
Zhenhua Duan
Luke Ong (Eds.)

 123

LN
CS

 1
06

10

19th International Conference
on Formal Engineering Methods, ICFEM 2017
Xi'an, China, November 13–17, 2017, Proceedings

Formal Methods
and Software Engineering

Lecture Notes in Computer Science 10610

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Zhenhua Duan • Luke Ong (Eds.)

Formal Methods
and Software Engineering
19th International Conference
on Formal Engineering Methods, ICFEM 2017
Xi’an, China, November 13–17, 2017
Proceedings

123

Editors
Zhenhua Duan
Xidian University
Xi’an
China

Luke Ong
University of Oxford
Oxford
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-68689-9 ISBN 978-3-319-68690-5 (eBook)
https://doi.org/10.1007/978-3-319-68690-5

Library of Congress Control Number: 2017955779

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The International Conference on Formal Engineering Methods (ICFEM) is a forum for
advances in formal engineering methods. Among other topics, ICFEM covers verifi-
cation and validation, software engineering, formal specification and modeling, soft-
ware security, and software reliability. Since its inception in 1997, ICFEM has served
as a primary venue for formal methods theory that promises to bring practical and
tangible benefits, as well as practical developments that have been incorporated into
real production systems. In recent years, ICFEM has taken place in Tokyo (2016), Paris
(2015), Luxembourg (2014), Queenstown (2013), Kyoto (2012), Durham (2011), and
Shanghai (2010).

This volume contains the papers presented at 19th International Conference on
Formal Engineering Methods (ICFEM 2017), held during November 13–15, 2017, in
Xi’an, China. There were 80 submissions. Each submission was reviewed by three
Program Committee (PC) members or external reviewers. The program consisted of 28
accepted papers and a paper and two abstracts from the three keynote speakers, David
Rosenblum (National University of Singapore), Moshe Vardi (Rice University), and
Wang Yi (Uppsala University). The conference was followed by four workshops: the
7th International Workshop SOFL+MSVL 2017, Workshop on Formal and
Model-Driven Techniques for Developing Trustworthy Systems (FMMDD 2017), the
First International Workshop on Handling Implicit and Explicit Knowledge in Formal
System Development (IMPEX 2017), and the 11th NSFC-JSPS Joint Workshop on
Formal Methods (NSFC-JSPS FM 2017).

ICFEM 2017 was organized and supported by Xidian University, Xi’an, China. The
conference would not have been possible without the assistance of NSFC (grant
No. 61420106004), Ministry of Education of the People’s Republic of China, and the
State Key Laboratory of Integrated Services Networks. Various people contributed to
the success of ICFEM 2017: ICFEM Steering Committee members, the PC members
and the external reviewers, the authors and the invited speakers, and the local Orga-
nizing Committee members; we thank them all for their help. Last but not least we
thank Springer for their support in the production of this proceedings volume, and the
EasyChair team for their excellent conference management system.

August 2017 Zhenhua Duan
Luke Ong

Organization

Program Committee

Bernhard Aichernig TU Graz, Austria
Étienne André Université Paris 13, France
Christian Attiogbe University of Nantes, France
Richard Banach University of Manchester, UK
Ezio Bartocci TU Wien, Austria
Ana Cavalcanti University of York, UK
Yuting Chen Shanghai Jiaotong University, China
Sylvain Conchon Université Paris-Sud, France
Frank De Boer CWI, The Netherlands
Jinsong Dong National University of Singapore, Singapore
Zhenhua Duan Xidian University, China
Carlo Ghezzi Politecnico di Milano, Italy
Jeremy Gibbons University of Oxford, UK
Stefania Gnesi ISTI-CNR, Italy
Lindsay Groves Victoria University of Wellington, New Zealand
Ian J. Hayes University of Queensland, Australia
Weiqiang Kong Dalian University of Technology, China
Fabrice Kordon LIP6/UPMC, France
Daniel Kroening University of Oxford, UK
Guoqiang Li Shanghai Jiaotong University, China
Yuto Lim JAIST, Japan
Shaoying Liu Hosei University, Japan
Yang Liu Nanyang Technological University, Singapore
Larissa Meinicke University of Queensland, Australia
Stephan Merz Inria Nancy, France
Huaikou Miao Shanghai University, China
Mohammadreza Mousavi Halmstad University, Sweden
Shin Nakajima National Institute of Informatics, Japan
Luke Ong University of Oxford, UK
Jun Pang University of Luxembourg, Luxembourg
Ion Petre Åbo Akademi University, Finland
Mauro Pezzè University of Lugano, Italy
Shengchao Qin Teesside University, UK
Silvio Ranise FBK-IRST, Italy
Adrian Riesco Universidad Complutense de Madrid, Spain
Jing Sun University of Auckland, New Zealand
Cong Tian Xidian University, China
Jaco van de Pol University of Twente, The Netherlands

Thomas Wahl Northeastern University, USA
Xi Wang Shanghai University, China
Alan Wassyng McMaster University, Canada
Zijiang Yang Western Michigan University, USA
Jian Zhang Chinese Academy of Sciences, China
Hong Zhu Oxford Brookes University, UK
Huibiao Zhu East China Normal University, China

Additional Reviewers

Azimi, Sepinoud
Basile, Davide
Bezirgiannis, Nikolaos
Bijo, Shiji
Cheng, Zhuo
Colange, Maximilien
Colvin, Robert
Delahaye, Benoit
Dong, Xiaoju
Dos Santos, Daniel Ricardo
Fantechi, Alessandro
Fiterau-Brostean, Paul
Foster, Simon
Freitas, Leo
Ge, Cunjing
Gerhold, Marcus
He, Mengda
Jérôme, Rocheteau
Keiren, Jeroen
Klai, Kais
Le Gall, Pascale
Le, Quang Loc
Liu, Ailun
Liu, Shuang
Mazzanti, Franco
Menghi, Claudio
Miyazawa, Alvaro
Mostowski, Wojciech
Mu, Chunyan

Nguyen, Kim
Peroni, Marta
Poizat, Pascal
Qu, Hongyang
Renault, Etienne
Rogojin, Vladimir
Sampaio, Gabriela
Sanwal, Muhammad Usman
Schumi, Richard
Shi, Ling
Su, Wen
Sun, Youcheng
Tappler, Martin
Taromirad, Masoumeh
Ter Beek, Maurice H.
Varshosaz, Mahsa
Wang, Dongxia
Wu, Xi
Wu, Zhimin
Xu, Ming
Xu, Qingguo
Xu, Zhiwu
Xuan, Jifeng
Ye, Quanqi
Zeyda, Frank
Zhang, Haitao
Zhang, Lijun
Zhang, Xiaozhen
Zhu, Xiaoran

VIII Organization

Abstracts of the Invited
Presentations

The Challenges of Probabilistic Thinking:
Keynote Talk

David S. Rosenblum

National University of Singapore, Singapore 117417, Singapore
david@comp.nus.edu.sg

Abstract. At ASE 2016, I gave a keynote talk entitled “The Power of Proba-
bilistic Thinking”, in which I argued the benefits of applying probabilistic
modeling and reasoning to problems in software engineering, and the advan-
tages of this approach over the more “absolutist” approach afforded by rea-
soning based solely on Boolean logic.

In this talk I will discuss some of the challenges in applying a probabilistic
viewpoint. Where do the probabilities for a model come from? What if they’re
incorrect? What if the behavior of the system to be modeled is imprecise,
approximate, noisy, or otherwise uncertain? These challenges, and others, have
informed my research in probabilistic verification over the past dozen years, and
I have applied a variety of techniques to model and reason about the com-
plexities and “messiness” that arise in real-world software systems using a
probabilistic viewpoint.

Keywords: Probabilistic model checking • Probabilistic reasoning • Software
engineering • Stochastic behavior

Biography: David S. Rosenblum is Provost’s Chair Professor of Computer Science at
the National University of Singapore (NUS). He holds a Ph.D. from Stanford
University and joined NUS in April 2011 after holding positions as Member of the
Technical Staff at AT&T Bell Laboratories (Murray Hill); Associate Professor at the
University of California, Irvine; Principal Architect and Chief Technology Officer of
PreCache (a technology startup funded by Sony Music); and Professor of Software
Systems at University College London.

David’s research interests span many problems in software engineering, distributed
systems and ubiquitous computing, and his current research focuses on probabilistic
verification, uncertainty in software testing, and infrastructure support for the
Internet-of-Things. He is a Fellow of the ACM and IEEE. He serves as Editor-in-Chief
of the ACM Transactions on Software Engineering and Methodology (ACM TOSEM),
and he was previously Chair of the ACM Special Interest Group in Software Engi-
neering (ACM SIGSOFT). He has received two “test-of-time” awards for his research
papers, including the ICSE 2002 Most Influential Paper Award for his ICSE 1992
paper on assertion checking, and the first ACM SIGSOFT Impact Paper Award in 2008
for his ESEC/FSE 1997 on Internet-scale event observation and notification
(co-authored with Alexander L. Wolf). For more information please visit http://www.
comp.nus.edu.sg/*david/.

http://www.comp.nus.edu.sg/~david/
http://www.comp.nus.edu.sg/~david/

A Logical Revolution

Moshe Y. Vardi

Rice University

Abstract. Mathematical logic was developed in an effort to provide formal
foundations for mathematics. In this quest, which ultimately failed, logic begat
computer science, yielding both computers and theoretical computer science.
But then logic turned out to be a disappointment as foundations for computer
science, as almost all decision problems in logic are either unsolvable or
intractable. Starting from the mid 1970s, however, there has been a quiet rev-
olution in logic in computer science, and problems that are theoretically unde-
cidable or intractable were shown to be quite feasible in practice. This talk
describes the rise, fall, and rise of logic in computer science, describing several
modern applications of logic to computing, include databases, hardware design,
and software engineering.

References

1. Halpern, J.Y., Harper, R., Immerman, N., Kolaitis, P.G., Vardi, M.Y., Vianu, V.: On the
unusual effectiveness of logic in computer science. Bull. Assoc. Symb. Logic 7(2), 213–236
(2001)

2. Vardi, M.Y.: Solving the unsolvable. Commun. ACM 54(7), 5 (2011)
3. Vardi, M.Y.: Boolean satisfiability: theory and engineering. Commun. ACM 57(3), 5 (2014)

Towards Customizable CPS: Composability,
Efficiency and Predictability

Wang Yi

Uppsala University, Sweden

Abstract. Today, many industrial products are defined by software, and there-
fore customizable by installing new applications on demand - their functional-
ities are implemented by software and can be modified and extended by software
updates. This trend towards customizable products is extending into all domains
of IT, including Cyber-Physical Systems (CPS) such as cars, robotics, and
medical devices. However, these systems are often highly safety-critical. The
current state-of-practice allows hardly any modifications once safety-critical
systems are put in operation. This is due to the lack of techniques to preserve
crucial safety conditions for the modified system, which severely restricts the
benefits of software.

This work aims at new paradigms and technologies for the design and safe
software updates of CPS at operation-time – subject to stringent timing con-
straints, dynamic workloads, and limited resources on complex computing
platforms. Essentially there are three key challenges: Composability,
Resource-Efficiency and Predictability to enable modular, incremental and safe
software updates over system life-time in use. We present research directions to
address these challenges: (1) Open architectures and implementation schemes
for building composable systems, (2) Fundamental issues in real-time
scheduling aiming at a theory of multi-resource (inc. multiprocessor) schedul-
ing, and (3) New-generation techniques and tools for fully separated verification
of timing and functional properties of real-time systems with significantly
improved efficiency and scalability. The tools shall support not only verification,
but also code generation tailored for both co-simulation (interfaced) with
existing design tools such as Open Modelica (for modeling and simulation of
physical components), and deployment on given computing platforms.

Contents

Invited Talk

Towards Customizable CPS: Composability, Efficiency and Predictability . . . 3
Wang Yi

Contributed Papers

Modularization of Refinement Steps for Agile Formal Methods 19
Fabian Benduhn, Thomas Thüm, Ina Schaefer, and Gunter Saake

Model Checking Pushdown Epistemic Game Structures 36
Taolue Chen, Fu Song, and Zhilin Wu

Transforming Timing Requirements into CCSL Constraints
to Verify Cyber-Physical Systems . 54

Xiaohong Chen, Ling Yin, Yijun Yu, and Zhi Jin

A Framework for Multi-view Reconciliation and for Medical
Devices Personalization . 71

Yihai Chen, Bofang Zhang, Ridha Khedri, and Huaikou Miao

Compiling Parameterized X86-TSO Concurrent Programs to Cubicle-W 88
Sylvain Conchon, David Declerck, and Fatiha Zaïdi

Improving the Scalability of Automatic Linearizability Checking in SPIN . . . 105
Patrick Doolan, Graeme Smith, Chenyi Zhang,
and Padmanabhan Krishnan

Verifying Temporal Properties of C Programs via Lazy Abstraction 122
Zhao Duan, Cong Tian, and Zhenhua Duan

Combining Event-B and CSP: An Institution Theoretic Approach
to Interoperability . 140

Marie Farrell, Rosemary Monahan, and James F. Power

Refinement-Based Modelling and Verification of Design Patterns
for Self-adaptive Systems . 157

Thomas Göthel, Nils Jähnig, and Simon Seif

Assertion Generation Through Active Learning. 174
Long H. Pham, Ly Ly Tran Thi, and Jun Sun

http://dx.doi.org/10.1007/978-3-319-68690-5_1
http://dx.doi.org/10.1007/978-3-319-68690-5_2
http://dx.doi.org/10.1007/978-3-319-68690-5_3
http://dx.doi.org/10.1007/978-3-319-68690-5_4
http://dx.doi.org/10.1007/978-3-319-68690-5_4
http://dx.doi.org/10.1007/978-3-319-68690-5_5
http://dx.doi.org/10.1007/978-3-319-68690-5_5
http://dx.doi.org/10.1007/978-3-319-68690-5_6
http://dx.doi.org/10.1007/978-3-319-68690-5_7
http://dx.doi.org/10.1007/978-3-319-68690-5_8
http://dx.doi.org/10.1007/978-3-319-68690-5_9
http://dx.doi.org/10.1007/978-3-319-68690-5_9
http://dx.doi.org/10.1007/978-3-319-68690-5_10
http://dx.doi.org/10.1007/978-3-319-68690-5_10
http://dx.doi.org/10.1007/978-3-319-68690-5_11

Detecting Energy Bugs in Android Apps Using Static Analysis 192
Hao Jiang, Hongli Yang, Shengchao Qin, Zhendong Su,
Jian Zhang, and Jun Yan

A Flexible Approach for Finding Optimal Paths with Minimal Conflicts 209
Juliana K.F. Bowles and Marco B. Caminati

A Certified Decision Procedure for Tree Shares . 226
Xuan-Bach Le, Thanh-Toan Nguyen, Wei-Ngan Chin,
and Aquinas Hobor

Classification-Based Parameter Synthesis for Parametric Timed Automata . . . 243
Jiaying Li, Jun Sun, Bo Gao, and Étienne André

A Verification Framework for Stateful Security Protocols. 262
Li Li, Naipeng Dong, Jun Pang, Jun Sun, Guangdong Bai,
Yang Liu, and Jin Song Dong

A Sliding-Window Algorithm for On-The-Fly Interprocedural
Program Analysis . 281

Xin Li and Mizuhito Ogawa

Exploring Design Alternatives for RAMP Transactions Through Statistical
Model Checking . 298

Si Liu, Peter Csaba Ölveczky, Jatin Ganhotra, Indranil Gupta,
and José Meseguer

An Improved Android Collusion Attack Detection Method Based
on Program Slicing . 315

Yunhao Liu, Xiaohong Li, Zhiyong Feng, and Jianye Hao

Parameterized Complexity of Resilience Decision
for Database Debugging. 332

Dongjing Miao and Zhipeng Cai

Formal Analysis of Linear Control Systems Using Theorem Proving 345
Adnan Rashid and Osman Hasan

Policy Dependent and Independent Information Flow Analyses. 362
Manuel Töws and Heike Wehrheim

Improving Probability Estimation Through Active Probabilistic
Model Learning . 379

Jingyi Wang, Xiaohong Chen, Jun Sun, and Shengchao Qin

Nested Timed Automata with Diagonal Constraints 396
Yuwei Wang, Yunqing Wen, Guoqiang Li, and Shoji Yuen

XVI Contents

http://dx.doi.org/10.1007/978-3-319-68690-5_12
http://dx.doi.org/10.1007/978-3-319-68690-5_13
http://dx.doi.org/10.1007/978-3-319-68690-5_14
http://dx.doi.org/10.1007/978-3-319-68690-5_15
http://dx.doi.org/10.1007/978-3-319-68690-5_16
http://dx.doi.org/10.1007/978-3-319-68690-5_17
http://dx.doi.org/10.1007/978-3-319-68690-5_17
http://dx.doi.org/10.1007/978-3-319-68690-5_18
http://dx.doi.org/10.1007/978-3-319-68690-5_18
http://dx.doi.org/10.1007/978-3-319-68690-5_19
http://dx.doi.org/10.1007/978-3-319-68690-5_19
http://dx.doi.org/10.1007/978-3-319-68690-5_20
http://dx.doi.org/10.1007/978-3-319-68690-5_20
http://dx.doi.org/10.1007/978-3-319-68690-5_21
http://dx.doi.org/10.1007/978-3-319-68690-5_22
http://dx.doi.org/10.1007/978-3-319-68690-5_23
http://dx.doi.org/10.1007/978-3-319-68690-5_23
http://dx.doi.org/10.1007/978-3-319-68690-5_24

Integration of Metamorphic Testing with Program Repair Methods Based
on Adaptive Search Strategies and Program Equivalence 413

Tingting Wu, Yunwei Dong, Tsong Yueh Chen, Mingyue Jiang,
Man Lau, Fei-Ching Kuo, and Sebastian Ng

Learning Types for Binaries . 430
Zhiwu Xu, Cheng Wen, and Shengchao Qin

Inconsistency Analysis of Time-Based Security Policy
and Firewall Policy . 447

Yi Yin, Yuichiro Tateiwa, Yun Wang, Yoshiaki Katayama,
and Naohisa Takahashi

An Algebraic Approach to Automatic Reasoning for NetKAT Based
on Its Operational Semantics . 464

Yuxin Deng, Min Zhang, and Guoqing Lei

Pareto Optimal Reachability Analysis for Simple Priced Timed Automata . . . 481
Zhengkui Zhang, Brian Nielsen, Kim Guldstrand Larsen, Gilles Nies,
Marvin Stenger, and Holger Hermanns

Author Index . 497

Contents XVII

http://dx.doi.org/10.1007/978-3-319-68690-5_25
http://dx.doi.org/10.1007/978-3-319-68690-5_25
http://dx.doi.org/10.1007/978-3-319-68690-5_26
http://dx.doi.org/10.1007/978-3-319-68690-5_27
http://dx.doi.org/10.1007/978-3-319-68690-5_27
http://dx.doi.org/10.1007/978-3-319-68690-5_28
http://dx.doi.org/10.1007/978-3-319-68690-5_28
http://dx.doi.org/10.1007/978-3-319-68690-5_29

Invited Talk

Towards Customizable CPS: Composability,
Efficiency and Predictability

Wang Yi(B)

Uppsala University, Uppsala, Sweden
yi@it.uu.se

Abstract. Today, many industrial products are defined by software, and
therefore customizable by installing new applications on demand - their
functionalities are implemented by software and can be modified and
extended by software updates. This trend towards customizable products
is extending into all domains of IT, including Cyber-Physical Systems
(CPS) such as cars, robotics, and medical devices. However, these sys-
tems are often highly safety-critical. The current state-of-practice allows
hardly any modifications once safety-critical systems are put in oper-
ation. This is due to the lack of techniques to preserve crucial safety
conditions for the modified system, which severely restricts the benefits
of software.

This work aims at new paradigms and technologies for the design
and safe software updates of CPS at operation-time – subject to strin-
gent timing constraints, dynamic workloads, and limited resources on
complex computing platforms. Essentially there are three key challenges:
Composability, Resource-Efficiency and Predictability to enable modular,
incremental and safe software updates over system life-time in use. We
present research directions to address these challenges: (1) Open archi-
tectures and implementation schemes for building composable systems,
(2) Fundamental issues in real-time scheduling aiming at a theory of
multi-resource (inc. multiprocessor) scheduling, and (3) New-generation
techniques and tools for fully separated verification of timing and func-
tional properties of real-time systems with significantly improved effi-
ciency and scalability. The tools shall support not only verification, but
also code generation tailored for both co-simulation (interfaced) with
existing design tools such as Open Modelica (for modeling and simulation
of physical components), and deployment on given computing platforms.

1 Background

Our life is becoming increasingly dependent on software. Many industrial prod-
ucts are defined by software, thus customizable as smart phones: their functional-
ities, features and economical values are realized by software and can be changed
on demand over their life-time through software update. Indeed these products
often serve as an open platform through software to access numerous services
provided by remote servers in the cloud thanks to the emerging technologies of
Internet-of-Things (IoT), cloud storage, cloud computing, data centers etc. The
c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 3–15, 2017.
https://doi.org/10.1007/978-3-319-68690-5 1

4 W. Yi

trend towards customizable products is extending into all application domains
of IT including Cyber-Physical Systems (CPS) such as cars, robotics and med-
ical devices. Today software in our cars may be updated in service workshops;
Tesla even allows customers to upgrade remotely the software system of their
electric vehicles. Even avionics, traditionally a very conservative area, is moving
from functionally separated solutions on uniprocessors to integrated systems on
multi-core platforms with the capability to re-configure during operations [10].
However, CPS are often highly safety-critical, thus utmost care must be taken
to ensure crucial safety conditions.

Fig. 1. Towards an open architecture for updata-
ble CPS

Current design methodolo-
gies for CPS offer limited sup-
port for software updates on
systems in operation. Although
updates are possible in areas
where certification is not manda-
tory, it is often restricted to
updates either offered by pro-
fessional service providers or
software upgrading prepared
(through intensive verification
and test in the lab [23]) by
the manufacturers e.g., Tesla.
In general, the current state-of-
practice allows hardly any mod-
ifications once safety-critical
systems are put in operation
due to the lack of technology to
preserve the safety conditions of
the modified systems. A classic example is civil avionics [28]: once a passenger
aircraft built by Boeing is certified for operation, it should fly for life-time (esti-
mated 50 years) without modifications to its electronic system and for mainte-
nance the company must purchase the original electronic control units and store
them for 50 years. It is remarkable that in the era of IoT when everything is
connected and everything is changing over time, we are flying in a machine run-
ning outdated software made decades ago. This largely restricts the benefits of
software.

2 Why Update CPS in Operation?

In less safety-critical areas, software updates are widely adopted by users to
increase system safety by software patches or extend system functionalities for
better utilization of the computational resources by installing new applications
on demand. Smart phones and notebooks are examples. Apart from the lack of
technologies for safety preservation, there seems to be no reason why software
for CPS in general should not be updated.

Customizable CPS 5

CPS may be small embedded devices or large-scale networked embedded
systems often viewed as systems of (sub-)systems with underlining communica-
tion infrastructure; a (sub-)system may have the overall architecture as shown
in Fig. 1, consisting of a collection of cyber components (software components)
interacting with physical components in real time through sensors and actua-
tors. At operation-time, the user or customer may want to update the software
system by installing a new application (a software component) purchased from
a software provider. The update should be done by herself, not a professional
service provider or the manufacturer who has full access to the software system.
For example, consider smart transportation. When travelling in North Europe
in the winter with a future self-driving car, we may want to install ourselves
applications for ice- and elk-detection for safe driving. Another example is med-
ical device e.g., pacemaker. In a possible future scenario, for a patient carrying
such a device, a new heart problem may manifest over time (e.g., due to aging
of the patient). To treat the upcoming problem, a doctor may propose to install
a new application instead of replacing the device.

3 The Challenges

Clearly, the examples illustrate that software updates may lead to more reliable
and cost-efficient solutions. However, for both examples, we must make sure
to preserve the following two basic conditions before the intended updates are
realized:

Condition 1 the new application will not interfere with the existing system:
they should not block each other due to synchronization and their input and
output values should be compatible, satisfying required relationships – the
functional correctness must be preserved.

Condition 2 the computing platforms have enough computational resources to
run the new application without being overloaded or violating any timing
constraints – non-functional correctness must be preserved.

These two safety conditions illustrate the following key challenges for the
design and update of CPS:

Composability (The design challenge) to build systems that are updatable
at operation-time, allowing for modular updates that should neither require
re-designing the original system, nor interfere with the functionalities of the
original system (Condition 1).

Efficiency (The run-time challenge)to optimize resource utilization for preserv-
ing Condition 2 such that incremental updates may be applied over the sys-
tem’s life-time.

Predictability (The verification challenge) to enable safe updates through ver-
ification of the two conditions (Condition 1 and 2) on demand before the
intended updates are committed.

6 W. Yi

The three challenges are often contradicting. For example, to optimize
resource utilization, a global solution may be preferred. However, globally
dynamic resource sharing may result in unmanageable non-determinism lead-
ing to poor predictability. Similarly designing systems for predictability using
monolithic-threading or time-triggered approaches may not be an advantage for
achieving the composability because these approaches require all computation
jobs and resource accesses must be scheduled at design-time, which leaves little
possibility for updates after deployment. In fact, current design methodologies of
embedded systems allow for systems that are either predictable or composable,
and often resource in-efficient in many cases due to resource over-dimensioning.
For instance, synchronous systems [22] designed for predictable and deterministic
behavior are often hard to modify and difficult for integration of new functional-
ities without re-designing the whole system; whereas concurrent systems [6] with
multi-threading can be extended easily by new threads for new functionalities,
thus are better for composability, but poor for predictability as they are hard to
verify due to non-determinism.

For the design of updatable systems, naturally we take a component-based
approach, which allows for modular changes. Component-based software devel-
opment has attracted a large amount of research; in the past decades, various
component models have been developed e.g. [9] for a classification of software
models in the context of software engineering. In the domain of embedded sys-
tems, considerable efforts have been investigated within the ARTIST initiatives
on model-based design (see e.g. [5]). An interesting line of work is the theories of
interfaces e.g. [12] for timed systems, [8,41] for resource modeling and scheduling
and more recently, contract-based systems design [3,13]. However, all previous
attempts address only issues on the design of systems. Our focus will be on
updates after deployment. Conceptually the existing techniques are useful, but
not applicable. For updates, we must address composability issues at run-time.
First, we must build systems that are updatable. Second, we must make sure
that the updates are safe before they are realized.

4 Objectives

We distinguish design-time, operation-time and run-time. Operation-time means
when systems are in operation after deployment, which can be off-line or on-
line but not necessarily run-time. Any requirement at operation-time is more
demanding than design-time but less than run-time. Therefore for operation-time
updates, we assume that the overall architecture of a system and also its compo-
nents (or sub-systems) are all designed, verified and deployed at design-time and
abstract models tailored for operation-time verification of the two conditions are
available.

The overall objective of this work is three-fold. First we aim at new implemen-
tation schemes for building updatable systems. Second, we develop scheduling
techniques to optimize resource utilization at run-time and thus enable incre-
mental updates over system’s life-time. Third, we develop verification techniques

Customizable CPS 7

and tools to validate the safety of updates on demand. Now we outline our ideas
to reach the goals.

Composability shall be achieved by (1) multi-threading and (2) non-blocking
communication that preserves synchronous semantics for data exchange
among components. The objective of this work is to develop open system
architectures as illustrated in Fig. 1 offering open interfaces and new imple-
mentation schemes to build systems allowing for integration of new software
components by simply creating new threads. The threads will be coordinated
by a centralized run-time system to ensure that the synchronous semantics of
data exchange among threads (by reading and writing requests) is preserved
[7] and the timing constraints on computation jobs released by threads are
satisfied. For updating such multi-threading systems with new software com-
ponents under the described requirements, we need to solve optimization
problems similar to retiming of synchronous circuits, a classic problem in
circuits design [29].

Resource-efficiency will be addressed by static partitioning and run-time
scheduling. The objective of this work is two-fold. First, we study fundamen-
tal issues in real-time scheduling, addressing the optimality and complexity
of scheduling algorithms [15] in particular questions related to dynamic work-
loads with complex release patterns of computation jobs and parallel com-
puting platforms such as multi- and many-cores with massive parallel and
heterogeneous processing units. The goal is to develop a parallel version of
the real-time calculus [40] aiming at a unified theory for characterization of
parallel and heterogeneous resource demands and resource supplies, as well as
optimal mapping between them, as a scientific foundation for multiprocessor
scheduling, which is a hard open problem in the field of real-time systems.
Second, a practical approach will be taken to achieve near-optimal solutions
for applications under assumptions in systems building such as non-blocking
data exchange.

Safety-conditions will be ensured by verification on demand before the
intended updates are committed. The objective of this work is to develop
a new generation of verification techniques and tools for CPS in particular a
new version of UPPAAL with significant improvements on efficiency and scal-
ability by fully separating the analysis of timing and functional correctness.
Functional properties will be specified and verified in a contract-based frame-
work supported with SMT-based verification techniques. Timing and non-
functional properties will be specified on computation jobs and verified using
scalable techniques developed for scheduling analysis [34,35]. For uniprocessor
platforms, the existing techniques and tools e.g. [1] scale well with industrial
size problems. The future focus will be on multicore platforms.

8 W. Yi

5 Work Directions

To address the challenges, we propose the following work directions.

5.1 Towards Open Architectures for Updates

We consider CPS that may be large-scale networked embedded systems of
(sub-)systems. A (sub-)system with its own computing platform may have a
set of software components (cyber part as shown in Fig. 1) deployed based on
a data-flow-like diagram with basic blocks representing its components (which
may have hierarchical structures) and (links representing the input and output
relation among the components via interfaces. A sub-system may contain local
network links for which extra blocks should be created, modelling the delays for
data exchange if the delays are not ignorable. The diagram may also contain
cycles; however a cycle should contain a delay block to avoid infeasible behav-
iors. For abstraction, each physical-component is assumed to have a set of data
buffers (e.g., implemented by a driver) as its interface for data exchange with
software components.

To enable updates at operation-time after deployment, we must build sys-
tems that enjoy the following properties (see e.g. [2]): (1) integrating a new
component should not require re-designing the whole system, and (2) a newly
integrated component should not interfere with the existing components. Apart
from resource sharing that shall be addressed separately, there are essentially
two sources for potential interferences:

– The outputs of a component are not needed by the others, violating the
functional correctness and

– The Components may block each other due to synchronization mechanisms
for keeping data coherence.

In the following we propose solutions to disable these potential interferences.

Components, Interfaces and Contracts. We do not restrict how a component is
implemented inside but it must offer a well-defined interface containing a set of
input and output data buffers open for updates allowing for integration of new
components. The functional correctness of a component is specified by a contract
on its interface consisting of a pre-condition on input buffers and a post-condition
on output buffers. The contract is a local invariant satisfied by the computational
behavior of the component, which should be verified at design-time.

Furthermore, a workload model specifying the timing constraints and
resource requirement of each component should be available (created at design-
time), which may be considered as part of the contract. The workload model
(or task model) of a component specifies the release patterns of three types of
requests: reading, writing and computing (jobs). At run-time, the computing
jobs will be scheduled and executed according to the timing constraints. The
reading and writing requests will be non-blocking and coordinated to preserve
the synchronous semantics.

Customizable CPS 9

Non-blocking Data Exchange that Preserves Synchronous Semantics. To imple-
ment the components and the original system, any synchronization schemes may
be adopted to keep data coherence. However for integration of new components at
operation-time, we have to adopt non-blocking data exchange. For non-blocking
writing on an input buffer, only one-writer is allowed; but an output buffer may
allow arbitrary number of readers. Data items written should be considered as
non-consumable. The rationale is that new integrated components may only
read data from an open interface of the existing system for computing their own
output. The computed values may be used for realizing new functionalities or
write back to the existing system to improve the existing functionalities on input
buffers that previously have default values before the integration.

Reading is enabled (non-blocking) at any time; it is only copying (but not
consuming) the data; writing will over-write the previously written data; thus
only the latest data (i.e., the most fresh) values are available in the input buffers
if the buffer capacity is not enough and the readers are slower than the writer.

To keep data coherence, we will develop new synchronization protocols to
preserve the synchronous semantics of data exchange [7], ensuring two condi-
tions:

– Globally all readers should receive the same data if the reading requests are
issued after the same writing request and

– Locally for each component, the writing of an output value should correspond
to the input value by the preceding reading request.

Essentially the arrival order of reading and writing requests should be
enforced by the centralized run-time system; whereas the computation jobs may
be scheduled in any orders satisfying the timing constraints provided that the
local order of reading (input), computing (jobs) and writing (output) is pre-
served for each component. For the simple case when computation jobs take
no time, the the DBP protocol (Dynamic Buffering Protocols [7]) can be used
to preserve the synchronous semantics. Here we have a challenging case where
computation jobs will have non-zero computation times (specified by WCETs)
and timing constraints such as deadlines. The computation jobs may be released
according to any patterns e.g., specified using graph-based real-time task models
e.g., [34]. Our goal is to develop scheduling algorithms and data buffering proto-
cols to preserve both the timing constraints and also the synchronous semantics.
The hard technical challenge is to design algorithms and protocols which can
be re-configured at operation-time to handle software updates. This requires to
solve non-trivial optimization problems similar to retiming of synchronous cir-
cuits [29]. We aim at techniques for near-optimal solutions. This work shall be
driven and evaluated by case studies including a large-scale industrial application
to build a solar-powered electric vehicle [31].

5.2 Towards Precise Workload Modelling and Optimal Scheduling

Product customization often refers to incremental modifications. For CPS, it is
about (1) integrating a new software component for extensions with new func-

10 W. Yi

tionalities or (2) updating an existing software component for improvements on
the systems functionalities. Both cases may increase resource requirement incre-
mentally and so incease the system workload. Eventually it will hit the limit
of resource utilization (the ideal case is 100%) when the system is infeasible
or when a timing constraint for a computation job is violated. Thus run-time
resource management and scheduling is crucial for the customization of systems
in operation if not for the original design where the ad hoc solution in prac-
tice is often by over-dimensioning the system resources with redundancy, which
is not an option for customization. If system resources are not utilized in an
optimal manner, the possibility for customization will not last long. There are
two technical challenges. First, the workload (or resource requirement) of each
software component (and the whole system) should be modelled and character-
ized as precisely as possible to reduce the pessimism of scheduling analysis, thus
potentially allow for more applications to run concurrently on the platform. Sec-
ond, the workload should be mapped and scheduled on the platform to achieve
optimal resource utilization.

Hierarchy of Workload Models

difficult

F
ea

sib
ility

test

efficient
L&Ltwo integers implicit deadline

Sporadicthree integers explicit deadline

GMFcycle gragh different job types

RBtree branching

DRTarbitrary graph branching, loops, ...

Timed automata

low

E
x
p
re

ss
iv

en
es

s

high

Pseudo-Polynomial
Strongly (co)NP-hard

Fig. 2. Expressiveness vs. analysis efficiency

For a survey on real-time
workload models, see e.g. [25,
36]. There is a full hier-
archy of workloads models
available of different expres-
sive powers and degrees of
analysis difficulty as shown
in Fig. 2. In the context of
real-time systems, often sim-
plistic models such as peri-
odic or sporadic models (e.g.
the classic task model L&L
due to Liu and Layland
[30]) are adopted to over-
approximate the workload
generated by physical- and
software-components, which
in many applications may
lead to pessimistic analy-
sis and resource over-dimensioning.
To faithfully describe the
resource requirements and timing constraints of software components, as the
basis for workload characterization, we will use the di-graph real-time task model
[34] and further extend it within manageable complexity for automated analysis
with features including parallel OpenMP like structures [37,38], synchroniza-
tion [32] as well as mixed criticality workloads [14,18]. To capture the dynamic
workload triggered by physical components, a new line of work has been pro-
posed in [4,33] to compute faithful abstract models from hybrid models for pre-
cise schedulability analysis. The work will be further developed to compute the

Customizable CPS 11

di-graph models from general hybrid automata based on the theory of optimal
control and abstraction techniques [24].

Second, efficient scheduling algorithms and methods must be develop to opti-
mize resource utilization at run-time. For uniprocessor platforms, the theoreti-
cal foundation of real-time scheduling has been established in the past decades
with various scheduling and analysis techniques available. Several fundamental
problems are solved recently [16,17,19]. However to implement the synchronous
semantics of data exchange in a multi-threading setting, run-time scheduling
must consider dependent tasks imposed by the input and output relations defined
by a data-flow like diagram as shown in Fig. 1. It is a non-trivial technical chal-
lenge to design optimal scheduling algorithms for graph-based real-time models
under precedence constraints even for uniprocessor platforms. To enforce the
synchronous semantics, we foresee that memory consumption must be handled
efficiently to make multiple local copies of the same data dynamically to serve
the reading requests. Thus memory requirements must be considered in run-
time scheduling, which brings another dimension of complexity in uniprocessor
scheduling. On the theory side, there are still open issues in uniprocessor schedul-
ing, including the complexity of uniprocessor scheduling of sporadic tasks with
arbitrary deadlines and optimality of mixed-criticality scheduling [15].

For multicore platforms, the research community has produced a large num-
ber of insightful theoretical results [11], with the hope to extend the well-
established theory for uniprocessor systems developed in the last three decades
to the multiprocessor setting, e.g. our work on extending the classic result of Liu
and Layland on rate-monotonic scheduling to multiprocessor setting [20]. We
aim at obtaining such results also for heterogeneous platforms. In particular,
we will study the application mapping problem on heterogeneous multiprocessor
platforms that may have processor cores e.g. GPU, CPU with different process-
ing speeds, and non-trivial interaction with I/O devices, as well as memory
requirements, which is often the case in embedded applications in the context
of CPS. The ultimate goal is to develop a parallel version of the real-time cal-
culus [21,26,39,40], as a scientific foundation for multi-resource (including mul-
tiprocessor cores) scheduling, which is one of the challenging open problems in
the field of real-time systems.

However, we will also take a practical approach to develop real-time applica-
tions for updatable systems on platforms with massive parallel processing units
such as multi- and many-core, for which near-optimal solutions may be possible
under the assumption in systems building such as non-blocking data-exchange.

5.3 Towards Fully Separated Verification of Timing and Functional
Properties

To validate the safety of operation-time updates, we must developed powerful
and scalable techniques for automated verification of the safety conditions as
outlined earlier. Since the invention of model checking, the area of verification
has advanced significantly with tremendous success in industrial applications.

12 W. Yi

Complex systems with millions of states and configurations may be verified today
in seconds.

Model checking technology has been adopted to verify real-time systems
where UPPAAL [27] is one of the leading tools. However, it is well-recognized
that the technique suffers from the scalability problem, which is even more criti-
cal for real-time systems where the tool must handle not only functional proper-
ties but also timing constraints. We will take a different approach and fully sep-
arate the verification of functional and non-functional properties to improve the
scalability of the tool. This is a lesson learnt from the development of UPPAAL.
Mixing up functional and timing behaviors in modelling harms significantly the
efficiency of the tool, which is the critical barrier for its scalability. In the imple-
mentation of UPPAAL, for verifying functional correctness e.g. deadlock-freeness
or mutual exclusion properties, it demands a large amount of memory for keep-
ing track of the timing constraints. Unfortunately UPPAAL had to treat these
aspects in one unified framework which is not adequate for verification with
manageable complexity. Major safety-critical properties should be guaranteed
independently of timing. For example, a system should be deadlock-free inde-
pendently of how fast a component is executed. There is room for great improve-
ments.

The term predictability refers often to easy-to-verify. It concerns two parts.
First, the system must be built verifiable. The model selected for design and
verification should be as expressive as possible to express interesting system
features; however it should not be too expressive with unnecessarily expressive
power which may harm the analysis efficiency. The models for verification should
be carefully selected for efficient analysis and fast termination. For many appli-
cations, timed automata are often too powerful. For example, to model real-time
task release patterns, only lower bounds on clocks are needed to express the min-
imal release distances of computation jobs, mimicking the delay statements in
real-time programming languages e.g. Ada. However for reasoning about tim-
ing constraints on computations, upper bounds on clocks are needed to express
deadlines. Separating lower bounds on task releases and upper bounds on com-
putation jobs leads to an adequate model for real-time systems [34] for which
feasibility analysis can be verified efficiently in pseudo polynomial time [17]. This
model will be the basis for our work on verification of timing and non-functional
properties.

For non-functional correctness, as part of its interface to the computing plat-
form, each component will have a workload model specifying its timing constraint
and resource requirement within the tractable hierarchy as shown in Fig. 2 (see
[36] for details) for efficient operation-time checks on demand. However, the
demanding challenge is in the scheduling and analysis on complex platforms
such as multi-cores. A partition-based approach is promising [20], which may
reduce the analysis problems to the uniprocessor setting. In connection with
the work on developing the theory of multiprocessor scheduling outlined earlier,
different strategies will be evaluated for multiprocessor schedulability analysis.

Customizable CPS 13

To reason about functional correctness, a theory of contract-based interfaces
will be developed based on first-order logic where a component interface will
be specified using pre- and post-condition on input and output data as a local
invariant of the component. Given contracts for each component, two essential
properties have to be verified: (1) each component satisfies its own contract;
and (2) the contracts of components combined in a system are compatible,
i.e., each component produces the outputs needed by the other components.
The first aspect (1) is essentially a problem of software verification, and will be
addressed using techniques from abstract interpretation, software model check-
ing, and SMT-based verification. A central concern in (1) will be the handling of
real-valued quantities, which are today in software represented mainly as fixed-
point or floating-point data, and supported by only few of the existing analysis
tools (and usually with limited scalability). A technical challenge is to advance
the state of the art in floating-point verification and develop improved SMT
techniques for this theory. In (2), logical relationship between multiple contracts
must be checked, a problem that is today primarily addressed with the help
of SMT solving. Again, the main concern will be to scale up SMT methods to
handle the relevant data-types and the extent of contracts needed for real-world
systems.

Acknowledgement. For discussions on ideas presented in this document, the author
wish to thank Jakaria Abdullah, David Black-Schaffer, Gaoyang Dai, Pontus Ekberg,
Peter Fritzon, Nan Guan, Bengt Jonsson, Morteza Mohagheghy, Christer Nordström,
Philipp Ruemmer, Joseph Sifakis, Martin Stigge, Janos Sztipanovits and Aleksandar
Zeljic.

References

1. Abdullah, J., Dai, G., Guan, N., Mohaqeqi, M., Yi, W.: Towards a tool: times-
pro for modeling, analysis, simulation and implementation of cyber-physical sys-
tems. In: Aceto, L., et al. (eds.) Larsen Festschrift. LNCS, vol. 10460, pp. 23–639.
Springer, Heidelberg (2017). doi:10.1007/978-3-319-63121-9 31

2. Attie, P., Baranov, E., Bliudze, S., Jaber, M., Sifakis, J.: A general framework for
architecture composability. Formal Aspects Comput. 28(2), 207–231 (2016)

3. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J., Reinkemeier,
P., Vincentelli, A.S., Damm, W., Henzinger, T., Larsen, K.G.: Contracts for sys-
tems design: theory. INRIA report, France (2015)

4. Biondi, A., Buttazzo, G., Simoncelli, S.: Feasibility analysis of engine control tasks
under edf scheduling. In: Proceedings of ECRTS15, pp. 139–148. IEEE (2015)

5. Bouyssounouse, B., Sifakis, J.: Embedded Systems Design: The ARTIST Roadmap
for Research and Development, vol. 3436. Springer, Heidelberg (2005)

6. Burns, A., Wellings, A.: Concurrent and Real-Time Programming in Ada.
Cambridge University Press, New York (2007)

7. Caspi, P., Scaife, N., Sofronis, C., Tripakis, S.: Semantics-preserving multitask
implementation of synchronous programs. ACM Trans. Embed. Comput. Syst.
7(2), 15:1–15:40 (2008)

8. Chakabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Resource inter-
faces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003 (2003)

http://dx.doi.org/10.1007/978-3-319-63121-9_31

14 W. Yi

9. Crnkovic, I., Sentilles, S., Vulgarakis, A., Chaudron, M.R.V.: A classification frame-
work for software component models. IEEE Trans. Softw. Eng. 37(5), 593–615
(2011)

10. Certainty (Deliverable D1.2): Certification of real time applications designed for
mixed criticality (2014). www.certainty-project.eu/

11. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv. 43(4), 35:1–35:44 (2011)

12. de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Timed interfaces. In: EMSOFT
2002, pp. 108–122 (2002)

13. Derler, P., Lee, E.A., Tripakis, S., Törngren, M.: Cyber-physical system design con-
tracts. In: Proceedings of the ACM/IEEE 4th International Conference on Cyber-
Physical Systems, ICCPS 2013, pp. 109–118. ACM (2013)

14. Ekberg, P., Yi, W.: Bounding and shaping the demand of generalized mixed-
criticality sporadic task systems. Real-Time Syst. 50(1), 48–86 (2014)

15. Ekberg, P., Yi, W.: A note on some open problems in mixed-criticality scheduling.
In: Proceedings of the 6th International Real-Time Scheduling Open Problems
Seminar (RTSOPS) (2015)

16. Ekberg, P., Yi, W.: Uniprocessor feasibility of sporadic tasks remains conp-
complete under bounded utilization. In: Proceedings of RTSS15, pp. 87–95 (2015)

17. Ekberg, P., Yi, W.: Uniprocessor feasibility of sporadic tasks with constrained
deadlines is strongly conp-complete. In: ECRTS 2015, pp. 281–286 (2015)

18. Ekberg, P., Yi, W.: Schedulability analysis of a graph-based task model for mixed-
criticality systems. Real-Time Syst. 52(1), 1–37 (2016)

19. Ekberg, P., Yi, W.: Fixed-priority schedulability of sporadic tasks on uniprocessors
is np-hard. In: Proceedings of RTSS17, Paris (2017)

20. Guan, N., Stigge, M., Yi, W., Yu, G.: Fixed-priority multiprocessor scheduling with
liu and layland’s utilization bound. In: Proceedings of RTAS 2010, Stockholm, pp.
165–174 (2010)

21. Guan, N., Yi, W.: Finitary real-time calculus: efficient performance analysis of
distributed embedded systems. In: RTSS 2013, pp. 330–339, December 2013

22. Halbwachs, N.: Synchronous Programming of Reactive Systems. The Springer
International Series in Engineering and Computer Science. Springer, New York
(2013)

23. Holthusen, S., Quinton, S., Schaefer, I., Schlatow, J., Wegner, M.: Using multi-
viewpoint contracts for negotiation of embedded software updates. In: Proceedings
1st Workshop on Pre- and Post-Deployment Verification Techniques, Iceland, pp.
31–45, June 2016

24. Krčál, P., Mokrushin, L., Thiagarajan, P.S., Yi, W.: Timed vs. time-triggered
automata. In: Proceedings of CONCUR 2004, London, pp. 340–354 (2004)

25. Krcál, P., Yi, W.: Decidable and undecidable problems in schedulability analysis
using timed automata. In: Proceedings of TACAS 2004, pp. 236–250 (2004)

26. Lampka, K., Bondorf, S., Schmitt, J., Guan, N., Yi, W.: Generalized finitary real-
time calculus. In: Proceedings of IEEE INFOCOM 2017, Atlanta, GA, USA (2017)

27. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1), 134–152
(1997)

28. Lee, E.A.: Time for high-confidence cyber-physical systems. In: ICES workshop
on Embedded and Cyber-physical Systems - Model-Based Design for Analysis and
Synthesis, 6 February 2012, Stockholm, Sweden (2014)

29. Leiserson, C.E., Saxe, J.B.: Optimizing synchronous systems. In: FOCS 1981, the
22nd Annual Symposium on Foundations of Computer Science, pp. 23–36. IEEE
(1981)

www.certainty-project.eu/

Customizable CPS 15

30. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46–61 (1973)

31. Lv, M., Guan, N., Ma, Y., Ji, D., Knippel, E., Liu, X., Yi, W.: Speed planning
for solar-powered electric vehicles. In: Proceedings of the Seventh International
Conference on Future Energy Systems, Waterloo, ON, Canada, 21–24 June 2016,
pp. 6:1–6:10 (2016)

32. Mohaqeqi, M., Abdullah, J., Guan, N., Yi, W.: Schedulability analysis of synchro-
nous digraph real-time tasks. In: Proceedings of ECRTS 2016, France, pp. 176–186
(2016)

33. Mohaqeqi, M., Abdullah, S.M.J., Ekberg, P., Yi, W.: Refinement of workload mod-
els for engine controllers by state space partitioning. In: Proceedings of ECRTS
2017, Croatia, pp. 11:1–11:22 (2017)

34. Stigge, M., Ekberg, P., Guan, N., Yi, W.: The digraph real-time task model. In:
Proceedings of RTAS 2011, Chicago, IL, USA (2011)

35. Stigge, M., Yi, W.: Combinatorial abstraction refinement for feasibility analysis.
In: Proceedings of RTSS 2013 (2013)

36. Stigge, M., Yi, W.: Graph-based models for real-time workload: a survey. Real-
Time Syst. 51(5), 602–636 (2015)

37. Sun, J., Guan, N., Wang, Y., He, Q., Yi, W.: Scheduling and analysis of real-time
openmp task systems with tied tasks. In: Proceedings of RTSS 2017, Paris (2017)

38. Sun, J., Guan, N., Wang, Y., Deng, Q., Zeng, P., Yi, W.: Feasibility of fork-join real-
time task graph models: hardness and algorithms. ACM Trans. Embed. Comput.
Syst. 15(1), 14:1–14:28 (2016)

39. Tang, Y., Guan, N., Liu, W., Phan, L., Yi, W.: Revisiting gpc and and connector
in real-time calculus. In: Proceedings of RTSS 2017, Paris (2017)

40. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard
real-time systems. In: ISCAS 2000, vol. 4, pp. 101–104 (2000)

41. Thiele, L., Wandeler, E., Stoimenov, N.: Real-time interfaces for composing real-
time systems. In: Proceedings of the 6th ACM & Amp; IEEE International Con-
ference on Embedded Software, EMSOFT 2006, pp. 34–43. ACM (2006)

Contributed Papers

Modularization of Refinement Steps
for Agile Formal Methods

Fabian Benduhn1(B), Thomas Thüm2, Ina Schaefer2, and Gunter Saake1

1 University of Magdeburg, Magdeburg, Germany
fabian.benduhn@ovgu.de

2 TU Braunschweig, Braunschweig, Germany

Abstract. The combination of agile methods and formal methods has
been recognized as a promising field of research. However, many formal
methods rely on a refinement-based development process which poses
problems for their integration into agile processes. We consider redundan-
cies within refinement hierarchies as a challenge for the practical appli-
cation of stepwise refinement and propose superimposition-based modu-
larization of refinement steps as a potential solution. While traditionally,
each model in a refinement hierarchy must be developed and maintained
separately, our concept allows developers to specify the refinement steps
that transform a model into a refined one. We have developed tool sup-
port for the language AsmetaL and evaluated our approach by means
of a case study. The results indicate a reduction of complexity for the
development artifacts in terms of their overall size by 48.6% for the
ground model and four refinements. Furthermore, the case study shows
that superimposition-based refinement eases the development of alterna-
tive refinements for exploratory development and to cope with changing
requirements. Thus, we consider this work as a step towards agile formal
methods that are tailored to support iterative development, facilitating
their incorporation into agile development processes.

Keywords: Formal methods · Agile methods · Refinement ·
Modularity · Superimposition · Abstract state machines

1 Introduction

Despite the potential benefits of applying formal methods to increase the quality
of software and a growing number of success stories, facilitating their industrial
adoption has been recognized as an important research challenge [46]. Tradi-
tional formal methods and techniques have mostly been developed assuming a
waterfall-like development process in which all requirements are known from the
beginning and do not change during the development process [36]. For decades,
research has focused on developing techniques to prevent errors when transform-
ing a set of well-known requirements into an implementation that faithfully ful-
fills them [19]. However, researchers and practitioners increasingly recognize the

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 19–35, 2017.
https://doi.org/10.1007/978-3-319-68690-5 2

20 F. Benduhn et al.

need to adapt and develop formal methods to be incorporated into agile develop-
ment processes in which requirements are expected to change frequently [13,24].
In this paper, we contribute to agile formal methods by investigating concepts
to ease the integration of refinement-based formal methods into agile processes.

Stepwise refinement is an essential concept in formal methods and has been
integrated into many popular methods such as Event-B, ASM, or Z [1,17,42].
The idea of stepwise refinement is that the developer starts by specifying a
high-level model of the system that is derived from the requirements and easy
to understand, but still accurate regarding all relevant system properties [16].
Such a high-level model can already be subject to verification and validation,
which helps to prevent errors early in the development process [16]. Once the
developer is satisfied with the initial model, it is refined by adding more details
or additional functionality. This refinement process continues until a satisfying
level of abstraction has been reached, eventually leading to executable code.

While the general idea of model-based refinement (i.e., to postpone design
decisions as long as possible during the development process) seems to be com-
patible with agile processes such as iterative development, its practical appli-
cation poses several challenges. Researchers have identified the development of
reusable modules for model-based refinement as a challenge for their integration
into agile processes [23]. In particular, iterative development becomes difficult
because of the inherent redundancies between the different representations of the
system in the refinement hierarchy. When requirements change, the model of the
system needs to be adjusted on several levels of refinement. Every modification
potentially needs to be performed on all succeeding levels, each typically main-
tained as a separate development artifact. This overhead is especially a problem
for agile processes, in which changes are expected to occur frequently and must
be synchronized between all levels of refinement.

We propose to apply superimposition-based modularization to refinement
steps with the goal to avoid redundancies within refinement hierarchies and
to ease the replacement and removal of design decisions, making it easier to
cope with changing requirements. We exemplify superimposition-based refine-
ment using the Abstract State Machine (ASM) method which includes a very
general notion of refinement, subsuming other more restricted refinement con-
cepts used in other formal methods [16]. That is, we do not aim to define a specific
mathematical notion of refinement for ASMs - this has to be done by the engineer
for each project - but to investigate how to describe the required development
artifacts of a given refinement hierarchy. As such, we expect superimposition-
based refinement to be applicable for other methods than ASM as well.

We have developed tool support based on FeatureHouse, a tool for compo-
sitional development of software based on language-independent superimposi-
tion [5]. We extended it to support modular refinement steps using the language
AsmetaL [27,28]. To evaluate our approach, we have performed a case study
based on the Landing Gear System [8,14]. In detail, we make the following
contributions:

Modularization of ASM Refinement Steps 21

– We propose to apply superimposition-based refinement, allowing devel-
opers to specify modular refinement steps that can be automatically com-
posed to derive a model of the system on the desired levels of abstraction, to
facilitate flexibility.

– We exemplify the concept with an extension of AsmetaL that supports
superimposition-based refinement.

– We developed tool support for our extension of AsmetaL. It is integrated
into Eclipse and allows the direct application of the Asmeta toolset to perform
various analyses to the model on each level of refinement.

– We provide first empirical evidence of the feasibility of our approach by
means of its application to the landing gear case study which indicates a large
reduction of system size due to removed redundancies in the models.

2 Modularization of Refinement Steps

We explain the basic concept of model-based refinement in formal methods and
discuss some of its challenges for the application to agile development in Sect. 2.1.
In Sect. 2.2, we propose to modularize refinement steps based on superimposition
to reduce redundancies within development artifacts.

2.1 Refinement in Formal Methods

In model-based refinement, the developer starts with an abstract model that
is refined stepwise to executable code or a sufficiently detailed model [16]. For
the sake of clarity, we explicitly distinguish between refinements and refinement
steps; A refinement step describes the changes that are applied to transform
the initial model or one of its refinements into a more concrete refinement. The
result of a refinement-based development process is a sequence of refinements.

In Fig. 1, we show a sequence of refinements for the Landing Gear System that
we use as a running example. The Landing Gear System has been proposed by
Boniol et al. as a benchmark for formal methods and behavioral verification [14].
It describes an airplane landing gear system consisting of three landing sets. The
system controls opening and closing mechanisms of the landing sets and includes
features such as sensors, cylinders, and a health monitoring system. For a more
complete description of the system we refer to the literature [14].

The refinement sequence of the Landing Gear system, presented in Fig. 1,
has been adapted from Arcaini et al. who exemplified its stepwise development
from an abstract model to Java code [8]. Each refinement step can be applied
to the model on a previous level of refinement. The initial model, here simply
called Landing Gear, only includes behavior of a single landing set and its most
basic elements, namely doors and gears, and describes their interaction. The first
refinement step Cylinders adds the behavior of cylinders that extend and retract
during the landing sequence. We depict the resulting refinement of the system
model in terms of the involved refinement steps: {Landing Gear, Cylinders}
describes the first refinement of the Landing Gear model. Similarly, the next

22 F. Benduhn et al.

Fig. 1. Sequence of refinements for the Landing Gear System

refinement steps add details about the behavior of sensors to the landing set,
the two additional landing sets, and a health monitoring system, respectively.

A sequence of refinements typically leads to development artifacts containing
a high degree of redundancy. The reason is that typically each refinement is
merely an extended version of the previous one and only differs in a specific
aspect. In practice, refinements are typically created manually by duplicating
the initial model and adapting it sequentially by applying refinement steps. This
procedure is known as clone-and-own in the context of software variability and
has been studied on the level of code [21,38].

Assuming a sequential development process in which all requirements are
known a priori and are not subject to change, the clone-and-own approach would
be feasible. However, it is not suitable for agile practices such as iterative devel-
opment. In particular, the redundancies within the refinement sequence lead
to practical problems, especially for the maintenance of development artifacts.
In the Landing Gear System, changes to the cylinder sub-system may involve
additional adjustments in three succeeding refinement levels. In general, each
modification on a given level of refinement may affect lower levels as well. The
high degree of redundancy makes it difficult to react flexibly to changing require-
ments.

2.2 Superimposition-Based Modularization

We have seen that redundancies between development artifacts in traditional
refinement hierarchies pose several challenges for the integration of formal
methods into iterative processes. To avoid those redundancies, we propose
superimposition-based modularization of refinement steps, as illustrated in
Fig. 2. One of the key ideas is to specify the refinement steps, as partial model
representing the delta between the abstract and the refined model. Based on
the concept of superimposition, the refinements for each level can be automat-
ically derived from the modular refinement steps (e.g., for analysis purposes).
Developers do not need to maintain the models on each level of refinement
directly. Instead, only the modular refinement steps have to be maintained man-
ually, allowing the developer to reduce the degree of redundancy in development

Modularization of ASM Refinement Steps 23

artifacts. Thus, if we perform a change to a modular refinement step (e.g., Sen-
sors) the change automatically applies to subsequent refinements.

Fig. 2. Concept of modular refinement applied to the Landing Gear System

We propose to modularize refinement steps using hierarchical superimposi-
tion as proposed by Apel et al. [5]. As depicted in Fig. 3, the base model and
each refinement step are considered as syntax trees, whose nodes represent syn-
tactical elements of the model. When superimposing two trees, their nodes are
merged recursively based on their names, types, and relative positions. Nodes
are merged, if they have the same name and type and if their parents have been
merged. Nodes that cannot be matched this way are added to the tree at the
current position, as is the case for node n4 in the example. Corresponding non-
terminal nodes are merged recursively, by merging their children. When merging
terminal nodes (node n2 in the example), specific composition rules are to be
defined. We propose such composition rules for AsmetaL in Sect. 3.2.

Type: t1

Name: n1

Type: t2

Name: n2

Type: t3

Name: n3

(a) Base model

Type: t1

Name: n1

Type: t2

Name: n2

Type: t3

Name: n3

Type: t4

Name: n4

(b) Refinement step

Type: t1

Name: n1

Type: t2

Name: n2

Type: t3

Name: n3

Type: t4

Name: n4

(c) Refined model

Fig. 3. Superimposition-based refinement. The colors indicate that node n2 is merged
using language-specific rules. (Color figure online)

By applying superimposition-based composition, the developer only needs
to specify the parts of the model that are changed during a refinement step,

24 F. Benduhn et al.

the model can be generated automatically for each level of refinement. Thus,
redundancies within the refinement hierarchy can be avoided to a large extent.
As each refinement typically represents a design decision, the modularization
facilitates flexibility by allowing developers to replace or modify functionality to
reflect changing requirements by merely replacing a module. Thus, it may also
become easier to adapt the system or create different variants of the system and
respond to changing requirements quickly.

3 Modularization of ASM Refinement Steps

We exemplify superimposition-based refinement for the ASM method, and in
particular for the language AsmetaL for which we provide composition rules.
We introduce ASMs and the language AsmetaL in Sect. 3.1 and composition
rules for AsmetaL in Sect. 3.2.

3.1 Abstract State Machines and the Language AsmetaL

Abstract State Machines (ASMs) have been proposed by Gurevich as a means
to describe algorithms on arbitrary levels of abstraction, and made popular by
Börger as the underlying formalism of the ASM method [15,30]. Besides the
ASM formalism, the ASM method, comprises the idea to describe a system on
any desired level of abstraction (ground model), and refine it stepwise. For a
detailed description of the ASM method we refer to the literature [17].

In this work, we exemplify the proposed concepts using the ASM-language
AsmetaL [28] and our running example. The ASM model for the Landing Gear
System as used for illustration has been proposed by Arcaini et al. [8]. In
AsmetaL, a model include domains, functions, and rules.

Domains represent a mathematical specification for named complex structures.
Domains are thereby a combination of either simple predefined types such as
integers or other domains. The type of the combination is defined by a set of
keywords, such as enum, Set, or Map. Line 1–3 of Fig. 4 shows an example of
domain definitions from the Landing Gear System.

Functions in ASMs, define the state of the system by their values at a given
point of execution. We mainly distinguish between controlled functions, whose
value is controlled by the system, and monitored functions, whose values are
given by the environment. An exemplary declaration and definition of functions
from the Landing Gear System is shown in Fig. 4, Lines 4–5. The type of function
doors is DoorStatus (i.e., a door can be either closing, closed, opening, or open).
The function definition uses a case term with the obvious semantics as known
from switch statements in programming languages. The doors are open when
cylinders are extended and closed when the cylinders are retracted. Thus, the
value of function doors is determined by the value of other functions, thus it is
considered as a derived function.

Modularization of ASM Refinement Steps 25

1 enum domain HandleStatus={UP |DOWN}
2 enum domain DoorStatus={CLOSED|OPENING|OPEN|CLOSING}
3 enum domain GearStatus={RETRACTED|EXTENDING|EXTENDED|RETRACTING}
4 derived doors : DoorStatus
5 function doors = switch cy l inde r sDoor s
6 case CYLINDER EXTENDED: OPEN
7 case CYLINDER RETRACTED: CLOSED
8 endswitch
9

10 rule r c l o s eDoor = switch doors
11 case OPEN: doors := CLOSING
12 case CLOSING: doors := CLOSED
13 case OPENING: doors := CLOSING
14 endswitch
15
16 function doors = OPEN

Fig. 4. Domain, function and rule definition in AsmetaL

Rules in ASMs are sets of updates that, in its basic form, are controlled by con-
ditional statements called guards. In each step, all rules of an ASM are executed
simultaneously and define the update set for the next state transition. Figure 4,
Line 10 shows the definition of rule r closeDoor which handles the opening and
closing of the doors. In AsmetaL, the main rule marks the entry point of the
ASM’s execution, from which further rules can be invoked.

3.2 Composition Rules for Refinement Steps in AsmetaL

We propose an extension of AsmetaL that allows to express refinement steps
modularly and to derive the desired refinement hierarchies automatically. The
composition mechanism is based on superimposition as explained in Sect. 2.2.
Each refinement step contains a syntactically correct, yet partial, ASM. However,
only those parts that are subject to change during a refinement step have to be
specified in the corresponding module. The developer can introduce new elements
in a refinement step or refine an existing element with the same type and name.
For the automated composition of terminal nodes, specific composition rules are
required, which we will explain in the following.

Refinement Steps in AsmetaL. A refinement step may introduce new functions or
refine existing ones. When refining a function, the default behavior is to replace
the previous definition of the function. Nevertheless, it is possible to include
the content of the function from the previous refinement level by using keyword
@original that we have adopted from method refinement in feature-oriented
programming [5]. Figure 5 shows an example of a function refinement and the
result of the composition. It is crucial, that the keyword @original does not
constitute an absolute reference to a particular previous refinement, facilitating
a notion of optional refinements providing more flexibility for agile development.

26 F. Benduhn et al.

The refinement of rules and domains follows the same principle as the refinement
of functions as depicted in Fig. 6. As our running example does not contain any
refinements of domains, we do not show an example.

1 function f l ow r a t e (va lveS i ze , speed) = Ground Model
2 va l v eS i z e ∗ speed

1 function f l ow r a t e Refinement Step (Valves)
2 (va lveS ize1 , va lveS ize2 , speed) =
3 @or i g ina l (va lveS ize1 , speed) + @or i g ina l (va lveS ize2 , speed)

1 function f l ow r a t e Composed Refinement
2 (va lveS ize1 , va lveS ize2 , speed) =
3 (va lv eS i z e1 ∗ speed) + (va lv eS i z e2 ∗ speed)

Fig. 5. Refinement of a function in our extension of AsmetaL

1 Ground Model
2 rule r openValve =
3 va lve := open
4
5

1 Refinement Step (Valves)
2 rule r openValve
3 i f (p i p eF i l l = empty) then
4 @or i g ina l ()
5 endif

1 rule r openValve = Composed Refinement
2 i f (p i p eF i l l == empty) then
3 va lve := open
4 endif

Fig. 6. Refinement of a rule in our extension of AsmetaL

Granularity of Refinement. To prepare AsmetaL for superimposition-based com-
position, we had to define which language elements should serve as units of
composition by representing them as terminal nodes during superimposition. A
natural choice for rules are to consider rule definitions as non-terminals. How-
ever, our evaluation with the Landing Gear System showed that it might be
useful to consider the possibility to refine specific cases of case rules. The reason
is that it appeared as a common pattern to add cases or elements to a given case.
Thus, we have introduced the keyword extendable that can be used to assign a
unique identifier to a case rule. This identifier can be used during refinement by
referencing it with the keyword extend original. By means of both keywords,
it is now possible to explicitly refine cases rules by adding new cases or modify
existing ones as illustrated in Fig. 7.

Modularization of ASM Refinement Steps 27

1 Ground Model
2
3 switch (p i p eF i l l)
4 /∗ extendable (p ipe)∗/
5 case empty :
6 r c l o s eVa l v e ()
7 case f i l l e d :
8 r openValve ()
9 endswitch

10
11

1 Refinement Step (Valves)
2 /∗ e x t e nd o r i g i n a l (p ipe)∗/
3 switch (p i p eF i l l)
4 case f i l l e d :
5 par
6 @or i g ina l
7 warnLight = ye l low
8 endpar
9 case ove r f l ow ing :

10 warnLight = red
11 endswitch

1 switch (p i p eF i l l) Composed Refinement
2 case empty : r c l o s eVa l v e ()
3 case f i l l e d : par

r4 openValve ()
wolley=thgiLnraw5

6 endpar
7 case ove r f l ow ing : warnLight = red
8 endswitch

Fig. 7. Refinement of a switch statement in our extension of AsmetaL

4 Tool Support and Evaluation

In order to evaluate our concepts, we have developed tool support and performed
a case study based on the Landing Gear System, which already served as a run-
ning example in the previous sections. We give an overview about tool support
in Sect. 4.1 and present results of our case study in Sect. 4.2.

4.1 Tool Support for Superimposition-Based Refinement in Eclipse

The core of our tool support is an extension of FeatureHouse [5], a command-
line tool supporting different types of software composition including super-
imposition. We integrated support for the language AsmetaL [28], to enable
superimposition-based composition of refinement rules. It is necessary to decide
on a granularity for superimposition by choosing which elements should be con-
sidered as terminal nodes during superimposition. For each type of terminal
node, we implemented composition rules supporting the keyword @original() as
explained in Sect. 3.2. Our extension of FeatureHouse can be used to compose a
set of AsmetaL models representing different refinement steps.

Our extension of FeatureHouse is integrated into FeatureIDE [45], an Eclipse
plug-in integrating numerous tools to develop configurable software. We have
extended existing views to handle ASM models, so that they can be used to
maintain an overview about the refinement hierarchy. The general development
interface can be seen in Fig. 8. The Package Explorer, on the left, shows a Fea-
tureIDE project with the Landing Gear System. The folder refinement steps,

28 F. Benduhn et al.

contains for each refinement step a sub-folder containing a set of AsmetaL mod-
els. A configuration describes a sequence of refinement steps and can be created
using the Configuration Editor in the top-right window. The set of selectable
refinement sequences can be defined in the model.xml file, for which also a graph-
ical editor exists.

The composed models are automatically generated into the refinement folder
and can be used as input for other tools. Our tool is developed as an Eclipse plug-
in, and thus, it easily integrates with the Asmeta toolset, which has been built
around the Asmeta Framework and the language AsmetaL [28]. It incorporates
several tools including support for simulation, model checking, and static analysis
of ASM models. These existing editors, views and analysis tools can be used for
the automatically generated ASM models on each level of refinement.

Fig. 8. Integration of our tool support into Eclipse including language-specific editor
and views for ASMs in our extension of the language AsmetaL.

4.2 Modularizing Refinement Steps of the Landing Gear System

To evaluate the feasibility of superimposition-based refinement for ASMs, we
have used our tool to perform a case study based on the Landing Gear System.
Arcaini et al. provide an ASM implementation of the system that has been used
as the foundation for our case study [7].

The existing refinement hierarchy by Arcaini et al. describes the AsmetaL
model on each level of refinement in detail [8]. We derived the necessary refine-
ment steps, which makes the differences between two subsequent refinement
explicit and by modularizing them manually. We took care that the composed
models for each level of refinement do not differ semantically from the original

Modularization of ASM Refinement Steps 29

models. In addition to syntactical comparisons that were sufficient for large parts
of the model, we applied the Asmeta Simulator, Validator, Model Adviser, and
Refinement Prover of the Asmeta toolset1 and compared the results to ensure
the correctness of our modularization. After defining the refinement hierarchy
and modularizing the refinement steps of the Landing Gear System, we were
able to automatically derive the ASM model for each level of refinement.

As our goal is a reduction of redundancies, we compared the size of the model
on each level of refinement with the size of the modularized refinement steps.
Our results show that it is possible to remove large parts of the redundancy in
the development artifacts. In Table 1, we present the size of the AsmetaL models
in lines of code, i.e., non-empty lines excluding comments. The second column
shows the lines of code of the original refinement step and the third column (the
accumulated) size of the necessary refinement steps. In the third row, we present
the percentage of the reduction in size.

Table 1. Reduction of system size achieved by modularization of refinement steps in
the Landing Gear case study.

Refinement Refinement (acc.) [loc] Refinement step (acc.) [loc] Reduction (acc.) [%]

Ground model 83 (83) 83 (83) 0.00 (0.00)

Cylinders 170 (253) 154 (237) 9.41 (6.3)

Sensors 187 (440) 131 (368) 29.94 (16.4)

LandingSets 199 (639) 23 (391) 88.44 (38.8)

HealthMonitor 250 (889) 66 (457) 73.60 (48.6)

The overall size of the refinement sequence has been reduced by decomposi-
tion into modular refinement steps by 48.6%. In general, it can be seen that the
reduction increases with a growing number of refinement steps. In some cases,
such as Cylinders, the reduction is relatively low while other refinement steps
benefit from larger savings. These results suggest that a relevant reduction of
redundancies is possible, in particular for large refinement hierarchies, but its
degree also depends on the particular design of the modularization, such as the
choice of granularity for superimposition, and possibly on the nature of the given
refinement steps.

Despite being able to derive the original refinement hierarchy from the refine-
ment modules automatically, the modularization of refinement steps allows us
to derive even more variants of the system by composing different combinations
of refinement steps. We considered the development of two alternative refine-
ments (for Cylinders and Sensors) that have been created during exploratory
phases of the original development. With superimposition-based refinement, it
was possible to switch between alternative implementations of individual refine-
ment steps. Changes are implicitly propagated to all generated refined models

1 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/

30 F. Benduhn et al.

by automatically rebuilding them after each change. This was especially helpful,
when considering the impact of changes to subsequent refinements of the original
sequence.

We have experienced that it is possible to omit certain refinement steps,
allowing the generation of completely new variants of the system. For instance, it
would be possible to derive a variant of the Landing Gear System without Sensors
but with HealthMonitor. We explored the idea by considering different optional
refinements. Our results show that it is generally possible, but may require non-
trivial changes to the design of the involved refinement steps or modules to handle
particular combinations of refinement steps. For instance, the refinement step
LandingSets does not depend on a particular refinement, which means that it can
be modified arbitrarily (e.g., by choosing a different number of landing sets). In
contrast, the refinement step HealthMonitor contained syntactical dependencies
to the previous refinement step and cannot be freely combined in other ways
without major changes.

Furthermore, we observed that each iteration in agile development corre-
sponds to identifying a set of desired refinements in the design space, and devel-
oping the necessary refinement steps to generate these refinements. For the sake
of generality, we do not restrict the particular mapping between refinement steps
and iterations. One the one hand, it is possible to decide on a set of features
for the next iteration, extend the ground model of the previous iteration and
adapt all refinements accordingly all the way to the implementation. On the
other hand, each iteration could involve the development of a single refinement
step only. In this case, the suitability of ASMs to model a system on arbitrary
levels of abstraction enables early validation and can be used to get early feed-
back from the customer. In this case, the refinement sequence might involve an
arbitrary combination of refinements.

5 Related Work

Researchers increasingly recognize the need to incorporate formal methods into
agile development processes [13,24]. The use of light-weight formal techniques,
such as static verification, in agile development processes has been shown to be
applicable in practice [36]. However, researchers have identified the integration
of more heavy-weight formal methods typically based on stepwise refinement,
such as Event-B, ASM, and Z, as a promising way to develop safety-critical sys-
tems [36]. In particular, the need for concepts to facilitate reusability in model-
based refinement has been identified as a major challenge [23]. We address this
challenge by investigating the application of superimposition as a technique to
achieve reuse between refined models. Furthermore, to our knowledge, we are
the first to propose the integration of ASM and agile methods.

Formal refinement concepts have been studied intensively [9,16,25,35]. How-
ever, the main focus of this line of research are the theoretical underpinnings
of refinement rather than on ways to facilitate flexibility. In contrast, we aim
to ease development in the presence of refinement hierarchies independent of
particular notions of refinement.

Modularization of ASM Refinement Steps 31

There exist other approaches to avoid redundancies in model-based refine-
ment. In particular, the Rodin tool-suite for Event-B allows developers to express
a refinement by defining only those parts that differ from the abstract model [2].
However, this merely corresponds to a static reference to previous models which
does not facilitate the desired flexibility for agile methods. In contrast, the key-
word @original in our approach facilitates more flexible extensions by omitting
to specify a particular model to which it refers.

Various concepts to modularize features and cross-cutting concerns, such
as feature-oriented programming [12,39], aspect-oriented programming [33] and
delta-oriented programming [40], have been proposed [4,43]. In particular, these
approaches build on superimposition (or similar concepts) which has been recog-
nized as a general concept for software composition that can be applied uniformly
to all kinds of software artifacts [5,10].

Historically, superimposition has been proposed as a concept to extend dis-
tributed programs with parrallel composition [18,32]. In general, the early work
on superimposition focuses on semantic superimposition of particular models,
typically with the goal to establish a set of desired properties [26].We adopt
a more general approach from Apel et al., which merely operates on AST-like
representations of development artifacts, facilitating a notion of uniform com-
position for all kind of development artifacts [5]. In this work, we consider this
language-independent notion of superimposition.

Superimposition has already been applied to compose method contracts in
JML [20,31,44,47], Alloy specifications [6], state machines and markov decision
processes [22,37], and unit tests [3,34]. We build on this idea by investigating its
application to refinement steps, showing that similar benefits such as reduction
of redundancies and compositionality can be expected. However, we are the first
to apply it to refinement hierarchies. Further, the focus of our work is to leverage
the incorporation of refinement-based formal methods into agile processes.

In this work, we combine techniques from formal methods and software com-
position. Börger and Batory exemplified the modularization of programs, the-
orems, and correctness proofs from the JBook case study in a uniform compo-
sitional way [11]. In our work, we build on their observation that refinements
can be modularized in the same way as features in the context of software prod-
uct lines, but consider the modularization of refinement steps to achieve prac-
tical benefits for applying formal refinements. Gondal et al. have proposed a
feature-oriented extension of Event-B to investigate to which extent the tradi-
tional Event-B composition mechanisms can be used to implement and compose
features [29]. However, the focus is on enabling the correct development of sev-
eral similar variants of a system, but not on the implications of the refinement
hierarchies for the development process itself. Schaefer et al. consider modular-
izing software taxonomies which represent a family of different software variants
in a refinement-based fashion [41]. The authors describe a process how a software
taxonomy can be transformed into a software product line, but do not target the
modularization of the refinement hierarchies themselves as done in this work.

32 F. Benduhn et al.

6 Conclusion and Future Work

The introduction of refinement hierarchies to agile development processes poses
several challenges. We have identified the inherent redundancies between refine-
ments as particularly problematic for iterative development in which models on
multiple levels of refinement may need to be changed frequently to respond to
changing requirements. We have proposed superimposition-based modulariza-
tion as a possible solution and exemplified it using ASMs. We have developed
composition-rules and implemented tool support for the language AsmetaL.

To evaluate the concept, we have performed a case study using the well-
known Landing Gear System. Our results indicate a significant reduction of
redundancies, possibly reducing development and maintenance effort. Further-
more, we show that superimposition-based refinement enables a more flexible
refinement hierarchy. While these results are promising, it remains to be seen to
which extent developers benefit from this reduction in practice. Further empiri-
cal studies regarding comprehensibility and maintainability of the development
artifacts would help to better understand the potential advantages.

The modularization of refinement steps may facilitate agile development by
allowing developers to modify a design decision by merely replacing the corre-
sponding module. In future work, we want to investigate the potential of mod-
ularization of refinement steps to serve as a basis for refinement-based develop-
ment of software product lines and their efficient verification.

Acknowledgments. This work was partially supported by the DFG (German
Research Foundation) under the Researcher Unit FOR1800: Controlling Concurrent
Change (CCC) and project EXPLANT (DFG, grant SA 465). We thank Paolo Arcaini
and Angelo Gargantini for their valuable support with the Asmeta framework and pro-
viding the original AsmetaL refinement sequence for the Landing Gear System case
study.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool envi-
ronment for event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp.
588–605. Springer, Heidelberg (2006). doi:10.1007/11901433 32

3. Al-Hajjaji, M., Meinicke, J., Krieter, S., Schröter, R., Thüm, T., Leich, T., Saake,
G.: Tool demo: testing configurable systems with featureIDE. In: Proceedings of
International Conference on Generative Programming: Concepts and Experiences
(GPCE), pp. 173–177. ACM, New York (2016)

4. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Berlin, Heidelberg (2013)

5. Apel, S., Kästner, C., Lengauer, C.: Language-independent and automated soft-
ware composition: the featurehouse experience. IEEE Trans. Softw. Eng. (TSE)
39(1), 63–79 (2013)

http://dx.doi.org/10.1007/11901433_32

Modularization of ASM Refinement Steps 33

6. Apel, S., von Rhein, A., Thüm, T., Kästner, C.: Feature-interaction detection based
on feature-based specifications. Comput. Netw. 57(12), 2399–2409 (2013)

7. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V.,
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer,
Cham (2014). doi:10.1007/978-3-319-07512-9 1

8. Arcaini, P., Gargantini, A., Riccobene, E.: Rigorous development process of a
safety-critical system: from asm models to java code. Int. J. Softw. Tools Tech-
nol. Transfer 19(2), 247–269 (2017)

9. Banach, R.: Model based refinement and the tools of tomorrow. In: Börger, E.,
Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 42–56.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-87603-8 5

10. Batory, D.: A tutorial on feature oriented programming and the AHEAD tool suite.
In: Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp.
3–35. Springer, Heidelberg (2006). doi:10.1007/11877028 1

11. Batory, D., Börger, E.: Modularizing theorems for software product lines: the Jbook
case study. J. Univ. Comput. Sci. (J.UCS) 14(12), 2059–2082 (2008)

12. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE
Trans. Softw. Eng. (TSE) 30(6), 355–371 (2004)

13. Black, S., Boca, P.P., Bowen, J.P., Gorman, J., Hinchey, M.: Formal versus agile:
survival of the fittest. Comput. 42(9), 37–45 (2009)

14. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V.,
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer,
Cham (2014). doi:10.1007/978-3-319-07512-9 1

15. Börger, E.: High level system design and analysis using abstract state machines. In:
Hutter, D., Stephan, W., Traverso, P., Ullmann, M. (eds.) FM-Trends 1998. LNCS,
vol. 1641, pp. 1–43. Springer, Heidelberg (1999). doi:10.1007/3-540-48257-1 1

16. Börger, E.: The asm refinement method. Formal Aspects Comput. 15(2), 237–257
(2003)

17. Börger, E., Stark, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Secaucus (2003)

18. Bougé, L., Francez, N.: A compositional approach to superimposition. In: Proceed-
ings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 240–249. ACM (1988)

19. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. (CSUR) 28(4), 626–643 (1996)

20. Clifton, C., Leavens, G.T.: Observers and assistants: a proposal for modular aspect-
oriented reasoning. In: Proceedings of Workshop Foundations of Aspect-Oriented
Languages (FOAL), pp. 33–44. Iowa State University, Ames, April 2002

21. Dubinsky, Y., Rubin, J., Berger, T., Duszynski, S., Becker, M., Czarnecki, K.: An
exploratory study of cloning in industrial software product lines. In: Proceedings
of European Conference on Software Maintenance and Reengineering (CSMR), pp.
25–34. IEEE, Washington, DC (2013)

22. Dubslaff, C., Klüppelholz, S., Baier, C.: Probabilistic model checking for energy
analysis in software product lines. In: Proceedings of International Conference on
Aspect-Oriented Software Development (AOSD), pp. 169–180. ACM, New York
(2014)

23. Edmunds, A., Olszewska, M., Waldén, M.: Using the event-b formal method for
disciplined agile delivery of safety-critical systems (2015)

24. Eleftherakis, G., Cowling, A.J.: An agile formal development methodology. In:
Proceedings of the 1st South-East European Workshop on Formal Methods, pp.
36–47 (2003)

http://dx.doi.org/10.1007/978-3-319-07512-9_1
http://dx.doi.org/10.1007/978-3-540-87603-8_5
http://dx.doi.org/10.1007/11877028_1
http://dx.doi.org/10.1007/978-3-319-07512-9_1
http://dx.doi.org/10.1007/3-540-48257-1_1

34 F. Benduhn et al.

25. Ernst, G., Pfähler, J., Schellhorn, G., Reif, W.: Modular refinement for subma-
chines of asms. In: Ameur, Y.A., Schewe, K.D. (eds.) Abstract State Machines,
Alloy, B, TLA, VDM, and Z. LNCS, vol. 8477, pp. 188–203. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-43652-3 16

26. Fiadeiro, J., Maibaum, T.: Categorical semantics of parallel program design. Sci.
Comput. Program. 28(2–3), 111–138 (1997)

27. Gargantini, A., Riccobene, E., Scandurra, P.: Deriving a textual notation from a
metamodel: an experience on bridging modelware and grammarware. Milestones,
Models and Mappings for Model-Driven Architecture, p. 33 (2006)

28. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a
simulation engine for abstract state machines. J. UCS 14(12), 1949–1983 (2008)

29. Gondal, A., Poppleton, M., Butler, M.: Composing event-B specifications - case-
study experience. In: Apel, S., Jackson, E. (eds.) SC 2011. LNCS, vol. 6708, pp.
100–115. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22045-6 7

30. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Logic (TOCL) 1(1), 77–111 (2000)

31. Hähnle, R., Schaefer, I.: A Liskov principle for delta-oriented programming. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 32–46. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34026-0 4

32. Katz, S.: A superimposition control construct for distributed systems. ACM Trans.
Program. Lang. Syst. (TOPLAS) 15(2), 337–356 (1993)

33. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997). doi:10.
1007/BFb0053381

34. Kim, C.H.P., Marinov, D., Khurshid, S., Batory, D., Souto, S., Barros, P.,
D’Amorim, M.: SPLat: lightweight dynamic analysis for reducing combinatorics
in testing configurable systems. In: Proceedings of European Software Engineer-
ing Conference/Foundations of Software Engineering (ESEC/FSE), pp. 257–267.
ACM, New York, August 2013

35. Kourie, D.G., Watson, B.W.: The Correctness-by-Construction Approach to Pro-
gramming. Springer, Heidelberg (2012)

36. Larsen, P.G., Fitzgerald, J.S., Wolff, S.: Are formal methods ready for agility? a
reality check. In: FM + AM, pp. 13–25. Citeseer (2010)

37. Li, H., Krishnamurthi, S., Fisler, K.: Modular verification of open features using
three-valued model checking. Autom. Softw. Eng. 12(3), 349–382 (2005)

38. Linsbauer, L., Lopez-Herrejon, R.E., Egyed, A.: Softw. Syst. Model (2016). https://
doi.org/10.1007/s10270-015-0512-y

39. Prehofer, C.: Feature-oriented programming: a fresh look at objects. In: Akşit,
M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 419–443. Springer,
Heidelberg (1997). doi:10.1007/BFb0053389

40. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15579-6 6

41. Schaefer, I., Seidl, C., Cleophas, L.G., Watson, B.W.: Splicing TABASCO: custom-
tailored software product line variants from taxonomy-based toolkits. In: SAICSIT
2015, p. 34:1–34:10 (2015)

42. Spivey, J.M.: Understanding Z: A Specification Language and Its Formal Seman-
tics. Cambridge University Press, New York (1988)

http://dx.doi.org/10.1007/978-3-662-43652-3_16
http://dx.doi.org/10.1007/978-3-642-22045-6_7
http://dx.doi.org/10.1007/978-3-642-34026-0_4
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0053381
https://doi.org/10.1007/s10270-015-0512-y
https://doi.org/10.1007/s10270-015-0512-y
http://dx.doi.org/10.1007/BFb0053389
http://dx.doi.org/10.1007/978-3-642-15579-6_6

Modularization of ASM Refinement Steps 35

43. Tarr, P., Ossher, H., Harrison, W., Sutton Jr., S.M.: N degrees of separation: multi-
dimensional separation of concerns. In: Proceedings of International Conference on
Software Engineering (ICSE), pp. 107–119. ACM, New York (1999)

44. Thüm, T.: Product-line specification and verification with feature-oriented con-
tracts. Ph.D. thesis, University of Magdeburg, Germany, February 2015

45. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Fea-
tureIDE: an extensible framework for feature-oriented software development. Sci.
Comput. Program. (SCP) 79, 70–85 (2014)

46. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice
and experience. ACM Comput. Surv. (CSUR) 41(4), 19 (2009)

47. Zhao, J., Rinard, M.: Pipa: a behavioral interface specification language for aspect.
In: Pezzè, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 150–165. Springer, Heidelberg
(2003). doi:10.1007/3-540-36578-8 11

http://dx.doi.org/10.1007/3-540-36578-8_11

Model Checking Pushdown Epistemic
Game Structures

Taolue Chen1,4, Fu Song2(B), and Zhilin Wu3

1 Department of Computer Science and Information Systems,
Birkbeck, University of London, London, UK

2 School of Information Science and Technology,
ShanghaiTech University, Shanghai, China

songfu@shanghaitech.edu.cn
3 State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences, Beijing, China
4 State Key Laboratory of Novel Software Technology,

Nanjing University, Nanjing, China

Abstract. In this paper, we investigate the problem of verifying push-
down multi-agent systems with imperfect information. As the formal
model, we introduce pushdown epistemic game structures (PEGSs), an
extension of pushdown game structures with epistemic accessibility rela-
tions (EARs). For the specification, we consider extensions of alternating-
time temporal logics with epistemic modalities: ATEL, ATEL∗ and
AEMC. We study the model checking problems for ATEL, ATEL∗ and
AEMC over PEGSs under various imperfect information settings. For
ATEL and ATEL∗, we show that size-preserving EARs, a common defin-
ition of the accessibility relation in the literature of games over pushdown
systems with imperfect information, will render the model checking prob-
lem undecidable under imperfect information and imperfect recall setting.
We then propose regular EARs, and provide automata-theoretic model
checking algorithms with matching low bounds, i.e., EXPTIME-complete
for ATEL and 2EXPTIME-complete for ATEL∗. In contrast, for AEMC,
we show that the model checking problem is EXPTIME-complete even in
the presence of size-preserving EARs.

1 Introduction

Model checking, a well-studied method for automatic formal verification of com-
plex systems, has been successfully applied to verify communication protocols,
hardware designs and software, etc. [15]. The key idea underlying the model
checking method is to represent the system as a mathematical model, to express
a desired property by a logic formula, and then to determine whether the formula
is true in the model [15].

This work was partially supported by NSFC grant (61402179, 61532019, 61662035,
61572478, 61472474, 61100062, and 61272135), UK EPSRC grant (EP/P00430X/1),
and European CHIST-ERA project SUCCESS.

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 36–53, 2017.
https://doi.org/10.1007/978-3-319-68690-5 3

Model Checking Pushdown Epistemic Game Structures 37

Recently, it has been extended to verify multi-agent systems (MASs), a novel
paradigm which can be used to solve many complex tasks that might be difficult
or inefficient for an individual agent to tackle. As a model of finite-state MASs,
Alur et al. proposed concurrent game structures (CGSs), whilst alternating-
time temporal logics (ATL, ATL∗) and alternating-time μ-calculus (AMC) are
employed as specification languages, for which model checking algorithms were
also provided [1,2]. Since then, a number of model checking algorithms for MASs
have been studied for various models and logics. For instance, [26] proposed a
more expressive logic, called strategy logic (SL), which allows to express coop-
eration and enforcement of agents. However, the model checking problem for
strategy logic on CGSs is NonElementarySpace-hard and the satisfiability prob-
lem is undecidable [23]. As a result, several fragments of strategy logic were
investigated [10,23–25].

CGSs are usually determined by Interpreted Systems which are constructed
via a Mealy-type or Moore-type synchronous composition of local transition sys-
tems of agents [18,22]. In the literature, local transition systems of each agent are
usually finite (as, e.g., a finite Kripke structure), yielding a finite-state CGS only
via the synchronous composition. However, in practice often there are scenar-
ios of interest where agents cannot be represented by a finite-state system (e.g.,
pushdown scheduler [27]), or recourses shared between agents are unbounded [8],
but can be rightly modeled by a pushdown system. Hence, it would be of great
interest to study verification problems on the CGS obtained by a synchronous
composition of local pushdown systems. Unfortunately, the verification of even
the simplest property (e.g., reachability) for such a model is undecidable. To see
this, one can easily reduce from the emptiness problem of the intersection of
two pushdown automata which is known to be undecidable. To gain decidability
while still capturing many interesting practical cases, pushdown game structures
(PGSs) were proposed and investigated [13,14,27]. In PGSs, agents do not posses
their own local stacks, but can be seen as sharing a global stack. As the stack is
unbounded, PGSs represent a class of infinite-state MASs, a proper extension of
the finite-state MASs. PGSs allow, among others, modeling of unbounded mem-
ory or a unbound shared resource of agents, which is of particular importance
in MASs [8,27].

On the logic side, one considers alternating-time temporal epistemic log-
ics (ATEL, ATEL∗) [19,20,28,29,33], alternating-time epistemic μ-calculus
(AEMC) [7], and SLK [9], which are respectively extensions of ATL, ATL∗,
AMC and SL with epistemic modalities for representing knowledge of individual
agents, as well as “everyone knows”and common knowledge [18]. These logics are
usually interpreted over finite-state concurrent epistemic game structures, which
are an extension of CGSs with epistemic accessibility relations (EARs), giv-
ing rise to a model for representing finite-state MASs with imperfect information.
Assuming agents only access imperfect information arises naturally in various
real-world scenarios, typically in sensor networks, security, robotics, distributed
systems, communication protocols, etc. In addition, the extension of logics with
epistemic modalities allows one to succinctly express a range of (un)desirable

38 T. Chen et al.

properties of MASs, and has found a wide range of applications in AI, particu-
larly for reasoning about MASs [18,34].

This paper investigates model checking problems for ATEL, ATEL∗ and
AEMC over infinite-state MASs under imperfect information setting. To this
end, we propose pushdown epistemic game structures (PEGSs), an extension of
PGSs with EARs, as a mathematical model for infinite-state MASs with imper-
fect information. To the best of our knowledge, analogous models have not been
considered in literature.

Model checking PEGSs depends crucially on how EARs are defined. A com-
monly adopted definition, called size-preserving EARs, was introduced for games
over pushdown systems with imperfect information [3], where two configurations
are deemed to be indistinguishable if the two stack contents are of the same size
and, in addition, neither the pair of control states nor pairs of stack symbols
in the same position of the two stack contents are distinguishable. While this
sounds to be a very natural definition, we show, unfortunately, that the model
checking problems for ATEL and ATEL∗ over PEGSs are undecidable in gen-
eral, even when restricted to imperfect recall (memoryless) strategies. This result
suggests that alternative definitions of EARs are needed.

As a solution, we propose EARs that are regular and simple. Simple EARs
are defined over control states of PEGSs and the top symbol of the stack, while
regular EARs are simple EARs extended with a finite set of deterministic finite-
state automata (DFA), one for each agent, where the states of each DFA divide
the set of stack contents into finitely many equivalence classes. We first provide
an automata-theoretic algorithm that solves the model checking problem for
ATEL (resp. ATEL∗) over PEGSs with simple EARs, then present a reduction
from the model checking problems over PEGSs with regular EARs to the one
over PEGSs with simple one. The algorithm runs in EXPTIME for ATEL and
2EXPTIME for ATEL∗, and we show that these algorithms are optimal by giving
matching lower bounds. In contrast, for AEMC, we show that the model checking
problem is EXPTIME-complete, even in the presence of size-preserving EARs.

