
Towards Customizable CPS: Composability,
Efficiency and Predictability

Wang Yi(B)

Uppsala University, Uppsala, Sweden
yi@it.uu.se

Abstract. Today, many industrial products are defined by software, and
therefore customizable by installing new applications on demand - their
functionalities are implemented by software and can be modified and
extended by software updates. This trend towards customizable products
is extending into all domains of IT, including Cyber-Physical Systems
(CPS) such as cars, robotics, and medical devices. However, these sys-
tems are often highly safety-critical. The current state-of-practice allows
hardly any modifications once safety-critical systems are put in oper-
ation. This is due to the lack of techniques to preserve crucial safety
conditions for the modified system, which severely restricts the benefits
of software.

This work aims at new paradigms and technologies for the design
and safe software updates of CPS at operation-time – subject to strin-
gent timing constraints, dynamic workloads, and limited resources on
complex computing platforms. Essentially there are three key challenges:
Composability, Resource-Efficiency and Predictability to enable modular,
incremental and safe software updates over system life-time in use. We
present research directions to address these challenges: (1) Open archi-
tectures and implementation schemes for building composable systems,
(2) Fundamental issues in real-time scheduling aiming at a theory of
multi-resource (inc. multiprocessor) scheduling, and (3) New-generation
techniques and tools for fully separated verification of timing and func-
tional properties of real-time systems with significantly improved effi-
ciency and scalability. The tools shall support not only verification, but
also code generation tailored for both co-simulation (interfaced) with
existing design tools such as Open Modelica (for modeling and simulation
of physical components), and deployment on given computing platforms.

1 Background

Our life is becoming increasingly dependent on software. Many industrial prod-
ucts are defined by software, thus customizable as smart phones: their functional-
ities, features and economical values are realized by software and can be changed
on demand over their life-time through software update. Indeed these products
often serve as an open platform through software to access numerous services
provided by remote servers in the cloud thanks to the emerging technologies of
Internet-of-Things (IoT), cloud storage, cloud computing, data centers etc. The
c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 3–15, 2017.
https://doi.org/10.1007/978-3-319-68690-5 1



4 W. Yi

trend towards customizable products is extending into all application domains
of IT including Cyber-Physical Systems (CPS) such as cars, robotics and med-
ical devices. Today software in our cars may be updated in service workshops;
Tesla even allows customers to upgrade remotely the software system of their
electric vehicles. Even avionics, traditionally a very conservative area, is moving
from functionally separated solutions on uniprocessors to integrated systems on
multi-core platforms with the capability to re-configure during operations [10].
However, CPS are often highly safety-critical, thus utmost care must be taken
to ensure crucial safety conditions.

Fig. 1. Towards an open architecture for updata-
ble CPS

Current design methodolo-
gies for CPS offer limited sup-
port for software updates on
systems in operation. Although
updates are possible in areas
where certification is not manda-
tory, it is often restricted to
updates either offered by pro-
fessional service providers or
software upgrading prepared
(through intensive verification
and test in the lab [23]) by
the manufacturers e.g., Tesla.
In general, the current state-of-
practice allows hardly any mod-
ifications once safety-critical
systems are put in operation
due to the lack of technology to
preserve the safety conditions of
the modified systems. A classic example is civil avionics [28]: once a passenger
aircraft built by Boeing is certified for operation, it should fly for life-time (esti-
mated 50 years) without modifications to its electronic system and for mainte-
nance the company must purchase the original electronic control units and store
them for 50 years. It is remarkable that in the era of IoT when everything is
connected and everything is changing over time, we are flying in a machine run-
ning outdated software made decades ago. This largely restricts the benefits of
software.

2 Why Update CPS in Operation?

In less safety-critical areas, software updates are widely adopted by users to
increase system safety by software patches or extend system functionalities for
better utilization of the computational resources by installing new applications
on demand. Smart phones and notebooks are examples. Apart from the lack of
technologies for safety preservation, there seems to be no reason why software
for CPS in general should not be updated.



