t-projections
of u and v on a intersect, a contradiction. �	

3.2 Projection Graphs

Let Y be the subset of vertices of G such that all the vertices of Y contain a in
their index. The projection graph of Y on a is the graph on vertex set Y such
that there is an edge between u and v if and only if the t-projections of u and v
on a intersect. Note that the projection of Y is not necessarily an interval graph
since it can contain an induced C4 (see Fig. 3). We say that a set of vertices Y
is a clique on a if the t-projection of Y on a is a clique. Lemma 2, ensures that
a clique on a is indeed a clique in the graph G.

In the very simple case where the representation uses only two rows a and b,
we have the following lemma:

Lemma 3. Let G be a B2-EPG graph and Gab be the subset of vertices with
index {a, b}. Then Gab induces a 2-track interval graph.

A proof of the following statement can be found in the full version [5]. Let us
end this section with two lemmas that will be widely used all along the paper.

Lemma 4. Let G be a B2-EPG graph and Y be a subset of vertices whose index
contain a. Suppose that the projection of Y on a is a clique. Then there is a
proper typed interval t such that:
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Fig. 3. In this example, the projection graph on row a of the four vertices is an induced
cycle of length four.

– all vertices of Y contain t,
– if u is a vertex with index {a} or {a, c} where c is not in the index of any

vertex of Y , then u is complete to Y if and only if u intersects t.

Proof. Let α be the rightmost left extremity of an a-interval of Y , and β be
the leftmost right extremity of an a-interval of Y . Since the projection of Y on
a is a clique, α ≤ β. Let Yα be the set of vertices of Y whose a-segment have
left extremity α, and Yβ be the set of vertices of Y whose a-segment have right
extremity β. We define the typed interval t = [xα, yβ] where x is equal to
(resp. ) if all the vertices of Yα bend upwards (resp. downwards) at α, and is
equal to otherwise. Similarly, y is equal to (resp. ) if all the vertices of Yβ

bend upwards (resp. downwards) at α, and is equal to otherwise. Let us prove
that t satisfies the conclusion of the lemma.

One can easily check that, by construction, all the vertices of Y contain the
typed interval t. Indeed [α, β] is contained in all the intervals P a

v for v ∈ Y by
definition of α and β. Let us prove now by contradiction that the typed interval
t is proper. If α �= β then t is proper, so we can suppose that α = β. Now
assume that the types x and y are distinct or equal to . Up to symmetry, we
can assume that x �= and y �= . Consequently, there exists a vertex v1 ∈ Y

such that P a
v1

has left extremity α and either starts on α or bends downwards
on α. Similarly, there exists a vertex v2 ∈ Y such that P a

v2
has right extremity

β = α and either ends on α or bends upwards on α. But then the t-projection
of v1 and v2 do not intersect, a contradiction since the t-projection of Y on a is
a clique.

Let us finally prove the second point. Suppose that u intersects t, then for
all y ∈ Y , y contains t, and by Lemma 2 u and y are adjacent in G. Assume
now that u does not intersect t. Let us prove that there exists y ∈ Y that is not
incident to u. Either P a

u = [α′, β′] does not intersect [α, β] or it intersects it on
exactly one vertex. We moreover know that if α = β then P a

u does not contain
the edge at the left and at the right of α (otherwise u would intersect t). So,
up to symmetry, we can assume that β′ ≤ α. If β′ < α then let v be a vertex
such that P a

v has leftmost extremity α (such a vertex exists by definition of α).
The projections of u and v on a do not intersect and Lemma 2 ensures that u is
not adjacent to v.
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Assume now that P a
u intersects [α, β] on a single point. Since P a

u con-
tains at least one edge, this point is either α or β, α say. Let xu be the
type of β′. Since u does not intersect t, this means that either xu �= x or
xu = x and xu = . Up to symmetry, we can assume xu �= and x �= . So

there exists v ∈ Y such that P a
v has a left extremity at α and Pv either bends

upwards at α or has no bend at α. Since xu �= , P a
u has right extremity α and

either bends downwards at α or has no bend at α. So the projections of u and
v on a does not intersect. By Lemma 1, u and v are not adjacent in G. �	

The flavour of the following proof is similar to the proof of Lemma4. The
proof of the lemma can be found in the full version [5].

Lemma 5. Let G be a B2-EPG graph and Y be a subset of vertices with index
{a, b}. Suppose that the projection of Y on a is not clique. Then there is a proper
typed interval t such that:

– All vertices of Y intersect t,
– Let u be a vertex with index {a} or {a, c} where c �= a, b. Then u is complete

to Y if and only if u contains t.

4 Maximum Clique in B2-EPG Graphs

4.1 Graphs with Z-Vertices

We start with the case where the graph only contains Z-vertices. We will show
in Sect. 4.2 that it is possible to treat independently Z-vertices and U-vertices.
The remaining part of Sect. 4.1 is devoted to prove the following theorem.

Theorem 1. Let G be a B2-EPG graph with a representation containing only
Z-vertices. The size of a maximum clique can be computed in polynomial time.

Note that, up to rotation of the representation of G, this theorem also holds
for U-vertices. In other words, the size of a maximum clique can be computed
in polynomial time if the graph only contains U-vertices.

The proof of Theorem 1 is divided in three steps. We will first define a notion
of good subgraphs of G, and prove that:

– there is a polynomial number of good subgraphs of G and,
– a maximum clique of a good graph can be computed in polynomial time,
– and any maximal clique of G is contained in a good subgraph.

Recall that a clique is maximum if its size is maximum. And it is maximal
if it is maximal by inclusion. The first point is an immediate corollary of the
definition of good graphs. The proof of the second point consists in decomposing
good graphs into sets on which a maximum clique can be computed efficiently.
The proof of the third point, the most complicated, will be divided into several
lemmas depending on the structure of the maximal clique we are considering.

An induced subgraph H of G is a good graph if one of the following holds:
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(I) there are two rows a and b, and two proper typed intervals ta and tb on a
and b respectively such that H is the subgraph induced by vertices v such
that, v contains ta, or v contains tb, or v intersects both ta and tb,

(II) or there are three rows a, b, and c, and three proper typed intervals ta,
tb, and tc on a, b, c respectively such that H is the subgraph induced by
vertices v such that, either v contains ta, or v contains tb, or v intersects tb
and contains tc.

Lemma 6. Let G be a B2-EPG graph. There are O(n6) good graphs, and a
maximum clique of a good graph can be computed in polynomial time.

The proof is in the full version [5] of the article. The remaining part of
Sect. 4.1 is devoted to prove that any maximal clique of G is contained in a good
graph.

Lemma 7. Let G be a B2-EPG graph containing only Z-vertices, and X be a
clique of G. Assume that there are two rows a and b such that every horizontal
segment of X is included in either a or b, then X is contained in a good graph.

Proof. By taking two typed intervals ta and tb consisting of the whole rows a
and b, the clique X is clearly contained in a good graph of type (I). �	

We say that a set of vertices X intersects a column α (resp. a row a) if at
least one vertex of X intersects the column α (resp. the row a). If X is a clique
of G, and a, b two rows of the grid, we denote by Xab the subset of vertices of
X with index {a, b}.

The combination of the three following lemmas directly implies Theorem1.
The three proofs are based on the same technique. The main idea consists in
using the tools of Sect. 3 to find typed intervals containing the vertices in a clique
X. Only the proof of the second lemma is given, the proof of the two others can
be found in the full version [5].

Lemma 8. Let G be a B2-EPG graph containing only Z-vertices, and X be a
clique of G. If there are two rows a and b such that the projection graphs of Xab

on a and b are not cliques, then X is included in a good graph.

Lemma 9. Let G be a B2-EPG graph containing only Z-vertices, and X be a
clique of G. If there are two rows a and b such that the projection graph of Xab

on a is not a clique, then there is a good graph containing X.

Proof. Let X be a clique satisfying this property for rows a and b. We can assume
that the projection graph of Xab on b is a clique since otherwise we can apply
Lemma 8. Let Xa be the set of vertices of X \ Xab intersecting row a and not
row b, and Xb be the set of vertices of X \Xab intersecting row b and not row a.

First note that X = Xa ∪ Xb ∪ Xab. Otherwise there would exist a vertex
w of index {c, d} such that {c, d} ∩ {a, b} = ∅ in X. Since w is complete to
Xab, w would intersect all the vertices of Xab on their vertical part. But the
projection graph of Xab on a is not a clique, consequently Xab intersects at least
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two columns. Thus a vertex of Xab does not intersect the unique column of w,
a contradiction.

Suppose first that the projection graph of Xb ∪ Xab on b is a clique. By
Lemma 4 applied to Xb on b, there exists a proper typed interval tb on row b
such that every vertex of Xb contains tb. By Lemma 5 applied to Xab on a, there
exists a proper typed interval ta on row a such that every vertex of Xa contains
ta. So all the vertices of X are contained in the good graph of type (I) defined
by ta and tb.

Suppose now that the projection graph of Xb ∪Xab on b is not a clique. Then
there are two vertices u, v of Xb such that the t-projections of u and v on b do
not intersect. By Lemma 1, Pu and Pv intersect another row c, and since the
projection graph of Xab on b is a clique, c �= a. Since the projection graph of Xbc

on b is not a clique, and c �= a, we can assume that the projection graph of Xbc

on c is a clique since otherwise Lemma 8 can be applied on Xbc. So by Lemma 4
applied to Xbc on c, there exists a typed interval tc contained in every vertex of
Xbc. By Lemma 5 applied to Xbc on b (resp. Xab on a), we know that there exists
a typed interval tb (resp. ta) satisfying the two conditions of Lemma5. Now we
divide Xb ∪ Xab into two subclasses: Xbc and Yb = (Xb ∪ Xab) \ Xbc.

We have X = Yb ∪ Xbc ∪ Xa. Vertices of Xa contain ta. Vertices of Xbc

intersect tb and contain tc. Vertices of Yb contain tb. This proves that X is
included in the good graph of type (II) defined by ta, tb and tc on respectively
rows a, b, c. �	
Lemma 10. Let G be a B2-EPG graph containing only Z-vertices, and X be a
clique of G. If for every pair of rows a, b, the projection graphs of Xab on both a
and b are cliques, then there is a good graph containing X.

4.2 General B2-EPG Graphs

In Sect. 4.1, we have seen how to compute a maximum clique in a graph contain-
ing only Z-vertices. This section is devoted to prove that we can actually separate
the graph in order to assume the graph only contains Z-vertices or U-vertices.
We start by proving two lemmas showing that the existence of U-vertices puts
some constraints on the Z-vertices that can be appear in a clique. We will then
use these two lemmas to prove our main theorem.

Lemma 11. Let G be a B2-EPG graph with a representation, and X be a clique
of G, then:

– either there are 3 rows intersecting all the U-vertices of X
– or there are three columns intersecting all the Z-vertices of X.

Proof. Let u1, u2, u3, and u4 be four U-vertices of X intersecting pairwise differ-
ent rows. Let us prove that there are three columns containing every Z-vertex
of X.

First assume that there are three columns α, β, γ such that, the set of
columns intersected by ui is in {α, β, γ} for every i ≤ 4. Let us prove that these
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three columns intersect every Z-vertex of X. Assume by contradiction that there
exists v in X that does not intersect α, β and γ. Then for every i, Pv shares an
edge with Pui

on a horizontal segment. Since all the ui have disjoint index, this
would imply that v intersects four different rows, a contradiction.

So we can assume that u1, u2, u3, u4 intersect at least four columns. Let α and
β be the columns of u1. We can assume w.l.o.g. that u2 intersects the columns
α and γ, with γ �= α, β. And that u3 intersects a fourth column δ �= α, β, γ. So
both u3 and u4 must intersect α since they must intersect both u1 and u2. Let
τ be the second column intersected by u4. Then any Z-vertex of X intersects
one of α, δ, τ . Indeed, suppose by contradiction that a Z-vertex v of X does not
intersect one of these columns. Since Pv does not intersect Pu3 and Pu4 on their
vertical intervals, it shares an edge with Pu3 and Pu4 on their two horizontal
parts. Since u1, u2, u3, u4 have pairwise different index, Pv that intersect the row
of u3 and the row of u4, share an edge with Pu1 on the column β and Pu2 on the
column γ since v does not intersect column α. However, a Z-vertex intersects a
single column, a contradiction. �	

In Sect. 3, we have introduced typed intervals. These typed interval defines
intervals on a given row. In the following claim, we need two typed of typed
interval: horizontal and vertical typed interval. An horizontal typed interval is a
typed interval as defined in Sect. 3. A vertical typed interval is a typed interval
of the graph after a rotation, i.e. the graph where rows become columns and
columns become rows.

Lemma 12. Let G be a B2-EPG graph with its representation, and X be a
clique of G containing only U-vertices with the same index {a}. There exists a
set St of at most three typed intervals such that:

– St contains exactly one horizontal typed interval, and at most two vertical
typed intervals,

– every vertex of X contains all the typed intervals of St,
– a Z-vertex u is complete to X if and only if u intersects one of the typed

intervals of St.

Proof. Since X is a clique of G and X only contains U-vertices of index {a},
Lemma 2 ensures that the projection graph of X on a is a clique. By Lemma 4
applied to X on a, there is a typed interval t such that every vertex of X contains
t, and, if u is a vertex containing a in its index, and u is complete to X, then u
must intersect t. The typed interval t is the unique horizontal typed interval of St.

Suppose that there is a column α, such that every vertex of X intersects
α. Since all the vertices of X intersect the same row a and X is a clique, the
projection graph of X on the column α is a clique. Indeed, since all the vertices
of X intersect column α and row a, all of them must bend on the point (a, α).
Either they all bend on the same direction on column α, say upwards, and then
they all contain the edge of the column α between a and a+1, and the projection
graph is a clique. Or, some vertices of X bend upwards and other downwards on
(a, α). Since X is a clique, they all come from the same direction on row a and
then their t-projections on α pairwise intersect.
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By Lemma 4 applied to X on column α, there exists a vertical typed interval
tα satisfying both properties of Lemma 4. Since every U-vertex intersects two
columns, there are at most two columns α, β for which every vertex of X inter-
sects these columns. Let St be the set composed of t and the typed intervals tα
and tβ if they exist.

Let us prove that St satisfies the conclusion of the lemma. By construction
St contains exactly one horizontal typed interval and at most two vertical typed
intervals. By definitions of t and tα, tβ , every vertex v of X contains the typed
intervals in St. Let us finally show the last point. Let u be a Z-vertex. If u inter-
sects a typed interval in St, then by Lemma 1, u is complete to X. Conversely,
suppose that u is complete to X. If u contains a in its index, then Lemma4
ensures that u intersects t since vertices of X all have index {a}. Assume now
that the index of u does not contain a. So u intersects al the vertices of X on its
unique column. Let γ be the unique column intersected by u. All the vertices of
X must intersect γ since otherwise u cannot be complete to X. Then γ ∈ {α, β},
and w.l.o.g., we can assume γ = α. Then Lemma 4 ensures that u intersects tα
since the unique column of u is α. �	

The two previous lemmas are the main ingredients to prove that a maximum
clique in B2-EPG graphs can be computed in polynomial time. The idea of the
algorithm is, using Lemma 12, to guess some typed intervals contained in the U-
vertices of the clique. Lemma 11 ensures that we do not have to guess too many
intervals. Once we have guessed these intervals, we are left with a subgraph which
is actually the join of two subgraphs, one with only Z-vertices, and another with
only U-vertices. Then the maximum clique is obtained by applying Theorem1 to
each of the components. The details of the proof can be found in the full version
of the article [5]

Theorem 2. Given a B2-EPG graph G with its representation, there is a poly-
nomial time algorithm computing the maximum clique of G.

5 Colorings and χ-boundedness

In what follows we denote by χ(G) the chromatic number of G, i.e. the minimum
number of colors needed to properly color the graph G. And we denote by ω(G)
the maximum size of a clique of G.

Lemma 13. Let G be a Bk-EPG graph on n vertices. There are at most (k +
1)(ω(G) − 1)n edges in G.

The idea behind the proof is essentially to remark that on each row and
on each column, the graph induced by the segments of paths forms an interval
graph. Again, the proof of this lemma and its corollary are in the full version [5].

A graph is k-degenerate if there is an ordering v1, . . . , vn of the vertices such
that for every i, |N(vi) ∩ {vi+1, . . . , vn}| ≤ k. A k-degenerate graph is obviously
(k + 1)-colorable. Lemma 13 immediately implies the following:
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Corollary 1. Let G be a Bk-EPG graph:

– The graph G is
(
2(k + 1)ω − 1

)
-degenerate.

– χ(G) ≤ 2(k + 1)ω(G).
– There is a polynomial time 2(k +1)-approximation algorithm for the coloring

problem without knowing the representation of G.
– Every graph of Bk-EPG contains a clique or a stable set of size at least√

n
2(k+1) .
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Abstract. We consider several classes of intersection graphs of line seg-
ments in the plane and prove new equality and separation results between
those classes. In particular, we show that:

– intersection graphs of grounded segments and intersection graphs of
downward rays form the same graph class,

– not every intersection graph of rays is an intersection graph of down-
ward rays, and

– not every outer segment graph is an intersection graph of rays.
The first result answers an open problem posed by Cabello and Jejčič.
The third result confirms a conjecture by Cabello. We thereby com-
pletely elucidate the remaining open questions on the containment rela-
tions between these classes of segment graphs. We further characterize
the complexity of the recognition problems for the classes of outer seg-
ment, grounded segment, and ray intersection graphs. We prove that
these recognition problems are complete for the existential theory of the
reals. This holds even if a 1-string realization is given as additional input.

1 Introduction

Intersection graphs encode the intersection relation between objects in a collec-
tion. More precisely, given a collection A of sets, the induced intersection graph
has the collection A as the set of vertices, and two vertices A,B ∈ A are adja-
cent whenever A∩B �= ∅. Intersection graphs have drawn considerable attention

T. Miltzow—Supported by the ERC grant PARAMTIGHT: “Parameterized com-
plexity and the search for tight complexity results”, no. 280152.

c© Springer International Publishing AG 2017
H.L. Bodlaender and G.J. Woeginger (Eds.): WG 2017, LNCS 10520, pp. 153–166, 2017.
https://doi.org/10.1007/978-3-319-68705-6_12



154 J. Cardinal et al.

in the past thirty years, to the point of constituting a whole subfield of graph
theory (see, for instance, the book from McKee and McMorris [20]). The roots
of this subfield can be traced back to the properties of interval graphs – inter-
section graphs of intervals on a line – and their role in the discovery of the linear
structure of bacterial genes by Benzer in 1959 [1].

We consider geometric intersection graphs, that is, intersection graphs of
simple geometric objects in the plane, such as curves, disks, or segments. While
early investigations of such graphs are a half-century old [28], the modern the-
ory of geometric intersection graphs was established in the nineties by Kra-
tochv́ıl [14,15], and Kratochv́ıl and Matoušek [16,17]. They introduced several
classes of intersection graphs that are the topic of this paper. Geometric inter-
section graphs are now ubiquitous in discrete and computational geometry, and
deep connections to other fields such as complexity theory [19,24,25] and order
dimension theory [7,8,10] have been established.

We will focus on the following classes of intersection graphs, most of which
are subclasses of intersection graphs of line segments in the plane, or segment
(intersection) graphs.

Grounded Segment Graphs. Given a grounding line �, we call a segment s a
grounded segment if one of its endpoints, called the base point, is on � and
the interior of s is above �. A graph G is a grounded segment graph if it is
the intersection graph of a collection of grounded segments (w.r.t. the same
grounding line �).

Outer Segment Graphs. Given a grounding circle C, a segment s is called an
outer segment if exactly one of its endpoints, called the base point, is on C and
the interior of s is inside C. A graph G is an outer segment graph if it is the
intersection graph of a collection of outer segments (w.r.t. the same grounding
circle C).

Ray Graphs and Downward Ray Graphs. A graph G is a ray graph if it is the
intersection graph of rays (halflines) in the plane. A ray r is called a downward
ray if its apex is above all other points of r. A graph G is a downward ray graph
if it is the intersection graph of a collection of downward rays. It is not difficult
to see that every ray graph is also an outer segment graph: consider a grounding
circle at infinity. Similarly, one can check that every downward ray graph is a
grounded segment graph.

String Graphs. String graphs are defined as intersection graphs of collections
of simple curves in the plane with no three intersecting in the same point. We
consider here 1-string graphs, defined as intersection graphs of strings that pair-
wise intersect at most once. In particular, we define outer 1-string graphs and
grounded 1-string graphs in the same way as for segments.

In a recent paper, Cabello and Jejčič initiated a comprehensive study aiming
at refining our understanding of the containment relations between classes of
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geometric intersection graphs involving segments, disks, and strings [3]. They
introduced and solved many questions about the containment relations between
various classes. In particular, they proved proper containment between intersec-
tion graphs of segments with k or k + 1 distinct lengths, intersection graphs of
disks with k or k + 1 distinct radii, and intersection graphs of outer strings and
outer segments. In their conclusion [3], they left two natural questions open:

– Is the class of ray graphs a proper subclass of outer segment graphs?
– Is the class of downward ray graphs a proper subclass of grounded segment

graphs?

In this contribution, we answer the first question in the positive, thereby
proving a conjecture of Cabello. We also give a negative answer to the second
question by showing that downward rays and grounded segments yield the same
class of intersection graphs. Moreover, we show that downward ray graphs are
a proper subclass of ray graphs, and thereby completely settle the remaining
open questions on the containment relations between these classes of segment
graphs. We also complete the picture by giving computational hardness results on
stretchability questions for the classes of grounded 1-string and outer 1-string
graphs, where we ask for a representation of the same intersection graph by
grounded segments and outer segments, respectively. This strengthens the result
of Cabello and Jejčič on the separation between outer string and outer segment
graphs. A schematic description of the established inclusion relations between
the graph classes we consider is given in Fig. 1.

Fig. 1. Inclusion relations between the considered graph classes.

Previous Work and Motivation. The understanding of the inclusion properties
and the complexity of the recognition problem for classes of geometric intersec-
tion graphs have been the topic of numerous previous works.

Early investigations of string graphs date back to Sinden [28], and Ehrlich
et al. [9]. Kratochv́ıl [14] initiated a systematic study of string graphs, includ-
ing the complexity-theoretic aspects [15]. It is only relatively recently, how-
ever, that the recognition problem for string graphs has been identified as NP-
complete [25]. NP membership is far from obvious, given that there exist string
graphs requiring exponential-size representations [16].
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Intersection graphs of line segments were extensively studied by Kratochv́ıl
and Matoušek [17]. In particular, they proved that the recognition of such graphs
was complete for the existential theory of the reals. A key construction used in
their proof is the Order-forcing Lemma, which permits the embedding of pseudo-
line arrangements as segment representations of graphs. Some of our construc-
tions can be seen as extensions of the Order-forcing Lemma to grounded and
outer segment representations.

Outer segment graphs form a natural subclass of outer string graphs as
defined by Kratochv́ıl [14]. They also naturally generalize the class of circle
graphs, which are intersection graphs of chords of a circle [22].

A recent milestone in the field of segment intersection graphs is the proof
of Scheinerman’s conjecture by Chalopin and Gonçalves [6], stating that planar
graphs form a subclass of segment graphs. It is also known that outerplanar
graphs form a proper subclass of circle graphs [30], hence of outer segment
graphs. Cabello and Jejčič [3] proved that a graph is outerplanar if and only if
its 1-subdivision is an outer segment graph.

Intersection graphs of rays in two directions have been studied by Soto and
Telha [29]. They show connections with the jump number of some posets and hit-
ting sets of rectangles. The class has been further studied by Shrestha et al. [27],
and Mustaţă et al. [21]. The results include polynomial-time recognition and iso-
morphism algorithms. This is in contrast with our hardness result for arbitrary
ray graphs.

Properties of the chromatic number of geometric intersection graphs have
been studied as well. For instance, Rok and Walczak proved that outer string
graphs are χ-bounded [23], and Kostochka and Nešetřil [12,13] studied the chro-
matic number of ray graphs in terms of the girth and the clique number.

The complexity of the maximum clique and independent set problems on
classes of segment intersection graphs is also a central topic of study. It has been
shown recently, for instance, that the maximum clique problem is NP-hard on ray
graphs [2], and that the maximum independent set problem is polynomial-time
tractable on outer segment graphs [11].

Organization of the Paper. In the next section, we give some basic definitions
and observations. We also provide a short proof of the equality between the
classes of downward ray and of grounded segment graphs.

In Sect. 3, we introduce the Cycle Lemma, a construction that will allow us
to control the order of the slopes of the rays in a representation of a ray graph,
and the order in which the segments are attached to the grounding line or circle
in representations of grounded segment and outer segment graphs.

In Sect. 4, we show how to use the Cycle Lemma to encode the pseudoline
stretchability problem in the recognition problem for outer segment, grounded
segment, and ray graphs. We thereby prove that those problems are complete
for the existential theory of the reals.

Finally, in Sect. 5, we establish two new separation results. First, we prove
that ray graphs form a proper subclass of outer segment graphs, proving
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Cabello’s conjecture. Then we prove that downward ray graphs form a proper
subclass of ray graphs.

2 Preliminaries

We first give a short proof of the equality between the classes of downward ray
and grounded segment graphs, thereby answering Cabello and Jejčič’s second
question. The proof is illustrated in Fig. 2a.

Lemma 1 (Downward Rays=Grounded Segments). A graph G can be
represented as a grounded segment graph if and only if it can be represented by
downward rays.

Proof. Consider a coordinate system where the grounding line is the x-axis, and
take the projective transformation defined in homogeneous coordinates by

⎛
⎝

x
y
1

⎞
⎠ �→

⎛
⎝

x
−1
y

⎞
⎠ .

This projective transformation is a bijective mapping from the projective
plane to itself, which maps grounded segments to downward rays. In the plane,
it can be seen as mapping the points (x, y) with y > 0 to (x/y,−1/y). Since
projective transformations preserve the incidence structure, the equivalence of
the graph classes follows. �	

Fig. 2. Simple transformations between different graph representations.

The proofs of the following two lemmas are not difficult, and omitted. They
are illustrated in Fig. 2b and c.
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Lemma 2 (Ray Characterization). A graph G can be represented as an outer
segment graph with all intersections of the supporting lines inside the grounding
circle C if and only if it can be represented by rays.

Note that it is tempting to try to find a projective transformation that maps
the unit circle S1 to infinity in a way that outer segments become rays. As we will
show later, outer segments and rays represent different graph classes. Thus such a
mapping is impossible. With the help of Möbius transformations it is possible to
find a mapping that maps the unit circle S1 to infinity. However, outer segments
then become connected parts of hyperbolas instead of straightline rays.

Recall that we define grounded 1-string graphs and outer 1-string graphs in
an analogous way to the corresponding segment graphs by replacing segments
by 1-strings.

Lemma 3 (Grounded 1-Strings=Outer 1-Strings). A graph G can be rep-
resented as a grounded 1-string graph if and only if it can be represented as an
outer 1-string graph.

Ordered Representations. Given a graph G and a permutation π of the vertices,
we say that a grounded (segment or string) representation of G is π-ordered if
the base points of the cooresponding segments or strings are in the order of π
on the grounding line, up to inversion and cyclic shifts. In the same fashion, we
define π-ordered for outer (segment or string) representations and (downward)
ray representations, where rays are ordered by their angles with the horizontal
axis.

The Complexity Class ∃R and the Stretchability Problem. The complexity class
∃R is the collection of decision problems that are polynomial-time equivalent to
deciding the truth of sentences in the first-order theory of the reals of the form
∃x1∃x2 . . . ∃xnF (x1, x2, . . . , xn), where F is a quantifier-free formula involving
inequalities and equalities of polynomials in the real variables xi. This complexity
class can be understood as a “real” analogue of NP. It can easily be seen to
contain NP, and is known to be contained in PSPACE [4].

In recent years, this complexity class revealed itself most useful for charac-
terizing the complexity of realizability problems in computational geometry. A
standard example is the pseudoline stretchability problem.

Matoušek [18, p. 132] defines an arrangement of pseudolines as a finite collec-
tion of curves in the plane that satisfy the following two conditions: (i) each curve
is x-monotone and unbounded in both directions and (ii) every two of the curves
intersect in exactly one point and they cross at the intersection. In the stretch-
ability problem, one is given the combinatorial structure of an arrangement of
pseudolines in the plane as input, and is asked whether the same combinator-
ial structure can be realized by an arrangement of straight lines. If this is the
case, then we say that the arrangement is stretchable. This structure can for
instance be given in the form of a set of n local sequences: the left-to-right order
of the intersections of each line with the n − 1 others. Equivalently, the input
is the underlying rank-3 oriented matroid. The stretchability problem is known
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to be ∃R-complete [26]. We refer the reader to the surveys by Schaefer [24],
Matoušek [19], and Cardinal [5] for further details.

Computational Complexity Questions. Given a graph class G, we define
Recognition(G) as the following decision problem:

Recognition (G)
Input: A graph G = (V,E).
Question: Does G belong to the graph class G?

We will be concerned with the problems Recognition (rays), Recognition
(grounded segments) and Recognition (outer segments).

Potentially the recognition problem could become easier if we have some
additional information. In our case it is natural to ask if a given outer 1-string
representation of a graph G has an outer segment representation. The same goes
for grounded 1-strings and grounded segments. Finally, we will consider outer
1-strings and rays. Formally, we define the decision problem Stretchability
(G,F) as follows.

Stretchability (G,F)
Input: graph G = (V,E) and representation R that shows that G belongs
to F .
Question: Does G belong to the graph class G?

Note that we need to assume that F is a graph class defined by intersections
of certain objects.

3 Cycle Lemma

For some of our constructions, we would like to force that the segments or strings
representing the vertices of a graph appear in a specified order on the ground-
ing line or circle. More exactly, we would like to force the representation to be
π-ordered for some given permutation π. To this end, we first study some prop-
erties of the representation of cycles, which in turn will help us to enforce this
order.

Given a graph G = (V,E) on n vertices V = {v1, . . . , vn} and a permutation π
of the vertices of G, we define the order forcing graph Gπ as follows. The vertices
V (Gπ) are defined by V ∪ {1, . . . , 2n2} and the edges E(Gπ) are defined by
E∪{ (2in, vπ(i)) | i = 1, . . . , n }∪{ (i, i+1) | i = 1, . . . , 2n2 } (here we conveniently
assume 2n2 + 1 = 1). The definition is illustrated on Fig. 3.

For the sake of simplicity, we think of π as being the identity and the vertices
as being indexed in the correct way. The vertices of G are called relevant, and
the additional vertices of Gπ are called cycle vertices. Note that on the cycle,
the distance between any two cycle vertices u, v that are adjacent to different
relevant vertices is at least 2n.
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Fig. 3. Illustration of the definition of order forcing graphs.

Lemma 4 (Cycle Lemma). Let G be a graph and π be a permutation of the
vertices of G. Then there exists a π-ordered representation of G if and only if
there exists a representation of Gπ. This is true for the following graph classes:
grounded segment graphs, ray graphs, outer segment graphs, and outer 1-string
graphs.

Due to space constraints, we omit the proof of Lemma 4. Figure 4 shows the
representations of order forcing graphs in the cases of outer string and grounded
segment graphs.

Fig. 4. Representations of order forcing graphs for ordered representations of outer
string graphs and grounded segment graphs.
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4 Stretchability

The main purpose of this section is to show that the recognition of the graph
classes defined above is ∃R-complete. For this we will use Lemma 4 extensively.
It is likely that our techniques can be applied to other graph classes as well.

Theorem 1. The following problems are ∃R-complete:

• Recognition (outer segments) and
Stretchability (outer segments, outer 1-strings),

• Recognition (grounded segments) and
Stretchability (grounded segments, grounded 1-strings),

• Recognition (rays) and Stretchability (rays, outer 1-strings).

Proof. We first show ∃R-membership. Note that each of the straight-line objects
we consider can be represented with at most four variables: for segments, we use
two variables for each endpoint, and for rays, we use two variables for the apex
and two variables for the direction. The condition that two objects intersect can
be formulated with constant-degree polynomials in those variables. Hence, each
of the problems can be formulated as a sentence in the first-order theory of the
reals of the desired form.

Let us now turn our attention to the ∃R-hardness. It is sufficient to show
hardness for the stretchability problems, as the problems can only become easier
with additional information. We will reduce from stretchability of pseudoline
arrangements. Given a pseudoline arrangement L, we will construct a graph GL
and a permutation π such that:

1. If L is stretchable then GL has a π-ordered representation with grounded
segments.

2. If L is not stretchable then there does not exist a π-ordered representation of
GL as an outer segment graph.

By Lemma 4 GL has a π-ordered representation if and only if Gπ
L has a repre-

sentation. Recall that we know the following relations for the considered graph
classes.

grounded segments ⊆ rays ⊆ outer segments.

Thus, item 1 implies that if L is stretchable then GL has a π-ordered represen-
tation with rays or outer segments. Furthermore, item 2 implies that if L is not
stretchable then GL has neither a π-ordered representation with rays nor with
grounded segments.

We start with the construction of GL and π. Let L be an arrangement of n
pseudolines. Recall that we can represent L by x-monotone curves. Let �1 and
�2 be two vertical lines such that all the intersections of L lie between �1 and
�2. We cut away the part outside the strip bounded by �1 and �2. This gives us
a π-ordered grounded 1-string representation RL with respect to the grounding
line �1.
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Fig. 5. Illustration of Theorem 1: Construction of GL and its grounded 1-string repre-
sentation.

Now we replace each string s representing a pseudoline in L by the follow-
ing construction (extending π accordingly): We split s into three similar copies
s1, s2, s3, shifted vertically by an offset that is chosen sufficiently small so that
the three copies intersect the other pseudolines (and their shifted copies) in the
same order. For each successive intersection point of s with a pseudoline s′ in
L, we add a pair of strings grounded on either side of the base point of s2 and
between the base points of s1 and s3, intersecting none of s1, s2 and s3. The two
strings intersect all the pseudolines of L that s intersects, up to and including
s′, in the same order as s does. All the strings for s are pairwise nonintersecting
and nested around s2; see Fig. 5. We refer to these pairs of strings as probes.
The probes are meant to enforce the order of the intersections in all π-ordered
representations.

We now prove item 1. We suppose there is a straight line representation of
L, which we denote by K. Again let �1 and �2 be two vertical lines such that all
intersections of K are contained in the vertical strip between them. This gives us
a collection of grounded segments RK. One can check that the above construc-
tion involving probes can be implemented using straight line segments, just as
illustrated in Fig. 5. Thus, RK is a π-ordered grounded segment representation
of GL, as claimed.

Next, we turn our attention to item 2 and suppose that L is not stretchable.
Let us further suppose, for the purpose of contradiction, that we have a π-ordered
outer segment representation of GL. We show that keeping only the middle copy
s2 of each segment s representing a pseudoline of L in our construction, we
obtain a realization of L with straight lines. For this, we need to prove that
the construction of the probes indeed forces the order of the intersections. We
consider each such segment s2 and orient it from its base point to its other
endpoint. Now suppose that there exist strings a and b such that the order of
intersections of s2 with a and b with respect to this orientation does not agree
with that of the pseudoline arrangement. (In Fig. 5, suppose that s2 crosses
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the lines b before a in the left-to-right order.) We consider the convex region
bounded by the arc of the grounding circle between the base points of s1 and
s3, and segments from s1, b, and s3. This convex region is split into two convex
boxes by s2. The pair of probes corresponding to the intersection of s2 and a is
completely contained in this region, with one probe in each box. But now the line
a must enter both boxes, thereby intersecting s2 on the left of b with respect to
the chosen orientation, a contradiction. Therefore, the order of the intersections
is preserved, and the collection of segments s2 is a straight line realization of L,
a contradiction to the assumption that L is not stretchable. �	

5 Rays and Segments

Theorem 2 (Rays � Outer Segments). There are graphs that admit a rep-
resentation as outer segment graphs but not as ray graphs.

Fig. 6. Illustration of Theorem 2. On the left is a graph G together with a permutation
π of the vertices displayed. In the middle is a π-ordered outer segment representation
of G. The right drawing illustrates that the angles α and β must each be at most 180◦.

Proof. Consider the graph G and a permutation π as displayed in Fig. 6. We
show that G has a π-ordered representation as an outer segment graph, but not
as a ray graph. This implies that Gπ has a representation as an outer segment
graph, but not as a ray graph as well, see Lemma4.

Given any π-ordered representation of G, we define the angle α as the angle
at the intersection of b and c towards the segments d, x, y, a and we define the
angle β as the angle at the intersection of a and d towards the segments b, u, v, c,
as can be seen in Fig. 6.

We show that both α and β are smaller than 180◦ in any outer segment
representation. As the two cases are symmetric we show it only for α. Assume
α ≥ 180◦ as on the right of Fig. 6. If u intersects c (as shown in the figure) then
it blocks v from intersecting b, as v must not intersect u. Likewise, v intersecting
b would block u from intersecting c. This shows α, β < 180◦.
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As the angles are smaller than 180◦, we conclude that either the extensions
of a and b or the extensions of c and d must meet outside of the grounding
circle. Recall that we considered any representation of G. By Lemma 2 it holds
for every ray graph that there exists at least one representation of G with outer
segments such that all extensions meet within the grounding circle. (The lemma
also holds for ordered representations.) Thus there cannot be a π-ordered ray
representation of G. �	
Theorem 3 (Downward Rays � Rays). There are graphs that admit a rep-
resentation as ray graphs but not as downward ray graphs.

Consider the graph G and the permutation π as displayed in Fig. 7 (left).
Clearly, G has a π-ordered representation as a ray graph, as can be seen from
the outer segment representation of G as shown in Fig. 7 (middle). We can show
that G does not have a π-ordered representation as a grounded segment graph.
Hence Gπ has a representation as a ray graph, but not as a grounded segment
graph or a downward ray graph; see Lemma4 and Lemma 1. This yields the
theorem, the complete proof of which is omitted.

Fig. 7. Illustration of Theorem 3: A graph G together with a permutation π of the
vertices (left); A π-ordered outer segment representation of G (middle); The segment
g cannot enter the gray triangle without intersecting b or f (right).
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Abstract. Biró, Hujter, and Tuza introduced the concept of H-graphs
(1992), intersection graphs of connected subgraphs of a subdivision of a
graph H. They naturally generalize many important classes of graphs,
e.g., interval graphs and circular-arc graphs. Our paper is the first study
of the recognition and dominating set problems of this large collection
of intersection classes of graphs.

We negatively answer the question of Biró, Hujter, and Tuza who
asked whether H-graphs can be recognized in polynomial time, for a fixed
graph H. Namely, we show that recognizing H-graphs is NP-complete if
H contains the diamond graph as a minor. On the other hand, for each
tree T , we give a polynomial-time algorithm for recognizing T -graphs
and an O(n4)-time algorithm for recognizing K1,d-graphs. For the dom-
inating set problem (parameterized by the size of H), we give FPT-
and XP-time algorithms on K1,d-graphs and H-graphs, respectively. Our
dominating set algorithm for H-graphs also provides XP-time algorithms
for the independent set and independent dominating set problems on
H-graphs.

1 Introduction

An intersection representation of a graph assigns a set to each vertex and uses
intersections of those sets to encode its edges. More formally, an intersection
representation R of a graph G is a collection of sets {Rv : v ∈ V (G)} such that
Ru ∩ Rv �= ∅ if and only if uv ∈ E(G). Many important classes of graphs arise
from restricting the sets Rv to geometric objects (e.g., intervals, convex sets).

We study H-graphs, intersection graphs of connected subsets of a fixed topo-
logical pattern given by a graph H, introduced by Biró et al. [1]. We obtain new

This paper including its full appendix is on ArXiv, see arXiv.org/pdf/1608.
02389v2.pdf. Thus, for any reference to an appendix, see the ArXiv version.
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algorithmic results on the recognition and dominating set problems. First, we
discuss some closely related graph classes.

Interval graphs (INT) form one of the most studied and well-understood
classes of intersection graphs. In an interval representation, each set Rv is a closed
interval of the real line; see Fig. 1a. A primary motivation for studying interval
graphs (and related classes) is the fact that many important computational
problems can be solved in linear time on them; see for example [3,5,12].
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Fig. 1. (a) An interval graph and one of its interval representations. (b) A chordal
graph and one of its representations as an intersection graph of subtrees of a tree.

A graph is chordal when it does not have an induced cycle of length at least
four. Equivalently, as shown by Gavril [8], a graph is chordal if and only if it
can be represented as an intersection graph of subtrees of some tree; see Fig. 1b.
This immediately implies that INT is a subclass of the chordal graphs (CHOR).

While the recognition problem can be solved in linear time for CHOR [13]
and such algorithms can be used to generate an intersection representation by
subtrees of a tree, asking for special host trees can be more difficult. For example,
when the desired tree T is part of the input (together with a graph G), deciding
whether G is a T -graph is NP-complete [11]. Additionally, some other important
computational problems, for example the dominating set [4] and graph isomor-
phism [12], are harder on chordal graphs than on interval graphs.

The split graphs (SPLIT) form an important subclass of chordal graphs. These
are the graphs that can be partitioned into a clique and an independent set. Note
that every split graph can be represented as an intersection graph of subtrees of
a star Sd, where Sd is the complete bipartite graph K1,d.

Circular-arc graphs (CARC) are a natural generalization of interval graphs.
Here, each set Rv corresponds to an arc of a circle.

H-Graphs. Biró et al. [1] introduced H-graphs. Let H be a fixed graph. A
graph G is an intersection graph of H if it is an intersection graph of connected
subgraphs of H, i.e., the assigned subgraphs Hv and Hu of H share a vertex if
and only if uv ∈ E(G).

A subdivision H ′ of a graph H is obtained when the edges of H are replaced
by internally disjoint paths of arbitrary lengths. A graph G is a topological inter-
section graph of H if G is an intersection graph of a subdivision H ′ of H. We
say that G is an H-graph and the collection {H ′

v : v ∈ V (G)} of connected sub-
graphs of H ′ is an H-representation of G. The class of all H-graphs is denoted
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by H-GRAPH. We have the following relations: INT = K2-GRAPH, SPLIT �⋃∞
d=2 Sd-GRAPH, CARC = K3-GRAPH, and CHOR =

⋃
Tree T T -GRAPH.

H-graphs were introduced in the context of the (p, k)pre-coloring extension
problem (PrColExt(p, k)). Here, one is given a graph G together with a p-
coloring of W ⊆ V (G), and the goal is to find a proper k-coloring of G containing
this pre-coloring. Biró et al. [1] provide an XP (in k and ‖H‖) algorithm to solve
PrColExt(k, k) on H-GRAPH.

We have an infinite hierarchy of graph classes between interval and chordal
graphs since INT ⊆ T -GRAPH � CHOR, for every tree T . Some important
computational problems are polynomial on interval graphs and hard on chordal
graphs. An interesting question is the complexity of those problems on T -graphs,
for a fixed tree T .

Our Results. Biró, Hujter, and Tuza asked the following question which we
answer negatively.

Problem 1. (Biró et al. [1]). Let H be an arbitrary fixed graph. Is there a
polynomial algorithm testing whether a given graph G is an H-graph?

In Theorem 10, we prove that for each fixed graph H containing a diamond as a
minor, it is NP-complete to recognize H-graphs. We do this by a reduction from
the problem of testing if the interval dimension of a partial order of height 1 is
at most 3. Moreover, we give an O(n4)-time and a polynomial-time algorithm
for recognizing Sd-graphs and T -graphs, respectively (Theorems 7 and 9). Note
that our results imply that the complexity of recognition of H-graphs is open
for cactus graphs.

Conjecture 2. If H is a cactus graph, then the recognition of H-graphs can be
solved in polynomial time.

Further, we solve the problem of finding a minimum dominating set on Sd-
graphs (Theorem 12) in O(d·n·(n+m))+(2d(d+2d)O(1)) time and for H-graphs
(Theorem 13) in nO(‖H‖) time. To achieve this running time, we assume that the
intersection representation is provided as a part of the input.

Preliminaries. We assume that the reader is familiar with the following stan-
dard and parameterized computational complexity classes: NP, XP, and FPT
(see, e.g., [6] for further details). Let G be an H-graph. For a subdivision H ′

certifying G ∈ H-GRAPH, we use H ′
v to denote the subgraph of H ′ correspond-

ing to v ∈ V (G). The vertices of H and H ′ are called nodes. If H is a tree,
then its degree 1 nodes are called leaves and its nodes of degree at least three
are called branching points. Let a, b be two nodes of H ′. By P[a,b] we denote the
path from a to b. Further, we define P(a,b] = P[a,b] − a, and P[a,b), P(a,b) analo-
gously. For V1, . . . , Vk ⊆ V (G), let G[V1, . . . , Vk] be the subgraph of G induced
by V1 ∪ · · · ∪ Vk. For a graph G, we assume G has n vertices and m edges. In
many results we implicitly use the well-known fact [7] that interval graphs are
characterized by having a linear order on their maximal cliques so that for each
vertex, its maximal cliques occur consecutively.
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2 Recognition of T-Graphs

We solve the recognition problem for the class T -GRAPH, where T is an arbitrary
fixed tree. First, we provide an O(n4) algorithm which either finds the minimum
d such that G is an Sd-graph, or reports that G has no such representation.
Further, we give an nO(‖T‖2)-time algorithm to test whether G is a T -graph.

We begin with a lemma that motivates our general approach. It implies that if
G is a T -graph, then there exists a representation of G such that every branching
point is contained in some maximal clique of G.

Lemma 3. Let G be a T -graph and let R be its T -representation. Then R can
be modified such that for every node b ∈ V (T ′), we have b ∈ ⋂

v∈C V (T ′
v), for

some maximal clique C of G.

Proof. For every node x of the subdivision T ′, let Vx = {u ∈ V (G) : x ∈ V (T ′
u)}

be the set of vertices of G corresponding to the subtrees passing through x.
Let b be a node such that Vb is not a maximal clique. We pick a maximal
clique C with C � Vb. Since R satisfies the Helly property, there is a node
a ∈ ⋂{V (T ′

v) : v ∈ C}. Let x be the node of P(b,a] closest to b such that Vx � Vb.
Then, for each v ∈ Vx \ Vb, we update T ′

v to be T ′
v ∪ P[b,x]. Thus, we obtain a

correct representation of G with Vb = Vx. We repeat this process until Vb is a
maximal clique. 	


The General Approach. It is well-known that chordal graphs, and therefore
also T -graphs, have at most n maximal cliques and that they can be listed linear
time. According to Lemma 3, if G is a T -graph, then it has a representation such
that every branching point of T is contained in the representation of G[C], for
some maximal clique C of G.

Our approach is to try all the possible mappings f : B → C, where B is the set
of branching points of T and C is the set of maximal cliques of G. The number
of such mappings is at most nt, where n = |V (G)| and t = |V (T )|. For every
mapping f : B → C, we test whether there exists a T -representation of G with
b ∈ ⋂

v∈f(b) V (T ′
v), for every b ∈ B. By Lemma 3, such a representation exists

if and only if G is a T -graph. To find such a representation, we need to find
suitable interval representations of the connected components of G \ ⋃

b∈B f(b)
on the segments T ′ − B such that the following conditions hold:

(i) If X1, . . . , Xk are the connected components placed on a path P(b,l], where
b ∈ B and l is a leaf, then the induced subgraph G[f(b), V (X1), . . . , V (Xk)]
has an interval representation with f(b) being the leftmost maximal clique.

(ii) If X1, . . . , Xk are the connected components placed on a path P(b,b′), where
b, b′ ∈ B, then G[f(b), V (X1), . . . , V (Xk), f(b′)] has an interval representa-
tion with f(b) and f(b′) being the leftmost and rightmost maximal cliques,
respectively.
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Recognition of Sd-Graphs. In the case when T = Sd, we have B = {b} and
V (T ) = {b} ∪ {l1, . . . , ld}. The number of mappings f : {b} → C is exactly the
same as the number of maximal cliques of G, which is at most n (otherwise it
is not an Sd-graph). For every maximal clique C of G, we try to construct a
T -representation R such that b ∈ ⋂

v∈C V (T ′
v).

Assume that G has such a T -representation, for some maximal clique C.
Then the connected components of G\C are interval graphs and each connected
component can be represented on one of the paths P(b,li], which is a subdivision
of the edge bli; see Fig. 2a and c. However, some pairs of connected components
of G\C cannot be placed on the same path P(b,li], since their “neighborhoods” in
C are not “compatible”. The goal is to define a partial order � on the components
of G − C such that for every linear chain X1 � · · · � Xk, the induced subgraph
G[C, V (X1), . . . , V (Xk)] can be represented on some path P(b,li]; see Fig. 2b.
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Fig. 2. (a) An example of an Sd-graph G with a maximal clique C = {1, 2, 3, 4}. (b)
The partial ordering � on the connected components of G\C with chain cover of size 3:
X2�X1, X5�X4�X3, and X6. (c) The connected components placed on the paths P(b,l1],
P(b,l2], and P(b,l3], according to the chain cover of �. (d) The subtrees T ′
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corresponding to the vertices of the maximal clique C give an Sd-representation of G
with b ∈ ⋂v∈C V (T ′

v).

We define NC(u) and NC(X) to be the neighbourhoods of the vertex v in C
and of the components X in C, respectively. Formally,

NC(u) = {v ∈ C : vu ∈ E(G)} and NC(X) =
⋃

{NC(u) : u ∈ V (X)}.

Note that, if we have two components X and X ′ on the same branch where
NC(X ′) ⊆ NC(u) for every u ∈ V (X), then X must be closer to C than X ′. We
say that components X and X ′ are equivalent if there is a subset C ′ of C such
that NC(u) = C ′ for every u ∈ V (X) and NC(u′) = C ′ for every u′ ∈ V (X ′).
Note that equivalent components X and X ′ can be represented in an interval
representation of G[C, V (X), V (X ′)] in an arbitrary order and they can be treated
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as one component. We use one representative component for each equivalence
class, and denote this set of non-equivalent representative components by X . For
X,X ′ ∈ X , we let:

X � X ′ ⇐⇒ for every u ∈ V (X), NC(X ′) ⊆ NC(u). (1)

For a proof of the next lemmas, see Appendix A.

Lemma 4. The relation � is a partial ordering on X .

Lemma 5. Let X1, . . . , Xk ∈ X . Then the subgraph G[C, V (X1), . . . , V (Xk)]
has an interval representation with C being the leftmost clique if and only if
X1 � · · · � Xk and each G[C,Xi] has an interval representation with C being the
leftmost clique.

The following lemma gives a necessary and a sufficient condition for G to be
an Sd-graph having an Sd-representation with b ∈ ⋂

v∈C V (T ′
v). For a proof see

Appendix A.

Lemma 6. A graph G has an Sd-representation with b ∈ ⋂
v∈C V (Rv) if and

only if the following hold: (i) For every X ∈ X , the induced subgraph G[C,X]
has an interval representation with C being the leftmost clique. (ii) The partial
order � on X has a chain cover of size at most d.

By combining Lemmas 5 and 6 we obtain an algorithm for recognizing Sd-
graphs. For a given graph G and its maximal clique C, we do the following:

1. We delete the maximal clique C and construct the partial order � on the set
of non-equivalent connected components X .

2. We test whether the partial order � can be covered by at most d linear chains.
3. For each linear chain Xi

1 � · · · � Xi
k, 1 ≤ i ≤ d, we construct an interval

representation Ri of the induced subgraph G[C, V (X1), . . . , V (Xk)], with C
being the leftmost maximal clique, on one of the paths of the subdivided Sd.

4. We complete the whole representation by placing each Ri on the path P[b,li]

so that b ∈ ⋂
v∈C V (T ′

v).

Theorem 7. Recognition of Sd-graphs can be solved in O(n4) time.

Proof. Every chordal graph has at most n maximal cliques, where n is the num-
ber of vertices, and they can be listed in linear time [13]. For every clique C,
our algorithm tries to find an Sd-representation with b ∈ ⋂

v∈C V (T ′
v). Note that

by forgetting the orientation in the partial order � that we get a comparability
graph. Every clique in the comparability induces a linear chain in �. For compa-
rability graphs, a minimum clique-cover can be found in O(n3) time [10]. The
overall time complexity of our algorithm is therefore O(n4). 	


Recognition of T-graphs. The algorithm for recognizing T -graphs is a gen-
eralization of the algorithm for recognizing Sd-graphs, described above. For
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every mapping f : B → C, we try to construct a representation R such that
b ∈ ⋂

v∈f(b) V (T ′
v), for every b ∈ B. If possible, we show how to place the con-

nected components of G − ⋃
b∈B f(b) according to (i) and (ii). Otherwise, G is

not a T -graph.
Note that if f(b) = f(b′), then for every branching point b′′ which lies on the

path from b to b′, we must have f(b) = f(b′′) = f(b′). Therefore, for C ∈ f(B),
the branching points in f−1(C), together with the paths connecting them, have
to form a subtree of T ′. Similarly, if G is disconnected, the branching points
corresponding to maximal cliques belonging to one connected component of G,
together with the paths connecting them, form a subtree of T ′.

Suppose that G has a T -representation. The connected components of G −⋃
b∈B f(b), are interval graphs. As in the previous section, we use relationships

between their sets of neighbours in the maximal cliques to find a valid placement
of these components on the paths between the branching points and the paths
between a branching point and a leaf. The first step of our algorithm is to find
the components which have to be represented on a path P(b,b′) between two
branching points. The following lemma deals with this problem.

Lemma 8. Let X be a connected component of G − ⋃
b∈B f(b) and b, b′ ∈ B. If

the sets (f(b) \ f(b′)) ∩ Nf(b)(X) and (f(b′) \ f(b)) ∩ Nf(b′)(X) are nonempty,
then X has to be represented on P(b,b′).

Proof. We put C = f(b) and C ′ = f(b′). Let v ∈ (C \ C ′) ∩ NC(H) and u ∈
(C ′ \C)∩NC′(H). Since v /∈ C ′, the subtree T ′

v cannot pass through b′. Similarly
T ′

u cannot pass through b. Therefore, the only possible path where X can be
represented is P(b,b′). 	


Let Xb,b′ be the disjoint union of the components satisfying the conditions
of Lemma 8. If the induced interval subgraph G[C, V (Hb,b′), C ′] has a repre-
sentation such that the cliques C and C ′ are the leftmost and the rightmost,
respectively, then we can represent Hb,b′ in the middle of the path P(b,b′). (If no
such representation exists, then G cannot be represented on T ′ for this partic-
ular f : B → C.) This means that there exist nodes x, y of P(b,b′) such that the
representation of Xb,b′ is on the subpath Px,y of P(b,b′). We remove the subpath
P(x,y). We do this for each pair of neighbouring branching points.

Let G′ = G − {Xb,b′ : bb′ ∈ E(T ′)}. Suppose that b ∈ B. Let l1, . . . , lp be the
leaves of T and b1, . . . , bq the branching points of T ′ that are adjacent to b. Let
x1, . . . , xq and y1, . . . , yq be the points of the paths P[b,b1], . . . , P[b,bq ], respectively,
such that Xb,bi is represented on the subpath Pxi,yi

. We define Sb to be the star
consisting of the paths P[b,l1], . . . , P[b,lp], P[b,x1), . . . , P[b,xq). It remains to find a
representation of the graph G′ on disjoint disjoint union of subdivided stars.
Moreover, the representation of the induced subgraph G[f(b), V (Xb,bi), f(bi)]
imposes restrictions on the path P(b,xi). Suppose that a vertex v ∈ f(b) is adja-
cent to a vertex from Xb,bi . Then if we want the represent a connected component
X of G′ − ⋃

b∈B f(b) on the path P(b,xi), we can do this only if every vertex of
X is adjacent to v.
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Disjoint Stars With Restrictions. We reduced the problem of recognizing
T -graphs to the following problem. On the input we have a graph G, k disjoint
subdivided stars Sb1 , . . . , Sbk with branching points b1, . . . , bk, respectively, a
mapping f : {b1, . . . , bk} → C, and for every path from bi to a leaf of Sbi a subset
of f(bi) of restrictions. We want to find a representation of G on Sb1 , . . . , Sbk such
that bi ∈ ⋂

v∈f(bi)
V (Rv), and for every connected component X of G − ⋃

f(bi),
the vertices V (X) have to be adjacent to every vertex in the subset of restrictions
corresponding to the path on which X is represented.

To solve this problem, we proceed similarly as in the recognition of Sd-graphs.
We define a partial ordering on the connected components of G − C, where
C =

⋃
f(bi). The notions NC(u) and NC(X) are defined as in the same way

as in the algorithm for recognizing Sd-graphs. We get a partial ordering � on
the set of non-equivalent connected components X of G − C. Moreover, to each
component X ∈ X , we assign a list of colors L(X) which correspond to the
subpaths from a branching point to a leaf in the stars Sb1 , . . . , Sbk , on which
they can be represented. Each list L(H) has size at most d =

∑
di, where di is

the degree of bi.
Suppose that there exists a chain cover of � of size d such that for every chain

X1 � · · ·�X� in this cover we can pick a color belonging to every L(Xj) such that
no two components get the same color. Here, a representation of G satisfying
the restrictions can be constructed analogously as in the proof of Theorem6.

The partial ordering � on the components X defines a comparability graph
P with a list of colors L(v) assigned to every vertex v ∈ V (P ). If we find the list
coloring c of its complement P , i.e., a coloring that for every vertex v uses only
colors from its list L(v), then the vertices of the same color in P correspond to
a chain (clique) in P . Therefore, we have reduced our problem to list coloring
co-comparability graphs with lists of bounded size.

Bounded List Coloring of Co-comparability Graphs. We showed that to
solve the problem of recognizing T -graphs we need to solve the �-list coloring
problem for co-comparability graphs where � = 2 · |E(T )|. In particular, given a
co-comparability graph G, a set of colors S such that |S| ≤ �, and a set L(v) ⊆ S
for each vertex v, we want to find a proper coloring c : V (G) → S such that for
every vertex v, we have c(v) ∈ L(v).

In [2] the capacitated coloring problem is solved on co-comparability graphs.
Namely, given a graph G, an integer s ≥ 1 of colors, and positive integers
α∗
1, . . . , α

∗
s , a capacitated s-coloring ϕ of G is a proper s-coloring such that the

number of vertices assigned color i is bounded by α∗
i , i.e., |ϕ−1(i)| ≤ α∗

i . They
prove that the capacitated coloring of co-comparability graphs can be solved in
polynomial time for fixed s.

In Appendix E we modify [2] to solve the s-list coloring problem on co-
comparability graphs in O(ns2+1s3) time. This provides the following theorem.

Theorem 9. Recognition of T -graphs can be solved in nO(‖T‖2).
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3 Recognition Hardness

In this section we negatively answer Problem 6.3 of Biró et al. [1]. Namely,
we prove that testing for membership in H-GRAPH is NP-complete when the
diamond graph D is a minor of H. The graph D is obtained by deleting an edge
from a 4-vertex clique. Note that this sharply contrasts the polynomial time
solvability of recognizing circular arc graphs (i.e., when H is a cycle).

Our hardness proof stems from the NP-hardness of testing whether a partial
order (poset) with height one has interval dimension at most three (H1ID3) –
shown by Yannakakis [14]. Note that having height one means that every element
is either a minima or maxima of P. Consider a collection I of closed intervals on
the real line. A poset PI = (I, <) can be defined on I, by considering intervals
x, y ∈ I and setting x < y if and only if the right endpoint of x is strictly to the
left of the left endpoint of y. A partial order P is called an interval order when
there is an I such that P = PI . The interval dimension of a poset P = (P,<), is
the minimum number of interval orders whose intersection is P, i.e., for elements
x, y ∈ P , x < y if and only if x is before y in all of the interval orders. Finally,
the incomparability graph GP of a poset P = (P,<) is the graph with V (G) = P
and uv is an edge if and only if u and v are not comparable in P. Notice that,
when P has height one, the vertex set of GP is co-bipartite, i.e., it naturally
partitions into two cliques, one Kmax on the maxima of P and one Kmin on the
minima of P. We now prove the theorem of this section.

Theorem 10. Testing G ∈ H-GRAPH, is NP-complete if D is a minor of H.

Proof. Here, we prove the theorem for H = D. In Appendix C, we show how to
extend this proof for every H containing D as a minor.

First, we summarize the idea behind our proof. As stated above we will
encode an instance P of H1ID3 as an instance of membership testing in
D-GRAPH. For a given height one poset P, we construct its incomparability
graph GP , slightly augment GP to a graph G and show that G is in D-GRAPH
if and only if the interval dimension of P is at most three. In particular, the three
paths connecting the two degree 3 vertices in D will encode the three interval
orders whose intersection is P. An example is provided in Fig. 3.

To obtain our reduction we first consider H-representations of the graph T3

where T3 is obtained by subdividing every edge of the star S3 exactly once. This
tree is neither an interval graph nor a circular arc graph (this is well-known and
easily checked). Thus: every H-representation of T3 uses a node of degree 3 – we
mark this property as (∗) for later reference.

Consider a height one poset P = (P,<) and the graph GP . Let Tmax and Tmin

each be a copy of T3. The graph G is formed by taking the disjoint union of Tmax,
Tmin, and GP and then making every vertex of Tmax adjacent to every vertex of
Kmax, and every vertex of Tmin adjacent to every vertex of Kmin. We claim that
P has interval dimension at most three if and only if G is in D-GRAPH.

For the reverse direction, consider a D′-representation {D′
v : v ∈ V (G),D′

v ⊆
V (D′)} of G where D′ is a subdivision of D. From the observation (∗) (above), in
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a1 a2 a3

b1 b2 b3

(a) (b) a2 a3 b1 a1 b2 b3

a1 a3 b2 a2 b1 b3

a1 a2 b3 a3 b1 b2
Ta1 Tb1

Fig. 3. (a) A Hasse diagram of a partially ordered set of interval dimen-
sion 3, but not 2. A realizer of it is given by the following three inter-
val orders: la1 la2 la3ra2ra3 lb1ra1 lb2 lb3rb1rb2rb3 , la1 la2 la3ra1ra3 lb2ra2 lb1 lb3rb1rb2rb3 , and
la1 la2 la3ra1ra2 lb3ra3 lb1 lb2rb1rb2rb3 (where lx is the left endpoint of x and rx is the right
endpoint of x). (b) Illustrating part of a D-representation. The nodes are labeled by
the extreme points of the intervals in the realizer. Namely, for each minima ai, three
points are labeled (one for each of its intervals). Each such point corresponds to the
rightmost point of the corresponding interval, i.e., the maximum points of ai’s intervals.
For example, Ta1 is then formed by taking the three shortest paths from the leftmost
point to each point labeled a1. Labels are placed symmetrically for the maxima.

D′, one degree 3 node is contained in the representation of Tmin and the other is
contained in the representation of Tmax. We refer to the former degree 3 node of
D′ as umin and the latter as umax. Since each maxima y of P is not adjacent to any
vertex of Tmin, D′

y cannot contain umin, i.e., D′
y is a subtree of the tree D′\{umin}.

In particular, D′
y defines one (possibly empty) subpath/interval (originating in

umax) in each of the three paths connecting umax and umin. Similarly, for each
minima x, D′

x defines one (possibly empty) subpath/interval (originating in umin)
in each of the three paths connecting umax and umin. It is easy to see that these
intervals provide the needed three interval orders whose intersection is P.

For the forward direction, we consider the three sets of intervals I1, I2, I3

where each interval in Ii is labelled according to its corresponding element of
P, and P = PI1 ∩ PI2 ∩ PI3 , i.e., certifying that P has interval dimension at
most three. Without loss of generality we may assume that the intervals of the
minima all have their left endpoints at 0 and their right endpoints as integers
in the range [0, n − 1]. Similarly, the intervals of the maxima all have their right
endpoints at n and their left endpoints as integers in the range [1, n]. With this
in mind, for each minimal element x we use xi to denote the right endpoint of its
interval in Ii (i = 1, 2, 3) and for each maximal element y, we use yi to denote
the left endpoint of its interval in Ii.

We subdivide the diamond D so that each path between the degree 3 vertices
contains n + 5 nodes and call this new graph D′. We then label the nodes of D′

as follows. The two degree 3 nodes are labelled umin and umax, and we label the
three (umin, umax)-paths as:

– umin, αmin, α
′
min, α0, α1, . . . , αn, α′

max, αmax, umax;
– umin, βmin, β

′
min, β0, β1, . . . , βn, β′

max, βmax, umax; and
– umin, γ

′
min, γmin, γ0, γ1, . . . , γn, γ′

max, γmax, umax.
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It remains to describe the D′-representation of G. Each minimal element
x is represented by the minimal subtree of D′ which includes the nodes
umin, αx1 , βx2 , γx3 . Similarly, each maximal element y is represented by the min-
imal subtree of D′ which includes the nodes umax, αy1 , βy2 , γy3 . We can now see
that comparable elements of P are represented by disjoint subgraphs of D′ and
the incomparable elements map to intersecting subgraphs.

For the vertices of Tmin (the vertices of Tmax are represented analogously):

– the tree induced by umin,α′
min, β′

min, γ′
min represents the degree 3 vertex;

– the three degree 2 vertices a, b, and c are respectively represented by the
three edges α′

minαmin, β′
minβmin, and γ′

minγmin; and
– for each of a, b, c the corresponding degree 1 neighbor is represented by

α′
min, β

′
min, γ

′
min respectively.

Clearly, in this construction, the graphs Tmin and Tmax are correctly rep-
resented. Moreover, the subtree of each of the minima includes all of
umin, αmin, α

′
min, βmin, β

′
min, γmin, γ

′
min, but none of the corresponding max ele-

ments. Thus, each minima is universal to Tmin and non-adjacent to the vertices
of Tmax as needed. Symmetrically, each maxima is universal to Tmax and non-
adjacent to the vertices of Tmin. Thus, G is in D-GRAPH. See Fig. 3 for an
illustration. 	


4 Dominating Set

In this section, we discuss the minimum dominating set problem on H-GRAPH.
This section is divided into two parts. In the first part we solve the minimum
dominating set problem on Sd-GRAPH in FPT-time parameterized by d. In the
second part we consider H-GRAPH (for general H), and solve the problem in XP-
time parameterized by ‖H‖ = |V (H)| + |E(H)|. Based on the latter result, we
also obtain XP-time algorithms for maximum independent set and independent
dominating set on H-GRAPH (these are also parameterized by ‖H‖). A useful
tool for these results is Lemma 11. This easy consequence of a standard minimum
dominating set algorithm [9] for interval graphs is proven in Appendix D.

Lemma 11. Let G = (V,E) be an interval graph and let C1, . . . , Ck be the left-
to-right ordering of the maximal cliques in an interval representation of G. For
every x ∈ C1, a dominating set of G which is minimum subject to including x
can be found in linear time.

Theorem 12. For an Sd-graph G, a minimum dominating set of G can be found
in O(d · n · (n + m)) + 2d(d + 2d)O(1) time.

Proof. Let G be an Sd-graph and let S′ be a subdivision of the star Sd such
that G has an S-representation. Let b be the central branching point of S and
let l1, . . . , ld be the leaves of S. Recall that, by Lemma 3, we may assume b ∈⋂{S′

v : v ∈ C}, for some maximal clique C of G. Let Ci,1, . . . , Ci,ki
be the

maximal cliques of G as they appear on the branch P(b,li], for i = 1, . . . , d.
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For each Gi = G[Ci,1, . . . , Ci,ki
], we use the standard interval graph greedy

algorithm [9] to find the size di of a minimum dominating set in Gi. Let Bi be
the set of vertices of C that can appear in a minimum dominating set of Gi.
By Lemma 11, a minimum dominating set Dx

i containing a vertex x ∈ C can be
found in linear time. We have x ∈ Bi if and only if |Dx

i | = di. Therefore, every
B1, . . . , Bd can be found in O(d · n · (n + m)) time. Let B = {B1, . . . , Bd}.

If Bi is empty, then no minimum dominating set of Gi contains a vertex from
C. So for Gi, we pick an arbitrary minimum dominating set Di. Note that Di

dominates C ∩ Ci,1 regardless of the choice of Di. Thus, if
⋃d

i=1 Di dominates
C, then it is a minimum dominating set of G. Otherwise, {x} ∪ ⋃d

i=1 Di is a
minimum dominating set of G where x is an arbitrary vertex of C.

Let us assume now that the Bi’s are nonempty (every branch with an empty
Bi can be simply ignored). Let H be a subset of C such that H ∩ Bi is not
empty, for every i = 1, . . . , d, and |H| is smallest possible. For every branch
P(b,bi], we pick a minimum dominating set Di of Gi containing an arbitrary
vertex xi ∈ H ∩ Bi. Now, the union D1 ∪ · · · ∪ Dd is a minimum dominating set
of G. It remains to show how to find the set H in time depending only on d.

Finding the set H can be seen as a set cover problem where B is the ground
set. Namely, we have one set for each vertex x in C where the set of x is simply
its subset of B, and our goal is to cover B. Note, if two vertices cover the same
subset of B it suffices to keep just one of them for our set cover instance, i.e.,
giving us at most 2d sets over a ground set of size d. Such a set cover instance
can be solved in 2d(d + 2d)O(1) time (see Theorem 6.1 [6]).

Thus, we spend O(d · n · (n + m)) + 2d(d + 2d)O(1) time in total. 	

H-Graphs. We now consider the H-GRAPH for general H. Here we will solve
the problem in XP-time parameterized by ‖H‖. Recall that, when H is a cycle,
H-GRAPH = CARC, i.e., minimum dominating sets can be found efficiently [5].
Thus, we assume H is not a cycle.

To introduce our main idea, we need some notation. Consider G ∈ H-GRAPH
and let H ′ be a subdivision of H such that G has an H ′-representation {H ′

v : v ∈
V (G)}. We distinguish two important types of nodes in H ′; namely, x ∈ V (H ′)
is called high degree when it has at least three neighbors and x is low degree
otherwise. As usual, the high degree nodes play a key role. In particular, if we
know the sub-solution which dominates the high degree nodes of H ′, then the
remaining part of the solution must be strictly contained in the low degree part
of H ′. Moreover, since H is not a cycle, the subgraph H ′

≤2 of H ′ induced by its
low degree nodes is a collection of paths. In particular, the vertices v of G where
H ′

v only contains low degree nodes, induce an interval graph G≤2 and, as such,
we can efficiently find minimum dominating sets on them. Thus, the general idea
here is to first enumerate the possible sub-solutions on the high degree nodes,
then efficiently (and optimally) extend each sub-solution to a complete solution.
In particular, one can show that in any minimum dominating set these sub-
solutions consist of at most 2 · |E(H)| vertices, and from this observation it is
not difficult to produce the claimed nO(‖H‖)-time algorithm. Thus, we have the
following theorem whose full proof is given in Appendix D.
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Theorem 13. For an H-graph G the minimum dominating set problem can be
solved in nO(‖H‖) time.

We remark that the above approach can also be applied to solve the maximum
independent set and independent dominating set problems in nO(‖H‖) time. This
approach is successful since these problem can be solved efficiently on interval
graphs. Improving these XP-time algorithms to FPT-time remains open.

Corollary 14. For an H-graph G, the maximum independent set problem and
independent dominating set problem can both be solved in nO(‖H‖) time.
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Abstract. The dichotomy conjecture for the parameterized embedding
problem states that the problem of deciding whether a given graph G
from some class K of “pattern graphs” can be embedded into a given
graph H (that is, is isomorphic to a subgraph of H) is fixed-parameter
tractable if K is a class of graphs of bounded tree width and W[1]-
complete otherwise.

Towards this conjecture, we prove that the embedding problem is
W[1]-complete if K is the class of all grids or the class of all walls.

1 Introduction

The graph embedding a.k.a subgraph isomorphism problem is a fundamental
algorithmic problem, which, as a fairly general pattern matching problem, has
numerous applications. It has received considerable attention since the early days
of complexity theory (see, e.g.,[10,12,18,22]). Clearly, the embedding problem
is NP-complete, because the clique problem and the Hamiltonian path or cycle
problem are special cases. The embedding problem and special cases like the
clique problem or the longest path problem have also played an important role
in the development of fixed-parameter algorithms and parameterized complexity
theory (see [15,17]). The problem is complete for the class W[1] when parame-
terized by the size of the pattern graph; in fact, the special case of the clique
problem may be regarded as the paradigmatic W[1]-complete problem [8,9]. On
the other hand, interesting special cases such as the longest path and longest
cycle problems are fixed-parameter tractable [1,19]. This immediately raises the
question for which pattern graphs the problem is fixed-parameter tractable.

Let us make this precise. An embedding from a graph G to a graph H is
an injective mapping f : V (G) → V (H) such that for all edges vw ∈ E(G) we
have f(v)f(w) ∈ E(H). For each class K of graphs, we consider the following
parameterized problem.

Full version available at https://arxiv.org/abs/1703.06423.
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p-Emb(K)
Instance: Graph G (the pattern graph) and H (the target

graph), where G ∈ K.
Parameter: |G|.

Problem: Decide whether there is an embedding from G
to H.

Plehn and Voigt [20] proved that p-Emb(K) is fixed-parameter tractable if K
is a class of graphs of bounded tree width. No tractable classes K of unbounded
treewidth are known. The conjecture, which may have been stated in [13] first,
is that there are no such classes.

Dichotomy Conjecture. p-Emb(K) is fixed-parameter tractable if and only if
K is a class of bounded treewidth and W[1]-complete otherwise.1

Progress towards this conjecture has been slow. Even the innocent-looking
case where K is the class of complete bipartite graphs had been open for a
long time; only recently the third author of this paper proved that it is W[1]-
complete [16].

Before we present our contribution, let us discuss why we expect a dichotomy
in the first place. The main reason is that similar dichotomies hold for closely
related problems. The first author, jointly with Thurley and Weyer [4], proved
the version of the conjecture for the strong embedding, or induced subgraph iso-
morphism problem. Building on earlier work by Dalmau et al. [6] as well as joint
work with Schwentick and Segoufin [14], the second author [13] proved that the
parameterized homomorphism problem p-Hom(K) for pattern graphs from a
class K is fixed-parameter tractable if and only if the cores of the graphs in K
have bounded tree width and W[1]-complete otherwise.

Let us remark that there is no P vs. NP dichotomy for the classical (unpa-
rameterized) embedding problem; this can easily be proved along the lines of
corresponding results for the homomorphism and strong embedding problems
using techniques from [2,4,13].

Our Contribution

We make further progress towards the Dichotomy Conjecture by establishing
hardness for two more natural graph classes of unbounded tree width.

Theorem 1.1. p-Emb(K) is W[1]-hard for the classes K of all grids and all
walls.

See Sect. 2 and in particular Fig. 1 for the definition of grids and walls. Grids
and walls are interesting in this context, because they are often viewed as the

1 There is a minor issue here regarding the computability of the class K: if we want
to include classes K that are not recursively enumerable here then we need the
nonuniform notion of fixed-parameter tractability [11].
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“generic” graphs of unbounded tree width: by Robertson and Seymour’s [21]
Excluded Grid Theorem, a class K of graphs has unbounded tree width if and
only if all grids (and also all walls) appear as minors of the graphs in K.

Just like the hardness result of the embedding problem for the class of all
complete bipartite graphs [16], our theorem looks simple and straightforward,
but it is not. In fact, we started to work on this right after the hardness for
complete bipartite graphs was proved, hoping that we could adapt the techniques
to grids. This turned out to be a red herring. The proof we eventually found is
closer to the proof of the dichotomy result for the homomorphism problem [13]
(also see [3]). The main part of our proof is fairly generic and has nothing
to do with grids or walls. We prove a general hardness result (Theorem3.1)
for p-Emb(K) under the technical condition that the graphs in K have “rigid
skeletons” and unbounded tree width even after the removal of these skeletons.
We think that this theorem may have applications beyond grids and walls.

Organization of the Paper

We introduce necessary notions and notations in Sect. 2. For some technical
reason, we need a colored version p-Col-Emb of p-Emb. In Sect. 2.1 the problem
p-Col-Emb is shown to be W[1]-hard on any class of graphs of unbounded
treewidth. Then in Sect. 3, we set up the general framework. In particular, we
explain the notion of skeletons, and prove the general hardness theorem. The
classes of grids and walls are shown to satisfy the assumptions of this theorem.
We leave the proofs in the full version of the paper. In the final Sect. 4 we
conclude with some open problems.

2 Preliminaries

A graph G consists of a finite set of vertices V (G) and a set of edges E(G) ⊆ (
V
2

)
.

Every edge is denoted interchangeably by {u, v} or uv. We assume familiarity
with the basic notions and terminology from graph theory, e.g., degree, path,
cycle etc., which can be found in e.g., [7]. By distG(u, v) we denote the distance
between vertices u and v in a graph G, i.e., the length of a shortest path between
u and v.

Let s, t ∈ N. We use Gs,t and Ws,t to denote the generic (s × t)-grid and
(s × t)-wall, respectively. Figure 1 gives two examples.

Let G and H be two graphs. A homomorphism from G to H is a mapping
h : V (G) → V (H) such that for every edge uv ∈ E(G) we have h(u)h(v) ∈
E(H). If in addition h is injective, then h is an embedding from G to H. A
homomorphism from G to itself is also called an endomorphism, and similarly
an embedding from G to itself is an automorphism.

A subgraph G′ of G satisfies V (G′) ⊆ V (G) and E(G′) ⊆ E(G). We say that
G′ is a core of G if there is a homomorphism from G to G′, and if there is no
homomorphism from G to any proper subgraph of G′. It is well known that all
cores of G are isomorphic, hence we can speak of the core of G, written core(G).
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(1,1) (7,1)

(1,4) (7,4)

(a)

v1,1 v6,1

v1,2
u1,2

u6,2

v1,4 u6,4

u1,5 u6,5

(b)

Fig. 1. (a) A (7 × 4)-grid. (b) A (5 × 4)-wall.

Sometimes, we also consider colored graphs in which a graph G is equipped
with a coloring χ : V (G) → C which maps every vertex to a color in the color
set C. We leave it to the reader to generalize the notions of homomorphism,
embedding, and core from graphs to colored graphs. One easy but important
fact is that if in the colored graph (G,χ) every vertex has a distinct color then
core(G) = G.

The notions of tree decomposition and treewidth are by now standard. In
particular, tw(G) denotes the treewidth of the graph G. For a (s × t)-grid Gs,t,
we have tw(Gs,t) = min{s, t}, and for a (s × t)-wall Ws,t, we have tw(Ws,t) =
min{s, t}+1. The treewidth of a colored graph (G,χ) is the same as the treewidth
of the underlying uncolored graph G, i.e., tw(G,χ) = tw(G).

In a parameterized problem (Q,κ) every problem instance x ∈ {0, 1}∗ has a
parameter κ(x) ∈ N which is computable in polynomial time from x. (Q,κ) is
fixed-parameter tractable (FPT) if we can decide for every instance x ∈ {0, 1}∗

whether x ∈ Q in time f(κ(x)) · |x|O(1), where f : N → N is a computable
function. Thus, FPT plays the role of P in parameterized complexity. On the
other hand, the so-called class W[1] is generally considered as a parameterized
analog of NP. The precise definition of W[1] is not used in our proofs, so the
reader is referred to the standard textbooks, e.g., [5,8,11]. Let (Q1, κ1) and
(Q2, κ2) be two parameterized problems. An fpt-reduction from (Q1, κ1) and
(Q2, κ2) is a mapping R : {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}∗

– x ∈ Q1 ⇐⇒ R(x) ∈ Q2,
– R(x) can be computed in time f(κ1(x)) · |x|O(1), where f : N → N is a

computable function,
– κ2(R(x)) ≤ g(κ1(x)), where g : N → N is computable.

Now we state a version of the main result of [13] which is most appropriate
for our purpose.

Theorem 2.1. Let K be a recursively enumerable2 class of colored graphs such
that for every k ∈ N there is a colored graph (G,χ) ∈ K whose core has treewidth
at least k. Then p-Hom(K) is hard for W[1] (under fpt-reductions).

2 If K is not recursively enumerable, there is still a “non-uniform” hardness result.
See [13] for a discussion.
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2.1 From Homomorphism to Colored Embedding

Let K be a class of graphs. We consider the following colored version of the
embedding problem for K.

p-Col-Emb(K)
Instance: Two graphs G and H with G ∈ K, and a func-

tion χ : V (H) → V (G).
Parameter: |G|.

Problem: Decide wether there is an embedding h from
G to H such that χ(h(v)) = v for every v ∈
V (G).

Thus, in the p-Col-Emb(K) problem we partition the vertices of H and associate
one part with each vertex of G. Then we ask for an embedding where each vertex
of G is mapped to its part. The following lemma can be easily deduced from
Theorem 2.1.

Lemma 2.1. Let K be a recursively enumerable class of graphs with unbounded
treewidth. Then p-Col-Emb(K) is hard for W[1].

3 Frames and Skeletons

In this section, we prove a general hardness result for p-Emb(K) given that the
graphs in K have “rigid skeletons” and unbounded tree width even after the
removal of these skeletons. Roughly speaking, for every G ∈ K, we define a
graph G∗ and thus a graph class K∗ = {G∗ : G ∈ K} such that: (1) There is an
fpt-reduction from p-Col-Emb(K∗) to p-Emb(K); (2) K∗ has unbounded tree
width. Note that the W[1]-hardness of p-Emb(K) then follows from Lemma 2.1.

We will start with the definitions of a graph operator / and the notion of
skeleton. The graph G∗ is then defined as follows. For S = (F,D) a skeleton
of G, let G∗ = (G \ F )/D. To achieve (1), for every graph H and a coloring
χ : V (H) → V (G∗), we define a graph P (G,S,H, χ) such that there is an
embedding from G∗ to H with respect to χ iff there is an embedding from G to
P (G,S,H, χ).

Let G be a graph and D ⊆ V (G) such that the degree of every v ∈ D is at
most 2, i.e., degG(v) ≤ 2. For every u, v ∈ V (G) \ D we say they are close (with
respect to D) if there is a path in G between u and v whose internal vertices are
all in D. We define G/D as the graph given by

V (G/D) := V (G) \ D,

E(G/D) :=
{
uv

∣
∣ u, v ∈ V (G) \ D,u �= v, and they are close

}
.

Let u ∈ D. We say that u is associated with a vertex v ∈ V (G/D) if u is on
a path in G between v and a vertex w ∈ D with degG(w) = 1 whose internal
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vertices are all in D. Similarly, u is associated with some edge e = vw ∈ E(G/D)
if u is on a path in G between v and w whose internal vertices are all in D. It
should be clear that u can only be associated with a unique vertex or a unique
edge in G/D, and not both. Furthermore, some w ∈ D might not be associated
with any vertex or edge; this happens precisely to all w on a path or cycle with
all vertices in D.

To simplify presentation, from now on we fix a graph G.

Definition 3.1. A set F ⊆ V (G) is a frame for G if every endomorphism h of
G with F ⊆ h(V (G)) is surjective.

Remark 3.1. Let F ⊆ F ′ ⊆ V (G) and F be a frame for G. Then F ′ is also a
frame for G.

Definition 3.2. Let F,D ⊆ V (G) such that

(S1) F is a frame for G,
(S2) F ∩ D = ∅,
(S3) for every v ∈ D

degG\F (v) =
∣
∣{u ∈ V

∣
∣ u /∈ F and {u, v} ∈ E

}∣
∣ ≤ 2.

Then we call S = (F,D) a skeleton of G.

Example 3.1. Consider the grid G7,8. It has a skeleton (F,D) with

F =
{
(i, j)

∣
∣ i ∈ {1, 2, 6, 7} or j ∈ {1, 7, 8}} ∪ {

(4, 2j)
∣
∣ j ∈ [3]

}
and

D =
{
(2i + 1, 2j)

∣
∣ i ∈ [2] and j ∈ [3]

} ∪ {
(2i, 2j + 1)

∣
∣ i ∈ {2} and j ∈ [2]

}
,

as shown in Fig. 2.

Definition 3.3. Let S = (F,D) be a skeleton of G. For every graph H and
every mapping

χ : V (H) → V (G) \ (F ∪ D),

we construct a product graph P = P (G,S,H, χ) as follows.

