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Abstract. Concurrency in data structures is crucial to the performance
of multithreaded programs in shared-memory multiprocessor environ-
ments. However, greater concurrency also increases the difficulty of veri-
fying correctness of the data structure. Model checking has been used for
verifying concurrent data structures satisfy the correctness condition ‘lin-
earizability’. In particular, ‘automatic’ tools achieve verification without
requiring user-specified linearization points. This has several advantages,
but is generally not scalable. We examine the automatic checking used
by Vechev et al. in their 2009 work to understand the scalability issues
of automatic checking in SPIN. We then describe a new, more scalable
automatic technique based on these insights, and present the results of
a proof-of-concept implementation.

1 Introduction

How efficiently data structures are shared is a crucial factor in the performance
of multithreaded programs in shared-memory multiprocessor environments [14].
This motivates programmers to create objects with fewer safety mechanisms
(such as locks) to achieve greater concurrency. However, as noted by [14], any
enhancement in the performance of these objects also increases the difficulty of
verifying they behave as expected. Several published concurrent data structures
– often with manual proofs of correctness – have been shown to contain errors
(e.g., [7,18]). This has resulted in a wealth of research on proving the safety of
these objects with minimal input from programmers.

To verify concurrent data structures it is necessary to have a suitable defini-
tion of correctness. The general consensus of the literature is that linearizability,
first introduced in [10], is the appropriate notion of correctness. The definition
of linearizability given by Vechev et al. [24] is summarised below.

Definition 1. A concurrent data structure is linearizable if every concurren-
t/overlapping history of the data structure’s operations has an equivalent sequen-
tial history that
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1. meets a sequential specification of the data structure, and
2. respects the ordering of non-overlapping operations.

Note that condition (2) is also referred to as the partial ordering condition.
When discussing linearizability the sequential specification is often referred to as
the abstract specification, and the implementation of the concurrent data struc-
ture the concrete implementation. The equivalent sequential history generated
from a concurrent history is referred to as the linearization or sequential witness.

Given a sequential specification, a history can be checked for a linearization.
This requires examining permutations of the history to identify whether any one
of them is a linearization. This process is called linearization checking (not to
be confused with the overall process of linearizability checking).

Example 1. Figure 1 shows a history of operations for a concurrent queue. By
enumerating all permutations, it can be seen that this history has the lineariza-
tion [enqueue(1), dequeue() → 1, enqueue(2)].

enqueue(1)

dequeue() → 1

enqueue(2)

Fig. 1. A sample concurrent history
with a linearization.

enqueue(1)

dequeue() → 2

enqueue(2)

Fig. 2. A sample concurrent history
with no linearization.

Conversely, consider Fig. 2, which is also a history of a concurrent queue.
This does not have a linearization, because, by the partial ordering condition,
enqueue(2) must linearize after enqueue(1). It follows that dequeue() can only
correctly return 1 (if it linearizes after enqueue(1)) or ‘empty’ (if it linearizes
before enqueue(1)). No sequential equivalent of this history will satisfy the
sequential specification of a queue. This history is in fact a behaviour of the
‘buggy queue’ from [18].

Linearizability is useful for programmers because it allows them to view a
concurrent data structure’s operations as happening at a single point in time
(called the linearization point) [14]. Furthermore, [9] proves that linearizability
generally coincides with ‘observational refinement’, meaning that when a lin-
earizable data structure replaces a correct but sub-optimal data structure, the
new program produces a subset of its previous, acceptable behaviour.

In this paper we identify reasons why some of the techniques to verify lin-
earizability are not scalable and present a technique that overcomes some of these
hurdles. We also present experimental results to demonstrate the feasibility of
our ideas.
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1.1 Related Work

There are a wide variety of approaches used to verify linearizability of data
structures. These range from manual proofs, possibly with the help of a theorem
prover (see [16,22] respectively for examples with and without a theorem prover),
to static and runtime analysis (e.g., [23,27], respectively) and model checking
(e.g., [4,12,19,24]).

Model checkers give a high degree of automation because they work by
exhaustive checking of behaviour, but are limited compared to other approaches
because their verification is typically within bounds on the number of threads,
arguments and other factors. We distinguish two approaches to model checking
linearizability:

– linearization point-based checking requires the user to specify the linearization
points (see [19] for an example), whereas

– automatic checking does not require user specification of linearization points
(see [4,12,24]).