Customizable CPS 5

CPS may be small embedded devices or large-scale networked embedded
systems often viewed as systems of (sub-)systems with underlining communica-
tion infrastructure; a (sub-)system may have the overall architecture as shown
in Fig. 1, consisting of a collection of cyber components (software components)
interacting with physical components in real time through sensors and actua-
tors. At operation-time, the user or customer may want to update the software
system by installing a new application (a software component) purchased from
a software provider. The update should be done by herself, not a professional
service provider or the manufacturer who has full access to the software system.
For example, consider smart transportation. When travelling in North Europe
in the winter with a future self-driving car, we may want to install ourselves
applications for ice- and elk-detection for safe driving. Another example is med-
ical device e.g., pacemaker. In a possible future scenario, for a patient carrying
such a device, a new heart problem may manifest over time (e.g., due to aging
of the patient). To treat the upcoming problem, a doctor may propose to install
a new application instead of replacing the device.

3 The Challenges

Clearly, the examples illustrate that software updates may lead to more reliable
and cost-efficient solutions. However, for both examples, we must make sure
to preserve the following two basic conditions before the intended updates are
realized:

Condition 1 the new application will not interfere with the existing system:
they should not block each other due to synchronization and their input and
output values should be compatible, satisfying required relationships – the
functional correctness must be preserved.

Condition 2 the computing platforms have enough computational resources to
run the new application without being overloaded or violating any timing
constraints – non-functional correctness must be preserved.

These two safety conditions illustrate the following key challenges for the
design and update of CPS:

Composability (The design challenge) to build systems that are updatable
at operation-time, allowing for modular updates that should neither require
re-designing the original system, nor interfere with the functionalities of the
original system (Condition 1).

Efficiency (The run-time challenge)to optimize resource utilization for preserv-
ing Condition 2 such that incremental updates may be applied over the sys-
tem’s life-time.

Predictability (The verification challenge) to enable safe updates through ver-
ification of the two conditions (Condition 1 and 2) on demand before the
intended updates are committed.



6 W. Yi

The three challenges are often contradicting. For example, to optimize
resource utilization, a global solution may be preferred. However, globally
dynamic resource sharing may result in unmanageable non-determinism lead-
ing to poor predictability. Similarly designing systems for predictability using
monolithic-threading or time-triggered approaches may not be an advantage for
achieving the composability because these approaches require all computation
jobs and resource accesses must be scheduled at design-time, which leaves little
possibility for updates after deployment. In fact, current design methodologies of
embedded systems allow for systems that are either predictable or composable,
and often resource in-efficient in many cases due to resource over-dimensioning.
For instance, synchronous systems [22] designed for predictable and deterministic
behavior are often hard to modify and difficult for integration of new functional-
ities without re-designing the whole system; whereas concurrent systems [6] with
multi-threading can be extended easily by new threads for new functionalities,
thus are better for composability, but poor for predictability as they are hard to
verify due to non-determinism.

For the design of updatable systems, naturally we take a component-based
approach, which allows for modular changes. Component-based software devel-
opment has attracted a large amount of research; in the past decades, various
component models have been developed e.g. [9] for a classification of software
models in the context of software engineering. In the domain of embedded sys-
tems, considerable efforts have been investigated within the ARTIST initiatives
on model-based design (see e.g. [5]). An interesting line of work is the theories of
interfaces e.g. [12] for timed systems, [8,41] for resource modeling and scheduling
and more recently, contract-based systems design [3,13]. However, all previous
attempts address only issues on the design of systems. Our focus will be on
updates after deployment. Conceptually the existing techniques are useful, but
not applicable. For updates, we must address composability issues at run-time.
First, we must build systems that are updatable. Second, we must make sure
that the updates are safe before they are realized.

4 Objectives

We distinguish design-time, operation-time and run-time. Operation-time means
when systems are in operation after deployment, which can be off-line or on-
line but not necessarily run-time. Any requirement at operation-time is more
demanding than design-time but less than run-time. Therefore for operation-time
updates, we assume that the overall architecture of a system and also its compo-
nents (or sub-systems) are all designed, verified and deployed at design-time and
abstract models tailored for operation-time verification of the two conditions are
available.