(P1) The vertex set is V (P ) :=
⋃

i∈[4] Vi with

V1 =
{
(u, a)

∣
∣ u ∈ V (G) \ (F ∪ D)and a ∈ V (H) with χ(a) = u

}
,

V2 =
{

(u, u)
∣
∣
∣ u ∈ F or

(
u ∈ D without being associated

with any vertex or edge in (G \ F )/D
)}

,

V3 =
{
(u,vu,a)

∣
∣ u ∈ D, a ∈ V (H), and χ(a) = v

with u being associated with v in (G \ F )/D
}
,

V4 =
{
(u,vu,e)

∣
∣ u ∈ D, e = {a, b} ∈ E(H), χ(a) = v, and χ(b) = w

with u being associated with {v, w} in (G \ F )/D
}
.

Note that in the definition of V3 and V4 all vu,a and vu,e are fresh elements.
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a b

c d

(a)

a b

c d

(b)

Fig. 2. (a) A skeleton for G7,8, where F is the set of black vertices and D the set of
light gray vertices. (b) The graph (G \ F )/D.

a1 b1

c1 d1

a2 b2

c2 d2

(a)

a1

a2

b1

b1

c1

c2

d1

d2

(b)

Fig. 3. (a) A graph H and a coloring χ such that every vertex ai is colored with
χ(ai) := a, every bi with χ(bi) := b, and so on. (b) The product P = P (G7,8,S, H, χ).



The Hardness of Embedding Grids and Walls 187

(P2) The edge set is E(P ) :=
⋃

1≤i≤j≤4 Eij with

E11 =
{
(u, a)(v, b)

∣
∣ (u, a), (v, b) ∈ V1, uv ∈ E(G), and ab ∈ E(H)

}
,

E12 =
{
(u, a), (v, v)

∣
∣ (u, a) ∈ V1, (v, v) ∈ V2, and uv ∈ E(G)

}
,

E13 =
{
(u, a)(v,vv,a)

∣
∣ (u, a) ∈ V1, (v,vv,a) ∈ V3, and uv ∈ E(G)

}
,

E14 =
{
(u, a)(v,vv,e)

∣
∣ (u, a) ∈ V1, (v,vv,e) ∈ V4, uv ∈ E(G), and a ∈ e

}
,

E22 =
{
(u, u)(v, v)

∣
∣ (u, u), (v, v) ∈ V2and uv ∈ E(G)

}
,

E23 =
{
(u, u)(v,vv,a)

∣
∣ (u, u) ∈ V2, (v,vv,a) ∈ V3, and uv ∈ E(G)

}
,

E24 =
{
(u, u)(v,vv,e)

∣
∣ (u, u) ∈ V2, (v,vv,e) ∈ V4, and uv ∈ E(G)

}
,

E33 =
{
(u,vu,a)(v,vv,a)

∣
∣ (u,vu,a), (v,vv,a) ∈ V3and uv ∈ E(G)

}
,

E34 = ∅,

E44 =
{
(u,vu,e)(v,vv,e)

∣
∣ (u,vu,e), (v,vv,e) ∈ V4 and uv ∈ E(G)

}
.

Example 3.2. Let H be the graph in Fig. 3(a). Moreover, we color every ai with
χ(ai) := a, every bi with χ(bi) := b, and so on. We consider the grid G7,8 and
the skeleton S = (F,D) defined in Example 3.1. Then Fig. 3(b) is the product
P = P (G7,8,S,H, χ). In particular, V1 is the set of white vertices, V2 is the set
of black vertices, V3 is the set of gray vertices, and V4 is the set of remaining
light gray vertices. To make the picture less cluttered, we label the vertex (a, ai)
by ai etc. in P .

In Definition 3.3 the reader might notice that in each pair (u, a), (u, u),
(u,vu,a), or (u,vu,e) the first coordinate is uniquely determined by the second
coordinate. Thus:

Lemma 3.1. Let h : V (G) → V (P ) be injective, e.g., h is an embedding from
G to P . Then the mapping π2 ◦ h is injective, too. Here π2(u, z) = z for every
(u, z) ∈ V (P ) is the projection on the second coordinate.

Lemma 3.2. π1 is a homomorphism from P to G, where π1(u, z) = u for every
(u, z) ∈ V (P ) is the projection on the first coordinate.

Proof. Observe that by (P2) for every edge (u,w)(v, z) ∈ E(P ) we have uv ∈
E(G). �
Lemma 3.3. Let h be a homomorphism from G to P . Then the mapping π1 ◦h
is an endomorphism of G. Moreover, if

{
(u, u)

∣
∣ u ∈ F

} ⊆ h(V (G)),

then π1 ◦ h is an automorphism of G.

Proof. By Lemma 3.2 π1 ◦ h is an endomorphism of G. If
{
(u, u)

∣
∣ u ∈ F

} ⊆
h(V (G)), then F ⊆ π1 ◦h(V (G)). Since F is a frame, π1 ◦h has to be surjective.

�
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Lemma 3.4. Let h be a homomorphism from G to P such that π1 ◦ h is an
automorphism of G. Then there is a homomorphism h̄ from

(
G \ F )/D to H

such that χ(h̄(v)) = v for every v ∈ V (G) \ (F ∪ D). Note this implies that h̄ is
an embedding.

Proof. Let ρ := π1 ◦ h. By assumption ρ is an automorphism of G, hence so is
ρ−1. Thus h ◦ ρ−1 is a homomorphism from G to P with

π1 ◦ (h ◦ ρ−1) = (π1 ◦ h) ◦ ρ−1 = (π1 ◦ h) ◦ (π1 ◦ h)−1 = id.

Hence for every u ∈ V (G) there is a w such that

h ◦ ρ−1(u) = (u,w) (1)

Let h̄ := π2 ◦h◦ρ−1. We claim that h̄ restricted to V (G)\ (F ∪D) is the desired
homomorphism from (G \ F )/D to H.

Let u ∈ V (G) \ (F ∪ D). By the definition of V (P ) in (P1) and (1) we have
h̄(u) ∈ V1, and thus by the definition of V1, h̄(u) ∈ V (H) with χ(h̄(u)) = u. Next,
let uv ∈ E

(
(G \ F )/D

)
. We have to show h̄(u)h̄(v) ∈ E(H). By the definition

of (G \ F )/D there is a path u = v1 → v2 → · · · → vk = v in G \ F with k ≥ 2
and all vi ∈ D for 1 < i < k. If k = 2, then uv ∈ E(G). Then

{(
u, h̄(u)

)
,
(
v, h̄(v)

)}
=

{
h ◦ ρ−1(u), h ◦ ρ−1(v)

} ∈ E(P ),

because h ◦ ρ−1 is a homomorphism. Then
{
h̄(u), h̄(v)

} ∈ E(H) follows directly
from the definition of E11 in (P2). So assume k > 2. Again by (1) and (P1) for
some pairwise distinct a, b ∈ V (H) and w2, . . . , wk−1

h ◦ ρ−1(u) = (u, a),

h ◦ ρ−1(v2) = (v2, w2),
...

h ◦ ρ−1(vk−1) = (vk−1, wk−1),

h ◦ ρ−1(v) = (v, b).

As every vi is associated with {u, v}, there are e2, . . . , ek−1 ∈ E(H) with wi =
vvi,ei by the definition of V4 in (P1). Since h ◦ ρ−1 is a homomorphism from G
to P ,

{
(u, a), (v2,vv2,e2)

} ∈ E(P ),
{
(v2,vv2,e2), (v3,vv3,e3)

} ∈ E(P ),
...

{
(vk−2,vvk−2,ek−2), (vk−1,vvk−1,ek−1)

} ∈ E(P ),
{
(vk−1,vvk−1,ek−1), (v, b)

} ∈ E(P ).

Then by the definition of E44 in (P2), we conclude e2 = · · · = ek−1. Finally, the
definition of E14 implies that e2 = {a, b}, i.e.,

{
h̄(u), h̄(v)

} ∈ E(H). �
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Lemma 3.5. If there is an embedding h̄ from
(
G\F )/D to H with χ(h̄(v)) = v

for every v ∈ V (G) \ (F ∪ D), then there is an embedding from G to P .

Proof. We define a mapping h : V (G) → V (P ) and show that it is an embedding.

– For u ∈ V (G) \ (F ∪ D) let h(u) :=
(
u, h̄(u)

)
, which is well defined by

χ(h̄(u)) = u.
– For u ∈ F let h(u) := (u, u).
– For u ∈ D without being associated with any vertex or edge in (G \F )/D let

h(u) := (u, u).
– Let u ∈ D be associated with a (unique) v ∈ V

(
(G \ F )/D

)
. We set h(u) :=(

u,vu,h̄(v)

)
.

– Let u ∈ D be associated with a (unique) vw ∈ E
(
(G\F )/D

)
. We set h(u) :=(

u,vu,h̄(v)h̄(w)

)
.

The injectivity of h is trivial. To see that it is a homomorphism, let uv ∈ E(G)
and we need to establish h(u)h(v) ∈ E(P ).

– Assume u, v ∈ V (G) \ (F ∪ D). Then uv ∈ E(G) implies uv ∈ E
(
(G \ F )/D

)
,

and as h̄ is a homomorphism from
(
G\F

)
/D to H, it follows that h̄(u) ¯h(v) ∈

E(H). So by the definition of E11 in (P1) we conclude
(
u, h̄(u)

)(
v, h̄(v)

) ∈
E(P ).

– Let u ∈ V (G) \ (F ∪D) and v ∈ D. Furthermore, assume that v is associated
with an edge wz ∈ E

(
(G \ F )/D

)
. Hence, h(u) =

(
u, h̄(u)

)
and h(v) =(

v,vv,h̄(w) ¯h(z)

)
. Recall uv ∈ E(G), therefore u = w or u = z. Then, h̄(u) ∈{

h̄(w), h̄(z)
}
, and the definition of E14 in (P2) implies that h(u)h(v) ∈ E(P ).

– Assume both u, v ∈ D and they are associated with some edges e1, e2 ∈
E

(
(G \ F )/D

)
. Then e1 = e2 by uv ∈ E(G), and h(u)h(v) ∈ E(P ) follows

from the definition of E44 in (P2).
– All the remaining cases are similar and easy. �
Definition 3.4. A skeleton S = (F,D) is rigid if for every graph H, every χ :
V (H) → V (G) \ (F ∪D), and every embedding h from G to P = P (G,S,H, χ),
it holds that

{
(u, u)

∣
∣ u ∈ F

} ⊆ h(V (G)).

Proposition 3.1. There is an algorithm which lists all rigid skeletons of an
input graph G.

Proof. Let G be a graph and F,D ⊆ V (G). Clearly it is decidable whether S =
(F,D) is a skeleton by Definition 3.2. Moreover, we observe that S is not a rigid
skeleton if and only if there is graph H, a mapping χ : V (H) → V (G) \ (F ∪D),
and an embedding h from G to P = P (G,S,H, χ) such that

{
(u, u)

∣
∣ u ∈ F

} �⊆ h(V (G)). (2)

We define a set

X =
{
a ∈ V (H)

∣
∣ (u, a) ∈ h(G) for some u ∈ V (G) \ (F ∪ D)

}

∪ {
a ∈ V (H)

∣
∣ (u,vu,a) ∈ h(G) for some u ∈ D

}

∪ {
a, b ∈ V (H)

∣
∣ (u,vu,ab) ∈ h(G) for some u ∈ D

}
.
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It is routine to verify that h is an embedding from G to P ′ =
P

(
G,S,H[X], χ�X

)
such that (2) also holds. Hence, the induced subgraph

H[X] with the coloring χ�X also witnesses that S is not rigid. Observe that
|X| ≤ 2|V (G)|.

Therefore, to list all the rigid skeletons of G, we enumerate all pairs S =
(F,D),

– check whether S is a skeleton,
– and if so, then check whether it is rigid by going through all graphs on the

vertex set [n] with n ≤ 2|V (G)|. �
Definition 3.5. A class K of graphs is rich if for every k ∈ N there is a graph
G ∈ K such that G has a rigid skeleton (F,D) with

tw
(
(G \ F )/D

) ≥ k. (3)

Theorem 3.1. Let K be a recursively enumerable and rich class of graphs. Then
p-Emb(K) is hard for W[1].

Proof. We define a sequence of graphs G1, G2, . . . and sets Fi,Di ⊆ V (Gi) as
follows. For every i ∈ N we enumerate graphs G in the class K one by one. For
every G we list all the rigid skeletons (F,D) of G by Proposition 3.1. Then we
check whether there is such a rigid skeleton (F,D) satisfying (3). If so, we let
Gi := G, (Fi,Di) := (F,D), and define G∗

i := (Gi \ Fi)/Di. By our assumption,
Gi will be found eventually, and G∗

i is well defined and computable from Gi.
It follows that the class K∗ :=

{
G∗

i

∣
∣ i ∈ N

}
is recursively enumerable and has

unbounded treewidth.
By Lemma 2.1, we conclude that p-Col-Emb(K∗) is W[1]-hard. Hence it

suffices to give an fpt-reduction from p-Col-Emb(K∗) to p-Emb(K). Let G∗
i ∈

K∗. Thus G∗
i = (Gi \ Fi)/Di for the rigid skeleton Si = (Fi,Di). Then for every

graph H and χ : V (H) �→ V (G∗
i ) we claim that

there is an embedding h from G∗
i to H with χ(h(v)) = v for every v ∈ V (G∗

i )

⇐⇒ there is an embedding from Gi to P
(
Gi,Si,H, χ

)
.

The direction from left to right is by Lemma3.5. The other direction follows
from the rigidity of Si, Lemmas 3.3 and 3.4. �

In the full version of this paper, we prove the richness of grids and walls.
More precisely:

Proposition 3.2. Let K be a class of graphs.

(i) If for every k ∈ N there exists a grid Gs,t ∈ K with min{s, t} ≥ k. Then K
is rich.

(ii) If for every k ∈ N there exists a wall Ws,t ∈ K with min{s, t} ≥ k. Then K
is rich.

Now the following more general version of Theorem 1.1 is an immediate con-
sequence of Theorem 3.1 and Proposition 3.2.
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Theorem 3.2. Let K be a recursively enumerable class of graphs. Then
p-Emb(K) is W[1]-hard if one of the following conditions is satisfied.

1. For every k ∈ N there exists a grid Gk1,k2 ∈ K with min{k1, k2} ≥ k.
2. For every k ∈ N there exists a wall Wk1,k2 ∈ K with min{k1, k2} ≥ k.

4 Conclusions

We have shown that the parameterized embedding problem on the classes of all
grids and all walls is hard for W[1]. Our proof exploits some general structures in
those graphs, i.e., frames and skeletons, thus is more generic than other known
W[1]-hard cases. We expect that our machinery can be used to solve some other
cases. However, it could be seen that the class of complete bipartite graphs is not
rich. Hence the result of [16] is not a special case of our Theorem 3.1. Resolving
the Dichotomy Conjecture for the embedding problem might require a unified
understanding of the cases of biclique and grids.

A remarkable phenomenon of the homomorphism problem is that the polyno-
mial time decidability of Hom(K) coincides with the fixed-parameter tractabil-
ity of p-Hom(K) for any class K of graphs [13], assuming FPT �= W[1]. For the
embedding problem this is certainly not true, as for the class K of all paths
Emb(K) is NP-hard, yet p-Emb(K) ∈ FPT. Thus, in the Dichotomy Conjec-
ture, the tractable side is really in terms of fixed-parameter tractability. But
it is still interesting and important to give a precise characterization of those
K whose Emb(K) are solvable in polynomial time. Let K be a hereditary class
of graphs, i.e., closed under taking induced subgraphs. Jansen and Marx [15]
showed that Emb(K) is solvable in randomized polynomial time if every graph
in K can be made into the disjoint union of isolated edges and vertices by delet-
ing O(1) vertices, and NP-hard otherwise. But for general K, we don’t even have
a good conjecture.
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Abstract. It is an open problem whether the 3-coloring problem can
be solved in polynomial time in the class of graphs that do not contain
an induced path on t vertices, for fixed t. We propose an algorithm
that, given a 3-colorable graph without an induced path on t vertices,
computes a coloring with max

{
5, 2
⌈
t−1
2

⌉− 2
}
many colors. If the input

graph is triangle-free, we only need max
{
4,
⌈
t−1
2

⌉
+ 1
}
many colors. The

running time of our algorithm is O((3t−2 + t2)m+ n) if the input graph
has n vertices and m edges.

1 Introduction

A k-coloring of a graph G is a function c : V (G) → {1, . . . , k} so that c(v) �= c(u)
for all vu ∈ E(G). In the k-coloring problem, one has to decide whether a given
graph admits a k-coloring or not; it is NP-complete for all k ≥ 3, as Karp proved
in his seminal paper [14].

Coloring H-free Graphs. One way of dealing with this hardness is to restrict the
structure of the instances. In this paper we study H-free graphs, that is, graphs
that do not contain a fixed graph H as an induced subgraph. It is known that
the k-coloring problem is NP-hard on H-free graphs if H is any graph other than
a subgraph of a chordless path [11,13,16,17]. Therefore, we further restrict our
attention to Pt-free graphs, Pt being the chordless path on t vertices.

A substantial number of papers study the complexity of coloring Pt-free
graphs, and most of the results are gathered in the survey paper of Golovach
et al. [8]. Let us recall a few results that define the current state-of-the-art
regarding the complexity of k-coloring in Pt-free graphs.

Theorem 1 (Bonomo et al. [2]). The 3-coloring problem can be solved in
polynomial time in the class of P7-free graphs. This holds true even if each vertex
comes with a subset of {1, 2, 3} of feasible colors.
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It is an intriguing open question whether the 3-coloring problem is solvable
in polynomial time in the class of Pt-free graphs, whenever t > 7 is fixed.

Going back to P5-free graphs, an elegant algorithm of Hoàng et al. [10] shows
that this class is structurally restricted enough to allow for a polynomial time
algorithm solving the k-coloring problem.

Theorem 2 (Hoàng et al. [10]). The k-coloring problem can be solved in poly-
nomial time in the class of P5-free graphs, for each fixed k.

The above result is interesting also for the fact that if k is part of the input,
the k-coloring problem in P5-free graphs becomes NP-hard again [16]. Regarding
negative results, the following theorem of Huang is the best known so far.

Theorem 3 (Huang [12]). For all k ≥ 5, the k-coloring problem is NP-
complete in the class of P6-free graphs. Moreover, the 4-coloring problem is NP-
complete in the class of P7-free graphs.

The only cases when the complexity of k-coloring Pt-free graphs is not known
is when k = 4, t = 6, or when k = 3 and t ≥ 8. Our contribution is an approxi-
mation algorithm for the latter case. This line of research was first suggested to
us by Chuzhoy [3].

Approximation. The hardness of approximating the k-coloring problem has been
in the focus of the research on approximation algorithms. Dinur et al. [4] proved
that coloring a 3-colorable graph with C colors, where C is any constant, is NP-
hard assuming a variant of the Unique Games Conjecture. More precisely, the
assumption is that a certain label cover problem is NP-hard (where the label
cover instances are what the authors call α-shaped).

On the upside, it is known how to color a 3-colorable graph with relatively
few colors in polynomial time, and there has been a long line of subsequent
improvements on the number of colors needed. The current state of the art,
according to our knowledge, is the following result, which combines a semidefinite
programming result by Chlamtac [1] with a combinatorial algorithm for the case
of large minimum degree.

Theorem 4 (Kawarabayashi and Thorup [15]). There is a polynomial time
algorithm to color a 3-colorable n-vertex graph with O(n0.19996) colors.

In this work we combine these two lines of research and strive to use the
structure of Pt-free graphs to give an approximation algorithm for the 3-coloring
problem. We are inspired by a result of Gyárfás, who proved the following.

Theorem 5 (Gyárfás [9]). If G is a graph with no induced subgraph isomor-
phic to Pt, then χ(G) ≤ (t − 1)ω(G)−1.

Thus, for a graph with no Pt, we can check if it is (t − 1)2-colorable or not
3-colorable by checking whether it contains a K4. For a connected graph,
Theorem 5 also holds if the requirement of being Pt-free is weakened to the
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assumption that there is a vertex v in G that does not start an induced Pt in
G. We use a technique similar to the proof of Theorem 5 in the proof of our
key lemma, Lemma 1. We take advantage, however, from the fact that the input
graph is 3-colorable. This allows us to improve the bound of (t − 1)2 on the
number of colors given by Gyárfás’ theorem. We remark that our result is not
an improvement of Theorem5, but incomparable to it.

Our contribution. We prove the following.

Theorem 6. Let t ∈ N. There is an algorithm that computes for any 3-colorable
Pt-free graph G

(a) a coloring of G with at most max
{
5, 2

⌈
t−1
2

⌉ − 2
}
colors, and a triangle of

G, or
(b) a coloring of G with at most max

{
4,

⌈
t−1
2

⌉
+ 1

}
colors

with running time O((3t−2 + t2)|E(G)| + |V (G)|).
There is a variant of this problem where we replace the requirement that G

is Pt-free with the weaker restriction that G has at least one vertex which is not
a starting vertex of a Pt in each connected component. We give an algorithm for
this harder problem as well, with a worse approximation bound, see Lemmas 1
and 2 below. Additionally, we give a hardness result, Theorem8, to show that
Lemma 1 can probably not be improved.

We remark that our algorithm can easily be implemented so that it takes an
arbitrary graph as its input. It then either refutes the graph by outputting that
it contains a Pt or that it is not 3-colorable or computes a coloring as promised
by Theorem 6. In the case that the graph is refuted for not being 3-colorable,
the algorithm can output a certificate that is easily checked in polynomial time.
If the graph is refuted because it contains an induced Pt, our algorithm outputs
the path.

2 Algorithm

We start with a lemma that uses ideas from Theorem 5 to color connected graphs
in which some vertex does not start a Pt. It is exact up to t = 4; in Sect. 3 we
show that 3-coloring becomes NP-hard for t ≥ 5, which means that our result is
tight in this sense.

Lemma 1. Let G be connected, v ∈ V (G), and t ∈ N. There is a polynomial-
time algorithm that outputs

(a) that G is not 3-colorable, or
(b) an induced path Pt starting with vertex v, or
(c) a max {2, t − 2}-coloring of G, or
(d) a max {3, 2t − 5}-coloring of G and a triangle in G.
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Proof. We prove this by induction on t. For t ≤ 4, let Z = V (G) \ ({v} ∪ N(v)).
Consider a component C of G[Z]. By connectivity, there is a vertex x ∈ V (C)
such that N(x) ∩ N(v) �= ∅. Since G has no P4 starting at v, each neighbor of
x in C is adjacent to all of N(x) ∩ N(v). Thus N(y) ∩ N(v) = N(x) ∩ N(v) for
every y ∈ V (C). In particular, if |C| ≥ 2, we found a triangle.

Color v with color 1, and give each vertex in a singleton component of Z color
1. For each non-singleton component C of Z, note that if C is not bipartite, then
G is not 3-colorable (and we have outcome (a)). So assume C is bipartite, and
color all vertices from one partition class with 1. Call G′ the subgraph of G that
contains all yet uncolored vertices. (So all remaining vertices of Z from singleton
components of G′ − N(v).)

If G′ has no edges, we can color V (G′) with color 2 to obtain a valid 2-
coloring of G, and are done with outcome (c). If G′ is bipartite and has an edge
xy, then we can color V (G′) with colors 2 and 3 to obtain a valid 3-coloring of G.
Observe that if x, y ∈ N(v), then G has a triangle, and that otherwise, we can
assume x ∈ N(v) and y ∈ Z. In G, vertex y belongs to a non-trivial component
of G−N(v); thus, as noted above, G has a triangle containing xy. In either case,
we have outcome (d).

Now assume G′ is not bipartite, that is, G′ has an odd cycle C�, on vertices
c1, . . . , c�, say. Then, for each ci lying in Z, we know that in G, there is a vertex
c′
i (from the non-trivial component of Z that ci belongs to) which is adjacent

to all three of ci−1, ci, ci+1 (mod �). So in any valid 3-coloring of G, vertices
ci−1 and ci+1 have the same color. Thus we need to use at least three colors on
V (C�) ∩ N(v), which makes it impossible to color v, unless we use a 4th color,
and we can output (a). This proves the result for t ≤ 4.

Now let t ≥ 5, and assume that the result is true for all smaller values of
t. For every component C of Z = V (G) \ ({v} ∪ N(v)), there is a vertex wC

in N(v) with neighbors in C. We apply the induction hypothesis (for t − 1) to
GC := G[V (C) ∪ {wC}]. If this subgraph is not 3-colorable, neither is G (and we
have outcome (a)). If there is an induced Pt−1 starting at wC , then we can add
v to this path and have found an induced Pt in G starting at v, giving outcome
(b). If neither outcome (a) nor outcome (b) occured in any component, then
each component C of G[Z] (without wC) can be colored with 2(t − 1) − 5 colors
if the algorithm detected a triangle in GC , and with t − 3 colors otherwise.

If N(v) is a stable set, and no triangle was detected, then we color each
component of G[Z] with t − 3 colors (which can be repeated), and use one more
color for N(v), and repeat one of the colors from Z for v to obtain a (t − 2)-
coloring of G, obtaining outcome (c).

Therefore, we may assume that the algorithm detected a triangle in G[{v} ∪
N(v)] or some GC , and we output this triangle. If G[N(v)] is not bipartite, then
G is not 3-colorable. Otherwise, we color each component of G[Z] with the same
at most 2(t − 1) − 5 colors, color N(v) with two new colors, and repeat a color
from Z for v. Then, this yields a coloring of G with 2t − 5 colors, and we found
a triangle, which is outcome (d).
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In the following, we will use a slightly modified version of this lemma:

Corollary 7. Let G be connected, v ∈ V (G), and t ∈ N. Then, there is a
polynomial-time algorithm that outputs

(a) that G is not 3-colorable, or
(b) an induced path Pt starting with vertex v, or
(c) a max {1, t − 2}-coloring of G − v, or
(d) a max {2, 2t − 5}-coloring of G − v and a triangle in G.

Proof. This is a direct consequence of Lemma 1 unless t ≤ 3. If t ≤ 3, then we
can find an induced Pt starting at v unless v is adjacent to every vertex in G−v.
So assume v is adjacent to every other vertex. If G − v is not bipartite, then G
is not 3-colorable. Otherwise, G − v is 2-colorable and the algorithm detects a
triangle, or G − v is 1-colorable.

Lemma 2. The algorithm from Lemma1 (and from Corollary 7) can be imple-
mented with a running time of O(t|E(G)|) for a connected input graph G.

Proof. For t ≤ 4, we can compute v,N(v) and Z = V (G) \ ({v} ∪ N(v)) in time
O(|E(G)|). The components of Z can be found in linear time. By going through
each vertex w in N(v), and for each such x, going through each component C of
Z following a connected enumeration of V (C), we can check that w has exactly
0 or |V (C)| neighbors; if this is not true for some component C, then we have
found a Pt starting at v, obtaining outcome (b).

Otherwise, color v with color 1, as well as all components in Z of size 1. If
a component C contains two or more vertices, then we check if it is bipartite
(in linear time); if not, then since there is a neighbor w of C in N(v) and w
is complete to C, we output that G is not 3-colorable for outcome (a). If C is
bipartite, we choose one of the partition classes of the bipartition, and give all
vertices in this class color 1.

Let G′ be the remaining graph after removing all vertices colored so far. We
check if G′ has an edge; if not, then we can give a 2-coloring of G and output
(c). If G′ has an edge xy, then check if G′ is bipartite. If so, we can get a valid
3-coloring of G. Moreover, xy lies in a triangle (either because x, y ∈ N(v) or
because x and y have a common neighbour in Z), and we can output (d). So
assume we found that G′ is not bipartite, that is we found an odd cycle C�

in G′, on vertices c1, . . . , c�, say. For each ci ∈ Z ∩ V (G′), there is a vertex
c′
i ∈ Z ∩ V (G) adjacent to all three of ci−1, ci, ci+1 (mod �), hence we can

output (a), as vertices c′
i, V (C�) and v induce an obstruction to 3-coloring G.

Now let t ≥ 5. We compute N(v) in time |d(v)|, compute components of
G− ({v} ∪ N(v)) in linear time, check if N(v) is bipartite in linear time (if not,
return that G is not 3-colorable), check if N(v) contains two adjacent vertices,
and correspondingly 1 or 2-color N(v). Then we go through N(v) to find a
neighbor wC for each component C of G − ({v} ∪ N(v)) and run the algorithm
with vertex wC and parameter t − 1 on the component C.
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If the outcome in any component C is an induced Pt−1 starting at wc, we
can add v at the start of the path and get outcome (b). If some component is
not 3-colorable, then neither is G, giving outcome (a). Otherwise, we find the
necessary colorings (and possibly a triangle) to output (c) or (d).

Note that no edge occurs in two components, therefore we require O(|E(G)|)
processing time before using recursion and a total amortized running time of
at most O((t − 1)|E(G)|) for recursive calls of the algorithm, which implies the
overall running time.

Let S be a set of vertices of G, then we let F (S) denote the smallest set so
that S ⊆ F (S) and no vertex in G − F (S) has two adjacent neighbors in F (S).
F (S) can be computed by repeatedly adding vertices that have two adjacent
neighbors in the current set. In a 3-coloring, the colors of the vertices in S
uniquely determine the colors of all vertices in F (S).

Lemma 3. Let G be connected, v ∈ V (G) and k, t ∈ N. There is a polynomial-
time algorithm that outputs

(a) that G is not 3-colorable, or
(b) an induced path Pt in G, or
(c) an induced path Pk in G starting in v, or
(d) a set S of size max {1, k − 2} with v ∈ S, and a max

{
1,

⌈
t−1
2

⌉ − 2
}
-coloring

of G − (F (S) ∪ N(F (S))), or
(e) a set S of size max {1, k − 2} with v ∈ S, and a max

{
2, 2

⌈
t−1
2

⌉ − 5
}
-

coloring of G − (F (S) ∪ N(F (S))), and a triangle in G.

Proof. We prove this by induction on k. If k ≤ 3, then this follows from
Corollary 7 with input k and vertex v, by setting S = {v} and noting that
then F (S) = S.

Now let k > 3. Note that we can assume k ≤ t, because otherwise we can
run the algorithm for k set to t, and all outcomes except (c) will be valid for the
original k as well, and if we do get outcome (c), we can use it as outcome (b)
instead. Furthermore, if 3 ≤ k ≤ ⌈

t−1
2

⌉
, then the result follows from Corollary 7

with input k and vertex v, and setting S = {v}.
Consider Z = V (G) \ (N(v) ∪ {v}). Let C = {C1, . . . , Cr} be the list of

components of G[Z], and let D = {D1, . . . , Dl} be the list of components of
G[N(v)]. We now describe a procedure where at each step, we color one of the
components of C, and then put it aside, to go on working with the remaining
graph, until one component D ∈ D has neighbors in all remaining components
of C.

The details are as follows. While there is not a single component in D with
neighbors in every component of C, let D,D′ ∈ D, C,C ′ ∈ C so that C has a
neighbor x in D but no neighbor in D′, and C ′ has a neighbor x′ in D′ but no
neighbor in D. To see this, choose a components D ∈ D that has neighbors in as
many components of C as possible. If some C ′ ∈ C has no neighbor in D, then
there is a component D′ ∈ D with a neighbor in C ′ by connectivity. But C ′ has
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a neighbor in D′ but not D, so by choice of D, D′ cannot have a neighbor in all
components C ∈ C in which D has a neighbor; thus let C be a component in C so
that D has a neighbor in C and D′ does not. These are the desired components.

Then, we apply Corollary 7 to {x} ∪ C (with parameter
⌈

t−1
2

⌉
and vertex x)

and to {x′} ∪ C ′ (with parameter
⌈

t−1
2

⌉
and vertex x′). If either of these graphs

is not 3-colorable, then G is not 3-colorable. If, in both cases, there is an induced
P� t−1

2 � starting at x and at x′, respectively, then, since x has no neighbors in
C ′ ∪D′ and x′ has no neighbors in D ∪C, we can combine them, using the path
xvx′, to obtain an induced P2� t−1

2 �+1 in G, which contains an induced Pt. Thus,
we can assume that for at least one of the two components, we found a coloring
instead. In particular, we found a coloring of C or of C ′ with max

{
1, � t−1

2 � − 2
}

colors, or a triangle in G, and a coloring of C or of C ′ with max
{
2, 2

⌈
t−1
2

⌉ − 5
}

colors. We then remove the component with the coloring and continue.
Finally, we arrive at a point where there is a component D ∈ D that has

neighbors in all remaining components of C. Note that if S includes v and any
vertex x ∈ D, then F (S) ⊇ D and thus N(D) ⊆ F (S)∪N(F (S)). Therefore, we
call a remaining component of C good if it is contained in N(D), and bad other-
wise. Our goal is to find a vertex x ∈ D with neighbors in all bad components.

While there is no vertex in D with neighbors in all bad components, we can
find two bad components C,C ′ among the remaining components of C such that
C has a neighbor y in D, C ′ has a neighbor y′ in D, y has no neighbors in C ′ and
y′ has no neighbors in C. As before, we can find these components by choosing
y with neighbors in as many bad components as possible, and then letting y′

be a vertex with a neighbor in a bad component C ′ in which y does not have a
neighbor. Consequently, y′ has no neighbor in at least one bad component C in
which y does have a neighbor.

As C and C ′ are bad, there exist components E and E′, of C \ N(D), and
of C ′ \ N(D), respectively. Let x be the first vertex on a shortest path P from
E to y, and define x′ and P ′ analogously. Apply Corollary 7 to G[{x}∪E] (with
parameter

⌈
t−2
2

⌉
and vertex x) and to G[{x′} ∪ E′] (with parameter

⌈
t−2
2

⌉
and

vertex x′). If either of these two graphs is not 3-colorable, then G is not 3-
colorable. If, in both cases, there is an induced P� t−2

2 �, say P starting at x and
P ′ starting at x′, respectively, then we can combine these paths to an induced
path of length at least t by taking xPyy′P ′x′ or xPyvy′P ′x′ (depending on
whether yy′ is an edge or not). Thus, we can assume that for at least one of
G[{x} ∪ E], G[{x′} ∪ E′], we found a coloring instead. In particular, we found a
coloring of E or of E′ with max

{
1, � t−2

2 � − 2
}

colors, or a triangle in G, and a
coloring with max

{
2, 2

⌈
t−2
2

⌉ − 5
}

colors. We then remove the component with
the coloring and continue.

When this terminates, there is a single vertex v′ ∈ D that has neighbors in
all remaining components of C, except possibly those contained in N(D). Let
V ′ be the set of vertices in those components. Then we can apply the induction
hypothesis with k − 1, t, and v′ to G[V ′ ∪ {v′}]. If this graph is not 3-colorable,
neither is G. If it contains an induced path Pt, so does G. If it contains an
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induced path Pk−1 starting in v′, then we can add v to this path to obtain an
induced path Pk starting in v. If there is a set S of size k − 3 with v′ ∈ S, and a
max

{
1,

⌈
t−1
2

⌉ − 2
}
-coloring of G−(F (S)∪N(F (S))) or a max

{
2, 2

⌈
t−1
2

⌉ − 5
}
-

coloring of G − (F (S) ∪ N(F (S))) and a triangle, then we proceed as follows.
We add v to S, and now S has size k − 2. Moreover, since both v and v′ in
S, we know that D ∈ F (S), thus all vertices in {v} ∪ N(v) ∪ D ∪ N(D) are
in F (S) ∪ N(F (S)). We colored different components of Z \ N(D) at different
stages, but we can reuse the colors used on these components. Therefore, this
leads to outcome (d) or (e), depending on if the algorithm detected a triangle
at any stage.

Lemma 4. The algorithm from Lemma3 can be implemented with running time
O

(
k

⌈
t−1
2

⌉ |E(G)|) for a connected input graph G.

Proof. For k ≤ 3, this follows from Lemma 2. For k > 3, we compute Z =
V (G) \ (N(v)∪{v}) and the components C1, . . . Cr of G[Z] and the components
D1, . . . , Dr of G[N(v)] as in the proof of Lemma3; all this can be done in linear
time.

Now, subsequently, for j = 1, . . . , r, we consider Dj , and some of the Ci

adjacent to it, and after possibly coloring and deleting these components Ci, we
might also delete Dj . More precisely, for j = 1, . . . , r, we consider those Ci that
only have neighbors in Dj . For each such Ci, choose a neighbor xij in Dj and
apply Corollary 7 to G[Ci ∪ {xij}]. If this graph is not 3-colorable, then neither
is G. If the algorithm returns a coloring (and possibly a triangle), then this is
the coloring we will use in Ci, as explained in the proof of Lemma3, so we can
delete Ci. (But, if the algorithm found a triangle, we shall remember this triangle
for a possible output, at least if it is the first one to be found.) Otherwise, the
algorithm returns a path of length

⌈
t−1
2

⌉
, which we keep. After going through

all Ci with neighbors only in Dj , we delete Dj if the algorithm always returned
a coloring (or if there were no Ci to consider). That is, we keep Dj if and only
if for some i we found a path starting from xij with interior in Ci.

The amortized time it takes to process all Dj is O(
⌈

t−1
2

⌉ |E(G)|). This is so
because every component Ci is used for the algorithm from Corollary 7 at most
once.

In the end, if there are Dj , Dj′ that we did not delete, then there is a com-
ponent Ci that only has neighbors in Dj , and another component Ci′ that only
has neighbors in Dj′ , and both Ci and Ci′ contain a P� t−1

2 � in their interior,
starting at xij and xi′j′ respectively. By connecting them using the middle seg-
ment xijvxi′j′ , we find a Pt in G that we can output as outcome (b). Otherwise,
there is only one Dj left at the end. Since whenever we deleted a component
Dj′ , we ensured that each remaining Ci has a neighbor in some Dj with j �= j′,
this means that Dj has neighbors in all Ci that we did not color yet.

Let Z ′ be the set of vertices of remaining components Ci, and let Z ′′ =
Z ′ \ N(D). Each component of G[Z ′′] is contained in some component Ci and
thus it has a neighbor in N(D). Therefore, we can apply the same argument as
before to components of G[Z ′′] and components of N(D) with neighbors in them.
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Whenever the algorithm for Corollary 7 outputs a coloring we keep it (and we
also keep the possibly found triangle, if it is the first triangle to be found), and
if it outputs that a component is not 3-colorable, then G is not 3-colorable, and
if there is a path P� t−2

2 �, we keep track of it. (Note that components of N(D)
that are not adjacent to Z ′′ get deleted automatically.) When this terminates,
if there are still two components of N(D), then there are two paths we can
combine to a Pt as in Lemma 3. Otherwise, a single component D∗ of N(D) has
a neighbor in all remaining components C ′

1, . . . , C
′
s, so there is a vertex v′ ∈ D

so that {v′} ∪ D∗ ∪ C ′
1 ∪ · · · ∪ C ′

s is connected, and v′ is the only neighbor of v
in that subgraph. Next, we apply induction for k − 1 with root vertex v on that
set. If this finds a set S and a coloring, we add v to S. If it finds a path Pk−1,
we add v to the path. If it finds a Pt, we output it. If it is not 3-colorable, then
neither is G.

The total running time of the recursive application of the algorithm is

O

(
(k − 1)

⌈
t − 1

2

⌉
|E(G)|

)
,

and all preprocessing steps leading there can be implemented with a running
time of O

(⌈
t−1
2

⌉ |E(G)|), which implies the result.

We can now give the proof of our main result.

Proof (Proof of Theorem 6). We use the algorithm from Lemma 3 with k = t.
Since only outcomes (d) and (e) can occur in this setting, it is sufficient to
show that if G is 3-colorable, we can find a 3-coloring of F (S) ∪ N(F (S)) in
time O(3t−2 · poly(|V (G)|)), as follows: For each vertex in the set S, we try
each possible color for a total of at most 3t−2 possibilities. By definition of
F (S), this determines the color of each vertex in F (S), and for each vertex
in N(F (S)), there are at most two possible colors. Thus, we reduced to a 2-
list-coloring problem, which can be solved in linear time by reduction to 2Sat
[5,6,18]. Hence if G is 3-colorable, we can 3-color F (S)∪N(F (S)), and add these
three new colors to the coloring from Lemma 3.

The total running time follows from the running time of the algorithm in
Lemma 4 in addition to an algorithm determining the connected components
of G.

By combining Theorem 6 with Lemma 1, we obtain the algorithms for coloring
3-colorable Pt-free graphs with the number of colors shown in Table 1 (if there
is a triangle) and Table 2 (if there is no triangle). For t larger than shown in the
table, Theorem 6 uses a smaller number of colors.
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Table 1. Number of colors we use for a 3-colorable Pt-free graph if there is a triangle

t 3 4 5 6 7 8 9 10 11 > 11

max {3, 2t − 5} 3 3 5 7 9 11 13 15 17

max
{
5, 2
⌈
t−1
2

⌉− 2
}

5 5 5 5 5 6 6 8 8

Best option 3 3 31 5 5 6 6 8 8 2
⌈
t−1
2

⌉− 2
1If t = 5, we can improve the number of colors required if there is a
triangle to 3, because it cannot happen that there are two components
C,C′ of G− ({v}∪N(v)) and components D,D′ of G[N(v)] so that C
has a neighbor in D but not D′, and C′ has a neighbor in D′ but not
D′, because this already yields an induced P5. Thus, by induction, all
vertices will be in F (S)∪N(F (S)), where we can test for 3-colorability
as described in Theorem6.

Table 2. Number of colors we use for a 3-colorable Pt-free graph if there is no triangle

t 3 4 5 6 7 8 9 10 11 > 11

max {2, t − 2} 2 2 3 4 5 6 7 8 9

max
{
4,
⌈
t−1
2

⌉
+ 1
}

4 4 4 4 4 5 5 6 6

Best option 2 2 3 4 4 5 5 6 6
⌈
t−1
2

⌉
+ 1

3 Hardness Result

In this section, we show that improving Lemma1 is hard. More precisely:

Theorem 8. Let G be a connected graph and v ∈ V (G) so that there is no
induced Pt in G starting at v. Then, deciding k-colorability on this class of
graphs is NP-hard if k ≥ 4 and t ≥ 3 or if k = 3 and t ≥ 5. It can be solved in
polynomial time if t ≤ 2 or if k = 3 and t ≤ 4.

Proof. For the polynomial time solvability, observe that if t ≤ 2, then |V (G)| ≤ 1.
If k = 3, t ≤ 4, then the result follows from Lemma 1.

For the hardness, first consider the case k ≥ 4, t ≥ 3. In this case, we can
reduce the 3-coloring problem to this problem by taking any instance G and
adding a clique of size k − 3 complete to G. Then, no vertex in this clique starts
a P3, but the resulting graph is k-colorable if and only if G is 3-colorable.

It remains to consider the case k = 3, t ≥ 5. We show a reduction from the
NP-complete problem NAE-3Sat [7]. An instance of NAE-3Sat is a boolean
formula with variables x1, . . . , xn and clauses C1, . . . , Cm, where each clause
contains exactly three literals (variables or their negations). It is a Yes-instance
if and only if there is an assignment of the variables as true or false so that for
every clause, not all three literals in the clause are true, and not all three are
false.

We construct a graph G as follows: G contains a vertex v, vertices labeled
xi and xi for 1 ≤ i ≤ n, and a triangle Tj for each clause Cj . The vertex v is
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adjacent to all vertices xi and xi, but not to any of the triangles. For each i,
xi is adjacent to xi. For each clause Cj , we assign each literal a vertex of the
triangle Tj , and connect this vertex to the literal (the vertex labeled xi or xi).
There are no other edges in G.

Then, there is no P5 starting at v in G, because such a path would have
to contain exactly one of the vertices labeled xi and xi, and this would be the
second vertex of the path. As there are no edges between the triangles Tj , all
remaining vertices of the P5 would have to be in one triangle Tj . But no triangle
can contain a P3. Therefore, G is a valid instance.

It remains to show that G is 3-colorable if and only if the instance of NAE-
3Sat is a Yes-instance. If G has a 3-coloring, then the neighbors of v are 2-
colored (say with colors 1 and 2) and xi never receives the same color as xi.
Assign the variables so that literals colored 1 are true, and those colored 2 are
false. Then, if there is a clause Cj so that all of its literals are true, this means
that each vertex of Tj has a neighbor colored 1, so Tj uses only colors 2 and 3,
which is impossible in a valid coloring of a triangle. For the same reason, there
cannot be a clause so that all of its literals are false. Thus, G was constructed
from a Yes-instance.

Conversely, if the instance we started with is a Yes-instance, we color v with
color 3, true literals with color 1, and false literals with color 2. For each triangle
Tj , one of the vertices adjacent to a true literal is colored 2, one of the vertices
adjacent to a false literal is colored 1, and the remaining vertex is colored 3. This
is a valid 3-coloring of G.

4 Conclusion

In this paper we showed how to color a given 3-colorable Pt-free graph with a
number of colors that is t, roughly. The running time of our algorithm is of the
form O(f(t) · nO(1)), when the input graph has n vertices, and thus FPT in the
parameter t. (The class FPT contains the fixed parameter tractable problems,
which are those that can be solved in time f(k) · |x|O(1) for some computable
function f .)

In view of this, it seems to be an intriguing question whether the 3-coloring
problem is fixed-parameter tractable when parameterized by the length of the
longest induced path. That is, whether there is an algorithm with running time
O(f(t) · nO(1)) that decides 3-colorability in Pt-free graphs. So far, however, it
is not even known whether there is an XP algorithm to decide 3-colorability in
Pt-free graphs. (XP is the class of parameterized problems that can be solved
in time O(nf(k)) for some computable function f .) If such an XP-algorithm
existed, this would show that the problem is in P whenever t is fixed. Therefore,
attempting to prove W[1]-hardness seems to be more reasonable than trying to
prove that the problem is in FPT.

Another question we addressed is k-coloring connected graphs so that some
vertex is not the end vertex of an induced Pt. We showed that coloring in this case
is NP-hard whenever k = 3 and t ≥ 5, or k ≥ 4 and t ≥ 3. Lemma 1 gives a simple
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algorithm for an f(t)-approximate coloring for k = 3 and any t, and it would be
interesting to have a complementing result proving hardness of approximation.
On the other hand, any improvement of Lemma1 would immediately yield an
improvement of our main result.

Acknowledgments. We are thankful to Paul Seymour for many helpful discussions.
We thank Stefan Hougardy for pointing out [15] to us.
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6. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. Congr. Numer. 26,

125–157 (1979)
7. Garey, M.R., Johnson, D.S.: A Guide to the Theory of NP-Completeness. W.H.

Freemann, New York (1979)
8. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: Survey on the computational

complexity of colouring graphs with forbidden subgraphs. J. Graph Theory (to
appear). doi:10.1002/jgt.22028
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Abstract. Stable flows generalize the well-known concept of stable
matchings to markets in which transactions may involve several agents,
forwarding flow from one to another. An instance of the problem con-
sists of a capacitated directed network, in which vertices express their
preferences over their incident edges. A network flow is stable if there is
no group of vertices that all could benefit from rerouting the flow along
a walk.

Fleiner [13] established that a stable flow always exists by reducing it
to the stable allocation problem. We present an augmenting-path algo-
rithm for computing a stable flow, the first algorithm that achieves poly-
nomial running time for this problem without using stable allocation as
a black-box subroutine. We further consider the problem of finding a sta-
ble flow such that the flow value on every edge is within a given interval.
For this problem, we present an elegant graph transformation and based
on this, we devise a simple and fast algorithm, which also can be used to
find a solution to the stable marriage problem with forced and forbidden
edges. Finally, we study the highly complex stable multicommodity flow
model by Király and Pap [24]. We present several graph-based reductions
that show equivalence to a significantly simpler model. We further show
that it is NP-complete to decide whether an integral solution exists.

1 Introduction

Stability is a well-known concept used for matching markets where the aim is to
reach a certain type of social welfare, instead of profit-maximization [29]. The
measurement of optimality is not maximum cardinality or minimum cost, but
the certainty that no two agents are willing to selfishly modify the market situ-
ation. Stable matchings were first formally defined in the seminal paper of Gale
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and Shapley [17]. They described an instance of the college admission problem
and introduced the terminology based on marriage that since then became wide-
spread. Besides resident allocation, variants of the stable matching problem are
widely used in other employer allocation markets [30], university admission deci-
sions [2,4], campus housing assignments [5,28] and bandwidth allocation [16]. A
recent honor proves the currentness and importance of results in the topic: in
2012, Lloyd S. Shapley and Alvin E. Roth were awarded the Sveriges Riksbank
Prize in Economic Sciences in Memory of Alfred Nobel for their outstanding
results on market design and matching theory.

In the stable marriage problem, we are given a bipartite graph, where the
two classes of vertices represent men and women, respectively. Each vertex has
a strictly ordered preference list over his or her possible partners. A matching
is stable if it is not blocked by any edge, that is, no man-woman pair exists who
are mutually inclined to abandon their partners and marry each other [17].

In practice, the stable matching problem is mostly used in one of its capac-
itated variants, which are the stable many-to-one matching, many-to-many
matching and allocation problems. The stable flow problem can be seen as a
high-level generalization of all these settings. To the best of our knowledge, it is
the most complex graph-theoretical generalization of the stable marriage model,
and thus plays a crucial role in the theoretical understanding of the power and
limitations of the stable marriage concept. From a practical point of view, sta-
ble flows can be used to model markets in which interactions between agents
can involve chains of participants, e.g., supply chain networks involving multiple
independent companies.

In the stable flow problem, a directed network with preferences models a
market situation. Vertices are vendors dealing with some goods, while edges
connecting them represent possible deals. Through his preference list, each ven-
dor specifies how desirable a trade would be to him. Sources and sinks model
suppliers and end-consumers. A feasible network flow is stable, if there is no
set of vendors who mutually agree to modify the flow in the same manner. A
blocking walk represents a set of vendors and a set of possible deals so that all of
these vendors would benefit from rerouting some flow along the blocking walk.

Literature Review. The notion of stability was extended to so-called “vertical net-
works” by Ostrovsky in 2008 [26]. Even though the author proves the existence
of a stable solution and presents an extension of the Gale-Shapley algorithm,
his model is restricted to unit-capacity acyclic graphs. Stable flows in the more
general setting were defined by Fleiner [13], who reduced the stable flow problem
to the stable allocation problem.

The best currently known computation time for finding a stable flow is
O(|E| log |V |) in a network with vertex set V and edge set E. This bound is
due to Fleiner’s reduction to the stable allocation problem and its fastest solu-
tion described by Dean and Munshi [9]. Since the reduction takes O(|V |) time
and does not change the instance size significantly and the weighted stable allo-
cation problem can be solved in O(|E|2 log |V |) time [9], the same holds for the
maximum weight stable flow problem. The Gale-Shapley algorithm can also be
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extended for stable flows [8], but its straightforward implementation requires
exponential running time, just like in the stable allocation problem.

It is sometimes desirable to compute stable solutions using certain forced
edges or avoiding a set of forbidden edges. This setting has been an actively
researched topic for decades [6,10,14,20,25]. This problem is known to be solv-
able in polynomial time in the one-to-one matching case, even in non-bipartite
graphs [14]. Though Knuth presented a combinatorial method that finds a sta-
ble matching in a bipartite graph with a given set of forced edges or reports
that none exists [25], all known methods for finding a stable matching with both
forced and forbidden edges exploit a somewhat involved machinery, such as rota-
tions [20], LP techniques [11,12,21] or reduction to other advanced problems in
stability [10,14].

In many flow-based applications, various goods are exchanged. Such problems
are usually modeled by multicommodity flows [22]. A maximum multicommodity
flow can be computed in strongly polynomial time [31], but even when capacities
are integer, all optimal solutions might be fractional, and finding a maximum
integer multicommodity flow is NP-hard [19]. Király and Pap [24] introduced the
concept of stable multicommodity flows, in which edges have preferences over
which commodities they like to transport and the preference lists at the vertices
may depend on the commodity. They show that a stable solution always exists,
but it is PPAD-hard to find one.

Our Contribution and Structure. In this paper we discuss new and simplified
algorithms and complexity results for three differently complex variants of the
stable flow problem. Section 2 contains preliminaries on stable flows.

• In Sect. 3 we present a polynomial algorithm for stable flows. To derive a
fast, elegant, and direct solution method, we combine the well-known pseudo-
polynomial Gale-Shapley algorithm and the proposal-refusal pointer machin-
ery known from stable allocations into an augmenting-path algorithm for
computing a stable flow.

• Then, in Sect. 4 stable flows with restricted intervals are discussed. We pro-
vide a simple combinatorial algorithm to find a flow with flow value within
a pre-given interval for each edge. Surprisingly, our algorithm directly trans-
lates into a very simple new algorithm for the problem of stable matchings
with forced and forbidden edges in the classical stable marriage case. Unlike
the previously known methods, our result relies solely on elementary graph
transformations.

• Finally, in Sect. 5 we study stable multicommodity flows. First, we provide
tools to simplify stable multicommodity flow instances to a great extent by
showing that it is without loss of generality to assume that no commodity-
specific preferences at the vertices and no commodity-specific capacities on
the edges exist. Then, we reduce 3-sat to the integral stable multicommodity
flow problem and show that it is NP-complete to decide whether an integral
solution exists even if the network in the input has integral capacities only.
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2 Preliminaries

A network (D, c) consists of a directed graph D = (V,E) and a capacity function
c : E → R≥0 on its edges. The vertex set of D has two distinct elements, also
called terminal vertices: a source s, which has outgoing edges only and a sink t,
which has incoming edges only.

Definition 1 (flow). Function f : E → R≥0 is a flow if it fulfills both of the
following requirements:

1. capacity constraints: f(uv) ≤ c(uv) for every uv ∈ E;
2. flow conservation:

∑
uv∈E f(uv) =

∑
vw∈E f(vw) for all v ∈ V \ {s, t}.

A stable flow instance is a triple I = (D, c,O). It comprises a network (D, c)
and O, the preference ordering of vertices on their incident edges. Each non-
terminal vertex ranks its incoming and also its outgoing edges strictly and sep-
arately. If v prefers edge vw to vz, then we write rv(vw) < rv(vz). Terminals do
not rank their edges, because their preferences are irrelevant with respect to the
following definition.

Definition 2 (blocking walk, stable flow). A blocking walk of flow f is a
directed walk W = 〈v1, v2, ..., vk〉 such that all of the following properties hold:

1. f(vivi+1) < c(vivi+1), for each edge vivi+1, i = 1, ..., k − 1;
2. v1 = s or there is an edge v1u such that f(v1u) > 0 and rv1(v1v2) < rv1(v1u);
3. vk = t or there is an edge wvk such that f(wvk) > 0 and rvk

(vk−1vk) <
rvk

(wvk).

A flow is stable, if there is no blocking walk with respect to it in the graph.

Unsaturated walks fulfilling point 2 are said to dominate f at start, while
walks fulfilling point 3 dominate f at the end. We can say that a walk blocks f
if it dominates f at both ends.

Throughout the paper, we will assume that the digraph D does not contain
loops or parallel edges, the source s only has outgoing edges, the sink t only has
incoming edges, and that no isolated vertices exist. All these assumptions are
without loss of generality and only for notational convenience.

Problem 1. sf
Input: I = (D, c,O); a directed network (D, c) and O, the preference ordering of
vertices.
Question: Is there a flow f so that no walk blocks f?

Theorem 1 (Fleiner [13]). sf always has a stable solution and it can be found
in polynomial time. Moreover, for a fixed sf instance, each edge incident to s or
t has the same value in every stable flow.

This result is based on a reduction to the stable allocation problem. The
second half of Theorem1 can be seen as the flow generalization of the so-called
Rural Hospitals Theorem, known for stable matching instances in general graphs.
Part of this theorem states that if a vertex is unmatched in one stable matching,
then all stable solutions leave it unmatched [18].
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Algorithm 1. Augmenting path algorithm for stable flows
Initialize π, ρ.
while π[s] �= ∅ do

Let W be an s-t-path or cycle in Hπ,ρ.
Let Δ := mine∈W cf (e).
Augment f by Δ along W .
while ∃ uv ∈ EHπ,ρ with cf (uv) = 0 do

UpdatePointers (u)

3 A Polynomial-Time Augmenting Path Algorithm for
Stable Flows

Using Fleiner’s construction [13], it is possible to find a stable flow efficiently
by computing a stable allocation instead. Also the popular Gale-Shapley algo-
rithm can be extended to sf. As described in [8], this yields a preflow-push type
algorithm, in which vertices forward or reject excessive flow according to their
preference lists. While this algorithm has the advantage of operating directly on
the network without transforming it to a stable allocation instance, it requires
pseudo-polynomial running time.

In the following, we describe a polynomial time algorithm to produce a stable
flow that operates directly on the network D. Our method is based on the well-
known augmenting path algorithm of Ford and Fulkerson [15], also used by Bäıou
and Balinski [1] and Dean and Munshi [9] for stability problems. The main idea is
to introduce proposal and refusal pointers to keep track of possible Gale-Shapley
steps and execute them in bulk. Each such iteration corresponds to augmenting
flow along an s-t-path or cycle in a restricted residual network.

In the algorithm, every vertex v ∈ V \ {t} is associated with two pointers,
the proposal pointer π[v] and the refusal pointer ρ[v]. Initially π[v] points to
the first-choice outgoing edge on v’s preference list, whereas ρ[v] is inactive.
Throughout the algorithm π[v] traverses the outgoing edges of v in order of
increasing rank on v’s preference list (for the source s, we assume an arbitrary
preference order) until it gets advanced beyond the final outgoing edge. Then
ρ[v] becomes active and traverses the incoming edges of v in order of decreasing
rank on v’s preference list.

With any state of the pointers π, ρ, we associate a helper graph Hπ,ρ, which
contains the edges pointed at by the proposal pointers and the reversals of the
edges pointed at by the refusal pointer. A recursive update procedure for advanc-
ing the pointers along their lists ensures that throughout the algorithm, Hπ,ρ

contains an s-t-path or a cycle, with all edges having positive residual capac-
ity cf with respect to the current flow. The algorithm then augments the flow
along this path or cycle and updates the pointers of saturated edges. Once π[s]
has traversed all outgoing edges of s, the algorithm has found a stable flow.
As in each iteration, at least one pointer is advanced, the running time of the
algorithm is polynomial in the size of the graph. See the full version of the
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paper [7] for a listing of the subroutine UpdatePointers and a complete analy-
sis.

4 Stable Flows with Restricted Intervals

Various stable matching problems have been tackled under the assumption that
restricted edges are present in the graph [10,14]. A restricted edge can be forced
or forbidden, and the aim is to find a stable matching that contains all forced
edges, while it avoids all forbidden edges. Such edges correspond to transactions
that are particularly desirable or undesirable from a social welfare perspective,
but it is undesirable or impossible to push the participating agents directly to
use or avoid the edges. We thus look for a stable solution in which the edge
restrictions are met voluntarily.

A natural way to generalize the notion of a restricted edge to the stable flow
setting is to require the flow value on any given edge to be within a certain
interval. To this end, we introduce a lower capacity function l : E → R≥0 and
an upper capacity function u : E → R≥0.

Problem 1. sf restricted
Input: I = (D, c,O, l, u); an sf instance (D, c,O), a lower capacity function
l : E → R≥0 and an upper capacity function u : E → R≥0.
Question: Is there a stable flow f so that l(uv) ≤ f(uv) ≤ u(uv) for all uv ∈ E?

Note that in the above definition, the upper bound u does not affect blocking
walks, i.e., a blocking walk can use edge uv, even if f(uv) = u(uv) < c(uv) holds.

sf restricted generalizes the natural notion of requiring flow to use an
edge to its full capacity (by setting l(uv) = c(uv)) and of requiring flow not to
use an edge at all (by setting u(uv) = 0), which corresponds to the traditional
cases of forced and forbidden edges. It turns out that any given instance of sf
restricted can be transformed to an equivalent instance in which l(uv), u(uv) ∈
{0, c(uv)} for all uv ∈ E. We describe the corresponding reduction in the full
version [7]. Henceforth, we will assume that our instances are of this form and
use the notation Q := {uv ∈ E : l(uv) = c(uv)} and P := {uv ∈ E : u(uv) = 0}
for the sets of forced and forbidden edges, respectively.

In the following, we describe a polynomial algorithm that finds a stable flow
with restricted intervals or proves its nonexistence. We show that restricted
intervals can be handled by small modifications of the network that reduce the
problem to the unrestricted version of sf. We show this separately for the case
that only forced edges occur, which we call sf forced, in Sect. 4.1 and for the
case that only forbidden edges occur, called sf forbidden, in Sect. 4.2. It is
straightforward to see that both results can be combined to solve the general
version of sf restricted. All missing proofs can be found in the full version [7].

We mention that it is also possible to solve sf restricted by transforming
the instance first into a weighted sf instance, and then into a weighted stable
allocation instance, both solvable in O(|E|2 log |V |) time [9]. The advantages of
our method are that it can be applied directly to the sf restricted instance and
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Fig. 1. Substituting forced edge uv by edges sv and ut in D′.

it also gives us insights to solving the stable roommate problem with restricted
edges directly, as pointed out at the end of Sects. 4.1 and 4.2. Moreover, our
running time is O(|P ||E| log |V |), where P is the set of edges with u(uv) < c(uv).

4.1 Forced Edges

Let us first consider a single forbidden edge uv. We modify graph D to derive
a graph D′. The modification consists of deleting the forced edge uv and intro-
ducing two new edges sv and ut to substitute it. Both new edges have capacity
c(uv) and take over uv’s rank on u’s and on v’s preference lists, respectively, as
shown in Fig. 1.

Lemma 1. Let f be a flow in D with f(uv) = c(uv). Let f ′ be the flow in D′

derived by setting f ′(sv) = f ′(ut) = f(uv) and f ′(e) = f(e) for all e ∈ E \{uv}.
Then f is stable if and only if f ′ is stable.

Proof. We first observe that the set of edges not saturated by f in D is the same
as the set of edges not saturated by f ′ in D′. This is because uv is saturated by
f and ut, sv are saturated by f ′. Now let u′v′ be such an unsaturated edge. Note
that there is an edge u′w′ with ru′(u′w) > ru′(u′v′) and f(u′w) > 0 if and only
if there is an edge u′w′ with ru′(u′w′) > ru′(u′v′) and f ′(u′w′) > 0. The same is
true for incoming edges at v′ dominated by u′v′. In other words, the dominance
situation at all vertices is the same for f and f ′. This implies that any blocking
walk for f in D is a blocking walk for f ′ in D′ and vice versa. ��

Repeated application of Lemma 1 in conjunction with the Rural Hospital
Theorem (Theorem 1) allows us to transform any instance of sf forced into a
standard stable flow instance.

Theorem 2. sf forced can be solved in time O(|E| log |V |).

Stable matchings with forced edges. The technique described above also
provides a fairly simple method for the stable matching problem with forced
edges even in non-bipartite graphs, because the Rural Hospitals Theorem holds
for that case as well. After deleting each forced edge uw ∈ Q from the graph,
we add uws and utw edges to each of the pairs, where ws and ut are newly
introduced vertices. These edges take over the rank of uw. Unlike in sf, here
we need to introduce two separate dummy vertices to each forced edge, simply
due to the matching constraints. There is a stable matching containing all forced
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Fig. 2. Adding edges sv in D+ and ut in D− to forbidden edge uv.

edges if and only if an arbitrary stable matching covers all of these new vertices
ws and ut. The running time of this algorithm is O(|E|), since it is sufficient to
construct a single stable solution in an instance with at most 2|V | vertices. More
vertices cannot occur, because in a matching problem more than one forced edge
incident to a vertex immediately implies infeasibility.

4.2 Forbidden Edges

In order to handle sf forbidden, we present here an argumentation of the same
structure as in the previous section. First, we show how to solve the problem
of stable flows with a single forbidden edge by solving two instances on two
different extended networks. Then we show how these constructions can be used
to obtain an algorithm for the general case.

Notation. For e = uv ∈ P , we define edges e+ = sv and e− = ut. We set
c(e+) = ε > 0 and set rv(e+) = rv(e) − 0.5, i.e., e+ occurs on v’s preference
list exactly before e. Likewise, we set c(e−) = ε and ru(e−) = ru(e) − 0.5,
i.e., e− occurs on u’s preference list exactly before e. For F ⊆ P we define
E+(F ) := {e+ : e ∈ F} and E−(F ) := {e− : e ∈ F}.

A single forbidden edge. Assume that P = {e0} for a single edge e0. First
we present two modified instances that will come handy when solving sf for-
bidden. The first is the graph D+, which we obtain from D by adding an edge
e+0 to E. Similarly, we obtain the graph D− by adding e−

0 to E. Both graphs are
illustrated in Fig. 2.

In the following, we characterize sf forbidden instances with the help of
D+ and D−. Our claim is that sf forbidden in D has a solution if and only
if there is a stable flow f+ in D+ with f+(e+) = 0 or there is a stable flow
f− in D− with f−(e−) = 0. These existence problems can be solved easily in
polynomial time, since all stable flows have the same value on edges incident to
terminal vertices by Theorem 1.

We will use the following straightforward observation. It follows from the fact
that deletion of an edge that does not carry any flow in a stable flow neither
affects flow conversation nor can create blocking walks.

Observation 1. If f(e) = 0 for an edge e ∈ E and stable flow f in D, then f
remains stable in D \ e as well.
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Lemma 2. Let f be a flow in D = (V,E) with f(e0) = 0. Then f is a stable
flow in D if and only if at least one of the following conditions hold:

Property 1: The flow f+ with f+(e) = f(e) for all e ∈ E and f+(e+0 ) = 0 is
stable in (V,E ∪ {e+0 }).

Property 2: The flow f− with f−(e) = f(e) for all e ∈ E and f−(e−
0 ) = 0 is

stable in (V,E ∪ {e−
0 }).

Proof. Sufficiency of any of the two properties follows immediately from Obser-
vation 1 by deletion of e+0 or e−

0 , respectively.
To see necessity, assume that f is a stable flow in D. By contradiction assume

that neither f+ nor f− is stable. Then there is a blocking walk W+ for f+ and
a blocking walk W− for f−. Since W+ is not a blocking walk for f in D, it must
start with e+0 . Since W− is not a blocking walk for f in D, it must end with
e−
0 . Let W ′+ := W+ \ {e+0 } and W ′− := W− \ {e−

0 }. Consider the concatenation
W := W ′− ◦ e0 ◦ W ′+. Note that W is an unsaturated walk in D. If W ′− �= ∅,
then W starts with the same edge as W− and thus dominates f at the start.
If W ′− = ∅, then W starts with e0, which dominates any flow-carrying edge
dominated by ut, and hence it dominates f at the start also in this case. By
analogous arguments it follows that W also dominates f at the end. Hence W is
a blocking walk, contradicting the stability of f . We conclude that at least one
of Properties 1 or 2 must be true if f is stable. ��

General case. The method described above can be used to solve sf forbidden
if |P | = 1: We simply compute stable flows f+ in D+ and f− in D−. If f+(e+) =
0 or f−(e−) = 0, we have found a stable flow in f avoiding the forbidden edge
e0. More generally, for |P | > 1, Lemma 2 guarantees that we can add either
e+ or e− for each forbidden edge e ∈ P without destroying any stable flow
avoiding the forbidden edges. However, it is not straightforward to decide for
which forbidden edges to add e+ and for which to add e−. Simply applying our
method greedily for each forbidden edge does not lead to correct results, since
the steps can impact each other, as shown in the full version of the paper [7].
In the following, we describe how to resolve this issue and obtain a polynomial
time algorithm for sf forbidden.

For any A,⊆ E, let us denote by D[A|B] the network with vertices V and
edges E ∪E+(A)∪E−(B). Our algorithm maintains a partition of the forbidden
edges in two groups P+ and P−. Initially P+ = P and P− = ∅. In every
iteration, we compute a stable flow f in D[P+|P−]. If f(e+) > 0 for some
e ∈ P+, we move e from P+ to P− and repeat. If f(e+) = 0 for all e ∈ P+

but f(e−) > 0 for some e ∈ P−, we will show that no stable flow avoiding all
forbidden edges exists in D. Finally, if we reach a flow f where neither of these
two things happens, f is a stable flow in D avoiding all forbidden edges.

For the analysis of Algorithm2, the following consequence of the augmenting
path algorithm presented earlier (Algorithm 1) is helpful. It allows us to prove
an important invariant of the Algorithm2.
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Algorithm 2. Stable flow with forbidden edges
Initialize P+ = P and P − = ∅.
repeat

Compute a stable flow f in D[P+|P −].
if ∃ e ∈ P+ with f(e+) > 0 then

P+ := P+ \ {e} and P − := P − ∪ {e}
until f(e+) = 0 for all e ∈ P+;
if ∃ e ∈ P − with f(e−) > 0 then

return ∅
else

return f

Lemma 3. Let f be a stable flow in D. Let f ′ be a stable flow in D′ = D − e′

for some edge e′ ∈ δ+(s). Then f ′(e) ≥ f(e) for all e ∈ δ+(s) \ {e′}.
Lemma 4. Algorithm2 maintains the following invariant: There is a stable flow
in D avoiding P iff there is a stable flow in D[∅|P−] avoiding P+ ∪ E−(P−).

The correctness of Algorithm 2 follows immediately from the above invariant.
The running time of this algorithm is bounded by O(|P ||E| log |V |), as each
stable flow f can be computed in O(|E| log |V |) time and in each round either
|P+| decreases by one or the algorithm terminates. Note that both forced and
forbidden edges in the same instance can be handled by our two algorithms,
applying them one after the other. Finally, we can conclude the following result:

Theorem 3. sf restricted can be solved in O(|P ||E| log |V |) time.

Stable matchings with forbidden edges. As before, we finish this part with
the direct interpretation of our results in sr and sm instances. To each forbidden
edge uw ∈ P we introduce edges uws or utw. According to the preference lists,
they are slightly better than uw itself. A stable matching with forbidden edges
exists, if there is a suitable set of these uws and utw edges such that all ws and
ut are unmatched. Our algorithm for several forbidden edges runs in O(|P ||E|)
time, because computing stable solutions in each of the |P | or less rounds takes
only O(|E|) time in sm. With this running time, it is somewhat slower than the
best known method [10] that requires only O(|E|) time, but it is a reasonable
assumption that the number of forbidden edges is small.

5 Stable Multicommodity Flows

A multicommodity network (D, ci, c), 1 ≤ i ≤ n consists of a directed graph
D = (V,E), non-negative commodity capacity functions ci : E → R≥0 for all
the n commodities and a non-negative cumulative capacity function c : E → R≥0

on E. For every commodity i, there is a source si ∈ V and a sink ti ∈ V , also
referred to as the terminals of commodity i.
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Definition 3 (multicommodity flow). A set of functions f i : E → R≥0,
1 ≤ i ≤ n is a multicommodity flow if it fulfills all of the following requirements:

1. capacity constraints for commodities:
f i(uv) ≤ ci(uv) for all uv ∈ E and commodity i;

2. cumulative capacity constraints:
f(uv) =

∑
1≤i≤n f i(uv) ≤ c(uv) for all uv ∈ E;

3. flow conservation:∑
uv∈E f i(uv) =

∑
vw∈E f i(vw) for all v ∈ V \ {si, ti}.

The concept of stability was extended to multicommodity flows by Király and
Pap [24]. A stable multicommodity flow instance I = (D, ci, c, OE , Oi

V ), 1 ≤ i ≤
n comprises a network (D, ci, c), 1 ≤ i ≤ n, edge preferences OE over commodi-
ties, and vertex preferences Oi

V , 1 ≤ i ≤ n over incident edges for commodity i.
Each edge uv ranks all commodities in a strict order of preference. Separately
for every commodity i, each non-terminal vertex ranks its incoming and also its
outgoing edges strictly with respect to commodity i. Note that these preference
orderings of v can be different for different commodities and they do not depend
on the edge preferences OE over the commodities. If edge uv prefers commodity
i to commodity j, then we write ruv(i) < ruv(j). Analogously, if vertex v prefers
edge vw to vz with respect to commodity i, then we write ri

v(vw) < ri
v(vz). We

denote the flow value with respect to commodity i by f i =
∑

u∈V f i(siu).

Definition 4 (stable multicommodity flow). A directed walk W =
〈v1, v2, ..., vk〉 blocks flow f with respect to commodity i if all of the follow-
ing properties hold:

1. f i(vjvj+1) < ci(vjvj+1) for each edge vjvj+1, j = 1, ..., k − 1;
2. v1 = si or there is an edge v1u such that f i(v1u) > 0 and ri

v1
(v1v2) < ri

v1
(v1u);

3. vk = ti or there is an edge wvk such that f i(wvk) > 0 and ri
vk

(vk−1vk) <
ri
vk

(wvk);
4. if f(vjvj+1) = c(vjvj+1), then there is a commodity i′ such that f i′

(vjvj+1) >
0 and rvjvj+1(i) < rvjvj+1(i

′).

A multicommodity flow is stable, if there is no blocking walk with respect to any
commodity.

Note that due to point 4, this definition allows saturated edges to occur in a
blocking walk with respect to commodity i, provided that these edges are inclined
to trade in some of their forwarded commodities for more flow of commodity i. On
the other hand, the role of edge preferences is limited: blocking walks still must
start at vertices who are willing to reroute or send extra flow along the first edge
of the walk according to their vertex preferences with respect to commodity i.

Problem 2. smf
Input: I = (D, ci, c, OE , Oi

V ), 1 ≤ i ≤ n ; a directed multicommodity network
(D, ci, c), 1 ≤ i ≤ n, edge preferences over commodities OE and vertex prefer-
ences over incident edges Oi

V , 1 ≤ i ≤ n.
Question: Is there a multicommodity flow f so that no walk blocks f with respect
to any commodity?
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Theorem 4 (Király, Pap [24]). A stable multicommodity flow exists for any
instance, but it is PPAD-hard to find.

PPAD-hardness is a somewhat weaker evidence of intractability than NP-
hardness [27]. Király and Pap use a polyhedral version of Sperner’s lemma [23]
to prove this existence result. Note that smf is one of the very few problems in
stability [3] where a stable solution exists, but no extension of the Gale-Shapley
algorithm is known to solve it – not even a variant with exponential running time.

5.1 Problem Simplification

The definition of smf given above involves many distinct components and con-
straints. It is natural to investigate how far the model can be simplified without
losing any of its generality. It turns out that the majority of the commodity-
specific input data can be dropped, as shown by Theorem5, which we prove in
the full version of the paper [7]. This result not only simplifies the instance, but
it also sheds light to the most important characteristic of the problem, which
seems to be the preference ordering of edges over commodities.

Theorem 5. There is a polynomial-time transformation that, given an instance
I of smf, constructs an instance I ′ of smf with the following properties:

1. all commodities have the same source and sink,
2. at each vertex, the preference lists are identical for all commodities,
3. there are no commodity-specific edge capacities,

and there is a polynomially computable bijection between the stable multicom-
modity flows of I and the stable multicommodity flows of I ′.

5.2 Integral Multicommodity Stable Flows

Finally, we discuss the problem of integer stable multicommodity flows, intro-
duced in [24]. The proof of our result can be found in the full version [7].

Theorem 6. It is NP-complete to decide whether there is an integer stable mul-
ticommodity flow in a given network. This holds even if all commodities share
the same set of terminal vertices and all vertices have the same preferences with
respect to all commodities (but edges might have different capacities with respect
to different commodities).

Acknowledgment. We thank Tamás Fleiner for discussions on Lemma 1.
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Abstract. Daligault, Rao and Thomassé asked whether every heredi-
tary graph class that is well-quasi-ordered by the induced subgraph rela-
tion has bounded clique-width. Lozin, Razgon and Zamaraev (WG 2015)
gave a negative answer to this question, but their counterexample is a
class that can only be characterised by infinitely many forbidden induced
subgraphs. This raises the issue of whether their question has a positive
answer for finitely defined hereditary graph classes. Apart from two stub-
born cases, this has been confirmed when at most two induced subgraphs
H1, H2 are forbidden. We confirm it for one of the two stubborn cases,
namely for the case (H1, H2) = (triangle, P2 + P4) by proving that the
class of (triangle, P2 + P4)-free graphs has bounded clique-width and is
well-quasi-ordered. Our technique is based on a special decomposition
of 3-partite graphs. We also use this technique to completely determine
which classes of (triangle, H)-free graphs are well-quasi-ordered.

1 Introduction

A graph class G is well-quasi-ordered by some containment relation if for any
infinite sequence G0, G1, . . . of graphs in G, there is a pair i, j with i < j such that
Gi is contained in Gj . A graph class G has bounded clique-width if there exists a
constant c such that every graph in G has clique-width at most c. Both being well-
quasi-ordered and having bounded clique-width are highly desirable properties
of graph classes in the area of theoretical computer science. To illustrate this, let
us mention the seminal project of Robertson and Seymour on graph minors that
culminated in 2004 in the proof of Wagner’s conjecture, which states that the set
of all finite graphs is well-quasi-ordered by the minor relation. As an algorithmic
consequence, given a minor-closed graph class, it is possible to test in cubic
time whether a given graph belongs to this class. The algorithmic importance of
having bounded clique-width follows from the fact that many well-known NP-
hard problems, such as Graph Colouring and Hamilton Cycle, become
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polynomial-time solvable for graph classes of bounded clique-width (this follows
from combining results from several papers [4,13,16,22] with a result of Oum
and Seymour [21]).

Courcelle [3] proved that the class of graphs obtained from graphs of clique-
width 3 via one or more edge contractions has unbounded clique-width. Hence
the clique-width of a graph can be much smaller than the clique-width of its
minors. On the other hand, the clique-width of a graph is at least the clique-
width of any of its induced subgraphs (see, for example, [5]). We therefore focus
on hereditary classes, that is, on graph classes that are closed under taking
induced subgraphs. Our goal is to increase our understanding of the relation
between well-quasi-orders and clique-width of hereditary graph classes.

It is readily seen that a class of graphs is hereditary if and only if it can be
characterised by a unique set F of minimal forbidden induced subgraphs, which
due to their minimality form an antichain, that is, no graph in F is an induced
subgraph of another graph in F . Note that the class of cycles is not well-quasi-
ordered by the induced subgraph relation. As every cycle has clique-width at
most 4, having bounded clique-width does not imply being well-quasi-ordered
by the induced subgraph relation. In 2010, Daligault et al. [10] asked about the
reverse implication: does every hereditary graph class that is well-quasi-ordered
by the induced subgraph relation have bounded clique-width? In 2015, Lozin
et al. [20] gave a negative answer. As the set F in their counter-example is
infinite, the question of Daligault et al. [10] remains open for finitely defined
hereditary graph classes, that is, hereditary graph classes for which F is finite.

Conjecture 1 [20]. If a finitely defined hereditary class of graphs G is well-quasi-
ordered by the induced subgraph relation, then G has bounded clique-width.

If Conjecture 1 is true, then for finitely defined hereditary graph classes the afore-
mentioned algorithmic consequences of having bounded clique-width also hold
for the property of being well-quasi-ordered by the induced subgraph relation.
A hereditary graph class defined by a single forbidden induced subgraph H is
well-quasi-ordered by the induced subgraph relation if and only if it has bounded
clique-width if and only if H is an induced subgraph of P4 (see, for instance,
[9,11,18]). Hence Conjecture 1 holds when F has size 1. We consider the case
when F has size 2, say F = {H1,H2}. Such graph classes are called bigenic
or (H1,H2)-free graph classes. In this case Conjecture 1 is also known to be
true except for two stubborn open cases, namely (H1,H2) = (K3, P2 + P4) and
(H1,H2) = (P1 + P4, P2 + P3); see [7].

Our Results. We prove that the class of (K3, P2 +P4)-free graphs has bounded
clique-width and is well-quasi-ordered by the induced subgraph relation. We do
this by using a general technique explained in Sect. 3. This technique is based
on extending (a labelled version of) well-quasi-orderability or boundedness of
clique-width of the bipartite graphs in a hereditary graph class X to a special
subclass of 3-partite graphs in X. The crucial property of these 3-partite graphs
is that no three vertices from the three different partition classes form a clique
or independent set. We call such 3-partite graphs curious. A more restricted
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version of this concept was used to prove that (K3, P1 + P5)-free graphs have
bounded clique-width [6]. In Sect. 4 we show how to generalise results for curious
(K3, P2+P4)-free graphs to the whole class of (K3, P2+P4)-free graphs and that
our technique can also be applied to prove that (K3, P1 + P5)-free graphs are
well-quasi-ordered.

Consequences of Our Results. Previously, well-quasi-orderability was known
for (K3, P6)-free graphs [1], (P2+P4)-free bipartite graphs [17] and (P1+P5)-free
bipartite graphs [17]. It has also been shown that H-free bipartite graphs are
not well-quasi-ordered if H contains an induced 3P1 + P2 [18], 3P2 [12] or 2P3

[17]. This leads to the following dichotomy.

Theorem 1. Let H be a graph. The class of H-free bipartite graphs is well-
quasi-ordered by the induced subgraph relation if and only if H = sP1 for some
s ≥ 1 or H is an induced subgraph of P1 + P5, P2 + P4 or P6.

Now combining the aforementioned known results for (K3,H)-free graphs and
H-free bipartite graphs with our new results yields exactly the same dichotomy
for (K3,H)-free graphs as the one in Theorem 1.

Theorem 2. Let H be a graph. The class of (K3,H)-free graphs is well-quasi-
ordered by the induced subgraph relation if and only if H = sP1 for some s ≥ 1
or H is an induced subgraph of P1 + P5, P2 + P4, or P6.

Future Work. The class of (P1 + P4, P2 + P3)-free graphs is the only bigenic
graph class left for which Conjecture 1 still needs to be verified. After updating
the summaries in [7] with our new results, this class is also one of the six remain-
ing bigenic graph classes for which well-quasi-orderability is still open. And it is
one of the six remaining bigenic graph classes for which we do not know if their
clique-width is bounded [2]. Hence, a new approach is required to solve this case.

Besides our technique based on curious graphs, we also expect that Theorem 2
will itself be a useful ingredient for showing results for other graph classes, just
as Theorem 1 has already proven to be useful (see e.g. [17]).

For clique-width the following dichotomy is known for H-free bipartite
graphs.

Theorem 3 [8]. Let H be a graph. The class of H-free bipartite graphs has
bounded clique-width if and only if H = sP1 for some s ≥ 1 or H is an induced
subgraph of K1,3 + 3P1, K1,3 + P2, P1 + S1,1,3 or S1,2,3.

It would be interesting to determine whether (K3,H)-free graphs allow the same
dichotomy with respect to the boundedness of their clique-width. The evidence so
far is affirmative, but in order to answer this question two remaining cases need
to be solved, namely (H1,H2) = (K3, P1+S1,1,3) and (H1,H2) = (K3, S1,2,3); see
Sect. 2 for the definition of the graph Sh,i,j . Both cases turn out to be highly non-
trivial; in particular, the class of (K3, P1 + S1,1,3)-free graphs contains the class
of (K3, P1 + P5)-free graphs, and the class of (K3, S1,2,3)-free graphs contains
both the classes of (K3, P1 + P5)-free and (K3, P2 + P4)-free graphs.
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2 Preliminaries

We consider only finite, undirected graphs without multiple edges or self-loops.
The disjoint union (V (G)∪V (H), E(G)∪E(H)) of two vertex-disjoint graphs G
and H is denoted by G + H and the disjoint union of r copies of a graph G is
denoted by rG. The complement G of a graph G has vertex set V (G) = V (G)
and an edge between two distinct vertices u, v if and only if uv /∈ E(G). For
a subset S ⊆ V (G), we let G[S] denote the subgraph of G induced by S. If
S = {s1, . . . , sr}, we may also write G[s1, . . . , sr]. We write G′ ⊆i G to indicate
that G′ is an induced subgraph of G.