Related Work. Model checking over finite-state CGSs under perfect information
setting is well-studied in the literature [2,10,23–25]. The problem becomes unde-
cidable for ATL on CGSs under imperfect information and perfect recall set-
ting [16]. Therefore, many works restrict to imperfect information and imperfect
recall strategies [7,9,19,20,28,29,33]. The model checking problem over PGSs
under perfect information and perfect recall setting was studied in [13,14,27],
but only with perfect information. Furthermore, timed (resp. probabilistic) ATLs
and timed (resp. probabilistic) CGSs were proposed to verify timed (resp. prob-
abilistic) MASs, e.g., [6,11,12]. These works are, however, orthogonal to the one
reported in the current paper.

Structure of the Paper. In Sect. 2, we introduce pushdown epistemic game struc-
tures. In Sect. 3, we recall the definitions of ATEL, ATEL∗ and AEMC. In Sect. 4,
we present the undecidable result for ATEL, ATEL∗ and propose model check-
ing algorithms for decidable setting. The model checking algorithms for AEMC

Model Checking Pushdown Epistemic Game Structures 39

are presented in Sect. 5. Finally, we conclude in Sect. 6. Due to space restriction,
all proofs are committed here which can be found in the accompanying technical
report.

2 Pushdown Epistemic Game Structures

We fix a countable set AP of atomic propositions (also called observations). Let
[k] denote the set {1, ..., k} for some natural number k ∈ N.

Definition 1. A pushdown epistemic game structure (PEGS) is a tuple P =
(Ag,Ac, P, Γ,Δ, λ, {∼i| i ∈ Ag}), where

– Ag = {1, ..., n} is a finite set of agents (a.k.a. players); we assume that n is
bounded;

– Ac is a finite set of actions made by agents; we further define D = Acn to be the
set of decisions d = 〈a1, ..., an〉 such that for all i ∈ [n], d(i) := ai ∈ Ac;

– P is a finite set of control states;
– Γ is a finite stack alphabet;
– Δ : P × Γ × D → P × Γ ∗ is a transition function1;
– λ : P × Γ ∗ → 2AP is a valuation that assigns to each configuration (i.e., an

element of P × Γ ∗) a set of atomic propositions (i.e., observations);
– ∼i⊆ (P × Γ ∗) × (P × Γ ∗) is an epistemic accessibility relation (EAR) which

is an equivalence relation.

A concurrent epistemic game structure (CEGS) is a tuple P = (Ag,Ac, P,Δ, λ,
{∼i| i ∈ Ag}) where Δ : P × D → P , Ag,Ac, P are defined similarly as PEGS,
whereas λ and ∼i are over P solely. A pushdown game structure (PGS) is a PEGS
P = (Ag,Ac, P, Γ,Δ, λ, {∼i| i ∈ Ag}) in which ∼i is an identity for every agent
i ∈ Ag. Hence, a PGS P is usually denoted as (Ag,Ac, P, Γ,Δ, λ).

A configuration of the PEGS P is a pair 〈p, ω〉, where p ∈ P and ω ∈ Γ ∗. We
write CP to denote the set of configurations of P. For every (p, γ,d) ∈ P × Γ × D
such that Δ(p, γ,d) = (p′, ω), we write 〈p, γ〉 d

↪→P 〈p′, ω〉 instead.
The transition relation =⇒P : CP ×D×CP of the PEGS P is defined as follows:

for every ω′ ∈ Γ ∗, if 〈p, γ〉 d
↪→P 〈p′, ω〉, then 〈p, γω′〉 d=⇒P 〈p′, ωω′〉. Intuitively, if

the PEGS P is at the configuration 〈p, γω′〉, by making the decision d, P moves
from the control state p to the control state p′, pops γ from the stack and then
pushes ω onto the stack.
Tracks and Paths. A track (resp. path) in the PEGS P is a finite (resp. infinite)
sequence π of configurations c0...cm (resp. c0c1...) such that for every i : 0 ≤ i < m

(resp. i ≥ 0), ci
d=⇒P ci+1 for some d. Given a track π = c0...cm (resp. path π =

1 One may notice that, in the definition of PEGSs, Δ is defined as a complete function
P ×Γ ×D → P ×Γ ∗, meaning that all actions are available to each agent. This does
not restrict the expressiveness of PEGSs, as we can easily add transitions to some
additional sink state to simulate the situation where some actions are unavailable to
some agents.

40 T. Chen et al.

c0c1...), let |π| = m (resp. |π| = +∞), and for every i : 0 ≤ i ≤ m (resp. i ≥ 0),
let πi denote the configuration ci, π≤i denote c0 . . . ci and π≥i denote cici+1
Given two tracks π and π′, π and π′ are indistinguishable for an agent i ∈ Ag,
denoted by π ∼i π′, if |π| = |π′| and for all k : 0 ≤ k ≤ |π|, πk ∼i π′

k. Let
TrksP ⊆ C+

P denote the set of all tracks in P,
∏

P ⊆ Cω
P denote the set of all paths in

P,TrksP(c) = {π ∈ TrksP | π0 = c} and
∏

P(c) = {π ∈ ∏
P | π0 = c} respectively

denote the set of all the tracks and paths starting from the configuration c.

Strategies. Intuitively, a strategy of an agent i ∈ Ag specifies what i plans to do
in each situation. In the literature, there are four types of strategies [7,29] classi-
fied by whether the action chosen by an agent relies on the whole history of past
configurations or the current configuration, and whether the whole information is
visible or not. Formally, the four types of strategies are defined as follows: where
i (resp. I) denotes imperfect (resp. perfect) information and r (resp. R) denotes
imperfect (resp. perfect) recall,

– Ir strategy is a function θi : CP → Ac, i.e., the action made by the agent i
depends on the current configuration;

– IR strategy is a function θi : TrksP → Ac, i.e., the action made by the agent i
depends on the history, i.e. the sequence of configurations visited before;

– ir strategy is a function θi : CP → Ac such that for all configurations c, c′ ∈ CP ,
if c ∼i c′, then θi(c) = θi(c′), i.e., the agent i has to make the same action at
the configurations that are indistinguishable from each other;

– iR strategy is a function θi : TrksP → Ac such that for all tracks π, π′ ∈ TrksP ,
if π ∼i π′, then θi(π) = θi(π′), i.e., the agent i has to make the same action on
the tracks that are indistinguishable from each other.

Let Θσ for σ ∈ {Ir, IR, ir, iR} denote the set of all σ-strategies. Given a set of
agents A ⊆ Ag, a collective σ-strategy of A is a function υA : A → Θσ that assigns
to each agent i ∈ A a σ-strategy. We write A = Ag \ A.

Outcomes. Let c be a configuration and υA be a collective σ-strategy for a set
of agents A. A path π is compatible with respect to υA iff for every k ≥ 1, there
exists dk ∈ D such that πk−1

dk=⇒P πk and dk(i) = υA(i)(π≤k−1) for all i ∈ A.
The outcome starting from c with respect to υA, denoted by outσ(c, υA), is defined
as the set of all the paths that start from c and are compatible with respect to υA,
which rules out infeasible paths with respect to the collective σ-strategy υA.

Epistemic Accessibility Relations (EARs). An EAR ∼i for i ∈ Ag over
PEGSs is defined as an equivalence relation over configurations. As the set of con-
figurations is infinite in general, we need to represent each ∼i finitely.

A very natural definition of EARs, called size-preserving EARs and considered
in [3], is formulated as follows: for each i ∈ Ag, there is an equivalence relation
�i⊆ (P × P) ∪ (Γ × Γ), which captures the indistinguishability of control states
and stack symbols. For two configurations c = 〈p, γ1...γm〉 and c′ = 〈p′, γ′

1...γ
′
m′〉,

c ∼i c′ iff m = m′, p �i p′, and for every j ∈ [m] = [m′], γj �i γ′
j . It turns out that

the model checking problem for logic ATEL/ATEL∗ is undecidable under this type
of EARs, even with imperfect recall (cf. Theorem 3). To gain decidability, in this

Model Checking Pushdown Epistemic Game Structures 41

paper, we introduce regular EARs and a special case thereof, i.e. simple EARs. We
remark that regular EARs align to the regular valuations (see later in this section)
of atomic propositions, can been seen as approximations of size-preserving EARs,
and turn out to be useful in practice.

An EAR ∼i is regular if there is an equivalence relation ≈i over P × Γ and a
complete deterministic finite-state automaton2 (DFA) Ai = (Si, Γ,Δi, si,0) such
that for all 〈p, γω〉, 〈p1, γ1ω1〉 ∈ CP , 〈p, γω〉 ∼i 〈p1, γ1ω1〉 iff (p, γ) ≈i (p1, γ1) and
Δ∗

i (si,0, ω
R) = Δ∗

i (si,0, ω
R
1), where Δ∗

i denotes the reflexive and transitive closure
of Δi, and ωR, ωR

1 denote the reverse of ω, ω1 (recall that the rightmost symbol
of ω corresponds to the bottom symbol of the stack). Intuitively, two words ω, ω1

which record the stack contents (excluding the tops), are equivalent with respect
to ∼i if the two runs of Ai on ωR and ωR

1 respectively reach the same state. Note
that the purpose of the DFA Ai is to partition Γ ∗ into finitely many equivalence
classes, hence we do not introduce the accepting states. A regular EAR is simple
if for all words ω, ω1 ∈ Γ ∗, Δ∗

i (si,0, ω
R) = Δ∗

i (si,0, ω
R
1), that is, Ai contains only

one state. Therefore, a simple EAR can be expressed by an equivalence relation
≈i on P × Γ .

Given a set of agents A ⊆ Ag, let ∼E
A denote

⋃
i∈A ∼i, and ∼C

A denote the
transitive closure of ∼E

A. We use |P| to denote |P | + |Γ | + |Δ| +
∏

i∈Ag |Si|.
RegularValuations.The model checking problem for pushdown systems (hence
for PEGSs as well) with general valuations λ, e.g., defined by a function l which
assigns to each atomic proposition a context free language, is undecidable [21]. To
gain decidability, we consider valuations specified by a function l which associates
each pair (p, q) ∈ P × AP with a DFA Ap,q = (Sp,q, Γ,Δp,q, sp,q,0, Fp,q). This is
usually referred to as a regular valuation [17]. The function l can be lifted to the
valuation λl : P × Γ ∗ → 2AP: for every 〈p, ω〉 ∈ CP , λl(〈p, ω〉) = {q ∈ AP |
Δ∗

p,q(ω
R) ∈ Fp,q}.

A simple valuation is a regular valuation l such that for every q ∈ AP, p ∈
P, γ ∈ Γ , and ω ∈ Γ ∗, it holds that Δ∗

p,q(ω
Rγ) = Δ∗

p,q(γ), i.e., the truth of an
atomic proposition only depends on the control state and the top of the stack. Let
|λ| denote the number of states of the product automaton of all the DFA’s that
represents λ.

Alternating Multi-Automata. In order to represent potentially infinite sets
of configurations finitely, we use alternating multi-automata (AMA) as the “data
structure” of the model checking algorithms.

Definition 2 [4]. An AMA is a tuple M = (S, Γ, δ, I, Sf), where S is a finite set
of states, Γ is the input alphabet, δ ⊆ S × Γ × 2S is a transition relation, I ⊆ S
is a finite set of initial states, Sf ⊆ S is a finite set of final states. An AMA is
multi-automaton (MA) if for all (s, S′) ∈ δ, |S′| ≤ 1.

2 “complete” means that Δ(q, γ) is defined for each (q, γ) ∈ Q × Γ .

42 T. Chen et al.

If (s, γ, {s1, ..., sm}) ∈ δ, we will write s
γ−→ {s1, ..., sm} instead. We define the

relation −→∗⊆ S×Γ ∗ ×2S as the least relation such that the following conditions
hold:

– s
ε

−→∗ {s}, for every s ∈ S;

– s
γω

−→∗ ⋃
i∈[m] Si, if s

γ−→ {s1, ..., sm} and si

ω

−→∗ Si for every i ∈ [m].

M accepts a configuration 〈p, ω〉 if p ∈ I and there exists S′ ⊆ Sf such that

p
ω

−→∗ S′. Let L(M) denote the set of all configurations accepted by M.

Proposition 1 [4]. The membership problem of AMAs can be decided in polyno-
mial time. AMAs are closed under all Boolean operations.

Example 1. We illustrate our model by a modified example on the departmental
travelling budget from [8]. Consider a department consisting of two professors 1,
2 and three lecturers 3, 4, and 5. The department’s base budget (say 10 units) is
allocated annually and can be spent to attend conferences or apply for grants, at
most twice for each professor and at most once for each lecturer. Suppose there are
two categories to request money to attend a conference: 1 unit or 2 units depending
on whether it is early or late registration. Parts of a successful grant application
will be credited to the department’s budget. Suppose 3 units for each successful
grant application will be added into the budget. A successful grant application
from a member will immediately decrements 1 of his/her times using the budget.
But, there is no a priori bound on the total budget, and no one can know how
much or which way each of others has used budget. Therefore, all departmental
members compete for the budget with imperfect information.

We can model this system as a PEGS P as follows. Each departmental mem-
ber i ∈ {1, ..., 5} is modeled as an agent which has actions {idle,AG,AC}, where
AG denotes “applying for a grant”, AC denotes “attending a conference”, and idle
denotes other actions without any cost. There is an additional agent 6 denoting the
environment which decides whether the application is granted or not by nondeter-
ministically choosing an action from {awardi, rejecti | i ∈ {1, ..., 5}}. Each control
state of P is a tuple of local states of all the agents, where the local states of each
agent encode the number of times that the agent has used the budget, namely, the
local state pi,k denotes that the number is k for agent i. The submitted grant appli-
cations are recorded into the local states of the environment agent. The available
units of budget are encoded into the stack, where the length of the stack content
denotes the number of available units. Each decision made by the agents deter-
mines the stack operation according to the total costs of actions in the decision.
Pushing m symbols onto the stack denotes that m units are added into the budget.
Similarly, popping m symbols from the stack denotes that m units are consumed
from the budget3. Therefore, the length of stack content restricts the chosen of
actions by agents. This means that we only need one stack symbol for the stack
alphabet. The transition rules of P can be constructed accordingly.
3 Since normal PEGS only pops one symbol from the stack at one step, in order to pop

m symbols, we need to introduce some additional control states as done in [30].

Model Checking Pushdown Epistemic Game Structures 43

For this system, we can use size-preserving EARs to represent the constraint
that each departmental member chooses the same action at two different scenaria
but its local states and the number of available units are identical. In particular,
for each agent i ∈ {1, ..., 5} and two configurations c, c′ of P, c ∼i c′ iff the local
states of i in c, c′, as well as lengths of stack contents in c, c′, are the same.

On the other hand, it is also natural to assume that each departmental member
chooses the same action at two different scenaria when its local states are identical,
and the numbers of available units are either equal, or both greater than some
bound (e.g., 6 units). This assumption can be described using regular EARs.

3 Specification Logics: ATEL, ATEL∗ and AEMC

In this section, we recall the definition of alternating-time temporal epistemic
logics: ATEL [33], ATEL∗ [19] and AEMC [7], which were introduced for reasoning
about knowledge and cooperation of agents in multi-agent systems. Informally,
ATEL, ATLE∗ and AEMC can be considered as extensions of ATL, ATL∗ and
AMC respectively with epistemic modalities for representing knowledge. These
include Ki for i ∈ Ag (agent i knows), EA for A ⊆ Ag (every agent in A knows)
and CA (group modalities to characterise common knowledge).

3.1 ATELσ and ATEL∗
σ (where σ ∈ {Ir, IR, ir, iR})

Definition 3 (ATEL∗
σ). The syntax of ATEL∗

σ is defined as follows, where φ
denotes state formulae, ψ denotes path formulae,

φ ::= q | ¬q | φ ∨ φ | φ ∧ φ | Kiφ | EAφ | CAφ | Kiφ | EAφ | CAφ | 〈A〉ψ | [A]ψ

ψ ::= φ | ψ ∨ ψ | ψ ∧ ψ | X ψ | G ψ | ψ U ψ

where q ∈ AP, i ∈ Ag and A ⊆ Ag.

We useFψ to abbreviate trueUψ. An LTL formula is an ATEL∗
σ path formula

ψ with φ being restricted to be atomic propositions and their negations.
The semantics of ATEL∗

σ is defined over PEGSs. Let P = (Ag,Ac, P, Γ,Δ, λ,
{∼i| i ∈ Ag}) be a PEGS, φ be an ATEL∗

σ state formula, and c ∈ CP be a con-
figuration of P. The satisfiability relation P, c |=σ φ is defined inductively on the
structure of φ.

– P, c |=σ q iff q ∈ λ(c); − P, c |=σ ¬q iff q �∈ λ(c);
– P, c |=σ φ1 ∨ φ2 iff P, c |=σ φ1 or P, c |=σ φ2;
– P, c |=σ φ1 ∧ φ2 iff P, c |=σ φ1 and P, c |=σ φ2;
– P, c |=σ 〈A〉ψ iff there exists a collective σ-strategy υA : A → Θσ s.t. for all

paths π ∈ outσ(c, υA), P, π |=σ ψ;
– P, c |=σ [A]ψ iff for all collective σ-strategies υA : A → Θσ, there exists a path

π ∈ outσ(c, υA) such that P, π |=σ ψ;
– P, c |=σ Kiφ iff for all configurations c′ ∈ CP such that c ∼i c′, P, c′ |=σ φ;

44 T. Chen et al.

– P, c |=σ Kiφ iff there is a configuration c′ ∈ CP such that c ∼i c′ and
P, c′ |=σ φ;

– EAφ, EAφ, CAφ and CAφ are defined similar to Kiφ and Kiφ, but we use the
relations ∼E

A and ∼C
A.

The semantics of path formulae ψ is specified by a relation P, π |=σ ψ, where π is
a path. Since the definition is essentially the one of LTL and standard, we refer the
readers to, e.g., [15] for details. We denote by ‖φ‖σ

P = {c ∈ CP | P, c |=σ φ} the
set of configurations satisfying φ. The model checking problem is to decide whether
c ∈ ‖φ‖σ

P for a given configuration c.
ATELσ is a syntactical fragment of ATEL∗

σ with restricted path formulae of
the form

ψ ::=X φ | G φ | φ U φ.

An ATELσ (resp. ATEL∗
σ) formula φ is principal if φ is in the form of 〈A〉ψ or

[A]ψ such that ψ is a LTL formula. For instance, 〈{1}〉F q is a principal formula,
while neither 〈{1}〉F(q ∧ 〈{2}〉G q′) nor 〈{1}〉F(K2 q) is.

Example 2. Recall Example 1. Suppose that there are atomic propositions
q3, q4, q5 such that for each i ∈ {3, 4, 5}, qi ∈ λ(c) iff the configuration c contains
the local state pi,1, i.e., the agent i attends a conference. In addition, the atomic
propositions gi for i ∈ {1, 2} denote that agent i has applied for some grants. Con-
sider the formula: φ1 � 〈{3, 4, 5}〉F(q3 ∧ q4 ∧ q5), φ2 � 〈{2, 3, 4, 5}〉F(q3 ∧ q4 ∧ q5)
and φ3 � E{3,4,5}〈{3, 4, 5}〉((F(g1 ∨ g2)) =⇒ F(q3 ∧ q4 ∧ q5)). φ1 expresses
that three lecturers have strategies such that all of them can attend some confer-
ences. Obviously, φ1 does not hold when both two professors attended conferences
twice with late registrations, which costs 8 units. φ2 expresses that three lectur-
ers together with professor 2 have strategies such that all the lecturers can attend
some conferences. φ3 states that all three lecturers know that they have strategies
such that if some professor applies for some grants, then all of them can attend
some conferences. Obviously, φ2 and φ3 hold.

3.2 AEMCσ (where σ ∈ {Ir, IR, ir, iR})
Definition 4 (Alternating-Time Epistemic μ-Calculus). Given a finite set
of propositional variables Z, AEMCσ formulae are defined by the following
grammar:

φ ::= q | ¬q | Z | φ ∨ φ | φ ∧ φ | 〈A〉Xφ | [A]Xφ |
μZ.φ | νZ.φ | Kiφ | EAφ | CAφ | Kiφ | EAφ | CAφ

where q ∈ AP, Z ∈ Z, i ∈ Ag and A ⊆ Ag.

The variables Z ∈ Z in the definition of AEMCσ are monadic second-order vari-
ables with the intention to represent a set of configurations of PEGSs. An occur-
rence of a variable Z ∈ Z is said to be closed in an AEMCσ formula φ if the
occurrence of Z is in φ1 for some subformula μZ. φ1 or νZ. φ1 of φ. Otherwise,

Model Checking Pushdown Epistemic Game Structures 45

the occurrence of Z in φ is said to be free. An AEMCσ formula φ is closed if it
contains no free occurrences of variables from Z.

The semantics of AEMCσ can be defined in an obvious way, where tempo-
ral modalities 〈A〉Xφ and [A]Xφ and epistemic modaliteis can be interpreted
as in ATEL∗

σ and the fixpoint modalities can be interpreted as in alternating
mu-calculus [2]. Given a PEGS P = (Ag,Ac, P, Γ,Δ, λ, {∼i| i ∈ Ag}), and a
closed formula φ, the denotation function ‖ ◦ ‖σ

P maps AEMCσ formulae to sets
of configurations. A configuration c satisfies φ iff c ∈ ‖φ‖σ

P .
For closed AEMCσ formula φ, ‖φ‖σ

P,ξ is independent of ξ. Therefore, the super-
script ξ will be dropped from ‖φ‖σ

P,ξ, for closed AEMCσ formula φ. In addition,
the subscript P is also dropped from ‖φ‖σ

P,ξ and ‖φ‖σ
P when it is clear.

We remark that, for AEMCσ (where σ ∈ {Ir, IR, ir, iR}), it makes no dif-
ference whether the strategies are perfect recall or not, since each occurrence of
the modalities 〈A〉Xφ and [A]Xφ will “reset” the strategies of agents. Therefore,
we will ignore R and r and use AEMCI/AEMCi to denote AEMC under per-
fect/imperfect information.

Proposition 2 [7]. For any closed AEMCσ formula φ and a PEGS P, ‖φ‖irP =
‖φ‖iRP and ‖φ‖IrP = ‖φ‖IRP .

We mention that, although ATELIR and ATEL∗
IR can be translated into

AEMCI, this is not the case for imperfect information. Namely, ATELiR, ATELir,
ATEL∗

iR, and ATEL∗
ir cannot be translated into AEMCi. The interested readers

are referred to [7] for more discussions.
CTL, CTL∗ and μ-calculus are special cases of ATLσ, ATL∗

σ and AMC in which
all the modalities 〈A〉ψ and [A]ψ satisfy A = ∅4, while ATLσ, ATL∗

σ and AMCσ

are special cases of ATELσ, ATEL∗
σ and AEMCσ in which no epistemic modalities

occur.
The following results are known for model checking PEGSs with perfect infor-

mation and perfect recall.

Theorem 1 ([13]). The model checking problem for ATELIR/AEMCIR over
PEGSs is EXPTIME-complete, and for ATEL∗

IR 3EXPTIME-complete .

Remark 1. In [7], the outcome of a configuration c with respect to a given collec-
tive σ-strategy υA is defined differently from that in this paper. More specifically,
the outcome in [7] corresponds to

⋃
i∈A

⋃
c∼ic′ outσ(c′, υA) in our notation. It is

easy to see that for every ATELσ or ATEL∗
σ formula 〈A〉ψ (resp. [A]ψ) and every

configuration c ∈ CP , c ∈ ‖〈A〉ψ‖σ
P (resp. c ∈ ‖[A]ψ‖σ

P) in [7] iff c ∈ ‖EA〈A〉ψ‖σ
P

(resp. c ∈ ‖EA[A]ψ‖σ
P) in our notation. Similar differences exist for AEMCσ. We

decide to make the hidden epistemic modalities EA explicit in this paper.

4 〈∅〉 (resp. [∅]) is the universal (resp. existential) path quantification A (resp. E).

46 T. Chen et al.

4 ATEL and ATEL∗ Model Checking

We first recall the following undecidability result.

Theorem 2 ([16]). The model checking problem for ATLiR and ATL∗
iR over

CEGSs is undecidable.

In light of Theorems 1 and 2, in this section, we focus on the model checking prob-
lems for ATELir/ATEL∗

ir.
We observe that, when the stack is available, the histories in CEGSs can be

stored into the stack, so that we can reduce from the model checking problem for
ATLiR over CEGSs to the one for ATLir over PEGSs. From Theorem 2, we deduce
the following result.

Theorem 3. The model checking problems for ATLir/ATL∗
ir over PEGSs with

size-preserving EARs are undecidable.

Theorem 3 rules out model checking algorithms for ATELir/ATEL∗
ir when the

PEGS is equipped with size-preserving EARs. As mentioned before, we therefore
consider the case with regular/simple EARs. We first consider the model checking
problem over PEGSs with simple EARs. This will be solved by a reduction to the
model checking problem for CTL/CTL∗ over pushdown systems [17,31]. We then
provide a reduction from the model checking problem over PEGSs with regular
EARs to the one over PEGSs with simple EARs. The main idea of the reduction,
which is inspired by the reduction of PDSs with regular valuations to PDSs with
simple valuations in [17], is to store the runs of DFAs representing the regular
EARs into the stack.

4.1 Pushdown Systems

Definition 5. A pushdown system (PDS) is a tuple P = (P, Γ,Δ, λ), where
P, Γ, λ are defined as for PEGSs, and Δ ⊆ (P × Γ) × (P × Γ ∗) is a finite set of
transition rules.

A configuration of P is an element 〈p, ω〉 of P × Γ ∗. We write 〈p, γ〉 ↪→ 〈q, ω〉
instead of ((p, γ), (q, ω)) ∈ Δ. If 〈p, γ〉 ↪→ 〈q, ω〉, then for every ω′ ∈ Γ ∗, 〈q, ωω′〉
is a successor of 〈p, γω′〉. Given a configuration c, a path π of P starting from c
is a sequence of configurations c0c1... such that c0 = c and for all i > 0, ci is a
successor of ci−1. Let

∏
P(c) ⊆ Cω

P denote the set of all paths in P starting from
c onwards.

Given a configuration c and a CTL/CTL∗ formula φ, the satisfiability relation
P, c |= φ is defined in a standard way (cf. [17,31]). For instance, P, c |= 〈∅〉ψ iff
∀π ∈ ∏

P(c), P, π |= ψ, P, c |= [∅]ψ iff ∃π ∈ ∏
P(c), P, π |= ψ. Let ‖φ‖P = {c ∈

CP | P, c |= φ}.

Theorem 4 [17]. Given a PDS P = (P, Γ,Δ, λ) and a CTL/CTL∗ formula φ
such that all state subformulae in φ are atomic propositions, we can effectively com-
pute a MA M with O(|λ| · |P | · |Δ| ·k) states in O(|λ| · |P |2 · |Δ| ·k) time such that

Model Checking Pushdown Epistemic Game Structures 47

the MA exactly recognizes ‖φ‖P , where k is 2O(|φ|) (resp. O(|φ|)) for CTL∗ (resp.
CTL). Moreover, a DFA A = (S, Γ,Δ1, s0) withO(|λ|·|Δ|·2|P |·k) states and a tuple
of sets of accepting states (Fp)p∈P can be constructed inO(|λ|·|Δ|·2|P |·k) time such
that for every configuration 〈p, ω〉 ∈ P × Γ ∗, 〈p, ω〉 ∈ L(M) iff Δ∗

1(s0, ω
R) ∈ Fp.

4.2 Model Checking for PEGSs with Simple EARs

In this subsection, we propose an automatic-theoretic approach for solving the
model checking problems for ATELir and ATEL∗

ir over PEGSs with simple EARs.
Let us fix the ATELir/ATEL∗

ir formula φ and a PEGS P = (Ag,Ac,
P, Γ,Δ, λ, {∼i| i ∈ Ag}) with a regular valuation l represented by DFAs
(Ap,q)p∈P,q∈AP and ∼i is specified by an equivalence relation ≈i on P × Γ for
i ∈ Ag.

The idea of the algorithm is to construct, for each state subformula φ′ of φ, an
MA Mφ′ to represent the set of configurations satisfying φ′. We will first illustrate
the construction in case that φ′ = 〈A〉ψ (resp. φ′ = [A]ψ) is a principal formula,
then extend the construction to the more general case.

Principal Formulae.Our approach will reduce the model checking problem over
PEGSs to the model checking problem for CTL/CTL∗ over PDSs. Note that for
i ∈ A, ≈i is defined over P ×Γ . It follows that the strategy of any agent i ∈ A must
respect ≈i, namely, for all (p, γω) and (p′, γ′ω′) with (p, γ) ≈i (p′, γ′), υi(p, γω) =
υi(p′, γ′ω′) for any ir-strategy υi of i. Therefore, any ir-strategy υi with respect
to ≈i can be regarded as a function over P × Γ (instead of configurations of P),
i.e., υi : P × Γ → Ac such that υi(p, γ) = υi(p′, γ′) for all (p, γ) and (p′, γ′) with
(p, γ) ≈i (p′, γ′).

Proposition 3. Given a configuration c ∈ CP and a set of agents A ⊆ Ag, the
following statements hold:

i. for any collective ir-strategy υA such that υA(i) respects to ≈i for i ∈ A,
there exist functions υ′

i : P × Γ → Ac for i ∈ A such that outir(c, υA) =
out(c,

⋃
i∈A υ′

i) and υ′
i(p, γ) = υ′

i(p
′, γ′) for all (p, γ) and (p′, γ′) with (p, γ) ≈i

(p′, γ′);
ii. for any function υ′

i : P × Γ → Ac for i ∈ A such that υ′
i(p, γ) = υ′

i(p
′, γ′) for

all (p, γ) and (p′, γ′) with (p, γ) ≈i (p′, γ′), there exists a collective ir-strategy
υA such that υA(i) respects to ≈i for i ∈ A and outir(c, υA) = out(c,

⋃
i∈A υ′

i);

where out(c,
⋃

i∈A υ′
i) denotes the set of all paths π = 〈p0, γ0ω0〉〈p1, γ1ω1〉 · · · such

that 〈p0, γ0ω0〉 = c and for all k ≥ 0, there exists dk ∈ D such that 〈pk, γkωk〉 dk=⇒P
〈pk+1, γk+1ωk+1〉 and dk(i) = υ′

i(pk, γk) for all i ∈ A.

According to Proposition 3, we can check all the possible collective ir-
strategies, as the number of possible functions from P × Γ → Ac is finite. Let us
now fix a specific collective ir-strategy υA = (υi)i∈A for A. For each (p, γ) ∈ P ×Γ ,
after applying a collective ir-strategy υA = (υi)i∈A for A, we define a PDS

48 T. Chen et al.

PυA
= (P, Γ,Δ′, λ), where Δ′ is defined as follows: for every p, p′ ∈ P , γ ∈ Γ

and ω ∈ Γ ∗,

((p, γ), (p′, ω)) ∈ Δ′ iff ∃d ∈ D s.t. ∀i ∈ A, d(i) = υi(p, γ) and Δ(p, γ,d) = (p′, ω).

Lemma 1. outir(c, υA) =
∏

PυA
(c).

Following from Lemma 1, for φ′ = 〈A〉ψ, P, c |=ir φ′ iff there exists a collective
ir-strategy υA such that for all paths π ∈ ∏

PυA
(c), P, π |=ir ψ. The latter holds

iff there exists a collective ir-strategy υA such that PυA
, c |= 〈∅〉ψ. Similarly, for

φ′ = [A]ψ, P, c |=ir φ′ iff for all collective ir-strategies υA, there exists a path π ∈∏
PυA

(c) such that P, π |=ir ψ. The latter holds iff for all collective ir-strategies
υA, PυA

, c |= [∅]ψ.
Fix a collective ir-strategy υA with respect to ≈i for i ∈ A, by applying

Theorem 4, we can construct a MA MυA
such that L(MυA

) = {c ∈ P × Γ ∗ |
PυA

, c |= 〈∅〉ψ′} (resp. L(MυA
) = {c ∈ P × Γ ∗ | PυA

, c |= [∅]ψ′}). Since, there
are at most |Ac||P |·|Γ |·|A| collective ir-strategies with respect to ≈i for i ∈ A and
|A| ≤ |Ag|, we can construct a MA Mφ′ such that L(Mφ′) =

⋃
υA

L(MυA
) (resp.

L(Mφ′) =
⋂

υA
L(MυA

)).

Lemma 2. For every principal ATEL∗
ir (resp. ATELir) formula φ′, we can con-

struct a MA Mφ′ with O(|Ac||P |·|Γ |·|Ag| · |λ| · |P | · |Δ| ·k) states in O(|Ac||P |·|Γ |·|Ag| ·
|λ| · |P |2 · |Δ| · k) time such that the MA exactly recognizes ‖φ′‖irP , where k is
2O(|φ|) (resp. O(|φ|)). Moreover, a DFA A = (S, Γ,Δ1, s0) with O(|Ac||P |·|Γ |·|Ag| ·
|λ| · |Δ| · 2|P |·k) states and a tuple of sets of accepting states (Fp)p∈P can be con-
structed in O(|Ac||P |·|Γ |·|Ag| · |λ| · |Δ| ·2|P |·k) time such that for every configuration
〈p, ω〉 ∈ P × Γ ∗, 〈p, ω〉 ∈ L(Mφ′) iff Δ∗

1(s0, ω
R) ∈ Fp.

General ATELir/ATEL∗
ir Formulae. We now present a model checking algo-

rithm for general ATELir/ATEL∗
ir formulae. Given an ATELir/ATEL∗

ir formula
φ, we inductively compute a MA Mφ′ from the state subformula φ′ such that
L(Mφ′) = ‖φ′‖irP . The base case for atomic propositions is trivial. For the induc-
tion step:

– For φ′ of the form ¬q, φ1 ∧ φ2 or φ1 ∨ φ2, Mφ′ can be computed by applying
Boolean operations on Mφ1/Mφ2 .

– For φ′ of the form 〈A〉ψ′, we first compute a principal formula φ′′ by replacing
each state subformula φ′′′ in ψ′ by a fresh atomic proposition qφ′′′ and then
compute a new regular valuation λ′ by saturating λ which sets qφ′′′ ∈ λ(c) for
c ∈ L(Mφ′′′). To saturate λ, we use the DFA transformed from Mφ′′′ . Similar
to the construction in [17], |λ′| = |λ| · |Ac||P |·|Γ |·|Ag| · 2|P |·k, where k is 2O(|φ|)

(resp. O(|φ|)) for ATEL∗
ir (resp. ATELir). By Lemma 2, we can construct a

MA Mφ′′ from φ′′ which is the desired MA Mφ′ . The construction for M[A]ψ′

is similar.
– For φ′ of the form Kiφ

′′ (resp. EAφ′′ and CAφ′′), suppose that the MA Mφ′′ =
(S1, Γ, δ1, I1, Sf) recognizes ‖φ′′‖irP . Let [p1, γ1], ..., [pm, γm] ⊆ P × Γ be the
equivalence classes induced by the relation ≈i (resp. ∼E

A and ∼C
A). We define

Model Checking Pushdown Epistemic Game Structures 49

the MA Mφ′ = (P ∪ {sf}, Γ, δ′, P, {sf}), where for every j ∈ [m], if {〈p, γω〉 |
(p, γ) ∈ [pj , γj], ω ∈ Γ ∗} ⊆ L(Mφ′′), then for all (p, γ) ∈ [pj , γj] and γ′ ∈ Γ ,
δ′(p, γ) = sf and δ′(sf , γ′) = sf . The MA Mφ′ for formulae φ′ of the form
Kiφ

′′ (resp. EAφ′′ and CAφ′′) can be constructed similarly as for Kiφ
′′, using

the condition {〈p, γω〉 | (p, γ) ∈ [pj , γj], ω ∈ Γ ∗} ∩ L(Mφ′′) �= ∅, instead of
{〈p, γω〉 | (p, γ) ∈ [pj , γj], ω ∈ Γ ∗} ⊆ L(Mφ′′).

In the above algorithm, MAs are transformed into DFAs at most |φ| times.
Each transformation only introduces the factor |Ac||P |·|Γ |·|Ag| · 2|P |·k into |λ| [17].
We then deduce the following result from Proposition 1 and Lemma 2.

Theorem 5. The model checking problem for ATEL∗
ir over PEGSs with sim-

ple EARs is 2EXPTIME-complete, while the problem for ATELir is EXPTIME-
complete.

Proof. The lower bound of the model checking problem for ATEL∗
ir follows from

that the model checking problem for CTL∗ over PDSs with simple valuations [5]
is 2EXPTIME-complete. Namely, even for PEGSs with a single agent, and simple
valuations, the model checking problem is already 2EXPTIME-hard. The hard-
ness for ATELir follows from the fact that the model checking problem for CTL
over PDSs is EXPTIME-complete [32,35]. ��

4.3 Model Checking for PEGSs with Regular EARs

In this subsection, we present a reduction from the model checking problem over
PEGSs with regular EARs to the problem over PEGSs with simple EARs. Assume
a PEGS P = (Ag,Ac, P, Γ,Δ, λ, {∼i| i ∈ Ag}) with regular EARs such that, for
each i ∈ Ag, ∼i is given as the pair (≈i,Ai), where ≈i⊆ P × Γ is an equivalence
relation and Ai = (Si, Γ, δi, si,0) is a DFA.

Let A = (S, Γ, δ, s0) be the product automaton of Ai’s for i ∈ Ag, such that
S = S1 × ... × Sn, s0 = [s1,0, ..., sn,0], and δ(s1, γ) = s2 if for every i ∈ [n],
δi(si,1, γ) = si,2, where si,j denotes the state of Ai in sj .

We will construct a new PEGS P ′ with simple EARs such that the model
checking problem over P is reduced to the problem over P ′. Intuitively, the PEGS
P ′ with simple EARs to be constructed stores the state obtained by running A
over the reverse of the partial stack content up to the current position (exclusive)
into the stack. Formally, the PEGS P ′ is given by (Ag,Ac, P, Γ ′,Δ′, λ′, {∼′

i| i ∈
Ag}), where

– Γ ′ = Γ × S;
– for each i ∈ Ag, ∼′

i is specified by an equivalence relation ≈′
i on P ×Γ ′ defined

as follows: (p, [γ, s]) ≈′
i (p′, [γ′, s′]) iff (p, γ) ≈i (p′, γ′) and s = s′;

– Δ′ is defined as follows: for every state s ∈ S,

1. for every 〈p, γ〉 d
↪→P 〈p′, ε〉, 〈p, [γ, s]〉 d

↪→P′ 〈p′, ε〉,
2. for every 〈p, γ〉 d

↪→P 〈p′, γk...γ1〉 with k ≥ 1 and δ(sj , γj) = sj+1 for every

j : 1 ≤ j ≤ k−1 (where s1 = s), then 〈p, [γ, s]〉 d
↪→P′ 〈p′, [γk, sk]...[γ1, s1]〉.

50 T. Chen et al.

Finally, the valuation λ′ is adjusted accordingly to λ, i.e., for every
〈p′, [γk, sk]...[γ0, s0]〉 ∈ CP′ , λ′(〈p′, [γk, sk]...[γ0, s0]〉) = λ(〈p′, γk...γ0〉).
Lemma 3. The model checking problem for ATELir (resp. ATEL∗

ir) over a PEGS
P, with stack alphabet Γ and regular EARs ∼i= (≈i,Ai) for i ∈ Ag, can be reduced
to the problem over a PEGS P ′ with simple EARs ∼′

i, such that the state space of
P ′ is the same as that of P, and the stack alphabet of P ′ is Γ × S, where S is the
state space of the product of Ai’s for i ∈ Ag.

Theorem 6. The model checking problem for ATEL∗
ir (resp. ATELir) over

PEGSs with regular EARs is 2EXPTIME-complete (resp. EXPTIME-complete).

5 AEMCModel Checking

In this section, we propose algorithms for the model checking problems for AEMCi

over PEGSs with size-preserving/regular/simple EARs. At first, we remark that
Theorem 3 does not hold for AEMCi (recall that AEMCi = AEMCir = AEMCiR).
Indeed, we will show that the model checking problems for AEMCi over PEGSs
with size-preserving/regular/simple EARs are EXMPTIME-complete.

Fix a closed AEMCi formula φ and a PEGS P = (Ag,Ac, P, Γ,Δ, λ, {∼i| i ∈
Ag}) with size-preserving/regular/simple EARs. We will construct an AMA Aφ

to capture ‖φ‖iP by induction on the syntax of AEMCi formulae.
Atomic formulae, Boolean operators, formulae of the form 〈A〉Xφ′ and [A]Xφ′,

and fixpoint operators can be handled as in [13], where the model checking prob-
lem for AMC over PGSs was considered, as imperfect information does not play a
role for these operators. In the sequel, we illustrate how to deal with the epistemic
modalities. Regular/simple EARs can be tackled in a very similar way to Sect. 4,
we focus on the size-preserving one.

Suppose size-preserving EARs ∼i for i ∈ Ag are specified by equivalence rela-
tions �i⊆ (P × P) ∪ (Γ × Γ). For the formula φ = Kiφ

′, suppose the AMA
Aφ′ = (S′, Γ, δ′, I ′, S′

f) recognizing ‖φ′‖irP has been constructed. We construct
Aφ = (S′, Γ, δ, I, S′

f) as follows.

– I = {p ∈ P | ∃p′ ∈ I ′. p �i p′}.
– For each (p, γ) ∈ P × Γ , let [p]i

(resp. [γ]i
) be the equivalence of p

(resp. γ) under �i, and S′
p,γ := {S′

p,γ | (p, γ, S′
p,γ) ∈ δ′}. Then (p, γ, S) ∈

δ if (1) for all p′ ∈ [p]i
and γ′ ∈ [γ]i

, S′
p′,γ′ �= ∅; and (2) S =

⋃
p′∈[p]�i

,γ′∈[γ]�i
S′′

p′,γ′ , where S′′
p′,γ′ ∈ S′

p′,γ′ .
– For every (s, γ, S) ∈ δ′ such that s ∈ S′ \ P , let (s, γ′, S) ∈ δ for every γ′ ∈ Γ

with γ′ �i γ.

For the formula φ = Kiφ
′, suppose the AMA Aφ′ = (S′, Γ, δ′, I ′, S′

f) recog-
nizes ‖φ′‖irP . We construct Aφ = (S′, Γ, δ, I, S′

f) as follows.

– I = {p ∈ P | ∃p′ ∈ I ′. p ∼i p′}.
– For each (p, γ) ∈ P ×Γ , if there is (p′, γ′, S′

1) ∈ δ′ such that p �i p′ and γ �i γ′,
let (p, γ, S′

1) ∈ δ.

Model Checking Pushdown Epistemic Game Structures 51

– For every (s, γ, S) ∈ δ′ such that s ∈ S′ \ P , let (s, γ′, S) ∈ δ for every γ′ ∈ Γ
with γ′ �i γ.

The AMA Aφ for φ of the form EAφ′, CAφ′, EAφ′ or CAφ′ can be constructed
in a very similar way, in which the relation �i is replaced by the relation

⋃
i∈A �i

(resp. the transitive closure of
⋃

i∈A �i).

Lemma 4. Given a PEGS P with regular valuations and size-preserving EARs ,
and a closed AEMCi formula φ, we can construct an AMA Aφ recognizing ‖φ‖iP
in exponential time with respect to |P|, |λ| and |φ|.

From Lemma 4 and Proposition 1, we have:

Theorem 7. The model checking problem for AEMCi over PEGSs with regu-
lar/simple valuations and size-preserving/regular/simple EARs is EXPTIME-
complete.

The lower bound follows from fact that the model checking problem for AMC
over PGSs with simple valuations is EXPTIME-complete [13].

6 Conclusion and FutureWork

In this paper, we have shown that the model checking problem is undecidable
for ATLir/ATL∗

ir over PEGSs with size-preserving EARs, and provided optimal
automata-theoretic model checking algorithms for ATELir/ATEL∗

ir over PEGSs
with regular/simple EARs. We also have provided optimal model checking algo-
rithms for AEMCi over PEGSs under size-preserving/regular/simple EARs with
matching lower bounds.

The model checking problem for ATELIr/ATEL∗
Ir or ATLIr/ATL∗

Ir over
PEGSs is still open. We note that the problem for ATELIr/ATEL∗

Ir or
ATLIr/ATL∗

Ir over CEGSs can be solved by nondeterministically choosing a strat-
egy via selecting a subset of the transition relation, as the strategies only depend
on control states yielding a finite set of possible strategies [29]. However, simi-
lar techniques are no longer applicable in PEGSs, as the strategies depend on
stack contents apart from control states, which may yield an infinite set of possible
strategies.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. In:
FOCS 1997, pp. 100–109 (1997)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM
49(5), 672–713 (2002)

3. Aminof, B., Legay, A., Murano, A., Serre, O., Vardi, M.Y.: Pushdown module check-
ing with imperfect information. Inf. Comput. 223, 1–17 (2013)

52 T. Chen et al.

4. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). doi:10.1007/
3-540-63141-0 10

5. Bozzelli, L.: Complexity results on branching-time pushdown model checking. The-
oret. Comput. Sci. 379(1–2), 286–297 (2007)

6. Brihaye, T., Laroussinie, F., Markey, N., Oreiby, G.: Timed concurrent game struc-
tures. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp.
445–459. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74407-8 30

7. Bulling, N., Jamroga, W.: Alternating epistemic mu-calculus. In: IJCAI 2011, pp.
109–114 (2011)

8. Bulling, N., Nguyen, H.N.: Model checking resource bounded systems with shared
resources via alternating büchi pushdown systems. In: Chen, Q., Torroni, P., Villata,
S., Hsu, J., Omicini, A. (eds.) PRIMA 2015. LNCS (LNAI), vol. 9387, pp. 640–649.
Springer, Cham (2015). doi:10.1007/978-3-319-25524-8 47

9. Cermák, Petr: A model checker for strategy logic. Meng individual project, Depart-
ment of Computing, Imperial College, London (2015)

10. Cermák, P., Lomuscio, A., Murano, A.: Verifying and synthesising multi-agent sys-
tems against one-goal strategy logic specifications. In: AAAI 2015, pp. 2038–2044
(2015)

11. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic veri-
fication of competitive stochastic systems. Formal Methods Syst. Des. 43(1), 61–92
(2013)

12. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36742-7 13

13. Chen, T., Song, F., Wu, Z.: Global model checking on pushdown multi-agent sys-
tems. In: AAAI 2016, pp. 2459–2465 (2016)

14. Chen, T., Song, F., Wu, Z.: Verifying pushdown multi-agent systems against strat-
egy logics. In: IJCAI 2016, pp. 180–186 (2016)

15. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2001)

16. Dima, C., Tiplea, F.L.: Model-checking ATL under imperfect information and per-
fect recall semantics is undecidable. CoRR, abs/1102.4225 (2011)

17. Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular valuations
for pushdown systems. Inf. Comput. 186(2), 355–376 (2003)

18. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT
Press, Cambridge (1995)

19. Jamroga, W.: Some remarks on alternating temporal epistemic logic. In: FAMAS
2003, pp. 133–140 (2003)

20. Jamroga, W., Dix, J.: Model checking abilities under incomplete information is
indeed Delta2-complete. In: EUMAS 2006 (2006)

21. Kupferman, O., Piterman, N., Vardi, M.Y.: Pushdown specifications. In: Baaz, M.,
Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 262–277. Springer,
Heidelberg (2002). doi:10.1007/3-540-36078-6 18

22. Lomuscio, A., Raimondi, F.: Model checking knowledge, strategies, and games in
multi-agent systems. In: AAMAS 2006, pp. 161–168 (2006)

23. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about strategies: on
the model-checking problem. ACM Trans. Comput. Logic 15(4), 34:1–34:47 (2014)

http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/978-3-540-74407-8_30
http://dx.doi.org/10.1007/978-3-319-25524-8_47
http://dx.doi.org/10.1007/978-3-642-36742-7_13
http://dx.doi.org/10.1007/3-540-36078-6_18

Model Checking Pushdown Epistemic Game Structures 53

24. Mogavero, F., Murano, A., Sauro, L.: On the boundary of behavioral strategies. In:
LICS 2013, pp. 263–272 (2013)

25. Mogavero, F., Murano, A., Sauro, L.: A behavioral hierarchy of strategy logic. In:
Bulling, N., Torre, L., Villata, S., Jamroga, W., Vasconcelos, W. (eds.) CLIMA
2014. LNCS (LNAI), vol. 8624, pp. 148–165. Springer, Cham (2014). doi:10.1007/
978-3-319-09764-0 10

26. Mogavero, F., Murano, A., Vardi, M.Y.: Reasoning about strategies. In: FSTTCS
2010, pp. 133–144 (2010)

27. Murano, A., Perelli, G.: Pushdown multi-agent system verification. In: IJCAI 2015,
pp. 1090–1097 (2015)

28. Pilecki, J., Bednarczyk, M.A., Jamroga, W.: Model checking properties of multi-
agent systems with imperfect information and imperfect recall. In: IS 2014, pp. 415–
426 (2014)

29. Schobbens, P.-Y.: Alternating-time logic with imperfect recall. Electron. Notes The-
oret. Comput. Sci. 85(2), 82–93 (2004)

30. Schwoon, S.: Model checking pushdown systems. Ph.D. thesis, Technical University
Munich, Germany (2002)

31. Song, F., Touili, T.: Efficient CTL model-checking for pushdown systems. In:
Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 434–449.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23217-6 29

32. Song, F., Touili, T.: Efficient CTL model-checking for pushdown systems. Theoret.
Comput. Sci. 549, 127–145 (2014)

33. van der Hoek, W., Wooldridge, M.: Tractable multiagent planning for epistemic
goals. In: AAMAS 2002, pp. 1167–1174 (2002)

34. van der Hoek, W., Wooldridge, M.: Cooperation, knowledge, and time: alternating-
time temporal epistemic logic and its applications. Stud. Logica 75(1), 125–157
(2003)

35. Walukiewicz, I.: Model checking CTL properties of pushdown systems. In: Kapoor,
S., Prasad, S. (eds.) FSTTCS 2000. LNCS, vol. 1974, pp. 127–138. Springer,
Heidelberg (2000). doi:10.1007/3-540-44450-5 10

36. Hague, M., Ong, C.-H.L.: A saturation method for the modal μ-calculus over push-
down systems. Inf. Comput. 209(5), 799–821 (2011)

http://dx.doi.org/10.1007/978-3-319-09764-0_10
http://dx.doi.org/10.1007/978-3-319-09764-0_10
http://dx.doi.org/10.1007/978-3-642-23217-6_29
http://dx.doi.org/10.1007/3-540-44450-5_10

Transforming Timing Requirements into CCSL
Constraints to Verify Cyber-Physical Systems

Xiaohong Chen1(B), Ling Yin2, Yijun Yu3, and Zhi Jin4

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

xhchen@sei.ecnu.edu.cn
2 Shanghai University of Engineering Science, Shanghai, China

3 School of Computing and Communications, The Open University,
Milton Keynes, UK

4 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Institute of Software, School of EE & CS, Peking University, Beijing, China

Abstract. The timing requirements of embedded cyber-physical sys-
tems (CPS) constrain CPS behaviors made by scheduling analysis. Lack
of physical entity properties modeling and the need of scheduling analysis
require a systematic approach to specify timing requirements of CPS at
the early phase of requirements engineering. In this work, we extend the
Problem Frames notations to capture timing properties of both cyber
and physical domain entities into Clock Constraint Specification Lan-
guage (CCSL) constraints which is more explicit that LTL for schedul-
ing analysis. Interpreting them using operational semantics as finite state
machines, we are able to transform these timing requirements into CCSL
scheduling constraints, and verify their consistency on NuSMV. Our
TimePF tool-supported approach is illustrated through the verification
of timing requirements for a representative problem in embedded CPS.

Keywords: Cyber-physical systems · Problem Frames · Timing require-
ments · CCSL constraints

1 Introduction

Mission-critical cyber-physical systems (CPS) [1] are widely used. With grow-
ing complexity, they are getting more expensive to develop and harder to verify
without explicitly documented requirements. Unlike other software systems, CPS
interconnect with many cyber and physical entities [2]. Typically, data must be
collected from the physical world using sensors, fed into controllers of cyber
entities which in turn make decisions for actuators to change the properties of
physical world entities. All these decisions are constrained by timing require-
ments and made by scheduling analysis.

The timing requirements of CPS are especially important for real-time safety-
critical systems, such as computer controlled trains. If they cannot stop within a

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 54–70, 2017.
https://doi.org/10.1007/978-3-319-68690-5 4

Transforming Timing Requirements into CCSL Constraints 55

specific duration, serious accidents could happen. In such cases, timing require-
ments are as prominent as functional requirements. As the classical requirements
derivation by Jackson and Zave [3], the timing requirements computation should
consider the physical domain properties as well as evolution. However, there is
no systematic approach to specify timing requirements of CPS early for lack of
domain knowledge of physical domains which require explicit models.

Existing RE approaches provide some formalisms to express timing require-
ments. For example, goal-oriented approaches [4] use linear temporal logic (LTL)
to describe requirements, e.g., a property will be achieved eventually, and they
also extend temporal logic to specify real-time properties. Due to the prevailing
interactions of software and physical entities in CPS, we argue that the Problem
Frames (PF) approach [5], which models physical domains explicitly, is particu-
larly suitable for modelling such requirements. However, current practice using
PF focus mainly on the representation rather than the systematic derivation of
timing requirements and formal verification. For example, Choppy et al. model
time events [6]; Barroca et al. use Timer as a part of problem domain [7]. Little
attention has been paid to deriving and verifying the timing specifications, i.e.,
scheduling specification.

Our previous work [8] relates the PF to timing constraints in terms of
clock constraint specification language(CCSL) [9,10] uses CCSL constraints for
scheduling analysis. But [8] does not support specification due to big modeling
granularity-entity as the basic element. So further in this paper, we propose an
approach to specify timing requirements in terms of interactions using CCSL
and deriving scheduling specification from these requirements, with the follow-
ing major contributions: (1) an extension to PF language is proposed to express
timing requirements and define timing specification derivation. The extension
includes basic CPS timing requirement concepts in syntax, timing behavioural
model constraints in operational semantics, and formal compositional semantics;
(2) a model-driven specification process is defined from the functional require-
ments on problem diagrams, and enriched by individual behaviours of physical
entities and compositional behaviours of physical entities; and (3) the scheduling
constraints can be translated into an input to a model checker, NuSMV [11], for
checking consistency. The proposed processes are supported by TimePF tool.

The remainder of the paper is organised as follows. Section 2 illustrates a
motivating example before introducing our approach (Sect. 3) and a case study
(Sect. 4). Section 5 evaluates the approach and discusses its limitation. Section 6
compares to related work and Sect. 7 concludes.

2 A Motivating Example

To illustrate the problem and motivate our approach, we use a real example from
the analysis of a critical accident involving an embedded CPS.

The class A accident happened to an on-board switch at Beijing railway
station around the GongZhuFen (i.e., Tomb of Princess) stop on 18 May 2013 at
15:46. It caused 4 trains to delay by at least 5 min, 1 train to return to the original

56 X. Chen et al.

stop, 1 temporally train added into the schedule and changes of 13 scheduling
tables1. The reason is that the switch was wrongly represented, which was not
found out in time. The involved subsystem is the switch control system (SC).
Here we simplify for illustration by describing basic problem domains.

SC monitors the states and actions of train and crossings to decide whether
or not to let the train pass and control equipments to perform corresponding
reactions. While a train is near the crossing, the on-board system of the train
sends a Request to SC, asking for entry. SC then checks about the state (either
Occupied or Unoccupied) of current Track, in order to respond to the Train. If
the state is Unoccupied, SC shall accept; otherwise it shall reject the request. If
SC does accept the request, it will notify the Light to turn into Green, and the
Switch to turn into Forward position. If SC does reject the request, the train
must wait. Only when the train sees the Green light and the Forward switch, it
can enter the crossing. And only after the train has left, it will send a message
to inform the SC. Then SC will notify the Light to turn into Red and the Switch
to position Reverse.

The problem diagram (a basic model in the PF) of the SC system is shown
in Fig. 1. It captures the problem domains and their interactions. The problem
domains include On-board System (OS), Track (TK), Light (LT), and Switch
(SH). As interfaces, requirement references and requirement constraints are
modeling phenomena shared between problem domains and SC, we unifyly
call them interactions. There are 17 interactions, in which ‘!’ means ‘control’.
Detailed informations please refer to https://github.com/B214-ECNU/A case
study/blob/master/Switch Control System.pdf. Figure 2 shows the state dia-
grams of the four problem domains, On-board system, Track, Switch, and Light.

However, it is clear that we cannot yet analyse the accident using the basic
problem diagram information. In the next section, we show how we add such

Fig. 1. Problem diagram of the SC

1 www.ditiezu.com/thread-317756-1-1.html.

https://github.com/B214-ECNU/A_case_study/blob/master/Switch_Control_System.pdf
https://github.com/B214-ECNU/A_case_study/blob/master/Switch_Control_System.pdf
www.ditiezu.com/thread-317756-1-1.html

Transforming Timing Requirements into CCSL Constraints 57

Fig. 2. State diagrams of physical entities in the SC systems

information that is sufficient to analyse the timing constraints and check for the
violations which cause such accident.

3 Our Approach

Figure 3 shows our proposed framework, TimePF, for specifying and verifying
timing requirements. TimePF has mainly three parts, i.e., models, specification,
and the consistency verification of timing requirements.

The model part includes a conceptual model for providing basic concepts
to describe timing requirements, an operational model interpreting timing con-
straints in operational semantics, and a compositional model composing physical
entities to derive the timing specification for the whole CPS.

Driven by these models, we design a four level elicitation process to obtain
the timing specification: (1) at the basic interaction level, we elicit temporal
relations between interaction instances by borrowing the concepts of “clock”

Fig. 3. An overview of our approach

58 X. Chen et al.

from MARTE/CCSL [9]; (2) at the physical entity level, we reify the notion of
“Entity Clock Specification” to gather causal and time constraints inferred from
the physical properties of each physical entity; (3) at the physical entity collab-
oration level, we specify physical entity collaborations by composing the entity
clock specifications; and (4) at the cyber entity level, we compose the speci-
fications of all the physical entities that will share interactions with the cyber
entity (i.e., problem domains) to form a specification for the timing requirement.
Putting all the compositions of entity clock specifications together will results
in an overall timing specification.

Finally, we use the model checker NuSMV to verify the consistency of the
elicited timing requirements in the specification. To do so, we define the consis-
tency properties and transform the timing specification into NuSMV input for
checking these consistency properties.

3.1 Models

Conceptual Model. In our conceptual model, a CPS consists of the cyber
and physical entities. These entities can be classified into atomic and composite
ones. They interact with each other. We define interactions as shared phenomena
between a cyber entity and some physical entities. They are observable.

Interactions can happen from time to time. According to Lamport [12], any
thing in which a sequence of occurrences can be observed or produced can be
defined as a logical clock. In MARTE/CCSL terminology, an event which may
happen millions of time can be simply one logical clock. Therefore, in this work,
we model each interaction with a logical clock. This differs from [8] because
it maps a problem domain to a logical clock instead of an interaction. Each
occurrence of the interaction will be an instant of the clock. When there are
many interactions, we use multiple clocks.

Moreover, as an entity can be seen as the combination of many interactions
from outside, each entity can also have a clock. In order to distinguish these two
different kinds of clocks, we name the clock from interaction interaction clock,
and the clock from entity the entity clock.

Borrowing the clock definition in CCSL [9], we also define each clock to be
a totally ordered set of instants, i.e. time points. In our context, each time an
interaction happens is an instant.

Definition 1. Clock C
.=< I,≺, u > where, I is a set of instants, ≺, named

strict precedence, is a strict order relation on I: antisymmetric and transitive,
and u is a symbol, standing for a unit.

Here a clock is discrete. We let C[k] denote the kth instant in I (here k is
called index of I, denoted as k = idxC(C[k])).

We use “clock constraints” to further constrain timing constraints between
interactions. According to CCSL, the clock constraints are actually defined by
instants constraints. The constraints usually used are strictPre, cause, alternate,
union, exclusion and coincides. In this paper, we do not list the mathematical
definition of these constraints. For details please refer to [9].

Transforming Timing Requirements into CCSL Constraints 59

These clock constraints may come from one physical entity limited by its
physical entity property, or come from different physical entities. In order to
explicitly express constraints within a physical entity, we reify the notion of
“Entity Clock Specification” to gather causal and time constraints inferred from
the requirements on each physical entity (including composite entities). As the
timing constraints on the interactions will fallen on constraints on clocks, the
entity clock specification can be defined as a triple of entity clock, interaction
clocks, and their clock constraints, in order to capture the various relationships
amongst the interactions.

Definition 2. An entity e’s clock specification e.CS

e.CS
.=< EC, ICs,CCs >

where, EC is the entity clock of the entity e, ICs is a set of interaction clocks,
and CCs is a set of clock constraints that EC and ICs clocks need to follow.

At the physical entity composition level, we define a composition operator ||
for composing entity clock specifications to be a larger specification. The clock
set of the big clock specification should be the union of the Clock set of each
individual clock specification, and constraints should work in conjunction.

Definition 3. Entity clock specification composition operator ||
Let CSi =< ECi, ICsi, CCsi > for i ∈ ζ, where ζ = {1, ..., n} is a finite

index set, be a set of clock specifications, then their composition is

||{CSi}i∈ζ =< EC, ICs,CCs >

where, EC = Cnew, which is the new created entity clock, ICs = ICs1 ∪ · · · ∪
ICsn ∪ EC1 · · · ∪ ECn, and CCs = CCs1 ∪ · · · ∪ CCsn ∪ CCsnew with CCsnew

the constraints newly introduced.

Timing Constraints Operational Semantics. According to the possible
interaction relations, we choose 7 types of clock constraints from the CCSL clock
constraints library, i.e., strictPre, union, cause, alternate, exclusion, coincidence,
and boundedDiff. Our previous work [10] has defined a state-based operational
semantics interpretation called ccLTS to describe the behaviors that each clock
constraint allows. The ccLTS is a special kind of labelled transition system.
States in ccLTS represent the states of clock constraints, and each label in ccLTS
represents the set of clocks that are due to tick in that transition.

As the ccLTS is the basis of semantics of entity clock specification composi-
tion model, we list the definition of ccLTS in the paper. For each clock constraint,
we build a ccLTS. For details, please refer to [10].

Definition 4. A ccLTS is a tuple L =< S,Clocks, T, ŝ >, where S is a set of
states and ŝ ∈ S is the initial state, Clocks is a finite set of clock names, whose
powerset is denoted as ClockSets, T ⊆ S× ClockSets ×S defines the transition

60 X. Chen et al.

relation, each transition is labelled by a set of clocks that tick simultaneously in
that transition. (s, Cs, s

′
) ∈ T is also denoted as s

Cs−−→T s
′
simply or s

Cs−−→ s
′

if clear from context.

Entity Clock Specification Composition Semantics. Using ||, we present
an entity clock specification composition model for specifying the behaviours.
These behaviours underlie the clock specification composition operator con-
strained by multiple clock constraints. In fact, the composition of clock spec-
ifications requires the composed clock specification satisfy all the constraints
from the two clock specifications and the ones newly introduced, through the
conjunction of clock constraints. Based on the operational semantics of clock
constraints, we define the semantics of “||” as follows.

Definition 5. Let Li = {Si, Clocksi, Ti, ŝi} for i ∈ ζ, where ζ = {1, ..., n} is a
finite index set, be a set of ccLTSs, their composition is a synchronized product,

||{Li}i∈ζ = {S,Clocks, T, ŝ}
where, S = S1 × · · · × Sn; ŝ = ŝ1 × · · · × ŝn; Clocks = Clocks1 ∪ · · · ∪ Clocksn;

and ∀i, j ∈ ζ(i �= j), si
Ci−−→Ti

s
′
i, sj

Cj−−→Tj
s

′
j,

∀c∈Clocksi∩Clocksj ,c∈Ci⇔c∈Cj

(s1,...,sn)
C1∪···∪Cn−−−−−−−→(s

′
1,...,s′

n)

We want to point out transitions from two ccLTSs can be composed only if
there is no conflict; conflict here means violating the constraint conjunction: a
common involved clock ticks in one transition while does not in the other.

According to the ||, the specification of a system is a composition result
of all the entity clock specifications. Thus the semantics of a specification is
given by the composed ccLTS from the ccLTS of its contained individual clock
constrains. An execution of the specification is a run of the composed ccLTS,
which is a sequence of steps; at each step, several clocks tick simultaneously
with respect to all the clock constraints. So, based on the semantics of clock
specification composition, the timing specification, i.e., scheduling specification,
can be defined as a set of clocks and clock constraints.

3.2 Specification

This subsection presents a multi-step process for timing requirements specifica-
tion. The initial inputs are problem diagrams for the functional requirements in
terms of the PF and state diagrams for properties of each physical entity.

Step 1: Define Entity and Interaction Clocks. This step is to define all
the interaction clocks and entity clocks from a problem diagram (constructed
in our previous work [13]). From a problem diagram, we could get the following
information for CPS requirements modelling: the cyber entity from the software-
to be; physical entities from the problem domains; interactions from interfaces,
requirement references and requirement constraints.

Transforming Timing Requirements into CCSL Constraints 61

Suppose we get an physical entity set EntS = {ent1, ent2, . . . , entn} and
an interaction set IntS = {int1, int2, . . . , intn}. For each physical entity enti ∈
EntS, define an entity clock Centi : Centi =< Ienti ,≺enti , ‘u

′ >, where ‘u’ can be
ms, s or other measure unit. For each interaction inti ∈ IntS, it defines a clock
Cinti : Cinti =< Iinti ,≺inti , ‘u

′ > (u is the same unit).

Step 2: Define a Clock Specification for Each Physical Entity. According
to Definition 2, there are three sub-steps to finish a clock specification for each
physical entity from the problem diagram:

(1) Getting entity and interaction clocks, i.e., for each problem domain pd
in the problem diagram, we get its physical entity clock Cpd: pd.CS.EC = Cpd.
Then we gather its involving interactions. These interactions are initiated or
received by the domain pd. Then for each interaction int, we assert its cor-
responding clock to be an interaction clock of the entity clock specification:
pd.CS.ICs = pd.CS.ICs ∪ {Cint}.

(2) Identifying clock relations between the entity clocks and interaction
clocks: The entity clock is defined for representing the problem domain. It can
be constructed by its interaction clocks using constraint “union”.

(3) Reasoning about clock relations among interaction clocks using phys-
ical entity property: The physical properties of physical entities will finally
enforce clock constraints on the interaction clocks. The interactions are actually
shared phenomena, which means some constrained private phenomena can not
be observed. So, the clock relations among interaction clocks must be reasoned.

In the PF book [5], Jackson models the entity property with a state diagram.
Here we propose to add the time related information based on the state diagram.
From the state diagram, so as to get qualitative clock constrains of correspond-
ing clocks transformed. Figure 4 presents a set of state diagram patterns that
could be transformed to a set of clock constraints. In this figure, triggers are
transformed to clocks, and transitions are transformed into clock constraints.

It is worth noticing that from the state diagram, one could only get quali-
tative information. If there exists quantitative information, we could add them
by asking the time duration taken by each transition. For example, if we get
transition ‘tr’ (a → b) takes 2 s, we could use a boundedDiff 0 20 b.

After getting these qualitative and quantitative constraints, we provide two
reasoning rules to obtain relations among interaction clocks:

– Qualitative reasoning: a X b, b X c → a X c, where X could be strictPre,
cause, and coincidence.

– Quantitative reasoning: a boundedDiff i j b, b boundedDiff m n c → a
boundedDiff (i + m) (j + n) c

After these sub-steps, we finish the construction of an entity clock spec-
ification. For each problem domain in the problem diagram, an entity clock
specification can be obtained.

62 X. Chen et al.

Fig. 4. Patterns for state diagram transformation

Step 3: Construct Clock Specification Compositions for Collaboration
of Physical Entities. This step is to compose the entity clock specifications
until only one clock specification exists. We could construct them one by one.
They could be finished by repeating the following steps:

(1) Finding interaction clocks for the composed clock specification: suppose
problem domain pd is composed by pd1 and pd2. Its interaction clocks of pd.CS
would be the union of pd1’s interaction clocks and pd2’s interaction clocks.
pd.CS.ICs = pd1.CS.ICs ∪ pd2.CS.ICs.

(2) Defining entity clock for the composed entity: define its entity clock Cpd,
pd.CS.OCk could be Cpd, i.e., pd.CS.EC = Cpd

(3) Finding entity clock and interaction clock relation: Actually, pd’s entity
clock is the union of Cpd1 and Cpd2 , i.e., Cpd = Cpd1 unionCpd2 . The rela-
tion between Cpd1 and its interaction clocks pd1.CS.ICs is already given
in pd1.CS.CCs, and the relation between Cpd2 and its interaction clocks
pd2.CS.ICs is already given in pd2.CS.CCs.

(4) Identifying clock relations among interaction clocks: When interactions
from different entities meet, there may exist timing constraints. As the clock
relations are actually deduced from instant relations, we could identify them by
identifying instant relations. Assume there are two interactions, int1 and int2,
and their corresponding clocks are Cint1 and Cint2. We provide a questionnaire in
Fig. 5 to guide the requirement providers. A ‘Yes’ answer to these questions will
lead to the following constraints: Stakeholders need to provide additional input
where one needs to specify clock relations between interactions. According to the
semantics of entity clock specification and clock constraints, we designed a fairly
simple questionnaire for the providers to choose. Figure 5 lists 6 questions for
clock relation identification. Each answer (or choice) indicates a clock constraint
in CCSL.

Transforming Timing Requirements into CCSL Constraints 63

Fig. 5. Questionnaire for providers

– ‘Yes’ to question (1), then we have: Cint1 coincidence Cint2

– ‘Yes’ to question (2), then we have: Cint1 stricPre Cint2

– ‘Yes’ to question (3), then we have: Cint1 cause Cint2

– ‘Yes’ to question (4), then this could be: Cint1 alternate Cint2

– ‘Yes’ to question (5), the description would be: Cint1 exclusion Cint2

– ‘Yes’ to question (6), the description would be: C1 boundedDiff i j C2

After the above steps, we could get a composed entity clock specification.
Then we replace pd1 and pd2 with pd in the problem diagram. Repeat these
steps until the biggest clock specification PD.CS is obtained.

Step 4: Derive Timing Specification for the Cyber Entity. We define
the timing specification to be a set of clocks and related clock constraints. Then
the timing specification derivation will be finished in two steps: (1) defining an
entity clock specification for the cyber entity, and (2) extracting clocks and clock
constraints from the entity clock specification to form the timing specification.

To define an entity clock specification cyb.CS, firstly define a clock for the
cyber entity Ccyb. The clock Ccyb equals to the biggest composed problem
domain clock CPD. The interaction clocks are actually the interaction clocks
in PD.CS.ICs. Then the clock specification cyb.CS can be obtained by:

cyb.CS =< Ccyb, PD.CS.ICs, PD.CS.CCs ∪ {Ccyb = CPD} >

3.3 Consistency Checking

Once obtained, the timing specification must be checked before being used. For
this purpose, we choose a model checker NuSMV [11] because it allows checking
finite state systems against properties in CTL or LTL.

64 X. Chen et al.

The process for consistency checking is usually three steps. Firstly, the timing
specification in terms of clocks and clock constraints are transformed to NuSMV
models by support of the clock constraints. Then consistency is expressed in
CTL formula and finally checked against the transformed NuSMV model.

As our previous work [10] has done the transformation work from CCSL
specification to NuSMV, in this paper, we only need to define the consistency
property in CTL. The consistency checking determines whether the specifica-
tions are consistent. The most typical inconsistent scenario is “deadlock”, in
which the specification cannot fire all (or some) clocks anymore (since all clocks
are assumed to be able to tick infinitely often in a reactive system). Usually, a
deadlock is caused by inconsistency of used clock constraints, e.g., one constraint
says that clock C1 ticks after C2 ticks while another constraint impose that C2

ticks after C1, the result is that none can tick. We want to point out that dead-
locks could only be caused by inconsistency because redundancies in constraints
are impossible by our construction. For a timing specification s, whose clock set
is {C1, C2, . . . , Cn}, we define it consistent if it is not a global deadlock and
every clock Ci (1 	 i 	 n) will tick infinitely in future.

Definition 6. If a specification s with clocks {C1, C2, . . . , Cn}, satisfies AGp
and AG AF Ci (1 	 i 	 n), where p =!(C1|C2|...|Cn) (! and | are CTL opera-
tors), then s is consistent.

By putting the consistency property in the .smv file, we can run NuSMV
to check whether the specification is consistent. A counter example showing a
path that cannot go on can help locate the problem in the specification. Such
diagnosis procedure is however out of the scope of this paper.

4 A Case Study

To support the techniques proposed in this paper, we have developed a prototype
tool timePF using Java [14]. Our aim was to develop a tool to allow users to
manipulate diagrammatic elements and transform them in a stepwise manner
according to the process defined previously in this paper. Hence, we decided to
develop a customised supporting tool, instead of using a generic graph editor
such as Microsoft Visio.

We developed TimePF by extending a tool DPTool [15] which is an editor of
the PF problem diagram. TimePF allows the user to graphically edit the inter-
action relations, the qualitative relations and quantitative relations. Moreover,
the tool allows the user to follow the specification process, and aids the user with
some automated timing requirements processing. Finally, it performs automated
consistency checking for the resulting timing specification. In the following, we
will still use the motivating example to show the feasibility of our approach.
Due to limited space, the details are given in https://github.com/B214-ECNU/
A case study/blob/master/Switch Control System.pdf.

https://github.com/B214-ECNU/A_case_study/blob/master/Switch_Control_System.pdf
https://github.com/B214-ECNU/A_case_study/blob/master/Switch_Control_System.pdf

Transforming Timing Requirements into CCSL Constraints 65

Step 1: Define entity and interaction clocks. For each problem domain in the
problem diagram (see Fig. 1), we define an entity clock for it. For example, for
the domain Light, we define a clock CLT : CLT =< ILT ,≺LT , ‘ms′ >.

For each interaction in the problem diagram, we construct an interaction
clock for it. For example, interaction Green. Its corresponding clock is defined
as CGn: CGn =< IGn,≺Gn, ‘ms′ >, where IGn = {CGn[1], CGn[2], . . . , CGn[n]}.
In order to simply the clock name, we pick the first and last characters of the one
word interaction and first two characters for two word interactions to represent
the whole interaction.

Step 2: Define entity clock specifications for physical entities. For each problem
domain in the problem diagram, we define a clock specification for it. Take
domain “Light” as an example.

(1) Find entity and interaction clocks. For domain “Light”, its entity clock
is CLT . Then LT.CS. EC=CLT . The domain LT has four interactions: int10
(GreenPulse, GP), int11 (RedPulse, RP), int12 (Green, Gn) and int13 (Red,
Rd). Their corresponding clocks are: CGP ,CRd, CGn and CRP . Then we have:
LT.CS.ICs = {CGP , CRP , CGn, CRd}.

(2) Identify clock relations between the entity clocks and interaction clocks.
The entity clock CLight is constructed by union of its interaction clocks. That
means: CLT = CGP union CRP union CGn union CRd

(3) Reason about the clock relations among interaction clocks using physical
entity property. From the state diagram of Light in Fig. 2 and state diagram
transformation patterns in Fig. 4, we know that intGP and intGreen has alternate
relation. As to the quantitative constraints, suppose the response time of turning
red or green is less than 3 ms.

Step 3: Construct clock specification composition for problem domain collabora-
tion. We combine On-board Systems (OS) and Track (TK) because after the
OS requests, the SC asks the state of the track. If the state is occupied, then SC
rejects the request, and if the state is unoccupied, then SC accepts the request.
In this way, we get constraints ct25, ct26, and ct27.

Suppose the combine entity is called ComOSTK (CK), then the clock specifi-
cation for the CK could be: CK.CS = OS.CS||TK.CS. We define a clock called
CCK for the entity clock: CCK =< ICK ,≺CK , ‘ms′ > where CCK is actually
the union of all the interaction clocks of OS and TK. Thus we get ct28. In the
construction of CK.CS, the newly introduced constraints include ct25-ct28.

Similarly, as to the combination of ComOSRK and Light and Switch, they
collaborate together as a domain SCPD to fulfil their requirements. So the com-
posed clock specification would be: SCPD.CS = CK.CS||LT.CS||SH.CS. The
newly introduced constraints are ct29-ct38.

Step 4: Derive timing specification for the cyber entity. The clock for the
cyber entity Ccyb is the composed problem domain clock CSCPD. So we have
Ccyb = CSCPD (ct39). The interaction clocks are actually the interaction clocks
in SCPD.CS. Then the cyb.CS eaquals to SCPD.CS.

66 X. Chen et al.

Finally, all the 39 clock constraints in cyb.CS are extracted to
form a timing specification. We also noted that the constraint “ct36”
(CLe boundedDiff 0 5 CRe) was not given from the accident description: the
device was not reset in time after the train is left.

Step 5: Perform automated consistency verification. Our tool TimePF checks the
specification against the consistency properties. It can detect a counter example
on the specification without constraint “ct36”. Figure 6 shows the main checking
interfaces of TimePF. The left part is the menu for users to choose. The right
part is the result of consistency checking for the switch control system. The
verification only takes 1 s.

Fig. 6. A checking snapshot of the switch control system in TimePF

5 Empirical Evaluation

In order to evaluate our technique, we have conducted two kinds of evaluations.
One is a laboratory-based evaluation supported by our prototype tool TimePF
for computer-aided timing requirements elicitation and verification. The other
one is conducted by a railway signaling company person.

In the laboratory-based evaluation, we enrolled 6 first-year postgraduate soft-
ware engineering students studying at Shanghai in China. All were MSc students
majoring in Software Engineering. Since PF and CCSL are relatively new in the
software engineering curriculum, the students’ knowledge about PF, CCSL and
the tool was minimum before the first author’s lectures.

In the industry evaluation, we asked a testing manager from one of the biggest
railway companies in China. Since we have a long time collaboration with the
company, the manager knows what we are doing exactly. He told us the timing
constraints for the railway systems are given in the document written in natural
language. These timing constraints are from the experts’ mind. Each time a big
accident happens, many constraints will be forced into the documents.

Transforming Timing Requirements into CCSL Constraints 67

Before the experiments, all the participants including the students and man-
ager were given several lectures on the basics of the PF approach as well as
tutorials on timing requirements expression (CCSL). Because we wanted to see
whether the approach is easy to be understood by the industry, a case from the
railway control system is chosen. In order to be easily understood, it consists of
only main functions of two subsystems, vehicle on-board controller (VOBC) and
interlocking systems. As the problem description is internal and secret, we only
provide functional steps in the problem description document.

At last, we extract problem diagrams for the systems, and build the state
diagrams for the invloved physical entities. Unfortunately, it is not easy for us
to understand the domain of railway systems. So it took us 2 weeks to get them
even with the help of experts from the company.

To assess the feasibility of the approach through user studies, we designed
the following two experiments. The first experiment investigates how easy it is
to identify time constraints from the perspective of academy? We divide the 6
students into 2 groups. One group is provided with a fully described problem
diagram and state diagrams of the problem domains in the problem diagram,
while the other group is provided only with the problem description document.
Both groups are asked to identify the timing constraints. The second experiment
investigates how easy it is for participants to obtain timing specification following
the guided process from the perspective of industry. We give the manager the
same problem diagram and state diagrams.

In the first experiment, these 2 groups behaved differently. In 7 days, (each
day 10 hours’ work), the best person who use our approach gets 511 time con-
straints for the interlocking system, and 338 time constraints for the VOBC
system, and the least gets 653 constraints for the two sub-systems. Among the
3 persons who do not use our approach, the best only obtains 552 constraints
for the two subsystems. In this way, we can conclude that our approach is more
easy to elicit more time constraints.

In the second experiment, it only took the manager 3 days (each day 8
hours’ work) to get 1121 time constraints consisting of 623 for the interlocking
systems and 498 for the VOBC system. Obviously, his domain knowledge helps
him a lot. When we was asked about the GongZhu Fen switch accidents, the
manager easily found we could add time constraints on the inquiry of switch
state. He said through the approach, especially the PF to represent the functional
requirements, it was more easier to master the relations of interactions.

Of course, the problem diagrams and state diagrams help the students to
understand the domain. So it makes sense that the first group students get more
constraints in the same time duration. But it still told us that our approach
would work well with non-experienced ones. As to the experts experiment, the
result may not be repeated because the manager knows formal methods well.

Another limitation of our consistency checking is that large systems with
too many timing constraints may never gets verification results due to the state
explosion problem in the formal methods.

68 X. Chen et al.

6 Related Work

Related work representing timing requirements are broadly classified into UML-
based and RE-based approaches. UML 1.0 Profile for Schedulability, Perfor-
mance, and Time specification (SPT) [16] standardises time modelling extension.
It is followed by UML 2.0 Profile for Modelling and Analysis of Real-Time and
Embedded Systems (MARTE) [17], which defines on its companion language
clock constraints specification language (CCSL). Although MARTE targets at
real-time embedded systems, it does not provide specific means for RE. UML
For Systems Engineers (SysML) [18] incorporates requirements diagram, how-
ever, it does not provide specific support for time. Selic et al. [19] have argued
that complex time-sensitive systems like CPS could benefit from a joint use
of SysML and MARTE, thereby addressing both requirement engineering and
real-time systems issues. One attempt [20] also makes a specific argumentation
for combining MARTE, CCSL and SysML. Our work also uses the same time
model as with MARTE/CCSL, whilst further interpreting state-based opera-
tional semantics for their use on the early phase of RE through transformations,
which enables the verification of consistency of timing requirements.

Knowledge Acquisition in Automated Specification (KAOS) [21] approaches
view goals as the source of timing requirements, which are associated with tem-
poral behaviours of the system-to-be in terms of typed first-order real-time logic.
Agent-oriented RE approaches [22] use actors to identify requirements, which can
be formalised through Formal Tropos, a language supplements i* [23] with a rich
temporal specification language inspired by KAOS. Formal Tropos also uses a
linear-time typed first-order temporal logic. Agent-Oriented Language for Build-
ing and Eliciting Real-Time Requirements (ALBERT-II) [24] is another agent-
oriented framework for specifying distributed real-time systems based on tempo-
ral logic. Compared to existing RE-based time modelling approaches, TimePF
has adopts PF as the descriptions of functional requirements, thus inherits the
advantages of existing PF-based modelling such as [5,7,25–27]. As a consequence,
our timing requirements are integrated tightly with the functional requirements,
and are more expressive than temporal logics [28]. Although our previous work
[8] also extends the PF with CCSL, it maps problem domains to clocks while
this paper maps interactions to clocks. Moreover, this paper focuses on the spec-
ification process.

Another related work is CCSL based verfication and analysis. Many
researchers work on this like [29–32]. Actually, Their contributions even make our
work more important. Because our specification language is CCSL, their work
can be used by our work although we use previous work [10] as further work,
and even can help us to solve the state explosion problem in the verfication.
Compared with them, this paper focuses on how to get the CCSL specification
in the early requirement engineering phases instead of analysing it.

7 Conclusions and Future Work

In this paper, we propose an approach to derive timing specification from require-
ments, which contributes the following: (1) basic concepts for describing timing

Transforming Timing Requirements into CCSL Constraints 69

requirements and semantics of behaviour composition as a model integrated
seamlessly with functional requirements on the problem diagrams; (2) a model-
driven tool supported process for deriving timing requirements from the levels
of interaction, physical entity, and their composition; and (3) automatic consis-
tency checker for deadlocks by transforming them into NuSMV inputs. With the
formal specification of timing requirements obtained, it is our next step to fully
integrate it with the follow-on activities of CPS development.

Acknowledgments. This work was supported by the Natural Science Foundation of
China under grant 61620106007 and 61472140, Microsoft Azure Award, British Council
Researcher Links on Cybersecurity ERC Adaptive Security And Privacy 291652.

References

1. Lee, E.: Cyber physical systems: design challenges. In: International Sympo-
sium on Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC2008), pp. 363–369 (2008)

2. Ying, T., Goddard, S., Perez, L.C.: A prototype architecture for cyber-physical
systems. ACM SIGBED Rev. (2008)

3. Jackson, M.: The meaning of requirements. Ann. Softw. Eng. 3, 5–21 (1997)
4. Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In: Fm,

T. (ed.) Proceedings of the 5th IEEE International Symposium on Requirements
Engineering (RE 2001), pp. 249–263. IEEE Computer Society, Toronto (2001)

5. Jackson, M., Frames, P.: Analyzing and Structuring Software Development Prob-
lems. Addison-Wesley, New York (2001)

6. Choppy, C., Reggio, G.: A UML-based method for the commanded behaviour
frame. In: Cox, K., Hall, J., Rapanotti, L. (eds.) Proceedings of the 1st Inter-
national Workshop on Advances and Applications of Problem Frames (IWAAPF
2004), pp. 27–34 (2004)

7. Barroca, L., Fiadeiro, J., Jackson, M., Laney, R., Nuseibeh, B.: Problem frames: a
case for coordination. In: Rocco, D.N., Gianluigi, F., Greg, M. (eds.) Proceedings
of the 6th International Conference on Coordination Models and Languages, pp.
5–19 (2004)

8. Chen, X., Liu, J., Mallet, F., Jin, Z.: Modeling timing requirements in problem
frames using CCSL. In: the 18th Asia-Pacific Software Engineering Conference
(APSEC 2011), pp. 381–388 (2011)

9. Andre, C.: Syntax and semantics of the clock constraint speci?cation language
(CCSL). INRIA, Research report (2009)

10. Yin, L., Liu, J., Ding, Z., Mallet, F., de Simone, R.: Schedulability analysis with
CCSL specifications. In: APSEC, pp. 414–421 (2013)

11. Nusmv 2.5 tutorial (2014). http://nusmv.fbk.eu/NuSMV/tutorial/v25/tutorial.
pdf

12. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 7, 558–565 (1978)

13. Chen, X., Jin, Z.: Capturing software requirements from the expected interactions
between the software and its environment: an ontology based approach. Int. J.
Software Eng. Knowl. Eng. 26(1), 15–39 (2016)

http://nusmv.fbk.eu/NuSMV/tutorial/v25/tutorial.pdf
http://nusmv.fbk.eu/NuSMV/tutorial/v25/tutorial.pdf

70 X. Chen et al.

14. Wang, Y., Chen, X., Yin, L.: TimePF: a tool for modeling and verifying tim-
ing requirements based on problem frames. Requirements Engineering in the Big
Data Era. CCIS, vol. 558, pp. 149–154. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48634-4 11

15. Chen, X., Yin, B., Jin, Z.: DPtool: a tool for guiding the problem description and
the problem projection. In: The 18th IEEE International Requirements Engineer-
ing Conference, pp. 401–402 (2010)

16. OMG, UML Profile for Schedulability, Performance, and Time Specification, v1.1,
Object Management Group, formal/05-01-02, January 2005

17. OMG, UML Profile for MARTE, v1.1, June 2011
18. Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis,

Design. The MK/OMG Press, Burlington (2008)
19. Selic, B., Gerard, S.: Modeling and Analysis of Real-Time and Embedded Systems

with UML and MARTE. Elsevier, Amsterdam (2013)
20. Mallet, F.: MARTE/CCSL for modeling cyber-physical systems. In: Drechsler, R.,

Kühne, U. (eds.) Formal Modeling and Verification of Cyber-Physical Systems, pp.
26–49. Springer, Wiesbaden (2015). doi:10.1007/978-3-658-09994-7 2

21. Lamsweerde, A.: Formal refinement patterns for goal-driven requirements elabora-
tion. In: Proceedings of the 4th ACM Symposium on the Foundations of Software
Engineering (FSE4), San Francisco, USA, pp. 179–190 (1996)

22. Yu, E.: Agent orientation as a modeling paradigm. Wirtschaftsinformatik 43(2),
123–132 (2001)

23. Yu, E.: Modelling organizations for information systems requirements engineering.
In: Proceedings of First IEEE Symposium on Requirements Engineering, pp. 34–41
(1993)

24. Bois, P.: The albert ii language - on the design and the use of a formal specification
language for requirements analysis. Ph.D. dissertation, Department of Computer
Science, University of Namur, Namur, Belgium (1995)

25. Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In:
ICSE 1995, pp. 15–24 (1995)

26. Lavazza, L., Del Bianco, V.: Combining problem frames and UML in the descrip-
tion of software requirements. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS,
vol. 3922, pp. 199–213. Springer, Heidelberg (2006). doi:10.1007/11693017 16

27. Li, Z., Hall, J.G., Rapanotti, L.: On the systematic transformation of requirements
to specifications. Requirements Eng. J. 19(4), 397–419 (2014)

28. Gascon, R., Mallet, F., DeAntoni, J.: Logical time and temporal logics: comparing
UML MARTE/CCSL and PSL. In: TIME 2011, pp. 141–148 (2011)

29. Zhang, M., Mallet, F., Zhu, H.: An SMT-based approach to the formal analysis of
MARTE/CCSL. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS,
vol. 10009, pp. 433–449. Springer, Cham (2016). doi:10.1007/978-3-319-47846-3 27

30. Suryadevara, J., Seceleanu, C., Mallet, F., Pettersson, P.: Verifying MARTE/CCSL
mode behaviors using UPPAAL. In: Hierons, R.M., Merayo, M.G., Bravetti, M.
(eds.) SEFM 2013. LNCS, vol. 8137, pp. 1–15. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40561-7 1

31. Khan, A.M., Rashid, M.: Generation of SystemVerilog observers from SysML and
MARTE/CCSL. In: ISORC 2016, pp. 61–68 (2016)

32. Peters, J., Przigoda, N., Wille, R., Drechsler, R.: Clocks vs. instants relations:
Verifying CCSL time constraints in uml/marte models. In: MEMOCODE 2016,
pp. 78–84 (2016)

http://dx.doi.org/10.1007/978-3-662-48634-4_11
http://dx.doi.org/10.1007/978-3-662-48634-4_11
http://dx.doi.org/10.1007/978-3-658-09994-7_2
http://dx.doi.org/10.1007/11693017_16
http://dx.doi.org/10.1007/978-3-319-47846-3_27
http://dx.doi.org/10.1007/978-3-642-40561-7_1
http://dx.doi.org/10.1007/978-3-642-40561-7_1

A Framework for Multi-view Reconciliation
and for Medical Devices Personalization

Yihai Chen1,2, Bofang Zhang1,2, Ridha Khedri1,3(B), and Huaikou Miao1,2

1 School of Computer Engineering and Science,
Shanghai University, Shanghai, China

2 Shanghai Key Laboratory of Computer Software Evaluating and Testing,
Shanghai, China

3 Department of Computing and Software, McMaster University,
Hamilton, ON, Canada
khedri@mcmaster.ca

Abstract. Software product family approaches have found broad adop-
tion in the embedded systems industry, where systems are modelled from
several views such as the software view and the hardware view. A view
uses the feature perceived only from the view’s perspective. For example,
from a hardware view we perceive only the hardware features. Generat-
ing the feasible products of the considered family from these views and
the constraints imposed on them is called view reconciliation.

The paper presents a mathematical framework to reason on view rec-
onciliation. It articulates this process as a product of sets of product
families. We give the conditions under which the product forms a direct
product. We also demonstrate that (multi-) view reconciliation is an
operation that is indifferent to the order of integrating the views. Finally,
we show that personalizing medical devices is a simple view reconcilia-
tion operation that gives a direct-product allowing, using projections,
the retrieval of any of the involved views from the conciliated view.

Keywords: Medical devices · Software requirement · Multi-view recon-
ciliation · Product family algebra · Personalized software development

1 Introduction

Over the last few decades, software has significantly revolutionised medical
device industry. Many medical device functionalities and innovations are real-
ized by software. Modern medical devices such as pacemakers, insulin pumps,
and artificial pancreas are essentially sophisticated software-intensive embed-
ded systems. As early as 2006, over half of the medical devices on the U.S.

This research is supported by the Natural Sciences and Engineering Research Council
of Canada (NSERC) through the grant RGPIN 2014-06115, by the National Natural
Science Foundation of China through the grants No. 61602293 and No. 61572306,
and by the Science and Technology Commission of Shanghai Municipality through
the grant No. 15YF1403900.

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 71–87, 2017.
https://doi.org/10.1007/978-3-319-68690-5 5

72 Y. Chen et al.

market involved software [1]. The European Medical Device Directive MDD
93/42/EEC [2], one of the foundational council directives in medical devices,
includes software as one type of medical devices. Also, the International Elec-
trotechnical Commission (IEC) and the U.S. Food and Drug Administration
(FDA) have included software as a category of medical devices. Software con-
sidered as a medical device is called Medical Device Software (MDS).

The development of medical devices is challenging [3] for several reasons. The
first challenge is the size of the software embedded in them. For an idea about
the software content in some critical medical devices, we find in [4] that state-of-
the-art pacemakers may have up to 80,000 lines of code in them. Also, we find
in [4] that infusion pumps may have over 170,000 lines of code. In addition to
software size, the variability within a set of related medical devices is high. This
is due to the fact that for a specific medical need, such controlling blood sugar
level, patients have needs for several functional features due to age, pathological
condition, cost of the device, etc. One might think of building a device with all
the possible features parametrized; if one needs a special feature, we configure
the device to activate the needed feature while all the not needed features remain
deactivated. For safety reasons, this solution is not recommended. It involves the
risk that one of these deactivated features gets triggered by a sequence of events
and leads to unsafe or fatal behaviour of the device. Each medical devise has to
be minimal in the software it contains; it contains exactly what is needed by the
patient and noting more and nothing less. This leads us to the development of
a family of medical devices that have a set of common features and each device
has specific set of features that distinguishes it from all the rest of the devices.
This diversity of patients and the diversity in the features that devices might
include lead to a high number of product variants. At the same time, medical
device companies are facing the pressure to deliver new devices to market on
time, comply with strict regulatory guidelines, and make sure the devices are
safe and secure.