The overall objective of this work is three-fold. First we aim at new implemen-
tation schemes for building updatable systems. Second, we develop scheduling
techniques to optimize resource utilization at run-time and thus enable incre-
mental updates over system’s life-time. Third, we develop verification techniques



Customizable CPS 7

and tools to validate the safety of updates on demand. Now we outline our ideas
to reach the goals.

Composability shall be achieved by (1) multi-threading and (2) non-blocking
communication that preserves synchronous semantics for data exchange
among components. The objective of this work is to develop open system
architectures as illustrated in Fig. 1 offering open interfaces and new imple-
mentation schemes to build systems allowing for integration of new software
components by simply creating new threads. The threads will be coordinated
by a centralized run-time system to ensure that the synchronous semantics of
data exchange among threads (by reading and writing requests) is preserved
[7] and the timing constraints on computation jobs released by threads are
satisfied. For updating such multi-threading systems with new software com-
ponents under the described requirements, we need to solve optimization
problems similar to retiming of synchronous circuits, a classic problem in
circuits design [29].

Resource-efficiency will be addressed by static partitioning and run-time
scheduling. The objective of this work is two-fold. First, we study fundamen-
tal issues in real-time scheduling, addressing the optimality and complexity
of scheduling algorithms [15] in particular questions related to dynamic work-
loads with complex release patterns of computation jobs and parallel com-
puting platforms such as multi- and many-cores with massive parallel and
heterogeneous processing units. The goal is to develop a parallel version of
the real-time calculus [40] aiming at a unified theory for characterization of
parallel and heterogeneous resource demands and resource supplies, as well as
optimal mapping between them, as a scientific foundation for multiprocessor
scheduling, which is a hard open problem in the field of real-time systems.
Second, a practical approach will be taken to achieve near-optimal solutions
for applications under assumptions in systems building such as non-blocking
data exchange.

Safety-conditions will be ensured by verification on demand before the
intended updates are committed. The objective of this work is to develop
a new generation of verification techniques and tools for CPS in particular a
new version of UPPAAL with significant improvements on efficiency and scal-
ability by fully separating the analysis of timing and functional correctness.
Functional properties will be specified and verified in a contract-based frame-
work supported with SMT-based verification techniques. Timing and non-
functional properties will be specified on computation jobs and verified using
scalable techniques developed for scheduling analysis [34,35]. For uniprocessor
platforms, the existing techniques and tools e.g. [1] scale well with industrial
size problems. The future focus will be on multicore platforms.



8 W. Yi

5 Work Directions

To address the challenges, we propose the following work directions.

5.1 Towards Open Architectures for Updates

We consider CPS that may be large-scale networked embedded systems of
(sub-)systems. A (sub-)system with its own computing platform may have a
set of software components (cyber part as shown in Fig. 1) deployed based on
a data-flow-like diagram with basic blocks representing its components (which
may have hierarchical structures) and (links representing the input and output
relation among the components via interfaces. A sub-system may contain local
network links for which extra blocks should be created, modelling the delays for
data exchange if the delays are not ignorable. The diagram may also contain
cycles; however a cycle should contain a delay block to avoid infeasible behav-
iors. For abstraction, each physical-component is assumed to have a set of data
buffers (e.g., implemented by a driver) as its interface for data exchange with
software components.

To enable updates at operation-time after deployment, we must build sys-
tems that enjoy the following properties (see e.g. [2]): (1) integrating a new
component should not require re-designing the whole system, and (2) a newly
integrated component should not interfere with the existing components. Apart
from resource sharing that shall be addressed separately, there are essentially
two sources for potential interferences:

– The outputs of a component are not needed by the others, violating the
functional correctness and

– The Components may block each other due to synchronization mechanisms
for keeping data coherence.

In the following we propose solutions to disable these potential interferences.

Components, Interfaces and Contracts. We do not restrict how a component is
implemented inside but it must offer a well-defined interface containing a set of
input and output data buffers open for updates allowing for integration of new
components. The functional correctness of a component is specified by a contract
on its interface consisting of a pre-condition on input buffers and a post-condition
on output buffers. The contract is a local invariant satisfied by the computational
behavior of the component, which should be verified at design-time.