The latter has two advantages, viz., greater flexibility for data structures with
non-fixed linearization points, and certainty that reported failures are from bugs
in the data structure and not incorrectly identified linearization points.

There is a substantial literature on automatic checking which illustrates that
many different model checkers and techniques have been used for this purpose.
Vechev et al. [24] describe a tool for examining many potential versions of a
data structure and determining which are linearizable. To this end they use
both automatic and linearization point-based methods in SPIN [11]. They note,
importantly, that automatic checking can be used to cull a large number of poten-
tial implementations but that its inherent scalability issues make it intractable
for thorough checking.

Similarly, Liu et al. [12] use the model checker PAT [17,20] for automatic
checking of linearizability. Both the implementation (the concurrent data struc-
ture) and the specification (the sequential behaviour) are modelled in the process
algebra CSP, and the verification is carried out as checking observational refine-
ment with certain optimizations. The verification process is, generally, automatic
checking, though the results can be enhanced if linearization points are known.
This result was further improved on by Zhang [28] by combining partial order
reduction and symmetry reduction to narrow the potential state space, and in
doing so they were able to verify concurrent data structures (albeit simple ones)
for three to six threads. In contrast, automatic checking reported by Vechev et
al. [24] only allows two threads, though the comparison may not be fair, as SPIN
does not have built-in support for symmetry reduction.

Burckhardt et al. [4] describe the tool Line-Up, built on top of the model
checker CHESS [15], for automatically checking linearizability of data structures.
It is one of the most automated approaches to date; it does not require user-
specified linearization points nor an abstract specification of the data structure
(a specification is instead automatically extracted from the implementation). It
also operates on actual code, as opposed to a model of the code.
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The compromise for this convenience, as pointed out by [28], is that Line-
Up is “only sound with respect to its inputs”. Specifically, a user must specify
which sequences of operations Line-Up checks, whereas other model checking
techniques generate all possible sequences of operations (within bounds). Line-
Up also requires that a specification be deterministic, as otherwise the extracted
specification will misrepresent the actual abstract specification.

Regarding the complexities of linearizability checking, the problem has been
shown decidable for a special class of concurrent linked-list, by a reduction to
reachability of method automata [5]. As an observational refinement problem,
checking linearizability is in general undecidable, and it is EXPSPACE-complete
even with fixed linearization points [2]. More recently, Bouajjani et al. discov-
ered that for a class of concurrent objects and data structures such as stacks and
queues, the linearizability property can be reduced to the control state reacha-
bility problem [3].

1.2 Contributions

A notable theme in the related work is that automatic methods are considered to
have inherent scalability issues for verification [12,24], though they can be used
effectively when limits are placed on types or numbers of operations checked
[4,24] or advanced state compression techniques are used [28]. However, the
exact causes of the scalability issues are not discussed in detail, and there is
some disagreement in the literature.

This paper explores in detail the causes of scalability issues in automatic
checking, using the work of Vechev et al. [24] as our starting point. The insights
derived are then used to describe a technique for improving the scalability
of automatic checking methods using SPIN. Our solution, as currently imple-
mented, is not sound and hence can only be used to find bugs. However, we
describe how the technique can be extended to support verification.

The paper is structured as follows. In Sect. 2 we present our analysis of the
scalability issues in the work of Vechev et al. [24]. A technique for overcoming
these issues is presented in Sect. 3, and the results of applying an implementa-
tion of this technique to data structures from the literature with known bugs is
described in Sect. 4. Also in Sect. 4 we discuss the main limitation of our tech-
nique which restricts it to bug finding, rather than full verification. Section 5
then describes how this limitation can be overcome and how the technique can
be integrated into SPIN.

2 Scalability Issues of Automatic Checking with SPIN

To understand the scalability issues of automatic checking in [24], we first
describe their methods. We will refer to their approach as using ‘global internal
recordings’ since a (global) list of all invocations and responses of operations by
any thread is recorded (internally) as part of the model checker’s state.
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Input
Program

SPIN
Model Checker

Is Valid or
CounterExample

Sequential
Specification

Linearization
Checker

Recorded
History Is Valid?

Fig. 3. Checking linearizability using global internal recordings.