This challenge usually leads to building families of products instead of sin-
gle products. A product family approach is shown to be the most appropriate
solution for this challenge [5]. A family of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a particu-
lar market segment or mission and that are developed from a common set of
core assets in a prescribed way or place is commonly referred to as a product
line [6]. A software product line is a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a particular
market segment or mission and that are developed from a common set of core
assets in a prescribed way in place [6]. When a software organization adopts
software product family, it can bring the benefits of reducing development time
and increasing productivity. There are many successful applications of software
product family approach. In particular, they have found broad adoption in the
embedded systems industry [5], where a platform that implements the common
features to all devices is built then extended with features that are specific to
products built on it. Also, the adoption of product families approaches is well
documented in areas such as aerospace, automotive, or medical device [7,8].

A Framework for Multi-view Reconciliation 73

Modelling MDS or any complex system requires modelling several views of
the system. Then these views are integrated to form the general model of the
system. This approach allows us to focus our attention on one view at the time. A
view is a representation of a whole system or part of a system from the perspec-
tive of concer [9]. It is difficult to work out a model for a medical device in one
shot. Modelling a family of MDS products as a single view leads to models that
are hard to elaborate and involve a lot of features which makes them unreadable.
Multi-view approach is commonly adopted in practice. For MDS, we advocate
for the adoption of a multi-view approach for the feature modelling of familes of
MDS. Using Product Family Algebra (PFA) [10], which is an idempotent semi-
ring, we capture the specification of the MDS from each view. These views are
usually related. We use constraints to capture these relationships among views.
Then, should we need to have the model for the whole family, the global view
that integrates all the views, is generated through algebraic calculations. This
approach allows us to manage the models as it is easy to make changes to a sys-
tem model from one view, then generate the new global view that encompasses
the new changes and the other views. We use this approach to include patient’s
characteristics in one view. The aim is to derive through calculation the model of
a personalized medical device that fits the needs of the patient. Suppose that the
considered medical device has two views: hardware view and software view. The
hardware view gives the hardware components (features) of the device, while
the software view captures its software features. These two views are related
with constraints such as a hardware component needs a specific software feature
(e.g., module). The integration of these two views generates a family of possible
products that only some of them can fit the patient. If we integrate these views
with that of the patient, we get the products that fit the patient. The paper
discusses this approach and its theoretical background.

As stated above, we adopt a view-based approach to model a family of med-
ical devices. For instance, we give the family feature model from a hardware, soft-
ware, and patient perspectives. Other views can be added. For instance, some
medical devices can be affected by the environment of the patient. Therefore, in a
such situation, a view capturing the possible environments in which the family of
devices can operate are added to the set of essential view: software, hardware, and
patient. Each one of them constitutes a view on the family of medical devices. The
hardware view gives the hardware features either mandatory or optional that are
encompassed in the family of medical devices. The software view gives the software
features that can be identified in the family. The patient view describe the family of
patients based on their attributes such as age or pathological characteristics (each
constitutes a feature) that are relevant to the selection of an appropriate medical
device for a patient. In general, a feature is a conceptual characteristic that is vis-
ible to stakeholders (e.g., users, doctors, customers, developers, managers, etc.).
We use PFA to give the feature model of each view as a family of products con-
stituted of homogenous (i.e., coming from features same view) features. The lan-
guage of PFA is more expressive in articulating feature models in a concise way.
Graphical representation of feature models can be straight forwardly generated

74 Y. Chen et al.

from PFA feature models. In addition, calculations can be done on them as they
are sets of algebraic terms. For more information on advantages of PFA related to
these aspects, we refer the reader to [10–13].

Section 2 gives the basic concepts of product family algebra. In Sect. 3, we
present the mathematical setting for the process of multi-view reconciliation and
we derive several results linking it to the direct-product construction. Section 4
uses the mathematical language of the framework to present medical device per-
sonalization as a constrained product construction. We use a pacemaker fam-
ily example to illustrate the usage of the framework for personalizing medical
devices. In Sect. 5, we discuss the related work. Our concluding remarks and the
direction of our future work are given in Sect. 6.

2 Mathematical Background: Product Family Algebra

Product Family Algebra is a simple algebraic structure. It is an idempotent
semiring. A semiring is a quintuple (S,+, 0, ·, 1) such as (S,+, 0) is a commuta-
tive monoid and (S, ·, 1) is a monoid such that · distribute over + and 0 is an
annihilator, (i.e., 0 · a = 0 = a · 0). The semiring is commutative if · is com-
mutative and it is idempotent if + is idempotent (i.e., a + a = a). The relation
a ≤ b ⇐⇒df a + b = b is a partial order (i.e., a reflexive, antisymmetric and
transitive relation), called the natural order on S. It has 0 as its least element.
Moreover, + and · are isotone with respect to ≤.

In the context of feature modelling, addition + can be interpreted as a choice
between two optional features. The multiplication operation · is interpreted as
feature composition or their mandatory presence. The element 0 represents the
empty family of products while 1 represents a product with no features; a pseudo
family that is neutral to mandatory composition. More details about (idempo-
tent) semirings and examples of their relevance to computer science and system’s
modelling can be found in [10,14,15]. A product family algebra is an idempo-
tent and commutative semiring. Its elements are called product families. We find
in [10], that a product is a family that is indivisible with regard to + (i.e., does
not contain optional features). A feature is therefore a product that is atomic
(i.e., that is not dividable with regard to · operator). We refer the reader to [10]
for the formal definition of a product. The above intuitive definition given above
is enough for the paper. In particular, 0 is a product. A product a is proper if
a �= 0. When we want to express that a feature is optional, we simply write it as
an alternative choice between 1 and the feature f . For example, let us consider
a family F that has a feature a as mandatory and a feature f as optional. Then
we write F = a · (1 + f), which can be rewritten as = a + a · f In this case,
F is a family that contains two products: a and a · f . If we look at product
family algebras like the set-based or the bag-based ones discussed in [10], we
can expresss determining the commonality of two families as finding the Great-
est Common Divisor (GCD), or to factor out the features common to all given
products. The classical Euclidean algorithm for finding the GCD is used to find

A Framework for Multi-view Reconciliation 75

commonalities. We can also define a divisibility relation among families that is
given by (a | b) ⇐⇒ (∃ c | · b = a.c)1.

In the requirement of embedded systems, we need to express that a feature
requires the existence of another feature and that within a family. The language
of PFA has a requirement relation that is used to express this kind of require-
ments. We call this relation a requirement relation and it is defined using two
other relations: subfamily ≤ and refinement �. We say that a is a subfamily
of b if and only if all of the products of a are also products of b. Formally, the
subfamily relation (≤) is defined as a ≤ b

def⇐⇒ a+ b = b (note: the ≤ relation
is the natural order of the semiring). The refinement relation indicates that, for
two given product families a and b, a is a refinement of b if and only if every
product in family a has at least all the features of some products in family b.
In mathematical terms, a � b

def⇐⇒ (∃ c | · a ≤ b · c). For elements a,
b, c, d and a product p in PFA, the requirement relation (→) is defined in a
family-induction style [10] as:

a
p→ b

def⇔ p � a =⇒ p � b

a
c+d→ b

def⇔ a
c→ b ∧ a

d→ b

For elements a, b and c, a c→ b reads as “a requires b within c”. If we want to
indicate that the combination of families/products/features a and b generates
an empty family in the bigger family c, we write a · b c→ 0. It is to say that the
combination of a and b is impossible. Features from several view can require each
other. For instance, a pump in an insulin pump hardware view would require
a controller in the software view. For these kind of relationships, we use the
requirement relation (→). We say that a family f satisfies a constraint (a

q→ b),
and we write ((a

q→ b) � f), iff (∀ p | p ≤ f ∧ q � p · a
p→ b).

3 Multi-view Reconciliation Mathematical Framework

In this section, we present the mathematical foundation for the notion of family-
view reconciliation. We also present some results related to the properties of
view reconciliation.

Definition 1. Let (S,+, ·, 0, 1) be a product family algebra. Let U, V,W be sub-
sets of S. Then W is said to be the product of U and V , written W = U V , if
(∀w | w ∈ W · (∃u, v | u ∈ U ∧ v ∈ V · w = u · v)). We also say that U
and V are family-views of W . If every element w of W has a unique expression

1 Throughout this paper, we adopt the uniform linear notation provided. The general

form of the notation is (� x | R · P) where � is the quantifier, x is the dummy

or quantified variable, R is predicate representing the range, and P is an expression
representing the body of the quantification. An empty range is taken to mean true

and we write (� x | · P); in this case the range is over all values of variable x.

76 Y. Chen et al.

w = u · v, then W is the direct product of U and V . The family-views U and V
are said to be independent or orthogonal if U ∩ V = {1}.
Obviously, S and {1} are two family-views of S as every element of S can be
written as the product of itself and 1. The family-view given by {1} is a neutral
view that does not bring any new features. A family-view that is formed by {1}
is orthogonal to any other family-views. Another observation from the above
definition is that a view is defined with regard to another; it means that a set
of families W is given by at least two views (one of them could a neutral view
{1}). Therefore, a view is a partial description of a set of families (very often in
practice, it is a singleton set).

In the remaining of the paper, we take S as the support set of a product
family algebra, and we consider U and V are subsets of S. We also use view and
family-view interchangeably.

Lemma 1. If 0 ∈ U , then U cannot be a family-view that contributes with V to
the construction of a direct product.

Proof. Let us assume W = UV form a direct product. It means that every
element w ∈ W has a unique expression w = u · v for u ∈ U and v ∈ V . This
statement is false as w = 0 · v = 0 · v′ = 0, for any other v′ ∈ V . ��
The element 0 of S is a pseudo family used to capture the notion of impossible
family. Lemma 1 states that 0 cannot be a part of any family-view. We recall
that the mandatory combination of two incompatible features leads to 0. Any
view of a product family needs to be free from impossible families, which requires
that all the involved features are compatible with each other and do not present
any feature-interactions that might lead to undesirable system behaviour.

The product of two subsets of S cannot be a direct product if one of them
contains 0. Conversely, a set that contains 0 cannot be written as the direct
product of two subsets of S. Hence, S cannot be the direct product of two sets
due to its inclusion of 0, while S − {0} can be the direct product of two family-
views.

Definition 2. Let U and V be family-views of W . We say that U is a proper
view, if it does not contain 0. Also, we say that the family-views are minimal, if
each of U and V are formed by co-prime elements.

Containing 0 in a set of product families indicates that one of the elements
(which is 0) is an impossible family. The axioms of product families indicates
that the product of 0 and any product family gives 0. So, having 0 in a family-
view makes it not suitable for mandatory composition. The elements of U are
co-prime iff (∀ a, b | a, b ∈ U · ¬(a | b)) ⇐⇒ (∀ a, b | a, b ∈ U · ¬(∃ c | c ∈
S · a = b · c)) =⇒ (∀ a, b | a, b ∈ U · ¬(a � b)). If a family-view contains
two elements that are not co-prime (i.e., one can divide the other), then the two
elements express two related families and therefore we need to keep only one of
them in the view. If we seek the minimality, we should keep only one of them;
for example the one that is the refinement of the other.

A Framework for Multi-view Reconciliation 77

Theorem 1. Let U and V be two subsets of S that form two orthogonal, proper,
and minimal family-views of W , then W is a direct product.

Proof. Let U, V,W be subsets S, such that W = UV . The elements of U are
co-prime iff (∀ a, b | a, b ∈ U · ¬(a | b)) ⇐⇒ (∀ a, b | a, b ∈ U · ¬(∃ c | c ∈
S · a = b · c)) =⇒ (∀ a, b | a, b ∈ U · ¬(a � b)).

(=⇒) 0 �∈ U ∧ 0 �∈ V and we have U ∩ V = {1}. Then, according to Lemma 1,
every element w ∈ W can possibly be written as a unique expression w = u·v
where u ∈ U and v ∈ V . We also have W = UV (it means the w = u · v
but not with unique expressions). If w = 1 then it has a unique expression
w = 1 · 1 as 1 is prime (can be divided only by itself).
Let us assume that u · v is not a unique expression for w. This means that
there exists u′ ∈ U − {1} ∧ v′ ∈ V − {1} such that u �= u′ ∧ v �= v′ ∧ w =
u′ · v′ = u · v. Hence, there exists a u′′ ∈ U − {1} such that v = u′′ · v′.
Therefore, the elements v and v′ are not co-prime (an element can divide
another), which is false due of our co-prime assumption. Similar argument
can be made for the case where we u = u′′ ·u′ for u′′ ∈ V −{1}. Then u·v is a
unique expression for w. Then the product W

def= UV is a direct product.
(⇐=) Suppose that U is not proper. It means that 0 ∈ U . Hence there should be

an element w ∈ W such that w = 0·v = 0, which can be written with another
expression w = 0·v′ for any v′ ∈ V . Hence, we have a product of U and V but
not a direct one as 0 does not have a unique expression. Also, suppose that U
and V are not orthogonal. It means that (∃ c | c ∈ U∩V ∧ c �= 1 · w = c·c)
or U ∩ V = ∅. In the first case, if there exist an element cu ∈ U and cv ∈ V
such that c = cu · cv and we have t = cu · c ∈ V , then w = cu · t. Hence, there
is a w that has two expressions. Then the product is not direct. ��
Theorem 1 requires that the views U and V share no more than 1 and

should not include 0. Also it requires that every element of U (respectively,
V) is co-prime to the other elements of U (respectively, V). For example, if
U

def= {a · b + a · c, a}, then its elements are not co-prime as the element a can
divide the element (a · b + a · c). In this case, one of the elements of U refines
the other. Every information you get about the family a you can have it in the
family (a · b + a · c). If one is seeking minimality should keep one of them only.

We say that a family f satisfies a constraint (a
q→ b), and we write ((a

q→
b) � f), iff (∀ p | p ≤ f ∧ q � p · a

p→ b).

Definition 3 (Multi-view reconciliation). Let U, V,W be subsets S, such
that U and V are two family-views of W . Let C be a set of constraints on
the views U and V . (Multi-) view reconciliation is the construction of the set
U CV

def= {w | w ∈ U V ∧ c � w for every c ∈ C}. We call U CV the concili-
ated view obtained from the reconciliation of U and V with respect to the set of
constraints C.

78 Y. Chen et al.

View reconciliation is noting but the construction of a product (does not need
to be direct) leading to elements that satisfy a set of constraints.

Lemma 2. Let U and V be two subsets of S that form two orthogonal, proper,
and minimal family-views of W . Given a set of constraints C. Then U CV is a
direct product of U and V .

Proof. According to Theorem 1, U and V as characterised in the lemma give
a direct product. The remaining issue is whether eliminating element of W def=
UV that do not satisfy any of the constraints alter or not the property of direct
product. The answer is no as all the remaining elements of W still can be written
in a unique way as the product of an element from U and another from V . ��
Lemma 3. For U and V family-views and for C and D sets of constraints, we
have:

1. (U CV)DT = (U (C∪D)V)(C∪D)T

2. U CV = V CU
3. U C(V DT) = ((U CV)DT)

Proof.

1. The proof uses the definition of View reconciliation (applied twice), and basic
set theory laws.

2. Obvious due to the commutativity of operation · on product families.
3. Using Lemma 3(1) and the commutativity of ∪, we have UC(V DT) =

U(C∪D)(V (C∪D)T) = ((UCV)DT).

Lemma 3(1) states that progressive involvement of constraints leads to the
same results as using all the constraints all through the view reconciliation
process. This property is practically very important as we discover the con-
straints by considering the relationship between views two by two. With this
result, combining views by taking the constraints that relate them two by two is
the same as putting all the constraints together and then use them to integrate
all the views.

Lemma 3(2–3) indicate that view reconciliation is commutative and associa-
tive. It means that the order in which we integrate the views by reconciling them
with the constraints does not matter at all. This is very important property from
a practical perspective. Any rigidity in the order of reconciling views would lead
to a lot of practical complications, which we do not have due to the above results.

4 Personalising Medical Devices as a Multi-view
Reconciliation Construction

Medical devices are usually quite complex systems. They involve hundreds of
features that are related together. Some of the features inhibit the behaviour

A Framework for Multi-view Reconciliation 79

or others. Also, these features are related to different concerns. For instance,
some are from hardware concern while other are from software perspective. The
appropriate medical device for a patient would require also involving the patient
perspective or view that gives her features as a human patient. Also, one can
think about the medical view that brings new features related to the patient
pathology. So, each of this perspective gives a family-view as per Definition 1.
However, in the case when we are considering only one medical device, the views
are singleton sets.

Personalizing
(View

Reconciliation)

Family-
View 1

Family-
View 2

… Family-
View n

Patient Family-
view

Constrains linking
the views

Conciliated View (Contains the
candidate devices compatible with
the considered patient)

Fig. 1. Combining family-view through view reconciliation

Definition 3 indicates that, when we perform view reconciliation, we elimi-
nate the members of the product view that do not satisfy the constraints. So
the process of view reconciliation is a process that leads to shrinking the size
(number of elements) of the families in the conciliated view as some element
are eliminated since they do not satisfy the constraints. After integrating all the
views, as illustrated by Fig. 1, the resulting view (or set of product family) con-
tains only the products that satisfy a patient needs as modelled in the patient
view. Therefore, personalizing medical devices is a simple view reconciliation
operation.

With medical devices, the family views are very often singleton sets views
that are proper. By adding the element 1 to these views, we obtains size 2 sets
that additionally contain the element 1. Then we have proper and orthogonal
views. Moreover, they are minimal. According to Theorem 1, view reconciliation
is direct product operation. Therefore, we can project out the specific view from
the conciliated view. In the following, we use the modelling of a pacemaker for
a specific patient to illustrate the personalization process as a view reconcilia-
tion one.

A human heart has four chambers: left and right atrium and left and right
ventricles. The primary function of the heart is to maintain the blood circulation
of the body. Muscle contractions, and in particular the contraction of the atria
and ventricles which are triggered by electrical signals, drive rhythmic and pump-
like function of the heart [16]. During each heartbeat, an electrical signal travels

80 Y. Chen et al.

through the heart along a specialized pathway called the conduction system,
which consists of cells that are adept at carrying the electrical impulse. There-
fore, without electrical signal goes through the conduction system is necessary
for the heart to beat. Unfortunately, many factors such as disease, medication,
or congenital heart defects can make the conduction system abnormal. It can
suspend the heart, cause heart beat too slowly, or beat erratically. In these situ-
ations, the body may not receive enough blood, which causes several symptoms
such as low blood pressure, weakness, and fatigue. To avoid these symptoms, a
pacemaker can be used to regulate the heartbeat.

When there is a problem in getting the heart to beat naturally, doctor adopt
pacemakers, which are embedded medical devices that monitor and regulate
the heart to keep beating at a normal rate by assisting the natural conduction
system. Pacemakers achieve this by monitoring the heart’s electrical activity
and intervening when the conduction system falters and delivers the electrical
stimulation over leads with electrodes. The stimulation is called paces, and the
monitoring of the heart’s electrical stimuli by the pacemaker is called senses.

A pacemaker may have many modes, distinguished by which chambers of the
heart are sensed and paced, how sensed events will affect pacing, and whether the
pacing rate is adapted to the patient state. Table 1 shows the operating mode.
Pacemaker system consists of three major components: Pulse Generator (PG),
Device Controller-Monitor (DCM) and associated software, and Leads system.

Table 1. NBG-code of bradycardia operating modes

I II III IV (optional)

Category Chambers paced Chambers sensed Response to sensing Rate modulation

Letters O-None O-None O-None R-Rate

A-Atrium A-Atrium T-Triggered Modulation

V-Ventricle V-Ventricle I-Inhibited

D-Dual D-Dual D-Tracked

4.1 Pacemaker Views and Their Constraints

It is hard to describe a medical device system clearly by a single view. The
example we are handling is a simplified version of that given by the system
specification developed by Boston Scientific [17]. We start by presenting the
views of the family of pacemakers. A state-of-the-art pacemaker is equivalent to
a micro-computer.

A Framework for Multi-view Reconciliation 81

Hardware View. The hardware view is built up from the following basic com-
ponents (features):

Controller (ctrl)
Lead (ld)
Double leads (d lds)
Pulse generator (pls gnrt)
Storage (strg)
Accelerometer (acclr)
Defibrillator (dfb)

Leads system can be changed according to different requirement. Single cham-
ber pacemakers need a lead, double chamber pacemaker need two leads:

leads system = ld · (1 + ld) = ld + ld · ld

More advanced pacemakers can be extended from the basic pacemaker mod-
els. For example, a rate-responsive pacemaker consists of an accelerometer (acclr)
and a pacemaker may have a storage (strg).

pulse generator device = opt[strg] · pls gnrt, where opt[strg] is the abbrevi-
ation for (1 + strg)

basic pacemaker = cntrl · pulse generator device · leads system
rate responsive pacemaker = basic pacemaker · acclr

When integrating a defibrillator with the basic pacemaker, we can get a defib-
rillative pacemaker:

defibrillative pacemaker = basic pacemaker · defibrillator
The whole hardware family of pacemaker:

hardware family = basic pacemaker · opt[accelerometer, defibrillator]

Then the hardware view is formed by the set {hardware family}. If we want
the view to have the possibility to be orthogonal to the other views, we add the
family 1 to it making it hardware view = {1, hardware family}. This view is
therefore proper (as it does not contain 0) and minimal (all its members are
co-prime).

Software View. From a software perspective, there are many pacing modes.
We just consider three frequently used modes. We conceptually merge the other
functions that we are omitting in a feature called “other auxiliary functions”.

Set parameter function (set prmt fnct)
Default safe (dflt sf)
Operation abnormalities buzzer warning (op abn bzz)
Operation abnormalities color warning (op abn clr)
Atrium-atrium-inhibited mode (aai)
Ventricle-ventricle-inhibited mode (vvi)
Dual-dual-tracked mode (ddd)

82 Y. Chen et al.

Rate modulation (rate mod)
Download data function (dwnl)
Other auxiliary functions (other fnc)

The advanced combinations:

pacing mode = (aai + vvi + ddd) · (1 + rate mod)
opration abnormalities warning = op abn bzz + op abn clr

In particular, (1+rate mod) is corresponding with the fourth letter in NBG-
code as shown in Table 1. If we select feature rate mod, it means that there is
the function of rate modulation in pacemaker. Finally, the whole family of the
pacemaker’s software is:

software family
def= opration abnormalities warning · pacing mode·

set prmt fnct · default safe · opt[dwnl, other fnc]
The software view is the set {software family}. Similar to the preview view,

if we want the view to have the possibility to be orthogonal to the others views,
we define the software view as software view

def= {1, software family}.

Patient View. This view describes the condition of the considered patient,
and features of her physical condition that need a particular pacing mode. The
“Heavy labor” feature, which we denote by hv lbr, indicates whether a patient
has to do a lot of physical activity in daily life or not. Also, we can have the
following patient conditions:

– For patients with normal AV and ventricular conduction, AAI pacing mode
is a feature that is recommended. Let us label this condition (i.e., having
normal AV and ventricular conduction) cnd nd aai.

– In cases where frequent pacing is not expected or where the patient has signif-
icant comorbidities that are likely to influence survival and clinical outcomes,
Single-chamber VVI pacing is recommended. We refer to this condition as
cnd nd vvi.

– For patients with SND and intact AV conduction, doctors usually recom-
mend Dual-chamber pacing (DDD) or single-chamber atrial pacing (AAI).
We identify this condition with cnd nd ddd.

Assume these are all of information that we need to know about patients,
and the whole patient family is patient family

def= (cnd nd aai+ cnd nd vvi+
cnd nd vvi) · (1 + hv lbr) and the patient view is the set

patient view
def= {1, patient family}.

Multi-view Reconciliation and Results. We have three views including
a view that gives us the characteristics of the patient. The three views, which
each obtain the family 1, are minimal, proper, and orthogonal. Their product is a
direct product. It implies that once we integrated the views, we can get back each

A Framework for Multi-view Reconciliation 83

of the them using projections (we did not elaborate on this mathematical aspect
in the Sect. 3, but it is a well established fact on direct products). We showed
in Lemma 2 that applying constraints to eliminate unfit products preserve the
direct product property. We also showed in Lemma 3 that the order in which
we put together the views does not matter. Also, Lemma 3(1) indicates that we
can apply the constraints all together or a subset of them at each combination
of the views.

View reconciliation require a set of constraints. Without constraints, the
pacemaker products in the views count 768 possible products. However, there are
many unfeasible products. For example, if a product has a storage to store data,
it is unreasonable that the product doesn’t have the download date function. In
addition, if a product includes an accelerometer, it should be able to modulate
the pacing rate.

These constraints are on the pacemaker products elements of the product P
of all the considered views that is defined as follows:

P def= hardware view software view patient view.

In the following, the notation a
F−→ b, where F is a set of families and a and

b product families denotes the set of constraints a
g−→ b for every g ∈ F . Let us

consider the following constraints:

c1 : strg
P−→ dwnld c2 : acclr

P−→ rate mod

If we use these constraints as our set of Constraints Const = {c1, c2}, then
(hardware view Constsoftware view) Constpatient view leads to 432 products
involving features from the three views from 768 possible products without con-
straints. It is a size reduction of 43.8%. Adding more detailed constraints, prod-
ucts will be fewer but more suitable for the patient.

Let us assume that a patient with a heart disease engages in heavy labor
in daily life, and she needs to use a pacemaker with DDD mode. We should
therefore add the following constraints:

c3 : cnd nd ddd
P−→ ddd c4 : hv lbr

P−→ acclr

The set of constraints is now Const = {c1, c2, c3, c4} and the view reconciliation
(hardware view Constsoftware view) Constpatient view leads to only 48 prod-
ucts involving features from the three views. It is a size reduction of 93.8%. These
48 products are personalized for the patient. The Physician can select one of the
48 products to implant into the patient. For any of these products, we can obtain
by simple projections the software (or hardware) features that they encompass. If
software developers want to know the requirements for software, they can project(
(patient hardware Constpatient software) Constpatient view

)
on the software

dimension to get all the software products involved. In our case study, we obtain 8
software products. The conciliated software products are shown in Table 2. These
products must have basic features likeDefault safe, Set parameter function. Due to

84 Y. Chen et al.

Table 2. The reconciled software products

Pacemaker
product
number

Product features

1 Default safe, download data function, dual-dual-tracked
mode, operation abnormalities buzzer warning, other
auxiliary function, rate modulation, set parameter function

2 Default safe, download data function, dual-dual-tracked
mode, operation abnormalities buzzer warning, rate
modulation, set parameter function

3 Default safe, download data function, dual-dual-tracked
mode, operation abnormalities color warning, other
auxiliary function, rate modulation, set parameter function

4 Default safe, download data function, dual-dual-tracked
mode, operation abnormalities color warning, rate
modulation, set parameter function

5 Default safe, dual-dual-tracked mode, operation
abnormalities buzzer warning, other auxiliary function, rate
modulation, set parameter function

6 Default safe, dual-dual-tracked mode, operation
abnormalities buzzer warning, rate modulation, set
parameter function

7 Default safe, dual-dual-tracked mode, operation
abnormalities color warning, other auxiliary function, rate
modulation, set parameter function

8 Default safe, dual-dual-tracked mode, operation
abnormalities color warning, rate modulation, set parameter
function

the patient’s condition, each product has feature Dual-dual-tracked mode and fea-
ture Rate modulation. Other features such as the two kinds of operation abnor-
malities warning are optional. The 8 software products can match all of the hard-
ware products to generate real and feasible products for the patient. For example,
besides some basic or optional functions, the first product in the Table 1 includes
Download data function to match the hardware Storage, Dual-dual-tracked mode
and Rate modulation to satisfy the patient’s condition.

5 Related Work

Although there is an abundant literature on software product family or
software product line, only a few directly discuss multi-view reconciliation

A Framework for Multi-view Reconciliation 85

problem in software product family development. There are some literature
about the reconciliation of non-functional requirements such as security and per-
formance [18]. Also, there are approaches to resolving architectural mismatched
resulting from integrating commercial off-the-shelf (COTS) components [19].
When merging views of database there is a similar problem called view rec-
onciliation problem [20]. The above case is considering a single software system
and not a product family at the initial phase of the software development.

Jose Proenca et al. [21] studied reconciliation of feature models via pullbacks.
In their study, a view can be a feature view, a product view or a product line
view. When reconciling two elements, they considered the compatibility of the
two elements. If two features are compatible, one feature should abstract the
other one. For example, “Internet” abstract “3g” or “wifi”. If reconciliation of two
products exists, every feature in one product should be compatible with a feature
in the other product. Reconciliation of two product lines exists if every product
in a line is compatible with one in the other line. Programmers in one team
need not see the complete variability of the product line from the perspective
of other teams. So they just need to refer to the abstraction of other teams.
The reconciliation is the process that replaces the abstract features with specific
features. For example, a product has feature “APPs”, and the other product
has feature “email”. When reconciling the two product the reconciled product
includes feature “email” instead of “APPs”. The core issue of the method is to
find the refined and abstract relations between different features. Our approach
constructs view models from several perspectives of different domains or the
same domain, and uses constraints to reconcile multiple views.

Yi Li et al. [22] list 6 kinds of merging of feature models, and a conceptual
reconciliation framework of feature model was proposed and compared with the
existing 6 methods. In their research, the merging of feature model is combining
two feature models into one model. In the merging, they focused on solving
the inconsistency of structural layer, equality of root feature, and constraint
relations. The third focus is the problem we pay attention to, but the structural
layer and the root feature is not. In our approach, we first construct several views
using PFA, these view has structural layer at this moment while the generated
products are shown as sets of features without considering the layer. In addition,
they defined the refinement relation and a root feature. If two models can be
merged, both of models should have the same root feature. In our approach,
we may construct views from different domains. As shown in Sect. 4, software
view and hardware view have different root feature, but we can reconcile them
flexibly using our approach.

6 Conclusions and Future Work

The paper presents a mathematical setting for multi-view reconciliation. We
precisely define a (family) view and how to reconcile views. (Multi-) view recon-
ciliation is presented as a product construction. Under given conditions, the view
reconciliation can lead to a direct product. We showed that desirable properties

86 Y. Chen et al.

of the considered views such orthogonality, properness, and minimality are need
for a practical approach to view reconciliations. Then, we present personalizing
medical devices as a constraint view reconciliation operation. By including in
the view reconciliation the patient’s view, which is giving the person’s patholog-
ical condition or any of her relevant physical/medical characteristics (features),
leads to identifying the specific medical devices from the considered family that
are more suitable for the patient. Our future work related to this topic include
further development of the mathematical framework. Then we plan to build a
plugin to Jory Tool, which is a tool supporting PFA, to carry all the calcula-
tion needed for view specification, verification, and reconciliation. Then we plan
adopting a model-driven approach to generate the software specification of a
personalized medical device from its PFA model and the Event-B specification
of each of its features. Therefore, our approach will join the research efforts for
model driven software development for medical device software.

References

1. Faris, T.H.: Safe and Sound Software: Creating an Efficient and Effective Quality
System for Software Medical Device Organizations. Asq Quality Press, Milwaukee
(2006)

2. The Council Of The European Communities: Council Directive 93/42/EEC con-
cerning medical devices (1993)

3. Chen, Y., Lawford, M., Wang, H., Wassyng, A.: Insulin pump software certification.
In: Gibbons, J., MacCaull, W. (eds.) FHIES 2013. Lecture Notes in Computer
Science, vol. 8315. Springer, Heidelberg (2013). doi:10.1007/978-3-642-53956-5 7

4. Jones, P., Jetley, R., Abraham, J.: A formal methods-based verification approach
to medical device software analysis. In: Embedded Systems Design (2010)

5. Bosch, J.: The challenges of broadening the scope of software product families.
Commun. ACM 49(12), 41–44 (2006)

6. Long, C.A.: Software Product Lines: Practices and Patterns. Addison-Wesley Long-
man Publishing Co., Inc., Boston (2001)

7. SPLC: Product line hall of fame (2017). http://splc.net/fame.html
8. Mcgregor, J.D., Muthig, D., Yoshimura, K., Jensen, P.: Successful software product

line practices. IEEE Software (2010)
9. Software Engineering Standards Committee of the IEEE Computer Society:

ISO/IEC Standard for Systems and Software Engineering - Recommended Practice
for Architectural Description of Software-Intensive Systems (2007)

10. Höfner, P., Khedri, R., Möller, B.: An algebra of product families. Softw. Syst.
Model. 10(2), 161–182 (2011)

11. Höfner, P., Khedri, R., Möller, B.: Algebraic view reconciliation. In: 6th IEEE
International Conferences on Software Engineering and Formal Methods, Cape
Town, South Africa, pp. 85–94, 10–14 November 2008

12. Zhang, Q., Khedri, R.: On the weaving process of aspect-oriented product family
algebra. J. Logic. Algebraic Methods Program. 85(12), 146–172 (2016)

13. Zhang, Q., Khedri, R., Jaskolka, J.: An aspect-oriented language for feature-
modeling. J. Ambient Intell. Humaniz. Comput. 5, 343–356 (2014)

14. Hebisch, U., Weinert, H.J.: Semirings: Algebraic Theory and Applications in Com-
puter Science. World Scientific, Singapore (1998)

http://dx.doi.org/10.1007/978-3-642-53956-5_7
http://splc.net/fame.html

A Framework for Multi-view Reconciliation 87

15. Brear, M.: Modal kleene algebra and applications. In: Relational Methods in Com-
puter Science, pp. 93–131 (2004)

16. Diciolla, M.: Quantitative verification of real-time properties with application to
medical devices. Ph.D. thesis, University of Oxford (2014)

17. Scientific, B.: PACEMAKER System Specification (2007)
18. Cysneiros, L.M., do Prado Leite, J.C.S.: Nonfunctional requirements: from elicita-

tion to conceptual models. IEEE Trans. Software Eng. 30(5), 328–350 (2004)
19. Avgeriou, P., Guelfi, N.: Resolving architectural mismatches of COTS through

architectural reconciliation. In: Franch, X., Port, D. (eds.) ICCBSS 2005.
LNCS, vol. 3412, pp. 248–257. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-30587-3 34

20. Jacobs, B.E.: Applied Database Logic. Volume I: Fundamental Database Issues.
Prentice-Hall, Inc., Upper Saddle River (1985)

21. Proenca, J., Clarke, D.: Reconciliation of feature models via pullbacks. CS Reports
Report CW601, Department of Computer Science, K.U.Leuven, January 2011

22. Yi, L., Haiyan, Z., Zhang, W., Jin, Z., Mei, H.: Research on the merging of feature
models. Chin. J. Comput. 36(1), 1–9 (2014)

http://dx.doi.org/10.1007/978-3-540-30587-3_34
http://dx.doi.org/10.1007/978-3-540-30587-3_34

Compiling Parameterized X86-TSO Concurrent
Programs to Cubicle-W

Sylvain Conchon1,2, David Declerck1,2(B), and Fatiha Zäıdi1

1 LRI (CNRS & Univ. Paris-Sud), Université Paris-Saclay, 91405 Orsay, France
{sylvain.conchon,fatiha.zaidi}@lri.fr, david.declerck@u-psud.fr

2 Inria, Université Paris-Saclay, 91120 Palaiseau, France

Abstract. We present PMCx86, a compiler from x86 concurrent pro-
grams to Cubicle-W, a model checker for parameterized weak memory
array-based transition systems. Our tool handles x86 concurrent pro-
grams designed to be executed for an arbitrary number of threads and
under the TSO weak memory model. The correctness of our approach
relies on a simulation result to show that the translation preserves x86-
TSO semantics. To show the effectiveness of our translation scheme, we
prove the safety of parameterized critical primitives found in operating
systems like mutexes and synchronization barriers. To our knowledge,
this is the first approach to prove safety of such parameterized x86-TSO
programs.

Keywords: Model checking · MCMT · SMT · Weak memory · x86 ·
TSO

1 Introduction

Optimizations found in modern multiprocessors architectures affect the order in
which memory operations from different threads may take place. For instance,
on Intel x86 processors [21], each hardware thread has a write buffer in which
it temporarily stores values before they reach the main memory. This allows the
processor to execute the next instruction immediately but delays the store.

From an x86 programmer’s point of view, the main drawback of this
new memory model, called x86-TSO [25], is that most concurrent algorithms,
designed under a global time (sequential consistency – SC) assumption [23], are
incorrect on weaker semantics. However, while concurrent programming is known
to be difficult, it is even harder to design correct programs when one has to deal
with memory reordering.

This situation is further complicated by the fact that critical concurrent
primitives found (for instance) in operating systems are usually designed to be

The paper is supported by the French ANR project PARDI (DS0703).

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 88–104, 2017.
https://doi.org/10.1007/978-3-319-68690-5 6

Compiling Parameterized X86-TSO Concurrent Programs 89

executed for an arbitrary number of processes. Mutual exclusion algorithms or
synchronization barriers are typical examples of such parameterized programs.

As a consequence, the design and verification of parameterized x86-TSO pro-
grams is a very hard challenge due to the state explosion problem caused by the
combination of both unbouded writing buffers and unbounded number of threads.

Checking safety of programs running under a relaxed memory model has been
shown to be a (non-primitive recursive-)hard problem [9,11] and various verifi-
cation techniques have been applied to handle it [3,10,12,13,17,22,24]. Among
those techniques, model checking of systems under weak memory assumption has
been investigated and several tools have been implemented. The list of state-of-
the-art model checkers for weak memory includes CBMC [7], MEMORAX [4]
and TRENCHER [10].

Model checking has also been applied to parameterized systems for a long
time ago [8,14,18] and automatic tools for the analysis of such systems exist. The
list of state-of-the-art parametric model checkers includes MCMT [19], Undip [6],
PFS [5] and Cubicle [16]. But until now, there is no model checker for reasoning
about both weak memory and parameterized models, except Cubicle which has
been extended recently to a new version, Cubicle-W [1], to verify parameterized
array-based systems with weak memories.

In this paper, we present PMCx86 [2], a compiler from x86 assembly lan-
guage to Cubicle-W. The main originality of PMCx86 is that it can handle x86
concurrent programs designed to be executed for an arbitrary number of threads
and under the TSO weak memory model. Our contributions are as follows:

– A compilation scheme from x86 to array-based transition systems with weak
memory assumptions

– A simulation result to show that our translation preserves the TSO semantics
– An end-to-end tool that allows the verification of real critical x86 primitives

found in OS like mutex or synchronization barriers.

To our knowledge, this is the first framework to model check parameterized
x86-TSO concurrent programs.

In the remainder, we present in Sect. 2 the syntax and semantics of Cubicle-W.
In Sect. 3,wepresent the x86-TSO fragment supportedbyour framework. Section 4
is about the translation to Cubicle-W. Finally Sect. 5 exhibits the experiments and
the obtained results and we conclude and give some lines for future work in Sect. 6.

2 Overview of Cubicle-W
In this section, we present the syntax and semantics of Cubicle-W’s input lan-
guage. This language is the target of our compiler PMCx86.

To illustrate our presentation, we use the crafted example shown in Fig. 1. A
Cubicle-W input file starts with enumerated type declarations (type keyword),
followed by variables declarations. Thread-local (i.e. non shared) variables are
declared as proc-indexed arrays. Those variables behave as sequential consistent

90 S. Conchon et al.

type loc = L1 | L2 | L3 | END

array PC[proc] : loc

weak var X : int

weak array A[proc] : int

init (p) {
PC[p] = L1 && X = 0 && A[p] = 0 }

unsafe (p q) {
PC[p] = End && PC[q] = End }

transition t1 (p)

requires { PC[p] = L1 }
{ p @ A[p] := 1; PC[p] := L2 }

transition t2 (p q)

requires { PC[p] = L2 &&

fence(p) && p @ A[q] <> 0 }
{ PC[p] := L3 }

transition t3 (p)

requires { PC[p] = L3 }
{ p @ X := p @ X + 1; PC[p] := End }

Fig. 1. A crafted Cubicle-W example illustrating its syntactic features

(SC) memories. The weak var keyword is used to declare shared variables sub-
ject to weak memory effects. Similarly, shared weak arrays indexed by process
identifiers are defined using weak array declarations. The initial states of the
system are described by a (implicitly universally quantified) logical formula intro-
duced by the init keyword. Similarly, the dangerous states are described by
logical formulas introduced by the unsafe keyword and implicitly existentially
quantified by process variables. Transitions are introduced by the transition
keyword and are parameterized by existentially quantified process variables.
Implicitly, the first parameter of each transition indicates which process performs
the action. Each transition is composed of two parts: the guard and the actions.
The guard is a logical formula that determines when the transition is enabled.
The actions part is a set of updates on SC and weak variable. The guard eval-
uation and actions are performed atomically, i.e. no other transition can occur
in between. In both parts, accesses to weak variables are performed using the
p @ X notation, indicating that process p accesses the variable X. Cubicle-W
imposes one restriction: All weak variable accesses in the same transition (guard
and action) must be performed by the same process.

Cubicle-W simulates a write buffer semantics à la TSO for weak variables (or
weak arrays). This means that each process has an associated FIFO-like write
buffer, and when a transition performs writes to weak variables, all these writes
are enqueued as a single update in the buffer. In a non-deterministic manner, an
update may be dequeued from the buffer and committed to the weak variables.
A process always knows the most recent value it wrote to a weak variables: when
evaluating a read, a process first checks in its own buffer for the most recent write
to the weak variable and returns the associated value, if any, otherwise it just
returns the value from the variable itself. A transition guard may use a fence(p)
predicate (as in transition t2 for instance) to indicate that the transition may
only be taken when process p’s buffer is empty. When a transition contains both
a read and a write (transition t3), it is given a lock semantics: it may be taken
only when the buffer of the process performing the actions is empty (a fence(p)

Compiling Parameterized X86-TSO Concurrent Programs 91

predicate is syntactically added to the transition guard), and the writes to weak
variables bypass the buffer.

Formal semantics of Cubicle-W
To make the semantics more formal, we give the pseudo-code of an interpreter
for Cubicle-W’s input programs in Algorithm 1. This interpreter makes use of
data structures for buffers and some functions that we briefly describe here.

Buffers. A buffer (type buffer) is a queue containing updates. An update is
made up of several writes, which associate a variable to a value. The operations
on these buffers are:

– is empty: determines if a buffer is empty
– enqueue: add an update at the head of the buffer
– dequeue: get and remove the update at the tail of the buffer
– peek: inspect every update from head to tail in the buffer until a given variable

is found; if it is, return the associated value, otherwise, return None

Auxiliary functions. The upreg(t) function returns the set of actions on local
variables from a transition t. Similarly, the upmem(t) function returns the set
of actions on weak variables. The req(t) function returns the whole transition
guard. The locked(t) function determines if the transition has lock semantics.
More importantly, the eval(S, e) function evaluates the expression e in state S.
It is trivial for most cases, except for reads and fences.

function eval(S, e) : begin
match e with

• i @ X →
match peek(B[i], X) with

• Some v → return v
• None → return W[X]

end

• fence(i) → is empty(B[i])
• ... → . . .

end

end

The interpreter takes the form of an infinite loop that randomly chooses
between executing a transition t ready to be triggered for some process argu-
ments σ (i.e. eval(S, req(t)σ = true) or flushing a non-empty buffer B[i] of
some process i. The execution of a transition first directly assigns local variables
R[i] in the (SC) memory. Then, it constructs an update value U with all pairs
of (variable, value) corresponding to the weak assignments of t. If the transi-
tion has the locked semantics, this update value is enqueued in the buffer of
the process which performs the action. Otherwise, its assignments are flushed in
memory.

92 S. Conchon et al.

Algorithm 1: A Cubicle-W interpreter
Input: a number of processes n and a set of transitions τ
State: S = { R : (register �→ value) map

W : (variable �→ value) map

B : (proc �→ buffer) map }
procedure run(n, τ) : begin

while true do
non-deterministically choose

• a transition t and a substitution σ s.t eval(S, req(t)σ) = true →
foreach R[i] := e in upreg(t) do R[R[iσ] ← eval(S, eσ)];
U := ∅;
foreach X := e in upmem(t) do

U := (X, eval(S, eσ)) ++ U
end foreach
if locked(t) = false then

enqueue(B[i], U)
else

foreach (X, v) in U do W[X ← v]
end if

• a process i s.t is empty(B[i]) = false →
let U = dequeue(B[i]) in
foreach (X, v) in U do W[X ← v]

or exit if no choice possible

end while

end

3 Supported X86-TSO Fragment

We present in this section the subset of 32-bit x86 assembly instructions sup-
ported by our tool. In order to guide (and prove correct) our translation to
Cubicle-W, we also give an operational semantics of this fragment.

Input programs are written in a NASM-like syntax. The six general purpose
registers eax, ebx, ecx, edx, esi and edi are available. Instruction operands may
be registers, immediate data, and direct memory references of the form [var].
Memory accesses occur under the TSO weak memory semantics. The supported
instructions are:

– Load/store: mov
– Arithmetic: add, sub, inc, dec
– Exchange: xadd, xchg
– Compare: cmp
– Jump: jmp, jCC
– Memory ordering: mfence, lock prefix (on add, sub, inc, dec, xadd, xchg)

In order to write (and translate) parametric programs, we allow data declarations
to be decorated with an annotation ! as counter which specifies a counter on
the number of threads. These counters are still treated as regular integers on

Compiling Parameterized X86-TSO Concurrent Programs 93

x86, but may only be manipulated by the inc, dec, cmp and mov instructions.
Moreover, they will be translated differently in Cubicle-W.

For the sake of simplicity, we only introduce in this section the most relevant
aspects of our fragment, as shown in the grammar in Fig. 2. The interested reader
may refer to [15] for a detailed grammar of the supported fragment.

integer, n integer
register, r register
variable, x variable
label, l instruction label (index in instruction array)
thread id, tid thread identifier
instruction, i ::=

| mov r, n load a constant into a register
| mov r, x load a variable into a register
| mov x, n write a constant into a variable
| mov x, r write the contents of a register into a variable
| add x, r add the contents of a register to a variable
| inc x increment a variable by 1
| cmp r, r’ compare the contents of two registers
| cmp x, n compare a variable to a constant
| je l branch if equal (ZF=1)
| jne l branch if different (ZF=0)
| lock i lock prefix to perform atomic RMW instructions
| mfence memory fence

action, a ::=
| i the execution of an instruction
| ε flush of a buffer

thread, t ::=
| (i array) array of instructions

program, p ::=
| (tid �→ t) map a map of threads identifiers to thread instructions

Fig. 2. Abstract syntax tree of x86 program

In our abstract syntax, a thread is described by an array of instructions and
a program is just a map from thread identifiers to threads. A thread executes an
action which is either an instrucion or a flush of its buffer.

Representation of x86-TSO states

In order to give the semantics of this fragment, we need to define an x86-TSO
memory state S. Such state is composed of two parts: the set of thread’s local
states LS and the shared memory M . Each thread local state ls is composed of
its instruction pointer eip, its zero flag zf, its set of registers Q, and its writing
buffer B.

94 S. Conchon et al.

S = (LS × M) An x86-TSO machine state
M = (var �→ int) map A memory: dictionary from variables to integers
LS = (tid �→ ls) map The thread local states: dictionary from

thread identifiers to their states
ls = (eip × zf × Q × B) A thread local state
Q = (reg �→ int) map A thread’s registers: dictionary from

register names do integers
B = (var × int) queue A thread’s TSO write buffer
eip = int A thread’s instruction pointer
zf = int A thread’s zero flag
var The set of all variables
tid The set of all thread identifiers
reg The set of all register names

The eip register represents a thread’s instruction pointer, i.e. the threads’s cur-
rent program point. For simplicity, we choose to represent it using an integer
type. The zf is a boolean register, commonly used to store the result of the
compare instruction, and more generally of any arithmetic instruction. It must
be set to true if the result of the last instruction was 0, and false otherwise. We
represent it using an integer, with the usual convention that 0 = false and 1 =
true. Writing buffers are represented as queues containing pairs of variables and
integers. Initially, the x86-TSO machine is in a state Sinit such that all thread’s
eip are set to 0, all buffers are empty, and all registers and the shared memory
are in an undetermined state.

Notations for manipulating TSO buffers

When describing the instruction semantics, we use the following notations to
manipulate the buffers:

x ∈ B True if at least one pair in B concerns variable x

x /∈ B True if no pair in B concerns variable x

B = ∅ True if B is empty
B1 ++ B2 Concatenation of B1 and B2

(x, n) ++ B Prepend (x, n) to the head of B

B ++ (x, n) Append (x, n) to the tail of B

Semantics of programs

The semantics of a program is defined by the smallest relation tid:a−−−→ on x86-TSO
machine states that satisfies the rule Scheduling below.

We define a scheduling function πp(S) which given a program p and a state
S chooses the next action to be executed by a thread.

πp(LS,M) = tid : a LS(tid) = ls (ls,M) a−→ (ls′,M ′)

(LS,M) tid:a−−−→ (LS[t �→ ls′],M ′)
Scheduling

Compiling Parameterized X86-TSO Concurrent Programs 95

Semantics of instructions

The semantics of instructions is given by the smallest relation i−→ that satisfies
the rule below.

There are as many rules as required to cover the different combination of
operand kinds (constant, register, memory). Here, for the sake of readability, we
only present some rules that are TSO specific and explain the main principles
of that relaxed memory semantics.

The rule MovVarCst assigns a shared variable x with a constant n. As assign-
ments are delayed in TSO, a new pairs (x, n) is enqueued in buffer B.

a = mov x, n

((eip, zf, Q, B), M)
a−→ ((eip + 1, zf, Q, (x, n) ++ B), M)

MovVarCst

The next two rules illustrate the TSO semantics of an instruction mov r, x that
assigns to a register r the contents of a shared memory x. When the thread’s
buffer does not have a write on x, MovRegVarM applies and the value of x is
directly read in memory.

a = mov r, x x /∈ B M(x) = n

((eip, zf, Q, B), M)
a−→ ((eip + 1, zf, Q[r �→ n], B), M)

MovRegVarM

On the contrary, when the thread’s buffer contains a pair (x, n), rule MovReg-

VarB looks for the value of the most recent assignment to x in B.

a = mov r, x B = B1 ++ (x, n) ++ B2 x /∈ B1

((eip, zf, Q, B), M)
a−→ ((eip + 1, zf, Q[r �→ n], B), M)

MovRegVarB

The semantics of non-atomic read-modify-write instructions like add is still
given by a single rule. Indeed, since the write is buffered, it has the same effect
as splitting the read and the write in two rules.

a = add x, r x /∈ B M(x) + Q(r) = n

((eip, zf, Q, B), M)
a−→ ((eip + 1, iszero(n), Q, (x, n) ++ B), M)

AddVarMReg

a = add x, r B = B1 ++ (x, m) ++ B2 x /∈ B1 m + Q(r) = n

((eip, zf, Q, B), M)
a−→ ((eip + 1, iszero(n), Q, (x, n) ++ B), M)

AddVarBReg

When the lock prefix is used on a read-modify-write instruction, we simply
require the thread’s buffer to be empty, and directly write to memory.

a = lock add x, r x /∈ B M(x) + Q(r) = n

((eip, zf, Q, B), M)
a−→ ((eip + 1, iszero(n), Q, B), M [x �→ n])

LockAddVarReg

96 S. Conchon et al.

Last, the rule MFence describes the effect of a memory fence which enforces a
thread buffer to be flushed.

a = mfence B = ∅

((eip, zf, Q, B), M)
a−→ ((eip + 1, zf, Q, B), M)

MFence

Buffer / Memory synchronization

Buffers can flush their oldest writes to memory in an asynchronous manner. We
express this using a rule that only involves the state of buffers, without involving
the eip registers.

a = ε B = B1 ++ (x, n)

((eip, zf,Q,B),M) a−→ ((eip, zf,Q,B1),M [x �→ n])
WriteMem

4 Translation to Cubicle-W
We represent x86-TSO states in Cubicle-W by a set of variables corresponding to
the shared variables and local states of each thread. Local registers are encoded
as elements of an array indexed by process identifiers. The type of the array
depends on the kind of values carried by the registers.

Instruction pointers. They are represented by a PC array. Program points
are given an enumerated type loc, whose elements are of the form L0, ... L1.
The number of these elements can be determined statically at compile time: it
depends on the length of the longest instruction sequence.

Zero flags. They are represented by a ZF array of type int. We use the conven-
tion that n = 0 ≡ true and n �= 0 ≡ false. Note that this is the opposite of x86:
this allows to compute this flag more easily, as we simply set it to the result of
the last arithmetic operation. This allows to reduce the number of transitions,
as we do not have to make any further operation to compute it.

Shared variables. Each shared variable X gives rise to an weak X : int dec-
laration. Counters (see below) are mapped to weak arrays of type bool.

Translation of x86-TSO instructions

For the sake of readability, we only give the translation of the subset of instruc-
tions given in the previous section.

We define a compilation function C that takes as input a thread identifier, an
instruction, and the instruction position in the array (this is equivalent to the
instruction pointer). It returns a set of Cubicle-W transitions that simulates the
instruction.

The first rule TMovVarCst explains how to translate the write of a constant
into a shared variable. It simply amounts to use Cubicle-W’s write instruction on

Compiling Parameterized X86-TSO Concurrent Programs 97

weak variables. This instruction imposes to prefix the operation with the thread
identifier which performs the assignment.

C(t ; mov x, n ; i) = TMovVarCst

transition mov var csti(t)

requires { PC[t] = Li }
{ t @ X := n; PC[t] = Li+1 }

The next rule is the opposite operation: the read of a variable into a register.
To achieve it, we only rely on the read operation on shared variables. Similarly
to write instructions, reads must be prefixed with a thread identifier.

C(t ; mov r, x ; i) = TMovRegVar

transition mov reg vari(t)

requires { PC[t] = Li }
{ R[t] := t @ X; PC[t] = Li+1 }

Adding the contents of a register to a variable is a read-modify-write oper-
ation. As Cubicle-W makes everything inside a transition atomic, we need two
transitions to translate this operation. The first one, TAddVarReg1, reads the
shared variable X, sums it with the local register and stores the result into a tem-
porary register T[t]. The second rule, TAddVarReg2, stores the contents of
this temporary register into the variable X and updates the zero flag accordingly.

C(t ; add x, r ; i) = TAddVarReg1

transition add var reg 1i(t)

requires { PC[t] = Li }
{ T[t] := t @ X + R[t]; PC[t] = Lxi }

TAddVarReg2

transition add var reg 2i(t)

requires { PC[t] = Lxi }
{ t @ X := R[t]; ZF[t] := T[t];

PC[t] = Li+1 }
Translating the atomic counterpart of this operation is very simple, since

Cubicle-W transitions are atomic. We just need a single transition, as given by
rule TLockAddVarReg.

C(t ; add x, r ; i) = TLockAddVarReg

transition lockadd var regi(t)

requires { PC[t] = Li }
{ t @ X := t @ X + R[t];

ZF[t] := t @ X + R[t];

PC[t] = Li+1 }
The translation of a memory fence simply relies on the fence predicate of

Cubicle-W to express that the transition may only be taken if the thread’s
buffer is empty.

C(t ; mfence ; i) = TMFence

transition mfencei(t)

requires { PC[t] = Li & & fence(t) }
{ PC[t] = Li+1 }

98 S. Conchon et al.

Translation of operations on counters

Operations on counters are restricted and translated differently. When X is a
variable declared with a ! as counter annotation, our tool only supports the
following operations:

mov X, 0 reset
inc X incrementation
cmp X, N comparison to N
cmp X, 0

where N is an abstract value represented the (parameterized) number of threads.
At first sight, it would be tempting to translate counters directly as variables

of type int. However, this solution makes it impossible to compare a counter
with N as Cubicle does not explicitly provide this constant. To solve this issue,
we represent counters by weak arrays of Booleans indexed by processes. Each
operation is then encoded in a unary numeral system. In the rest of this section,
we only describe the first three ones.

Reset. To reset a counter, we just need to apply the transition given by the rule
below which writes the value False in all the array cells.

C(t ; mov x, n ; i) = TMovCnt0

transition mov cnt0i(t)

requires { PC[t] = Li }
{ t @ X[k] := case | : False;

PC[t] = Li+1 }
Incrementation. As for the incrementation of shared variables, a counter incre-
mentation has to be performed in two steps. This first one for reading the con-
tents of the variable and the second one adding one and assigning the new value.
In our unary numeral system, adding one to a variable amounts to switch an
array cell from False to True. The goal of the first transition is thus to find a
cell equal to False and the second rule performs the assignment to True. The
rules are duplicated as we may either switch the cell belonging to the running
thread or to another thread.

C(t ; inc x ; i) = transition inc cntS 1i(t) TIncCntS1

requires { PC[t] = Li && t @ X[t] = False }
{ PC[t] = Lxi }
transition inc cntS 2i(t) TIncCntS2

requires { PC[t] = Lxi }
{ t @ X[t] := True; ZF[t] := 1;

PC[t] = Li+1 }
transition inc cntO 1i(t o) TIncCntO1

requires { PC[t] = Li && t @ X[o] = False}
{ PC[t] = Lyi; TP[t] = o }
transition inc cntO 2i(t o) TIncCntO2

requires { PC[t] = Lyi & & TP[t] = o}
{ t @ X[o] := True; ZF[t] := 1;

PC[t] = Li+1 }

Compiling Parameterized X86-TSO Concurrent Programs 99

Comparison. We design three transitions for comparing a counter with the
(parametric) number N of threads. To check if a counter is equal to N , we
just check whether all cell of the array are True, using a universally quantified
process variable. If it is the case, then the counter has reached the total number
of threads, and the zero flag is set to 0. To check the opposite, we check if there
exists a cell with the value False. In that case, the counter has not reached
the total number of threads yet, so the zero flag is set to 1. Note that we need
two transitions to achieve this: one to compare the cell owned by the executing
thread, and another to compare any other cell.

C(t ; cmp x, N ; i) = TCmpCntEqN

transition cmp cnt eqNi(t)

requires { PC[t] = Li
&& t @ X[t] = True

&& forall other o.

t @ X[o] = True }
{ ZF[t] = 0; PC[t] = Lxi }

TCmpCntSNeqN

transition cmp cntS NeqNi(t)

requires { PC[t] = Lxi
&& t @ X[t] = False }

{ ZF[t] := 1; PC[t] = Li+1 }

TCmpCntONeqN

transition cmp cntO NeqNi(t o)

requires { PC[t] = Lxi
&& t @ X[o] = False }

{ ZF[t] := 1; PC[t] = Li+1 }
Translation of programs

In order to compile all instructions of a thread, we define a compilation function
Ct that takes as input a thread identifier and an instruction array. This function
returns the set of Cubicle-W transitions corresponding to the translation of every
instruction in the array.

Ct(tid ; t) =
|t|⋃

i=1

C(tid ; t(i) ; i)

Similarly, we define a compilation function Cp that takes as input an x86
program and returns the set of transitions corresponding to the translation of
every instruction in every thread.

Cp(p) =
⋃

tid ∈ dom(p)

Ct(tid ; p(tid))

100 S. Conchon et al.

Correctness

In order to prove the correctness of our approach, we demonstrate a simulation
lemma between x86 programs and weak array-based transition systems obtained
by translation.

Let S = (LS×M) be an x86-TSO machine state. Translating S to a Cubicle-
W state A is straightforward, except for the memory map M and the contents of
each thread buffer. For that, we define a predicate T (S,A) on Cubicle-W states
such that T (S,A) is true if and only if:

– Local thread registers, eip and flags in LS contain the same values as their
array-based representation

– For each local buffer B of a thread tid and for all shared variable X
if (X �∈ B and M(X) = v) or (B = B1 ++ (X, v) ++ B2 and X /∈ B1) then

• if X is a counter, then tid @ X[k] = True is true for v thread identifiers
in A

• otherwise, tid @ X = v is true in A

Lemma 1 (Simulation). For all program p and state S, if S
tid:a−−−→ S′ then

their exists a Cubicle-W state A such that T (S,A) is true and Cp(p) can move
from A to A′ and T (S′, A′) is true as well.

Proof. By a simple inspection of each transition rule of x86 instructions. See [15]
for more details.

Theorem 1. Given a program p, if Cubicle-W returns safe on Cp(p) then p
cannot reach an unsafe state (as described in the section unsafe prop of p).

Proof. By induction on the length of the reduction p
tid:a−−−→

+

⊥ and by case on
each step (using simulation lemma).

5 Experiments

We used our framework to translate and check the correctness of several mutual
exclusion algorithms, as well as a sense reversing barrier algorithm. In this
section, we only describe two of them. The source code and Cubicle-W transla-
tions of all the examples can be found on the tool page [2].

Figure 3 is a spinlock implementation found in the Linux kernel (version
2.6.24.7), and is an example used in [25]. It requires a single shared variable
Lock, initialized to 1, and the use of the lock dec instruction. The lock prefix is
required to make this algorithm correct. To enter the critical section, a thread
t has to atomically decrement the contents of the Lock variable. It then checks
the result of the operation, using a conditional branch instruction: if the result is
not negative, it means that Lock was 1 before the decrement, so t performs the
branch to enter the critical section. If the result is negative, it means that Lock
was 0 or less before the decrement, so another thread is already in the critical

Compiling Parameterized X86-TSO Concurrent Programs 101

begin shared_data

Lock dd 1

end shared_data

begin unsafe_prop

eip[$t1] = cs &&

eip[$t2] = cs

end unsafe_prop

begin init_code

start threads
end init_code

begin thread_code

acquire: lock dec dword [Lock]

jns cs

spin: cmp dword [Lock], 0

jle spin

jmp acquire

cs: ; critical section

exit: mov dword [Lock], 1

jmp acquire

end thread_code

Fig. 3. A Linux spinlock implementation

section: t enters a spinlock, waiting for Lock to be 1 before retrying to enter
the critical section. To release the lock, the thread in critical section simply sets
back Lock to 1.

Our next example shown in Fig. 4 is a Sense Reversing Barrier [20]. It allows
a number of threads to synchronize their execution flow at a specific program
point. It requires a process counter count and a boolean variable sense that
gives the sense of the barrier. It locally uses the esi register to track the current
value of the sense variable. Initially, count is set to N , and sense and esi are
to 0. Threads start by reversing esi. Then, each thread atomically decrements
the count variable. If, as a result of this operation, the count is not 0, then the
thread enters a spinlock that waits for sense to be equal to esi (that is, for the
barrier sense to be changed). If however the count reaches 0, then the thread
resets count to N and copies esi into sense, which in effect reverses the sense of
the barrier. At this point, threads that were waiting at the spinlock are released.

begin shared_data

sense dd 0

count dd N ! as counter

end shared_data

begin unsafe_prop

eip[$t1] = entr &&

eip[$t2] = end

end unsafe_prop

begin init_code

start threads
end init_code

begin thread_code

mov esi, 0 ; esi = local sense

entr: not esi

lock dec dword [count]

jne spin

last: mov dword [count], N

mov dword [sense], esi

jmp end

spin: cmp dword [sense], esi

jne spin

end: nop

end thread_code

Fig. 4. A sense reversing barrier algorithm in x86

102 S. Conchon et al.

The results of our experiments are given in the table below. As a measure of
the problem’s complexity, we give the number of Registers, Weak variable and
Transitions of the corresponding Cubicle-W program. The CE Length column
gives the length of the counter-example, where applicable. It is the smallest
number of transitions that lead to a state that violates the safety property. The
Time column is the total time to prove the safety property (or to exhibit a
counter-example). We considered both correct (S) and incorrect (US) versions
of program. Incorrect versions are obtained by removing the lock prefixes.

Case study Regs Weak vars Trans CE length Time

naive mutex (dlock.) (US) 3 2 11 12 0,38 s

naive mutex (no dlock.) (US) 3 2 14 12 0,38 s

mutex w/ xchg (US) 4 1 8 10 0,07 s

mutex w/ xchg (S) 3 1 7 − 0,08 s

mutex w/ cmpxchg (US) 4 1 10 10 0,12 s

mutex w/ cmpxchg (S) 4 1 8 − 0,47 s

Linux spinlock (US) 4 1 10 6 0,06 s

Linux spinlock (S) 4 1 9 − 0,30 s

sense barrier (sing. ent.) (S) 3 2 15 − 0,27 s

sense barrier (mult. ent.) (S) 3 2 16 − 1min37 s

6 Conclusion and Future Work

We have presented in this paper a compilation scheme from parameterized x86-
TSO programs to weak array-based transitions systems in Cubicle-W. The sub-
set of the 32-bit x86 assembly instructions supported allows us to express critical
concurrent primitives like mutexes and synchronization barriers. Experiments
are promising. To our knowledge, this is the first tool for proving automatically
the safety of parameterized x86-TSO programs.

An immediate line of future work is to enhance the subset of x86 that is
supported according to new experiments that will be conducted. These adding
should also be proved correct regarding the preservation of the TSO semantics.
Another line of work will be to consider others memory models as a given input
to the model checker and to make change in its reachability analysis algorithm
accordingly.

References

1. Cubicle-W. https://www.lri.fr/∼declerck/cubiclew/
2. PMCX86. https://www.lri.fr/∼declerck/pmcx86/

https://www.lri.fr/~declerck/cubiclew/
https://www.lri.fr/~declerck/pmcx86/

Compiling Parameterized X86-TSO Concurrent Programs 103

3. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under TSO. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 204–219. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28756-5 15

4. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Memorax,
a precise and sound tool for automatic fence insertion under TSO. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 530–536. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36742-7 37

5. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model check-
ing without transducers (on efficient verification of parameterized systems). In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71209-1 56

6. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-
state processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73368-3 17

7. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37036-6 28

8. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

9. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: POPL, pp. 7–18 (2010)

10. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792,
pp. 533–553. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37036-6 29

11. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding robustness against total store
ordering. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol.
6756, pp. 428–440. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22012-8 34

12. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70545-1 12

13. Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of sequential
consistency for relaxed memory models. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 11–25. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19835-9 3

14. Clarke, E.M., Grumberg, O., Browne, M.C.: Reasoning about networks with many
identical finite-state processes. In: PODC 1986, NY, USA. ACM, New York (1986)

15. Conchon, S., Declerck, D., Zäıdi, F.: Compiling parameterized X86-TSO concurrent
programs to cubicle-W. https://www.lri.fr/∼declerck/pmcx86.pdf

16. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zäıdi, F.: Cubicle: a parallel SMT-
based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31424-7 55

17. Dan, A., Meshman, Y., Vechev, M., Yahav, E.: Effective abstractions for verifica-
tion under relaxed memory models. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.)
VMCAI 2015. LNCS, vol. 8931, pp. 449–466. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46081-8 25

18. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

http://dx.doi.org/10.1007/978-3-642-28756-5_15
http://dx.doi.org/10.1007/978-3-642-28756-5_15
http://dx.doi.org/10.1007/978-3-642-36742-7_37
http://dx.doi.org/10.1007/978-3-540-71209-1_56
http://dx.doi.org/10.1007/978-3-540-73368-3_17
http://dx.doi.org/10.1007/978-3-540-73368-3_17
http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-642-37036-6_29
http://dx.doi.org/10.1007/978-3-642-22012-8_34
http://dx.doi.org/10.1007/978-3-540-70545-1_12
http://dx.doi.org/10.1007/978-3-642-19835-9_3
http://dx.doi.org/10.1007/978-3-642-19835-9_3
https://www.lri.fr/~declerck/pmcx86.pdf
http://dx.doi.org/10.1007/978-3-642-31424-7_55
http://dx.doi.org/10.1007/978-3-662-46081-8_25
http://dx.doi.org/10.1007/978-3-662-46081-8_25

104 S. Conchon et al.

19. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14203-1 3

20. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., San Francisco (2008)

21. Intel Corporation: Intel 64 and IA-32 Architectures SDM, December 2016
22. Kuperstein, M., Vechev, M.T., Yahav, E.: Partial-coherence abstractions for

relaxed memory models. In: PLDI, pp. 187–198 (2011)
23. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-

tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)
24. Linden, A., Wolper, P.: A verification-based approach to memory fence inser-

tion in PSO memory systems. In: Piterman, N., Smolka, S.A. (eds.) TACAS
2013. LNCS, vol. 7795, pp. 339–353. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36742-7 24

25. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: X86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

http://dx.doi.org/10.1007/978-3-642-14203-1_3
http://dx.doi.org/10.1007/978-3-642-36742-7_24
http://dx.doi.org/10.1007/978-3-642-36742-7_24

Improving the Scalability of Automatic
Linearizability Checking in SPIN

Patrick Doolan1, Graeme Smith2, Chenyi Zhang3(B),
and Padmanabhan Krishnan1

1 Oracle Labs, Brisbane, Australia
2 The University of Queensland, Brisbane, Australia

3 Jinan University, Guangzhou, China
chenyi zhang@jnu.edu.cn

Abstract. Concurrency in data structures is crucial to the performance
of multithreaded programs in shared-memory multiprocessor environ-
ments. However, greater concurrency also increases the difficulty of veri-
fying correctness of the data structure. Model checking has been used for
verifying concurrent data structures satisfy the correctness condition ‘lin-
earizability’. In particular, ‘automatic’ tools achieve verification without
requiring user-specified linearization points. This has several advantages,
but is generally not scalable. We examine the automatic checking used
by Vechev et al. in their 2009 work to understand the scalability issues
of automatic checking in SPIN. We then describe a new, more scalable
automatic technique based on these insights, and present the results of
a proof-of-concept implementation.

1 Introduction

How efficiently data structures are shared is a crucial factor in the performance
of multithreaded programs in shared-memory multiprocessor environments [14].
This motivates programmers to create objects with fewer safety mechanisms
(such as locks) to achieve greater concurrency. However, as noted by [14], any
enhancement in the performance of these objects also increases the difficulty of
verifying they behave as expected. Several published concurrent data structures
– often with manual proofs of correctness – have been shown to contain errors
(e.g., [7,18]). This has resulted in a wealth of research on proving the safety of
these objects with minimal input from programmers.

To verify concurrent data structures it is necessary to have a suitable defini-
tion of correctness. The general consensus of the literature is that linearizability,
first introduced in [10], is the appropriate notion of correctness. The definition
of linearizability given by Vechev et al. [24] is summarised below.

Definition 1. A concurrent data structure is linearizable if every concurren-
t/overlapping history of the data structure’s operations has an equivalent sequen-
tial history that

The corresponding author was at Oracle Labs, Australia during the initial stages of
this work.

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 105–121, 2017.
https://doi.org/10.1007/978-3-319-68690-5 7

106 P. Doolan et al.

1. meets a sequential specification of the data structure, and
2. respects the ordering of non-overlapping operations.

Note that condition (2) is also referred to as the partial ordering condition.
When discussing linearizability the sequential specification is often referred to as
the abstract specification, and the implementation of the concurrent data struc-
ture the concrete implementation. The equivalent sequential history generated
from a concurrent history is referred to as the linearization or sequential witness.

Given a sequential specification, a history can be checked for a linearization.
This requires examining permutations of the history to identify whether any one
of them is a linearization. This process is called linearization checking (not to
be confused with the overall process of linearizability checking).

Example 1. Figure 1 shows a history of operations for a concurrent queue. By
enumerating all permutations, it can be seen that this history has the lineariza-
tion [enqueue(1), dequeue() → 1, enqueue(2)].

enqueue(1)

dequeue() → 1

enqueue(2)

Fig. 1. A sample concurrent history
with a linearization.

enqueue(1)

dequeue() → 2

enqueue(2)

Fig. 2. A sample concurrent history
with no linearization.

Conversely, consider Fig. 2, which is also a history of a concurrent queue.
This does not have a linearization, because, by the partial ordering condition,
enqueue(2) must linearize after enqueue(1). It follows that dequeue() can only
correctly return 1 (if it linearizes after enqueue(1)) or ‘empty’ (if it linearizes
before enqueue(1)). No sequential equivalent of this history will satisfy the
sequential specification of a queue. This history is in fact a behaviour of the
‘buggy queue’ from [18].

Linearizability is useful for programmers because it allows them to view a
concurrent data structure’s operations as happening at a single point in time
(called the linearization point) [14]. Furthermore, [9] proves that linearizability
generally coincides with ‘observational refinement’, meaning that when a lin-
earizable data structure replaces a correct but sub-optimal data structure, the
new program produces a subset of its previous, acceptable behaviour.

In this paper we identify reasons why some of the techniques to verify lin-
earizability are not scalable and present a technique that overcomes some of these
hurdles. We also present experimental results to demonstrate the feasibility of
our ideas.

Improving the Scalability of Automatic Linearizability Checking in SPIN 107

1.1 Related Work

There are a wide variety of approaches used to verify linearizability of data
structures. These range from manual proofs, possibly with the help of a theorem
prover (see [16,22] respectively for examples with and without a theorem prover),
to static and runtime analysis (e.g., [23,27], respectively) and model checking
(e.g., [4,12,19,24]).

Model checkers give a high degree of automation because they work by
exhaustive checking of behaviour, but are limited compared to other approaches
because their verification is typically within bounds on the number of threads,
arguments and other factors. We distinguish two approaches to model checking
linearizability:

– linearization point-based checking requires the user to specify the linearization
points (see [19] for an example), whereas

– automatic checking does not require user specification of linearization points
(see [4,12,24]).

The latter has two advantages, viz., greater flexibility for data structures with
non-fixed linearization points, and certainty that reported failures are from bugs
in the data structure and not incorrectly identified linearization points.

There is a substantial literature on automatic checking which illustrates that
many different model checkers and techniques have been used for this purpose.
Vechev et al. [24] describe a tool for examining many potential versions of a
data structure and determining which are linearizable. To this end they use
both automatic and linearization point-based methods in SPIN [11]. They note,
importantly, that automatic checking can be used to cull a large number of poten-
tial implementations but that its inherent scalability issues make it intractable
for thorough checking.

Similarly, Liu et al. [12] use the model checker PAT [17,20] for automatic
checking of linearizability. Both the implementation (the concurrent data struc-
ture) and the specification (the sequential behaviour) are modelled in the process
algebra CSP, and the verification is carried out as checking observational refine-
ment with certain optimizations. The verification process is, generally, automatic
checking, though the results can be enhanced if linearization points are known.
This result was further improved on by Zhang [28] by combining partial order
reduction and symmetry reduction to narrow the potential state space, and in
doing so they were able to verify concurrent data structures (albeit simple ones)
for three to six threads. In contrast, automatic checking reported by Vechev et
al. [24] only allows two threads, though the comparison may not be fair, as SPIN
does not have built-in support for symmetry reduction.

Burckhardt et al. [4] describe the tool Line-Up, built on top of the model
checker CHESS [15], for automatically checking linearizability of data structures.
It is one of the most automated approaches to date; it does not require user-
specified linearization points nor an abstract specification of the data structure
(a specification is instead automatically extracted from the implementation). It
also operates on actual code, as opposed to a model of the code.

108 P. Doolan et al.

The compromise for this convenience, as pointed out by [28], is that Line-
Up is “only sound with respect to its inputs”. Specifically, a user must specify
which sequences of operations Line-Up checks, whereas other model checking
techniques generate all possible sequences of operations (within bounds). Line-
Up also requires that a specification be deterministic, as otherwise the extracted
specification will misrepresent the actual abstract specification.

Regarding the complexities of linearizability checking, the problem has been
shown decidable for a special class of concurrent linked-list, by a reduction to
reachability of method automata [5]. As an observational refinement problem,
checking linearizability is in general undecidable, and it is EXPSPACE-complete
even with fixed linearization points [2]. More recently, Bouajjani et al. discov-
ered that for a class of concurrent objects and data structures such as stacks and
queues, the linearizability property can be reduced to the control state reacha-
bility problem [3].

1.2 Contributions

A notable theme in the related work is that automatic methods are considered to
have inherent scalability issues for verification [12,24], though they can be used
effectively when limits are placed on types or numbers of operations checked
[4,24] or advanced state compression techniques are used [28]. However, the
exact causes of the scalability issues are not discussed in detail, and there is
some disagreement in the literature.

This paper explores in detail the causes of scalability issues in automatic
checking, using the work of Vechev et al. [24] as our starting point. The insights
derived are then used to describe a technique for improving the scalability
of automatic checking methods using SPIN. Our solution, as currently imple-
mented, is not sound and hence can only be used to find bugs. However, we
describe how the technique can be extended to support verification.

The paper is structured as follows. In Sect. 2 we present our analysis of the
scalability issues in the work of Vechev et al. [24]. A technique for overcoming
these issues is presented in Sect. 3, and the results of applying an implementa-
tion of this technique to data structures from the literature with known bugs is
described in Sect. 4. Also in Sect. 4 we discuss the main limitation of our tech-
nique which restricts it to bug finding, rather than full verification. Section 5
then describes how this limitation can be overcome and how the technique can
be integrated into SPIN.

2 Scalability Issues of Automatic Checking with SPIN

To understand the scalability issues of automatic checking in [24], we first
describe their methods. We will refer to their approach as using ‘global internal
recordings’ since a (global) list of all invocations and responses of operations by
any thread is recorded (internally) as part of the model checker’s state.

Improving the Scalability of Automatic Linearizability Checking in SPIN 109

Input
Program

SPIN
Model Checker

Is Valid or
CounterExample

Sequential
Specification

Linearization
Checker

Recorded
History Is Valid?

Fig. 3. Checking linearizability using global internal recordings.

Figure 3 depicts the process of checking with global internal recordings (based
on the top right section of [24, Fig. 1]). In the input program, data structure mod-
els to be tested are instrumented so that client threads non-deterministically
invoke operations on the data structure. Invocations and responses of opera-
tions are recorded during the state-space exploration. These recordings are then
passed to an (external) linearization checker which searches for a valid lineariza-
tion of the history. It searches by generating a permutation of the history, and
then checking whether it satisfies conditions (1) and (2) of Definition 1. Note
that condition (1) requires that the linearization checker has its own sequential
specification of the data structure, separate from the model checker. If no such
linearization can be found, the value returned by the linearization checker causes
a local assertion to fail in the model checker.

2.1 Existing Explanations for the Scalability Issues of Automatic
Checking

Though well-acknowledged in the literature, explanations for the scalability
issues of automatic checking in [24] are not comprehensive. In [24], the authors
assert that storing history recordings in the state during model checking lim-
its the state space which can be explored, because “every time we append an
element into [sic] the history, we introduce a new state”.

In contrast, the authors of [12] consider linearization checking, not model
checking, to be the performance-limiting factor of automatic checking in [24],
stating that:

“Their approach needs to find a linearizable sequence for each history
. . . [and] may have to try all possible permutations of the history. As a
result, the number of operations they can check is only 2 or 3.”

Long and Zhang [13] describe heuristics for improving linearization check-
ing. Their approach also suggests that linearization checking is a performance-
limiting factor of automatic linearizability checking. Though their results show
the effectiveness of their optimisations, they only test their methods on pre-
generated traces; that is, without doing model checking to generate the traces.

110 P. Doolan et al.

As a result, the impact of these optimisations on overall linearizability checking
is unclear.

2.2 Testing Explanations for the Scalability Issues of Automatic
Checking

To test these different hypotheses, we conducted several preliminary experiments
on a concurrent set provided as supplementary material by Vechev et al. [25].
All experiments were performed on a machine running Ubuntu 14.04.3 with
32 GB RAM and a 4-core Intel Core i7-4790 processor. The first compared the
performance of automatic checking with and without the linearization checker;
see Tables 1 and 2. Without the linearization checker, histories are explored by
SPIN but not checked for linearizability. Checking with a linearization point-
based approach is also shown for comparison.

In this experiment, two threads invoked operations on the data structure. For
6 operations, both automatic methods were given a moderate state compression
setting (the built-in COLLAPSE flag in SPIN – see [11]) but failed to complete
due to memory requirements. All times shown are the average of 10 executions.
Note that SPIN was used with a single core to avoid time overhead for small
tests and memory overhead for large tests.

The results clearly indicate model checking is the performance-limiting factor,
since disabling linearization checking does not lead to performance comparable
to checking with linearization points.

Table 1. Comparison of execution times for automatic and non-automatic checking
methods of Vechev et al. [24]. All times in milliseconds.

Method History length (# operations)

2 4 6

Linearization points 22 257 2160

Global internal recordings 33 10 590 Out of memory (30 GB)

Global internal recordings without linearization
checker

33 10 240 Out of memory (30 GB)

Table 2. Comparison of memory use for automatic and non-automatic checking meth-
ods of Vechev et al. [24]. All measurements in MB.

Method History length (# operations)

2 4 6

Linearization points 131.0 204.4 773.3

Global internal recordings 136.2 3780.80 Out of memory (30GB)

Global internal recordings without lin-
earization checker

136.2 3744.2 Out of memory (30GB)

Improving the Scalability of Automatic Linearizability Checking in SPIN 111

A second experiment investigated scalability issues in the model checking
process. The number of states and histories explored in the same concurrent set
were compared; see Tables 3, 4 and 5. For global internal recordings, histories
were recorded by modifying the linearization checker. Each time the linearization
checker was invoked, the history it was acting on was recorded. When checking
with linearization points, the SPIN model was instrumented to output each
operation as it was checked. The histories checked were then reconstructed from
the output list of recordings.1

Note that states ‘stored’ refers to the number of distinct states in the state
space, whereas states ‘matched’ refers to how many times a state was revis-
ited [11]. Together they give an indication of how much state space exploration
occurred.
Table 3. Comparison of states stored by global internal recordings and linearization
points methods.

Method History length (# operations)

2 4 6

Linearization points 21 198 1 215 501 12 899 275

Global internal recordings 25 740 12 693 435 Out of memory (30 GB)

Table 4. Comparison of states matched by global internal recordings and linearization
points methods.

Method History length (# operations)

2 4 6

Linearization points 4514 329 884 3 765 699

Global internal recordings 4699 2 570 412 Out of memory (30GB)

Table 5. Comparison of histories checked by global internal recordings and lineariza-
tion points methods.

Method History length (# operations)

2 4 6

Linearization points 165 2876 9783

Global internal recordings 296 133 536 Out of memory (30 GB)

Tables 3 and 4 confirm the statement of [24] – many more states are explored
using automatic checking. However, the magnitude of the difference suggests
1 Note that reconstruction of histories required adding a global index variable which

would not normally be used in checking with linearization points and inflates the
state space for reasons explained later in this section. The number of states and
number of histories listed for checking with linearization points are therefore over-
estimates.

112 P. Doolan et al.

more than just one state is introduced by each recording. Table 5 also reveals
some implications not immediately evident from previous explanations – that
checking with global internal recordings generates and checks many more histo-
ries than checking with linearization points. Because this is not encoded manually
by the different approaches, it suggests an optimisation by SPIN which allows
checking with linearization points to shrink the state space and remove histories
which are unnecessary for verifying linearizability.

An interesting trend from the results was the ratio of ‘matched’ (revisited)
to ‘stored’ (total distinct) states, which was higher for checking done with lin-
earization points. For example, in the case of 2 operations, even though checking
with linearization points has 4000 fewer states, it revisits them almost as much
as global internal recordings checking. This provides some insight as to why it
checks many fewer histories and has vastly better performance.

It was found that the histories checked with linearization points are a strict
subset of those checked using global internal recordings. The histories missing
from linearization points checking were due to the model checker stopping and
backtracking in the middle of a history. That is, SPIN would generate the start
of the history but stop before generating some of the recordings for the end of
the history. For example, Fig. 4 shows a history that is missed when checking a
concurrent set using linearization points. The point ‘X’ shows where checking
for this history stops.

add(1)

add(1)

add(1)

remove(1)

X

Fig. 4. A missing history when model
checking with linearization points.

add(1) add(1) add(1) remove(1)

Y

Fig. 5. A history that precedes the
missing history.

After examining such histories and considering the algorithm applied by
SPIN for model checking it became apparent that the reason SPIN stopped pre-
emptively in some histories was the presence of repeated states. Explicit-state
model checking algorithms optimise state space exploration by not returning to
a state if all of the possibilities extending from that state have been previously
checked (see, for example, [1]).

For example, when checking with global internal recordings, the history in
Fig. 4 occurs (in the search process) after the history shown in Fig. 5. When
checking with linearization points, at the point X the global state in the history
of Fig. 4 matches the global state at point Y in Fig. 5, so the model checker does
not proceed any further.

Improving the Scalability of Automatic Linearizability Checking in SPIN 113

This explains the large number of states and histories generated by global
internal recordings. Because of the recordings, states which would otherwise
appear identical to SPIN are differentiated. SPIN therefore continues to search
down the branch of the state space, whereas with linearization points it would
backtrack.

3 A Technique for Improving Scalability of Automatic
Checking

We now describe a new automatic checking technique. The key insight is to
improve scalability by storing less global data, allowing SPIN to optimise state
space exploration by backtracking. The technique is referred to as ‘external
checking’ because it outputs recordings which are stored by the model checker
in the automatic checking of [24].

The description provided in this section is for a proof-of-concept implemen-
tation using machinery built to work with SPIN. Unfortunately, subtle issues
in the state space exploration technique make this implementation an unsound
checking procedure for verification. In Sect. 5 we describe the reasons for this
unsoundness and present a sound and complete checking procedure that extends
the basic idea. Implementing the extension would require altering the SPIN
source code and is left for future work.

3.1 External Checking: Preliminary Implementation

The general concept is similar to that of automatic checking with global internal
recordings because each history is checked for a linearization. The implementa-
tion is also similar, viz., client threads non-deterministically invoke operations
on the concurrent data structure to generate the histories. The key difference is
that the external checking method outputs information about the operations to
an external linearization checker as they occur, rather than keeping an internal
list of recordings until the end of each history.

A simplistic approach was taken to outputting recordings externally. An
embedded printf statement was included in the Promela model whenever an
invocation or response occurred. For example,

c_code{printf("%d %d %d %d %d %d\n", now.gix,
Pclient->par, Pclient->op, Pclient->retval,
Pclient->arg, Pclient->type);}

outputs the index of the recording in the history (gix), the parent recording
(i.e., invocation) of the operation if it was a response (par), the operation (op),
argument (arg), return value (retval) and whether this was an invocation or
response (type) for the thread ‘client’ (Pclient).

External checking requires that output recordings be assembled into complete
histories, since the recordings are output in the order in which SPIN explores the
state space. Since SPIN uses a depth-first search of the state space, this simply

114 P. Doolan et al.

requires iterating over the list of recordings and outputting a history whenever
the last recording (a complete history) is reached.2 In pseudocode,

Recording current_history[history_length];
for (Recording recording : output_recordings) {

current_history[recording.index] = recording;
if (recording.index == history_length) {

//leaf node in the search tree
outputHistory(current_history);

}
}

A process takes the output from SPIN and reconstructs the histories as shown
above. It then passes the histories to the linearization checker which checks each
history for a linearization. The entire external checking procedure is illustrated
in Fig. 6. Compare this to Fig. 3 for checking with global recordings. Note that
the external linearization checker runs concurrently with the model checker. If a
failure (non-linearizable history) occurs, it notifies the model checker and both
stop.

Input
Program

SPIN
Model Checker

Is Valid or
CounterExample

History
Reconstruction

Linearization
Checker

Sequential
Specification

Recordings

Histories

Fig. 6. The external checking procedure.

Note that at present external checking is only suitable for use with single-
core SPIN checking. Using several cores changes how the state space is explored
and therefore how recordings are output, so it requires understanding a different
state space exploration algorithm and also the capacity to determine from which
core the recordings originated. Further work could explore implementing these
features.

2 Note that histories are limited to a given length to make model checking feasible.

Improving the Scalability of Automatic Linearizability Checking in SPIN 115

4 Results

Three popular data structures from the literature with known defects were used
for testing the effectiveness of the external checking method. These data struc-
tures are summarised in Table 6. It is important to note that both the buggy
queue and the Snark deque were originally published with proofs of correctness,
and only later found to be defective. They therefore represent realistic examples
of bugs in concurrent data structures. The ABA problem, tested for in both the
Treiber Stack and Snark deque, is also a common problem with concurrent data
structures which use the compare-and-swap primitive.

Table 6. Faulty data structures used for testing external checking.

Data
struc-
ture

Source Description of bug

Treiber
stack

[21] Suffers from the ABA problem in non-memory managed
environments. Excellent explanation in [26, Sect. 1.2.4]

Buggy
queue

[18] When a dequeue is interrupted by two enqueues at critical
sections, the dequeue returns a value not from front of the
queue. See [6, Sect. 3.3]

Snark
deque

[7] Two bugs, the first of which can cause either popLeft or
popRight to return empty when the queue is nonempty, and
the second of which is an ABA-type error resulting in the
return of an already popped value. See [8, Sect. 3] for detailed
descriptions

Promela models of the data structures in Table 6 were created and instru-
mented to allow automatic checking both externally and via global internal
recordings. In cases where more than one bug existed in a single data struc-
ture, each bug was repaired after being flagged so that others could be tested.
Experiments were performed on a machine running Ubuntu 14.04.3 with 32 GB
RAM and a 4-core Intel Core i7-4790 processor, with the exception of the final
Snark deque bug. Its tests were executed on a machine running Oracle Linux 6
with two 22-core Intel Xeon CPU E5-2699 v4 processors and 378 GB RAM due
to high memory requirements. SPIN was used with a single core to avoid time
overhead for small tests and memory overhead for large tests. Also, external
checking does not currently support checking with multiple cores.

External checking located all bugs. Global checking found all except the final
Snark deque bug - after 2.87 × 107 ms (∼ 8 h) the memory limit of 300000 MB
was reached and SPIN exited without locating the bug. The results of testing
for detected bugs are shown in Table 7. For the first 3 bugs, no state compres-
sion flags were needed, and only 2 threads and 4 operations were required for
detection. Times shown are an average of 10 executions for both methods. For

116 P. Doolan et al.

Table 7. Bugs detected by external checking and global recordings checking.

Data structure Bug number External checking Global recordings checking

Time (ms) Memory (MB) Time (ms) Memory (MB)

Treiber stack 1/1 373 172 1346 342

Buggy queue 1/1 248 159 774 252

Snark deque 1/2 86 139 123 145

Snark deque 2/2 2.71 × 107 248227 − −

the final snark deque bug, the COLLAPSE memory compression flag was used
(see [11] for details), as the failure trace required 3 threads and 7 operations.
Trials for this bug were run once due to resource constraints.

4.1 Discussion of External Checking Performance

The results in Table 7 illustrate the utility of the external checking method. It
was able to locate all bugs, even without the improvements described in Sect. 5.
This suggests it is uncommon in practice that a bug cannot be detected by the
method.

In addition, external checking was both faster and used less memory than
global checking in all cases. For the Treiber stack and buggy queue, memory use
was roughly half that of global recordings checking, and checking was around
three times faster.

In the case of the second Snark deque bug, there was sufficient memory for
external checking to find the bug, but not enough for global recordings checking.
Of course, global recordings checking would detect the bug if sufficient memory
or time were available, since it is a verification technique. However, the results
show it requires at least 50 GB more memory than external checking (or the
equivalent amount of time with a stronger compression), which illustrates the
benefit of a faster bug-finding technique for bugs with long failure traces.

For comparison, tests with linearization point-based checking show that this
bug can be located in under 30 min with COLLAPSE state compression, illus-
trating that automatic methods are not as scalable as linearization points-based
methods.

The two automatic methods are closest in performance for the first bug of the
Snark deque. This is because the failing history occurs very early in the model
checking process. External checking takes longer to check any individual history
because it must be reconstructed and then passed to the linearization checker.
Its performance benefit comes from checking far fewer histories. Therefore when
a bug occurs after only very few histories, external checking does not have time
to yield a significant performance benefit. Conversely, the deeper the execution
required to locate a bug, the greater the improvement in performance compared
to global internal recordings.

Improving the Scalability of Automatic Linearizability Checking in SPIN 117

5 Potential Improvements: Integration with SPIN

The technique described in Sect. 3.1 is in fact unsound. Recall from Sect. 2.2 that
checking with linearization points covers fewer histories due to SPIN optimisa-
tions that cause it to stop at repeated states. This is valid with linearization
point-based checking because such approaches include an abstract specification
that runs in parallel with the model of the concrete implementation. The state
variables of the abstract specification ensure that the sub-history encountered
before backtracking is truly equivalent to one checked earlier.

However, in external checking no abstract specification is kept by SPIN.
This means there are cases where SPIN stops preemptively and this prevents it
checking a history that could violate linearizability.

For example, consider the sequential specification of a data structure as
shown in Fig. 7. Suppose this specification was incorrectly implemented as shown
in Fig. 8. If checking on a single thread is used, the SPIN output (shown dia-
grammatically) is as in Fig. 9.

int x = 0;

atomic operation 1:

x++;

return x;

atomic operation 2:

return True;

Fig. 7. Abstract specification.

int x = 0;

operation 1:

x++;

return x;

operation 2:

if (x == 0)

x = 1;

return True;

Fig. 8. Incorrect implementation.

Checking stops before the end of the third (faulty) history, and therefore it
is not checked and no error is raised. The model checker stops because of the
repeated global state x = 1. It reaches this state after operation1 in the first
two histories and from those histories has explored all states extending from that

I
operation1 → 1 operation1 → 2

II
operation1 → 1 operation2 → True

III
operation2 → True operation1 → 2

Fig. 9. Histories output by SPIN when using external checking on the data structure
of Fig. 8. The dashed line indicates SPIN stopping.

118 P. Doolan et al.

point. When SPIN encounters the same state after operation2 completes in the
third history, it stops, despite the global state being incorrect for an execution
of operation2.

Note that checking with linearization points, where an abstract specifica-
tion is included, would prevent this error, since the abstract specification’s
operation1 and operation2 will alter the global data differently.