Furthermore, a workload model specifying the timing constraints and
resource requirement of each component should be available (created at design-
time), which may be considered as part of the contract. The workload model
(or task model) of a component specifies the release patterns of three types of
requests: reading, writing and computing (jobs). At run-time, the computing
jobs will be scheduled and executed according to the timing constraints. The
reading and writing requests will be non-blocking and coordinated to preserve
the synchronous semantics.



Customizable CPS 9

Non-blocking Data Exchange that Preserves Synchronous Semantics. To imple-
ment the components and the original system, any synchronization schemes may
be adopted to keep data coherence. However for integration of new components at
operation-time, we have to adopt non-blocking data exchange. For non-blocking
writing on an input buffer, only one-writer is allowed; but an output buffer may
allow arbitrary number of readers. Data items written should be considered as
non-consumable. The rationale is that new integrated components may only
read data from an open interface of the existing system for computing their own
output. The computed values may be used for realizing new functionalities or
write back to the existing system to improve the existing functionalities on input
buffers that previously have default values before the integration.

Reading is enabled (non-blocking) at any time; it is only copying (but not
consuming) the data; writing will over-write the previously written data; thus
only the latest data (i.e., the most fresh) values are available in the input buffers
if the buffer capacity is not enough and the readers are slower than the writer.

To keep data coherence, we will develop new synchronization protocols to
preserve the synchronous semantics of data exchange [7], ensuring two condi-
tions:

– Globally all readers should receive the same data if the reading requests are
issued after the same writing request and

– Locally for each component, the writing of an output value should correspond
to the input value by the preceding reading request.

Essentially the arrival order of reading and writing requests should be
enforced by the centralized run-time system; whereas the computation jobs may
be scheduled in any orders satisfying the timing constraints provided that the
local order of reading (input), computing (jobs) and writing (output) is pre-
served for each component. For the simple case when computation jobs take
no time, the the DBP protocol (Dynamic Buffering Protocols [7]) can be used
to preserve the synchronous semantics. Here we have a challenging case where
computation jobs will have non-zero computation times (specified by WCETs)
and timing constraints such as deadlines. The computation jobs may be released
according to any patterns e.g., specified using graph-based real-time task models
e.g., [34]. Our goal is to develop scheduling algorithms and data buffering proto-
cols to preserve both the timing constraints and also the synchronous semantics.
The hard technical challenge is to design algorithms and protocols which can
be re-configured at operation-time to handle software updates. This requires to
solve non-trivial optimization problems similar to retiming of synchronous cir-
cuits [29]. We aim at techniques for near-optimal solutions. This work shall be
driven and evaluated by case studies including a large-scale industrial application
to build a solar-powered electric vehicle [31].

5.2 Towards Precise Workload Modelling and Optimal Scheduling

Product customization often refers to incremental modifications. For CPS, it is
about (1) integrating a new software component for extensions with new func-



10 W. Yi

tionalities or (2) updating an existing software component for improvements on
the systems functionalities. Both cases may increase resource requirement incre-
mentally and so incease the system workload. Eventually it will hit the limit
of resource utilization (the ideal case is 100%) when the system is infeasible
or when a timing constraint for a computation job is violated. Thus run-time
resource management and scheduling is crucial for the customization of systems
in operation if not for the original design where the ad hoc solution in prac-
tice is often by over-dimensioning the system resources with redundancy, which
is not an option for customization. If system resources are not utilized in an
optimal manner, the possibility for customization will not last long. There are
two technical challenges. First, the workload (or resource requirement) of each
software component (and the whole system) should be modelled and character-
ized as precisely as possible to reduce the pessimism of scheduling analysis, thus
potentially allow for more applications to run concurrently on the platform. Sec-
ond, the workload should be mapped and scheduled on the platform to achieve
optimal resource utilization.

Hierarchy of Workload Models

difficult

F
ea

sib
ility

test

efficient
L&Ltwo integers implicit deadline

Sporadicthree integers explicit deadline

GMFcycle gragh different job types

RBtree branching

DRTarbitrary graph branching, loops, ...