The graphs Cr, Kr, K1,r−1 and Pr denote the cycle, complete graph, star
and path on r vertices, respectively. The graphs K3 and K1,3 are also called the
triangle and claw, respectively. The graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, denotes the
subdivided claw, that is, the tree that has only one vertex x of degree 3 and exactly
three leaves, which are of distance h, i and j from x, respectively. Observe that
S1,1,1 = K1,3. We let S denote the class of graphs, each connected component of
which is either a subdivided claw or a path. For a set of graphs {H1, . . . , Hp},
a graph G is (H1, . . . , Hp)-free if it has no induced subgraph isomorphic to a
graph in {H1, . . . , Hp}; if p = 1, we may write H1-free instead of (H1)-free.

For a graph G = (V,E), the set N(u) = {v ∈ V | uv ∈ E} denotes the
neighbourhood of u ∈ V . A graph is k-partite if its vertex can be partitioned
into k (possibly empty) independent sets; 2-partite graphs are also known as
bipartite graphs.

Let X be a set of vertices in a graph G = (V,E). A vertex y ∈ V \ X is
complete to X if it is adjacent to every vertex of X and anti-complete to X if it
is adjacent to no vertex of X. A set of vertices Y ⊆ V \X is complete (resp. anti-
complete) to X if every vertex in Y is complete (resp. anti-complete) to X. A
vertex y ∈ V \X distinguishes X if y has both a neighbour and a non-neighbour
in X. The set X is a module of G if no vertex in V \ X distinguishes X. A
module X is non-trivial if 1 < |X| < |V |, otherwise it is trivial. A graph is prime
if it has only trivial modules. Two (non-adjacent) vertices are false twins if they
share the same neighbours. Prime graphs on at least three vertices contain no
false twins, as any such pair of vertices would form a non-trivial module.

The clique-width cw(G) of a graph G is the minimum number of labels needed
to construct G by using the following four operations:

1. i(v): creating a new graph consisting of a single vertex v with label i;
2. G1 ⊕ G2: taking the disjoint union of two labelled graphs G1 and G2;
3. ηi,j : joining each vertex with label i to each vertex with label j (i �= j);
4. ρi→j : renaming label i to j.

A class of graphs G has bounded clique-width if there is a constant c such that
the clique-width of every graph in G is at most c; otherwise the clique-width is
unbounded. For an induced subgraph G′ of a graph G, the subgraph complemen-
tation operation replaces every edge present in G′ by a non-edge, and vice versa.
For two disjoint vertex subsets S and T in G, the bipartite complementation
operation replaces every edge with one end-vertex in S and the other one in T
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by a non-edge and vice versa. Let k ≥ 0 be a constant and let γ be some graph
operation. A class G′ is (k, γ)-obtained from a class G if:

1. every graph in G′ is obtained from a graph in G by performing γ at most k
times, and

2. for every G ∈ G there exists at least one graph in G′ obtained from G by
performing γ at most k times.

We say that γ preserves boundedness of clique-width if for any finite constant
k and any graph class G, any graph class G′ that is (k, γ)-obtained from G has
bounded clique-width if and only if G has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [19].

Fact 2. Subgraph complementation preserves boundedness of clique-width [15].

Fact 3. Bipartite complementation preserves boundedness of clique-width [15].

Lemma 1 [5]. Let G be a graph and let P be the set of all induced subgraphs
of G that are prime. Then cw(G) = maxH∈P cw(H).

Lemma 2 [6]. Let G be a connected (K3, C5, S1,2,3)-free graph that does not
contain a pair of false twins. Then G is either bipartite or a cycle.

A quasi order ≤ on a set X is a reflexive, transitive binary relation. Two elements
x, y ∈ X in this quasi-order are comparable if x ≤ y or y ≤ x, otherwise they
are incomparable. A set of elements in a quasi-order is a chain if every pair
of elements is comparable and it is an antichain if every pair of elements is
incomparable. The quasi-order ≤ is a well-quasi-order if any infinite sequence
of elements x1, x2, x3, . . . in X contains a pair (xi, xj) with xi ≤ xj and i < j.
Equivalently, a quasi-order is a well-quasi-order if and only if it has no infinite
strictly decreasing sequence x1 � x2 � x3 � · · · and no infinite antichain. For
an arbitrary set M , let M∗ denote the set of finite sequences of elements of M . A
quasi-order ≤ on M defines a quasi-order ≤∗ on M∗ as follows: (a1, . . . , am) ≤∗

(b1, . . . , bn) if and only if there is a sequence of integers i1, . . . , im with 1 ≤ i1 <
· · · < im ≤ n such that aj ≤ bij for j ∈ {1, . . . ,m}. We call ≤∗ the subsequence
relation.

Lemma 3 (Higman’s Lemma [14]). If (M,≤) is a well-quasi-order then
(M∗,≤∗) is a well-quasi-order.

For a quasi-order (W,≤), a graph G is a labelled graph if each vertex v of G is
equipped with an element lG(v) ∈ W (the label of v). Given two labelled graphs
G and H, we say that G is a labelled induced subgraph of H if G is isomorphic to
an induced subgraph of H and there is an isomorphism that maps each vertex
v of G to a vertex w of H with lG(v) ≤ lH(w). Clearly, if (W,≤) is a well-
quasi-order, then a class of graphs X cannot contain an infinite sequence of
labelled graphs that is strictly-decreasing with respect to the labelled induced
subgraph relation. We therefore say that a graph class X is well-quasi-ordered
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by the labelled induced subgraph relation if it contains no infinite antichains of
labelled graphs whenever (W,≤) is a well-quasi-order. Such a class is readily
seen to also be well-quasi-ordered by the induced subgraph relation. Similarly
to the notion of preserving boundedness of clique-width, we say that a graph
operation γ preserves well-quasi-orderability by the labelled induced subgraph
relation if for any finite constant k and any graph class G, any graph class G′

that is (k, γ)-obtained from G is well-quasi-ordered by this relation if and only
if G is.

Lemma 4 [7]. Subgraph and bipartite complementations and vertex deletion
preserve well-quasi-orderability by the labelled induced subgraph relation.

Lemma 5 [1]. A hereditary class X of graphs is well-quasi-ordered by the
labelled induced subgraph relation if and only if the set of prime graphs in X
is. In particular, X is well-quasi-ordered by the labelled induced subgraph rela-
tion if and only if the set of connected graphs in X is.

Lemma 6 [1,17]. (P7, S1,2,3)-free bipartite graphs are well-quasi-ordered by the
labelled induced subgraph relation.

Let (L1,≤1) and (L2,≤2) be well-quasi-orders. We define the Cartesian Product
(L1,≤1) × (L2,≤2) of these well-quasi-orders as the order (L,≤L) on the set
L := L1 × L2 where (l1, l2) ≤L (l′1, l

′
2) if and only if l1 ≤1 l′1 and l2 ≤2 l′2.

Lemma 3 implies that (L,≤L) is also a well-quasi-order. If G has a labelling
with elements of L1 and of L2, say l1 : V (G) → L1 and l2 : V (G) → L2, we can
construct the combined labelling in (L1,≤1) × (L2,≤2) that labels each vertex v
of G with the label (l1(v), l2(v)). We omit the proof of the next lemma.

Lemma 7. Fix a well-quasi-order (L1,≤1) that has at least one element. Let
X be a class of graphs. For each G ∈ X fix a labelling l1G : V (G) → L1. Then
X is well-quasi-ordered by the labelled induced subgraph relation if and only if
for every well-quasi-order (L2,≤2) and every labelling of the graphs in X by this
order, the combined labelling in (L1,≤1)×(L2,≤2) obtained from these labellings
also results in a well-quasi-ordered set of labelled graphs.

For an integer k ≥ 1, a graph G is k-uniform if there is a symmetric square
0, 1 matrix K of order k and a graph Fk on vertices 1, 2, . . . , k such that G ∈
P(K,Fk), where P(K,Fk) is a graph class defined as follows. Let H be the
disjoint union of infinitely many copies of Fk. For i = 1, . . . , k, let Vi be the subset
of V (H) containing vertex i from each copy of Fk. Construct from H an infinite
graph H(K) on the same vertex set by applying a subgraph complementation
to Vi if and only if K(i, i) = 1 and by applying a bipartite complementation to
a pair Vi, Vj if and only if K(i, j) = 1. Thus, two vertices u ∈ Vi and v ∈ Vj are
adjacent in H(K) if and only if uv ∈ E(H) and K(i, j) = 0 or uv /∈ E(H) and
K(i, j) = 1. Then, P(K,Fk) is the hereditary class consisting of all the finite
induced subgraphs of H(K). The minimum k such that G is k-uniform is the
uniformicity of G. The second of the next two lemmas follows directly from the
above definitions.
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Lemma 8 [18]. Any class of graphs of bounded uniformicity is well-quasi-
ordered by the labelled induced subgraph relation.

Lemma 9. Every k-uniform graph has clique-width at most 2k.

3 Partitioning 3-Partite Graphs

Let G be a 3-partite graph given with a partition of its vertex set into three
independent sets V1, V2 and V3. Suppose each Vi can be partitioned into
sets V 0

i , . . . , V �
i such that, taking subscripts modulo 3: for i ∈ {1, 2, 3} if j < k

then V j
i is complete to V k

i+1 and anti-complete to V k
i+2. For i ∈ {0, . . . , �} let

Gi = G[V i
1 ∪V i

2 ∪V i
3 ]. Then the graphs Gi are the slices of G. If the slices belong

to some class X, then G can be partitioned into slices from X; see Fig. 1 for an
example.

V1 V2 V3

G0

G1

G2

G3

Fig. 1. A 3-partite graph that is partitioned into slices G0, . . . , G3 isomorphic to P3.

Lemma 10. If G is a 3-partite graph that can be partitioned into slices of clique-
width at most k then G has clique-width at most max(3k, 6).

Proof. Since every slice Gj of G has clique-width at most k, it can be con-
structed using the labels 1, . . . , k. Applying relabelling operations if necessary,
we may assume that at the end of this construction, every vertex receives
the label 1. We can modify this construction so that we use the labels
11, . . . , k1, 12, . . . , k2, 13, . . . , k3 instead, in such a way that at all points in the
construction, for each i ∈ {1, 2, 3} every constructed vertex in Vi has a label in
{1i, . . . , ki}. To do this we replace:

– creation operations i(v) by ij(v) if v ∈ Vj ,
– relabel operations ρj→k() by ρj1→k1(ρj2→k2(ρj3→k3())) and
– join operations ηj,k() by

ηj1,k1(ηj1,k2(ηj1,k3(ηj2,k1(ηj2,k2(ηj2,k3(ηj3,k1(ηj3,k2(ηj3,k3())))))))).
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This modified construction uses 3k labels and at the end of it, every vertex in Vi

is labelled with label 1i. We may do this for every slice Gj of G independently. We
now show how to use these constructed slices to construct G[V (G0)∪· · ·∪V (Gj)]
using six labels in such a way that every vertex in Vi is labelled with label 1i. We
do this by induction. If j = 0 then G[V (G0)] = G0, so we are done. If j > 0
then by the induction hypothesis, we can construct G[V (G0) ∪ · · · ∪ V (Gj−1)] in
this way. Consider the copy of Gj constructed earlier and relabel its vertices using
the operations ρ11→21 , ρ12→22 and ρ13→23 so that in this copy of Gj , every vertex
in Vi is labelled 2i. Next take the disjoint union of the obtained graph with the
constructed G[V (G0) ∪ · · · ∪ V (Gj−1)]. Then, apply join operations η11,22 , η12,23

and η13,21 . Finally, apply the relabelling operations ρ21→11 , ρ22→12 and ρ23→13 .
This constructs G[V (G0) ∪ · · · ∪ V (Gj)] in such a way that every vertex in Vi is
labelled with 1i. By induction, G has clique-width at most max(3k, 6). 
�
Lemma 11. Let X be a hereditary graph class containing a class Z. Let Y be
the set of 3-partite graphs in X that can be partitioned into slices from Z. If Z
is well-quasi-ordered by the labelled induced subgraph relation then so is Y .

Proof. For each graph G in Y , we may fix a partition into independent sets
(V1, V2, V3) with respect to which the graph can be partitioned into slices from
Z. Let (L1,≤1) be the well-quasi-order with L1 = {1, 2, 3} in which every pair of
distinct elements is incomparable. By Lemma 7, we need only consider labellings
of graphs in G of the form (i, l(v)) where v ∈ Vi and l(v) belongs to an arbitrary
well-quasi-order L. Suppose G can be partitioned into slices G1, . . . , Gk, with ver-
tices labelled as in G. The slices along with the labellings completely describe the
edges in G. Suppose H is another such graph, partitioned into slices H1, . . . , Hk.
If (H1, . . . , H�) is smaller than (G1, . . . , Gk) under the subsequence relation, then
H is an induced subgraph of G. The result follows by Lemma 3. 
�

We will now introduce curious graphs. Let G be a 3-partite graph given
together with a partition of its vertex set into three independent sets V1, V2

and V3. An induced K3 or 3P1 in G is rainbow if it has exactly one vertex in
each set Vi. We say that G is curious with respect to the partition (V1, V2, V3)
if it contains no rainbow K3 or 3P1 when its vertex set is partitioned in this
way. We say that G is curious if there is a partition (V1, V2, V3) with respect to
which G is curious. We will prove that given a hereditary class X, if the bipartite
graphs in X are well-quasi-ordered by the labelled induced subgraph relation or
have bounded clique-width, then the same is true for the curious graphs in X.
A linear order (x1, x2, . . . , xk) of the vertices of an independent set I is

– increasing if i < j implies N(xi) ⊆ N(xj),
– decreasing if i < j implies N(xi) ⊇ N(xj),
– monotone if it is either increasing or decreasing.

Bipartite graphs that are 2P2-free are also known as bipartite chain graphs.
It is readily seen that a bipartite graph G is 2P2-free if and only if the vertices in
each independent set of the bipartition admit a monotone ordering. Suppose G
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is a curious graph with respect to some partition (V1, V2, V3). We say that (with
respect to this partition) the graph G is a curious graph of type t if exactly t of
the graphs G[V1 ∪ V2], G[V1 ∪ V3] and G[V2 ∪ V3] contain an induced 2P2. If G
is a curious graph of type 0 or 1 with respect to the partition (V1, V2, V3) then
without loss of generality, we may assume that G[V1 ∪ V2] and G[V1 ∪ V3] are
both 2P2-free. We omit the proof of the next lemma.

Lemma 12. Let G be a curious graph with respect to (V1, V2, V3), such that
G[V1 ∪ V2] and G[V1 ∪ V3] are both 2P2-free. Then the vertices of V1 admit a
linear ordering which is decreasing in G[V1 ∪ V2] and increasing in G[V1 ∪ V3].

Lemma 13. If G is a curious graph of type 0 or 1 with respect to a partition
(V1, V2, V3) then G can be partitioned into slices that are bipartite.

Proof. Let x1, . . . , x� be a linear order on V1 satisfying Lemma 12. Let V 0
1 = ∅

and for i ∈ {1, . . . , �}, let V i
1 = {xi}. We partition V2 and V3 as follows. For

i ∈ {0, . . . , �}, let V i
2 = {y ∈ V2 | xjy ∈ E(G) if and only if j ≤ i}. For

i ∈ {0, . . . , �}, let V i
3 = {z ∈ V3 | xjz /∈ E(G) if and only if j ≤ i}. In particular,

note that the vertices of V �
2 ∪ V 0

3 and V 0
2 ∪ V �

3 are complete and anti-complete
to V1, respectively. The following properties hold: if j < k then V j

1 is complete
to V k

2 and anti-complete to V k
3 , and if j > k then V j

1 is anti-complete to V k
2 and

complete to V k
3 . If j < k and y ∈ V j

2 is non-adjacent to z ∈ V k
3 then G[xk, y, z] is

a rainbow 3P1, a contradiction. If j > k and y ∈ V j
2 is adjacent to z ∈ V k

3 then
G[xj , y, z] is a rainbow K3, a contradiction. It follows that: if j < k then V j

2 is
complete to V k

3 and if j > k then V j
2 is anti-complete to V k

3 .
For i ∈ {0, . . . , �}, let Gi = G[V i

1 ∪ V i
2 ∪ V i

3 ]. The above properties about
the edges between the sets V i

j show that G can be partitioned into the slices
G0, . . . , G�. Now, for each i ∈ {0, . . . , �}, V i

1 is anti-complete to V i
3 , so every

slice Gi is bipartite. This completes the proof. 
�
Lemma 14. Fix t ∈ {2, 3}. If G is a curious graph of type t with respect to a
partition (V1, V2, V3) then G can be partitioned into slices of type at most t − 1.

Proof Sketch. Fix t ∈ {2, 3} and let G be a curious graph of type t with respect
to a partition (V1, V2, V3). We may assume that G[V1 ∪ V2] contains an induced
2P2.

We start with the following claim (we omit the proof).

Claim 1. Given a 2P2 in G[V1∪V2], every vertex of V3 has exactly two neighbours
in the 2P2 and these neighbours either both lie in V1 or both lie in V2.

Consider a maximal set {H1, . . . , Hq} of vertex-disjoint sets that induce copies
of 2P2 in G[V1 ∪ V2]. We say that a vertex of V3 distinguishes two graphs G[Hi]
and G[Hj ] if its neighbours in Hi and Hj do not belong to the same set Vk.
We group these sets Hi into blocks B1, . . . , Bp that are not distinguished by any
vertex of V3. In other words, every Bi contains at least one 2P2 and every vertex
of V3 is complete to one of the sets Bi ∩V1 and Bi ∩V2 and anti-complete to the
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other. For j ∈ {1, 2}, let Bi
j = Bi ∩ Vj . We define a relation <B on the blocks

as follows: Bi <B Bj holds if Bi
1 is complete to Bj

2, while Bi
2 is anti-complete

to Bj
1. For distinct blocks Bi, Bj at most one of Bi <B Bj and Bj <B Bi can

hold.
We need the following two claims (we omit their proofs).

Claim 2. Let Bi and Bj be distinct blocks. There is a vertex z ∈ V3 that differ-
entiates Bi and Bj. If z is complete to Bi

2 ∪ Bj
1 and anti-complete to Bi

1 ∪ Bj
2

then Bi <B Bj (see also Fig. 2). If z is complete to Bj
2 ∪ Bi

1 and anti-complete
to Bj

1 ∪ Bi
2 then Bj <B Bi.

V1 V2 V3

Bi

Bj

z

Fig. 2. Two blocks Bi and Bj with Bi <B Bj and a vertex z ∈ V3 differentiating
them.

Claim 3. The relation <B is transitive.

Combining Claims 1–3, we find that <B is a linear order on the blocks. We
obtain the following conclusion, which we call the chain property.

Claim 4. The set of blocks has a linear order B1 <B B2 <B · · · <B Bp so that

(i) if i < j then Bi
1 is complete to Bj

2, while Bi
2 is anti-complete to Bj

1 and
(ii) for each z ∈ V3 there exists an i ∈ {0, . . . , p} such that if j ≤ i then z is

complete to Bj
2 and anti-complete to Bj

1 and if j > i then z is anti-complete
to Bj

2 and complete to Bj
1.
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We now consider the set of vertices in V1 ∪ V2 that do not belong to any set Bi.
Let R denote this set and note that G[R] is 2P2-free by maximality of the set
{H1, . . . , Hq}. For i ∈ {1, 2} let Ri = R ∩ Vi. We make the following claim (we
omit its proof).

Claim 5. If x ∈ R1 has a neighbour in Bi
2, then x is complete to Bi+1

2 , and if
x has a non-neighbour in Bi

2, then x is anti-complete to Bi−1
2 . If x ∈ R2 has a

non-neighbour in Bi
1, then x is anti-complete to Bi+1

1 , and if x has a neighbour
in Bi

1, then x is complete to Bi−1
1 .

Claim 5 allows us to update the sequence of blocks as follows:

Update Procedure. For i ∈ {1, 2}, if Ri contains a vertex x that has both a
neighbour y and a non-neighbour y′ in Bj

3−i for some j, we add x to the sets Bj
i

and Bj and remove it from Ri.
We make the following claim (we omit its proof).

Claim 6. Applying the Update Procedure preserves the chain property of the
blocks Bi.

By Claim 6 we may apply the Update Procedure exhaustively, after which
the chain property will continue to hold. Once this procedure is complete, every
remaining vertex of R1 will be either complete or anti-complete to each set Bj

2. In
fact, by Claim 5, we know that for every vertex x ∈ R1, there is an i ∈ {0, . . . , p}
such that x has a neighbour in all Bj

2 with j > i (if such a j exists) and x has a
non-neighbour in all Bj

2 with j ≤ i (if any such j exists). Since x is complete or
anti-complete to each set Bj

2, we obtain the following conclusion:

– for every vertex x ∈ R1, there is an i ∈ {0, . . . , p} such that x is complete to
all Bj

2 with j > i (if such a j exists) and x is anti-complete to all Bj
2 with

j ≤ i (if any such j exists). We denote the corresponding subset of R1 by Y i
1 .

By symmetry, we also obtain the following:

– for every vertex x ∈ R2, there is an i ∈ {0, . . . , p} such that x is complete to
all Bj

1 with j ≤ i (if such a j exists) and x is anti-complete to all Bj
1 with

j > i (if any such j exists). We denote the corresponding subset of R2 by Y i
2 .

We also partition the vertices of V3 into p + 1 subsets V 0
3 , . . . , V p

3 such that
the vertices of V j

3 are complete to Bi
2 and anti-complete to Bi

1 for i ≤ j and
complete to Bi

1 and anti-complete to Bi
2 for i > j. (So V 0

3 is complete to B1
i for

all i and V p
3 is complete to B2

i for all i).

Claim 7. For each i, if j < i then V i
3 is anti-complete to Y j

1 and complete to
Y j
2 , and if j > i then V i

3 is complete to Y j
1 and anti-complete to Y j

2 .
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Suppose that z ∈ V i
3 and x ∈ Y j

1 and y ∈ Y j
2 (note that such vertices x and y

do not exist if Y j
1 or Y j

2 , respectively, is empty). First suppose that j < i and
choose arbitrary vertices x′ ∈ Bi

1, y′ ∈ Bi
2. Note that x and z are both complete

to Bi
2 and y and z are both anti-complete to Bi

1. Then z cannot be adjacent
to x otherwise G[x, y′, z] would be a rainbow K3 and z must be adjacent to
y, otherwise G[x′, y, z] would be a rainbow 3P1. Now suppose i < j and choose
arbitrary vertices x′ ∈ Bi+1

1 , y′ ∈ Bi+1
2 . Note that x and z are both anti-complete

to Bi+1
2 and y and z are both complete to Bi+1

1 . Then z must be adjacent to x
otherwise G[x, y′, z] would be a rainbow 3P1 and z must be non-adjacent to y,
otherwise G[x′, y, z] would be a rainbow K3. This completes the proof of Claim 7.

Let Gi denote the subgraph of G induced by Y i
1 ∩ Y i

2 ∩ V i
3 . By Claims 4, 6 and

7 the graph G can be partitioned into slices: G0, G[B1], G1, G[B2], . . . , G[Bp], Gp.
Recall that the graph G is of type t and G[V1 ∪ V2] contains an induced 2P2.
Since G[Y i

1 ∪ Y i
2 ] is 2P2-free (by construction, since the original sequence

H1,H2, . . . , Hq of 2P2s was maximal), it follows that each Gi is of type at most
t − 1. Furthermore, since each G[Bi] is bipartite, it forms a curious graph in
which the set V3 is empty, so it has type at most 1. This completes the proof. 
�

We are now ready to state the main result of this section.

Theorem 4. Let X be a hereditary class of graphs. If the set of bipartite
graphs in X is well-quasi-ordered by the labelled induced subgraph relation or
has bounded clique-width, then this property also holds for the set of curious
graphs in X.

Proof. Suppose that the class of bipartite graphs in X is well-quasi-ordered by
the labelled induced subgraph relation or has bounded clique-width. By Lemmas
10, 11 and 13, the curious graphs of type at most 1 also have this property.
Applying Lemmas 10, 11 and 14 once, we obtain the same conclusion for curious
graphs of type at most 2. Applying Lemmas 10, 11 and 14 again, we obtain
the same conclusion for curious graphs of type at most 3, that is, all curious
graphs. 
�

4 Applications of Our Technique

We start with two lemmas. The first is implicit in the proofs of Lemma 9 and
Theorem 3 in [6]; we omit the proof of the second.

Lemma 15 [6]. There is a constant c, such that given any (K3, P1 + P5)-free
graph G that contains an induced C5, we can apply at most c vertex deletions
and at most c bipartite complementation operations to obtain a graph H that is
the disjoint union of (K3, P1 + P5)-free curious graphs.

Lemma 16. There is a constant c, such that given any prime (K3, P2+P4)-free
graph G that contains an induced C5, we can apply at most c vertex deletions
and at most c bipartite complementation operations to obtain a graph H that is
the disjoint union of (K3, P2 + P4)-free curious graphs and 3-uniform graphs.
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We can now prove the following theorem.1

Theorem 5. For H ∈ {P2+P4, P1+P5} the class of (K3,H)-free graphs is well-
quasi-ordered by the labelled induced subgraph relation and has bounded clique-
width.

Proof. Let H ∈ {P2 + P4, P1 + P5}. By Lemmas 1 and 5, we need only consider
prime graphs in this class. Recall that a prime graph on at least three vertices
cannot contain two vertices that are false twins, otherwise these two vertices
would form a non-trivial module. Therefore, by Lemma 2, and since H ⊆i S1,2,3,
the classes of prime (K3,H)-free graphs containing an induced C7 is precisely the
graph C7. We may therefore restrict ourselves to C7-free graphs. Since the graphs
in the class are H-free, it follows they contain no induced cycles on eight or more
vertices. We may therefore restrict ourselves to prime (K3, C7,H)-free graphs
that either contain an induced C5 or are bipartite. By Lemmas 15 or 16, given
any prime (K3, C7,H)-free that contains an induced C5, we can apply at most a
constant number of vertex deletions and bipartite complementation operations
to obtain a graph that is a disjoint union of (K3,H)-free curious graphs and (in
the H = P2 + P4 case) 3-uniform graphs. By Lemmas 4, 8 and 9, Facts 1 and 3,
and Theorem 4, it is sufficient to only consider bipartite (K3, C7,H)-free graphs.
These graphs are H-free bipartite graphs. Furthermore, they form a subclass of
the class of (P7, S1,2,3)-free bipartite graphs, since H ⊆i P7, S1,2,3. (P7, S1,2,3)-
free bipartite graphs are well-quasi-ordered by the labelled induced subgraph
relation by Lemma 6 and have bounded clique-width by Theorem 3. 
�
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Abstract. The square of a given graph H = (V, E) is obtained from H
by adding an edge between every two vertices at distance two in H. Given
a graph class H, the H-Square Root problem asks for the recognition
of the squares of graphs in H. In this paper, we answer positively to
an open question of [Golovach et al. IWOCA 2016] by showing that
the squares of cactus-block graphs can be recognized in polynomial time.
Our proof is based on new relationships between the decomposition of
a graph by cut-vertices and the decomposition of its square by clique
cutsets. More precisely, we prove that the closed neighbourhoods of cut-
vertices in H induce maximal subgraphs of G = H2 with no clique-cutset.
Furthermore, based on this relationship, we can compute from a given
graph G the block-cut tree of a desired square root (if any). Although
the latter tree is not uniquely defined, we show surprisingly that it can
only differ marginally between two different roots. Our approach not
only gives the first polynomial-time algorithm for the H-Square Root
problem for several graph classes H, but it also provides a unifying
framework for the recognition of the squares of trees, block graphs and
cactus graphs—among others.

1 Introduction

This paper deals with the well-known concepts of square and square root in
graph theory. Roughly, the square of a given graph is obtained by adding an edge
between the pairs of vertices at distance two (technical definitions are postponed
to Sect. 2). A square root of a given graph G has G as its square. The reason for
this terminology is that when encoding a graph as an adjacency matrix A (with
1′s on the diagonal), its square has for adjacency matrix A2–obtained from A
using Boolean matrix multiplication. The squares of graphs appear, somewhat
naturally, in the study of coloring problems: when it comes about modelling inter-
ferences at a bounded distance in a radio network [46]. Unsurprisingly, there is
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an important literature on the topic, with nice structural properties of square
graphs being undercovered [2,6,15,30,33,35]. In particular, an elegant character-
ization of the squares of graphs has been given in [37]. However, this does not lead
to an efficient (polynomial-time) algorithm for recognizing square graphs. Our
main focus in the paper is on the existence of such algorithms. They are, in fact,
unlikely to exist since the problem has been proved NP-complete [36]. In light
of this negative result, there has been a growing literature trying to identify the
cases where the recognition of the squares of graphs remains tractable [10,22,25–
27,32,38]. We are interested in the variant where the desired square root (if any)
must belong to some specified graph class.

1.1 Related Work

There is a complete dichotomy result for the problem when it is parameterized
by the girth of a square root. More precisely, the squares of graphs with girth at
least six can be recognized in polynomial time, and it is NP-complete to decide
whether a graph has a square root with girth at most five [1,13,14]. One first
motivation for our work was to obtain similar dichotomy results based on the
separators in a square root. We are thus more interested in graph classes with
nice separability properties, such as chordal graphs. Recognizing the squares of
chordal graphs is already NP-complete [26]. However, it can be done in polyno-
mial time for many subclasses [26–28,34,39,43].

The most relevant examples to explain our approach are the classes of
trees [43], block graphs [28] and cacti [19]. The squares of all these graphs can be
recognized in polynomial time. Perhaps surprisingly, whereas the case of trees
is a well-known success story for which many algorithmic improvements have
been proposed over the years [9,28,32,43], the polynomial-time recognition of
the squares of cactus graphs has been proved only very recently. A common
point to these three above classes of graphs is that they can be decomposed
into very simple subgraphs by using cut-vertices (respectively, in edges for trees,
in complete graphs for block graphs and in cycles for cactus graphs). This fact
is exploited in the polynomial-time recognition algorithms for the squares of
these graphs. We observe that more generally, cut-vertices play a discrete, but
important role, in the complexity of the recognition of squares, even for general
graphs. As an example, most hardness results rely on a gadget called a “tail”,
that is a particular case of cut-vertices in the square roots [14,36]. Interestingly,
this tail construction imposes for some vertex in the square to be a cut-vertex
with the same closed neighbourhood in any square root. It is thus natural to
ask whether more general considerations on the cut-vertices can help to derive
additional constraints on the closed neighbourhoods in these roots. Our results
prove that it is the case.

As stated before, we are not the first to study the properties of cut-vertices
in the square roots. In this respect, the work in [19] has been a major source of
inspiration for this paper. However, most of the results so far obtained are specific
to some graph classes and they hardly generalize to more general graphs [19,28].
Evidence of this fact is that whereas both the squares of block graphs and the
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squares of cacti can be recognized in polynomial time, the techniques involved
in these two cases do not apply to the slightly more general class of cactus-
block graphs (graphs that can be decomposed by cut-vertices into cycles and
complete graphs) [19]. In the end, the characterization of the cut-vertices in
these roots is only partial – even for cactus roots –, with most of the technical
work for the recognition algorithm being rather focused on the notion of tree
decompositions (e.g., clique-trees for chordal squares, or decomposition of the
square into bounded-treewidth graphs). Roughly, tree decompositions [42] aim
at decomposing graphs into pieces, called bags, organized in a tree-like man-
ner. The decomposition of a square root of a graph by its cut-vertices leads
to a specific type of tree decompositions for this graph that are called “H-tree
decompositions” [18]. Note that it is not known whether a H-tree decomposition
can be computed in polynomial time. In contrast, we use in this work another
type of tree decompositions, called an atom tree, that generalizes the notion of
clique-trees for every graph. It can be computed in polynomial time [4].

1.2 Our Contributions

Our work is based on new relationships between the cut-vertices in a given graph
and the clique-cutsets of its square (separators being a clique). These results are
presented in Sect. 3. In particular, we obtain a complete characterization of the
atoms of a graph (maximal subgraphs with no clique cutset) based on the blocks
of its square roots (maximal subgraphs with no cut-vertices).

The most difficult part is to show how to “reverse” these relationships: from
the square back to a square root. We prove in Sect. 4 that it can be done to some
extent. More precisely, in Sect. 4.1 we show that the “essential” cut-vertices of
the square roots, with at least two connected components not fully contained in
their closed neighbourhoods, are in some sense unique (independent of the root)
and that they can be computed in polynomial time, along with their closed
neighbourhood in any square root. Indeed, structural properties of these ver-
tices allow to reinterpret them as the cut-vertices of some incidence graphs that
can be locally constructed from the intersection of the atoms in an atom tree
(tree decomposition whose bags are exactly the atoms). Proving a similar char-
acterization for non essential cut-vertices remains to be done. We give sufficient
conditions and a complete characterization of the closed neighbourhoods of the
non essential cut-vertices for a large class of graphs in Sect. 4.2.

Then, inspired from these above results, we introduce a novel framework in
Sect. 5 for the recognition of squares1. Assuming a square root exists, we can
push further some ideas of Sect. 4 in order to compute, for every block in this
root, a graph that is isomorphic to its square. This way, a square root can be
computed for each square of a block separately. However, we need to impose
additional constraints on these roots in order to be able to reconstruct from
them a square root for the original graph. We thus reduce the recognition of

1 Sufficient conditions for the framework to be applied are rather technical. They will
be properly stated in a journal version.
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the squares to a stronger variant of the problem for the squares of biconnected
graphs. Let us point out that this approach can be particularly beneficial when
the blocks of a root are assumed to be part of a well-structured graph class.

In Sect. 6, we finally answer positively to an open question of [19] by proving
that the squares of cactus-block graphs can be recognized in polynomial time.
Our result is actually much more general, as it gives a unifying algorithm for
many graph classes already known to be tractable (e.g., trees, block graphs and
cacti) and it provides the first polynomial time recognition algorithm for the
squares of related graph classes – such as Gallai trees [16]. In its full generality,
the result applies to “j-cactus-block graphs”: a generalization of cactus-block
graphs where each block is either a complete graph or the kth-power of a cycle,
for some 1 ≤ k ≤ j. As expected this last result is obtained by using our
framework. This application is not straightforward. Indeed, we need to show the
existence of a j-cactus-block root with some “good” properties in order for the
framework to be applied. We also need to show that a stronger variant of the
recognition of squares (discussed in Sect. 5) can be solved in polynomial time
for j-cactus-block graphs when j is a fixed constant. We do so by introducing
classical techniques from the study of circular-arc graphs [45].

Although we keep the focus on square roots, we think that our approach
could be generalized in order to compute the cut-vertices in the p-th roots of a
graph (e.g., see [9] for related work on p-th tree roots). This is left for future
work. Due to lack of space, most proofs are only sketched or postponed to our
technical report [11]. Definitions and preliminary results are given in Sect. 2. We
conclude this paper in Sect. 7 with some open questions.

2 Preliminaries

We use standard graph terminology from [7]. All graphs in this study are finite,
unweighted and simple (hence with neither loops nor multiple edges), unless
stated otherwise. Given a graph G = (V,E) and a set S ⊆ V , we will denote
by G[S] the subgraph of G that is induced by S. The open neighbourhood of
S, denoted by NG(S), is the set of all vertices in G[V \S] that are adjacent to
at least one vertex in S. Similarly, the closed neighbourhood of S is denoted
by NG[S] = NG(S) ∪ S. For every u, v ∈ V , vertex v is dominated by u if
NG[v] ⊆ NG[u]. In particular, if NG[u] = NG[v] then we say u and v are true
twins. If even more strongly, we have NG[w] ⊆ NG[u] for every w ∈ NG[v], then
u is a maximum neighbour of v.

2.1 Squares and Powers of Graphs

For every connected graph G and for every u, v ∈ V , the distance between u
and v in G, denoted by distG(u, v), is equal to the minimum length (number
of edges) of a uv-path in G. The jth-power of G is the graph Gj = (V,Ej)
with same vertex-set as G and an edge between every two distinct vertices at
distance at most j in G. In particular, the square of a graph G = (V,E) is the
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graph G2 = (V,E2) with same vertex-set V as G and an edge between every
two distinct vertices u, v ∈ V such that NG[u] ∩ NG[v] �= ∅. Conversely, if there
exists a graph H such that G is isomorphic to H2 then H is called a square root
of G. On the one hand it is easy to see that not all graphs have a square root.
For example, if G is a tree with at least three vertices then it does not have
any square root. On the other hand, note that a graph can have more than one
square root. As an example, the complete graph Kn with n-vertices is the square
of any diameter two n-vertex graph.

In what follows, we will focus on the following recognition problem:

Problem 1 (H-square root).

Input: A graph G = (V,E).
Question: Is G the square of a graph in H?

Our proofs will make use of the notions of subgraphs, induced subgraphs and
isometric subgraphs, the latter denoting a subgraph H of a connected graph G
such that distH(x, y) = distG(x, y) for every x, y ∈ V (H). Furthermore, let H be
a square root of a given graph G = (V,E). Given a walk W = (x0, x1, . . . , xl) in
G, an H-extension of W is any walk W ′ of H that is obtained from W by adding,
for every i such that xi and xi+1 are nonadjacent in H, a common neighbour
yi ∈ NH(xi) ∩ NH(xi+1) between xi and xi+1.

2.2 Graph Decompositions

A set S ⊆ V is a separator in a graph G = (V,E) if its removal increases the
number of connected components. A full component in G[V \S] is any connected
component C in G[V \S] satisfying that NG(C) = S (note that a full component
might fail to exist). The set S is called a minimal separator in G if it is a sepa-
rator and there are at least two full components in G[V \S]. Minimal separators
are closely related to the notion of Robertson and Seymour’s tree decompositions
(e.g., see [8,20,23,40]). Formally, a tree-decomposition (T,X ) of G is a pair con-
sisting of a tree T and of a family X = (Xt)t∈V (T ) of subsets of V indexed by
the nodes of T and satisfying:

–
⋃

t∈V (T ) Xt = V ;
– for any edge e = {u, v} ∈ E, there exists t ∈ V (T ) such that u, v ∈ Xt;
– for any v ∈ V , {t ∈ V (T ) | v ∈ Xt} induces a subtree, denoted by Tv, of T .

The sets Xt are called the bags of the decomposition.
In what follows, we will consider two main types of minimal separators.

Cut-Vertices. If S = {v} is a separator then it is a minimal one and we call it a
cut-vertex of G. Following the terminology of [19], we name v an essential cut-
vertex if there are at least two components C1, C2 of G\v such that C1 �⊆ NG(v)
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and similarly C2 �⊆ NG(v); otherwise, v is called a non essential cut-vertex2.
A graph G = (V,E) is biconnected if it is connected and it does not have a
cut-vertex. Examples of biconnected graphs are cycles and complete graphs.
Furthermore, the blocks of G are the maximal biconnected subgraphs of G. For
every connected graph G there is a tree whose nodes are the blocks and the
cut-vertices of G, sometimes called the block-cut tree, that is obtained by adding
an edge between every block B and every cut-vertex v such that v ∈ B. The
block-cut tree of a given connected graph G can be computed in linear time [24].

It has been observed that every graph with a square root is biconnected [15].
We often use this fact in what follows.

Clique Cutsets. More generally, if S is a minimal separator inducing a complete
subgraph of G = (V,E) then we call it a clique cutset of G. A connected graph
G = (V,E) is prime if it does not have a clique cutset. Cycles and complete
graphs are again examples of prime graphs, and it can be observed more generally
that every prime graph is biconnected. The atoms of G are the maximal prime
subgraphs of G. They can be computed in polynomial time [29,44]. A clique-
atom is an atom inducing a complete subgraph. Furthermore, a simplicial vertex
is a vertex v ∈ V such that NG[v] is a clique. If the atoms of G are given,
then the clique-atoms and the simplicial vertices of G can be computed in linear
time [12]. Finally, it has been proved in [4] that the atoms of G are the bags of
a tree decomposition of G, sometimes called an atom tree. An atom tree can be
computed in O(nm)-time, and it is not necessarily unique [4].

3 Basic Properties of the Atoms in a Square

We start presenting relationships between the block-cut tree of a given graph
and the decomposition of its square by clique cutsets (Theorem 1). These rela-
tionships are compared after the proof to some existing results in the literature
for the H-square root problem. More precisely, our approach in this paper is
based on the following relationship between the clique cutsets in a graph G and
the cut-vertices in its square-roots (if any).

Proposition 1. Let H = (V,E) be a graph. The closed neighbourhood of any
cut-vertex in H is a clique-atom of G = H2.

Proof. Let v ∈ V be a cut-vertex of H and let Av = NH [v]. It is clear that Av

is a clique of G and so, this set induces a prime subgraph of G. In particular,
Av must be contained in an atom A of G. Suppose for the sake of contradiction
that A �= Av. Let u ∈ A\Av. This vertex u is contained in some connected
component Cu of H\v. Furthermore since v is a cut-vertex of H, there exists w ∈
NH(v)\Cu. We claim that S = (Cu ∩ NH(v))∪{v} is an uw-clique separator of G.

2 The authors in [19] have rather focused on the stronger notion of important cut-
vertices, that requires the existence of an additional third component C3 of G\v
such that C3 �⊆ NG(v). We do not use this notion in our paper.
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Indeed, let us consider any uw-path P in G. We name Q = (x0 = u, x1, . . . , xl =
w) an arbitrary H-extension of P. Since Q is an uw-walk in H, and u and
w are in different connected components of H\v, there exists an i such that
xi ∈ Cu, xi+1 = v. In particular, xi ∈ Cu ∩ NH(v) = S\v. Furthermore, by
construction, for every two consecutive vertices xi, xi+1 in the H-extension Q,
at least one of xi or xi+1 belongs to P. As a result, every uw-path in G intersects
S, that proves the claim and so, that contradicts the fact that A is an atom of
G. Therefore, A = Av. Since Av is a clique it is indeed a clique-atom of G. 	


The above Proposition 1 unifies and generalizes some previous results that
have been found only for specific graph classes [19,28]. For example, it has been
proved in [28] that for every block-graph H, the closed neighbourhoods of its
cut-vertices are maximal cliques of its square. Our result shows that it holds for
any square root H (not only block-graphs). Indeed, a clique-atom is always a
maximal clique. Furthermore, our purpose with Theorem1 is to give a partial
characterization of the remaining atoms of the square. Ideally, we would have
liked them to correspond to the blocks of its square roots. It turns out that this
is not always the case. However, there are strong ties between the two.

Theorem 1. Let H be a square root of a given graph G = (V,E). Then, the
atoms of G are exactly:

– the cliques Av = NH [v], for every cut-vertex v of H;
– and for every block B of H, the atoms A′ of H[B]2 that are not dominated

in H by a cut-vertex.

4 Computation of the Cut-Vertices from the Square

Given a square graph G = (V,E), we aim at computing all the cut-vertices in
some square root H of G. More precisely, given two square roots H1 and H2 of
G, we say that H1 is “finer” than H2 if the blocks of H1 are contained in the
blocks of H2. The latter defines a partial ordering over the square roots of G, of
which we call maxblock square roots its minimal elements. This notion is related
to, but different than, the notion of minimal square root studied in [19]3. The
following section is based on Proposition 1, that gives a necessary condition for
a vertex to be a cut-vertex in any maxblock square root Hmax of G. Indeed, it
follows from this Proposition 1 that there is a mapping from the cut-vertices of
Hmax to the clique-atoms of its square G = H2

max. This mapping is injective but
in general it is not surjective. In what follows, we present sufficient conditions
for a clique-atom of G to be the closed neighbourhood of a cut-vertex in any
maxblock square root of G. In particular, we obtain a complete characterization
for the essential cut-vertices.

3 Let H be closed under edge deletion. If G has a square root in H then there exists
a finest square root H ∈ H such that H is a minimal square root of G.
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4.1 Recognition of the Essential Cut-Vertices

We recall that a cut-vertex v of Hmax is called essential if there are two vertices
in different connected components of Hmax\v that are both at distance two from
v in Hmax. The remaining of the section is devoted to prove the following result.

Theorem 2. Let G = (V,E) be a square graph. Every maxblock square root of
G has the same set C of essential cut-vertices. Furthermore, every vertex v ∈ C
has the same neighbourhood Av in any maxblock square root of G. All the vertices
v ∈ C and their neighbourhood Av can be computed in O(n+m)-time if an atom
tree of G is given.

Algorithm 1. Computation of the essential cut-vertices

Require: A graph G = (V, E); an atom tree (TG, A) of G.
Ensure: Returns (if G is a square) the set C of essential cut-vertices, and for every

v ∈ C its neighbourhood Av, in any maxblock square root of G.
1: C ← ∅.
2: for all clique-atom A ∈ A do
3: Compute the incidence graph IA = Inc(Ω(A), A), with Ω(A) being the multiset

of neighbourhoods of the connected components of G\A.
4: if

⋂

S∈Ω(A)
S = {v} and v is a cut-vertex of IA then

5: C ← C ∪ {v}; Av ← A.

The proof of Theorem2 mainly follows from the correctness proof and the
complexity analysis of Algorithm1. Its basic idea is that the essential cut-vertices
in any maxblock square root of G are exactly the cut-vertices in some “incidence
graphs”, that are locally constructed from the neighbourhoods of each clique-
atom in the atom tree. Formally, for every clique-atom A of G, let Ω(A) contain
NG(C) for every connected component C of G\A (note that Ω(A) is a multiset,
with its cardinality being equal to the number of connected components in G\A).
The incidence graph IA = Inc(Ω(A), A) is the bipartite graph with respective
sides Ω(A) and A and an edge between every S ∈ Ω(A) and every u ∈ S.

We first need to observe that for every v ∈ A, v is a cut-vertex of IA if and
only if there is a bipartition P,Q of the connected components of G\A such that
NG(P )∩NG(Q) = {v}. Then, we subdivide the correctness proof of Algorithm1
in two lemmas.

Lemma 1. Let H be a square root of a given graph G = (V,E), let v ∈ V be an
essential cut-vertex of H and let Av = NH [v]. Then, v has a neighbour in G in
every connected component of G\Av. Furthermore, there is a bipartition P,Q of
the connected components of G\Av such that NG(P ) ∩ NG(Q) = {v}.
Proof. First, observe that for every connected component D of G\Av, we have
that NH(D)∩Av �= ∅. Since Av = NH [v], it follows that v ∈ NG(D). In particu-
lar, v has a neighbour in G in every connected component of G\Av. Second, let
C1, C2, . . . , Ck be all the connected components of H\v such that Ci �⊆ Av. Note
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that k ≥ 2 by the hypothesis. Furthermore, since for every i �= j and for every
ui ∈ Ci\Av, uj ∈ Cj\Av, we have distH(ui, uj) = distH(ui, v) + distH(uj , v) ≥
4, there can be no edge between Ci\Av and Cj\Av in G. It implies that for every
component D of G\Av, there is an 1 ≤ i ≤ k such that D ⊆ Ci\Av. So, let us
group the components of G\Av in order to obtain the sets Ci\Av, 1 ≤ i ≤ k. For
every 1 ≤ i ≤ k, we have {v} ⊆ NG(Ci\Av) ⊆ (NH(v)∩Ci)∪{v}. In particular,
for every i �= j, we obtain NG(Ci\Av) ∩ NG(Cj\Av) = {v}. Hence, let us bipar-
tition the sets Ci\Av into two nonempty supersets P and Q; by construction we
have NG(P ) ∩ NG(Q) = {v}. 	


It turns out that conversely, Lemma 1 also provides a sufficient condition
for a vertex v to be an essential cut-vertex in some square root of G (and in
particular, in any maxblock square root). We formalize this next.

Lemma 2. Let Hmax be a maxblock square root of a given graph G = (V,E),
and let v ∈ V . Suppose there is a clique-atom Av of G and a bipartition P,Q
of the connected components of G\Av such that NG(P ) ∩ NG(Q) = {v}. Then,
for every square root H of G, we have NH(P ) ∪ NH(Q) ⊆ NH(v) ⊆ Av. In
particular, v is an essential cut-vertex of Hmax and NHmax [v] = Av.

Correctness of Algorithm 1 follows from Lemmas 1 and 2. In order to obtain a
linear-time implementation, we replace the incidence graph IA with a “reduced
version” I∗

A, where we only consider the adhesion sets in an atom tree of G
(intersection of A with the adjacent atoms in the atom tree). Indeed, doing
so we simply discard the neighbourhoods of some components that are strictly
contained in the neighbourhood of another component. Using the fact that G is
biconnected, it can be shown that this does not affect the outcome. This allows
us to achieve a time complexity that is linear in the size of the atom tree, and
so, linear in the size of the input graph G.

4.2 Sufficient Conditions for Non Essential Cut-Vertices

We let open whether a good characterization of non essential cut vertices can
be found. The remaining of this section is devoted to partial results in this
direction. In general, not all the maxblock square roots of a graph have the same
set of non essential cut-vertices. Our main result in this section is a complete
characterization of the closed neighbourhoods of such vertices in any finest square
root with some prescribed properties being satisfied by its blocks (Theorem3).

Non essential cut-vertices are strongly related to simplicial vertices in the
square. In general, if a clique-atom of G contains a simplicial vertex then it may
not necessarily represent the closed neighbourhood of such a cut-vertex. However,
we can prove it is always the case if the vertex is simple, i.e., it is simplicial and
the closed neighbourhoods of its neighbours can be linearly ordered by inclusion.

Lemma 3. Let Hmax be a maxblock square root of a graph G = (V,E). If there
exists a simple vertex u in G then it has a neighbour v ∈ NG(u) that is a non
essential cut-vertex of Hmax. Furthermore, NHmax [v] = NG[u].

Before concluding this section, we now state its main result.
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Theorem 3. Let G = (V,E) be a connected graph that is not a complete graph.
Furthermore let Hmax be a finest square root of G with the property that, for
every block B of Hmax, we have: Hmax[B] has no dominated vertex, unless B
is a clique4; and Hmax[B]2 is prime. Then, a clique-atom A of G is the closed
neighbourhood of a non essential cut-vertex in Hmax if and only if it is a leaf in
some atom tree of G.

Sketch Proof. Let H be any square root of G with its blocks satisfying the two
assumptions of the theorem. By analogy between the block-cut tree of H and an
atom tree of G, it can be shown that the closed neighbourhood of a non essential
cut-vertex in H satisfies the condition of the theorem. Conversely, if a clique-
atom of G is a leaf in some atom tree, then either it is the closed neighbourhood
of some (non essential) cut-vertex, or it is the square of a block B of H with
diameter two. In the latter case, we deduce from the hypothesis – that there can
be no dominated vertex in B – that B must contain a single cut-vertex v of H.
Let us pairwise connect all the neighbours of v in B. Then, let us make of all the
remaining vertices in B\NH [v] a set of pending vertices adjacent to an arbitrary
neighbour u ∈ NH(v)∩B. In doing so, we keep the property to be a square root
of G and we strictly increase the number of blocks. 	


5 Reconstructing the Block-Cut Tree of a Square Root

Given a graph G = (V,E), we propose a generic approach in order to compute
the block-cut tree of one of its square-roots (if any). More precisely, we remind
that a square root Hmax of G is called a maxblock square root if there does not
exist any other square root H �= Hmax of G with all its blocks being contained
in the blocks of Hmax. We suppose we are given the closed neighbourhoods of all
the cut-vertices in some maxblock square root Hmax of G (the cut-vertices may
not be part of the input). Based on this information, we show how to compute
for every block of Hmax a graph that is isomorphic to its square.

Theorem 4. Let Hmax be a maxblock square root of a graph G = (V,E), and
let A1, A2, . . . , Ak be the closed neighbourhoods of every cut-vertex in Hmax. For
every block B of Hmax, we can compute a graph GB that is isomorphic to its
square. Furthermore, if B is not isomorphic to K2 then we can also compute the
mapping from V (GB) to B. It can be done in O(n+m)-time in total if an atom
tree of G is given.

Sketch Proof. This part reuses the same techniques as Sect. 4.1. Given a clique-
atom A and its incidence graph IA, we can compute the blocks of IA. Then,
let us define the following equivalence relation over the connected components
of G\A: C ∼A C ′ if and only if NG(C) and NG(C ′) (taken as elements of
Ω(A)) are in the same block of IA. The latter relation naturally extends to
4 This first assumption on the blocks may look a bit artificial. However, we emphasize

that it holds for every regular graph [3].
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Fig. 1. Computation of the connected components in a square root.

an equivalence relation over V \A: for every two components C,C ′ of G\A and
for every u ∈ C, u′ ∈ C ′, u ≡A u′ if and only if C ∼A C ′. In doing so,
the equivalence classes of ≡A partition the set V \A. We refer to Fig. 1 for an
illustration of the procedure. Furthermore, it can be proved that when A is
the closed-neighbourhood of a cut-vertex v in Hmax, the equivalence classes of
≡A are exactly the sets Ci\A, 1 ≤ i ≤ l, with C1, . . . , Cl being the connected
components of Hmax. Applying this procedure sequentially to all the clique-
atoms that represent the closed neighbourhood of a cut-vertex in Hmax, we
can compute the squares of each block of Hmax\v. This can be done in total
O(n + m)-time by carefully using the adhesion sets in an atom tree of G. 	


Then, we wish to solve the H-square root problem for each square of a
block separately. However, doing so, we may not be able to reconstruct a square
root for the original graph. Indeed, the closed neighbourhoods of cut-vertices
are imposed, and these additional constraints may be violated by the partial
solutions. We thus need to solve the following stronger version of the problem.

Problem 2 (H-square root with neighbours constraints).

Input: A graph G = (V,E); a list NF of pairs 〈v,Nv〉 with v ∈ V, Nv ⊆ V ;
a list NA of subsets Ni ⊆ V, 1 ≤ i ≤ k.

Question: Are there a graph H ∈ H and a sequence v1, v2, . . . , vk ∈ V of
pairwise distinct vertices such that H is a square root of G, and:

– ∀〈v,Nv〉 ∈ NF , we have NH [v] = Nv

– ∀1 ≤ i ≤ k, we have NH [vi] = Ni; furthermore, 〈vi, Ni〉 /∈ NF ?

To our best knowledge, this variant has not been studied before in the lit-
erature. We show how to solve it for some graph classes in the next section.
Intuitively, the list NF represents the essential cut-vertices and their closed
neighbourhoods in the block. The list NA represents the closed neighbourhoods
of non essential cut-vertices. Furthermore, non essential cut-vertices correspond
to the vertices v1, . . . , vk to be computed. Notice that we need to ensure that all
the vi’s are distinct in case there may be true twins in a square root. We also
need to ensure that 〈vi, Ni〉 /∈ NF for the same reason.

6 Application to Trees of Cycle-Powers

A cycle-power graph is any jth-power Cj
n of the n-node cycle Cn, for some

j, n ≥ 1. A tree of cycle-powers is a graph whose blocks are cycle-power graphs. In



Finding Cut-Vertices in the Square Roots of a Graph 245

particular, a j-cactus-block graph is a graph whose blocks are complete graphs or
kth-powers of cycles, for any 1 ≤ k ≤ j. This above class generalizes the classes of
trees, block graphs and cacti: where all the blocks are edges, complete subgraphs
and cycles, respectively. Other relevant examples are the class of cactus-block
graphs (a.k.a., 1-cactus-block graphs with our terminology): where all the blocks
are either cycles or complete subgraphs [41]; and the Gallai trees, that are the
cactus-block graphs with no block being isomorphic to an even cycle [16]. Our
main result in this section is that the squares of these graphs can be recognized
in polynomial time:

Theorem 5. For every fixed j ≥ 1, the squares of j-cactus-block graphs can be
recognized in O(nm)-time.

Up to simple changes, the proof of Theorem5 applies to all the subclasses
mentioned above. This solves for the first time the complexity of the H-square
root problem for the cactus-block graphs and Gallai trees:

Theorem 6. Squares of cactus-block graphs, resp. squares of Gallai trees, can
be recognized in O(nm)-time.

(a) A pending block. (b) Non-essential cut. (c) Splittable block. (d) Essential cut.

Fig. 2. Local modifications of the blocks.

The proof of Theorem 5 is twofold. We seek for a square root H of G that is a
tree of cycle-powers and maximizes its number of blocks. First we show that the
cut-vertices in this square root are exactly those characterized by Theorems 2
and 3. We do so by adapting the respective techniques from Lemma 2 and Theo-
rem 3 in order to increase the number of cut-vertices. An illustration is provided
with Fig. 2. Then, we need to show that H-square root with neighbours
constraints can be solved in linear time for j-cactus-block graphs. This is done
by exploiting the fact that cycle-power graphs are circular-arc graphs (intersec-
tion graphs of intervals on the cycle) with a unique circular-arc model [21,31].

7 Conclusion

We intend the framework introduced in this paper to be applied for solving
the H-square root problem in other graph classes – e.g., graphs with special
treewidth at most two [5]. Furthermore, we leave the existence of a full char-
acterization of non essential cut-vertices in the square roots as an interesting
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open question. More generally, we aim at better understanding the relationships
between small-size separators in a graph and small-diameter separators in its
square. As an example, we believe that by studying the relationships between
edge-separators in a graph and quasi-clique cutsets in its square (clique with one
edge removed), we could improve the recognition of the squares of outerplanar
graphs [17]. Let us mention that the complexity of recognizing the squares of
planar graphs is still open.
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Mat. Kutató Int. Közl 7, 3–36 (1962)

17. Golovach, P., Heggernes, P., Kratsch, D., Lima, P., Paulusma, D.: Algorithms for
outerplanar graph roots and graph roots of pathwidth at most 2. In: Bodlaender,
H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 275–288. Springer,
Cham (2017). doi:10.1007/978-3-319-68705-6 z. arXiv:1703.05102

http://dx.doi.org/10.1007/11785293_38
https://hal.archives-ouvertes.fr/hal-01477981
https://hal.archives-ouvertes.fr/hal-01477981
http://arxiv.org/abs/1210.7684
http://dx.doi.org/10.1007/978-3-319-68705-6_z
http://arxiv.org/abs/1703.05102


Finding Cut-Vertices in the Square Roots of a Graph 247

18. Golovach, P., Kratsch, D., Paulusma, D., Stewart, A.: A linear kernel for finding
square roots of almost planar graphs. In: SWAT, pp. 4:1–4:14 (2016)

19. Golovach, P.A., Kratsch, D., Paulusma, D., Stewart, A.: Finding cactus roots
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Abstract. We study the NP-hard Minimum Shared Edges (MSE) prob-
lem on graphs: decide whether it is possible to route p paths from a start
vertex to a target vertex in a given graph while using at most k edges
more than once. We show that MSE can be decided on bounded (i.e.
finite) grids in linear time when both dimensions are either small or
large compared to the number p of paths. On the contrary, we show
that MSE remains NP-hard on subgraphs of bounded grids.

Finally, we study MSE from a parametrised complexity point of view.
It is known that MSE is fixed-parameter tractable with respect to the
number p of paths. We show that, under standard complexity-theoretical
assumptions, the problem parametrised by the combined parameter k, p,
maximum degree, diameter, and treewidth does not admit a polynomial-
size problem kernel, even when restricted to planar graphs.

1 Introduction

Routing in street-like networks is a frequent task. Graphs modelling street net-
works are often (almost) planar, that is, they can be drawn in the plane with
(almost) no edge crossings. As a special case, a graph modelling the street net-
work in Manhattan is similar to a grid graph. We study the following problem,
originally introduced by Omran et al. [17], from a computational (parametrised)
complexity perspective on planar and grid-like graphs:

Minimum Shared Edges (MSE)
Input: An undirected graph G = (V,E), two distinct vertices s, t ∈ V ,

and two integers k, p ∈ N.
Question: Are there p paths from s to t in G such that at most k edges

appear in more than one of the p paths?
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Note that Omran et al. [17] originally defined the problem on directed graphs
(we refer to this as Directed Minimum Shared Edges or DMSE). While
Omran et al. motivate MSE by applications in security management, the prob-
lem can further appear in the following scenario. A network company wants
to upgrade their network since it still uses old copper cables. To improve the
throughput, some of these cables shall be replaced by modern optical fibre cables.
The network routes information from a source location to a target location and
the company wants to achieve a certain minimal throughput. Since digging up
the conduits for the cables is much more expensive than the actual cables, we
can neglect the cost of the cables and upgrade them to arbitrary bandwidth,
because once open, we can lay as many cables as necessary into a conduit. The
company wants to find the minimum number of conduits that have to be dug
up in order to achieve the desired bandwidth.

Related Work. Omran et al. [17] showed that DMSE is NP-complete on acyclic
digraphs. The problems MSE and DMSE were both shown to be NP-complete
even if the input graph is planar [11]. Moreover, MSE is solvable in linear time
on unbounded (i.e. infinite) grid graphs [8]. DMSE is �k/2�-approximable [3],
but there is no polynomial-time approximation of factor 2(log(n))

1−ε

for any ε > 0
unless NP ⊆ DTIME(npolylog(n)) [17].

Analysing its parametrised complexity, Fluschnik et al. [9] showed that MSE
is fixed-parameter tractable when parametrised by the number p of paths but
does not admit a polynomial-size problem kernel unless NP ⊆ coNP/poly, MSE
is W[1]-hard when parametrised by tw+k, where tw denotes the treewidth of the
input graph, and W[2]-hard when parametrised by the number k of shared edges.
On graphs of bounded treewidth, MSE is solvable in polynomial time [2,19].

Our Contribution. We give both positive and negative results for MSE on grid-
like graphs. On the positive side, we show that if the dimensions of the grid
are smaller than the number p of paths, then MSE is trivially decidable, and if
the dimensions of the grid are at least the number p of paths, then we provide
an arithmetic criterion to decide MSE in linear-time (Sect. 3.1). On the nega-
tive side, we prove that the situation changes when subgraphs of bounded grids
(which we refer to as holey grids) are considered, that is, we prove that MSE
on subgraphs of bounded grids is NP-hard (Sect. 3.2). Similarly, we prove that
DMSE is NP-hard for acyclic subgraphs of directed bounded grids (Sect. 3.3).
Our NP-hardness results improve upon the known hardness results [11] as the
graphs we consider are more restricted. Moreover, we show that MSE para-
metrised by k + p + Δ + diam + tw, where Δ and diam denote the maximum
degree and diameter, respectively, does not admit a polynomial-size problem
kernel, unless NP ⊆ coNP/poly, even on planar graphs (Sect. 4), improving an
existing kernelization lower bound [9]. Due to space constraints, several proofs
and details are deferred to a full version (this is indicated by a (�)).
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2 Preliminaries

We use basic notation from graph theory [7] and parametrised complexity [6].
By N we denote the natural numbers containing zero.

Graph Theory. Unless stated otherwise, we assume that all graphs are finite,
undirected, simple and without self-loops. We refer with V (G) and E(G) to
the vertex set and edge set, respectively, of a graph G. An edge set P ⊆ E is
called a path if we have P = {{vi−1, vi} | 0 < i ≤ n} for some pairwise distinct
vertices v0, . . . , vn. In this case we say P is a v0-vn-path of length n. The dis-
tance distG(u, v) between two vertices u, v ∈ V (G) is defined as the length of a
shortest u-v-path (we set distG(u, v) = ∞ if there is no u-v path in G).

Grids. For n,m ∈ N, let Gn×m be the (bounded) n × m-grid, that is, the undi-
rected graph (V,E) with the set of vertices V := {(x, y) ∈ N × N | x < n, y < m}
and the set of edges E := {{(v, w), (x, y)} | |v − x| + |w − y| = 1}. The coordi-
nates of a vertex are denoted by v := (vx, vy). We call the vertices of degree less
than four the rim of the grid. For a given vertex v ∈ V we define ∂xv := vx and
∂yv := vy, ∂xv := n−1−vx, and ∂yv := m−1−vy. We also use ∂v := ∂xv +∂yv
and ∂v := ∂xv + ∂yv.

Parametrised Complexity. A pair Q = (P, κ) with P ⊆ Σ∗ and κ : Σ∗→N is
called a parametrised problem. A parametrised problem Q = (P, κ) admits a
problem kernel (or is kernelisable) if there is a polynomial-time algorithm trans-
forming any instance I of Q into an instance I ′ such that (i) I ∈ Q ⇔ I ′ ∈ Q,
and (ii) the size of I ′ (the kernel) is bounded by a computable function f(κ(I)).
If f is a polynomial, then the problem is said to admit a polynomial (prob-
lem) kernel. A parametrised problem is fixed-parameter tractable (or in FPT) if
each instance (x, κ) can be decided in f(κ(x)) · |x|O(1) time, where f is a com-
putable function. A (decidable) parametrised problem is in FPT if and only if
it is kernelisable. A parametrised problem that is W-hard is presumably not in
FPT.

Further Notation. Let I = (G, s, t, p, k) be an instance of MSE. If (i) P is a
multiset of p s-t-paths {P1, . . . , Pp}, and (ii) |{e ∈ E | ∃i < j : e ∈ Pi ∩Pj}| ≤ k,
then we say P is a solution for I. We say that P is a trivial solution if Pi = Pj

for all i, j ∈ [p]. An edge is called shared if it occurs in at least two paths of P.

3 On Bounded and Holey Grids

The class of grid graphs appeared frequently in the literature: There is work on
grid graphs and related graphs with respect to finding paths [14,15], routing [4],
or structural properties [1,13]. In this section we study the complexity of MSE on
bounded grids and their subgraphs. We show that MSE is solvable in linear time
on bounded grids when both dimensions are either small or large compared to
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the number p of paths (Sect. 3.1) and becomes NP-hard for subgraphs of bounded
grids (Sects. 3.2 and 3.3). We remark that MSE is solvable in linear-time on the
class of unbounded grids [8].

3.1 Bounded Grids

We fix some instance I := (G = Gn×m, s, t, p, k) for the remainder of the section.
Since the problem is invariant under symmetry and swapping s and t, we may
assume s lies left and below of t and ∂xs ≤ ∂ys. To show optimality of the
constructions we regard edge cuts of size less than p. Assume I has a solution P.
We know [8] that after contraction of the shared edges, the graph must allow
an s-t-flow of value at least p. Therefore, every cut smaller than p has to be
eliminated by a contraction, that is, it must contain a shared edge.

We distinguish the following different cases depending on the dimensions of
the grid in relation to the number p of paths: p-small grid (p > max{n,m}),
p-large grid (p ≤ min{n,m}), and p-narrow grids (neither p-small nor p-large).
We leave open whether MSE is solvable in polynomial-time on p-narrow grids.
However, ongoing work indicates that the question can be answered positively.

On p-small Grids. If p > max{n,m}, then every set of horizontal edges with
endpoints having the same coordinates in the grid forms an s-t-cut of size smaller
than p (analogously for every set of horizontal edges). Hence, intuitively, any set
of p s-t-paths share an edge for each horizontal or vertical level they cross.
Indeed, we prove that every instance on p-small grids is a yes instance if and
only if it admits the trivial solution.

Lemma 1 (�). If m < p and n < p, then we have a solution if and only if
distG(s, t) ≤ k.

On p-large Grids. Compared to the situation on p-small grids, p-large grids allow
for non-trivial solutions. Nevertheless, we prove that the existence of such non-
trivial solutions is expressed by arithmetic conditions which can be checked in
linear time. These arithmetic conditions basically relate p, k, and the positions
of s and t relative to the rim of the grid. If s lies sufficiently far away from the
corner formed by the left and lower rim, then only every second path in our
construction introduces a new shared edge at this part. However, if s lies close
to the corner (or if p is large enough), there is a critical number of paths after
which every additional path introduces at least one new shared edge. The same
happens at the side of t. Thus we obtain the following cases.

Lemma 2. Let p ≤ m and p ≤ n. Then there is a non-trivial solution if and
only if either

– p ≤ 2(∂s + 2) − deg(s) and k ≥ ⌈
1
2 (p − deg(s))

⌉
+

⌈
1
2 (p − deg(t))

⌉
, or

– 2(∂s + 2) − deg(s) < p ≤ 2(∂t + 2) − deg(t)
and k ≥ p − (∂s + 2) +

⌈
1
2 (p − deg(t))

⌉
, or

– p > 2(∂t + 2) − deg(t) and k ≥ 2p − (∂s + ∂t + 4).
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For simplification, we introduce the following arrow notation. For (x, y) ∈ V we
define (x, y) → (x + �, y) := {{(x + i, y), (x + i + 1, y)} ∈ E | 0 ≤ i < �}. Analo-
gously we define ↑, ↓ and ←. We also use the concatenation of these expressions
such that e.g. u → v ↑ w := (u → v) ∪ (v ↑ w).

...
...

...
...

...
...

...
...

...
...

...

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

∂xs + 1 ∂ys − 1

∂xs − 1

∂ys + 1

s

(a) Path construction at vertex s.

...
...
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...

...
...

...

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

s

U2U0 U1

R2

R1

R0

(b) Filling gaps by rerouting.

Fig. 1. Sketched aspects of the construction described in the proof of Lemma 2. (a)
Path construction at vertex s; dashed: one shared edge; black: only a shared edge
every two paths; orange ellipses enclose shared edges. (b) Filling gaps by rerouting in
the construction; dotted: paths before reconstruction, dashed: rerouted paths for filling
the gaps. (Colour figure online)

Proof. From s we construct path fragments (cf. Fig. 1) going upwards:

Ui := s ↑ (sx, sy + i) ← (i, sy + i) ↑ (i,m − 1 − i), 0 ≤ i < ∂xs,

Ui := s → (i, sy) ↑ (i,m − 1 − i), ∂xs ≤ i.

Next, we construct path fragments going to the right:

Ri := s → (sx + i, sy) ↓ (sx + i, i) → (n − 1 − i, i), 0 ≤ i < ∂ys,

Ri := s ↑ (sx, i) → (n − 1 − i, i), ∂ys ≤ i.

To obtain the solution we add the path fragments in the following order. This
process is illustrated in Fig. 1a.

(A) We start with U0, U∂xs, R0, and R∂ys which have no shared edge. This yields
deg(s) paths, since some of these are identical if s lies on the rim. Then for
i = 1, . . . , ∂ys − 1 we add Ri and U∂xs+i, where Ri new adds a shared
edge (the other common edges were already shared before). Afterwards we
continue adding Ui and R∂ys+i for i = 1, . . . , ∂xs−1, where Ui adds a shared
edge. Thus every other path fragment adds a shared edge. We stop as soon
as we have constructed p paths.
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(B) Continue adding Ri for i = ∂s + 1, . . . , ∂t and Uj for j = ∂s + 1, . . . , p − ∂t
until we reach p paths. Here each single fragment adds another shared edge.

For p ≤ 2∂s we add the following modifications. If p ≤ 2∂ys + 2, that is, R∂ys

is the last right-going fragment, extend this fragment downwards such that the
endpoints of the Ri form a consecutive line. If the Ui leave a gap, that is, Uj is
not part of the construction for some 0 < j < ∂xs, we take the rightmost up-
going fragment and route it leftwards along the first free row, and then continue
as Uj . In the end, if necessary, we extend U∂xs leftwards, like we did with R∂ys.
Thus the endpoints of the up-going fragments form a consecutive line as well.
These steps do not introduce further shared edges. See Fig. 1b for an illustration.

So in the end we may assume we have constructed fragments U0, . . . , Uu−1

and R0, . . . , Rr−1 for some u, r ∈ N with u+ r = p. At t we proceed analogously,
simply mirrored. Hence we have r down-going fragments Di and u left-going
fragments Li. Then we obtain the solution

P := {Ui ∪ Li | i = 0, . . . , u} ∪ {Ri ∪ Di | i = 0, . . . , r} .

Feasibility. Furthermore the Ri only use the lower r rows of the grid whereas the
Li use the upper u rows. Since r +u = p ≤ m, these do not intersect, that is, we
do not get further shared edges. The same holds for the Ui and Di, since p ≤ n.

Let ks and kt denote the number of shared edges used to construct the path
fragments at s, and at t respectively. Thus, we have a solution if k ≥ ks + kt.

If p ≤ 2(∂s+2)−deg(s), then we only use part A. From the deg(s)-th path to
the p-th path, every other path adds a new shared edge, so ks =

⌈
1
2 (p − deg(s))

⌉
.

Furthermore, ∂s ≤ ∂t, so at t we also only use part A. Therefore we get
kt =

⌈
1
2 (p − deg(t))

⌉
. Hence k ≥ ks + kt =

⌈
1
2 (p − deg(s))

⌉
+

⌈
1
2 (p − deg(t))

⌉
.

If 2(∂s + 2) − deg(s) < p ≤ 2(∂t + 2) − deg(t), we still only use part A
at t getting kt =

⌈
1
2 (p − deg(t))

⌉
. But at s we also use part B. Assume that s

lies in the interior of the grid. Then, when completely executing part A, we use
∂s − 2 shared edges to construct 2∂s paths. This leaves ks − (∂s − 2) shared
edges for part B. Each of those allows for another path. So we obtain the con-
dition p = ∂s + 2 + ks. If s lies on the rim or in the corner, then the argument
differs slightly, but the condition is the same. So overall we get the condition
k ≥ ks + kt = p − (∂s + 2) +

⌈
1
2 (p − deg(t))

⌉
.

Finally, if p > 2(∂t + 2) − deg(t), then we use part B at both s and t. Thus
we have p = ∂s + 2 + ks = ∂t + 2 + kt. By adding these equalities we obtain
ks + kt = 2p − (∂s + ∂t + 4) ≤ k. So the solution is feasible.

Optimality. We only give a lower bound for the number ks of shared edges at s.
The bound for kt follows analogously, which then gives the desired bound for k.

During part (A) of the construction, each contraction may increase the degree
of s by at most 2. Hence p ≤ deg(s) + 2ks, which shows ks ≥ ⌈

1
2 (p − deg(s))

⌉
.

For p ≥ 2(∂s+2) we present a number of cuts of size p−1. We use rectangles
containing s, whose right upper corners move along a diagonal. Formally, these
are cuti := {{(i, y), (i+1, y)} | y ≤ p−3−i}∪{{(x, p−3−i), (x, p−2−i)} | x ≤ i}
for i = sx, . . . , p− 3− sy. Assume that t lies inside one of those rectangles. Then
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cuti for sx ≤ i < tx and p − 3 − ty < i ≤ p − 3 − sy are s-t-cuts of size p − 1,
and these are distG(s, t) many. In this case we need k ≥ distG(s, t) which only
allows the trivial solution. So we may assume that t lies outside all of these
rectangles. Thus there are p−2−∂s many of these cuts and they separate s and
t. Furthermore they are pairwise disjoint. So we get ks ≥ p − 2 − ∂s.

Altogether, our construction is optimal. ��

3.2 Holey Grids

In the previous section we proved that MSE is solvable in linear time on small
and large (compared to the number p of paths) bounded grids. In this section
we study the complexity of MSE on subgraphs of bounded grids, which we call
holey grids and show that the problem is NP-hard on this graph class. To this
end we reduce from the well known Vertex Cover problem which is, given
a graph G and a natural number k ∈ N, to decide whether there exists U ⊆V
with |U | ≤ k such that ∀e∈ E : e∩ U �= ∅. More precisely, we use that Vertex
Cover remains NP-complete on graphs with maximum degree three [12]. Note
that our reduction adapts the idea of a reduction used in previous work [11].

Theorem 1. MSE on holey grids is NP-hard.

Proof. Given a Vertex Cover-instance IVC := (G = (V,E), k) with Δ(G) ≤ 3,
we compute an equivalent MSE-instance IMSE := (G′ = (V ′, E′), s, t, p, k′) on
holey grids in polynomial time. We assume that |V | is a power of two (otherwise
we add isolated vertices until it is).

Figure 2d illustrates the graph obtained by applying the following transfor-
mation to the graph shown in Fig. 2a. The main part of the construction is a
structure we refer to as meta-grid. The meta-grid encodes the vertex-edge inci-
dence matrix of the original graph. We assume that the obtained graph to be
embedded as shown in Fig. 2d, which serves as a reference when we use the terms
“left”, “right”, “up”, and “down”. For construction purposes, we refer to paths
with � + 1 vertices as �-chains or chains of length �. Whenever a chain is added
in the construction, all vertices except the two end-vertices are new.

The main component in the construction is a gadget called rainbow (cf. [11]),
see Fig. 2b. Figure 2b also shows that this gadget is a subgraph of a bounded
grid. We use rainbow gadgets where the number of vertices in each band in the
spectrum of the rainbow is larger than the number of allowed shared edges. This
allows the rainbow gadget to restrict the number of paths that can be routed
through it to at most the number of bands in the spectrum. Note that in any
rainbow that is satiated with M paths 2M − 2 edges are shared. We call the
number of shared edges in a rainbow the rainbow-offset.
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(d) Sketch of the graph obtained in the proof of Theorem 1.

Fig. 2. An exemplified illustration of the construction in the proof of Theorem1. (a)
A graph representing an example instance of Vertex Cover. (b) An illustration of
the rainbow gadget. (c) An illustration of snake-chains. (d) Sketch of the holey grid
constructed in the proof of Theorem1, exemplified with the instance represented by
(a). The highlighted path indicates the validation path.

We define M and a few other values we need in order to build the graph G′

in the following:

M := 2(|E| + 1) + 2; trees := 2 · (|V | · log2(|V |) − 2 + 2k);
c := 10; c′ := 2 |V | + |E| · |V | − 2 |E| ; b := 2 · M · c′ + 1;

a0 :=
|V | − 1

2
(M + c − 2) − log |V |; a := max(a0, |E|3 , b2).

Here, c′ is the number of rainbow gadgets we construct. The values a, a0, and b
are chosen to ensure certain constraints when routing paths and sharing edges
while c can be understood as a scaling constant used to avoid intersections.
Why the values are chosen in this way will become clear later in the proof.
Next we set p := k · M + (|V | − k) + 1 for the number of paths in IMSE and
k′ := k · (2a + b |E|) + trees + c′(2M − 2) for the number of shared edges.

In the following we describe the construction of the meta-grid. First, we create
a grid of vertices, without any edges, that has |V | rows and |E|+1 columns. We
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fix an ordering v1, . . . , v|V | on the set V of vertices and use it to identify each row
of the grid with a vertex from G. Analogously, we fix an order e1, . . . , e|E| on the
edge set E and use it to identify each space between two consecutive columns of
the grid with an edge in G. From here on we will refer to these spaces as columns.

The first vertex in row i is denoted v′
i,1 ∈ V ′, see Fig. 2d, the second one is

denoted v′
i,2, and so on. If vertex vi is incident to edge ej in G, then vertices v′

i,j

and v′
i,j+1 are connected by a chain of length b. If vi is not incident to ej in G,

then vertices v′
i,j and v′

i,j+1 are connected by a chain of length b followed by a
rainbow. This completes the construction of the rows.

We embed the structure we just created in a grid such that the first vertices
are vertically aligned and have vertical distance of M + c. Now we connect each
vertex v′

i,j with i < |V | and j < |E| with its respective lower neighbour v′
i+1,j

by so-called snake-chains of length at least k′ + 1 (illustrated as wavy vertical
lines in Fig. 2d). Note that these vertices do not necessarily lie above each other.
The snake-chains are constructed as follows (also see Fig. 2c).

In every row except the lowest one, we start with the left most snake-chain.
We first route it four steps down, then k′ steps to the right, one down, left
again until we are above its end-vertex which we then join it to by a vertical
path. Then every further snake-chain is routed the following way: down by the
maximum possible number of steps (at most four) such that no previous snake-
chain is intersected, then k′ to the right, then the minimum necessary number
of steps down, such that the snake-chain can be extended to the left without
intersecting a previous snake-chain until it can be routed downwards until it
meets its end-vertex.

Note that the above description implies that we reduce the number of steps
that a snake-chains is routed downwards every time the previous column did not
contain a rainbow. After a rainbow is encountered we start with four steps down
again. Since G has a maximum degree of three, there are at most three columns
in every row without a rainbow, so after at most four consecutive snake-chains
we encounter a rainbow in the next column. This way the snake-chains do not
intersect or touch each other and the constant c > 2 · 4 + 1 ensures that they
also do not intersect any rainbows from the next row.

Now we add a source vertex s to the left of the meta-grid and construct a
complete, binary tree of height log2 |V | with s as its root and with |V | leaves
pointing in direction of the grid. We construct this tree in such a way that all
vertices of the same level lie in the same column of the grid and from one leaf
to the next we have distance two in the grid. This is possible since the number
of vertices in G is a power of two. To make this tree embeddable into a grid we
replace every edge by a chain of the minimal required length running along the
grid structure. We connect the uppermost leaf to the first row of the meta-grid
in a way such that the vertical distance between this leaf and v′

1,1 is exactly a0.
More specifically, we add a chain up and to the right until it has length a, then
add a rainbow of sufficient length and connect it to v′

1,1. Each leaf of the tree is
connected by a chain of length a and a following rainbow to one of the vertices
in the first column of the meta-grid such that the order of the leaves and the
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vertices is the same. The length a is chosen such that all the chains have the
same length. To avoid intersections in the a-chains these go right first: the chain
leading to the row corresponding to vi is routed i−1 steps to the right if i < |V |

2
and |V | − i otherwise. Then the chains go up/down to their row and then right
until they have length a. Note that this tree is symmetrical in the end since we
work on an even number of vertices.

The same is done on the right side: we add a vertex t and a binary tree to its
left with root t and the leaves are connected to the vertices in the last column
of the meta-grid by a chain of length a and a rainbow. If the construction of the
snake-paths causes some of the snake-paths to “stick out” to the right, then we
extend the paths in the rainbows at the leaves of t as far as necessary to ensure
that nothing intersects. The length of these rainbows is also used to align the
leaves of the tree on this side.

Finally, we add chains of length at least k′ + 1, the outer-grid chains, one
connecting s to v′

1,1 and the other connecting v′
|V |,|E|+1 to t.

Intuitively, the correctness is shown as follows. We know that we can route
at most M paths through a rainbow. Recall that p := k · M + (|V | − k) + 1, so
we have to do that k times. So we can pick k of the |V | rows and route M paths
through each. We route a single path through each of the remaining |V |−k rows.
Now we have to route one additional path, which has to use the outer-grid chains
and the snake-chains. This path will verify that the k rows we chose to route M
paths through correspond to vertices of G that constitute a vertex cover. Then
each column corresponding to an edge of G has at least one row where we have a
fully shared chain and no rainbow. So the remaining path can be routed through
those chains and use the snake-chains to switch between rows. Of course, k′ is
chosen in a way that we are forced to use the described approach and that there
is no solution if G does not have a vertex cover of size k. The formal proof of
the correctness of the presented construction is deferred to a full version (�). ��

3.3 Manhattan-Like Acyclic Digraphs

In the previous section, we proved that MSE is NP-hard on holey grids, i.e.
subgraphs of a bounded grid. Along the line, in this section we prove that the
directed version, DMSE, is NP-hard on the graph class of acyclic directed holey
grids (we refer to this class by Manhattan DAGs). We remark that inspired by
the street design of Manhattan, New York City, directed bounded grids (referred
to as Manhattan street networks) are considered in the literature, also in the
context of routing [16,18].

Observe that MSE reduces to DMSE by replacing each edge {u, v} by anti-
parallel arcs (u, v), (v, u). The correctness is due to the following.

Lemma 3 (�). Let (G, s, t, p, k) be an instance of DMSE. If P is a solution
for this instance where two paths PA and PB use e = (u, v) ∈ E and its inverted
arc e′ = (v, u) ∈ E, then we can find a solution P′ for the same instance that
does not use both of these arcs.
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However, the directed graph obtained in the reduction is not acyclic. We
show next that DMSE remains hard even on acyclic directed holey grids. On a
high level, we adapt the construction presented in the proof of Theorem1. We
then direct the edges from left to right, from s towards t. Finally, we duplicate
the horizontal chains (snake chains) and direct one upwards and one downwards.

Theorem 2 (�). DMSE on Manhattan DAGs is NP-hard.

4 The Nonexistence of Polynomial Kernels

In this section, we consider MSE from a parametrised complexity point of view.
MSE is kernelisable but does not admit a polynomial problem kernel when it
is parametrised by the number p of paths, unless NP ⊆ coNP/poly [9]. We
strengthen the latter result and complement the intractability of MSE on planar
graphs by showing the following.