5.1 A Sound Verification Algorithm

We now describe a means of extending our technique for verification, which
requires modifying the SPIN source. Doing this would also lead to a significant
performance benefit.

Outputting recordings requires keeping track of a global index. As Sect. 2.2
showed, global variables tracked by SPIN can unnecessarily inflate the state
space. If SPIN were modified it would not be necessary to keep a global index
as a global variable in the model – it could be kept as metadata instead.

Likewise, themachinery of Sect. 3.1 couldbe implemented in avery similar fash-
ion in SPIN. Instead of outputting recordings, it could be stored as metadata sep-
arate from the state vector and model checking process. Complete histories would
still have to be passed to an external linearization checker, as was done in [24].

We now outline the extra checking necessary to prevent the missing histo-
ries described in the previous section, making the approach sound. It was noted
that repeated global states cause the lack of soundness. This problem does not
occur when checking with linearization points because the abstract specifica-
tion is present in the global state and represents the expected behaviour of the
implementation. Therefore a repeated state always indicates identical behaviour.

Incorrect backtracking in external checking could therefore be prevented by
using the abstract specification to decide when a repeated global state represents
correct behaviour of the implementation. We propose the following method:
whenever a repeated global state is reached, ensure that the current sub-history
has a linearization which leads to the same state in the abstract specification
as the sub-history which originally created that global state. This would require
keeping track of the valid linearizations for previously encountered histories.

For example, suppose during checking histories for a stack implementation,
the model checker had explored all states extending from the global state G, as
shown in Fig. 10. This implies every full history reached from G with the sub-
history shown in Fig. 10 had a linearization. In verifying this, the linearization
checker would have found that the operations before G have the valid lineariza-
tion [push(1) → True, pop() → 1]. Therefore the abstract state at G was an
empty stack in all of the checked histories represented by Fig. 10.

Suppose the sub-history shown in Fig. 11 then occurred, repeating the global
state G. To determine whether backtracking is correct, it suffices to check that
the sub-history up to G has a linearization which would lead to an empty
stack in the abstract specification. In this case it is possible by the linearization
[push(1) → True, pop() → 1, pop() → empty]. This means SPIN can backtrack
safely.

Improving the Scalability of Automatic Linearizability Checking in SPIN 119

push(1) → True

pop() → 1
G

Fig. 10. Example history.

pop() → 1

push(1) → True

pop() → empty
G

Fig. 11. Second example history.

In contrast, recall the counter-example to verification from Fig. 9. In this
example, the histories verified by the model checker (histories I and II) have
linearizations [operation1 → 1, operation1 → 2] and [operation1 → 1,
operation2 → True], respectively. That is, in both cases the linearization up to
the repeated state is operation1 → 1, meaning the abstract specification state
at that point is x = 1. When the same global state is reached in history III,
there is no linearization of operation2 → True which leads to the abstract state
x = 1. Only x = 0 is possible. Therefore in the proposed implementation SPIN
cannot backtrack after operation2 → True and the entire history would be
checked and found invalid.

Note that this extended approach requires checking for linearizations, meta-
data caching and the usual state exploration of model checking. Performance
could be improved by a high degree of parallelism between these separate func-
tions.

6 Conclusions

We have described in detail the scalability issues of automatic linearizability
checking in [24]. The main cause is a lack of state space traversal optimisations
due to a large amount of global data in the model checking state. This identified
cause makes explicit a fact which is widely assumed in the literature but whose
explanation is often omitted or unclear.

These observations motivated a new, more scalable technique for automatic
checking with SPIN. The key insight is to not store the recordings in the model
checker for checking at the end of each history, but instead to output them
immediately. This allows the model checker to optimise the state space explo-
ration. The algorithm we have implemented reconstructs the histories from the
recordings and determines if these histories satisfy the linearization conditions.
Our experiments show that the extra cost of generating the history from the
recordings that are output directly is smaller than the speed-up gained from the
more efficient execution of the model checker.

This external checking technique reduces the number of histories that need
exploration and thus is able to explore longer traces. As a consequence bugs
that occur on long traces are detected more efficiently than when using the
global internal recordings technique in the literature. External checking does
detect bugs that occur after a few histories but the performance benefits are

120 P. Doolan et al.

not significant. In other words, the more states the model checker is required to
explore before it can detect a bug, the more effective our technique will be.

We have also presented a limitation of the implemented external checking
technique (namely, that it can be used for bug detection but not verification).
We have developed an algorithm that overcomes this limitation, and intend to
implement this in SPIN as future work. Note that if only an efficient bug detec-
tion technique is desired, the external checking algorithm described in Sect. 3
would suffice.

Acknowledgments. The authors would like to thank Martin Vechev for providing
extra materials that allowed evaluation of the automatic checking in [24]. This work is
partially supported by ARC Discovery Grant DP160102457.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

2. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs
against sequential specifications. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 290–309. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37036-6 17

3. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: On reducing linearizability to
state reachability. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann,
B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 95–107. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-47666-6 8

4. Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: a complete and auto-
matic linearizability checker. In: PLDI 2010, Proceedings of 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 330–340.
ACM, New York (2010)

5. Černý, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., Alur, R.: Model check-
ing of linearizability of concurrent list implementations. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 465–479. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14295-6 41

6. Colvin, R., Groves, L.: Formal verification of an array-based nonblocking queue.
In: ICECCS 2005, pp. 507–516. IEEE, Los Alamitos (2005)

7. Detlefs, D.L., Flood, C.H., Garthwaite, A.T., Martin, P.A., Shavit, N.N., Steele,
G.L.: Even better DCAS-based concurrent deques. In: Herlihy, M. (ed.) DISC
2000. LNCS, vol. 1914, pp. 59–73. Springer, Heidelberg (2000). doi:10.1007/
3-540-40026-5 4

8. Doherty, S., Detlefs, D.L., Groves, L., Flood, C.H., Luchangco, V., Martin, P.A.,
Moir, M., Shavit, N., Steele Jr., G.L.: DCAS is not a silver bullet for nonblocking
algorithm design. In: Gibbons, P.B., Adler, M. (eds.) SPAA 2004, pp. 216–224.
ACM, New York (2004)

9. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent
objects. Theor. Comput. Sci. 411(51–52), 4379–4398 (2010)

10. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

11. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading (2003)

http://dx.doi.org/10.1007/978-3-642-37036-6_17
http://dx.doi.org/10.1007/978-3-642-37036-6_17
http://dx.doi.org/10.1007/978-3-662-47666-6_8
http://dx.doi.org/10.1007/978-3-642-14295-6_41
http://dx.doi.org/10.1007/3-540-40026-5_4
http://dx.doi.org/10.1007/3-540-40026-5_4

Improving the Scalability of Automatic Linearizability Checking in SPIN 121

12. Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via refinement.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 321–337.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-05089-3 21

13. Long, Z., Zhang, Y.: Checking linearizability with fine-grained traces. In: SAC
2016, pp. 1394–1400. ACM, New York (2016)

14. Moir, M., Shavit, N.: Concurrent data structures. In: Mehta, D.P., Sahni, S. (eds.)
Handbook of Data Structures and Applications, Chap. 47, pp. 1–30. Chapman and
Hall, CRC Press (2004)

15. Research in Software Engineering Group (RiSE). http://chesstool.codeplex.com/
16. Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique

for linearizability of concurrent data structures. ACM Trans. Comput. Log. 15(4),
31:1–31:37 (2014)

17. School of Computing, National University of Singapore. http://pat.comp.nus.edu.
sg/

18. Shann, C.H., Huang, T.L., Chen, C.: A practical nonblocking queue algorithm using
compare-and-swap. In: ICPADS 2000, pp. 470–475. IEEE, Los Alamitos (2000)

19. Smith, G.: Model checking simulation rules for linearizability. In: De Nicola, R.,
Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp. 188–203. Springer, Cham (2016).
doi:10.1007/978-3-319-41591-8 13

20. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 59

21. Treiber, R.K.: Systems Programming: Coping with Parallelism. International Busi-
ness Machines Incorporated, Thomas J. Watson Research Center, New York (1986)

22. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74407-8 18

23. Vafeiadis, V.: Shape-value abstraction for verifying linearizability. In: Jones, N.D.,
Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 335–348. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-93900-9 27

24. Vechev, M., Yahav, E., Yorsh, G.: Experience with model checking linearizability.
In: Păsăreanu, C.S. (ed.) SPIN 2009. LNCS, vol. 5578, pp. 261–278. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02652-2 21

25. Vechev, M., Yahav, E., Yorsh, G.: Paraglide: SPIN Models. http://researcher.
watson.ibm.com/researcher/view group subpage.php?id=1290

26. Wolff, S.: Thread-modular reasoning for heap-manipulating programs: exploiting
pointer race freedom. Master’s thesis, University of Kaiserslautern (2015)

27. Zhang, L., Chattopadhyay, A., Wang, C.: Round-up: runtime checking quasi lin-
earizability of concurrent data structures. In: Denney, E., Bultan, T., Zeller, A.
(eds.) ASE 2013, pp. 4–14. IEEE, Los Alamitos (2013)

28. Zhang, S.J.: Scalable automatic linearizability checking. In: ICSE 2011, Proceed-
ings of 33rd International Conference on Software Engineering, pp. 1185–1187.
ACM, New York (2011)

http://dx.doi.org/10.1007/978-3-642-05089-3_21
http://chesstool.codeplex.com/
http://pat.comp.nus.edu.sg/
http://pat.comp.nus.edu.sg/
http://dx.doi.org/10.1007/978-3-319-41591-8_13
http://dx.doi.org/10.1007/978-3-642-02658-4_59
http://dx.doi.org/10.1007/978-3-540-74407-8_18
http://dx.doi.org/10.1007/978-3-540-93900-9_27
http://dx.doi.org/10.1007/978-3-642-02652-2_21
http://researcher.watson.ibm.com/researcher/view_group_subpage.php?id=1290
http://researcher.watson.ibm.com/researcher/view_group_subpage.php?id=1290

Verifying Temporal Properties of C Programs
via Lazy Abstraction

Zhao Duan, Cong Tian(B), and Zhenhua Duan

ICTT and ISN Lab, Xidian University, Xi’an 710071, People’s Republic of China
ctian@mail.xidian.edu.cn

Abstract. To verify both safety and liveness temporal properties of pro-
grams in practice, this paper investigates scalable Linear Temporal Logic
(LTL) property verification approach of C programs. We show that the
verification target can be accomplished as a scalable lazy abstraction sup-
plemented Counter-Example Guided Abstraction Refinement (CEGAR)
based program analysis task. As a result, the scalable lazy abstraction
based safety property analysis approaches as well as their mature sup-
porting tools can be reused to verify temporal properties of C programs.
We have implemented the proposed approach in TPChecker to verify
temporal properties of C programs. Experimental results on benchmark
programs show that the proposed approach performs well when verifying
non-safety temporal properties of C programs.

Keywords: Temporal property · Lazy abstraction · Linear temporal
logic · Model checking · CEGAR

1 Introduction

Model checking [1,2] is an automatic approach for discovering flaws in programs.
However, when it is applied in practice, most of the respective verification tools
lack scalability due to the state-space explosion problem [18]. Abstraction tech-
nique is useful in reducing the state space of the system to be verified. It maps a
concrete set of states to a smaller set of states that is actually an approximation
of the concrete system. Predicate abstraction [19] is one of the most often used
methods in software model checking for attaining a finite abstract model from
a program. With predicate abstraction, a finite set of predicates, which deter-
mines the precision of the abstraction, is selected to keep track of certain facts
about the program variables. The model obtained via predicate abstraction is
an over-approximation of the original program. Thus, spurious paths may exist
if an insufficient set of predicates is considered.

In order to eliminate spurious counterexamples (false alarms), predicate
abstraction has been paired with Counter-Example Guided Abstraction Refine-
ment (CEGAR) [3,21,22] where a reported counterexample is further analyzed

This research is supported by the NSFC Grant No. 61420106004.

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 122–139, 2017.
https://doi.org/10.1007/978-3-319-68690-5 8

Verifying Temporal Properties of C Programs via Lazy Abstraction 123

to check whether it is spurious. If the counterexample is spurious, additional
predicates are required for eliminating it. Cooperating with CEGAR, Interpola-
tion [20] is often used to discover new predicates. Currently, CEGAR has been
popular in most of the software model checkers. To further enhance the efficiency,
lazy abstraction [16] is introduced in CEGAR to reduce the cost of time used for
refinement. As a result, different parts of the model may exhibit different degrees
of precision, but it is enough for verifying the property. Lazy abstraction sup-
plemented CEGAR has been implemented in software model checkers [3] such
as BLAST, CPAChecker, SLAM, and so forth. Thanks to these efforts, software
model checkers are able to work on software systems with industrial scale.

Most of the CEGAR based software model checkers available are typically
used for verifying safety properties expressed as assertions in the code. But they
can only be utilized to verify limited temporal properties of programs [23]. Many
important properties of programs itself or requirements on the software behav-
ior cannot, however, be expressed as safety properties. These properties have
components that assert something must eventually happen. A common example
of our daily life computer programs is: if a memory chunk is dynamically allo-
cated for temporal use, it should eventually be released before it is unable to
be released (not referenced by any pointer variables). This presents that mem-
ory leak is not permitted to occur in a program. Whenever this property is
not valid on a program, the allocated memory chunk will be leaked. This is a
typically simple but non-safety property which is often desired to be valid on
programs. Therefore, how to support the verification of more temporal properties
in software model checking is useful in ensuring the correctness of programs in
practice. Furthermore, in case that the verification of rich temporal properties is
supported, the scale of programs that can be verified is a key issue which directly
decides whether the methods or tools are applicable for industrial designs.

Motivated by this, we present a lazy abstraction supplemented CEGAR based
Linear Temporal Logic (LTL) [6,7] property verification approach of C programs
in this paper. We choose LTL instead of Computing Tree Logic (CTL) [1] since it
has been proved by the common wisdom amongst users and developers of tools
that LTL is more intuitive than CTL. To further improve the efficiency, under the
consideration that most of the programs in real world are terminable, we also
provide an efficient approach for verifying temporal properties of C programs
over finite traces by simplifing the general LTL to LTL interpreted over finite
models. For programs whose executing traces are finite, utilizing LTL over finite
models to specify properties will lose nothing but make the verification more
efficient. This is mainly because to obtain a deterministic automaton from a
formula in LTL over finite models is much more easier than obtaining one from
a formula in LTL (over infinite models). We present an efficient algorithm for
building Deterministic Finite Automata (DFA) from LTL formulas over finite
models. By integrating the DFA construction process into the construction of
Abstract Reachability Tree (ART) for creating counterexamples, we show that
the temporal property verification task can be accomplished by the scalable lazy
abstraction based program analyzing. As a result, the scalable lazy abstraction

124 Z. Duan et al.

supplemented CEGAR based safety property analysis approaches as well as their
mature supporting tools, such as BLAST, CPAChecker, and SLAM, etc., can
be reused to verify temporal properties of programs. We have implemented the
proposed approach in TPChecker to verify temporal properties of C programs.
Experimental results on benchmark programs show that the proposed approach
performs well in practice when it is used to verify non-safety properties of real
world programs.

As a summary, we make the following main contributions: (1) We extend
the scalable lazy abstraction supplemented CEGAR based safety property veri-
fication to LTL specified temporal property verification of C programs. (2) We
formalize an efficient LTL model checking approach of C programs over finite
traces. With this approach, path explosion problem is largely relieved in soft-
ware model checking. (3) We provide a scalable software model checker with
the ability of temporal property verification. As a result, temporal properties
expressible in LTL can be verified.

The reminder of the paper is organized as follows. The next section introduces
Linear Temporal Logic (LTL) and extends the existing lazy abstraction supple-
mented CEGAR based safety verification approach to verify temporal properties
of programs and points out the challenge problem involved in the field. In Sect. 3,
an efficient verification approach is presented for verifying temporal properties of
programs over finite traces. Section 4 presents implementation of the supporting
tool and Sect. 5 shows the experimental results. Finally, in Sect. 6, related work
is discussed.

2 A General Approach

This section presents a general approach for verifying temporal properties of
programs with CEGAR supplemented by lazy abstraction. We start by a short
exposition of CEGAR supplemented by lazy abstraction based safety property
verification of C programs. Then we show how it can be extended to temporal
property verification and point out the challenging problem.

2.1 Safety Property Verification

With lazy abstraction based property verification approach, the data structures
Control Flow Automaton (CFA) and Abstract Reachability Tree (ART) play
important roles.

A CFA is a directed graph presented as a tuple (L,E, I) where L is the set of
locations, E the set of edges between two locations, and I a function that maps
an edge to an instruction that executes when control moves from the source
to the destination. An instruction is either a basic block of assignments, an
assume predicate corresponding to the condition that must hold for the control
to proceed across the edge, a function call with call-by-value parameters, or a
return instruction. For convenience, in a CFA, the set of succeeding locations of

Verifying Temporal Properties of C Programs via Lazy Abstraction 125

a location l ∈ L is denoted as Suc(l), and the set of predecessors of l is written
as Pre(l). Also, I(e) indicates the instruction labeled on edge e.

An ART is a labeled tree that represents a portion of the reachable state space
of a program. Each node of the ART is labeled with a location of the relative
CFA, the current call stack (a sequence of CFA locations representing return
addresses), and a set of predicates (called the reachable region) representing a
set of data states. We denote a labeled tree node by n : (q, s, p), where n is the
tree node, q is the CFA location, s is a sequence of CFA locations, and p is a
set of predicates denoting the reachable region of n. Similar to the CFA, each
edge of the tree is also marked with a basic block of assignments, an assume
predicate, a function call, or a return instruction in the program.

A path in the ART corresponds to a program execution. The reachable region
of a node n describes an over-approximation of the reachable states of the pro-
gram assuming execution follows the sequence of operations labeling the path
from the root of the tree to n. Intuitively, a complete ART is a finite unfolding
of a CFA. As a consequence, the less predicates are cared about, the smaller the
complete ART will be, and the more efficient the verification on this ART will
be. As a special case, a CFA can be seen as an ART with p = ∅ for each node.
However, a reported path that violates the desired property, i.e. a path satisfies
the undesired property, in the ART is possible to be spurious which does not
exist in the concrete program. Thereby, lazy abstraction supplemented CEGAR
approach is utilized to eliminate spurious counterexamples by considering more
predicates discovered via interpolation [11].

2.2 Verifying Temporal Properties of General Programs

Different from the safety property verification approach discussed above, to ver-
ify temporal properties of programs, we do not need to instrument assertions in
the code. Instead, we specify the undesired property as an LTL formula. Then,
we unwind the CFA as an ART to check whether there exits a path that can
satisfy the formula. The rest thing is nearly the same as in safety property ver-
ification. That is if no paths that violate the desired property are found, the
program can be proved free of the specific error. Otherwise, CEGAR supple-
mented with lazy abstraction is utilized to eliminate spurious counterexamples.
We now concentrate on how the second phase will be carried on to produce a
candidate counterexample.

To verify whether a path in an ART satisfies the undesired property written
as an LTL formula, we first transform the LTL specification to an equivalent
Büchi automaton. About the transformation, lots of theoretical research have
been done and several mature tools were developed in the past years [17,24,25].
Then we construct the ART under the guidance of the Büchi automaton until
a complete path is formed. If the path formed can be accepted by the Büchi
automaton, a candidate counterexample is found. To record the information
about the state of the Büchi automaton whose successors should be traversed
through the construction of ART, we further enrich the ART as enriched ART
(eART).

126 Z. Duan et al.

Definition 1. Enriched Abstract Reachability Tree (eART) is an ART with an
extra state f in the relative Büchi automaton decorated on each node expressing
that the Büchi automaton is running at state f . Precisely, a node in an eART
is denoted by n : (q, s, p, f), where n, q, s, and p are the same as in ART, and
f is a state in the relative Büchi automaton.

An eART can be seen as the product of an ART of the program and the
Büchi automaton equivalent to the LTL specification. Thus, a path (infinite)
in the eART which can be accepted by the Büchi automaton presents a flaw
that violates the desired property. Note that here all paths are infinite since
LTL formulas are tranditionally interpreted over infinite models. This can be
accomplished by adding a do-nothing self-loop at the last node of a finite path
in the ART in case the program is terminable.

Algorithm 2.1. Producing a counterexamples under the guidance of Büchi
automaton
Input: A CFA and a Büchi automaton
Output: A counterexample

1 Set Node Set ;
2 Stack Node Stack ;
3 Create the root node n0 : (q0, s0, p0, f0) with n0.q being the initial location in

the CFA, n0.s empty, n0.p empty, and n0.f the initial state in the Büchi
automaton;

4 push(Node Stack , n0);
5 while Node Stack �= ∅ do
6 n = pop(Node Stack);
7 if n ∈ Node Set then
8 if The path is acceptable by the Büchi automaton then
9 Return a candidate counterexample;

10 else
11 Continue;

12 else
13 put n in Node Set ;
14 Create the successors of n by going forward on the CFA and the Büchi

automaton simultaneously;
15 push all the created successors into Node Stack ;

16 Return: no counterexamples are found;

Given the CFA of a program and a Büchi automaton obtained from an
LTL specification, a candidate counterexample can be produced by Algorithm
2.1 where a set node set and a stack node stack are utilized to record all the
visited nodes as well as the nodes whose descendants are still required to be
checked, respectively. Initially, the root node n0 of the eART is created with
n0.q being the initial location in the CFA, n0.s an empty string, n0.p an empty

Verifying Temporal Properties of C Programs via Lazy Abstraction 127

set, and n0.f the initial state in the Büchi automaton. The root node is pushed
into the stack as soon as it is created. Whenever the stack is not empty, the
top node n is popped and put in node set if n is not a member of node set
yet. Otherwise, if n is already in node set , an infinite path is formed in the
eART. If the path is a valid one which is acceptable by the Büchi automa-
ton, a candidate counterexample is returned. Whenever a new member n joins
in node set , we create all of its successors by computing the production of all
the direct successors of n.q in the CFA and all the succeeding states of n.f in
the Büchi automaton. Precisely, the set of successors of n will be Suc(n) =
{n′ | n′.q ∈ Suc(n.q), n′.s depends on whether I((n.q, n′.q)) is a function call,
n′.f ∈ Suc(n.f), and n′.p is the label of the transition from n.f to n′.f in the
Büchi automaton.}. All nodes in Suc(n) are pushed into the stack node stack
immediately when they are created. Whenever the stack becomes empty, the
desired property is valid on the program.

Similar to the safety verification, a candidate counterexample is possible a
spurious path that is infeasible actually. To eliminate spurious counterexamples,
the verification proceeds on the CEGAR loop. That is when a candidate coun-
terexample is produced by Algorithm3.2, its feasibility is checked by an SMT
solver. If it is feasible, we return it as a real counterexample. Otherwise, new
predicates are discovered by interpolant and added at a proper node na. Then
the eARG is rebuilt from na in a lazy style by the same way in Algorithm 2.1.

2.3 Challenging Problem

Comparing the approach for verifying temporal properties with the original
safety property verification approach, most of the work can be reused such as
the ART construction process and the lazy abstraction supplemented CEGAR
loop. The differences are (1) a Büchi automaton equivalent to the given LTL
formula should be constructed; (2) the ART should be constructed under the
guidance of the obtained automaton; and (3) whether the paths formed in an
eART can be accepted by the Büchi automaton should be checked. The approach
is a general LTL specified temporal property verification method. However, to
construct the equivalent Büchi automaton from an LTL formula is expensive. It
is already known as an PSPACE-Complete problem [24]. What makes matters
worse is the resulting Büchi automaton is non-deterministic. This will exacerbate
the path explosion problem since to create the ART under the guidance of a non-
deterministic automata may bring in lots of useless attempts such that the scale
of the ART will grow exponentially. Conversely, if the automaton is determinis-
tic, the ART will be in a similar size with the one for verifying safety property.
However, to obtain an equivalent deterministic automaton from a nondetermin-
istic Büchi automaton is inherently expensive which notoriously resistant the
efficiency of temporal property verification of programs.

128 Z. Duan et al.

3 Verifying Temporal Properties of Programs over Finite
Traces

As a matter of fact, most of the programs in real-world are terminable. So, with
the general LTL model checking approach proposed in the previous section, to
work together with LTL which is interpreted over infinite models, an extra self-
loop doing nothing is always added to make the traces to be infinite when the
program is terminable. Then to check whether a path is accepted by an LTL
specification is quite nontrivial algorithmically due to the required fair cycle
test in LTL satisfaction. This makes a easier problem solved in a way with
unnecessary overhead. Thus, we are inspired to use LTL confined in finite traces
to specify temporal properties of terminable programs. For convenience, in the
rest of this section, we write LTL over finite models as LTL for convenience
unless noted otherwise.

3.1 Linear Temporal Logic

The syntax of LTL over finite models is the same as the original one over infinite
models. The only difference is that the former is interpreted over finite models
while the latter over infinite models [25]. Given a nonempty finite set of atomic
propositions AP, the set of LTL formulas over AP is the set of formulas built
from elements in AP using negation (¬), conjunction (∧), next (©), until (U),
and release (R) operators. The syntax is presented as follows [7]:

P ::= p | ¬φ | ϕ ∧ ψ | ©φ | ϕ U ψ | ϕ R ψ

where p ∈ AP, © (Next), U (Until), and R (Release) are temporal operations.
LTL formulas are interpreted over finite linear-time structures. A linear-time

structure over AP is a finite sequence x = x(0), x(1), · · · where each x(i) is
a valuation AP → {true, false}. Whether or not a formula φ holds on a finite
linear-time structure x at a position i, denoted by x, i |= φ is defined by the
following semantics:

x, i |= p if x(i)(p) = true, for p ∈ AP,
x, i |= ¬φ if x, i �|= φ,
x, i |= ϕ ∨ ψ if x, i |= ϕ or x, i |= ψ,
x, i |= ©ϕ if i is not the last state of the sequence, and x, i + 1 |= ϕ
x, i |= ϕ U ψ if there exists j ≥ i such that x, i′ |= ϕ for all i′ ∈ {i, i + 1, . . . , j − 1},

and x, j |= ψ
x, i |= ϕ R ψ if either x, j |= ψ for all j ≥ i, or there exists j ≥ i such that

x, i′ |= ψ for i′ ∈ {i, i + 1, . . . , j} and x, j |= ϕ

The abbreviations true, false, ∧, → and ↔ are defined as usual. In par-
ticular, true

def= φ ∨ ¬φ and false
def= φ ∧ ¬φ for any formula φ. In addi-

tion, eventually (�φ) and always (�φ) temporal constructs can be derived
by �φ

def= true U φ and �φ
def= ¬�¬φ, respectively. Since the formulas are

Verifying Temporal Properties of C Programs via Lazy Abstraction 129

interpreted over finite models, a new abbreviation empty is defined by:
empty

def= ¬ © true for convenience. Intuitively, empty means that there exists
no ‘next’ states [8].

In what follows, Deterministic Normal Form (DNF) is presented for LTL
formulas.

Definition 2 (Deterministic Normal Form, DNF). DNF of an LTL for-
mula φ is defined by: φ = β∧empty∨∨

i

βi∧©φi where β and each βi is a typical

propositional logic formula (called state formula) without any temporal operators,
and φi an arbitrary LTL formula. The restriction is that for any different i and
j, βi ∧ βj = false.

Each disjunct in a DNF explicitly expresses a deterministic transition relation
as depicted in Fig. 1.

Intuitively, it shows that to satisfy φ, there must exist a unique i such that
the state formula βi is satisfied at the current state, and φi is required to hold
at the next one; or β holds at the current state but there exist no next states.
For convenience, we call β ∧ empty the terminating part while

∨

i

βi ∧ ©φi the

non-terminating part in the DNF. Also, we use Dnf(φ) to denote the DNF of
formula φ and Pre Dnf(φ) a pre deterministic normal form of φ which is nearly
the same as DNF except that βi ∧ βj = false is not required for all different i
and j.

∨

i

βi ∧ ©φi

φ

φ1

φ3

φ2

φi

...

βi

β3

β2

β1

α ∧ empty

φ ≡ ∨

α

empty

Fig. 1. Intuition of normal form

Theorem 1. Any LTL formula can be transformed in deterministic normal
form.

Proof: The proof proceeds by induction on the structures of LTL formulas. We
just consider ∧, ∨, ©, U and R operations since ¬ can be put forward in the
front of only atomic propositions [17].

130 Z. Duan et al.

– Dnf(φ) = φ ∧ empty ∨ φ ∧ ©true, if φ ∈ AP.
– Dnf(φ) = ¬ϕ ∧ empty ∨ ¬ϕ ∧ ©true if φ = ¬ϕ and ϕ ∈ AP.
– Dnf(φ) = Dnf(ϕ) ∧ Dnf(ψ) if φ = ϕ ∧ ψ.
– Dnf(φ) = true ∧ ©ϕ if φ = ©ϕ.
– Pre Dnf(φ) = Dnf(ϕ) ∨ Dnf(ψ) if φ = ϕ ∨ ψ.
– Pre Dnf(φ) = Dnf(ψ) ∨ Dnf(ϕ) ∧ ©(ϕ U ψ) if φ = ϕ U ψ.
– Pre Dnf(φ) = Dnf(ϕ) ∧ Dnf(ψ) ∨ Dnf(ψ) ∧ ©(ϕ R ψ) if φ = ϕ R ψ.

For the first four cases above, we have already represented them in DNF.
However, for the last three ones, further transformation is required such that
the state formulas in the non-terminating part are pairwise exclusive. Actually,
the results of the last three cases are all in the form of

∨

i

αi ∧©φi ∨
∨

j

βj ∧©ϕj ,

where βm ∧ βn = false and αm ∧ αn = false for any different m and n. For the
formula in this form, it can be further equivalently transformed to DNF by

∨

i

αi ∧ ©φi ∨ ∨

j

βj ∧ ©ϕj =
∨

i

∨

j

αi ∧βj ∧ ©(φi ∨ ϕj)

∨αi ∧ ¬βj ∧ ©φi ∨ ¬αi ∧ βj ∧ ©φi

As a result, any LTL formula can be transformed as DNF. �
With DNFs of LTL formulas, an equivalent Deterministic Finite Automaton

(DFA) can be constructed for any LTL formulas. The general idea for construct-
ing DFA is simple. To construct DFA of φ, initially, a root node φ is created.
Then we transform φ to its DNF: φ = β ∧ empty ∨ ∨

i

βi ∧ ©φi. Based on it, for

each i, a new node φi is created and a relative transition from φ to φi is created
with the label being βi. Meanwhile, the node empty with no successors and the
relative transition are also produced. To construct the whole graph structure
of φ’s DFA, the above procedure should then be applied similarly on the new
created nodes repeatedly until no new nodes can be produced. The initial node
in the DFA is the root node φ and the only accepting node is the empty node.
The equivalence of the obtained DFA and the original formula φ is ready to be
proved since DNFs precisely rely on the semantics of LTL formulas. The detail
of the proof is omitted here to save space. The algorithm for construction DFA
of an LTL formula is presented in Algorithm3.1 where a state S Stack is utilized
to record the states (formulas) whose successor states have not been produced
via DNF. At the beginning, the initial state φ is created and pushed inside the
stack. Next, the following three steps of operations are repeated until the stack
is empty. First, the top element ϕ of the stack is popped and put into S. Second,
ϕ is transformed into DNF. Third, if the terminating part exists, empty state is
put into S and the relative transition is put in T ; for the non-terminating part,
w.r.t to each disjunct βi ∧ ©ϕi, ϕi is pushed into the stack and the relative
transition is put into T . Eventually, when the stack is empty, the DFA is output
with empty being the only acceptable state.

3.2 Producing Counterexamples On-the-Fly

Even though most of the operations on DFAs are much easier than the ones on
NBAs, to construct the whole DFA of a given LTL formula is still expensive.

Verifying Temporal Properties of C Programs via Lazy Abstraction 131

Algorithm 3.1. LTL2DFA
Input: An LTL formula φ
Output: DFA: (S, s0, T, a)

1 Stack S Stack;
2 s0 = φ;
3 push(s0);
4 while S Stack �= ∅ do
5 ϕ = pop(S Stack);
6 Put ϕ in S ;
7 if β ∧ empty in Dnf(ϕ) then
8 Put empty in S;
9 Put (ϕ, β, empty) in T ;

10 for each βi ∧ ©ϕi do
11 push(ϕi);
12 Put (ϕ, βi, ϕi) in T

13 Return: (S, s0, T, a);

Hence, in practice, we are not required to build the whole DFA in advance.
Instead, we construct the DFA on-the-fly as long as the ART is constructed.
As a result, only parts of the DFA which are necessary for the verification are
constructed.

We still construct an eARG for producing a counterexample. Here, an eART
can be seen as the product of an ART of the program and the DFA of the
undesired property. Note that n.f of a node here is an LTL formula since the
states in DFA are named with LTL formulas as shown in Algorithm3.1.

Given the CFA of a program and an undesired temporal property φ in LTL,
a candidate counterexample can be produced by Algorithm3.2 where global
variables node set in set and node stack in stack are utilized to record all the
visited nodes as well as the nodes whose descendants are still need to be checked,
respectively. Initially, the root node n0 of the eART is created with n0.q being
the initial location in the CFA, n0.s an empty string, n0.p an empty set, and
n0.f the undesired property φ. The root node is pushed into the stack as soon
as it is created. Whenever the stack is not empty, the top node n is popped and
put inside node set immediately. Then, if Suc(n.q) 	= ∅, the set of n’s successors
suc n = {n′ | n′.q ∈ Suc(n.q), n′.p = β where β ∧ ©φ′ ∈ Nf(φ), I(n.q, n′.q) ∧
β 	= false, and n′.f = φ′} are created and pushed into the stack Node Stack ;
otherwise, if Suc(n.q) = ∅, n’s successors suc n = {n′ | n′.q = exit, n′.p =
β where β ∧ empty ∈ Nf(φ), and n′.f = empty} are created. Obviously, in this
case suc n is either a set with unique member or an empty set. If suc n 	= ∅,
a candidate counterexample is created by back traversing from n’ to the root.
When the stack becomes empty, it is returned that the desired property is valid
on the program.

132 Z. Duan et al.

Algorithm 3.2. Producing a candidate counterexample
Input: CFA of a program and the undesired property φ
Output: A candidate counterexample

1 Set Node Set ;
2 Stack Node Stack ;
3 Create the root node n0 : (q0, s0, p0, f0) with n0.q being the initial location in

the CFA, n0.s empty, n0.p empty, and n0.f φ;
4 push(Node Stack , n0);
5 while Node Stack �= ∅ do
6 n = pop(Node Stack);
7 put n in Node Set ;
8 if Suc(n.q) �= ∅ then
9 suc n = {n′ | n′.q ∈ Suc(n.q), n′.p = β where β ∧ ©φ′ ∈

Nf(φ), I(n.q, n′.q) ∧ β �= false, and n′.f = φ′};
10 push all the nodes in suc n into Node Stack ;

11 else
12 suc n = {n′ | n′.q = exit, n′.p = β where β ∧ empty ∈

Nf(φ), and n′.f = empty};
13 if suc n �= ∅ then
14 Return: a candidate counterexample

15 Return: no counterexamples are found;

3.3 Working Together with CEGAR

A candidate counterexample produced in an eARG presents a flaw that violates
the desired property. However, it is possible a spurious path that is infeasible
actually. To eliminates spurious counterexamples, the verification proceeds on
the CEGAR loop. That is when a candidate counterexample is produced by
Algorithm 3.2, its feasibility is checked by an SMT solver. If it is feasible, we
return it as a real counterexample. Otherwise, new predicates are discovered by
interpolant and added at a proper node na. Then the eARG is rebuilt from na

in the same way in Algorithm 3.2.
To work in coopration with lazy abstraction supplemented CEGAR,

Algorithm 3.2 is replenished as Algorithm 3.3 which is nearly the same as
Algorithm 3.2 except for that when a candidate counterexample is found at line
14, whether or not it is spurious is checked. In the case the path is not spurious,
it is returned as a real counterexample; otherwise, it is refined by lines 18–20.

4 Implementation

We have implemented the proposed approach in TPChecker to support the
verification of temporal properties of C programs expressible in LTL formulas.
It is developed upon the existing data structures, rules for forming path formu-
las, lazy abstraction based CEGAR, Craig interpolant, and graphical system in

Verifying Temporal Properties of C Programs via Lazy Abstraction 133

Algorithm 3.3. Produce a counterexample
Input: CFA of a program and the undesired property φ
Output: A counterexample

1 Set Node Set ;
2 Stack Node Stack ;
3 Create the root node n0 : (q0, s0, p0, f0) with n0.q being the initial location in

the CFA, n0.s being empty, n0.p being empty, and n0.f being φ;
4 push(Node Stack , n0);
5 while Node Stack �= ∅ do
6 n = pop(Node Stack);
7 put n in Node Set ;
8 if Suc(n.q) �= ∅ then
9 suc n = {n′ | n′.q ∈ Suc(n.q), n′.p = β where β ∧ ©φ′ ∈

Nf(φ), I(n.q, n′.q) ∧ β �= false, and n′.f = φ′};
10 push all the nodes in suc n to Node Stack ;

11 else
12 suc n = {n′ | n′.q = exit, n′.p = β where β ∧ empty ∈

Nf(φ), and n′.f = empty};
13 if suc n �= ∅ then
14 check the feasibility of the path from the root to n’ (a candidate

counterexample);
15 if the path is feasible then
16 Return: a counterexample

17 else
18 na, Predicate = Interpolant();
19 add Predicate in na.p;
20 deleting the descendant nodes of na in both Node Stack and

Node Set;

21 Return: no counterexamples are found;

CPAChecker. Figure 2 presents the outline of TPChecker. It takes the CFA
created by the C2CFA module and the undesired property expressed with an
LTL formula as the input to build eART. LTL2DNF and LTL2BA modules are
developed to transform an LTL formula into its deterministic normal form or
Büchi automaton, respectively. When a candidate counterexample is formed in
DFOTrav, it calls SpuriousCheck to determine whether the path is feasible. In
the case in which the path is feasible, it is output as a counterexample that
violates the desired property. Otherwise, if the path is found to be spurious, the
path formula is passed to Craig Interpolant for discovering new predicates and
the proper node for further refinement. Getting the discovered predicates pro-
vided by Craig Interpolant, Lazy module refines the current path and then back
to the DFOTrav module to build the eARG again. Whenever no new nodes can
be created by DFOTrav, the program is proved to be free of the specified errors.

134 Z. Duan et al.

In TPChecker, modules C2CFA, SpuriousChecking, Interpolant, and Lazy, are
directly adopted from CPAChcker.

Fig. 2. Outline of TPChecker

5 Experiments

This section demonstrates the practical effectiveness of our approach for tempo-
ral property verification of C programs. We evaluate 2 aspects of TPChecker’s
effectiveness to answer the following questions:

(1) How does TPChecker’s effectiveness compare to the existing approaches?
(2) How about TPChecker’s ability on the verification of real-world programs

with industrial scale?

All experiments in this paper were done on a PC with one processor Intel
(R) Core (TM) i7 CPU 870 @2.93GHz, 8GB RAM and Microsoft Windows 7
ultimate version 2009 Service Pack 1 (64 bit) with Eclipse.

5.1 Comparison with Existing Approaches

Among the existing tools, Ultimate LTL automizer developed in [26] is the most
recent one that outperforms DP in [13] and Termination in [12]. T2 improves on
TERMINATPR project [30], which supports CTL, Fair-CTL, and CTL* speci-
fications to verify user-provided liveness and safety properties for C programs.
We compare our tool TPChecker with Ultimate LTL automizer and T2 on
the benchmark programs drawn out from industrial code based utilized in [26]
which are also once utilized in [12,13] for evaluating termination and DP.

In Table 1, the experimental results are compared with Ultimate LTL
automizer and. The first column describes the code artifact. A symbol

√
indi-

cates that the tool proved the property, and × is used to denote cases where
bugs were found. In the case where the tool exceeded the timeout threshold of
20 min, “T.O.” is used to represent the time, and ??? the result. In the case in
which the tool runs out of memory, “O.M.” is used to represent the verification
result. It is obvious that less time is consumed by TPChecker on most of the

Verifying Temporal Properties of C Programs via Lazy Abstraction 135
T
a
b
le

1
.
E

x
p
er

im
en

ta
l
re

su
lt

s

P
ro

g
ra

m
L
in

es
P

ro
p
er

ty
U

L
A

u
to

m
iz

er
T
2

T
P
C
h
e
c
k
e
r

T
im

e
(m

s)
R

es
u
lt

T
im

e
(m

s)
R

es
u
lt

T
im

e
(m

s)
R

es
u
lt

E
x
.
S
ec

t.
2

o
f
[1

3
]

5
�

�
p

6
5
9

√
6
4
9

√
7
8
0

√

E
x
.
F
ig

.
8

o
f
[1

2
]

3
4

�
(p

→
�

q)
1
0
9
8

√
7
1
1
7

×
1
2
1
8

√

T
oy

a
cq

u
ir

e/
re

le
a
se

1
4

�
(p

→
�

q)
1
2
2
8

√
1
0
2
0
3

√
8
7
4

√

T
oy

li
n
ea

r
a
ri

th
.
1

1
3

p
→

�
q

1
5
2
6

×
3
1
0
1

×
1
2
2
3

×
T
oy

li
n
ea

r
a
ri

th
.
2

1
3

p
→

�
q

1
6
0
3

×
1
1
8
8

√
9
0
5

×
P
o
st

g
re

S
Q

L
st

rm
sr

v
2
5
9

�
(p

→
�

�
q)

1
5
9
4

√
1
5
2
1

√
1
4
3
6

√

P
o
st

g
re

S
Q

L
st

rm
sr

v
+

b
u
g

2
5
9

�
(p

→
�

�
q)

1
7
6
8

√
2
2
5
7
8
3

×
1
7
9
5

√

P
o
st

g
re

S
Q

L
p
g
a
rc

h
6
1

�
�

p
1
3
9
9

×
2
3
6
2

×
1
2
8
3

×
P
o
st

g
re

S
Q

L
d
ro

p
b
u
f

1
5
2

�
p

3
4
2
9

×
1
4
4
4

×
1
3
7
4

×
P
o
st

g
re

S
Q

L
d
ro

p
b
u
f

1
5
2

�
(p

→
�

q)
2
0
0
3

√
4
9
6
2

√
1
3
5
5

√

A
p
a
ch

e
a
cc

ep
t(

)
3
1
4

�
p

→
�

�
q

4
8
0

O
.M

.
2
6
2
1

×
1
1
2
4

√

A
p
a
ch

e
p
ro

g
re

ss
3
1
4

�
(p

→
(�

q 1
∨

�
q 2

))
3
1
5
3

√
6
7
5
7

×
9
2
0

√

W
in

d
ow

s
O

S
1

1
8
0

�
(p

→
�

q)
2
8
7
8
3

√
1
9
5
4

×
1
7
1
8

√

W
in

d
ow

s
O

S
2

1
5
8

�
�

p
1
0
2
7

√
1
3
4
1

√
9
1
2

√

W
in

d
ow

s
O

S
2

+
b
u
g

1
5
8

�
�

p
1
6
9
6

×
3
4
0
8

×
1
1
7
1

×
W

in
d
ow

s
O

S
3

1
4

�
�

p
8
0
1

√
1
1
6
5

√
9
1
9

√

W
in

d
ow

s
O

S
4

3
2
7

�
(p

→
�

q)
4
1
1
9

√
2
1
8
8
4
5

×
4
0
3
0

√

W
in

d
ow

s
O

S
4

3
2
7

(�
p
)
∨

(�
q)

6
0
0

O
.M

.
1
9
5
4
2

√
1
7
4
9

×
W

in
d
ow

s
O

S
5

6
4
8

�
(p

→
�

q)
3
4
9
5
2

√
8
6
3

√
2
7
9
9

√

W
in

d
ow

s
O

S
6

1
3

�
�

p
T

.O
.

??
?

2
8
0
3

√
1
0
4
0

√

W
in

d
ow

s
O

S
6

+
b
u
g

1
3

�
�

p
1
0
3
3

×
1
2
1
7

×
9
9
9

×
W

in
d
ow

s
O

S
7

1
3

�
�

p
3
6
5
1

√
8
4
3
8

√
9
3
1

√

W
in

d
ow

s
O

S
8

1
8
1

�
�

p
7
7
8
1
6
5

√
6
7
1

√
1
0
4
6

√

2
3

p
ro

g
ra

m
s

in
to

ta
l

9
4
6
7
6
7

2
0

(8
6
.9

6
%

)
5
2
7
9
5
5

1
7

(7
3
.9

1
%

)
3
1
6
1
1

2
3

(1
0
0
%

)

136 Z. Duan et al.

programs. Totally, only about 3.3% time consumed by Ultimate LTL automizer
is required by TPChecker to accomplish the verification task. Compared with
T2, the percentage is 5.99%. In addition, among the 23 programs in the bench-
mark, TPChecker successfully outputs the results on all the programs while
only 86.96% are worked out by Ultimate LTL automizer and 73.91% by T2.

5.2 Scalability Evaluation on RERS

To evaluate the scalability of TPChecker on the verification of real world pro-
grams, we apply it on the on-site problems from the RERS Grey-Box challenge
2012 [29]. We directly download the benchmark including 6 problem classifica-
tions (P14–19) that are verified by Ultimate LTL automizer. The classification
encodes the size and assumed difficulty of the problem class: P14 and P15 are
small, P16 and P17 are medium, and P18 and P19 are large problems. The larger
number means a higher difficulty. As known in [26], Ultimate LTL automizer fails
on all the 50 programs in P19 where the average size of the programs is 8079
lines. As our target is to evaluate the scalability of TPChecker, we work only
on P19 which contains the largest problems by both tools. While Ultimate LTL
automizer still fails on all 50 programs, TPChecker successfully reports the
verification results on 25 of 50 programs in the timeout threshold of 20 min as
shown in Table 2.

Table 2. Scalability evaluation on RERS

Program set Amount Avg. lines
√ × O.M T.O

RERS P19 50 8079 24 1 0 25

6 Related Work

Lazy abstraction supplemented CEGAR has been implemented in software
model checkers such as BLAST [5], CPAChecker [3], SLAM [4], and so forth.
Thanks to these efforts, software model checkers are able to work on software
systems in industrial circles. Among them, CPAChecker and BLAST are most
related to ours. Both tools are typically used for the verification of safety prop-
erties expressed as assertions in the code. But they can only be utilized to verify
limited liveness properties of programs. Our work strengthens lazy abstraction
supplemented CEGAR-based software model checking with the ability of LTL
specified temporal property verification. That is we can verify temporal proper-
ties of programs which can be expressed as LTL formulas. As a matter of fact,
LTL specifications subsume safety properties. Hence, the original safety property
verification with lazy abstraction supplemented CEGAR approach is still sup-
ported. The difference is that it is not checked by instrumenting the programs

Verifying Temporal Properties of C Programs via Lazy Abstraction 137

with assertions and then checks the reachability. Instead, all temporal proper-
ties, including safety properties, which can be specified with LTL formulas are
all carried on in a unified approach.

LTL specified temporal property verification has been studied in several tools
which can be classified mainly into two categories. The first one includes the
explicit-state model checkers where the verification relies on the dynamic exe-
cution of the program under a given input. Thus, verification in this way is
closely relative to the testing approach since it is hard to enumerate all the pos-
sible input. Verification of software in this way is inherited from the traditional
model checking approach on finite state systems such as protocols and circuits.
Tools in this category includes SPIN [15], Divine [9], Bandera [27], Cadence SMV
[28] and so on. Among them, SPIN and Divine can support LTL model checking
of C programs and Bandera for Java programs. To verify an LTL specification
of C programs with SPIN [14,15], a front-end tool Modex is used to transform a
C program as a Promela program. Then SPIN runs the Promela program with
an interpreter to check whether the specification is valid on the Promela model
[14].

The second category contains the tools which do not rely on dynamic exe-
cution of the program. Since the state space of programs is infinite even if we
restrict programs to be terminable. The verification is indeed a proof of the
program instead of testing as in the first category. In this category, an earlier
approach is proposed in [12] which reduces the problem to fair termination check-
ing. The mostly recent work in [26] improves it by checking fair termination only
when it is necessary. Thus, a large number of termination checks are avoided.
In [10,13], the authors reduce the LTL model checking problem to the prob-
lem of checking ∀CTL by first approximating the LTL formula with a suitable
CTL formula and then refining counterexamples that represent multiple paths
by introducing non-deterministic prophecy variables, which is removed subse-
quently through a determinization procedure, in their program representation.
With this approach, they reduce the problem to a termination proof task. Our
work belongs to the second category. In contrast to the existing work, we rely
on the mature lazy-abstraction supplemented CEGAR based program analysis
approach to verify LTL specification. The things required are checked among the
process for constructing eARTs. Considering the fact that most of the programs
in real-world are terminable, we also use LTL confined in finite traces to specify
temporal properties. As a result, the nontrivial algorithmically fair cycle test in
LTL satisfaction checking can be avoided in case the program to be verified is
terminable. Among the existing tools, Ultimate LTL automizer developed in [26]
is the most recent one that outperforms DP in [13] and Termination in [12]. We
evaluate our tool TPChecker on the benchmark utilized in [26]. Experiments
show that our tool is competitive with Ultimate LTL automizer.

7 Conclusions

To verify temporal properties of C programs practically, this paper presents
a lazy abstraction supplemented CEGAE based temporal property verification

138 Z. Duan et al.

approach of C programs. To evaluate it, we have implemented the proposed app-
roach in TPChecker. Experimental results show that TPChecker performs
well in practice.

In the near future, different kinds of properties that are required to be verified
in C programs will be studied and automatic temporal property formalizing
methods will be investigated. Strategies for improving the efficiency will also be
carried out.

References

1. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). doi:10.1007/BFb0025774

2. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems
in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming
1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982). doi:10.1007/
3-540-11494-7 22

3. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 16

4. Ball, T., Bounimova, E., Kumar, R., Levin, V.: SLAM2: static driver verification
with under 4% false alarms. In: FMCAD 2010, pp. 35–42 (2010)

5. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–
239. Springer, Heidelberg (2003). doi:10.1007/3-540-44829-2 17

6. Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th IEEE Sympo-
sium on Foundations of Computer Science, pp. 46–57 (1977)

7. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, volume B: Formal Methods and Semantics, pp.
995–1072 (1990)

8. Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection
temporal logic with infinite models. Acta Informatica 45(1), 43–78 (2008)

9. http://divine.fi.muni.cz/
10. Koskinen, E.: Temporal verification of programs, Ph.D. thesis, University of Cam-

bridge (2012)
11. Craig, W.: Linear reasoning. A new form of the Herbrand - Gentzen theorem.

Symb. Log. 22(3), 250–268 (1957)
12. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that

programs eventually do something good. In: POPL 2007, pp. 265–276 (2007)
13. Cook, B., Koskinen, E.: Making prophecies with decision predicates. In: POPL

2011, pp. 399–410 (2011)
14. Holzmann, G.J.: The model checker spin. IEEE Trans. Softw. Eng. 23(5), 279–295

(1997)
15. http://spinroot.com/spin/whatispin.html
16. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Pro-

ceedings of Symposium on Principles of Programming Languages, pp. 58–70 (2002)
17. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,

Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001). doi:10.1007/3-540-44585-4 6

http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/3-540-44829-2_17
http://divine.fi.muni.cz/
http://spinroot.com/spin/whatispin.html
http://dx.doi.org/10.1007/3-540-44585-4_6

Verifying Temporal Properties of C Programs via Lazy Abstraction 139

18. Kroening, D., Weissenbacher, G.: Verification and falsification of programs with
loops using predicate abstraction. Formal Asp. Comput. 22(2), 105–128 (2010)

19. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). doi:10.
1007/3-540-63166-6 10

20. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Principles of Programming Languages (POPL), pp 232–244. ACM Press,
New York (2004)

21. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
459–473. Springer, Heidelberg (2006). doi:10.1007/11691372 33

22. Terauchi, T., Unno, H.: Relaxed stratification: a new approach to practical com-
plete predicate refinement. In: Proceedings of the 24th European Symposium on
Programming (ESOP 2015) (2015)

23. Cordeiro, L., Fischer, B., Verifying multi-threaded software using SMT-based
context-bounded model checking. In Proceedings of the International Conference
on Software Engineering (ICSE 2011), pp. 331–340. ACM (2011)

24. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logic.
J. ACM 32, 733–749 (1985)

25. De Giacomo, G., Vardi, M.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2013, pp. 2000–2007 (2013)

26. Dietsch, D., Heizmann, M., Langenfeld, V., Podelski, A.: Fairness modulo theory:
a new approach to LTL software model checking. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 49–66. Springer, Cham (2015). doi:10.
1007/978-3-319-21690-4 4

27. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S.: Bandera:
extracting finite-state models from Java source code. In: ICSE 2000, pp. 439–448
(2000)

28. Cadence SMV. http://www.kenmcmil.com/smv.html
29. Howar, F., Isberner, M., Merten, M., Steffen, B., Beyer, D.: The RERS grey-

box challenge 2012: analysis of event-condition-action systems. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 608–614. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-34026-0 45

30. Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., Piterman, N.: T2: temporal
property verification. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 387–393. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 22

http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/11691372_33
http://dx.doi.org/10.1007/978-3-319-21690-4_4
http://dx.doi.org/10.1007/978-3-319-21690-4_4
http://www.kenmcmil.com/smv.html
http://dx.doi.org/10.1007/978-3-642-34026-0_45
http://dx.doi.org/10.1007/978-3-662-49674-9_22

Combining Event-B and CSP: An Institution
Theoretic Approach to Interoperability

Marie Farrell(B), Rosemary Monahan, and James F. Power

Department of Computer Science, Maynooth University, Maynooth, Ireland
mfarrell@cs.nuim.ie

Abstract. In this paper we present a formal framework designed to
facilitate interoperability between the Event-B specification language
and the process algebra CSP. Our previous work used the theory of insti-
tutions to provide a mathematically sound framework for Event-B, and
this enables interoperability with CSP, which has already been incorpo-
rated into the institutional framework. This paper outlines a comorphism
relationship between the institutions for Event-B and CSP, leveraging
existing tool-chains to facilitate verification. We compare our work to
the combined formalism Event-B‖CSP and use a supporting example to
illustrate the benefits of our approach.

1 Introduction

Event-B is an industrial strength formal method that allows us to model a sys-
tem’s specification at various levels of abstraction using refinement and prove
its safety properties [1]. The most primitive components of an Event-B speci-
fication are events, which are triggered non-deterministically once their guards
evaluate to true. Much work has been done on imposing control on when events
are triggered, as this models state changes in the system [7,18,21]. Our contri-
butions seek to provide a mathematical grounding to this work using the theory
of institutions and its underlying category theoretic framework [5]. As a result,
we provide developers with the ability to add (CSP) control to Event-B specifi-
cations. This is achieved through our description of an institution comorphism
between an institutional representation of Event-B (EVT CASL) and an institu-
tional representation of CSP-CASL (CSPCASL) [16].

This document is structured as follows. In the remainder of Sect. 1 we outline
the relevant background, motivate our work, and introduce our running exam-
ple of a bounded retransmission protocol. Section 2 contains a brief overview
of the institutions for CASL (the Common Algebraic Specification Language),
EVT CASL and CSPCASL. In Sect. 3 we outline the comorphism relating the
institutions EVT CASL and CSPCASL. We illustrate the use of the syntactic
components of this comorphism with respect to our running example in Sect. 4
and discuss implications for refinement of specifications [1,19]. Finally, we con-
clude by outlining directions for future work.

M. Farrell–This work is funded by a Government of Ireland Postgraduate Grant from
the Irish Research Council.

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 140–156, 2017.
https://doi.org/10.1007/978-3-319-68690-5 9

Combining Event-B and CSP 141

1 CONTEXT brp c0
2 SETS STATUS
3 CONSTANTS working, success, failure
4 AXIOMS
5 axm1: STATUS = {working, success,

failure}
6 axm2: working �= success
7 axm3: working �= failure
8 axm4: success �= failure
9 END

10 MACHINE b 0 SEES brp c0
11 VARIABLES r st, s st
12 INVARIANTS
13 inv1: r st ∈ STATUS
14 inv2: s st ∈ STATUS
15 EVENTS
16 Initialisation
17 then
18 act1: r st := working
19 act2: s st := working
20 Event brp =̂ ordinary
21 when
22 grd1: r st �= working
23 grd2: s st �= working
24 then
25 Skip
26 Event RCV progress =̂ anticipated
27 then
28 act1: r st :∈ {success, failure}
29 Event SND progress =̂ anticipated
30 then
31 act1: s st :∈ {success, failure}
32 END

Fig. 1. An Event-B model of the bounded retransmission protocol, consisting of a
context (lines 1–9) that specifies a new data type called STATUS, and a specification for
an abstract machine b 0 (lines 10–32) [1].

1.1 Event-B and a Running Example

Event-B is a state-based formalism for system-level modelling and analysis. It
uses set theory as a modelling notation, refinement to represent systems at dif-
ferent levels of abstraction and mathematical proof to verify consistency between
refinement levels [1]. In an Event-B model, static aspects of a system are specified
in contexts, while dynamic aspects are modelled in machines. Each machine spec-
ifies states and events which update that state. Refinement between machines
involves the addition of new variables and events, making the initial model more
concrete. Refinement steps generate proof obligations so as to ensure that the
refined machine does not invalidate the original model. Event-B is supported by
its Eclipse-based IDE, the Rodin Platform, which provides support for refinement
and automated proof [2].

Figure 1 contains an Event-B specification of a bounded retransmission pro-
tocol which we use as a running example throughout this paper [1,19]. The
specification corresponds to the sequential file transfer from a sender site to a
receiver site [1, Ch. 6]. The Event-B context specifies a data type called STATUS
(line 2) that contains the three distinct values working, success and failure
(lines 3–8). The corresponding abstract machine introduces two state variables
of type STATUS: these are r st for the receiver and s st for the sender (lines
11–14). The Initialisation event (lines 16–19) sets both of these variables to
the value working.

The events RCV progress and SND progress update the associated state
variable to either success or failure (lines 26–28 and 29–31 respectively). Both
events have the status anticipated which means that they must not increase the

142 M. Farrell et al.

1 P0 = S0 ‖ R0
2 S0 = SND progress → brp → STOP
3 R0 = RCV progress → brp → STOP

Fig. 2. An Event-B‖CSP process
specification [19].

Fig. 3. Using the flows plugin to model
the Event-B‖CSP process specification in
Fig. 2.

variant expression in the machine. However, since there is no variant expression
in this machine, this condition is not evaluated. While this labelling may seem
redundant, it is a common development strategy used in Event-B and, in this
case, reminds developers that these events should be refined to convergent
events in future refinement steps. The event brp (lines 20–25) is triggered when
both variables are no longer set to working, thus indicating that the protocol
has completed [19].

1.2 Related Work on Adding Event Ordering to Event-B Machines

Developers often wish to model the order in which events are triggered, and
specifically, how newly added events relate to previous events. Currently, control
can only be implemented in Event-B in an ad hoc manner, typically by adding a
machine variable to represent the current state. Each event must then check the
value of this variable in its guard, and if this value indicates that the machine
is ready to move into the next state then the appropriate event is triggered.

An alternative approach to introducing control is provided by the Event-
B‖CSP formalism which combines Event-B with CSP, so that CSP controllers
can be specified alongside Event-B machines facilitating an explicit approach to
control flow [18]. CSP is a process algebra specifically designed to specify control
oriented applications, using processes that can be composed in a variety of ways
[6]. The subset of CSP made available by Event-B‖CSP is:

P ::= e → P | P1 � P2 | P1 � P2 | P1‖P2 | S

where P , P1 and P2 are processes, e is a CSP event and S is a process variable.
The semantics of CSP can be evaluated over a number of semantic domains.
These include the traces (sequences of events that a process can engage in after
the Initialisation event), failures (events the process might refuse after a
trace) and divergences (traces after which the process might diverge).

The combination of Event-B and CSP in Event-B‖CSP results in a clear sep-
aration between the data-dependent and control-dependent aspects of a model,
allowing proof obligations concerning control-flow to be discharged within the
CSP framework. However, at the time of writing, no tool support has been explic-
itly provided for this approach, at either the Event-B or CSP level. The ProB
animator and model checker can be used to explore Event-B models with CSP
controllers for consistency [10]. Since it was not developed with Event-B‖CSP
in mind there are some incompatibility issues: in particular, it is only feasible to
check refinement for small examples.

Combining Event-B and CSP 143

Figure 2 contains an Event-B‖CSP process specification to be used alongside
the Event-B model in Fig. 1. Here, three CSP processes are defined for use with
the machine b 0, splitting the specification into sender and receiver controllers
(S0 and R0 respectively) that are combined in parallel by P0. This approach was
taken by Schneider et al. to model the repeating behaviour of the sender and
receiver using CSP, and to model the state using Event-B [19].

Another perspective is provided by the Flows plugin for Rodin, which extends
Event-B models with event ordering(s) [7]. Flow diagrams represent the possible
use cases of Event-B models. These flows resemble those used in process algebras
such as CSP. A simple graphical notation is used, with a trace semantics provided
over the sequence of events in the machine. No new Event-B specifications are
generated by the Flows plugin. Instead new proof obligations are created to assist
reasoning about whether or not a flow is feasible in a given Event-B model. The
generated proof obligations characterise the relationship between the after-state
of one event and the guard (before-state) of another.

Figure 3 illustrates a potential use case using the flows plugin, corresponding
to the Event-B‖CSP specification in Fig. 2, introducing control to the Event-B
machine b 0 (Fig. 1). Notice that it is not possible to indicate parallel compo-
sition here using the flows plugin. We can only specify S0 and R0 separately.
Therefore, we conclude that the Event-B‖CSP specification outlined in Fig. 2 is
much more expressive that the flow described in Fig. 3.

2 Background on Institutions

The theory of institutions was originally developed by Goguen and Burstall in
a series of papers originating from their work on algebraic specification [5]. An
institution is composed of signatures (vocabulary), sentences (syntax), models
and a satisfaction condition (semantics). Figure 4 contains a summary of the
definitions for these components. The key observation is that once the syntax
and semantics of a formal system have been defined in a uniform way, using
some basic constructs from category theory, then a set of specification-building
operators can be defined that allow specifications to be written and modularised
in a formalism-independent manner [17].

Institutions have been defined for many logics and formalisms, including for-
mal languages such as Event-B, UML and CSP [3,9,12]. We can achieve inter-
operability between different logics by constructing a comorphism between their
institutions. Figure 5 contains a summary of the definitions for the components
of an institution comorphism, which broadly consist of mappings for each of the
elements in an institution, as referred to in Fig. 4. Figures 4 and 5 are brief sum-
maries of the relevant constructions; full details can be found in the literature
[5,17]. Readers familiar with Unifying Theories of Programming may note that
the notion of institutions, in this way, is similar to that of a “theory supermar-
ket” where one can shop for theories with the confidence that they will work
together [4].

144 M. Farrell et al.

An institution is composed of:
Vocabulary: A category Sign of signatures, with signature morphisms σ : Σ → Σ′

for each signature Σ, Σ′ ∈ |Sign|.
Syntax: A functor Sen : Sign → Set giving a set Sen(Σ) of Σ-sentences for each

signature Σ and a function Sen(σ) : Sen(Σ) → Sen(Σ′) which translates Σ-
sentences to Σ′-sentences for each signature morphism σ : Σ → Σ′.

Semantics: A functor Mod : Signop → Cat giving a category Mod(Σ) of Σ-
models for each signature Σ and a functor Mod(σ) : Mod(Σ′) → Mod(Σ) which
translates Σ′-models to Σ-models (and Σ′-morphisms to Σ-morphisms) for each
signature morphism σ : Σ → Σ′.

A Satisfaction Relation |=INS,Σ⊆ |Mod(Σ)| × Sen(Σ), determining satisfaction
of Σ-sentences by Σ-models for each signature Σ.

An institution must uphold the satisfaction condition: for any signature morphism
σ : Σ → Σ′ the translations Mod(σ) of models and Sen(σ) of sentences

M ′ |=INS,Σ′ Sen(σ)(φ) ⇔ Mod(σ)(M ′) |=INS,Σ φ
for any φ ∈ Sen(Σ) and M ′ ∈ |Mod(Σ′)| [5].

Fig. 4. A brief summary of the definitions for the main components of an institution.

An institution comorphism ρ : INS → INS′ is composed of:
A functor: ρSign : Sign → Sign′

A natural transformation: ρSen : Sen → ρSign ; Sen′, that is, for each Σ ∈ |Sign|,
a function ρSen

Σ : Sen(Σ) → Sen′(ρSign(Σ)).
A natural transformation: ρMod : (ρSign)op ; Mod′ → Mod, that is, for each

Σ ∈ |Sign|, a functor ρMod
Σ : Mod′(ρSign(Σ)) → Mod(Σ).

An institution comorphism must ensure that for any signature Σ ∈ |Sign|, the trans-
lations ρSen

Σ of sentences and ρMod
Σ of models preserve the satisfaction relation, that is,

for any ψ ∈ Sen(Σ) and M ′ ∈ |Mod(ρSign(Σ))|:
ρMod

Σ (M ′) |=Σ ψ ⇔ M ′ |=′
ρSign (Σ) ρSen

Σ (ψ)
and the relevant diagrams in Sen and Mod commute for each signature morphism in
Sign [5].

Fig. 5. A brief summary of the main components of an institution comorphism, which
is one way of combining specifications from different institutions.

The institutions relevant to this paper are the institutions for CASL, CASL,
CSP-CASL, CSPCASL, and our definition of the institution for Event-B, EVT -
CASL. Originally, we defined the institution EVT for Event-B to be built on top
of the institution for first-order predicate logic with equality [3]. In this paper,
we build our institution EVT CASL on top of the (more general) institution
for CASL, of which FOPEQ is a sublogic. The main components of these are
summarised in Fig. 6. We do not delve deeply into their components here, but
refer the reader to the literature and our website for further information1.

The CSPCASL institution is built on the definition of the institutions CSP
and CASL [12,13]. A specification over CSPCASL consists of a data part
(written as a structured CASL specification), a channel part and a process part

1 http://www.cs.nuim.ie/∼mfarrell/extended.pdf.

http://www.cs.nuim.ie/~mfarrell/extended.pdf

Combining Event-B and CSP 145

CASL: The institution for CASL [13]:
– Signatures are triples of the form 〈S , Ω, Π〉, containing sort names, sort/arity

indexed operation names (representing total and partial functions), sort-indexed
predicate names and a subsort relation.

– Sentences are first order formulae and term equalities.
– Models contain a carrier set corresponding to each sort name, a function over sort

carrier sets for each operation name and a relation over sort carrier sets for each
predicate name.

– The satisfaction relation is the usual satisfaction of first-order structures in
first-order sentences.

CSPCASL: The institution for CSP-CASL [16]:
– Signatures are tuples 〈ΣData ,C , ΣProc〉 where ΣData is a basic CASL signature,

C is a set of sort-indexed channel names and ΣProc = Nw,comms is a family of
finite sets of process names. For every n ∈ Nw,comms , w is a sequence of sort names
corresponding to the parameter type of n and comms ⊆ S is the set of all types
of events that n can engage in.

– Sentences are either CASL sentences or CSP process sentences.
– Models are pairs of the form 〈A, I 〉 where A is a CASL-model and I is a family

of process interpretation functions. Each process interpretation function takes as
arguments a process name and suitable parameters, and returns a CSP denotation
for the appropriate CSP semantic domain (traces/failures/divergences).

– The satisfaction relation for process sentences is two-phase: (i) process terms
are evaluated in process sentences using the CASL semantics, thus replacing each
term by its valuation; (ii) the CSP semantics is than applied in the usual way for
the specific semantic domain (traces/failures/divergences).

EVT CASL: The institution for Event-B [3]:
– Signatures are tuples of the form 〈S , Ω, Π,E ,V 〉, where 〈S , Ω, Π〉 is a CASL

signature, E is a set of (event name, status) pairs, and V is a set of sort-indexed
variable names.

– Sentences are pairs of the form 〈e, φ(x , x ′)〉 where e is an event name and φ(x , x ′)
is a CASL-formula. Here x is the set of free variable names from V and x ′ is the
same set with each variable name primed.

– Models are triples 〈A,L,R〉 where A is a CASL model, L contains sets of variable-
to-value mappings for each of the primed versions of the variable names in V . R
is a set of relations over the before and after variable-to-value mappings for every
(non-initial) event name in E .

– The satisfaction relation uses a comorphism between CASL and EVT to eval-
uate the satisfaction of EVT CASL sentences and models over CASL.

Fig. 6. The principal components of the institutions for the common algebraic specifi-
cation language (CASL), CSP-CASL (CSPCASL) and Event-B (EVT CASL).

(written using CSP) [16]. The inclusion of channels is a form of syntactic sugaring
as specifications with channels can easily be translated into those without but they
provide a more convenient notation so we include them to aid in readability [14].

In Sect. 3, we outline the institution comorphism between CSPCASL and
our institution for Event-B, EVT CASL. This is the theoretical foundation and

146 M. Farrell et al.

main contribution of our work and we use it to create a sound mechanism that
has enabled us to achieve interoperability between CSP and Event-B.

2.1 Tool Support and Avenues to Interoperability

The Heterogeneous Toolset (Hets), written in Haskell, provides a general frame-
work for parsing, static analysis and for proving the correctness of specifications
in a formalism independent and thus heterogeneous manner [11]. In Hets, each
formalism (expressed as an institution) is represented as a logic. In this setting,
interoperability between formalisms is defined using institution comorphisms to
relate the syntax of different logics and formalisms.

The institutions for CASL and CSPCASL have already been implemented
in Hets. One notable feature available via Hets is the CSPCASLProver, a
prover for CSPCASL based on the CSP-Prover [8]. It uses the Isabelle theorem
prover to prove properties about specifications over the permitted CSP semantic
domains [15]. We have added an implementation for our institution for Event-B,
EVT CASL, to Hets.

In previous work, we have defined a translational semantics for Event-B spec-
ifications using the institutional language of EVT CASL. We have implemented
this via a parser for the Event-B files that are generated by Rodin. In this way
we bridge the gap between the Rodin and Hets software ecosystems, enabling
the analysis and manipulation of Event-B specifications in the interoperability-
friendly environment made available by Hets. Using our translational semantics
for Event-B [3] we generate the EVT CASL signatures and sentences (as shown
in Fig. 7) that correspond to the Event-B model defined in Fig. 1.

1 Σbrp c0 = 〈 S , Ω, Π, E , V 〉 where
2 S = {STATUS},
3 Ω = {working:STATUS, success:STATUS,
4 failure:STATUS},
5 Π = {}, E = {}, V = {}

6 Σb 0 = 〈 S , Ω, Π, E , V 〉 where
7 S = {STATUS,BOOL},
8 Ω = {working:STATUS, success:STATUS,
9 failure:STATUS},

10 Π = {},
11 E =
12 {(brp, Ordinary),
13 (RCV progress, Anticipated),
14 (SND progress, Anticipated),
15 (e init, Ordinary)},
16 V = {(r st:STATUS), (s st:STATUS)}

The sentences in Sen(Σbrp c0) that correspond to
the Event-B context in Figure 1 are:

17 {〈e init, STATUS = {working, success,failure}〉
18 〈e init, working �= success〉
19 〈e init, working �= failure〉
20 〈e init, success �= failure〉}

The sentences in Sen(Σb c0) that correspond to
the Event-B machine in Figure 1 are:

21 {〈e init, STATUS = {working, success, failure}〉
22 〈e init, working �= success〉
23 〈e init, working �= failure〉
24 〈e init, success �= failure〉
25 〈e init, (r st’ = working ∧ s st’ = working)〉
26 〈brp, (r st �= working ∧ s st �= working)〉
27 〈RCV progress, (r st :∈ {success, failure})〉
28 〈SND progress, (s st :∈ {success, failure})〉}

Fig. 7. The EVT CASL signatures and sentences generated, using our translational
semantics parser, from the Event-B model in Fig. 1. We use subscript notation to
indicate the origin of each of these signatures and sentences.

Combining Event-B and CSP 147

3 Translating EVT CASL specifications to CSPCASL
specifications

We outline a comorphism-based translation between EVT CASL and CSPCASL.
Both of these institutions rely on CASL to model the static components of a
specification, with Event-B events and CSP processes used to model dynamic
behaviour. There are a number of potential approaches to the construction of a
comorphism. We could have opted to translate specifications written over both
institutions into specifications written over CASL, as CASL is the base layer of
both EVT CASL and CSPCASL. However, this would lead to the loss of event,
channel and process names, unless we used additional annotations alongside
the translation. Instead, our approach translates directly from EVT CASL to
CSPCASL, thus ensuring that the event, channel and process names are not lost.
We use the event names in CSPCASL process definitions in order to introduce
control over EVT CASL specifications.

3.1 An Institution Theoretic Translation

Here we outline the process that we used to define our institution theoretic
translation ρ : EVT CASL → CSPCASL and the difficulties that we encoun-
tered. There are three components to an institution comorphism but only the
first two are required in order to implement a comorphism translation in Hets.
These are the signature and sentences translations described below.

Signature Translation:

ρSign : SignEVT CASL → SignCSPCASL

Given the EVT CASL signature 〈S , Ω,Π,E ,V 〉, we form the CSPCASL sig-
nature 〈ΣData ,C , ΣProc〉. Since both institutions are based on CASL, we map
〈S , Ω,Π〉 to ΣData . We enrich S , the set of sort names, with the new sort Event
whose carrier set consists of dom(E). For each event name e ∈ dom(E), we
construct the 0-ary operation e, of sort Event, and add it to Ω. Finally, we
equip ΣProc with the new process names E e, one for each e ∈ dom(E). Each
variable in V is represented by two channels in C of the variable’s sort, one for
its before value and one for its after value, in order to facilitate variable input
for processes.

Sentence Translation:

ρSen : SenEVT CASL → ρSign ; SenCSPCASL

Each EVT CASL sentence is of the form 〈e, φ(x , x ′)〉 where e is the event
name and φ(x , x ′) is a formula over the before and after values of the variables
in the signature Σ. As CSPCASL specifications are over some base logic we
assume that this logic corresponds to the base logic of the mathematical pred-
icate language of Event-B for the processes that we construct [12]. Then for
each EVT CASL sentence ρSen yields the following CSPCASL process sentence:

E e = ?c1.x 1 . . . c2n .x ′
2n → (if φ(x , x ′) then e → STOP else STOP)

148 M. Farrell et al.

The notation ?c1.x 1 . . . c2n .x ′
2n takes a sort appropriate value for each the vari-

ables x 1, . . . , x ′
2n as input on the designated channel for that variable. This

indicates that if the formula φ(x , x ′) evaluates to true then the corresponding
event e has been triggered. Using the process STOP is safe as it does nothing.

Model Translation: The signature and sentence translations described above
are sufficient for the implementation of an institution comorphism in Hets.
However, in order to provide a theoretic underpinning to this translation by
correctly defining an institution comorphism we must also provide a translation
for the models:

ρMod : (ρSign)op ; ModCSPCASL → ModEVT CASL

Here ρMod(〈A, I 〉) = 〈A,L,R〉 and consists of two maps, the identity map on
the CASL model components and a map from I to 〈L,R〉. Given a CSPCASL-
sentence of the form described above, I (E e) returns a CSP denotation for the
process E e in a specified semantic domain D ∈ {T ,N ,F}. As the primary con-
cern of Event-B is safety we examine the traces model which gives the following
set of traces:

{. . . , 〈〉, 〈c1.a1, . . . , c2n .a2n , e〉, . . . , 〈c1.b1, . . . , c2n .b2n〉, . . .}
where traces of the form 〈c1.a1, . . . , c2n .a2n , e〉 indicate that the predicate
φ(x , x ′) evaluated to true when the values listed in c1.a1, . . . , c2n .a2n were given
to the variables x 1, . . . , x ′

2n . Then, traces of the form 〈c1.b1, . . . , c2n .b2n〉 indi-
cate that the predicate φ(x , x ′) evaluated to false on these variable values. We
use this traces model to generate the R component (which is made up of the
relations R.e for e ∈ dom(E) 	= Init) of the EVT CASL-model such that:

R.e = {{x 1
→ a1, . . . x ′
2n
→ a2n} | 〈c1.a1, . . . , c2n .a2n , e〉 ∈ I (E e)T }

Note that in what follows, we abbreviate the Initialisation event to Init. We
only include the values from the traces model that caused the predicate φ(x , x ′)
to evaluate to true, since these variable values will also satisfy the EVT CASL-
sentence 〈e, φ(x , x ′)〉 in the EVT CASL institution. These are easily identified as
the traces that ended with the event name e thus indicating that the event e
was triggered. In the case where e = Init we construct L in a similar fashion,
otherwise, L = {∅}.

Comorphisms are defined such that for any signature Σ ∈ |SignEVT CASL|,
the translations ρSenΣ : SenEVT CASL(Σ) → SenCSPCASL(ρSign(Σ)) of sen-
tences and ρMod

Σ : ModCSPCASL(ρSign(Σ)) → ModEVT CASL(Σ) of models
preserve the satisfaction relation. That is, for any ψ ∈ SenEVT CASL(Σ) and
M ′ ∈ |ModCSPCASL(ρSign(Σ))|

ρMod
Σ (M ′) |=EVT CASL

Σ ψ ⇔ M ′ |=CSPCASL
ρSign (Σ) ρSenΣ (ψ)

Note that in the special case where the formula φ(x , x ′) denotes a contradic-
tion (there are no variable values that cause it to evaluate to true), then the
comorphism satisfaction condition fails to hold. In this case, the corresponding
R.e will be empty but as there are variables in the EVT CASL signature, the

Combining Event-B and CSP 149

generated EVT CASL-model is not a valid one. We are currently investigating
alternative constructions of ρMod and alternative institution-based translations
in order to resolve this issue. The case study that we present in this paper utilises
Hets which has no notion of the model translation component of a comorphism
so we illustrate how the syntactic components (ρSign and ρSen) can, in general,
be applied to translate EVT CASL specifications into CSPCASL specifications
that can be processed by Hets.

3.2 Translation via ρSign and ρSen

Figure 8 contains the CSPCASL specification corresponding to the Event-B
specification in Fig. 1. Our translation from Event-B to CSPCASL involves two
distinct steps. First, an Event-B specification (Fig. 1) is translated into a spec-
ification in the language of EVT CASL using our translational semantics parser
(Fig. 7). Next, we apply ρSign and ρSen , the signature and sentence translations
described earlier, to the EVT CASL specification to generate the corresponding
CSPCASL specification (Fig. 8). This translation is represented by the dashed
arrows in the refinement cube in Fig. 10 and the resultant CSPCASL specifica-
tion corresponds to the vertex labelled b 0.

Applying ρSign to the EVT CASL signatures in Fig. 7 (lines 1–16) generates
the CSPCASL signature 〈ΣData ,C , ΣProc〉 where the sort component of the data
signature ΣData is augmented with new sorts Event and STATUS. The operation
component of ΣData is augmented with one 0-ary operator per event name in
dom(E) of the EVT CASL signature Σ, yielding the set:

{Init, brp, RCV progress, SND progress : Event}
C contains two sort-appropriate channels for each variable in V (before and

after values). In this EVT CASL example, there are two variables of sort STATUS,
yielding four channels of sort STATUS in the corresponding CSPCASL specifi-
cation. The ΣProc component of the CSPCASL signature is augmented a new
process E e for every e ∈ dom(E).

Applying ρSen to the sentences in Sen(Σ) (Fig. 7, lines 17–28) gives the
(syntactically sugared) CSPCASL specification in Fig. 8. Note that we have
manually added the process M to describe the behaviour of the Event-B machine
in its entirety. We use parallel composition to indicate that events are triggered
in any order. This specification has been proven consistent, using the Darwin
and FACT consistency checkers available in Hets [11]. For readability, we have
not included the invariant sentences given in Fig. 7 (lines 17–24). The formulae
corresponding to each of these sentences is appended by logical conjunction to
each of the formulae in the event process definitions in Fig. 8 (lines 14–29).
We have included the context axiom sentences as predicates (lines 4–8) of the
CSPCASL specification, corresponding to the context in Fig. 1.

A CSPCASL representation of the Event-B‖CSP specification in Fig. 2 is
illustrated in Fig. 9 (lines 1–7). This shows that once the Event-B component
of the Event-B‖CSP specification has been translated into CSPCASL, then the
CSP component can be easily written using CSPCASL. These specifications

150 M. Farrell et al.

1 spec brp c0 over CASL
2 sort STATUS
3 ops
4 preds STATUS = {working, success,
5 failure}
6 working �= success
7 working �= failure
8 success �= failure
9 end

10 spec b 0 over CSPCASL
11 data brp c0
12 channel c1, c2, c3, c4: STATUS
13 process
14 E Init =
15 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
16 if r st’ = working ∧ s st’ = working
17 then (Init → M) else STOP
18 E brp =
19 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
20 if r st �= working ∧ s st �= working
21 then (brp → M) else STOP
22 E RCV progress =
23 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
24 if r st :∈ {success, failure}
25 then (RCV progress → M) else STOP
26 E SND progress =
27 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
28 if s st :∈ {success, failure}
29 then (SND progress → M) else STOP
30 M = E Init ‖ E brp‖E RCV progress
31 ‖E SND progress
32 end

Fig. 8. CSPCASL specification that is generated using ρSign and ρSen as described in
Sect. 3. This specification has been syntactically sugared for presentation. We provide
the full specification that can be input to Hets on our website.

1 spec eb‖csp b 0 over CSPCASL
2 b 0 then
3 process
4 P0 = S0 ‖ R0
5 S0 = SND progress → brp → STOP
6 R0 = RCV progress → brp → STOP
7 end

8 refinement ref0 =
9 b 0 refined to eb‖csp b 0

Fig. 9. A CSPCASL specification corresponding to the Event-B‖CSP specification in
Fig. 2 and a statement of refinement in the notation of Hets between the CSPCASL
specifications b 0 and eb‖csp b 0.

are thus provided with tool support in Hets [11], an environment designed to
facilitate interoperability.

4 The Refinement Cube

The refinement cube in Fig. 10 depicts the specifications and translations that
will be presented throughout this section. In this cube, the labelled vertices rep-
resent specifications and the arrows between them describe how they are related.
The front face of the cube corresponds to specifications that were developed in
Rodin and the combined formalism Event-B‖CSP, the rear face corresponds to
those completed in Hets using CSPCASL. The vertex labelled b 0 corresponds
to the Event-B specification in Fig. 1 and the vertex labelled EB‖CSP b 0 corre-
sponds to the Event-B‖CSP specification in Fig. 2. The vertical arrow between
them indicates that b 0 is used alongside EB‖CSP b 0.

Combining Event-B and CSP 151

b 0 b 1

b 0 b 1

EB‖CSP b 0 EB‖CSP b 1

EB‖CSP b 0 EB‖CSP b 1

ref2, ref3

ref0 ref1

Fig. 10. Refinement cube: solid lines represent refinement relations and the dashed
lines represent our translation into CSPCASL.

4.1 Event and Process Refinement

In this subsection, we describe the refinement steps that correspond to the solid
horizontal arrows in the refinement cube of Fig. 10. The theory of institutions
equips us with a basic notion of refinement as model-class inclusion where the
class of models of the concrete specification are a subset of the class of models
of the abstract specification [17]. When the signatures are the same we simply
denote this refinement as:

SPA � SPC ⇔ Mod(SPC) ⊆ Mod(SPA)

where SPA is an abstract specification that refines (�) to a concrete specification
SPC .

If the signatures are different then we must define a signature morphism
σ : Sig [SPA] → Sig [SPC], and can then use the corresponding model morphism
to interpret the concrete specification as containing only the signature items
from the abstract specification. This refinement is the model-class inclusion of
the models of the concrete specification, restricted using the model morphism,
into the class of models of the abstract specification. In this case write:

SPA � SPC ⇔ Mod(σ)(SPC) ⊆ Mod(SPA)

where Mod(σ)(SPC) is the model morphism applied to the model-class of the
concrete specification SPC . This interprets each of the models of SPC as models
of SPA before a refinement relationship is determined. In our running example,
all refinement steps involve a change of signature. A similar approach taken
by Schneider et al. involves using a renaming function, f , to relate concrete
events to their abstract counterparts before a refinement relation is evaluated
[20]. This was used to prove the refinement indicated by the horizontal arrow
from EB‖CSP b 0 to EB‖CSP b 1 in Fig. 10.

Figure 11 contains a refined version of the abstract Event-B machine from
Fig. 1. Here, each of the events RCV progress and SND progress are refined
and split into two events (RCV success, RCV failure, SND success and

152 M. Farrell et al.

1 MACHINE b 1 refines b 0 SEES brp c0
2 VARIABLES r st, s st
3 INVARIANTS
4 inv1 s st = success ⇒ r st = success
5 VARIANT
6 {success, failure, s st, r st}
7 Initialisation ordinary
8 then
9 act1 r st := working

10 act2 s st := working
11 Event brp =̂ ordinary
12 refines brp
13 when
14 grd1 r st �= working
15 grd2 s st �= working
16 then
17 Skip
18 Event RCV success =̂convergent
19 refines RCV progress
20 when
21 grd1 r st = working
22 then
23 act1 r st := success

24 Event RCV failure =̂convergent
25 refines RCV progress
26 when
27 grd1 r st = working
28 grd2 s st = failure
29 then
30 act1 r st := failure
31 Event SND success =̂convergent
32 refines SND progress
33 when
34 grd1 s st = working
35 grd2 r st = success
36 then
37 act1 s st := success
38 Event SND failure =̂convergent
39 refines SND progress
40 when
41 grd1 s st = working
42 then
43 act1 s st := failure
44 END

Fig. 11. A refined version of the Event-B machine that was described in Fig. 1.

1 spec b 1 over CSPCASL
2 data BRP c0
3 channelc1,c2,c3,c4: STATUS
4 process
5 E Init =
6 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
7 if r st’ = workings ∧ st’ = working
8 then (Init → M) else STOP
9 E brp =

10 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
11 if r st �= working ∧ s st �= working
12 then (brp → M) else STOP
13 E RCV success =
14 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
15 if r st = working ∧ r st’ = success ∧ var
16 then (RCV success → M) else STOP
17 E RCV failure =
18 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
19 if r st = working ∧ s st = failure ∧ var
20 ∧ r st’ = failure
21 then RCV failure → M) else STOP
22 E SND success =
23 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
24 if s st = working ∧ r st = success ∧ var
25 ∧ s st’ = success
26 then (SND success → M) else STOP
27 E SND failure =
28 ?c1.r st.c2.s st.c3.r st’.c4.s st’ →
29 if s st = working ∧ s st’ = failure ∧ var
30 then (SND failure → M) else STOP
31 M = E Init‖E brp‖E RCV success‖E SND success
32 ‖E RCV failure‖E SND failure
33 end

34 spec eb||csp b 1 over CSPCASL
35 b 1 then
36 process
37 P 1 = S 1 ‖ R 1
38 S 1 = (SND success → brp → STOP)
39 � (SND failure → brp → STOP)
40 R 1 = (RCV success → brp → STOP)
41 � (RCV failure → brp → STOP)
42 end

43 refinement ref1 = b 1 to eb||csp b 1

44 refinement ref2 = b 0 refined via
45 RCV progress |-> RCV success
46 SND progress |-> SND success
47 E RCV progress |-> E RCV success
48 E SND progress |-> E SND success
49 to b 1

50 refinement ref3 = b 0 refined via
51 RCV progress |-> RCV failure
52 SND progress |-> SND failure
53 E RCV progress |-> E RCV failure
54 E SND progress |-> E SND failure
55 to b 1

Fig. 12. CSPCASL specification corresponding to the concrete machine from Fig. 11
as well as the refinement relations. We have also included the corresponding CSPCASL
for the Event-B‖CSP specification used by Schneider et al. on lines (34–42) [19] .

Combining Event-B and CSP 153

SND failure). The status of these events has been changed from anticipated
to convergent during the refinement. Thus, the variant expression on line 6
must now be decreased by these events. This amounts to ensuring that in these
events the following condition, that we refer to as var in Fig. 12, holds:

|{success, failure, s st’, r st’}| < |{success, failure, s st, r st}|

When one of the variables moves from working to success or failure then
the cardinality of the first set decreases, and this condition will evaluate to true.
We apply the same process to this Event-B specification, using our translational
semantics and the comorphism that we have described in Sect. 3. The resulting
CSPCASL specification is shown in Fig. 12.

Specifying refinement between Event-B and Event-B‖CSP: We have
successfully proven that the Event-B‖CSP specification (given in Fig. 2 and writ-
ten as a CSPCASL specification in Fig. 9 (lines 1–7)) is a refinement of the
translation of the Event-B model (given in Fig. 1 and written as a CSPCASL
specification in Fig. 8) using the Auto-DG-Prover available in Hets.

This refinement is specified in Hets as shown on lines 8–9 of Fig. 9, and
essentially adds the processes P0, S0 and R0 to the CSPCASL specification of
B 0 from lines 10–32 of Fig. 8. This inclusion is indicated by the use of the “then”
specification-building operator (line 2 of Fig. 9), which corresponds to proving
that the Event-B‖CSP specification (Fig. 2) is a refinement of the Event-B model
(Fig. 1). This is a logical conclusion to draw since Event-B‖CSP is intended to
be used alongside the Event-B machine specification and thus adds a level of
deterministic behaviour to the Event-B model.

Similarly, we proved that the Event-B‖CSP specification on lines 34–42 of
Fig. 12 is a refinement of the refined Event-B machine in Fig. 11 by translating
the Event-B specification into CSPCASL via our translational semantics and
the comorphism that we outlined earlier. These refinement steps are indicated
by the downwards arrows in the back face of the refinement cube in Fig. 10
and by the refinement statements ref0 on lines 8–9 of Fig. 9 and ref1 on line
43 of Fig. 12.

Using CSPCASLProver to preserve Event-B Refinement: Using Hets

and the CSPCASLProver we proved a refinement relation between the two
CSPCASL specifications (Fig. 8 and lines 1–33 of Fig. 12) that we generated
using our comorphism. This is indicated by the top horizontal arrow in the back
face of the refinement cube (Fig. 10).

Since the corresponding refinement step in Event-B split a single event into
two events, we had to define two separate refinements in Hets, ref2 and ref3 on
lines 44–55 in Fig. 12. The syntax of these refinement specifications differs to the
previous ones that we have discussed, because this refinement is not the simple
addition of processes. Here, the refinement relation specifies the relationship
between the signatures of the abstract and refined specifications.

For example, for ref2 we prove that the following are derivable from the
specification in Fig. 12:

154 M. Farrell et al.

E RCV success = if r st’ = success ∨ r st’ = failure

then RCV success → M else STOP

E SND success = if s st’ = success ∨ s st’ = failure

then SND success → M else STOP

M = E Init‖E brp ‖ E RCV success ‖ E SND success

This corresponds to changing the names of the abstract processes
E RCV progress and E SND progress to E RCV success and E SND success
respectively. Thus the concrete processes still preserve the truth of the abstract
ones that they refine. A similar construction follows for ref3.

Schneider et al. provide a CSP account of Event-B refinement by adding a
new event status devolved, which indicates events where the CSP controller
must ensure convergence [20]. In this paper, we have translated the Event-B
specification into CSPCASL so all convergence checks occur within the same
formalism. Therefore we do not need this new status.

These proofs were mostly automatic. Some path issues, caused by the trans-
lation from Hets to CSPCASLProver (which uses Isabelle), resulted in a small
manual effort to discharge these proofs in Isabelle. Our findings illustrate that the
notions of refinement, although expressed differently, in Rodin and Hets are pre-
served using this comorphism. Thus highlighting the benefits of our institution
theoretic approach to interoperability by maintaining that “truth is invariant
under change of notation” [5].

5 Conclusions and Future Work

Until now, interoperability between Event-B and CSP has been mostly theo-
retical, offering little in terms of tool support. By devising a means of forming
Hets-readable CSPCASL specifications from those in Event-B we have created
tool support for the combination of Event-B and CSP using the theory of institu-
tions. The institutional approach supplies a general framework within which we
can achieve interoperability, offering more freedom and a more formal foundation
than the approach taken by both the flows plugin and the combined formalism
Event-B‖CSP, with the advantage of tool support via Hets.

It has been shown that the institutions for both EVT CASL and CSPCASL
have good behaviour with respect to the institution-theoretic amalgamation
property [12,13]. As a result, we are now able to write modular Event-B specifi-
cations and interoperate with CSPCASL using specification-building operators
that are made available in the theory of institutions and supported by Hets.
In future work, we will investigate the relationships between these specification-
building operators and the modularisation constructs in Event-B and CSP. We
will define and prove that ρMod obeys the required properties. We will also exam-
ine whether other kinds of institution morphisms could exist between these two
formalisms with particular focus on providing a more heterogeneous specification
similar to that of the Event-B‖CSP formalism.