Figure 3 depicts the process of checking with global internal recordings (based
on the top right section of [24, Fig. 1]). In the input program, data structure mod-
els to be tested are instrumented so that client threads non-deterministically
invoke operations on the data structure. Invocations and responses of opera-
tions are recorded during the state-space exploration. These recordings are then
passed to an (external) linearization checker which searches for a valid lineariza-
tion of the history. It searches by generating a permutation of the history, and
then checking whether it satisfies conditions (1) and (2) of Definition 1. Note
that condition (1) requires that the linearization checker has its own sequential
specification of the data structure, separate from the model checker. If no such
linearization can be found, the value returned by the linearization checker causes
a local assertion to fail in the model checker.

2.1 Existing Explanations for the Scalability Issues of Automatic
Checking

Though well-acknowledged in the literature, explanations for the scalability
issues of automatic checking in [24] are not comprehensive. In [24], the authors
assert that storing history recordings in the state during model checking lim-
its the state space which can be explored, because “every time we append an
element into [sic] the history, we introduce a new state”.

In contrast, the authors of [12] consider linearization checking, not model
checking, to be the performance-limiting factor of automatic checking in [24],
stating that:

“Their approach needs to find a linearizable sequence for each history
. . . [and] may have to try all possible permutations of the history. As a
result, the number of operations they can check is only 2 or 3.”

Long and Zhang [13] describe heuristics for improving linearization check-
ing. Their approach also suggests that linearization checking is a performance-
limiting factor of automatic linearizability checking. Though their results show
the effectiveness of their optimisations, they only test their methods on pre-
generated traces; that is, without doing model checking to generate the traces.
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As a result, the impact of these optimisations on overall linearizability checking
is unclear.

2.2 Testing Explanations for the Scalability Issues of Automatic
Checking

To test these different hypotheses, we conducted several preliminary experiments
on a concurrent set provided as supplementary material by Vechev et al. [25].
All experiments were performed on a machine running Ubuntu 14.04.3 with
32 GB RAM and a 4-core Intel Core i7-4790 processor. The first compared the
performance of automatic checking with and without the linearization checker;
see Tables 1 and 2. Without the linearization checker, histories are explored by
SPIN but not checked for linearizability. Checking with a linearization point-
based approach is also shown for comparison.

In this experiment, two threads invoked operations on the data structure. For
6 operations, both automatic methods were given a moderate state compression
setting (the built-in COLLAPSE flag in SPIN – see [11]) but failed to complete
due to memory requirements. All times shown are the average of 10 executions.
Note that SPIN was used with a single core to avoid time overhead for small
tests and memory overhead for large tests.

The results clearly indicate model checking is the performance-limiting factor,
since disabling linearization checking does not lead to performance comparable
to checking with linearization points.

Table 1. Comparison of execution times for automatic and non-automatic checking
methods of Vechev et al. [24]. All times in milliseconds.

Method History length (# operations)

2 4 6

Linearization points 22 257 2160

Global internal recordings 33 10 590 Out of memory (30 GB)

Global internal recordings without linearization
checker

33 10 240 Out of memory (30 GB)

Table 2. Comparison of memory use for automatic and non-automatic checking meth-
ods of Vechev et al. [24]. All measurements in MB.

Method History length (# operations)

2 4 6

Linearization points 131.0 204.4 773.3

Global internal recordings 136.2 3780.80 Out of memory (30GB)

Global internal recordings without lin-
earization checker

136.2 3744.2 Out of memory (30GB)



Improving the Scalability of Automatic Linearizability Checking in SPIN 111

A second experiment investigated scalability issues in the model checking
process. The number of states and histories explored in the same concurrent set
were compared; see Tables 3, 4 and 5. For global internal recordings, histories
were recorded by modifying the linearization checker. Each time the linearization
checker was invoked, the history it was acting on was recorded. When checking
with linearization points, the SPIN model was instrumented to output each
operation as it was checked. The histories checked were then reconstructed from
the output list of recordings.1

Note that states ‘stored’ refers to the number of distinct states in the state
space, whereas states ‘matched’ refers to how many times a state was revis-
ited [11]. Together they give an indication of how much state space exploration
occurred.
Table 3. Comparison of states stored by global internal recordings and linearization
points methods.