Theorem 3. MSE with κ(G, s, t, p, k) := p + k + Δ(G) + diamG + tw(G) as
parameter does not admit a polynomial kernel, even on planar graphs, unless
NP ⊆ coNP/poly.

In order to prove Theorem3, we use a so-called OR-cross-composition due
to Bodlaender et al. [5]. Therein, one uses a polynomial equivalence relation R
which is an equivalence relation that is decidable in polynomial time and for
each finite set S, the number of equivalence classes with respect to R, that is,
|{[s]R | s ∈ S}|, is polynomially bounded in the size of the largest element in S.

Definition 1 (OR-cross-composition [5]). Let L⊆ Σ∗ be some problem and
Q= (P, κ) with P ⊆Σ∗ and κ : Σ∗ →N be some parametrised problem. Fur-
thermore, let R be a polynomial equivalence relation on Σ∗. An OR-cross-
composition is an algorithm that gets instances I1, . . . , Iq of L as input, all
of them belonging to the same equivalence class of R, and outputs an instance I
of Q such that

– I ∈ P if and only if there is at least one i such that Ii ∈ L and
– κ(I) is polynomially bounded in max {|Ii| | i = 1, . . . , q} + log q.

If there is an OR-cross-composition from an NP-hard problem L to some
parametrised problem Q, then, unless NP ⊆ coNP/poly, Q does not admit a
polynomial-size kernel [5]. Using this result, we give an OR-cross-composition to
prove Theorem 3. Our construction contains binary trees and we use the following
structural result on binary trees with respect to MSE.

Lemma 4 (�). Let T be a balanced, binary and complete tree of height h with
root s, where additionally all leaves are identified with the target t. Then the
only solutions for an MSE-instance (T, s, t, p, k) with p ≥ h + 3 and k ≤ h are
to share a complete path from s to some leaf, which is only possible for k = h.
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Proof (of Theorem 3). We apply the OR-cross-composition framework with MSE
on planar graphs where s and t lie on the outer face as input problem. The NP-
hardness of this problem is shown in Theorem1.

We say an instance (G, s, t, p, k) of MSE is malformed if distG(s, t) ≤ k (trivial
yes-instances), if s and t are not connected, if p ≥ 2 · |E(G)| and k < distG(s, t)
(trivial no-instances), or if p ≤ 2. Note that in the last case we can decide the
instance in polynomial time, since MSE is fixed-parameter tractable with respect
to p [9]. Hence we can decide each malformed instance in polynomial time.

We define the equivalence relation R as follows: two instances (G, s, t, p, k)
and (G′, s′, t′, p′, k′) are R-equivalent if both are malformed or if p = p′

and k = k′. Observe that R is a polynomial equivalence relation.
Let Ii = (Gi, si, ti, p, k)1≤i≤q be non-malformed R-equivalent instances of

MSE. We assume q to be a power of 2 (as otherwise we duplicate instances until
it is). We first construct a complete binary tree Ts rooted in s of depth log(q) such
that the si are the leaves of Ts, occurring in their canonical order. Conversely, we
construct a tree Tt with root t and leaves ti. We subdivide each edge in Ts and Tt

to obtain paths of length k+1. In this way we obtain a new graph G = (V,E) with
V := V (Ts) ∪ V (Tt) ∪ ⋃q

i=1 V (Gi) and E := E(Ts) ∪ E(Tt) ∪ ⋃q
i=1 E(Gi). Also,

we define the new parameters k′ := 2 log(q) · (k + 1) + k and p′ := p + log(q) and
get the instance I := (G, s, t, p′, k′), see Fig. 3. Now we claim that I is a yes-
instance if and only if there is an Iy with 1 ≤ y ≤ q that is a yes-instance. The
correctness proof is deferred to a full version (�). ��

Iq

I1

...
s

...

s1

s2

sq−1

sq

t

...

tq

tq−1

t2

t1

Fig. 3. Construction of I via an OR-cross-composition. The instances are connected
by complete binary trees with roots s and t, respectively.

Recall that DMSE is NP-hard on planar acyclic digraphs with s and t lying
on the outerface (Theorem 2). Hence, replacing the input instances by instances
from DMSE on the aforementioned graphs, and directing the remaining edges in
the trees away from s and towards t allows us to also exclude polynomial kernels
for DMSE parametrised1 by p + k + Δin(G) + Δout(G).

Corollary 1 Unless NP ⊆ coNP/poly, DMSE on planar acyclic digraphs with
parameter κ(G, s, t, p, k) := p+k+Δin(G)+Δout(G) does not admit a polynomial
kernel.
1 DMSE is in FPT when parametrised by p+k since the search tree algorithm solving
MSE in O((p− 1)k · (|V |+ |E|)2) time [9] can easily be adapted to the directed case.
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5 Conclusion

On the positive side, we proved that Minimum Shared Edges on bounded
grids is solvable in linear time when both dimensions are either small or large
compared to the number p of paths. On the negative side, we proved that MSE
becomes NP-hard on subgraphs of the bounded grid, even if the subgraph is
directed and acyclic, and that it does not allow for polynomial kernels on planar
graphs when parametrised by a combined parameter k + p + Δ + diam + tw,
unless NP ⊆ coNP/poly.

We conjecture that MSE on p-narrow grids is solvable in polynomial time. In
particular, we find it interesting whether an arithmetic criterion similar to the
p-large case (cf. Lemma 2) exists. Furthermore, in our reduction from Vertex
Cover, the construction yields a grid with a large amount of edges removed by
taking a subgraph. Is MSE parametrised by the number of edges removed from
the grid in FPT (or even admits a polynomial-size problem kernel)?

We consider it as interesting to study DMSE on Manhattan street
networks (cf. [16]). Recently, MSE is considered with an additional time-aspect
[10]. Herein, on a high level, an edge is shared if it appears in at least two paths
at the same time. Another future research direction could be to study MSE with
the additional time-aspect on grid-like graphs.
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Abstract. Given two graphs H1 and H2, a graph G is (H1, H2)-free if
it contains no subgraph isomorphic to H1 or H2. Let Pt and Cs be the
path on t vertices and the cycle on s vertices, respectively. In this paper
we show that for any (P6, C4)-free graph G it holds that χ(G) ≤ 3

2ω(G),
where χ(G) and ω(G) are the chromatic number and clique number of
G, respectively. Our bound is attained by C5 and the Petersen graph.
The new result unifies previously known results on the existence of lin-
ear χ-binding functions for several graph classes. Our proof is based on
a novel structure theorem on (P6, C4)-free graphs that do not contain
clique cutsets. Using this structure theorem we also design a polynomial
time 3/2-approximation algorithm for coloring (P6, C4)-free graphs. Our
algorithm computes a coloring with 3

2ω(G) colors for any (P6, C4)-free
graph G in O(n2m) time.

1 Introduction

All graphs in this paper are finite and simple. We say that a graph G contains
a graph H if H is isomorphic to an induced subgraph of G. A graph G is H-
free if it does not contain H. For a family of graphs H, G is H-free if G is
H-free for every H ∈ H. In case that H consists of two graphs, we simply write
(H1,H2)-free instead of {H1,H2}-free. As usual, let Pt and Cs denote the path
on t vertices and the cycle on s vertices, respectively. The complete graph on n
vertices is denoted by Kn. For two graphs G and H, we use G+H to denote the
disjoint union of G and H. The join of G and H, denoted by G∨H, is the graph
obtained by taking the disjoint union of G and H and adding an edge between
every vertex in G and every vertex in H. For a positive integer r, we use rG
to denote the disjoint union of r copies of G. The complement of G is denoted
by G. The girth of G is the length of the shortest cycle in G. A q-coloring of a
graph G is a function φ : V (G) −→ {1, . . . , q} such that φ(u) �= φ(v) whenever u
and v are adjacent in G. The chromatic number of a graph G, denoted by χ(G),
is the minimum number q for which there exists a q-coloring of G. The clique
number of G, denoted by ω(G), is the size of a largest clique in G. Obviously,
χ(G) ≥ ω(G) for any graph G.

A family G of graphs is said to be χ-bounded if there exists a function f such
that for every graph G ∈ G and every induced subgraph H of G it holds that
χ(H) ≤ f(ω(H)). The function f is called a χ-binding function for G. The class
c© Springer International Publishing AG 2017
H.L. Bodlaender and G.J. Woeginger (Eds.): WG 2017, LNCS 10520, pp. 263–274, 2017.
https://doi.org/10.1007/978-3-319-68705-6_20
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of perfect graphs (a graph G is perfect if for every induced subgraph H of G it
holds that χ(H) = ω(H)), for instance, is a χ-bounded family with χ-binding
function f(x) = x. Therefore, χ-boundedness is a generalization of perfection.
The notion of χ-bounded families was introduced by Gyárfás [15] who posed the
following two meta problems:

• Does there exist a χ-binding function f for a given family G of graphs?
• Does there exist a linear χ-binding function f for G?

The two problems have received considerable attention for hereditary classes.
Hereditary classes are exactly those classes that can be characterized by forbid-
den induced subgraphs. What choices of forbidden induced subgraphs guarantee
that a family of graphs is χ-bounded? Since there are graphs with arbitrarily
large chromatic number and girth [11], at least one forbidden subgraph has to be
acyclic. Gyárfás [14] conjectured that this necessary condition is also a sufficient
condition for a hereditary class to be χ-bounded.

Conjecture 1 (Gyárfás) [14]). For every forest T , the class of T -free graphs is
χ-bounded.

Gyárfás [15] proved the conjecture for T = Pt: every Pt-free graph G has
χ(G) ≤ (t − 1)ω(G)−1. Note that this χ-binding function is exponential in ω(G).
Therefore, it is natural to ask whether there exists a linear χ-binding function
for Pt-free graphs. Unfortunately, unless t ≤ 4 in which case every Pt-free graph
is perfect and hence has χ(G) = ω(G), no linear χ-binding function exists for
Pt-free graphs when t ≥ 5 [12]. In fact, as observed in [17], the class of H-free
graphs admits a linear χ-binding function if and only if H is contained in a P4.

However, if an additional graph is forbidden, then the class could become
linearly χ-bounded again. Choudum et al. [7] derived a linear χ-binding function
for (P6, P4 ∨ P1)-free graphs, (P5, P4 ∨ P1)-free graphs and (P5, C4 ∨ P1)-free
graphs. In the same paper, they also obtained the optimal χ-binding function
f(x) = � 5

4x	 for (P5, C4)-free graphs, improving a result in [12]. Later on, the
same set of authors [8] obtained linear χ-binding functions for certain subclasses
of 3P1-free graphs (thus subclasses of P5-free graphs). In particular, they showed
that the class of (3P1,K4+P1)-free graphs has a linear χ-binding function f(x) =
2x. Henning et al. [16] obtained an improved χ-binding function f(x) = 3

2x for
(3P1,K4 + P1)-free graphs.

An important subclass of P5-free graphs is the class of 2P2-free graphs. It was
known that for any 2P2-free graph it holds that χ ≤ (

ω+1
2

)
[18]. For a slightly

larger class, namely P2 + P3-free graphs, Bharathi and Choudum [1] gave an
O(ω3) bound on χ. Brause et al. [5] recently showed that (P5, butterfly)-free
graphs and (P5, hammer)-free graphs, both of which are superclasses of 2P2-free
graphs due to a recent structural result [9], admit cubic and quadratic χ-binding
functions, respectively, where a butterfly is a graph isomorphic to 2P2 ∨ P1 and
a hammer is a graph on five vertices {a, b, c, d, e} where a, b, c, d in this order
induces a P4 and e is adjacent to a and b. It is not known whether any of these
χ-binding functions can be improved to linear. Very recently, a linear χ-binding
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function has been shown to exist for (2P2,H)-free graphs when H is one of
(P1 + P2) ∨ P1 (usually referred to as paw), P4 ∨ P1 (usually referred to as gem)
or P5 (usually referred to as house) [5]. When H is isomorphic to C4, it was
known [2] that every such graph has χ ≤ ω + 1; when H is P2 ∨ 2P1 (usually
referred to as diamond), it was known that χ ≤ ω + 3. This bound in fact holds
for (P2 + P3, diamond)-free graphs [1]. For more results on χ-binding functions,
we refer to a survey by Randerath and Schiermeyer [17].

Our Contributions. In this paper, we prove that f(x) = 3
2x is a χ-binding

function for (P6, C4)-free graphs. This unifies several previous results on the exis-
tence of linear χ-binding functions for, e.g., (2P2, C4)-free graphs [2], (P5, C4)-
free graphs [7] and (P3 + P2, C4)-free graphs [6]. On the other hand, there is an
active research on classifying the complexity of coloring (H1,H2)-free graphs.
Despite much effort, the classification is far from being complete, see [13] for
a summary of partial results. The class of (P6, C4)-free graphs is one of the
unknown cases. Here we develop an O(n2m) 3/2-approximation algorithm for
coloring (P6, C4)-free graphs. This is the first approximation algorithm for color-
ing these graphs and could be viewed as a first step towards a possible polynomial
time algorithm for optimally coloring these graphs.

The remainder of the paper is organized as follows. We present some prelim-
inaries in Sect. 2 and prove a novel structure theorem for (P6, C4)-free graphs
without clique cutsets in Sect. 3. Using this theorem we show in Sect. 4 that
every (P6, C4)-free graph has chromatic number at most 3/2 its clique number.
Finally, we turn our proof into a 3/2-approximation algorithm in Sect. 5.

2 Preliminaries

For general graph theory notation we follow [3]. Let G = (V,E) be a graph. The
neighborhood of a vertex v, denoted by NG(v), is the set of neighbors of v. For
a set X ⊆ V (G), let NG(X) =

⋃
v∈X NG(v) \ X. The degree of v, denoted by

dG(v), is equal to |NG(v)|. For x ∈ V and S ⊆ V , we denote by NS(x) the set
of neighbors of x that are in S, i.e., NS(x) = NG(x) ∩ S. For X,Y ⊆ V , we say
that X is complete (resp. anti-complete) to Y if every vertex in X is adjacent
(resp. non-adjacent) to every vertex in Y . A vertex subset K ⊆ V is a clique
cutset if G − K has more components than G and K induces a clique. A vertex
is universal in G if it is adjacent to all other vertices. For S ⊆ V , the subgraph
induced by S, is denoted by G[S]. A subset M ⊆ V is a dominating set if every
vertex not in M has a neighbor in M . We say that M is a module if every vertex
not in M is either complete or anti-complete to M .

Let u, v ∈ V . We say that u and v are twins if u and v are adjacent and
they have the same set of neighbors in V \ {u, v}. Note that the binary relation
of being twins on V is an equivalence relation and so V can be partitioned into
equivalence classes T1, . . . , Tr of twins. The skeleton of G is the subgraph induced
by a set of r vertices, one from each of T1, . . . , Tr. A blow-up of a graph G is a
graph G′ obtained by replacing each vertex v of G with a clique Kv of size at
least 1 such that Kv and Ku are complete in G′ if u and v are adjacent in G,
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The Petersen graph F

Fig. 1. Two smallest (P6, C4)-free atoms that do not contain any small vertex.

and anti-complete otherwise. Since each equivalence class of twins is a clique and
any two equivalence classes are either complete or anti-complete, every graph is
a blow-up of its skeleton.

A graph is chordal if it does not contain any induced cycle of length at least
four. The following structure of (P6, C4)-free graphs discovered by Brandstädt
and Hoàng [4] is of particular importance in our proofs below.

Lemma 1 (Brandstädt and Hoàng [4]). Let G be a (P6, C4)-free graph with-
out clique cutsets. Then the following statements hold: (i) every induced C5 is
dominating; (ii) If G contains an induced C6 which is not dominating, G is the
join of a blow-up of the Petersen graph (Fig. 1) and a (possibly empty) clique.

3 The Structure of (P6, C4)-Free Atoms

A graph without clique cutsets is called an atom. We say that a vertex v in G is
small if dG(v) ≤ 3

2ω(G) − 1. Our main result in this section is the following.

Theorem 1. Every (P6, C4)-free atom either contains a small vertex or is the
join of a blow-up of the Petersen graph or F (see Fig. 1) and a (possibly empty)
clique.

To prove the above theorem, we shall prove a number of lemmas below. Let
G = (V,E) be a graph and H be an induced subgraph of G. We partition
V \ V (H) into subsets with respect to H as follows: for any X ⊆ V (H), we
denote by S(X) the set of vertices in V \V (H) that have X as their neighborhood
among V (H), i.e.,

S(X) = {v ∈ V \ V (H) : NV (H)(v) = X}.

For 0 ≤ j ≤ |V (H)|, we denote by Sj the set of vertices in V \ V (H) that have
exactly j neighbors among V (H). Note that Sj =

⋃
X⊆V (H):|X|=j S(X). We say

that a vertex in Sj is a j-vertex.
The idea is that we assume the occurrence of some induced subgraph H

in G and then argue that the theorem holds in this case. Afterwards, we can
assume that G is H-free in addition to being (P6, C4)-free. We then pick a
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Fig. 2. Two special graphs F1 and F2.

different induced subgraph as H and repeat. In the end, we are able to show
that the theorem holds if G contains a C5 or C6 (Lemmas 3 and 5). Therefore,
the remaining case is that G is chordal. In this case, the theorem follows from a
well-known fact [10] that every chordal graph has a simplicial vertex, that is, a
vertex whose neighborhood induces a clique. As straightforward as the approach
sounds, the difficulty is that in order to eliminate C5 and C6 we have to eliminate
two more special graphs F1 and F2 (Lemmas 2 and 4) and do it in the ‘right’
order. We start with F1.

Lemma 2. If a (P6, C4)-free atom G contains F1 (see Fig. 2), then G contains
a small vertex.

Proof. Let G be a (P6, C4)-free atom that contains an induced subgraph H
that is isomorphic to F1 with V (H) = {1, 2, 3, 4, 5, x, y, z} where 1, 2, 3, 4, 5, 1
induces the underlying five-cycle C of F1 and x is adjacent to 3 and 4, y is
adjacent to 2 and 3, z is adjacent to 4 and 5, and x is adjacent to y and z,
see Fig. 2. We partition V (G) with respect to C. We choose H such that |S2|
maximized. Note that x ∈ S(3, 4), y ∈ S(2, 3) and z ∈ S(4, 5). All indices
below are modulo 5. Since G is an atom, it follows from Lemma 1 that S0 = ∅.
Moreover, it follows immediately from the (P6, C4)-freeness of G that V (G) =
C ∪ S1 ∪ ⋃5

i=1 S(i, i + 1) ∪ ⋃5
i=1 S(i − 1, i, i + 1) ∪ S5. Observe that if v is a small

vertex in the graph obtained from G by deleting all universal vertices, then v is
also small in G. Therefore, we may also assume that G has no universal vertices.

(1) S5 ∪ S(i − 1, i, i + 1) is a clique.
Suppose not. Let u and v be two non-adjacent vertices in S5∪S(i−1, i, i+1).
Then {u, i − 1, v, i + 1} induces a C4, a contradiction. �

(2) S(i − 1, i, i + 1) and S(i + 1, i + 2, i + 3) are anti-complete.
By symmetry, it suffices to prove (2) for i = 1. Suppose that u ∈ S(5, 1, 2)
is adjacent to v ∈ S(2, 3, 4). Then {5, 4, v, u} induces a C4, and this is a
contradiction. �

(3) S(i, i+1) and S(i+1, i+2) are complete, and S(i, i+1) and S(i+3, i+4)
are anti-complete. Moreover, if both S(i, i + 1) and S(i + 1, i + 2) are not
empty, then both sets are cliques.
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It suffices to prove (3) for i = 1. Suppose that u ∈ S(1, 2) is not adjacent to
v ∈ S(2, 3). Then u, 1, 5, 4, 3, v induces a P6, a contradiction. If S(1, 2) and
S(2, 3) are not empty, then it follows from the C4-freeness of G that both
sets are cliques. Similarly, if u ∈ S(1, 2) is adjacent to w ∈ S(3, 4), then
{2, 3, w, u} induces a C4. �

(4) S(i) and S(i + 1) are anti-complete, and S(i) and S(i + 2) are complete.
It suffices to prove the statement for i = 1. If u ∈ S(1) is adjacent to
v ∈ S(2), then {1, 2, v, u} induces a C4, a contradiction. Similarly, if u ∈ S(1)
is not adjacent to w ∈ S(3), then u, 1, 5, 4, 3, w induces a P6. �

Remark. (1)–(4) holds whenever we partition V (G) with respect to a C5.
They will be used in the proof of Lemmas 4 and 5.

(5) S2 = S(2, 3) ∪ S(3, 4) ∪ S(4, 5)
Recall that x ∈ S(3, 4), y ∈ S(2, 3) and z ∈ S(4, 5). By symmetry, it suffices
to show that S(1, 2) = ∅. Suppose that S(1, 2) contains one vertex, say s.
Then s is not adjacent to x and z, and x and z are adjacent by (3). This
implies that 5, z, x, 3, 2, s induces a P6, a contradiction. �

(6) S1 = ∅.
We first observe that one of S(i) and S(i + 1, i + 2) is empty for each i.
By symmetry, it suffices to show this for i = 1. Suppose that u ∈ S(1) and
v ∈ S(2, 3). Then either u, 1, 5, 4, 3, v induces a P6 or {u, 1, 2, v} induces a
C4, depending on whether u and v are adjacent. This is a contradiction.
Then (6) follows from the fact that S(i, i + 1) �= ∅ for i = 2, 3, 4. �

(7) S5 and S2 are anti-complete
Let u ∈ S5 be an arbitrary vertex. Note that any x′ ∈ S(3, 4) and any
z′ ∈ S(4, 5) are adjacent by (3). Consider the induced six-cycle C ′ =
z′, 5, 1, 2, 3, x′, z′. Since u is adjacent to 5, 1, 2, 3, it follows from the C4-
freeness of G that u is either complete or anti-complete to {x′, z′}. Simi-
larly, u is either complete or anti-complete to {x′, y′} for any x′ ∈ S(3, 4)
and y′ ∈ S(2, 3). This implies that u is either complete or anti-complete to
S2. If u is complete to S2, then u is a universal in G by (1) and (6), which
contradicts our assumption that G has no universal vertices. Therefore, the
claim follows. �

(8) The following statements hold between subsets of S3 and subsets of S2.
(8i) S(5, 1, 2) and S2 are anti-complete.

Let t ∈ S(5, 1, 2) be an arbitrary vertex. Suppose that t is adjacent
to some vertex x′ ∈ S(3, 4). Then {4, 5, t, x′} induces a C4, a contra-
diction. This shows that S(5, 1, 2) and S(3, 4) are anti-complete. Sup-
pose that t has a neighbor in S(2, 3) ∪ S(4, 5), say y′ ∈ S(2, 3). Then
either 1, t, y′, 3, 4, z induces a P6 or {t, z, x, y′} induces a C4, depending
on whether t and z are adjacent. Therefore, (8i) follows. �

(8ii) S(4, 5, 1) and S(4, 5) are complete. By symmetry, S(1, 2, 3) and S(2, 3)
are complete.
Let t ∈ S(4, 5, 1) and z′ ∈ S(4, 5) be two arbitrary vertices. Suppose
that t and z′ are not adjacent. Then either t, 5, z′, x, y, 2 induces a P6 or
{t, 5, z′, x} induces a C4, depending on whether t and x are adjacent. �
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(8iii) S(2, 3, 4) and S(3, 4) are complete. By symmetry, S(3, 4, 5) and S(3, 4)
are complete.
Let t ∈ S(2, 3, 4) and x′ ∈ S(3, 4) be two arbitrary vertices. Suppose
that t and x′ are not adjacent. Then either t, 3, x′, z, 5, 1 induces a P6 or
{t, 3, x′, z} induces a C4, depending on whether t and z are adjacent. �

(8iv) S(2, 3, 4) and S(2, 3) are complete. By symmetry, S(3, 4, 5) and S(4, 5)
are complete.
Let t ∈ S(2, 3, 4) and y′ ∈ S(2, 3) be two arbitrary vertices. By (3) and
(8iii), x is adjacent to both t and y′. So, t and y′ are adjacent, for otherwise
{t, x, y′, 2} induces a C4. �

(9) The following statements hold among subsets of S3.
(9i) S(5, 1, 2) is complete to S(1, 2, 3) and S(4, 5, 1).

By symmetry, it suffices to show that S(5, 1, 2) is complete to S(4, 5, 1).
Suppose that s ∈ S(5, 1, 2) is not adjacent to t ∈ S(4, 5, 1). Note that s
is not adjacent to y by (8i). Then s, 1, t, 4, 3, y induces a P6, and this is a
contradiction. �

(9ii) Let s ∈ S(3, 4, 5) and t ∈ S(4, 5, 1) such that s and t are not adjacent.
Then t is anti-complete to S(3, 4) and s is complete to S(2, 3).
Let x′ ∈ S(3, 4) be an arbitrary vertex. First, x′ and s are adjacent
by (8iii). Moreover, x′ and t are not adjacent, for otherwise {5, t, x′, s}
induces a C4. This proves the first part of (9ii). Now let y′ ∈ S(2, 3) be an
arbitrary vertex. By (3), y′ is adjacent to x. If s and y′ are not adjacent,
then t, 5, s, x, y′, 2 induces a P6, a contradiction. This shows that s is
complete to S(2, 3). �

(9iii) Let s ∈ S(2, 3, 4) and t ∈ S(3, 4, 5) such that s and t are not adjacent.
Then s (respectively t) is anti-complete to S(4, 5) (respectivelyS(2, 3)).
Let z′ ∈ S(4, 5) be an arbitrary vertex. By (8iv), t is adjacent to z′. If s
and z′ are adjacent, then {s, z′, t, 3} induces a C4, a contradiction. This
proves that s is anti-complete to S(4, 5). By symmetry, t is anti-complete
to S(2, 3). �

We distinguish two cases depending on whether S5 is empty.

Case 1. S5 contains a vertex u. We prove some additional properties of the
graph with the existence of u.

(a) S(3, 4, 5) and S(2, 3) are anti-complete. By symmetry, S(2, 3, 4) and S(4, 5)
are anti-complete.
Let t ∈ S(3, 4, 5) and y′ ∈ S(2, 3) be two arbitrary vertices. Suppose that t
and y′ are adjacent. By (1) and (7), u is adjacent to t but not adjacent to
y′. Then {t, u, 2, y′} induces a C4, a contradiction. This proves the claim. �

(b) S(4, 5, 1) and S(3, 4) are anti-complete. By symmetry, S(1, 2, 3) and S(3, 4)
are anti-complete.
Let t ∈ S(4, 5, 1) and x′ ∈ S(3, 4) be two arbitrary vertices. By (1) and
(7), u is adjacent to t but not adjacent to x′. If t and x′ are adjacent, then
{t, u, 3, x′} induces a C4, a contradiction. �
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(c) S(2, 3, 4) and S(3, 4, 5) are complete.
Let s ∈ S(2, 3, 4) and t ∈ S(3, 4, 5) be two arbitrary vertices. Then x is
adjacent to both s and t by (8iii). By (1) and (7), u is adjacent to s and t
but not adjacent to x. If s and t are not adjacent, then {x, s, u, t} induces a
C4. �

(d) S(4, 5, 1) and S(3, 4, 5) are complete. By symmetry, S(1, 2, 3) and S(2, 3, 4)
are complete.
This follows directly from (a) and (9ii). �

1

2

34

5 u
yz

x

Fig. 3. The graph F3.

It follows from (1)–(9) and (a)–(d) that G is a blow-up of a special graph
F3 (see Fig. 3). We denote by Qv the clique that v ∈ V (F3) is blown into.
Suppose first that |Q2| ≤ ω(G)/2. Note that NG(y) = (Qy \{y})∪Qx ∪Q2 ∪Q3.
Since (NG(y) \ Q2) ∪ {y} is a clique, it follows that |NG(y) \ Q2| ≤ ω(G) − 1.
Therefore, dG(y) ≤ ω(G) − 1 + |Q2| ≤ ω(G) − 1 + ω(G)/2 = 3

2ω(G) − 1. Now
suppose that |Q2| > ω(G)/2. This implies that |Q1 ∪ Qu| < ω(G)/2. Note that
(NG(5)∪{5})\ (Q1 ∪Qu) is a clique. Therefore, dG(5) ≤ ω(G)−1+ | Q1 ∪Qu| ≤
3
2ω(G) − 1.

Case 2. S5 is empty.

(a) S(1, 2, 3) and S(2, 3, 4) are complete. By symmetry, S(4, 5, 1) and S(3, 4, 5)
are complete.
Suppose that s ∈ S(2, 3, 4) and r ∈ S(1, 2, 3) are not adjacent. By (9ii)
and (8ii), r is complete to S(2, 3) and anti-complete to S(3, 4). Note that
V (H)\{2}∪{r} also induces a subgraph H ′ that is isomorphic to F1 whose
underlying five-cycle is C ′ = C \ {2} ∪ {r}. Clearly, s is adjacent to exactly
two vertices on C ′. Therefore, the number of 2-vertices with respect to C ′

is more than that with respect to C, and this contradicts the choice of H. �

(b) S(2, 3, 4) and S(3, 4, 5) are complete.
Suppose that s ∈ S(2, 3, 4) and r ∈ S(3, 4, 5) are not adjacent. By (8iii)
and (8iv), s is complete to S(2, 3) ∪ S(3, 4). By (9iii), s is anti-complete
to S(4, 5). Note that V (H) \ {3} ∪ {s} also induces a subgraph H ′ that is
isomorphic to F1 whose underlying five-cycle is C ′ = C \{3}∪{s}. Clearly, r
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is adjacent to exactly two vertices in C ′. Therefore, the number of 2-vertices
with respect to C ′ is more than that with respect to C, and this contradicts
the choice of H. �

By (a), (b), (8) and (9), S(i−1, i, i+1) and S(i, i+1, i+2) are complete, S(2, 3)
is complete to S(1, 2, 3) ∪ S(2, 3, 4) and anti-complete to S(4, 5, 1) ∪ S(5, 1, 2),
S(4, 5) is complete to S(3, 4, 5) ∪ S(4, 5, 1) and anti-complete to S(5, 1, 2) ∪
S(1, 2, 3), and S(3, 4) is complete to S(2, 3, 4) ∪ S(3, 4, 5) and anti-complete to
S(5, 1, 2), see Fig. 4.

1

2

34

5

S(3, 4)

S(2, 3)S(4, 5)

S(5, 1, 2)

S(1, 2, 3)S(4, 5, 1)

S(2, 3, 4)S(3, 4, 5)

Fig. 4. The structure of G. A thick line between two sets represents that the two sets
are complete, and a dotted line represents that the edges between the two sets can be
arbitrary. Two sets are anti-complete if there is no line between them.

Let Qi = S(i− 1, i, i+1)∪{i} for i ∈ {1, 2, 3, 4, 5}. Suppose first that |Q2| ≤
ω(G)/2. Then dG(1) = |S(5, 1, 2)∪Q5|+ |Q2| ≤ ω(G)−1+ω(G)/2 = 3

2ω(G)−1.
Now suppose that |Q2| > ω(G)/2. This implies that |Q1| < ω(G)/2. Therefore,
dG(5) = |S(4, 5, 1)∪Q4 ∪S(4, 5)|+ |Q2| ≤ ω(G)−1+ω(G)/2 = 3

2ω(G)−1. This
completes the proof of Case 2. ��

Due to page limits we omit the proof of the following lemmas.

Lemma 3. If a (P6, C4, F1)-free atom G contains a C6, then G either contains
a small vertex or is the join of a blow-up of the Petersen graph or F and a
(possibly empty) clique (see Fig. 1 for the Petersen graph or F ).

Lemma 4. If a (P6, C4, F1, C6)-free atom G contains an F2 (see Fig. 2), then
G contains a small vertex.
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Lemma 5. If a (P6, C4, F1, C6, F2)-free atom G contains a C5, then G contains
a small vertex.

We are now ready to prove Theorem 1.

Proof (of Theorem 1). Let G be a (P6, C4)-free atom. It follows from Lemmas 2–5
that we can assume that G is also (C6, C5)-free. Therefore, G is chordal. It is well-
known [10] that every chordal graph contains a vertex of degree at most ω(G)− 1
and so this vertex is small. This completes the proof.

4 χ-Bounding (P6, C4)-Free Graphs

In this section, we shall prove the main result of this paper, that is, every
(P6, C4)-free graph has χ ≤ 3

2ω. For that purpose, we need one additional lemma.

Lemma 6. Let G be a graph and let H be the skeleton of G. If χ(H) ≤ 3, then
χ(G) ≤ 3

2ω(G).

Proof. We prove this by induction on |V (G)|. The base case is that G is its own
skeleton. Our assumption implies that χ(G) ≤ 3. If ω(G) ≥ 2, then it follows
that χ(G) ≤ 3

2ω(G). Otherwise, ω(G) = 1, i.e., G is an independent set. So,
χ(G) = 1 < 3

2ω(G). Now suppose that the lemma is true for any graph G′ with
|V (G′)| < |V (G)|. If G contains an isolated vertex, then applying the inductive
hypothesis to G − v shows that χ(G) ≤ 3

2ω(G). So, G does not contain any
isolated vertex. Therefore, H does not contain any isolated vertex either. So,
any vertex of H lies in a maximal clique of H with size at least 2. This implies
that ω(G′) ≤ ω(G) − 2, where G′ = G − H. Note that the skeleton H ′ of G′

is an induced subgraph of H and so χ(H ′) ≤ 3. By the inductive hypothesis it
follows that χ(G′) ≤ 3

2ω(G′). Finally,

χ(G) ≤ χ(G′) + χ(H) ≤ 3
2
ω(G′) + χ(H) ≤ 3

2
(ω(G) − 2) + 3 =

3
2
ω(G).

This completes our proof. ��

Now we are ready to prove the main result of this paper.

Theorem 2. Every (P6, C4)-free graph G has χ(G) ≤ 3
2ω(G).

Proof. We use induction on |V (G)|. We may assume that G is connected, for
otherwise we apply the inductive hypothesis on each connected component. If G
contains a clique cutset K that disconnects H1 from H2, let Gi = G[Hi ∪ K] for
i = 1, 2. Then the inductive hypothesis implies that χ(Gi) ≤ 3

2ω(Gi) for i = 1, 2.
Note that χ(G) = max{χ(G1), χ(G2)} and so χ(G) ≤ 3

2ω(G). Now G is an
atom. If G contains a universal vertex u, then applying the inductive hypothesis
to G − u implies that χ(G − u) ≤ 3

2ω(G − u). Since χ(G) = χ(G − u) + 1 and
ω(G) = ω(G − u) + 1, it follows that χ(G) ≤ 3

2 (ω(G) − 1) + 1 < 3
2ω(G). So, G

is an atom without universal vertices. It follows then from Theorem1 that G is
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either contains a small vertex v or is a blow-up of the Petersen graph or F3. If G
contains a small vertex v, then applying the inductive hypothesis to G − v gives
us that χ(G − v) ≤ 3

2ω(G − v) ≤ 3
2ω(G). Since v has degree at most 3

2ω(G) − 1,
it follows that χ(G) = χ(G′) ≤ 3

2ω(G). So, we assume that G is a blow-up of
the Petersen graph or F . In other words, the skeleton of G is the Petersen graph
or F . It is straightforward to check that both graphs have chromatic number 3.
Therefore, χ(G) ≤ 3

2ω(G) by Lemma 6. This completes our proof. ��

5 A 3/2-Approximation Algorithm

In this section, we give a polynomial time 3/2-approximation algorithm for col-
oring (P6, C4)-free graphs. The general idea is to decompose the input graph G
in the following way to obtain a decomposition tree T (G) where the leaves of
T (G) are ‘basic’ graphs which we know how to color and the internal nodes of
T (G) are subgraphs of G that are decomposed via either clique cutsets or small
vertices. Since both clique cutsets and small vertices ‘preserve’ the colorability
of graphs, a bottom-up approach on T (G) will give us a coloring of G using at
most 3

2ω(G) colors. Formally, let G be a connected (P6, C4)-free graph. If G has
a clique cutset K, then G − K is a disjoint union of two subgraphs H1 and H2

of G. We let Gi = Hi ∪ K for i = 1, 2 and decompose G into G1 and G2. On
the other hand, if G does not contain any clique cutset but contains a small
vertex v that is not universal, then we decompose G into G−v. We then further
decompose G1 and G2 or G − v in the same way until either the graph has no
clique cutsets and no small vertices or the graph is a clique. We refer to these
subgraphs that are not further decomposed as strong atoms. The decomposition
procedure can be represented by a binary tree T (G) whose root is G, and G may
have two children G1 and G2 or only one child G − v, depending on the way
G is decomposed. Each leaf in T (G) corresponds to a strong atom. Note that if
a strong atom is not a clique, then it is the join of a blow-up of the Petersen
graph or F and a clique by Theorem1. The following lemma, whose proof we
omit, says that there are only polynomially many nodes in T (G) and T (G) can
be found in polynomial time.

Lemma 7. T (G) has O(n2) nodes and can be found in O(mn2) time.

Theorem 3. There is an O(n2m) algorithm to find a coloring of G that uses
at most 3

2ω(G) colors.

Proof. The algorithm works as follows: (i) we first find T (G); (ii) color each leaf
X of T (G) using at most 3

2ω(X) colors; (iii) for an internal node Y , if Y has
only one child Y −y, then color y with a color that is not used on its neighborsin
Y ; if Y has two children Y1 and Y2, then combine the colorings of Y1 and Y2 on
the clique cutset that decomposes Y . The correctness follows from Lemma 6 and
Theorem 2. It takes O(mn2) time to find T (G) by Lemma 7. Moreover, it is easy
to see that one can color a leaf X of T (G) in time O(n+m) time, and combining
the coloring for a single decomposition step takes O(n) time. Therefore, it takes
(O(m + n) + O(n))O(n2) = O(n2m) time to obtain a desired coloring of G. ��
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Abstract. Deciding whether a given graph has a square root is a classi-
cal problem that has been studied extensively both from graph theoretic
and from algorithmic perspectives. The problem is NP-complete in gen-
eral, and consequently substantial effort has been dedicated to deciding
whether a given graph has a square root that belongs to a particular
graph class. There are both polynomial-time solvable and NP-complete
cases, depending on the graph class. We contribute with new results in
this direction. Given an arbitrary input graph G, we give polynomial-
time algorithms to decide whether G has an outerplanar square root,
and whether G has a square root that is of pathwidth at most 2.

1 Introduction

Squares and square roots of graphs form a classical and well-studied topic in
graph theory, which has also attracted significant attention from the algorithms
community. A graph G is the square of a graph H if G and H have the same
vertex set, and two vertices are adjacent in G if and only if the distance between
them is at most 2 in H. This situation is denoted by G = H2, and H is called a
square root of G. A square root of a graph need not be unique; it might even not
exist. There are graphs without square roots, graphs with a unique square root,
and graphs with several different square roots. Characterizing and recognizing
graphs with square roots has therefore been an intriguing and important problem
both in graph theory and in algorithms for decades.

Already in 1967, Mukhopadhyay [26] proved that a graph G on vertex set
{v1, . . . , vn} has a square root if and only if G contains complete subgraphs
{K1, . . . ,Kn}, such that each Ki contains vi, and vertex vj belongs to Ki if and
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only if vi belongs to Kj . Unfortunately, this characterization does not yield a
polynomial-time algorithm for deciding whether G has a square root. Let us for-
mally call Square Root the problem of deciding whether an input graph G has
a square root. In 1994, it was shown by Motwani and Sudan [25] that Square
Root is NP-complete. Motivated by its computational hardness, special cases
of the problem have been studied, where the input graph G belongs to a partic-
ular graph class. According to these results, Square Root is polynomial-time
solvable on planar graphs [22], and more generally, on every non-trivial minor-
closed graph class [27]. Polynomial-time algorithms exist also when the input
graph G belongs to one of the following graph classes: block graphs [20], line
graphs [23], trivially perfect graphs [24], threshold graphs [24], graphs of max-
imum degree 6 [3], graphs of maximum average degree smaller than 46

11 [13],
graphs with clique number at most 3 [14], and graphs with bounded clique num-
ber and no long induced path [14]. On the negative side, it has been shown that
Square Root is NP-complete on chordal graphs [17]. A number of parameter-
ized complexity results exist for the problem [3,4,13].

More interesting from our perspective, the intractability of the problem has
also been attacked by restricting the properties of the square root that we are
looking for. In this case, the input graph G is arbitrary, and the question is
whether G has a square root that belongs to some graph class H specified in
advance. We denote this problem by H-Square Root, and this is exactly the
problem variant that we focus on in this paper.

Significant advances have been made also in this direction. Previous results
show that H-Square Root is polynomial-time solvable for the following graph
classes H: trees [22], proper interval graphs [17], bipartite graphs [16], block
graphs [20], strongly chordal split graphs [21], ptolemaic graphs [18], 3-sun-free
split graphs [18], cactus graphs [12], cactus block graphs [8] and graphs with
girth at least g for any fixed g ≥ 6 [10]. The result for 3-sun-free split graphs has
been extended to a number of other subclasses of split graphs in [19]. Observe
that if H-Square Root is polynomial-time solvable for some class H, then this
does not automatically imply that H′-Square Root is polynomial-time solvable
for a subclass H′ of H.

On the negative side, H-Square Root remains NP-complete for each of
the following graph classes H: graphs of girth at least 5 [9], graphs of girth at
least 4 [10], split graphs [17], and chordal graphs [17]. All known NP-hardness
constructions involve dense graphs [9,10,17,25], and the square roots that occur
in these constructions are dense as well. This, in combination with the listed
polynomial-time cases, naturally leads to the question whether H-Square Root
is polynomial-time solvable if the class H is “sparse” in some sense.

Motivated by the above, in this paper we study H-Square Root when H is
the class of outerplanar graphs, and when H is the class of graphs of pathwidth
at most 2. In both cases, we show that H-Square Root can be solved in polyno-
mial time. In particular, we prove that Outerplanar (Square) Root can be
solved in time O(n4) and (Square) Root of Pathwidth ≤ 2 in time O(n6).
Our approach for outerplanar graphs can in fact be directly applied to every
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subclass of outerplanar graphs that is closed under edge deletion and that can
be expressed in monadic second-order logic, including cactus graphs, for which
a polynomial-time algorithm is already known [12]. Due to space restrictions,
some proofs are omitted; see [11] for the full version of our paper.

2 Preliminaries

We consider only finite undirected graphs without loops and multiple edges. We
refer to the textbook by Diestel [7] for any undefined graph terminology.

Let G be a graph. We denote the vertex set of G by VG and the edge set by
EG. The subgraph of G induced by a subset U ⊆ VG is denoted by G[U ]. The
graph G − U is the graph obtained from G after removing the vertices of U . If
U = {u}, we also write G − u. Similarly, we denote the graph obtained from G
by deleting a set of edges S, or a single edge e, by G−S and G− e, respectively.

The distance distG(u, v) between a pair of vertices u and v of G is the number
of edges of a shortest path between them. The open neighborhood of a vertex
u ∈ VG is defined as NG(u) = {v | uv ∈ EG}, and its closed neighborhood is
defined as NG[u] = NG(u) ∪ {u}. For S ⊆ VG, NG(S) = (

⋃
v∈S NG(v)) \ S. Two

(adjacent) vertices u, v are said to be true twins if NG[u] = NG[v]. A vertex v
is simplicial if NG[v] is a clique, that is, if there is an edge between any two
vertices of NG[v]. The degree of a vertex u ∈ VG is defined as dG(u) = |NG(u)|.
The maximum degree of G is Δ(G) = max{dG(v) | v ∈ VG}. A vertex of degree 1
is said to be a pendant vertex.

A connected component of G is a maximal connected subgraph. A vertex u is
a cut vertex of a graph G with at least two vertices if G−u has more components
than G. A connected graph without cut vertices is said to be biconnected. An
inclusion-maximal induced biconnected subgraph of G is called a block.

For a positive integer k, the k-th power of a graph H is the graph G = Hk

with vertex set VG = VH such that every pair of distinct vertices u and v of G
are adjacent if and only if distH(u, v) ≤ k. For the particular case k = 2, H2 is
a square of H, and H is a square root of G if G = H2.

The contraction of an edge uv of a graph G is the operation that deletes the
vertices u and v and replaces them by a vertex w adjacent to (NG(u)∪NG(v)) \
{u, v}. A graph G′ is a contraction of a graph G if G′ can be obtained from G
by a series of edge contraction. A graph G′ is a minor of G if it can be obtained
from G by vertex deletions, edge deletions and edge contractions.

A graph G is planar if it admits an embedding on the plane such that there
are no edges crossing (except in endpoints). A planar graph G is outerplanar if it
admits a crossing-free embedding on the plane in such a way that all its vertices
are on the boundary of the same (external) face. For a considered outerplanar
graph, we always assume that its embedding on the plane is given. If G is a
planar biconnected graph different from K2, then for any of its embeddings, the
boundary of each face is a cycle (see, e.g., [7]). If G is a biconnected outerplanar
graph distinct from K2, then the cycle C forming the boundary of the external
face is unique and we call it the boundary cycle. By definition, all vertices of G
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are laying on C, and every edge is either an edge of C or a chord of C, that is,
its endpoints are vertices of C that are non-adjacent in C. Clearly, these chords
are not intersecting in the embedding. For a vertex u, we define the clockwise
ordering with respect to u as a clockwise ordering of the vertices on C starting
from u. For a subset of vertices X, the clockwise ordering of X with respect to
u is the ordering induced by the clockwise ordering of the vertices of C. See
Fig. 1(a) for some examples. In our paper, we use these terms for blocks of an
outerplanar graph that are distinct from K2. Outerplanar graphs can also be
characterized via forbidden minors as shown by Sys�lo [29].

b)

u

x1 x2

x3

u = v1 u
v2

v3

vn

x1

x2

x3

xk

X
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Fig. 1. (a) Clockwise orderings with respect to u of a biconnected outerplanar graph
with vertex set VG = {v1, . . . , vn} and a set X = {x1, . . . , xk}. (b) Example of a set
X = {x1, x2, x3} that is consecutive with respect to u; notice that the vertices x1 and
x3 are not consecutive.

Lemma 1 [29]. A graph G is outerplanar if and only if it does not contain K4

and K2,3 as minors.

A tree decomposition of a graph G is a pair (T,X) where T is a tree and
X = {Xi | i ∈ VT } is a collection of subsets (called bags) of VG such that the
following three conditions hold:

(i)
⋃

i∈VT
Xi = VG,

(ii) for each edge xy ∈ EG, x, y ∈ Xi for some i ∈ VT , and
(iii) for each x ∈ VG the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ VT }, T ) is maxi∈VT
{|Xi| − 1}. The

treewidth tw(G) of a graph G is the minimum width over all tree decomposi-
tions of G. If T is restricted to be a path, then we say that (X,T ) is a path
decomposition of G. The pathwidth pw(G) of G is the minimum width over all
path decompositions of G. Notice that a path decomposition of G can be seen as
a sequence (X1, . . . , Xr) of bags. We always assume that the bags (X1, . . . , Xr)
are distinct and inclusion incomparable, that is, there are no bags Xi and Xj

such that Xi ⊂ Xj . The following fundamental results are due to Bodlaender [1],
and Bodlaender and Kloks [2].
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Lemma 2 [1,2]. For every fixed constant c, it is possible to decide in linear time
whether the treewidth or the pathwidth of a graph is at most c.

We need the following three folklore observations about treewidth.

Observation 1. If H is a minor (contraction) of G, then tw(H) ≤ tw(G) and
pw(H) ≤ pw(G).

Observation 2. For an outerplanar graph G, tw(G) ≤ 2.

Observation 3. For a graph G and a positive integer k,

tw(Gk) ≤ (tw(G) + 1)Δ(G)�k/2�+1

and
pw(Gk) ≤ (pw(G) + 1)Δ(G)�k/2�+1.

Let H be a square root of a graph G. We say that H is a minimal square
root of G if H2 = G, and no proper subgraph of H is a square root of G. We
need the following simple observations.

Observation 4. Let H be a graph class closed under edge deletion. If a graph
G has a square root H ∈ H, then G has a minimal square root that belongs to H.

Observation 5. Let H be a minimal square root of a graph G that contains
three vertices u, v, w that are pairwise adjacent in H. Then v or w has a neighbor
x �= u in H such that x is not adjacent to u in H.

We conclude this section by a lemma that is implicit in [12], which enables
us to identify some edges that are not included in any square root.

Lemma 3. Let x, y be distinct neighbors of a vertex u in a graph G such that x
and y are at distance at least 3 in G − u. Then xu, yu /∈ EH for any square root
H of G.

3 Outerplanar Roots

In this section, we show that it can be decided in polynomial time whether a
graph has an outerplanar square root. We say that a square root H of G is an
outerplanar root if H is outerplanar. We define the following problem:

Outerplanar Root
Input: a graph G.
Question: is there an outerplanar graph H such that H2 = G?

The main result of this section is the following.

Theorem 1. Outerplanar Root can be solved in time O(n4), where n is the
number of vertices of the input graph.

The remaining part of this section is devoted to the proof of Theorem1. In
Sect. 3.1 we obtain several structural results we need to construct an algorithm
for Outerplanar Root. Then, in Sect. 3.2, we construct a polynomial-time
algorithm for Outerplanar Root.
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3.1 Structural Lemmas

In this section, we give several structural results about outerplanar square roots.
Due to space restriction we omit the proofs.

Let H be an outerplanar root of a graph G and let u ∈ VG. We say that two
distinct vertices x, y ∈ NH(u) are consecutive with respect to u if x and y are in
the same block F of H and there are no vertices of NH(u) between x and y in the
clockwise ordering of the vertices of the boundary cycle of F with respect to u.
For a set of vertices X ⊆ NH(u), we say that the vertices X are consecutive with
respect to u if the vertices of X are in the same block of H and any two vertices
of X consecutive in the clockwise ordering of elements of X with respect to u are
consecutive with respect to u; a single-vertex set is assumed to be consecutive
(see Fig. 1 (b) for an example).

As every subgraph of an outerplanar graph is outerplanar, by Observation 4,
we may restrict ourselves to minimal outerplanar roots. Let H be a minimal
outerplanar root of a graph G and let u ∈ VG. Denote by S(G,H, u) a collection
of all subsets X of NH(u) such that X = NG(x) ∩ NH(u) for some x ∈ NG(u) \
NH(u). We can use S(G,H, u) to find edges with both endpoints in NH(u) that
are not included in a square root.

Lemma 4. Let H be a minimal outerplanar root of a graph G, and let u ∈ VG.
Then for each X ∈ S(G,H, u), X is consecutive with respect to u.

Lemma 5. Let H be a minimal outerplanar root of a graph G, and let u ∈ VG.
If for two distinct vertices x, y ∈ NH(u) there is no set X ∈ S(G,H, u) such that
x, y ∈ X, then xy /∈ EH .

We also need the following two lemmas.

Lemma 6. Let H be a minimal outerplanar root of a graph G, and let u ∈ VG. If
x ∈ NH(u) is not a pendant vertex of H, then there is a vertex y ∈ NG(u)\NH(u)
that is adjacent to x in G.

Lemma 7. Let H be a minimal outerplanar root of a graph G, and let u ∈ VG.
Then any X ∈ S(G,H, u) has size at most 4.

By combining Lemmas 4 and 7 we obtain the following lemma.

Lemma 8. Let H be a minimal outerplanar root of a graph G, and let u ∈ VG.
Then the following holds.

(i) If x, y ∈ NH(u) do not belong to the same block of H, then for any X ∈
S(G,H, u), x /∈ X or y /∈ X.

(ii) If F is a block of H containing u and vertices x1, . . . , xk ∈ NH(u) ordered
in the clockwise order with respect to u in the boundary cycle of F , then for
any X ∈ S(G,H, u), xi /∈ X or xj /∈ X if i, j ∈ {1, . . . , k} and |i − j| ≥ 4.
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We now state some structural results that help to decide whether an edge
incident to a vertex is in an outerplanar root or not. Suppose that u and v are
pendant vertices of a square root H of G and that u and v are adjacent to the
same vertex of H − {u, v}. Then, in G, u and v are simplicial vertices and true
twins. We use this observation in the proof of the following lemma that allows
to find some pendant vertices.

Lemma 9. Let H be a minimal outerplanar root of a graph G. If G contains at
least 7 simplicial vertices that are pairwise true twins, then at least one of these
vertices is a pendant vertex of H.

We apply Lemma 3 to identify the edges incident to a vertex of sufficiently
high degree in an outerplanar root using the following two lemmas.

Lemma 10. Let G be a graph having a minimal outerplanar root H. Let also
u ∈ VG be such that there are three distinct vertices v1, v2, v3 ∈ NG(u) that are
pairwise at distance at least 3 in G − u. Then for x ∈ NG(u), xu /∈ EH if and
only if there is i ∈ {1, 2, 3} such that distG−u(x, vi) ≥ 3.

Lemma 11. Let G be a graph having a minimal outerplanar root H such that
any vertex of H has at most 7 pendant neighbors. Let also u ∈ VG with dH(u) ≥
22. Then there are distinct v1, v2, v3 ∈ NG(u) that are pairwise at distance at
least 3 in G − u.

Notice that v1, v2 and v3 are in distinct components of H − u. We obtain
that v3 is at distance at least 3 from v1 and v2 in G − u.

The next lemma is crucial for our algorithm. To state it, we need some
additional notations. Let H be a minimal outerplanar root of a graph G such
that each vertex of H is adjacent to at most 7 pendant vertices. Let U be a
set of vertices of H that contains all vertices of degree at least 22. For every
u ∈ U and every block F of H containing u, we do the following. Consider the
set X = NH(u) ∩ VF and denote the vertices of X by x1, . . . , xk, where these
vertices are numbered in the clockwise order with respect to u. Then

– for i, j ∈ {1, . . . , k}, delete the edge xixj from G if |i − j| ≥ 4.
– for i ∈ {1, . . . , k}, delete the edges xiy from G for y ∈ NH(u) \ VF .

Denote by G(H,U) the graph obtained in the end.

Lemma 12. There is a constant c that depends neither on G nor on H such
that

tw(G(H,U)) ≤ c.

3.2 The Algorithm

In this section, we construct an algorithm for Outerplanar Root with running
time O(n4). Let G be the input graph. Clearly, it is sufficient to solve Outer-
planar Root for connected graphs. Hence, we assume that G is connected and
has n ≥ 2 vertices.
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First, we preprocess G using Lemma 9 to reduce the number of pendant
vertices adjacent to the same vertex in a (potential) outerplanar root of G. To
do so, we exhaustively apply the following rule.

Pendants reduction. If G has a set X of simplicial true twins of size at least 8,
then delete an arbitrary u ∈ X from G.

The following lemma shows that this rule is safe.

Lemma 13. If G′ = G − u is obtained from G by the application of Pendant
reduction, then G has an outerplanar root if and only if G′ has an outerplanar
root.

Proof. Suppose that H is a minimal outerplanar root of G. By Lemma 9, H has a
pendant vertex u ∈ X. It is easy to verify that H ′ = H −u is an outerplanar root
of G′. Assume now that H ′ is a minimal outerplanar root of G′. By Lemma 9,
H has a pendant vertex w ∈ X \ {u}, since the vertices of X \ {u} are simplicial
true twins of G′ and |X \ {u}| ≥ 7. Let v be the unique neighbor of w in H ′. We
construct H from H ′ by adding u and making it adjacent to v. It is readily seen
that H is an outerplanar root of G. This completes the proof. 
�

For simplicity, we call the graph obtained by exhaustive application of the
pendants reduction rule G again. The following property immediately follows
from the observation that any two pendant vertices of a square root H of G
adjacent to the same vertex in H are true twins of G.

Lemma 14. Every outerplanar root of G has at most 7 pendant vertices adja-
cent to the same vertex.

In the next stage of our algorithm we label some edges of G red or blue in
such a way that the edges labeled red are included in every minimal outerplanar
root and the blue edges are not included in any minimal outerplanar root. We
denote by R the set of red edges and by B the set of blue edges. We also construct
a set of vertices U of G such that for every u ∈ U , the edges incident to u are
labeled red or blue.

Labeling. Set U = ∅, R = ∅ and B = ∅. For each u ∈ VG such that there are
three distinct vertices v1, v2, v3 ∈ NG(u) that are at distance at least 3 from each
other in G − u, do the following:

(i) set U = U ∪ {u},
(ii) set B′ = {ux ∈ EG | there is 1 ≤ i ≤ 3 s.t. distG−u(x, vi) ≥ 3},
(iii) set R′ = {ux | x ∈ NG(u)} \ B′,
(iv) set R = R ∪ R′ and B = B ∪ B′,
(v) if R ∩ B �= ∅, then return a no-answer and stop.

Lemmas 10 and 11 imply the following statement.

Lemma 15. If G has an outerplanar root, then Labeling does not stop in
Step (v), and if H is a minimal outerplanar root of G, then R ⊆ EH and
B ∩ EH = ∅. Moreover, every vertex u ∈ VG with dH(u) ≥ 22 is included in U .
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Next, we find the set of edges xy with xu, yu ∈ R for some u in R that are
not included in a minimal outerplanar root.

Finding irrelevant edges. Set S = ∅. For each u ∈ U and each pair of distinct
x, y ∈ NG(u) such that ux, uy ∈ R do the following.

(i) If xy /∈ EG, then return a no-answer and stop.
(ii) If for x and y, there is no v ∈ NG(u) such that vu ∈ B and x, y ∈ NG(v),

then include xy in S.
(iii) If R ∩ S �= ∅, then return a no-answer and stop.

Combining Lemmas 5 and 15, we obtain the following claim.

Lemma 16. If G has an outerplanar root, then Finding irrelevant edges
does not stop in Steps (i) and (iii), and if H is a minimal outerplanar root of G,
then S ∩ EH = ∅.

Assume that we did not stop during the execution of Finding irrelevant
edges. Let G′ = G − S. We show the following.

Lemma 17. The graph G has an outerplanar root if and only if there is a set
L ⊆ EG′ such that

(i) R ⊆ L, B ∩ L = ∅,
(ii) for any xy ∈ EG′ , xy ∈ L or there is z ∈ VG′ such that xz, yz ∈ L,
(iii) for any pair of distinct edges xz, yz ∈ L, xy ∈ EG′ or there is u ∈ U such

that xu, yu ∈ R,
(iv) the graph H = (VG, L) is outerplanar.

Proof. Let H be a minimal outerplanar root of G. By Lemma 16, EH ∩ S = ∅,
i.e., EH ⊆ EG′ . Let L = EH . It is straightforward to verify that (i)–(iv) are
fulfilled. Assume now that there is L ⊆ EG′ such that (i)–(iv) hold. Then we
have that H = (VG, L) is an outerplanar root of G. 
�

To complete the description of the algorithm, it remains to show how to
check the existence of a set of edges L satisfying (i)–(iv) of Lemma17 for given
G′, R and B. Notice that, if G has a minimal outerplanar root H, then G′

is a subgraph of the graph G(H,U) constructed in Sect. 3.1 by Lemma 8. By
Lemma 12, there is a constant c that depends neither on G nor on H such that
tw(G(H,U)) ≤ c. Therefore, tw(G′) ≤ c for a yes-instance. We use Lemma 2
to verify whether it holds. If we obtain that tw(G′) > c, we conclude that
we have a no-instance and stop. Otherwise, we use the celebrated theorem of
Courcelle [5], which states that any problem that can be expressed in monadic
second-order logic can be solved in linear time on a graph of bounded treewidth.
It is straightforward to see that properties (i)–(iv) can be expressed in this logic.
In particular, to express outerplanarity in (iv), we can use Lemma1 and the well-
known fact that the property that G contains F as a minor can be expressed
in monadic second-order logic if F is fixed (see, e.g., the book of Courcelle and
Engelfriet [6]). It immediately implies that we can decide in linear time whether
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L exists or not. Notice that we can modify these arguments such that we do not
only check the existence of L but also find it. To do this, we can construct a
dynamic programming algorithm for graphs of bounded treewidth that finds L.

Now we evaluate the running time of our algorithm. Since it can be verified in
time O(n) whether two vertices of G are true twins, the classes of true twins can
be constructed in time O(n3). Then we can check whether each class contains
simplicial vertices in time O(n2). Therefore, Pendant reduction can be done
in time O(n3). For every vertex u, we can compute the distances between the
vertices of NG(u) in G − u in time O(n3). This implies that Labeling can be
done in time O(n4). Finding irrelevant edges also can be done in time O(n4)
by checking O(n2) pairs of vertices x and y. Then G′ can be constructed in
linear time. Finally, checking whether tw(G′) ≤ c and deciding whether there is
a set of edges L satisfying the required properties can be done in linear time by
Lemma 2 and Courcelle’s theorem [5] respectively.

Notice that we can use the same arguments to decide whether a graph G
has a square root H that belongs to some subclass H of the class of outerplanar
graphs. To be able to apply our structural lemmas, we only need the property
that H should be closed under edge deletions. Observe also that if the properties
defining H could be expressed in monadic second-order logic, then we can apply
Courcelle’s theorem [5]. It gives us the following corollary.

Corollary 1. For every subclass C of the class of outerplanar graphs that is
closed under edge deletions and can be expressed in monadic second-order logic,
it can be decided in time O(n4) whether an n-vertex graph G has a square root
H ∈ C.

4 Roots of Pathwidth at Most Two

Our main approach for solving Outerplanar root is general in the sense that
it can be adapted to find also square roots belonging to some other graph classes.
In this section, we show that there is an algorithm to decide in polynomial time
whether a graph has a square root of pathwidth at most 2. Notice that graphs
of pathwidth 1 are caterpillars, and that it can be decided in polynomial time
whether a graph G has a square root that is a caterpillar by an easy adaptation
of algorithms for finding square roots that are trees [22,28].

We define the following problem:

Root of Pathwidth ≤ 2
Input: a graph G.
Question: is there a graph H such that pw(H) ≤ 2 and H2 = G?

The main difference between our algorithm for Root of Pathwidth ≤
2 and our algorithm for Outerplanar Root lies in the way properties of
the involved graph classes are used. To show the structural results needed for
this algorithm, we use the property that a potential square root has a path
decomposition of width at most 2, instead of the existence of an outerplanar
embedding used in the previous section.

We briefly sketch the proof of the following theorem.
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Theorem 2. Root of Pathwidth ≤ 2 can be solved in time O(n6), where n
is the number of vertices of the input graph.

Proof (Sketch). Let G be the input graph. It is sufficient to solve Root of
Pathwidth ≤ 2 for connected graphs. Hence, we assume that G is connected
and has n ≥ 2 vertices. Notice that the class of graphs of pathwidth at most 2 is
closed under edge deletions. Therefore, by Observation 4, we can consider only
minimal square roots.

First, we preprocess G to reduce the number of true twins that a given vertex
of VG might have. To do so, we show that there is a constant c1 such that if W
is a set of true twins of G of size at least c1, then for any minimal square root
H of G with pw(H) ≤ 2, either W has a vertex that is pendant in H or W has
distinct nonadjacent vertices x, y, z with dH(x) = dH(y) = dH(y) = 2. It allows
us to show that if G has a set of true twins W of size at least c1 + 1, then by
the deletion of an arbitrary u ∈ W from G, we obtain an equivalent instance of
Root of Pathwidth ≤ 2. From now on, we can assume that any set of true
twins of G has size at most c1. We need this to obtain forthcoming structural
properties.

In the next stage of our algorithm, we label some edges of G red or blue
in such a way that the edges labeled red are included in every minimal square
root of pathwidth at most 2 and the blue edges are not included in any minimal
square root of pathwidth at most 2. We denote by R the set of red edges and by
B the set of blue edges. We also construct a set of vertices U of G such that for
every u ∈ U , the edges incident to u are labeled red or blue.

The labeling is based on the following structural property. If there is u ∈
VG such that there are five distinct vertices v1, . . . , v5 in NG(u) that are at
distance at least 3 from each other in G − u, then for any square root H with
pw(H) ≤ 2, ux /∈ EH for x ∈ NG(u) if and only if there is i ∈ {1, . . . , 5} such
that distG−u(x, vi) ≥ 3. Respectively, if we find u ∈ VG with the aforementioned
property that there are five distinct vertices v1, . . . , v5 in NG(u) that are at
distance at least 3 from each other in G − u, then we include u in U and for
x ∈ NG(u), we label ux blue if there is i ∈ {1, . . . , 5} such that distG−u(x, vi) ≥ 3
and we label ux red otherwise. If we get inconsistent labelings, that is, some edge
should be labeled red and blue, then we stop and report that there is no square
root of pathwidth at most 2.

We show that there is a constant c2 such that, for a square root H of G with
pw(H) ≤ 2, if dH(u) ≥ c2, then u ∈ U and, therefore, all the edges of G incident
to u are labeled red or blue. It means that if u is a vertex of H of sufficiently
high degree, then for each edge of G incident to u, we distinguish whether this
edge is in a square root or not.

Next, we find the set of edges xy with xu, yu ∈ R which for some u in U
are not included in a minimal square root of pathwidth at most 2. To do it, we
use Observation 5 to show that if there is no z ∈ NG(u) with uz ∈ B such that
xz, yz ∈ EG, then xy /∈ EH for a minimal square root H of pathwidth at most 2.
Respectively, we label such edges xy blue. Again, if we get inconsistent labelings,
then we stop and report that there is no square root of pathwidth at most 2.
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Denote by S the set of edges labeled blue in this stage of the algorithm and
let G′ = G−S. We prove that if G has a square root of pathwidth at most 2, then
there is a constant c4 such that pw(G′) ≤ c4. The proof is based on the property
that every vertex of degree at least c2 in a (potential) square root of pathwidth
at most 2 is included in U . We can verify whether pw(G′) ≤ c4 in linear time
using Lemma 2. If pw(G′) > c4, then we stop and report that there is no square
root of pathwidth at most 2. Otherwise, we obtain a path decomposition of G′

of width at most c4.
Then, similarly to the proof of Theorem 1, we obtain that G has a square

root of pathwidth at most 2 if and only if there is a set L ⊆ EG′ such that

(i) R ⊆ L, B ∩ L = ∅,
(ii) for any xy ∈ EG′ , xy ∈ L or there is z ∈ VG′ such that xz, yz ∈ L,
(iii) for any distinct edges xz, yz ∈ L, xy ∈ EG′ or xy ∈ S,
(iv) the graph H = (VG, L) is such that pw(H) ≤ 2.

Notice that the properties (i)–(iv) can be expressed in monadic second-order
logic. In particular, (iv) can be expressed using the property that the class of
graphs of pathwidth at most 2 is defined by the set of forbidden minors given by
Kinnersley and Langston in [15]. Then we use Courcelle’s theorem [5] to decide
in linear time whether L exists or not.

To evaluate the running time, observe that to construct U , we consider each
vertex u ∈ VG and check whether there are 5 distinct vertices in NG(u) that are
at distance at least 3 from each other in G − u. This can be done in time O(n6)
and implies that the total running time is also O(n6). 
�

5 Conclusions

We proved that H-Square Root is polynomial-time solvable when H is the
class of outerplanar graphs or the class of graphs of pathwidth at most 2. The
same result holds if H is any subclass of the class of outerplanar graphs that is
closed under edge deletion and that can be expressed in monadic second-order
logic (for instance, if H is the class of cactus graphs). We conclude by posing
two questions:

– Is H-Square Root polynomial-time solvable for every class H of graphs of
bounded pathwidth?

– Is H-Square Root polynomial-time solvable if H is the class of planar
graphs?
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6. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, Encyclopedia of Mathematics and its Applications,
vol. 138. Cambridge University Press, Cambridge (2012)

7. Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer, Heidelberg
(2012)

8. Ducoffe G., Finding cut-vertices in the square roots of a graph. In: Proceedings of
the WG 2017. LNCS (to Appear)

9. Farzad, B., Karimi, M.: Square-root finding problem in graphs, a complete
dichotomy theorem. CoRR abs/1210.7684 (2012)

10. Farzad, B., Lau, L.C., Le, V.B., Tuy, N.N.: Complexity of finding graph roots with
girth conditions. Algorithmica 62, 38–53 (2012)

11. Golovach, P.A., Heggernes, P., Kratsch, D., Lima, P.T., Paulusma, D.: Algo-
rithms for outerplanar graph roots and graph roots of pathwidth at most 2. CoRR
abs/1703.05102 (2017)

12. Golovach, P.A., Kratsch, D., Paulusma, D., Stewart, A.: Finding cactus roots
in polynomial time. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA
2016. LNCS, vol. 9843, pp. 361–372. Springer, Cham (2016). doi:10.1007/
978-3-319-44543-4 28

13. Golovach, P.A., Kratsch, D., Paulusma, D., Stewart, A.: A linear kernel for finding
square roots of almost planar graphs. In: Proceedings of the 15th Scandinavian
Symposium and Workshops on Algorithm Theory, SWAT 2016, vol. 53, pp. 4:1–
4:14. Leibniz International Proceedings in Informatics (2016)

14. Golovach, P.A., Kratsch, D., Paulusma, D., Stewart, A.: Squares of low clique
number. Electron. Notes Discrete Math. 55, 195–198 (2016). 14th Cologne Twente
Workshop 2016, CTW 2016

15. Kinnersley, N.G., Langston, M.A.: Obstruction set isolation for the gate matrix
layout problem. Discrete Appl. Math. 54(2–3), 169–213 (1994)

16. Lau, L.C.: Bipartite roots of graphs. ACM Trans. Algorithms 2, 178–208 (2006)
17. Lau, L.C., Corneil, D.G.: Recognizing powers of proper interval, split, and chordal

graphs. SIAM J. Discrete Math. 18, 83–102 (2004)
18. Le, V.B., Oversberg, A., Schaudt, O.: Polynomial time recognition of squares of

ptolemaic graphs and 3-sun-free split graphs. Theoret. Comput. Sci. 602, 39–49
(2015)

19. Le, V.B., Oversberg, A., Schaudt, O.: A unified approach for recognizing squares
of split graphs. Theoret. Comput. Sci. 648, 26–33 (2016)

20. Le, V.B., Tuy, N.N.: The square of a block graph. Discrete Math. 310, 734–741
(2010)

21. Le, V.B., Tuy, N.N.: A good characterization of squares of strongly chordal split
graphs. Inf. Process. Lett. 111, 120–123 (2011)

22. Lin, Y.-L., Skiena, S.S.: Algorithms for square roots of graphs. In: Hsu, W.-L., Lee,
R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 12–21. Springer, Heidelberg (1991).
doi:10.1007/3-540-54945-5 44

http://dx.doi.org/10.1007/978-3-642-45043-3_16
http://dx.doi.org/10.1007/978-3-642-45043-3_16
http://dx.doi.org/10.1007/978-3-319-44543-4_28
http://dx.doi.org/10.1007/978-3-319-44543-4_28
http://dx.doi.org/10.1007/3-540-54945-5_44


288 P.A. Golovach et al.

23. Milanic, M., Oversberg, A., Schaudt, O.: A characterization of line graphs that are
squares of graphs. Discrete Appl. Math. 173, 83–91 (2014)

24. Milanic, M., Schaudt, O.: Computing square roots of trivially perfect and threshold
graphs. Discrete Appl. Math. 161, 1538–1545 (2013)

25. Motwani, R., Sudan, M.: Computing roots of graphs is hard. Discrete Appl. Math.
54, 81–88 (1994)

26. Mukhopadhyay, A.: The square root of a graph. J. Comb. Theory 2, 290–295 (1967)
27. Nestoridis, N.V., Thilikos, D.M.: Square roots of minor closed graph classes. Dis-

crete Appl. Math. 168, 34–39 (2014)
28. Ross, I.C., Harary, F.: The square of a tree. Bell Syst. Tech. J. 39, 641–647 (1960)
29. Sys�lo, M.M.: Characterizations of outerplanar graphs. Discrete Math. 26(1), 47–53

(1979)



Enumeration and Maximum Number of Maximal
Irredundant Sets for Chordal Graphs

Petr A. Golovach1(B), Dieter Kratsch2, Mathieu Liedloff3,
and Mohamed Yosri Sayadi2

1 Department of Informatics, University of Bergen, Bergen, Norway
petr.golovach@ii.uib.no
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Abstract. In this paper we provide exponential-time algorithms to enu-
merate the maximal irredundant sets of chordal graphs and two of their
subclasses. We show that the maximum number of maximal irredundant
sets of a chordal graph is at most 1.7549n, and these can be enumerated
in time O(1.7549n). For interval graphs, we achieve the better upper
bound of 1.6957n for the number of maximal irredundant sets and we
show that they can be enumerated in time O(1.6957n). Finally, we show
that forests have at most 1.6181n maximal irredundant sets that can be
enumerated in time O(1.6181n). We complement the latter result by pro-
viding a family of forests having at least 1.5292n maximal irredundant
sets.

1 Introduction

Many NP-complete graph problems have been described in the well-known mono-
graph of Garey and Johnson [15]. Such problems are often studied and solved
as optimization problems. In the context of our paper it is worth mentioning
the approach in which for any graph class it is studied whether the problem
remains NP-complete or becomes polynomial-time solvable, see, e.g., [5,19]. In
the last decades various new approaches to solve NP-complete problems exactly
have attracted a lot of attention, among them parameterized algorithms and
exact exponential-time algorithms. Let us refer the interested reader to the
books [9,14]. Instead of optimization problems our paper studies enumeration
problems which require to list all wanted objects of the input graph. The clas-
sical approach, called output-sensitive, measures running time in dependence of
input and output length, and asks for output-polynomial algorithms and algo-
rithms of polynomial delay. This approach has been studied since a long time and
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has produced its own important open questions, see, e.g., [11,25,26]. Our app-
roach, called input-sensitive, measures the running time in dependence the input
length, and thus it typically produces exact exponential algorithms to enumerate
objects. Branching algorithms are a major tool to design such algorithms. This
also relates to so-called lower and upper combinatorial bounds on the maximum
number of objects in an n-vertex graph which can be achieved by the described
algorithmic approach but also by the use of combinatorial (non-algorithmic)
means. We mention that lower bounds for this number provide lower bounds for
the running time of any corresponding input-sensitive enumeration algorithm.
Various papers following this second approach have been published in the last
years, see e.g., [7,8,16].

Minimum Dominating Set is a classical NP-complete graph problem with
a large number of algorithmic and practical applications. There are two mono-
graphs on domination in graphs [21,22]. Enumerating all minimal dominating
sets of a graph, is a benchmark problem in input-sensitive enumeration. In 2008
Fomin et al. showed in a cornerstone work of input-sensitive enumeration that an
n-vertex graph has at most 1.7159n minimal dominating sets and that they can
be enumerated in time O(1.7159n) [13]. In the last years enumerating all min-
imal dominating sets has been studied for many graph classes, as e.g. chordal,
interval and split graphs [7,8].

There is a huge number of problems related to domination, a prominent one
is based on the notion of irredundancy, see [21,22]. A set of vertices D of a
graph G is irredundant if any u ∈ D has a private vertex v in the closed neigh-
borhood of u, that is, v is not dominated by any other vertex of D (see Sect. 2
for formal definitions). It is straightforward to see that any (inclusion) minimal
dominating set is an (inclusion) maximal irredundant set but not the other way
around. Still, is some graph classes, these notions can coincide. For example, it
could be shown that on split graphs every maximal irredundant set is a minimal
dominating set (see [25, Corollary 20]). Combined with corresponding results
for minimal dominating sets in split graphs [8] this implies that n-vertex split
graphs have at most 3n/3 maximal irredundant sets which can be enumerated in
time O∗(3n/3). But for the graph classes where not all maximal irredundant sets
are dominating, it seems to be impossible to use the results about enumerations
of minimal dominating sets to enumerate the maximal irredundant sets. The
reason is that all known enumeration algorithms for minimal dominating sets
heavily rely on the local property that for every vertex, there is a vertex in its
closed neighborhood that is included in a minimal dominating set.

Optimization problems asking for minimum or maximum size of a maximal
irredundant set have been studied in various algorithmic settings and with the
restrictions of these problems to various graph classes [2,6,10,12,23,24]. In par-
ticular, exact exponential-time algorithms were given by Binkele-Raible et al.
in [3].

We study enumeration and maximum number of inclusion maximal irredun-
dant sets in n-vertex chordal graphs. We also provide corresponding results for
two subclasses of chordal graphs, namely interval graphs and forests. We show
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that the maximum number of maximal irredundant sets of a chordal graph is at
most 1.7549n, and these can be enumerated in time O(1.7549n). For the class
of interval graphs, we prove that the number of maximal irredundant sets is at
most 1.6957n and that these sets can be enumerated in time O(1.6957n). Also
we show that forests have at most 1.6181n maximal irredudant sets, and these
can be enumerated in time O(1.6168n). Complementing these upper bounds, we
provide a lower bound by constructing a family of forests on n vertices having
at least 1.5292n maximal irredundant sets. Due to space restrictions, we only
sketch the proofs of these results in this extended abstract.

Let us mention that for paths, Golovach et al. [17] recently proved that
the number of maximal irredundant sets is Θ(1.4696 . . .n). Clearly, this result
provides also a lower bound for interval graphs. Also very recently Golovach
et al. [18] proved that an n-vertex claw-free graph has O(1.9341n) maximal
irredundant sets that can be enumerated in the same time and showed the lower
bound 1.5848n for the maximum number of maximal irredundant sets for this
graph class.

2 Preliminaries

We consider finite undirected graphs without loops or multiple edges. Through-
out the paper we denote by n = |V (G)| and m = |E(G)| the numbers of ver-
tices and edges of the input graph G respectively. For a graph G and a subset
U ⊆ V (G) of vertices, we write G[U ] to denote the subgraph of G induced by
U . We write G − U to denote the subgraph of G induced by V (G) \ U , and we
write G−u instead of G−{u} for a single element set. For a vertex v, we denote
by NG(v) the (open) neighborhood of v, i.e., the set of vertices that are adjacent
to v in G. The closed neighborhood NG[v] = NG(v) ∪ {v}. For a set of vertices
U ⊆ V (G), NG[U ] = ∪v∈UNG[v]. The degree of a vertex v is dG(v) = |NG(v)|.
We call a vertex of degree one pendant. A cycle C is induced if it has no chord,
i.e., there is no edge of G incident to any two vertices of C that are not adjacent
in C.

A vertex v of a graph G dominates a vertex u if u ∈ NG[v]; similarly v
dominates a set of vertices U if U ⊆ NG[v]. For two sets D,U ⊆ V (G), the set
D dominates U if U ⊆ NG[D]. Let D ⊆ V (G). A vertex v is a private vertex (or,
simply, a private) for u ∈ D w.r.t. D (or, simply, for u ∈ D), if v is dominated by
u but v is not dominated by any other vertex of D. Notice that a vertex v ∈ D
is private for itself iff v is an isolated vertex of G[D]. A set of vertices D is an
irredundant set of G if every vertex v ∈ D has a private. An irredundant set D
is (inclusion) maximal if D is irredundant but any proper superset of D does
not have this property.

A graph is chordal if it has no induced cycle on at least 4 vertices. A graph is a
forest if it does not contain a cycle; and a tree is a forest being connected. As it is
standard for forests, we say that a vertex of degree one is a leaf. An interval graph
is a graph that has an interval representation in which each vertex corresponds
to an interval of the real line, and two vertices are adjacent if and only if their
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corresponding intervals have non empty intersection. By the classical result of
Lekkerkerker and Boland [28], interval graphs can be recognized and an interval
representation can be found in polynomial (in fact, it can be done in linear
time [20,27]). Therefore, throughout the paper we assume that an interval graph
is given together with its interval representation. We refer to the monographs by
Brandstädt et al. [5] and Golumbic [19] for more properties and characterizations
of these graph classes.

A vertex u of a graph G is simplicial if NG[u] is a clique. It is well known
(see, e.g. [19]) that every chordal graph has a simplicial vertex.

We conclude this section by observing that there is a family of forests with
at least 1.5292n maximal irredundant sets.

Proposition 1. For every k ≥ 1, there is a forest with n = 11k vertices with at
least 1.5292n maximal irredundant sets.

3 Enumeration of Maximal Irredundant Sets for Chordal
Graphs

In this section we construct a branching algorithm enumerating all maximal
irredundant sets of a chordal graph and obtain an upper bound for the number
of maximal irredundant sets in an n-vertex chordal graph. Our algorithm uses
structural results for chordal graphs that are very similar to the results recently
obtained by Abu-Khzam and Heggernes [1] and already proved to be useful for
solving enumeration problems on chordal graphs. We state this structural lemma
in a way slightly different from [1].

Let G be a graph and S(G) the set of all simplicial vertices of G. For a vertex
u, denote by SG(u) the set of all simplicial vertices v of G such that v ∈ NG(u).
We say that u is a semi-simplicial vertex if SG(u) �= ∅ and u is a simplicial
vertex of G − SG(u).

Lemma 1. If G is a connected chordal graph with at least two vertices, then it
has a semi-simplicial vertex that can be found in polynomial time.

Now we are ready to state the main result of the section.

Theorem 1. A chordal graph has at most 1.7549n maximal irredundant sets,
and these can be enumerated in time O(1.7549n).

Proof. Due to space restrictions, we only sketch the proof.
Let G be a chordal graph. We consider the following branching recursive

algorithm EnumIS(S, F,X), where S,X, F ⊆ V (G) are disjoint. The algorithm
enumerates the maximal irredundant sets D of G such that (a) S ⊆ D, (b)
D \ S ⊆ X, and (c) for each v ∈ D \ S, v has a private in F ∪ X. To enumerate
all maximal irredundant sets of G, we call EnumIS(∅, ∅, V (G)).

In our algorithm we denote by H = G[F ∪ X]. Notice that we require that
F ∩ D = ∅. Respectively, we say that the vertices of F are forbidden as they
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cannot be included in an irredundant set and the vertices of X are free. We also
say that a vertex of H is dominated if it is dominated in G by a vertex of S. In
each step of the algorithm, we either reduce the considered instance or branch.
In every step, if we decide to include a vertex u ∈ X in a (potential) irredundant
set, we make sure that it gets a private v in F ∪ X that is not dominated by
other vertices in the recursive calls. To do it, we declare all the neighbors of v
except u forbidden. As it is standard for such algorithms, each step is applied if
its conditions are fulfilled and the previous steps are not applicable.

We say that a maximal irredundant set D is compatible with a triple (S, F,X)
of disjoint subsets of V (G) if the following is fulfilled:

(a) S ⊆ D,
(b) D \ S ⊆ X,
(c) for each v ∈ D \ S, v has a private in F ∪ X,
(d) for each u ∈ S, u has a private v ∈ V (G) \ (F ∪ X) with respect to D such

that NG(v) ∩ X = ∅.

To show the correctness of EnumIS(S, F,X), we prove for every step of the
algorithm that if it can be applied for the instance (S, F,X) and the previous
steps are not applicable, then the following holds: if D is a maximal irredundant
set of G compatible with (S, F,X), then either D = S and the algorithm outputs
D or the algorithm produces an instance (S′, F ′,X ′) such that D is compatible
with it or, in the case of a branching step, EnumIS is called in one of the branches
for an instance (S′, F ′,X ′) such that D is compatible with it.

1. If X = ∅, then check whether S is a maximal irredundant set of G and output
it if it holds; then stop.

In the next 3 steps we reduce the input instance. It is straightforward to
verify that if a maximal irredundant set D of G is compatible with (S, F,X),
then these steps produce instances (S′, F ′,X ′) that are compatible with D.

2. If H has a forbidden and dominated vertex x, then call EnumIS(S, F \{x},X).
3. If there is x ∈ V (H) such that all the vertices of NH [x] are dominated, then

call EnumIS(S, F,X \ {x}).
4. If there is x ∈ V (H) such that all the vertices of NH [x] are forbidden, then

call EnumIS(S, F \ {x},X).

Notice that from now we can assume that each dominated vertex is free and
every forbidden vertex is not dominated.

From now on we branch.

5. If H has a component H ′ that is a complete graph, then for each x ∈ V (H ′)∩
X, call EnumIS(S ∪ {x}, F \ V (H ′),X \ V (H ′)).