Combining Event-B and CSP 155

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010)

3. Farrell, M., Monahan, R., Power, J.F.: Providing a semantics and modularisation
constructs for Event-B using institutions. In: International Workshop on Algebraic
Development Techniques (2016)

4. Fitzgerald, J., Larsen, P.G., Woodcock, J.: Foundations for model-based engineer-
ing of systems of systems. In: Aiguier, M., Boulanger, F., Krob, D., Marchal, C.
(eds.) Complex Systems Design & Management, pp. 1–19. Springer, Cham (2014)

5. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992)

6. Hoare, C.A.R.: Communicating sequential processes. In: Hansen, P.B. (ed.) The
Origin of Concurrent Programming, pp. 413–443. Springer, New York (1978)

7. Iliasov, A.: On Event-B and control flow. Technical report, Newcastle University,
Newcastle Upon Tyne, U.K (2009)

8. Isobe, Y., Roggenbach, M.: CSP-Prover - a proof tool for the verification of scalable
concurrent systems. Inf. Media Technol. 5(1), 32–39 (2010)

9. Knapp, A., Mossakowski, T., Roggenbach, M., Glauer, M.: An institution for simple
UML state machines. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033,
pp. 3–18. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46675-9 1

10. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf. 10(2), 185–203 (2008)

11. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71209-1 40

12. Mossakowski, T., Roggenbach, M.: Structured CSP – a process algebra as an insti-
tution. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409,
pp. 92–110. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71998-4 6

13. Mosses, P.D. (ed.): Casl Reference Manual. The Complete Documentation of the
Common Algebraic Specification Language. LNCS, vol. 2960. Springer, Heidelberg
(2004)

14. O’Reilly, L.: Structured Specification with Processes and Data. Ph.D. thesis,
Swansea University, Swansea, U.K (2012)

15. O’Reilly, L., Roggenbach, M., Isobe, Y.: CSP-CASL-Prover: a generic tool for
process and data refinement. Electron. Notes Theor. Comput. Sci. 250(2), 69–84
(2009)

16. Roggenbach, M.: CSP-CASL - a new integration of process algebra and algebraic
specification. Theor. Comput. Sci. 354(1), 42–71 (2006)

17. Sanella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. Springer, Heidelberg (2012)

18. Schneider, S., Treharne, H., Wehrheim, H.: A CSP approach to control in Event-B.
In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 260–274. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-16265-7 19

19. Schneider, S., Treharne, H., Wehrheim, H.: Bounded retransmission in Event-
B‖CSP: a case study. Electron. Notes Theor. Comput. Sci. 280, 69–80 (2011)

http://dx.doi.org/10.1007/978-3-662-46675-9_1
http://dx.doi.org/10.1007/978-3-540-71209-1_40
http://dx.doi.org/10.1007/978-3-540-71998-4_6
http://dx.doi.org/10.1007/978-3-642-16265-7_19

156 M. Farrell et al.

20. Schneider, S., Treharne, H., Wehrheim, H.: The behavioural semantics of Event-B
refinement. Formal Aspects Comput. 26, 251–280 (2014)

21. Snook, C., Butler, M.: UML-B and Event-B: an integration of languages and
tools. In: IASTED International Conference on Software Engineering, pp. 336–341,
Innsbruck, Austria (2008)

Refinement-Based Modelling and Verification
of Design Patterns for Self-adaptive Systems

Thomas Göthel(B), Nils Jähnig, and Simon Seif

Technische Universität Berlin, Berlin, Germany
thomas.goethel@tu-berlin.de

Abstract. Design patterns are essential for designing complex systems
by reusing recurring design principles. Various design patterns were pro-
posed for self-adaptive systems, but their integration into a model-driven
design process that, at the same time, provides formal guarantees is still
a challenge. This is especially true for self-adaptive design patterns that
are generic and abstract enough to provide general solutions that need
to be refined prior to their concrete instantiations. In this paper, we
present a structured and comprehensible modelling approach for design
patterns in the refinement-based process calculus CSP. We formally show
crucial properties of them and analyse the refinement-based relationship
between their components, which generalises to entire patterns. Based
on these analysis results, we are able to provide a first step towards a
general, formally well-founded framework providing generic solutions for
recurring problems in the management of self-adaptive systems.

Keywords: Design patterns · Self-adaptive systems · Refinement ·
Formal verification · Process calculus · CSP

1 Introduction

Design patterns offer an efficient way to develop complex software systems by
reusing established structures that occur in various systems. Examples are the
well-known server-client or the publisher-subscriber pattern. In this paper, we
are interested in design patterns for the design of self-adaptive systems. Such
systems interact with environments whose behaviours may unpredictably change
at run-time. To cope with that, feedback loops can be employed. The MAPE-K
loop [1] is one of the standard architectures for self-adaptive systems. It consists
of a Monitoring, an Analysis, a Planning, and an Execution phase. Firstly, the
environment behaviour is monitored and analysed. Then, an adaptation plan is
generated if necessary and finally executed in the managed system. All these
phases share a common Knowledge base to transfer data between them.

In [12,13] more than thirty adaptive system implementations are studied.
The authors extract twelve design patterns describing recurring elements in the
management of self-adaptive systems. They are presented in a similar fashion
like in [4] and are modelled informally. The extracted patterns are categorised
c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 157–173, 2017.
https://doi.org/10.1007/978-3-319-68690-5 10

158 T. Göthel et al.

according to their general purpose (creational, behavioural, structural) and their
relationship to the MAPE phases (monitoring, decision-making, reconfigura-
tion). The presentation of [12] comprises a context under which the pattern
can be applied, a description of the pattern elements, their relations and respon-
sibilities, and consequences of the pattern (i.e. the results and tradeoffs). The
patterns are presented in the context of a model-based development process [17].
Furthermore, linear temporal logic (LTL) is used to formally capture invariants
of the patterns. Although the authors incorporate automated tools such as the
SPIN model checker [8] to check for violations of the constraints, this can only
be done with completely instantiated and concretely defined versions of a pat-
tern. This precludes incremental design in which previously verified properties
are preserved to lower levels.

To overcome this problem, we provide a structured and comprehensible mod-
elling approach with which we have formally modelled five representative design
patterns from [13] in the CSP (Communicating Sequential Processes) process
calculus [14]. They are representative because they cover all categories as men-
tioned above. In this paper, due to space restrictions, we present two of them
as examples to illustrate that they share many similarities that are furthermore
present in all these design patterns. As part of our first main contribution, we
formally model the pattern components as single abstract CSP processes. The
advantage is that the behaviour of each component can be refined separately due
to the compositional semantics of CSP. We discuss common design principles
that facilitate their uniform modelling in CSP. We furthermore verify important
properties of the patterns using the powerful notion of CSP refinement and its
automatic verification support in the FDR refinement checker [6]. As our sec-
ond main contribution, we analyse the relationship between pattern components
and entire patterns based on our definition of behavioural extension. By this,
a pattern component or an entire pattern inherits proved properties from other
components or patterns even though new behaviour is introduced which stands
in contrast to standard CSP refinement. As a result, we lay the foundation for
a formally well-founded framework for design patterns for self-adaptive systems
that are extensible, refinable, verifiable, and combinable w.r.t. interoperability.

In Sect. 2, we discuss related work of this paper. Then, we present back-
ground on the design patterns of [12] and on CSP in Sect. 3. The first part of our
contribution is presented in Sect. 4 where we focus on the structured modelling
of design patterns and the verification of their properties. Then, in Sect. 5, we
present the second part of our contribution consisting of a formal relationship
between pattern components and the patterns themselves based on our defini-
tion of behavioural extensions. Finally, in Sect. 6, we summarise and discuss our
approach and point out possible directions for future work.

2 Related Work

In the following, we sketch some approaches on formal verification of self-
adaptive systems and on formal modelling/verification of self-adaptive design
patterns.

Refinement-Based Modelling and Verification of Design Patterns 159

In [18], a modular approach for model-checking adaptive systems is presented.
Invariant properties are stated in the temporal logic A-LTL. Modular verification
is performed by decomposing the system and by applying assume-guarantee rea-
soning. In contrast to our work, refinement aspects and general design patterns
are not considered. In [10], a formal model for policy-based adaptive systems is
presented. According to environment changes, a managing component switches
between configurations enforcing a certain adaptive policy. A formalism called
PobSAM is presented with a formal semantics. Several equivalence relations and
abstract results are provided. The results of the paper are rather abstract and it
is not shown how to model concrete adaptive systems or parts of them. In [11],
a UML-based modelling language for adaptive systems is presented. Based on
its formal semantics, deadlock freedom and stability can be verified. In contrast,
our work enables the stepwise development and furthermore the verification of
general functional and adaptation properties. In [9], various formal design pat-
terns are presented using timed automata that form components of a MAPE-K
loop. In addition, specification templates for verification of properties are given.
In contrast, our work formalises more detailed patterns that can themselves be
used to design MAPE-K components. Furthermore, we enable the refinement-
based design of patterns and examine the relationship between them. In [7], we
have modelled and analysed a possible general structure of distributed adaptive
real-time systems in CSP. This structure was rather abstract and independent of
concrete feedback loops. In this paper, we provide more detailed design patterns
that are relevant for the design of different MAPE-K components.

A conceptual framework for adaptation is presented in [2]. The work attempts
to answer the general question under which conditions a software system can
be considered adaptive. A formal model is presented that is based on labelled
transition systems. To validate the framework, the authors discuss how several
well-accepted adaptive architectures and computational paradigms fit into the
framework, such as MAPE-K. However, due to the abstract nature of this paper,
it is not clear how the presented framework can be used to build a concrete self-
adaptive system. In [16], design patterns for decentralised control in self-adaptive
systems are described. The patterns focus on the arrangement and interaction
of multiple MAPE-K loops and are derived from their use in practice. In con-
trast to our work, this work is more abstract, as it takes an architecture-centric
perspective. The presented patterns only focus on the structural arrangement of
different components. They do not cover how communication between compo-
nents is organised or how a common knowledge base for all the components is
realised. In [3], the formal language SCEL is used to model general adaptation
patterns consisting of service components that interact with each other according
to the underlying pattern. The authors do not perform analysis of their patterns.
Furthermore, the authors do not focus on refinement of patterns.

160 T. Göthel et al.

3 Background

In this section, we give an overview of the design patterns presented in [12],
which is the basis for our work. We then briefly introduce CSP, which we use
for modelling and verification of self-adaptive design patterns.

3.1 Design Patterns for Self-adaptive Systems

The work of [12] classifies design patterns for self-adaptive systems in three main
categories based on their overall objective. Monitoring (M): Probing and distri-
bution of information. Decision-Making (DM): Detect the necessity of adapta-
tion and create a plan to perform a corresponding adaptation. Reconfiguration
(R): Safely reconfigure the system according to an adaptation plan. Monitoring
patterns can further be classified as creational (C) or structural (S), while recon-
figuration design patterns can be further classified as structural (S) or behav-
ioural (B). All considered decision-making patterns are classified as structural
(S). Creational patterns are concerned with the creation and introduction of
new elements into an existing system. Behavioural patterns describe how differ-
ent components must interact in order to fulfil a common objective. Patterns
that focus on how different components are arranged, are called structural.

In Table 1, we list the design patterns of [12] with their classifications and
descriptions. All of them were modelled in the semi-formal modelling language
UML. We formally modelled and analysed the patterns highlighted in italics in
a Master’s thesis [15] using CSP. In Sect. 4, we present the formalisations and
analysis results of the sensor factory and the adaptation detector .

3.2 Communicating Sequential Processes

Process calculi are well suited to formally model and verify self-adaptive systems
for several reasons. Firstly, they are inherently able to express characteristics of
self-adaptive systems such as multiple concurrent and non-terminating processes.
Secondly, process calculi offer compositionality features that allow for proofs
to decompose a complex system into smaller subsystems. Lastly, refinement or
equivalence can be used to relate an implementation to a specification. We decide
in favour of CSP [14] because of its mature tool support, namely FDR [6].

The basic processes of CSP are STOP (deadlock) and SKIP (successful
termination). The occurrence of an event is modelled using the Prefix opera-
tor c.v → P , where the value v is communicated via channel c and then the
process behaves as P . Receiving data on a channel is denoted by c?x. Choices
between processes can be resolved by External Choice (P � Q) or internally
(non-deterministically) by Internal Choice (P � Q). To synchronise processes,
Parallel Composition (P ‖

A

Q) is used describing that P and Q run indepen-

dently, synchronising on events in A. Pure interleaving is denoted P ||| Q. The
Hiding operator (P \ A) is used to describe a process where all events in A are
internalised within P , thus not visible to other processes and the environment.

Refinement-Based Modelling and Verification of Design Patterns 161

Table 1. List of design patterns for self-adaptive systems.

Design pattern Classification Description

Sensor factory M (C) Systematically deploy sensors across a
network

Reflective monitoring M (S) Perform introspection on a component and
alter its behaviour

Content-based routing M (S) Route monitoring information based on the
content of the readings

Case-based reasoning DM (S) Select an adaption plan based on rules

Divide & Conquer DM (S) Decompose a complex adaption plan into
simpler adaption plans

Adaptation detector DM (S) Analyse monitoring data and determine
whether adaption is necessary

Architectural-based DM (S) Architecture-based approach for selecting
adaption plans

Tradeoff-based DM (S) Decide which adaption plan offers the best
balance between competing objectives

Component insertion R (S) Insert components into a system during run
time in a safe fashion

Component removal R (S) Remove components from a system during
run time in a safe fashion

Server reconfiguration R (B) Reconfigure a server-client system during
runtime without creating down times

Decentralized R (B) Insert and remove components from a
system during run time in a safe fashion

FDR [6] enables the simulation and formal refinement-based verification of
processes described in CSPm. This language extends CSP by a functional lan-
guage for the formal description of datatypes, channels, sets, functions, and
more. Expansion of channels is denoted by {| c |} and describes the set of all
possible communicated events on that channel.

The idea of refinement is that an implementation process has fewer possible
behaviours than a specification process, thus describing a specification/imple-
mentation relationship. Properties like deadlock-freedom can also be defined as
processes. The refinement Prop � Sys is used to show properties Prop to be sat-
isfied by Sys. Refinement is usually considered in the semantical traces or (stable)
failures model [14]. The traces of a process describe its possible finite sequences
of events and trace refinement P �T Q (denoting traces(Q) ⊆ traces(P)) can be
used to verify safety properties. In contrast, stable failures additionally record a
set of refused events after a trace and thereby allow for the verification of liveness
properties (P �F Q). The most important property concerning all the semanti-
cal models of CSP is their compositionality. From the refinements P � P ′ and
Q � Q′ it follows that in any arbitrary composition ⊗ also P⊗Q � P ′⊗Q′ holds,

162 T. Göthel et al.

i.e., refinement can be shown component-wise. This enables modular verification
in CSP, which we exploit in the context of our adaptive system patterns.

4 Formalisation of Adaptive Design Patterns

To facilitate the abstract design and verification of self-adaptive systems, we
have formalised a representative subset of the adaptive design patterns presented
in [12] in CSP. As described in Sect. 3, [12] classifies adaptive design patterns
in several categories. In a Master’s thesis [15], we have formally modelled and
analysed one pattern for each category. The main challenge was to capture their
similarities explicitly to establish formal relationships between components and
patterns. This enables systematic reuse and reduces verification effort.

The formal model of each pattern consists of the pattern components
(processes) and their interactions (composition). Here, we provide our pattern
models on an abstract and generic level, which enables us to focus on their
essential ideas. Note that implementation details can be introduced using for-
mal refinement and behavioural extensions, as introduced in Sect. 5. Thus, design
options can be chosen and detailed data-oriented behaviour can be introduced.
The modelling of the essential nature of pattern components and patterns allows
us, furthermore, to focus on similarities of different patterns that facilitates reuse
of modelling principles and can be used for interoperability. The abstract mod-
els enable us to automatically show general safety and liveness properties using
the FDR refinement checker. We exploit the compositional properties of CSP
refinement such that only the relevant components of an abstract pattern need
to be considered. We base our considered properties on the ones listed in [12].

Due to space limitations, we focus on two patterns, the sensor factory and
the adaptation detector , in this paper. These allow us to illustrate our structured
modelling approach, which exploits similarities between these models. As part of
these similarities, we make use of a common subcomponent, the generic adaptable
component, which originally stems from the component insertion/removal pat-
tern. For the remaining design patterns, similar observations concerning reusabil-
ity of modelling principles and common subcomponents can be made [15].

4.1 Adaptable Component

In the following, we first present our CSP model of the adaptable component
together with a graphical notation for the ease of presentation that we use
throughout the paper. Then, we present our formalisations and analysis results
of the sensor factory and adaptation detector .

Definitions. ID is a set of unique identifiers for adaptable components that
can interact. L = ID × ID is a set of links between adaptable components .
LCC
id = {id.c, c.id | c ∈ CC} is the set of possible links for a component id ∈ ID

to other cooperating components CC ⊆ ID.

Refinement-Based Modelling and Verification of Design Patterns 163

AdaptableComponentPassive (id , coopDom , l i n k s) =
i f card (l i n k s)==0

then (stopComponent . id −> AdaptableComponent (id , coopDom)
[] AdaptableComponentPassive ’ (id , coopDom , l i n k s))

else AdaptableComponentPassive ’ (id , coopDom , l i n k s)

AdaptableComponentPassive ’ (id , coopDom , l i n k s) =
destroyLink? l i n k : l i n k s −>

AdaptableComponentPassive (id , coopDom , d i f f (l i nk s ,{ l i n k }))
[] spawnLink? l i n k : d i f f (p o s s i b l eL i nk s (id , coopDom) , l i n k s) −>

AdaptableComponentPassive (id , coopDom , union (l i nk s ,{ l i n k }))
[] activateComponent . id −>

AdaptableComponentActive (id , coopDom , l i n k s)

start
initComponent.id

[L = ∅]
stopComponent.id

[l ∈ LCC
id \ L]

spawnLink.l
[L ← L ∪ {l}]

[l ∈ L]
destroyLink.l
[L ← L \ {l}]

activateComponent.id

passivateComponent.id

[l ∈ L]
processTransaction.l

Fig. 1. Behaviour of an Adaptable component

P = (a ∈ {load, unload}, c ∈ ID, L ⊆ L) is an adaptation plan to load or
unload an adaptable component c along with a set of links L that need to be
removed or created. Within the component-insertion-removal pattern, an adap-
tation driver creates adaptation plans.

CSP Model. The behaviour of an adaptable component is depicted in Fig. 1.
In the upper part, we give an excerpt of the exact definition in CSPm syntax.
Below, we give a simplified graphical representation of the entire process.

An adaptable component is uniquely identified by an id ∈ ID. Initially, it is
in a stopped state. It will remain there until it is explicitly initialised via an init-
Component.id event. Immediately after initialisation, the component resides in a
passive state. Only in this passive state, links to other components can be created
or destroyed. The component can be activated with an activateComponent.id
event. While the component is active, it may process arbitrary transactions with
linked components. Although this version of an adaptable component is rather
abstract, it demands a specific availability of the processTransaction events. To
this end, we use external choice on the processTransaction channel. An adapt-
able component is restricted to cooperate only with other components from a set
CC ⊆ ID. This cooperation domain CC (denoted coopDom in the CSP script)
enables us to partition the set of all components into distinct groups. This feature
will be rather useful if multiple types of adaptable components are composed into
a larger system. Note that this does not necessarily restrict our expressiveness.
We can simply instantiate an adaptable component with CC = ID, lifting any

164 T. Göthel et al.

restriction in communication. For two adaptable components we can show that
AC(id, ID) �T AC(id, CC ⊆ ID).

4.2 Sensor Factory

The sensor factory pattern is suited to (a) manage sensors in a loosely coupled
system, to (b) provide a central instance to retrieve sensors in a uniform fashion,
and to (c) enforce resource constraints across the system. The overall system is
given by the parallel composition of the involved processes as follows.

Sensors = |||
i∈IDS

Sensor(i, IDC)

Clients = |||
i∈IDC

Client(i, IDS)

SensorInfrastructure = SensorFactory ‖
A1

ResourceManager

System = (Clients ‖
A2

Sensors) ‖
A3

SensorInfrastructure

A1 ={|allocateResources, freeResources, resourcesDenied, resourcesGranted|}
A2 ={|spawnLink, destroyLink, read|}
A3 ={|initComponent, stopComponent, activateComponent,

passivateComponent, getSensor, releaseSensor, sensorGranted,

sensorDenied, spawnLink, destroyLink|}

It deviates in several points from the original version described in [12]:

– We have abstracted away various methods and variables. We only cover the
structural and behavioural essence of the pattern.

– Both simple sensor and complex sensor classes are covered by our single sensor
process. The explicit transmission of values (and their types) is omitted.

– Our model of the resource manager is highly abstract. It decides whether
resources can be allocated or not non-deterministically, which is the usual
way to represent abstract behaviour in CSP.

In the following, we use a set of unique component identifiers ID, partitioned
into identifiers for sensors (IDS) and clients (IDC), respectively. The set of all
links is described by L = ID × ID. The set of possible links from a component
with id ∈ ID to other cooperating components CC ⊆ ID is described by LCC

id =
{id.c, c.id | c ∈ CC}.

The sensors and the clients are the managed components within this pat-
tern. The purpose of a sensor is to provide data from the environment to the
client components. A sensor is uniquely identified by an id ∈ IDS . It keeps
track of its active links to clients via a set of links L ⊆ LCC

id . CC is usually
initialised with the set of clients IDC . The behaviour of a sensor is very sim-
ilar to that of the abstract adaptable component as given in Fig. 1. The main

Refinement-Based Modelling and Verification of Design Patterns 165

difference is that the cooperation components are clients and that the abstract
processTransation channel is concretised to the read channel. Initially, a sensor is
in an idle state until it is explicitly started via the initComponent.id event. Once
started, the sensor can be linked with a client via the spawnLink.l event. After
being activated via the activateComponent.id event, the sensor can communi-
cate with a linked client. Communication is abstractly modelled by the read.l
event. A sensor may also be passivated (passivateComponent.id) again, so that
existing links can be destroyed (destroyLink.l) or new links can be spawned
(spawnLink.l). If a sensor has no more linked clients, it can again return to the
idle state.

The role of a client is to read data provided by sensors. Rather than accessing
or creating sensor instances at will, it requests access to a sensor at a central
manager, the sensor factory. A client is uniquely identified by an id ∈ IDC

and keeps track of its active links to sensors via a set L ⊆ LCC
id with CC

usually being the set of sensors IDS . S, the set of sensors that are connected
to a client , can be computed from the link set L. Its behaviour is depicted
in Fig. 2. Initially, a client is in an idle state until it is explicitly started via an
initComponent.id event. To perform an active role within the system, it needs
further to be activated (activateComponent.id). A client may then request a
sensor s via the getSensor.id.s event if it is not yet linked to this sensor. If the
request is denied (sensorDenied.id.s), the client simply returns to its previous
state and is free to retry its attempt later or with a different sensor. If the
request is granted (sensorGranted.id.s), the client waits for the sensor factory
to perform a passivateComponent.id event. Only in the passive state, links may
either be created or destroyed. Once linked to a sensor, the client can read
data provided by the sensor via the corresponding read.l events. The client can
release a sensor after it has been deployed via the releaseSensor.id.s event.

The sensor factory provides an interface to clients for retrieving sensors.
Thus, it introduces a level of indirection between clients and sensors. This not
only allows clients to access sensors in a uniform fashion, but also enables the

start

initComponent.id

[L = ∅]
stopComponent.id

[l ∈ LCC
id \ L]

spawnLink.l
[L ← L ∪ {l}]

[l ∈ L]
destroyLink.l
[L ← L \ {l}]

activateComponent.id

passivateComponent.id

[l ∈ L]
read.l

[s ∈
C

\
S

]
g
etS

en
sor.id

.s

se
n
so
rD

en
ie
d
.i
d
.s

sensorGranted.id.s
[S ← S ∪ {s}]

[s
∈ S]

re
lea

se
Se
ns
or
.id
.s

[S
← S

\ {s}
]

p
a
ss
iv
a
te
C
om

p
on

et
.i
d

Fig. 2. Behaviour of a Client Component

166 T. Göthel et al.

start[c ∈ R(s)]
releaseSensor?c.s
[R(s) ← R(s) \ {c}]

p
a
ssiv

a
teC

om
p
on

en
t.c,

p
a
ssiv

a
teC

om
p
on

en
t.s

d
estr oy

L
in
k
.s.c,

d
estroy

L
in
k
.c.s

f
re
eR

es
ou

rc
es
.s
.c

[R(s) = ∅]
stopComponent.s

[R(s) �= ∅]
activateComponent.s

a
ct
iv
a
te
C
om

p
on

en
t.
c

[c /∈ R(s)]
getSensor?c.s allocateResources.c.s

resourcesDenied.c.ssen
sor

Den
ied

.c.s
resou

rcesG
ra

n
ted

.c.s

sen
sor G

ra
n
ted

.c.s
[R

(s)←
R

(s)∪
{
c }

][|R(s)| = 1]
initComponent.s

[|R(s)| > 1]
passivateComponent.s

sp
a
w
n
L
in
k
.s
.c
,

sp
a
w
n
L
in
k
.c
.s

p
a
ss
iv
a
te
C
om

p
on

en
t.
c

activateComponent.s.c,

activateComponent.c.s

Fig. 3. Behaviour of the Sensor factory

factory to enforce resource constraints. The behaviour of the sensor factory is
depicted in Fig. 3. The factory keeps track of all active links between clients
and sensors with a registry map R : IDS → P(IDC). A client c may request
a sensor s via a getSensor.c.s event if it is not yet linked to this sensor. It is
the responsibility of the sensor factory to allocate resources for the requested
link via an allocateResources.c.s event. If the resource manager cannot allocate
the requested resources, a resourcesDenied.c.s event is fired. Subsequently, the
sensor factory informs the client about the denial via the sensorDenied channel.
If, however, the resources could be allocated (resourcesGranted.c.s), the decision
is forwarded via a sensorGranted.c.s event. Creating or destroying a link between
a client and a sensor constitutes an adaptation of the system. The adaptation
will be performed in an atomic fashion. To this end, the sensor factory will
first passivate both involved components. Once the sensor and the client are
passivated, their links will be created or destroyed via spawnLink or destroyLink
events, respectively. Normal operation can resume as soon as both components
have been reactivated. A client may unlink itself from the sensor at any time

Refinement-Based Modelling and Verification of Design Patterns 167

via the releaseSensor channel. Releasing a sensor constitutes another adaptation
of the system. The procedure is analogous to the adaptation performed when a
sensor is linked to a client. In addition, the sensor factory will notify the resource
manager about the freed resources via a freeResources event. If a sensor becomes
unused afterwards, i.e. there are no more linked active clients, it will be stopped.

The resource manager tracks the current resources of the system. It com-
municates only with the sensor factory. If the sensor factory tries to allocate
resources for a new link between a client and a sensor via the allocateRe-
sources channel, the resource manager evaluates whether the system can spare
the requested resources. If the request can be fulfilled, a resourcesGranted event
is fired, resourcesDenied otherwise. Resources are freed via the freeResources
channel.

For the sensor factory, we have proved four important safety properties auto-
matically using the FDR refinement checker: (SF1) clients and sensors are only
linked if the resource manager agrees, (SF2) sensors are not started without per-
mission of the resource manager, (SF3) clients cannot access sensors without
being linked by the sensor factory first, and (SF4) links are only destroyed after
the client explicitly releases the sensor. To formally capture safety properties,
we have defined generic safety property processes in CSP as follows.

P (A,B) =
(�

x∈Events\A∪B
x → P (A,B)

)
�

(�
a∈A

a → Q(A,B)
)

Q(A,B) =
(�

x∈Events\A∪B
x → Q(A,B)

)
�

(�
b∈B

b → P (A,B)
)

The basic idea is to first accept all events of the alphabet except for the events
b ∈ B that must not occur without the previous occurrence of another event
a ∈ A. If some a occurs, the generic process goes to another state where b events
are allowed, but no a events. When a b event occurs there, the process goes back
to the initial state. Thereby, the property process has only those traces where
each occurrence of a b event is preceded by exactly one corresponding a event.

4.3 Adaptation Detector

The adaptation detector pattern monitors the overall health of a system using
health indicators and possibly triggers an adaptation if necessary. The overall
pattern is given by the parallel composition of the involved processes as follows.

HM(id, s, t) =HI(id, s) ‖
A1

Analyser(id, s, t)

HM = |||
id∈IDC ,(s,t)∈P

HM(id, s, t)

System =SensorInfrastructure ‖
A3

(Sensors ‖
A2

HM)

168 T. Göthel et al.

A1 ={|analyse, analysis|}
A2 ={|spawnLink, destroyLink, read|}
A3 ={|initComponent, stopComponent, activateComponent,

passivateComponent, getSensor, releaseSensor,

sensorGranted, sensorDenied, spawnLink, destroyLink|}

It deviates in several points from the original version described in [12]:

– Various methods and variables have been omitted. Our model only covers the
structural and behavioural essence of the pattern.

– The observer is omitted – a health indicator is directly linked with a sensor.
– The model reuses the sensor factory pattern as described above for the man-

agement of sensors and health indicators.

In the following, we use a set of unique component identifiers ID, partitioned
into identifiers for sensors (IDS) and health indicator components (IDC), respec-
tively. L = ID× ID describes a set of links, LCC

id = {id.c, c.id | c ∈ CC}, the set
of possible links from a component with id ∈ ID to other cooperating components
CC ⊆ ID. P = IDS × T describes the set of possible health parameters, where
T is a non-empty finite set of possible thresholds. E = {Normal,Abnormal} is
the set of possible evaluations.

A health indicator monitors an environment parameter. To this end, the indi-
cator retrieves information about the system from a sensor , which is analysed
by an analyser. If corresponding thresholds are violated, a system adaptation is
initiated. The behaviour of a health indicator is depicted in Fig. 4. It is uniquely
identified by an id ∈ IDC and is bound to a specific sensor s ∈ IDS . To monitor
an environment parameter, the health indicator regularly reads its assigned sen-
sor via the read channel. The health indicator sends the acquired sensor data
to its analyser process via the analyse channel and awaits the analysis result
on the analysis channel. Note that we abstract from the actual sensor value. If
the analyser detects abnormal behaviour, the health indicator is responsible to
trigger an adaptation via the trigger channel. In our abstract model, the trigger
event only contains the sensor s that reported the abnormal value.

An analyser decides whether a reported sensor value deviates from a defined
threshold. It may implement arbitrarily complex analysis functions. An analyser
is directly linked to a health indicator and its implementation is specific to a
sensor and threshold. The health indicator may ask the analyser to perform
analysis on a sensor value via the analyse channel. The analyser will then
respond with an analysis result of the presented value containing an evaluation
via the analysis channel. In practice, there would be different implementations
of analysers that incorporate different logic to judge whether a presented value
exceeds a threshold or not. In our model, the actual sensor value again has
been omitted. The analyser in our model is highly abstract and decides non-
deterministically whether a threshold is exceeded or not.

Refinement-Based Modelling and Verification of Design Patterns 169

Sensors describe a class of managed components within this pattern. A sys-
tem using this pattern may consists of one or more sensors. The purpose of a
sensor component is to provide data about the environment to a health indicator.

The sensor factory enables health indicators to retrieve sensors.

in

start

pa ac

reqpr

rea

antr

initComponent.id

[L = ∅]
stopComponent.id

[l ∈ L{s}
id \ L]

spawnLink.l
[L ← L ∪ {l}]

[l ∈ L]
destroyLink.l
[L ← L \ {l}]

activateComponent.id

passivateComponent.id

[l
∈
L

]
r e
a
d
.l

a
n
a
l y
se
.l

a
n
a
ly
sis.l.N

orm
a
l

analysis.l.Abnormal

trigger!s

[L
=

∅
]

g
etS

en
sor.id

.s

se
n
so
r D

en
ie
d
.i
d
.s

sensorGranted.id.s

[L
�= ∅]

re
lea

se
Se
ns
or
.id
.s

p
a
ss
iv
a
te
C
om

p
on

et
.i
d

Fig. 4. Behaviour of a Health indicator

For the adaptation detector, we have proved four important properties auto-
matically using the FDR refinement checker: (HM1) An adaptation trigger event
must only be fired if the analysis indicated abnormal behaviour, (HM2) any sen-
sor data obtained by a health indicator must eventually be presented to an
analyser for analysis, and (HM3) any report of a threshold exceeded will even-
tually cause an adaptation trigger. HM1 is a safety property, whereas HM2 and
HM3 are liveness properties. To capture liveness properties, we have defined a
generic liveness property process in CSP as follows.

P (A,B) =
(�

x∈Σ\A x → P (A,B)
)

�
(�

a∈A
a → Q(A,B, nmax)

)

Q(A,B, 0) =
(�

x∈Σ\B x → Q(A,B, 0)
)

�

(�
b∈B

b → P (A,B)
)

Q(A,B, n) =
(�

x∈Σ\B x → Q(A,B, n − 1)
)

�
(�

b∈B
b → P (A,B)

)

First, this process can non-deterministically choose an event from the alphabet
including some events a ∈ A that should enable some events b ∈ B, subsequently.
If some a occurs, the generic property process goes into a state where alphabet
events and b are non-deterministically chosen. However, after at most n steps
without performing b, b is enabled using external choice. This means that the
liveness property process models the most non-deterministic process that stably

170 T. Göthel et al.

enables b eventually after a occurred. Note that eventuality cannot be expressed
unboundedly in CSP, but only w.r.t. a fixed maximal number n of steps.

Note that the conjunction of HM1 and HM3 imposes a restriction on the
design: A health indicator cannot implement an analysis of sensor values that
deviates from the behaviour of its analyser. Thus, a health indicator is unable
to directly implement a higher-level analysis, e.g. a compound analysis involving
multiple sensors. This enables us to reduce the complexity of health indicators
and health monitors as they are now bound to a single sensor. Note that our
models can easily be used to define less restrictive variations of this pattern.

In this section, we have formally modelled two design patterns in a structured
way exploiting similarities between them. Furthermore, we have automatically
proved general important properties of them. In the next section, we present
our notion of behavioural extension to formally relate components of different
patterns that enables formal interoperability between patterns.

5 Formal Relations Between Adaptive Design Patterns

To enable the transfer of proved properties of pattern components, we show that
they extend each other. To this end, we define an appropriate extension relation.

5.1 Behavioural Extension

As an example for behavioural extension, the adaptable component (AC, from
the component insertion/removal patterns) defines just the behaviour of the
adaptation logic, and the client (C, from the sensor factory pattern) addition-
ally specifies its interaction with the sensor factory. To relate these processes,
both traces refinement and failures refinement are insufficient. These kinds of
refinements require all possible behaviour to be present in the abstract specifi-
cation already. Instead, we need an adapted notion of refinement that preserves
behaviour (in the sense of traces or failures refinement) on process parts that
are not extended and ignores the extended behaviour itself to a certain degree.
We propose a relation �(·) with EX as parameter for the extension alphabet,
hidden within Q so that only events of P ’s alphabet remain visible.

P �(EX) Q := P � (Q \ EX)

Using only original CSP theory enables us to inherit CSP compositionality and
to directly use verification tools such as FDR [6]. The �(·) relation is transitive 1

and works with all three refinement models (traces, failures, failures-divergence).
As usual, it is possible to rename events. For example, in the adaptable component
a generic processTransaction is used, which is called read in the client .

1 P �(A) Q ∧ Q �(B) R =⇒ P �(A∪B) R.

Refinement-Based Modelling and Verification of Design Patterns 171

5.2 Relations Between Pattern Components

The health indicator component can be described as an extension of the client.
Basically, the health indicator is a client that is bound to a single sensor and
cooperates with an analyser component. Formally, we can show a refinement
relation between the client and the health indicator. Let id ∈ IDC and s ∈ IDS

be identifiers. We instantiate the two processes as follows.

C = Client(id, {s})
HI = HealthIndicator(id, s)

The instantiation of the client restricts the component to only cooperate with a
single sensor, namely s. This is somewhat different from the usual instantiation
of the component, where we usually pass IDS , i.e. the set of all sensors.

The communication of the health indicator with its analyser component is
limited to the event set {|analyse, analysis|}, while its interface to the envi-
ronment is just the event trigger. Let EX be the set of these events, formally
{|analyser, analysis, trigger|}. In our formalisation, it holds that

C �(EX)
F HI

The health indicator extends the client by an interface to an analyser. Thus, the
health indicator inherits all safety and liveness properties of the client.

With this and AC �(SF)
T C (SF being the interface of the client to the sensor

factory), we can show that the health indicator satisfies by transitivity of �T all
safety properties of the adaptable component . However, AC �(SF)

F C does not
hold, because hiding SF in C creates invisible loops which lead to divergences.
This is a common problem with hiding. The situation above is different when
extending the client to the health indicator. The client already uses the event
read, which is “action refined” in the health indicator , i.e., the loop consisting
of the event read is replaced by a loop consisting of a sequence starting with
read. Thus, when hiding the extension events, there is still one visible event
in the loop, namely read, so the loop does not get divergent after hiding. The
adaptable component is also extended w.r.t. traces by the server and the sensor,
respectively. An overview of the extensions is depicted in Fig. 5.

Adaptable
Component

ClientServer Sensor

Health
Indicator

extends �(·)
T

extends �(·)
F

Fig. 5. Overview of extension relations between components across design patterns.

172 T. Göthel et al.

Within a pattern, we can replace a component with a behavioural extension,
thus generalising extension to entire patterns. The extension relation allows us
not only to reuse patterns but also to inherit their properties. This complements
the ordinary refinement of CSP where behaviour is removed with an extension
mechanism where new behaviour is introduced that preserves shown properties.

6 Conclusion and Future Work

In this paper, we have presented an approach for the structured modelling and
verification of self-adaptive design patterns within CSP. The advantage of CSP
is that refinement can be carried out compositionally and that it enables the
transfer of verified properties from abstract levels to concrete ones. This allows
us not only to verify these design patterns and their components but also to
establish formally well-founded relations between components of different pat-
terns. To this end, we have defined the notion of behavioural extension, which
also allows to introduce new behaviour. Furthermore, this enables a formally
sound embedding of entire design patterns within other patterns.

In future work, we plan to formalise further adaptive design patterns in
CSP. Our goal is a comprehensive set of verified basic components that can be
used to combine different patterns. To build actual running adaptive systems,
we currently study adaptive design patterns together with the implementation
framework of CSP++ [5], which enables us to define a model-driven design app-
roach for self-adaptive systems from high-level specification down to executable
code. In CSP++, events are bound to C++ functions to realise complex com-
putations that are irrelevant within the abstract CSP models. This approach
allows us to reduce the semantic gap between models that are formally refined
and their final implementation as the important implementation infrastructure
code is automatically generated. The generated infrastructure code ensures that
formal guarantees are preserved to the implementation level. Our case study is
given by an adaptive cruise control where several lorries can autonomously create
and dissolve convoys to save fuel. Finally, we have started to analyse the applica-
bility of adaptive design patterns in distributed systems. In our current models,
communication works perfectly and components cannot fail. The consideration
of such effects would lead to more robust adaptive design patterns.

References

1. An architectural blueprint for autonomic computing. Technical report, IBM, June
2005

2. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A con-
ceptual framework for adaptation. In: de Lara, J., Zisman, A. (eds.) FASE
2012. LNCS, vol. 7212, pp. 240–254. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28872-2 17

3. Cesari, L., De Nicola, R., Pugliese, R., Puviani, M., Tiezzi, F., Zambonelli, F.:
Formalising adaptation patterns for autonomic ensembles. In: Fiadeiro, J.L., Liu,
Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 100–118. Springer, Cham
(2014). doi:10.1007/978-3-319-07602-7 8

http://dx.doi.org/10.1007/978-3-642-28872-2_17
http://dx.doi.org/10.1007/978-3-642-28872-2_17
http://dx.doi.org/10.1007/978-3-319-07602-7_8

Refinement-Based Modelling and Verification of Design Patterns 173

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

5. Gardner, W.B., Gumtie, A., Carter, J.D.: Supporting selective formalism in
CSP++ with process-specific storage. In: 12th International Conference on Embed-
ded Software and Systems, ICESS 2015, pp. 1057–1065. IEEE (2015)

6. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8 13

7. Göthel, T., Klös, V., Bartels, B.: Modular design and verification of distributed
adaptive real-time systems based on refinements and abstractions. EAI Endorsed
Trans. Self-Adapt. Syst. 15(1), 5:1–5:12 (2015)

8. Holzmann, G.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2003)

9. de la Iglesia, D.G., Weyns, D.: MAPE-K formal templates to rigorously design
behaviors for self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 10(3), 15:1–
15:31 (2015)

10. Khakpour, N., Jalili, S., Talcott, C., Sirjani, M., Mousavi, M.: Formal modeling of
evolving self-adaptive systems. Sci. Comput. Program. 78(1), 3–26 (2012)

11. Luckey, M., Engels, G.: High-quality specification of self-adaptive software systems.
In: Proceedings of the 8th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2013, pp. 143–152. IEEE (2013)

12. Ramirez, A.J.: Design patterns for developing dynamically adaptive systems. Mas-
ter’s thesis, Michigan State University (2008)

13. Ramirez, A.J., Cheng, B.H.C.: Design patterns for developing dynamically adap-
tive systems. In: Proceedings of the 2010 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, pp. 49–58. ACM (2010)

14. Roscoe, A.: Understanding Concurrent Systems. Springer, London (2010)
15. Seif, S.: Formalisation and analysis of design patterns for self-adaptive systems and

their formal relationship. Master’s thesis, Techn. Universität Berlin (2015)
16. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.

In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-35813-5 4

17. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: Proceedings of the 28th International Conference on Software Engineer-
ing, pp. 371–380. ACM (2006)

18. Zhang, J., Goldsby, H.J., Cheng, B.H.: Modular verification of dynamically adap-
tive systems. In: Proceedings of the 8th ACM International Conference on Aspect-
Oriented Software Development, AOSD 2009, pp. 161–172. ACM (2009)

http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-642-35813-5_4

Assertion Generation Through Active Learning

Long H. Pham(B), Ly Ly Tran Thi, and Jun Sun

ISTD, Singapore University of Technology and Design, Singapore, Singapore
honglong pham@mymail.stud.edu.sg

Abstract. Program assertions are useful for many program analysis
tasks. They are however often missing in practice. Many approaches have
been developed to generate assertions automatically. Existing methods
are either based on generalizing from a set of test cases (e.g., Daikon),
or based on some forms of symbolic execution. In this work, we develop
a novel approach for generating likely assertions automatically based on
active learning. Our targets are complex Java programs which are chal-
lenging for symbolic execution. Our key idea is to generate candidate
assertions based on test cases and then apply active learning techniques
to iteratively improve them. We evaluate our approach using two sets
of programs, i.e., 425 methods from three popular Java projects from
GitHub and 10 programs from the SVComp repository. We evaluate the
‘correctness’ of the assertions either by comparing them with existing
assertion-like checking conditions, or by comparing them with the docu-
mentation, or by verifying them.

1 Introduction

Assertions in programs are useful for many program analysis tasks [15]. For
instance, they can be used as oracles for program testing, or correctness spec-
ification for static program verification. They are however often insufficiently
written in practice [15]. It is thus desirable to generate them automatically.

A variety of approaches have been developed for assertion generation. We
broadly divide them into three categories. The approaches in the first category
rely on summarizing and generalizing a set of test cases. One well-known example
is Daikon [11]. Daikon takes a set of test cases as inputs and summarizes
the program states at a given program location based on a set of predefined
templates. Typically, these approaches are scalable and thus can be applied
to complex programs. However, it is also known if only a limited number of
test cases are available, the generated assertions are often not ‘correct’ [32].
Unfortunately, as reported in [4,5], the number of test cases available in practice
is often limited.

The second category contains approaches which rely on some forms of sym-
bolic execution or constraint solving, e.g., [3,6,10]. These approaches often
provide some guarantee on the quality of the generated assertions. However,
since programs must be encoded as symbolic constraints and be solved, these
approaches are often limited to relatively simple programs.

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 174–191, 2017.
https://doi.org/10.1007/978-3-319-68690-5 11

Assertion Generation Through Active Learning 175

The third category combines the techniques of the two categories, e.g., the
guess-and-check approaches [13,24,25]. The idea is to guess candidate assertions
and then check their correctness based on symbolic execution or similar tech-
niques. If the candidate assertion is found to be incorrect, a counterexample is
identified as a new test case and used to refine the candidate assertion. Simi-
larly, the work in [35] generates candidate invariants and then instruments the
candidate invariants into the programs. Afterwards, symbolic execution is
applied to generate new test cases, which are used to improve the candidates.
Similar to those approaches in the second category, these approaches are often
limited to relatively simple programs as symbolic execution is applied.

In this work, we propose a new approach for assertion generation. Our tar-
gets are complex Java programs and thus we would like to avoid heavy-weight
techniques like symbolic execution. We also would like to overcome the issue of
not having sufficiently many test cases in practice and be able to generate ‘cor-
rect’ assertions. Briefly, our approach works as follows. We first learn some initial
candidate assertions using a set of templates and machine learning algorithms
(e.g., [7] and Support Vector Machine [23]). Next, we apply active learning tech-
niques to improve the candidate assertions. That is, we automatically generate
new program states based on the candidate assertions. Then, we re-learn the
assertion using the testing results from new states and iteratively improve the
assertions until they converge. Compared to existing approaches, our main idea
is to automatically mutate program states based on active learning to refine the
candidate assertions. This is motivated by recent studies in [30,31] which show
that active learning can help to learn ‘correct’ predicates (i.e., with bounded
error) with a small number of labeled data.

Our approach has been implemented in a tool named ALearner. To eval-
uate the effectiveness and efficiency of ALearner, we conduct two sets of
experiments. Firstly, we apply ALearner to 425 methods from three popular
Java projects from GitHub. ALearner successfully generates 243 assertions.
We manually inspect the generated assertions and confirm that 168 of them
(69%) are correct, i.e., necessary and sufficient to avoid failure. Furthermore,
we notice that 186 out of the 425 methods contain some assertion-like check-
ing condition at the beginning of the method. For 116 of those methods (62%),
ALearner successfully generates an assertion identical to the condition. Sec-
ondly, we apply ALearner to a set of 10 programs from the software verifica-
tion competition (SVComp [2]). Given the postcondition in the program, we use
ALearner to automatically learn a precondition, without any user-provided
test cases. We show that for 90% of the cases, ALearner learns a precondition
which is weaker than the user-provided precondition yet strong enough to prove
the postcondition. Lastly, we evaluate the efficiency of ALearner and show
that the computational overhead is mild.

The remainder of the paper is organized as follows. Section 2 illustrates how
our approach works with examples. Section 3 presents details of each step in our
approach. Section 4 presents the implementation of ALearner and evaluation
results. Section 5 discusses the related work. Section 6 concludes.

176 L.H. Pham et al.

2 Overview with Examples

In the following, we briefly describe how our approach works. Without loss of
generality, we assume the input to our method is a Java method with multiple
parameters (which may call other methods) as well as a set of user-provided test
cases. For instance, assume that the input is the method withMonthOfY ear
shown in Fig. 1, which is a method from the joda-time project on GitHub. This
method returns a new MonthDay object based on the current object and sets
its month value as the input monthOfY ear. A series of methods are invoked
through inheritance and polymorphism to create a new MonthDay object,
including method verifyV alueBounds in class FieldUtils (shown in Fig. 1).
Method verifyV alueBounds checks if the value of monthOfY ear is within the
range defined by the parameters lowerBound (i.e., 1) and upperBound (i.e., 12).

Fig. 1. Example from class MonthDay in project JodaOrg/joda-time

Our first step is data collection. Given a program location in the given pro-
gram, we instruct the program to output the program states during the exe-
cution of the test cases. We collect two sets of program states, one containing
program states which lead to failure and the other containing the rest. In the
above example, assume that we are interested in generating a precondition of
method monthOfY ear, i.e., an assertion at the beginning of the method. In the
project, there are three user-provided test cases for this method, with the input
monthOfY ear being 5, 0, and 13 respectively. The latter two test cases result
in failure, whereas the first runs successfully. Thus, we have two sets of program
states, one containing the state of monthOfY ear being 0 or 13 and the other
containing the state of monthOfY ear being 5.

The second step is classification. Given the two sets of program states, we
apply learning techniques to identify predicates which could perfectly classify
the two sets. In ALearner, we support two learning algorithms to identify
such predicates. The first algorithm uses the predefined templates and applies
the learning algorithm in [7] to learn boolean combination of the templates. The
second one is inspired by [27], which applies Support Vector Machine (SVM)

Assertion Generation Through Active Learning 177

to learn conjunction of linear inequalities as classifiers. In our example, given
the two sets of program states, applying the first algorithm, ALearner tries
the templates one by one and identifies a candidate assertion monthOfY ear =
5 (i.e., when monthOfY ear is 5, there is no failure). While this assertion is
consistent with the three test cases, it is ‘incorrect’ and the reason is the lack of
test cases. For instance, if we are provided with a test case with monthOfY ear
being 4, assertion monthOfY ear = 5 would not be generated. This shows that
assertion generation based only on a limited set of test cases may not be effective.
Using SVM, we learn the assertion: 3 ≤ monthOfY ear ≤ 9.

The third step is active learning. To solve the above problem, we apply active
learning techniques to iteratively improve the assertion until it converges. This
is necessary because the assertion should define the boundary between failing
program states from the rest, whereas it is unlikely that the provided (or gener-
ated) test cases are right on the boundary. Active learning works by generating
new states based on the current boundary. Then, we execute the program with
new states to check whether they lead to failure or not (a.k.a. labeling). Step 2
and subsequently step 3 are then repeated until the assertion converges.

For simplicity, we show only how the candidate assertion 3 ≤
monthOfY ear ≤ 9 is refined in the following. Applying active learning, we
generate two new states where monthOfY ear is 3 and 9 respectively. After
testing, since both states run successfully, the two sets of program states are
updated so that the passing set contains the states of monthOfY ear being 3, 5
and 9; and the failing set contains 0 and 13. Afterwards, the following assertion
is identified using SVM: 2 ≤ monthOfY ear ≤ 11. Repeating the same process,
we generate new states where monthOfY ear is 2 and 11 and get the assertion:
1 ≤ monthOfY ear ≤ 12. We then generate states where monthOfY ear is 1
and 12 and learn the same assertion again. This implies that we have converged
and thus the assertion is output for user inspection.

The above example shows a simple assertion which is generated using
ALearner. In comparison, because withMonthOfY ear calls many methods as
well as inheritance and polymorphism in the relevant classes, applying assertion-
generation methods based on symbolic execution is non-trivial1. ALearner can
also learn complex assertions with disjunction and variables from different
domains. An example is the precondition generated for method minus in class
Days shown in Fig. 2. Each Days object has a field iPeriod to represent the num-
ber of days. The method receives a Days object days as input. If days is null,
the method returns the this object. Otherwise, it negates the number of days
in days. Then, it returns a new Days object whose number of days is the sum
of the negation and the number of day in the this object. An arithmetic excep-
tion is thrown when the number of days of days equals Integer.MIN V ALUE
or when the result of the sum is overflow. ALearner generates the assertion:
days = null || (this.iPeriod−days.iPeriod is not overflow && days.iPeriod �=
Integer.MIN V ALUE) for the method.

1 Refer to recent development on supporting polymorphism in symbolic execution
in [17].

178 L.H. Pham et al.

Fig. 2. Example from class Days in project JodaOrg/joda-time

3 Detailed Approach

In this section, we present the details of each step in our approach. Recall that the
inputs include a Java program in the form of a method with multiple parameters
and a set of test cases. The output is the assertions at different program locations.
We assume the program is deterministic with respect to the testing results. This
is necessary because our approach learns based on the testing results, which
become unreliable in the presence of non-determinism.

Step 1: Data Collection. Our goal is to dynamically learn likely assertions at
different program locations. To choose program locations to learn, we build a
control flow graph of the program and choose the locations heuristically based
on the graph. For instance, we generate assertions at the beginning of a method
or the end of a loop inside a method. Another candidate program location is
the beginning of a loop. However, an assertion in a loop or a recursion must be
inductive. Learning inductive assertions is itself a research topic (e.g., [24,28])
and we leave it to future work.

We instruct at the program location with statements to output the program
states during the execution of the test cases. In ALearner, there can be two
sources of test cases. The first group contains the user-provided test cases. How-
ever, our experience is that often user-provided test cases are rather limited and
they may or may not contain the ones which result in failure. The second group
contains random test cases we generate using the Randoop approach [20]. We
remark that Randoop is adopted because it is relatively easy to implement.

To collect only relevant features of the program states, we identify the rel-
evant variables. Given a failed test case, we identify the statement where the
failure occurs and find all the variables which it has a data/control dependence
on through dynamic program slicing. Among these variables, the ones accessible
at the program location are considered relevant. Next, we extract features from
the relevant variables. For variables of primitive types (e.g., int, float), we use
their values. For reference type variables, we can obtain values from the fields
of the referenced objects, the fields of those fields, or the returned value of the
inspector methods in the class. As a result, we can obtain many values from a
single variable. In ALearner, we set the bound on the number of de-referencing
to be 2 by default, i.e., we focus on the values which can be accessed through
two or less de-referencing. This avoids the problem of infinite de-referencing in
dealing with recursive data types.

Assertion Generation Through Active Learning 179

After executing the test cases with the instrumented program, we obtain a set
of program states, in the form of an ordered sequence of features (a.k.a. feature
vectors). We then categorize the feature vectors into two sets according to the
testing results, one denoted as S+ containing those which do not lead to failure
and the other denoted by S− containing the rest. Note that the feature vectors
obtained from different test cases may not always have the same dimension. For
instance, in one test case, a reference type object might have the value null,
whereas it may not be null in another test case so that we can obtain more
features. We then apply standard techniques to normalize feature vectors in S+

and S−, i.e., we mark missing features as null. With this normalization, all
vectors have the same number of features.

Step 2: Classification. The feature vectors in S+ are samples of ‘correct’ program
behaviors, whereas the ones in S− are samples of ‘incorrect’ program behaviors.
Intuitively, an assertion should perfectly classify S+ from S−. We thus borrow
ideas from the machine learning community to learn the assertions through clas-
sification. We support two classification algorithms in this work. One applies
the learning algorithm in [7] to learn boolean combination of propositions gen-
erated by a set of predefined templates inspired by Daikon. The other applies
SVM to learn assertions in the form of conjunctions of linear inequalities. Both
algorithms are coupled with an active learning strategy as we discuss later.

Table 1. Sample templates for assertions

Sample template Sample selective sampling

x * y = z Predefined values for x, y, and z

x = c (x = c ± 1)

x != c (x = c ± 1)

x = true (x = true); (x = false)

ax + by = c Solve for x based on y and vice versa

Template based Learning. We first introduce our template based assertion
generation approach. We adopt most of the templates from Daikon. In the
following, we first introduce the primitive templates (i.e., propositions without
logical connectors) supported by ALearner and then explain how to learn
boolean combinations of certain primitive templates.

A few sample primitive templates are shown in Table 1. In total, we have 120
primitive templates and we refer the readers to [1] for the complete list. A tem-
plate may contain zero or more unknown coefficients which can be precisely deter-
mined with a finite set of program states. For instance, the template which checks
whether two variables have the same value has zero coefficient and we can deter-
mine whether it is valid straightforwardly; the template which checks whether a
variable has a constant value has one unknown coefficient (i.e., the constant value)

180 L.H. Pham et al.

which can be determined with one program state in S+. Some templates have mul-
tiple coefficients, e.g., the template ax + by = c where x and y are variables and
a, b, c are constant coefficients. We need at least three pairs of x, y values in S+ to
identify the values of a, b, and c.

In order to generate candidate assertions in the form of a primitive template,
we randomly select a sufficient number of feature vectors from S+ and/or S−

and compute the coefficients. Once we compute the values for the coefficients, we
check whether the resultant predicate is valid. A template with concrete values
for its coefficients is called valid if it evaluates to true for all feature vectors in
S+ and evaluates to false for all feature vectors in S−. If feature vectors are not
enough to identify the coefficients, or the template requires more features than
those in the feature vectors, or the template is not applicable to the input values,
the template is skipped. If a template requires only a subset of the features in
the feature vectors, we try all subsets of the features.

Like Daikon, we limit the number of variables in the primitive templates to
be no more than 3 and hence the number of combinations of features is cubic
in the total number of features. We remark that because we learn from S− as
well, we are able to support templates which are not supported by Daikon.
One example is the template x �= a (where a is an unknown coefficient). With
only program states in S+, it is impossible to identify the value of a (since there
are infinitely many possibilities). However, since the negation of x �= a must be
satisfied by program states in S−. With one feature vector from S−, we can
precisely determine the value of a.

We sometimes need assertions in the form of boolean combinations of prim-
itive templates. In the following, we describe how to learn boolean combination
of primitive templates. We start with identifying a set of predicates (in a form
defined by a primitive template) which correctly classify some feature vectors in
S+ or S−. For instance, we have the predicate x = y if there is a feature vector
such that x = y in S+ or x �= y in S−. In general, it might be expensive to
identify all of such predicates if the primitive template has multiple coefficients.
For instance, in order to identify all such predicates in the form of ax + by = c,
we must try all combinations of three feature vectors in S+ to identify the value
of a, b and c, which has a complexity cubic in the size of S+. We thus limit
ourselves to predicates defined by primitive templates with zero coefficient for
learning boolean combination of the templates.

Once we have identified the set of predicates, we apply the algorithm in [7]
to identify a boolean combination of them which perfectly classifies all feature
vectors in S+ and S−. Informally, we consider each feature vector in S+ and
S− as data points in certain space. Each data point in S+ is connected to
every one in S− by an edge. The problem then becomes finding a subset of the
predicates (which represent lines in this space) such that every edge is cut by
some predicates. The algorithm in [7] works by greedily finding the predicate
which can cut the most number of uncut edges until all edges are cut. The
set of predicates identified this way partition the space into regions which only
contains data points in S+ or S− but not both. Each region is a conjunction of the

Assertion Generation Through Active Learning 181

predicates. The disjunction of all regions containing S+ is a perfect classifier. We
remark that Daikon generates multiple assertions at a program location, which
are logically in conjunction, and has limited support for disjunctive assertions.

SVM-based Learning. In addition to template-based learning, we support
learning of assertions in the general form of c1x1 + c2x2 + · · · ≥ k (a.k.a. a
half space) where there might be 1, 2, 3, or more variables in the expression.
To generate such an assertion, we need to find coefficients c1, c2, · · · , k such that
c1x1+c2x2+ · · · ≥ k for all feature vectors in S+ and c1x1+c2x2+ · · · < k for all
feature vectors in S−. With a finite set of feature vectors, we may have infinitely
many coefficients c1, c2, · · · , k satisfying the above condition. In this work, we
apply SVM classification [23] to identify the coefficients for this template.

SVM is a supervised machine learning algorithm for classification and regres-
sion analysis. We use its binary classification functionality, which works as fol-
lows. Given S+ and S−, it tries to find a half space Σd

i=1cixi ≥ k such that (1)
for every feature vector [x1, x2, · · · , xd] ∈ S+ such that Σd

i=1cixi ≥ k and (2) for
every feature vector [x1, x2, · · · , xd] ∈ S− such that Σd

i=1cixi < k. If S+ and S−

are linearly separable, SVM is guaranteed to find a half space. The complexity
of SVM is O(max(n, d) ∗ min(n, d)2), where n is the number of feature vectors
and d is the number of dimensions [8], i.e., the number of values in a feature
vector in S+ or S−.

It has been shown that SVM can be extended to learn more expressive classi-
fiers, e.g., polynomial inequalities using the polynomial kernel and conjunctions
of half spaces. In the following, we briefly describe how ALearner learns con-
junction of multiple half spaces as the assertions (in the form of c1

1x1+c1
2x2+· · · ≥

k1 ∧ c2
1x1 + c2

2x2 + · · · ≥ k2 ∧ · · ·) adopting the algorithm proposed in [27]. Given
the feature vectors in S+ and S−, we first randomly select a vector s from S−

and learn a half space φ1 to separate s from all vectors in S+. We then remove all
vectors s′ in S− such that φ1 evaluates to false given s′. Next, we select another
vector from S− and find another half space φ2. We repeat this process until S−

becomes empty. The conjunction of all the half spaces φ1 ∧ φ2 ∧ · · · perfectly
classifies S+ from S− and is reported as a candidate assertion.

We remark that we prefer simple assertions rather than complex ones. Thus,
we first apply the primitive templates. We then apply SVM-based learning if no
valid assertion is generated based on the primitive templates. Boolean combina-
tions of primitive templates are tried last. The order in which the templates are
tried has little effect on the outcome because invalid templates are often filtered
through active learning, which we explain next.

Step 3: Active Learning. The assertions generated as discussed above are often
not correct due to the limited number of test cases we learn from, as we have
illustrated in Sect. 2. This is a known problem in the machine learning community
and one remedy for solving the problem is active learning [9].

Active learning is proposed in contrast to passive learning. A passive learner
learns from a given set of data over which it has no control, whereas an active
learner actively selects what data to learn from. For instance, Daikon could be

182 L.H. Pham et al.

regarded as a passive learner for assertions. It has been shown that an active
learner can sometimes achieve good performance using far less data than would
otherwise be required by a passive learner [30,31]. Active learning can be applied
for classification or regression. In this work, we apply it for improving the can-
didate assertions generated by the above-discussed classification algorithms.

In the following, we explain how active learning is adopted in our work. Once
a candidate assertion is generated, we selectively generate new feature vectors,
which are then turned into new program states so as to improve the assertion.
For template-based learning, we design heuristics to select the data on and near
by the classification boundary for each template. A few examples are shown in
the second column of Table 1. For example, if the assertion is x = c and x is of
type integer, the generated feature vectors would be x = c + 1 or x = c − 1. For
templates with zero coefficients such as x ∗ y = z, we choose some predefined
values on and near by the boundary of x ∗ y = z as the selected feature vectors.

For SVM-based learning, we adopt the active learning strategy in [23]. The
idea is to select a fixed number (e.g., 5 as in [23]) of data points on the classi-
fication boundary as the selected feature vectors. For instance, if the candidate
assertion is 3x+2y ≥ 5, we solve the equation 3x+2y = 5 to get a few pairs of x,
y values. Note that if the candidate assertion contains multiple clauses (e.g., it is
the conjunction of multiple inequalities), we apply the above strategy to each of
its clauses (e.g., if it is from a template, we apply the corresponding heuristics).

After selecting the feature vectors, we automatically mutate the program so
as to set the program state at the program location according to the selected
feature vectors. For instance, if the selected feature vectors are x = 4 and x = 6,
we generate two versions of the program. The first version inserts an additional
statement x = 4 right before the program location in the original program, and
the second version inserts the additional statement x = 6. Next, we run the test
cases with the modified programs so as to check whether the test cases lead to
failure or not. If executing a test case with the first version of the program leads
to failure, the program state x = 4 is added to S− or otherwise it is added to S+.
Similarly, if executing a test case with the second version leads to failure, the
program state x = 6 is added to S− or otherwise it is added to S+. Afterwards,
we repeat the classification step to identify new candidate assertions and then
apply active learning again. The process repeats until the assertion converges.

Note that selective sampling may create unreachable states in the program.
If the unreachable states are labeled negative, they do not affect the learning
result because we try to exclude them. If they are labeled positive, we learn an
invariant which is weaker than the ‘actual’ one. It is not a problem as our goal
is to learn invariants which are sufficiently strong to avoid program failure.

4 Implementation and Evaluation

We have implemented the proposed method in a self-contained tool named
ALearner, which is available at [1]. ALearner is written in Java with 91600
lines of code. In the following, we evaluate ALearner in order to answer the
following research questions.

Assertion Generation Through Active Learning 183

– RQ1: Can ALearner generate correct assertions?
– RQ2: Is active learning helpful?
– RQ3: Is ALearner sufficiently efficient?

As a baseline, we compare ALearner with Daikon. To have a fair comparison,
the experiments are set up such that ALearner and Daikon always have the
same set of test cases except that the test cases which result in failure are omitted
for Daikon since Daikon learns only from the correct program executions.

Our experimental subjects include two sets of programs. The first set
contains 425 methods selected from three Java projects on GitHub. Project
pedrovgs/Algorithms is a library of commonly used algorithms on data struc-
tures and some math operations; project JodaOrg/joda-time is a library for
working with date and time; and project JodaOrg/joda-money is a library for
working with currency. We apply ALearner to all classes in the first project. For
the other two projects, we focus on classes in the main packages (org.joda.time
and org.joda.money) as those classes contain relatively more unit test cases.
We select all methods which have at least one passed test case and one failed
test case, except the constructors or the methods that are inherited without
overriding (due to limitation of our current implementation). We systematically
apply ALearner to each method, using existing test cases in the projects only.
As shown in Table 5, there are a total of 2137 test cases for all the methods,
i.e., on average 5 per method. We do not generate random test cases for this
set of programs, so as to reduce randomness as well as to evaluate whether
ALearner works with limited user-provided test cases only.

The second set contains 10 programs from the software verification compe-
tition (SVComp) repository. These programs are chosen because we can verify
the correctness of the learned assertions. The programs are selected based on
the following criteria. First, because ALearner is designed for Java programs
and the programs in the repository are in C, we have to manually translate the
selected programs into Java. We thus avoid programs which rely on C specific
language constructs. For the same reason, we are limited to a small set of pro-
grams due to manual effort required in translating the programs. Furthermore,
we skip programs with no precondition (i.e., the precondition is true) and non-
deterministic programs. These programs are relatively small, contain relatively
strong user-provided assertions (i.e., a pair of precondition and postcondition
for each program) and no test cases. These 10 programs are not easy to analyze.
Most of them rely on float or double variables and are hard to verify.

We randomly generate 20 test cases for each program. Since these programs
take float or double type numbers as inputs which have a huge domain, we
perform a simple static analysis of the postcondition, to heuristically set the
range of random number generation for generating test cases. For instance, if
we are to verify that some variable is always within the range of [−10, 10], we
use an enlarged range (e.g., [−100, 100]) to generate input values (often for
different variables). Furthermore, we manually examine the results and round
the coefficients in the learned assertions to the number of decimal places that
are enough to prove the postcondition based on programs specification.

184 L.H. Pham et al.

All experiments are conducted in macOS on a machine with an Intel(R)
Core(TM) i7, running with one 2.20 GHz CPU, 6M cache and 16 GB RAM.
All details of the experiments are at [1]. For all the programs, we configure
ALearner to learn an assertion at the beginning of the method, i.e., a precon-
dition. For each program, if random test case generation is applied, we repeat
the experiment 20 times and report the average results. We set a time out of
3 min so that we terminate if we do not learn anything (e.g., if SVM could not
find a classifier, it usually takes a long time to terminate) or active learning takes
too long to converge.

RQ1: Can ALearner generate correct assertions? In this work, we define the
correctness of an assertion in terms of whether there is a correlation between
the learned assertion and whether failure occurs or not. Depending on what the
correlation is, the assertions are categorized into four categories. An assertion
is called necessary if it is (only) a necessary condition for avoiding failure; it is
sufficient if it is (only) a sufficient condition; and correct if it is both necessary
and sufficient (i.e., there is no failure if and only if the assertion is satisfied).
Ideally, we should learn correct assertions. Lastly, an assertion is called irrelevant
if it is neither necessary nor sufficient. For instance, given a program which
contains an expression 5/x, assertion true is necessary; x ≥ 2 is sufficient; x �= 0
is correct; and x > −13 is irrelevant.

We start with the experiment results on the GitHub projects, which are
shown in Table 2. As shown in column #asse, a total of 243 assertions are learned
by ALearner, i.e., ALearner is able to learn an assertion at the beginning
of 57% of the methods. For comparison, the second last column shows the cor-
responding number using Daikon. It can be observed that ALearner learned
fewer assertions than Daikon for all three projects. This is expected because
Daikon generates one assertion for each of its templates which is consistent
with the test cases (after certain filtering [11]), whereas an assertion learned by
ALearner must be consistent with not only the passed test cases but also the
ones which trigger failure.

We first evaluate the correctness of these assertions by manually categoriz-
ing them. Table 2 shows the number of assertions in each category. Note that
Daikon often generates multiple assertions and it is often meaningless if we take
the conjunction of all of them as one assertion. We thus manually check whether
some assertions generated by Daikon can be conjuncted to form correct asser-
tions and count them as correct assertions. Necessary and sufficient assertions
for Daikon are counted similarly. Then we count the rest of Daikon’s asser-
tions as irrelevant. In comparison, ALearner generates only one assertion at
one program location. We can see that ALearner successfully generates many
correct assertions, i.e., 168 out of all 243 (about 69%) are correct. In compari-
son, only 18 out of 516 (about 3.5%) assertions learned by Daikon are correct,
whereas majority of those learned by Daikon are sufficient only (35%) or irrel-
evant (60%). This is expected as Daikon learns based on the program states in
the passed test cases only. Given that the number of test cases is limited, often
the learned assertions have limited correctness.

Assertion Generation Through Active Learning 185

In all three projects, ALearner learned more correct or necessary (i.e., over-
approximation) assertions than Daikon and much fewer sufficient or irrelevant
ones. There are two main reasons why ALearner may not always learn the
correct assertion. Firstly, ALearner may not always be able to perform active
learning. For instance, a field of an object may be declared as final and thus
altering its value at runtime is infeasible. Secondly, the test cases are biased for
some methods. For example, in one method in project Algorithm, the correct
assertion should be tree1 �= null || tree2 �= null. But in the test cases, only the
value of variable tree1 varies (e.g., being null in one test and being not null in
another) and variable tree2 remains the same. As a result, ALearner learns
the assertion tree1 �= null, which is sufficient but not necessary.

Table 2. Experiment results on GitHub projects and Java standard library

Project #meth ALearner Daikon ALearner wo AL

#asse corr necc suff irre #asse corr necc suff irre #asse corr necc suff irre

Algorithms 96 85 69 10 2 4 135 5 0 93 37 88 64 15 3 6

Joda-time 236 133 83 43 0 7 307 8 7 84 208 153 25 31 37 60

Joda-money 93 25 16 9 0 0 74 5 2 3 64 30 16 9 0 5

There are cases where ALearner cannot learn any assertion. The reason
is the correct assertions require templates which are currently not supported
by ALearner. For example, there are multiple methods which take String
objects as inputs and throws RuntimeException if the input String objects do
not follow certain patterns, such as patterns for scientific numbers in Algorithm
and patterns for day and time format in joda-time. In another example, multiple
methods throw RuntimeException if and only if an input object is not of a
type which is a subclass of certain class. ALearner does not support templates
related to typing and cannot learn those assertions.

We observe that, for 186 out of these 425 methods, the authors have explic-
itly put in code which is used to check the validity of the inputs (which is used to
prevent the inputs from crashing the program by causing RuntimeException).
This provides an alternative way of evaluating the quality of the learned asser-
tion. That is, we assume the conditions used in these checking code are correct
assertions and compare them with the learned assertions. For 116 out of the 186
(62%) methods, the assertion learned by ALearner is the same as the checking
condition. In comparison, for only 8 out of the 186 (4.3%) methods, the condition
is one of those assertions generated by Daikon for the respective method.

Next, we evaluate the assertions generated for the SVComp programs. We
formally verify the correctness of the learned precondition (by either existing
program verifier or referring to the original proof of the program). Table 3 shows
the experiment results. Column correct shows how many times (out of 20) we
learn the correct assertion. The reason that ALearner may not always learn the
same assertion is the random test cases could be different every time. Column

186 L.H. Pham et al.

Table 3. Experiment results on SVComp programs

Subject ALearner Daikon ALearner wo AL

Useful Correct Useful Correct Useful Correct

exp loop 0 0 0 0 0 0

inv sqrt 20 20 0 0 0 0

sqrt biN 12 11 0 0 1 0

sqrt H con 15 15 0 0 0 0

sqrt H int 13 12 0 0 0 0

sqrt H pse 15 13 0 0 0 0

sqrt N pse 13 10 0 0 0 0

square 8 15 0 0 0 0 0

zono loose 16 16 0 0 9 1

zono tight 14 14 0 0 11 2

useful shows the number of times we learn a useful assertion, i.e., a sufficient con-
dition for proving the postcondition which is implied by the given precondition.
It is useful as it can be used to verify the program indirectly.

We first observe that Daikon failed to learn any correct or useful asser-
tion for these programs with the same passing test cases. One reason is
because these programs require some precise numerical values in the asser-
tions which are often missing from the randomly generated test cases. For
9 programs, ALearner learns useful assertions most of the time; and for
8 programs, ALearner learns the correct assertions. Further, for all these
8 cases, ALearner learns correct assertions which are strictly weaker than
the corresponding precondition, which implies that with ALearner’s result,
we prove a stronger specification of the program. For program exp loop,
ALearner learned the assertion a �= 0, which is implied by the given pre-
condition a ≥ 1e−10 && a ≤ 1e10. However, it is necessary but not sufficient to
prove the postcondition c ≥ 0 && c ≤ 1e6. A closer look reveals that the post-
condition is violated if a is greater than 2.1e12 or less than −2.1e12. Because we
never generated a random test case with such huge number, ALearner failed
to learn the correct assertion. For program square 8, we discover that the cor-
rect assertion contains two irrational number coefficients, which is beyond the
capability of ALearner.

Based on the experiment results discussed above, we conclude that the answer
to RQ1 is that ALearner can learn correct assertions and does so often.

RQ2: Is active learning helpful? To answer this question, we compare the per-
formance of ALearner with and without active learning. The results are shown
in the last columns of Tables 2 and 3. Without active learning, the number of
learned assertions and irrelevant ones increases. For instance, for methods in
joda-time, the number of irrelevant assertions increases from 7 (i.e., 5%) to 60

Assertion Generation Through Active Learning 187

Table 4. Daikon results with selective sampling

corr necc suff irre

Without AL test cases 0 0 28 13

With AL test cases 0 0 2 8

(i.e., 39%). Furthermore, without active learning, we almost never learn correct
assertions for the SVComp programs. This is expected as without active learn-
ing, we are limited to the provided test cases and many templates cannot be
filtered. As the correct assertions for these programs contain specific numerical
values, active learning works by iteratively improving the candidate assertions
until the correct numerical values are identified.

Next, we conduct experiments to see whether the additional programs states
generated by ALearner during active learning could be used to improve
Daikon. The rationale is that if it does, active learning could be helpful not
only for ALearner but also Daikon. We randomly selected about 10% of the
methods (43 of them), created additional test cases based on the new program
states, then feed those test cases (together with the provided ones) to Daikon.
The results are shown in Table 4. We can see that with additional test cases,
Daikon can filter a lot of sufficient and irrelevant assertions. We conclude that
active learning is helpful for ALearner and may potentially be helpful for
Daikon.

RQ3: Is ALearner sufficiently efficient? To answer this question, we would
like to evaluate whether the overhead of active learning is acceptable. Table 5
shows the execution time of ALearner (with and without active learning) as
well as Daikon’s. In addition, we show the lines of the code in the projects and
the number of test cases we use to analyze methods since they are relevant to
the efficiency. It can be observed that ALearner is slower than Daikon (about
one order of magnitude), which is expected as ALearner relies on learning
algorithms which are more time consuming than template matching in Daikon.
On average ALearner takes about 40 seconds to learn an assertion, which
we consider as reasonably efficient for practical usage. Without active learning,
ALearner runs faster but only by a factor of 2, which means active learning
converges relatively quickly. Given that the quality of the generated assertions
improve with active learning, we consider the overhead is acceptable.

Threat to Validity. Firstly, we acknowledge that the subjects used for evalua-
tion might be biased. Though the three GitHub projects are selected randomly,
they may not be representative of other projects. So are the programs from the
SVComp repository. Secondly, although we did our best to configure Daikon to
achieve its best performance, it is not impossible that experts on Daikon may
be able to tune it for better performance. The issue of lacking test cases is a
fundamental limitation for Daikon.

188 L.H. Pham et al.

Table 5. Experiment results on efficiency

Project LOC #tests ALearner(w/wo AL)(s) Daikon(s)

Algorithms 6512 414 2496/1682 223

Joda-time 85785 1163 5970/4701 665

Joda-money 8464 560 1947/1739 236

SVComp 276 200 471/193 22

5 Related Work

This work is closely related to the line of work on dynamic invariant generation,
a technique pioneered by Ernst et al. to infer likely invariants. In particular,
ALearner is inspired by Daikon [11,12]. Daikon executes a program with a
set of test cases. Then it infers precondition, postcondition, and loop invariant by
checking the program states against a set of predefined templates. The templates
that satisfy all these program states are likely invariants. Nguyen et al. extends
Daikon’s approach by proposing some templates that can describe inequality,
nested array [18], and disjunction [19]. They also propose to validate the inferred
invariants through k-induction.

ALearner is different from the above-mentioned approaches. Firstly, above
approaches learn invariants through summarising the program states of the
passed test cases using some templates. ALearner learns not only from the
passed test cases but also the failed ones. Therefore, it is able to learn assertions
with a number of templates which cannot be supported otherwise. Secondly,
ALearner relies on active learning to overcome the lack of user-provided test
cases, which we believe is a threat to the usefulness of the above-mentioned test
cases based learning tools.

Our approach is related to iDiscovery [35], which improves invariants in
Daikon by generating more test cases based on current candidate invariants
and symbolic execution. In comparison, ALearner avoids symbolic execution.
Moreover, because iDiscovery uses Daikon to generate invariants, it only learns
from passed test cases. Xie and Notkin also propose an approach similar to ours,
in which test cases generation and specification inference are enhanced mutually
[34]. Their work, however, does not provide any experiment results.

Sharma et al. proposed a number of guess-and-check approaches to infer loop
invariants. They categorize program states into two sets of good and bad states.
Several learning algorithms are used to learn a predicate that can separate these
two sets, such as PAC learner [26], null space [25], or randomised search [24]. The
predicate is then checked by a verifier to see if it is valid loop invariant. If it is not,
verifier returns a counterexample and the counterexample is used to improve the
learned predicate. Garg et al. extend above idea by introducing ICE framework
[13] and a method to learn invariants by solving a SMT formula. A new method
using decision tree to learn invariants in ICE framework is presented in [14].
Krishna et al. also use decision tree to learn invariant in their approach [16].

Assertion Generation Through Active Learning 189

These guess-and-check methods can infer correct invariants. However, they rely
on the program verification and thus are limited to relatively simple programs.
In comparison, our approach relies on machine learning techniques.

Padhi et al. present the idea of learning precondition to avoid exception with
a method that can add more features in the learning process automatically [21].
In [22], the authors use decision tree to learn likely precondition from a partial
truth table of a set of predicates. Lastly, our idea of using SVM to learn assertions
is inspired by [27,29,33]. However, those works have very different goals from
this one.

6 Conclusion

In this work, we present an approach that can infer likely assertions from complex
Java programs. The novelty in our approach is to apply active learning techniques
to learn and refine assertions. While active learning helps to overcome the issue of
lacking test cases in many cases, the effectiveness of ALearner is still dependent
on the availability of certain test cases. For instance, if a failure occurs only
if some complex path conditions are satisfied and there are no test cases for
triggering that exception, the condition to avoid that failure will not be learned.
To solve the problem, we would like to use more systematic test case generation
techniques to get better initial test cases.

Acknowledgments. This research was funded by the project T2MOE1704.

References

1. http://sav.sutd.edu.sg/alearner
2. http://sv-comp.sosy-lab.org/2016/
3. Alur, R., Černỳ, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications

for java classes. In: POPL, pp. 98–109. ACM (2005)
4. Beller, M., Gousios, G., Panichella, A., Zaidman, A.: When, how, and why devel-

opers (do not) test in their IDEs. In: ESEC/FSE, pp. 179–190. ACM (2015)
5. Beller, M., Gousios, G., Zaidman, A.: How (much) do developers test? In: ICSE,

pp. 559–562. IEEE (2015)
6. Boshernitsan, M., Doong, R., Savoia, A.: From daikon to agitator: lessons and

challenges in building a commercial tool for developer testing. In: ISSTA, pp. 169–
180. ACM (2006)

7. Bshouty, N.H., Goldman, S.A., Mathias, H.D., Suri, S., Tamaki, H.: Noise-tolerant
distribution-free learning of general geometric concepts. JACM 45(5), 863–890
(1998)

8. Chapelle, O.: Training a support vector machine in the primal. Neural Comput.
19(5), 1155–1178 (2007)

9. Cohn, D.: Active learning. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of
Machine Learning, pp. 10–14. Springer, New York (2010)

10. Csallner, C., Tillmann, N., Smaragdakis, Y.: DySy: Dynamic symbolic execution
for invariant inference. In: ICSE, pp. 281–290. ACM (2008)

http://sav.sutd.edu.sg/alearner
http://sv-comp.sosy-lab.org/2016/

190 L.H. Pham et al.

11. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Trans. Software
Eng. 27(2), 99–123 (2001)

12. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1), 35–45 (2007)

13. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust framework for
learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 69–87. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9 5

14. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision
trees and implication counterexamples. In: POPL, pp. 499–512. ACM (2016)

15. Hoare, C.A.R.: Assertions: a personal perspective. IEEE Ann. Hist. Comput. 25(2),
14–25 (2003)

16. Krishna, S., Puhrsch, C., Wies, T.: Learning invariants using decision trees. arXiv
preprint arXiv:1501.04725 (2015)

17. Li, L., Lu, Y., Xue, J.: Dynamic symbolic execution for polymorphism. In: CC, pp.
120–130. ACM (2017)

18. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: DIG: a dynamic invariant genera-
tor for polynomial and array invariants. ACM Trans. Softw. Eng. Methodol. 23(4),
30 (2014)

19. Nguyen, T., Kapur, D., Weimer, W., Forrest, S.: Using dynamic analysis to gen-
erate disjunctive invariants. In: ICSE, pp. 608–619. ACM (2014)

20. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: ICSE, pp. 75–84. IEEE (2007)

21. Padhi, S., Sharma, R., Millstein, T.: Data-driven precondition inference with
learned features. In: PLDI, pp. 42–56. ACM (2016)

22. Sankaranarayanan, S., Chaudhuri, S., Ivančić, F., Gupta, A.: Dynamic inference of
likely data preconditions over predicates by tree learning. In: ISSTA, pp. 295–306.
ACM (2008)

23. Schohn, G., Cohn, D.: Less is more: active learning with support vector machines.
In: ICML, pp. 839–846 (2000)

24. Sharma, R., Aiken, A.: From invariant checking to invariant inference using ran-
domized search. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
88–105. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9 6

25. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-37036-6 31

26. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learn-
ing geometric concepts. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol.
7935, pp. 388–411. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38856-9 21

27. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31424-7 11

28. Somenzi, F., Bradley, A.R.: IC3: where monolithic and incremental meet. In:
FMCAD, pp. 3–8 (2011)

29. Sun, J., Xiao, H., Liu, Y., Lin, S., Qin, S.: TLV: abstraction through testing,
learning, and validation. In: ESEC/FSE, pp. 698–709. ACM (2015)

30. Tong, S., Chang, E.Y.: Support vector machine active learning for image retrieval.
In: MULTIMEDIA, pp. 107–118. ACM(2001)

http://dx.doi.org/10.1007/978-3-319-08867-9_5
http://arxiv.org/abs/1501.04725
http://dx.doi.org/10.1007/978-3-319-08867-9_6
http://dx.doi.org/10.1007/978-3-642-37036-6_31
http://dx.doi.org/10.1007/978-3-642-37036-6_31
http://dx.doi.org/10.1007/978-3-642-38856-9_21
http://dx.doi.org/10.1007/978-3-642-31424-7_11

Assertion Generation Through Active Learning 191

31. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. J. Mach. Learn. Res. 2, 45–66 (2001)

32. Wei, Y., Furia, C.A., Kazmin, N., Meyer, B.: Inferring better contracts. In: ICSE,
pp. 191–200. ACM (2011)

33. Xiao, H., Sun, J., Liu, Y., Lin, S., Sun, C.: TzuYu: Learning stateful typestates.
In: ASE, pp. 432–442. IEEE (2013)

34. Xie, T., Notkin, D.: Mutually enhancing test generation and specification infer-
ence. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 60–69.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24617-6 5

35. Zhang, L., Yang, G., Rungta, N., Person, S., Khurshid, S.: Feedback-driven
dynamic invariant discovery. In: ISSTA, pp. 362–372. ACM (2014)

http://dx.doi.org/10.1007/978-3-540-24617-6_5

Detecting Energy Bugs in Android Apps Using
Static Analysis

Hao Jiang1, Hongli Yang1(B), Shengchao Qin2, Zhendong Su3, Jian Zhang4,
and Jun Yan4

1 Beijing University of Technology, Beijing, China
yhl.yang@gmail.com

2 Teesside University, Middlesbrough, UK
3 University of California, Davis, USA

4 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

Abstract. Energy bugs in Android apps are defects that can make
Android systems waste much energy as a whole. Energy bugs detection
in Android apps has become an important issue since smartphones usu-
ally operate on a limited amount of battery capacity and the existence of
energy bugs may lead to serious drain in the battery power. This paper
focuses on detecting two types of energy bugs, namely resource leak and
layout defect, in Android apps. A resource leak is a particular type of
energy wasting phenomena where an app does not release its acquired
resources such as a sensor and GPS. A layout defect refers to a poor lay-
out structure causing more energy consumption for measuring and draw-
ing the layout. In this paper, we present a static analysis technique called
SAAD, that can automatically detect energy bugs in a context-sensitive
way. SAAD detects the energy bugs by taking an inter-procedural ana-
ysis of an app. For resource leak analysis, SAAD decompiles APK file
into Dalvik bytecodes files and then performs resource leak analysis by
taking components call relationship analysis, inter-procedure and intra-
procedure analysis. For detecting layout defect, SAAD firstly employs
Lint to perform some traditional app analysis, then filters energy defects
from reported issues. Our experimental result on 64 publicly-available
Android apps shows that SAAD can detect energy bugs effectively. The
accuracies of detecting resource leak and layout energy defect are 87.5%
and 78.1% respectively.

1 Introduction

With the rapid development of mobile technology, smartphones, especially
Android phones, provide people with convenient services. Android application
markets like Google Play provide abundant apps for users. In order to enrich the
user experience, Android systems are equipped with a wide range of hardware

Supported by National Natural Science Foundation of China (No. 61672505) and
the CAS/SAFEA International Partnership Program for Creative Research Teams.

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 192–208, 2017.
https://doi.org/10.1007/978-3-319-68690-5 12

Detecting Energy Bugs in Android Apps Using Static Analysis 193

components, such as Sensors, WIFI, GPS, Camera and so on. Because of rich
functionalities and convenient services, a majority of developers are attracted to
develop apps on Android platforms.

Meanwhile, the usage time of a smartphone is constrained by its battery
capacity. Since the existing techniques have not yet allowed the smartphones to
be charged anywhere, and at anytime, services and functions will be constrained,
and even forced to close. And as a consequence, the battery energy has great
impacts on user experiences. The battery energy is mostly consumed by apps
installed in smartphones, as the service and some resource intensive hardware
components (such as screen, GPS, WIFI, and CPU) are usually invoked when
apps are running [2].

Typical energy bugs [1,3] that may be hidden in smartphone apps can be
classified into either resource leak or layout defect. A resource leak refers to
a case that an app does not release acquired resources such as sensor, GPS,
wakelock, memory etc., and thus may hinder system from entering an idle state,
making hardware reside at a continuous energy consumption situation. A layout
defect can be caused by a poor layout structure (layout is too deep, too many or
ineffective widgets, etc.) which leads to high energy consumption for measuring
and drawing of this layout. Both types of bugs can result in unnecessary energy
consumption.

There are some work related with energy bugs detection. However, they
focus on detecting either background programs or foreground ones such as user
interfaces. Comparatively, we focus on detecting both resource leaks and layout
defects, which are more latent to the users.

This paper makes the following contributions:

– We propose a novel approach, called SAAD (Static Application Analysis
Detector). It analyzes not only resource leak at background programs, but
also layout defects at foreground. The generated reports of energy bugs help
analyzers and developers improve their apps.

– SAAD detects resource leak by context sensitive analysis, which combines
component call analysis, inter-procedural analysis and intra-procedural analy-
sis. It considers the calling context when analyzing the target of a function
call. In order to improve efficiency, It focuses on analyzing effective paths that
are involved in resource applying/releasing operations. In particular, SAAD
can detect more than eighty resources leak by automatically getting those
resources API information from Android official website by Web crawler.

– We have implemented a tool to support SAAD and evaluated it on 64 free-
available Android applications. Our results show that SAAD can detect
energy bugs effectively. The accuracies of detecting resource leak and lay-
out energy defect are 87.5% and 78.1%, respectively.

The rest of the paper is organised as follows. Section 2 introduces background
about the classifications of resource leak and layout defect. Section 3 gives an
overview of our energy bugs detection framework. Section 4 presents analysis
approach of resource leak and layout defect. Section 5 demonstrates experimental

194 H. Jiang et al.

results of 64 real practical Android apps for evaluating our approach SAAD.
Section 6 presents related work, while Sect. 7 concludes.

2 Background

2.1 Resource Leak Classification

Some typical energy bugs due to resource leak are listed as follows:

– Non sleep bug: An app applies a wakelock object to keep CPU and Screen to
reside in an active state, and does not release the object in time. It results
in that the CPU and the LCD component cannot enter a dormant state with
sustainable energy consumption. An example of non sleep bug is illustrated
in Fig. 1. A Wakelock resource is applied in the try block, then after running a
task, this resource is released using release() method. However, if an exception
takes place when the task runs, the execution of the method runInWakeLock()
will throw exceptions and enter the catch block. It means the release operation
cannot be completed at the end, causing a resource leak.

– Sensor leak: Sensors (e.g., pressure sensors, direction sensors) are acquired,
while the sensor object may not be released when the Android system enters
its background state, making sensors stay active.

– Camera leak: The camera resource is occupied during an app’s execution
process, but fails to be released when the app switches into the background,
leaving the camera driver stay in active state. In particular, since a camera
resource in a smartphone is usually exclusive, if it is not released, other apps
may not be able to access.

– Multimedia leak: A media player object or an audio manager object may be
acquired by apps to play video or audio files. However, the corresponding
object resource may not be released when an app enters its background state,
and the leak makes the devices work continuously.

– Memory leak: The running system continues to allocate memory space for
apps. Because of negligence or errors, it fails in releasing the corresponding
memory space when apps are closed.

Fig. 1. An example of non sleep energy bug

Detecting Energy Bugs in Android Apps Using Static Analysis 195

Resource leaks are not limited to the above cases only. We use Web crawler
to explore as many resources as possible according to characteristics (such
as their operation names containing key words open/release, start/stop and
register/unregister). We get more than eighty resources API information, and
store them in a configuration file to support energy bugs detection.

2.2 Layout Defect Classification

Unlike resource leaks, layout defects are mainly about bad designs of the layout
structure, which may cause more unnecessary CPU time or memory spaces.
Traditionally, each layout file uses an XML format to define and manage widgets.
It is composed of several View objects and ViewGroup objects, organized in
a tree hierarchy. A layout can be nested and referenced to other sub layout
files. Under normal circumstances, each activity component is associated with a
specific layout file. When an activity starts, it will load its layout file by invoking
the setContentView() method. After finishing the steps of reading, parsing and
measuring, the corresponding widgets in a layout are arranged to a coordinate
position and the system begins to render and show them on the screen. As
the number of widgets becomes bigger, or nesting level becomes deeper, the
complexity of the layout file can be high, requiring much resources like CPU
and memory space to be consumed. Compared with resource leak, layout defect
may not increase energy consumption very obviously, and thus are often less
concerned by developers, but it is surely a problem to energy inefficiency. The
typical classification of layout defects are:

– Too many views: in a layout file, the default maximum widget number is 80
by default. When the number is greater than the default value, the system’s
running fluency can be decreased.

– Too deep layout: the default maximum nesting depth is 10. Similarly, the
system may not run fluently when the depth is more than the default value.

– Compound drawables: it implies that a pair of widgets defined in a layout
file can be replaced by one compound widget, such as a combination of an
ImageView and a TextView can always be replaced by a TextView using a
compound drawable.

– Useless leaf: if a widget does not have a child node or does not have a set of
background properties, it is treated as a useless leaf node. A useless leaf node
can be removed in order to reduce the complexity of the layout structure.

– Useless parent: if a widget has only one child node, and it is not a scrollview
or a root node. Without the background properties, a useless parent can be
removed so that the child node moves to its position.

The layout defects are common, and can also raise the complexity of layout
structures, while they are less researched.

3 Framework Overview

An overview of our bug-detection framework is shown in Fig. 2. The input of
the framework is an APK file, the outputs comprise a resource leak report and

196 H. Jiang et al.

a layout defect report, and the modules of the dashed box perform energy bugs
analysis and detection, using Apktool [4], SAAF [6], Lint [5], resource leak analy-
sis and layout defect analysis, and a report generator.

Fig. 2. The framework of energy bug detection

The Apktool is a reverse-engineering tool that decompiles an Apk file to gener-
ate a manifest configuration file, several bytecode files named Dalvik [7] bytecode
and layout files of an app. Generally, the components of an app are defined in
its manifest file.

The SAAF is an open source static Android analysis framework which makes
use of program slicing and static analysis techniques to uncover any suspicious
behaviors. In the analysis, SAAF parses Dalvik bytecodes generated by Apktool
and encapsulates them into data models provided by itself. There are different
models such as the Instruction model, the BasicBlock model, the Method model,
the SmaliClass model and so on. For example, a SmaliClass model encapsulates
the current class’s information including its name and method list, path and
the type of its super class. SAAF also provides available APIs to retrieve such
information.

Lint is a static analysis tool for Android project source code, which detects
potential bugs in the project and performs corresponding optimizations. The
input of Lint contains two parts, the Android project source files (including java
source files, configuration files, layout files and others), and an XML file named
lint.xml, that defines severity levels of problems. Lint will detect performance
problems of the code structure. For any problems detected, Lint gives an analysis
report, and developers can fix these problems before releasing the apps.

The resource leak analysis module and the layout defect analysis module
are the core parts in the framework. The resource leak analysis module judges
whether the resource leak problems exist, and the layout defect analysis module
further analyzes defects related to energy consumption based on the output of
the Lint tool. We will present the two modules in Sect. 4 in detail.

Detecting Energy Bugs in Android Apps Using Static Analysis 197

4 Analysis

4.1 Resource Leak Analysis

This section introduces resource leak analysis module in Fig. 2. It performs
component call analysis, inter-procedural analysis, intra-procedural analysis and
resource leak detection.