Timed automata

low

E
x
p
re

ss
iv

en
es

s

high

Pseudo-Polynomial
Strongly (co)NP-hard

Fig. 2. Expressiveness vs. analysis efficiency

For a survey on real-time
workload models, see e.g. [25,
36]. There is a full hier-
archy of workloads models
available of different expres-
sive powers and degrees of
analysis difficulty as shown
in Fig. 2. In the context of
real-time systems, often sim-
plistic models such as peri-
odic or sporadic models (e.g.
the classic task model L&L
due to Liu and Layland
[30]) are adopted to over-
approximate the workload
generated by physical- and
software-components, which
in many applications may
lead to pessimistic analy-
sis and resource over-dimensioning.
To faithfully describe the
resource requirements and timing constraints of software components, as the
basis for workload characterization, we will use the di-graph real-time task model
[34] and further extend it within manageable complexity for automated analysis
with features including parallel OpenMP like structures [37,38], synchroniza-
tion [32] as well as mixed criticality workloads [14,18]. To capture the dynamic
workload triggered by physical components, a new line of work has been pro-
posed in [4,33] to compute faithful abstract models from hybrid models for pre-
cise schedulability analysis. The work will be further developed to compute the



Customizable CPS 11

di-graph models from general hybrid automata based on the theory of optimal
control and abstraction techniques [24].

Second, efficient scheduling algorithms and methods must be develop to opti-
mize resource utilization at run-time. For uniprocessor platforms, the theoreti-
cal foundation of real-time scheduling has been established in the past decades
with various scheduling and analysis techniques available. Several fundamental
problems are solved recently [16,17,19]. However to implement the synchronous
semantics of data exchange in a multi-threading setting, run-time scheduling
must consider dependent tasks imposed by the input and output relations defined
by a data-flow like diagram as shown in Fig. 1. It is a non-trivial technical chal-
lenge to design optimal scheduling algorithms for graph-based real-time models
under precedence constraints even for uniprocessor platforms. To enforce the
synchronous semantics, we foresee that memory consumption must be handled
efficiently to make multiple local copies of the same data dynamically to serve
the reading requests. Thus memory requirements must be considered in run-
time scheduling, which brings another dimension of complexity in uniprocessor
scheduling. On the theory side, there are still open issues in uniprocessor schedul-
ing, including the complexity of uniprocessor scheduling of sporadic tasks with
arbitrary deadlines and optimality of mixed-criticality scheduling [15].

For multicore platforms, the research community has produced a large num-
ber of insightful theoretical results [11], with the hope to extend the well-
established theory for uniprocessor systems developed in the last three decades
to the multiprocessor setting, e.g. our work on extending the classic result of Liu
and Layland on rate-monotonic scheduling to multiprocessor setting [20]. We
aim at obtaining such results also for heterogeneous platforms. In particular,
we will study the application mapping problem on heterogeneous multiprocessor
platforms that may have processor cores e.g. GPU, CPU with different process-
ing speeds, and non-trivial interaction with I/O devices, as well as memory
requirements, which is often the case in embedded applications in the context
of CPS. The ultimate goal is to develop a parallel version of the real-time cal-
culus [21,26,39,40], as a scientific foundation for multi-resource (including mul-
tiprocessor cores) scheduling, which is one of the challenging open problems in
the field of real-time systems.

However, we will also take a practical approach to develop real-time applica-
tions for updatable systems on platforms with massive parallel processing units
such as multi- and many-core, for which near-optimal solutions may be possible
under the assumption in systems building such as non-blocking data-exchange.

5.3 Towards Fully Separated Verification of Timing and Functional
Properties

To validate the safety of operation-time updates, we must developed powerful
and scalable techniques for automated verification of the safety conditions as
outlined earlier. Since the invention of model checking, the area of verification
has advanced significantly with tremendous success in industrial applications.



12 W. Yi

Complex systems with millions of states and configurations may be verified today
in seconds.