If a maximal irredundant D is compatible with (S, F,X), then it can be
observed that |V (H ′) ∩ D| = 1. We use this property to show that in one of the
branches we call our algorithm for the instance that is compatible with D.
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In the next 8 steps we use simplicial vertices to organize the branching. Let
D be a maximal irredundant set of G compatible with (S, F,X) and let x be
a simplicial vertex of G. Note that if x ∈ D, then NH(x) ∩ D = ∅ and the
vertices of NH [x] can be private vertices only for x. Suppose that x ∈ D and
is dominated. Then x has its private v ∈ NH(x) and D is compatible with
(S ∪ {x}, F \ NH [v],X \ NH [x]). If x /∈ D and is dominated, then x is not a
private for any vertex of D. These observations allow us to deal with dominated
simplicial vertices. If x is not dominated, we need some additional observations. If
x ∈ D and is not dominated, then x is a private for itself and D is compatible with
(S ∪{x}, F \NH [x],X \NH [x]). Suppose that x /∈ D. Assume that D∩NH(x) =
{v} for some v ∈ X. Then x is a private for v, because x is not dominated. Also
the vertices of NH [x] cannot be privates for any vertex of D\(S∪{v}). It implies
that D is compatible with (S ∪ {v}, F \ NH [x],X \ NH(x)). If |NH(x) ∩ D| �= 1,
then x cannot be private for any vertex of (D \ S) and D is compatible with
(S, F \{x},X \{x}). Using these observations, we show that Steps 6–13 produce
instances compatible with D.

6. If there is a dominated simplicial vertex x of H, then branch:
(i) for each not dominated v ∈ NH(x), call EnumIS(S ∪ {x}, (F ∪ NH(v)) \

NH [x],X \ NH [v]),
(ii) call EnumIS(S, F,X \ {x}).

Observe that from now we can assume that all simplicial vertices of H are
not dominated.

7. If there is a simplicial vertex x of H with dH(x) ≥ 3, then branch:
(i) for each v ∈ NH [x] ∩ X, call EnumIS(S ∪ {v}, F \ NH [x],X \ NH [x]),
(ii) call EnumIS(S, F \ {x},X \ {x}).

From now we can assume that each simplicial vertex has degree 1 or 2.

8. If there is a forbidden simplicial vertex x, then branch:
(i) for each v ∈ NH(x) ∩ X, call EnumIS(S ∪ {v}, F \ NH [x],X \ NH [x]),
(ii) call EnumIS(S, F \ {x},X).

From now we have that all simplicial vertices are free.

9. If there are adjacent simplicial vertices x and y, then branch:
(i) call EnumIS(S ∪ {x}, (F ∪ NH(x)) \ {x, y},X \ NH [x]),
(ii) call EnumIS(S, F,X \ {x}).

To see that this step produces instances compatible with a maximal irre-
dundant set D if D is compatible with (S, F,X), we additionally observe the
following. If x and y are adjacent simplicial nondominated vertices, x /∈ D and
is a private for some u ∈ D \ S, then y is a private for u as well.

From now we can assume that simplicial vertices of H are pairwise nonadja-
cent.
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10. If there is a simplicial vertex x such that NH(x) ⊆ F , then branch:
(i) call EnumIS(S ∪ {x}, F \ NH [x],X \ {x}),
(ii) call EnumIS(S, F,X \ {x}).

11. If there is a simplicial vertex x such that NH(x) ∩ F �= ∅, then let y ∈
NH(x) ∩ X and branch:

(i) call EnumIS(S ∪ {x}, F \ NH [x],X \ NH [x]),
(ii) call EnumIS(S ∪ {y}, F \ NH [x],X \ NH [x]),
(iii) call EnumIS(S, F,X \ {x}).

After Steps 10 and 11 we can assume that all the neighbors of simplicial
vertices are free.

To construct the next rule, we observe that if x and y are distinct simplicial
nonadjacent vertices that are not dominated and free, then either x, y ∈ D or
x, y /∈ D for any maximal irredundant set D compatible with (S, F,X).

12. If there are simplicial vertices x and y such that NH(x) = NH(y), then
branch:

(i) call EnumIS(S ∪ {x, y}, F,X \ (NH [x] ∪ {y})),
(ii) call EnumIS(S, F ∪ {y},X \ {x, y}).

To deal with the case NH(y) ⊂ NH(x) for two simplicial vertices x and y,
we note the following. Suppose that NH(x) = {u, z}, NH(y) = {z} and x, y, z
are free and not dominated. Let D be a maximal irredundant set of G. If either
x ∈ D or it holds that x, y /∈ D and u ∈ D, then we can show that y ∈ D. It
gives us the next step.

13. If there are simplicial vertices x and y such that NH(y) ⊂ NH(x), then
denote by z the common neighbor of x, y and by u the neighbor of x that
is not adjacent to y and branch:

(i) call EnumIS(S ∪ {x, y}, F,X \ (NH [x] ∪ {y})),
(ii) call EnumIS(S ∪ {u, y}, F,X \ (NH [x] ∪ {y})),
(iii) call EnumIS(S ∪ {z}, F,X \ (NH [x] ∪ {y})),
(iii) call EnumIS(S, F,X \ {x}).

In the remaining steps of our algorithm we use semi-simplicial vertices to
organize branching. Before we start, observe that summarizing the properties of
simplicial vertices that were used for branching in the previous steps, we can
assume from now that every simplicial vertex of H is not dominated, free, has
degrees 1 or 2 and all their neighbors are free. Also any two simplicial vertices
are not adjacent and their neighborhoods are not comparable by inclusion. To
show that if D is a maximal irredundant set compatible with (S, F,X), then
these branching steps produce instances compatible with D, we essentially use
the same observations that were used for Steps 6–13. In particular, some of our
new steps are, in fact, combinations of two previous steps. The main additional
observation is that if a semi-simplicial vertex y ∈ D, then SH(y) ∩ D = ∅ and
one of the vertices of SH(y) is a private for y.
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14. If there is a dominated semi-simplicial vertex y of H, then branch:
(i) for each x ∈ SH(y), call EnumIS(S ∪ {y}, F \ (SH(y) ∪ NH(x)),X \

(SH(y) ∪ NH(x))),
(ii) call EnumIS(S, F,X \ {y}).

Notice that from now we can assume that all semi-simplicial vertices of H
are not dominated.

15. If there is a semi-simplicial vertex y of H such that |SH(y)| ≥ 3 and there
is x ∈ SH(y) with dH(x) = 2, then denote by u the neighbor of x distinct
from y and branch:

(i) call EnumIS(S ∪ {x}, F,X \ {x, u, y}),
(ii) call EnumIS(S ∪ {y}, F,X \ (SH(y) ∪ {u})),
(iii) call EnumIS(S ∪ {u}, F,X \ {x, u, y}),
(iv) call EnumIS(S, F,X \ {x}).

From now we have that for every semi-simplicial vertex y of H, |SH(y)| ≤ 2.
Next, we analyze the cases when there is a semi-simplicial y with |SH(y)| = 1.

16. If there is a semi-simplicial vertex y of H such that |SH(y)| = 1 and x ∈
SH(y) is a pendant, then branch:

(i) call EnumIS(S ∪ {x}, F,X \ {x, y}),
(ii) call EnumIS(S ∪ {y}, F,X \ {x, y}),
(iii) for every z ∈ (NH(y)\{x})∩X, call EnumIS(S∪{z}, F \NH [y],X\NH [y]).

17. If there is a semi-simplicial vertex y of H such that |SH(y)| = 1 and for
x ∈ SH(y), dG(x) = 2, then denote by z the neighbor of x in H distinct
from y and branch:

(i) call EnumIS(S ∪ {x}, F,X \ {x, y, z}),
(ii) call EnumIS(S ∪ {y}, F,X \ {x, y, z}),
(iii) call EnumIS(S ∪ {z}, F,X \ {x, y, z}),
(iv) for each v ∈ (NH(y) \ {x, z}) ∩ X, call EnumIS(S ∪ {v}, F \ NH [y],X \

NH [y]),
(v) call EnumIS(S, F ∪ {z},X \ {x, y, z}).

Finally, we deal with semi-simplicial vertices y with |SH(y)| = 2. Notice
that two vertices of SH(y) are not adjacent in this case and have incomparable
neighborhoods.

18. If there is a semi-simplicial vertex y of H such that |SH(y)| = 2, NH(x) �=
NH(z) for distinct x, z ∈ SH(y) and dH(x) = dH(z) = 2, then denote by
u and v the neighbors of x and z respectively that are distinct from y and
branch:

(i) call EnumIS(S ∪ {x}, F,X \ {x, u, y}),
(ii) call EnumIS(S ∪ {u, v}, F,X \ {x, u, y, v, z}),
(iii) call EnumIS(S ∪ {u, z}, F,X \ {x, u, y, v, z}),
(iv) call EnumIS(S ∪ {y}, F,X \ {x, u, y, z}),
(v) call EnumIS(S, F,X \ {x}).
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This completes the description of our algorithm. Now we explain how we
prove its correctness.

Observe that in every step of EnumIS(S, F,X), we either output S or call
EnumIS(S′, F ′,X ′) for |F ′| + |X ′| < |F | + |X|. It implies that the algorithm is
finite.

Recall that to enumerate all maximal irredundant sets of a chordal graph G
we call EnumIS(∅, ∅, V (G)). The algorithm outputs sets only in Step 1. Because
we check whether S is a maximal irredundant set of G and output S only if
it holds, the algorithm outputs only maximal irredundant sets. We show that
EnumIS(∅, ∅, V (G)) outputs every maximal irredundant set. Let D be a maximal
irredundant set of G. It is straightforward to see that D is compatible with
(∅, ∅, V (G)). We claim that if D is compatible with a triple (S, F,X) of disjoint
subsets of V (G), then EnumIS(S, F,X) outputs D.

The proof is by induction on the measure |F |+ |X| of an instance. If |X| = ∅,
then the claim is straightforward, because D = S and the algorithm outputs D
in Step 1. Suppose that |X| ≥ 1. We claim that the case analysis in the algorithm
is exhaustive, that is, at least one step of EnumIS(S, F,X) can be applied for
an instance (S, F,X). To show it notice that, as we already underlined in the
description of the algorithm, if Steps 1–13 of the algorithm could not be applied,
we have that every simplicial vertex of H is not dominated, free, has degrees
1 or 2 and all their neighbors are free. Also any two simplicial vertices are not
adjacent and their neigborhoods are incomparable. Notice also that because of
Step 5, we can assume that every component of H has at least 2 vertices. Then
by Lemma 1, each component of H has a semi-simplicial vertex. It immediately
follows that one of Steps 14–18 can be applied. It is already observed in the
description of the algorithm that if we apply a step, then in this step we call
EnumIS(S′, F ′,X ′) for an instance (S′, F ′,X ′) such that D is compatible with
it and |F ′| + |X ′| < |F | + |X|. It follows that EnumIS(S′, F ′,X ′) outputs D by
the inductive assumption.

Finally, we evaluate the running time of the algorithm and obtain our upper
bound for the number of maximal irredundant sets. To do it, we compute branch-
ing vectors and branching numbers for Steps 5–18 (we refer to [14] for formal
definitions) with respect to the instance measure |X| + |F |. We show that the
maximum value of the branching number is less than 1.7549. We use this to show
that the number of maximal irredundant sets of an n-vertex chordal graph is at
most 1.7549n and the running time of our algorithm is O(1.7549n). ��

We conclude the section by showing the enumeration algorithm and the upper
bound for the number of maximal irredundant sets for chordal graphs can be
improved in the case of forests, and thus also for trees. Recall that a graph is a
forest if it does not contain a cycle; and a tree is a forest being connected. In
fact our algorithm for forests is a simplified version of the algorithm EnumIS for
chordal graphs. Clearly, a forest is a chordal graph. Recall that in EnumIS we use
simplicial and semi-simplicial vertices for branching. For a forest, any simplicial
vertex is either a leaf or an isolated vertex. Hence, we can exclude from EnumIS
all the steps where we analyze simplicial vertices of degree at least 2. It is easy
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to see that a vertex u is semi-simplicial if it has at least one adjacent leaf of a
forest and at most one nonleaf neighbor. It gives us the following theorem whose
proof is omitted.

Theorem 2. A forest has at most 1.6181n maximal irredundant sets, and these
can be enumerated in time O(1.6181n).

4 Enumeration of Maximal Irredundant Sets for Interval
Graphs

In this section we show that for the class of interval graphs, we can improve
the bound obtained for chordal graphs. We need some additional notations.
Recall that we assume that for an interval graph G, we are given its interval
representation, that is, a set of closed intervals of the real line corresponding to
the vertices such that two intervals intersects if and only if the corresponding
vertices are adjacent. Slightly abusing notation, we do not distinguish a vertex
and the corresponding interval in the representation. For a vertex v, we denote
by �v and rv the left end-point and the right end-point respectively of the interval
corresponding to v in the representation.

Theorem 3. An interval graph has at most 1.6957n maximal irredundant sets,
and these can be enumerated in time O(1.6957n).

Proof. Again, we only sketch the proof.
Similarly to the chordal graph case, we construct a branching recursive algo-

rithm to solve the enumeration problem. Let G be an interval graph given
together with its interval representation. The algorithm EnumIS-I(S, F,X) takes
as an input disjoint subsets S,X, F ⊆ V (G) such that �x ≤ ry for x ∈ S and
y ∈ F ∪ X and enumerates the maximal irredundant sets D of G such that (a)
S ⊆ D, (b) D \ S ⊆ X, and (c) for each v ∈ D \ S, v has a private belonging to
F ∪ X. In our algorithm we denote by H = G[F ∪ X]. In the same way as for
chordal graphs, we say that the vertices of F are forbidden as they cannot be
included in an irredundant set and the vertices of X are called free. We also say
that a vertex of H is dominated if it is dominated in G by a vertex of S. In our
algorithm, we either reduce the considered instance or branch. In every step, if
we decide to include a vertex u ∈ X in a (potential) irredundant set, we make
sure that it gets a private v in F ∪ X that is not dominated by other vertices in
the recursive calls. To guarantee this, we declare all the neighbors of v except u
forbidden.

EnumIS-I(S, F,X)

1. If X = ∅, then check whether S is a maximal irredundant set of G and
output it if it holds; then stop.

2. If H has a forbidden and dominated vertex x, then call EnumIS-I(S, F \
{x},X).
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3. If there is x ∈ V (H) such that all the vertices of NH [x] are dominated, then
call EnumIS-I(S, F \ {x},X \ {x}).

4. If there is x ∈ V (H) such that all the vertices of NH [x] are forbidden, then
call EnumIS-I(S, F \ {x},X \ {x}).

5. Find a vertex u of H with the minimum right end-point ru, and let NH(u) =
{v1, . . . , vk}, where the vertices v1, . . . , vk are ordered by increasing value of
their right end-points.

6. If u is dominated then find the minimum index i ∈ {1, . . . , k} such that vi
is not dominated and branch:

(i) call EnumIS-I(S ∪ {u}, F \ NH [vi],X \ NH [u]),
(ii) call EnumIS-I(S, F \ {u},X \ {u}).

7. If u is forbidden, then branch:
(i) for each i = 1, . . . , k, if vi is free, then call EnumIS-I(S ∪ {vi}, F \

NH [u],X \ NH [u]),
(ii) call EnumIS-I(S, (F \ {u}) ∪ NH(u),X \ NH [u]).

8. If NH(u) = ∅, then call EnumIS-I(S ∪ {u}, F \ {u},X \ {u}).
9. Let W0 = ∅, and for i = 1, . . . , k, set

Wi =
({w ∈ NH(vi) \ NH [u] | rw > rvi

} ∩ X
) \ ( i−1⋃

j=0

Wj

)
.

10. If Wi = ∅ for i ∈ {1, . . . , k}, then branch:
(i) call EnumIS-I(S ∪ {u}, F \ NH [u],X \ NH [u]),
(ii) for each i = 1, . . . , k, if vi free, then call EnumIS-I(S∪{vi}, F \NH [u],X \

NH [u]).
11. Otherwise, branch:

(i) call EnumIS-I(S ∪ {u}, F \ NH [u],X \ NH [u]),
(ii) for each i = 1, . . . , k, if vi free, then call EnumIS-I(S∪{vi}, F \NH [u],X \

NH [u]),
(iii) for each i = 1, . . . , k, if Wi �= ∅, then for each w ∈ Wi, call EnumIS-

I(S ∪ {w}, F \ NH [vi],X \ NH [vi]).

To enumerate the maximal irredundant sets of G, we call EnumIS-
I(∅, ∅, V (G)).

In the same way as for chordal graphs, it is easy to see that all the sets
generated by the algorithm are maximal irredundant sets, because at Step 1,
where we output sets, we verify whether a generated set is a maximal irredundant
set. To show that every maximal irredundant set D of G is generated by the
algorithm, we prove the following claim.

Claim A. Let D be a maximal irredundant set of an interval graph G, and
assume that S, F,X are disjoint subset of V (G) such that the following holds:

(a) �x ≤ ry for x ∈ S and y ∈ F ∪ X,
(b) S ⊆ D,
(c) D \ S ⊆ X,
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(d) for each v ∈ D \ S, v has a private in F ∪ X,
(e) for each u ∈ S, u has a private v ∈ V (G) \ (F ∪ X) with respect to D such

that NG(v) ∩ X = ∅.
Then either D = S and the algorithm outputs D or there is a recursive call
of EnumIS-II(S′, F ′,X ′) in the call of EnumIS-I(S, F,X) such that the sets
S′, F ′,X ′ satisfy (a)–(e).

To get our upper bound for the number of maximal irredundant sets and eval-
uate the running time, we compute branching vectors and branching numbers for
branching steps with respect to the measure |X|+|F |. We show that the maximum
branching number is less than 1.6957. This implies that G has at most 1.6957n

maximal irredundant sets, and the algorithm runs in time O(1.6957n). ��

5 Conclusions

We presented enumeration algorithms for maximal irredundant sets and obtained
upper bounds for the number of such sets for chordal graphs, interval graphs and
forests. We proved that a chordal graph has at most 1.7549n maximal irredun-
dant sets, and these can be enumerated in time O(1.7549n). For interval graphs,
we prove that the number of maximal irredundant sets is at most 1.6957n and
they can be enumerated in time O(1.6957n). We also show that a forest has
at most 1.6181n maximal irredundant sets and these sets can be enumerated
in time O(1.6181n). We complement these results by showing a lower bound of
1.5292n that holds for trees and forests.

It is natural to ask whether it is possible to reduce the gap between upper
and lower bounds by constructing better algorithms and/or giving better lower
bounds. It could also be interesting to consider other subclasses of chordal
graphs, e.g., strongly chordal graphs. Besides this, what can be said about gen-
eral graphs? It is worth mentioning that there is a large interest in the output-
sensitive enumeration of maximal irredundant sets and minimal redundant sets
that has been mentioned as an open problem at the Lorentz Workshop “Enu-
meration Algorithms using Structure” [4].
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edin.husic@student.upr.si
3 ENS Lyon, Lyon, France

4 Department of Computer Science, University of Verona, Verona, Italy
romeo.rizzi@univr.it

5 Department of Computer Science
Helsinki Institute for Information Technology HIIT, University of Helsinki, Helsinki,

Finland
tomescu@cs.helsinki.fi

Abstract. Motivated by applications in cancer genomics and follow-
ing the work of Hajirasouliha and Raphael (WABI 2014), Hujdurović et
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1 Introduction

Motivated by applications in cancer genomics and following the work of
Hajirasouliha and Raphael [12], Hujdurović et al. [15] introduced the minimum
conflict-free row split problem. Informally, the problem can be stated as follows:
given a binary matrix M , split each row of M into a bitwise OR of a set of
rows so that the resulting matrix corresponds to a perfect phylogeny and has
the minimum number of rows among all matrices with this property. To state
the problem formally, we need the following two definitions.

Definition 1. Given a matrix M , three distinct rows r, r′, r′′ of M and two
distinct columns i and j of M , we denote by M [(r, r′, r′′), (i, j)] the 3×2 subma-
trix of M formed by rows r, r′, r′′ and columns i, j (in this order). Two columns
i and j of a binary matrix M are said to be in conflict if there exist rows r, r′, r′′

of M such that

M [(r, r′, r′′), (i, j)] =

⎛
⎝

1 1
1 0
0 1

⎞
⎠ .

We say that a binary matrix M is conflict-free if no two columns of M are in
conflict.

Definition 2. Let M ∈ {0, 1}m×n. Label the rows of M as r1, r2, . . . , rm. A
binary matrix M ′ ∈ {0, 1}m′×n is a row split of M if there exists a partition of
the set of rows of M ′ into m sets R1, R2, . . . Rm such that for all i ∈ {1, . . . , m},
ri is the bitwise OR of the binary vectors in Ri. The set Ri of rows of M ′ is
said to be the set of split rows of row ri (with respect to M ′).

For simplicity, we defined a row split as a binary matrix M ′ for which a
suitable partition of rows exists. However, throughout the paper we will make
a slight technical abuse of this terminology by considering any row split M ′

of M as already equipped with an arbitrary (but fixed) partition of its rows
R1, . . . , Rm satisfying the above condition. For an example of these notions, see
Fig. 1.

⎛
⎜⎜⎝

1 0 1 1 1 1
0 0 0 1 1 0
0 1 1 0 1 1
0 0 0 0 0 1

⎞
⎟⎟⎠

M c1 c2 c3 c4 c5 c6

r1
r2
r3
r4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 1
0 0 1 0 0 1
0 0 0 1 1 0
0 0 0 1 1 0
0 0 1 0 0 1
0 1 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

c1 c2 c3 c4 c5 c6

R3

⎧⎨
⎩

M ′

R1

⎧⎨
⎩

R2

{

R4

{

Fig. 1. An example of a binary matrix M and a conflict-free row split M ′ of M .
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We denote by γ(M) the minimum number of rows in a conflict-free row split
M ′ of M . Formally, the minimum conflict-free row split problem is defined as
follows:

MinimumConflict-FreeRowSplit (MCRS):

Input: A binary matrix M .
Task: Compute γ(M).

We will also consider a variant of the problem, proposed by Hajirasouliha
and Raphael [12], in which the task is to compute a row split M ′ of M such that
the number of distinct rows in M ′ is minimized. Let η(M) denote the minimum
number of distinct rows in a conflict-free row split M ′ of M . Similarly as above,
we consider the corresponding optimization problem.

MinimumDistinctConflict-FreeRowSplit (MDCRS):

Input: A binary matrix M .
Task: Compute η(M).

The MCRS and the MDCRS problems are closely related to two well studied
families of combinatorial objects: perfect phylogenetic trees and laminar set fam-
ilies. The first connection is well known: the rows of a binary matrix M are the
leaves of a perfect phylogenetic tree if and only if M is conflict-free (see [5,11]).
Moreover, if this is the case, then the corresponding phylogenetic tree can be
retrieved from M in time linear in the size of M [10]. The intuition behind the
fact that a conflict-free matrix corresponds to a perfect phylogeny is that one
can map each row to a leaf of a tree, and each column to an edge, so that each
row has a 1 exactly on those columns that are mapped to the edges on the path
from the root to the leaf corresponding to the row. The forbidden 3 × 2 matrix
from Definition 1 as a submatrix leads a contradiction, since then the two dis-
tinct edges ei and ej to which columns i and j are mapped, respectively, are
such that ei appears both before, and after, ej on a root-to-leaf path. We refer
to [12,15] and to references therein for further details on the biological aspects
of the MCRS and the MDCRS problems.

The connection to laminar families follows from the fact that a binary matrix
M is conflict-free if and only if the sets of rows indicating the positions of ones
in the columns of M form a laminar family. This connection will be exploited
in Sect. 4.2. Laminar families of sets play an important role in network design
problems [16], in the study of packing and covering problems [3,8,19], and in
several other areas of combinatorial optimization, see, e.g., [20].

In [15], Hujdurović et al. proved that the MCRS and the MDCRS problems
are NP-hard, gave a related characterization of transitively orientable graphs,
and proposed a polynomial-time heuristic algorithm for the problem based on
coloring cocomparability graphs.

The aim of this paper is to advance the understanding of structural and
computational aspects of the MCRS and the MDCRS problems.



306 A. Hujdurović et al.

Our Results and Techniques. The first and main result of this paper is a
result showing that the MCRS and the MDCRS problems can be equivalently
formulated as two optimization problems on branchings in a directed acyclic
graph derived from the given binary matrix, the so-called containment digraph.
(Precise definitions of these notions and the corresponding problems will be
given in Sect. 2.) These equivalencies lead to more transparent formulations of
the two problems. We will ascertain the applicability and usefulness of these novel
formulations by deriving the following results and insights about the MCRS and
the MDCRS problems:

– We prove a new min-max result on digraphs strengthening Dilworth’s theorem
on chain covers and antichains in partially ordered sets. This result, besides
being interesting on its own as a generalization of a classical min-max result,
connects well to the MCRS problem via the problem’s branching formulation.
The constructive, algorithmic proof of the result shows that a related problem
is polynomially solvable: a problem in which only a subset of all branchings of
the containment digraph is examined, namely the so-called linear branchings
(branchings corresponding to chain partitions of the poset underlying the
containment digraph). This approach leads to a new heuristic for the MCRS
problem, improving on a previous heuristic by Hujdurović et al. from [15].

– We strengthen the NP-hardness results for the two problems to APX-hardness
results.

– We complement the inapproximability results with three approximation algo-
rithms: a 2-approximation algorithm for the MDCRS problem (implying that
the problem is APX-complete) and two approximation algorithms for the
MCRS problem, the approximation ratios of which are expressed in terms
of two parameters of the containment digraph, corresponding to the height
and the width of the underlying partial order, respectively.

Related Work. In [12], Hajirasouliha and Raphael introduced the so-called
Minimum-Split-Row problem, in which only a given subset of rows of the input
matrix needs to be split and, roughly speaking, the task is to minimize the num-
ber of additional rows in the resulting conflict-free row split. All results from [12]
actually deal with the variant of the problem in which all rows need to be split
(some perhaps trivially by setting Ri = {ri}); in this case, the optimal value
of the Minimum-Split-Row problem coincides with the difference γ(M) − r(M),
where r(M) is the number of rows of M . In the same paper, a lower bound on the
value of γ(M) was derived and, in the concluding remarks of the paper, a study
of the MDCRS problem was suggested. In subsequent works by Hujdurović et
al. [15], the MCRS problem was introduced and several claims from [12] were
proved incorrect, including an NP-hardness proof of the Minimum-Split-Row
problem (which would imply NP-hardness of the MCRS problem). However, it
was shown in [15] that the MCRS problem is indeed NP-hard, as is the MDCRS
problem. Moreover, a polynomially solvable case of the MCRS problem was iden-
tified and an efficient heuristic algorithm for the problem on general instances
was proposed, based on coloring cocomparability graphs.



The Minimum Conflict-Free Row Split Problem Revisited 307

The results of this paper improve on the previously known results about the
two problems: NP-hardness results are strengthened to APX-hardness results,
approximation algorithms for the two problems are proposed, and the heuris-
tic algorithm for the MCRS problem given by Hujdurović et al. from [15] is
improved. The key tools leading to most of these results are the newly proposed
branching formulations and the new min-max theorem strengthening Dilworth’s
theorem.

Structure of the Paper. The branching formulations of the two problems are
given in Sect. 2. A strengthening of Dilworth’s theorem and its connection to the
MCRS problem is discussed in Sect. 3. APX-hardness proofs and approximation
algorithms are presented in Sect. 4. Due to space constraints, proofs and most
figures are omitted; the interested reader is referred to [14] for details.

A Remark on Notation. A binary matrix M ∈ {0, 1}m×n is a matrix having
m rows and n columns, and all entries 0 or 1. Each row of such a matrix is a
vector in {0, 1}n; each column is a vector in {0, 1}m. We will usually denote by
RM = {r1, . . . , rm} and CM = {c1, . . . , cn} the (multi)sets of rows and columns
of M , respectively. The entry of M at row ri and column cj will be denoted by
Mi,j or Mri,j when appropriate. For brevity, we will often write “the number of
distinct rows (resp., columns) of M” to mean “the maximum number of pairwise
distinct rows (resp., columns) of M”. Two rows (resp., columns) are considered
distinct if they differ as binary vectors. All binary matrices in this paper will be
assumed to contain no row whose all entries are 0.

2 Formulations in Terms of Branchings in Directed
Acyclic Graphs

In this section, we are going to formulate the MCRS and the MDCRS problems
in terms of branchings in directed acyclic graphs (DAGs). First, we give the
necessary definitions.

Definition 3. Let D = (V,A) be a DAG. A branching of D is a subset B of A
such that (V,B) is a digraph in which for each vertex v there is at most one arc
leaving v.

The following construction (see, e.g., [12]) can be performed on any given
binary matrix M and results in a directed acyclic graph. Given a column cj ∈
CM , the support of cj is the set defined as {ri ∈ RM : Mi,j = 1} and denoted by
suppM (cj). Given a binary matrix M ∈ {0, 1}m×n, the containment digraph DM

of M is the directed acyclic graph with vertex set V = {suppM (c) : c ∈ CM}
and arc set A = {(v, v′) : v, v′ ∈ V ∧ v ⊂ v′} where ⊂ is the relation of proper
inclusion of sets.

Let M ∈ {0, 1}m×n be a binary matrix, let DM = (V,A) be the containment
digraph of M , and let B be a branching of DM . For a vertex v ∈ V , we denote
by N−

B (v) the set of all vertices v′ ∈ V such that (v′, v) ∈ B. A source of B is a
vertex not entered by any arc of B. For a vertex v ∈ V , an element r ∈ v (that
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is, a row of M) is said to be covered in v with respect to B (or just B-covered)
if r ∈ ∪N−

B (v). (When it is clear to which branching we are referring to, we will
say just that “r is covered in v”.) Analogously, we say that r ∈ v is uncovered in
v with respect to B if r is not covered in v. A B-uncovered pair is a pair (r, v)
such that r is a row of M , v is a vertex of DM (that is, the support of a column
of M), r ∈ v, and r is uncovered in v with respect to B. For a row r of M , we
will denote by UB(r) the set of all B-uncovered pairs with first coordinate r, and
by U(B) the set of all B-uncovered pairs.

For a branching B ⊆ A, we say that a vertex v ∈ V is B-irreducible if there
exists some element r ∈ v that is uncovered in v with respect to B (equivalently,
if v �∈ ∪N−

B (v)). In particular, every source of B is B-irreducible. We denote by
I(B) the set of all B-irreducible vertices.

We denote with β(M) the minimum number of elements in U(B) over all
branchings B of DM . Similarly, we denote with ζ(M) the minimum number of
elements in I(B) over all branchings B of DM . The corresponding optimization
problems are the following:

MinimumUncoveringBranching
(MUB):

Input: A binary matrix M .
Task: Compute β(M).

MinimumIrreducingBranching
(MIB):

Input: A binary matrix M .
Task: Compute ζ(M).

The announced equivalence between the MCRS and the MUB problems, and
between the MDCRS and the MIB problems is captured in the following.

Theorem 1. For every binary matrix M , the following holds:

1. Any branching B of DM can be transformed in polynomial time to a conflict-
free row split of M with exactly |U(B)| rows and with exactly |I(B)| distinct
rows.

2. Any conflict-free row split M ′ of M can be transformed in polynomial time
to a branching B of DM such that |U(B)| is at most the number of rows of
M ′ and |I(B)| is at most the number of distinct rows of M ′.

Consequently, for every binary matrix M , we have γ(M) = β(M) and η(M) =
ζ(M).

The proof of the first part of Theorem1 relies on the notion of a B-split,
defined as follows.

Definition 4. Let M be a binary matrix with rows r1, . . . , rm and columns
c1, . . . , cn. For a branching B of DM , we define the B-split of M , denoted by
MB, as the matrix with rows indexed by the elements of the set U(B), and
columns c′

1, . . . , c
′
n, as follows. Let V = V (DM ) and for all j ∈ {1, . . . , n}, let

vj = suppM (cj) (so vj ∈ V ). For a vertex v ∈ V , we denote by B+(v) the
set of all vertices in V reachable by a directed path from v in (V,B) (note that
v ∈ B+(v)). For all (r, v) ∈ U(B) and all j ∈ {1, . . . , n}, set:

MB
(r,v),j =

{
1, if vj ∈ B+(v);
0, otherwise.
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Note that if MB
(r,v),j = 1, then r ∈ vj .

Lemma 1. Let M be a binary matrix without duplicated columns, B a branching
of DM , and let MB be the B-split of M . Then MB is a conflict-free row split
of M with |U(B)| rows, splitting each row ri of M into rows of MB indexed by
UB(ri). Moreover, the number of distinct rows in MB is |I(B)|.

The following lemma is the key to the converse direction.

Lemma 2. Given a binary matrix M without duplicated columns and a conflict-
free row split M ′ of M , a branching B of DM such that MB can be obtained
from M ′ by removing some rows can be computed in polynomial time.

3 A Strengthening of Dilworth’s Theorem and Its
Connection to the MCRS Problem

By Theorem 1, the MCRS problem can be concisely formulated in terms of
a problem on branchings in a derived digraph. As shown by Hujdurović et
al. in [15], the MCRS problem is NP-hard; consequently, the MUB problem
is also NP-hard. In this section we show that a related problem in which we
examine only a subset of all the branchings of the containment digraph of the
input binary matrix is polynomially solvable. This will be achieved by deriving,
in Sect. 3.1, a min-max theorem generalizing the classical Dilworth’s theorem
on partially ordered sets, which might be of independent interest. The resulting
heuristic algorithm will be described in Sect. 3.2.

3.1 A Min-Max Relation Strengthening Dilworth’s Theorem

This section can be read independently of the rest of the paper.
Consider a pair (D,π) where D = (V,A) is a DAG and π : V → Z+ is

a weight function of D. (We use Z+ for the set of non-negative integers.) The
weight function π is called monotone if πu ≤ πv for every (u, v) ∈ A.

In D, a non-trivial path is a directed path with at least one arc. We denote
by Dt the transitive closure of D, that is, the DAG (V,At) on the same vertex
set as D having an arc (u, v) ∈ At if and only if there exists a non-trivial path
in D from u to v. A chain in D is a sequence of vertices C = (v1, v2, . . . , vt)
such that (vi, vi+1) ∈ At for all i ∈ {1, . . . , t − 1}; sometimes we regard C as
the set of its vertices C = {v1, v2, . . . , vt}. The price of chain C is given by
Π(C) = maxv∈C πv. A family of vertex-disjoint chains P = {C1, . . . , Cp} is
called a chain partition of D if every vertex of D is contained in precisely one
chain of P . The price of chain partition P is defined as Π(P ) =

∑p
i=1 Π(Ci).

Consider the following problem.

MinimumPriceChainPartition:

Input: A DAG D = (V,A) and a monotone weight function π : V → Z+ of D.
Task: Compute a chain partition P of D such that the price Π(P )

is minimum possible.
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In this section we give a polynomial-time algorithm and a min-max charac-
terization for the above problem. As can be expected, the notion of antichain
will play a main role in this min-max characterization. An antichain of D is
a set of vertices N ⊆ V such that N is an independent set (that is, a set of
pairwise non-adjacent vertices) in Dt; in other words, no non-trivial path of
D has both endpoints in N . Note that |C ∩ N | ≤ 1 for any chain C and any
antichain N . The width of D, denoted by wdt(D), is the maximum cardinality
of an antichain in D. A classical theorem of Dilworth states that the minimum
number of chains in a chain partition of D equals wdt(D) [4]. Moreover, a chain
partition of D into wdt(D) chains can be computed in time O(|V (D)|5/2) [7,13]
(see [17, p. 73–74]). Our characterization will be a refinement of Dilworth’s the-
orem and its algorithmic proof makes use of Dilworth’s theorem as a subroutine.
We must introduce one further notion however. A tower of antichains of D is
a sequence of antichains of D, T = (N1, N2, . . . , Nwdt(D)), with |Ni| = i. The
value of an antichain N is given by val(N) = minv∈N πv and the value of tower
T = (N1, N2, . . . , Nwdt(D)) is defined as val(T ) =

∑wdt(D)
i=1 val(Ni).

To appreciate the purpose of this notion, we begin with a simple observation.

Lemma 3. Let D be a DAG, let P = {C1, . . . , Cp} be a chain partition of
D, and let T = (N1, N2, . . . , Nwdt(D)) be a tower of antichains of D. Then,
Π(P ) ≥ val(T ) even if the weight function π is not monotone.

For the case of monotone weight functions, the following min-max strength-
ening of Dilworth’s theorem holds.

Theorem 2. Let D be a DAG and let π be a monotone weight function of
D. Then D admits a chain partition P = {C1, . . . , Cwdt(D)} and a tower of
antichains T = (N1, N2, . . . , Nwdt(D)) such that Π(P ) = val(T ). Such a pair
(P, T ) can be computed in time O(|V (D)|7/2).

To see that Theorem 2 is a strengthening of Dilworth’s theorem, consider
an arbitrary DAG D = (V,A) and let π be the weight function of D that is
constantly equal to 1. Then, the price of any chain C is Π(C) = maxv∈C πv = 1
and the price of a chain partition P equals its cardinality. Moreover, the value of
any antichain N is val(N) = minv∈N πv = 1, and consequently the value of any
tower T = (N1, N2, . . . , Nwdt(D)) of antichains is val(T ) =

∑wdt(D)
i=1 val(Ni) =

wdt(D). Since wdt(D) is a lower bound on the cardinality of any chain partition,
applying Theorem2 to (D,π) gives exactly the statement of Dilworth’s theorem
for D.

Note also due to the non-linearity of the definitions of the price of a chain and
the value of an antichain Theorem2 is incomparable with the classical weighted
generalization of Dilworth’s theorem due to Frank [6].

Lemma 3 and Theorem 2 imply the following.

Corollary 1. MinimumPriceChainPartition can be solved optimally in time
O(|V (D)|7/2). More specifically, in the stated time a minimum price chain parti-
tion P of D can be found with the additional property that |P | = wdt(D) (hence
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P is simultaneously a minimum price chain partition and a minimum size chain
partition of D).

A variant of the MinimumPriceChainPartition problem in which the
chains used in the partition have to be of bounded size was studied by Moo-
nen and Spieksma in [18]. Contrary to the unrestricted case, which is polyno-
mially solvable (by Corollary 1), Moonen and Spieksma showed that the “chain-
bounded” version of the problem is APX-hard.

3.2 Connection with the MCRS Problem

We will now describe a heuristic algorithm for the MCRS problem based on
Theorem 2. The basic idea is to search for an optimal solution only among linear
branchings, where a branching of DM is said to be linear if it defines a subgraph
of maximum in- and out-degree at most one, that is, a disjoint union of directed
paths. Note that such branchings correspond bijectively to chain partitions of
DM .

We denote by β�(M) the minimum number of elements in U(B) over all linear
branchings B of DM . We now introduce the following problem, referred to as
MinimumUncoveredLinearBranching: Given a binary matrix M , compute
a linear branching B of DM such that |U(B)| = β�(M).

For a binary matrix M , define a function π : V (DM ) → Z+ with π(v) = |v|
(recall that vertices of DM are pairwise distinct subsets or RM ). By definition
of DM , we have u ⊂ v whenever (u, v) is an arc in DM . This implies that π is a
monotone weight function of DM . It is not difficult to see that for a linear branch-
ing B and its corresponding chain partition P , we have Π(P ) = |U(B)|. Since lin-
ear branchings correspond bijectively to chain partitions, it follows that Minimu-
mUncoveredLinearBranching is a special case of MinimumPriceChain-
Partition. Using Theorem 2, we obtain that a linear branching B of DM with
|U(B)| = β�(M) can be computed in time O(|V (DM )|7/2). This proves the fol-
lowing theorem.

Theorem 3. MinimumUncoveredLinearBranching can be solved to opti-
mality in time O(|V (DM )|7/2).

Note that Theorem 3 yields a heuristic polynomial-time algorithm for the
MUB problem, and consequently for the MCRS problem. We are now going to
explain why this algorithm improves on the heuristic for the latter problem by
Hujdurović et al. from [15]. For the sake of simplicity of exposition, suppose
that the input matrix M does not have any pairs of identical columns. (It is
not difficult to see that this assumption is without loss of generality.) In this
case, the algorithm from [15] returns a row split of the input matrix naturally
derived from an optimal coloring of the complement of the underlying undirected
graph of DM , which is a cocomparability graph and thus an optimal coloring
can be computed efficiently, see, e.g., [9]. Such optimal colorings correspond
bijectively to minimum chain partitions of DM ; each color class corresponds
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to a chain. In the terminology of branchings, the conflict-free row split of the
input matrix M returned by the heuristic from [15] is exactly the B-split of
M (cf. Definition 4) where B is the linear branching of DM corresponding to a
minimum chain partition of DM .

In the above approach, any proper coloring could be used instead of an
optimal coloring of the derived cocomparability graph. In branching terminol-
ogy, choosing a proper coloring of the derived cocomparability graph so that
the number of rows of the output row split is minimized corresponds exactly
to MinimumUncoveredLinearBranching, which can be solved optimally by
Theorem 3. Thus, the heuristic algorithm for the MCRS problem that returns
the B-split of M where M is an optimal solution to MinimumUncovered-
LinearBranching always returns solutions that are at least as good as those
computed by the algorithm by Hujdurović et al. from [15]. Moreover, note that
by Corollary 1, digraph DM has a minimum price chain partition that is also
minimum with respect to size. This implies the existence of an optimal solution
to MinimumUncoveredLinearBranching on M such that the corresponding
chain partition is of size wdt(M) and, equivalently, the existence of an optimal
coloring of the derived cocomparability graph that minimizes the number of rows
in the derived conflict-free row split of M over all proper colorings of the derived
graph.

4 (In)approximability Issues

In this section we discuss (in)approximability properties of the four problems
studied in this paper, giving both APX-hardness results and approximation algo-
rithms. The approximation ratios of some of our algorithms will be described
in terms of the following parameters of the input matrix. Recall that the width
of a DAG D is the maximum cardinality of an antichain in D. The height of a
DAG D is the maximum number of vertices in a directed path contained in D.
The width and the height of a binary matrix M are denoted by wdt(M) and by
h(M), respectively, and defined as the width, resp. the height, of the containment
digraph of M .

4.1 Hardness Results

Our main inapproximability results are summarized in the following theorem,
which shows hardness already for very restricted input instances.

Theorem 4. The MUB and the MIB problems (and consequently the MCRS
and the MDCRS problems) are APX-hard, even for instances of height 2.

The above result implies that none of the four problems admits a polynomial-
time approximation scheme (PTAS), unless P = NP. Proving that a problem is
APX-hard also provides a different proof of NP-hardness. For further background
on APX-hardness, we refer to [2]. The APX-hardness for the two branching prob-
lems is established by developing L-reductions from the vertex cover problem
in cubic graphs, which is known to be APX-hard [1]. The APX-hardness of the
other two problems then follows from Theorem 1.



The Minimum Conflict-Free Row Split Problem Revisited 313

4.2 2-Approximating η and ζ via Laminar Set Families

The result of Theorem 4 raises the question whether the four problems (MCRS,
MDRCS, MUB, and MIB) admit constant factor approximations. We now show
that this is indeed the case for the MDRCS and MIB problems. This will be
achieved by proving a lower and an upper bound for η(M), which will together
imply a simple 2-approximation algorithm.

The lower bound is based on a connection between conflict-free matrices and
laminar families of sets and an upper bound on the size of a laminar family in
terms of the size of the ground set. Recall that a set family (or a hypergraph) is
a pair H = (V, E) where V = V (H) is a set and E = E(H) is a subset of the
power set P(V ). Elements of V (H) are the vertices of H; elements of E(H) are
its hyperedges. A hypergraph H is said to be laminar if every two hyperedges
e, f ∈ E(H) satisfy e ∩ f = ∅, e ⊆ f , or f ⊆ e. To every binary matrix M we
associate a hypergraph, denoted by HM , which we will refer to as the column
hypergraph of M , which is the hypergraph having the rows of M as vertices and
the support sets of the columns of M as hyperedges. Formally, HM has vertex
set V (HM ) = RM and hyperedge set E(HM ) = {suppM (c) : c ∈ CM}.

The following observation follows immediately from definitions.

Observation 1. A binary matrix M is conflict-free if and only if its column
hypergraph HM is laminar.

The following upper bound on the size of a laminar hypergraph is well known,
see, e.g., [20].

Theorem 5. Every laminar hypergraph H satisfies |E(H)| ≤ 2|V (H)|.
Observation 1 and Theorem 5 imply the following.

Corollary 2. Every conflict-free binary matrix M with m rows satisfies k ≤ 2m,
where k is the number of distinct columns of M .

It is not difficult to see that the value of η is invariant under deleting one
of a pair of identical columns. Therefore, Corollary 2 together with a simple row
splitting strategy imply the following.

Lemma 4. For every binary matrix M , we have k/2 ≤ η(M) ≤ k, where k is
the number of distinct columns of M .

Lemma 4 admits a constructive proof, which can be turned into the
announced approximation result.

Theorem 6. There is a 2-approximation algorithm for the MDCRS (and con-
sequently for the MIB) problem running in time O(mnk) on a given matrix
M ∈ {0, 1}m×n with exactly k distinct columns.

Note that Theorems 4 and 6 imply that the MDCRS and the MIB problems
are APX-complete.
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4.3 Two Approximation Algorithms for Computing γ and β

While the question of whether the MCRS (and consequently the MUB) problem
admits a constant factor approximation algorithm on general instances remains
open, we give in this section two partial results in this direction. We show that
the two problems admit constant factor approximation algorithms on instances
of bounded height or width.

Theorem 7. Let M be a binary matrix and let B be an arbitrary branching of
DM . Then, the number of rows in the B-split of M is at most h(M)γ(M).

Remark 1. Since in Theorem 7, there is no restriction on the branching B, an
h(M)-approximation to γ(M) can be obtained simply by taking B = ∅ and
returning the resulting row split.

For instances of bounded width, a constant factor approximation can be
obtained by considering any B-split resulting from a linear branching B of DM

consisting of wdt(M) paths.

Theorem 8. Any algorithm that, given a binary matrix M , computes a linear
branching B of DM consisting of wdt(M) paths and returns the corresponding
B-split of M is a wdt(M)-approximation algorithm for the MCRS problem.

5 Conclusion

In this paper, we revised the minimum conflict-free row split problem and a vari-
ant of it. We formulated the two problems as optimization problems on branch-
ings in a derived directed acyclic graph and, building on these formulations,
obtained several new algorithmic and complexity insights about the two prob-
lems, including APX-hardness results and approximation algorithms. Moreover,
we proved a min-max result on digraphs strengthening the classical Dilworth’s
theorem and leading to a new heuristic for the MCRS problem.

The main problem left open by our work is the determination of the exact
(in)approximability status of the MCRS problem. In particular, does the prob-
lem admit a constant factor approximation? What is the complexity of the
MCRS and MDCRS problems on instances of bounded width? Other possi-
bilities for related future research include: (i) the study of the approximability
properties of the closely related Minimum-Split-Row problem [12] (our prelim-
inary investigations show that the problem, while being APX-hard, admits a
(2h(M) − 1)-approximation); (ii) a parameterized complexity study of the con-
sidered problems (along with identification of meaningful parameterizations),
and (iii) a study of extensions of the model that could be relevant for the bio-
logical application, such as the case when the input binary matrix may contain
errors or has partially missing data.
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Abstract. We define the visual complexity of a plane graph drawing
to be the number of basic geometric objects needed to represent all its
edges. In particular, one object may represent multiple edges (e.g., one
needs only one line segment to draw two collinear edges of the same
vertex). Let n denote the number of vertices of a graph. We show that
trees can be drawn with 3n/4 straight-line segments on a polynomial grid,
and with n/2 straight-line segments on a quasi-polynomial grid. Further,
we present an algorithm for drawing planar 3-trees with (8n − 17)/3
segments on an O(n) × O(n2) grid. This algorithm can also be used
with a small modification to draw maximal outerplanar graphs with 3n/2
edges on an O(n) × O(n2) grid. We also study the problem of drawing
maximal planar graphs with circular arcs and provide an algorithm to
draw such graphs using only (5n − 11)/3 arcs. This provides a significant
improvement over the lower bound of 2n for line segments for a nontrivial
graph class.

1 Introduction

The complexity of a graph drawing can be assessed in a variety of ways: area,
crossing number, bends, angular resolution, etc. All these measures have their
justification, but in general it is challenging to optimize all of them in a single
drawing. More recently, the visual complexity was suggested as another quality
measure for drawings [18]. The visual complexity denotes the number of simple
geometric entities used in the drawing.

Typically, we consider as entities either straight-line segments or circular
arcs. To distinguish these two types of drawings, we call the former segment
drawings and the latter arc drawings. The idea is that we can use, for example,
a single segment to draw a path of collinear edges. The hope is that a drawing
that consists of only a few geometric entities is easy to perceive. It is a natural
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question to ask for the best possible visual complexity of a drawing of a given
graph. Unfortunately, it is an NP-hard problem to determine the smallest number
of segments necessary in a segment drawing [10]. However, we can still expect
to prove bounds for certain graph classes.

Related work. For a number of graph classes, upper and lower bounds are known
for segment drawings and arc drawings; the upper bounds are summarized in
Table 1. However, these bounds (except for cubic 3-connected graphs) do not
require the drawings to be on the grid. In his thesis, Mondal [15] gives an
algorithm for triangulations with few segments—but more than Durocher and
Mondal [9] require—on an exponential grid.

Table 1. Upper bounds on the visual complexity. Here, n is the number of vertices, ϑ
the number of odd-degree vertices and e the number of edges. Constant additions or
subtractions have been omitted.

Class Segments Arcs

Trees ϑ/2 [8] ϑ/2 [8]

Maximal outerplanar n [8] n [8]

3-trees 2n [8] 11e/18 [18]

3-connected planar 5n/2 [8] 2e/3 [18]

Cubic 3-connected
planar

n/2 [13,16] n/2 [13,16]

Triangulation 7n/3 [9] 5n/3 Theorem 5

4-connected
triangulation

9n/4 [9] 3n/2 Theorem 6

4-connected planar 9n/4 [9] 9n/2–e Theorem 8

Planar 16n/3 − e [9] 14n/3–e Theorem 7

There are three trivial lower bounds for the number of segments required to
draw any graph G = (V,E) with n vertices and e edges: (i) ϑ/2, where ϑ is the
number of odd-degree vertices, (ii) maxv∈V �deg(v)/2�, and (iii) �e/(n− 1)�. For
triangulations and general planar graphs, a lower bound of 2n − 2 and 5n/2 − 4,
respectively, is known [8]. Note that the trivial lower bounds are the same as for
the slope number of graphs [20], that is, the minimum number of slopes required
to draw all edges, and that the number of slopes of a drawing is upper bounded
by the number of segments. Chaplick et al. [3,4] consider a similar problem where
all edges are to be covered by few lines (or planes); the difference to our problem
is that collinear segments are only counted once.

Contributions. In this work, we present two types of results. In the first part
(Sects. 2, 3 and 4), we discuss algorithms for segment drawings on the grid with
low visual complexity. This direction of research was posed as an open problem
by Dujmović et al. [8], but only a few results exist; see Table 2. We present an
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algorithm that draws trees on an O(n2) × O(n1.58) grid using 3n/4 straight-line
segments. For comparison, the drawings of Schulz [18] need also 3n/4 arcs on a
smaller O(n) × O(n1.58) grid, but use the more complex circular arcs instead.
Our segment drawing algorithm for trees can be modified to generate drawings
with an optimal number of ϑ/2 segments on a quasi-polynomial grid. We also
present algorithms to compute segment drawings of planar 3-trees and maximal
outerplanar graphs, both on an O(n) × O(n2) grid. In the case of planar 3-trees,
the algorithm needs at most (8n − 17)/3 segments, and in the case of maximum
outerplanar graphs the algorithm needs at most 3n/2 segments.

Finally, in Sect. 5, we study arc drawings of triangulations and general planar
graphs. In particular, we prove that (5n − 11)/3 arcs are sufficient to draw any
triangulation with n vertices. We highlight that this bound is significantly lower
than the 2n − 2 lower bound known for segment drawings [8] and the so far best-
known 2e/3 = 2n upper bound for circular arc drawings [18]. A straightforward
extension shows that (14n − 3e − 29)/3 arcs are sufficient for general planar
graphs with e edges.

Table 2. Same as in Table 1 but for grid drawings.

Class Type Vis.Compl. Grid

Trees Arcs 3n/4 O(n) × O(n1.58) [18]

Trees Segments 3n/4 O(n2) × O(n1.58) Theorem 1

Trees Segments ϑ/2 pseudo-polynom. Theorem 2

Cubic planar 3-conn. Segments n/2 O(n) × O(n) [13,16]

Maximal outerplanar Segments 3n/2 O(n) × O(n2) Theorem 4

Triangulation Segments 8n/3 O((3.63n)4n/3) [15]

Planar 3-tree Segments 8n/3 O(n) × O(n2) Theorem 3

Preliminaries. Given a triangulated planar graph G = (V,E) on n vertices, a
canonical order σ = (v1, . . . , vn) is an ordering of the vertices in V such that,
for 3 ≤ k ≤ n, (i) the subgraph Gk of G induced by v1, . . . , vk is biconnected,
(ii) the outer face of Gk consists of the edge (v2, v1) and a path Ck, called
contour, that contains vk, and (iii) the neighbors of vk in Gk−1 form a subpath
of Ck−1 [6,7]. A canonical order can be constructed in reverse order by repeatedly
removing a vertex without a chord from the outer face.

Most of our algorithms make ample use of Schnyder realizers [17]. Assume we
selected a face as the outer face with vertices v1, v2 and vn. We decompose the
interior edges into three trees: T1, T2, and Tn rooted at v1, v2, and vn, respec-
tively. The edges of the trees are oriented to their roots. For k ∈ {1, 2, n}, we
call each edge in Tk a k-edge and the parent of a vertex in Tk its k-parent. In the
figures of this paper, we will draw 1-edges red, 2-edges blue, and n-edges green.
The decomposition is a Schnyder realizer if at every interior vertex the edges are
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cyclically ordered as: outgoing 1-edge, incoming n-edges, outgoing 2-edge, incom-
ing 1-edges, outgoing n-edge, incoming 2-edges. The trees of a Schnyder realizer
are also called canonical ordering trees, as each describes a canonical order on the
vertices of G by a (counter-)clockwise pre-order traversal [5]. There is a unique
minimal realizer such that any interior cycle in the union of the three trees is
oriented clockwise [2]; this realizer can be computed in linear time [2,17]. The
number of such cycles is denoted by Δ0 and is upper bounded by �(n−1)/2� [21].
Bonichon et al. [1] prove that the total number of leaves in a minimal realizer is
at most 2n − 5 − Δ0.

2 Trees with Segments on the Grid

Let T = (V,E) be an undirected tree. Our algorithm follows the basic idea of
the circular arc drawing algorithm by Schulz [18]. We make use of the heavy path
decomposition [19] of trees, which is defined as follows. First, root the tree at
some vertex r and direct all edges away from the root. Then, for each non-leaf u,
compute the size of each subtree rooted in its children. Let v be the child of u
with the largest subtree (one of them in case of a tie). Then, (u, v) is called a
heavy edge and all other outgoing edges of u are called light edges; see Fig. 1a.
The maximal connected components of heavy edges form the heavy paths of the
decomposition.

We call the vertex of a heavy path closest to the root its top node and the
subtree rooted in the top node a heavy path subtree. We define the depth of a
heavy path (subtree) as follows. We treat each leaf that is not incident to a heavy
edge as a heavy path of depth 0. The depth of each other heavy path P is by 1
larger than the maximum depth of all heavy paths that are connected from P
by an outgoing light edge. Heavy path subtrees of common depth are disjoint.

Boxes. We order the heavy paths nondecreasingly by their depth and then draw
their subtrees in this order. Each heavy path subtree is placed completely inside
an L-shaped box (heavy path box ) with its top node placed at the reflex angle; see
Fig. 1b for an illustration of a heavy path box Bi with top node ui, width wi =
�i + ri, and height hi = ti + bi. We require that (i) heavy path boxes of common
depth are disjoint, (ii) ui is the only vertex on the boundary, and (iii) bi ≥ ti.

(a)

ui

�i ri

ti

bi
hi

wi

B2i−1

(b)

ui

�∗
i r∗

i

t∗
i

b∗
i

h∗
i

w∗
i

B2i
B2i−1

B∗
i

(c)

Fig. 1. (a) A heavy path decomposition; (b) the heavy path box Bi with top node ui

and its lengths; (c) the merged box B∗
i for B2i−1 and B2i and its lengths.
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Note that the boxes will be mirrored horizontally and/or vertically in some steps
of the algorithm. We assign to each heavy path subtree of depth 0 a heavy path
box Bi with �i = ri = ti = bi = 1.

Drawing. Assume that we have already drawn each heavy path subtree of
depth d. When drawing the subtree of a heavy path 〈v1, . . . , vm〉 of depth d + 1,
we proceed as follows. The last vertex on a heavy path has to be a leaf, so vm
is a leaf. If outdeg(vm−1) is odd, we place the vertices v1, . . . , vm on a vertical
line; otherwise, we place only the vertices v1, . . . , vm−1 on a vertical line and
treat vm as a heavy path subtree of depth 0 that is connected to vm−1. For
1 ≤ h ≤ m − 1, all heavy path boxes adjacent to vh will be drawn either in a
rectangle on the left side of the edge (vh, vh+1) or in a rectangle on the right
side of the edge (vh−1, vh) (a rectangle that has v1 as its bottom left corner for
h = 1); see Fig. 2a for an illustration with even outdeg(vm−1).

B

(a)

v
w∗

1

w∗
1

t∗
1

b∗
k
2 −1

w∗
k
2

(b)
B′

(c)

Fig. 2. (a) Placement of a heavy path, its box B, and areas for the adjacent heavy path
boxes. (b) Placement of the heavy path boxes adjacent to v. (c) Further improvement
on the visual complexity via increasing the size of the boxes.

We now describe how to place the heavy path boxes B1, . . . , Bk with top
node u1, . . . , uk, respectively, incident to some vertex v on a heavy path into the
rectangles described above. First, assume that k is even. Then, for 1 ≤ i ≤ k/2,
we order the boxes such that b2i ≤ b2i−1. We place the box B2i−1 in the lower
left rectangle and box B2i in the upper right rectangle in such a way that the
edges (v, u2i−1) and (v, u2i) can be drawn with a single segment. To this end,
we construct a merged box B∗

i as depicted in Fig. 1c with �∗
i = max{�2i−1, �2i},

r∗
i = max{r2i−1, r2i}, and w∗

i = �∗
i + r∗

i ; the heights are defined analogously.
The merged boxes will help us reduce the number of segments. We mirror all
merged boxes horizontally and place them in the lower left rectangle (of width
∑k/2

i=i w∗
i ) as follows. We place B∗

1 in the top left corner of the rectangle. For 2 ≤
j ≤ k/2, we place B∗

j directly to the right of B∗
j−1 such that its top border

lies exactly t∗j−1 rows below the top border of B∗
j−1. Symmetrically, we place

the merged boxes (vertically mirrored) in the upper right rectangle. Finally, we
place each box B2i−1 (horizontally mirrored) in the lower left copy of B∗

i such
that their inner concave angles coincide, and we place each box B2i (vertically
mirrored) in the upper right copy of B∗

i such that their inner concave angles
coincide; see Fig. 2b. If k is odd, then we simply add a dummy box Bk+1 = Bk

that we remove afterwards.
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Analysis. We will now calculate the width w and the height h of this construction.
For the width, we have w = 2

∑k/2
i=1 w∗

i = 2
∑k/2

i=1 max{w2i−1, w2i} ≤ 2
∑k

i=1 wi.

The height of each rectangle in the construction is at least 2
∑k/2

i=1 t∗i , but we
have to add a bit more for the bottom parts of the boxes; in the worst case,
this is max1≤j≤k/2 b2j−1 in the lower rectangle and max1≤h≤k/2 b2h in the upper
rectangle. Since we require bi ≥ ti for each i, we have

h ≤ 2
k/2∑

i=1

t∗i + max
1≤j≤k/2

b2j−1 + max
1≤h≤k/2

b2h ≤ 2
k∑

i=1

ti +
k∑

j=1

bi ≤ 3
2

k∑

i=1

hi.

Since all heavy path trees of common depth are disjoint, the heavy path
boxes of common depth are also disjoint. Further, we place only the top vertex
of a heavy path on the boundary of its box. Finally, since we order the boxes
such that b2i ≤ b2i−1 for each i, for the constructed box B we have b ≥ t.

Due to the properties of a heavy path decomposition, the maximum depth
is �log n�. Recall that we place the depth-0 heavy paths in a box of width and
height 2. Hence, by induction, a heavy path subtree of depth d with n′ vertices
lies inside a box of width 2 · 2d ·n′ and height 2 · (3/2)d ·n′. Thus, the whole tree
is drawn in a box of width 2 · 2�logn�n = O(n2) and height 2 · (3/2)�log n�n =
O(n1+log 3/2) ⊆ O(n1.58). Following the analysis of Schulz [18], the drawing uses
at most �3e/4� = �3(n − 1)/4� segments.

Theorem 1. Every tree admits a straight-line drawing that uses at most �3e/4�
segments on an O(n2) × O(n1.58) grid.

We finish this section with an idea of how to get a grid drawing with the best
possible number of straight-line segments. Due to the limited space we give only
a sketch. Observe that there is only one situation in which the previous algorithm
uses more segments than necessary, that is the top node of each heavy path. This
suboptimality can be “repaired” by tilting the heavy path as sketched in Fig. 2c.
Note that the incident subtrees with smaller depth will only be translated. To
make this idea work, we have to blow up the size of the heavy path boxes. We
are left with scaling in each “round” by a polynomial factor. Since there are
only log n rounds, we obtain a drawing on a quasi-polynomial grid. However, an
implementation of the algorithm shows that some simple heuristics can already
substantially reduce the drawing area, which gives hope that drawings on a
polynomial grid exist for all trees.

Theorem 2. Every tree admits a straight-line drawing with the smallest number
of straight-line segments on a quasi-polynomial grid.

3 Planar 3-Trees with Few Segments on the Grid

A 3-tree is a maximal graph of treewidth k, that is, no edges can be added
without increasing the treewidth. Each planar 3-tree can be produced from the
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complete graph K4 by repeatedly adding a vertex into a triangular face and
connecting it to all three vertices incident to this face. This operation is also
known as stacking. Any planar 3-tree admits exactly one Schnyder realizer, and
it is cycle-free [2].

Let T be a planar 3-tree. Let T1, T2, and Tn rooted at v1, v2, and vn, respec-
tively, be the canonical ordering trees of the unique Schnyder realizer of T .
Without loss of generality, let T1 be the canonical ordering tree having the
fewest leaves, and let σ = (v1, v2, . . . , vn) be the canonical order induced by a
clockwise pre-order walk of T2. The following lemma was proven by Durocher
and Mondal [9].

Lemma 1 [9]. Let a1, . . . , am be a strictly x-monotone polygonal chain C. Let p
be a point above C such that the segments a1p and amp do not intersect C except
at a1 and am. If the positive slopes of the edges of C are smaller than slope(a1, p),
and the negative slopes of the edges of C are greater than slope(p, am), then every
ai is visible from p. �

vi

par1(i)

vj = par2(i)

lca(i, j)

out2(i)out1(i)

dom(i, j)

in(i)

Fig. 3. Definitions for the draw-
ing algorithm for planar 3-trees.

Overview and notation. The main idea of the
algorithm is to draw the graph such that T1

is drawn with one segment per leaf. We induc-
tively place the vertices according to the canon-
ical order σ = (v1, . . . , vn) and refer to the step
in which vertex vk is placed as step k. For the
algorithm, we make use of the following addi-
tional notation; see Fig. 3. For each vertex vi,
the 1-out-slope out1(i) is the slope of its outgo-
ing 1-edge, the 2-out-slope out2(i) is the slope
of its outgoing 2-edge, and the in-slope in(i) is
the highest slope of the incoming 1-edges in the
current drawing. Further, we denote by par1(i) the 1-parent of vi and by par2(i)
the 2-parent of vi. For two vertices vi, vj , we denote by lca(i, j) the lowest com-
mon ancestor of vi and vj in T1. For an edge (vi, vj) we call the closed region
bounded by (vi, vj), the path (vi, . . . , lca(i, j)), and the path (vj , . . . , lca(i, j))
the domain dom(i, j) of (vi, vj). For each step k, we denote by λk the number
of leafs in the currently drawn subtree of T1, by sk the number of segments that
are used to draw T1, and by ηk the highest slope of the 1-edges in the current
drawing. We denote by C→

k the part of the contour Ck between vk and v2. Note
that par2(k) ∈ C→

k−1 because the canonical order is induced by T2 in clockwise
order; hence, either vk and vk−1 are connected, or par2(k) is an ancestor of vk−1

on T2.

Invariants. After each step k, 3 ≤ k ≤ n, we maintain the following invariants:

(I1) The contour Ck is a strictly x-monotone polygonal chain; the x-coordinates
along C→

k increase by 1 per vertex.
(I2) The 1-edges are drawn with sk = λk segments in total with integer slopes

between 1 and ηk ≤ λk.
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(I3) For each (vi, vj) ∈ C→
k , we have lca(i, j) = par1(j) and for each 1-edge e �=

(par1(j), vj) in dom(i, j) it holds that slope(e) > out1(j).
(I4) For each vi ∈ C→

k , out1(i) > out2(i).
(I5) The current drawing is crossing-free and for each (vi, vj) ∈ Tn, slope

(vi, vj) > out1(j).
(I6) Vertex v1 is placed at coordinate (0, 0), v2 is placed at coordinate (k −1, 0),

and every vertex lies inside the rectangle (0, 0) × (k − 1, (k − 1)λk).

The algorithm. The algorithm starts with placing v1 at (0, 0), v2 at (2, 0), and v3
at (1, 1). Obviously, all invariants (I1)–(I6) hold. In step k > 3, the algorithm
proceeds in two steps. Recall that vk is a neighbor of all vertices on the contour
between vl = par1(k) and vr = par2(k).

In the first step, the insertion step, vk is placed in the same column as vr.
We distinguish between three cases to obtain the y-coordinate of vk; case (i) is
shown in Fig. 4a. (i) If no incoming 1-edge of vl has been drawn yet, then we
draw the edge (vl, vk) with slope out1(l); (ii) If vl already has an incoming 1-edge
and vl and vr are the only neighbors of vk in the current drawing, then we draw
the edge (vl, vk) with slope in(l) + 1; (iii) Otherwise, we draw the edge (vl, vk)
with slope ηk−1 + 1. Note that this does not maintain invariant (I1).

v1 v2

vk

(a)

vl

vr

v2

vk

vr

(b)

Fig. 4. (a) Inserting vertex vk in case (i). (b) Shifting par2(k), . . . , v2 along their out-
going 1-edge.

In the second step of the algorithm, the shifting step, the vertices between vr
and v2 on the contour Ck have to be shifted to the right without increasing the
number of segments sk used to draw T1. To this end, we iteratively extend the
outgoing 1-edge of these vertices, starting with vr, to increase their x-coordinates
all by 1; see Fig. 4b. This procedure places the vertices on the grid since the slopes
of the extended edges are all integer by invariant (I2).

Theorem 3. Every planar 3-tree admits a straight-line drawing that uses at
most (8n − 17)/3 segments on an O(n) × O(n2) grid.

Sketch of Proof. The full proof that the invariants are maintained is given in the
full version of the paper [12]. The invariants (I3) and (I4) ensure that we can
apply Lemma 1 to insert the new vertices crossing-free and maintain planarity in
the shifting step. Recall that we chose T1 as the canonical ordering tree with the
smallest number of leaves and that there are at most 2n−5 leaves in total, so T1
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has λn ≤ (2n − 5)/3 leaves. Each canonical ordering tree has n − 2 edges. By
invariant (I2), T1 is drawn with λn segments, so we use 2(n−2)+λn ≤ (8n−17)/3
segments in total. The area follows immediately from invariant (I6).

4 Maximal Outerplanar Graphs with Segments
on the Grid

A graph is outerplanar if it can be embedded in the plane with all vertices on one
face (called outerface), and it is maximal outerplanar if no edge can be added
while preserving outerplanarity. This implies that all interior faces of a maximal
outerplanar graph are triangles. Outerplanar graphs have degeneracy 2 [14], that
is, every induced subgraph of an outerplanar graph has a vertex with degree
at most two. Thus, we find in every maximal outerplanar graph a vertex of
degree 2 whose removal (taking away one triangle) results in another maximal
outerplanar graph. By this, we gain a deconstruction order that stops with a
triangle. Let G = (V,E) be a maximal outerplanar graph and let σ = (v1, . . . , vn)
be the reversed deconstruction order.

Lemma 2. The edges of G can be partitioned into two trees T1 and T2. More-
over, we can turn G into a planar 3-tree by adding a vertex and edges in the
outerface. The additional edges form a tree Tn. The three trees T1, T2 and Tn

induce a Schnyder realizer.

Proof. We build the graph G according to the reversed deconstruction order.
Let Gk denote the subgraph of G induced by the set {v1, v2, . . . , vk}. Further,
let G′

k be the graph obtained by adding the vertex vn and the edges (vi, vn) for
all 1 ≤ i ≤ k to G. We prove by induction over k that there exists a Schnyder
realizer induced by T1, T2, Tn for G′

k such that the trees T1 and T2 form the
graph Gk and G′

k is a planar 3-tree. Note that Felsner and Trotter [11] already
proved this lemma without the statement that G′

k is a planar 3-tree.
For the base case k = 2, our hypothesis is certainly true; see G′

2 in Fig. 5.
Assume our assumption holds for some k. In order to obtain Gk+1 from Gk, we
have to add the vertex vk+1 and two incident edges (vi, vk+1) and (vj , vk+1).
Assume that vi is left of vj on Ck. We add (vi, vk+1) to T1 and (vj , vk+1) to T2.
This is safe since we cannot create a cycle in any of the trees. There is another

G′
2 G′

3 G′
4 Gn

Fig. 5. Construction of an maximal outerplanar graph embedded in a planar 3-tree as
done in the proof of Lemma 2. The tree Tn is dashed.
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a new edge (vk+1, vn) in G′
k+1 which we add to Tn. Again, no cycle can be

created. The three outgoing tree edges at vi form three wedges (unless vi is the
root of T1). The new ingoing 1-edge (vi, vk+1) lies in the wedge bounded by the
outgoing 2-edge and the outgoing n-edge. For the edge (vj , vk+1), we can argue
analogously. Hence, the three trees induce a Schnyder realizer; see also Fig. 5.
Moreover, the graphs G′

k and G′
k+1 differ exactly by the vertex vk+1 that has

been stacked into a triangular face of G′
k; thus, since G′

k is a planar 3-tree, so
is G′

k+1. We now have proven the induction hypothesis for k + 1. To obtain
the statement of the lemma, we take the Schnyder realizer for the graph G′

n−1

and move the edge (v1, vn) from Tn to T1 and the edge (v2, vn) from Tn to T2.
Now T1 and T2 form G, and all three trees induce the Schnyder realizer of a
planar 3-tree. �

Consider a drawing according to Theorem 3 of the planar 3-tree introduced
in Lemma 2 that contains the maximal outerplanar graph G as a spanning
subgraph. By deleting Tn, we obtain a drawing of G. Note that in this drawing
the outer face is realized as an interior face, which can be avoided (if this is
undesired) by repositioning vn accordingly. The Schnyder realizer has 2n − 5
leaves in total, but n − 3 of them belong to Tn. We can assume that T1 has the
smallest number of leaves, which is at most n/2− 1. We need n− 2 segments for
drawing T2 (one per edge), and three edges for the triangle v1, v2, vn. In total,
we have at most n/2 − 1 + n − 2 + 3 = 3n/2 segments. Since the drawing is
a subdrawing from our drawing algorithm for planar 3-trees, we get the same
area bound as in the planar 3-tree scenario. We summarize our results in the
following theorem.

Theorem 4. Every maximal outerplanar graph admits a straight-line drawing
that uses at most 3n/2 segments on an O(n) × O(n2) grid.

5 Triangulations and Planar Graphs with Circular Arcs

Similar to Schulz [18], a canonical order v1, . . . , vn on the vertices of a trian-
gulation is reversed and used to structure our drawing algorithm. We start by
drawing v1, v2, and vn on a circle; see Fig. 6a. We assume that they are placed

v1 = h1 v2 = h3 h1 h4

h2 h3

(a) (b)

vn = h2

Fig. 6. (a) Initial state of the algorithm. (b) State of the algorithm after processing
vn. Hatching indicates undrawn region.
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as shown and hence refer to the arc connecting v1 and v2 as the bottom arc. The
interior of the circle is the undrawn region U which we maintain as a strictly con-
vex shape. The vertices incident to U are referred to as the horizon and denoted
h1, h2, . . . , hk−1, hk in order; we maintain that h1 = v1 and hk = v2. Initially, we
have k = 3 and h2 = vn. We iteratively take a vertex hi of the horizon (the latest
in the canonical order) to process it, that is, we draw its undrawn neighbors and
edges between these, thereby removing hi from the horizon.

Invariant. We maintain as invariant that each vertex v (except v1, v2, and vn) has
a segment �v incident from above such that its downward extension intersects the
bottom arc strictly between v1 and v2. Observe that, since U is strictly convex,
this and h are the only intersection points for �h with the undrawn region’s
boundary for a vertex h on the horizon.

Processing a vertex. To process a vertex hi, we first consider the triangle
hi−1hihi+1: this triangle (except for its corners) is strictly contained in U . We
draw a circular arc A from hi−1 to hi+1 with maximal curvature, but within this
triangle; see Fig. 7a. This ensures a plane drawing, maintaining a strictly convex
undrawn region. Moreover, it ensures that hi can “see” the entire arc A.

hi

hi−1
hi+1

v1 v2

hi

v1 v2
(a) (b)

�hi

A

Fig. 7. (a) Arc A lies inside the dashed triangle hi−1hihi+1. (b) Undrawn neighbors of
hi are placed on A, in the section determined by v1 and v2. One neighbor is placed to
align with �hi towards a predecessor of hi.

Vertex hi may have a number of neighbors that were not yet drawn. To
place these neighbors, we dedicate a fraction of the arc A. In particular, this
fraction is determined by the intersections of segments v1hi and v2hi with A; see
Fig. 7b. By convexity of U , these intersections exist. If hi−1 is equal to v1, then
the intersection for v1hi degenerates to v1; similarly, the intersection of v2hi may
degenerate to v2. We place the neighbors in order along this designated part of A,
drawing the relevant edges as line segments. This implies that all these neighbors
obtain a line segment that extends to intersect the bottom arc, maintaining the
invariant. We position one neighbor to be a continuation of segment �hi

, which
by the invariant must extend to intersect the designated part of A as well.

Complexity. We perform our algorithm using the canonical order induced by
the canonical ordering tree in the minimal Schnyder realizer having the fewest
leaves; without loss of generality, let Tn be this tree. Recall that Tn has at most
(2n − 5 − Δ0)/3 leaves; since Δ0 ≥ 0, we simplify this to (2n − 5)/3 for the
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remainder of the analysis. We start with one circle and subsequently process
vn, . . . , v4, adding one circular arc per vertex (representing edges in T1 and T2)
and a number of line segments (representing edges in Tn). Note that processing v3
has no effect since the edge v1v2 is the bottom arc. Counting the circle as one
arc, we thus have n − 2 arcs in total. At every vertex in Tn, one incoming edge
is collinear with the outgoing one towards the root. Hence, we charge each line
segment uniquely to a leaf of Tn: there are at most (2n − 5)/3 segments.

Thus, the total visual complexity is at most n−2+(2n−5)/3 = (5n−11)/3.
In particular, this shows that, with circular arcs, we obtain greater expressive
power for a nontrivial class of graphs in comparison to the 2n lower bound that
is known for drawing triangulations with line segments. Since a triangulation
has e = 3n − 6 edges, we conclude the following.

Theorem 5. Every triangulation admits a circular arc drawing that uses at
most 5n/3 − 11/3 = 5e/9 − 1/3 arcs.

This bound readily improves upon the result for line segments (7e/9 − 10/3)
by Durocher and Mondal [9]. Schulz [18] proved an upper bound of 2e/3 arcs. The
bound above is an improvement on this result, though only for triangulations.

4-connected triangulations. We may further follow the rationale of Durocher
and Mondal [9] by applying a result by Zhang and He [21]. Using regular edge
labelings, they proved that a triangulation admits a canonical ordering tree with
at most �(n + 1)/2� leaves [21]. Applying this to our analysis, we find that our
algorithm uses at most n − 2 + �(n + 1)/2� = �(3n − 3)/2� ≤ 3n/2 − 1 arcs.

Theorem 6. Every 4-connected triangulation admits a circular arc drawing that
uses at most 3n/2 − 1 = e/2 + 2 arcs.

General planar graphs with circular arcs. The algorithm for triangulations easily
adapts to draw a general planar graph G with n ≥ 3 vertices and e edges. As
connected components can be drawn independently, we assume G is connected.
We need to only triangulate G, thereby adding 3n − e − 6 chords. We then run
the algorithm described in Theorem 5. Finally, we remove the chords from the
drawing. Each chord may split an arc into two arcs, thereby increasing the total
complexity by one. From Theorem 5, it follows that we obtain a drawing of G
using (5n/3 − 11/3) + (3n − e − 6) = 14n/3 − e − 29/3 arcs.

Theorem 7. Every planar graph with n ≥ 3 admits a circular arc drawing with
at most 14n/3 − e − 29/3 arcs.

Again, this bound improves upon the upper bound for line segments (16n/3−
e − 28/3) by Durocher and Mondal [9]. Provided the graph is 3-connected,
Schulz’s [18] bound of 2e/3 − 1 is lower than our bound, but only for sparse-
enough graphs having e < 14n/5 − 26/5. However, there are planar graphs that
are not 3-connected with as many as 3n−7 edges (one less than a triangulation):
there is no sparsity for which planar graphs must be 3-connected and Schulz’s
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bound is lower than our result. In case the original graph G is 4-connected,
extending it to a triangulation by adding edges does not violate this property.
Repeating the above analysis using the improved bound of Theorem 6 yields us
the following result.

Theorem 8. Every 4-connected planar graph admits a circular arc drawing with
at most 9n/2 − e − 7 arcs.

In the full version of the paper [12], we investigate a heuristic improvement
to obtain a lower visual complexity when a graph has multiple faces of size at
least 6. However, for worst-case bounds, this improvement is only noticeable in
small graphs.
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1. Bonichon, N., Le Saëc, B., Mosbah, M.: Wagner’s theorem on realizers. In: Wid-
mayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 1043–1053. Springer, Heidelberg (2002). doi:10.
1007/3-540-45465-9 89

2. Brehm, E.: 3-orientations and Schnyder 3-tree-decompositions. In: Master’s
Thesis, Freie Universität Berlin (2000). http://page.math.tu-berlin.de/∼felsner/
Diplomarbeiten/brehm.ps.gz

3. Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Draw-
ing graphs on few lines and few planes. In: Hu, Y., Nöllenburg, M. (eds.)
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Abstract. In the Mixed Dominating Set (MDS) problem, we are
given an n-vertex graph G and a positive integer k, and the objective
is to decide whether there exists a set S ⊆ V (G) ∪ E(G) of cardinality
at most k such that every element x ∈ (V (G) ∪ E(G)) \ S is either
adjacent to or incident with an element of S. We show that MDS can be

solved in time 7.465knO(1) on general graphs, and in time 2O(
√

k)nO(1)

on planar graphs. We complement this result by showing that MDS
does not admit an algorithm with running time 2o(k)nO(1) unless the
Exponential Time Hypothesis (ETH) fails, and that it does not admit
a polynomial kernel unless coNP ⊆ NP/poly. In addition, we provide an
algorithm which, given a graph G together with a tree decomposition of
width tw, solves MDS in time 6twnO(1). We finally show that unless the
Set Cover Conjecture (SeCoCo) fails, MDS does not admit an algorithm
with running time O((2− ε)tw(G)nO(1)) for any ε > 0, where tw(G) is the
tree-width of G.

1 Introduction

Dominating (or covering) objects such as vertices and edges in a graph by vertices
or edges give rise to several classic problems, such as Vertex Cover, Edge
Cover, Dominating Set and Edge Dominating Set (see Table 1). All these
problems and their numerous variants have been studied extensively from struc-
tural as well as algorithmic points of view. However, all these problems except
Edge Cover are known to be NP-complete [11,25], and thus, they have been
subjected to intense scrutiny in all the algorithmic paradigms meant for coping
with NP-hardness, including approximation algorithms and parameterized com-
plexity. In this paper we consider a well-studied variant of these problems, where
the objective is to dominate vertices and edges by vertices and edges.

In order to define the problems formally, we first define the notion of dom-
ination, that is, what a vertex or an edge can dominate. A vertex dominates
itself, all its neighbors and all the edges incident with it. On the other hand, an
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Table 1. Different domination problems and their FPT and kernelization status.

Dominating By Problem PC Poly kernel

Vertices Vertices Dominating Set W[2]-hard No

Vertices Edges Edge Cover P O(1)

Edges Edges Edge Dominating Set FPT Yes

Edges Vertices Vertex Cover FPT Yes

Edges+vertices Vertices Vertex Cover FPT Yes

Edges+vertices Edges Edge Cover P O(1)

Edges+vertices Edges+vertices Mixed Dominating Set FPT No

edge dominates its two endpoints, and all the edges incident with either of its
endpoints. We first define the problem of dominating vertices by vertices. A dom-
inating set of a graph G is a set S ⊆ V (G) such that every vertex v ∈ V (G) \ S
is adjacent to at least one vertex in S. In the Dominating Set problem, we
are given an input graph G, a positive integer k, and the objective is to check
whether there exists a dominating set of size at most k. The edge counterpart
of Dominating Set is called Edge Dominating Set. The problem we study
in this paper is a variant of these domination problems. Towards that we first
define the notion of mixed dominating set (mds). Given a graph G, and a set
X ⊆ V (G) ∪ E(G), X is called a mds if every element x ∈ (V (G) ∪ E(G)) \ X
is either adjacent to or incident with an element of X. More formally, we study
the following problem in the parameterized complexity framework.

Mixed Dominating Set (MDS) Parameter: k or tw(G)
Input: A graph G on n vertices and m edges and a positive integer k.
Question: Does there exist a mds of size at most k in G?

The notion of mds (also called total cover) was introduced in the 70 s by
Alavi et al. [1] as a generalization of matching and covering, and after that it
has been studied extensively in graph theory [2,9,20,22]. See the chapter in [14]
for a survey on mds. The algorithmic complexity of MDS was first considered
by Majumdar [18], where he showed that the problem is NP-complete on general
graphs and admits a linear-time algorithm on trees. Hedetniemi et al. [15] and
Manlove [19] showed that MDS remains NP-complete on bipartite and chordal
graphs and on planar bipartite graphs of maximum degree 4, respectively. A
decade and half later, Zhao et al. [26] considered MDS and showed that it
remains NP-complete on split graphs. Unaware of the older result, they also
designed an O(n log n) time algorithm on trees. Lan and Chang [17] extended
this result and gave a linear time algorithm for MDS on cacti (an undirected
graph where any two cycles have at most one vertex in common). Hatami [13]
gave a factor 2 approximation algorithm for MDS on general graphs. Recently,
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Rajaati et al. [23] studied MDS parameterized by the treewidth of the input
graph and designed an algorithm with running time O�(3tw(G)2).1

In this paper we undertake a thorough study of MDS with respect to two
parameters, the solution size and the treewidth of the input graph, and obtain
the following results.

1. MDS admits an algorithm with running time O�(7.465k). We complement
the FPT result by observing that (a) MDS does not admit an algorithm with
running time 2o(k)nO(1) unless ETH [16] fails; and (b) it does not admit a
polynomial kernel unless coNP ⊆ NP/poly. See the last row of Table 1.