Components Call Analysis. Usually, each app is composed of multiple com-
ponents declared in its Manifest file. Each component can invoke methods such
as startActivity() and startService() to call another component. The components
relationship can be abstracted into a component call graph. In order to build the
component call relationship, we find out an app’s entry point, which is usually an
activity targeted with Android.intent.action.MAIN. Then we search for intent
objects, which are data objects for recording data that needs to be transmitted.
A target component is defined as a parameter in an intent object.

After building the component call graph, we can extract a set of component
call paths from the graph. Our framework can analyze each path whether there
exists a resource leak or not.

Figure 3 shows component call graph of a smart home app. Here each node
represents a component, and each arrow stands for the call relationship between
the corresponding components.

Fig. 3. Component call graph of smart home app

Figure 4 shows algorithm generateCCGPaths for extracting component call
paths. The input is a list of components cp list. The result result set stores
a set of component call paths. Lines 3–6 traverse list of components and find
out entry component, which is the first node of each path. Then sub-function
ccgTraverse is called to traverse the component call graph.

The algorithm ccgTraverse in Fig. 5 takes component cp, path list and
result set as parameters. Lines 1–2 extract one path and add it to the result

198 H. Jiang et al.

generateCCPaths(cp list)

1 create a list as path list

2 create a set as result set

3 foreach cp in cp list do

4 if cp is EntryComponent then

5 path list.add(cp)

6 ccgTraverse(cp, path list, result set)

7 return result set

Fig. 4. Generating component call paths algorithm

set if cp has been visited and its calling target component list cp.targetList is
empty. Lines 3–7 traverse cp.targetList. Each target component is added into
path list if it is not visited, and recursively traversed by calling ccgTraverse.
Lines 8–9 process pop stack operations, which delete the last node of current
path in order to traverse other target components of its source component.

ccgTraverse (cp, path list, result set)

1 if cp is visited ∧ cp.targetList is Empty then

2 result set.add(path list)

3 foreach target in cp.targetList do

4 if target is not visited then

5 target.visited ← true

6 path list.add(target)

7 ccgTraverse(target, path list, result set)

8 path list.remove(path list.size − 1)

9 target.visited ← false

10 return result set

Fig. 5. Traversing component call graph algorithm

Inter-procedural Analysis. Based on each component call path, we analyze
each component in its own life cycle, taking into account its inter-procedural
information such as the function call relations, in order to understand the com-
prehensive behavior and status of an app. Particularly, we explore the function
call path related with resource applying and releasing.

(a) Resource APIs
Resource APIs are used for deciding whether a function call path is involved

in applying or releasing system resource. Android resource APIs have been pub-
lished as webpages at its official website. We use the Web crawler technique to

Detecting Energy Bugs in Android Apps Using Static Analysis 199

automatically extract more than eighty resource APIs including bluetooth, wifi,
camera, multimedia, GPS, sensor, memory etc. Each resource API is defined
with both apply and release methods information such as class path, method
name, parameter list and return type.

(b) Function Abstraction
In order to build function call relationships, we perform function abstraction

for simplifying function analysis. A function abstraction is a semantic abstraction
of a function, which includes the name of a function, the class it belongs to, the
parameter list, the type of its return value and an invoked functions list. It saves
an XML format for further processing. We use function abstractions to construct
function call relationship.

(c) Effective Path
Before detecting resource leak, our framework filters function call paths

obtained from step (b), and only analyzes effective paths where resources are
acquired or released. This preprocessing decreases the number of paths to be
analyzed, making the analysis more efficient. Figure 6 is an example of a func-
tion call graph, in which three paths can be extracted.

Fig. 6. An example of a function call graph

1. onCreate() → init() → setContentView()
2. onCreate() → doCameraOpen() → open()
3. onCreate() → log()

However, only path 2 contains an instruction for opening a camera. Here the
function open() is an API for opening camera resource. It is invoked to use the
camera device. So this path is an effective path while the others are omitted in
analysis. The following is the definition of effective path.

Definition 1. An effective path is a 4-tuple 〈com,path,res,op〉. Here com is the
current component, path is a list of methods. res represents used system resource
on this path and op denotes the operation on corresponding resources. There are
two kinds of resource operations, which is either apply or release.

Figure 7 shows the algorithm extractEftPath, which takes three parameters:
the current method m, a list of methods path list and a set of effective paths

200 H. Jiang et al.

extractEftPath (cp,m, path list, result set)

1 path list.add(m)

2 if m.hasResource() is not null then

3 create a path as eftPath

4 eftPath.com ← cp

5 eftPath.path ← path list

6 eftPath.res ← m.hasResource()

7 result set.add(eftPath)

8 if m.abList is empty then

9 path list.remove(size − 1)

10 else foreach ab in ablist do

11 nextMethod ← getMethod(ab)

12 extractEftPath(nextMethod, path list, result set)

13 path list.remove(size − 1)

14 return result set

Fig. 7. Extracting effective paths algorithm

result set. Line 1 adds the current method m into list path list, and line 2 checks
if current method has resource operation. If it has, lines 3–7 create an effective
path eftPath, and sets its corresponding component, path and used resource,
and add it to the result set. Otherwise lines 8–13 recursively traverse the next
invoked method of m. Here the function m.hasResource will check whether
method m invokes resource APIs and returns resource type and operation in case
of invoking. The function getMethod(ab) takes the function ab as a parameter
and returns the corresponding method.

(d) Event Response and Callback Functions
Android apps are usually event driven. When an event response function

calls a resource related API, it will be included in the corresponding effective
path. Considering button events, our framework builds a hash table for mapping
button objects into their monitoring objects. Thus it is easy to find out the event
response functions defined in the monitoring class.

The callback mechanism is popular in Android system. For instance, the
Activity component’s life cycle functions onCreate, onStart etc. are system
callback functions, which are automatically invoked by the system. A common
example is the Thread class. When a thread object executes the start function,
it actually executes the run function. However, the relation between start and
run functions are implicit. This situation causes some function call paths break
in analysis. Our framework firstly tries to build a map between callback functions
and real executed functions, and adds a callback function to the corresponding
function call path.

Detecting Energy Bugs in Android Apps Using Static Analysis 201

Intra-procedural Analysis. The aim of the intra-procedural analysis is to
analyze a single function. Based on basic blocks of a function, we build the
control flow graph of the function. Our framework employs SAAF to generate
a control flow graph of a function, and further extract a set of execution paths.
The details are omitted here due to the page limitation.

Resource Leak Detection. By combining the above analyses, Fig. 8 provides
our algorithm for resource leak checking. The input cpPath set is a set of compo-
nent call paths obtained by component analysis. For each effective path eftPath
of the component cp, lines 4–6 add the resource into apply list if the operation
of the current path is an apply operation. For release operation, lines 7–16
traverse each method method on effective path and make sure that: (1) its con-
trol flow paths method.cfg must call the next method on the same path before
getting to the last method; (2) when traversing the last method on the path,
each of its control flow path must release the corresponding resource. If both
conditions are satisfied, the resource res of current effective path is added into
release list. Lines 17–19 compare apply list and release list, and if they are
matched, return false for no release leak. Otherwise the algorithm returns true
for exiting release leak.

checkResourceLeak (cpPath set)

1 create an apply list and a release list

2 foreach cpPath in cpPath set do

3 foreach cp in cpPath do

4 foreach eftPath in cp.getEftPath() do

5 if eftPath.op is apply then

6 apply list.add(eftPath.res)

7 else if eftPath.op is release then

8 for i = 0; i ≤ eftPath.size − 1; i + + do

9 method ← eftPath.getMethod(i)

10 if i ≤ eftPath.size − 2 then

11 next method ← eftPath.getMethod(i + 1)

12 if method.cfg do not invoke next method then

13 break

14 else

15 if method.cfg do release then

16 release list.add(eftPath.res)

17 if apply list equals with release list then

18 return false

19 else return true

Fig. 8. Checking resource leak algorithm

202 H. Jiang et al.

4.2 Layout Defect Detection

Figure 9 shows the process of our layout defect analysis. The input is an APK
file that needs to be decompiled by Apktool, and the output is a defect report.
The analysis module and the filter module are explained as follows.

Fig. 9. Layout defect analysis process

Analysis Module. The analysis module mainly conducts an overall analysis
of the layout files, including correctness, security, performance, usability and
accessibility analysis. After receiving the paths of the layout files, that come
from the result of decompiling of the APK file, the Control Procedure starts
Lint to execute the layout file analysis. Finally, Lint will output an XML report
about the issues for each layout file.

Filter Module. Since the output of the analysis module includes different types
of layout issues, which may or may not be energy consumption related layout
defects. The Filter module extracts energy defects from the issues report of Lint.
It is composed of a Defect Table and a Filter Procedure: the former acts as a set
of filter rules, which are identified from layout defect classification in Sect. 2.2,
and the latter uses filter rules to find out layout energy defects.

5 Evaluation

We have implemented the proposed analysis as a prototype tool called SAAD.
In order to evaluate our tool, we have conducted experiments on 64 real APK

Detecting Energy Bugs in Android Apps Using Static Analysis 203

files, with 28 of them from well-known markets, and the other 36 are open source
apps. In order to complete a more comprehensive experiment, we select these
apps belonging to different classifications. In the process of the experiment, we
collect the statistics of apps based on characteristics and scale, some of them are
shown in Table 1.

Table 1. Scale statistics of apps (part)

APP File size Component number Layout number

Agenda Plus 1.91 M 3 9

Heart Rate Runtastic 6.75 M 24 101

Duomi Radio Station 8.79 M 14 25

Drifting Bottle 7.29 M 23 49

Constellation Camera 9.04 M 42 93

5.1 Result of Resource Leak Detection

With code confirmation by manual inspection, we have detected 8 false positives,
4 leak free and 52 resource leaks. The accuracy rate is 87.5%. Among the 52 apps
that have resource leaks, three kinds of leaks can be detected after we review
their source codes.

– no release operation. The current component in an app does not take ini-
tiatives to release resources. For example, the Drifting Bottle application in
Table 1, uses the SoundPool class without releasing the obtained resources.
Table 2 shows the details of the invoking path. It appears in an activity named
HrLoginSelectionActivity, which is invoked by SplashScreenActivity.

– The path of existing release operation may be blocked, e.g., by exception
handlings.

– The release operation has not been activated by an event. In this situation,
an app has a release operation, while it releases only when a specific event
such as onClick, onKeyDown and so on occurs. If the user cannot trigger any
of these events, the related resources cannot be released.

5.2 Result of Layout Defect Detection

We have detected that 5 apps are defect free, 14 apps are false positives and 45
apps have layout defects. The accuracy rate is 78.1%. To validate the experimen-
tal results, we re-design layouts reported with defects, confirm the new layouts
are equivalent to the old ones, and analyze the new layouts again. Moreover, we
employ a view hierarchy tool called HierarchyViewer [8] to visualize the nested
structure of layout files when running applications.

204 H. Jiang et al.

Table 2. Report fragment of resource leak

<class name=” HrLoginSelectionActivity”>
<path>

SplashScreenActivity,HrLoginSelectionActivity
</path>
<leak>[Landroid/media/SoundPool;]</leak>

</class>

There are two types of false positives: UselessParent or UselessLeaf, which
are raised by the static analysis of Lint. Since the widgets of a layout can be
loaded only during an app’s execution, we monitor the behavior of the lay-
out by HierarchyViewer, and identify all of the 14 false positives. In addition,
HierarchyViewer can report the start time of each widget and its drawing time,
which helps to confirm that layout defects consume system resources and time.

Figure 10 summarizes 45 apps that have layout defects. The x-axis denotes
the number of layout defects. Through the experimental results, we can see some
defects appear more frequently, including Useless Parent, Inefficient Weight,
Compound Drawables etc. It indicates that some developers may not design
the layout structure rigorously, and thus create some useless widget and useless
properties, resulting in a more complex layout structure and causing unnecessary
consumption of CPU resources and memory.

Fig. 10. Summary of layout defect

Detecting Energy Bugs in Android Apps Using Static Analysis 205

6 Related Work

We present related work in the following three aspects: (1) detecting and testing
energy bugs; (2) estimating energy consumption; (3) optimizing energy.

6.1 Detecting and Testing Energy Bugs

The researches in [21,23,26] are strongly relevant with our work. Guo et al. [26]
aim to detect resource leak of Android apps. However, the provided approaches
are not context sensitive. For instance, considering resource leak, if there exists
one releasing resource path, no resource leak report is given, causing false
negatives. Wu et al. [21,23] present Relda2, a light-weight static resource leak
detection tool, which takes model checking technology to detect resource leak.
Comparatively, our approach combines function call analysis with control flow
analysis to locate the real paths related to energy bugs.

There are some other work related with detecting and testing energy bugs.
Wu et al. [12] focus on detecting energy-related defects in the UI logic of an
Android application. The authors identify two patterns of behavior in which
location listeners are leaking. Liu et al. [11,18] implement a static code ana-
lyzer, PerfChecker, to detect identified performance bug patterns. Moreover,
they build a tool called GreenDroid for automatically analyzing an app’s sen-
sory data utilization at different states and reporting actionable information to
help developers locate energy inefficiency problems and identify their root causes
[10]. Wan et al. [19] present a technique for detecting display energy hotspots
and prioritizing them for developers. Abhik et al. [24] present an automated test
generation framework, which systematically generates test inputs that are likely
to capture energy hotspots/bugs.

6.2 Estimating Energy Consumption

Energy is a critical resource for smartphones. However, developers usually lack
quantitative information about the behavior of apps with respect to energy
consumption. Lu et al. [22] propose a lightweight and automatic approach to
estimating the method-level energy consumption for Android apps. Li et al.
[14] provide code-level estimates of energy consumption using program analysis
and per-instruction energy modeling. [15] presents an approach to calculating
source line level energy consumption information by combining hardware-based
power measurements with program analysis and statistical modeling. Mario et al.
[20] present a quantitative and qualitative empirical investigation by measuring
energy consumption of method calls when executing typical usage scenarios in
55 mobile apps from different domains. Ferrari et al. [9] present the design and
implementation of a Portable Open Source Energy Monitor (POEM) to enable
developers to test and measure the energy consumption of the basic blocks,
the call graph, and the Android API calls, allowing developers to locate energy
leaks with high accuracy. [25] presents the design, implementation and evaluation
of eprof, the first fine-grained energy profiler for smartphone apps. Eprof also
reveals several “wakelock bugs”, a family of “energy bugs” in smartphone apps.

206 H. Jiang et al.

6.3 Optimizing Energy

A smartphone’s display is usually one of its most energy consuming components.
There are several researches focusing on optimization issues. Li et al. [16] develop
an approach for automatically rewriting web applications so that they can gen-
erate more energy efficient web pages. Kim et al. [13] propose a novel static
optimization technique for eliminating drawing commands to produce energy-
efficient apps.

Making HTTP requests is one of the most energy consuming activities in
Android apps, Li et al. [17] propose an approach to reducing the energy consump-
tion of HTTP requests by automatically detecting and then bundling multiple
HTTP requests.

7 Conclusion and Future Work

Due to the limited capacity of the battery power in (Android) smartphones,
energy bugs in Android apps may cause serious battery drain. In this paper,
we have proposed a static analysis approach to detect both resource leak and
layout defect in Android applications. Compared with dynamic methods such as
Google run-time monitoring, the static analysis will check all possible execution
paths. We have implemented our analysis in the SAAD tool and have used it to
analyze 64 real applications. In our experiment, we have found that 52 apps have
resource leakage, and 45 apps have layout defects. The corresponding accuracies
are 87.5% and 78.1%. The results show that our SAAD tool can effectively
analyze energy bugs of Android apps.

For the future work, due to the limitations of static analysis, we will com-
bine static analysis with dynamic monitoring together for checking energy bugs.
Moreover, although a number of callback functions and event response func-
tions are available in Android system, our framework only analyzes some com-
mon functions. As future work, we will include more functions analysis into the
framework.

Acknowledgment. We thank the ICFEM reviewers for their valuable feedback, and
also thank Dr. Yuting Chen and Dr. Zhoulai Fu for many useful comments on the
presentation.

References

1. Pathak, A., Hu, Y.C., Zhang, M.: Bootstrapping energy debugging on smartphones:
a first look at energy bugs in mobile devices. In: Proceeding of The 10th ACM
Workshop on Hot Topics in Networks, HotNets-X (2011)

2. Banerjee, A., Chong, L.K., Chattopadhyay, S., et al.: Detecting energy bugs and
hotspots in mobile apps. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 588–598. ACM (2014)

3. Zhang, J., Musa, A., Le, W.: A comparison of energy bugs for smartphone plat-
forms. In: Engineering of Mobile-Enabled Systems (MOBS), pp. 25–30. IEEE
(2013)

Detecting Energy Bugs in Android Apps Using Static Analysis 207

4. APKTool. https://code.google.com/p/android-apktool/
5. Lint. http://tools.android.com/tips/lint
6. Hoffmann, J., Ussath, M., Holz, T., et al.: Slicing droids: program slicing for smali

code. Automated Software Engineering (ASE), Coimbra, Portugal, 18–22 March
2013, pp. 1844–1851. IEEE (2013)

7. Dalvik. https://en.wikipedia.org/wiki/Dalvik
8. Hierarchy Viewer. http://developer.android.com/tools/help/hierarchy-viewer.

html
9. Ferrari, A., Gallucci, D., Puccinelli, D., et al.: Detecting energy leaks in Android

app with POEM. In: Pervasive Computing and Communication Workshops (Per-
Com Workshops). IEEE (2015)

10. Liu, Y., Xu, C., Cheung, S.C.: Where has my battery gone? Finding sensor related
energy black holes in smartphone applications. In: Pervasive Computing and Com-
munications (PerCom), pp. 2–10. IEEE (2013)

11. Liu, Y., Xu, C., Cheung, S.C.: Characterizing and detecting performance bugs for
smartphone applications. In: Proceedings of the 36th International Conference on
Software Engineering, pp. 1013–1024 (2014)

12. Wu, H., Yang, S., Rountev, A.: Static detection of energy defect patterns in Android
applications. In: Proceedings of the 25th International Conference on Compiler
Construction, pp. 185–195. ACM (2016)

13. Kim, P., Kroening, D., Kwiatkowska, M.: Static program analysis for identifying
energy bugs in graphics-intensive mobile apps. In: Proceedings of the 24th IEEE
International Conference on Modelling, Analysis and Simulation of Computer and
Telecommunication Systems, MASCOTS 2016. IEEE CS Press (2016)

14. Hao, S., Li, D., Halfond, W.G.J., Govindan, R.: Estimating mobile application
energy consumption using program analysis. In: Proceedings of the 35th Interna-
tional Conference on Software Engineering (ICSE), May 2013

15. Li, D., Hao, S., Halfond, W.G.J., Govindan, R.: Calculating source line level energy
information for Android applications. In: ISSTA (2013)

16. Li, D., Tran, A.H., Halfond, W.G.J.: Making web applications more energy effi-
cient for OLED smartphones. In: Proceedings of the International Conference on
Software Engineering (ICSE), June 2014

17. Li, D., Lyu, Y., Gui, J., Halfond, W.G.J.: Automated energy optimization of HTTP
requests for mobile applications. In: Proceedings of the 38th International Confer-
ence on Software Engineering (ICSE), May 2016

18. Liu, Y., Chang, X., Cheung, S.C., Lu, J.: GreenDroid: automated diagnosis of
energy inefficiency for smartphone applications. IEEE Trans. Software Eng. 40(9),
911–940 (2014)

19. Wan, M., Jin, Y., Li, D., Halfond, W.G.J.: Detecting display energy hotspots in
Android apps. In: Proceedings of the 8th IEEE International Conference on Soft-
ware Testing, Verification and Validation (ICST), April 2015

20. Vsquez, M.L., Bavota, G., Bernal-Crdenas, C., et al.: Mining energy-greedy API
usage patterns in Android apps: an empirical study. In: 11th Working Conference
on Mining Software Repositories, MSR 2014, pp. 2–11 (2014)

21. Tianyong, W., Liu, J., Zhenbo, X., Guo, C., Zhang, Y., Yan, J., Zhang, J.: Light-
weight, inter-procedural and callback-aware resource leak detection for Android
apps. IEEE Trans. Software Eng. 42(11), 1054–1076 (2016)

22. Lu, Q., Wu, T., Yan, J., Yan, J., Ma, F., Zhang, F.: Lightweight method-level
energy consumption estimation for Android applications. In: TASE 2016, pp. 144–
151 (2016)

https://code.google.com/p/android-apktool/
http://tools.android.com/tips/lint
https://en.wikipedia.org/wiki/Dalvik
http://developer.android.com/tools/help/hierarchy-viewer.html
http://developer.android.com/tools/help/hierarchy-viewer.html

208 H. Jiang et al.

23. Wu, T., Liu, J., Deng, X., Yan, J., Zhang, J.: Relda2: an effective static analysis
tool for resource leak detection in Android apps. In: ASE 2016, pp. 762–767 (2016)

24. Banerjee, A., Chong, L.K., Chattopadhyay, S., Roychoudhury, A.: Detecting energy
bugs and hotspots in mobile apps. In: SIGSOFT FSE 2014, pp. 588–598 (2014)

25. Pathak, A., Hu, Y.C., Zhang, M.: Where is the energy spent inside my app?:
Fine grained energy accounting on smartphones with Eprof. In: Proceedings of the
7th ACM European Conference on Computer Systems, EuroSys 2012, pp. 29–42
(2012)

26. Guo, C., Zhang, J., Yan, J., Zhang, Z., Zhang, Y.: Characterizing and detecting
resource leaks in Android applications. In: IEEE/ACM 28th International Confer-
ence on Automated Software Engineering, ASE 2013, pp. 389–398 (2013)

A Flexible Approach for Finding Optimal Paths
with Minimal Conflicts

Juliana K.F. Bowles(B) and Marco B. Caminati

School of Computer Science,
University of St Andrews, St Andrews KY16 9SX, UK

{jkfb,mbc8}@st-andrews.ac.uk

Abstract. Complex systems are usually modelled through a combina-
tion of structural and behavioural models, where separate behavioural
models make it easier to design and understand partial behaviour. When
partial models are combined, we need to guarantee that they are con-
sistent, and several automated techniques have been developed to check
this. We argue that in some cases it is impossible to guarantee total con-
sistency, and instead we want to find execution paths across such models
with minimal conflicts with respect to a certain metric of interest. We
present an efficient and scalable solution to find optimal paths through a
combination of the theorem prover Isabelle with the constraint solver Z3.
Our approach has been inspired by a healthcare problem, namely how
to detect conflicts between medications taken by patients with multiple
chronic conditions, and how to find preferable alternatives automatically.

1 Introduction

In complex systems design, it is common to model components separately in
order to facilitate the understanding and analysis of their behaviour. Nonethe-
less, modelling the complete behaviour of a component is hard [25], and often
sets of possible scenarios of execution are captured instead. A scenario describes
a particular situation that may involve a component and how it behaves and
interacts with other components. In practice, UML’s sequence diagrams are
commonly used to model scenarios [20]. From such individual scenarios, we then
need to be able to derive the complete behaviour of a component. The same
ideas apply if we model (partial) business processes within an organisation, for
instance using BPMN [19]. In either case, we need a means to compose mod-
els (scenarios or processes), and when this cannot be done, detect and resolve
inconsistencies.

Composing systems manually can only be done for small systems. As a result,
in recent years, various methods for automated model composition have been
introduced [1,4–6,11,13,22,23,26–28]. Most of these methods introduce algo-
rithms to produce a composite model from partial specifications and assume a
formal underlying semantics [11]. In our recent work [4,6], we have used con-
straint solvers (Alloy [9] and Z3 [17] respectively) for automatically constructing

This research is supported by EPSRC grant EP/M014290/1.

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 209–225, 2017.
https://doi.org/10.1007/978-3-319-68690-5_13

http://orcid.org/0000-0002-5918-9114
http://orcid.org/0000-0002-4529-5442

210 J.K.F. Bowles and M.B. Caminati

the composed model. This involves generating all constraints associated to the
models, and using an automated solver to find a solution (the composed model)
for the conjunction of all constraints. Using Alloy for model composition (usu-
ally only for structural models), is an active area of research [23,28], but the use
of Z3 is a novelty of [6]. In [6] we did not exploit Z3’s arithmetic capabilities
which we have done more recently in [7]. Most existing approaches can detect
inconsistencies, but fail to provide a means to resolve them.

We argue that in some cases it is impossible to guarantee total consistency
between scenarios of execution. Instead we want to find execution paths across
such models with minimal conflicts with respect to a certain metric of interest.
We present an efficient and scalable solution to find optimal paths through a
combination of the theorem prover Isabelle [18] with the constraint solver Z3.
Our approach has been inspired by a healthcare problem, namely how to detect
conflicts between medications taken by patients with multiple chronic conditions,
and how to find preferable alternatives automatically. In this paper, we focus on
the theoretical foundations required to address the problem and our medical
domain, but remind the reader of the more general applicability of our work and
considerable practical benefits.

This paper provides a formal statement of the problem, a measure of inconsis-
tency, and shows how the obtained problem can be turned into an optimisation
problem. In addition, it illustrates how a SMT solver can be used to find a
scalable solution to the proposed problem. As a final contribution, the paper
introduces a general technique to combine Z3 with Isabelle in order to ensure
that the SMT translation of the problem is formally correct.

Paper structure: Sect. 2 introduces the formalisation of the problem and our
solution. Section 3 translates this formulation into an SMT context. In Sect. 4,
a concrete application in the healthcare domain is introduced to motivate the
approach introduced in this paper, and is used to evaluate our design through
a basic implementation featuring simple input and output interfaces. Section 5
exposes the general technique we used to combine the theorem prover Isabelle
and the SMT solver to guarantee the correctness of the SMT code illustrated in
Sect. 3. Section 6 discusses related work, and Sect. 7 concludes.

2 Description of the Problem and Approach

Our problem is formulated formally as follows: we are given a list of simple
directed acyclic graphs Gi, i = 1, . . . , n, each with exactly one source node. Since
each of the graphs is simple, each Gi can be thought of as a finite set of ordered
pairs of nodes (j, k), each representing a directed edge from node j to node k.
Therefore, we can define G :=

⋃n
i=1 Gi, and denote by V (G′) the set of nodes

touched by any edge in G′ ⊆ G. Further, we assume that V (Gi1) ∩ V (Gi2) = ∅
for any i1 �= i2 ∈ {i1, . . . , in}: i.e., distinct graphs have no nodes in common.

We want to obtain a list of paths, one for each given graph, each leading from
the source of the corresponding graph to one of it sinks (we recall that a source
is a node with no incoming edges and a sink one with no exiting edges). Such

A Flexible Approach for Finding Optimal Paths with Minimal Conflicts 211

a list of paths must be determined so as to maximise a given score, which can
be thought of as a metric of the compatibility of the resulting execution paths.
Before defining how this score is computed, we need to describe how the needed
input data and the output are encoded. Examples later clarify the need for these
notions.

2.1 Score Model

To compute the score, we assume to be given further input, besides the list of
graphs G1, . . . , Gn, as follows.

1. A map t : G → N×N associating to each edge e a pair (t− (e) , t+ (e)), where
t− (e) is the minimal time and t+ (e) is the maximal time e has to wait before
e can occur. We require t− (e) ≤ t+ (e) for any e ∈ G. It can be used to
bound the occurrence of tasks associated to nodes in a graph. For example,
t− expresses that the next task cannot start before t− time units, and t+

expresses that it must occur before t+ time units.
2. A list τ := {τ1, . . . , τn} of integers, where τi specifies the instant at which the

source node of the graph Gi is executed. This list can be used to express the
requirement that different models start their execution at different times.

3. A finite set R of resources.
4. A map M : V (G) → 2R. M(j) specifies a subset of resources among which

one can be chosen in order to perform the task corresponding to node j.
5. A map g : R → Z × N associating to each resource r an effectiveness score

g1(r) and an amount g2(r). The effectiveness is a measure of how well a
given resource performs a task, and the amount is how much of the resource
is consumed for performing the task. For example, a hardware resource is
needed for a given time, a medication must be taken at a given dosage, etc.

6. A map I : R × R → Z yielding an interaction. The interaction is an inte-
ger expressing how much two resources mutually boost or interfere, where a
negative interaction means a counter-productive effect (i.e., diminishing the
overall effectiveness of the two interacting resources).

7. A map f : Z×N×N×N → Z combining an interaction between two resources,
a time distance, and the amounts of the two resources to yield the compo-
nent of the overall score for a given pair of resources. f takes into account
the fact that the actual interaction between resources occurring at distinct
nodes depends not only on the interaction between the resources (as defined
at the previous point), but on their amount and on how much time passes
between their occurrences. We will refer to the integer values returned by f
as interaction scores.

2.2 Output

Given a list G1, . . . Gn of directed acyclic graphs, a set of resources R and maps
f , g, I, M , t as introduced in the previous section, the output is a triple of
functions (F, c,m), each defined on the set of all nodes, V (G).

212 J.K.F. Bowles and M.B. Caminati

F is a boolean function telling us which nodes are executed, c (j) returns the
instant at which node j is executed, while m (j) is the resource picked to perform
the task associated to the node j. We will use the notation P [X] to indicate the
image of the set X through the relation P ; for example, F [{true}] is the set of
executed nodes. With this notation in place, we require that F , c and m satisfy
all the following conditions:

1. the set on which F is true determines one path for each Gi, starting from
the source of Gi and ending at one of its sinks; this is a way to represent the
paths that we anticipated as our main goal at the beginning of this section.
More formally, F satisfies the following requirement: for any i ∈ {1, . . . , n}
there is a finite sequence wi of nodes of Gi such that (a) wi

0 is the source of
Gi, (b) wi

|wi|−1 is a sink of Gi, (c) ∀j ∈ {
1, . . . ,

∣
∣wi

∣
∣ − 1

} (
wi

j−1, w
i
j

) ∈ Gi,

and (d)
{

wi
0, . . . , w

i
|wi|−1

}
= F−1 [{true}] ∩ Gi.

2. ∀j ∈ V (G) , F (j) → m (j) ∈ M (j);
3. for any i ∈ {1, . . . , n}, if j is the source node of Gi, then c (j) = τi;
4. if there is an edge going from the node j to the node k, and j and k are

executed, then

t− (j, k) ≤ c (k) − c (j) ≤ t+ (j, k) ;

5. the global score:
∑

j∈F−1[{true}]
g1 (m (j)) +

∑

i1,i2∈{1,...,n},i1<i2
j∈F−1[{true}]∩V (Gi1)
k∈F−1[{true}]∩V (Gi2)

f (I (m (j) ,m (k)) , |c (k) − c (j)| , g2 (m (j)) , g2 (m (k)))

(1)

is maximal.

The first term in (1) sums the effectiveness of each picked resource for each
executed node, irrespectively of whether distinct picked resources interact. The
second term sums together the interaction scores of each pair of resources picked
in distinct graphs. The interaction score for each of such pairs depends on the
absolute interaction of the two resources (specified by I), the time distance
separating the occurrence of the two resources, and the amount.

2.3 An Illustrative Example

We use a simplified example to motivate our formal problem. A more realistic
example and our solution is given in Sect. 4.

Assume that a patient with an acute condition is hospitalised on day 0.
There are two possible treatments for the condition: a non-surgical treatment and

A Flexible Approach for Finding Optimal Paths with Minimal Conflicts 213

surgery. The two alternatives are represented by the two branches in the directed
graph of Fig. 1 (left), where the source node represents the hospitalisation. The
right branch represents the choice of surgery with nodes n3 and n4 denoting the
steps implied by this choice (n3: pre-surgical testing and n4: the surgery itself).
Each node in a treatment graph may have one or more ways of performing it. For
example, in the case of pre-surgical testing it involves administering one of two
drugs (d1 or d2), while in the case of the surgery, only one resource is present
(we assume here that there is only one way to perform it). The left branch
(with n2) models the non-surgical choice, here associated to the prescription of
drug d0 (with no other choice available). The weights on the edges are the time
constraints for the subsequent step: for example, after pre-surgical testing was
performed (n3), surgery cannot happen before 2 days have passed, but should
happen within 4 days (for illustration purposes only).

n2:{d0}

n3:{d1,d2}

n4:{s}

{d3}

{d4}

{d3}

{d4}

{d3}

{d4}

(1,2) (1,2)

(2,4)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

{h}

Fig. 1. A simple example problem.

Additionally, this particular patient suf-
fers from a chronic condition, which requires
him to take drug d3 on even days and d4 on
odd days. This can be represented by a path
graph, unfolding the alternation of d3 and
d4 for a given finite number of days (Fig. 1
right).

It is known that surgery is preferred, but
d1 interacts negatively with d3 and d2 with
d4. We ignore drug dosages here, which our
formalisation can handle as well. The prob-
lem we want to solve is to find how to best
schedule steps in the hospitalisation, and how
to choose between the non-surgical and the
surgical treatment, taking into account the
respective effectiveness and the interaction with the treatments for the chronic
condition.

3 SMT Translation

We now need to represent the notions presented in Sect. 2 in a way amenable to
SMT computations. In doing so, we will write formulas close to the first-order
logic language used by SMT solvers; for the sake of readability, however, we will
employ some notational simplifications. In particular, we adopt infix notation
instead of prefix notation, we omit type specifications, and we use subscripts
and other typographic features not available in plain-text syntax of SMT-LIB.

To represent the output F , we introduce one boolean variable nodei for each
node i (i.e., the truth value of nodei will yield F (i)). First, we must pick all the
sources of the Gi’s, so that the corresponding node variables will be asserted
to be true. Afterwards, for each source, we must assert that exactly one of its
children must be true. Then, for every child set to true, we must ask that exactly
one of its children must be true, and so on, until no node has children (we reached
a sink). Besides doing that, we want to make sure that no other node is selected.

214 J.K.F. Bowles and M.B. Caminati

Correspondingly, we generate, for the node i, the assertions

nodei →
∨

j|(i,j)∈G

⎛

⎜⎜⎝

⎛

⎜⎜⎝
∧

k �=j,
k|(i,k)∈G

(¬ nodek)

⎞

⎟⎟⎠ ∧ nodej

⎞

⎟⎟⎠ (2)

⎛

⎝
∧

(j,i)∈G

(¬ nodej)

⎞

⎠→¬ nodei, (3)

where we adopted an informal intentional implosion of the arguments of connec-
tives for reader’s convenience, rather than writing the extensional form actually
needed for SMT-LIB. For example, the expression

∧
(j,i)∈G (¬nodej) appearing

in (3) is a shortcut for scanning the input G to take all the first components of
pairs having i as a second component (let us assume they are nodei1 , . . . ,nodeip),
and then writing the SMT expression and nodei1 . . . nodeip .

3.1 Scores in SMT

To represent the output c, we introduce one numerical variable clockj for each
node j. For each j, k such that (j, k) ∈ G, we create the following assertion:

nodej ∧ nodek → clockk − clockj ≥ t− (j, k) ∧ clockk − clockj ≤ t+ (j, k) .

Additionally, we impose that each source node happens at the time specified by
τ ; therefore, if j is the source node of Gi, we assert:

clockj = τi. (4)

To represent the output m, we introduce one variable labelj for each node j,
whose value is the name of the drug picked for the node j. Now we can introduce
two kinds of scores, represented by integer SMT variables scorej and scorej,k,
respectively: the first represents the effectiveness of the prescription associated
to node j, while the second is the score generated by possible conflicts between
the prescriptions picked for node j and for node k. We first zero out the scores
for the non-executed nodes:

¬nodei → scorei,j = 0 ∧ scorei = 0 ∧ scorej,i = 0.

Since the variables nodej describe whether a node is executed the final opti-
misation, we generate the following assertions for each possible j, k:

nodej ∧ nodek → scorej,k =

f (I (labelj , labelk) , |clockk − clockj | , g2 (labelj) , g2 (labelk)) .

We finally assign the sum of all scorei,j ’s and scorei’s to a variable, and ask
for an SMT solution to all the assertions which maximises that variable; this
requires the optimizing version of the SMT solver Z3, νZ (also known as μZ or
Z3Opt) [2].

The map I assigns a degree to the possible conflicts; this assignment,
together with f , determines how the interactions influence the resulting choice of
resources, timing, and the execution paths in the different models. These choices
add flexibility to the whole approach but, on the other hand, need to be done
by a domain expert.

A Flexible Approach for Finding Optimal Paths with Minimal Conflicts 215

4 Evaluation and Use Cases

In healthcare management and practice, as in other domains, clinical and medical
procedures are streamlined by adopting standardised guidelines. In particular,
treatments for common chronic conditions have been subject to various clinical
trials, and the outcomes documented in clinical pathways specifying accepted
treatment steps, possible alternatives, and recommendations to follow. Clinical
pathways are informal flowcharts, with natural language annotations, and as
such they can be formalised as directed acyclic graph structures, usually with one
initial node (the source), and each node representing a medication prescription.
Applying a single clinical pathway to a given patient is subject to a number of
variable aspects and requirements, for example:

1. pathways typically present alternatives from which one is chosen;
2. there is often a choice to be taken among equivalent drugs in a group;
3. the time separating subsequent steps in a pathway is typically not fixed, being

liable to be adapted to the context and the patient situation;
4. the dosage of the chosen drugs influences how drugs mutually interact;
5. the set of chronic conditions typically changes over the patient’s life span:

when this happens, even the treatment of the pre-existing conditions must be
reconsidered.

On patients suffering from multiple chronic conditions, several pathways have
to be applied concurrently, so that the number of possible combinations of these
parameters increases dramatically. Our goal is to present the clinician suggestions
about which choice of the parameters above is the best. The model presented
in the previous sections allows us to capture all these aspects: the resources
correspond to the single treatments (e.g., drugs, or surgical procedures), the
effectiveness score expresses how well a single treatment performs, the amount
can be used to express the dosage of a drug, and I can model, for example,
drug-drug interaction. For consistency and comparison, we evaluate our design
on a well-known case [8] of a hypothetical 79-year-old woman with five dis-
eases: chronic obstructive pulmonary disease (COPD), diabetes mellitus (type 2),
hypertension, osteoarthritis, and osteoporosis. To this end, we extracted data to
represent pathways and scores from two sources, respectively: NICE pathways1,
publicly available as informal flowcharts with accompanying text, and the web-
site drugs.com to derive the scores.

Given the form in which pathways from NICE are presented, we extracted the
data needed as input to our design manually, for each of the five conditions we
are considering (see [12]). We pruned the nodes not liable to cause conflicts (e.g.,
“ongoing monitoring of HbA1c”), generated an adjacency relation describing the
underlying graph, and attached a list of possible medications for each node (for
example, when a medication group such as Sulfonylurea was associated to a node,
we inserted the list of all the medications in the group in the corresponding node
of the graph we generated). The resulting graphs are visible in Figs. 2 and 3,
1 http://pathways.nice.org.uk/.

https://www.drugs.com/
http://pathways.nice.org.uk/

216 J.K.F. Bowles and M.B. Caminati

Fig. 2. Pharmaceutical graphs for Diabetes and Hypertension based on NICE path-
ways. ACE – angiotensin-converting-enzyme, ARB – angiotensin receptor blocker,
CCB – calcium channel blocker.

where numbers in brackets represent the number of individual medications in
a group. They contain a total of 127 distinct medications. Some of the graph
parameters, such as the duration limits (described by the functions t− and t+

introduced in Sect. 2) can depend on the single patient and on the context, and
are therefore not present in the data provided by NICE. For evaluation purposes,
we generated suitable data reasonable for our purposes to fill the gaps (this will
be done by clinicians in the future). To retrieve all the possible drug conflicts,
we used the interaction engine on the mentioned site drugs.com2, and obtained a
classification (minor, moderate and major): 178 minor conflicts, 3033 moderate
conflicts, 270 major conflicts, for a total of 3481 conflicts, an amount too large
to analyse manually.

Fig. 3. Pharmaceutical graphs for three additional conditions. NSAID – nonsteroidal
anti-inflammatory drug, COX-2 – Cyclooxygenase-2.

4.1 Results

The data extracted as explained above was represented in a textual, comma-
separated value (CSV) format, and we built a simple implementation of our

2 http://www.drugs.com/drug interactions.html.

https://www.drugs.com/
http://www.drugs.com/drug_interactions.html

A Flexible Approach for Finding Optimal Paths with Minimal Conflicts 217

design, parsing these files, generating SMT code, producing text representa-
tions of (F, c,m), together with a graphical representation of the output using
Cytoscape3 [24]. For computations, we assigned the values of −100, −1000 and
−5000 to minor, moderate and major conflicts, respectively. Another important
parameter we had to set is f , which weights the conflicts according to time sep-
aration and dosage. We chose a simple form, which takes the conflict and zeroes
it as soon as the time distance is greater than 8 time units or one of the dosages
is less than 10 dosage units.

Fig. 4. Time- and dosage- aware optimal solution generated by Z3 for a hypothetical
five-comorbid patient, as represented in the graphical front-end.

The output is shown in Fig. 4: the text in the nodes of Figs. 2 and 3 have been
substituted by the drug ultimately picked in the maximised solution, except for
the non-executed nodes, which are marked with “N/A”. In the lower part of
the interface, the user can see the node list with all the relevant information:
the picked drug, the clock (i.e., the value returned by c introduced in Sect. 2.2)
for the corresponding event, the score, the conflicting nodes (if any) and the
conflict score (if any). The user can also click on single node to highlight only
the relevant data. For this example, the total score is −1220, while the total
conflict is −2100, composed as follows:

3 Cytoscape is a software platform for the visualisation of complex network integrated
with any type of attribute data, with a focus on molecular interaction networks.
It was chosen among several other visualisation platforms because of the variety of
layout algorithms available, the simple data import/export format available, and the
relatively moderate adoption effort it required from us.

218 J.K.F. Bowles and M.B. Caminati

– the insulin-benazepril interaction contributes −1000,
– the doxazosin-fentanyl interaction contributes −1000,
– the benazepril-calciumVitaminD interaction contributes −100.

To assess the performance of the proposed approach, we timed the presented
implementation. The average running time is 28.1 s, including the SMT code
generation from the input data (which, however, takes a negligible amount of
time); these results were obtained on an off-the-shelf laptop with 4GB RAM
and a dual-core 2GHz CPU, running a 32-bit Linux OS. The actual run-times
would likely be less, since in real situations a number of possibilities are excluded
and additional restrictions often apply. For example, a portion of drugs could
be excluded a priori because not available, or because known to have too many
interactions; what is more, the doctor might impose manually a choice in a graph
branch, thereby reducing the combinations.

4.2 Introducing Time Offsets

Suppose a patient is being treated for a number of conditions, when she gets
diagnosed an additional condition (requirement (5) of Sect. 4). We want to show
how the time-awareness of our design helps when facing such a situation. Let
the instant in which the additional condition gets diagnosed be denoted by 0.
Starting from time 0, we want to re-assess the patient’s situation to get sugges-
tion about which changes in the therapy should be implemented, assuming that
the treatment for the pre-existing conditions started at some time in the past
−x. To achieve that, it will suffice to change condition (4) (Sect. 3.1) whenever
j refers to an initial node of the pre-existing conditions:

clockj = −x,

while we assert clockj = 0 when the index j refers to the new condition.

eprosartan

N/A

nimodipine

OSTEOARTRITIS

paracetamol

doxazosin

valdecoxib

pamabrom

HYPERTENSION

metformin

sitagliptinarformoterol

levalbuterol

insulin

N/A

DIABETES

N/A

COPD

Fig. 5. Time- and dosage- aware optimal solution generated by Z3 with four concurrent
morbidities.

A Flexible Approach for Finding Optimal Paths with Minimal Conflicts 219

paracetamol

valdecoxib

OSTEOARTRITIS

etidronate

calciumVitaminD

OSTEOPOROSIS

DIABETES

N/Aaclidinium

COPD

metformin

insulin

sitagliptin

N/A levalbuterol

N/A

doxazosin

nimodipine

eprosartan

N/A

HYPERTENSION

Fig. 6. The optimal solution after a fifth condition was added with a time offset.

We evaluated how this can change the recommendation given by our system
in a very simple case. First, we ran the simulation as in the preceding section,
except that we did not include osteoporosis, and obtained the solution shown in
Fig. 5. Then we added back osteoporosis with a starting time 0, while changing
the starting time of the remaining four conditions to −6. The result is shown
in Fig. 6. As it can be seen by comparing the results, the addition of the new
condition (osteoporosis) modified the suggested pathway for one of the existing
conditions (hypertension). This means that the clinician could consider back-
tracking and changing the previously established therapy in view of the modified
clinical situation. It should be noted that the running time for these examples is
substantially the same as that for the example in the previous section (≤30 s).

5 Formal Verification

Formulas (2) and (3) correspond to SMT assertions whose number quickly grows
even for small graphs. There are more immediate ways of expressing the same
problem as an SMT problem, but they turn out to be significantly less efficient.
Our idea (extending the approach taken in [7]) is to exploit Isabelle’s SMT-LIB
generator to automatically produce SMT code from Isabelle definitions that
we can formally prove to be correct via formal Isabelle theorems. This SMT
code will typically be not as efficient as the SMT code that we will effectively
run; however, we can use an SMT solver to prove that the two are equivalent.
This allows us to infer (if we trust the SMT solver) that the formal correctness
theorems proved in Isabelle apply to the SMT code that we will effectively run.

This approach is illustrated in Fig. 7. While this scheme can be applied gen-
erally, we use formulas (2) and (3) (Sect. 3) to illustrate it. We rewrite them as
the following equivalent Isabelle/HOL definitions:

abbreviation ”conditionTwo ’ G F ==
(∀ p . (F p & ¬ isSink ’ G p) → (∃ ! c . (G p c & F c))) ”

abbreviation ”conditionThree ’ G F ==
∀ c . (¬ isSource ’ G c & (∀ p . G p c → ¬ F p)) → (¬ F c)”

220 J.K.F. Bowles and M.B. Caminati

E ffi cient
SMT Code

Isabelle-generated
SMT code equivalence

proved by Z3

Isabelle
De finitions

Correctness
Formal Theoremsstate properties of

Fig. 7. Overview of the formal verification of the SMT code.

Here, G is a graph and F is a set of nodes expressed as predicates (i.e., there
is an edge from m to n if and only if G m n is true, and the node m is selected
if and only if Fm is true), and isSink’ G s is a predicate telling whether s is
a sink for the graph G; similarly for isSource’. To these definitions, we add
another, corresponding to the requirement that all the sources must be selected:

abbreviation ”conditionOne ’ G F ==
(∀ s . isSource ’ G s → F s)”

Now, we put together these conditions:

abbreviation ”formalConditions ’ G F == conditionOne ’ G F &
conditionTwo ’ G F & conditionThree ’ G F”

and use Isabelle’s SMT generator to produce corresponding SMT code:

lemma assumes ”formalConditions ’ G F” shows False
sledgehammer [provers=z3 , minimize=false ,

timeout=1, overlord=true] (assms) .

sledgehammer is an Isabelle tool for theorem proving, and it works by negat-
ing the thesis of the considered theorem, and to challenge an SMT solver (or other
tools) to consider whether the obtained problem is satisfiable. If it is not, it can
use the information to find a proof. In this case, we are not interested in theo-
rem proving, but only in the generated SMT code. More details can be found
in [7], where we directly use the generated code to compute. Here, we make an
indirect use of it: the generated code is used to define a boolean SMT variable
formal, containing all the corresponding assertions. That is, formal will be true
if and only if the automatically generated formalConditions’ G F is true. We
do the same for the assertions illustrated at the beginning of Sect. 3, to obtain
an SMT variable that we call efficient. In other words, efficient will be true
if and only if each nodej obeys the group of assertions in Sect. 3. We add the
requirement that Fj = nodej for any node j. If this group assertions and the
group of assertions enclosed in formalConditions’ introduced above were not
equivalent, there should be a choice of F satisfying one but not the other group.
Therefore, we express the following SMT assertion:

A Flexible Approach for Finding Optimal Paths with Minimal Conflicts 221

(assert (or (and formal (not efficient))
(and (not formal) efficient))) .

If the SMT solver returns (unsat), this means that the two conditions are
indeed equivalent. It should be noted that this check is only needed once; for the
example of Sect. 4, we obtained an (unsat) answer in about 5 s.

Once we have the guarantee of the equivalence between the SMT code that we
run and the SMT code generated from Isabelle definitions, we can start proving
formal theorems in Isabelle about these definitions, in order to make sure they
present the intended properties.

As an example, we discuss how to prove that the nodes selected by the SMT
assertions labelled as formal is indeed a path leading from a source to a sink
for the corresponding graph. To do so, we start from defining in Isabelle/HOL
the canonical notion of walk in a simple directed graph:

definition ”isWalk G w == w �= [] →
(∀i∈{1.. <size w } . (w ! (i−1) ,w ! i)∈G)” ,

which amounts to asking that any consecutive entries of the node list w are joined
by an edge (note that w!0, w!1, . . . are the entries of the list w). We want to
prove that any selection of nodes of a given graph G obtained from the assertions
formal are the entries of a walk which starts from the source of G, ends in a
sink of G and has no repetitions. To this end, we formally proved the following
theorem:

theorem assumes ”finite G” ”card (sources G)=1”
”irrefl (trancl G)” ”conditionOne (set2pred G) (unset F)”
”conditionTwo (set2pred G) (unset F)”
”conditionThree (set2pred G) (unset F)” shows
”∃ w . distinct w & isWalk G w & last w∈sinks G &

{hd w}=F∩sources G & set w=F∩nodes G”

The converter set2pred serves to pass from G represented as a set of pairs to
its representation as a binary boolean predicate. In Isabelle, they have different
types, and using sets is more expressive than using predicates, leading to more
readable statements; on the other hand, sets are not present natively in the
SMT-LIB language, and using predicates is therefore preferable. Similarly, unset
passes from the set F to its representation as a unary boolean predicate.

The theorem assumes that the graph is finite, and that there is only one
source. Given that it is represented as a set of ordered pairs, it is inherently
directed, while irrefl (trancl G) states that its transitive closure is not reflex-
ive. This is the set-theoretical way of requiring that G is acyclic. Under these
assumptions, plus the requirements that the SMT solver proved to be equiv-
alent to the SMT assertions that we execute, the theorem states that the set
F∩nodes G is the entries set of some walk w for G which starts at the source
(hd w is the first entry of w), ends at a sink, and has no repetitions (keyword
distinct). The conditions about w in the thesis of the theorem above corre-
spond to requirements at the point (1) of the list of conditions at the beginning
of Sect. 2.2.

222 J.K.F. Bowles and M.B. Caminati

6 Related Work

The problem of model composition has been treated by using SMT solvers or
constraint solvers in previous works [4,6,23,27,28]. To the best of our knowledge,
no other existing approach to the problem adopts a metric to be maximised, as
we did here. From an abstract viewpoint, there are some similarities between
the model we proposed in Sect. 2 and that presented in [14] where, however,
there is only one graph involved, and the semantics associated to it and the
problem to be solved are entirely different. In [12], the specific problem of the
composition of pharmaceutical graphs is solved by the usage of SMT solvers in
a way which inspired the present paper. Here, we addressed two of the main
limitations conceded in [12], namely the lack of dosage and timing information,
presenting an SMT-based design which adds those information coordinates to
obtain a more flexible and realistic solution to the problem of minimising conflict
in multiple pathway applications on multimorbid patients.

The issue of verifying SMT code, a solution to which we discussed in Sect. 5,
is underexplored: indeed, SMT solvers are typically used the other way around,
i.e., to aid in the verification of software or in formal proofs [3].

The problem of automated detection and resolution of pathway conflicts in
patients with multimorbidity is gaining considerable attention. In [10], ontologies
are used to represent pathways, with one additional ontology (Merge Represen-
tation Ontology, MRO) created by interviewing clinicians to identify merging
criteria, and instantiated to find merge points of two given pathways. No infor-
mation is given, however, on how adaptable the approach is and whether the
instantiation process is automatic. Similarly, recent work proposing extensions
to the existing GLARE project [21] also uses ontologies, but focuses on soliciting
clinicians’ input for conflicts solution, rather than automating it. Constraint logic
programming (CLP) to express and deal with conflicts is proposed in [16]. While
CLP solvers and SMT solvers have fundamental similarities, their expressiveness,
background technologies and domains of application differ. With the efficiency
of the current, mutually competitive, SMT solvers growing at a steadfast pace,
their lower expressiveness is getting more and more effectively compensated.
Another route has been brought forward in [15], where an ad-hoc algorithm is
proposed based on formal rules expressing the actions to be taken upon the
happening of given premises expressing conflicts. Whereas this solution has the
advantage of accurately solving conflicts, based on the actual medical meaning
of the rules themselves, it relies on specific software, which looks problematic in
view of extensions and further development.

7 Conclusions

We introduced a general way of expressing the problem of execution paths across
combined behavioural models of complex systems as an optimisation problem on
a suitably defined score metric, expressed the latter problem in SMT language
and evaluated the whole approach on a concrete, well-known healthcare problem.

A Flexible Approach for Finding Optimal Paths with Minimal Conflicts 223

Additionally, we formally proved the correctness of our SMT code through a
novel application of theorem prover Isabelle, exploiting the latter’s ability of
generating SMT code. This is important because writing SMT code directly is
time-consuming and error-prone while, and the existing interfaces of SMT solvers
with higher-level languages (e.g., APIs) are currently (as far as we know) not
formally verified.

Our approach can be adapted to a wide range of conditions: for example, by
imposing manual restrictions on the number of resources, by manually imposing
a chosen path in some of the graphs, by changing how f operates, or by offsetting
the application of distinct models time-wise; in the latter case, we showed how
this can be exploited in a simple way to manage the changes to a patient’s
therapy following the diagnose of a new condition.

While the current execution time is tolerable for interactive use, we believe
that in real situations it can be dramatically lower, on average. Nonetheless, we
are experimenting with scopes, a feature of Z3 which allows incremental solving
by specifying a block of assumptions which are always held, together with a stack
of additional assumptions which can be pushed and popped repeatedly. When
suitably handled, this feature is likely to allow to reduce the SMT computation
time upon modifications of the inputs, since a relevant part of it will remain
unchanged throughout the modifications (e.g., the topology of the graphs). As
a further, orthogonal code improvement strategy, we are investigating restric-
tions of the theory known to the solver (using the (set−logic) command);
this requires expressing our SMT-LIB code into a form allowed by the selected
restriction. The code presented here can be run under the UFLIA theory, but we
are positive about it being adaptable to a fragment of UFLIA (e.g., QF UFLIA),
which would likely result in better performance.

The presented design has some limitations. First, while it can find an execu-
tion minimising the conflict, it cannot suggest additional remedies to neutralise
or mitigate the arising conflicts. Secondly, it does not handle, currently, directed
graph presenting cycles (we are not aware of any existing approach supporting
the presence of cycles in our main application domain, e.g., clinical pathways
composition). Third, the score calculation could be made context-aware by con-
sidering previously occurred resources in the same graphs. A possible attack to
the last issue could consist in generalising the maps f and g by adding arguments
to them expressing the context: we are experimenting in this sense.

References

1. Araújo, J., Whittle, J., Kim, D.: Modeling and composing scenario-based require-
ments with aspects. In: Proceedings of the 12th IEEE International Requirements
Engineering Conference, pp. 58–67. IEEE Computer Society Press (2004)

2. Bjørner, N., Phan, A.-D., Fleckenstein, L.: vZ - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46681-0 14

3. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, pp. 53–64 (2011)

http://dx.doi.org/10.1007/978-3-662-46681-0_14

224 J.K.F. Bowles and M.B. Caminati

4. Bowles, J.K.F., Bordbar, B., Alwanain, M.: A logical approach for behavioural
composition of scenario-based models. In: Butler, M., Conchon, S., Zäıdi, F. (eds.)
ICFEM 2015. LNCS, vol. 9407, pp. 252–269. Springer, Cham (2015). doi:10.1007/
978-3-319-25423-4 16

5. Bowles, J., Bordbar, B.: A formal model for integrating multiple views. In: Seventh
International Conference on Application of Concurrency to System Design, 2007,
ACSD 2007, pp. 71–79. IEEE Computer Society Press (2007)

6. Bowles, J., Bordbar, B., Alwanain, M.: Weaving true-concurrent aspects using
constraint solvers. In: Application of Concurrency to System Design (ACSD 2016).
IEEE Computer Society Press, June 2016

7. Bowles, J.K.F., Caminati, M.B.: Mind the gap: addressing behavioural inconsis-
tencies with formal methods. In: 2016 23rd Asia-Pacific Software Engineering Con-
ference (APSEC). IEEE Computer Society (2016)

8. Boyd, C.M., Darer, J., Boult, C., Fried, L.P., Boult, L., Wu, A.W.: Clinical practice
guidelines and quality of care for older patients with multiple comorbid diseases:
implications for pay for performance. JAMA 294(6), 716–724 (2005)

9. Jackson, D.: Software Abstractions: Logic, Language and Analysis. MIT Press,
Cambridge (2006)

10. Jafarpour, B., Abidi, S.S.R.: Merging disease-specific clinical guidelines to handle
comorbidities in a clinical decision support setting. In: Peek, N., Maŕın Morales,
R., Peleg, M. (eds.) AIME 2013. LNCS, vol. 7885, pp. 28–32. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38326-7 5

11. Klein, J., Hélouët, L., Jézéquel, J.: Semantic-based weaving of scenarios. In: Pro-
ceedings of the 5th International Conference on Aspect-Oriented Software Devel-
opment, pp. 27–38. ACM (2006)

12. Kovalov, A., Bowles, J.K.F.: Avoiding medication conflicts for patients with mul-
timorbidities. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681,
pp. 376–390. Springer, Cham (2016). doi:10.1007/978-3-319-33693-0 24

13. Liang, H., Diskin, Z., Dingel, J., Posse, E.: A general approach for scenario integra-
tion. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS
2008. LNCS, vol. 5301, pp. 204–218. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-87875-9 15

14. Lombardi, M., Milano, M., Benini, L.: Robust scheduling of task graphs under
execution time uncertainty. IEEE Trans. Comput. 62(1), 98–111 (2013)

15. López-Vallverdú, J.A., Riaño, D., Collado, A.: Rule-based combination of comorbid
treatments for chronic diseases applied to hypertension, diabetes mellitus and heart
failure. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A.
(eds.) KR4HC/ProHealth -2012. LNCS, vol. 7738, pp. 30–41. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-36438-9 2

16. Michalowski, M., Wilk, S., Michalowski, W., Lin, D., Farion, K., Mohapatra, S.:
Using constraint logic programming to implement iterative actions and numerical
measures during mitigation of concurrently applied clinical practice guidelines. In:
Peek, N., Maŕın Morales, R., Peleg, M. (eds.) AIME 2013. LNCS, vol. 7885, pp.
17–22. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38326-7 3

17. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

18. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). doi:10.1007/
3-540-45949-9

http://dx.doi.org/10.1007/978-3-319-25423-4_16
http://dx.doi.org/10.1007/978-3-319-25423-4_16
http://dx.doi.org/10.1007/978-3-642-38326-7_5
http://dx.doi.org/10.1007/978-3-319-33693-0_24
http://dx.doi.org/10.1007/978-3-540-87875-9_15
http://dx.doi.org/10.1007/978-3-540-87875-9_15
http://dx.doi.org/10.1007/978-3-642-36438-9_2
http://dx.doi.org/10.1007/978-3-642-38326-7_3
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9

A Flexible Approach for Finding Optimal Paths with Minimal Conflicts 225

19. OMG: Business Process Model and Notation. Version 2.0. OMG (2011). http://
www.omg.org, document id: formal/2011-01-03

20. OMG: UML: Superstructure. Version 2.4.1. OMG (2011). http://www.omg.org,
document id: formal/2011-08-06

21. Piovesan, L., Molino, G., Terenziani, P.: An ontological knowledge and multiple
abstraction level decision support system in healthcare. Decision Anal. 1(1),
1 (2014)

22. Reddy, R., Solberg, A., France, R., Ghosh, S.: Composing sequence models using
tags. In: Proceedings of MoDELS Workshop on Aspect Oriented Modeling (2006)

23. Rubin, J., Chechik, M., Easterbrook, S.: Declarative approach for model composi-
tion. In: MiSE 2008, pp. 7–14. ACM (2008)

24. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin,
N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504
(2003)

25. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from
properties and scenarios. IEEE Trans. Softw. Eng. 35(3), 384–406 (2009)

26. Whittle, J., Araújo, J., Moreira, A.: Composing aspect models with graph trans-
formations. In: Proceedings of the 2006 International Workshop on Early Aspects
at ICSE, pp. 59–65. ACM (2006)

27. Widl, M., Biere, A., Brosch, P., Egly, U., Heule, M., Kappel, G., Seidl, M., Tompits,
H.: Guided merging of sequence diagrams. In: Czarnecki, K., Hedin, G. (eds.) SLE
2012. LNCS, vol. 7745, pp. 164–183. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36089-3 10

28. Zhang, D., Li, S., Liu, X.: An approach for model composition and verification. In:
NCM 2009, pp. 1102–1107. IEEE Computer Society Press (2009)

http://www.omg.org
http://www.omg.org
http://www.omg.org
http://dx.doi.org/10.1007/978-3-642-36089-3_10
http://dx.doi.org/10.1007/978-3-642-36089-3_10

A Certified Decision Procedure for Tree Shares

Xuan-Bach Le1(B), Thanh-Toan Nguyen1, Wei-Ngan Chin1,
and Aquinas Hobor1,2

1 School of Computing, National University of Singapore, Singapore, Singapore
bachdylan@gmail.com

2 Yale-NUS College, National University of Singapore, Singapore, Singapore

Abstract. We develop a certified decision procedure for reasoning about
systems of equations over the “tree share” fractional permission model of
Dockins et al. Fractional permissions can reason about shared ownership
of resources, e.g. in a concurrent program. We imported our certified
procedure into the HIP/SLEEK verification system and found bugs in
both the previous, uncertified, decision procedure and HIP/SLEEK itself.
In addition to being certified, our new procedure improves previous work
by correctly handling negative clauses and enjoys better performance.

1 Introduction

The last decade has enjoyed much progress in formal methods for concurrency
in both theoretical understanding [12,20,22,34,35] and tool support [11,14,
19,23,24,28,33]. Fractional shares enable reasoning about shared ownership of
resources between multiple parties, e.g. in a concurrent program [5]. The original
model for fractional shares was rational numbers in [0, 1], with 0 representing
no ownership, 1 representing full ownership, and 0 < x < 1 representing par-
tial ownership. A policy maps permission quanta to allowed actions. One simple
policy maps 1 to the ability to both read and write a memory cell, 0 < x < 1
to the ability to read—but not write—the cell, and 0 denying both reading and
writing. We can prevent dangerous read/write and write/write data races by
enforcing that the combined total ownership of each address is no more than 1.

Unfortunately, rational numbers are not an ideal model for shares. Consider
the following recursive predicate definition for fractionally-owned binary trees:

tree(�, π) def= (� = null ∧ emp) ∨
∃�l, �r. (� π�→ (�l, �r) � tree(�l, π) � tree(�r, π))

(1)

Here we write a
π�→ b to indicate that memory location a contains value b and

is owned with (positive/nonempty) share π. We can split and join ownership of
a cell with addition: a

π1�→ b � a
π2�→ b �� a

π1⊕π2�−→ b; note we use ⊕ instead of + to
indicate that the addition is bounded in [0,1] and thus partial (e.g. 0.6 ⊕ 0.6 is
undefined). This tree predicate is obtained directly from the standard recursive
predicate for binary trees in separation logic by asserting only π ownership of the

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 226–242, 2017.
https://doi.org/10.1007/978-3-319-68690-5 14

A Certified Decision Procedure for Tree Shares 227

root and recursively doing the same for the left and right substructures, and so at
first glance looks obviously correct. The problem is that when π ∈ (0, 0.5], then
tree can describe some non-tree directed acyclic graphs such as the following:

This heap satisfies tree(root, 0.3) despite actually being a DAG (grand is
owned with share 0.3 ⊕ 0.3 = 0.6).

Parkinson proposed a model based on sets of natural numbers that solved
this issue but introduced others [31], and then Dockins et al. [13] proposed the
following “tree share” model, which fixes all of the aforementioned issues. A tree
share τ ∈ T is inductively defined as a binary tree with boolean leaves:

τ � ◦ | • | τ τ

Here ◦ denotes an “empty” leaf while • a “full” leaf. The tree ◦ is thus the
empty share, and • the full share. There are two “half” shares: ◦ • and • ◦, and

four “quarter” shares, beginning with • ◦ ◦. It is a feature, rather than a bug,

that the two half shares are distinct from each other.
Notice that we presented the first quarter share as • ◦ ◦ instead of e.g.

• ◦ ◦ ◦. This is deliberate: the second choice is not a valid share because the

tree is not in canonical form. A tree is in canonical form when it is in its most
compact representation under the relation ∼=:

Maintaining canonical form is a headache in Coq but does not introduce any
fundamental difficulty. Accordingly, for this presentation we will simply fold and
unfold trees to/from canonical form when required by the narrative.

Defining the “join” operation ⊕ on tree shares formally is somewhat technical
due to the necessity of managing the canonical forms [27, Sect. A] but the core
idea is quite straightforward. Simply unfold both trees under ∼= into the same
shape and join them leafwise using the rules ◦ ⊕ ◦ = ◦, ◦ ⊕ • = •, and • ⊕ ◦ = •;
afterwards refold under ∼= back into canonical form. Here is an example:

• ◦ ◦ ⊕ ◦ • • ◦
∼= • ◦ ◦ ◦ ⊕ ◦ • • ◦ = • • • ◦

∼= • • ◦

Because • ⊕ • is undefined, the join relation on trees is a partial operation.
Dockins et al. [13] prove that the join relation satisfies a number of useful axioms
e.g. associativity and commutativity (Sect. 2.1 has the full list). One key axiom,
not satisfied by (Q,⊕), is “disjointness”: x⊕x = y ⇒ x = ◦. Disjointness is the

228 X.-B. Le et al.

axiom that forces the tree predicate—Eq. 1—to behave properly: we saw above
that we get a DAG in Q since x ⊕ x need not be 0.

Due to their good metatheorical properties, various program logics [16,17]
and tools [1,19,36] incorporate tree shares. Gherghina detailed a number of pro-
grams whose verifications used tree shares heavily [15, Chap. 4]; these form the
core of our benchmark in Sect. 4.2. However, most tools have avoided using tree
shares in part because they lacked algorithms that could decide entailments
involving fractionals. Hobor and Gherghina [19] showed how to divide an entail-
ment between separation logic formulae incorporating fractional ownership into
(1) a fraction-free separation logic entailment, and (2) an entailment between
systems of share equations; this encouraged shares to be studied as a standalone
domain.

Le et al. developed a tool to decide tree share entailments [25]. The present
paper improves on their work in several ways. From a practical point of view, our
new tool is fully machine-checked in Coq, giving the highest level of assurance
that both its implementation and underlying theory are rock solid. By comparing
our new tool with Le et al.’s, we discovered weaknesses in both the latter’s imple-
mentation and its theory. Moreover, a trend in recent years has been to develop
verification toolsets within Coq [1,2,8]; since certified tools generally only depend
on other certified tools, such tools have not been able to use Le et al.’s implemen-
tation, but they can use our new tool. Happily, despite the challenges involved
in developing an implementation in Coq, our new tool exhibits improved perfor-
mance over Le et al.’s due to a number of heuristics that meaningfully improve
performance without sacrificing soundness or completeness; some of these heuris-
tics should be applicable to future certified procedures.

From a theoretical point of view, our major improvement over Le et al. is
a sound treatment of negations. Negative clauses in logic are often more diffi-
cult to handle than positive ones are. Le et al.’s theory purported to support a
very limited form of negation, which allowed them to force variables to be non-
empty, i.e. π �= ◦. We believe the previous theory is unsound when there are a
sufficiently high number of nonempty variables on both sides of an implication.
Our new theory handles arbitrary negative clauses, i.e. ¬(π1 ⊕ π2 = π3) and is
fully mechanized in Coq. A second theoretical improvement is a more careful
treatment of existential variables.

The rest of this paper is organized as follows. In Sect. 2 we define the central
decision problem and give an overview of our procedure. In Sect. 3 we show the
key algorithms and outline why they are correct. All our proofs are mechanized in
Coq; additional pen-and-paper details are also available in our appendix [27]. In
Sect. 4 we discuss our 38.6k LOC certified implementation, describe how we have
incorporated it into the HIP/SLEEK verification toolset [30], and benchmark its
performance. Finally, in Sect. 5 we discuss related and future work and conclude.

2 Share Constraints and Their Decision Procedures

In Sect. 2.1, we introduce the decision problems over tree shares, satisfiability and
entailment over share equation systems. Next we overview our decision procedure

A Certified Decision Procedure for Tree Shares 229

in Sect. 2.2 together with a brief description of their components’ functionality.
For convenience, we will use the symbol L to represent • ◦ and R for ◦ •.

2.1 Share Constraints

Given a SL entailment P � Q with fractional permissions, there are standard
procedures to separately extract a heap constraint and a share constraint [15,

19,25]. For example, the entailment yields constraints
v1 �= ◦ ∧ v2 = R � ∃v3. L ⊕ v3 = v1. Tree constraints pose a technical difficulty
due to the infinite tree domain, e.g., v1 ⊕ v2 = • has infinitely many solutions
{(•, ◦), (L,R), . . .}. The type of tree constraints we need to deal with can be
represent as Σ1 � Σ2 where Σi is share equation system:

Definition 1. A share equation system Σ is a quadruple (l∃, l=, l+, l−) in which:

1. l∃ is the list of existential variables.
2. l= is the list of equalities π1 = π2.
3. l+ is the list of equations π1 ⊕ π2 = π3.
4. l− is the list of disequations ¬(π1 ⊕ π2 = π3).

The entailment Σ1 � Σ2 can be informally understood as “all solutions of Σ1

are also solutions of Σ2”. In theory, it is conventional to treat equalities π1 = π2

as macros for π1⊕◦ = π2, although our certified tool tracks equalities separately
for optimization purposes. For convenience, we will usually illustrate equation
system as Σ = {x1, . . . , xn, g1, . . . , gm} in which xi is existential variable and gi

is either equality, equation or disequation.
To define the semantics of Σ, let context ρ be a mapping from variable names

to tree shares. We then override ρ over tree constants as identity, i.e., ρ(τ) = τ .
To handle existential variable lists, we define the notion of a context override:

ρ[ρ′ ⇐ l] def= λx. ρ′(v) if x ∈ l else ρ(v)

The semantics of forcing, written ρ |= Φ, follows natural, e.g., ρ |= π1⊕π2 = π3

iff ρ(π1) ⊕ ρ(π2) = ρ(π3) and ρ |= P ∧ Q iff ρ |= P and ρ |= Q. We say ρ is
a solution of Σ, denoted by ρ |= Σ, if there exists a context ρ′ such that
ρ[ρ′ ⇐ l∃] |= l= ∧ l+ ∧ l−. Consequently, we say Σ1 entails Σ2 if all solutions
of Σ1 are also solutions of Σ2. In this paper, we propose certified algorithms to
solve the satisfiability and entailment over tree shares:

Problem. Let Σ1, Σ2 be share equation systems. Construct a sound and com-
plete procedure to handle the following queries:

1. SAT(Σ1): Is Σ1 satisfiable, i.e., ∃ρ. ρ |= Σ1?
2. IMP(Σ1, Σ2): Does Σ1 entail Σ2, i.e., ∀ρ. ρ |= Σ1 ⇒ ρ |= Σ2?

Despite allowing negative clauses, entailment is not subsumed by satisfiabil-
ity due to the quantifier alternation in the consequent. One interesting exercise
is to examine the metatheoretical properties of tree shares described by Dockins

230 X.-B. Le et al.

Functional: x y z1 x y z2 z1 z2
Commutative: x y y x
Associative: x y z x y z
Cancellative: x1 y z x2 y z x1 x2

Unit: u. x. x u x
Disjointness: x x y x y
Cross split: a b z c d z ac, ad, bc, bd.
ac ad a bc bd b ac bc c ad bd d

a b ac
ad bd

bcc
d

Infinite splitability: x x1, x2. x1 x2 x1 x2 x

Fig. 1. Properties of tree shares

et al. [13]; these are given in Fig. 1. Several of these are the standard proper-
ties of separation algebras [6], but others are part of what make the tree share
model special. In particular, tree shares are one of the fractional permission mod-
els that simultaneously satisfy Disjointness (forces the tree predicate—Eq. 1—to
behave properly), Cross-split (used e.g. in settings involving overlapping data
structures), and Infinite splitability (to verify divide-and-conquer algorithms).
Encouragingly, all of the properties except for “Unit” are expressible as entail-
ments in our format; e.g. associativity is expressed as:

{x ⊕ a = b, y ⊕ z = a} � {c, x ⊕ y = c, c ⊕ z = b}

Unit requires the order of quantifiers to swap; our format can express the weaker
“Multiunit axiom” ∀x. ∃u. x ⊕ u = x as well as ∀x. x ⊕ ◦ = x.

2.2 Overview of Our Decision Procedure

We use SAT and IMP for the problems and SAT and IMP for the decision pro-
cedures themselves. Although the entailment checker IMP is our main concern,
the satisfiability checker SAT is helpful for at least two reasons. First, SAT helps
to prune the search space; e.g., if the antecedent Σ1 for IMP is unsatisfiable,
we can immediately conclude Σ1 � Σ2. Second, the correctness of some of the
transformations in IMP require that Σ1 be satisfiable.

The architecture of our system is given in Fig. 2. We have two procedures
to solve problems over share formulas, one for satisfiability and the other for
entailment, both written in Gallina and certified in Coq. Identically-named
components in the two procedures are similar in spirit but not identical in
operation; thus e.g. there are two different SIMPLIFIER components, one for
SAT and another for IMP. The PARTITIONER, BOUNDER, and SIMPLIFIER
components substantially improve the performance of our procedures in prac-
tice but are not complete solvers: in the worst case they do nothing. Since they
are included for performance we will discuss them in more detail in Sect. 4.

A Certified Decision Procedure for Tree Shares 231

The DECOMPOSER and TRANSFORMER components form the heart of our
procedure. While the ⊕ operation has many useful properties that enable sophis-
ticated reasoning about shared ownership in program verifications (e.g. Fig. 1),
they are not strong enough for techniques like Gaussian elimination (which even
in Q cannot handle negative clauses). In Sect. 3 we will describe DECOMPOSER
in detail after developing the necessary theory. Briefly, DECOMPOSER takes a
system of equations with constants of arbitrary complexity and eventually pro-
duces a much larger equivalent system in which each constant is either ◦ or •
(i.e., the final system has height zero).

TRANSFORMER is a very sophisticated component mathematically, yet also
the simplest computationally: it just changes the type of the system. That is, it
inputs a tree system of height zero and outputs an equivalent, essentially iden-
tical Boolean system. The only actual computational content is by swapping ◦
for ⊥ and • for �. The join relation on Booleans is simply disjoint disjunction:

� ⊕ ⊥ = � ⊥ ⊕ � = � ⊥ ⊕ ⊥ = ⊥

The last option, � ⊕ �, is undefined.
INTERPRETER translates Boolean systems of equations into Boolean sen-

tences by rewriting positive and negative equations using the rules

π1 ⊕ π2 = π3 � (π1 ∧ ¬π2 ∧ π3) ∨ (¬π1 ∧ π2 ∧ π3) ∨ (¬π1 ∧ ¬π2 ∧ ¬π3)
¬(π1 ⊕ π2 = π3) � (¬π1 ∨ π2 ∨ ¬π3) ∧ (π1 ∨ ¬π2 ∨ ¬π3) ∧ (π1 ∨ π2 ∨ π3)

Next, it adds the appropriate quantifiers depending on the query type to
reach a closed sentence. INTERPRETER’s code and correctness proof are straight-
forward.

SMT SOLVER uses simple quantifier elimination to check the validity of
boolean sentences. Our SMT solver is rather näıve, and thus is the performance
bottleneck of our tool, but we could not find a suitable Gallina alternative. As
discussed in Sect. 4, despite its näıveté our overall performance seems acceptable
in practice due to the heuristics in PARTITION, BOUNDER, and SIMPLIFIER.

PARTITIONER BOUNDER SIMPLIFIER DECOMPOSER TRANSFORMER

SIMPLIFIERINTERPRETERSMT SOLVERSAT SOLVER

PARTITIONER BOUNDER SIMPLIFIER SAT SOLVER DECOMPOSER

TRANSFORMERSIMPLIFIERINTERPRETERSMT SOLVERIMP SOLVER

Fig. 2. SATsolver and IMP solver

232 X.-B. Le et al.

Algorithm 1. Solver SAT for systems with disequations
1: function SAT(Σ)
2: if SAT+(Σ+) = ⊥ then return ⊥
3: else if l− = nil then � l− is the disequation list in Σ
4: return �
5: else let l− = [η1, . . . , ηn]
6: return

∧n
i=1 SSAT(Σηi)

3 Core Algorithms for the Decision Procedures

We begin with some basic definitions and notions in Sect. 3.1 that are essential for
the algorithms and their correctness proofs. In Sects. 3.2 and 3.3, we propose our
decision procedures to solve SAT and IMP together with illustrated examples.

3.1 Definitions and Notations

We adopt the following definitions and notations. We use nil to denote empty
list, [e1, . . . , en] to represent list’s content, and l ++ l′ for list concatenation. We
use the metavariable η to represent a single disequation. The symbols Σ and Π
are reserved for systems and pairs of systems respectively; if the exact form of
our systems is not important or is clear from the context, we may refer it as Γ .
The symbol ρ and S are for contexts and solutions respectively. We use |τ | to
indicate the height of τ . Also, we will override the height function |·| for equation
systems and contexts to indicate the height of the highest tree constant. For a
tree τ , we let τl and τr to be the left and right sub-trees of τ , i.e., τ = τl = τr if
τ ∈ {◦, •} and τ = τl τr

otherwise. We define several basic systems for SAT and
IMP as the building blocks of the decision procedures:

Definition 2. Let Σ,Σ1, Σ2 be share equation systems and η, η1, η2 disequa-
tions. Let l be a list of disequations, we define Σl to be the new equation system
in which the disequation list in Σ is replaced with l. For convenience, we write
Ση as shortcut for Σ[η], and Σ+ as shortcut for Σnil. Then:

1. If the disequation list in Σ is empty then Σ is called a positive system.
2. If there is exactly one disequation in Σ then Σ is called a singleton system.
3. If Σ1 is positive and Σ2 is singleton then (Σ1, Σ2) is called a Z-system.
4. If both Σ1 and Σ2 are singleton then (Σ1, Σ2) is called a S-system.

In particular, Σ+ is always a positive system, Ση is always a singleton sys-
tem, (Σ+

1 , Ση
2) is always a Z-system, and (Ση1

1 , Ση2
2) is always an S-system.

3.2 Decision Procedure for SAT

We propose the procedure SAT (Algorithm 1) to solve SAT of systems with dise-
quations. For SAT(Σ), the existential list is redundant and thus will be ignored.
Our new decision procedure SAT also makes use of the old decision procedure

A Certified Decision Procedure for Tree Shares 233

Algorithm 2. Solver SSAT for singleton systems
1: function SSAT(Ση)
Require: Ση is singleton and Σ+ is satisfiable
2: [Σ1, . . . , Σn] ← DECOMPOSE(Ση)
3: transform each Σi into Boolean formula Φi

4: Φ ← ∨n
i=1 Φi

5: return SMT SOLVER(Φ)

SAT+ from previous work [25] for systems without disequations, e.g., positive
systems. To help the readers gain intuition, we will abstract away all the tedious
low-level implementations and only discuss about the high-level structure. The
execution of SAT consists of two major steps which are described in Algorithm 1.
First, the system Σ is separated into a list of singleton systems; each contains a
single disequation taken from the disequation list of Σ. In the second step, each
singleton system is solved individually using the subroutine SSAT, then their
results are conjoined to determine the result of SAT(Σ).

The solver SSAT for singleton system (Algorithm 2) calls subroutine
DECOMPOSE (Algorithm 3) that helps decompose a share system into sub-
systems of height zero. These subs-systems subsequently go though a 2-phase
process to be transformed into Boolean formulas. In the first phase, the sub-
routine TRANSFORM trivially converts tree type into Boolean type using the
conversions • � � and ◦ � ⊥. Correspondingly, the share system is converted
into the Boolean system. In the second phase, the subroutine INTERPRET helps
to interpret the Boolean system into an equivalent Boolean formula by adding
necessary quantifiers (∃ for SAT, ∀ for IMP) and conjunctives among equations
and disequations. Finally, Theorem 1 states the correctness of SAT whose proof
is verified in Coq.

Theorem 1. Let Σ be a share system then Σ is satisfiable iff SAT(Σ) = �.

Example 1. Let Σ = {v1 ⊕ v2 = •,¬(v1 = L),¬(v2 = ◦)} then SAT(Σ) is the
valid formula (v1 = R, v2 = L is a solution):

∃v1∃v2. v1 ⊕ v2 = • ∧ ¬(v1 = L) ∧ ¬(v2 = ◦)

First, SAT+(Σ+) is called to check ∃v1∃v2. v1 ⊕ v2 = • (which returns � as
v1 = ◦, v2 = • is a solution). After that, Σ is split into two singleton systems:

Σ1 = {v1 ⊕ v2 = •,¬(v1 = L)} and Σ2 = {v1 ⊕ v2 = •,¬(v2 = ◦)}
When NSAT(Σ1) is called, Σ1 is split into Σ1

1 and Σ1
2 by DECOMPOSER:

Σ1
1 = {v1 ⊕ v2 = •,¬(v1 = •)} and Σ1

2 = {v1 ⊕ v2 = •,¬(v1 = ◦)}
The two systems Σ1

1 , Σ1
2 are transformed into boolean formulas Φ1

1 and Φ1
2:

Φ1
1 = ∃v1∃v2. ((v1 ∧ ¬v2) ∨ (¬v1 ∧ v2)) ∧ ¬v1

Φ1
2 = ∃v1∃v2. ((v1 ∧ ¬v2) ∨ (¬v1 ∧ v2)) ∧ v1

234 X.-B. Le et al.

Algorithm 3. Decompose system into sub-systems of height zero
1: function DECOMPOSE(Γ)
Require: Γ is either one system (SAT) or pair of systems (IMP)
Ensure: A list of sub-systems of height zero
2: if |Γ | = 0 then return [Γ]
3: else
4: (Γ1, Γ2) ← SINGLE DECOMPOSE(Γ)
5: return DECOMPOSE(Γ1) ++ DECOMPOSE(Γ2)

6:
7: function SINGLE DECOMPOSE(Γ)
Require: Γ is either one system (SAT) or pair of systems (IMP)
Ensure: A pair of left and right sub-system
8: if |Γ | = 0 then return (Γ, Γ)
9: else

10: Γl ← replace each tree constant τ in Γ with its left sub-tree τl

11: Γr ← replace each tree constant τ in Γ with its right sub-tree τr

12: return (Γl, Γr)

As both Φ1
1 and Φ1

2 are valid, NSAT(Σ1) returns �. Similarly, one can verify that
NSAT(Σ2) also returns � and thus SAT(Σ) returns � as the result. ��

Additional details of the soundness proof for SAT can be found in [27,
Sect. B.1], which uses a technique we call “domain reduction”, explained in [27,
Sect. A.1]. We finish Sect. 3.2 by pointing out a decidability result of ⊕:

Corollary 1. The ∃-theory of M = 〈T,⊕,=〉 is decidable.

Proof. Let Ψ be a quantifier-free formula in M, we convert Ψ into Disjunctive
Normal Form

∨n
i=1 Ψi then each Ψi can be represented as a constraint system

Σi. As a result, Ψ is satisfiable iff some Σi is satisfiable which can be solved
using Algorithm 1. Thus the result follows.

3.3 Decision Procedure for IMP

Our IMP procedure (Algorithm 4) deploys a similar strategy as for SAT by reduc-
ing the entailment into several entailments of the basic systems (e.g. Z-system
and S-system). In detail, IMP verifies the entailment Σ1 � Σ2 by first calling two
solvers SAT(Σ1) and IMP+(Σ+

1 , Σ+
2)1 (line 2 and 3). Then the lengths of the two

disequation lists (l−1 in Σ1 and l−2 in Σ2) critically determine the subsequent flow
of IMP. To be precise, there are three different cases of l−1 and l−2 that fully cover
all the possibilities:

1. If l−2 = nil (line 5) then the answer is equivalent to IMP+(Σ+
1 , Σ+

2), i.e., �.

1 This is the entailment checker for positive constraints from previous work [25].

A Certified Decision Procedure for Tree Shares 235

Algorithm 4. Solver IMP for entailment of share systems with disequations
1: function IMP(Σ1, Σ2)
2: if SAT(Σ1) = ⊥ then return ⊥
3: else if IMP+(Σ+

1 , Σ+
2) = ⊥ then return ⊥

4: else let l−1 , l−2 be disequation lists of Σ1, Σ2

5: if l−2 = nil then return �
6: else let l−2 = [η1

2 , . . . , ηn
2]

7: if l−1 = nil then return
∧n

i=1 ZIMP(Σ+
1 , Σ

ηi
2

2)
8: else let l−1 = [η1

1 , . . . , η
m
1]

9: for i = 1 . . . n and j = 1 . . . m do

10: let Zi ← ZIMP(Σ+
1 , Σ

ηi
2

2) and Sj
i ← SIMP(Σ

η
j
1

1 , Σ
ηi
2

2)

11: return
∧n

i=1(Zi ∨ (
∨m

j=1 Sj
i))

Algorithm 5. Solvers for entailment of Z-systems and S-systems
1: function ZIMP(Σ1, Σ2)
Require: (Σ1, Σ2) is Z-system, Σ1 is satisfiable and Σ1 � Σ+

2

2: [Γ1, . . . , Γn] ← DECOMPOSE(Σ1, Σ2)
3: transform each Γi into Boolean formula Φi

4: Φ ← ∨n
i=1 Φi

5: return SMT SOLVER(Φ)

6:
7: function SIMP(Σ1, Σ2)
Require: (Σ1, Σ2) is S-system, Σ+

1 is satisfiable, Σ+
1 � Σ+

2 and Σ+
1 �� Σ2

8: [Γ1, . . . , Γn] ← DECOMPOSE(Σ1, Σ2)
9: transform each Γi into Boolean formula Φi

10: Φ ← ∧n
i=1 Φi

11: return SMT SOLVER(Φ)

2. Otherwise, we check whether l−1 = nil (line 7) from which the answer is

conjoined from several entailments of Z-systems (Σ1, Σ
ηi
2

2); each is constructed
from (Σ1, Σ2) by removing all disequations in Σ2 except for one. Here we call
the subroutine ZIMP which is a specialized for entailment of Z-systems.

3. The third case is neither l−1 nor l−2 is empty (line 8). Then Σ1 � Σ2 is derived
by taking the conjunction of several entailments of Z-systems and S-systems
altogether. Here we use SIMP to solve S-system entailments.

Two specialized solvers ZIMP and SIMP are described in Algorithm 5. For
ZIMP, we first call the subroutine DECOMPOSE to split the Z-system into sub-
systems of height zero. Next, each sub-system is transformed in to Boolean
formula by adding necessary quantifiers and logical connectives. These Boolean
formulas are then combined using disjunctions to form a single Boolean formula;
and this formula is solved using standard SMT solvers to determine the result of
the entailment. The procedure for SIMP has a similar structure, except that the
final Boolean formula is formed using conjunctions. Also, it is worth noticing that
there are certain preconditions for both solvers; and all of them are important

236 X.-B. Le et al.

to shape the correctness of the solvers. Last but not least, the correctness of IMP
is mentioned in Theorem 2; and its proof is verified entirely in Coq.

Theorem 2. Let Σ1, Σ2 be share systems then Σ1 � Σ2 iff IMP(Σ1, Σ2) = �.

Example 2. The infinite splitability of tree share (Fig. 1):

∀v. (v �= ◦ ⇒ ∃v1∃v2. v1 ⊕ v2 = v ∧ v1 �= ◦ ∧ v2 �= ◦)

can be represented as the entailment Σ1 � Σ2 s.t.:

Σ1 = {¬(v = ◦)} and Σ2 = {v1, v2, v1 ⊕ v2 = v,¬(v1 = ◦),¬(v2 = ◦)}
This entailment will go though Algorithm4 until line 8 because both disequation
lists are nonempty. As there are two disequations in Σ2, namely η1 : v1 �= ◦ and
η2 : v2 �= ◦, we need to verify the conjunction P1 ∧ P2 s.t.:

P1 = ZIMP(Σ+
1 , Ση1

2)∨SIMP(Σ1, Σ
η1
2) and P2 = ZIMP(Σ+

1 , Ση2
2)∨SIMP(Σ1, Σ

η2
2)

For P1, ZIMP(Σ+
1 , Ση1

2) is equivalent to ∀v. (� ⇒ ∃v1, v2. v1⊕v2 = v∧v1 �= ◦)
which is false by choosing v = ◦ so that both v1 and v2 must also be ◦. Likewise,
SIMP(Σ1, Σ

η1
2) is equivalent to ∀v. (v �= ◦ ⇒ ∃v1, v2. v1 ⊕v2 = v ∧v1 �= ◦) which

is transformed into the boolean formula:

Φ1 = ∀v. (v ⇒ ∃v1, v2. ((¬v1 ∧ ¬v2 ∧ ¬v) ∨ (v1 ∧ ¬v2 ∧ v) ∨ (¬v1 ∧ v2 ∧ v)) ∧ v1)

As Φ1 is valid, P1 is true. Same result holds for P2 and thus Σ1 � Σ2. ��
Additional details of the soundness proof for IMP can be found in [27,

Sect. B.2], again using domain reduction [27, Sect. A.1].

4 Performance, Evaluation, and Implementation

Having described the heart of our decision procedures, what remains is to
describe the practical aspects of their development and evaluation. In Sect. 4.1 we
describe various techniques that enable good performance in practice. In Sect. 4.2
we describe how we benchmarked our tool running inside Coq, running as a
standalone compiled program, and after incorporating it into the HIP/SLEEK
verification toolset. In [27, Sect. C] we document the files in the development
itself; we have approximately 38.6k lines of code in 31 files.

4.1 Performance-Enhancing Components

The architecture of our tool was given in Sect. 2.2 (Fig. 2). The key
DECOMPOSER, TRANSFORMER and INTERPRETER components were dis-
cussed in Sects. 2.2, 3.2, and 3.3. Here we give details on the PARTITIONER,
BOUNDER, and SIMPLIFIER modules. Their principal goal is to shrink the search
space and uncover contradictions, although they each do so in a very different

A Certified Decision Procedure for Tree Shares 237

way. Although in practice they can substantially improve performance, none
of these components is a complete solver. The key ideas in these components
were developed previously [19,25], although not all together. We have made
a number of incremental enhancements, but our major contribution for these
is components is the development of high-performing general-purpose certified
implementations.

PARTITIONER. The goal of this module is to separate a constraint system into
independent subsystems. Two systems are independent of each other if they do
not share any common variable (with existential variables bound locally).

The partition function is implemented generically : in other words it does not
assume very much about the underlying domain. To build the module, we must
specify types of variables V , equations E, and contexts C. We also provide a
function σ : E ⇒ L(V) that extracts a list of variables from an equation, an
overriding function written ρ′[ρ ⇐ l], and an evaluation relation written c |= e.
The soundness proof requires two properties that relate these inputs as follows:

Disjointness and inclusion jointly specify that satisfaction of an equation only
depends on the variables it contains: overriding variables not in the equation does
not matter; and from any context, if we override all of the variables that are in
an equation then we can ignore the original context.

It is simple to use PARTITIONER for SAT, but to handle IMP is harder. We
can “tag” equations and variables as coming from the antecedent or consequent
before partitioning and then use these tags to separate the resulting partitioned
systems into antecedents and consequents afterwards.

The implementation of PARTITIONER is nontrivial in purely functional lan-
guages like Coq. One reason is that we need a purely functional union-find
data structure, which we obtain via the impure-to-pure transformation of Pip-
penger [32] applied to the canonical imperative algorithm [9]. In other words, we
substitute red-black trees for memory (mapping “addresses” to “cell contents”)
and pay a logarithmic access penalty, yielding an O

(
n · log(n) · α(n)

)
algorithm.

The termination of “find” turns out to be subtle. Parent pointers are rep-
resented as cells that “point to” other cells; however, those parent cells can be
anywhere in the red-black tree (e.g. item 5 can be the parent of item 10, or the
other way around.) Accordingly an important invariant of the structure is that
“nonlocal links” form acyclic chains, which is the key termination argument.

Given union-find, the algorithm is straightforward: each variable is put into a
singleton set, and then while processing each equation we union the correspond-
ing sets. Lastly, we extract the sets and filter the equations into components.
BOUNDER. The bounder uses order theory to prune the space. Each variable
v is given an initial bound ◦ ⊆ v ⊆ •. The bounder then tries to narrow these
bounds by forward and backward propagation. For example, if τ1 ⊆ v1 ⊆ •,
τ2 ⊆ v2 ⊆ •, and ◦ ⊆ v3 ⊆ •, then if v1 ⊕ v2 = v3 is an clause we can conclude
that v3’s lower bound can be increased from ◦ to τ1 � τ2 (where � computes
the union in an underlying lattice on trees). In some cases, the bounds for a

238 X.-B. Le et al.

variable can be narrowed all the way to a point, in which case we can substitute
the variable away. In other cases we can find a contradiction (when the upper
bound goes below the lower bound), allowing us to terminate the procedure.