Method History length (# operations)

2 4 6

Linearization points 21 198 1 215 501 12 899 275

Global internal recordings 25 740 12 693 435 Out of memory (30 GB)

Table 4. Comparison of states matched by global internal recordings and linearization
points methods.

Method History length (# operations)

2 4 6

Linearization points 4514 329 884 3 765 699

Global internal recordings 4699 2 570 412 Out of memory (30GB)

Table 5. Comparison of histories checked by global internal recordings and lineariza-
tion points methods.

Method History length (# operations)

2 4 6

Linearization points 165 2876 9783

Global internal recordings 296 133 536 Out of memory (30 GB)

Tables 3 and 4 confirm the statement of [24] – many more states are explored
using automatic checking. However, the magnitude of the difference suggests
1 Note that reconstruction of histories required adding a global index variable which

would not normally be used in checking with linearization points and inflates the
state space for reasons explained later in this section. The number of states and
number of histories listed for checking with linearization points are therefore over-
estimates.
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more than just one state is introduced by each recording. Table 5 also reveals
some implications not immediately evident from previous explanations – that
checking with global internal recordings generates and checks many more histo-
ries than checking with linearization points. Because this is not encoded manually
by the different approaches, it suggests an optimisation by SPIN which allows
checking with linearization points to shrink the state space and remove histories
which are unnecessary for verifying linearizability.

An interesting trend from the results was the ratio of ‘matched’ (revisited)
to ‘stored’ (total distinct) states, which was higher for checking done with lin-
earization points. For example, in the case of 2 operations, even though checking
with linearization points has 4000 fewer states, it revisits them almost as much
as global internal recordings checking. This provides some insight as to why it
checks many fewer histories and has vastly better performance.

It was found that the histories checked with linearization points are a strict
subset of those checked using global internal recordings. The histories missing
from linearization points checking were due to the model checker stopping and
backtracking in the middle of a history. That is, SPIN would generate the start
of the history but stop before generating some of the recordings for the end of
the history. For example, Fig. 4 shows a history that is missed when checking a
concurrent set using linearization points. The point ‘X’ shows where checking
for this history stops.

add(1)

add(1)

add(1)

remove(1)

X

Fig. 4. A missing history when model
checking with linearization points.

add(1) add(1) add(1) remove(1)

Y

Fig. 5. A history that precedes the
missing history.

After examining such histories and considering the algorithm applied by
SPIN for model checking it became apparent that the reason SPIN stopped pre-
emptively in some histories was the presence of repeated states. Explicit-state
model checking algorithms optimise state space exploration by not returning to
a state if all of the possibilities extending from that state have been previously
checked (see, for example, [1]).

For example, when checking with global internal recordings, the history in
Fig. 4 occurs (in the search process) after the history shown in Fig. 5. When
checking with linearization points, at the point X the global state in the history
of Fig. 4 matches the global state at point Y in Fig. 5, so the model checker does
not proceed any further.
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This explains the large number of states and histories generated by global
internal recordings. Because of the recordings, states which would otherwise
appear identical to SPIN are differentiated. SPIN therefore continues to search
down the branch of the state space, whereas with linearization points it would
backtrack.

3 A Technique for Improving Scalability of Automatic
Checking

We now describe a new automatic checking technique. The key insight is to
improve scalability by storing less global data, allowing SPIN to optimise state
space exploration by backtracking. The technique is referred to as ‘external
checking’ because it outputs recordings which are stored by the model checker
in the automatic checking of [24].

The description provided in this section is for a proof-of-concept implemen-
tation using machinery built to work with SPIN. Unfortunately, subtle issues
in the state space exploration technique make this implementation an unsound
checking procedure for verification. In Sect. 5 we describe the reasons for this
unsoundness and present a sound and complete checking procedure that extends
the basic idea. Implementing the extension would require altering the SPIN
source code and is left for future work.

3.1 External Checking: Preliminary Implementation

The general concept is similar to that of automatic checking with global internal
recordings because each history is checked for a linearization. The implementa-
tion is also similar, viz., client threads non-deterministically invoke operations
on the concurrent data structure to generate the histories. The key difference is
that the external checking method outputs information about the operations to
an external linearization checker as they occur, rather than keeping an internal
list of recordings until the end of each history.