2. We design an algorithm with running time O�(6tw(G)) forMDS parameterized
by tw(G). This algorithm is a significant improvement over the O�(3tw(G)2)
algorithm of Rajaati et al. [23]. We also show that it does not admit an
algorithm with running time O�((2 − ε)tw(G)), for any ε > 0, unless SeCoCo
fails [7].

The algorithm for MDS, parameterized by the solution size, is based on a rela-
tionship between mds and vertex cover (a subset X of vertices such that every
edge has at least one endpoint in X) of the input graph. We use this connection
to gain structural insights into the problem and give an algorithmically useful
characterization of an optimal solution. This characterization leads us to the fol-
lowing algorithm: enumerate all the minimal vertex covers, say C, of size at most
2k of the input graph, guess a subset of C and then solve an appropriate aux-
iliary problem in polynomial time. The algorithm parameterized by treewidth
uses standard dynamic programming approach together with subroutines for
fast computation of cover-product [3]. Both our hardness results (no polyno-
mial kernel and the lower bound on the running time of MDS parameterized by
treewidth) are based on a polynomial time parameter preserving transformation
from an appropriate parameterization of Red Blue Dominating Set [8]. For
references to algorithms and hardness mentioned in Table 1, and for an intro-
duction to parameterized complexity, we refer to [6].

2 Preliminaries

All graphs in this paper are undirected and simple. For a graph G, V (G) and
E(G) denote the set of vertices and edges of G, respectively. An edge between u
and v in a graph G is represented by uv. For a set of edges E′ ⊆ E(G), we denote
by V (E′), the set of vertices that are endpoints of edges in E′. For v ∈ V (G),
NG(v) denotes the set of neighbors of v, and NG[v] = NG(v)∪{v}. Similarly, for
a subset V ′ ⊆ V (G), NG(V ′) = (∪v∈V ′NG(v)) \ V ′ and NG[V ′] = NG(V ′) ∪ V ′.
Also, for V ′ ⊆ V (G), we denote by G[V ], the subgraph of G induced on V ′. For
a graph G and R ⊆ V (G), we use E(R) to denote the set of edges incident with
at least one vertex in R. In this paper, V ′ shall always be a set vertices and E′, a

1 O� notation suppresses the polynomial factor. That is, O(f(k)nO(1)) = O�(f(k)).
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set of edges, unless otherwise specified. We use � to denote the disjoint union of
two sets, i.e., for sets S,A and B, S = A�B means S = A∪B and A∩B = ∅.
Treewidth. Let G be a graph. A tree-decomposition of a graph G is a pair
(T,X = {Xt}t∈V (T)) such that

• ⋃
t∈V (T) Xt = V (G),

• for all xy ∈ E(G) there is a t ∈ V (T) such that {x, y} ⊆ Xt, and
• for all v ∈ V (G) the subgraph of T induced by {t | v ∈ Xt} is connected.

The width of a tree decomposition is maxt∈V (T) |Xt| − 1 and the treewidth of
G is the minimum width over all tree decompositions of G and is denoted by
tw(G).

3 Algorithm for MDS Parameterized by the Solution Size

In this section we design an algorithm for MDS parameterized by the solution
size. We start with a simple observation that vertices and endpoints of edges in
a mds form a vertex cover.

Lemma 1. Let G be a graph and S = V ′ ∪ E′ be a mds of G. Then V ′ ∪ V (E′)
is a vertex cover of G, of cardinality at most 2|S|.
Proof. Since S = V ′ ∪ E′ is a mds of G, where V ′ ⊆ V (G) and E′ ⊆ E(G),
every edge in G has at least one of its endpoints in V ′ ∪V (E′). This implies that
V ′ ∪ V (E′) is a vertex cover of G, of cardinality at most 2|S|. �	

In order to get a handle on an optimal solution we define what we call a nice
mds.

Among all minimum sized mixed dominating sets of G, pick the one
with the least number of vertices. Such a mds is called a nice mds.
To re-emphasize, a nice mds by definition is minimum sized.

We now prove the following lemma, which forms the crux of our algorithm.

Lemma 2. Let G be a connected graph and V ′ ∪ E′ be a nice mds of G. Then,
there is a minimal vertex cover C of G such that V ′ ⊆ C ⊆ V ′ ∪ V (E′).

Proof. Let S = V ′ ∪ E′. Since S is mds, by Lemma 1, V ′ ∪ V (E′) is a vertex
cover of size at most 2|S|. Any edge incident on v ∈ V ′ dominates v as well as
all the edges incident on v. Therefore, if v is such that S \{v} dominates NG(v),
then by replacing v in S with some edge incident on v (this is possible since G is
connected), we get another minimum sized mds with fewer vertices. This implies
every vertex in V ′ must dominate at least one vertex (other than itself) which
no other element in V ′ ∪E′ dominates. More specifically, for every v ∈ V ′, there
is a vertex v′ ∈ V (G) such that vv′ ∈ E(G) and v′ /∈ NG[(V ′ \ {v})] ∪ V (E′).
This means, every minimal vertex cover contained in V ′ ∪ V (E′) must contain
V ′, because if C ⊆ V ′ ∪ V (E′) does not contain v ∈ V ′, then edge vv′ is not
covered by C. Therefore, if the vertex cover V ′ ∪ V (E′) is not minimal, keep
removing vertices from V (E′) \V ′ until we are left with a minimal vertex cover.

�	
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Let V ′ ∪ E′ be a nice mds and C be a minimal vertex cover such that
V ′ ⊆ C ⊆ V ′ ∪ V (E′). Let I = V (G) \ C. Note that I is an independent set
and it can partitioned into two sets Id and Iu, where Id is the set of vertices
dominated by V ′ and Iu = I \ Id. That is, Id = NG(V ′) ∩ I, and Iu = I \ Id.
Also, let Z = C \ V ′. We thus have a partition of V (G) into V ′, Z, Id and Iu.
We call the quadruple (V ′, Z, Id, Iu) a nice partition of V (G) with respect to the
mds V ′ ∪ E′ and the minimal vertex cover C (see Fig. 1). Also, we refer to the
graph G′ = G[Z ∪ Iu] as the companion graph of G with respect to V ′ and C.

C

I

V ′ Z

Id Iu

Fig. 1. Partition of V (G) into minimal vertex cover C and independent set I, where
C = V ′ � Z and I = Id � Iu.

Now let us define a new kind of domination called special domination. We say
a vertex special dominates only itself, and an edge special dominates its endpoints
as well as all the edges incident to at least one of its endpoints. Consequently,
we can define a special dominating set (sds) as follows. A sds of a graph G′ is
a set Q′ ⊆ V (G′) ∪ E(G′) such that every element x ∈ (V (G′) ∪ E(G′)) \ Q′

is either adjacent to or incident on an edge in Q′. The next lemma shows the
relation between mds and sds.

Lemma 3. Let V ′ ∪ E′ be a nice mds of G and C be a minimal vertex cover of
G such that V ′ ⊆ C ⊆ V ′ ∪V (E′). Let (V ′, Z, Id, Iu) be a nice partition of V (G)
with respect to V ′ ∪ E′ and C. Then G has a mds of size at most k if and only
if G′ = G[Z ∪ Iu] has a sds of size at most k − |V ′|.
Proof. Assume G has a mds of size at most k. Since V ′ ∪ E′ is a nice mds,
|V ′ ∪ E′| ≤ k. We can construct a sds Q′ for G′ as follows. If an edge e ∈ E′

has both its endpoints in V (G′), add e to Q′. If an edge e ∈ E′ has exactly one
endpoint in V (G′), then add that endpoint to Q′.

We now claim that Q′ is indeed a sds for G′. Since E′ dominates every vertex
in V (E′) ⊇ Z ∪ Iu = V (G′), Q′ special dominates all vertices of G′. If e = uv
is an edge of G′ such that there exists an edge uw ∈ E′ (or vw ∈ E′) for some
w ∈ V (G′), then uw ∈ Q′ (or vw ∈ Q′) and hence Q′ special dominates e.

We claim that Q′ special dominates all the edges in G′. By way of con-
tradiction, suppose e = uv is an edge of G′ such that there is no edge uw′

or vw′ in E′ for any w′ ∈ V (G′). Note that this also means uv /∈ E′. But
u, v ∈ V (E′) ⊇ Z ∪ Iu. In that case, there must exist xu, yv ∈ E′, where
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x, y ∈ V ′ ∪ Id. Then we claim that S = V ′ ∪ ((E′ \ {xu, yv})∪ {uv}) is a mds of
G. Notice that {xu, yv} dominate the set of vertices R = {x, u, y, v} and all the
edges E(R) incident to at least one vertex in R = {x, u, y, v}. Since V ′ ∪ E′ is a
mds of G, to prove S is a mds of G, it is enough to show that S dominates R
and E(R). Since S ⊇ V ′ ∪ {uv} and x, y ∈ Id, we have that x, y ∈ NG[V ′]. This
implies that S dominates R. Now, what is left to prove is, S dominates E(R).
Since uv ∈ S, all the edges incident to at least one of u or v is dominated by
S. Finally, we show that S dominates all the edges incident to at least one of
x or y. Let e be an edge incident on z ∈ {x, y}. If z ∈ V ′, then S dominates e,
because z ∈ V ′ ⊆ S. Otherwise z ∈ Id, because z ∈ {x, y} ⊆ V ′ ∪Id. Let e = zw.
Since z ∈ Id and V ′ ∪ Z is a vertex cover of G, we have that w ∈ V ′ ∪ Z. If
w ∈ V ′, then S dominates e = zw, because w ∈ V ′ ⊆ S. If w ∈ {u, v}, then S
dominates e = zw, because uv ∈ S. Otherwise w ∈ Z \ {u, v} ⊆ V (E′) \ {u, v}.
Since w ∈ V (E′)\{u, v}, there is an edge in E′ \{xu, yv} ⊆ S. This implies that
S dominates e. Thus we have shown that S is a mds of cardinality strictly less
than that of V ′ ∪ E′, a contradiction. Hence we conclude that Q′ is a sds of G′.

To prove the other direction, suppose G′ has a sds Q′ of size atmost k −|V ′|.
We claim that V ′ ∪ Q′ is an mds of G. Note that Q′ dominates all vertices and
edges in graph G′ as well as all edges incident on Z ∪ Iu, and V ′ dominates all
vertices in V ′ ∪ Id as well as all edges incident on V ′. Therefore, V ′ ∪Q′ is a mds
of G of cardinality |V ′| + |Q′| ≤ k. �	

Lemma 3 shows that given a graph G, V ′ and C as defined above, the problem
of deciding whether G has a mds of size at most k boils down to deciding whether
G′ has a sds of size at most k−|V ′|. This results in solving the following problem.

Special Dominating Set (SDS)
Input: An undirected graph G and a positive integer �.
Question: Does there exist a sds of size at most � in G?

In what follows we first design a polynomial time algorithm for SDS. Towards
this, note that an edge has more “special dominating power” than a vertex has,
in the sense that an edge special dominates itself, its endpoints and its adja-
cent edges, whereas a vertex special dominates only itself. Therefore, a natural
strategy is to first try to special dominate as many vertices and all edges with
as few edges as possible, and then add to the solution all those vertices that
are not special dominated by any of the edges. This intuition leads to following
polynomial time algorithm for SDS.

Algorithm-SDS (G, �)
Step 1. Find a maximum matching, say M , in G. Let U = V (G) \ V (M).
Step 2. If |M ∪ U | ≤ �, return Yes; else return No.

The only time consuming step in the above algorithm is Step 1 – finding
a maximum matching – and this can be done in time O(m

√
n) [21]. Thus,

Algorithm-SDS runs in polynomial time, and the following lemma shows the
correctness of the algorithm.
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Lemma 4. Let M be a maximum matching in a graph G and let U = V (G) \
V (M). Then M ∪ U is a minimum sized sds of G.

Proof. Since M is a maximum matching, every edge e ∈ E \ M is incident to an
edge in M , and thus M special dominates all edges in G. The set M also special
dominates all vertices in V (M), and the rest of the vertices in G are special
dominated by U . Therefore, M ∪ U is indeed a sds of G.

Now we claim that M ∪ U is a minimum size sds of G. Since V (M) ∩ U = ∅
and V (G) = V (M) ∪ U , we have that |V (G)| = 2|M | + |U |. Towards proving
the minimality of M ∪ U , we show that any sds E1 ∪ V1 of G, where E1 ⊆ E(G)
and V1 ⊆ V (G), has cardinality at least |M ∪ U | = |M | + |U |. Let M1 be a
maximum (w.r.t. E1) matching contained in E1. The total number of vertices
special dominated by E1 is at most 2|M1|+ |E1\M1| ≤ |M1|+ |E1|. Since E1∪V1

is a sds of G, we have

|M1| + |E1| + |V1| ≥ |V (G)|
|E1| + |V1| ≥ |V (G)| − |M1|

≥ 2|M | + |U | − |M1| (because |V (G)| = 2|M | + |U |)
≥ |M | + |U |. (because |M | ≥ |M1|)

This completes the proof of the lemma. �	
Algorithm-SDS together with Lemma 4 results in the following result.

Lemma 5. SDS can be solved in time O(m
√

n).

We are now fully equipped to give our algorithm for MDS.

Algorithm-MDS (G, k)
Step 1. Enumerate all minimal vertex covers of G of size at most 2k. Let C

be the collection of such vertex covers.
Step 2. For each C ∈ C and each V ′ ⊆ C such that |V ′| ≤ k and |C| ≤

2k − |V ′|, use Algorithm-SDS to decide if the companion graph G′

(w.r.t. C and V ′) has a sds of size at most k − |V ′|; if it has, return Yes.
Step 3. Otherwise return No.

The correctness of the algorithm follows from Lemma 3. Now, let us analyze
the running time of Algorithm-MDS. Any graph has at most 22k minimal
vertex covers of size at most 2k. Furthermore, given G and k, all minimal vertex
covers of size at most 2k can be enumerated in time 22knO(1) [10]. This means,
Step 1 can be executed in time 22knO(1).

For each C ∈ C, there are at most 2|C| ≤ 22k choices for V ′. For each such
choice of C and V ′, by Lemma 5, a minimum sds in G′ can be found in polynomial
time. Therefore, the running time of Algorithm-MDS (G, k) can be bounded
by 22k ·22k ·nO(1) = O�(16k). This, however, is a liberal estimate. A finer analysis
shows that the running time can be brought down to O�(7.465k).
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Lemma 6. Algorithm-MDS runs in time O�(7.465k).

Proof. If (G, k) is a yes-instance ofMDS with a nice mds V ′ ∪ E′, where |V ′| = j,
then any minimal vertex cover C such that V ′ ⊆ C ⊆ V (E′) can have size at
most |V ′| + 2|E′| ≤ j + 2(k − j) = 2k − j. Therefore, in Step 2, we only process
those pairs (C, V ′) such that |C| ≤ 2k − j, where |V ′| = j, and there are only
22k−j such C. Thus Step 2 takes time

k∑

j=0

22k−j

(
2k − j

j

)

= 22k
k∑

j=0

2−j

(
2k − j

j

)

.

Since for any x > 0,
(
n
i

)
xi ≤ ∑n

i′=0

(
n
i′
)
xi′

= (1 + x)n, we get
(
n
i

) ≤
(1 + x)n/xi. Using this inequality, for any x > 0,

2−j

(
2k − j

j

)

≤ (1 + x)2k−j

(2x)j
=

(1 + x)2k

((1 + x) · 2x)j .

We choose x = (
√
3−1)
2 so that (1+x) ·2x = 1. This gives (1+x)2k

((1+x)2x)j
≤ (1.3661)2k.

Hence, Step 2 can be executed in time 22k · 1.36612k · nO(1) ≤ (7.465)k · nO(1). �	
Thus, we get the following theorem.

Theorem 1. MDS parameterized by k can be solved in time O�(7.465k).

4 Outline of Algorithm for MDS Parameterized by
Treewidth

In this section we only give a brief outline of our algorithm for MDS parame-
terized by treewidth of the input graph. Due to space constraint, we omit the
complete description of the algorithm and its analysis. Here, the input is graph
G and a tree decomposition of G of width tw(G).

To design an algorithm we first prove that there is a minimum sized mixed
dominating set S of G such that (i) the edges in S form a matching, and (ii) the
set of endpoints of the edges in S is disjoint from the vertices in S.

We now give an informal description of our algorithm. Let G be the input
graph and (T,X = {Xt}t∈V (T)) be the given tree decomposition of G. Any
standard dynamic programming over tree decomposition has three ingredients:
for any node t ∈ T (i) defining partial solution, (ii) defining equivalence classes
among partial solutions (or in other words defining states of DP table according
to partial solutions), and (iii) computing a ‘best partial solution’ for each state
from previously computed values. Normally, for any node t ∈ T, partial solutions
are defined according to the properties of the intersection of solutions with the
graph Gt. In our case, a partial solution will be a subset of V (Gt) ∪ E(Gt).
When we define equivalence classes of partial solutions, one of the factors under
consideration is the intersection of these partial solutions with the bag Xt. Since
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partial solutions contain edges, at the first blush, the number of choices for
these partial solutions seems to be at least 2O(tw2). Instead, we prove that it has
an equivalent characterization in terms of pairs of vertices which allows us to
bound the number equivalence classes. Recall that there is a minimum mixed
dominating set S = V ′ ∪ E′, where V ′ ⊆ V (G) and E′ ⊆ E(G), with the
following properties:

(a) E′ is a matching, and
(b) V ′ ∩ V (E′) = ∅.

Let V ′ ∪ E′ be a solution satisfying conditions (a) and (b). Consider the
pair (V ′, V (E′)). Since V ′ ∪ E′ is a solution, we have that (i) (V ′, V (E′)) is a
vertex cover of G, (ii) NG[V ′] ∪ V (E′) = V (G), and (iii) G[V (E′)] has a perfect
matching. In fact, one can show that any pair of vertex subsets that satisfies
these three properties can be turned into a mixed dominating set. That is, these
two notions are equivalent. As a result, for any node t in the tree decomposition
we define partial solutions and equivalence classes among partial solutions as
follows. A partial solution is a tuple (X,F, Y ) satisfying the following conditions,
where X ⊆ V (Gt), F ⊆ E(Gt), Y ⊆ Xt:

• X � Y � V (F ) is a vertex cover of Gt,
• V (Gt) \ Xt ⊆ NGt

[X] ∪ V (F ).

The intuitive meaning of (X,F, Y ) is that there will potentially be a solution S
such that X ∪ F ⊆ S and for each u ∈ Y , there will be an edge uv ∈ S \ E(Gt).

We now define equivalence classes of partial solutions corresponding to a node
t in the tree decomposition. We define Pt[f ], where f : Xt → {1, 2, 2′, 3, 3′} as
the set of partial solutions (X,F, Y ), which satisfy the following.

1. Xt ∩ X = f−1(1),
2. Xt ∩ V (F ) = f−1(2),
3. Y = f−1(2′), and
4. (NGt

(X) ∩ Xt) \ (Y ∪ V (F )) ⊇ f−1(3).

Informally, each partial solution imposes a partition of Xt, which is defined by
f . The set f−1(1) is the set of vertices from Xt which are part of solution. The
set f−1(2) is the set of vertices from Xt such that there are edges in the solution
which are incident on vertices in f−1(2) and are present in the graph Gt. The set
f−1(2′) is the set of vertices from Xt such that there are edges in the solution
which are incident on vertices in f−1(2′) and these edges are not present in
the graph Gt. Here, the condition 4 implies that the set f−1(3) is the set of
vertices in Xt, which are not part of solution vertices or end points of solution
edges in the partial solution, but they are already dominated. The set f−1(3′)
is the set of vertices in Xt which are not yet dominated and not in f−1(2′). The
number of equivalence classes is bounded by 5tw(G). Thus, a standard dynamic
programming, coupled with fast computation of cover product [3], results in the
the following theorem.
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Theorem 2. Given a graph G together with a tree decomposition of width tw,
MDS can be solved in time O�(6tw).

Theorem 3. MDS on planar graphs can be solved in time O�(2O(
√

k)).

Proof. By Planar Excluded Grid Theorem [12,24], treewidth of a planar graph
that has a vertex cover of size 2k is smaller than (9/2)

√
4k + 2. So graphs of

treewidth larger than (9/2)
√
4k + 2 are No-instances of MDS. To exploit it algo-

rithmically, we use the algorithm of Bodlaender et al. [4] which takes as input
an n-vertex graph and an integer � > 0, runs in time 2O(�)n, and either conclude
that treewidth of G is more than � or gives a tree decomposition of with 5�+ 4.
For convenience, let us call this algorithm Alg-A.

We runAlg-A on input G and � = (9/2)
√
4k + 2. If it outputs that treewidth

of G is greater than �, then we conclude that G is a No-instance of MDS.
Otherwise Alg-A will output a tree decomposition of G of width 5� + 4 =
(45/2)

√
4k + 2+4. Then, we apply Theorem 2. Both algorithm Alg-A and the

algorithm mentioned in Theorem 2 run in time O�(2O(
√

k)). This completes the
proof of the theorem. �	

5 Lower Bounds

In this section first we prove the following theorem.

Theorem 4. Unless ETH fails, MDS cannot be solved in time O�(2o(�)) , where
� is either the solution size or the treewidth of the input graph.

Proof. Lan and Chang [17] gave a polynomial time reduction from Modified
Vertex Cover (MVC), an NP-complete problem, to MDS on split graphs.
There is a reduction from an instance (G, k) of Vertex Cover to an instance
(G′, k′) ofMVC and a reduction from an instance of (G′, k′) ofMVC to an equiv-
alent instance (G′′, k′′) of MDS in [17]. Here, the input size and the parameter
of the instances change as follows. Let |V (G)| = n. Then, |V (G′)| = n′ ≤ n + 2,
k′ = k, |V (G′′)| = |V (G′) ∪ E(G′)|, k′′ = (n′ + k − 1)/2 ≤ (n + k + 1)/2, where
G′′ is a split graph with treewidth at most n′.

ETH implies that Vertex Cover on a graph with n vertices and m edges
can not be solved in time 2o(n+m) [16]. As a result from the above mentioned
reductions, we get that, unless ETH fails, MDS has no 2o(�)nO(1) algorithm,
where � is the solution size or treewidth of the input graph. �	

Now we prove a kernel lower bound for MDS. That is, we show that unless
coNP ⊆ NP/poly, MDS does not admit a polynomial kernel when parameterized
by k. We do this by a polynomial parameter transformation from an appropriate
parameterization of Red Blue Dominating Set (RBDS).

Definition 1 ([5]). Let P and Q be two parameterized problems. A polyno-
mial parameter transformation (PPT, for short) from P to Q is a polynomial
time algorithm, which given an instance, say (x, k) of P , produces an equivalent
instance (y, k′) of Q such that k′ ≤ p(k) for some polynomial p(·).
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Proposition 1 ([5]). If there is a PPT from P to Q and P has no polynomial
kernel, then Q has no polynomial kernel.

In the RBDS problem, the input is a bipartite graph G with bipartition
R � B and a positive integer �, and the question is whether there exists a set
X ⊆ R of size at most �, which dominates the set B, i.e., N(X) = B. (Such a set
X is called a red-blue dominating set (rbds, for short) of G). This problem when
parameterized by |R| is the same as Small Universe Hitting Set (see [8])
and thus from [8] we get the following result.

Lemma 7 ([8]). RBDS parameterized by |R| and � has no polynomial kernel
unless coNP ⊆ NP/poly.

Theorem 5. MDS parameterized by the solution size has no polynomial kernel,
unless coNP ⊆ NP/poly.

Proof. The proof is by a polynomial parameter transformation from RBDS para-
meterized by |R| and �. Given an instance (G = (R � B,E), �) of RBDS, we
construct an equivalent instance (G′, |R|+ �+1) of MDS. If B ⊆ V (G) contains
an isolated vertex, then note that G has no rbds (of any size), so take G′ to be a
|R|+ �+2-sized matching. Otherwise, if B has no isolated vertices, then proceed
as follows (see Fig. 2).

1. Add all vertices and all edges of G to G′, i.e., V (G′) ⊇ V (G) and E(G′) ⊇
E(G).

2. Corresponding to every vertex vi ∈ R, add vertices xi and yi, and add edges
vixi and xiyi in G′.

3. Add a vertex z and add edges zyi, for all yi.
4. Add |R| + � + 2 additional neighbors to z.

...
...

...
...

...
...

...

R B R Bxisyis
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Fig. 2. PPT from RBDS to MDS

We claim that G has a rbds of size at most � if and only if G′ has a mds
of size at most |R| + � + 1. Let X ⊆ R be a rbds of G of size at most �. Then
X ∪ {xivi : i = 1, 2, . . . , |R|} ∪ {z} is a mds of size at most |R| + � + 1.
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Conversely, assume that G does not have any rbds of size at most �. Let S
be a minimum sized mds of G′. Let S′ be the set of all elements x ∈ S such that
x dominates some element(s) of B. Let S′ = S1 � S2 � S3, where S1 = S′ ∩ B,
S2 = S′ ∩ E(G′) and S3 = S′ ∩ R. Construct S′′ ⊆ R as follows: (i) for every
v ∈ S1, add a neighbor of v to S′′, (ii) for every edge ww′ ∈ S2, where w ∈ R and
w′ ∈ B, add w to S′′, and (iii) add all vertices of S3 to S′′. Clearly, |S′′| ≤ |S′|
and S′′ is a rbds of G. By assumption, |S′′| > � which implies that |S′| > �.

Thus, S′ is a subset of the minimum sized mds S and |S′| > �. Assume that
z ∈ S, otherwise |S| ≥ |R| + � + 2. Note that neither the elements of S′ nor z
can dominate any of the |R| edges xiyi. And at least |R| elements are required
to dominate all of them. Therefore,

|S| ≥ |{z}| + |{the |R| elements that dominate edges xiyi}| + |S′|
> 1 + |R| + �.

That is, G′ does not have a mds of size at most |R|+ �+ 1. Hence, the theorem
follows from the given reduction, Proposition 1 and Lemma 7. �	

Now we present an improved lower bound for MDS when parameterized
by the treewidth of the input graph. We can reduce an instance of Set Cover
problem (U,F , �) to an equivalent instance of RBDS, (R�B,E, �), where R = F
and B = U . Edge set E consists of edges between F ∈ R and x ∈ B if and
only if x ∈ F . We now apply the reduction given in the proof of Theorem 5
to an instance of RBDS, (R � B,E, |R| + �) to get an equivalent instance of
MDS, (G, |R| + � + 1). Notice that graph G has treewidth at most 1 + |B| =
1 + |U |. The Set Cover Conjecture [7] states that Set Cover cannot be solved
in O�((2 − ε)|U |) time for any ε > 0. We thus have the following theorem.

Theorem 6. Unless the Set Cover Conjecture fails, MDS does not admit an
algorithm with running time O�((2 − ε)tw(G)).

6 Conclusion

In this paper we initiated a systematic study of MDS from the viewpoint of
parameterized complexity and designed algorithms parameterized by the solu-
tion size and the treewidth of the input graph. The algorithm for MDS para-
meterized by the treewidth significantly improved the known algorithm for the
problem. It is curious to note that our algorithm runs in time O�(5pw) on graphs
of pathwidth pw, while the same algorithm runs in time O�(6tw) on graphs of
treewidth tw. It will be interesting to close this gap as well as prove an optimal
lower bound under the Strong Exponential Time Hypothesis (SETH). Another
research avenue will be to find families of graph classes on which the problem
does admit polynomial kernels. Designing a non-trivial exact exponential time
algorithm is another interesting problem.
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Abstract. This paper settles the computational complexity of model
checking of several extensions of the monadic second order (MSO) logic
on two classes of graphs: graphs of bounded treewidth and graphs of
bounded neighborhood diversity.

A classical theorem of Courcelle states that any graph property defin-
able in MSO is decidable in linear time on graphs of bounded treewidth.
Algorithmic metatheorems like Courcelle’s serve to generalize known
positive results on various graph classes. We explore and extend three
previously studied MSO extensions: global and local cardinality con-
straints (CardMSO and MSO-LCC) and optimizing a fair objective func-
tion (fairMSO).

We show how these fragments relate to each other in expressive power
and highlight their (non)linearity. On the side of neighborhood diversity,
we show that combining the linear variants of local and global cardinality
constraints is possible while keeping FPT runtime but removing linear-
ity of either makes this impossible, and we provide an XP algorithm for
the hard case. Furthemore, we show that even the combination of the
two most powerful fragments is solvable in polynomial time on graphs of
bounded treewidth.

1 Introduction

It has been known since the ’80s that various NP-hard problems are solvable in
polynomial time by dynamic programming on trees and “tree-like” graphs. This
was famously captured by Courcelle [4] in his theorem stating that any property
definable in Monadic Second Order (MSO) logic is decidable in linear time on
graphs of bounded treewidth. Subsequently, extensions to stronger logics and
optimization versions were devised [2,6] while still keeping linear runtime.
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However, several interesting problems do not admit an MSO description and
are unlikely to be solvable in linear time on graphs of bounded treewidth due
to hardness results. In the language of parameterized complexity, Courcelle’s
theorem runs in fixed-parameter tractable (FPT) time f(|ϕ|, τ)nO(1), where n is
the number of vertices of the input graph, τ its treewidth, ϕ is an MSO formula in
prenex form, |ϕ| is the size of the formula, and f is a computable function. On
the other hand, the “hard” (specifically, W[1]-hard) problems have algorithms
running at best in XP time ng(|ϕ|,τ), for some computable function g ∈ ω(1).
This led to examination of extensions of MSO which allow greater expressive
power.

Another research direction was to improve the computational complexity of
Courcelle’s theorem, since the function f grows as an exponential tower in the
quantifier depth of the MSO formula. However, Frick and Grohe [12] proved
that this is unavoidable unless P = NP which raises a question: is there a (sim-
pler) graph class where MSO model checking can be done in single-exponential
(i.e. 2kO(1)

) time? This was answered in the affirmative by Lampis [24], who
introduced graphs of bounded neighborhood diversity. These two classes are
incomparable: for example, paths have unbounded neighborhood diversity but
bounded treewidth, and vice versa for cliques. Bounded treewidth has become a
standard parameter with many practical applications (cf. a survey [3]); bounded
neighborhood diversity is of theoretical interest [1,10,13,15,28] because it can
be viewed as representing the simplest of dense graphs.

Courcelle’s theorem proliferated into many fields. Originating among
automata theorists, it has since been reinterpreted in terms of finite model
theory [27], database programming [16], game theory [19] and linear program-
ming [22].

1.1 Related Work

For a recent survey of algorithmic metatheorems see Langer et al. [26] and Grohe
et al. [17].

Objective functions. A linear optimization version of Courcelle’s theorem was
given by Arnborg et al. [2]. An extension to further objectives was given by
Courcelle and Mosbah [6]. Kolman et al. [23] introduce MSO with a fair objective
function (fairMSO) which, for a given MSO formula ϕ(F ) with a free edge set
variable F , minimizes the maximum degree in the subgraph given by F , and
present an XP algorithm. This is justified by the problem being W[1]-hard, as
was later shown by Masař́ık and Toufar [28], who additionally give an FPT
algorithm on graphs of bounded neighborhood diversity for MSO1 and an FPT
algorithm on graph of bounded vertex cover for MSO2.

Extended logics. Along with MSO, Courcelle also considered counting MSO
(cMSO) where predicates of the form “|X| ≡ p mod q” are allowed, with the
largest modulus q constant. Szeider [31] introduced MSO with local cardinal-
ity constraints (MSO-LCC) and gave an XP algorithm deciding it on graphs
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of bounded treewidth. MSO-LCC can express various problems, such as Gen-
eral Factor, Equitable r-Coloring or Minimum Maximum Outdegree,
which are known to be W[1]-hard on graphs of bounded treewidth. Ganian and
Obdržálek [14] study CardMSO, which is incomparable with MSO-LCC in its
expressive power; they give an FPT algorithm on graphs of bounded neighbor-
hood diversity.

1.2 Our Contribution

The contribution of the paper is twofold. First, we survey and enrich the so
far studied extensions of MSO logic – fairMSO, CardMSO, and MSO-LCC. We do
this in Sect. 2.1. Second, we study the parameterized complexity of the associated
model checking problem for various combinations of these MSO extensions. We
completely settle the parameterized complexity landscape for the model checking
problems with respect to the parameters treewidth and neighborhood diversity;
for an overview of the complexity landscape refer to Fig. 1. We postpone formal
definitions of logic extensions and corresponding model checking to Subsect. 2.1.

While both MSO-LCC and CardMSO express certain cardinality constraints,
the constraints of CardMSO are inherently global and linear, yet the constraints
of MSO-LCC are local and non-linear. This leads us to introduce two more frag-
ments and rename the aforementioned ones: CardMSO becomes MSOG

lin, MSO-
LCC becomes MSOL and we additionally have MSOG and MSOL

lin. By this we
give a complete landscape for all possible combinations of global/local and
linear/non-linear.

nd, vc

MSO

MSOG
lin

MSOG

∅ fairMSO MSOL
lin MSOL

FPT [24] FPT [28] W[1]-h, Thm 5

FPT [14] FPT, Thm 3

W[1]-h, Thm 2 XP, Thm 4

tw

MSO

MSOG
lin

MSOG

∅ fairMSO MSOL
lin MSOL

FPT [4] W[1]-hard [28] XP [31]

W[1]-hard [14]

XP, Thm 1

Fig. 1. Complexity of various logic fragments generalizing MSO on graphs of bounded
vertex cover (vc), neighborhood diversity (nd) and treewidth (tw). Positive results
(FPT, XP) spread to the left and up. W[1]-hardness spreads to the right and down.
Green background (lighter gray in bw print) stands for FPT fragments, while orange
(darker gray) stands for W[1]-hard.
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In the following, we do not differentiate between the logics MSO1 (allowing
quantification over vertex sets) and MSO2 (additionally allowing quantification
over edge sets); see a detailed explanation in Subsect. 2.1. For now, it suffices to
say that our positive result for graphs of bounded treewidth holds for the appro-
priate extension of MSO2, while all remaining results hold for the appropriate
extensions of MSO1.

For graphs of bounded treewidth we give an XP algorithm for the logic
MSOGL, which is a composition MSOG and MSOL and thus represents the most
expressive fragment under our consideration.

Theorem 1. There is an algorithm that solves the MSOGL Model Checking prob-
lem in time nf(|ϕ|,τ), where τ = tw(G) and f is a computable function.

This result is also significant in its proof technique. We connect a recent
result of Kolman et al. [22] about the polytope of satisfying assignments with an
old result of Freuder [11] about the solvability of constraint satisfaction problem
(CSP) of bounded treewidth. This allows us to formulate the proof of Theorem 1
essentially as providing a CSP instance with certain properties, surpassing the
typical complexity of a dynamic programming formulation.

This is complemented from the negative side by the following hardness result.

Theorem 2. The MSOG Model Checking problem is W[1]-hard when parameter-
ized by vc(G).

For graphs of bounded neighborhood diversity we give two positive results.
The first is for the logic MSOGL

lin , a composition of MSOL
lin and MSOG

lin. We com-
plement them with hardness result for MSOL.

Theorem 3. There is an algorithm that solves the MSOGL
Lin Model Checking

problem in time f(|ϕ|, ν)·nO(1), where ν = nd(G) and f is a computable function.

Theorem 4. There is an algorithm that solves the MSOGL Model Checking prob-
lem in time nf(|ϕ|,ν), where ν = nd(G) and f is a computable function.

Theorem 5. The MSOL Model Checking problem is W[1]-hard when parameter-
ized by vc(G).

2 Preliminaries

Let n be a non-negative integer; by [n] we denote the set {1, . . . , n}. For two
integers a, b we define a set [a, b] = {x ∈ Z | a ≤ x ≤ b}. For a vertex v ∈ V of
a graph G = (V,E), we denote by NG(v) the set of neighbors of v in G, that is,
NG(v) = {u ∈ V | {u, v} ∈ E}; the subscript G is omitted when clear from the
context. For a rooted tree T , NT (v) denotes the down-neighborhood of v, i.e.,
the set of descendants of v. For a graph G = (V,E) a set U ⊆ V is a vertex cover
of G if for every edge e ∈ E it holds that e ∩ U �= ∅. For more notation in graph
theory consult the book [29].
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2.1 MSO and Its Extensions

The monadic second order logic MSO extends first order logic using so called
monadic variables, which are variables for sets of vertices in MSO1 and in addi-
tion variables for sets of edges in MSO2.

Regarding MSO1 and MSO2. Despite the fact that MSO2 is strictly stronger
than MSO1 (hamiltonicity is expressible in MSO2 but not in MSO1 [27]), it is
known [21] that on graphs with bounded treewidth their power is equal. We
discuss this in the full version of the paper; it would be great if the full version
can be referenced here - the full version is reference number 20. We will show
that only a small change in the argument still works even for our extensions of
MSO.

On bounded neighborhood diversity, MSO2 is strictly more powerful than
MSO1; however model checking of an MSO2 formula is not even in XP unless
E = NE [5,25]. Thus, here too we restrict our attention to MSO1 and use MSO
as a shortcut for MSO1 from now on.

We consider two orthogonal ways to extend MSO logic. In what follows ϕ is
a formula with � free set-variables.

Global cardinality constraints (global constraints for short). An MSO for-
mula with c global cardinality constraints contains �-ary predicates R1, . . . , Rc

where each predicate takes as argument only the free variables of ϕ. The input
to the model checking problem is a graph G = (V,E) on n vertices and a tuple
(RG

1 , . . . , RG
c ), where RG

i ⊆ [n]�.
To define the semantics of the extension, it is enough to define the truth of

newly introduced atomic formulae. A formula Ri(X1, . . . , X�) is true under an
assignment μ : {X1, . . . , X�} → 2V if and only if (|μ(X1)|, . . . , |μ(X�)|) ∈ RG

i . We
allow the relations to be represented either explicitly as a list of tuples, or implic-
itly as a linear constraint a1|X1| + · · · + am|Xm| ≤ b, where (a1, . . . , am, b) ∈
R

m+1.
For example, suppose we want to satisfy a formula ϕ(X1,X2) with two sets

for which |X1| ≥ |X2|2 holds. Then, we solve the MSOG Model Checking problem
with a formula ϕ′ := ϕ∧ [|X1| ≥ |X2|2], that is, we write the relation as a part of
the formula, as this is a more convenient way to think of the problem. However,
formally the relation is a part of the input.

Local cardinality constraints. Local cardinality constraints control the size
of sets Xi in neighborhood of every vertex. Specifically, we want to control the
size of μ(Xi) ∩ N(v) for every v; we define a shorthand S(v) = S ∩ N(v) for a
subset S ⊆ V and vertex v. Local cardinality constraints for a graph G = (V,E)
on n vertices and a formula ϕ with � free variables are mappings α1, . . . , α�,
where each αi is a mapping from V to 2[n].

We say that an assignment μ obeys local cardinality constraints αi, . . . , α� if
for every i ∈ [�] and every v ∈ V it holds that |μ(Xi)(v)| ∈ αi(v).

The logic that incorporates both of these extensions is denoted as MSOGL.
Let ϕ be an MSOGL formula with c global cardinality constraints. Then the
MSOGL Model Checking problem has input:
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– graph G = (V,E) on n vertices,
– relations RG

1 , . . . , RG
c ⊆ [n]�, and,

– mappings α1, . . . , α�.

The task is to find an assignment μ that obeys local cardinality constraints and
such that ϕ is true under μ by the semantics defined above.

The MSOGL logic is very powerful and, as we later show, it does not admit an
FPT model checking algorithm neither for the parameterization by neighborhood
diversity, nor for the parameterization by treewidth. It is therefore relevant to
consider the following weakenings of the MSOGL logic:

MSOG Only global cardinality constraints are allowed.
MSOL (originally MSO-LCC [31]) Only local cardinality constraints are allowed.
MSOG

lin (originally CardMSO [13]) The cardinality constraints can only be lin-
ear; that is, we allow constraints in the form [e1 ≥ e2], where ei is linear
expression over |X1|, . . . |X�|.

MSOL
lin Only local cardinality constraints are allowed; furthermore every local

cardinality constraint αi must be of the form αi(v) = [lvi , uv
i ], (i.e., an inter-

val) where lvi , uv
i ∈ [n]. Those constraints are referred to as linear local car-

dinality constraints.
fairMSO Further restriction of MSOL

lin; now we only allow αi(v) = [uv
i ].

MSOGL
lin A combination of MSOL

lin and MSOG
lin; both local and global constraints

are allowed, but only in their linear variants.

The model checking problem for the considered fragments is defined in a natural
way analogously to MSOGL model checking.

Pre-evaluations. Many techniques used for designing MSO model checking
algorithms fail when applied to MSO extensions. A common workaround is first
transforming the given MSOGL formula into an MSO formula by fixing values of
all global constraints to either true or false. Once we determine which variable
assignments satisfy the transformed MSO formula, we can by other means (e.g.
integer linear programming or constraint satisfaction) ensure that they obey the
constraints imposed by fixing the values to true or false. This approach was
first used for CardMSO by Ganian and Obdržálek [14]. We formally describe this
technique as pre-evaluations:

Definition 6. Let ϕ be an MSOGL formula. Denote by C(ϕ) the list of all global
constraints. A mapping β : C(ϕ) → {true, false} is called a pre-evaluation
function on ϕ. The MSO formula obtained by replacing each global constraint
ci ∈ C(ϕ) by β(ci) is denoted by β(ϕ) and is referred to as a pre-evaluation
of ϕ.

Definition 7. A variable assignment μ of an MSOGL formula ϕ complies with a
pre-evaluation function β if every global constraint ci ∈ C(ϕ) evaluates to β(ci)
under the assignment μ.
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2.2 Treewidth and Neighborhood Diversity

Treewidth. For notions related to the treewidth of a graph and nice tree
decomposition, in most cases we stick to the standard terminology as given by
Kloks [18]; the only deviation is in the leaf nodes of the nice tree decomposition
where we assume that the bags are empty.

A tree decomposition of a graph G = (V,E) is a pair (T,B), where T is a
tree and B is a mapping B : V (T ) → 2V . We also use the notion of a nice
tree decomposition, where T is rooted and the nodes are of four types: empty
leaves, introduce and forget nodes which have only one child and their bags differ
by exactly one vertex, and join nodes, which have two children with identical
bags. An introduce node a with a son b which differs by vertex v is denoted
a = b∗ (v), analogously for a forget node a = b † (v). A join node a with two sons
b, b′ is denoted a = Λ(b, b′). Given a graph G = (V,E) and a subset of vertices
V ′ = {v1, . . . , vd} ⊆ V , we denote by G[V ′] the subgraph of G induced by V ′.
Given a tree decomposition (T,B) and a node a ∈ V (T ), we denote by Ta the
subtree of T rooted in a, and by Ga the subgraph of G induced by all vertices
in bags of Ta, that is, Ga = G[

⋃
b∈V (Ta)

B(b)].

Neighborhood diversity [24]. We say that two (distinct) vertices u, v are of
the same neighborhood type if they share their respective neighborhoods, that is
when N(u) \ {v} = N(v) \ {u}. Let G = (V,E) be a graph. We call a partition
of vertices T = {T1, . . . , Tν} a neighborhood decomposition if, for every i ∈ [ν],
all vertices of Ti are of one neighborhood type. Neighborhood diversity (nd(G))
is the size of the unique minimal neighborhood decomposition. Moreover, this
decomposition can be computed in linear time.

3 Graphs of Bounded Neighborhood Diversity

For graphs of bounded neighborhood diversity we prove two negative results
(Theorems 2 and 5) and two positive results (Theorems 3 and 4).
W[1]-hardness of MSOL and MSOG. We begin with a definition of an auxiliary
problem:

LCC Subset
Input: Graph G = (V,E) with |V | = n and a function f : V → 2[n].
Task: Find a set U ⊆ V such that for each vertex v ∈ V it holds that
|U(v)| ∈ f(v).

Obviously LCC Subset is equivalent to MSOL with an empty formula ϕ. We call
an LCC Subset instance uniform if, on G with nd(G) = k, the demand function
f can be written as f : [k] → 2[n], such that vertices of the same type have the
same demand set. We show that already uniform LCC Subset is W[1]-hard by
a reduction from the W[1]-hard k-Multicolored Clique problem [7].
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k-Multicolored Clique Parameter: k
Input: k-partite graph G = (V1∪̇ · · · ∪̇Vk, E), where Va is an independent
set for every a ∈ [k].
Task: Find a clique of size k.

We refer to a set Va as to a colorclass of G. Our proof is actually a simplified
proof of W[1]-hardness for the Target Set Selection problem [8]. Note that
Theorem 5 follows easily from Theorem 8.

Theorem 8. The LCC Subset problem is W[1]-hard when parameterized by
the vertex cover number.

Proof. Denote G = (V1∪̇ · · · ∪̇Vk, E) the instance graph for k-Multicolored
Clique. We naturally split the set of edges E into sets E{a,b} by which we denote
the edges between colorclasses Va and Vb. We may assume that all colorclasses
are of the same size which we denote n, and similarly for the number of edges
between any two colorclasses which we denote m. Fix N > n, say N = n2 and
distinct a, b ∈ [k].

Description of the reduction. We numerate vertices in each color class Va for
a ∈ [k] using numbers in [n] and denote the numeration of vertex v as na

v . We also
numerate the edges between color classes a and b by numbers in [m] and denote
the numeration of edge e as m

{a,b}
e . Let Iab =

{
na

v +Nm
{a,b}
e | v ∈ e, e ∈ E{a,b}

}
.

We build the graph using the following groups of vertices (refer to Fig. 2):

– an independent set Sa of size n for each color class Va and set f(v) = {0} for
every v ∈ Sa,

– an independent set T{a,b} of size mN for each edge set E{a,b}, with f(v) = {0}
for every v ∈ T{a,b},

– a single vertex Mult{a,b} with f(Mult{a,b}) = {tN | t ∈ [m]},
– a single vertex Incab with f(Incab) = Iab.

Finally, we add complete bipartite graphs between Sa and Incab, between Incab

and T{a,b}, and between T{a,b} and Mult{a,b}. Denote the resulting graph H. It is
straightforward to check that the vertices Mult{a,b} together with vertices Inc

ab

form a vertex cover of H. It follows that vc(H) =
(
k
2

)
+ k(k − 1).

n
Sa

0
1

Incab

Iab

mN

T{a,b}

0

1

Mult{a,b}

{tN | t ∈ [m]}

Fig. 2. An overview of the decomposition of a gadget used in the proof of Theorem 8.
Numbers inside nodes denote the number of vertices in the independent set represented
by the node. Below each node a description of the respective set of admissible numbers
is shown.
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Correctness of the reduction. Suppose there is a clique of size k in G with
set of vertices {v1, . . . , vk}. We select nva

vertices in the set Sa and m
{va,vb}
e

vertices in the set T{a,b}. It is straightforward to check that this is a solution
respecting demands in H.

Suppose there is a solution U respecting demands in H. First note that none
of vertices Mult{a,b}, Incab is selected as their neighborhood demands are set
to 0. Denote sa = |U ∩ Sa| and t{a,b} = |T{a,b} ∩ U |. Now observe that because
the demand of vertex Mult{a,b} is fulfilled, then there are t{a,b} = tN vertices
with 0 ≤ t < m. We denote by eab the edge with numeration me{a,b} = t. As
the demand of vertex Incab is fulfilled the vertex va with nva

= sa as well as for
the vertex Incba and vertex vb. This implies that both va and vb are incident to
edge e{a,b}. ��

Proof idea for Theorem 2. Given an instance of uniform LCC Subset on a
graph G with vc(G) = k, we construct another graph G′ with vc(G′) = O(k2)
and an MSOG formula ϕ with O(k) free variables such that G′ |= ϕ if and only
if G is a “yes” instance of LCC Subset. The key insight is that, for each v in
the vertex cover, it is possible to express the set X(v) and then use global car-
dinality constraints to enforce that |X(v)| satisfies the original local cardinality
constraints.

Proof idea for Theorem 3. Essentially, we are modifying the algorithm of
Ganian and Obdržálek [14] for MSOG

lin model checking so that it can deal with
the additional constraints introduced by MSOL

lin. Our crucial lemma states that,
given an MSOGL

lin instance with arbitrary local linear cardinality constraints α,
there is an equivalent instance with constraints α′ which are uniform with respect
to some neighborhood decomposition T which is of size at most k4�. By saying
that α′ is uniform we mean that α′(v) = α′(u) for all u, v ∈ Tj , for all Tj ∈ T .

Now it is possible to construct an integer linear program (ILP) in fixed dimen-
sion and apply Lenstra’s algorithm.

Proof idea for Theorem 4. Let ϕ ∈ MSOGL with just one free variable X; the
approach extends to more free variables easily. Let G be a graph with ν = nd(G).
Fix integers x1, . . . , xν such that x1 + · · · + xν ≤ n; there are nO(ν) choices of
such xi. The goal is to find a set X with |X ∩ Tj | = xj . We observe that:

– if X and X ′ are two sets with |X ∩ Tj | = |X ′ ∩ Tj | = xj , their difference on
vertices of Tj is irrelevant with respect to the local cardinality constraints of
vertices in V \ Tj , so satisfying the constraints is independent for each type,

– it can be easily checked whether there are xj vertices of Tj such that the
constraints are satisfied.

Then we test if a set X with |X ∩ Tj | = xj satisfies G |= ϕ(X) by a similar
argument as before: guess a pre-evaluation β of ϕ, verify that it satisfies the
global cardinality constraints, and then use the FPT model checking algorithm
to verify that G |= β(ϕ).
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4 XP Algorithm for MSOGL on Bounded Treewidth

We believe that the merit of Theorem 1 lies not only in being a very general
tractability result, but also in showcasing a simplified way to prove a metatheo-
rem extending MSO. Our main tool is the constraint satisfaction problem (CSP).
The key technical result of this section is Theorem 10, which relates MSO and
CSP on graphs of bounded treewidth.

In the MSOGL Model Checking problem, we wish to find a satisfying assign-
ment of a formula ϕ which satisfies further constraints. Simply put, Theorem 10
says that it is possible to restrict the set of satisfying assignments of a formula
ϕ ∈ MSO1 with CSP constraints under the condition that these additional con-
straints are structured along the tree decomposition of G. This allows the proof
of Theorem 1 to simply be a CSP formulation satisfying this property.

We consider a natural optimization version of MSOGL: the goal is to find a
satisfying assignment X1, . . . , X� which minimizes

∑�
j=1

∑
v∈Xj

wj
v.

4.1 CSP, MSO and Treewidth

An instance I = (V,D,H, C) of CSP consists of n variables V = [n], their
domains D = D1, . . . , Dn, Di ⊆ Z for i ∈ [n], and relations called hard con-
straints H ⊆ {CU | U ⊆ V }. An n-tuple (z1, . . . , zn) ∈ Z

n with zi ∈ Di for i ∈ [n]
is a feasible assignment if it satisfies all hard constraints. Furthermore, we also
consider functions called weighted soft constraints S ⊆ {wU : U → Z | U ⊆ V }
which allow us to solve an optimization variant of CSP.

For a CSP instance I = (V,D,H,S), we define its constraint graph G(I) as
G = (V,E) where two variables u, v ∈ V share an edge if they appear together in
one constraint. The treewidth of a CSP instance I (tw(I)) is defined as tw(G(I)).
We use D to denote the maximal size of all domains, that is, D = maxu∈V |Du|.

Freuder [11] proved that CSPs of treewidth τ and maximal domain size D
can be solved in time O(Dτ + L), where L is the length of the CSP instance.

Modeling after the terminology regarding extended formulations of poly-
topes, we introduce the notion of a CSP extension.

Definition 9 (CSP extension). Let I = ([n],DI ,HI ,SI) be a CSP instance.
We say that J = ([m],DJ ,HJ ,SJ ) is an extension of I (or that J extends I) if
Feas(I) = {z�|[n] | z� ∈ Feas(J)}.

Using Freuder’s algorithm, we can solve CSP instances of bounded treewidth
efficiently. Our motivation for introducing CSP extensions is that we are able to
formulate a CSP instance I expressing what we need, but having large treewidth
and size. However, if an extension J of I existed with bounded treewidth and
size, solving J instead suffices.

Let ϕ be an MSO1 formula with � free variables and let G be a graph on n
vertices. We say that a binary vector y ∈ {0, 1}n� satisfies ϕ (G,y |= ϕ) if it is a
characteristic vector of a satisfying assignment, that is, if v ∈ Xi ⇔ yi

v = 1 and
G |= ϕ(X1, . . . , X�).
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Theorem 10. Let G with tw(G) = τ be a σ2-structure representing a graph,
ϕ ∈ MSO1 with � free variables, (T,B) a nice tree decomposition of G of width
τ , and k ∈ N. Furthermore, let I = (V,D,H,S) be a CSP instance with

V = {yi
v | v ∈ V (G), i ∈ [�]} ∪ {xj

a | a ∈ V (T ), j ∈ [k]},

and H = {y | G,y |= ϕ} ∪ H′, and H′ and S have the local scope property:
∀CU ∈ H′ ∪ S ∃a ∈ V (T ) :

U ⊆ {yi
v | v ∈ B(a), i ∈ [�]} ∪ {xj

b | b ∈ NT (a), j ∈ [k]},

i.e., the scope of all constraints is restricted to variables corresponding to the
descendants of some node a ∈ V (T ).

Then there exists a CSP instance J = (VJ ,DJ ,HJ ,SJ ) which extends I, and,

– tw(J) ≤ f(|ϕ|, τ) + 2k,
– ‖HJ‖ + ‖SJ‖ ≤ f(|ϕ|, τ) · |V | + (‖H′‖ + ‖S‖), and,
– DJ = DI .

The proof of Theorem 10 proceeds in three stages:

1. Using a recent result of Kolman et al. [22] we construct a linear program
(LP) of bounded treewidth whose integer solutions correspond to feasible
assignments of ϕ.

2. We view this LP as an integer linear program (ILP) and construct an equiva-
lent constraint satisfaction problem (CSP) instance J ′ of bounded treewidth.

3. We show that if H′ and S have the local scope property, it is possible to
add new constraints derived from H′ and S to instance J ′ which results in
instance J , such that J is an extension of I.

4.2 CSP Instance Construction

Proof (Theorem 1). As before, we first note that there are at most 2|ϕ| different
pre-evaluations β(ϕ) of ϕ, so we can try each and choose the best result. Let a
pre-evaluation β(ϕ) be fixed from now on.

Let (T,B) be a nice tree decomposition of G. We will now construct a CSP
instance I satisfying the conditions of Theorem 10, which will give us its exten-
sion J with properties suitable for applying Freuder’s algorithm.

Let yi
v be the variables as described above; we use the constraint G,y |= β(ϕ)

to enforce that each feasible solution complies with the pre-evaluation β(ϕ). Now
we will introduce additional CSP variables and constraints in two ways to assure
that the local and global cardinality constraints are satisfied. Observe that we
introduce the additional CSP variables and constraints in such a way that they
have the local scope property of Theorem 10, that is, their scopes will always be
limited to the neighborhood of some node a ∈ V (T ).

Global cardinality constraints. In addition to the original y variables, we
introduce, for each node a ∈ T and each j ∈ [�], a variable sj

a with domain [n].
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The meaning of this variable is sj
a = |Xj ∩ V (Ga)|. Thus, in the root node r, sj

r

is exactly |Xj |. To enforce the desired meaning of the variables s, we add the
following hard constraints:

sj
a = 0 For all leaves a

∧
sj

a = sj
b + yj

v For all a = b ∗ (v)

sj
a = sj

b For all a = b † (v)
∧

sj
a = sj

b + sj
b′ −

∑

v∈B(a)

yj
v For all a = Λ(b, b′)

To enforce the cardinality constraints themselves, we add:

(s1r, . . . , s
�
r) ∈ R ∀R : β(R) = true

∧

(s1r, . . . , s
�
r) ∈ ([n]� \ R) ∀R : β(R) = false

Local cardinality constraints. These are dealt with analogously: for every
node a ∈ I, every j ∈ [�] and every vertex v ∈ B(a), we introduce a variable λvj

a

with the meaning λvj
a = |NGa

(v) ∩ Xj |. Then we set hard constraints to enforce
the desired meaning.

Objective function. In order to express the objective function we add soft
constraints S = {C{yj

v} | v ∈ V, j ∈ [�]} where C{yj
v} = wj

v if yj
v = 1 and is 0

otherwise.
In order to apply Theorem 10 to obtain an extension J of our instance I,

we determine its parameters. We have introduced � variables s per node, and �τ
variables λ per node. Thus, k = (τ + 1)�, and tw(J) ≤ f(|ϕ|, τ). Clearly, DI = n

and thus DJ = n. Let N =
∑c

j=1 |RG
j | +

∑�
j=1

∑
v∈V (G) |αj(v)| be the input

length of the global and local cardinality constraints. Since ‖H′‖+ ‖S‖ ≤ N , we
have that ‖HJ‖ + ‖SJ‖ ≤ f(|ϕ|, τ) · n + N . Then, applying Freuder’s algorithm
to J solves it in time nf(|ϕ|,τ) + N , finishing the proof of Theorem 1. ��

5 Conclusions

Limits of MSO extensions, other logics and metatheorems. We have
defined extensions of MSO and extended positive and negative results for them.
There is still some unexplored space in MSO extensions: Szeider [31] shows that
MSOL where some of the sets of local cardinality constraints are quantified is
NP-hard already on graphs of treewidth 2. We are not aware of a comparable
result for MSOG, and no results of this kind are known for graphs of bounded
neighborhood diversity. Also, we have not explored other logics, as for example
the modal logic considered by Pilipczuk [30]. However, many problems [10,13]
are FPT on bounded neighborhood diversity which are not expressible in any
of the studied logics. So we ask for a metatheorem generalizing as many such
positive results as possible.

Complementary Parameters and Problems. Unlike for treewidth, taking
the complement of a graph preserves its neighborhood diversity. Thus our results
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apply also in the complementary setting, where, given a graph G and a parame-
ter p(G), we are interested in the complexity (with respect to p(G)) of deciding
a problem P on the complement of G. While the complexity stays the same
when parameterizing by neighborhood diversity, it is unclear for sparse graph
parameters such as treewidth. It was shown very recently [9] that the Hamil-
tonian Path problem admits an FPT algorithm with respect to the treewidth
of the complement of the graph. This suggest that at least sometimes this is
the case and some extension of Courcelle’s theorem deciding properties of the
complement may hold.
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8. Dvořák, P., Knop, D., Toufar, T.: Target Set Selection in Dense Graph Classes.
CoRR 1610.07530 (October 2016)
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Abstract. A trapezoid graph is an intersection graph of trapezoids
spanned between two horizontal lines. The partial representation exten-
sion problem for trapezoid graphs is a generalization of the recognition
problem: given a graph G and an assignment ξ of trapezoids to some
vertices of G, can ξ be extended to a trapezoid intersection model of the
entire graph G? We show that this can be decided in polynomial time.
Thus, we determine the complexity of partial representation extension for
one of the two major remaining classes of geometric intersection graphs
for which it has been unknown (circular-arc graphs being the other).

Keywords: Graph representations · Trapezoid graphs · Modular
decomposition · Partial representation extension

1 Introduction

An intersection representation or model of a graph G by objects (sets) in a class
S is a mapping φ of the vertices of G into S such that uv is an edge of G if and
only if φ(u) and φ(v) intersect. Every class of objects S gives rise to a class of
graphs that have a model in S. This paper is devoted to trapezoid graphs, that
is, graphs that have intersection representations by trapezoids whose bases lie on
two common horizontal lines. Trapezoid graphs were introduced by Dagan et al.
[8] in connection to channel routing problems in VLSI design. Other significant
classes of graphs defined in terms of intersection models (for various choices of S)
include interval graphs, unit interval graphs, circular-arc graphs, circle graphs,
permutation graphs, and function graphs; see [18,40].

Linear-time recognition algorithms are known for interval graphs [3], unit
interval graphs [9], circular-arc graphs [32], and permutation graphs [33], and
O(n2)-time recognition algorithms are known for trapezoid graphs [30] and circle
graphs [39]. These algorithms also construct a suitable representation if it exists.
Function graphs are exactly the complements of comparability graphs, which can
be recognized in O(mn) time [17]. By contrast, recognition is NP-complete for
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rectangle graphs [28] and string graphs [27,37], and it is ∃R-complete for unit
disc graphs [21] and segment graphs [29], where ∃R is the class of problems poly-
nomially equivalent to the existential theory of the reals (NP ⊆ ∃R ⊆ PSPACE).

A generic partial representation extension problem asks whether a fixed par-
tial representation of a graph G can be extended to a full representation of G.
For intersection models in a class of sets S, the problem is formalized as follows.

Partial Representation Extension Problem. Given a graph G with vertex
set V , a set R ⊆ V , and a partial representation ξ : R → S that is an intersection
model of the subgraph of G induced on R, decide whether there is an intersection
model φ : V → S of G such that ξ is the restriction of φ to R.

Recognition is therefore the special case of partial representation extension where
R = ∅. Being a more general problem, partial representation extension has been
considered primarily for classes of graphs recognizable in polynomial time.

Partial representation extension is a relatively recent concept. For intersec-
tion representations, it was introduced by Klav́ık et al. [26] in 2011. It turned into
an active area of research providing new insights into classical graph classes. Cur-
rently best known running times of partial representation extension algorithms
are as follows: O(m + n) for interval graphs [2,25], O(m + n) for proper inter-
val graphs [23], O(n2) for unit interval graphs [23], O(m + n) for permutation
graphs, polynomial for function graphs [22], and polynomial for circle graphs [4].
It has been unknown whether there are polynomial-time partial representation
extension algorithms for circular-arc graphs and trapezoid graphs. We solve the
problem in the affirmative for trapezoid graphs.

Main Theorem. There is a polynomial-time partial representation extension
algorithm for trapezoid graphs. It runs in O(n5) time.

Problems that ask to extend a given partial solution have been also studied
in various other contexts, leading to apparent contrasts with the corresponding
(classical) problems of deciding whether a solution exists. Chordal graphs can be
characterized as intersection graphs of subtrees of a tree. There are linear-time
algorithms to recognize chordal graphs and to construct their subtree intersection
models [18,36], but all variants of partial subtree representation extension for
chordal graphs that were considered are NP-complete [24]. There are linear-time
algorithms to extend partial combinatorial embeddings of planar graphs [1] and
to construct straight-line drawings of planar graphs from their combinatorial
embeddings [38], but extending partial straight-line drawings of planar graphs
is NP-hard [35]. Every k-regular bipartite graph has a k-edge-coloring, which
can be constructed in O(m log k) time [6], but extending a partial edge coloring
becomes NP-complete even for k = 3 [13], and even for planar graphs [31].

An intersection model of a trapezoid graph gives rise to a left-to-right partial
order on the trapezoids, which forms a transitive orientation of the complement
of the graph. Posets that admit such trapezoid models are trapezoid posets, also
known as posets with interval dimension at most 2. Every trapezoid model of
a trapezoid poset P can be transformed into a normalized model such that the
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relative position of any two lateral sides is determined by the structure of P .
The lateral sides of trapezoids in a normalized model form a segment model of
an appropriately defined 2-dimensional poset called the split of P . In general,
the interval dimension of P is equal to the dimension of the split of P [12].

Habib et al. [19] proved that interval dimension is a comparability invariant
and used this fact to derive the first polynomial-time trapezoid graph recognition
algorithm. Namely, they fix an arbitrary transitive orientation of the complement
of the graph and test whether the poset thus obtained has interval dimension at
most 2 using an O(n4)-time algorithm due to Cogis [5]. Cogis’s algorithm as well
as later (and faster) algorithms in [12,30] construct the split and test whether it
has dimension at most 2, which happens if and only if its incomparability graph
is transitively orientable [10]. This two-step approach is the starting point for
our partial representation extension algorithm. For another successful approach
to recognizing trapezoid graphs, see [34].

The above-mentioned preliminaries are introduced in more detail in Sect. 3.
Section 2 is devoted to modular decomposition—a structure describing all transi-
tive orientations of a graph, which underlies most technical content of this paper.

In Sect. 4, we focus on the problem of extending a partial representation of a
trapezoid poset. Normalized trapezoid models of a poset correspond to transitive
orientations of the incomparability graph of the split, which are fully described
by modular decomposition. However, the given partial representation may have
only non-normalized extensions. To overcome this difficulty, we “normalize” the
partial representation, we try to extend it to a normalized model, and finally we
try to undo the normalization steps that we have applied to the initial partial
representation. We formulate conditions that are necessary and sufficient for
successful completion of these steps in terms of a 2-SAT formula, thus reducing
the problem of partial representation extension for trapezoid posets to 2-SAT.

Section 5 is devoted to partial representation extension of trapezoid graphs.
The choice of a transitive orientation of the complement G of the given graph
G can influence extendability of a partial representation. We compute a suitable
transitive orientation of G via dynamic programming, analyzing the modular
decomposition of G bottom-up and determining, for each module M , at most
two good transitive orientations of M based on those determined for the sub-
modules of M . To decide whether a transitive orientation of a module M is good,
we fix transitive orientations of the submodules of M arbitrarily but respecting
some consistency constraints (expressed again in terms of a 2-SAT formula), and
we test whether the given partial representation can be extended to a trapezoid
model of the induced subgraph G[M ∪R] respecting the fixed transitive orienta-
tion of G[M ∪ R]. This way, we reduce the graph problem to the poset problem.

Circular-arc graphs have a lot in common with trapezoid posets; for instance,
they admit an analogous notion of a normalized model. Moreover, co-bipartite
circular-arc graphs have trapezoid intersection models in which every trapezoid
is infinite to the left or to the right. It is easy to derive a polynomial-time partial
representation extension algorithm for co-bipartite circular-arc graphs from our
algorithm for trapezoid posets. It remains open whether there is a polynomial-
time partial representation extension algorithm for general circular-arc graphs.
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2 Modular Decomposition and Transitive Orientations

A graph is a pair (V,∼) where ∼ is an irreflexive and symmetric edge relation
on V . The complement of (V,∼) is the graph (V, �∼) where x �∼ y ⇐⇒ x �= y
and not x ∼ y. A poset is a pair (V,<) where < is a partial order on V . A poset
(V,<) is a transitive orientation of a graph (V,∼) when x ∼ y ⇐⇒ x < y or
x > y. If � is a binary relation on V and X,Y ⊆ V , then X � Y denotes that
x � y for all x ∈ X and y ∈ Y . If (V, �) is a graph or a poset and X ⊆ V , then
(X, �) denotes the graph or the poset on X in which � is restricted to X × X.

A non-empty set M ⊆ V is a module of a graph (V,∼) if x ∼ M or x �∼ M
for every x ∈ V � M . A module M of (V,∼) is a strong module if additionally
M ⊂ N , N ⊂ M , or M∩N = ∅ for every other module N of (V,∼). In particular,
two strong modules are either nested or disjoint. The modular decomposition of
(V,∼), denoted by M(V,∼), is the family of all strong modules of (V,∼). The
modular decomposition ordered by inclusion forms a tree in which V is the root,
the children of a strong module M are the maximal proper subsets of M in
M(V,∼), and the leaves are the singleton modules {x} for all x ∈ V . Clearly,
M(V,∼) = M(V, �∼), and the tree structure implies |M(V,∼)| � 2|V | − 1.

Theorem 1 (Gallai [14]). If M1,M2 ∈ M(V,∼) and M1 ∼ M2, then every
transitive orientation (V,<) of (V,∼) satisfies either M1 < M2 or M1 > M2.

The children of a non-singleton module M ∈ M(V,∼) form a partition of M .
Such a module is serial if M1 ∼ M2 for any two children M1 and M2, parallel if
M1 �∼ M2 for any two children M1 and M2, and prime otherwise. Equivalently,
M is serial if the graph (M, �∼) is disconnected, parallel if the graph (M,∼) is
disconnected, and prime if both (M,∼) and (M, �∼) are connected. The edge
relation ∼ restricted to the edges between vertices in different children of M is
denoted by ∼M . If x ∼ y, then x ∼M y for exactly one module M ∈ M(V,∼).

Theorem 2 (Gallai [14]). There is a bijection between the transitive orien-
tations (V,<) of (V,∼) and the families {(M,<M ) : M ∈ M(V,∼)} such that
(M,<M ) is a transitive orientation of (M,∼M ), given by x < y ⇐⇒ x <M y,
where M is the module in M(V,∼) such that x ∼M y.

When M ∈ M(V,∼), we call the edges of (M,∼M ) simply the edges of M , and
we call a transitive orientation of (M,∼M ) simply a transitive orientation of M .

Theorem 3 (Gallai [14]). A prime module has either exactly two transitive
orientations, one the reverse of the other, or no transitive orientations at all.

A parallel module has exactly one (empty) transitive orientation. The transitive
orientations of a serial module correspond to the total orderings of its children.

First polynomial-time algorithms to decide whether a graph has a transitive
orientation and to construct it (if it exists) are implicit in [15,16]. Golumbic
[17] provided an O(mn)-time algorithm. The first polynomial-time algorithm
to compute the modular decomposition of a graph is due to James et al. [20].
McConnell and Spinrad [33] provided O(m+n)-time algorithms to compute the
modular decomposition and a transitive orientation (if it exists). Another linear-
time modular decomposition algorithm is presented in [7].
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3 Trapezoid Models

We fix two horizontal lines in the plane L1 = R × {1} and L2 = R × {2}. We
let S denote the set of segments with one endpoint on L1 and the other on L2.
We let T denote the set of non-degenerate trapezoids with one base on L1 and
the other on L2 (every trapezoid in T has four distinct corners). We let <1 and
<2 denote the left-to-right orders of points on L1 and L2, respectively. When X
and Y are distinct segments in S or trapezoids in T, we let

– X <i Y denote that X ∩ Li <i Y ∩ Li, for i ∈ {1, 2},
– X < Y denote that X <1 Y and X <2 Y,
– X ∼ Y denote that X ∩ Y �= ∅.

Such X and Y satisfy exactly one of the relations X < Y , X ∼ Y , and X > Y .
A trapezoid model or simply a model of a graph (V,∼) or a poset (V,<) is a

map φ : V → T such that x ∼ y ⇐⇒ φ(x) ∼ φ(y) or x < y ⇐⇒ φ(x) < φ(y),
respectively. The corners of all trapezoids used in a model are assumed to be
distinct. A trapezoid graph/poset is a graph/poset that has a model. When X is
a subset of the domain of a function φ, we let φ(X) = {φ(x) : x ∈ X}.

Let (V,<) be a poset with a trapezoid model φ. For x ∈ V , let φ(|x) and φ(x|)
denote the left and the right side, respectively, of the trapezoid φ(x). We have

φ(x|) < φ(|y) ⇐⇒ x < y, φ(|x) < φ(y|) =⇒ ↓x < ↑y,

φ(|x) < φ(|y) =⇒ ↓x ⊆ ↓y, φ(x|) < φ(y|) =⇒ ↑x ⊇ ↑y,
(1)

for all x, y ∈ V , where ↓x = {z ∈ V : z < x} and ↑x = {z ∈ V : z > x}. The
model φ is normalized if it also satisfies the following conditions:

↓x < ↑y =⇒ φ(|x) < φ(y|),
↓x ⊂ ↓y =⇒ φ(|x) < φ(|y), ↑x ⊃ ↑y =⇒ φ(x|) < φ(y|). (2)

They are “almost converse” to (1); there is no condition on the relation between
φ(|x) and φ(|y) when ↓x = ↓y or between φ(x|) and φ(y|) when ↑x = ↑y.

A usual way of constructing a normalized model is to start with an arbitrary
trapezoid model and then apply a series of normalization steps of three types:

1. If ↓x < ↑y and φ(|x) >i φ(y|), where i ∈ {1, 2}, then the corner of φ(|x) on
Li is pulled to the left and the corner of φ(y|) on Li is pulled to the right
until the two corners pass each other somewhere between φ(↓x) and φ(↑y).

2. If ↓x ⊂ ↓y and φ(|x) >i φ(|y), where i ∈ {1, 2}, then the corner of φ(|x) on
Li is pulled to the left until it passes the corner of φ(|y) on Li.

3. If ↑x ⊃ ↑y and φ(x|) >i φ(y|), where i ∈ {1, 2}, then the corner of φ(y|) on
Li is pulled to the right until it passes the corner of φ(x|) on Li.

They keep φ a model of (V,<), eventually leading to a normalized model. We
present a different proof of existence of normalized models further in this section.
Nevertheless, normalization steps motivate some of our considerations in Sect. 4.

Let V ′ be the set obtained from V by splitting each element x ∈ V into two
copies, denoted by |x and x|. Thus V ′ = {|x, x| : x ∈ V }. We use notation like
x′ to refer to an element of V ′ of either form, |x or x|, where x ∈ V . We identify
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functions φ : V → T with functions φ : V ′ → S satisfying φ(|x) < φ(x|) as follows:
φ(x) is the trapezoid with left side φ(|x) and right side φ(x|). This is consistent
with the notation φ(|x) and φ(x|) introduced before for functions φ : V → T.

Conditions (1) and (2) motivate the following definitions. Given a partial
order < on V , we define a binary relation on V ′, also denoted by <, as follows:

x| < |y ⇐⇒ x < y, |x < y| ⇐⇒ ↓x < ↑y, (∗)
|x < |y ⇐⇒ ↓x ⊂ ↓y, x| < y| ⇐⇒ ↑x ⊃ ↑y.

(3)

The relation < thus defined is a partial order on V ′, and (∗) implies |x < x|. We
also define binary relations ≡ and ≈ on V ′ as follows:

|x ≡ |y ⇐⇒ ↓x = ↓y, x| ≡ y| ⇐⇒ ↑x = ↑y, |x �≡ y|,
x′ ≈ y′ ⇐⇒ neither of x′ < y′, x′ > y′, x′ ≡ y′ holds, where x′, y′ ∈ V ′.

Comparing (1), (2), and (3), we conclude that φ is a normalized model of (V,<)
if and only if the following implications hold for all x′, y′ ∈ V ′:

x′ < y′ =⇒ φ(x′) < φ(y′), x′ ≈ y′ =⇒ φ(x′) ∼ φ(y′). (4)

We call the poset (V ′, <) the split of (V,<). The equivalence classes of ≡ are
(not necessarily strong) modules of (V ′,≈), which we call irrelevant modules.

The following fundamental theorem, the proof of which is outlined below,
provides a polynomial-time recognition algorithm for trapezoid posets.

Theorem 4 (cf. [5,12,30]). The following are equivalent for a poset (V,<):

1. The poset (V,<) has a trapezoid model (is a trapezoid poset).
2. The poset (V,<) has a normalized trapezoid model.
3. The graph (V ′,≈) is transitively orientable.

Recognition algorithms for trapezoid posets presented in [5,12,30] are based
on the same approach as above except that they use a version of split in which
elements equivalent under ≡ become identified (then ≈ becomes the incompara-
bility relation of the split). Although such an identification does not matter for
recognition, it is not possible when dealing with partial representations.

The implication 2⇒ 1 in Theorem 4 is obvious. For 1⇒ 3, we need a weaker
version of conditions (4) valid for models that are not necessarily normalized.

Lemma 5. Let φ be a trapezoid model of (V,<), and let x′, y′, z′ ∈ V ′.

1. If x′ < y′, then φ(x′) <1 φ(y′) or φ(x′) <2 φ(y′).
2. If x′ ≈ y′, then φ(x′) ∼ φ(y′).
3. If x′ ≈ y′ ≈ z′ and φ(x′) <k φ(y′) <k φ(z′), then x′ ≈ z′, for k ∈ {1, 2}.
In view of conditions 2 and 3 of Lemma5, every trapezoid model φ of (V,<) gives
rise to a transitive orientation (V ′,≺φ) of the graph (V ′,≈), defined as follows:

x′ ≺φ y′ ⇐⇒ φ(x′) <1 φ(y′) ⇐⇒ φ(x′) >2 φ(y′), when x′ ≈ y′. (5)
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For the implication 3⇒ 2 in Theorem 4, let (V ′,≺) be a transitive orientation
of (V ′,≈). There is a normalized trapezoid model φ of (V,<) such that

x′ < y′ or (x′ ≈ y′ and x′ ≺ y′) =⇒ φ(x′) <1 φ(y′),
x′ < y′ or (x′ ≈ y′ and x′ � y′) =⇒ φ(x′) <2 φ(y′).

(6)

Indeed, the conditions above determine the relations <1 and <2 on φ(V ′) every-
where except within irrelevant modules. Moreover, if I is an irrelevant module
and x′ ≈ I, then either x′ ≺ I or x′ � I (by transitivity of ≺), and (6) imply
either φ(x′) <i φ(I) or φ(x′) >i φ(I) for i ∈ {1, 2}. An arbitrary arrangement
of φ(I) within each irrelevant module I yields a function φ : V ′ → S such that
φ(|x) < φ(x|) for all x ∈ V and the corresponding function φ : V → T. It follows
from (3) and (6) that φ satisfies (1) and (2), so φ is a normalized model of (V,<).

In fact, (5) and (6) provide a complete description of all normalized models φ
of (V,<) in terms of transitive orientations (V ′,≺) of (V ′,≈), up to an arbitrary
rearrangement of φ(I) within each irrelevant module I.

Theorem 4 and the next result yield a polynomial-time recognition algorithm
for trapezoid graphs—we can fix a transitive orientation of the complement of
the given graph arbitrarily and test whether the resulting poset is a trapezoid
poset.

Theorem 6 (Habib et al. [19]). If (V,∼) is a trapezoid graph, then every
transitive orientation of the complement of (V,∼) is a trapezoid poset.

Theorem 6 can be established by showing that for any model φ of (V,∼)
and any prime or parallel module M ∈ M(V,∼), the representation of M in φ
can be “squeezed” to form contiguous blocks on L1 and L2 and then reversed
(rearranged if M is parallel) to agree with the requested transitive orientation
of M , independently of the rest of φ.

4 Extending Partial Representations of Trapezoid Posets

In this section, we provide a polynomial-time algorithm for the partial represen-
tation extension problem for trapezoid posets: given a poset (V,<), a set R ⊆ V ,
and a partial representation ξ : R → T that is a model of (R,<), decide whether ξ
can be extended to a model of (V,<). We compute the split (V ′, <) of (V,<), the
graph (V ′,≈), and its modular decomposition M(V ′,≈). In view of Theorem 4,
we can assume that (V ′,≈) is transitively orientable, otherwise we are safe to
reject the instance. Theorem 2 provides a correspondence between the transitive
orientations (V ′,≺) of (V ′,≈) and the transitive orientations (M,≺M ) of the
modules M ∈ M(V ′,≈). We compute the two transitive orientations (M,≺0

M )
and (M,≺1

M ) claimed by Theorem 3 for every prime module M ∈ M(V ′,≈).
Let R′ = {|x, x| : x ∈ R}. We can assume that ξ satisfies conditions 1–3 of

Lemma 5 for any x′, y′, z′ ∈ R′, otherwise we are safe to reject the instance. By
a formula analogous to (5), ξ yields a transitive orientation (R′,≺ξ) of (R′,≈).
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Under the assumptions above, we reduce the problem of extendability of ξ
to a model of (V,<) to satisfiability of a carefully designed set of constraints Φ
over boolean variables, where every constraint involves at most two variables, so
that Φ is equivalent to a 2-SAT formula. The algorithm just tests whether or not
Φ is satisfiable and accepts or rejects the instance accordingly. We design Φ so
that every model of (V,<) extending ξ yields an assignment of boolean values 0
and 1 to the variables of Φ that makes Φ satisfied. Therefore, when introducing
variables and constraints of Φ, we interpret their meaning in the context of an
arbitrarily chosen (but fixed) model φ of (V,<) that extends ξ, and we intend
to make validity of the constraints self-evident. Finally, we prove that if Φ is
satisfiable, then ξ can be extended to a model of (V,<).

Let Q = V � R. Through the rest of this section, we implicitly assume that
a, b ∈ R, x ∈ Q, and (u, v) ∈ (R×Q)∪(Q×R) whenever these symbols are used.

Suppose u �> v. We use a boolean variable β1(|u, v|) to represent whether or
not φ(|u) <1 φ(v|) and a boolean variable β2(|u, v|) to represent whether or not
φ(|u) <2 φ(v|). At least one of these two conditions must hold when φ(u) ∼ φ(v)
or φ(u) < φ(v). We express this fact by adding the following constraint to Φ:

β1(|u, v|) ∨ β2(|u, v|). (Φ1)

Let M be a prime module in M(V ′,≈) with M ∩ R′ �= ∅. Recall that M has
exactly two transitive orientations, (M,≺0

M ) and (M,≺1
M ), one the reverse of the

other. We use a boolean variable μ(M) whose value represents the choice of one
of these transitive orientations: ≺φ

M = ≺μ(M)
M . Whenever a′ ≈M b′ and a′ ≺ξ b′,

we must have a′ ≺φ
M b′, which we express by adding the following constraint to Φ:

μ(M) = k, where k ∈ {0, 1} is such that a′ ≺k
M b′. (Φ2)

Whenever |u ≈M v|, the relation between φ(|u) and φ(v|) in <1 and <2 is deter-
mined by ≺φ

M as in (5), which we express by adding the following identities to Φ:

β1(|u, v|) = ¬μ(M) and β2(|u, v|) = μ(M) if |u ≺0
M v|,

(Φ3)
β1(|u, v|) = μ(M) and β2(|u, v|) = ¬μ(M) if |u ≺1

M v|.

Now, let M be a serial module in M(V ′,≈) with children M1, . . . ,Mr in
an arbitrary order, and let i and j be distinct indices in {1, . . . , r} such that
(Mi ∪ Mj) ∩ R′ �= ∅. Theorem 1 implies that either Mi ≺φ Mj or Mi �φ Mj . We
use a boolean variable μ(Mi,Mj) to represent whether or not Mi ≺φ Mj , and
we add the following obvious identity to Φ:

μ(Mi,Mj) = ¬μ(Mj ,Mi). (Φ4)

Whenever a′ ∈ Mi, b′ ∈ Mj , and a′ ≺ξ b′, we have Mi ≺φ Mj , and by transitivity
of ≺φ, every other child Mk of M satisfies Mi ≺φ Mk or Mk ≺φ Mj (or both);
we express these conditions by adding the following constraints to Φ:

μ(Mi,Mj) and μ(Mi,Mk) ∨ μ(Mk,Mj) for k ∈ {1, . . . , r} � {i, j}. (Φ5)
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Whenever |u ∈ Mi and v| ∈ Mj , the relation between φ(|u) and φ(v|) in <1 and
<2 is determined by the relation between Mi and Mj in ≺φ as in (5), which we
express by adding the following identities to Φ:

β1(|u, v|) = μ(Mi,Mj) and β2(|u, v|) = ¬μ(Mi,Mj). (Φ6)

When |u ≈ v|, the variables β1(|u, v|) and β2(|u, v|) are identified with μ and
¬μ or vice versa either by (Φ3) for exactly one variable μ = μ(M) or by (Φ6) for
exactly one variable μ = μ(Mi,Mj); then (Φ1) is redundant. By contrast, when
|u < v|, the variables β1(|u, v|) and β2(|u, v|) are not involved in any condition
of type (Φ3) or (Φ6); then (Φ1) cannot be omitted.