Model checking technology has been adopted to verify real-time systems
where UPPAAL [27] is one of the leading tools. However, it is well-recognized
that the technique suffers from the scalability problem, which is even more criti-
cal for real-time systems where the tool must handle not only functional proper-
ties but also timing constraints. We will take a different approach and fully sep-
arate the verification of functional and non-functional properties to improve the
scalability of the tool. This is a lesson learnt from the development of UPPAAL.
Mixing up functional and timing behaviors in modelling harms significantly the
efficiency of the tool, which is the critical barrier for its scalability. In the imple-
mentation of UPPAAL, for verifying functional correctness e.g. deadlock-freeness
or mutual exclusion properties, it demands a large amount of memory for keep-
ing track of the timing constraints. Unfortunately UPPAAL had to treat these
aspects in one unified framework which is not adequate for verification with
manageable complexity. Major safety-critical properties should be guaranteed
independently of timing. For example, a system should be deadlock-free inde-
pendently of how fast a component is executed. There is room for great improve-
ments.

The term predictability refers often to easy-to-verify. It concerns two parts.
First, the system must be built verifiable. The model selected for design and
verification should be as expressive as possible to express interesting system
features; however it should not be too expressive with unnecessarily expressive
power which may harm the analysis efficiency. The models for verification should
be carefully selected for efficient analysis and fast termination. For many appli-
cations, timed automata are often too powerful. For example, to model real-time
task release patterns, only lower bounds on clocks are needed to express the min-
imal release distances of computation jobs, mimicking the delay statements in
real-time programming languages e.g. Ada. However for reasoning about tim-
ing constraints on computations, upper bounds on clocks are needed to express
deadlines. Separating lower bounds on task releases and upper bounds on com-
putation jobs leads to an adequate model for real-time systems [34] for which
feasibility analysis can be verified efficiently in pseudo polynomial time [17]. This
model will be the basis for our work on verification of timing and non-functional
properties.

For non-functional correctness, as part of its interface to the computing plat-
form, each component will have a workload model specifying its timing constraint
and resource requirement within the tractable hierarchy as shown in Fig. 2 (see
[36] for details) for efficient operation-time checks on demand. However, the
demanding challenge is in the scheduling and analysis on complex platforms
such as multi-cores. A partition-based approach is promising [20], which may
reduce the analysis problems to the uniprocessor setting. In connection with
the work on developing the theory of multiprocessor scheduling outlined earlier,
different strategies will be evaluated for multiprocessor schedulability analysis.



Customizable CPS 13

To reason about functional correctness, a theory of contract-based interfaces
will be developed based on first-order logic where a component interface will
be specified using pre- and post-condition on input and output data as a local
invariant of the component. Given contracts for each component, two essential
properties have to be verified: (1) each component satisfies its own contract;
and (2) the contracts of components combined in a system are compatible,
i.e., each component produces the outputs needed by the other components.
The first aspect (1) is essentially a problem of software verification, and will be
addressed using techniques from abstract interpretation, software model check-
ing, and SMT-based verification. A central concern in (1) will be the handling of
real-valued quantities, which are today in software represented mainly as fixed-
point or floating-point data, and supported by only few of the existing analysis
tools (and usually with limited scalability). A technical challenge is to advance
the state of the art in floating-point verification and develop improved SMT
techniques for this theory. In (2), logical relationship between multiple contracts
must be checked, a problem that is today primarily addressed with the help
of SMT solving. Again, the main concern will be to scale up SMT methods to
handle the relevant data-types and the extent of contracts needed for real-world
systems.

Acknowledgement. For discussions on ideas presented in this document, the author
wish to thank Jakaria Abdullah, David Black-Schaffer, Gaoyang Dai, Pontus Ekberg,
Peter Fritzon, Nan Guan, Bengt Jonsson, Morteza Mohagheghy, Christer Nordström,
Philipp Ruemmer, Joseph Sifakis, Martin Stigge, Janos Sztipanovits and Aleksandar
Zeljic.