The bounder is an updated version of the incomplete solver developed by
Hobor et al. [19]. Although our main contribution here is the certified imple-
mentation, we managed to tighten the bounds in certain cases.
SIMPLIFIER. The simplifier is a combination of a substitution engine and several
effective heuristics for reducing the overall difficulty via calculation. For example,
from v ⊕ τ1 = τ2, where τi are constants, we can compute an exact value for v
using an inverse of ⊕: v = τ2 � τ1. SIMPLIFIER also hunts for contradictions: for
example, from v ⊕ v = • we can reach a contradiction due to the “disjointness”
axiom from Fig. 1. The core idea of simplifier was contained in the work of Le
et al. [25], so our main contribution here is our certified implementation.

4.2 Experimental Evaluation

Our procedures are implemented and certified in Coq. Users who wish to use
our code outside of Coq can use Coq’s extraction feature to generate code in
OCaml and Haskell, although at present a small bug in Coq 8.4pl5’s extraction
mechanism requires a small human edit to the generated code.

We benchmarked our code in three ways using an Intel i7 with 8GB RAM.
First, we used a suite of 102 standalone test cases developed by Le et al. (53
SAT and 49 IMP) [25] and the 9 metatheoretic properties described in Sect. 2.
These tests cover a variety tricky cases such as large number of variables, deep
tree constants, etc. Even running as interpreted Gallina code within Coq, the
time is extremely encouraging at 17 s to check all 111 tests. After we port to
Coq 8.5 we can use the native compute tactic to increase performance.

Second, we compiled the extracted OCaml code with ocamlopt. The total
running time to test all 111 previous tests is 0.02 s, despite our näıve SMT
solver; our previous tool took 1.4 s. Since our SMT solver is a separate module, it
can be replaced with a more robust external solver such as Z3 [10] if performance
is bottleneck in that spot in the future.

Finally, we incorporated our solver into the HIP/SLEEK verification toolset,
which was previously using the uncertified solver by Le et al. We did so by
writing a short (approximately 150 line) “shim” that translated the format used
by the previous tool into the format expected by the new tool.

We then benchmarked our tool against a suite of 23 benchmark programs
as shown in Fig. 3. 15 of those programs were developed by Gherghina [15] and
utilize a concurrent separation logic for pthreads-style barriers that exercise share
provers extensively. Another 7 tests were developed for the HipCAP project [7],
which extended HIP/SLEEK to reason in a Concurrent Abstract Predicate [12]
style. Finally, we wrote a simple fork/join program for our initial testing.

The results are rather interesting! The left column gives the input file name
to HIP/SLEEK and the second the number of lines in that file. The third column
is the total number of calls into the solver (both SAT and IMP). The fourth
column is the number of times the previous solver by Le et al. answered

A Certified Decision Procedure for Tree Shares 239

File LOC # calls # wrong Le et al. [25] Our tool

MISD ex1 th1.ss 36 294 48 2.21 2.37
MISD ex1 th2.ss 36 495 67 4.36 4.48
MISD ex1 th3.ss 36 726 94 6.95 6.58
MISD ex1 th4.ss 36 1,003 123 9.09 8.36
MISD ex1 th5.ss 36 1,320 134 15.74 12.38
MISD ex2 th1.ss 47 837 107 16.77 18.97
MISD ex2 th2.ss 52 1,044 157 29.34 26.02
MISD ex2 th3.ss 87 1,841 260 69.09 64.21
MISD ex2 th4.ss 105 3,023 374 194.17 194.64
PIPE ex1 th2.ss 35 283 7 2.49 2.78
PIPE ex1 th3.ss 44 467 12 4.92 4.65
PIPE ex1 th4.ss 56 678 15 7.00 7.53
PIPE ex1 th5.ss 66 931 18 9.67 9.37
SIMD ex1 v2 th1.ss 74 1,167 281 18.46 17.64
SIMD ex1 v2 th2.ss 95 2,029 392 63.83 53.50

cdl-ex1a-fm.ss 49 7 0 0.10 0.08
cdl-ex2-fm.ss 50 9 0 0.12 0.09
cdl-ex3-fm.ss 51 10 0 0.11 0.12
cdl-ex4-race.ss 50 5 0 0.09 0.09
cdl-ex4a-race.ss 50 9 0 0.10 0.08
cdl-ex5-deadlock.ss 42 5 0 0.10 0.10
cdl-ex5a-deadlock.ss 42 9 0 0.08 0.08

ex-fork-join.ss 25 47 22 0.19 0.16

03.43410.554435252,01latot

Fig. 3. Evaluation of our procedures using HIP/SLEEK

the query incorrectly. The fifth column gives the time (in seconds) spent by
Le et al.’s uncertified solver and the sixth column gives the time spent by our
new certified solver. HIP/SLEEK was benchmarked on a more powerful machine
with 16 cores and 64 GB RAM.

The uncertified solver got approximately 5.2% of the queries
wrong! In our subsequent investigation, we discovered a number of bugs in the
original solver: code rot (due to a change in the correct mechanism to call the
SMT backend), improper error handling and signaling, general coding errors,
and the incorrect treatment of nonzero variables. We also discovered bugs in
HIP/SLEEK itself, which did not always use the result of the solver in the cor-
rect way; this is why the regression tests were passing even though the solver
was reporting the incorrect answer. Our discovery of bugs on this scale, despite
the large benchmarks developed by Le et al. [25] and Gherghina [15], illustrates
the value of developing certified decision procedures.

Our timing results are reasonable: despite our näıve SMT solver backend and
the difficulties in writing the algorithms in a purely functional style, our tool is
approximately 4.6% faster than Le et al.’s uncertified solver.

240 X.-B. Le et al.

5 Related Work, Future Work, and Conclusion

Boyland first proposed fractional shares over Q [5]. Subsequently, Bornat et al.
[3] improved the rational model by adding natural counting permissions to reason
about critical sections. Other notable refinements of the rationals are achieved
by Boyland et al. [4], Huisman et al. [21] and Müller et al. [29] that work well on
programs with fork, join and lock. Parkinson showed that Q’s lack of disjointness
caused trouble and proposed modelling shares as subsets of N [31]. Dockins
et al. proposed the tree share model used in the present paper to fix issues with
Parkinson’s model [13]. Hobor et al. were the first to use tree shares in a program
logic [18], followed by Hobor and Gherghina [16] and Villard [36]. Hobor and
Gherghina [19], Villiard [36], and Appel et al. [1] subsequently integrated shares
into program verification tools with various incomplete solvers. Le et al. [25]
developed sound and complete procedures to handle tree share constraints but
their correctness proof only justifies the case when there is no disequation.

Future work. We have plans to examine the theory further to support gen-
eral logical formulae (including arbitrary quantifier use) and perhaps monadic
second-order logic. Dockins et al. also define a kind of multiplicative operation
�� between shares whose computability and complexity was first analyzed by
Le et al. [26]. Interestingly, this operator can be used to scale permissions over
arbitrary predicates and thus our decision procedures need to be generalized to
handle constraints that contain both ⊕ and ��.

Conclusion. We have used tree shares to model permissions for integration into
program logics. We proposed two decision procedures for tree shares and proved
their correctness in Coq. The two algorithms perform well in practice and have
been integrated into a sizable verification toolset.

References

1. Appel, A.W., Dockins, R., Hobor, A., Beringer, L., Dodds, J., Stewart, G., Blazy,
S., Leroy, X.: Program Logics for Certified Compilers. Cambridge University Press,
New York (2014)

2. Bengtson, J., Jensen, J.B., Birkedal, L.: Charge! - a framework for higher-order
separation logic in Coq. In: ITP, pp. 315–331 (2012)

3. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL, pp. 259–270 (2005)

4. Boyland, J.T., Müller, P., Schwerhoff, M., Summers, A.J.: Constraint semantics
for abstract read permissions. In: FTfJP, pp. 2:1–2:6 (2014)

5. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). doi:10.1007/
3-540-44898-5 4

6. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: LICS, pp. 366–378 (2007)

7. Chin, W.N., Le, T.C., Qin, S.: Automated verification of countdownlatch (2017)

http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1007/3-540-44898-5_4

A Certified Decision Procedure for Tree Shares 241

8. Chlipala, A.: The bedrock structured programming system: combining generative
metaprogramming and hoare logic in an extensible program verifier. In: ICFP, pp.
391–402 (2013)

9. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
3 edn. MIT Press (2009)

10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

11. Dinsdale-Young, T., da Rocha Pinto, P., Andersen, K.J., Birkedal, L.: Caper:
Automatic verification for fine-grained concurrency. In: Yang, H. (ed.) ESOP
2017. LNCS, vol. 10201, pp. 420–447. Springer, Heidelberg (2017). doi:10.1007/
978-3-662-54434-1 16

12. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14107-2 24

13. Dockins, R., Hobor, A., Appel, A.W.: A Fresh Look at Separation Algebras and
Share Accounting. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 161–177.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-10672-9 13

14. Fiedor, J., Letko, Z., Lourenço, J., Vojnar, T.: Dynamic validation of contracts in
concurrent code. In: Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia, A. (eds.)
EUROCAST 2015. LNCS, vol. 9520, pp. 555–564. Springer, Cham (2015). doi:10.
1007/978-3-319-27340-2 69

15. Gherghina, C.A.: Efficiently verifying programs with rich control flows. Ph.D. the-
sis, National University of Singapore (2012)

16. Hobor, A., Gherghina, C.: Barriers in concurrent separation logic. In: Barthe,
G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 276–296. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19718-5 15

17. Hobor, A.: Oracle semantics. Ph.D. thesis, Princeton University, Department of
Computer Science, Princeton, NJ, October 2008

18. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separa-
tion logic. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78739-6 27

19. Hobor, A., Gherghina, C.: Barriers in concurrent separation logic: now with tool
support!. Logical Methods Comput. Sci. 8(2), 1–36 (2012)

20. Hoenicke, J., Majumdar, R., Podelski, A.: Thread modularity at many levels: a
pearl in compositional verification. In: POPL, pp. 473–485 (2017)

21. Huisman, M., Mostowski, W.: A symbolic approach to permission accounting for
concurrent reasoning. In: ISPDC, pp. 165–174 (2015)

22. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,
D.: Iris: monoids and invariants as an orthogonal basis for concurrent reasoning.
In: POPL, pp. 637–650 (2015)

23. Křena, B., Letko, Z., Vojnar, T., Ur, S.: A platform for search-based testing of
concurrent software. In: PADTAD, pp. 48–58 (2010)

24. Le, D.-K., Chin, W.-N., Teo, Y.M.: Threads as resource for concurrency verifica-
tion. In: PEPM, pp. 73–84 (2015)

25. Le, X.B., Gherghina, C., Hobor, A.: Decision procedures over sophisticated frac-
tional permissions. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705,
pp. 368–385. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35182-2 26

26. Le, X.-B., Hobor, A., Lin, A.W.: Decidability and complexity of tree shares for-
mulas. In: FSTTCS (2016)

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-662-54434-1_16
http://dx.doi.org/10.1007/978-3-662-54434-1_16
http://dx.doi.org/10.1007/978-3-642-14107-2_24
http://dx.doi.org/10.1007/978-3-642-10672-9_13
http://dx.doi.org/10.1007/978-3-319-27340-2_69
http://dx.doi.org/10.1007/978-3-319-27340-2_69
http://dx.doi.org/10.1007/978-3-642-19718-5_15
http://dx.doi.org/10.1007/978-3-540-78739-6_27
http://dx.doi.org/10.1007/978-3-642-35182-2_26

242 X.-B. Le et al.

27. Le, X.-B., Nguyen, T.-T., Chin, W.-N., Hobor, A.: A certified decision procedure
for tree shares (extended) (2017). http://www.comp.nus.edu.sg/∼lxbach/certtool/

28. Meng, W., He, F., Wang, B.-Y., Liu, Q.: Thread-modular model checking with
iterative refinement. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol.
7226, pp. 237–251. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28891-3 24

29. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure
for permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI
2016. LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49122-5 2

30. Nguyen, H.H., David, C., Qin, S., Chin, W.-N.: Automated verification of shape
and size properties via separation logic. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 251–266. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-69738-1 18

31. Parkinson, M.: Local reasoning for Java. Ph.D. thesis, University of Cambridge
(2005)

32. Pippenger, N.: Pure versus impure LISP. In: POPL, pp. 104–109 (1996)
33. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-

current programs. In: PLDI, pp. 77–87 (2015)
34. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,

Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54833-8 9

35. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and hoare-style reasoning
in a logic for higher-order concurrency. In: ICFP, pp. 377–390 (2013)

36. Villard, J.: Heaps and Hops. Ph.D. thesis, Laboratoire Spécification et Vérification,
École Normale Supérieure de Cachan, France, February 2011

http://www.comp.nus.edu.sg/~lxbach/certtool/
http://dx.doi.org/10.1007/978-3-642-28891-3_24
http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://dx.doi.org/10.1007/978-3-540-69738-1_18
http://dx.doi.org/10.1007/978-3-540-69738-1_18
http://dx.doi.org/10.1007/978-3-642-54833-8_9

Classification-Based Parameter Synthesis
for Parametric Timed Automata

Jiaying Li1(B), Jun Sun1, Bo Gao1, and Étienne André2

1 Singapore University of Technology and Design, Singapore, Singapore
jiaying li@mymail.sutd.edu.sg, {sunjun,bo gao}@sutd.edu.sg

2 LIPN, University Paris 13, Villetaneuse, France
Etienne.Andre@univ-paris13.fr

Abstract. Parametric timed automata are designed to model timed sys-
tems with unknown parameters, often representing design uncertainties
of external environments. In order to design a robust system, it is crucial
to synthesize constraints on the parameters, which guarantee the system
behaves according to certain properties. Existing approaches suffer from
scalability issues. In this work, we propose to enhance existing approaches
through classification-based learning. We sample multiple concrete values
for parameters and model check the corresponding non-parametric mod-
els. Based on the checking results, we form conjectures on the constraint
through classification techniques, which can be subsequently confirmed
by existing model checkers for parametric timed automata. In order to
limit the number of model checker invocations, we actively identify infor-
mative parameter values so as to help the classification converge quickly.
We have implemented a prototype and evaluated our idea on 24 bench-
mark systems. The result shows our approach can synthesize parameter
constraints effectively and thus improve parametric verification.

1 Introduction

Timed-automata [2] are finite-state automata extended with real-valued clock
variables which capture the passage of time. As a modeling language, timed-
automata are used to model embedded software, timed protocols, cyber-physical
systems, etc. To verify such systems, a number of verifiers on timed automata
have been developed [11,20,37,39], including the well-known Uppaal [11] model
checker, which has been applied to several industrial applications [38].

In timed automata, clock variables are compared with concrete constants
within clocks guards. However, these constants may be unknown at the design
time. If an embedded software interacts with an external environment, the con-
stants may depend on the environment. Furthermore, the use of parameters
is fundamental in the early phases of the development, giving the possibility
to explore different design choices [13]. For example, “given a real-time system
M with unknown constants d and r, representing the deadline and the delay
in receiving an acknowledgment, one may wish to verify a property F of the
system.” [23]. To design such a system robustly, it may be useful to have a
c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 243–261, 2017.
https://doi.org/10.1007/978-3-319-68690-5 15

244 J. Li et al.

timed automaton model where r and d are kept as unknown parameters, since
concrete values for them make sense only in a given concrete environment.

Therefore, parametric timed automata (PTA [3]) which extend timed
automata with parametric clock guards have been proposed. The concrete behav-
ior of a PTA depends on the valuation of its parameters, and therefore a given
property can be verified for some valuations only in general. A main goal of
system verification will be to synthesize a set of valuations (often in the form of
a convex or non-convex constraint) for which a PTA satisfies a property; this is
also a way to explore various design choices at once. However, manual estimation
is time-consuming and does not always generate optimal solutions for specific
design problems. In contrast, parametric model checking (i.e., model checking of
parametric models [8,22,24,25]) aims to automatically synthesize the region of
property-satisfying parameter values, in the form of a constraint.

Existing work on the PTA verification problem relies on exploring PTA mod-
els and synthesizing constraints based on “bad states” or “good states”. Given
a set of property-violating states (hence “bad”) or property-satisfying states
(hence “good”), we can synthesize a sound constraint by either covering all the
“good states” or avoiding all the “bad states”. For instance, [16] proposes a
method based on the counterexample-guided abstraction refinement (CEGAR).
Firstly, the PTA is explored through model checking where parameters are kept
as a part of the symbolic state space. After finding a counterexample, a con-
straint which makes the counterexample infeasible is identified. Afterwards, a
different counterexample is identified and subsequently a different constraint.
Once all the counterexamples are eliminated, the disjunction of these identified
constraints captures all the property-satisfying parameter values.

Note that these approaches often suffer from scalability problem, which limits
their power in practice. For example, IMITATOR [5] times out when applied to
check a parametric Fischer protocol with 5 processes. In comparison, Uppaal

can verify the non-parametric Fischer protocol with dozens of processes [10].
Furthermore, existing approaches provide no information if they fail to handle
a given model.

In this work, we propose an approach to enhance the scalability of exist-
ing model checkers for PTA by adopting machine learning techniques. The idea
is to form conjectures on the constraint based on sampling and classification
techniques. Our approach takes a PTA as input and works as follows. Firstly,
we generate random parameter values and construct the corresponding non-
parametric timed automata. Next, we verify the timed automata using existing
model checker (i.e., Uppaal). Based on the checking results, we form conjec-
tures on the constraint through machine learning, which can be subsequently
checked using existing model checkers for PTA (i.e., IMITATOR). Moreover,
we actively seek out informative parameter values and check the correspond-
ing timed automata so that we converge to an accurate conjecture quickly. We
implement our approach as a tool called pta-Learn and evaluate it on bench-
mark systems. We also compare it with state-of-the-art tools such as IMITA-
TOR [5]. The results show our approach can synthesize parameter constraints

Classification-Based Parameter Synthesis for Parametric Timed Automata 245

effectively and thus improve parametric verification. Since machine learning algo-
rithms used in our approach are agnostic with the underlying system and learn
only based on the verification results of the non-parametric timed automata, our
approach is more scalable than the existing approaches.

The remainders of the paper are organized as follows. Section 2 introduces a
simple protocol and then illustrates how our approach works step-by-step. Then,
Sect. 3 shows how candidate constraints are generated through classification and
refined through active learning. Next, Sect. 4 evaluates our approach using a set
of benchmark models. Section 5 reviews related work and Sect. 6 concludes in
the end.

2 The Overall Approach

In this section, we first define the parametric model checking problem of timed
automata and then illustrate how our approach works on an example system.
We start with defining our model, i.e., timed automata and parametric timed
automata.

2.1 Problem Definition

Let R
≥0 be the set of non-negative real numbers. Given a set of clocks X, we

define Φ(C) as the set of clock constraints. Each clock constraint is inductively
defined by: δ := true | x ∼ n | δ1 ∧ δ2 | ¬δ1 where ∼ ∈ {=,≤,≥, <,>}; x is a
clock in X and n ∈ N

≥0 is a constant. The set of downward constraints obtained
with ∼ ∈ {≤, <} is denoted as Φ≤,<(X). A clock valuation v for a set of clocks
X is a function which assigns a real value to each clock. A clock constraint can
be viewed as the set of clock valuations which satisfy the constraint. A clock
valuation v satisfies a clock constraint δ, written as v ∈ δ, iff δ evaluates to be
true using the clock values given by v.

Definition 1. A timed automaton is a tuple A = (S, Init,Σ,X,L, T) where S
is a finite set of locations; Init ⊆ S is a set of initial locations; Σ is an alphabet;
X is a finite set of clocks; L : S → Φ≤,<(X) labels each state with an invariant;
T ⊆ S × Σ × Φ(X) × 2|X| × S is a labelled transition relation.

Intuitively, a transition (s, e, δ, χ, s′) ∈ T can be fired if δ is satisfied.
After event e occurs, clocks in χ are set to zero. The concrete semantics of
A is an infinite-state labelled transition system (LTS), denoted as C(A) =
(Sx, Initx,R≥0 × Σ,Tx) such that Sx is a set of concrete states of A, each
of which is a pair (s, v) where s ∈ S is a state and v is a clock valuation;
Initx = {(s,X = 0) | s ∈ Init} is a set of initial concrete states; and Tx is a set
of concrete transitions of the form ((s, v), (d, e), (s′, v′)) such that there exists a
transition (s, e, δ, χ, s′) ∈ T ; v + d ∈ δ; v + d ∈ L(s); [χ 	→ 0](v + d) = v′; and
v′ ∈ L(s′). Intuitively, the system idles for d time units at state s and then take
the transition (generating event e) to reach state s′.

246 J. Li et al.

Given a property, the model checking problem of timed automata is to model
check whether the given timed automaton satisfies the property. We skip the
details on how to model check timed automata and refer the readers to [42] for
details.

By generalizing the timed automata theory [2], Alur et al. first defined para-
metric timed automata in [3], where guards and state invariants are allowed
to be parametric. Let P = {p1, · · · , pM} be a set of parameters. Throughout
this paper, we assume parameters are integer-valued. Let Φ(X,P) be the set of
parametric clock constraints which are inductively defined by: γ := δ | x ∼ α |
γ1∧γ2 | ¬γ1 where δ ∈ Φ(C) is a non-parametric constraint; ∼ ∈ {=,≤,≥, <,>};
and α is a parametric linear term in the form of Σiai ∗ pi + d where both ai and
d are integer constants. The set of downward parametric constraints obtained
with ∼ ∈ {≤, <} is denoted as Φ≤,<(X,P).

Definition 2. A PTA A(P) with parameters P is a 7-tuple (S, Init,Σ,X,
φ,L, T) where S, Init, Σ, and X are the same in the timed automata defin-
ition; and

– φ ∈ Φ(X,P) is a constraint on the parameters P ;
– L is the invariant assigning to every q ∈ S a constraint L(q) ∈ Φ≤,<(X,P)

on the clocks and the parameters;
– and T ⊆ S × Σ × Φ(X,P) × 2|X| × S is a labelled transition relation.

Both timed automata and PTA can be composed in parallel. The parallel com-
position of two timed automata or PTA is defined in the standard way (refer
to [2]). Figure 1 shows two example PTA, and the overall system is defined as
their parallel composition. In this example, we use discrete integer-valued shared
variables (e.g., nb), supported by most model checkers (such as Uppaal and IMI-
TATOR). When bounded, these variables do not add expressiveness, but act as
syntactic sugar for extra locations.

Given a PTA A(P) and a parameter valuation v, we can construct the corre-
sponding timed automata, written as A(v), by substituting the parameter values
in the parameter constraints with v. Given a PTA A(P) and a property ρ, the
parametric model checking problem is to synthesize a constraint π such that for
any parameter valuation v, A(v) satisfies ρ if and only if v satisfies π. In partic-
ular, we say that π is sound with respect to ρ if A(v) satisfies ρ for all v ∈ π;
we say that π is complete with respect to ρ if v ∈ π as long as A(v) satisfies ρ;
and we say π is perfect if it is both sound and complete. We remark existing
approaches often focus on identifying sound constraints, since identifying perfect
constraints are often infeasible.

2.2 Overall Approach with an Illustrative Example

In the following, we illustrate how our approach works through a simple example.
We fix a PTA A(P) = (S, Init,Σ,X, φ, L, T) in the following.

Classification-Based Parameter Synthesis for Parametric Timed Automata 247

Fig. 1. Fischer protocol with 2 processes

Example 1. The Fischer’s protocol is a mutual exclusion protocol proposed by
Fischer [7]. Instead of using atomic test-and-set instructions or semaphores, it
only assumes atomic reads and writes to a shared variable and achieves mutual
exclusion between multiple processes by carefully placing bounds on the execu-
tion times of the instructions. For simplicity, we focus on the Fischer protocol
with only two processes, which are modeled as the PTA in Fig. 1. Each child
PTA models a process with a set of four locations, with one initial location at
the top and contains one clock (i.e., x1 for process 1 and x2 for process 2). The
parallel composition of the two processes forms the system model. Variable nb is
a shared global variable which intuitively records the number of processes in the
critical session. The protocol is designed for mutual exclusion, i.e., �(nb ≤ 1)
which means no more than one process should be in the critical session at any
time. There are two parameters: delta and Delta, which are used as bounds for
the clocks. We remark in the original protocol [7], the property has been proved
under the occasion that delta is set to be 4 andDelta is set to be 3. The goal
of parametric model checking for this example is to find out a constraint which
contains all the property-satisfying properties. For instance, one possible con-
straint is delta > Delta. In the following, we show how we can synthesize such a
constraint automatically.

The overall work flow of our approach is shown in Fig. 2. Given a PTA A(P),
we start with generating a set of random valuations for P , denoted as S, which
satisfy φ. Hereafter, we refer to the valuations in S random samples and the
process of generating them “random sampling”. Random sampling provides us
an initial set of samples to learn the very first candidate constraint. In this
work, we generate random values for each parameter in P based on its domain,
assuming a uniform probabilistic distribution over all values in its domain. With
each parameter valuation v ∈ S, we can generate a timed automaton model
A(v). Next, we employ the Uppaal to check whether A(v) satisfies the property.
Depending on the verification results, we partition S into two sets PS and NS ,

248 J. Li et al.

Not
Converge

Valuations with Labels

Constraint Candidate

Parametric Timed
Automata

Concrete Selective
Sampling

Random Sampling

Proposed Constraint

Data
Collection

Learning Algorithm

Converge

Fig. 2. Approach overview

where PS contains all those valuations v ∈ S such that A(v) satisfies the property
and NS contains all those valuations v ∈ S such that A(v) fails the property.

Example 2. Continuing Example 1, assume that we generate four parameter val-
uations: (6, 7), (8, 2), (5, 3) and (0, 4) where each pair (d1, d2) denotes a valuation
{delta 	→ d1,Delta 	→ d2}. Based on Uppaal’s verification results, these valua-
tions are divided into two sets: PS containing {(8, 2), (5, 3)} and NS containing
{(6, 7), (0, 4)}.

Recall that the goal of parametric model checking is to synthesize a constraint
which all parameter valuations in PS should satisfy and all parameter valuations
in NS should not satisfy. We thus employ classification techniques, which have
been extensively studied in machine learning community, to generate classifiers
which can be treated as constraint candidates. Among the classification algo-
rithms, e.g., [12,28,30]. we focus on two particular classification algorithms: Sup-
port Vector Machine (SVM [12]) and Kernel Query By Committee (KQBC [18]),
which are introduced in Sect. 3.

Example 3. Continuing Example 2, assume that we apply SVM to generate a
classifier to divide sets PS and NS . By tuning parameters in SVM, we can obtain
a model as the classifier which make zero prediction error on the training set PS

and NS . Converting the model into an explicit hyperplane, we learn the classifier
as delta − 2 ∗ Delta ≥ −4 .

Compared with the desired constraint mentioned in Example 1, this classifier is
quite different. Although this desired constraint remains unknown in practice,
the problem of classification on limited random samples is real. One way to solve
this problem is to generate more random samples. In general, it is likely that a
better constraint can be learned if more samples are provided. In our setting, it
is expensive since we need to model check A(c) for each valuation c in order to

Classification-Based Parameter Synthesis for Parametric Timed Automata 249

categorize it. So it would be good if we are able to learn accurate constraints
with a small number of samples.

Our remedy is to apply active learning techniques to select the most informa-
tive parameter valuations so that we converge fast. Which samples are considered
most informative can be defined in different ways, depending the classification
algorithms, which are detailed in Sect. 3. With these new samples and their
corresponding labels, a new classifier can be learned. We iteratively adopt this
learning and refining procedures until the generated constraint stays the same,
in other words, converges. Then we can stop and report this constraint as a
candidate for the constraint.

Example 4. Continuing with Example 3, given the classifier delta − 2* Delta
≥ −4, we pick four more valuations (3, 3), (1, 2), (4, 4), (6, 5) which locate right
by the classification boundary geometrically. After verifying the corresponding
timed automata using Uppaal, the valuations (3, 3),(4, 4),(6, 5) are added into
set PS and (1, 2) is added into set NS . Then a new classifier: delta − Delta ≥ 0
can be obtained by classification algorithms. With the observation that the con-
straint converges after multiple iterations of learn-and-refine, we report this clas-
sifier as the candidate constraint.

Once having a candidate constraint C, we employ a parametric model checker
(i.e., the state-of-the-art IMITATOR [5]) for checking the correctness of ρ. That is,
we construct a new PTA A′(P) = (S, Init,Σ,X, C, L, T) where φ is replaced by C
and solve the parametric checking problem of A′(P). We remark that parametric
checking A′(P) is often easier than A(P), as we show empirically in Sect. 4.
Intuitively, this is because C is more restrictive than φ and thus IMITATOR
needs to explore, symbolically, a smaller state space. However, even with the
learned constraint C, soundness and completeness may not be checked from
time to time still due to the complexity in parametric model checking of timed
automata. Compared to directly applying a parametric model checker to A(P),
which provides no information at all if the model checker times out, our approach
provides a conjecture C, which could be useful for system design.

Example 5. Continuing Example 4, we apply IMITATOR to check the sound-
ness and completeness of the learned constraint. For this example, IMITATOR
confirms that it is both sound and complete. In fact, IMITATOR can gener-
ate the same constraint for this example if no constraint provided. However, if
we increase the number of processes to 5, IMITATOR is unable to synthesize any
sound constraint. On the contrary, with the learned constraint delta − Delta ≥ 0 ,
IMITATOR can prove the soundness and completeness of such a system, as shown
in Sect. 4.

3 Classification

We have discussed the overall approach in Sect. 2. While most of the steps are
self-explanatory, details on how candidate constraints are generated and refined

250 J. Li et al.

Algorithm 1. Algorithm generate(PS , NS)
1 while not time out do
2 let C be a constraint generated by classify(PS , NS);
3 if C is the same as the one obtained in the last iteration then
4 return C;

5 V = select(C);
6 for v ∈ V do
7 add v into PS if A(v) satisfies the property;
8 add v into NS if A(v) fails the property;

are centric in our approach and thus will be explained in this section. The overall
algorithm for generating candidate constraints is shown in Algorithm 1. Given
two sets of labelled samples PS and NS , we first learn a candidate constraint
using function classify(PS , NS) at line 2. If the constraint is the same as the one
obtained in the last iteration, we consider that the constraint has converged and
return it. Otherwise, we selectively generate a set of new parameter valuations
using function select(C) at line 5. The loop from line 6 to 8 then checks whether
each parameter valuation is property-satisfying or not and adds it into either
PS or NS depending on the verification result. The outer loop from line 1 to 8
iterates until a constraint is returned at line 4 or a timeout has occurred. In the
following, we present details of function classify(PS , NS) and select(C).

3.1 Classification

Function classify(PS , NS) generates a candidate constraint based on classifica-
tion techniques. Assume that π is the perfect constraint for which the PTA
satisfies the property. Intuitively, since parameter valuations in PS must satisfy
π (since PS contains valuations that have been checked to satisfy π) and valua-
tions in NS must not satisfy π, a constraint C separating the two sets (a.k.a. a
classifier) thus can be regarded as a candidate for π. In the extreme case, if we
can enumerate all the possible parameter valuations, a classifier which perfectly
separates the sets is equivalent to π.

To automatically generate classifiers separating PS and NS , we apply existing
classification techniques. In the machine learning setting, the assumption is that
there is a training set containing samples X and the associated labels Y , and the
goal of classification is to learn a function f : X → Y which accurately predicts
the labels of samples arising in the future. There are many existing classification
algorithms. For instance, k-nearest neighbors algorithm [14] clusters samples
into groups based on their distances to others, while decision tree algorithm [30]
splits set of samples step by step according to the maximal information gain
of the unused features. Moreover, perceptron [28], Supported Vector Machine
(SVM [12]) and Kernel Query By Committee (KQBC [18]) have been proposed
to construct classifiers which can separate the samples with different labels apart.

Classification-Based Parameter Synthesis for Parametric Timed Automata 251

In general, due to the noises in the training set, these classification algorithms
prefer a function with small prediction error (rather than zero) on the training
set to avoid the overfitting problem. However, in our setting, any prediction error
is intolerable and thus the classification algorithms must be tuned to generate
perfect classifiers. Formally, a perfect classifier π for PS and NS is a predicate
such that s ∈ π for all s ∈ PS and s �∈ π for all s ∈ NS . Furthermore, in order to
help system designer utilize the learned constraint, it is preferred to be human-
interpretable. Considering all these mentioned above, we briefly introduce one
of the classification algorithms, SVM, which we adopt in our work.

SVM is a commonly applied supervised machine learning algorithm for clas-
sification and regression analysis [12]. In the binary classification case, the func-
tionality of SVM works as follows. Given PS and NS , SVM can generate a perfect
classifier to separate them if there is any. We refer the readers to [29] for details
on how the classifier is computed. In this work, we always choose the optimal
margin classifier if possible. Intuitively, the optimal margin classifier could be
seen as the strongest witness why PS and NS are different. SVM by default
learns classifiers in the form of a linear inequality, i.e., a half space in the form
of c1x1 + c2x2 + · · · ≥ k where xi are variables while ci and k are constant
coefficients.

As linear inequalities may not be sufficiently expressive for some parametric
models, we discuss how SVM can be extended to learn more expressive con-
straints. A polynomial classifier can be obtained by systematically mapping
the samples to a high dimensional space and then applying SVM in the high
dimensional space. For instance, assume that the maximum degree of the poly-
nomial is set to be 2, the sample valuation {x 	→ 2, y 	→ 1} in PS is mapped to
{x 	→ 2, y 	→ 1, x2 	→ 4, xy 	→ 2, y2 	→ 1}. Let P ′

S and N ′
S be the set of samples in

the high dimensional space. SVM is then applied to learn a perfect linear clas-
sifier for P ′

S and N ′
S . Mathematically, a linear classifier in the high dimensional

space is the same as a polynomial classifier in the original space [21].
To generate conjunctive classifiers, we adopt the algorithm proposed in [36].

The idea is to pick one sample s from NS each time and identify a classifier
Ci to separate PS and {s}, remove all samples from NS which can be correctly
classified by Ci, and then repeat the process until NS becomes empty. The con-
junction of all the classifiers Ci is then a perfect classifier separating PS and NS .
We refer the readers to [36] for details of the algorithm. We remark that if we
switch PS and NS , the negation of the learned classifier using this algorithm is
a classifier which is in the form of a disjunction.

3.2 Candidate Refinement

Stone’s celebrated theorem proves that even naive algorithms can get the optimal
solution if given a large enough training sequence [18]. However, we always have
obstacles in collecting such a large data set. In particular, labeling more samples
is expensive in our setting because we are required to model check the system for
each parameter valuation. One fundamental problem in applying classification
techniques to learn the constraint is that with the limited samples in PS and NS ,

252 J. Li et al.

it is unlikely that we can obtain an “accurate” classifier. In the machine learning
community, researchers have studied extensively on the problem “how can we
learn an accurate classifier from a small number of labelled samples?”. One of
the remedies is active learning [33].

Active learning is proposed in contrast to passive learning. A passive learner
learns from a given set of samples that it has no control over, whereas an active
learner is able to adaptively select its samples. Intuitively, by selecting the right
samples, active learning is able to learn much faster. In general, an active learner
could choose the most informative samples to label based on the intermediate
learning results. Specifically, a number of different active learning strategies on
how to select the samples have been proposed. For instance, version space par-
titioning [31] tries to select samples on which there is maximal disagreement
between classifiers in the current version space (e.g., the space of all classifiers
which are consistent with the given samples); uncertainty sampling [26] main-
tains an explicit model of uncertainty and selects the sample that it is least
confident about. The effectiveness of these strategies can be measured in terms
of the labeling cost, i.e., the number of labelled samples needed in order to learn
a classifier which has a classification error bounded by some threshold ε. An
active learner can sometimes achieve good performance using far fewer samples
than would otherwise be required by a passive learner [40,41]. Thus, in this
work, we adopt two active learning strategies designed for different classification
algorithms so that we can generate the constraint by invoking a model checker
only a small number of times.

Selective Sampling for SVM We adopt the active learning strategy proposed
in [32], called selective sampling, to improve the constraints generated by SVM.
This strategy has been shown to be effective in different applications [40,41]. The
idea is to generate multiple samples on the current classification boundary C.

Fig. 3. Selective sampling for SVM

The exact details of function select(C) in Algorithm 1 depends on the type of
classifiers. For classifiers in the form of linear inequalities or polynomial inequal-
ities, identifying samples on the classification boundary is straightforward, i.e.,
we turn the inequality into an equation and solve the equation. For the clas-
sifier delta − 2 ∗ Delta ≥ −4 in the above example, we solve the equation

Classification-Based Parameter Synthesis for Parametric Timed Automata 253

Algorithm 2. Algorithm kqbc classify(C, PS , NS)
1 i ← 0;
2 while i < iteration do
3 let Ca, Cb be two random hypotheses selected over C;
4 get a parameter valuation v by solving Ca(v) ∗ Cb(v) < 0;
5 model check C(v);
6 add v into PS or NS based on whether C(v) satisfies the property;
7 update C;
8 i ← i + 1;

delta − 2 ∗ Delta = −4 in the integer domain and obtain new valuations like
(4, 4), (6, 5). Note that if there is no integer solution, we solve the equation in
the real-number domain and select the nearest integer samples with unknown
labels. In the case that the constraint is conjunctive or disjunctive, we apply
the above selective sampling approach to each clause in the constraint to obtain
new samples. For instance, if C is in the form of C1 ∧ C2 where Ci is a linear or
polynomial inequality, we turn each Ci into an equation and solve it to obtain
new samples.

Figure 3 visualizes how selective sampling works in a 2-D plane. In the left
figure, the squares represent the samples in PS , while the triangles represent
the samples in NS . Based on these samples, a classifier is learned to separate
these samples, as shown in the left figure. Selective sampling allows us to identify
those samples (i.e., those triangles and squares on the line) on the classification
boundary based on the learned classifier. The classifier is then improved using
the new samples generated by selective sampling, as shown in the right figure.

KQBC Although SVM is a widely used classification technique and its selective
sampling strategy works often in practice [40,41], it has been shown that SVM-
based active learning in the worse case has the same labeling cost as random
sampling, i.e., Ω(1

ε) where ε is the target classification error rate. A number of
active learning algorithms with better worse case labeling cost have been pro-
posed. One example is the Kernel Query By Committee (KQBC) algorithm [18].
It has been shown that KQBC has the optimal labeling cost: O(d lg 1

ε) where
d is the dimension of the samples [15,19]. That is, if passive learning requires
a million samples, KQBC may require just lg 1000000 (≈ 20) to achieve the
same accuracy. Thus, in this work, we additionally adopt KQBC and develop a
particular sampling strategy for KQBC to solve our problem.

Compared to SVM, instead of learning one hyperplane for separating PS

and NS , KQBC maintains a “committee”, i.e., a cluster of models C =
〈C1, C2, C3, · · · , Cm〉, based on the currently labelled samples. These models com-
pose a version space, where each member is allowed to vote on the labels of a
new sample (i.e., whether a parameter valuation would make the PTA satisfy the
property). KQBC shrinks the version space whenever a newly labelled sample is
provided. The essence of KQBC is to constrain the size of version space as much

254 J. Li et al.

as possible with as few labelled samples and the classification task is to search
for the best model within the version space.

In the original algorithm [18], KQBC takes a stream of unclassified samples
and decides whether to ask for the label of a newly arrived sample. In our setting,
we modify the algorithm in order to actively seek out samples which are effective
in reducing the version space, and as a result we can potentially converge to
the actual classifier. Algorithm 2 shows how KQBC is adopted in our setting,
where the input parameter C represents the version space, PS and NS are the
positive and negative samples. At line 3, we randomly pick two hypotheses (i.e.,
hyperplanes) Ca and Cb in the current version space C. At line 4, we employ
a constraint solver to solve the constraint Ca(v) ∗ Cb(v) < 0 where Ca(v) is
the label prediction of sample v, which is either 1 or −1. That is, by solving
the constraint, we identify a controversial sample, i.e., one which is disagreed
upon by two members of the committee. At line 5, we model check the timed
automaton C(v) and we add v into PS or NS accordingly at line 6. At line 7,
we update the version space. We skip the details on how the version space is
updated and maintained and refer the readers to [18] for the technical details.
The loop from line 2 from line 8 iterates until a pre-defined number of iterations
has been reached.

Version Space Version Space

Fig. 4. Sampling in KQBC

Figure 4 illustrates how classfiers are obtained by KQBC in a binary classi-
fication task. In the left figure, the squares represent samples in PS while the
triangles represent samples in NS . All the lines compose the committee for the
current samples. Note that any member of the committee classifies the cur-
rent samples perfectly. In order to reduce the committee, we select two lines
by hit-and-run algorithm [27] and identify a sample which they disagree upon,
represented as the bigger square in between the lines. After obtaining the label
of this sample, two members of the committee represented by the dotted lines
are ruled out. As a result, the version space is reduced.

4 Evaluation

We have implemented our approach for model checking of PTA in a tool named
pta-Learn (available at [1]). pta-Learn is written using a combination of C++

Classification-Based Parameter Synthesis for Parametric Timed Automata 255

and shell codes. It makes use of GSL to solve equation systems; and uses LibSVM
for SVM-based classification. It relies on Uppaal [11] for model checking timed
automata and IMITATOR for model checking PTA with learned constraints. Note
that both Uppaal and IMITATOR are regarded as the state-of-the-art in their
respective fields. In the following, we evaluate pta-Learn, to address the fol-
lowing three research questions.

– RQ1: Can pta-Learn improve scalability of IMITATOR?
– RQ2: Are the constraints generated by pta-Learn sound, or complete com-

pared to those generated by IMITATOR?
– RQ3: Is our candidate refinement strategy helpful?

To answer the aforementioned research questions, we identify 24 parametric
timed automata models from the IMITATOR benchmarks library, which in terms
are collected from multiple sources. Since the models in [5] are written in a lan-
guage different from the language supported by Uppaal, we develop a translator
to convert those models. The correctness of the translator is checked manually
as well as through comparing verification results of Uppaal and IMITATOR. All
evaluated models are available at [1].

The parameters in our experiments are configured as follows. During the
random sampling stage, given a parametric model A(P) and a property ρ, we try
to generate random parameter valuations until there are at least one valuation
v such that A(v) satisfies ρ and one valuation v′ such that A(v′) fails ρ. If all
random valuations satisfy ρ after a threshold 64 ∗ |P | of random values (where
|P | is the number of parameters), we stop the process and conjecture that the
constraint is true (i.e., any parameter valuation is valid). Similarly, if all random
valuations fail ρ, we conjecture that the constraint is false (i.e., no parameter
valuation is valid).

During the learning stage, both SVM and KQBC are applied and we take the
first converged constraint as the learning result. In the case of SVM, the para-
meter C (which controls the trade-off between avoiding misclassifying training
samples and enlarging the decision boundary) in LibSVM and the inner iteration
are set to their maximum values so that it generates only the perfect classifier,
if there is. Selective sampling is applied repeatedly until the learned constraint
remained unchanged after 2 consecutive iterations. We remark it is an open
question on how to know that a classifier has converged. In the case of KQBC,
we conduct a set of preliminary experiments with randomly generated predicate
to test how many samples are necessary to learn the predicate. The details of
the preliminary results are available at [1]. During the verification stage, if IMI-
TATOR is applied, the timeout is set to be 300 seconds. If pta-Learn learns a
constraint true or does not learn (i.e., timeout), we apply IMITATOR on the orig-
inal model. Each experiment is repeated for 5 times and we report the median as
the experiment results. All of the experiments are conducted using x64 Ubuntu
16.04.2 (kernel 4.8.0-49-generic) with 3.60 GHz Intel Core i7 and 32G DDR3.

The experiment results are shown in Table 1. To answer RQ1, we apply
pta-Learn to each model and compare the performance with IMITATOR. The
result verification time of IMITATOR is shown in the second column of Table 1.

256 J. Li et al.

The following two columns show the time spent on learning and verifying the
constraint by pta-Learn. pta-Learn’s total time is the sum of numbers in
these two columns.

It can be observed that IMITATOR times out in 9 cases. In comparison, pta-
Learn succeeds in learning constraints for 21 out of 24 benchmarks and fails to
learn any constraint for the 3 remaining case studies. A close look reveals that in
the 3 cases, 2 models involve many parameters (i.e., > 6) and thus our learning
algorithms time out before converge. Note that IMITATOR times out on these two
cases as well. We fail to learn on the other case because the actual constraint is a
complicated constraint consisting of a mixture of conjunctions and disjunctions.
Recall that if we do not learn any constraint, the original model is submitted to
IMITATOR for parametric model checking. It can be observed that (as shown in
the column “verify” under pta-Learn) that with the learned constraint, pta-
Learn is able to verify 23 models and only times out on one model named
LALSD14-FMS2p. In terms of efficiency, we highlight the approach between
pta-Learn and IMITATOR which takes less time in parametric verification for
each model. pta-Learn takes seconds on learning and verifies the models more
efficiently with the learned constraint, than applying IMITATOR directly. Thus,
we conclude that pta-Learn can be used to improve IMITATOR.

To answer RQ2, we measure the soundness and completeness of the learned
constraint. Soundness of a learned constraint is checked by IMITATOR, i.e., we
apply IMITATOR to check whether the PTA updated with the learned constraint
always satisfies the property. We recall that a sound constraint is useful as it
provides a guideline for choosing safe parameter values. Column sound under
pta-Learn shows whether the learned constraint can satisfy the properties.
The results show that, among the 21 constraints learned by pta-Learn, 19 are
proved sound; 1 is not sound; and 1 is unknown as pta-Learn times out trying
to prove its soundness.

A sound constraint may be too restrictive. In the extreme case, the constraint
false is trivially sound and obviously not useful. Out of the 24 cases, in three
cases, we learn the trivial constraint false, marked as “*” in Table 1. To checking
the completeness of the learned constraint, we compare the learned constraint
with the constrained obtained by applying IMITATOR directly. We consider the
learned constraint is complete if and only if it is weaker than or equivalent
to that obtained by IMITATOR. The results are shown in column complete.
It is observed that out of the 12 constraints for which we can evaluate the
completeness, 10 of them are complete. For the remaining two cases, IMITATOR
finds constraints which are weaker than those found by pta-Learn. This is
possible as pta-Learn is based on black-box learning, whereas as a white-box
technique, IMITATOR explores the system paths systematically if it is able to
finish.

To answer RQ3, we compare the performance of pta-Learn with and with-
out active learning. In our evaluation, when active learning is not applied, we
simply learn from randomly generated parameter valuations. That is, we keep
generating random valuations until the constraints get converged. The columns

Classification-Based Parameter Synthesis for Parametric Timed Automata 257

Table 1. Evaluation results, where “-” means “not applicable”

Model IMITATOR pta-Learn pta-Learn-Active

learn verify sound complete learn verify sound

coffee 0.007 1.482 0.017 T T 1.851 0.017 T

coffeeDrinker 0.019 timeout 0.019 - - timeout 0.019 -

counterexACSD15 timeout 1.49 0.018 T T 1.128 timeout -

ex1pPTA timeout 3.134 0.030 T - 20.34 0.018 T

exUPTA-allp timeout 1.148 0.018 T - 0.375 timeout -

F3 0.184 0.171 0.014 T T 0.175 0.014 T

F4 28.777 0.763 4.151 T T 1.052 4.095 T

F5 timeout 0.851 227 T - 1.073 243 T

FischerAHV93 0.040 7.835 0.039 T T 12.56 0.405 F

fischerHRSV02-2 timeout 14.686 0∗ T - 10.88 timeout -

fischerHRSV02-3 timeout 7.670 0∗ T - 7.22 timeout -

fisherPAT.nocomment 0.05 2.886 0.036 T T 2.917 0.0367 T

IMPO 0.013 timeout 0.013 - - timeout 0.013 -

JLR13-3tasks-npfp 36.84 1.91 0∗ T F 0.8 timeout -

JLR-TACAS13 timeout 0.694 0.016 T - 0.688 0.015 T

LALSD14-FMS2p timeout 6.142 timeout - - 8.65 timeout -

NuclearPlant 0.023 4.47 0.017 T T 3.196 0.022 F

Pipeline-KP12-2-5 13.323 timeout 13.323 - - timeout 13.323 -

Sched2.100.0 1.11 3.84 0.318 T F 1.654 1.347 F

Sched2.50.0 0.933 2.782 0.302 T T 1.278 1.177 F

testBadWithoutDiscrete 0.019 1.212 0.018 T T 0.347 0.018 T

testIM-IMK-IMunion 0.008 0.305 0.016 T T 0.4 0.016 T

TestPattern1 0.018 2.95 0.031 F - 2.28 0.035 F

WFAS-BBLS15-det timeout 1.925 0.027 T - 1.216 0.221 F

under pta-Learn-active show the results obtained by applying pta-Learn with-
out active learning. Note that the number of sound constraints reduces from
19 to 9 when active learning is disabled. One reason is that without active learn-
ing, often different runs of the same experiment result in different constraints,
which makes it hard for the constraints to converge. Comparing pta-Learn with
and without active learning, we can see that the overhead of active learning is
negligible. We thus conclude that active learning is helpful.

5 Related Work

Basides our method, several white-box tools have been developed to verify para-
metric systems by exploring system states with different strategies. For instance,
LPMC [37] employs a partition refinement technique to generate an unstructured
set of constraints; HyTech [20] verifies linear hybrid automata by exploring
the state space through either forward reachability or partition refinement; [22]
adopts a symbolic representation of the state space to synthesize linear parameter
constraints. IMITATOR [5] implements the inverse method (or trace preservation

258 J. Li et al.

synthesis), the behavioral cartography [4], bad state reachability synthesis (used
in this work), parametric deadlock-freeness checking and non-Zeno parametric
model checking. The behavioral cartography is close to our sampling that iter-
ates on integer-valuations to generalize their discrete behavior; however, a main
difference (and advantage) of our work is that we use non-parametric model
checking on the sampled points, which is more efficient by an order magnitude,
and we only use parametric model checking to assess the validity of the con-
straint. [6] uses an orthogonal approach based on learning for a subclass of PTA:
in order to perform compositional parameter synthesis, they attempt to com-
pute an abstraction of a non-parametric part of the system using an extension
of Angluin’s learning algorithm L∗.

To the best of our knowledge, we are the first to introduce learning techniques
in verifying parametric systems. (Although the notion of learning we use in [6] is
in fact different.) But this is not a genius creation, as learning has been already
applied in many other areas successfully. For instance, there are many learning-
based approaches in program verification field.

In particular, several papers [17,34–36] have deployed learning techniques
to help software verification, and compiler optimization. In these works, pro-
gram states are regarded as labelled samples and a variety of classification algo-
rithms are applied to learn the relationship between a correct program with
the program states. We remark that although we focus on PTA throughout this
paper, our technique can be adapted to other models like parametric probabilistic
models [9].

6 Conclusion

In this work, we propose an approach to automatically synthesize parameter
constraints through learning. In particular, we apply active learning techniques
so as to learn accurate candidate constraints prior to the checking phase. Fur-
thermore, we adopt SVM and KQBC as the classification algorithms to learn
constraints in different forms. In principle, our approach can be extended to learn
arbitrary mathematical classifiers with kernel methods. Nonetheless, we focus
on constraints in form of polynomial inequalities or conjunctions/disjunctions of
polynomial inequalities in our evaluation. The results show that our approach
effectively learns parameter constraints to guarantee the correctness of a set of
benchmarks and hence helps the system verification and design.

Acknowledgement. This work is supported by NRF project “RG101NR0114A” and
partially supported by the ANR national research program “PACS”(ANR-14-CE28-
0002).

Classification-Based Parameter Synthesis for Parametric Timed Automata 259

References

1. PTA-Learn repo (2017). https://github.com/lijiaying/pta-Learn
2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),

183–235 (1994)
3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Pro-

ceedings of the 25th annual ACM symposium on Theory of Computing, pp. 592–
601. ACM (1993)

4. André, É., Fribourg, L.: Behavioral Cartography of Timed Automata. In: Kučera,
A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 76–90. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-15349-5 5

5. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for ana-
lyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.)
FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32759-9 6

6. André, É., Lin, S.-W.: Learning-based compositional parameter synthesis for event-
recording automata. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS, vol.
10321, pp. 17–32. Springer, Cham (2017). doi:10.1007/978-3-319-60225-7 2

7. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols. In: International Conference On Principles Of Distributed Systems, pp.
103–117 (2005)

8. Aştefănoaei, L., Bensalem, S., Bozga, M., Cheng, C.-H., Ruess, H.: Compositional
parameter synthesis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A.
(eds.) FM 2016. LNCS, vol. 9995, pp. 60–68. Springer, Cham (2016). doi:10.1007/
978-3-319-48989-6 4

9. Baudrit, C., Dubois, D., Perrot, N.: Representing parametric probabilistic models
tainted with imprecision. Fuzzy Sets Syst. 159(15), 1913–1928 (2008)

10. Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Developing
UPPAAL over 15 years. Softw. Pract. Exper. 41(2), 133–142 (2011)

11. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: Uppaala tool suite
for automatic verification of real-time systems. Hybrid Syst. 3, 232–243 (1996)

12. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: Workshop on Computational Learning Theory, pp. 144–152. ACM
(1992)

13. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with ic3. In:
Formal Methods in Computer-Aided Design (FMCAD), pp. 165–168. IEEE (2013)

14. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf.
Theory 13(1), 21–27 (1967)

15. Dasgupta, S.: Coarse sample complexity bounds for active learning. In: NIPS, pp.
235–242 (2005)

16. Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to para-
meter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.)
HSCC 2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-78929-1 14

17. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust framework for
learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 69–87. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9 5

18. Gilad-Bachrach, R., Navot, A., Tishby, N.: Kernel query by committee (KQBC).
Technical report, Technical Report 2003–88, Leibniz Center, The Hebrew
University (2003)

https://github.com/lijiaying/pta-Learn
http://dx.doi.org/10.1007/978-3-642-15349-5_5
http://dx.doi.org/10.1007/978-3-642-32759-9_6
http://dx.doi.org/10.1007/978-3-642-32759-9_6
http://dx.doi.org/10.1007/978-3-319-60225-7_2
http://dx.doi.org/10.1007/978-3-319-48989-6_4
http://dx.doi.org/10.1007/978-3-319-48989-6_4
http://dx.doi.org/10.1007/978-3-540-78929-1_14
http://dx.doi.org/10.1007/978-3-540-78929-1_14
http://dx.doi.org/10.1007/978-3-319-08867-9_5

260 J. Li et al.

19. Gilad-Bachrach, R., Navot, A., Tishby, N.: Query by committee made real. In:
NIPS, pp. 443–450 (2005)

20. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: A model checker for hybrid
systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer,
Heidelberg (1997). doi:10.1007/3-540-63166-6 48

21. Huang, T.-M., Kecman, V., Kopriva, I.: Kernel Based Algorithms for Mining Huge
Data Sets, vol. 1. Springer, Heidelberg (2006)

22. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. J. Logic Algebraic Program. 52–53, 183–220 (2002)

23. Jahanian, F.: Verifying properties of systems with variable timing constraints. In:
Proceedings Real Time Systems Symposium, pp. 319–328. IEEE (1989)

24. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. IEEE Trans. Software Eng. 41(5), 445–461 (2015)

25. Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata.
Trans. Petri Nets Other Models Concurrency 5, 141–159 (2012)

26. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In:
Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR 1994. Springer, London (1994)

27. Lovász, L., Vempala, S.: Hit-and-run is fast and fun. Microsoft Research (2003,
preprint)

28. Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry,
2nd edn. The MIT Press, Cambridge (1972)

29. Platt, J., et al.: Sequential minimal optimization: a fast algorithm for training
support vector machines (1998)

30. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
31. Ruff, R.A., Dietterich, T.G.: What good are experiments? In: Proceedings of the

Sixth International Workshop on Machine Learning (ML 1989), pp. 109–112 (1989)
32. Schohn, G., Cohn, D.: Less is more: active learning with support vector machines.

In: ICML, pp. 839–846 (2000)
33. Settles, B.: Active learning. In: Synthesis Lectures on Artificial Intelligence and

Machine Learning. Morgan & Claypool Publishers (2012)
34. Sharma, R., Aiken, A.: From invariant checking to invariant inference using ran-

domized search. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
88–105. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9 6

35. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learn-
ing geometric concepts. In: Static Analysis Symposium, pp. 388–411 (2013)

36. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31424-7 11

37. Spelberg, R.L., Toetenel, H., Ammerlaan, M.: Partition refinement in real-time
model checking. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol.
1486, pp. 143–157. Springer, Heidelberg (1998). doi:10.1007/BFb0055344

38. Stoelinga, M.: Fun with firewire: A comparative study of formal verification meth-
ods applied to the ieee 1394 root contention protocol. Formal Aspects Comp. 14(3),
328–337 (2003)

39. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 59

40. Tong, S., Chang, E.Y.: Support vector machine active learning for image retrieval.
In: Proceedings of the 9th ACM International Conference on Multimedia, pp. 107–
118 (2001)

http://dx.doi.org/10.1007/3-540-63166-6_48
http://dx.doi.org/10.1007/978-3-319-08867-9_6
http://dx.doi.org/10.1007/978-3-642-31424-7_11
http://dx.doi.org/10.1007/BFb0055344
http://dx.doi.org/10.1007/978-3-642-02658-4_59

Classification-Based Parameter Synthesis for Parametric Timed Automata 261

41. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. J. Mach. Learn. Res. 2, 45–66 (2001)

42. Yovine, S.: Model checking timed automata. In: Rozenberg, G., Vaandrager, F.W.
(eds.) EEF School 1996. LNCS, vol. 1494, pp. 114–152. Springer, Heidelberg (1998).
doi:10.1007/3-540-65193-4 20

http://dx.doi.org/10.1007/3-540-65193-4_20

A Verification Framework for Stateful Security
Protocols

Li Li1, Naipeng Dong2(B), Jun Pang3, Jun Sun1, Guangdong Bai2, Yang Liu4,
and Jin Song Dong2,5

1 Singapore University of Technology and Design, Singapore, Singapore
2 National University of Singapore, Singapore, Singapore

dcsdn@nus.edu.sg
3 University of Luxembourg, Luxembourg, Luxembourg

4 Nanyang Technological University, Singapore, Singapore
5 Griffith University, Brisbane, Australia

Abstract. A long-standing research problem is how to efficiently verify
security protocols with tamper-resistant global states, especially when
the global states evolve unboundedly. We propose a protocol specifica-
tion framework, which facilitates explicit modeling of states and state
transformations. On the basis of that, we develop an algorithm for ver-
ifying security properties of protocols with unbounded state-evolving,
by tracking state transformation and checking the validity of the state-
evolving traces. We prove the correctness of the verification algorithm,
implement both of the specification framework and the algorithm, and
evaluate our implementation using a number of stateful security proto-
cols. The experimental results show that our approach is both feasible
and practically efficient. Particularly, we have found a security flaw on
the digital envelope protocol, which cannot be detected with existing
security protocol verifiers.

1 Introduction

Automatic formal verification is shown to be extremely useful in analyzing secu-
rity protocols. Many security protocol verifiers have been developed, for instance,
ProVerif [1], AVISPA [2] and Maude-NPA [3]. However, such verifiers fail in ana-
lyzing security protocols with shared objects such as databases, registers and mem-
ory locations [4]. Real-world examples include protocols involving security devices
like IBM’s 4758 CCA secure coprocessor platform and trusted platform module
(TPM) [5] and protocols involving databases for websites and key servers [6].

As these shared objects must be maintained externally w.r.t. sessions, the
objects are abstracted as global states; and protocols with these shared objects
are refereed to as stateful protocols. The global states have three properties:
(1) mutable: the value of a state can be updated, (2) unbounded evolving : the
value updating of a state can be unbounded, and (3) tamper-resistant : the value
of a state can only be updated by legitimate users. For instance, the following
example is a simple stateful protocol, where the security device is a shared object,
i.e., a global state.
c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 262–280, 2017.
https://doi.org/10.1007/978-3-319-68690-5 16

A Verification Framework for Stateful Security Protocols 263

Example 1. Consider a security device SD (a variation of [6]), with a tamper-
resistant memory initialized to a constant ‘init ’. SD supports three public opera-
tions: (1) reading: the current value stored in the memory can be read; (2) updat-
ing: the memory with current value m, can be updated to h(m,x), where h is a
hash function and x is an arbitrary value; (3) decrypting: when receiving a cipher-
text of the form enca(〈mf , sl, sr〉, pub), i.e., a sequence of three values 〈mf , sl, sr〉
asymmetrically encrypted by SD ’s public key pub, SD decrypts it. According
to SD ’s current memory value m, it continues as follows: if m = h(mf , left),
SD sends out sl; if m = h(mf , right), SD sends out sr, where left and right
are two publicly known constants. Suppose Bob, a legitimate user, generates
two secrets sl and sr , reads the memory of SD as mf and sends a ciphertext
enca(〈mf , sl , sr 〉, pub) to SD. The SD ensures that a malicious Bob or any other
attackers can never know both ‘sl ’ and ‘sr ’ at the same time, since SD cannot
be configured as both ‘h(mf , left)’ and ‘h(mf , right)’ in one execution.

Verification of stateful protocols has been noticed as important and neces-
sary but challenging [5] even for a simple protocol as Example 1. In particular,
ProVerif – one of the popular and widely used verifier (e.g., used in [7–10]),
reports false attacks for some stateful protocols such as Example 1. Recently,
an extension StatVerif is proposed, which is specialized in verifying stateful pro-
tocols [6]. However, StatVerif can produce false attacks when the state-value
mutates (e.g., when the security device in Example 1 reboots) and cannot ter-
minate when the state-value mutates unboundedly (e.g., when the protocol in
Example 1 keeps running).

We improve the Horn clause based verification (used in ProVerif and
StatVerif) for analyzing stateful protocols with unbounded global state evolving
(i.e., unbounded evolving steps with potentially unbounded values of a state).
Horn clause reasoning is inherently monotonic – once an event (the basic element
in Horn clause) is true, it cannot be set to false anymore, and thus does not work
well for state-value mutation in ProVerif and StatVerif [4]. Therefore, we propose
to distinguish global states from events. In particular, we explicitly model global
states and their evolving transformations in specification. More importantly, on
each step of reasoning in verification, we record the state-evolving constraints;
and when a target event is derived, we instantiate a state-evolving trace satisfy-
ing the constraints in the derivation, i.e., the global states can evolve following
the trace such that the derivation could happen. In such a way, we reduce the
false attacks caused by global states’ unbounded evolving.

For example, we model the security device as a global state SD(), which
consists of two parts: the name of the object (SD) used to distinguish differ-
ent objects and its pre-defined fields (‘ ’) used to distinguish attributes of the
same object (the field ‘ ’ indicates the memory of the security device). Each
field is filled with a concrete value of the attribute at any time, e.g., the mem-
ory field can be filled with ‘init ’, h(mf , left), or h(mf , right). Hence, SD(init),
SD(h(mf , left)), and SD(h(mf , right)) are the possible instantiations of the
global state SD(). A particular instantiation of a global state may be visited
multiple times in one trace of the global state’s evolving. To distinguish each

264 L. Li et al.

appearance of an instantiation, we additionally add a distinct index ai to the
instantiation, and require all indexes in a trace to have chronological orders. We
name an instantiation of a global state and its index a snapshot. The snapshots of
a global state must form an evolving trace starting from an initial instantiation,
based on the index’s chronological order. We allow variables to appear in the
snapshot to represent a set of snapshots, and name the snapshot with variables
a snapshot pattern.

In verification, we explicitly validate the evolving traces of the snapshots.
Suppose the adversary obtains message m1 and m2 at the following snapshot
pattern respectively

(
SD(h(h(x1, x2), left)), a1

)
,
(
SD(h(h(h(init , right), x′

1), left)), a2

)
,

where variables x1, x2 and x′
1 can be arbitrary values, a1 and a2 are indexes of the

two snapshots (any ordering is possible). In order to conduct the attack that the
adversary obtains both m1 and m2, the adversary tries to find an instantiation
of the variables x1, x2 and x′

1 such that a valid trace exists for the security
device to evolve from its initial snapshot (SD(init), a0) to the above snapshots.
We can see that the following evolving trace exists, when x1 = h(init , right), and
x2 = x′

1 can be an arbitrary value,

SD(init) → SD(h(init, right)) → SD(h(h(init , right), x2))
→ SD(h(h(h(init , right), x2), left)).

That is, the adversary tries to guide the protocol to perform the above
global state transformation, and then obtains both m1 and m2 at the last snap-
shot. However, if an additional snapshot

(
SD(h(init , left)), a3) exists e.g., for the

adversary to obtain m3, then no valid evolving trace exists for the adversary to
obtain m1, m2 and m3, since the device memory cannot be set to SD(h(init , left))
and SD(h(init , right)) (contained in the snapshot with index a2) no matter in
which order in a single trace. Hence, the attack is infeasible for obtaining all
three pieces of information.

We introduce the formal modeling of global states and their transformations
in the subsequent section, then propose our verification algorithm in Sect. 3, and
finally present our experimental results in Sect. 4 and discuss related works in
Sect. 5.

2 Protocol Specification

To verify whether a protocol satisfies a security property, an analyzer needs
to formally specify the protocol (without states in Sect. 2.1) and the property
(Sect. 2.3). The key part is how the global states and state transformations are
formalized (Sect. 2.2).

A Verification Framework for Stateful Security Protocols 265

Table 1. Syntax hierarchy

Type Expression

Message(m) a[], b[], A[], B[], ⊥ (name) [n], [k], [N], [K] (nonce)

x, y, z, X, Y, Z (variable) f(m1, m2, ..., mn) (function)

Guard(g) m1 �� m2 (�σ, m1 · σ = m2) m1 �= m2 (inequivalence)

Event(e) know(m) (knowledge) new([n], l []) (generation)

init(m1, · · · , mn) (initialization) accept(m1, · · · , mn) (acceptance)

leak(m) (leakage)

State(s) name(id1, · · · , ids, m1, · · · , mn) (state)

2.1 Preliminary – Specification Syntax Without States

As in most verifiers, messages – the basic elements in protocols, are modeled by
names, nonces, variables and functions (first row in Table 1). Names model con-
stants; nonces are freshly generated random numbers; variables represent mem-
ory locations for holding messages, and functions can be applied to a sequence
of messages. All messages are assumed to be well-typed and variables can be
instantiated only once.

The relations between messages are as follows. A message containing variables
can be instantiated by a substitution, e.g., σ = {x1 �→ m1, · · · , xn �→ mn}
instantiates the variables x1, · · · , xn with the messages m1, · · · ,mn respectively.
Given two messages m1 and m2, when there exists a substitution σ such that
m1 · σ = m2, we say that m1 is unified to m2, denoted as m1 �σ m2. When m1

should not be unified to m2, we write m1 �� m2. For instance, when a message
m should not be a tuple, we write m �� 〈m1,m2〉. Given two messages m1 and
m2, if there exists a substitution σ such that m1 · σ = m2 · σ, we say m1 and
m2 are unifiable and σ is a unifier of m1 and m2, denoted as m1 =σ m2. If m1

and m2 are unifiable, the most general unifier of m1 and m2 is a unifier σ such
that for any unifier σ′ of m1 and m2 there exists a substitution σ′′ such that
σ′ = σ · σ′′. When m1 and m2 should not be unifiable (a.k.a., inequivalence), we
write m1 �= m2. For instance, if the current branch condition is that the protocol
responder r is not Bob, we write r �= Bob. m1 �� m2 and m1 �= m2 form the
guarding conditions (second row in Table 1) i.e., whether an rule (defined later)
can be applied.

Based on the above definitions, a protocol is modeled as a set of logical rules,
similar as in ProVerif [1] and Tamarin [11]. The basic elements of a rule are
events. An event is applying a predicate to a message sequence. The following
two events are used in the protocol specification:

– event know(m) means that the adversary knows the message m; and the
– event new([n], l[]) models that a nonce [n] (the concrete value of the nonce)

is freshly generated at the location l[] (symbolic value used to distinguish the
nonce from other nonces in a specification) by a legitimate protocol partici-
pant. Note that nonce [n1] . . . [nk] with the same location l[] are k concrete
generation of the same nonce specification in k different sessions.

266 L. Li et al.

The intuition is that a protocol and its involved cryptographic primitives can be
treated as oracles accessible to the adversary. The adversary having the required
messages obtains the corresponding outputs. Once receiving an input, the ora-
cle generates nonces, processes messages and outputs messages according to its
specification. Each oracle is modeled as a rule [G] H −[]→ e, where G is
a set of guard conditions, H is a set of premise events, and e is a conclusion
event, meaning that if the guard conditions in G and the premise events in H
are satisfied, then the conclusion event in e is satisfiable.

Cryptographic primitives. The premises of a cryptographic primitive are a set
of know events specifying the input parameters, and the conclusion is one know
event representing the generated result, e.g., the asymmetric encryption and
decryption used in Example 1 is modeled as follows, where m, pub and sk are
variables.

know(m), know(pub) −[]→ know(enca(m, pub)) (1)
know(enca(m, pk(sk))), know(sk) −[]→ know(m) (2)

Protocol. A pair of the message input and the subsequent output of a participant
are specified as an oracle as well. The difference is that we need to additionally
consider the nonce generation and potential guard conditions. Whenever a nonce
at position l[] is generated in a protocol, we model the nonce generation by
adding a new([d], l[]) event to H of the oracle. Whenever m1 �= m2 or m1 �� m2

conditions are required (which rarely happen in protocol specification) in the
current execution branch, we add the conditions into G. For example, bob’s
behavior in Example 1 can be modeled as

new([bobl], lsl
[]),new([bobr], lsr

[]), know(mf) −[]→
know(enca(〈mf , [bobl], [bobr]〉, pk(sksd []))) (3)

2.2 Protocol Specification with States

As addressed in the introduction, we explicitly model the global states of a
protocol as well as their transformations. There are two ways that the states
are involved. First, we use snapshots to represent at which state a rule can be
applied. Second, we use a rule to model how the state transforms.

For the first case, we introduce a set of snapshots S into the rule to denote
the involved states, use M to record at which snapshot each event happens
(each element in M is of the form ei :: aj with ei ∈ H and aj being the index
of a snapshot in S), and use O to denote the constraints on chronically orders
between snapshots (each element in O is of the form aiR aj with ai and aj being
indexes of snapshots in S). We define three types of ordering relations between
two snapshots ai and aj in R: (1) ai ≤ aj means that ai appears earlier than
aj ; (2) ai �aj means that the shared object is modified once between ai and aj ;
(3) ai ∼ aj means that the shared object remains unchanged between ai and aj .

A Verification Framework for Stateful Security Protocols 267

A rule now is of the form [G] H : M −[S : O]→ e where e is an event. We name
such rules as state consistent rules. For example, depending on the configuration,
the SD replies sl or sr in Example 1, and the behavior of replying sl is modeled
as follows:

know(enca(〈mf , sl, sr〉, pk(sksd [])))) 1© : { 1©::a1} −[
(
SD(init []), a0

)
,

(
SD(h(mf , left [])), a1

)
: {a0 ≤ a1}]→ know(sl) (4)

where 1© is a reference to the corresponding premise event in H, so that we
do not need to repeat the entire event in M , in order to save space and have
a clearer presentation. The rule describes that if (1) the SD reads in a cipher-
text enca(〈mf , sl, sr〉, pk(sksd []))) at snapshot a1, which is denoted by an event
know(enca(〈mf , sl, sr〉, pk(sksd [])))), and the mapping between the event and a
set of snapshots 1© :: {a1} where 1© refers to the know event; and (2) snap-
shot a1 is reachable, i.e., there should be a valid trace from the initial state
SD(init []) to the current state SD(h(mf , left [])), which is denoted by the two
snapshots

(
SD(init []), a0

)
,
(
SD(h(mf , left [])), a1

)
and their ordering constraints

{a0 ≤ a1}, meaning that a0 needs to appear earlier than a1 in a trace; then (3)
the SD returns sl, since the current configuration is h(mf , left []). Another type
of state consistent rule is that the adversary may be able to obtain information
from the states, e.g., the reading operation in Example 1 can be modeled as

−[
(
SD(init []), a0),

(
SD(m), a2

)
: {a0 ≤ a2}]→ know(m) (5)

meaning that if a2 is reachable (denoted by
(
SD(init []), a0),

(
SD(m), a2

)
: {a0 ≤

a2} with a0 being the initial state), then the adversary can read the current value
in the memory, modeled as know(m).

For the second case, we introduce the state transferring rules of the form
[G] H : M −[S : O]→ T where T is a set of state transformations (a sequence
of two snapshots). For example, the SD can be updated in Example 1, which is
modeled as

know(x) 2© : { 2© :: a3} −[
(
SD(init []), a0

)
,
(
SD(m), a3

)
: {a0 ≤ a3}]→

〈(SD(m), a3

)
,
(
SD(h(m,x)), a4)〉 (6)

meaning that the adversary who has x at state SD(m) can update the SD to
be h(m,x), where 〈(SD(m), a3

)
,
(
SD(h(m,x)), a4)〉 models the transformation

of SD from snapshot a3 to snapshot a4.

2.3 Security Properties

We focus on two types of security properties: authentication and secrecy. To for-
malize authentication properties, we add the following two events: When the pro-
tocol initiator starts a protocol run, we add a corresponding init event (defined
in Table 1) into H; when the protocol responder accepts a protocol run, we add
a corresponding accept event (defined in Table 1) into C. Then authentication
is modeled as correspondence between the init and accept events (as in most
verifiers such as ProVerif and StatVerif).

268 L. Li et al.

Definition 1 (Authentication). In a security protocol, an authentication
property holds, i.e., correspondence between an accept event and an init event
with agreed arguments holds, if and only if for every occurrence of event
accept(m1, · · · ,mn), the corresponding init(m1, · · · ,mn) event must be engaged
before, and all the required snapshots form a valid evolving trace, denoted as
accept(m1, · · · ,mn) ⇐ init(m1, · · · ,mn).

The secrecy property specifies that the adversary cannot obtain certain secret
messages. It is defined by introducing a rule with the leak event (defined in
Table 1) as the conclusion. If secrecy is preserved in a protocol, the leak event
should not be reachable.

Definition 2 (Secrecy). In a protocol, secrecy holds for a message m if and
only if leak(m) is not reachable after adding new1, · · · ,newn, know(m) −[]→
leak(m), where new1, · · · ,newn are the nonce generation events for all nonces
in m.

Intuitively, if the adversary knows the message know(m), the message m is
leaked; and the new events are used to accurately specify the nonces in m.

As commonly assumed, we consider an active network attacker who can inter-
cept all communications, compute new messages, generate new nonces and send
the messages he obtained. For computation, he can use all the publicly available
functions, e.g., encryption, decryption and concatenation. He can also designate
honest participants to initiate new protocol runs and to take part in the protocol
whenever he needs to.

3 Verification Algorithm

Given a set of rules Binit specifying a protocol (including stateless rules, state
consistent rules and state transferring rules) and a property as described in
Sect. 2, the verification aims to find the derivations of the target event specified
in the property (accept event for authentication and leak for secrecy) using the
rules in Binit , and then check whether a derivation contradicts the specified
property.

To derive a target event using a set of rules, directly reasoning on the rules
would not terminate, e.g., repeatedly applying Rule (1) leads to increasingly
complex terms [1,6]. To improve efficiency and help termination, we follow the
approach in [1,6] – providing an algorithm to guide the reasoning. Hence, similar
to [1], we construct a rule base B, in the first phase, by combining pairs of rules
in Binit , which may infer new rules. Then we perform query searching in B to find
valid attacks in the second phase. The key idea of our rule-base construction is
as follow: If a rule’s premise events are trivially satisfiable (events in N), we can
use its conclusion to fulfill other rules’ complex premises (events not in N). This
is called rule composition. By applying rule composition repeatedly on existing
rules until saturation, we can then safely remove the rules with complex premise
events, because whenever the rule with complex premises is used in the reasoning,

A Verification Framework for Stateful Security Protocols 269

it can be replaced with an alternative rule (often generated by composition)
with all premise events in N . In addition, when a new rule is inferred by rule
composition, rule implication operation is applied to check whether this rule is
necessary to be added to B. If the new rule is implied by existing rules then
it is not necessary to add it. These two operations are shown to be efficient in
avoiding complex terms and accelerating the verification process in ProVerif.

We generally follow the above procedure as proposed in ProVerif, but we need
to add snapshot trace validation in rule composition and rule implication. Intu-
itively, rule composition applies one rule after another. Thus, regarding states,
we ensure that (1) the snapshot ordering constraints in both rules are still pre-
served and (2) the ordering between the two rules are added to the ordering
constraints in the resulting new rule. For rule implication, regarding states, we
need to define that the ordering constraints of snapshots in a rule is less than
the constraints in another one, i.e., whenever the second rule is applicable, the
first rule is also applicable.

In addition, we try to concretize the snapshot traces in a rule if possible, to
narrow the possible traces satisfying the ordering constraints in the rule, since it
is sufficient as long as one trace exists to reach the conclusion event. To do so, we
introduce two additional operations: state unification and state transformation.
The intuition is as follows: Any two snapshots appear in a rule may have three
kinds of relations: (1) they are from different objects; (2) they are of the same
object, and the object is not modified between two snapshots; (3) they are of the
same object, and the object is modified between the two snapshots. In the first
case, we do not need to search for a valid trace between the two snapshots. In
the second case, we try to unify them to the same value, i.e., state unification.
In the third case, we try to find the transformations between them, i.e., state
transformation. Note that these two operations only need to be applied to rules
(1) with its premise events in N , since those with premise event not in N will be
eventually removed; and (2) with their conclusion events be leak event or accept
event, since they are the query goals.

3.1 Preliminary Definitions

We first define the set N as the following three types of events, similar to
ProVerif: (1) initializing a new protocol (an init event), (2) generating a fresh
nonce (a new event), (3) knowing an arbitrary value (a know(x) event where x
is a variable).

Recall that a rule may contain a set of ordering constraints O specified using
relation R defined in Sect. 2, we define O as closed if the following properties
hold.

ai � aj , aj ∼ ak ∈ O ⇒ ai � ak ∈ O
ai � aj , ak ∼ aj ∈ O ⇒ ai � ak ∈ O
ai ∼ aj , aj � ak ∈ O ⇒ ai � ak ∈ O
aj ∼ ai, aj � ak ∈ O ⇒ ai � ak ∈ O

ai � aj ∈ O ⇒ ai ≤ aj ∈ O
ai ∼ aj ∈ O ⇒ ai ≤ aj ∈ O
ai ∼ aj , aj ∼ ak ∈ O ⇒ ai ∼ ak ∈ O
ai ≤ aj , aj ≤ ak ∈ O ⇒ ai ≤ ak ∈ O

In verification, we first ensure the O in every rule is closed using the above
definition. Given two sets of ordering constraints O and O′, we use O � O′ to

270 L. Li et al.

denote their closed union. When all snapshots of the same object are connected
by � and ∼ in an acyclic trace (i.e., no uncertain relation ≤), we conclude that
a valid evolving trace is found.

Let [G] H : M −[S : O]→ V and R′ = [G′] H ′ : M ′ −[S′ : O′]→ V ′

be two rules. (1) ‘R having less restricted mappings than R′’ means that if some
premise events in R are required to be satisfied at a snapshot (s, aj), the same
premise events need to be satisfied at an earlier snapshot (s′, ai) in R′ (ai ≤ aj).
This indicates that R′ has more restrictions on the satisfaction of the premises
than R. This requirement can be formally captured by the joint operator ‘∗’.

M ∗ O = {〈ei, aj〉 | ei :: ak ∈ M ∧ aj ≤ ak ∈ O}
For every event ei, M ∗ O captures all the snapshots later than the snapshot

at which the event should be satisfied. The larger the set M ∗O is, the earlier the
event ei needs to be satisfied. Hence, (M ∗ O) ⊆ (M ′ ∗ O′) captures that R has
less restricted mappings. (2) ‘R having more organized ordering than R′’ means
that for every two snapshots (s1, ai) and (s2, aj) appearing in both R and R′,
the ordering of the two snapshots in R is more concrete (less uncertain) than in
R′. Since, ai � aj or ai ∼ aj is more concrete than ai ≤ aj , given an ordering O,
we measure its uncertainty (less concrete) with

δ(O) = {ai ≤ aj | ai ≤ aj ∈ O} − {at ≤ ak |at � ak ∈ O ∨ at ∼ ak ∈ O}.

O is more organized than O′ if and only if δ(O) ⊆ δ(O′). δ(O) captures the
uncertain ordering relations between every two snapshots in the snapshot set O.
The larger the set δ(O′) is, the more uncertain the ordering O′ is, and hence the
less organized R′ is.

3.2 Rule Operations

Similar to ProVerif, when the premise of a rule contains an event not in N , we
try to fulfill/unify the event with a conclusion of other state consistent rules
whose premises are in N by rule composition.

Definition 3 (Rule Composition). Let R[G] H : M −[S : O]→ e be
a state consistent rule and R′ = [G′] H ′ : M ′ −[S′ : O′]→ V be either a
state consistent rule or a state transferring rule. If there exists e0 ∈ H ′ such
that e =σ e0, then R with R′ can be composed on the event e0, and the newly
composed rule is defined as

R ◦e0 R′ =
(
[G ∪ G′](H ∪ (H ′ − {e0})) : M ∪ M ′ ∪ M0

−[(S ∪ S′) : O � O′ � O0]→ V
) · σ,

M0 = {ei :: ak|ei ∈ H, e0 :: ak ∈ M ′}, O0 = {ai ≤ aj | (s, ai) ∈ S, e0 :: aj ∈ M ′}.
In the resulting rule R ◦e0 R′, the guard condition G ∪ G′, premise events

H ∪ (H ′ − {e0}) and conclusion event V are straightforward, following the same

A Verification Framework for Stateful Security Protocols 271

idea as in ProVerif. Regarding states, S∪S′, M ∪M ′ and O�O′ capture that the
snapshots, event-snapshot mapping and ordering constraints in both rules need
to be satisfied in the resulting rule. For event-snapshot mapping, we additionally
require that any event ei ∈ H needs to map to the snapshots of e0 (i.e. ak), such
that R can be applied at state ak. Otherwise even if e and e0 are unifiable,
after applying R, R′ cannot be applicable, due to that the state of e0 is not
satisfied. This requirement is captured by M0. For the snapshot ordering, we
additionally require that any snapshot in S should appear before the snapshot
of e0, capturing that R is applied before R′ in order to obtain e (or e0), and thus
the snapshots of R should appear before the snapshot for e0, as modeled in O0.

Given two rules R and R′, if R (1) has the same conclusion as R′ but requires
less guard conditions and less premises (the same as in ProVerif), (2) has less
snapshots, less restricted mappings and more organized ordering (additional
requirements regarding states), we say that R implies R′, denoted as R ⇒ R′.

Definition 4 (Rule Implication). Let R = [G] H : M −[S : O]→ V and
R′ = [G′] H ′ : M ′ −[S′ : O′]→ V ′ be two rules. We define R implies R′

denoted as R ⇒ R′ if and only if ∃σ,

(1)
(
(V · σ = V ′) ∧ (G · σ ⊆ G′) ∧ (H · σ ⊆ H ′)

) ∧
(2)

(
(S · σ ⊆ S′) ∧ ((M ∗ O) · σ ⊆ (M ′ ∗ O′)) ∧ (δ(O) · σ ⊆ δ(O′))

)
.

By now, we updated the rule composition and rule implication with addi-
tional requirements on states. Hereafter we introduce operations to concertize a
snapshot trace.

Given two snapshots (s1, ai), (s2, aj) of the same object in a rule, if s1 and s2
are unifiable (s1 =σ s2), the simplest trace between s1 and s2 is to unify them as
one snapshot, capturing the situation where the object is not modified between
the two snapshot (formally ai ∼ aj or aj ∼ ai).

Definition 5 (State Unification). Let R = [G] H : M −[S : O]→ e be a
state consistent rule. Assume there exist two distinct snapshots (s1, ai), (s2, aj) ∈
S such that s1 =σ s2, then we can unify the two snapshots in rule R; and the
state unification of s1 to s2 on R is defined as

R[ai ∼ aj] =
(
[G] H : M −[S : O � {ai ∼ aj}]→ e

) · σ.

Note that if s1 =σ s2, both R[ai ∼ aj] and R[ai ∼ aj] will be generated.
Given a state consistent rule R = [G] H : M −[S : O]→ e, if a snapshot

(s, ai) ∈ S does not have an immediate previous snapshot defined in O, i.e.,
�(s′, aj) ∈ S : aj � ai ∈ O ∨ aj ∼ ai ∈ O, we try to apply a state transferring
rule to find an immediate previous snapshot. Given a rule R, we use η(S,O) to
denote the snapshots in S whose previous snapshots have not been found, i.e.,

η(S,O) = S − {(s, ai) | aj � ai ∈ O ∨ aj ∼ ai ∈ O}.

272 L. Li et al.

Definition 6 (State Transformation). Let R = [G] H : M −[S : O]→ T
be a state transferring rule and R′[G′] H ′ : M ′ −[S′ : O′]→ e be a state
consistent rule. Assume there is an injective function f : T → η(S′, O′), such that
∀t = 〈(s, ai), (s′, aj)〉 ∈ T, s′ =σ s′′ if f(t) = (s′′, ak). The state transformation
of applying R to R′ on f is

R ��fR′ =
(
[G ∪ G′](H ∪ H ′) : M ∪ M ′ −[(S ∪ S′) : O � O′ � O0 � O′′]→ e

) · σ,

where O0 = {ai � ak | 〈(s, ai), (s′, aj)〉 ∈ T, f(t) = (s′′, ak)}, and O′′ = {at ≤
ai |at ≤ ak ∈ O′, t = 〈(s, ai), (s′, aj)〉 ∈ T, f(t) = (s′′, ak)}.

O0 captures that for a state transformation 〈(s, ai), (s′, aj)〉 in T and a func-
tion f(t) = (s′′, ak) ∈ S′, ai did exact one transformation to ak, because the
snapshot (s′, aj) will not appear in the new rule, as it is unified with (s′′, ak).
O′′ enforces the snapshots (e.g., at) that appear earlier than ak in O′ to be
also earlier than ai in the new rule. The intuition is that there is an immediate
concrete transformation from ai to ak (ai � ak), but the relation between at

and ak is rather uncertain; in this case, we try to align the three snapshots as
at ≤ ai �ak. Note it is sufficient to find one trace among at, ai and ak. Applying
the above operations leads to new rules, some of which may not be valid.

Definition 7 (Rule Validation). A rule R = [G] H : M −[S : O]→ V is
valid if and only if (1) V /∈ H; (2) O is closed and ∀ ai ≤ aj ∈ O : aj ≤ ai �∈ O;
(3) ∀ know(x), know(y) ∈ H: x �≡ y, and ∀ init(x), init(y) ∈ H: x �≡ y, and
∀ new([n], l[]), new([n′], l′[]) ∈ H: n �≡ n′ ∨ l �≡ l′; (4) ∀ ei :: aj ∈ M : ei ∈
H ∧ ∃(s, aj) ∈ S, and ∀ aiRaj ∈ O : ∃(s, ai) ∈ S ∧ ∃(s′, aj) ∈ S.
The rule validation procedure of R is denoted as

R ⇓=
(
merge(H) : clear(M) −[S : clear(O)]→ V

) · σ

where function merge removes the duplicated premises, function clear removes
references of non-existing events and snapshots, σ is the most general unifier
such that any two redundant events can be merged or unified.

We use x �≡ y to denote that x is not syntactically equal to y. The definition
says that a rule [G] H : M −[S : O]→ V (V is an event e or a set of state
transformations T) is valid if and only if it satisfies: (1) If V is an event, V should
not be in H; (2) O should be closed and contains no contradictory constraints;
(3) there is no redundant events (two events modeling the same thing) in H
(redundant events should be unified and merged); and (4) all mappings in M
and all orderings in O do not involve non-existing events or snapshots (non-
existing events or snapshots should be removed).

Heuristics. If provided with a snapshot pattern, we try to instantiate the snap-
shots in a rule with the pattern to accelerate the process of finding a concrete
snapshot trace. Consider a state consistent rule R = [G] H : M −[S : O]→ e,
where H ⊆ N , e = know(x) and x is a variable. This implies that x does
not appear in H; otherwise, the rule is not valid. Hence, x must be originated

A Verification Framework for Stateful Security Protocols 273

from S, for example the reading operation supported by the security device in
Example 1. Since know(x) ∈ N , we cannot compose R with other rules. To
guide the verification, we try to apply the pattern to the states, so that R can
be composed with other rules.

Definition 8 (State Instantiation). Let R = [G] H : M −[S : O]→ e be
a state consistent rule. Given a snapshot (s, ai) ∈ S and its pattern p such that
s =σ p, we define the state instantiation of the snapshot s with its pattern p as
follows

R[s �→ p] =
(
[G] H : M −[S : O]→ e

) · σ.

3.3 Rule Base Construction

Using the above rule operations, we develop an algorithm to construct the rule
base (Algorithm 1). The algorithm guides the verification by selecting proper
rules to perform rule operations. Given an initial set of rules Binit as input, the
algorithm returns the rule base B as output. In the algorithm, we first add the
rules in Binit to the set rules (line 8 − 11). During this procedure, redundant
rules are removed (line 1 − 6). Then we apply rule operations on the rules in
rules and obtain a saturated rule set Bv (line 13 − 35). The algorithm defines
which operation is applied to which types of rules. Finally, we select those rules
in Bv with premises in N and conclusion event being accept or leak to form B.
Now we prove the correctness of the algorithm.

Theorem 1. Any accept or leak event e that is derivable from the initial rules
Binit if and only if it is derivable from the knowledge base B constructed in
Algorithm 1.

The basic idea is as follows: Whenever there is an attack using the rules in Binit,
there is an attack using the rules in Bv, since there is no rule missing. Then we
only need to show that the selected rules (rules in Bv) would not miss an attack.
To do so, we first introduce the representation of an attack – the derivation tree
for an leak or accept event from a set of rules as follows:

Definition 9 (Derivation Tree). A closed rule is a rule with its conclusion
initiated by its premises and states. Let Bt be a set of closed rules and et be an
event, et is derivable from Bt if and only if there exists a finite derivation tree
satisfying the following.

1. Every edge in the tree is labeled by an event e, a set of snapshots S =
{(s1, a1), . . . , (sl, al)} and an index i, and ∀(si, ai), (sj , aj) ∈ S: ai �∼ aj.

2. Every node is labeled by a rule in Bt.
3. If a node is labeled by a state consistent rule R as in Fig. 1a, then we have

R ⇒ H : M −[S0 ∪ S : O]→ e where H = {e1, · · · , en}, M is defined as
∀e ∈ H : e :: {a1, . . . , al}, O = {a0 ≤ ai|(s0, a0) ∈ S0, (si, ai) ∈ S} with S0

being the set of initial snapshot of each object; and the indexes labeled on the
outgoing edge and incoming edges (Fig. 1a) are the same.

274 L. Li et al.

Algorithm 1. Rule Base Construction
Input : Binit - initial rules
Output: B - knowledge base

1 Procedure add(R, rules)
2 for Rb ∈ rules do
3 if Rb ⇒ R then return rules;
4 if R ⇒ Rb then rules = rules − {Rb};

5 end
6 return {R} ∪ rules;

7 Algorithm
8 rules = ∅;
9 for R ∈ Binit do

10 rules = add(R, rules);

11 end
12 repeat
13 Case 1. Rule Composition
14 Select a state consistent rule R = H −[S : O]→ e
15 and a general rule R′ = H ′ −[S′ : O′]→ V from rules such that
16 1. H ⊆ N ; 2. ∃e0 ∈ H ′ : e0 �∈ N ;
17 rules = add((R ◦e0 R′) ⇓, rules);
18 Case 2. State Unification
19 Select a state consistent rule R = H −[S : O]→ e from rules such that
20 1. H ⊆ N and e is an accept event or a leak event;
21 2. ∃s, s′ ∈ S, s and s′ can be unified;
22 rules = add(R[s ∼ s′] ⇓, rules);
23 Case 3. State Transformation
24 Select a state transferring rule R = H −[S : O]→ T
25 and a state consistent rule R′ = H ′ −[S′ : O′]→ e from rules such that
26 1. H ∪ H ′ ⊆ N and e is an accept event or a leak event;
27 2. ∃f, ∀t ∈ T, f(t) = (s, aj), �ai � aj ∈ S′;
28 rules = add((R ��f R′) ⇓, rules);
29 Case 4. State Instantiation
30 Select a state consistent rule R = H −[S : O]→ e from rules such that
31 1. H ⊆ N , e ∈ N ; 2. ∃s ∈ S, s has pattern p;
32 rules = add(R[s �→ p] ⇓, rules);

33 until fix-point is reached ;
34 Bv = rules;
35 return B = {R = H −[S : O]→ e ∈ rules | ∀p ∈ H, p ∈

N ∧ e is an accept event or a leak event};

4. If a node is labeled by a state transferring rule R as in Fig. 1b, there exists a
set of state transformation T such that R ⇒ H : M −[S0 ∪ S : O]→ T where
H = {e1, · · · , en}, M is defined as ∀e ∈ H : e :: {a1, . . . , al}, O = {a0 ≤
ai|(s0, a0) ∈ S0, (si, ai) ∈ S} with S0 being the initial snapshots; let Spre =
{(si, ai)|〈(si, ai), (sj , aj)〉 ∈ T} and Spost = {(sj , aj)|〈(si, ai), (sj , aj)〉 ∈ T},
we have Spre ⊆ S; and in Figure 1b, S′ = S −Spre +Spost, e can be any event

A Verification Framework for Stateful Security Protocols 275

that is satisfied at S, the indexes labeled on the incoming edges equal to the
index labeled on the outgoing edge plus 1.

5. Outgoing edge of the root is labeled by the event et and the index 1.
6. Incoming edges of the leaves are only labeled by events in N with the same

index.
7. The edges with the same index have the same state.