Let Ai = {(a′, b′) ∈ R′ × R′ : a′ < b′ and ξ(a′) >i ξ(b′)} for i ∈ {1, 2}. That
is, A1 and A2 consist of the pairs (a′, b′) that do not satisfy the normalization
condition (4). We add the following constraints to Φ, for i ∈ {1, 2}:

¬βi(|x, b|) when (a|, b|) ∈ Ai and a < x ∼ b, (Φ7)
βi(|x, b|) ⇒ βi(|x, a|) when (a|, b|) ∈ Ai and x �> a, b, (Φ8)

β3−i(|x, a|) ⇒ β3−i(|x, b|) when (a|, b|) ∈ Ai and x �> a, b, (Φ9)
¬βi(|a, x|) when (|a, |b) ∈ Ai and a ∼ x < b, (Φ10)

βi(|a, x|) ⇒ βi(|b, x|) when (|a, |b) ∈ Ai and a, b �> x, (Φ11)
β3−i(|b, x|) ⇒ β3−i(|a, x|) when (|a, |b) ∈ Ai and a, b �> x, (Φ12)

¬βi(|a, x|) ∨ ¬βi(|y, b|) when (|a, b|) ∈ Ai and a �> x < y �> b. (Φ13)

Here are illustrations of why φ must satisfy the conditions represented by

(Φ7)–(Φ9): b

ax

x

xLi

(Φ10)–(Φ12): a
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(Φ13): ab

x yyxLi

Lemma 7. There is a model of (V,<) extending ξ if and only if Φ is satisfiable.

Proof (Sketch). We have constructed Φ ensuring its satisfiability if (V,<) has a
model extending ξ. Now, suppose Φ is satisfiable and the variables are assigned
values that make Φ satisfied. It suffices to find a model φ of (V,<) such that

φ(a′) <i φ(b′) ⇐⇒ ξ(a′) <i ξ(b′), for i ∈ {1, 2}. (7)

By (Φ4) and (Φ5), there is a transitive orientation (V ′,≺) of (V ′,≈) that agrees
with the interpretation of the values assigned to μ(·). By (Φ2) and (Φ5), ≺ agrees
with ≺ξ. We modify the assignment on β1(·) and β2(·) to ensure that

if |a < x| ≺ |y < b|, then β1(|a, x|) = 0 or β1(|y, b|) = 0,
if |a < x| � |y < b|, then β2(|a, x|) = 0 or β2(|y, b|) = 0,

(8)

while keeping Φ satisfied. The proof that this is always possible is technical and
makes use of all (Φ7)–(Φ13). Then, we start with a normalized model φ of (V,<)
defined from ≺ by (6), arranging φ(I) within each irrelevant module I so as to
satisfy (7) for all a′, b′ ∈ I. By (Φ3) and (Φ6), the model φ satisfies the following:
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if u ∼ v and βi(|u, v|) = 1, then φ(|u) <i φ(v|), for i ∈ {1, 2}. (9)

We transform φ gradually into a model of (V,<) satisfying (7) for all a′, b′ ∈ R′,
in each step choosing some a′ and b′ that violate (7) so that φ(a′) and φ(b′) are
consecutive in the order <i on φ(R′) and moving φ(a′) and φ(b′) (and only them)
on Li to swap them in the order <i while maintaining (9). These steps can be
interpreted as reversed normalization steps 1–3 described in Sect. 3. They always
succeed thanks to (Φ7) and (Φ8), (Φ10) and (Φ11), (Φ13) and (8) for reversed
step 3, 2, 1, respectively. By (9) and (Φ1), φ remains a model of (V,<). ��

The constraint set Φ is equivalent to a 2-SAT formula with O(n2) variables
and O(n4) clauses, so its satisfiability can be decided in O(n4) time [11], leading
to an O(n4)-time partial representation extension algorithm for trapezoid posets.

5 Extending Partial Representations of Trapezoid Graphs

Finally, we provide a polynomial-time algorithm for the main problem of this
paper: given a graph (V,∼), a set R ⊆ V , and a partial representation ξ : R → T

that is a model of (R,∼), decide whether ξ can be extended to a model of (V,∼).
We assume that (V,∼) has a model, otherwise we reject the instance. Let (V,≶)
be the complement of (V,∼). To decide whether (V,∼) has a model extending ξ,
we look for a transitive orientation (V,<) of (V,≶) that has a model extending ξ.

We assume R �= ∅ and let MR = {M ∈ M(V,≶) : M ∩ R �= ∅}. We call the
modules in MR restricted and the modules in M(V,≶) � MR unrestricted.

Lemma 8. Let M be a serial module in MR. Let NM be the union of all unre-
stricted children of M , except for one (arbitrary) if M has only one restricted
child. Then (V,∼) has a model extending ξ if and only if (V � NM ,∼) has.

We apply Lemma 8 repeatedly to all serial modules M ∈ MR, removing all sets
NM thus obtained from V . This does not affect extendability of ξ.

Theorem 2 gives a correspondence between the transitive orientations (V,<)
of (V,≶) and the transitive orientations (M,<M ) of the modules M ∈ M(V,≶).
A transitive orientation (M,<M ) of a module M ∈ MR is ξ-consistent if a <M b
whenever a, b ∈ M ∩ R and ξ(a) < ξ(b). A map ξ : R → T is a model of (R,<)
if and only if (M,<M ) is ξ-consistent for every M ∈ MR. When M is serial,
(M,<M ) is ξ-consistent if and only if the restricted children of M can be ordered
as M1, . . . ,Mr so that ξ(M1∩R) < · · · < ξ(Mr ∩R). As a result of the aforemen-
tioned reduction by Lemma 8, if a serial module M ∈ MR has more than two
children, then all of them are restricted and thus M has only one ξ-consistent
transitive orientation. This and Theorem3 allow us to derive, for every module
M ∈ MR, two transitive orientations (M,<0

M ) and (M,<1
M ), one the reverse of

the other, that include all (at most two) ξ-consistent transitive orientations of
M . If M is a parallel or singleton module, then <0

M and <1
M are both empty.

Below, we formulate sets of constraints with one boolean variable λ(M) for
each module M ∈ MR. The assignments of boolean values 0 and 1 to these
variables satisfying a constraint set Π correspond to the transitive orientations
(V,<) of (V,≶) called Π-consistent as follows: <M = <

λ(M)
M for M ∈ MR. We
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start by providing a set of constraints Π with the property that every transitive
orientation (V,<) of (V,≶) that has a model extending ξ is Π-consistent. When
introducing constraints of Π, we interpret their meaning in the context of an
arbitrarily chosen (but fixed) transitive orientation (V,<) of (V,≶) that has a
model extending ξ, and we intend to make validity of the constraints self-evident.

First, we add the following constraints to Π to express the fact that the
transitive orientation (M,<M ) of each module M ∈ MR must be ξ-consistent:

λ(M) �= k if (M,<k
M ) is not ξ-consistent, M ∈ MR, k ∈ {0, 1}. (Π1)

Let Q = V �R. For any a, b ∈ R and x ∈ Q such that ξ(b|) < ξ(a|) and a ≶ x ∼ b,
we must have x < a, which we express by adding the following constraint to Π:

λ(M) = k, where x <k
M a, M ∈ MR, k ∈ {0, 1}. (Π2)

Symmetrically, for any a, b ∈ R and x ∈ Q such that ξ(|a) < ξ(|b) and a ≶ x ∼ b,
we must have a < x, which we express by adding the following constraint to Π:

λ(M) = k, where a <k
M x, M ∈ MR, k ∈ {0, 1}. (Π3)

For any a, b ∈ R and x, y ∈ Q such that ξ(|b) < ξ(a|) and a ≶ x ∼ y ≶ b, we must
have x < a or b < y, which we express by adding the following constraint to Π:

λ(M) = k ∨ λ(N) = �, where
x <k

M a, M ∈ MR, k ∈ {0, 1},

b <�
N y, N ∈ MR, � ∈ {0, 1}.

(Π4)

The last set of constraints to be added to Π is technical. For a prime or serial
module M ∈ MR and a transitive orientation (M,<M ) of it, let

intR(M,<M ) = {|a : a ∈ M ∩ R and there is u ∈ M such that u <M a} ∪
{a| : a ∈ M ∩ R and there is u ∈ M such that u >M a}.

Since M ∩ R �= ∅ and M is prime or serial, the set intR(M,<M ) is non-empty.

Lemma 9. Let M and N be two disjoint prime or serial modules in MR such
that M ∼ N . If a transitive orientation (V,<) of (V,≶) has a model extending
ξ, then intR(M,<M ) ≺ξ intR(N,<N ) or intR(M,<M ) �ξ intR(N,<N ), where
X ≺ξ Y denotes that ξ(X) <1 ξ(Y ) and ξ(X) >2 ξ(Y ).

For any two disjoint prime or serial modules M,N ∈ MR such that M ∼ N and
any k, � ∈ {0, 1}, if neither intR(M,<k

M ) ≺ξ intR(N,<�
N ) nor intR(M,<k

M ) �ξ

intR(N,<�
N ), then Lemma 9 implies <M �= <k

M or <N �= <�
N , and we add the

following constraint to Π to express this condition:

λ(M) �= k ∨ λ(N) �= �. (Π5)

Clearly, the set Π of constraints (Π1)–(Π5) is equivalent to a 2-SAT formula.
For M ∈ MR and k ∈ {0, 1}, the transitive orientation (M,<k

M ) is good if
(V,≶) has a Π-consistent transitive orientation (V,<) such that <M = <k

M and
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(M ∪ R,<) has a model extending ξ. Our goal is to decide whether at least
one of the two transitive orientations (V,<0

V ) and (V,<1
V ) of the root module V

in MR is good. We determine which of the two transitive orientations of every
module in MR are good by dynamic programming with respect to the modular
decomposition tree. This is possible thanks to the following key lemma.

Lemma 10. Let M ∈ MR and (V,<�) be a Π-consistent transitive orientation
of (V,≶). If (M,<�

M ) is good and (N ∪ R,<�) has a model extending ξ for
every restricted child N of M , then (M ∪ R,<�) has a model extending ξ.

Proof (Idea). Since (M,<�
M ) is good, there is a transitive orientation (V,<) of

(V,≶) such that <M = <�
M and (M∪R,<) has a model φ extending ξ. Whenever

< and <� disagree within an unrestricted child N of M , we “squeeze” N in φ to
form contiguous blocks on L1 and L2 and replace the representation of N within
these blocks by a model of (N,<�), as in the proof of Theorem6. For every
restricted child N of M , let φN be a model of (N ∪R,<�) extending ξ. The goal
is to replace the representation of every such N in φ by its representation in φN .
Before replacement, we make appropriate local adjustments to φ around N and
to φN . Then, Π-consistency of (V,<�) guarantees that simultaneous replacement
of the representations of all restricted children of M can be performed in a
consistent way, leading to a model of (M ∪ R,<�) extending ξ. ��

Let M ∈ MR and k ∈ {0, 1}. Suppose we have (correctly) computed, for each
proper restricted submodule N of M and each � ∈ {0, 1}, a boolean value g(N, �)
equal to 1 if (N,<�

N ) is good and 0 otherwise. We decide whether (M,<k
M ) is

good as follows, saving the result to an analogous boolean value g(M,k). Let Πk
M

be the set of constraints obtained from Π by adding the following constraints:

λ(M) = k, (Π6)
λ(N) �= � when M ⊃ N ∈ MR, � ∈ {0, 1}, and g(N, �) = 0. (Π7)

We set g(M,k) to 0 if Πk
M is unsatisfiable. Otherwise, we compute an assignment

that makes Πk
M satisfied. It corresponds to a Πk

M -consistent transitive orientation
(V,<) of (V,≶). We invoke the algorithm from Sect. 4 to test whether (M ∪R,<)
has a model extending ξ, and we set g(M,k) to 1 if it has and 0 otherwise. At the
end, we accept the instance if g(V, 0) = 1 or g(V, 1) = 1 and reject it otherwise.

The procedure above sets g(M,k) to 1 only when (V,<) is Πk
M -consistent and

(M∪R,<) has a model extending ξ. In that case, by (Π6), we have <M = <k
M , so

indeed (M,<k
M ) is good. Now, suppose (M,<k

M ) is good—there is a Π-consistent
transitive orientation (V,<) of (V,≶) such that <M = <k

M and (M ∪ R,<)
has a model φ extending ξ. For each proper restricted submodule N of M , the
restriction of φ to N ∪R is a model of (N ∪R,<) extending ξ, so (N,<N ) is good.
It follows that (V,<) is Πk

M -consistent. In particular, Πk
M is satisfiable, so the

procedure picks some Πk
M -consistent transitive orientation (V,<�) of (V,≶). By

(Π6), we have <�
M = <k

M , so (M,<�
M ) is good. Also, (N,<�

N ) is good for every
proper restricted submodule N of M , by (Π7). We claim that (N ∪ R,<�) has
a model extending ξ for every restricted submodule N of M including N = M .
This follows from Lemma 10 by straightforward induction. Indeed, by Lemma10,
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the claim on N follows from the claim on the children of N and the fact that
(N,<�

N ) is good. We conclude that (M ∪R,<�) has a model extending ξ, so the
procedure sets g(M,k) to 1. This proves correctness of the algorithm.

Each of the O(n) many values g(M,k) is computed in O(n4) time, by solving
the corresponding O(n2)-size 2-SAT formula and invoking the O(n4)-time algo-
rithm from Sect. 4. Therefore, the total running time of the algorithm is O(n5).
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26. Klav́ık, P., Kratochv́ıl, J., Vyskočil, T.: Extending partial representations of inter-
val graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp.
276–285. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20877-5 28

27. Kratochv́ıl, J.: String graphs. II. Recognizing string graphs is NP-hard. J. Combin.
Theory Ser. B 52(1), 67–78 (1991)

28. Kratochv́ıl, J.: A special planar satisfiability problem and a consequence of its NP-
completeness. Discrete Appl. Math. 52(3), 233–252 (1994)
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Abstract. We introduce the concept of low rank-width colorings, gener-
alizing the notion of low tree-depth colorings introduced by Nešetřil and
Ossona de Mendez in [26]. We say that a class C of graphs admits low
rank-width colorings if there exist functions N : N → N and Q : N → N

such that for all p ∈ N, every graph G ∈ C can be vertex colored with at
most N(p) colors such that the union of any i ≤ p color classes induces
a subgraph of rank-width at most Q(i).

Graph classes admitting low rank-width colorings strictly generalize
graph classes admitting low tree-depth colorings and graph classes of
bounded rank-width. We prove that for every graph class C of bounded
expansion and every positive integer r, the class {Gr : G ∈ C} of rth
powers of graphs from C, as well as the classes of unit interval graphs
and bipartite permutation graphs admit low rank-width colorings. All
of these classes have unbounded rank-width and do not admit low tree-
depth colorings. We also show that the classes of interval graphs and
permutation graphs do not admit low rank-width colorings. As inter-
esting side properties, we prove that every graph class admitting low
rank-width colorings has the Erdős-Hajnal property and is χ-bounded.

1 Introduction and Main Results

We are interested in covering a graph with (overlapping) pieces in such a way that
(1) the number of pieces is small, (2) each piece is simple, and (3) every small
subgraph is fully contained in at least one piece. Despite the graph theoretic
interest in such coverings, it also has nice algorithmic applications. Consider
e.g. the subgraph isomorphism problem. Here, we are given two graphs G and
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H as input, and we are asked to determine whether G contains a subgraph
isomorphic to H. In many natural settings the pattern graph H we are looking
for is small and in such case a covering as described above is most useful. By the
first property, we can then iterate through the small number of pieces, by the
third property, one of the pieces will contain our pattern graph. By the second
property, we can test each piece for containment of H.

We can formulate the covering problem in an equivalent way from the point
of view of graph coloring as follows. How many colors are required to color the
vertices of a graph G such that the union of any p color classes induce a simple
subgraph (understanding any p color classes as a piece in the above formulation)?
It remains to specify what we mean by simple subgraphs.

From an algorithmic point of view, trees, or more generally, graphs of
bounded tree-width are very well behaved graphs. Many NP-complete prob-
lems, in fact, all problems that can be formulated in monadic second order logic,
are solvable in linear time on graphs of bounded tree-width [5,6]. In particular,
the subgraph isomorphism problem for every fixed pattern graph H is solvable
in polynomial time on any graph of bounded tree-width.

Taking graphs of small tree-width as our simple building blocks, we can define
a p-tree-width coloring of a graph G as a vertex coloring of G such that the union
of any i ≤ p color classes induces a subgraph of tree-width at most i−1. Using the
structure theorem of Robertson and Seymour [33] for graphs excluding a fixed
graph as a minor, DeVos et al. [11] proved that for every graph H and every
integer p ≥ 1, there is an integer N = N(H, p), such that every H-minor-free
graph admits a p-tree-width coloring with N colors.

Tree-depth is another important and useful graph invariant. It was introduced
under this name in [25], but equivalent notions were known before, including the
notion of rank [28], vertex ranking number and minimum height of an elimination
tree [1,10,34], etc. In [25], Nešetřil and Ossona de Mendez introduced the notion
of p-tree-depth colorings as vertex colorings of a graph such that the union of
any i ≤ p color classes induces a subgraph of tree-depth at most i. Note that
the tree-depth of a graph is always larger (at least by 1) than its tree-width,
hence a low tree-depth coloring is a stronger requirement than a low tree-width
coloring. Also based on the structure theorem, Nešetřil and Ossona de Mendez
[25] proved that proper minor closed classes admit even low tree-depth colorings.

Not much later, Nešetřil and Ossona de Mendez [26] proved that proper
minor closed classes are unnecessarily restrictive for the existence of low tree-
depth colorings. They introduced the notion of bounded expansion classes of
graphs, a concept that generalizes the concept of classes with excluded minors
and with excluded topological minors. While the original definition of bounded
expansion is in terms of density of shallow minors, it turns out low tree-depth
colorings give an alternative characterisation: a class C of graphs has bounded
expansion if and only if for all p ∈ N there exists a number N = N(C, p) such
that every graph G ∈ C admits a p-tree-depth coloring with N(p) colors [26]. For
the even more general notion of nowhere dense classes of graphs [27], it turns
out that a class C of graphs closed under taking subgraphs is nowhere dense if
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and only if for all p ∈ N and all ε > 0 there exists n0 such that every n-vertex
graph G ∈ C with n ≥ n0 admits a p-tree-depth coloring with nε colors.

Furthermore, there is a simple algorithm to compute such a decomposition in
time O(n) in case C has bounded expansion and in time O(n1+ε) for any ε > 0
in case C is nowhere dense. As a result, the subgraph isomorphism problem for
every fixed pattern H can be solved in linear time on any class of bounded
expansion and in almost linear time on any nowhere dense class. More generally,
it was shown in [13,17] that every fixed first order property can be tested in
linear time on graphs of bounded expansion, implicitly using the notion of low
tree-depth colorings, and in almost linear time on nowhere dense classes [18].

Note that bounded expansion and nowhere dense classes of graphs are uni-
formly sparse graphs. In fact, bounded expansion classes of graphs can have at
most a linear number of edges and nowhere dense classes can have no more than
O(n1+ε) many edges. This motivates our new definition of low rank-width color-
ings which extends the coloring technique to dense classes of graphs which are
closed under taking induced subgraphs.

Rank-width was introduced by Oum and Seymour [32] and aims to extend
tree-width by allowing well behaved dense graphs to have small rank-width. Also
for graphs of bounded rank-width there are many efficient algorithms based on
dynamic programming. Here, we have the important meta-theorem of Courcelle,
Makowsky, and Rotics [8], stating that for every monadic second-order formula
(with set quantifiers ranging over sets of vertices) and every positive integer
k, there is an O(n3)−time algorithm to determine whether an input graph of
rank-width at most k satisfies the formula. There are several parameters which
are equivalent to rank-width in the sense that one is bounded if and only if the
other is bounded. These include clique-width [7], NLC-width [36], and Boolean-
width [3].

Low rank-width colorings. We now introduce our main object of study.

Definition 1. A class C of graphs admits low rank-width colorings if there exist
functions N : N → N and Q : N → N such that for all p ∈ N, every graph G ∈ C
can be vertex colored with at most N(p) colors such that the union of any i ≤ p
color classes induces a subgraph of rank-width at most Q(i).

As proved by Oum [29], every graph G with tree-width k has rank-width
at most k + 1, hence every graph class which admits low tree-depth colorings
also admits low rank-width colorings. On the other hand, graphs admitting a low
rank-width coloring can be very dense. We also remark that graph classes admit-
ting low rank-width colorings are monotone under taking induced subgraphs, as
rank-width does not increase by removing vertices.

Let us remark that due to the model-checking algorithm of Courcelle et al.
[8], the (induced) subgraph isomorphism problem is solvable in cubic time for
every fixed pattern H whenever the input graph is given together with a low
rank-width coloring for p = |V (H)|, using N(p) colors. Indeed, it suffices to
iterate through all p-tuples of color classes and look for the pattern H in the
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subgraph induced by these color classes; this can be done efficiently since this
subgraph has rank-width at most Q(p). The caveat is that the graph has to be
supplied with an appropriate coloring. In this work we do not investigate the
algorithmic aspects of low rank-width colorings, and rather concentrate on the
combinatorial question of which classes admit such colorings, and which do not.

Our contribution. We prove that for every class C of bounded expansion and
every integer r ≥ 2, the class {Gr : G ∈ C} of rth powers of graphs from C admits
low rank-width colorings. It is easy to see that there are classes of bounded
expansion such that {Gr : G ∈ C} has both unbounded rank-width and does
not admit low tree-depth colorings. We furthermore prove that the class of unit
interval graphs and the class of bipartite permutation graphs admit low rank-
width colorings. On the negative side, we show that the classes of interval graphs
and of permutation graphs do not admit low rank-width colorings. Finally, we
also prove that every graph class admitting low rank-width colorings has the
Erdős-Hajnal property [15] and is χ-bounded [20].

2 Preliminaries

All graphs in this paper are finite, undirected and simple, that is, they do not
have loops or parallel edges. Our notation is standard, we refer to [12] for more
background on graph theory. We write V (G) for the vertex set of a graph G
and E(G) for its edge set. A vertex coloring of a graph G with colors from S is
a mapping c : V (G) → S. For each v ∈ V (G), we call c(v) the color of v. The
distance between vertices u and v in G, denoted distG(u, v), is the length of a
shortest path between u and v in G. The rth power of a graph G is the graph
Gr with vertex set V (G), where there is an edge between two vertices u and v
if and only if their distance in G is at most r.

Rank-width was introduced by Oum and Seymour [32]. We refer to the sur-
veys [21,30] for more background. For a graph G, we denote the adjacency matrix
of G by AG, where for x, y ∈ V (G), AG[x, y] = 1 if and only if x is adjacent to
y. Let G be a graph. We define the cut-rank function cutrkG : 2V → N such that
cutrkG(X) is the rank of the matrix AG[X,V (G) \ X] over the binary field (if
X = ∅ or X = V (G), then we let cutrkG(X) = 0).

A rank-decomposition of G is a pair (T,L), where T is a subcubic tree (i.e.
a tree where every node has degree 1 or 3) with at least 2 nodes and L is
a bijection from V (G) to the set of leaves of T . The width of e is define as
cutrkG(Ae

1) where (Ae
1, A

e
2) is the vertex bipartition of G each Ae

i is the set of
all vertices in G mapped to leaves contained in one of components of T − e. The
width of (T,L) is the maximum width over all edges in T , and the rank-width of
G, denoted by rw(G), is the minimum width over all rank-decompositions of G.
If |V (G)| ≤ 1, then G has no rank-decompositions, and the rank-width of G is
defined to be 0.

The exact definitions of tree-decompositions, tree-width, and tree-depth are
not needed in our reasoning. We include them in the appendix for completeness.
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A graph is an interval graph if it is the intersection graph of a family I of
intervals on the real line, an interval graph is a unit interval graph if all intervals
in I have the same length. A graph is a permutation graph if it is the intersection
graph of line segments whose endpoints lie on two parallel lines.

3 Powers of Sparse Graphs

In this section we show that the class of rth powers of graphs from a bounded
expansion class admit low rank-width colorings. The original definition of
bounded expansion classes by Nešetřil and Ossona de Mendez [26] is in terms of
bounds on the density of bounded depth minors. We will work with the charac-
terisation by the existence of low tree-depth colorings as well as by a character-
isation in terms of bounds on generalized coloring numbers.

Theorem 2 (Nešetřil and Ossona de Mendez [26]). A class C of graphs has
bounded expansion if and only if for all p ∈ N there exists a number N = N(C, p)
such that every graph G ∈ C admits a p-tree-depth coloring with N colors.

Our main result in this section is the following.

Theorem 3. Let C be a class of bounded expansion and r ≥ 2 be an integer.
Then the class {Gr : G ∈ C} of rth powers of graphs from C admits low rank-
width colorings.

For a graph G, we denote by Π(G) the set of all linear orders of V (G). For
u, v ∈ V (G) and a non-negative integer r, we say that u is weakly r-reachable
from v with respect to L, if there is a path P of length at most r between u and v
such that u is the smallest among the vertices of P with respect to L. We denote
by WReachr[G,L, v] the set of vertices that are weakly r-reachable from v with
respect to L. The weak r-coloring number wcolr(G) of G is defined as

wcolr(G) := min
L∈Π(G)

max
v∈V (G)

∣
∣WReachr[G,L, v]

∣
∣.

The weak coloring numbers were introduced by Kierstead and Yang [22] in
the context of coloring and marking games on graphs. As shown by Zhu [37],
classes of bounded expansion can be characterised by the weak coloring numbers.

Theorem 4 (Zhu [37]). A class C has bounded expansion if and only if for all
r ≥ 1 there is a number f(r) such that for all G ∈ C it holds that wcolr(G) ≤
f(r).

In order to prove Theorem 3, we will first compute a low tree-depth coloring.
We would like to apply the following theorem, relating the tree-width (and hence
in particular the tree-depth) of a graph and the rank-width of its rth power.

Theorem 5 (Gurski and Wanke [19]). Let r ≥ 2 be an integer. If a graph H
has tree-width at most p, then Hr has rank-width at most 2(r + 1)p+1 − 2.
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We remark that Gurski and Wanke [19] proved this bound for clique-width
instead of rank-width, but clique-width is never smaller than the rank-width
[32].

The natural idea would be just to combine the bound of Theorem 5 with low
tree-depth coloring given by Theorem 2. Note however, that when we consider
any subgraph H induced by i ≤ p color classes, the graph Hr may be completely
different from the graph Gr[V (H)], due to paths that are present in G but
disappear in H. Hence we cannot directly apply Theorem 5. Instead, we will
prove the existence of a refined coloring of G such that for any subgraph H
induced by i ≤ p color classes, in the refined coloring there is a subgraph H ′

such that Gr[V (H)] ⊆ H ′r and such that H ′ gets only g(i) colors in the original
coloring, for some fixed function g. We can now apply Theorem 5 to H ′ and use
fact that rank-width is monotone under taking induced subgraphs.

In the following, we will say that a vertex subset X receives a color i under
a coloring c if i ∈ c−1(X). We first need the following definitions.

Definition 6. Let G be a graph, X ⊆ V (G) and r ≥ 2. A superset X ′ ⊇ X is
called an r-shortest path hitter for X if for all u, v ∈ X with 1 < distG(u, v) ≤ r,
X ′ contains an internal vertex of some shortest path between u and v.

Definition 7. Let G be a graph, let c be a coloring of G, and r ≥ 2 and d ≥ 1. A
coloring c′ is a (d, r)-good refinement of c if for every vertex set X that receives
at most p colors under c′, there exists an r-shortest path hitter X ′ of X that
receives at most d · p colors under c.

We use the weak coloring numbers to prove the existence of a good refinement.

Lemma 8. Let G be a graph and r ≥ 2 be an integer. Then every coloring c of
G using k colors has a (2wcolr(G), r)-good refinement using k2wcolr(G) colors.

Proof. Let Γ be the set of colors used by c, and let d := 2wcolr(G). The (d, r)-
good refinement c′ that we are going to construct will use subsets of Γ of size at
most d as the color set; the number of such subsets is at most k2wcolr(G). Let L
be a linear order of V (G) with maxv∈V (G)

∣
∣WReachr[G,L, v]

∣
∣ = wcolr(G). We

construct a new coloring c′ as follows:

(1) Start by setting c′(v) := ∅ for each v ∈ V (G).
(2) For each pair of vertices u and v such that u ∈ WReachr[G,L, v], we add

the color c(u) to c′(v).
(3) For each pair u and v of non-adjacent vertices such that u <L v and u ∈

WReachr[G,L, v], we do the following. Check whether there is a path P of
length at most r connecting u and v such that all the internal vertices of P
are larger than both u and v in L. If there is no such path, we do nothing
for the pair u, v. Otherwise, fix one such path P , chosen to be the shortest
possible, and let z be the vertex traversed by P that is the largest in L.
Then we add the color c(z) to c′(v).
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Thus, every vertex v receives in total at most 2wcolr(G) colors of Γ to its final
color c′(v): at most wcolr(G) in step (2), and at most wcolr(G) in step (3),
because we add at most one color per each u ∈ WReachr[G,L, v]. It follows that
each final color c′(v) is a subset of Γ of size at most 2wcolr(G).

We claim that c′ is a (d, r)-good refinement of c. Let X ⊆ V (G) be a set that
receives at most p colors under c′, say colors A1, . . . , Ap ⊆ Γ . Let X ′ be the set
of vertices of G that are colored by colors in A1 ∪· · ·∪Ap under c. Since |Ai| ≤ d
for each i ∈ {1, . . . , p}, we have that X ′ receives at most d · p colors under c.

To show that X ′ is an r-shortest path hitter of X, let us choose any two
vertices u and v in X with u <L v and 1 < distG(u, v) ≤ r. If there is a shortest
path from u to v whose all internal vertices are larger than u and v in L, by
step (3), X ′ contains a vertex that is contained in one such path. Otherwise, a
shortest path from u to v contains a vertex z with L(z) < L(v) other than u
and v. This implies that there exists z′ ∈ WReachr[G,L, v] \ {u} on the path
such that c(z′) ∈ c′(v), and hence z′ ∈ X ′ by step (2). Therefore, X ′ is an
r-shortest path hitter of X, as required. 
�
Definition 9. Let G be a graph, let X ⊆ V (G), and let r ≥ 1 be an integer. A
superset X ′ ⊇ X is called an r-shortest path closure of X if for each u, v ∈ X
with distG(u, v) = � ≤ r, G[X ′] contains a path of length � between u and v.

Definition 10. Let G be a graph, let c be a coloring of G, and let r ≥ 2 and
d ≥ 1. A coloring c′ is a (d, r)-excellent refinement of c if for every vertex set
X ⊆ V (G) there exists an r-shortest path closure X ′ of X such that if X receives
p colors in c′, then X ′ receives at most d · p colors in c.

We inductively define excellent refinements from good refinements.

Lemma 11. Let G be a graph, r ≥ 2 an integer, and let dr :=
∏

2≤�≤r

2wcol�(G). Then every coloring c of G using at most k colors has a (dr, r)-
excellent refinement using at most kdr colors.

Proof. We prove the lemma by induction on r. For r = 2, an r-shortest path
hitter of a set X is an r-shortest path closure, and vice versa. Therefore, the
statement immediately follows from Lemma 8. Now assume r ≥ 3. By induction
hypothesis, there is a (dr−1, r−1)-excellent refinement c1 of c with at most kdr−1

colors. By applying Lemma 8 to c1, we obtain a (2wcolr(G), r)-good refinement
c′ of c1 with at most (kdr−1)2wcolr(G) = kdr colors. We claim that c′ is a (dr, r)-
excellent refinement of c. Any set X which gets at most p colors from c′ can
be first extended to an r-shortest path hitter X ′ for X which receives at most
2wcolr(G) · p colors. Then X ′ can be extended by induction hypothesis to an
(r−1)-shortest path closure X ′′ of X ′ which receives at most dr−1·2wcolr(G)·p =
dr · p colors.

It remains to show that X ′′ is an r-shortest path closure of X. Take any u, v ∈
X with distG(u, v) = � ≤ r. If � ≤ 1, then u, v are already adjacent in G[X].
Otherwise, since X ′ is an r-shortest path hitter for X, there is a vertex z ∈ X ′ that
lies on some shortest path connecting u and v in G. In particular, distG(u, z) = �1
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and distG(z, v) = �2 for �1, �2 satisfying �1, �2 < � and �1 + �2 = �. Since X ′′

is an (r − 1)-shortest path closure of X ′, we infer that distG[X′′](u, z) = �1 and
distG[X′′](z, v) = �2. Hence distG[X′′](u, v) = � by the triangle inequality. 
�
Proof (of Theorem 3). Let G be a graph in C and let dr :=

∏

2≤�≤r 2wcol�(G).
Since C has bounded expansion, by Theorem 4, for each r, wcolr(G) is bounded
by a constant only depending on C. We start by taking c to be a (dr ·p)-tree-depth
coloring with N(dr ·p) colors, where N is the function from Theorem 2. Then its
(dr, r)-excellent refinement c′ has the property that c′ uses at most N(dr · p)dr

colors, and every subset X which receives at most p colors in c′ has an r-shortest
path closure X ′ that receives at most dr · p colors in c. Thus, the graph induced
on X in the rth power Gr is the same at the graph induced on X in the rth
power G[X ′]r. Since G[X ′] has tree-depth at most dr · p, by Theorem 5, G[X ′]r

has rank-width at most 2(r + 1)dr·p+1 − 2. Therefore, Gr[X] has rank-width at
most 2(r + 1)dr·p+1 − 2 as well. 
�

We now give two example applications of Theorem 3. A map graph is a
graph that can be obtained from a plane graph by making a vertex for each
face, and adding an edge between two vertices, if the corresponding faces share a
vertex. One can observe (�)1 that every map graph is an induced subgraph of the
second power of another planar graph, namely the radial graph of the original
graph. Thus, map graphs have low rank-width colorings. A similar reasoning
can be performed for line graphs of graphs from any bounded expansion graph
class (�). Thus, both map graphs and line graphs of graphs from any fixed
bounded expansion graph class admit low rank-width colorings.

4 Other Positive Results

We now prove that unit interval graphs and bipartite permutation graphs admit
low rank-width colorings.

Theorem 12. The class of unit interval graphs and the class of bipartite per-
mutation graphs admit low rank-width colorings.

Our results follow from characterizations of these classes obtained by Lozin
[23]. Let n,m ≥ 1. We denote by Hn,m the graph with n · m vertices which
can be partitioned into n independents sets V1 = {v1,1, . . . , v1,m}, . . . , Vn =
{vn,1, . . . , vn,m} so that for each i ∈ {1, . . . , n−1} and for each j, j′ ∈ {1, . . . , m},
vertex vi,j is adjacent to vi+1,j′ if and only if j′ ∈ {1, . . . , j}, and there are no
edges between Vi and Vj if |i − j| ≥ 2. The graph H̃n,m is the graph obtained
from Hn,m by replacing each independent set Vi by a clique.

Lemma 13. The following statements hold:

1. (Lozin [23]) The rank-width of Hn,m and of H̃n,m is at most 3n.

1 The proofs of claims marked with (�) appear in the appendix.
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2. (Lozin [23]) Every bipartite permutation graph on n vertices is isomorphic to
an induced subgraph of Hn,n.

3. (Lozin [24]) Every unit interval graph on n vertices is isomorphic to an
induced subgraph of H̃n,n.

Hence, in order to prove Theorem 12, it suffices to prove that the graphs
Hn,m and H̃n,m admit low rank-width colorings.

Proof (of Theorem 12). For every positive integer p, let N(p) := p + 1 and
Q(i) := 3i for each i ∈ {1, . . . , p}. We prove that for all n,m ≥ 1, the graphs Hn,m

and H̃n,m can be vertex colored using N(p) colors so that each of the connected
components of the subgraph induced by any i ≤ p color classes has rank-width at
most R(i). As rank-width and rank-width colorings are monotone under taking
induced subgraphs, the statement of the theorem follows from Lemma 13.

Assume that the vertices of Hn,m (and H̃n,m, respectively) are named
v1,1, . . . , v1,m, . . ., vn,1, . . . , vn,m, as in the definition. We color the vertices
in the ith row, vi,1, . . . , vi,m, with color j + 1 where j ∈ {0, 1, . . . , p} and
i ≡ j (mod p + 1). Then any connected component H of a subgraph induced by
i ≤ p colors is isomorphic to Hi′,m (H̃i′,m, respectively) for some i′ ≤ i. Hence,
according to Lemma 13, H has rank-width at most 3i = Q(i), as claimed. 
�

5 Negative Results

In contrast to the result in Sect. 4, we prove that interval graphs and permutation
graphs do not admit low rank-width colorings. For this, we introduce twisted
chain graphs. Briefly, a twisted chain graph G consists of three vertex sets A,B,C
where each of G[A ∪ C] and G[B ∪ C] is a chain graph, but the ordering of C
with respect to the chain graphs G[A ∪ C] and G[B ∪ C] are distinct.

Definition 14. For a positive integer n, a graph on the set of 3n2 vertices A ∪
B ∪ C, where A = {v1, . . . , vn2}, B = {w1, . . . , wn2}, and C = {z(i,j) : 1 ≤ i, j ≤
n}, is called a twisted chain graph of order n if

– for integers x, y, i, j ∈ {1, . . . , n} and k = n(x− 1)+ y, vk is adjacent to z(i,j)
if and only if either (x < i) or (x = i and y ≤ j);

– for integers x, y, i, j ∈ {1, . . . , n} and k = n(x−1)+y, wk is adjacent to z(i,j)
if and only if either (x < j) or (x = j and y ≤ i);

– the edge relation within A ∪ B and within C is arbitrary.

We first show that a large twisted chain graph has large rank-width. We remark
that a similar construction based on merging two chain graphs in a mixed order
can be found in Brandstädt et al. [2]. Also, a slightly general construction was
given by Dabrowski and Paulusma [9]. Obtaining any lower bound seems to
follow from a careful examination and modification of the constructions given
in [2] or [9]; however, we prefer to give our own direct proof for the sake of
completeness. Also, in those papers, authors provided a lower bound of clique-
width, and its direct application to rank-width does not provide a linear lower
bound.
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Lemma 15 (�). For every positive integer n, a twisted chain graph of order 12n
has rank-width at least n.

Proof (sketch). Let m := 12n and let G be a twisted chain graph of order m.
Adopt the notation from the Definition 14 for G, and assume for the sake of
contradiction that the rank-width of G is less than n. By a well-known fact
about graphs of bounded rank-width, there exists a vertex bipartition (S, T ) of
G such that cutrkG(S) < n and at least one third of vertices of C belong to S,
and at least one third belong to T .

Suppose now there are vertices va1 , . . . , vak
∈ A∩S and z(b1,c1), . . . , z(bk,ck) ∈

C ∩ T with the following property satisfied:

a1 ≤ (b1 − 1)m + c1 < a2 ≤ (b2 − 1)m + c2 < · · · < ak ≤ (bk − 1)m + ck.

Then it can be easily seen that the submatrix of AG[S, T ] induced by rows
corresponding to vertices vai

and columns corresponding to vertices z(bi,ci) has
ones in the upper triangle and on the diagonal, and zeroes in the lower triangle.
The rank of this submatrix is k, so finding such a structure, called ordered
(S, T )-matching, for k = n would contradict the assumption that cutrkG(S) < n.
Similarly if all vertices of vai

were contained in T instead of S, and all vertices
z(bi,ci) were contained in S instead of T . Also, a similar notion can be defined
for B and C, but observe that there the vertices z(bi,ci) need to be ordered
lexicographically with the second coordinate being the leading one, instead of
the first. This difference is the key to the proof.

Consider now all elements (b, c) ∈ {1, . . . , m} × {1, . . . , m}, ordered lexico-
graphically with the first coordinate leading. For each such (b, c), record whether
z(b,c) belongs to S or to T , and examine the obtained sequence of length m2,
consisting of symbols S and T . If this sequence had alternation at least 4n, that
is, we could see at least 4n times a T after an S, then it is not hard to convince
oneself that there would be an ordered (S, T )-matching between A and C of
order n, a contradiction. The same analysis can be performed between B and C,
but now we order pairs from {1, . . . , m} × {1, . . . , m} lexicographically with the
second coordinate leading. It can be now easily seen that since at least a third of
vertices of C belong to S and at least a third belong to T , one of these sequences
has alternation at least m

3 = 4n, which gives the desired contradiction. 
�
We now observe that if a graph class contains arbitrarily large twisted chain
graphs, then it does not admit low rank-width colorings.

Theorem 16. Let C be a hereditary graph class, and suppose for each positive
integer n some twisted chain graph of order n belongs to C. Then C does not
admit low rank-width colorings.

Proof. We show that for every pair of integers m ≥ 3 and n ≥ 1, there is
an graph G ∈ C such that for every coloring of G with m colors, there is an
induced subgraph H that receives at most 3 colors and has rank-width at least
n. This implies that C does not admit low rank-width colorings. We will need
the following simple Ramsey-type argument.
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Claim 1 (�). For all positive integers k, d, there exists an integer M = M(k, d)
such that for all sets X,Y with |X| = |Y | = M and all functions f : X × Y →
{1, . . . , d}, there exist subsets X ′ ⊆ X and Y ′ ⊆ Y with |X ′| = |Y ′| = k such
that f sends all elements of X ′ × Y ′ to the same value.

Claim 1 follows, e.g., from [35, Theorem 11.5], but in the appendix we give
a simple proof for the sake of completeness.

Let M1 := M(12n,m), M2 := M(M1,m), and M3 := M(M2,m). Let G ∈ C
be a twisted chain graph of order M3; adopt the notation from Definition 14 for
G. Suppose G is colored by m colors by a coloring c. By Claim 1, there exist
X1, Y1 ⊆ {1, . . . , M3} with |X1| = |Y1| = M2 such that {z(x,y) : (x, y) ∈ X1 ×Y1}
is monochromatic under c.

Now, for an index k ∈ {1, . . . , M2
3 }, let (i1(k), j1(k)) ∈ {1, . . . , m} ×

{1, . . . , m} be the unique pair such that k = (i1(k) − 1)M3 + j1(k), and
let (i2(k), j2(k)) ∈ {1, . . . , m} × {1, . . . , m} be the unique pair such that
k = (j2(k) − 1)M3 + i2(k). By reindexing vertices A and C using pairs
(i1(k), j1(k)) and (i2(k), j2(k)), we may view coloring c on A and C as a col-
oring on {1, . . . , M3} × {1, . . . ,M3}. By applying Claim 1 to the vertices from
A indexed by X1 × Y1, we obtain subsets X2 ⊆ X1 and Y2 ⊆ Y1 such that
|X2| = |Y2| = M1 and the set {v(x−1)M3+y : x ∈ X2, y ∈ Y2} is monochromatic.
Finally, by applying Claim 1 to the vertices from B indexed by X2 × Y2, we
obtain subsets X3 ⊆ X2 and Y3 ⊆ Y2 such that |X3| = |Y3| = 12n and the set
{w(y−1)M3+x : (x, y) ∈ X3 × Y3} is monochromatic. Now observe that the sub-
graph G[{v(x−1)M3+y, w(y−1)M3+x, z(x,y) : (x, y) ∈ X3 × Y3}] receives at most 3
colors, and is a twisted chain graph of order 12n. By Lemma 15 it has rank-width
at least n, so this proves the claim. 
�

We now observe (�) that a twisted chain graph of order n is an interval
graph, provided each of A, B, and C is a clique, and there are no edges between
A and B. Similarly, for each n there is a twisted chain graph of order n that is
a permutation graph (�). See Figs. 1 and 2 for examples of intersection models.
By Theorem 16, we obtain the following.

Fig. 1. An interval intersection model of a twisted chain graph of order 2.

Fig. 2. A permutation intersection model of a twisted chain graph of order 2.
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Theorem 17. The classes of interval graphs and permutation graphs do not
admit low rank-width colorings.

6 Erdős-Hajnal property and χ-boundedness

A graph class C has the Erdős-Hajnal property if there is ε > 0, depending only
on C, such that every n-vertex graph in C has either an independent set or a
clique of size nε. The conjecture of Erdős and Hajnal [15] states that for every
fixed graph H, the class of graphs not having H as an induced subgraph has the
Erdős-Hajnal property; cf. [4]. We prove that every class admitting low rank-
width colorings has the Erdős-Hajnal property. For this we use the fact that
graphs of bounded rank-width have the property, shown by Oum and Seymour
[31].

Proposition 18 (�). Let C be a class of graphs admitting low rank-width col-
orings. Then C has the Erdős-Hajnal property.

A class C of graphs is χ-bounded if there exists a function f : N → N such that
for every G ∈ C and an induced subgraph H of G, we have χ(H) ≤ f(ω(H)),
where χ(H) is the chromatic number of H and ω(H) is the size of a maximum
clique in H. It was proved by Dvořák and Král’ [14] that for every p, the class of
graphs of rank-width at most p is χ-bounded. We observe that this fact directly
generalizes to classes admitting low rank-width colorings.

Proposition 19 (�). Let C be a class of graphs admitting low rank-width col-
orings. Then C is χ-bounded.

7 Conclusions

We introduced the concept of low rank-width colorings, and showed that such
colorings exist on rth powers of graphs from any bounded expansion class, for
any fixed r, as well as on unit interval and bipartite permutation graphs. These
classes are non-sparse and have unbounded rank-width. On the negative side,
the classes of interval and permutation graphs do not admit low rank-width
colorings.

The obvious open problem is to characterise hereditary graph classes which
admit low rank-width colorings in the spirit of the characterisation theorem
for graph classes admitting low tree-depth colorings. We believe that Theorem
16 may provide some insight into this question, as it shows that containing
arbitrarily large twisted chain graphs is an obstacle for admitting low rank-
width colorings. Is it true that every hereditary graph class that does not admit
low rank-width colorings has to contain arbitrarily large twisted chain graphs?

In this work we did not investigate the question of computing low rank-width
colorings, and this question is of course crucial for any algorithmic applications.
Our proof for the powers of sparse graphs can be turned into a polynomial-
time algorithm that, given a graph G from a graph class of bounded expansion
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C, first computes a low tree-depth coloring, and then turns it into a low rank-
width coloring of Gr, for a fixed constant r. However, we do not know how to
efficiently compute a low rank-width coloring given the graph Gr alone, without
the knowledge of G. The even more general problem of efficiently constructing
an approximate low rank-width coloring of any given graph remains wide open.

Finally, we remark that our proof for the existence of low rank-width colorings
on powers of graphs from a class of bounded expansion actually yields a slightly
stronger result. Precisely, Ganian et al. [16] introduced a parameter shrub-depth
(or SC-depth), which is a depth analogue of rank-width, in the same way as tree-
depth is a depth analogue of tree-width. It can be shown that for constant r, the
rth power of a graph of constant tree-depth belongs to a class of constant shrub-
depth, and hence our colorings for powers of graphs from a class of bounded
expansion are actually low shrub-depth colorings. We omit the details.

Acknowledgment. The authors would like to thank Konrad Dabrowski for pointing
out the known constructions similar to twisted chain graphs.

References

1. Bodlaender, H.L., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Müller, H.,
Tuza, Z.: Rankings of graphs. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.)
WG 1994. LNCS, vol. 903, pp. 292–304. Springer, Heidelberg (1995). doi:10.1007/
3-540-59071-4 56
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20. Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastosowania
Matematyki (Appl. Math.) 19, 413–441 (1987)
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Abstract. A common task in phylogenetics is to find an evolutionary
tree representing proximity relationships between species. This motivates
the notion of leaf powers: a graph G = (V,E) is a leaf power if there exist
a tree T on leafset V and a threshold k such that uv ∈ E if and only if the
distance between u and v in T is at most k. Characterizing leaf powers
is a challenging open problem, along with determining the complexity
of their recognition. Leaf powers are known to be strongly chordal, but
few strongly chordal graphs are known to not be leaf powers, as such
graphs are difficult to construct. Recently, Nevries and Rosenke asked if
leaf powers could be characterized by strong chordality and a finite set
of forbidden induced subgraphs.

In this paper, we provide a negative answer to this question, by
exhibiting an infinite family G of (minimal) strongly chordal graphs
that are not leaf powers. During the process, we establish a connection
between leaf powers, alternating cycles and quartet compatibility. We
also show that deciding if a chordal graph is G-free is NP-complete.

1 Introduction

In phylogenetics, a classical method for inferring an evolutionary tree of species
is to construct the tree from a distance matrix, which depicts how close or far
each species are to one and another. Roughly speaking, similar species should be
closer to each other in the tree than more distant species. In some contexts, the
actual distances are ignored (e.g. when they cannot be trusted due to errors),
and only the notions of “close” and “distant” are preserved. This corresponds to
a graph in which the vertices are the species, and two vertices share an edge if
and only if they are “close”. This motivates the definition of leaf powers, which
was proposed by Nishimura et al. in [16]: a graph G = (V,E) is a leaf power
if there exist a tree T on leafset V (G) and a threshold k such that uv ∈ E if
and only if the distance between u and v in T is at most k. Hence the tree T ,
which we call a leaf root, is a potential evolutionary history for G, as it satisfies
the notions of “close” and “distant” depicted by G. It is also worth noting that
this type of similarity graph is also encountered in the context of gene orthology
inference, which is a special type of relationship between genes (see e.g. [12,21]).
A similarity graph G is used as a basis for the inference procedure, and being
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able to verify that G is a leaf power would provide a basic test as to whether G
correctly depicts similarity, as such graphs are known to contain errors [11].

A considerable amount of work has been done on the topic of leaf powers
(see [6] for a survey), but two important challenges remain open: to determine
the computational complexity of recognizing leaf powers, and to characterize the
class of leaf powers from a graph theoretic point of view. Despite some interesting
results on graph classes that are leaf powers [4,5,10], both problems are made
especially difficult due to our limited knowledge on graphs that are not leaf
powers. Such knowledge is obviously fundamental for the characterization of leaf
powers, but also important from the algorithmic perspective: if recognizing leaf
powers is in P , a polynomial time algorithm is likely to make usage of structures
to avoid, and if it is NP-hard, a hardness reduction will require knowledge of
many non-leaf powers in order to generate “no” instances.

It has been known for many years that leaf powers must be strongly chordal
(i.e. chordal and sun-free). Brandstädt et al. exhibited one strongly chordal non-
leaf power by establishing an equivalence between leaf powers and NeST graphs
[3,5]. Recently [15], Nevries and Rosenke found seven such graphs, all identified
by the notion of bad 2-cycles in clique arrangements, which are of special use in
strongly chordal graphs [14]. These graphs have at most 12 vertices, and in [13],
the authors conjecture that they are the only strongly chordal non-leaf powers.
This was also posed as an open problem in [6]. A positive answer to this question
would imply a polynomial time algorithm for recognizing leaf powers, as strong
chordality can be checked in O(min{m log n, n2}) time [17,19].

In this paper, we unfortunately give a negative answer to this question. We
exhibit an infinite family G of strongly chordal graphs that are not leaf powers,
and each graph in this family is minimal for this property (i.e. removing any
vertex makes the graph a leaf power). This is done by first establishing a new
necessary condition for a graph G to be a leaf power, based on its alternating
cycles (which are cyclic orderings of vertices that alternate between an edge and
a non-edge). Namely, there must be a tree T that can satisfy the edges/non-
edges of each alternating cycle C of G after (possibly) subdividing some of its
edges (see Sect. 3 for a precise definition). This condition has two interesting
properties. First, every graph currently known to not be a leaf power fails to
satisfy this condition. And more importantly, this provides new tools for the
construction of novel classes of non-leaf powers. In particular, alternating cycles
on four vertices enforce the leaf root to contain a specific quartet, a binary
tree on four leaves. This connection lets us borrow from the theory of quartet
compatibility, which is well-studied in phylogenetics (see e.g. [1,2,18,20]). More
precisely, we use results from [18] to create a family G of strongly chordal graphs
whose 4-alternating cycles enforce a minimal set of incompatible quartets. We
then proceed to show that deciding if a chordal graph G contains a member of
G as an induced subgraph is NP-complete. Thus, G-freeness is the first known
property of non-leaf powers that we currently ignore how to check in polynomial
time. This result also indicates that if the problem admits a polynomial time
algorithm, it will have to make use of strong chordality (or some other structural
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property), since chordality alone is not enough to identify forbidden structures
quickly.

The paper is organized as follows: in Sect. 2, we provide some basic notions
and facts. In Sect. 3, we establish the connection between leaf powers, alternating
cycles and quartets, along with its implications. In Sect. 4, we exhibit the family G
of strongly chordal graphs that are not leaf powers. We then show in Sect. 5 that
deciding if a chordal graph is G-free is NP-complete. Due to space constraints,
some proofs are omitted from this version. A full version is available at https://
arxiv.org/abs/1703.08018.

2 Preliminary Notions

All graphs in this paper are simple and finite. For k ∈ N
+, we use the notation

[k] = {1, . . . , k}. We denote the set of vertices of a graph G by V (G), its set of
edges by E(G), and its set of non-edges by E(G). By G[X] we mean the subgraph
induced by X ⊆ V (G). The set of neighbors of v ∈ V (G) is N(v). The P4 is
the path of length 3 and the 2K2 is the graph consisting of two vertex-disjoint
edges. A k-sun, denoted Sk, is the graph obtained by starting from a clique of
size k ≥ 3 with vertices x1, . . . , xk, then adding vertices a1, . . . , ak such that
N(ai) = {xi, xi+1} for each i ∈ [k−1] and N(ak) = {xk, x1}. A graph is a sun if
it is a k-sun for some k, and G is sun-free if no induced subgraph of G is a sun.

A graph G is chordal if it has no induced cycle with four vertices or more,
and G is strongly chordal if it is chordal and sun-free. A vertex v is simplicial
if N(v) is a clique, and v is simple if it is simplicial and, in addition, for every
x, y ∈ N(v), one of N(x) ⊆ N(y) \ {x} or N(y) ⊆ N(x) \ {y} holds. An ordering
(x1, . . . , xn) of V (G) is a perfect elimination ordering if, for each i ∈ [n], xi is
simplicial in G[{xi, . . . , xn}]. The ordering is simple if, for each i ∈ [n], xi is
simple in G[{xi, . . . , xn}]. It is well-known that a graph is chordal if and only if
it admits a perfect elimination ordering [9], and a graph is strongly chordal if
and only if it admits a simple elimination ordering [8].

Denote by L(T ) the set of leaves of a tree T . We say a graph G = (V,E)
is a k-leaf power if there exists a tree T with L(T ) = V such that for any two
distinct vertices u, v ∈ V , uv ∈ E if and only if the distance between u and v in
T is at most k. Such a tree T is called a k-leaf root of G. A graph G is a leaf
power if there exists a positive integer k such that G is a k-leaf power.

A quartet is an unrooted binary tree on four leaves (an unrooted tree T
is binary if all its internal vertices have degree exactly 3). For a set of four
elements X = {a, b, c, d}, there exist 3 possible quartets on leafset X which we
denote ab|cd, ac|bd and ad|bc, depending on how the internal edge separates the
leaves. We say that T contains a quartet ab|cd if {a, b, c, d} ⊆ L(T ) and the
path between a and b does not intersect the path between c and d. We denote
Q(T ) = {ab|cd : T contains ab|cd}. We say that a set of quartets Q is compatible
if there exists a tree T such that Q ⊆ Q(T ), and otherwise Q is incompatible.

For a tree T and x, y ∈ V (T ), pT (x, y) denotes the set of edges on the unique
path between x and y. We may write p(x, y) when T is clear from the context.

https://arxiv.org/abs/1703.08018
https://arxiv.org/abs/1703.08018
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It will be convenient to extend the definition of leaf powers to weighted edges.
A weighted tree (T, f) is a tree accompanied by a function f : E(T ) → N

+

weighting its edges. If F ⊆ E(T ), we denote f(F ) =
∑

e∈F f(e). The distance
dT,f (x, y) between two vertices of T is given by f(p(x, y)), i.e. the sum of the
weights of the edges lying on the x − y path in T . We may write df (x, y) for
short. We say that (T, f) is a leaf root of a graph G if there exists an integer k
such that xy ∈ E(G) iff df (x, y) ≤ k. We will call k the threshold corresponding
to (T, f). Note that in the usual setting, the edges of leaf roots are not weighted,
though arbitrarily many degree 2 vertices are allowed. It is easy to see that this
distinction is merely conceptual, since an edge e with weight f(e) can be made
unweighted by subdividing it f(e) − 1 times.

A tree T is unweighted if it is not equipped with a weighting function. We say
an unweighted tree is an unweighted leaf root of a graph G if there is a weighting
f of E(T ) such that (T, f) is a leaf root of G.

A first observation that will be of convenience later on is that, even though
the usual definition of leaf powers does not allow edges of weight 0, they do not
alter the class of leaf powers.

Lemma 1. Let G be a graph, and let (T, f) be a weighted tree in which L(T ) =
V (G) and f(e) ≥ 0 for each e ∈ E(T ). If there exists an integer k such that
uv ∈ E(G) ⇔ df (u, v) ≤ k, then T is an unweighted leaf root of G.

Proof. If no edge has weight 0, there is nothing to do. Otherwise, we devise a
weighting function f ′ for T . Let d = maxx,y∈V (T ) |p(x, y)|. Set f ′(e) = (d+1)·f(e)
for each e ∈ E(T ) having f(e) > 0, and f ′(e) = 1 for each e ∈ E(T ) having
f(e) = 0. If df (x, y) ≤ k, then df ′(x, y) ≤ (d + 1)k + d, and if df (x, y) ≥ k + 1,
then df ′ ≥ (d + 1)k + (d + 1). The threshold (d + 1)k + d shows that T is an
unweighted leaf root of G. �	

A tree T ′ is a refinement of a tree T if T can be obtained from T ′ by con-
traction of edges. A consequence of the above follows.

Lemma 2. Let T be an unweighted leaf root of a leaf power G. Then any refine-
ment T ′ of T is also an unweighted leaf root of G.

Proof. We may take a weighting f such that (T, f) is a leaf root of G, refine
it in order to obtain T ′, weight the newly created edges by 0 and apply
Lemma 1. �	

The following was implicitly proved in [4] (see full version for a proof).

Lemma 3. Suppose that G has a vertex v of degree 1. Then G is a leaf power
if and only if G − v is a leaf power.

3 Alternating Cycles and Quartets in Leaf Powers

In this section, we restrict our attention to alternating cycles in leaf powers,
which let us establish a new necessary condition on the topology of unweighted
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leaf roots. This will serve as a basis for the construction of our family of forbidden
induced subgraphs. Although we will not use the full generality of the statements
proved here, we believe they may be of interest for future studies.

Let (A,B) be a pair such that A ⊆ E(G) and B ⊆ E(G). We say a weighted
tree (T, f) satisfies (A,B) if there exists a threshold k such that for each edge
{x, y} ∈ A, df (x, y) ≤ k and for each non-edge {x, y} ∈ B, df (x, y) > k. Thus
(T, f) is a leaf root of G iff it satisfies (E(G), E(G)). For an unweighted tree T ,
we say that T can satisfy (A,B) if there exists a weighting f of E(T ) such that
(T, f) satisfies (A,B).

A sequence of 2c distinct vertices C = (x0, y0, x1, y1, . . . , xc−1, yc−1) is an
alternating cycle of a graph G if for each i ∈ {0, . . . , c − 1}, xiyi ∈ E(G) and
yixi+1 /∈ E(G) (indices are modulo c in all notions related to alternating cycles).
In other words, the vertices of C alternate between an edge and a non-edge.
We write V (C) = {x0, y0, . . . , xc−1, yc−1}, E(C) = {xiyi : 0 ≤ i ≤ c − 1}
and E(C) = {yixi+1 : 0 ≤ i ≤ c − 1}. A weighted tree satisfies C if it
satisfies (E(C), E(C)), and an unweighted tree can satisfy C if it can satisfy
(E(C), E(C)). The next necessary condition for leaf powers is quite an obvious
one, but will be of importance throughout the paper.

Proposition 1. If G is a leaf power, then there exists an unweighted tree T that
can satisfy every alternating cycle of G.

As it turns out, every graph that is currently known to not be a leaf power
fails to satisfy the above condition (actually, we may even restrict our attention
to cycles of length 4 and 6, as we will see). This suggests that it is also sufficient,
and we conjecture that if there exists a tree that can satisfy every alternating
cycle of G, then G is a leaf power. As a basic sanity check towards this statement,
we show that in the absence of alternating cycles, a graph is indeed a leaf power.

Proposition 2. If a graph G has no alternating cycle, then G is a leaf power.

Proof. Since a chordless cycle of length at least 4 contains an alternating cycle,
G must be chordal. By the same argument, G cannot contain an induced gem
(the gem is obtained by taking a P4, and adding a vertex adjacent to each vertex
of the P4). In [4], it is shown that chordal gem-free graphs are leaf powers. �	

We will go a bit more in depth with alternating cycles, by first providing a
characterization of the unweighted trees that can satisfy an alternating cycle C.
Let T be an unweighted tree with V (C) ⊆ V (T ). For each i ∈ {0, . . . , c− 1}, we
say the path in T between xi and yi is positive, and the path between yi and
xi+1 is negative (with respect to C). The proof of the following statement can
be found in the full version.

Lemma 4. An unweighted tree T can satisfy an alternating cycle
C = (x0, y0, . . . , xc−1, yc−1) if and only if there exists an edge e of T that belongs
to strictly more negative paths than positive paths w.r.t. C.



On Strongly Chordal Graphs That Are Not Leaf Powers 391

Lemma 4 lets us relate quartets and 4-alternating cycles easily. If C =
(x0, y0, x1, y1), the edges of the quartets x0x1|y0y1 and x0y1|y0x1 do not meet
the condition of Lemma 4, and therefore no unweighted leaf root can contain
these quartets. This was already noticed in [15], although this was presented in
another form and not stated in the language of quartets.

Corollary 1. Let C = (x0, y0, x1, y1) be a 4-alternating cycle of a graph G.
Then a tree T can display C if and only if T contains the x0y0|x1y1 quartet.

We will denote by RQ′(G) the set of required quartets of G, that is RQ′(G) =
{x0y0|x1y1 : (x0, y0, x1, y1) is an alternating cycle of G}. The only graphs on
4 vertices that contain an alternating cycle are the P4, the 2K2 and the C4.
However, the C4 contains two distinct alternating cycles: if four vertices abcd in
cyclic order form a C4, then (a, b, d, c) and (d, a, c, b) are two alternating cycles.
The first implies the ab|cd quartet, whereas the second implies the ad|cb quartet.
This shows that no leaf power can contain a C4. Thus RQ′(G) can be constructed
by enumerating the O(n4) induced P4 and 2K2 of G. It is worth mentioning that
deciding if a given set of quartets is compatible is NP-complete [20]. However,
RQ′(G) is not any set of quartets since it is generated from P4’s and 2K2’s of a
strongly chordal graph, and the hardness does not immediately transfer.

Now, denote by RQ(G) the set of quartets that any unweighted leaf root of G
must contain, if it exists. Then RQ′(G) ⊆ RQ(G), and equality does not hold in
general. Below we show how to find some of the quartets from RQ(G) \RQ′(G)
(Lemma 5, which is a generalization of [15, Lemma 2]).

Lemma 5. Let P1 = x0x1 . . . xp and P2 = y0y1 . . . yq be disjoint paths of G (with
possible chords) such that for any 0 ≤ i < p and 0 ≤ j < q, {xi, xi+1, yj , yj+1}
are the vertices of an alternating cycle. Then x0xp|y0yq ∈ RQ(G).

Proof. First note that in general, if a tree T contains the quartets ab|cici+1 for
0 ≤ i < l, then T must contain ab|c0cl (this is easy to see by trying to construct
such a T : start with the ab|c0c1 quartet, and insert c2, . . . , cl in order - at each
insertion, ci cannot have its neighbor on the a − b path). For any 0 ≤ i < p,
we may apply this observation on {a, b} = {xi, xi+1}. This yields xixi+1|y0yq ∈
RQ(G), since xixi+1|yjyj+1 ∈ RQ′(G) for every j. Since this is true for every
0 ≤ i < p, we can apply this observation again, this time on {a, b} = {y0, yq}
(and the ci’s being the xi’s) and deduce that y0yq|x0xp ∈ RQ(G). �	

In particular, suppose that G has two disjoint pairs of vertices {x0, x1} and
{y0, y1} such that x0 and x1 (resp. y0 and y1) share a common neighbor z (resp.
z′), and z /∈ N(y0)∪N(y1) (resp. z′ /∈ N(x0)∪N(x1)). Then x0x1|y0y1 ∈ RQ(G).

In the rest of this section, we briefly explain how all known non-leaf powers
fail to satisfy Proposition 2. We have already argued that a leaf power cannot
contain a C4. As for a cycle Cn with n > 4 and vertices x0, . . . , xn−1 in cyclic
order, observe that xixi+1|xi+2xi+3 ∈ RQ(Cn) since they form a P4, for each
i ∈ {0, . . . , n − 1} (indices are modulo n). In this case it is not difficult to show
that RQ(Cn) is incompatible, providing an alternative explanation as to why
leaf powers must be chordal.
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A similar argument can be used for Sn, the n-sun, when n ≥ 4. If we
let x0, . . . , xn−1 be the clique vertices of Sn arranged in cyclic order, again
xixi+1|xi+2xi+3 ∈ RQ(Sn) for i ∈ {0, . . . , n − 1}, here because of Lemma 5
and the degree 2 vertices of Sn. Only S3, the 3-sun, requires an ad-hoc argu-
ment, and it is currently the only known non-leaf power for which the set of
required quartets are compatible. Figure 1 illustrates how alternating cycles
show that S3 is not a leaf power. There are only two trees that contain
RQ′(S3) = {ay|cz, by|cx, bz|ax}, and for both, there is an alternating cycle such
that each edge is on the same number of positive and negative paths. We do
not know if there are other examples for which quartets are not enough to dis-
card the graph as a leaf power. Moreover, an open question is whether for each
even integer n, there exists a non-leaf power and a tree that can satisfy every
alternating cycle of length < n, but not every alternating cycle of length n.
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Fig. 1. The 3-sun S3, and the two trees that contain RQ′(S3) = {ay|cz, by|cx, bz|ax},
with each tree accompanied by the alternating cycle of S3 that it cannot satisfy.

As for the seven strongly chordal graphs presented in [15], they were shown
to be non-leaf powers by arguing that RQ(G) was not compatible (although the
proof did not use the language of quartet compatibility).

4 Strongly Chordal Graphs That Are Not Leaf Powers

We will use a known set of (minimally) incompatible quartets as a basis for
constructing our graph family.

Theorem 1 [18]. For every integers r, q ≥ 3, the quartets Q = {aiai+1|bjbj+1 :
i ∈ [r − 1], j ∈ [q − 1]} ∪ {a1b1|arbq} are incompatible. Moreover, any proper
subset of Q is compatible.

We now construct the family {Gr,q : r, q ≥ 3} of minimal strongly chordal
graphs that are not leaf powers. The idea is to simply enforce that RQ(Gr,q)
contains all the quartets of Q in Theorem 1. Figure 2 illustrate the graph G3,4

and a general representation of Gr,q. For integers r, q ≥ 3, Gr,q is as follows:
start with a clique of size r + q, partition its vertices into two disjoint sets
A = {a1, . . . ar} and B = {b1, . . . , bq}, and remove the edges a1ar, a1bq, b1bq and
b1ar. Then for each i ∈ [r− 1] insert a node xi that is a neighbor of ai and ai+1,
and for each i ∈ [q − 1], insert another node yi that is a neighbor of bi and bi+1.
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Fig. 2. The graph G3,4 on the left, followed by its generalization Gr,q on the right. In
the latter, all edges between the ai’s and bi’s are present, except the non-edges depicted
by red dashed lines. (Color figure online)

We note that in [15], the graph G3,3 was one of the seven graphs shown to be
a strongly chordal non-leaf power. Hence Gr,q can be seen as a generalization of
this example. It is possible that the other examples of [15] can also be generalized.

Theorem 2. For any integers r, q ≥ 3, the graph Gr,q is strongly chordal, is not
a leaf power and for any v ∈ V (Gr,q), Gr,q − v is a leaf power.

Proof. One can check that Gr,q is strongly chordal by the simple elimination
ordering: x1, x2, . . . , xr−1, y1, . . . , yq−1, a1, b1, ar, bq, a2, . . . , ar−1, b2, . . . , bq−1.

To see that Gr,q is not a leaf power, we note that the incompatible set of
quartets of Theorem 1 is a subset of RQ(Gr,q): aiai+1|bjbj+1 ∈ R(Gr,q) by
Lemma 5 and the paths aixiai+1 and bjyjbj+1, and a1b1|arbq ∈ RQ(Gr,q) since
they induce a 2K2.

We now show that for any v ∈ V (Gr,q), Gr,q −v is a leaf power. First suppose
that v ∈ A ∪ B, say v = ai without loss of generality. Then in Gr,q − ai, xi (or
take xi−1 if i = r) has degree one, and so by Lemma 3, Gr,q − ai is a leaf power
if and only if Gr,q − ai − xi is a leaf power. Therefore, it suffices to show that
Gr,q −xi is a leaf power. We may thus assume that v = xi for some i (the v = yi
case is the same by symmetry).

Figure 3 exhibits a leaf root (T, f) for Gr,q − xi (the weighting contains 0
edges, but this can be handled by Lemma 1). In the weighting f , the edges take
values depending on variables p, p1, p2, p3 which are defined as follows:

a1

a2x1 x2 xi−1 ai ai+1 xi+1 ar−1 xr−1

ar

b1

b2
bq−1

yq−1

bq

y1 yq−2bq−2

. . .

. . .

. . .

1
p1

0

1

p1

p1 edges

2p2

p2 p2

p1

p3

p3 p3

p

2p − 2p1

2p − 2p2

2p − 2p3

p − 2

u v

p2 edges

p3 edges

0

2p − 2p2 − 1

Fig. 3. A leaf root of Gr,q − xi.
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p := 2(2i − 1)(2r − 2i − 1)(2q − 3) p1 := p/(2i − 1)
p2 := p/(2q − 3) p3 := p/(2r − 2i − 1)

and we set the threshold k := 2p. Each edge on the a1 − u, b1 − u and ar − v
path is weighted by p1, p2 and p3 respectively, with the exception of the last two
edges of the b1 −u path where one edge has weight 0 and the other 2p2. One can
check that this ensures that f(p(a1, u)) = f(p(b1, u)) = f(p(ar, v)) = p, (p1, p2
and p3 are chosen so as to distribute a total weight of p across these paths, and
p is such that these values are integers). Moreover, p1, p2, p3 > 2. Observe that
if i = 1, then the a1 − u path is a single edge and p1 = p, and if i = r − 1,
the ar − v path is a single edge and p3 = p. It is not hard to verify that (T, f)
satisfies the subgraph of G − xi induced by the aj ’s and bj ’s (since each pair of
vertices has distance at most 2p, except a1ar, a1bq, b1ar and b1bq).

Now for the xj ’s and yj ’s. For each j ∈ [r− 1] \ {i}, the edge e incident to xj

has f(e) = 2p−2p1 if j < i and f(e) = 2p−2p3 if j > i. For j ∈ [q−1], the edge
e incident to yj has f(e) = 2p− 2p2 if j ≤ q − 3, f(e) = 2p− 2p2 − 1 if j = q − 2
and f(e) = p − 2 if j = q − 1. Each xj is easily seen to be satisfied, as the only
vertices of T within distance 2p of xj are aj and aj+1. This is equally easy to see
for the yj vertices, with the exception of yq−1. In (T, f), yq−1 can reach bq and
bq−1 within distance 2p as required, but we must argue that it cannot reach ai
nor ai+1 (which is enough, since all the other leaves are farther from yq−1. But
this follows from that fact that p1, p3 > 2. This shows that (T, f) is a leaf root
of Gr,q − xi, and concludes the proof. �	

Interestingly, the Gr,q graphs might be subject to various alterations in order
to obtain different families of strongly chordal non-leaf powers. One example of
such an alteration of Gr,q is to pick some j ∈ {2, . . . , r − 2} and remove the
edges {aibq : 2 ≤ i ≤ j}}. One can verify that the resulting graph is still
strongly chordal, but requires the same set of incompatible quartets as Gr,q.

5 Hardness of Finding Gr,q in Chordal Graphs

We show that deciding if a chordal graph contains an induced subgraph isomor-
phic to Gr,q for some r, q ≥ 3 is NP-complete. We reduce from the following:

The Restricted Chordless Cycle (RCC) problem:
Input: a bipartite graph G = (U ·∪V,E), and two vertices s, t ∈ V (G) such that
s, t ∈ U , both s and t are of degree 2 and they share no common neighbor.
Question: does there exist a chordless cycle in G containing both s and t?

The RCCproblem is shown to be NP-hard in [7, Theorem 2.2]1. We first need
some notation. If P is a path between vertices u and v, we call u and v its
1 Strictly speaking, the problem asks if there exists a chordless cycle with both s and t
of size at least k. However, in the graph constructed for the reduction, any chordless
cycle containing s and t has size at least k if it exists - therefore the question of
existence is hard. Also, s and t are not required to be in the same part of the
bipartition, but again, this is allowable by subdividing an edge incident to s or t.
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endpoints, and the other vertices are internal. Two paths P1 and P2 of a graph
G are said independent if P1 and P2 are chordless, do not share any vertex
except perhaps their endpoints, and for any internal vertices x in P1 and y in
P2, xy /∈ E(G). Observe that there is a chordless cycle containing s and t if and
only if there exist two independent paths P1 and P2 between s and t.

From a RCCinstance (G, s, t) we construct a graph H for the problem
of deciding if H contains an induced copy of Gr,q. Figure 4 illustrates the
construction.

s t

c1
c2

s1

s2

t1

t2

c′
1 c′

2 d′
2 d′

1. . .

XU

XV {d2 d1. . .V

U . . .

Fig. 4. An illustration of the reduction: G is on the left (only edges incident to s and
t are drawn), H is on the right (thick edges mean that every possible edge is present).

Let V (H) = {s1, t1, s2, t2} ∪XU ∪XV , where XU = {u′ : u ∈ U \ {s, t}} and
XV = {v′ : v ∈ V }. Denote X∗

U = XU ∪ {s1, t1, s2, t2}. For E(H), add an edge
between every two vertices of X∗

U except the edges s1t1, s1t2, s2t1, s2t2. Moreover,
we add an edge between u′ ∈ XU and v′ ∈ XV if and only if uv ∈ E(G). Let
{c1, c2} = N(s) and {d1, d2} = N(t). Then add edges s1c

′
1 and s2c

′
2, and add

the edges t1d
′
1 and t2d

′
2. Notice that XV forms an independent set.

We claim that H is chordal. Note that each vertex v of XV is simplicial, since
N(v) consists of vertices from XU and at most one of {s1, t1, s2, t2} (since s and
t have no common neighbor). Moreover, H − XV is easily seen to be chordal,
and it follows that H admits a perfect elimination ordering.

Theorem 3. Deciding if a graph H contains a copy of Gr,q for some r, q ≥ 3 is
NP-complete, even if H is restricted to the class of chordal graphs.

Proof. The problem is in NP, since a subset I ⊆ V (H), along with the labeling
of I by the ai, bi, xi and yi’s of a Gr,q can serve as a certificate. As for hardness,
let G be a graph and H the corresponding graph constructed as above. We claim
that G contains two independent paths P1 and P2 between s and t if and only if
H contains a copy of Gr,q for some r, q ≥ 3. The idea is that s1, s2 (resp. t1, t2)
correspond to the a1, b1 (resp. ar, bq) vertices of Gr,q, while the P1 and P2 paths
give the other vertices. The xi and yi’s are in XV , and the ai and bi’s in X∗

U .
(⇒) Let P1 and P2 be two independent paths between s and t. Note that both

paths alternate between U and V , Let P1 = (s = u1, v1, u2, v2, . . . , vr−1, ur = t)
and P2 = (s = w1, z1, w2, z2, . . . , zq−1, wq = t). Note that since P1 and P2 are
independent, every vertex of G[V (P1) ∪ V (P2)] has degree exactly 2.
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We show that the set of vertices I = {s1, t1, s2, t2}∪{x′ : x ∈ V (P1)∪V (P2)\
{s, t}} forms a Gr,q. Denote IU = I ∩ XU and IV = I ∩ XV . First observe that
{s1, t1, s2, t2} ∪ IU forms a clique, but minus the edges {s1t1, s1t2, s2t1, s2t2}.
Hence {s1, s2} will correspond to the vertices {a1, b1} of Gr,q, and {t1, t2} to
{ar, bq}, and it remains to find the degree two vertices around this “almost-
clique”. Observe that {v1, z1} = {c1, c2} and {vr−1, zq−1} = {d1, d2}. Let ci1 =
v1, ci2 = z1 and dj1 = vr−1, dj2 = zq−1, with {i1, i2} = {j1, j2} = {1, 2}. In H,
the vertex sequence (si1 , u

′
2, . . . , u

′
r−1, tj1) forms a path in G[I] in which every two

consecutive vertices share a common neighbor, which lies in IV . Namely, si1 and
u′
2 share v′

1 = c′
i1

, u′
i, u

′
i+1 share v′

i, and u′
r−1, tj1 share v′

r−1 = d′
j1

. The same
property holds for the consecutive vertices of the path (si2 , w

′
2, . . . , w

′
q−1, ti2).

Note that these two paths are disjoint in H and partition IU . Moreover, by
construction each x′ ∈ IV is a shared vertex for some pair of consecutive vertices,
i.e. x′ has at least two neighbors in I.

Therefore, it only remains to show that if x′ ∈ IV , then x′ has only two
neighbors in I. Suppose instead that x′ has at least 3 neighbors in I, say y′

1, y
′
2, y

′
3.

Note that all three lie in X∗
U . We must have |{s1, s2} ∩ {y′

1, y
′
2, y

′
3}| ≤ 1, since s1

and s2 share no neighbor in XV . Likewise, |{t1, t2}∩{y′
1, y

′
2, y

′
3}| ≤ 1. This implies

that y′
1, y

′
2, y

′
3 are vertices corresponding to three distinct vertices of G, say y1, y2

and y3. Then x is a neighbor of y1, y2, y3 and since, by construction, x, y1, y2, y3 ∈
V (P1) ∪ V (P2), this contradicts that G[V (P1) ∪ V (P2)] has maximum degree 2.

(⇐) Suppose there is I ⊆ V (H) such that H[I] is isomorphic to Gr,q for
some r, q ≥ 3. Add a label to the vertices of I as in Fig. 2 (i.e. we assume that we
know where the ai’s, bi’s, xi’s and yi’s are in I). We first show that a1, b1, ar, bq,
which we will call the corner vertices, are s1, s2, t1, t2. If one of a1 or b1 is in
XU , then both ar and bq must be in XV , as otherwise there would be an edge
between {a1, b1} and {ar, bq}. But ar and bq must share an edge, whereas XV

is an independent set. Thus we may assume {a1, b1} ∩ XU = ∅. Suppose that
a1 or b1 is in XV , say a1. Because b1 /∈ XU as argued above, we must have
b1 ∈ {s1, s2, t1, t2}. Suppose w.l.o.g. that b1 = s1. Hence a1 = c′

1. Now consider
the location of the x1 vertex of Gr,q. Then x1 must be in XU , in which case x1

is a neighbor of s1 = b1, contradicting that I is a copy of Gr,q. Therefore, we
may assume that {a1, b1} ∩XV = ∅. By applying the same argument on ar and
bq, we deduce that {a1, b1, ar, bq} = {s1, s2, t1, t2}. We will suppose, without loss
of generality, that a1 = s1, b1 = s2 and {ar, bq} = {t1, t2} (otherwise we may
relabel the vertices of the Gr,q copy, though note that in doing so we cannot
make assumptions on which ti corresponds to which of {ar, bq}).

Now let (s1 = a1, a2, . . . , ar = tj), j ∈ {1, 2} be the path between the “top”
corners of the Gr,q copy in H, such that aiai+1 share a common neighbor xi of
degree 2 in G[I], i ∈ [r − 1]. Similarly, let (s2 = b1, b2, . . . , bq = tl), (l ∈ {1, 2}
and l �= j) be the path between the “bottom” corners of Gr,q, such that bibi+1

share a common neighbor yi of degree 2 for i ∈ [q − 1]. We claim that ai ∈ XU

for each 2 ≤ i ≤ r− 1. Suppose instead that some ai is not in XU . Since s1 = a1
is a neighbor of ai, we must have ai = c′

1 (the only other possibility is ai = s2,
but s2 = b1). The common neighbor xi−1 of ai−1 and ai therefore lies in XU .
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But then, xi−1 is a neighbor of s2 = b1, which is not possible. Therefore, each
ai belongs to XU . By symmetry, each bi also belongs to XU . This implies that
every xi and yi belong to XV , with x1 = c′

1, xr−1 = d′
j , y1 = c′

2 and yq−1 = d′
l.

We can finally find our independent paths P1 and P2. It is straightforward
to check that {s, t, c1} ∪ {u : u′ ∈ {xi, ai} for 2 ≤ i ≤ r − 1} induces a path P1

from s to t in G. Similarly, {s, t, c2} ∪ {u : u′ ∈ {yi, bi} for 2 ≤ i ≤ q − 1} also
induces a path P2 from s to t. Moreover, P1 and P2 share no internal vertex.

It only remains to show that P1 and P2 are independent, i.e. form an induced
cycle. We prove that G[V (P1) ∪ V (P2)] has maximum degree 2. Suppose there
is a vertex v of degree at least 3 in G[V (P1) ∪ V (P2)]. Then v /∈ {s, t} since
they have degree 2 in G. Moreover, v /∈ V , as otherwise, v′ ∈ IV which implies
that v′ is an xi or a yi and, by construction, v′ has at least 3 neighbors in I, a
contradiction. Thus v ∈ U , and its 3 neighbors lie in V . Hence, v′ is either an
ai or a bi and has three neighbors in IV , which is again a contradiction. This
concludes the proof. �	

6 Conclusion

In this paper, we have shown that leaf powers cannot be characterized by strong
chordality and a finite set of forbidden subgraphs. However, many questions
asked here may provide more insight on leaf powers. For one, is the condition
of Proposition 1 sufficient? And if so, can it be exploited for some algorithmic
or graph theoretic purpose? Also, we do not know if large alternating cycles are
important, since so far, every non-leaf power could be explained by checking its
alternating cycles of length 4 or 6. A constant bound on the length of “important”
alternating cycles would allow enumerating them in polynomial time.

Also, we have exhibited an infinite family of strongly chordal non-leaf powers,
but it is likely that there are others. One potential direction is to try to generalize
all of the seven graphs found in [15]. The clique arrangement of Gr,q may be
informative towards this goal. Finally on the hardness of recognizing leaf powers,
the hardness of finding Gr,q in strongly chordal graphs is of special interest. A
NP-hardness proof would now be significant evidence towards the difficulty of
deciding leaf power membership. And in the other direction, a polynomial time
recognition algorithm may provide important insight on how to find forbidden
structures in leaf powers.
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Abstract. Weighted independent domination is an NP-hard graph
problem, which remains computationally intractable in many restricted
graph classes. Only few examples of classes are available, where the prob-
lem admits polynomial-time solutions. In the present paper, we extend
the short list of such classes with two new examples.

1 Introduction

Independent domination is the problem of finding in a graph an inclusion-
wise maximal independent set of minimum cardinality. This is one of the hardest
problems of combinatorial optimization and it remains difficult under substantial
restrictions. In particular, it is NP-hard for so-called sat-graphs, where the prob-
lem is equivalent to satisfiability [15]. It is also NP-hard for planar graphs,
triangle-free graphs, graphs of vertex degree at most 3 [3], line graphs [14],
chordal bipartite graphs [5], etc.

The weighted version of the problem (abbreviated WID) deals with vertex-
weighted graphs and asks to find an inclusionwise maximal independent set of
minimum total weight. This version is provenly harder, as it remains NP-hard
even for chordal graphs [4], where independent domination can be solved in
polynomial time [6].

Not much is known about graph classes allowing an efficient solution of the
WID problem. Among rare examples of this type, let us mention cographs and
split graphs.

– A cograph is a graph in which every induced subgraph with at least two
vertices is either disconnected or the complement of a disconnected graph.
In the case of cographs, the problem can be solved efficiently by means of
modular decomposition.