References

1. Abdullah, J., Dai, G., Guan, N., Mohaqeqi, M., Yi, W.: Towards a tool: times-
pro for modeling, analysis, simulation and implementation of cyber-physical sys-
tems. In: Aceto, L., et al. (eds.) Larsen Festschrift. LNCS, vol. 10460, pp. 23–639.
Springer, Heidelberg (2017). doi:10.1007/978-3-319-63121-9 31

2. Attie, P., Baranov, E., Bliudze, S., Jaber, M., Sifakis, J.: A general framework for
architecture composability. Formal Aspects Comput. 28(2), 207–231 (2016)

3. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J., Reinkemeier,
P., Vincentelli, A.S., Damm, W., Henzinger, T., Larsen, K.G.: Contracts for sys-
tems design: theory. INRIA report, France (2015)

4. Biondi, A., Buttazzo, G., Simoncelli, S.: Feasibility analysis of engine control tasks
under edf scheduling. In: Proceedings of ECRTS15, pp. 139–148. IEEE (2015)

5. Bouyssounouse, B., Sifakis, J.: Embedded Systems Design: The ARTIST Roadmap
for Research and Development, vol. 3436. Springer, Heidelberg (2005)

6. Burns, A., Wellings, A.: Concurrent and Real-Time Programming in Ada.
Cambridge University Press, New York (2007)

7. Caspi, P., Scaife, N., Sofronis, C., Tripakis, S.: Semantics-preserving multitask
implementation of synchronous programs. ACM Trans. Embed. Comput. Syst.
7(2), 15:1–15:40 (2008)

8. Chakabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Resource inter-
faces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003 (2003)

http://dx.doi.org/10.1007/978-3-319-63121-9_31


14 W. Yi

9. Crnkovic, I., Sentilles, S., Vulgarakis, A., Chaudron, M.R.V.: A classification frame-
work for software component models. IEEE Trans. Softw. Eng. 37(5), 593–615
(2011)

10. Certainty (Deliverable D1.2): Certification of real time applications designed for
mixed criticality (2014). www.certainty-project.eu/

11. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv. 43(4), 35:1–35:44 (2011)

12. de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Timed interfaces. In: EMSOFT
2002, pp. 108–122 (2002)

13. Derler, P., Lee, E.A., Tripakis, S., Törngren, M.: Cyber-physical system design con-
tracts. In: Proceedings of the ACM/IEEE 4th International Conference on Cyber-
Physical Systems, ICCPS 2013, pp. 109–118. ACM (2013)

14. Ekberg, P., Yi, W.: Bounding and shaping the demand of generalized mixed-
criticality sporadic task systems. Real-Time Syst. 50(1), 48–86 (2014)

15. Ekberg, P., Yi, W.: A note on some open problems in mixed-criticality scheduling.
In: Proceedings of the 6th International Real-Time Scheduling Open Problems
Seminar (RTSOPS) (2015)

16. Ekberg, P., Yi, W.: Uniprocessor feasibility of sporadic tasks remains conp-
complete under bounded utilization. In: Proceedings of RTSS15, pp. 87–95 (2015)

17. Ekberg, P., Yi, W.: Uniprocessor feasibility of sporadic tasks with constrained
deadlines is strongly conp-complete. In: ECRTS 2015, pp. 281–286 (2015)

18. Ekberg, P., Yi, W.: Schedulability analysis of a graph-based task model for mixed-
criticality systems. Real-Time Syst. 52(1), 1–37 (2016)

19. Ekberg, P., Yi, W.: Fixed-priority schedulability of sporadic tasks on uniprocessors
is np-hard. In: Proceedings of RTSS17, Paris (2017)

20. Guan, N., Stigge, M., Yi, W., Yu, G.: Fixed-priority multiprocessor scheduling with
liu and layland’s utilization bound. In: Proceedings of RTAS 2010, Stockholm, pp.
165–174 (2010)

21. Guan, N., Yi, W.: Finitary real-time calculus: efficient performance analysis of
distributed embedded systems. In: RTSS 2013, pp. 330–339, December 2013

22. Halbwachs, N.: Synchronous Programming of Reactive Systems. The Springer
International Series in Engineering and Computer Science. Springer, New York
(2013)

23. Holthusen, S., Quinton, S., Schaefer, I., Schlatow, J., Wegner, M.: Using multi-
viewpoint contracts for negotiation of embedded software updates. In: Proceedings
1st Workshop on Pre- and Post-Deployment Verification Techniques, Iceland, pp.
31–45, June 2016