A simplistic approach was taken to outputting recordings externally. An
embedded printf statement was included in the Promela model whenever an
invocation or response occurred. For example,

c_code{printf("%d %d %d %d %d %d\n", now.gix,
Pclient->par, Pclient->op, Pclient->retval,
Pclient->arg, Pclient->type);}

outputs the index of the recording in the history (gix), the parent recording
(i.e., invocation) of the operation if it was a response (par), the operation (op),
argument (arg), return value (retval) and whether this was an invocation or
response (type) for the thread ‘client’ (Pclient).

External checking requires that output recordings be assembled into complete
histories, since the recordings are output in the order in which SPIN explores the
state space. Since SPIN uses a depth-first search of the state space, this simply
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requires iterating over the list of recordings and outputting a history whenever
the last recording (a complete history) is reached.2 In pseudocode,

Recording current_history[history_length];
for (Recording recording : output_recordings) {

current_history[recording.index] = recording;
if (recording.index == history_length) {

//leaf node in the search tree
outputHistory(current_history);

}
}

A process takes the output from SPIN and reconstructs the histories as shown
above. It then passes the histories to the linearization checker which checks each
history for a linearization. The entire external checking procedure is illustrated
in Fig. 6. Compare this to Fig. 3 for checking with global recordings. Note that
the external linearization checker runs concurrently with the model checker. If a
failure (non-linearizable history) occurs, it notifies the model checker and both
stop.

Input
Program

SPIN
Model Checker

Is Valid or
CounterExample

History
Reconstruction

Linearization
Checker

Sequential
Specification

Recordings

Histories

Fig. 6. The external checking procedure.

Note that at present external checking is only suitable for use with single-
core SPIN checking. Using several cores changes how the state space is explored
and therefore how recordings are output, so it requires understanding a different
state space exploration algorithm and also the capacity to determine from which
core the recordings originated. Further work could explore implementing these
features.

2 Note that histories are limited to a given length to make model checking feasible.



Improving the Scalability of Automatic Linearizability Checking in SPIN 115

4 Results

Three popular data structures from the literature with known defects were used
for testing the effectiveness of the external checking method. These data struc-
tures are summarised in Table 6. It is important to note that both the buggy
queue and the Snark deque were originally published with proofs of correctness,
and only later found to be defective. They therefore represent realistic examples
of bugs in concurrent data structures. The ABA problem, tested for in both the
Treiber Stack and Snark deque, is also a common problem with concurrent data
structures which use the compare-and-swap primitive.

Table 6. Faulty data structures used for testing external checking.

Data
struc-
ture

Source Description of bug

Treiber
stack

[21] Suffers from the ABA problem in non-memory managed
environments. Excellent explanation in [26, Sect. 1.2.4]

Buggy
queue

[18] When a dequeue is interrupted by two enqueues at critical
sections, the dequeue returns a value not from front of the
queue. See [6, Sect. 3.3]

Snark
deque

[7] Two bugs, the first of which can cause either popLeft or
popRight to return empty when the queue is nonempty, and
the second of which is an ABA-type error resulting in the
return of an already popped value. See [8, Sect. 3] for detailed
descriptions

Promela models of the data structures in Table 6 were created and instru-
mented to allow automatic checking both externally and via global internal
recordings. In cases where more than one bug existed in a single data struc-
ture, each bug was repaired after being flagged so that others could be tested.
Experiments were performed on a machine running Ubuntu 14.04.3 with 32 GB
RAM and a 4-core Intel Core i7-4790 processor, with the exception of the final
Snark deque bug. Its tests were executed on a machine running Oracle Linux 6
with two 22-core Intel Xeon CPU E5-2699 v4 processors and 378 GB RAM due
to high memory requirements. SPIN was used with a single core to avoid time
overhead for small tests and memory overhead for large tests. Also, external
checking does not currently support checking with multiple cores.

External checking located all bugs. Global checking found all except the final
Snark deque bug - after 2.87 × 107 ms (∼ 8 h) the memory limit of 300000 MB
was reached and SPIN exited without locating the bug. The results of testing
for detected bugs are shown in Table 7. For the first 3 bugs, no state compres-
sion flags were needed, and only 2 threads and 4 operations were required for
detection. Times shown are an average of 10 executions for both methods. For
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Table 7. Bugs detected by external checking and global recordings checking.