– A split graph is a graph whose vertices can be partitioned into a clique and an
independent set. The only available way to solve WID efficiently for a split
graph is to examine all its inclusionwise maximal independent sets, of which
there are polynomially many.

c© Springer International Publishing AG 2017
H.L. Bodlaender and G.J. Woeginger (Eds.): WG 2017, LNCS 10520, pp. 399–411, 2017.
https://doi.org/10.1007/978-3-319-68705-6_30
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Let us observe that in both these examples we deal with hereditary classes, i.e.
with classes of graphs closed under taking induced subgraphs. It is well-known
(and not difficult to see) that a class of graphs is hereditary if and only if it can
be characterized in terms of minimal forbidden induced subgraphs. For instance,
the cographs are precisely P4-free graphs (i.e. graphs containing no induced P4),
while the split graphs are the graphs which are free of 2K2, C4 and C5.

The class of sat-graphs (as well as each of the other classes mentioned earlier)
also is hereditary. It consists of graphs whose vertices can be partitioned into
a clique and a graph of vertex degree at most 1. Therefore, sat-graphs form
an extension of split graphs. With this extension the complexity status of the
problem jumps from polynomial-time solvability to NP-hardness.

In the present paper, we study two more extensions of split graphs: the
class of (P5, P 5)-free graphs and the class of (P5, P3 + P2)-free graphs. The first
of them also extends the cographs, since both forbidden graphs contain a P4.
From an algorithmic point of view, both extensions are resistant to any avail-
able technique. To crack the puzzle for (P5, P 5)-free graphs, we develop a new
decomposition scheme combining several algorithmic tools. This enables us to
show that the WID problem can be solved for (P5, P 5)-free graphs in polynomial
time. For the second class, we develop a tricky reduction allowing us to reduce
the problem to the first class.

Let us emphasize that in both cases the presence of P5 among the forbid-
den graphs is necessary, because each of P 5 and P3 + P2 contains a C4 and by
forbidding C4 alone we obtain a class where the problem is NP-hard. Whether
the presence of P5 among the forbidden graphs is sufficient for polynomial-time
solvability of WID is a big open question. For the related problem of finding
a maximum weight independent set (WIS), this question was answered only
recently [9] after several decades of attacking the problem on subclasses of P5-
free graphs (see e.g. [2,7,8]). WID is a more stubborn problem, as it remains
NP-hard in many classes where WIS can be solved in polynomial time, such as
line graphs, chordal graphs, bipartite graphs, etc. Determining the complexity
status of WID in P5-free graphs is a challenging open question. We discuss this
and related open questions in the concluding section of the paper. The rest of
the paper is organized as follows: Sect. 2 contains preliminary information, in
Sect. 3 we solve the problem for (P5, P 5)-free graphs, and in Sect. 4 we solve it
for (P5, P3 + P2)-free graphs.

2 Preliminaries

All graphs in this paper are finite, undirected, without loops and multiple edges.
The vertex set and the edge set of a graph G are denoted by V (G) and E(G),
respectively. A subset S ⊆ V (G) is

– independent if no two vertices of S are adjacent,
– a clique if every two vertices of S are adjacent,
– dominating if every vertex not in S is adjacent to a vertex in S.
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For a vertex-weighted graph G with a weight function w, by idw(G) we denote
the minimum weight of an independent dominating set in G.

If v is a vertex of G, then N(v) is the neighbourhood of v (i.e. the set of
vertices adjacent to v) and V (G) \ N(v) is the antineighbourhood of v. We say
that v is simplicial if its neighbourhood is a clique, and v is antisimplicial if its
antineighbourhood is an independent set.

Let S be a subset of V (G). We say that a vertex v ∈ V (G) \ S dominates
S if S ⊆ N(v). Also, v distinguishes S if v has both a neighbour and a non-
neighbour in S. By G[S] we denote the subgraph of G induced by S and by
G − S the subgraph G[V \ S]. If S consists of a single element, say S = {v}, we
write G − v, omitting the brackets.

If G is a connected graph but G−S is not, then S is a separator (also known
as a cut-set). A clique separator is a separator which is also a clique.

As usual, Pn, Cn and Kn denote a chordless path, a chordless cycle and a
complete graph on n vertices, respectively. Given two graphs G and H, we denote
by G + H the disjoint union of G and H, and by mG the disjoint union of m
copies of G.

We say that a graph G contains a graph H as an induced subgraph if H is
isomorphic to an induced subgraph of G. Otherwise, G is H-free.

A class Z of graphs is hereditary if it is closed under taking induced sub-
graphs, i.e. if G ∈ Z implies that every induced subgraph of G belongs to Z.
It is well-known that Z is hereditary if and only if graphs in G do not contain
induced subgraphs from a set M , in which case we say that M is the set of
forbidden induced subgraphs for Z.

For an initial segment of natural numbers {1, 2, . . . , n} we will often use the
notation [n].

2.1 Modular Decomposition

Let G = (V,E) be a graph. A set M ⊆ V is a module in G if no vertex outside
of M distinguishes M . Obviously, V (G), ∅ and any vertex of G are modules
and we call them trivial. A non-trivial module is also known as a homogeneous
set. A graph without homogeneous sets is called prime. The notion of a prime
graph plays a crucial role in modular decomposition, which allows to reduce
various algorithmic and combinatorial problems in a hereditary class Z to prime
graphs in Z (see e.g. [12] for more details on modular decomposition and its
applications). In particular, it was shown in [3] that the WID problem can be
solved in polynomial time in Z whenever it is polynomially solvable for prime
graphs in Z.

In our solution, we will use homogeneous sets in order to reduce the problem
from a graph G to two proper induced subgraphs of G as follows. Let M ⊂ V be a
homogeneous set in G. Denote by H the graph obtained from G by contracting
M into a single vertex m (or equivalently, by removing all but one vertex m
from M). We define the weight function w′ on the vertices of H as follows:
w′(v) = w(v) for every v �= m, and w′(m) = idw(G[M ]). Then it is not difficult
to see that
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idw(G) = idw′(H). (1)

In other words, to solve the problem for G we first solve the problem for the
subgraph G[M ], construct a new weighted graph H, and solve the problem for
the graph H.

2.2 Antineighborhood Decomposition

One of the simplest branching algorithms for the maximum weight independent
set problem is based on the following obvious fact. For any graph G = (V,E)
and any vertex v ∈ V ,

isw(G) = max{isw(G − N(v)), isw(G − v)},

where w is a weight function on the vertices of G, and isw(G) stands for the
maximum weight of an independent set in G. We want to use a similar branching
rule for the WID problem, i.e.

idw(G) = min{idw(G − N(v)), idw(G − v)}. (2)

However, formula (2) is not necessarily true, because an independent domi-
nating set in the graph G − v is not necessarily dominating in the whole graph
G. To overcome this difficulty, we introduce the following notion.

Definition 1. A vertex v is permissible if formula (2) is valid for v

An obvious sufficient condition for a vertex to be permissible can be stated
as follows: if every independent dominating set in G − v contains at least one
neighbour of v, then v is permissible.

Applying (2) to a permissible vertex v of G, we reduce the problem from G
to two subgraphs G − v and G − N(v). Such a branching procedure results in a
decision tree. In general, this approach does not provide a polynomial-time solu-
tion, since the decision tree may have exponentially many nodes (subproblems).
However, under some conditions this procedure may lead to a polynomial-time
algorithm. In particular, this is true for graphs in hereditary classes possessing
the following property.

Definition 2. A graph class G has the antineighborhood property if there is a
subclass F ⊆ G, and polynomial algorithms P,Q and R, such that

(i) Given a graph G the algorithm P decides whether G belongs to F or not;
(ii) Q finds a permissible vertex v in any input graph G ∈ G \ F such that the

graph G − N(v) induced by the antineighborhood of v belongs to F ; we call
v a good vertex;

(iii) R solves the WID problem for (every induced subgraph of) any input graph
from F .

Directly from the definition we derive the following conclusion.

Theorem 1. Let G be a hereditary class possessing the antineighborhood prop-
erty. Then WID can be solved in polynomial time for graphs in G.



New Results on Weighted Independent Domination 403

3 WID in (P5, P 5)-Free Graphs

To solve the problem for (P5, P 5)-free graphs, we first develop a new decompo-
sition scheme in Sect. 3.1 that combines modular decomposition and antineigh-
borhood decomposition. In Sect. 3.2 we apply it to (P5, P 5)-free graphs.

3.1 Decomposition Scheme

Let G be a hereditary class such that the class Gp of prime graphs in G has the
antineighborhood property. We define the decomposition procedure by describ-
ing the corresponding decomposition tree T (G) for a graph G = (V,E) ∈ G. In
the description, we use notions and notations introduced in Definition 2.

1. If G belongs to F , then the node of T (G) corresponding to G is a leaf.
2. If G �∈ F and G has a homogeneous set M , then G is decomposed into

subgraphs G1 = G[M ] and G2 = G[(V \ M) ∪ {m}] for some vertex m in M .
The node of T (G) corresponding to G is called a homogeneous node, and it
has two children corresponding to G1 and G2. These children are in turn the
roots of subtrees representing possible decompositions of G1 and G2.

3. If G �∈ F and G has no homogeneous set, then G is prime and by the anti-
neighborhood property of Gp there exists a good vertex v ∈ V . Then G is
decomposed into subgraphs G1 = G − N(v) and G2 = G − v. The node of
T (G) corresponding to G is called an antineighborhood node, and it has two
children corresponding to G1 and G2. The graph G1 belongs to F and the
node corresponding to G1 is a leaf. The node corresponding to G2 is the root
of a subtree representing a possible decomposition of G2.

Lemma 1. For an n-vertex graph G ∈ G, the tree T (G) contains O(n2) nodes.

Proof. Since T (G) is a binary tree, it is sufficient to show that the number of
internal nodes is O(n2). To this end, we prove that the internal nodes of T (G)
can be labeled by pairwise different pairs (a, b), where a, b ∈ V (G).

Let G′ = (V ′, E′) be an induced subgraph of G that corresponds to an
internal node X of T (G). If X is a homogeneous node, then G′ is decomposed
into subgraphs G1 = G′[M ] and G2 = G′[(V ′ \ M) ∪ {m}], where M ⊂ V ′ is a
homogeneous set of G′ and m is a vertex in M . In this case, we label X with
(a, b), where a ∈ M \ {m} and b ∈ V ′ \ M . If X is an antineighborhood node,
then G′ is decomposed into subgraphs G1 = G′ − N(v) and G2 = G′ − v, where
v is a good vertex of G′. In this case, X is labeled with (v, b), where b ∈ N(v).

Suppose, to the contrary, that there are two internal nodes A and B in T (G)
with the same label (a, b). By construction, this means that a, b are vertices
of both GA and GB , the subgraphs of G corresponding to the nodes A and
B, respectively. Assume first that B is a descendant of A. The choice of the
labels implies that regardless of the type of node A (homogeneous or antineigh-
borhood), the label of A has at least one vertex that is not a vertex of GB ,
a contradiction. Now, assume that neither A is a descendant of B nor B is a
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descendant of A. Let X be the lowest common ancestor of A and B in T (G).
If X is a homogeneous node, then GA and GB can have at most one vertex in
common, and thus A and B cannot have the same label. If X is an antineigh-
borhood node, then one of its children is a leaf, contradicting to the assumption
that both A and B are internal nodes. �	
Lemma 2. Let G be an n-vertex graph in G. If time complexities of the algo-
rithms P and Q are O(np) and O(nq), respectively, then T (G) can be constructed
in time O(n2+max{2,p,q})).

Proof. The time needed to construct T (G) is the sum of times required to identify
types of nodes of T (G) and to decompose graphs corresponding to internal nodes
of T (G). To determine the type of a given node X of T (G), we first use the
algorithm P to establish whether the graph GX corresponding to X belongs
to F or not. In the former case X is a leaf node, in the latter case we further
try to find in GX a homogeneous set, which can be performed in O(n + m)
time [11]. If GX has a homogeneous set, then X is a homogeneous node and
we decompose GX into the graphs induced by the vertices in and outside the
homogeneous set, respectively. If GX does not have a homogeneous set, then
X is an antineighborhood node, and the decomposition of GX is equivalent to
finding a good vertex, which can be done by means of the algorithm Q. Since
there are O(n2) nodes in T (G), the total time complexity for constructing T (G)
is O(n2+max{2,p,q}). �	
Theorem 2. If G is a hereditary class such that the class Gp of prime graphs
in G has the antineighborhood property, then the WID problem can be solved in
polynomial time for graphs in G.
Proof. Let G be an n-vertex graph in G. To solve the WID problem for G, we
construct T (G) and then traverse it bottom-up, deriving a solution for each
node of T (G) from the solutions corresponding to the children of that node. The
construction of T (G) requires a polynomial time by Lemma2. For the instances
corresponding to leaf-nodes of T (G), the problem can be solved in polynomial
time by the antineighborhood property. According to the discussion in Sects. 2.1
and 2.2, the solution for an instance corresponding to an internal node can be
derived from the solutions of its children in polynomial time. Finally, as there
are O(n2) nodes in T (G) (Lemma 1), the total running time to solve the problem
for G is polynomial. �	

3.2 Application to (P5, P5)-Free Graphs

In this section, we show that the WID problem can be solved efficiently for
(P5, P5)-free graphs by means of the decomposition scheme described in Sect. 3.1.
To this end, we will prove that the class of prime (P5, P5)-free graphs has the
antineighborhood property. We start with several auxiliary results. The first of
them is simple and we omit its proof.
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Observation 1. Let G = (V,E) be a graph, and let W ⊂ V induce a connected
subgraph in G. If a vertex v ∈ V \ W distinguishes W , then v distinguishes two
adjacent vertices of W .

Proposition 1. Let G = (V,E) be a prime graph. If a subset W ⊂ V has at
least two vertices and is not a clique, then there exists a vertex v ∈ V \W which
distinguishes two non-adjacent vertices of W .

Proof. Suppose, to the contrary, that none of the vertices in V \W distinguishes
a pair of non-adjacent vertices in W . If G[W ] has more than one connected
component, then it is easy to see that no vertex outside of W distinguishes W .
Hence, W is a homogeneous set in G, which contradicts the primality of G.

If G[W ] is connected, then G[W ] has a connected component C with at least
two vertices, since W is not a clique. Then, by our assumption and Observation 1,
no vertex outside of W distinguishes C. Also, by the choice of C, no vertex of W
outside of C distinguishes C. Therefore, V (C) is a homogeneous set in G. This
contradiction completes the proof of the proposition. �	
Lemma 3. If a (P5, P5)-free prime graph contains an induced copy of 2K2, then
it has a clique separator.

Proof. Let G = (V,E) be a (P5, P5)-free prime graph containing an induced copy
of 2K2. Let S ⊆ V be a minimal separator with the property that G−S contains
at least two non-trivial connected components, i.e. connected components with
at least two vertices. Such a separator necessarily exists, since G contains an
induced 2K2. It follows from the choice of S that

– G − S has k ≥ 2 connected components C1, . . . , Ck;
– r ≥ 2 of these components, say C1, . . . , Cr, have at least two vertices, and all

the other components Cr+1, . . . , Ck are trivial;
– every vertex in S has a neighbour in each of the non-trivial components

C1, . . . , Cr (since S is minimal);
– for every i ∈ {r+1, . . . , k}, the unique vertex of the trivial component Ci has

a neighbour in S (since G is connected).

In the remaining part of the proof, we show that G has a clique separator.
Let us denote Ui = V (Ci) for i = 1, . . . , k. We first observe the following.

Claim 1. Any vertex in S distinguishes at most one of the sets U1, . . . , Ur.

Proof. Assume v ∈ S distinguishes Ui and Uj for distinct i, j ∈ [r]. Then by
Observation 1 v distinguishes two adjacent vertices a, b in Ui and two adjacent
vertices c, d in Uj . But then a, b, v, c, d induce a forbidden P5.

According to Claim 1, the set S can be partitioned into subsets S0, S1 . . . , Sr,
where the vertices of S0 dominate every member of {U1, . . . , Ur}, and for each
i ∈ [r], the vertices of Si distinguish Ui and dominate Uj for all j different from
i. Moreover, for each i ∈ [r] the set Si is non-empty, as the graph G is prime.
Now we prove two more auxiliary claims.
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Claim 2. For 0 ≤ i < j ≤ r, every vertex in Si is adjacent to every vertex
in Sj.

Proof. Assume that the claim is false, i.e. there exist two non-adjacent vertices
si ∈ Si and sj ∈ Sj . By Observation 1 there exist two adjacent vertices a, b ∈ Uj

that are distinguished by sj . But then si, sj , a, b and any vertex in N(si) ∩ Ui

induce a forbidden P5, a contradiction.

Claim 3. For i ∈ [r], no vertex in Ui distinguishes two non-adjacent vertices
in Si.

Proof. Assume that there exists a pair of non-adjacent vertices x, y ∈ Si that
are distinguished by a vertex ui ∈ Ui. Let j ∈ [r] \ {i}, and let sj ∈ Sj and
uj ∈ Uj \N(sj). Then, since sj dominates Si, we have that uj , x, y, sj , ui induce
a forbidden P5, a contradiction.

We split further analysis into two cases.

Case 1 : there is at least one trivial component in G \ S, i.e. k > r. For i ∈
{r + 1, . . . , k} we denote by ui the unique vertex of Ui. Let U = {ur+1, . . . , uk}
and let u∗ be a vertex in U with a minimal (under inclusion) neighbourhood.
We will show that N(u∗) is a clique, and hence is a clique separator in G. By
Claim 2, it suffices to show that N(u∗) ∩ Si is a clique for each i ∈ {0, 1, . . . , k}.
Suppose that for some i the set N(u∗)∩Si is not a clique. Then, by Proposition 1,
there are two nonadjacent vertices x, y ∈ N(u∗) ∩ Si distinguished by a vertex
z ∈ V \ (N(u∗) ∩ Si). It follows from Claims 2 and 3 that either z ∈ Si \ N(u∗)
or z ∈ U . If z ∈ Si \ N(u∗), then u∗, x, y, z, and any vertex in Uj , j ∈ [r] \ {i}
induce a forbidden P5, a contradiction. Hence, assume that none of the vertices
in S \(N(u∗)∩Si) distinguishes two nonadjacent vertices in N(u∗)∩Si. If z ∈ U ,
with z being nonadjacent to x and adjacent to y, then by the minimality of N(u∗)
there is a vertex s ∈ N(z) that is not adjacent to u∗. Since N(z) ⊆ S, vertex
s does not distinguish x and y. But then x, u∗, y, z, s induce either a P5 (if s
is adjacent neither to x nor to y) or a P5 (if s is adjacent to both x and y), a
contradiction.

Case 2 : there are no trivial components in G \ S, i.e. k = r. First, observe that
|S0| ≤ 1, since G is prime and no vertex outside of S0 distinguishes S0 (which
follows from the definition of S0, Claim 2 and the fact that k = r). Further,
Claims 2 and 3 imply that for each i ∈ [r] no vertex in V \ Si distinguishes two
nonadjacent vertices in Si. Therefore, applying Proposition 1 we conclude that
Si is a clique. Hence S =

⋃r
i=0 Si is a clique separator in G. �	

Lemma 4. Let G be a (P5, P5)-free prime graph containing an induced copy of
2K2. Then G contains a permissible antisimplicial vertex.

Proof. By Lemma 3, G has a clique separator, and therefore it also has a minimal
clique separator S. Let C1, . . . , Ck, k ≥ 2, be connected components of G − S,
and Ui = V (Ci), i = 1, . . . , k. Since S is a minimal separator, every vertex in S
has at least one neighbour in each of the sets U1, . . . , Uk. By Claim 1 in the proof
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of Lemma 3, any vertex in S distinguishes at most one of the sets U1, . . . , Uk,
and therefore, the set S partitions into subsets S0, S1 . . . , Sk, where the vertices
of S0 dominate every member of {U1, . . . , Uk}, and for each i ∈ [k] the vertices
of Si distinguish Ui and dominate Uj for all j different from i.

If S0 �= ∅, then any vertex in S0 is adjacent to all the other vertices in the
graph, and therefore it is permissible and antisimplicial. Hence, without loss of
generality, assume that S0 = ∅ and S1 �= ∅.

Let s be a vertex in S1 with a maximal (under inclusion) neighbourhood in
U1. We will show that s is antisimplicial and permissible. Suppose that the graph
induced by the antineighbourhood of s contains a connected component C with
at least two vertices. Since G is prime, by Observation 1 it must contain a vertex
p outside of C distinguishing two adjacent vertices q and t in C. Then p does not
belong to N(s)∩U1, since otherwise q, t, p, s together with any vertex in U2 would
induce a P5. Therefore, p belongs to S1. Since the set N(s) ∩ U1 is maximal, it
contains a vertex y nonadjacent to p. But now t, q, p, s, y induce either a P5 or
its complement, as y does not distinguish q and t. This contradiction shows that
every component in the graph induced by the antineighbourhood of s is trivial,
i.e. s is antisimplicial.

Assume now that s is not permissible, i.e. there exists an independent domi-
nating set I in G − s that does not contain a neighbour of s. Since s dominates
U2 ∪ . . . ∪ Uk, the set I is a subset of U1 \ N(s). But then I is not dominating,
since no vertex of U2 has a neighbour in I, This contradiction completes the
proof of the lemma. �	
Lemma 5. The class of prime (P5, P5)-free graphs has the antineighborhood
property.

Proof. Let F be the class of (2K2, P5)-free graphs (this is a subclass of (P5, P5)-
free graphs, since 2K2 is an induced subgraph of P5). Clearly, graphs in F can be
recognized in polynomial time. The WID problem can be solved in polynomial
time for graphs in F , because the problem is polynomially solvable on 2K2-
free graphs (according to [1], these graphs have polynomially many maximal
independent sets).

If a prime (P5, P5)-free graph G = (V,E) does not belong to F , then by
Lemma 4 it contains a permissible vertex v whose antineighbourhood is an inde-
pendent set, and therefore, G−N(v) ∈ F . It remains to check that a permissible
antisimplicial vertex in G can be found in polynomial time. It follows from the
proof of Lemma 4 that in a minimal clique separator of G any vertex with a
maximal neighbourhood is permissible and antisimplicial. A minimal clique sep-
arator in a graph can be found in polynomial time [13], and therefore the desired
vertex can also be computed efficiently. �	

Now the main result of the section follows from Theorem 2 and Lemma 5.

Theorem 3. The WID problem can be solved in polynomial time in the class of
(P5, P5)-free graphs.
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4 WID in (P5, P3 + P2)-Free Graphs

To solve the problem for (P5, P3 + P2)-free graphs, we introduce the following
notation: for an arbitrary graph F , let F ∗ be the graph obtained from F by
adding three new vertices, say b, c, d, such that b is adjacent to each vertex of
F , while c is adjacent to b and d only (see Fig. 1 for an illustration in the case
F = P 5). The importance of this notation is due to the following result.

Theorem 4 [10]. Let F be any connected graph. If the WID problem can be
solved in polynomial time for (P5, F )-free graphs, then this problem can also be
solved in polynomial time for (P5, F

∗)-free graphs.

This result together with Theorem 3 leads to the following conclusion.

Corollary 1. The WID problem can be solved in polynomial time in the class
of (P5, P5

∗
)-free graphs.

To solve the problem for (P5, P3 + P2)-free graphs, in what follows we reduce
it to (P5, P3 + P2, P5

∗
)-free graphs, where the problem is solvable by Corollary 1.

Let G be a (P5, P3 + P2)-free graph containing a copy of P5
∗

induced by
vertices a1, a2, a3, a4, a5, b, c, d, as shown in Fig. 1.

a1 a2

a3a4

a5

b c d

Fig. 1. The graph P5
∗

Denote by U the set of vertices in G that have at least one neighbour in
{a1, a2, a3, a4, a5}, that is, U = N(a1) ∪ . . . ∪ N(a5). In particular, U includes
{a1, a2, a3, a4, a5, b}. We assume that

(**) the copy of P5
∗

in G is chosen in such a way that |U | is minimum.

Proposition 2. If a vertex x ∈ U has a neighbour y outside of U , then x is
adjacent to each of the vertices a1, a2, a3, a4.

Proposition 2 allows us to partition the set U into three subsets as follows:

U1 consists of the vertices of U that are adjacent to each of the vertices a1, a2, a3,
a4, and have at least one neighbour outside of U ;
U2 consists of the vertices of U that are adjacent to each of the vertices a1, a2, a3,
a4, but have no neighbours outside of U ;
U3 = U \ (U1 ∪ U2).
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Notice that U1 is non-empty as it contains b. Also {a1, a2, a3, a4, a5} ⊆ U3, and
no vertex in U3 has a neighbour outside of U .

Proposition 3. U1 is a clique in G.

Proposition 4. The graph G[U2 ∪ U3] is P5
∗
-free.

Now we describe a reduction from the graph G with a weight function w
to a graph G′ with a weight function w′, where |V (G′)| ≤ |V (G)| − 4, G′ is
(P5, P3 + P2)-free, and idw(G) = idw′(G′). First, we define G′ as the graph
obtained from G by

1. removing the vertices of U3;
2. adding edges between any two non-adjacent vertices in U1 ∪ U2;
3. adding a new vertex u adjacent to every vertex in U1 ∪ U2.

Clearly, |V (G′)| ≤ |V (G)|−4, as the set U3 of the removed vertices contains at
least 5 elements and we add exactly one new vertex u. In the next proposition, we
show that the above reduction does not produce any of the forbidden subgraphs.

Proposition 5. The graph G′ is (P5, P3 + P2)-free.

Now we define a weight function w′ on the vertex set of G′ as follows:

1. w′(x) = w(x), for every x ∈ V (G′) \ ({u} ∪ U1 ∪ U2);
2. w′(u) = idw(G[U3]);
3. w′(x) = w(x) + idw(G[U \ N [x]]), for every x ∈ U1;
4. w′(x) = w(x) + idw(G[U \ (U1 ∪ N [x])]), for every x ∈ U2.

Lemma 6. Given a weighted graph (G,w), the weighted graph (G′, w′) can be
constructed in polynomial time.

To show that idw(G) = id′
w(G), we need two auxiliary propositions.

Proposition 6. Any independent dominating set in G[U3] dominates U1 ∪ U2.

Proposition 7. For every vertex x ∈ U2, any independent dominating set in
the graph G − U dominates U1 \ N(x).

Lemma 7. For any weighted graph (G,w), we have idw(G) = idw′(G′).

Now we are ready to prove the main result of this section.

Theorem 5. The WID problem is solvable in polynomial time for (P5, P3 + P2)-
free graphs.

Proof. Let (G,w) be an n-vertex (P5, P3 + P2)-free weighted graph. If G contains
an induced copy of P5

∗
, then by Proposition 5, and Lemmas 6 and 7, the graph

(G,w) can be transformed in polynomial time into a (P5, P3 + P2)-free weighted
graph (G′, w′) with at most n−4 vertices such that idw(G) = idw′(G′). Repeating
this procedure at most n/4� times we obtain a (P5, P3 + P2, P5

∗
)-free weighted

graph (H,σ) such that idw(G) = idσ(H). By Corollary 1 the WID problem for
(H,σ) can be solved in polynomial time. To conclude the proof we observe that
a polynomial-time procedure computing idw(G) can be easily transformed into
a polynomial-time algorithm finding an independent dominating set of weight
idw(G). �	
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5 Concluding Remarks and Open Problems

In this paper, we proved that weighted independent domination can be
solved in polynomial time for (P5, P 5)-free graphs and (P5, P3 + P2)-free graphs.
A natural question to ask is whether these results can be extended to a class
defined by one forbidden induced subgraph.

From the results in [3] it follows that in the case of one forbidden induced
subgraph H the problem is solvable in polynomial time only if H is a linear forest,
i.e. a graph every connected component of which is a path. On the other hand,
it is known that this necessary condition is not sufficient, since independent
domination is NP-hard in the class of 2P3-free graphs. This follows from the
fact that all sat-graphs are 2P3-free [15].

In the case of a disconnected forbidden graph H, polynomial-time algorithms
to solve weighted independent domination are known only for mP2-free
graphs for any fixed value of m. This follows from a polynomial bound on the
number of maximal independent sets in these graphs [1]. The unweighted version
of the problem can also be solved for P2 + P3-free graphs [10]. However, for
weighted graphs in this class the complexity status of the problem is unknown.

Problem 1. Determine the complexity status of weighted independent dom-
ination in the class of P2 + P3-free graphs.

In the case of a connected forbidden graph H, i.e. in the case when H = Pk,
the complexity status is known for k ≥ 7 (as P7 contains a 2P3) and for k ≤ 4
(as P4-free graphs are precisely the cographs). Therefore, the only open cases
are P5-free and P6-free graphs. As we mentioned in the introduction, the related
problem of finding a maximum weight independent set (WIS) has been recently
solved for P5-free graphs [9]. This result makes the class of P5-free graphs of
particular interest for weighted independent domination and we formally
state it as an open problem.

Problem 2. Determine the complexity status of weighted independent dom-
ination in the class of P5-free graphs.

We also mentioned earlier that a polynomial-time solution for WIS in a hered-
itary class X does not necessarily imply the same conclusion for WID in X .
However, in the reverse direction such examples are not known. We believe that
such examples do not exist and propose this idea as a conjecture.

Conjecture 1. If WID admits a polynomial-time solution in a hereditary class
X , then so does WIS.
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Abstract. A graph G = (V, E) is called equidominating if there exists a
value t ∈ IN and a weight function ω : V → IN such that the total weight
of a subset D ⊆ V is equal to t if and only if D is a minimal dominating
set. To decide whether or not a given graph is equidominating is referred
to as the Equidomination problem.

In this paper we show that two parameterized versions of the
Equidomination problem are fixed-parameter tractable: the first para-
meterization considers the target value t leading to the Target-t
Equidomination problem. The second parameterization allows only
weights up to a value k, which yields the k-Equidomination problem.

In addition, we characterize the graphs whose every induced subgraph
is equidominating. We give a finite forbidden induced subgraph charac-
terization and derive a fast recognition algorithm.

Keywords: Minimal dominating set · Equidominating graph ·
Kernelization · Parameterized complexity · Hereditary property

1 Introduction

Let G be a simple, undirected graph. A subset S of the vertices of G is called
a dominating set, if every vertex of G is an element of S or adjacent to a
vertex of S. If a dominating set does not contain another dominating set as a
subset, it is called a minimal dominating set. Throughout this paper we use
the abbreviation mds for minimal dominating sets.

While the main stream of the research on dominating sets in graphs focuses
on the optimization aspects of the problem, there are several interesting graph
classes defined around this concept, for example the class of efficient dominating
graphs [2], of well-dominated graphs [4], of domination perfect graphs [13], of
upper domination perfect graphs [5] and of strong domination perfect graphs [11].

Another example is the class of domishold graphs, introduced by Benzaken
and Hammer in [1]. These are the graphs for which there are positive weights
associated to the vertices of the graph such that a subset D of vertices is domi-
nating if and only if the sum of the weights of the vertices of D exceeds a certain
threshold t. In other words, the characteristic vectors of the dominating sets are
exactly the zero-one solutions of a linear inequality, where the coefficients of the
inequality correspond to the weights of the vertices.
c© Springer International Publishing AG 2017
H.L. Bodlaender and G.J. Woeginger (Eds.): WG 2017, LNCS 10520, pp. 412–424, 2017.
https://doi.org/10.1007/978-3-319-68705-6_31
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This concept motivated Payan to define equidominating graphs [10].
Loosely speaking, these are the graphs for which the characteristic vectors of
the minimal dominating sets are the zero-one solutions of a linear equality. For-
mally, equidominating graphs have the following definition.

Definition 1. A graph G = (V,E) is called equidominating if there exists a
value t ∈ IN = {1, 2, 3, . . .} and a weight function ω : V → IN such that for all
D ⊆ V the following equivalence holds:

D is an mds ⇐⇒ ω(D) :=
∑

v∈D

ω(v) = t.

The pair (ω, t) is called an equidominating structure, ω an equidominating
function and t a target value.

Figure 1 shows an equidominating graph. Every mds has a total weight of 23
and further, every subset of weight 23 is an mds. One advantage of having an
equidominating structure of the graph at hand is that one can check whether a
given vertex subset is an mds in linear time.

a

b

c1

c2

e
d

s1

s2

16

7

3

3

3
4

11

5

Fig. 1. An equidominating graph on 8 vertices; the weights are drawn next to the
vertices and the target value is t = 23.

The Equidomination problem is to decide whether a given graph is
equidominating or not. Unfortunately, the computational complexity of this
problem is unknown. It is not even clear whether Equidomination is in NP.

It can be seen that the following problem is coNP-complete: given a graph G,
a weight function ω and some number t ∈ N, is (ω, t) an equidominating structure
of G? This intractability result remains true in the seemingly simple case when G
is just the disjoint union of edges. That can be seen by applying literally the same
reduction from the Weak Partition problem given by Milanič et al. [9], who
proved coNP-completeness for the the analogous question for maximal stable
sets.

We remark that there is no characterization of the class of equidominating
graphs in terms of forbidden induced subgraphs: if one attaches a pendant vertex
to every vertex of an arbitrary graph (the so-called corona of a graph with
K1), the resulting graph is equidominating. To our knowledge, the only existing
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result in this direction (see Theorem 2 in [10]) characterizes graphs that are
both equidominating and domishold. Further, it is shown in [10] that threshold
graphs are equidominating.

To get a grip on the computational complexity of the problem, we introduce
the following two parameterized notions of equidomination.

Definition 2. For a given t ∈ IN a graph G = (V,E) is called target-t
equidominating if there is an equidominating structure of the form (ω, t) for G.

Definition 3. For a given k ∈ IN a graph G = (V,E) is called k-equidomina-
ting if there exists an equidominating structure (ω, t) with ω : V → {1, . . . , k}
for some t ∈ IN. In this case, ω is said to be a k-equidominating function
and the pair (ω, t) a k-equidominating structure.

Note that a k-equidominating graph is also k′-equidominating for all k′ ≥ k.
It is clear that every target-t equidominating graph is also t-equidominating
since every vertex is contained in some mds and thus its weight, with respect
to any equidominating function, cannot exceed t. The opposite, however, is not
true. Indeed, the edgeless graph on t + 1 vertices is k-equidominating for every
k ∈ IN but not target-t equidominating.

In this paper, we study the following two parameterized versions of the
Equidomination problem:

k-Equidomination:

Instance: A graph G and k ∈ IN
Parameter: k

Problem: Decide whether G is k-equidominating
Target-t Equidomination:

Instance: A graph G and t ∈ IN
Parameter: t

Problem: Decide whether G is target-t equidominating

In the course of this paper we show that both the k-Equidomination prob-
lem and the Target-t Equidomination problem are fixed-parameter tractable.
We do this by using the so-called kernelization technique: we construct an equiv-
alent instance the size of which is bounded by a function of the parameter. Fur-
ther, we give FPT algorithms for both problems by applying an XP algorithm to
the kernels. For a given graph on n vertices and m edges this leads to a running
time of O(nm2 + n2 + t2t

2+3t+1) for the Target-t Equidomination problem
and O(nm2 + n2 + k6k2+7k+1) for the k- Equidomination problem.

In this extended abstract the proofs and most of the algorithms are omitted
due to space constraints. The interested reader is referred to the upcoming full
version of the paper1.

1 http://arxiv.org/abs/1705.05599.

http://arxiv.org/abs/1705.05599
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This paper is structured as follows: In Sect. 2 we briefly introduce the twin
relation. In Sect. 3 we examine relationships between the twin relation and
equidomination and give an algorithm to discover certain structures that can
appear. We state the existence of an XP algorithm for the k- Equidomination
problem (which can also be used for the Target-t Equidomination problem)
in Sect. 4. We make use of this algorithm and of reduction rules described in
Sect. 5 to deduce the desired tractability results, stated in Sect. 6. Afterward,
we characterize the class of hereditarily equidominating graphs in Sect. 7. In the
last section we draw a conclusion and give a brief outlook.

2 Twin Relation

Two vertices v, w of a graph are called twins if N(v) \ {w} = N(w) \ {v}
holds. Here v and w can be either adjacent (true twins) or non-adjacent (false
twins). It is easy to see that the twin relation (two vertices are related if they
are twins) is an equivalence relation. The equivalence classes are called twin
classes and the partition of the vertices into twin classes is called the twin
partition.

All vertices of a twin class are either pairwise adjacent or pairwise non-
adjacent. Therefore, twin classes are specified to be clique classes in the first
and stable set classes in the latter case. A twin class can also be a single
vertex. Even though a single vertex is strictly speaking a stable set as well as
a clique, we use the terms clique class and stable set class only for twin classes
with at least two elements. A twin class with one vertex is called a singleton
class. In Fig. 1, c1 and c2 form a clique class, s1 and s2 a stable set class, and
all other vertices singleton classes.

Let T1 and T2 be two twin classes. Then either every vertex of T1 is adjacent
to every vertex of T2 or every vertex of T1 is non-adjacent to every vertex of
T2. In the first case we say that T1 and T2 see each other and that T1 sees T2

and vice versa. We also say that a vertex and a twin class see each other, and
likewise two vertices. Furthermore, if appropriate we use expressions for twin
classes that are usually used for vertices (e.g. a twin class is adjacent to).

The twin partition can be computed in linear time using one of the modular
decomposition algorithms of [3,8,12].

3 Properties of Twin Classes Regarding Equidomination

In this section we use the twin relation to obtain structural results regarding
equidomination. Initially, we introduce the following definition.

Definition 4. Let G = (V,E) be a graph. Two vertices x, y ∈ V are called mds-
exchangeable if and only if there exists an mds D ⊆ V with |{x, y} ∩ D| =
1 and if for all mds D ⊆ V with |{x, y} ∩ D| = 1 the symmetric difference
(D \ {x, y}) ∪ ({x, y} \ D) is also an mds.
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Loosely speaking, two vertices are mds-exchangeable if they can be exchanged for
another in any mds containing exactly one of them. Two mds-exchangeable ver-
tices of an equidominating graph must have the same weight in every equidom-
inating function. Even if two vertices are mds-exchangeable, they can both be
elements of one mds (e.g. two non-adjacent vertices of C4). While c1, c2 and e in
Fig. 1 are mds-exchangeable, s1 and s2 are not since there is no mds containing
only one of the two vertices.

As the following observations show, the twin relation is a very helpful instru-
ment with regard to equidomination.

Observation 1. For every minimal dominating set D and every stable set class
S, we have |D ∩ S| ∈ {0, 1, |S|}.
Observation 2. For every minimal dominating set D and every clique class C,
we have |D ∩ C| ≤ 1.

Observation 3. Since the vertices of a clique class are pairwise mds-exchange-
able, every equidominating function must be constant on every clique class. Anal-
ogously, if there exist an mds containing exactly one vertex of a stable set class,
every equidominating function must be constant on that stable set class.

Observation 4. Since every maximal stable set is also an mds, every (non-
maximal) stable set can be extended to an mds. Therefore, for every stable set S
and for every equidominating structure (ω, t) it holds that ω(S) ≤ t and hence
|S| ≤ t.

In the following lemmas we examine whether different vertices of an equidom-
inating graph can have equal weights or not. As we will see two vertices can only
have the same weight if they lie in the same twin class or are adjacent. That
means for one thing, that when trying to construct an equidominating structure
one has to consider fewer combinatorial possibilities. And for another thing, that
for a given number of weights to be allocated one can bound the diameter of an
equidominating graph.

Lemma 1. Let G = (V,E) be an equidominating graph with equidominating
structure (ω, t) and let x, y ∈ V be two vertices of different twin classes with
dist(x, y) ≥ 2. Then it holds that ω(x) �= ω(y).

Note that in the previous lemma the two mentioned vertices must be from
different twin classes. Two elements of a stable set class of course can have the
same weight while always having distance at least two.

In the following we take a closer look at adjacent vertices, where we find a
slightly more complicated situation. We begin by showing that vertices of stable
set classes and clique classes that see each other cannot have the same weight.

Lemma 2. Let G = (V,E) be an equidominating graph with equidominating
structure (ω, t) and let S ⊆ V be a stable set class and C ⊆ V a clique class that
see each other. Then for all x ∈ S and for all y ∈ C it holds that ω(x) �= ω(y).
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Further, a vertex of a stable set class and an adjacent singleton class cannot
have the same weight in an equidominating structure.

Lemma 3. Let G = (V,E) be an equidominating graph with equidominating
structure (ω, t). Let S ⊆ V be a stable set class and let {y} be a singleton class
with y ∈ N(S). Then for all x ∈ S it holds that ω(x) �= ω(y).

As the next Lemma shows, adjacent stable set classes can have same weights,
but only in a specific situation.

Lemma 4. Let G = (V,E) be an equidominating graph with equidominating
structure (ω, t) and let S1, S2 ⊆ V be two adjacent stable set classes with two
vertices x ∈ S1, y ∈ S2 of the same weight. Then the following assertions hold:

(i) |S1| = |S2| = 2 ,
(ii) ω is constant on S1 ∪ S2 ,
(iii) every twin class seen by S1 is also seen by S2 and vice versa.

Further, if two adjacent stable set classes of size two have the same closed neigh-
borhood, all vertices of those stable set classes have the same weight in any
equidominating structure.

As a consequence of Lemma 4 there can be an arbitrarily large number of
stable set classes of size two with vertices of the same weight. Such an occurrence
could be a problem when trying to achieve bounded kernels for the parameterized
problems. But the good thing is that all of those stable set classes see each other
and see the same twin classes in the remainder of the graph. Therefore, as we will
see, it is possible to reduce them to a manageable number. For a better handling
we introduce the following new term. For that we define K2n − ne (n ∈ IN) to
be a complete graph on 2n vertices from which n disjoint edges are removed.

Definition 5. Let G = (V,E) be a graph and S ⊆ V be a maximal subset such
that G[S] ∼= K2n − ne for some n ≥ 2 and such that each vertex of S is adjacent
to the same vertices in V \ S. Then S is called a stable set bundle.

Maximal here means, that no other subset fulfills the two conditions and properly
contains S. Every stable set bundle contains several stable set classes of size two.
Note that a stable set bundle can be created by adding a false twin to every
vertex of a clique class. Following Lemma 4 the vertices of a stable set bundle
are pairwise mds-exchangeable and, therefore, every equidominating function is
constant on a stable set bundle.

Now, regarding the question whether two vertices can have the same weight
in an equidominating structure, the last open question is: can vertices of a clique
class or a singleton class have the same weight as its neighboring clique classes
or singleton classes? The answer is yes: there can be a clique, that is not a clique
class, the vertices of which are pairwise mds-exchangeable.

Definition 6. Let G be a graph and C an inclusion-wise maximal clique of pair-
wise mds-exchangeable vertices that contains at least two twin classes. Then C
is called a clique bundle.
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Upon first reading it seems a little bit odd to define clique bundles exactly as
what we are looking for: pairwise mds-exchangeable vertices of possibly different
twin classes. However, the crucial thing here is that we can identify clique bundles
efficiently (see Algorithm 1). We require at least two twin classes to be in a clique
bundle in order that a twin class on its own is not a clique bundle and a twin
class at the same time.

In a clique bundle there can be both clique classes and singleton classes but
no stable set classes. In the graph shown in Fig. 1 the clique class {c1, c2} and the
singleton class {e} form a clique bundle. In Fig. 2 you can see an equidominating
graph which consists of two clique bundles. In this graph every mds contains
exactly one vertex of each clique bundle.

Fig. 2. Example of an equidominating graph consisting of the two clique bundles C1

and C2 each containing three clique-classes with two to four vertices. The clique classes
are indicated by circles and an edge between the circles of two clique classes represents
all edges between the vertices of the corresponding clique classes.

We use the term bundle to refer to either a stable set bundle or a clique
bundle. Recall that a twin class is either a stable set class, a clique class or a
singleton class. Due to the existence of bundles we introduce a sort of general-
ization of twin classes: a pseudo class is either a twin class not contained in
a bundle or a stable set bundle or a clique bundle. That is, a pseudo class is
exactly one of following: (a) a singleton class, (b) a stable set class, (c) a clique
class, (d) a stable set bundle or (e) a clique bundle. By this definition we get the
following result.

Corollary 1. There is a unique partition of the vertices of a graph into pseudo
classes.

The introduction of pseudo classes is motivated by the following corollary, which
summarizes this section.

Corollary 2. Let G be an equidominating graph with equidominating structure
(ω, t) and P1, P2 be two different pseudo classes. Then for all x ∈ P1 and y ∈ P2

it holds that ω(x) �= ω(y).
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To recognize bundles we developed Algorithm 1, which decides for two adja-
cent vertices whether or not they are mds-exchangeable. More precisely, the
algorithm checks if there can be private neighbors of one vertex in any dominat-
ing set that are not seen by the other one. After computing the twin partition
one can apply Algorithm 1 to adjacent clique classes and singleton classes, and
adjacent stable set classes of size two to find all clique bundles and stable set
bundles.

Algorithm 1. Checking adjacent vertices for mds-exchangeability
Input: Two adjacent vertices x, y ∈ V of a graph G = (V, E)
Output: YES, if x and y are mds-exchangeable, otherwise NO
1: for all (v1, v2) ∈ {(x, y), (y, x)} do � Check both combinations
2: for all v′ ∈ N(v1) \ N [v2] do

3: if {v1} ∪
(
V (G) \ (N [v′] ∪ {v2}

))
is a dominating set then

4: return NO � x and y are not mds-exchangeable
5: end if
6: end for
7: end for
8: return YES � x and y are mds-exchangeable

Proposition 1. Algorithm 1 is correct and runs in O(nm) time.

To discover all bundles one has to apply Algorithm 1 for every edge, which
gives us a total running time of O(nm2).

4 An XP Algorithm for the k-EQUIDOMINATION Problem

In this section we describe an algorithm which decides whether a given graph is
k-equidominating for some fixed k ∈ IN with a running with only k appearing
in the exponents. The aim is to apply this algorithm to the constructed kernels
of the parameterized problems. The algorithm mainly follows the ideas and the
algorithm for the k-Equistability problem of Levit et al. [6,7]. However, it has
to be extended due to the existence of clique bundles and stable set bundles.

The basic idea of the algorithm is that by considering the pseudo classes
one does not have to examine every possible weight function nor every possible
subset of vertices. Since different vertices of the same pseudo class, roughly said,
play the same role regarding domination, two weight functions that differ only
by switched weights for two vertices of one pseudo class, can be handled as the
same. This leads to equivalence classes of weight functions. Further, we reduce
the running time from a brute force algorithm by classifying subsets of vertices.
It does not matter, for example, which vertex of a clique class is in an mds. Then,
we have to check only one subset per class for being a minimal dominating set.
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Theorem 1. For a given k ∈ IN it is decidable if a graph G = (V,E) is
k-equidominating or not in time O (

nm2 + nkkk + n2k+2k−k−1 + k3k+3
)

with
|V | = n and |E| = m and a k-equidominating structure is computed in this time.
Further, for t ∈ IN the same algorithm can be used to decide if G is target-t
equidominating.

The algorithm also provides the domination number, the upper domination
number and minimal dominating sets of minimum and maximum cardinality.

5 Reduction Rules

In the following we examine three reduction rules which we use to construct ker-
nels of the Target-t Equidomination problem as well as the k-Equidomina-
tion problem. A graph is called target-t k-equidominating if there is a k-
equidominating structure with target value t. Note that this is stronger than
being k-equidominating and target-t equidominating.

The first rule is about reducing a clique class to a certain number r ∈ IN of
vertices.

r-Clique Class Reduction: If a clique class C contains more than r
vertices, delete all but r vertices from C.

Lemma 5. Let G be a graph, r, k ∈ IN and C ⊆ V (G) a clique class with
|C| > r. Furthermore, let G′ be the graph obtained from G by applying the r-
Clique Class Reduction rule with respect to C. Then for all t ≤ r the graph G is
target-t k-equidominating if and only if G′ is target-t k-equidominating.

The next rule is about the previous defined stable set bundles. As seen before
there can be arbitrarily large stable set bundles in an equidominating graph.
However, we can reduce them to a suitable size. Again a positive integer r ∈ IN
specifies the reduction rule.

r-Stable Set Bundle Reduction: If a stable set bundle S contains more
than r stable set classes, delete all but r stable set classes of S.

The following lemma shows that the r-Stable Set Bundle Reduction rule can
be used to construct kernels for the parameterized problems.

Lemma 6. Let G be a graph, r, k ∈ IN and S = {S1, . . . , SN} a stable set
bundle with N > r. Further, let G′ be the graph obtained from G by applying
the r-Stable Set Bundle Reduction rule to S. Then for all t ≤ 2r the graph G is
target-t k-equidominating if and only if G′ is target-t k-equidominating.

The last reduction rules deals with clique bundles. It is motivated by the
fact that if a clique bundle only consists of singleton classes, then more than
one vertex of such a clique bundle can be in an mds. Before we can state the
reduction rule we need the following definition.
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Definition 7. Let G be a graph with pseudo class partition {P1, . . . , Ps}. For
every vertex v ∈ V (G) we define the vector μv = (μv(1), . . . , μv(s)) ∈ INs

0 as
follows: for i = 1, . . . , s, if v ∈ Pi, then we set μv(i) := 0. If v /∈ Pi and Pi is a
clique bundle, then we set

μv(i) :=

{
|Pi \ N(v)| + 1, there is an mds D with N(v) ∩ D ⊆ Pi ,

0, otherwise .

If v /∈ Pi and Pi is a singleton class, a clique class, a stable set class or a stable
set bundle, then we set

μv(i) :=

{
1, v is adjacent to the vertices of Pi ,

0, otherwise .

To decide if there exist an mds D with N [v] ∩ D ⊆ Pi we simply check if
V \ (N [v] \ Pi) is a dominating set. The number μv(i) is of particular interest
when Pi is a clique bundle. It tells us how many vertices of a pseudo class Pi

must be at least in an mds D with N [v]∩D ⊆ Pi. We will only work with vectors
of vertices that lie in clique bundles.

The values of the μv are bounded by t in every target-t equidominating graph.

Lemma 7. Let G = (V,E) be a graph with pseudo class partition {P1, . . . , Ps}
and let r ∈ IN. If there is a vertex v ∈ V with μv(i) > r for some i ∈ {1, . . . , s},
then G is not target-t equidominating for t ≤ r.

As before, we reduce the vertices of a subset of a clique bundle to a certain
number r ∈ IN.

r-Clique Bundle Reduction: If a subset M ⊆ C of a clique bundle C
with μv = μw for all v, w ∈ M contains more than r vertices, delete all
but r vertices of M .

Lemma 8. Let G be a graph, r, k ∈ IN and M ⊆ C a subset of a clique bundle
C with μv = μw for all v, w ∈ M and |M | > r. Furthermore, let G′ be the graph
obtained from G by applying the r-Clique Bundle Reduction rule with respect to
M . Then for all t ≤ r the graph G is target-t k-equidominating if and only if G′

is target-t k-equidominating.

6 Main Results

In this section we state that both parameterized equidomination problems admit
kernels, the sizes of which are bounded by a function of t, resp. k. Thus, both
problems are FPT.

Theorem 2. The Target-t Equidomination problem admits a O(tt+1)-ver-
tex kernel which is computable in polynomial time. Moreover, there is an algo-
rithm to solve the Target-t Equidomination problem for a graph on n vertices
and m edges which runs in time O

(
nm2 + n2 + t2t

2+3t+1
)
.
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Theorem 3. The k-Equidomination problem admits a O(k3k+1)-vertex ker-
nel which is computable in polynomial time. Furthermore, there is an algorithm
to solve the k-Equidomination problem for a given graph on n vertices and m

edges which runs in time O
(
nm2 + n2 + k6k2+7k+1

)
.

The proof of this theorem builds upon two more lemmas.

Lemma 9. A graph G = (V,E) is not k-equidominating (k ∈ IN) if G has two
pseudo classes of size at least k2, where one of those pseudo classes is a stable
set class.

Lemma 10. Let G = (V,E) be a graph and k ∈ IN. Furthermore, let {S, V ′} be
a partition of V where S is a set of isolated vertices of size at least k5 and |V ′| ≤
k3. Then G is k-equidominating if and only if there exists a k-equidominating
function that is constant on S.

7 Hereditarily Equidominating Graphs

A graph G is called hereditarily equidominating if every induced subgraph
of G is equidominating. In this section, we give a characterization of the class
of hereditarily equidominating graphs in terms of the list of forbidden induced
subgraphs and a structural decomposition. This decomposition yields an O(n(n+
m)) time recognition algorithm.

In order to state our characterization, we need some more notions. A chain
graph is a bipartite graph where the neighborhoods of the vertices of either side
are comparable with respect to inclusion. Let G1 and G2 be two disjoint graphs.
Let Ui be the (possibly empty) set of universal vertices of Gi, for i ∈ {1, 2}. Let B
be any chain graph with bipartition U1, U2. We call the graph (G1 ∪G2)+E(B)
a chain-join of G1 and G2. Note that the disjoint union of any two graphs is a
particular chain-join of these two graphs.

Regarding our decomposition theorem below, the class of basic graphs
equals {K1} ∪ {K2n − ne : n ≥ 2}. An equidominating structure of K2n − ne,
n ≥ 2, is given by ω ≡ 1 and t = 2. Hence, basic graphs are equidominating. It
is not hard to prove that basic graphs are in fact hereditarily equidominating.
Interestingly, the basic graphs (except for K1) are those graphs which consist of
one stable set bundle.

Let F := {P5, C5, bull , banner , house,K2,3, P2 ∪ P3} (see Fig. 3 for an illus-
tration). As the next theorem shows, the set F is exactly the set of forbidden
induced subgraphs of the class of hereditarily equidominating graphs.

Theorem 4. For any graph G, the following assertions are equivalent.

(a) G is hereditarily equidominating.
(b) G is F-free.
(c) One of the following assertions holds.

(i) G is a basic graph.
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Fig. 3. The forbidden set F ; P5, C5, bull, banner, house, K2,3, P2 ∪ P3.

(ii) G is obtained from a hereditarily equidominating graph by adding a uni-
versal vertex.

(iii) G is the chain-join of two hereditarily equidominating graphs.

Given the fact that hereditarily equidominating graphs admit a finite for-
bidden subgraph characterization, it is clear that this class can be recognized
efficiently. A faster recognition is possible using the decomposition provided by
Theorem 4.

Corollary 3. Let G be a graph on n vertices and m edges. It can be decided in
time O(n(n + m)) whether G is a hereditarily equidominating graph.

8 Conclusion and Outlook

The main result of this paper is that the Equidomination problem can be
parameterized in two different ways such that the parameterized problems
are fixed-parameter tractable. One way is to take the target value t of an
equidominating structure as the parameter: this problem is called the Target-t
Equidomination problem. The second way is to allow only vertex weights up to
a certain value k, which leads to the k- Equidomination problem.

To solve the kernelized instances we developed an XP algorithm that can be
used for both problems. Even though there are many analogies between equista-
bility and equidomination – as between the concepts of stability and domination
in general – there are new difficulties in the case of equidomination. This fact
results in several extensions we needed to discover and formalize. Finally, we
characterized hereditarily equidominating graphs in terms of seven forbidden
subgraphs, which also leads to a polynomial time recognition algorithm.

There are several open questions that arise in the context of equidomination.
Most importantly, we would like to see a hardness proof of the Equidomination
problem. For this, however, it might be necessary to get a better grip on the
combinatorial properties of equidominating graphs. One way in this direction
could be a characterization of target-t equidominating and k-equidominating
graphs for small t, k ∈ IN.

Further, one could adapt the idea of equidomination – namely characterizing
mds by the 0-1-solutions of linear equalities – to other forms of domination like
total, multiple or global domination. Thoughts in this direction could concern a
characterization of these graph classes as well as the complexity of the according
decision problems.
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Abstract. We prove that every 4-connected planar triangulation admits
a contact representation by homothetic triangles.

There is a known proof of this result that is based on the Convex
Packing Theorem by Schramm, a general result about contact repre-
sentations of planar triangulations by convex shapes. But our approach
makes use of the combinatorial structure of triangle contact representa-
tions in terms of Schnyder woods. We start with an arbitrary Schnyder
wood and produce a sequence of Schnyder woods via face flips. We show
that at some point the sequence has to reach a Schnyder wood describing
a representation by homothetic triangles.

Keywords: Contact representation · Schnyder wood · Triangle · Planar
triangulation

1 Introduction

A triangle contact system T is a finite system of triangles in the plane such
that any two triangles intersect in at most one point. The contact system is
nondegenerate if every contact involves exactly one corner of a triangle. The
graph G∗(T ) is the plane graph that has a vertex for every triangle of T and an
edge for every contact of two triangles in T . For a given plane graph G and a
triangle contact system T with G∗(T ) = G we say that T is a triangle contact
representation of G.

The main goal of this paper will be to prove the following result.

Theorem 1 [5]. Let G be a 4-connected planar triangulation. Then there is a
triangle contact representation of G by homothetic triangles.

The original proof of Theorem1 in [5]1 makes use of the following theorem
by Schramm.

Theorem 2 (Convex Packing Theorem [10]). Let G be a triangulation with
outer face {a, b, c}. Further let C be a simple closed curve in the plane partitioned
into arcs Pa,Pb,Pc and for each interior vertex v of G let Qv be a convex set in
the plane containing more than one point. Then there is a contact representation
of a supergraph of G (on the same vertex set, but possibly with more edges) where
each interior vertex v is represented by a homothetic copy of its prototype Qv

and each outer vertex w by the arc Pw.
1 The journal version [6] does not contain this proof.

c© Springer International Publishing AG 2017
H.L. Bodlaender and G.J. Woeginger (Eds.): WG 2017, LNCS 10520, pp. 425–437, 2017.
https://doi.org/10.1007/978-3-319-68705-6_32
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If we want to calculate a homothetic triangle contact representation of G
efficiently, this theorem does not help since it is purely existential. On the other
hand, Felsner [2] introcuced a combinatorial heuristic that calculates triangle
contact representations quite fast in practical experiments [8]. However, to the
best of our knowledge, it is not known whether this heuristic terminates for
every instance, nor whether it has a good (e.g., polynomial) running time if it
terminates.

The heuristic starts by guessing the combinatorial structure of the contact
representation in the form of a Schnyder wood. Then a system of linear equa-
tions is solved whose variables correspond to the lengths of the segments of the
triangles in the contact representation. If the solution is nonnegative, this yields
the intended contact representation. Otherwise, the negative variables of the
solution can be used as sign-posts indicating how to change the Schnyder wood
for another try.

Our new proof of Theorem1 is based on the theoretical background of this
heuristic. Therefore it might help to better understand this heuristic in the
future. Felsner and Francis [3] even explicitly ask for a proof of Theorem1 by
this approach. Further, our proof motivates a new heuristic for calculating homo-
thetic triangle contact representations.

A substantial part of this work originates in the author’s Masters thesis [12].
In this thesis with a similar approach also the existence of contact representations
of 5-connected planar triangulations by homothetic squares has been proved. But
in that case there are other known proofs which are not based on the Convex
Packing Theorem [7,11]. That is why we will focus on contact representations
by homothetic triangles in this paper.

Let us get back to triangle contact representations. In the case that G∗(T )
is a planar triangulation, in T the inner (i.e., bounded) faces of G∗(T ) are
also represented by triangles. We denote these by dual triangles and for clear
distinction the triangles of T by primal triangles.

In Theorem 1 we do not specify what is the shape of the homothetic trian-
gles. The reason is that if we are given a contact representation by homothetic
triangles, we can change the shapes of these triangles to homothetic copies of an
arbitrary given triangle by a linear transformation of the plane. So we choose to
prove the existence of a contact representation by right, isosceles triangles with a
horizontal edge at the bottom and a vertical edge at the right hand side. We will
even consider a larger class of triangle contact representations. A right triangle
contact representation is a triangle contact representation by right triangles with
a horizontal edge at the bottom and a vertical edge at the right hand side. The
aspect ratio of such a triangle is the quotient of the lengths of its vertical and its
horizontal edge. The aspect ratio vector of a right triangle contact representation
is the vector of the aspect ratios of its triangles (we assume the vertices of G
have a fixed numbering 1, . . . , n + 3). See Fig. 1 for an example of a right triangle
contact representation. Now we can formulate a stronger theorem that implies
Theorem 1.
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Fig. 1. Two right triangle contact representations of the same graph with aspect ratio
vectors (2, 1/2, 1, 1, 1, 1) and (1/2, 2, 1, 1, 1, 1).

Theorem 3. Let G be a 4-connected triangulation and r̃ ∈ R
n+3
>0 . Then there is

a right triangle contact representation of G with aspect ratio vector r̃.

The paper is organized as follows: In Sect. 2 we give an introduction to Schny-
der woods as the combinatorial structure describing triangle contact representa-
tions and recall some known results about them. In Sect. 3 we describe a variant
of the system of linear equations from the heuristic by Felsner for calculating a
right triangle contact representation with given Schnyder wood and given aspect
ratio vector. As our main contribution, we prepare the prove of Theorem3 in
Sect. 4 and give the proof in Sect. 5. In Sect. 6 we propose a new heuristic for
calculating right triangle contact representation based on this proof.

2 Schnyder Woods

Schnyder woods are a combinatorial structure on triangulations that play a
central role in this paper. They were first introduced by Schnyder [9] under the
name of realizers.

Definition 1. Let G be a triangulation with outer vertices vn+1, vn+2, vn+3 in
clockwise order. Then a Schnyder wood of G is an orientation and coloring of
the interior edges of G with the colors red, green and blue such that

– each edge incident to vn+1 is red and incoming, each edge incident to vn+2 is
green and incoming, and each edge incident to vn+3 is blue and incoming,

– each inner vertex has in clockwise order exactly one red, green and blue out-
going edge, and in the interval between two outgoing edges there are only
incoming edges in the third color (see Fig. 2).

If we forget about the colors of a Schnyder wood, we obtain a 3-orientation,
i.e., each inner vertex has outdegree 3 and the outer vertices have outdegree 0.
The converse also holds:

Proposition 1 (de Fraysseix and Ossona de Mendez [13]). If the graph G
is a 3-orientation of a triangulation with outer vertices labeled vn+1, vn+2, vn+3

in clockwise order, then there is a unique way of coloring the interior edges of G
to receive a Schnyder wood.
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Let T be a triangle contact system such that G := G∗(T ) is a triangulation.
If T is nondegenerate, we can orient each inner edge of G from the triangle whose
corner is involved in the contact to the other triangle and obtain an orientation
where the outdegree of each inner vertex is at most 3. In the case that T is
degenerate, we can interpret a point where several triangle corners meet as a
cyclic sequence of nondegenerate contacts with infinitesimal edge lengths and
proceed as in the nondegenerate case. As a consequence of Euler’s formula, G
has exactly 3n inner edges, and therefore the outdegree of each inner vertex has
to be exactly 3. Thus T induces a 3-orientation and hence a Schnyder wood
of G. We will call this Schnyder wood the (induced) Schnyder wood of T . Note
that the induced Schnyder wood is not unique if T is degenerate. The following
proposition shows that every Schnyder wood is an induced Schnyder wood.

Proposition 2 (de Fraysseix et al. [14]). Let G be a triangulation and S
a Schnyder wood of G. Then there exists a nondegenerate right triangle contact
representation of G with induced Schnyder wood S.

For right triangle contact representations we can obtain the colors of the edges
of the associated Schnyder wood also directly, without using Proposition 1. We
color an edge red if it corresponds to the upper corner of a triangle, green if it
corresponds to the right lower corner of a triangle, and blue if it corresponds to
the left lower corner of a triangle. See Fig. 3 for an example.

vn+1

vn+3 vn+2

Fig. 2. The local conditions of a Schny-
der wood. (Color figure online)

v3

v1 v2

v4

v6 v5

Fig. 3. The Schnyder wood induced by
the first example of Fig. 1. (Color figure
online)

3 The System of Linear Equations

For the whole section let G be a triangulation with inner vertices v1, . . . , vn and
outer vertices vn+1, vn+2, vn+3 in clockwise order, let S be a Schnyder wood of G
and let r ∈ R

n+3
>0 be an aspect ratio vector for G. We will now describe a system

of linear equations for calculating the edge lengths of a right triangle contact
representation of G with aspect ratio vector r and induced Schnyder wood S.
This system has been introduced by Felsner [2] and studied by Rucker [8] for
the special case r = (1, . . . , 1). All results in this section are due to them.
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For each inner vertex v of G we have a variable xv which represents the
width of the corresponding primal triangle, and for each inner face f of G a
variable xf which represents the width of the corresponding dual triangle. For a
vertex v of G we denote by δr(v) the set of incident faces of v which are located
in the interval between the green and blue outgoing edge of v. Analogously we
define the sets δg(v) and δb(v). In a right triangle contact representation a primal
triangle T hands down his aspect ratio to each dual triangle whose hypotenuse
is contained in the hypotenuse of T . If T corresponds to the vertex v of G, these
are exactly the dual triangles corresponding to the faces in δg(v). Therefore, if
we are given the Schnyder wood and the aspect ratio vector of a right triangle
contact representation, we are implicitly also given the aspect ratios of the dual
triangles. We denote the aspect ratio of a dual triangle corresponding to the
face f of G by rf . Now we can write down the equation system:

∑

f∈δr(vn+1)

xf = 1, (1)

∑

f∈δr(vi)

xf − xvi
= 0, i = 1, . . . , n, (2)

∑

f∈δg(vi)

xf − xvi
= 0, i = 1, . . . , n, (3)

∑

f∈δb(vi)

rfxf − rvi
xvi

= 0, i = 1, . . . , n. (4)

Equation (2) says that the length of the horizontal edge of a primal triangle
is equal to the sum of the lengths of the adjacent dual triangles. Equations (3)
and (4) say the same for the other two edges of a primal triangle. Note that
the sum of the lengths of the diagonal edges of the dual triangles corresponding
to the faces in δg(vi) is equal to the length of the diagonal edge of the primal
triangle of vi if and only if the sum of the lengths of their horizontal edges is equal
to the length of the horizontal edge of the primal triangle of vi. The purpose
of (1) is to pick one single solution out of the space of solutions of the apart
from that homogeneous equation system. We will also use the shorter notation
AS(r)x = e1 for the equation system.

Proposition 3. The system AS(r)x = e1 is uniquely solvable.

Because of the way we chose the equations of the system, it is clear that the
existence of a right triangle contact representation of G with Schnyder wood S
and aspect ratio vector r implies a nonnegative solution. The following proposi-
tion shows that also the converse holds.

Proposition 4. Let AS(r)x = e1. There is a right triangle contact representa-
tion of G with induced Schnyder wood S and aspect ratio vector r if and only
if x ≥ 0. If x ≥ 0, the representation is unique inside the three outer triangles.
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Next we will prove a result about the structure of nonnegative solutions with
zero entries.

Definition 2. Let AS(r)x = e1 and x ≥ 0. Then an edge e of G is called a
transition edge if it is incident to inner faces f1 and f2 of G with xf1 > 0
and xf2 = 0.

Lemma 1. Let AS(r)x = e1 and x ≥ 0. Then the transition edges of G form an
edge disjoint union of cycles of length 3. Moreover there is no edge going from
a vertex on such a cycle into the interior of this cycle.

For the sake of completeness we will now briefly describe the heuristic by
Felsner [2] for calculating triangle contact representations that is based on the
system of linear equations. Felsner only considers homothetic triangle contact
representations, but the heuristic can easily be translated to the case of right
triangle contact representations with given aspect ratio vector r̃. For the heuristic
we need a result similar to Lemma 1 for the case x �≥ 0.

Definition 3. Let AS(r)x = e1. Then an edge e of G is called a sign-separating
edge if it is incident to inner faces f1 and f2 of G with xf1 ≥ 0 and xf2 < 0.

Lemma 2. Let AS(r)x = e1. Then the sign-separating edges of G form an
edge-disjoint union of directed simple cycles.

The heuristic starts with an arbitrary Schnyder wood S and solves the sys-
tem of linear equations AS(r̃)x = e1. If the solution is nonnegative, we are
done and can compute the contact representation due to Proposition 4. Other-
wise, we change in S the orientation of all sign-separating edges. Since the set
of sign-separating edges is a disjoint union of simple cycles, we obtain a new
3-orientation of G and thus, due to Propostion 1, a new Schnyder wood S′. Now
we proceed with solving the system of linear equations for the new Schnyder
wood S′ and so on.

In experiments by Rucker [8] this heuristic delivered good results (for the
case r = (1, . . . , 1)), i.e., it always terminated after a small number of iterations.
But in theory we neither know whether it terminates for every instance, nor
know any nontrivial bounds for the number of iterations it takes in the case of
termination. Also variants of this heuristic have been studied where the Schnyder
wood is changed in some other way, but without success.

4 Preparation of the Proof of Theorem3

In this section we will introduce some notation and present some lemmas we
need for the proof of Theorem3. Let G be a 4-connected plane triangulation for
the whole section.
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4.1 Feasible Aspect Ratio Vectors for a Fixed Schnyder Wood

Remember that a triangle contact representation is degenerate if corners of sev-
eral primal triangles meet in a single point.

Definition 4. Let S be a Schnyder wood. Then RS is defined as the set of
aspect ratio vectors of nondegenerate right triangle contact representations of G
with induced Schnyder wood S, and R̄S as the set of aspect ratio vectors of all
(possibly degenerate) right triangle contact representations of G with induced
Schnyder wood S.

In Proposition 4 we have seen that r ∈ RS if and only if x > 0 where x is
the solution of AS(r)x = e1. With Cramer’s rule and by bounding the degrees
of the occurring polynomials (the determinants) we then get the following:

Lemma 3. There are polynomials p1, . . . , p3n+1 in the variables r1, . . . , rn+3

with deg pj ≤ 3n + 1 for each j such that

RS = {r ∈ R
n+3
>0 : pj(r) > 0 for j = 1, . . . , 3n + 1},

R̄S = {r ∈ R
n+3
>0 : pj(r) ≥ 0 for j = 1, . . . , 3n + 1}.

In particular RS is an open set and R̄S its closure.

The following lemma follows from Lemma 3 and shows that the intersection
of RS with a line segment decomposes into a bounded number of intervals.

Lemma 4. Let r0, r1 ∈ R
n+3
>0 be two distinct aspect ratio vectors and for

each 0 ≤ t ≤ 1 let rt := (1 − t)r0 + tr1. Then there are open intervals I1, . . . , Ik

with k ≤ (3n + 1)� 3n+1
2 � + 1 such that

I1 ∪ · · · ∪ Ik = {t ∈ R : 0 < t < 1, rt ∈ RS},

Ī1 ∪ · · · ∪ Īk ⊆ {t ∈ R : 0 ≤ t ≤ 1, rt ∈ R̄S}.

4.2 Neighboring Schnyder Woods

Let G be a planar triangulation. If S and S′ are two Schnyder woods of G,
then S′ can be obtained from S by changing the orientation of the edges in
some edge-disjoint directed simple cycles of S. We introduce some notation for
Schnyder woods whose difference is small in this sense.

Definition 5. We call two Schnyder woods S and S′ neighboring if the corre-
sponding 3-orientations differ in a single facial cycle C. In this case we call C
the difference cycle of S and S′.

The set of Schnyder woods of a fixed graph has been thoroughly studied and
it is well known that it has the structure of a distributive lattice with the cover
relation being exactly this neighboring relation [1].
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Proposition 5. Let S and S′ be two neighboring Schnyder woods and let f
be the face of G bounded by the difference cycle of S and S′. Further let r
be an aspect ratio vector, and let x and x′ be the solutions of AS(r)x = e1
and AS′(r)x′ = e1. Then the variables xf and x′

f corresponding to the face f
have different signs, or xf = x′

f = 0.

Corollary 1. Let S and S′ be two neighboring Schnyder woods. Furthermore
let r ∈ RS. Then r /∈ R̄S′ .

This can be seen as a weak variant of the following conjecture which is moti-
vated by the fact that contact representations of 5-connected triangulations by
homothetic squares are unique [7,11].

Conjecture 1. Let G be a 4-connected triangulation and r̃ ∈ R
n+3
>0 . Then the

right triangle contact representation of G with aspect ratio vector r̃ is unique
inside the three outer triangles up to scaling.

The strategy of the proof of Theorem 3 will be to move along a line segment
of aspect ratio vectors keeping the invariant that there exits a right triangle
contact representation with the current aspect ratio vector. In this process, the
Schnyder wood of this triangle contact representation will stay the same for a
whole subsegment of this line segment. The following lemma allows us to switch
to a neighboring Schnyder wood if the current one does not work any more.

Lemma 5. Let {st = (1−t)s0+ts1 : 0 ≤ t ≤ 1} be a line segment of aspect ratio
vectors. Let 0 < t0 < 1 such that st0 ∈ R̄S \ RS, in the corresponding solution
of the equation system only one face variable xf is zero, and there is an ε > 0
such that for each t0 < t ≤ t0 + ε we have st �∈ R̄S. Let S′ be the neighboring
Schnyder wood of S whose difference cycle is the facial cycle of the face f . Then
there is an ε′ > 0 such that st0+ε′ ∈ RS′ .

Proof. The matrices AS(st0) and AS′(st0) only differ in the column correspond-
ing to the variable xf . In the solution of AS(st0)x = e1 we have xf = 0. Therefore
the solution of AS(st0)x = e1 is also a solution of AS′(st0)x = e1, or in other
words the solutions of AS(st0)x = e1 and AS′(st0)x = e1 are equal.

Now let us view the solutions of AS′(st)x = e1 for t slightly larger than t0.
Since for the aspect ratio vector st0 all variables except xf are strictly positive,
there is, due to continuity, an ε′′ > 0 such that for all aspect ratio vectors st

with t0 ≤ t ≤ t0+ε′′ all variables except xf are strictly positive. Due to Proposi-
tion 5 we have xf > 0 for all aspect ratio vectors st with t0 < t ≤ t0+min{ε, ε′′}.
Therefore the choice ε′ := min{ε, ε′′} fulfills st0+ε′ ∈ RS′ . 
�

Since Lemma 5 can only be applied if we run into a degenerate contact rep-
resentation with only one single degenerate face, we need a more general lemma
for the proof of Theorem3. By B(m, ρ) and B◦(m, ρ) we denote the closed and
open ball with center m and radius ρ.

Lemma 6. Let {st : 0 ≤ t ≤ 1} be a line segment of aspect ratio vectors.
If there is a 0 < t0 < 1 such that st0 ∈ R̄S \ RS and an ε > 0 such that for
each t0 − ε ≤ t < t0 we have st ∈ RS, then for each ε′ > 0 there is an aspect
ratio vector r ∈ B(st0 , ε

′) and a neighboring Schnyder wood S′ of S with r ∈ RS′ .
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5 Proof of Theorem 3

Theorem 3. Let G be a 4-connected triangulation and r̃ ∈ R
n+3
>0 . Then there is

a right triangle contact representation of G with aspect ratio vector r̃.

Proof. We assume there is no right triangle contact representation of G with
aspect ratio vector r̃. The idea of the proof is to construct under this assumption
a line segment contradicting Lemma 4. For that we will construct an infinite
sequence (Si)i≥0 of Schnyder woods, two sequences (ri)i≥0 and (r′

i)i≥0 of aspect
ratio vectors and two sequences (εi)i≥0 and (ε′

i)i≥0 of positive real numbers
fulfilling the following invariants:

(I1) For each r ∈ B(ri, εi) there is a nondegenerate right triangle contact repre-
sentation of G with aspect ratio vector r and Schnyder wood Si.

(I2) For each r′ ∈ B(r′
i, ε

′
i) the line segment {(1− t)r′ + tr̃ : 0 ≤ t ≤ 1} intersects

the balls B(r0, ε0), . . . , B(ri, εi) in this order (with increasing t).
(I3) The points r′

i, ri and r̃ are collinear and aligned in this order.
(I4) The Schnyder woods Si and Si+1 are neighboring.

It now remains to show how to construct these sequences and why the exis-
tence of these sequences contradicts Lemma 4.

Construction of the sequences. Let S0 be an arbitrary Schnyder wood of G, let T0

be an arbitrary nondegenerate right triangle contact representation of G with
Schnyder wood S0 (such a contact representation exists due to Proposition 2),
and let r0 be the aspect ratio vector of T0. Then we know from Lemma 3 that
there is a 0 < ε0 < 1 such that for each r ∈ B(r0, ε0) a nondegenerate right
triangle contact representation of G with aspect ratio vector r and Schnyder
wood S0 exists. Furthermore we set r′

0 := r0 and ε′
0 := ε0. These initial values

obviously fulfill each of the four invariants.
Now we describe how to construct the (j + 1)th sequence members from

the jth ones. We set st := (1 − t)r′
j + tr̃ for 0 ≤ t ≤ 1. Then because of (I3)

there is a 0 ≤ t̂ < 1 with st̂ = rj . Thus Lemma 4 gives us a δ > 0 such that for
each t̂ ≤ t < t̂ + δ there is a nondegenerate right triangle contact representation
of G with aspect ratio vector st and Schnyder wood Sj , and a degenerate one
with aspect ratio vector st̂+δ and Schnyder wood Sj . Because of our assumption
we have t̂+δ < 1 and because of st̂+δ /∈ B(rj , εj) we have ‖rj − st̂+δ‖ > εj . Now
we set

δ′ := min
{(

1 − (t̂ + δ)
)
ε′

j , ‖rj − st̂+δ‖ − εj

}
> 0.

Then Lemma 6 gives us an rj+1 ∈ B◦(st̂+δ, δ
′) such that there is a non-

degenerate right triangle contact representation of G with aspect ratio
vector rj+1 and a neighboring Schnyder wood Sj+1 of Sj . Now we
set r′

j+1 := r′
j + 1

1−(t̂+δ)
(rj+1 − st̂+δ). Then

‖r′
j+1 − r′

j‖ =
1

1 − (t̂ + δ)
‖rj+1 − st̂+δ‖ <

1
1 − (t̂ + δ)

δ′ ≤ ε′
j
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and therefore we have r′
j+1 ∈ B◦(r′

j , ε
′
j). Moreover Lemma 3 gives us

an 0 < εj+1 < δ′ − ‖rj+1 − st̂+δ‖ such that for each r ∈ B(rj+1, εj+1) there is a
nondegenerate right triangle contact representation of G with aspect ratio vec-
tor r and Schnyder wood Sj+1. Finally we set ε′

j+1 := 1
1−(t̂+δ)

εj+1. See Fig. 4
for an illustration of the construction.

s0 = r′
j

st̂ = rj st̂+δ s1 = r̃

B(r′
j , ε

′
j)

B(rj , εj)

B(st̂+δ, δ
′)

r′
j+1

B(r′
j+1, ε

′
j+1)

B(rj+1, εj+1)

Fig. 4. The construction of the new sequence members.

Clearly the invariants (I1), (I3) and (I4) are fulfilled again. Because
of B(r′

j+1, ε
′
j+1) ⊆ B(r′

j , ε
′
j) for each r′ ∈ B(r′

j+1, ε
′
j+1) the line seg-

ment {(1 − t)r′ + tr̃ : 0 ≤ t ≤ 1} intersects the balls B(r0, ε0), . . . , B(rj , εj)
in the right order. From the construction it immediately follows that the
ball B(rj+1, εj+1) is intersected by this line segment, too. Moreover, because
of δ′ ≤ ‖rj − st̂+δ‖ − εj and B(rj+1, εj+1) ⊆ B◦(st̂+δ, δ

′) the intersection point
with B(rj+1, εj+1) is closer to r̃ than the intersection point with B(rj , εj). There-
fore also (I2) is fulfilled again.

Producing a contradiction. Let L be the number of Schnyder woods of G
and c := (3n + 1)� 3n+1

2 � + 1 (this is the bound from Lemma4). We
set K := Lc + 1. Then it follows from the pigeonhole principle that there
is a Schnyder wood S such that there are indices 0 ≤ i1 < · · · < ic+1 ≤ K
with S = Si1 = · · · = Sic+1 . For l = 1, . . . , c + 1 let r̂l be an intersection point
of the line segment {(1 − t)r′

K + tr̃ : 0 ≤ t ≤ 1} and the ball B(ril , εil). Thus
for l = 1, . . . , c + 1 there is a nondegenerate right triangle contact represen-
tation of G with aspect ratio vector r̂l and Schnyder wood S. From Lemma 4
it follows that the intersection of {(1 − t)r′

K + tr̃ : 0 ≤ t ≤ 1} and RS is a dis-
joint union of at most c open intervals. Therefore there is an l such that r̂l

and r̂l+1 belong to the same interval. Particularly for each 0 ≤ τ ≤ 1 there
is a nondegenerate right triangle contact representation of G with aspect ratio
vector (1 − τ)r̂l + τ r̂l+1 and Schnyder wood S. Because of (I4) the Schnyder
woods S′ := Sil+1 and S are neighboring. Moreover, because of (I2) there



Homothetic Triangle Contact Representations 435

is a 0 ≤ τ ′ ≤ 1 with (1 − τ ′)r̂l + τ ′r̂l+1 ∈ B(ril+1, εil+1). But then because
of (I1) there is also a nondegenerate right triangle contact representation of G
with aspect ratio vector (1 − τ ′)r̂l + τ ′r̂l+1 and Schnyder wood S′, contradicting
Corollary 1. 
�

6 A New Heuristic

In this section we will present an new heuristic for computing a right triangle
contact representation of a given planar triangulation G with a given aspect
ratio vector r̃ that is based on our proof of Theorem3. The idea of the heuristic
is to make progress on a line segment {rt = (1 − t)r0 + tr̃ : 0 ≤ t ≤ 1} of aspect
ratio vectors. By that we mean that in each iteration the largest t increases for
that we know a Schnyder wood S with st ∈ RS .

We introduce some notation. For a Schnyder wood S and an aspect ratio
vector r we denote by x(S, r) the solution of AS(r)x = e1. Further, by S(r) we
denote the Schnyder wood obtained from S by changing the orientation of the
sign-separating edges regarding the solution of AS(r)x = e1.

Algorithm 1. Calculation of a right triangle contact representation
Input: a 4-connected triangulation G and an aspect ratio vector r̃ ∈ R

n+3
>0

Output: a right triangle contact representation of G with aspect ratio vector r̃

S ← arbitrary Schnyder Wood of G
T0 ← arbitrary right triangle contact representation of G with Schnyder wood S
r0 ← aspect ratio vector of T0

while x(S, r̃) �≥ 0 do
r1 ← r̃
rm ← r0+r1

2
while S(rm) = S or x(S(rm), rm) �≥ 0 do

if S(rm) = S then
r0 ← rm

else
r1 ← rm

end if
rm ← r0+r1

2
end while
S ← S(rm)
r0 ← rm

end while
calculate from x(S, r̃) a right triangle contact representation T of G
return T

If we assume that on the line segment we never run into an aspect ratio
vector such that in the corresponding contact representation more than one
face is degenerate, we can deduce the following from Lemma 5: If we know a
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Schnyder wood S with rt ∈ RS , then either r̃ ∈ RS or there is a t < t′ < 1 such
that S(rt′) �= S and rt′ ∈ RS(rt′ ) (we could even assume that S and S(rt′) are
neighboring). This is exactly the idea we realize in Algorithm1.

We cannot be sure that the inner loop always terminates because we cannot
apply Lemma 5 if there are aspect ratio vectors on the line segment such that
in the corresponding contact representation more than one face is degenerate.
But if the inner loop always terminates, the outer loop terminates after O(n2L)
iterations where L is the number of Schnyder woods of G (see Sect. 5). Since the
number of Schnyder woods can be exponential in n [4], this yields an exponential
running time.

We will conclude by stating some conjectures concerning the computation of
triangle contact representations. The strong experimental results we mentioned
in the end of Sect. 3, give rise to the following conjecture:

Conjecture 2. The variant of the heuristic by Felsner we described in the end of
Sect. 3 terminates for every planar triangulation G, every aspect ratio vector r̃,
and every Schnyder wood S of G to start with.

Since the number of iterations has always been small in the experiments,
we conjecture that it can be bounded by a polynomial in n. This would yield
an algorithm with polynomial running time. Therefore we also conjecture the
following:

Conjecture 3. A right triangle contact representation of a planar triangulation G
with given aspect ratio vector r̃ can be computed in polynomial time.
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