24. Krčál, P., Mokrushin, L., Thiagarajan, P.S., Yi, W.: Timed vs. time-triggered
automata. In: Proceedings of CONCUR 2004, London, pp. 340–354 (2004)

25. Krcál, P., Yi, W.: Decidable and undecidable problems in schedulability analysis
using timed automata. In: Proceedings of TACAS 2004, pp. 236–250 (2004)

26. Lampka, K., Bondorf, S., Schmitt, J., Guan, N., Yi, W.: Generalized finitary real-
time calculus. In: Proceedings of IEEE INFOCOM 2017, Atlanta, GA, USA (2017)

27. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1), 134–152
(1997)

28. Lee, E.A.: Time for high-confidence cyber-physical systems. In: ICES workshop
on Embedded and Cyber-physical Systems - Model-Based Design for Analysis and
Synthesis, 6 February 2012, Stockholm, Sweden (2014)

29. Leiserson, C.E., Saxe, J.B.: Optimizing synchronous systems. In: FOCS 1981, the
22nd Annual Symposium on Foundations of Computer Science, pp. 23–36. IEEE
(1981)

www.certainty-project.eu/


Customizable CPS 15

30. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46–61 (1973)

31. Lv, M., Guan, N., Ma, Y., Ji, D., Knippel, E., Liu, X., Yi, W.: Speed planning
for solar-powered electric vehicles. In: Proceedings of the Seventh International
Conference on Future Energy Systems, Waterloo, ON, Canada, 21–24 June 2016,
pp. 6:1–6:10 (2016)

32. Mohaqeqi, M., Abdullah, J., Guan, N., Yi, W.: Schedulability analysis of synchro-
nous digraph real-time tasks. In: Proceedings of ECRTS 2016, France, pp. 176–186
(2016)

33. Mohaqeqi, M., Abdullah, S.M.J., Ekberg, P., Yi, W.: Refinement of workload mod-
els for engine controllers by state space partitioning. In: Proceedings of ECRTS
2017, Croatia, pp. 11:1–11:22 (2017)

34. Stigge, M., Ekberg, P., Guan, N., Yi, W.: The digraph real-time task model. In:
Proceedings of RTAS 2011, Chicago, IL, USA (2011)

35. Stigge, M., Yi, W.: Combinatorial abstraction refinement for feasibility analysis.
In: Proceedings of RTSS 2013 (2013)

36. Stigge, M., Yi, W.: Graph-based models for real-time workload: a survey. Real-
Time Syst. 51(5), 602–636 (2015)

37. Sun, J., Guan, N., Wang, Y., He, Q., Yi, W.: Scheduling and analysis of real-time
openmp task systems with tied tasks. In: Proceedings of RTSS 2017, Paris (2017)

38. Sun, J., Guan, N., Wang, Y., Deng, Q., Zeng, P., Yi, W.: Feasibility of fork-join real-
time task graph models: hardness and algorithms. ACM Trans. Embed. Comput.
Syst. 15(1), 14:1–14:28 (2016)

39. Tang, Y., Guan, N., Liu, W., Phan, L., Yi, W.: Revisiting gpc and and connector
in real-time calculus. In: Proceedings of RTSS 2017, Paris (2017)

40. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard
real-time systems. In: ISCAS 2000, vol. 4, pp. 101–104 (2000)

41. Thiele, L., Wandeler, E., Stoimenov, N.: Real-time interfaces for composing real-
time systems. In: Proceedings of the 6th ACM & Amp; IEEE International Con-
ference on Embedded Software, EMSOFT 2006, pp. 34–43. ACM (2006)


	Towards Customizable CPS: Composability, Efficiency and Predictability
	1 Background
	2 Why Update CPS in Operation?
	3 The Challenges
	4 Objectives
	5 Work Directions
	5.1 Towards Open Architectures for Updates
	5.2 Towards Precise Workload Modelling and Optimal Scheduling
	5.3 Towards Fully Separated Verification of Timing and Functional Properties

	References