Data structure Bug number External checking Global recordings checking

Time (ms) Memory (MB) Time (ms) Memory (MB)

Treiber stack 1/1 373 172 1346 342

Buggy queue 1/1 248 159 774 252

Snark deque 1/2 86 139 123 145

Snark deque 2/2 2.71 × 107 248227 − −

the final snark deque bug, the COLLAPSE memory compression flag was used
(see [11] for details), as the failure trace required 3 threads and 7 operations.
Trials for this bug were run once due to resource constraints.

4.1 Discussion of External Checking Performance

The results in Table 7 illustrate the utility of the external checking method. It
was able to locate all bugs, even without the improvements described in Sect. 5.
This suggests it is uncommon in practice that a bug cannot be detected by the
method.

In addition, external checking was both faster and used less memory than
global checking in all cases. For the Treiber stack and buggy queue, memory use
was roughly half that of global recordings checking, and checking was around
three times faster.

In the case of the second Snark deque bug, there was sufficient memory for
external checking to find the bug, but not enough for global recordings checking.
Of course, global recordings checking would detect the bug if sufficient memory
or time were available, since it is a verification technique. However, the results
show it requires at least 50 GB more memory than external checking (or the
equivalent amount of time with a stronger compression), which illustrates the
benefit of a faster bug-finding technique for bugs with long failure traces.

For comparison, tests with linearization point-based checking show that this
bug can be located in under 30 min with COLLAPSE state compression, illus-
trating that automatic methods are not as scalable as linearization points-based
methods.

The two automatic methods are closest in performance for the first bug of the
Snark deque. This is because the failing history occurs very early in the model
checking process. External checking takes longer to check any individual history
because it must be reconstructed and then passed to the linearization checker.
Its performance benefit comes from checking far fewer histories. Therefore when
a bug occurs after only very few histories, external checking does not have time
to yield a significant performance benefit. Conversely, the deeper the execution
required to locate a bug, the greater the improvement in performance compared
to global internal recordings.



Improving the Scalability of Automatic Linearizability Checking in SPIN 117

5 Potential Improvements: Integration with SPIN

The technique described in Sect. 3.1 is in fact unsound. Recall from Sect. 2.2 that
checking with linearization points covers fewer histories due to SPIN optimisa-
tions that cause it to stop at repeated states. This is valid with linearization
point-based checking because such approaches include an abstract specification
that runs in parallel with the model of the concrete implementation. The state
variables of the abstract specification ensure that the sub-history encountered
before backtracking is truly equivalent to one checked earlier.

However, in external checking no abstract specification is kept by SPIN.
This means there are cases where SPIN stops preemptively and this prevents it
checking a history that could violate linearizability.

For example, consider the sequential specification of a data structure as
shown in Fig. 7. Suppose this specification was incorrectly implemented as shown
in Fig. 8. If checking on a single thread is used, the SPIN output (shown dia-
grammatically) is as in Fig. 9.

int x = 0;

atomic operation 1:

x++;

return x;

atomic operation 2:

return True;

Fig. 7. Abstract specification.

int x = 0;

operation 1:

x++;

return x;

operation 2:

if (x == 0)

x = 1;

return True;

Fig. 8. Incorrect implementation.

Checking stops before the end of the third (faulty) history, and therefore it
is not checked and no error is raised. The model checker stops because of the
repeated global state x = 1. It reaches this state after operation1 in the first
two histories and from those histories has explored all states extending from that

I
operation1 → 1 operation1 → 2

II
operation1 → 1 operation2 → True

III
operation2 → True operation1 → 2

Fig. 9. Histories output by SPIN when using external checking on the data structure
of Fig. 8. The dashed line indicates SPIN stopping.
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point. When SPIN encounters the same state after operation2 completes in the
third history, it stops, despite the global state being incorrect for an execution
of operation2.

Note that checking with linearization points, where an abstract specifica-
tion is included, would prevent this error, since the abstract specification’s
operation1 and operation2 will alter the global data differently.

5.1 A Sound Verification Algorithm

We now describe a means of extending our technique for verification, which
requires modifying the SPIN source. Doing this would also lead to a significant
performance benefit.

Outputting recordings requires keeping track of a global index. As Sect. 2.2
showed, global variables tracked by SPIN can unnecessarily inflate the state
space. If SPIN were modified it would not be necessary to keep a global index
as a global variable in the model – it could be kept as metadata instead.

Likewise, themachinery of Sect. 3.1 couldbe implemented in avery similar fash-
ion in SPIN. Instead of outputting recordings, it could be stored as metadata sep-
arate from the state vector and model checking process. Complete histories would
still have to be passed to an external linearization checker, as was done in [24].

We now outline the extra checking necessary to prevent the missing histo-
ries described in the previous section, making the approach sound. It was noted
that repeated global states cause the lack of soundness. This problem does not
occur when checking with linearization points because the abstract specifica-
tion is present in the global state and represents the expected behaviour of the
implementation. Therefore a repeated state always indicates identical behaviour.

Incorrect backtracking in external checking could therefore be prevented by
using the abstract specification to decide when a repeated global state represents
correct behaviour of the implementation. We propose the following method:
whenever a repeated global state is reached, ensure that the current sub-history
has a linearization which leads to the same state in the abstract specification
as the sub-history which originally created that global state. This would require
keeping track of the valid linearizations for previously encountered histories.

For example, suppose during checking histories for a stack implementation,
the model checker had explored all states extending from the global state G, as
shown in Fig. 10. This implies every full history reached from G with the sub-
history shown in Fig. 10 had a linearization. In verifying this, the linearization
checker would have found that the operations before G have the valid lineariza-
tion [push(1) → True, pop() → 1]. Therefore the abstract state at G was an
empty stack in all of the checked histories represented by Fig. 10.

Suppose the sub-history shown in Fig. 11 then occurred, repeating the global
state G. To determine whether backtracking is correct, it suffices to check that
the sub-history up to G has a linearization which would lead to an empty
stack in the abstract specification. In this case it is possible by the linearization
[push(1) → True, pop() → 1, pop() → empty]. This means SPIN can backtrack
safely.
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push(1) → True

pop() → 1
G

Fig. 10. Example history.

pop() → 1

push(1) → True

pop() → empty
G

Fig. 11. Second example history.

In contrast, recall the counter-example to verification from Fig. 9. In this
example, the histories verified by the model checker (histories I and II) have
linearizations [operation1 → 1, operation1 → 2] and [operation1 → 1,
operation2 → True], respectively. That is, in both cases the linearization up to
the repeated state is operation1 → 1, meaning the abstract specification state
at that point is x = 1. When the same global state is reached in history III,
there is no linearization of operation2 → True which leads to the abstract state
x = 1. Only x = 0 is possible. Therefore in the proposed implementation SPIN
cannot backtrack after operation2 → True and the entire history would be
checked and found invalid.

Note that this extended approach requires checking for linearizations, meta-
data caching and the usual state exploration of model checking. Performance
could be improved by a high degree of parallelism between these separate func-
tions.

6 Conclusions

We have described in detail the scalability issues of automatic linearizability
checking in [24]. The main cause is a lack of state space traversal optimisations
due to a large amount of global data in the model checking state. This identified
cause makes explicit a fact which is widely assumed in the literature but whose
explanation is often omitted or unclear.

These observations motivated a new, more scalable technique for automatic
checking with SPIN. The key insight is to not store the recordings in the model
checker for checking at the end of each history, but instead to output them
immediately. This allows the model checker to optimise the state space explo-
ration. The algorithm we have implemented reconstructs the histories from the
recordings and determines if these histories satisfy the linearization conditions.
Our experiments show that the extra cost of generating the history from the
recordings that are output directly is smaller than the speed-up gained from the
more efficient execution of the model checker.

This external checking technique reduces the number of histories that need
exploration and thus is able to explore longer traces. As a consequence bugs
that occur on long traces are detected more efficiently than when using the
global internal recordings technique in the literature. External checking does
detect bugs that occur after a few histories but the performance benefits are
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not significant. In other words, the more states the model checker is required to
explore before it can detect a bug, the more effective our technique will be.

We have also presented a limitation of the implemented external checking
technique (namely, that it can be used for bug detection but not verification).
We have developed an algorithm that overcomes this limitation, and intend to
implement this in SPIN as future work. Note that if only an efficient bug detec-
tion technique is desired, the external checking algorithm described in Sect. 3
would suffice.
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