RR

〈e1, S, i〉〈e1, S, i〉 〈e2, S, i〉〈e2, S, i〉 〈en, S, i〉〈en, S, i〉

〈e, S, i〉〈e, S, i〉

(a) State Consistent Rule

RR

〈e1, S, i〉〈e1, S, i〉 〈e2, S, i〉〈e2, S, i〉 〈en, S, i〉〈en, S, i〉

〈e, S′, j〉〈e, S′, j〉

〈e, S, i〉〈e, S, i〉

i = j + 1i = j + 1

(b) State Transferring Rule

Fig. 1. Rule in derivation tree

Then we prove that whenever there is a derivation tree for an accept or a
leak event using rules in Bv, there is a derivation for the event using the rule
base B created using Algorithm 1, and vice versa. The key part in the proof is
the following Lemma which demonstrates how to replace two directly connected
nodes in the derivation tree with one node labeled by a composite rule with the
same state and index. Detailed proofs of the theorem and lemma are available
online [12].

Lemma 1. If Ro ◦e0 R′
o is valid, Rt ⇒ Ro and R′

t ⇒ R′
o, then either there exists

e′ such that Rt ◦e′ R′
t is valid and Rt ◦e′ R′

t ⇒ Ro ◦e0 R′
o, or R′

t ⇒ Ro ◦e0 R′
o.

3.4 Query Searching

The query of authentication property and secrecy property is to find a rule that
disproves the properties. A rule disproves non-injective authentication if and
only if its conclusion event is an accept event, while it does not require the
corresponding init event in its premises. A rule disproves secrecy when the leak
event is reachable.

Definition 10. Authentication Counterexample. A rule R = [G] H :
M −[S : O]→ e disproves authentication property Qn := accept ⇐ init denoted
as Qn � R if and only if G �= false, e and accept are unifiable with the most
general unifier σ such that ∀e′ ∈ H, e′ ∈ N and ∀σ′ : (init · σ · σ′ /∈ H · σ).

Definition 11. Secrecy Contradiction. A rule R = [G] H : M −[S :
O]→ e disproves secrecy property Qs := leak(m) denoted as Qs � R if and only
if ∀e′ ∈ H : e′ ∈ N , G �= false, ∃σ, leak(x) · σ = e.

276 L. Li et al.

If we cannot find any counterexample during the verification, when our
algorithm terminates, the protocol satisfies the property. For a detailed proof,
see [12].

Theorem 2. Let B be the rule base generated in Algorithm 1. When Q is a
secrecy query or an authentication query, there exists R derivable from Binit

such that Q � R if and only if there exists R′ ∈ B such that Q � R′.

4 Case Studies

We have implemented the proposed approach in a tool named SSPA (State-
ful Security Protocol Analyzer). Using SSPA, we have successfully verified
Example 1, three versions of the digital envelope protocols [7,13] and the Bit-
locker protocol [14] to show its applicability to stateful protocols. To show that
SSPA also works for protocols without global states, we have verified two ver-
sions of the Needham-Schroeder public key protocol [15,16]. The tool detected a
security flaw in the digital envelope protocol (DEP) when the trusted platform
module (TPM) reset is enabled. The tool, all protocol models and their evalua-
tion results are available online at [17]. In the remaining part, we provide more
details on the DEP protocol and the detected security flaw.

secret(s,
pk, p)

Phase 1

Phase 2

alice(n)

extend(n) with Encrypted Session

data s encrypted by pkey

tpm(bob, x)

tpm(bob, h(x, n))

tpm(bob, p)

tpm(bob,
h(p, open))

OR
tpm(bob,

h(p, revoke))

generate key pair <sk, pk>
lock to h(p, open)

create secret s

Alice Bob

create nonce n

PCR = p PCR = p

option 1:
extend(open)

read s
option 2:

extend(revoke)
send PCR quote to Alice

Fig. 2. The DEP protocol

Alice Bob

create nonce n

extend(n) with Encrypted Session

PCR = b PCR = b

create bind key <sk, pk>
locked to h(b, open)

data s encrypted by pk

extend(open)
read s

Phase 1

Phase 2.1

Reboot

extend(revoke)
send PCR quote to Alice

Reboot

Phase 2.2

create secret s

Fig. 3. An attack on DEP

DEP consists of two phases as shown in Fig. 2. In the first phase, Alice gen-
erates a secret nonce [n] and uses it to extend a given PCR in Bob’s TPM with
an encrypted session (detailed TPM explanation can be found at [12]). Since the
nonce [n] is secret, Bob cannot re-enter the current state of the TPM if he makes
any changes to the given PCR. In the second phase, Alice and Bob read the value
of the given PCR as p and Bob creates a binding key pair 〈[sk], pk([sk])〉 locked
to the PCR value h(p, open[]) and sends the public binding key together with

A Verification Framework for Stateful Security Protocols 277

the key certificate to Alice, where open[] is an agreed constant in the protocol.
This means that the generated binding key can be used only if the value open[]
is first extended to the PCR of value p. After checking the correctness of the
certificate, Alice encrypts the data [s] with the public key pk([sk]) and sends it
back to Bob. Later, Bob can either open the digital envelope by extending the
PCR with open[] or revoke his right to open the envelope by extending another
pre-agreed constant revoke[]. If Bob revokes his right, the quote of PCR value
h(p, revoke[]) can be used to prove Bob’s revoking action.

Using our approach and the implemented tool, we have found a cold-boot
attack for this DEP when the TPM rebooting is allowed (see Fig. 3). When the
TPM rebooting is allowed, Bob can reboot his TPM immediately after the first
phase. Bob can reset the PCR value, e.g., to b. As a consequence, the secret
nonce [n] extended to the PCR is lost. When Alice reads the PCR value in
the beginning of the second phase, she actually reads a PCR value b that is
unrelated to her previous extending action. Later this new PCR value b is used
in generating key; and the key is used to encrypt Alice’s secret [s]. On receiving
Alice’s cipher-text, Bob can open it and read [s] by extending the PCR value
by open[]. Since Bob is allowed to reboot, he reboots the TPM, resets the PCR
value to b, and extends the PCR value by revoke[]. Now Bob can get a PCR
quote proving that he did not open the ciphertext, despite the fact that he has
opened it.

The previously DEP verification in [7] fails to detect the above attack,
because, in order to use the automatic verification tool ProVerif, which can
only handle limited number of TPM steps, the authors made modification to
the original DEP protocol – Bob always performs the TPM reboot before the
first phase; and Alice is assumed to have the PCR value h(p, n) without actually
reading it, in the beginning of the second phase. As a result, in their model,
TPM rebooting can never happen before the second phase. Hence, the modifi-
cation prevents them from detecting the attack. Since we allow state modeling
and unbounded state-evolving, we can remove the assumption made in [7], and
thus are able to detect the flaw.

5 Related Works

Formal analysis of security protocols has been an active research area since
1980’s. The analysis is with respect to the Dolev-Yao attacker [18], who controls
the network by blocking, inserting, eavesdropping messages in the network. Veri-
fying security of protocols with bounded sessions has shown to be decidable [19];
however, the verification of unbounded sessions is, in general, undecidable [20].
Verifiers that do not bound the sessions rely on abstractions that may result
in false attacks, e.g., ProVerif [1], and/or allow non-termination, e.g., Maude-
NPA [3]. In this work, we focus on protocols with unbounded sessions and in
general follow the ProVerif style when no global states are involved. However,
our work reduces false attacks when global states are involved.

For verifiers that can handle global states, StatVerif [6] is mostly relevant
to our work. As mentioned earlier, StatVerif does not terminate for unbounded

278 L. Li et al.

involving of global states (see Example 1). In addition, StatVerif still has false
attacks due to the monotonicity of Horn clauses, for example, when the secu-
rity device in [6] (similar protocol to Example 1 which allows the memory to be
reset to a value instead of being extended to a value) is first set to either left or
right and then set to reboot (the StatVerif code for this scenario and Example 1
can be found at [17]). Our method does not have this problem for the above
example protocols. Kremer et al. extended StatVerif with the ability to model
unbounded number of global states [4], while our work enables to model and
verify unbounded evolving of global states. Hence, our work is orthogonal to the
work of Kremer et al. In addition, their work uses Tamarin [11] as its backend
verification engine, which is different from the Horn clause based approaches
(general comparison is difficult [21]). In general, Tamarin can be used for rea-
soning on protocols with global states, but its user may need to interact with
the verifier [4]. Our verifier, on the other hand, is fully automatic. Further-
more, Mödersheim developed a verification framework that works with global
states [22]. The framework extends the IF language with sets and abstracts mes-
sages based on its Set-Membership. However its expressivenss and verification
applicability is unclear. Guttman extended the strand space with mutable states
to deal with stateful protocols [23,24], but without tool support for his approach.
Most importantly, none of the above explicitly handles unbounded global state
evolving.

6 Conclusions and Future Work

We have presented a new approach for the stateful security protocol verifica-
tion with unbounded global state evolving. We implemented a tool for our new
approach and the verification results of a number of protocols are quite encour-
aging. For future work, accelerating the redundancy checking would be helpful to
improve the tool’s performance. In addition, analyzing more stateful protocols,
and adapting our approach for protocols with physical properties, e.g., time and
space, would be interesting directions.

Acknowledgement. This work is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its National Cybersecurity R&D Program
(TSUNAMi project, Award No.NRF2014NCR-NCR001-21) and administered by the
National Cybersecurity R&D Directorate.

References

1. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
Proceedings 14th IEEE Computer Security Foundations Workshop (CSFW), pp.
82–96. IEEE CS (2001)

2. Viganò, L.: Automated security protocol analysis with the avispa tool. Electron.
Notes Theoret. Comput. Sci. (ENTCS) 155, 61–86 (2006)

A Verification Framework for Stateful Security Protocols 279

3. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.)
FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03829-7 1

4. Kremer, S., Künnemann, R.: Automated analysis of security protocols with global
state. In: Proceedings 24th IEEE Symposium on Security and Privacy (S & P),
pp. 163–178 (2014)

5. Herzog, J.: Applying protocol analysis to security device interfaces. IEEE Secur.
Priv. 4, 84–87 (2006)

6. Arapinis, M., Ritter, E., Ryan, M.D.: StatVerif: verification of stateful processes.
In: Proceedings 24th IEEE Computer Security Foundations Symposium (CSF),
pp. 33–47. IEEE CS (2011)

7. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal analysis of protocols based
on TPM state registers. In: Proceedings 24th IEEE Computer Security Foundations
Symposium (CSF), pp. 66–80. IEEE CS (2011)

8. Dong, N., Jonker, H., Pang, J.: Challenges in eHealth: from enabling to enforcing
privacy. In: Liu, Z., Wassyng, A. (eds.) FHIES 2011. LNCS, vol. 7151, pp. 195–206.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32355-3 12

9. Dong, N., Jonker, H., Pang, J.: Formal analysis of privacy in an ehealth protocol.
In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459,
pp. 325–342. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33167-1 19

10. Dong, N., Jonker, H.L., Pang, J.: Formal modelling and analysis of receipt-free
auction protocols in applied PI. Comput. Secur. 65, 405–432 (2017)

11. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 48

12. Li, L., Dong, N., Pang, J., Sun, J., Bai, G., Liu, Y., Dong, J.S.: A verification
framework for stateful security protocols - full version (2017). http://www.comp.
nus.edu.sg/dongnp/sspa

13. Ables, K., Ryan, M.D.: Escrowed data and the digital envelope. In: Acquisti, A.,
Smith, S.W., Sadeghi, A.-R. (eds.) Trust 2010. LNCS, vol. 6101, pp. 246–256.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13869-0 16

14. Microsoft: Bitlocker FAQ (2011). http://technet.microsoft.com/en-us/library/
hh831507.aspx

15. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21, 993–999 (1978)

16. Lowe, G.: An attack on the needham-schroeder public-key authentication protocol.
Inf. Process. Lett. 56, 131–133 (1995)

17. Li, L., Dong, N., Pang, J., Sun, J., Bai, G., Liu, Y., Dong, J.S.: SSPA tool, exper-
iment models and evaluation results (2017). http://lilissun.github.io/r/sspa.html

18. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29, 198–207 (1983)

19. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions,
composed keys is np-complete. Theoret. Comput. Sci. 299, 451–475 (2003)

20. Durgin, N.A., Lincoln, P., Mitchell, J.C.: Multiset rewriting and the complexity of
bounded security protocols. J. Comput. Secur. 12, 247–311 (2004)

21. Meier, S.: Advancing automated security protocol verification. Ph.D. thesis, ETH
(2013)

http://dx.doi.org/10.1007/978-3-642-03829-7_1
http://dx.doi.org/10.1007/978-3-642-03829-7_1
http://dx.doi.org/10.1007/978-3-642-32355-3_12
http://dx.doi.org/10.1007/978-3-642-33167-1_19
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://www.comp.nus.edu.sg/dongnp/sspa
http://www.comp.nus.edu.sg/dongnp/sspa
http://dx.doi.org/10.1007/978-3-642-13869-0_16
http://technet.microsoft.com/en-us/library/hh831507.aspx
http://technet.microsoft.com/en-us/library/hh831507.aspx
http://lilissun.github.io/r/sspa.html

280 L. Li et al.

22. Mödersheim, S.: Abstraction by set-membership: verifying security protocols and
web services with databases. In: Proceedings 17th ACM Conference on Computer
and Communications Security (CCS), pp. 351–360. ACM (2010)

23. Guttman, J.D.: Fair exchange in strand spaces. In: Proceedings 7th International
Workshop on Security Issues in Concurrency (SECCO), EPTCS, vol. 7, pp. 46–60
(2009)

24. Guttman, J.D.: State and progress in strand spaces: Proving fair exchange. J.
Autom. Reasoning 48, 159–195 (2012)

A Sliding-Window Algorithm for On-The-Fly
Interprocedural Program Analysis

Xin Li1(B) and Mizuhito Ogawa2

1 East China Normal University, Shanghai, China
xinli@sei.ecnu.edu.cn

2 Japan Advanced Institute of Science and Technology, Nomi, Japan
mizuhito@jaist.ac.jp

Abstract. Program analysis plays an important role in finding soft-
ware flaws. Due to dynamic language features like late binding, there
are many program analysis problems for which one could not assume a
prior program control flow, e.g., Java points-to analysis, the disassembly
of binary codes with indirect jumps, etc. In this work, we give a general
formalization of such kind of on-the-fly interprocedural program analysis
problems, and present a sliding-window algorithm for it in the framework
of weighted pushdown systems. Our sliding window algorithm only con-
sists of a series of local static analyses conducted on an arbitrary number
of program methods, which does not sacrifice the precision of the whole
program analysis at the manageable cost of caching intermediate analy-
sis results during each iteration. We have implemented and evaluated
the sliding-window algorithm by instantiating the framework with Java
points-to analysis as an application. Our empirical study showed that
the analysis based on the sliding-window algorithm always outperforms
the whole program analysis on runtime efficiency and scalability.

1 Introduction

Program analysis plays an important role in finding software flaws. An inter-
procedural (or context-sensitive) program analysis distinguishes and produces
analysis results for different calling contexts, whereas an intraprocedural (or
context-insensitive) program analysis would confuse them and incur a loss of
analysis precision. Precise interprocedural program analyses are crucial to the
successful verification of software from the real-world. Due to dynamic language
features like late binding, there are many program analysis problems for which
one could not assume a prior program control flow, e.g., Java points-to analysis,
the disassembly of binary codes with indirect jumps, etc. These analyses are
known to be mutually dependent on call graph construction and the underlying
system is generated on-the-fly as the analysis proceeds. It is challenging to design
precise interprocedural program analyses involving heaps and dynamic language
features while being scalable to large-scale software.

In this work, motivated by Java points-to analysis, we are concerned with
designing practically more efficient algorithms for solving such kind of on-the-
fly interprocedural program analysis (OTFIPA) problems. To this end, we first
c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 281–297, 2017.
https://doi.org/10.1007/978-3-319-68690-5_17

282 X. Li and M. Ogawa

give a general formalization of the analysis problem, by mildly extending the
classic analysis problem for computing the meet-over-all-valid-path values, and
then present a sliding-window algorithm for it that analyzes the program in
pieces in isolation. Our approach adapts the powerful framework of weighted
pushdown systems (WPDSs) [8], which is known as a generalized framework
for interprocedural program analysis (or context-sensitive program analysis) in
which method calls and returns are correctly matched with one another. Push-
down systems (PDSs) are natural formalism for modelling the interprocedural
control flow of imperative programs, and WPDSs extend PDSs by associating
each transition with a weight that is often encoded from a program transformer
in classic dataflow analyses. Efficient algorithms have been developed for push-
down model checking by automata-theoretic approach [4], and they are carried
over to WPDSs.

The major difficulties of designing an efficient algorithm for OTFIPA are
that, the dependency among program parts can be cyclic, and the underlying
system for analysis is enlarged on-the-fly by frequently posing dataflow queries
on relevant program points. Classic solutions to tackling the first issue include,
either building a dependency graph of program parts before the analysis, and
analyzing program parts in their topological order after collapsing loops, or
breaking such cyclic dependency by providing each program part with sum-
mary information of external program parts which it depends upon. The later
solution results in modular analysis techniques which is desirable to scalable
program analyses. However, it is a long-standing challenge to generate a precise
procedure summary for non-trivial dataflow analysis problems. In particular, for
the kind of on-the-fly program analysis problems, e.g., higher-order functions
in functional programs, dynamic dispatch in Java, it is difficult to adapt classic
methods for modular analysis to such occasions, as pointed out in Sect. 8.5 of [3].

Instead of challenging a modular analysis or collapsing loops with sacrific-
ing the precision, we take a mild approach to improving the runtime efficiency
for solving the OTFIPA problem without compromising the analysis precision.
Our key idea is to generate, cache and reuse two types of intermediate analysis
results that implicitly carry procedure summaries when invoking WPDS model
checking as the underlying analysis engine. One is for resolving the interdepen-
dency among methods, and the other is for locally computing the whole-program
analysis results without revisiting the whole program, to answer the on-the-fly
dataflow queries that can be overwhelming. Notably, our algorithm is conducted
in a sliding-window fashion: the analysis slides over the discovered program cov-
erage so far, and iteratively analyzes a sized subset of methods until the accu-
mulated analysis results from a series of local analyses stablize.

In summary, this paper makes the following contributions:

– We give a general formalization for the kind of OTFIPA problems that are
mutually dependent of discovering the program coverage (Sect. 3.1). Such
a formal clarification provides us with a basis and framework for reason-
ing about the correctness of our sliding-window algorithm for tackling the
problem. We also show with an example of copy constant propagation that

A Sliding-Window Algorithm 283

dataflow analyses with simple conditionals can be instantiated as an instance
of the problem (Sect. 3.2).

– We present a sliding-window algorithm for the OTFIPA problem, by adapting
the inner algorithmic structures of WPDS model checking based on the P-
automata techniques (Sect. 4). Our analysis allows to analyze the program in
pieces of an arbitrary size with preserving the precision of the whole-program
analysis by caching the minimum intermediate analysis results during the
analysis.

– We demonstrate experimentally the effectiveness of our approach with instan-
tiating Java points-to analysis in the algorithmic framework (Sect. 5). Our
preliminary empirical study shows that, the sliding-window algorithm brought
a 2X speedup over the whole-program analysis for most benchmarks and suc-
cessfully verify two benchmarks that exceed the time budget when running
the whole-program analysis.

Last but not least, we also formally prove the correctness of our approach,
for which an interested reader may wish to consult an extended version of the
paper.

Related Work. This work is motivated by Japot [6] that is a context-sensitive
points-to analyzer for Java designed in the framework of WPDSs. There has been
a host of work on points-to analysis. To our knowledge, almost other existing
practical points-to analyzer took a cloning-based approach (that resembles inline
expansion) to achieving context-sensitivity, which has an inherit limit on ana-
lyzing recursive procedural calls. We are concerned with scalable stacking-based
points-to analysis algorithms for Java that precisely handles recursive procedure
calls by WPDSs. In [6], the authors attempted to carefully interleave the whole
program analysis with local ones on small parts of the program in a restricted
manner. They used the model checker as a black box, and did not resolve the
interdependency among program parts. The whole program analysis is compul-
sory for ensuring soundness as the final step of the analysis. By adapting the
inner algorithmic structures of WPDSs, this work upgrades Japot to a more
efficient analyzer which only consists of local static analyses yet preserves the
original precision of a whole program analysis.

It is desirable to design a modular analysis by generating procedure sum-
maries for each method and analyzing the program in pieces with instantiating
the procedure summaries of callee methods. Many techniques were proposed to
achieve a certain degree of modularity. However, it remains a challenge to design
a precise modular analysis for context-sensitive heap analysis like Java points-to
analysis [12]. Our approach is not modular analysis strictly speaking, because
we never generate procedure summaries and the program parts are analyzed
iteratively. Yet, the intermediate results that we generate, cache, and reuse in
the analysis carry some information that are related to procedure summaries.

Our work can be turned as incremental analyses, since we cache in the analy-
sis necessary information for conducting a local analysis on any part of the pro-
gram. To our knowledge, [2] is the first work on incremental algorithms for safety

284 X. Li and M. Ogawa

analysis of recursive state machines. Lal and Reps presented in [5] a new reacha-
bility algorithm of WPDS, and discussed how to derive an incremental algorithm
from their new setting. The authors also proposed a technique to improve the
running time for (weighted) pushdown model checking. Their technique could
be plugged in our tool as a more efficient engine for weighted pushdown systems.

2 Preliminaries

2.1 Weighted Pushdown Model Checking

Definition 1. A pushdown system (PDS) P is (P, Γ,Δ), where P is a finite
set of control locations, Γ is a finite stack alphabet, and Δ ⊆ P × Γ × P × Γ ∗

is a finite set of transition rules. A transition rule (p, γ, q, ω) ∈ Δ is written as
〈p, γ〉 ↪→ 〈q, ω〉. A configuration of P is a pair 〈p, ω〉 where p ∈ P and ω ∈ Γ ∗.
A set of configurations C is regular if {ω | 〈p, ω〉 ∈ C} is regular. A transition
relation ⇒ is defined on configurations of P, such that 〈p, γω′〉 ⇒ 〈q, ωω′〉 for
any ω′ ∈ Γ ∗ if 〈p, γ〉 ↪→ 〈q, ω〉. Given a set C of configurations, we define
pre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c} and post∗(C) = {c′ | ∃c ∈ C : c ⇒∗ c′} which
are the sets of pre-images and post-images of C, respectively.

A pushdown system is a pushdown automaton without the input alphabet.
It is known that any pushdown system can be simulated by a pushdown system
for which |ω| ≤ 2 for each transition rule 〈p, γ〉 ↪→ 〈q, ω〉 [10]. In the paper, we
assume such a normalized form of pushdown systems.

Definition 2. A bounded idempotent semiring S is (D,⊕, ⊗, 0̄, 1̄), where
0̄, 1̄ ∈ D, and

1. (D,⊕) is a commutative monoid with 0̄ as its unit element, and ⊕ is idem-
potent, i.e., a ⊕ a = a for all a ∈ D;

2. (D,⊗) is a monoid with 1̄ as the unit element;
3. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D, we have

a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and (b ⊕ c) ⊗ a = (b ⊗ a) ⊕ (c ⊗ a) ;
4. for all a ∈ D, a ⊗ 0̄ = 0̄ ⊗ a = 0̄;
5. A partial ordering � is defined on D such that a � b iff a ⊕ b = a for all

a, b ∈ D, and there are no infinite descending chains in D.

It is not hard to see that 0̄ is the greatest element in D.

Definition 3. A weighted pushdown system (WPDS) W is a triplet
(P,S, f), where P = (P, Γ,Δ) is a pushdown system, S = (D,⊕,⊗, 0̄, 1̄) is a
bounded idempotent semiring, and f : Δ → D is a function that assigns a weight
in D to each transition rule in Δ.

Let σ = (r0, . . . , rk) be a transition sequence where ri ∈ Δ for each 0 ≤ i ≤ k.
A value associated with σ is defined by val(σ) = f(r0) ⊗ · · · ⊗ f(rk). Given
c, c′ ∈ Q × Γ ∗, we denote by path(c, c′) the set of transition sequences that
transform configurations from c into c′ for each.

A Sliding-Window Algorithm 285

Definition 4. Given a WPDS W = (P,S, f) where P = (P, Γ,Δ), and regular
sets of configurations S, T ⊆ P × Γ ∗. The model checking problem for WPDS is
to compute the following value:

WPMC[W](S, T) =
⊕

{val(σ) | σ ∈ path(c, c′), c ∈ S, c′ ∈ T}

When applying WPDSs to program analysis, the pushdown system models
the interprocedural program control flow with matched calls and returns. The
weights in D typically encode program transformers, ⊗ models (the reverse of)
function composition, and ⊕ combines data flows at join points of the program.

2.2 Saturation-Based Algorithm for WPDS Model Checking

PDSs are appealing partly due to having efficient model checking algorithms based
on the P-automata techniques. A P-automaton is a NFA (non-deterministic finite
automaton) that recognizes a regular set of pushdown configurations.

Definition 5. Given a PDS P = (P, Γ,Δ). A P-automaton A = (Q,Σ,
→, P, F) is a NFA, where Q ⊇ P is a finite set of states, Σ = Γ ∪ {ε} is a
finite alphabet, →⊆ Q × Σ × Q is a set of transitions, and P andF ⊆ Q are the
sets of initial and final states, respectively. We define →∗⊆ Q × Γ ∗ × Q as the
smallest relation satisfying that, (i) p ε−→∗ p for any p ∈ Q; (ii) p

γ−→∗ p′ if
(p, γ, p′) ∈→; (iii) p

ωγ−→∗ p′ if p ω−→∗ p′′ and p′′ γ−→∗ p′ for some p′′ ∈ Q. A
configuration 〈p, ω〉 is accepted by A if p ω−→∗ q for some q ∈ F . A set of config-
urations C is regular if it is accepted by some P-automaton. We denote by AC

the P-automaton that accepts a regular set C of configurations, and sometime
refer to the P-automaton by the set of transitions in it.

One crucial property of pushdown systems is that, the set of pre-images
and post-images of a regular set of configurations is also regular. Given a P-
automaton AC that recognizes a regular set C of configurations. The pre-images
pre∗(C) and post-images post∗(C) can be computed by augmenting AC with
new edges and states with applying backward and forward saturation rules until
convergence, respectively. In the paper, we limit our focus to forward saturation
and illustrate in Fig. 1 the saturation rules for computing post∗(C). In the figure,
solid edges and states reside in the current automaton, and dashed edges and
states are newly added by saturation rules.

Let l be a mapping from the edges in a P-automaton A to weights. The
model checking problem WPMC[W](S, T) in Definition 4 can be solved by first
forward saturating AS while updating l upon stablization. Initially, l(t) = 1̄ for
each transition t in AS , and l(t) = 0̄, otherwise. The rules for updating weights
with respect to the saturation rules in Fig. 1 are given as follows:

(a) l(p′, ε, q) = l(p, γ, q) ⊗ f(rpop) (b) l(p′, γ′, q) = l(p, γ, q) ⊗ f(rnormal)
(c) l(p′, γ′, qp′,γ′) = 1̄ and l(qp′,γ′ , γ′′, q) = l(p, γ, q) ⊗ f(rpush)
(d) l(p, γ, q′) = l(q, γ, q′) ⊗ l(p, ε, q)

286 X. Li and M. Ogawa

p q

p

γ

ε

(a) rpop

p q

p

γ

γ

(b) rnormal

p q

p qp ,γ

γ

γ

γ

(c) rpush

p q

q

ε

γ
γ

(d) contraction

Fig. 1. Saturation rules for computing post∗(C), where rpop is 〈p, γ〉 ↪→ 〈p′, ε〉, rnormal

is 〈p, γ〉 ↪→ 〈p′, γ′〉, and rpush is 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉. Figure 1(d) shows a contraction
rule for taking care of ε-transitions during the saturation.

Next, for any configuration c = 〈p, γ1 . . . γn〉 in C and the saturated automa-
ton Apost∗(C), we define A(c) =

⊕
{l(qn−1, γn, qn)⊗· · ·⊗l(q1, γ2, q2)⊗l(p, γ1, q1) |

qn ∈ F}, and for any set C of configurations, define A(C) =
⊕

{A(c) | c ∈ C}.
Then we have WPMC[W](S, T) = Apost∗(S)(T), and the algorithm for efficiently
computing A(C) will be elaborated in Algorithm 2.

3 On-The-Fly Interprocedural Program Analysis

3.1 A Formal Description of OTFIPA

Assume abstract interpretation has been properly applied to the analysis prob-
lem if necessary. Let ((D, �D),�D,�D) be a meet semi-lattice tailored for the
analysis, where �D is the binary operator for computing the greatest lower
bound, and �D is the greatest element in D. Let V = {V1, . . . , Vk} be the
set of variables in the analysis. An environment E ∈ Dk of the program is a
k-tuple of values in D, and we denote by E(i) (or E(Vi)) the value for the vari-
able Vi, and extend �D and �D to environments element-wise. The set of envi-
ronments is denoted by Env, and the initial environment (�D, . . . ,�D) ∈ Dk is
denoted by E0 which is the greatest element in Env. An environment transformer
τ : Env → Env is a map on environments that is distributive (thus monotonic)
wrt �D, i.e., τ(E1�DE2) = τ(E1)�Dτ(E2). The set of environment transformers is
denoted by T . Let (T , �,�) be a meet semi-lattice where � is the greatest lower
bound operator on T defined by τ1 � τ2 = λe.(τ1(e) �D τ2(e)), and � = λe. E0 is
the greatest element in T .

Program analysis often first builds an interprocedural control flow graph
(ICFG) of the program, and then solves the analysis problem as path problems
over it. Here, we explore a so-called supergraph of the program for representing an
ICFG. A supergraph is a collection of control flow graphs (CFG), where a CFG
is constructed for a method as usual, except that each method call is represented
by two nodes in the graph: a node for call site and a node for return point, and
CFGs are connected in the graph by call edges from call sites to callee’ entry
points and return edges from callees’ exits to the corresponding return points.

Let M be the set of methods in the program. A supergraph G is a triplet
(N,→G, l) where N = {n1, . . . , nm} is a set of nodes, →G⊆ N × N is a set of

A Sliding-Window Algorithm 287

edges, and l : (→G) → T is a map that associates each edge with an environment
transformer. In particular, we denote by R ⊆→G the set of call edges, called
call relation. Given a set of methods M ⊆ M and a call relation R ⊆ R, one
can construct a supergraph, denoted by G↓M,R

.
A valid path in G is a path where call edges and return edges are well-

matched with each other, and such valid paths constitutes some context-free
language. For any node n ∈ N, the (possibly infinite) set of valid paths leading
from emain to n is denoted by VPath(emain, n). Let σ = [t0, . . . , tn] be a sequence
of edges that forms a path in G. We define τσ = l(tn) ◦ l(tn−1) ◦ · · · ◦ l(t0). Here,
◦ denotes the ordinary function composition. The meet-over-all-valid-path
(MOVP) problem for G is to compute that, for each n ∈ N,

MOVP[G](n)
def
= �D{τσ(E0) | σ ∈ VPath(emain, n)}
= (�{τσ | σ ∈ VPath(emain, n)}) (E0) (By definition of �)

That is, it computes all the valid dataflow values flowing to each node.
We denote by

−−−−−−→
MOVP[G] ∈ Envm an m-tuple of environments such that its ith

projection, denoted by
−−−−−−→
MOVP[G][i] (or

−−−−−−→
MOVP[G][ni]), is the value MOVP[G](ni),

for each i ∈ [1..m]. Note that, since �D∅ = E0, we have
−−−−−−→
MOVP[∅] = Em

0 . We
introduce a binary relation � on Envm such that

−→E 1 � −→E 2 iff
−→E 1[i] �D

−→E 2[i]
for each i ∈ [1..m]. Then [E0, . . . , E0] ∈ Envm is the greatest element.

A function φ : Envm → 2M × 2R is a contract function for G if φ is
anti-monotonic. It characterizes dynamic program features, and its semantics is
problem-specific. For instance, for Java points-to analysis, φ encodes the seman-
tics of dynamic dispatch implemented in Java virtual machine, such that for
any

−→E ∈ Envm, φ(
−→E) returns the union of methods that can be dispatched at

each node ni according to the value
−→E [ni], paired with the call relation for those

methods. Note that, some program nodes do not matter to the change of the
program coverage and may not be considered in the contract function. Provided
with φ, we define an enlargement function η : 2M × 2R → 2M × 2R as follows:

η = λ(x, y).(x, y) ∪ φ
(−−−−−−−−−→
MOVP[G↓x,y

]
)

where ∪ is extended to a pair of sets element-wise. It characterizes the process
of discovering the program coverage. One can conclude with Lemma 1.

Lemma 1. The function η is monotonic, and the least fixed point of η exists,

and it coincides with
∞⋃

j=0

ηj(∅, ∅). ��

Definition 6. Let gfp be the greatest fixed point operator, and let lfp be the
least fixed point operator. An on-the-fly interprocedural program analysis
(OTFIPA) problem is to compute1

1 There are datalfow analysis problems alternatively formalized over exploded super-
graph [9], upon which one can similarly define the OTFIPA problem.

288 X. Li and M. Ogawa

(i) the least fixed point of η, i.e., lfp(η), which is the set of methods Mr involved
in the analysis problem, and a call relation R over them; and

(ii) the tuple
−−−−−−−−−−→
MOVP[G↓Mr,R

] of environments, which is the dataflow analysis
results of solving the MOVP problem for G↓Mr,R

.

3.2 A Running Example

This section describes an example of a copy constant propagation (CCP) analysis,
partly following [7] and adjusts the example as an instance of OTFIPA. CCP is
one of the classic dataflow analysis used for compiler optimization. The analysis
is to check whether the value of a variable would remain as a constant along
some program execution, so that the constant assigned to the variable can be
substituted when the variable is used.

n0: int x, y = 0;

void bar(int a) {
n4: if (x < 3)

n5, n6: y = foo(a);

else n7, n8: noop (); }

void foo(int b) {
n9: return b; }

void noop() {
n9: y = x;

n10: x = 3; }

void main() {
n1: x = 2;

n2, n3: bar(x); }

Fig. 2. A code snippet for illustrating copy constant propagation analysis.

emain

n0 : int x, y = 0 ebar

n1 : x = 2 n4 : if(. . .) efoo

n2 : call bar n7 : call noop n5 : call foo n9 : return b

n3 : bar return n8 : noop return n6 : foo return xfoo

xmain xbar

τ0 : λe.e[x, y 0]

τ1 : λe.e[x 2]

τ 2
:
λ
e.

e[
a

e(
x
)]

τ3
: λ

e.
e[
b

e(
a)
]

τ4 : λe.e[ret e(b)]

τ5 : λe.e[τ5 : y e(ret)]

Fig. 3. A supergraph of Fig. 2, where the method noop is omitted.

An example code snippet is shown in Fig. 2, where x, y are global variables,
a, b are local variables, and each statement in the code is indexed by ni. Its
supergraph is shown in Fig. 3, where solid lines are intraprocedural edges, and

A Sliding-Window Algorithm 289

dotted lines are call and return edges. Since the method noop is not called, we
omit it from the graph. Extra nodes ef and xf denote the unique entry and exit
point of a method f. Each edge in the graph is labelled with an environment
transformer τ . If τ is an identity function λe.e, it is omitted in the graph. The
abstract domain for the analysis is D = Z ∪ {⊥,�D}. Here, Z denotes integers,
�D denotes a value that is irrelevant and is the greatest element, and ⊥ denotes
a value that is not a constant. For all d in Z, ⊥ �D d and d �D �D, and for any
d1, d2 in Z with d1 �= d2, d1 and d2 are incomparable. In the transformers, ret is
a fresh symbol that is introduced to denote the return value of foo.

It is known to be non-trivial (often undecidable) to analyze conditionals
in dataflow analysis. Therefore, conditionals are usually abstracted to be non-
deterministic choices as an over-approximation of the program branching. Thus
whether the method foo and noop are invoked depends on the dataflow reach-
ing at the node n4, and we know that foo is reachable in this case since
MOVP[G](n) = [x �→ 2, y �→ 2]. Then it can be modeled as an OTFIPA problem.
For any

−→E ∈ −→D ,

φ(
−→E) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

({main, bar, foo}, R0) if
−→E [n4](x) �= ⊥ and

−→E [n4](x) < 3
({main, bar, noop}, R1) if

−→E [n4](x) �= ⊥ and
−→E [n4](x) ≥ 3

({main, bar, foo, noop}, R2) if
−→E [n4](x) = ⊥

(∅, ∅) if
−→E [n4](x) = �D

where R0 = {(main, bar), (bar, foo)}, R1 = {(main, bar), (bar, noop)}, R2 =
R0 ∪ R1. It is not hard to see that φ is anti-monotonic. In particular, the third
case above corresponds to abstracting the conditional as a non-deterministic
choice when

−→E [n4](x) = ⊥.

4 Algorithms for the OTFIPA Problem

4.1 A Whole-Program Analysis Algorithm

We can solve the OTFIPA problem by using WPDS as the underlying program
analysis engine. Given a supergraph G = (N,→G, l). We can define a WPDS
WG = ((P, Γ,Δ),S, f), where there is a unique control location �, i.e., P = {�};
the stack alphabet is the set of nodes in G, i.e., Γ = N; and Δ is constructed
by the follows rules:

– 〈�, n〉 ↪→ 〈�, n′〉 ∈ Δ, if there exists an intraprocedural edge (n, n′) ∈→G.
– 〈�, n〉 ↪→ 〈�, ef n′〉 ∈ Δ, if there exists a call edge (n, ef) ∈→G, where n′ is the

return point matching the call site n, and ef is the entry of the callee f.
– 〈�, xf〉 ↪→ 〈�, ε〉 ∈ Δ, if there exists a return edge (xf, n) ∈→G for some n,

where xf is the exit of the callee f.

The environment transformers associated with edges are directly modelled
as weights. To form the semiring S = (D,⊕,⊗, 0̄, 1̄), we define the commutative

290 X. Li and M. Ogawa

monoid (D,⊕) to be (T , �,�), 0̄ is taken as �, ⊗ is defined as the reverse of
function composition, and 1̄ is taken as an identity transformer λe.e. We denote
by GenWPDS(G) the above procedure that generates a WPDS for G. Given the
encoding above, we can conclude with the following fact.

Fact 7. For each node n ∈ N, we have that

MOVP[G](n) = WPMC[WG](S, T)(E0),

where S = {〈�, emain〉} and T = {〈�, nω〉 | ω ∈ Γ ∗}, respectively.

By Lemma 1 and Fact 7, one may solve the OTFIPA problem as the limit
of {ηj(∅, ∅) | j ≥ 0} by iteratively calling WPDS model checker for solving the
MOVP problem on G↓ηj(∅,∅)

(that is the supergraph for all the methods currently
discovered to be involved in the analysis problem up to the jth iteration).

, emain n0
n0

τ0
n1

n1
τ1

n2
n2

τ2
ebar n3

n3 xmain

ebar n4
n4 n5
n5

τ3
efoo n6

n6 xbar
xbar

efoo n9
n9

τ4
xfoo

xfoo
τ5

Fig. 4. WPDS transition rules encoded for the example in Fig. 2 where the transition
rules encoded for the method noop are omitted.

Example 1. The encoded WPDS transition rules of the code snippet in Fig. 2 is
given in Fig. 4 that are grouped method-wise. We denote the system by Wccp.
Let S = {〈�, emain〉} and let T = {〈�, xmainω〉 | ω ∈ Γ ∗} be the source and
target configurations. We have WPMC[Wccp](S, T) = λe.e[x �→ ⊥, y �→ 2] which
computes the dataflow values from the entry to the exit of main, by abstracting
the program branchings as non-deterministic choices. By applying the result to
the initial environment E0, we obtain [x �→ ⊥, y �→ 2] which says that x is not a
constant and y is a constant at the exit of main. As far as the OTFIPA problem
is concerned when the conditional at n4 is x < 3, we obtain a different analysis
result [x �→ 2, y �→ 2] that, both x and y are constants at the exit of main. It
is an artificially coined example, yet shows how a OTFIPA problem differs with
an ordinary program analysis problem.

4.2 A Sliding-Window Analysis Algorithm

This section presents a sliding-window algorithm for OTFIPA by adapting the
inner algorithmic structure of WPDS model checking. As given in Algorithm1,
Line 1 declares those global data structures that are updated through each iter-
ation, where

−→
d ∈ T m is the m-tuple of environment transformers for all the pro-

gram points; Mr is the set of reachable methods and R is the call relation to be

A Sliding-Window Algorithm 291

discovered by the analysis, respectively, and they are the analysis results of solv-
ing the OTFIPA problem upon the algorithm terminates; δR records transitions
relevant to return values of the callees and δS records transitions of summary
values propagated from the calling methods, and they are intermediate analysis
results cached and reused through the iterations.

Algorithm 1. SwaOTFIPA(M, φ): A Sliding Window Algorithm for OTFPA

1 Mr := ∅; R := ∅;
−→
d := [0̄, . . . , 0̄]; δR = ∅; δS := ∅; l := λt.0̄; iteration := 0;

2 foreach f ∈ M do f.checked := 0;
3 while (not ∀f ∈ Mr. f.checked = 1) do

4
−→E :=

−→
d (E0);

5 (Mr, R) := φ(
−→E);

6 Mw := Schdule(Mr, iteration + +) ;
7 (δw, l) := SatPost(GenWPDS(G↓Mw,R), δR, l);

8 (
−→
d w, δS , l) := GenValue(δw ∪ δS , l);

9 δR := δR ∪ {(q, ε, q′) | (q, ε, q′) ∈ δw};
10 foreach f in Mw do f.checked := 1;

11 UpdatedNode := {ni ∈ N | ∃i ∈ [1..m].
−→
d [i]
= −→

d w[i]};
12 foreach f ∈ Mr \ Mw do
13 if DepMeth(f) ∩ UpdatedNode
= ∅ then f.checked := 0;

14
−→E w :=

−→
d w(E0); Mr := Mr ∪ φ(

−→E w);

15
−→
d :=

−→
d ⊕ −→

d w;

16 return (Mr, R,
−→
d);

Definition 8. Mark variables in Algorithm1 with superscript iteration numbers
to denote their values at the entry of the while loop in that iteration. A function
Schdule : 2M×N → 2F is a scheduler for Algorithm 1 if, for each M ⊆ M and
i ∈ N, Schdule(M, i) ⊆ Mr ∩ {f ∈ M |

⋃
1≤j≤i f.checked(j) = 0}. A scheduler

is fair if, for each i > 0, there exists f ∈ M
(i)
r with f.checked(i) = 0, then there

exists j > i with f ∈ M
(j)
w .

Each method f ∈ M is designated with a boolean variable checked, and
f.checked = 0 means that f has to be analyzed in the analysis, and it is not
necessarily to be included in the next iteration, otherwise. Initially, each method
f ∈ M is declared to be unchecked (Line 2). If there remains any method f ∈ Mr

to be analyzed (Line 3), then the while loop will repeat. Line 4 applies
−→
d to the

initial environment E0 and returns the current program environments
−→E . Then

by applying the contract function to
−→E at Line 5, the methods and the call

relation currently discovered can be obtained. At Line 6, the scheduler (formally
given in Definition 8) takes a set of methods Mw from Mr, called a sliding win-
dow, to be analyzed in the iteration, such that f.checked = 0 for each f ∈ Mw.

292 X. Li and M. Ogawa

At Line 7, the algorithm generates a WPDS W for the supergraph G↓Mw,R,
and forward saturates δR, i.e., to compute post∗[W](δR) given the mapping l.
Here, we denote by SatPost the backward saturation procedure conducted on
a weighted P-automaton described in Sect. 2.2. After Line 7, we obtain a P-
automaton δw and the updated mapping l from automata transitions to their
weights. Based on the results, we are ready to read out the result

−→
d w from

the weighted automaton δw ∪ δS for solving the MOVP problem for the sliding
window, by invoking the subprocedure GenValue at Line 8. It also returns the
updated summary transitions δS along with the updated label l.

At Line 9, δR is augmented with those newly-introduced in δw that are all
resulted from pop transitions. Each method f ∈ Mw is marked as checked at
Line 10. At Line 11, the set UpdatedNode is collected for which the program
environments (or environment transformers) are updated by the current analysis.

q p
γ

Fig. 5. A new forward satu-
ration rule for r : 〈p, ε〉 ↪→
〈q, γ〉 with l(q, γ, p) = f(r).
Dashed lines and nodes will
be added into the automa-
ton in question.

Line 12 to 13 pinpoint the set of methods that
would be affected by the new analysis results. Here,
DepMeth(f) collects the set of nodes in the super-
graph that are source ends of the incoming edges
into the nodes in the CFG of f . Line 14 returns
the newly-computed environment for the program
nodes in the sliding window, returns the updated
set of reachable methods, and unify

−→
d with the

newly-updated value
−→
d w by extending ⊕ to m-tuple

element-wise.
Note that, the program is analyzed method-wise and each sliding window

consists of a set of methods. To decouple the interprocedural program analysis
into intraprocedural counterparts, we slightly modify the procedure GenWPDS
such that, for any transition r : 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 that encodes some call edge,
we split it into two transitions as follows:

rcaller : 〈p, γ〉 ↪→ 〈qp′,γ′ , γ′′〉 and rcallee : 〈qp′,γ′ , ε〉 ↪→ 〈p′, γ′〉

and for any transition in the form of 〈p, ε〉 ↪→ 〈q, γ〉, we have 〈p, ω〉 ⇒ 〈q, γω〉
for any ω ∈ Γ ∗. The transition rcaller belongs to the caller, and rcallee belongs
to the callee, with f(rcaller) = f(r) and f(rcallee) = 1̄. The forward saturation
rule for rcaller is the same as the one for rnormal given in Fig. 1(b), and the
new rule for rcallee is shown in Fig. 5. Besides, let AS be the P-automaton that
recognizes the set S of source configurations. We add a set of new transitions
into the entry method (i.e., main) for encoding the transitions in AS in the
sliding-window analysis. For each transition (q, γ, q′) in AS , we prepare the new
transition r : 〈q′, ε〉 ↪→ 〈q, γ〉 and add it to the WPDS transitions encoded from
the entry method with f(r) = 1̄.

The subprocedure GenValue is given in Fig. 2. It is centered around com-
puting a mapping V from the automata states to weights. Intuitively, V (q) is to
store the weight A(L(A, q)) (Recall that A(C) is defined in Sect. 2.2 for a regular
set C of configurations). Initially, V (qf) = 1̄ for the final state, and V (q) = 0̄
for any other state q, and the workset ws is set as {qf} (Line 3–4). The while

A Sliding-Window Algorithm 293

Algorithm 2. GenValue(δ, l): Generating the Analysis Result for OTFIPA

1 let B = (Q, Γ, δ, P, {qf}) be the
P-automaton constructed from δ;

2 let V : Q → D be a mapping;
3 foreach q ∈ Q \ {qf} do V (q) := 0̄;
4 V (qf) := 1̄; ws := {qf};
5 while ws
= ∅ do
6 select and remove q from ws;
7 foreach t = (q′, γ, q) ∈ δ do
8 if q′
∈ P then
9 new := V (q′) ⊕ (V (q) ⊗ l(t));

10 if new
= V (q′) then
11 V (q′) := new;
12 ws := ws ∪ {q′};

13 foreach q ∈ Q \ (P ∪ {qf}) do
14 δ := δ ∪ {(q, ∗, qf)};
15 l(q, ∗, qf) := V (q);

16 δS := δ ∩ (Q × {∗} × {qf});

17
−→
d := [0̄, . . . , 0̄];

18 foreach (p, γ, q) ∈ δ with p ∈ P do

19
−→
d [(p, γ)] :=−→
d [(p, γ)] ⊕ (V (q) ⊗ l(q, γ, q′))

20 return (
−→
d , δS , l)

loop (Line 5–12) will repeat if the ws is not empty. For each state in the work-
set, the algorithm backward propagates the weights (Line 9) and updates the
weights on each state (Line 11) until no more updates are possible. Line 13–14
compute and update the summary transitions. A summary transition (q, ∗, qf)
can be regarded as an edge for the transitive closure of any path leading from q
to qf in the automaton, and l(q, ∗, qf) combines weights along those paths. Line
18–19 finally read out the analysis result for each node in the supergraph. Note
that, here we do not assume P is a singleton set, and the algorithm also works
for a more general setting when one may take a different encoding of WPDSs.

Theorem 1. Suppose Algorithm1 is called with a fair scheduler, and the OTFIPA
problem can be encoded into a WPDS model checking problem. Then Algorithm1
terminates and returns the results of solving the OTFIPA problem. ��

Example 2. In Fig. 6, we illustrate how to conduct a sliding-window analysis for
the OTFIPA problem in Fig. 2. The analysis consists in five iterations, and the
figures show the weighted P-automaton constructed in each iteration after Line
9 in Algorithm 1, respectively. An edge t in the automaton is labelled with a
pair (γ,w) of the alphabet symbol γ and its weight, i.e., l(t). Suppose that a
single method is analyzed for each iteration, i.e., the size of a sliding window is
set to be |Mw| = 1.

The algorithm starts with analyzing the method main (Fig. 6(a)), and gen-
erates a summary edge shown in the dashed line. Since

−→
d [n2] is updated, the

method bar would be affected. Then it analyzes bar in Fig. 6(b). Here, one has to
know the program environment at n4 to judge which conditional branch should
be taken. Thanks to caching the summary edge (q�,ebar , (∗, w1), qf) that is gener-
ated in (a), one can read out the current analysis result

−→
d [n4] = [x �→ 2, y �→ 0]

in (b), and knows that the method foo will be invoked. Since
−→
d [n5] is updated,

294 X. Li and M. Ogawa

qf

q ,ebar

(emain, 1̄)

(n3, w1)

(n0, 1̄); (n1, τ0); (n2, τ0 ⊗ τ1)

(∗, w1)

(a) 1th iteration

q ,ebar

q ,efoo

qf

(ebar, 1̄)

(n4, 1̄); (n5, 1̄)

(n6, τ3)

(∗, w1)

(∗, w2)

(b) 2th iteration

q ,efoo qf

(efoo, 1̄)

(n9, 1̄); (xfoo, τ4); (ε, τ4 ⊗ τ5)

(∗, w2)

(c) 3th iteration

q ,ebar

q ,efoo

qf

(ebar, 1̄)

(n4, 1̄); (n5, 1̄); (n6, w3);
(xbar, w3); (ε, w4)

(n6, τ3)

(∗, w1)

(∗, w2)(ε, τ4 ⊗ τ5)

(d) 4th iteration

qf

q ,ebar

(emain, 1̄)

(n3, w1)

(n0, 1̄); (n1, τ0); (n2, τ0 ⊗ τ1);
(n3, w5); (xmain, w5)

(∗, w1)
(ε, w4)

(e) 5th iteration

Fig. 6. A sliding-window analysis for the example in Fig. 2, where w1 = τ0 ⊗ τ1 ⊗ τ2;
w2 = w1 ⊗ τ3; w3 = τ3 ⊗ τ4 ⊗ τ5; w4 = w3; w5 = w1 ⊗ w4

the method foo would be affected and is analyzed in Fig. 6(c). Since
−→
d [xfoo]

is updated, the calling method bar would be affected and is analyzed again in
Fig. 6(d), where the pop transition (�, (ε, τ4 ⊗τ5), q�,efoo) that is newly-generated
in (c) is stored into the automaton before the saturation procedure starts.
After the analysis at this iteration,

−→
d [xbar] is updated, then its caller main

would be affected and is analyzed again in Fig. 6(e), where the pop transition
(�, (ε, w4), q�,ebar) that is newly-generated in (d) is stored into the automaton
before the saturation procedure starts. Finally, we can read out the analysis
result

−→
d [xmain] = [x �→ 2, y �→ 2] at the program exit xmain, which tells that both

x and y are constants through the program execution.

5 Experiments

We developed a points-to analyser for Java called mJapot by instantiating the
SwaOTFIPA algorithm, following the context-sensitive, field-sensitive, and flow-
insensitive Java points-to analysis by WPDS in [6]. In our analysis, we used and
extended the WPDS model checker jMoped2 as the backend analysis engine, for
computing forward saturations and reading out analysis results in each sliding
window analysis. We use Soot 2.5.0 [11] for preprocessing from Java to Jimple
codes which our points-to analyzer was built upon. We evaluate mJapot on the
Ashes benchmark suite3 and the DaCapo benchmark suite [1] given in the #App.

2 https://www7.in.tum.de/tools/jmoped/.
3 http://www.sable.mcgill.ca/ashes.

https://www7.in.tum.de/tools/jmoped/
http://www.sable.mcgill.ca/ashes

A Sliding-Window Algorithm 295

Table 1. Comparison between the whole-program analysis and the SwaOTFIPA-based
sliding-window analysis, where means time out (>2 h).

App. # WPA (s) # SWA (s) # Acc. # Methods # Stmts

k = ∞ k = 5000 k = 3000 CHA mJapot (mJapot)

soot-c 250 153 140 139 1.8 5460 5079 83,936

sablecc-j 616 194 209 204 3.2 13,055 9068 144,584

antlr 656 365 390 348 1.9 10,728 9133 156,913

pmd 669 313 478 332 2.1 12,485 10,406 180,170

hsqldb 350 186 175 180 2.0 9983 8394 142,629

xalan 385 176 185 193 2.2 9977 8392 141,415

luindex 438 190 189 202 2.3 10,596 8961 152,592

lusearch 436 219 216 227 2.0 11,190 9580 163,958

eclipse 767 382 455 383 2 12,703 10,404 179,539

bloat 4748 4894 4778 >1.5 12,928 11,090 194,063

jython 4633 4857 2924 >2.5 14,603 12,033 202,326

chart 30,831

column in Table 1. These applications are de facto benchmarks when evaluating
Java points-to analysis. We analyze DaCapo benchmark with JDK 1.5, and
Ashes benchmarks for which JDK 1.3 suffices. All experiments were performed
on a Mac OS X v.10.9.2 with 1.7 GHz Intel Core i7 processor, and 8 GB RAM.
A 4 GB RAM is allocated for Java virtual machine.

To measure the performance of points-to analysis, we take call graph gener-
ation in terms of reachable methods as client analysis. Table 1 shows the pre-
liminary experimental results. The number of reachable methods is given in the
“# Methods” column with taking Java libraries into account. The sub-column
“CHA” is the result by conducting CHA of Spark in soot-2.5.0. The sub-column
“mJapot” gives results computed by our incremental points-to analysis, and the
“# Statements” column gives the number of Jimple statements that mJapot
analyzed. The “# WPA” and “# SWA” columns give the time in seconds of the
whole-program analysis and sliding-window analysis, respectively. In the table,
k is the size of the sliding window, i.e., the number of the methods analyzed in
each iteration.

We set a bound k on the number of methods of each sliding window, shown
in the sub-column “k = ∞”, “k = 5000” and “k = 3000”, respectively, where
k = ∞ means that we take all methods from the current workset for the analysis.
We show the smallest number in bold type. As shown in the “# Acc.” column,
over all the experiments we performed, SWA provided us an average 2X speedup
over WPA. Note that, it performs almost the same when the size of sliding win-
dow changes for most benchmarks expect for “jython”, which indicates that the
algorithm can be useful for analyses having a limited memory budget. Besides,
the number of reachable methods detected by CHA are reduced by 16% using

296 X. Li and M. Ogawa

mJapot. Note that mJapot is more efficient than Japot [6] because the backend
model checker was changed from the one in C to the one in Java. Since the
frontend analyzer is implemented in Java, it reduced the huge disk IO time for
exchanging information between the model checker and the analyzer.

6 Conclusion

We studied the OTFIPA problems, for which one could not assume a prior
interprocedural control flow of the program, and therefore, the discovery of the
program coverage is often mutually dependent on the analysis problem, such as
Java points-to analysis. We give a general formalization of the OTFIPA problem,
and present a sliding-window algorithm for it. Our algorithm is conducted in a
sliding window fashion that iteratively analyzes the program in an arbitrary set
of methods, which can be useful for analysis having a tight memory budget. We
implemented the algorithm and evaluated it with a context-sensitive points-to
analysis for Java. The preliminary empirical study confirmed the effectiveness of
our approach.

Acknowledgment. We would like to thank anonymous referees for useful com-
ments. The work has been partially supported by Shanghai Pujiang Program
(No. 17PJ1402200), the JSPS KAKENHI Grant-in-Aid for Scientific Research(B)
(15H02684) and the JSPS Core-to-Core Program (A. Advanced Research Networks).

References

1. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development
and analysis. In: Proceedings of the 21st Annual ACM SIGPLAN Conference on
Object-Oriented Programing, Systems, Languages, and Applications, OOPSLA
2006, pp. 169–190. ACM, New York (2006)

2. Conway, C.L., Namjoshi, K.S., Dams, D., Edwards, S.A.: Incremental algorithms
for inter-procedural analysis of safety properties. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, pp. 449–461. Springer, Heidelberg (2005).
doi:10.1007/11513988 45

3. Cousot, P., Cousot, R.: Modular static program analysis. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 159–179. Springer, Heidelberg (2002). doi:10.1007/
3-540-45937-5 13

4. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for
model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000). doi:10.1007/
10722167 20. http://dl.acm.org/citation.cfm?id=647769.734087

5. Lal, A., Reps, T.: Improving pushdown system model checking. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 343–357. Springer, Heidelberg (2006).
doi:10.1007/11817963 32

6. Li, X., Ogawa, M.: Stacking-based context-sensitive points-to analysis for Java. In:
Namjoshi, K., Zeller, A., Ziv, A. (eds.) HVC 2009. LNCS, vol. 6405, pp. 133–149.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19237-1 14

http://dx.doi.org/10.1007/11513988_45
http://dx.doi.org/10.1007/3-540-45937-5_13
http://dx.doi.org/10.1007/3-540-45937-5_13
http://dx.doi.org/10.1007/10722167_20
http://dx.doi.org/10.1007/10722167_20
http://dl.acm.org/citation.cfm?id=647769.734087
http://dx.doi.org/10.1007/11817963_32
http://dx.doi.org/10.1007/978-3-642-19237-1_14

A Sliding-Window Algorithm 297

7. Reps, T., Lal, A., Kidd, N.: Program analysis using weighted pushdown systems. In:
Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 23–51. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-77050-3 4

8. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. Sci. Comput. Program. 58(1–2),
206–263 (2005)

9. Sagiv, M., Reps, T., Horwitz, S.: Precise interprocedural dataflow analysis with
applications to constant propagation. Theor. Comput. Sci. 167(1–2), 131–170
(1996). http://dx.doi.org/10.1016/0304-3975(96)00072-2

10. Schwoon, S.: Model-checking pushdown systems. Ph.D. thesis (2002)
11. Vallée-Rai, R., Gagnon, E., Hendren, L., Lam, P., Pominville, P., Sundaresan, V.:

Optimizing Java bytecode using the soot framework: is it feasible? In: Watt, D.A.
(ed.) CC 2000. LNCS, vol. 1781, pp. 18–34. Springer, Heidelberg (2000). doi:10.
1007/3-540-46423-9 2

12. Yorsh, G., Yahav, E., Chandra, S.: Generating precise and concise procedure sum-
maries. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2008, pp. 221–234. ACM, New
York (2008). http://doi.acm.org/10.1145/1328438.1328467

http://dx.doi.org/10.1007/978-3-540-77050-3_4
http://dx.doi.org/10.1016/0304-3975(96)00072-2
http://dx.doi.org/10.1007/3-540-46423-9_2
http://dx.doi.org/10.1007/3-540-46423-9_2
http://doi.acm.org/10.1145/1328438.1328467

Exploring Design Alternatives for RAMP
Transactions Through Statistical

Model Checking

Si Liu1, Peter Csaba Ölveczky1,2(B), Jatin Ganhotra3, Indranil Gupta1,
and José Meseguer1

1 University of Illinois, Urbana-Champaign, USA
2 University of Oslo, Oslo, Norway

peterol@ifi.uio.no
3 IBM Research, New York, USA

Abstract. Arriving at a mature distributed system design through
implementation and experimental validation is a labor-intensive task.
This limits the number of design alternatives that can be explored in
practice. In this work we use formal modeling with probabilistic rewrite
rules and statistical model checking to explore and extend the design
space of the RAMP (Read Atomic Multi-Partition) transaction system
for large-scale partitioned data stores. Specifically, we formally model in
Maude eight RAMP designs, only two of which were previously imple-
mented and evaluated by the RAMP developers; and we analyze their
key consistency and performance properties by statistical model check-
ing. Our results: (i) are consistent with the experimental evaluations of
the two implemented designs; (ii) are also consistent with conjectures
made by the RAMP developers for other unimplemented designs; and
(iii) uncover some promising new designs that seem attractive for some
applications.

1 Introduction

The Problem. Distributed systems are remarkably hard to get right, both
in terms of their correctness and in meeting desired performance requirements.
Furthermore, in cloud-based storage systems, correctness and performance prop-
erties are intimately intertwined: designers must choose between stronger consis-
tency guarantees and better performance. In this paper we systematically explore
the design space of the RAMP (Read Atomic Multi-Partition) transaction sys-
tem for large-scale partitioned data stores [5,6], which offers high performance
but a fairly weak consistency guarantee: read atomicity (RA).

Arriving at a good design of a cloud storage system with both performance
and correctness requirements is highly non-trivial. Building such a system is
challenging. To improve its performance the only available option is making
changes to a large source code base. This is labor-intensive, has a high risk
of introducing new bugs, and is not repeatable. In practice, very few design
c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 298–314, 2017.
https://doi.org/10.1007/978-3-319-68690-5 18

Exploring Design Alternatives for RAMP Transactions 299

alternatives can be explored in this way. In the case of RAMP, three designs were
explored in detail, and three more were sketched out but not implemented. Even
for the implemented designs, only a limited number of performance parameters
were actually evaluated, due to the effort involved in experimental evaluation.

Our Proposed Solution. Since design errors can be orders of magnitude more
costly than coding errors, the most cost-effective application of formal meth-
ods is during the system design, to maximize the chances of arriving at a good
design before the system is implemented. In this way, formal methods can bring
the power of the Gedankenexperiment to system design, greatly increasing the
capacity of designers to explore design alternatives and subject them to rigorous
analysis before implementation. For cloud storage systems, where correctness
and performance are intertwined, the formal method should support: (i) exe-
cutability, so that specifications can serve as system prototypes; (ii) qualitative
analysis of correctness properties with a Yes/Counterexample answer; and (iii)
quantitative analysis of performance properties.

In previous work [15], we used Maude [9] to develop formal, executable spec-
ifications of several RAMP designs, some proposed by the RAMP designers and
some by us; and model checked such specifications in Maude to analyze consis-
tency properties, thus meeting above requirements (i)–(ii). In this work we meet
requirement (iii) by extending our previous specifications of RAMP designs to
probabilistic rewrite theories [3] and exploring in depth various performance and
consistency properties for eight RAMP designs, six of them never implemented
before, through statistical model checking [18,20] using PVeStA [4].

Main Contributions. Our first main contribution is methodological. It applies
not just to RAMP designs, but more broadly to the design of complex distrib-
uted systems with non-trivial correctness and performance requirements. Using
RAMP as a case study, we illustrate in detail a formal method by which: (i)
designers can easily and quickly develop formal executable models of alterna-
tive designs for a system; (ii) system behavior can be specified with probabilistic
rewrite rules; (iii) alternative system designs can then be thoroughly analyzed
through statistical model checking to measure and compare them against each
other along various performance and correctness dimensions; and, as we show,
(iv) a thorough analysis, widely ranging in properties and parameter choices,
can be easily achieved, whereas a similar experimental evaluation would require
prior implementation and a large effort.

A second key contribution is the uncovering by the above method of several
unimplemented RAMP designs that seem promising alternatives to the three
already implemented. Specifically: (1) the RAMP-F+1PW design sketched in [5]
outperforms all others if read atomicity must be guaranteed; and (2) our new
RAMP-Faster design provides the best performance in terms of throughput,
latency, and strong consistency for workloads with 25%–75% write transactions,
while still providing read atomicity for more than 93% of the transactions. Mod-
eling analyses do not provide as much assurance as experimental evaluations;
however, our evaluations: (i) are consistent with those in [5,6] for the properties
measured experimentally for the implemented designs; (ii) are also consistent

300 S. Liu et al.

with the conjectures by the RAMP designers for their unimplemented designs;
and (iii) subject the eight designs to a wider range of properties—and parameter
variations for each property—than previous experimental evaluation, thus pro-
viding further insights about both the implemented and unimplemented designs.

The rest of the paper is organized as follows. Section 2 gives some background
on RAMP, Maude, and statistical model checking with PVeStA. Section 3
presents our new RAMP design alternative, RAMP-Faster. Section 4 shows how
we can specify our RAMP designs as probabilistic rewrite theories. Section 5
explains how we can evaluate the performance of the designs for different per-
formance parameters and workloads, and shows the results of these evaluations.
Section 6 discusses related work, and Sect. 7 gives some concluding remarks.

2 Preliminaries

2.1 Read-Atomic Multi-Partition (RAMP) Transactions

To deal with ever-increasing amounts of data, distributed databases partition
their data across multiple servers. Unfortunately, many real-world systems do
not provide useful semantics for transactions accessing multiple partitions, since
the latency needed to ensure correct multi-partition transactional access is often
high. In [5,6], Bailis et al. propose a new isolation model, read atomic (RA)
isolation, and Read Atomic Multi-Partition (RAMP) transactions, that together
provide efficient multi-partition operations with the following guarantee: either
all or none of a transaction’s updates are visible to other transactions.

RAMP transactions use metadata and multi-versioning. Metadata is attached
to each write, and the reads use this metadata to get the correct version. There
are three versions of RAMP, which offer different trade-offs between the size of
the metadata and performance: RAMP-Fast, RAMP-Small, and RAMP-Hybrid.
This paper focuses on RAMP-Fast and RAMP-Small, which lie at the end
points. To guarantee that all partitions perform a transaction successfully or that
none do, RAMP performs two-phase writes using the two-phase commit proto-
col (2PC). 2PC involves two phases: In the prepare phase, each timestamped
write is sent to its partition, which adds the write to its local database. In the
commit phase, each such partition updates an index which contains the highest-
timestamped committed version of each item stored at the partition. The RAMP
algorithms in [5] only deal with read-only and write-only transactions.

RAMP-Fast (abbreviated RAMP-F). In RAMP-Fast, read operations require
one round trip time delay (RTT) in the race-free case, and two RTTs in the
worst case; writes require two RTTs. Read transactions first fetch the highest-
timestamped committed version of each requested data item from the corre-
sponding partition, and then decide if they have missed any version that has
been prepared but not yet committed. The timestamp and the metadata from
each version read induce a mapping from items to timestamps that records the
highest-timestamped write for each transaction, appearing in the first-round read
set. If the reader has a lower timestamp version than indicated in the mapping for

Exploring Design Alternatives for RAMP Transactions 301

that item, a second-round read will be issued to fetch the missing version. Once
all the missing versions have been fetched, the client can return the resulting
set of versions, which includes both the first-round reads as well as any missing
versions fetched in the second round of reads.

RAMP-Small (abbreviated RAMP-S). RAMP-Small read transactions proceed
by first fetching the highest committed timestamp of each requested data item;
the readers then send the entire set of those timestamps in a second message. The
highest-timestamped version that also exists in the received set will be returned
to the reader by the corresponding partition. RAMP-Small transactions require
two RTTs for reads and writes. RAMP-Small writes only store the transaction
timestamp, instead of attaching the entire write set to each write.

Extensions of RAMP. The paper [5] briefly discusses the following extensions
and optimizations of the basic RAMP algorithms, but without giving any details:

– RAMP with one-phase writes (RAMP-F+1PW and RAMP-S+1PW), where
writes only require one prepare phase, as the client can execute the commit
phase asynchronously.

– RAMP with faster commit detection (RAMP-F+FC). If a server returns a
version with the timestamp fresher than the highest committed version of
the item, then the server can mark the version as committed.

In [15] we formalized these extensions in Maude and used Maude model checking
to analyze their correctness properties. In [15] we also developed two new RAMP-
like designs on our own, where RAMP-F and RAMP-S are executed without
two-phase commit (denoted RAMP-F¬2PC and RAMP-S¬2PC). This allows
interleaving the prepare phase and the commit phase (unlike RAMP where those
two phases are strictly ordered).

2.2 Rewriting Logic and Maude

In rewriting logic [17] a concurrent system is specified as a rewrite theory (Σ,E∪
A,R), where (Σ,E ∪ A) is a membership equational logic theory [9], with Σ an
algebraic signature declaring sorts, subsorts, and function symbols, E a set of
conditional equations, and A a set of equational axioms. It specifies the system’s
state space as an algebraic data type. R is a set of labeled conditional rewrite
rules, specifying the system’s local transitions, of the form [l] : t −→ t′ if cond ,
where cond is a condition and l is a label. Such a rule specifies a transition from
an instance of t to the corresponding instance of t′, provided the condition holds.

Maude [9] is a language and tool for specifying, simulating, and model check-
ing rewrite theories. The distributed state of an object-oriented system is formal-
ized as a multiset of objects and messages. An object of class C is modeled as a
term < o : C | att1 : v1, att2 : v2, ..., attn : vn >, where o is its object
identifier, and where the attributes att1 to attn have the current values v1 to vn,
respectively. Upon receiving a message, an object can change its state and/or
send messages to other objects. For example, the rewrite rule (with label l)

302 S. Liu et al.

rl [l] : m(O,z) < O : C | a1 : x, a2 : O’ >

=> < O : C | a1 : x + z, a2 : O’ > m’(O’,x + z) .

defines a transition where an incoming message m, with parameters O and z, is
consumed by the target object O of class C, the attribute a1 is updated to x + z,
and an outgoing message m’(O’,x + z) is generated.

2.3 Statistical Model Checking and PVeStA

Probabilistic distributed systems can be modeled as probabilistic rewrite
theories [3] with rules of the form

[l] : t(−→x) −→ t′(−→x ,−→y) if cond(−→x) with probability −→y := π(−→x)

where the term t′ has additional new variables −→y disjoint from the variables −→x
in the term t. For a given matching instance of the variables −→x there can be
many ways to instantiate the extra variables −→y . The values of these variables−→y are drawn/sampled according to the probability distribution π(−→x), which
depends on the matching instance of −→x .

Statistical model checking [18,20] is an attractive formal approach to analyz-
ing probabilistic systems against temporal logic properties. Instead of offering a
yes/no answer, it can verify a property up to a user-specified level of confidence
by running Monte-Carlo simulations of the system model. Existing statistical
verification techniques assume that the system is purely probabilistic. Using the
methodology in [3] we can eliminate nondeterminism in the choice of firing rules.
We then use PVeStA [4], a parallelization of the tool VeStA [19], to statisti-
cally model check purely probabilistic systems against properties expressed by
QuaTEx probabilistic temporal logic [3]. The expected value of a QuaTEx
expression is iteratively evaluated w.r.t. two parameters α and δ provided as
input by sampling until the size of (1-α)100% confidence interval is bounded by
δ, where the result of evaluating a formula is a real number.

3 The RAMP-Faster Design

We developed two new RAMP-like designs already in [15]. More recently, we
have developed a third design, called RAMP-Faster, which also decouples two-
phase commitment. It commits a write transaction in one RTT instead of the
two RTTs required by writes in RAMP and RAMP without two-phase commit.

In RAMP-F, upon receiving a prepare message, the partition adds the
timestamped write to its local database, and upon receiving the commit mes-
sage, updates an index containing the highest-timestamped committed version of
each item. Instead, in RAMP-Faster, a partition performs both operations upon
receiving the prepare message, and hence requires only one RTT. Note that all
information required to complete the two operations is provided by the prepare
message: RAMP-Faster does not need to store more data than RAMP-F.

Exploring Design Alternatives for RAMP Transactions 303

Since each write in RAMP-Faster needs only one RTT, it should incur lower
latency per transaction and provide higher throughput. Since writes are faster, it
also seems reasonable to conjecture that there is a higher chance that reads fetch
the latest write; this means that RAMP-Faster should provide better consis-
tency1 than other RAMP designs. Even though RAMP-Faster does not guaran-
tee read atomicity, as the client does not ensure that each partition has received
the prepare message before issuing the commit message, it would be interesting
to check whether RAMP-Faster indeed provides better performance, and a high
degree of read atomicity, for classes of transactions encountered in practice. If
so, RAMP-Faster would be an attractive option for multi-partition transactions
where read atomicity, good consistency properties, and low latency are desired.

4 Probabilistic Modeling of RAMP Designs

In [15] we describe how RAMP and its variations can be modeled in Maude for
correctness analysis purposes. The state consists of a number of objects mod-
eling partitions < pi : Partition | versions : ver, latestCommit : lc >, with
ver the versions of the items in the partition, and lc the timestamp of the lat-
est commit of each item; and objects modeling clients < cj : Client | transac :
txns, sqn : n, pendingOps : ops, pendingPrep : pw, 1stGets : 1st, latest :
latest >, with txns a list of transactions the client wants to issue, n the sequence
number used to determine timestamps, ops the pending reads/writes, pw the
pending writes in the prepare phase, 1st the pending first-round reads, and latest
a map from each item to its latest committed timestamp.

The models in [15] are untimed, non-probabilistic, and nondeterministic, so
that Maude LTL model checking analyzes all possible interleavings. In this paper
we are interested in estimating the performance (expected latency, percentage
of transactions satisfying certain properties, etc.) of our designs. We therefore
need to: (i) include time and probabilities in our models, and (ii) eliminate any
nondeterminism, so that our models become purely probabilistic and can be
subjected to statistical model checking.

To address both of these issues, following [3], we probabilistically assign to
each message a delay. If each rewrite rule is triggered by the arrival of a message,
and the delay is sampled probabilistically from a dense/continuous time interval,
then the probability that two messages have the same delay is 0. Hence no two
actions could happen at the same time, eliminating nondeterminism.

Nodes send messages of the form , where Δ is the message
delay, rcvr the recipient, and msg the message content. When time Δ has elapsed,
this message becomes a ripe message , where T is the “current
global time” (used for analysis purposes only). Such a ripe message must then
be consumed by the receiver rcvr before time advances.

1 “Consistency” in such a non-replicated setting is understood as reads reading the
“latest writes.”

304 S. Liu et al.

We show an example of how we have transformed the untimed non-proba-
bilistic rewrite rules in [15] to the timed and probabilistic setting. All our models
are available at https://sites.google.com/site/siliunobi/ramp-smc.

The following rewrites rules describe how a partition reacts when it receives
a commit message from the client O’ with transaction ID TID, operation ID
ID, and timestamp ts(O’, SQN’). The partition O invokes the function cmt to
update the latest commit timestamp in the set latestCommit with the fresher
timestamp of the incoming one and the local one; it then notifies the client to
commit the write by sending the message committed. The difference between the
untimed version ([...-untimed]) and the probabilistic version ([...-prob]) is
that in the latter, the outgoing message committed is equipped with a delay D
sampled from the probability distribution distr(...).2

rl [on-receive-commit-untimed] :

commit(TID, ID, ts(O’, SQN’)) from O’ to O

< O : Partition | versions : VS, latestCommit : LC >

=>

< O : Partition | versions : VS, latestCommit : cmt(LC, VS, ts(O’, SQN’)) >

committed(TID, ID) from O to O’ .

crl [on-receive-commit-prob] :

{T, O <- commit(TID, ID, ts(O’, SQN’), O’)}

< O : Partition | versions: VS, latestCommit: LC, AS >

=>

< O : Partition | versions: VS, latestCommit: cmt(...), AS >

[D , O’ <- committed(TID, ID, O)]

with probability D := distr(...) .

We next illustrate how easily we can specify different RAMP designs.
The main difference between the different versions of RAMP is how writes

are committed; i.e., what happens when a node receives a prepared message. In
the original RAMP, a client needs to check if all prepared messages are received
(by checking if IDS’ is empty) before starting to commit each write operation
(using the function startCommit to generate all commit messages):3

crl [receive-prepared-with-2PC] :

{T, O <- prepared(TID, ID, O’)}

< O : Client | pendingPrep: IDS, pendingOps: OI, sqn: SQN, AS >

=>

< O : Client | pendingPrep: IDS’, pendingOps: OI, sqn: SQN, AS >

(if IDS’ == empty then startCommit(TID, OI, SQN, O) else null fi)

if IDS’ := delete(ID,IDS) .

RAMP-Faster integrates the two phases in writes: upon receiving a prepare
message, the partition adds the incoming version to its local database VS, and
2 We do not show the variable declarations, but follow the Maude convention that

variables are written with (all) capital letters.
3 The variable AS of sort AttributeSet denotes the “other attributes” of the object.

https://sites.google.com/site/siliunobi/ramp-smc

Exploring Design Alternatives for RAMP Transactions 305

also updates the index containing the highest-timestamped committed version
of the item by invoking the function cmt:

crl [receive-prepare-faster] :

{T, O <- prepare(TID, ID, X, V, ts(O’, SQN), MD, O’)}

< O : Partition | versions: VS, latestCommit: LC, AS >

=>

< O : Partition | versions: VS’,

latestCommit: cmt(LC, VS’, ts(O’, SQN)), AS >

[D, O’ <- committed(TID, ID, O)]

if VS’ := (v(X, V, ts(O’, SQN), MD), VS) with probability D := distr(...) .

5 Quantitative Analysis of RAMP Designs

The main difference between the RAMP designs in [5] and the three new designs
we have proposed is that those in [5] guarantee read atomicity whereas ours do
not. On the other hand, we conjecture that (at least) RAMP-Faster may provide
not only better performance (throughput, average latency, etc.) but also better
“consistency,” in the sense of reads more often reading the latest value written.

In this section we compare the performance—along a number of performance
parameters, including throughput, average latency, percentage of strongly con-
sistent reads4—of the different RAMP designs using statistical model checking.

5.1 Extracting Performance Measures from Executions

For analysis purposes we add an object < record : Monitor | log: log >,
which stores crucial information about each transaction, to the state. The log is a
list of items record(tid , issueTime, commitTime, client , result , 2RoundReads),
with tid the transaction’s ID, issueTime its issue time, commitTime its commit
time, client the identifier of the client issuing the transaction, result the values
read/written by the transaction, and 2RoundReads a flag that is true if the
transaction required second-round reads.

We refine our models by updating the Monitor when needed. For example,
when a client has received all committed messages (allOpsCommitted(...)),
the monitor records the commit time (T) for that transaction. The client then
also issues its next transaction, if any:

crl [receive-committed] :

{T , O <- committed(TID, ID, O’)}

< M : Monitor | log: (LOG record(TID, T4, T’, O, R, F) LOG’) >

< O : Client | transac: TRS, sqn: SQN, pendingOps: OI, AS >

=>

if allOpsCommitted(TID,OI’) *** commit a write txn ***

then < M : Monitor | log: (LOG record(TID, T4, T , O, R, F) LOG’) >

4 Strong consistency is not evaluated in [5].

306 S. Liu et al.

< O : Client | transac: TRS, sqn: s SQN, pendingOps: OI’, AS >

(if TRS =/= nil then [0.0, O <- next] else null fi)

else < M : Monitor | log: (LOG record(TID, T4, T’, O, R, F) LOG’) >

< O : Client | transac: TRS, sqn: SQN, pendingOps: OI’, AS > fi

if OI’ := remove(ID,OI) .

We can now define a number of functions on (states with) such a monitor
that extract different performance parameters from the “system execution log.”

Throughput. The function throughput computes the number of committed
transactions per time unit. size computes the length of LOG, and totalRunTime
the time when all transactions are committed (the largest commitTime in LOG):

var C : Config .

op throughput : Config -> Float [frozen] .

eq throughput(< M : Monitor | log: LOG > C) = size(LOG) / totalRunTime(LOG) .

Average Latency. The function avgLatency computes the average transaction
latency by dividing the sum of all transaction latencies by the number of trans-
actions. The first argument of the function $avgLatency computes the sum of
all transaction latencies (time between the issue time and the commit time of a
transaction), and the second argument computes the number of transactions:

op avgLatency : Config -> Float [frozen] .

op $avgLatency : Float Float Records -> Float .

eq avgLatency(< M : Monitor | log: LOG > C) = $avgLatency(0.0, 0.0, LOG) .

eq $avgLatency(N1, N2, (record(TID1, T1, T1’, O1, R, F) LOG))

= $avgLatency(N1 + (T1’ - T1), N2 + 1.0, LOG) .

eq $avgLatency(N1, N2, nil) = N1 / N2 .

Strong Consistency. Strong consistency means that each read transaction
returns the value of the last write transaction that occurred before that read
transaction. As all transactions from different clients can be totally ordered by
their issuing times (stored in Monitor), we can define a function that computes
the fraction of read-only transactions which satisfy strong consistency: For each
read transaction in log , it checks if the values read match those of the last write
transaction. We refer to our report [14] for the specification of this function.

Read Atomicity. A system provides read atomic isolation if it prevents fractured
reads, and also prevents transactions from reading uncommitted, aborted, or
intermediate data. A transaction Tj exhibits fractured reads if transaction Ti

writes version xm and yn, Tj reads version xm and version yk, and k < n [5].
The function ra computes the fraction of read transactions which satisfy read

atomic isolation. For each read transaction in log , it checks if its stored values
match those of any write transaction (see [14] for the definition of ra).

Exploring Design Alternatives for RAMP Transactions 307

5.2 Generating Initial States

Statistical model checking verifies a property up to a user-specified level
of confidence by running Monte-Carlo simulations from a given initial
state. We use an operator init to probabilistically generate initial states.
init(rtx,wtx, clients) generates an initial state with rtx number of read-
only transactions, wtx number of write-only transactions, and clients number
of clients. We use two partitions and two data items x and y, with each parti-
tion storing one data item. The following parts of the initial states are chosen
probabilistically by uniform sampling from the given distribution: (i) whether a
read-only or write-only transaction is generated next, and (ii) which client is the
issuer of the generated transaction. Each transaction consists of two operations,
on different data items.

Each PVeStA simulation starts from init(rtx,wtx,clients), which
rewrites to a different initial state in each simulation. init is defined as fol-
lows:

op init : NzNat NzNat NzNat -> Config .

eq init(RTX, WTX, CLIENTS)

= {0 | nil} < record : Monitor | log: nil >

< x : Partition | versions: (v(x, 0, null, empty)),

latestCommit: (x |-> ts(0, 0)) >

< y : Partition | versions: (v(y, 0, null, empty)),

latestCommit: (y |-> ts(0, 0)) >

generateClientsAndTranses(RTX, WTX, CLIENTS) .

When generating clients and transactions, we first generate the clients; then
we generate the next transaction and assign it probabilistically to some client:

op generateClientsAndTranses : NzNat NzNat NzNat -> Config .

op genCT : Nat Nat Nat NzNat Config -> Config .

eq generateClientsAndTranses(RTX, WTX, CLIENTS)

= genCT(RTX, WTX, CLIENTS, CLIENTS, null) .

*** first generate clients and add then to the last parameter:

eq genCT(RTX, WTX, s CLIENTS, CLIENTS2, C)

= genCT(RTX, WTX, CLIENTS, CLIENTS2, C

< s CLIENTS : Client | transac: nil, sqn: 1, pendingOps: empty,

pendingPrep: empty, 1stGets: empty,

latest: empty, result: nil > {d,s CLIENTS <- start}) .

When all clients have been generated, we generate transactions one by one,
and assign each one to a client. The following probabilistic rule treats the case
when the number of clients left to generate is 0, and the number of read (s RTX

(= RTX+ 1)) and write (s WTX) transactions to generate both are greater than 0:

crl [genTrans] :

genCT(s RTX, s WTX, 0, CLIENTS, C)

308 S. Liu et al.

=>

if R-OR-W < s RTX *** new read transaction

then genCT(RTX, s WTX, 0, CLIENTS, addReadTrans(CLIENT + 1, C))

else genCT(s RTX, WTX, 0, CLIENTS, addWriteTrans(CLIENT + 1, C)) fi

with probability R-OR-W := sampleUniWithInt(s RTX + s WTX) /\

CLIENT := sampleUniWithInt(CLIENTS) .

This rule first probabilistically decides whether the next transaction is a read or
a write transaction. Since the probability of picking a read transaction should
be #readsLeft

#txnLeft , it uniformly picks a value R-OR-W from [0, . . . ,#txnLeft − 1] (the
number of transactions left to generate is s RTX + s WTX) using the expression
sampleUniWithInt(s RTX + s WTX). If the value picked is in [0, . . . ,#readsLeft − 1]
(< s RTX), we generate a new read transaction next (then branch); otherwise we
generate a new write transaction (else branch). But which client should issue
the transaction? The clients have identities 1, 2, . . . , n, where n is the number of
clients (CLIENTS). The expression sampleUniWithInt(CLIENTS) + 1 (i.e., CLIENT + 1)
gives us the client, sampled uniformly from [1, . . . , n].

When there are no more transactions or clients left to generate, genCT returns
the generated client objects (each with a list of transactions to issue):

eq genCT(0, 0, 0, CLIENTS, C) = C .

We refer to the technical report [14] for the full definition of genCT.

5.3 Statistical Model Checking Results

This section shows the result of the PVeStA statistical model checking from
the initial states in Sect. 5.2 to compare all eight RAMP versions w.r.t. the
performance and consistency measures defined in Sect. 5.1.

We use the lognormal distribution for message delay with mean μ = 0.0
and standard deviation σ = 1.0 [8]. All properties are computed with a 99%
confidence level of size at most 0.01 (Sect. 2.3). We could not find the distribution
used in [5] for message delays, so we use those in [13]. Due to the large number
of simulations needed to obtain 99% statistical confidence, our analyses consider
a limited number of data items (2), operations per transaction (2), clients (up to
50), and transactions (up to 400). We consider not only the 95%/5% read/write
proportion workloads in [5], but also explore how the RAMP designs behave for
different read/write proportions (with 25 clients).

Throughput. Figure 1 shows the results of analyzing throughput against the num-
ber of concurrent clients (left) and percentage of read transactions (right).5

For the original RAMP designs, under a 95% read proportion, as the number
of clients increases, both RAMP-F and RAMP-S’s throughput increases, and
RAMP-F provides higher throughput than RAMP-S. As the read proportion
increases, RAMP-F’s throughput increases, while RAMP-S’s throughput keeps

5 Larger versions of our figures can be found in the report [14].

Exploring Design Alternatives for RAMP Transactions 309

Fig. 1. Throughput under varying client and read load.

nearly constant; and RAMP-F also outperforms RAMP-S in throughput. These
observations are consistent with the experimental results in [5].

There are no conjectures in [5] about the throughput of the designs that
were only sketched there. We observe that, unlike other RAMP-F-like algo-
rithms, whose throughput increases as read activities increase, RAMP-F+1PW’s
throughput keeps high with all reads/writes. As the right plot shows, when there
are more writes, RAMP-F+1PW and RAMP-Faster perform better than other
RAMP-F-like designs. This happens because RAMP-F requires two RTTs for
a write, RAMP-F+1PW needs only one RTT and RAMP-Faster, our proposed
design, performs commit when the prepare message is received.

RAMP-F¬2PC and RAMP-S¬2PC are not competitive with RAMP-F and
RAMP-S, respectively. The reason is that, although they sacrifice 2PC, they still
need to commit each write operation before committing the write transaction,
which brings no apparent improvement in throughput.

Average Latency. Figure 2 shows the average transaction latency as the num-
ber of concurrent clients (left) and the proportion of read transactions (right)
increases. Under a 95% read proportion, as the number of clients increases, the

Fig. 2. Average transaction latency under varying client and read load.

310 S. Liu et al.

RAMP-F versions’ average latency increases slightly, and the RAMP-S versions
are almost twice as slow as the RAMP-F versions. And although RAMP-F+1PW
and RAMP-S+1PW as expected have lower latencies than RAMP-F and RAMP-
S, respectively, the differences are surprisingly small. In the same way, removing
2PC does not seem to help much. Although the differences are small, RAMP-
Faster is the fastest, followed by RAMP-F with one-phase writes.

Figure 2(right) shows that RAMP-F+1PW and RAMP-Faster significantly
outperform the other algorithms when the read proportion is between 25% and
75%.

Fig. 3. Probability of satisfying strong consistency under varying client and read load.

Strong Consistency. Figure 3 shows the percentage of transactions satisfying
strong consistency under varying number of clients and read/write proportions.

In all RAMP designs, the probability of satisfying strong consistency
decreases as the number of clients increases, since there are more races between
reads and writes, which decreases the probability of reading the preceding write.

It is natural that the percentage of transactions satisfying strong consistency
increases as the reads increase: the chance of reading the latest preceding write
should increase when writes are few and far between.

RAMP-S-like designs provide stronger consistency than their RAMP-F coun-
terparts, since they always use second-round reads, which can increase the chance
of reading the latest write. The only exception seems to be that RAMP-Faster
outperforms all the other RAMP designs for 25–75% read workloads. The rea-
son is that RAMP-Faster only requires one RTT for a write to commit, which
increases a read transaction’s chance to fetch the latest write.

Read Atomicity. Figure 4 shows the percentage of transactions satisfying read
atomicity. As it should be, all designs in [5] satisfy read atomic isolation. Our
own design alternatives provide 92–100% read atomicity under all scenarios.

Exploring Design Alternatives for RAMP Transactions 311

Fig. 4. Probability of satisfying read atomicity under varying client and read load.

Summary. Our results are consistent with the experimental evaluations in [5].
For example: the throughput of both RAMP-F and RAMP-S increases with the
number of concurrent clients, and RAMP-F provides higher throughput than
RAMP-S; the latency also increases with the number of concurrent clients (min-
imally for RAMP-S). Our results are also consistent with the conjectures about
the sketched designs in [5], which were never experimentally validated. For exam-
ple: RAMP-F+FC and RAMP-F+1PW have lower latency than RAMP-F. We
also see that RAMP-F+1PW provides better performance than RAMP-F+FC.

We can also evaluate our own designs. It seems that RAMP without 2PC
does not improve the performance of RAMP. On the other hand, our new design
RAMP-Faster provides the smallest average latency, strongest consistency, and
highest throughput among all RAMP designs for 25%–75% read transactions,
while providing more than 92% read atomicity even for write-heavy workloads.
RAMP-Faster could therefore be useful for, e.g., recommender systems (products
on Amazon, etc.), where read atomicity is not an absolute requirement (if a user
recommends 3 products, the system can do useful things even if a transaction
only sees two recommendations), and which tend to be somewhat write-heavy.

The actual values might differ between the experiments in [5] and our statis-
tical analysis, due to factors like hard-to-match experimental configurations,
processing delay at client/partition side, and different distributions of item
accesses. The important observation is that the relative performance measured
between design alternatives is similar in both methods.

It is also worth remarking we only use two data items, while the experiments
in [5] use up to thousands. This implies that we “stress” the algorithms much
more, since there are much fewer potential clashes between small transactions
(typically with four operations) in a 1000-data-object setting than between our
two-operation transactions on two data objects.

All RAMP models in this paper consist of around 4000 lines of code
altogether. Computing the probabilities for strong consistency took around 15
hours (worst-case), and for other metrics around 8 hours (worst-case) on a 2.7
GHz Intel Core i5 CPU with 8 GB memory. Each point in the plots represents
the average of three statistical model checking results.

312 S. Liu et al.

6 Related Work

Maude for Distributed Storage Systems. In [15] we formalized RAMP and some
extensions, and used Maude model checking to analyze their correctness proper-
ties. In contrast, this paper focuses on analyzing the performance of RAMP and
its variations using statistical model checking with PVeStA. In addition, this
paper also introduces our most promising RAMP design: RAMP-Faster. The
papers [11,12] use Maude to formalize and analyze Google’s Megastore and a
proposed extension. Those papers also focus on correctness analysis, although
they present some ad hoc performance estimation using randomized Real-Time
Maude simulations. In contrast to the methodology in this paper, such ad hoc
simulations cannot give any measure of statistical confidence in the results. The
papers [13,16] describe how the Cassandra key/value store has been analyzed
both for correctness and performance using Maude and PVeStA. The main dif-
ferences between [13,16] and this paper are: Cassandra only supports single read
and write operations, whereas RAMP supports transactions, which also implies
that the consistency levels to analyze in RAMP are more complex; in this paper
we also propose a promising variation of the system (RAMP-Faster).

Model-Based Performance Estimation of Distributed Storage Systems. Despite
the importance of distributed transactional databases, we are not aware of work
on (formal) model-based performance analysis of such systems. One reason might
be that the most popular formal tools supporting probabilistic/statistical model
checking are mainly based on automata (e.g., Uppaal SMC [2] and Prism [1]),
and it is probably very hard, or impossible, to model state-of-the-art distrib-
uted transactional systems using timed/probabilistic automata. Another rea-
son might be that NoSQL stores became mainstream earlier than globally-
distributed transactional databases and gathered attention from the research
community to work on model-based performance analysis of NoSQL stores [7,10].

7 Concluding Remarks

We have explored eight design alternatives for RAMP transactions following a
general methodology based on formal modeling with probabilistic rewrite rules
and analyzing performance using statistical model checking. Substantial knowl-
edge about both implemented and unimplemented RAMP designs has thus been
gained. This knowledge can help find the best match between a given RAMP
version and a class of applications. For example, we now know how the differ-
ent designs behave not just for read-intensive workloads, but understand their
behavior across the entire spectrum from read-intensive to write-intensive tasks.

Our work has also shown that it is possible to use this methodology to iden-
tify promising new design alternatives for given classes of applications relatively
easily before they are implemented. This of course does not replace the need for
implementation and experimental validation, but it allows us to focus implemen-
tation and validation efforts where they are most likely to pay off.

Exploring Design Alternatives for RAMP Transactions 313

Much work remains ahead. A natural next step is to confirm experimentally
our findings about some of the RAMP unimplemented designs by implementing
and evaluating them to demonstrate their practical advantages. On the other
hand, since our methodology can be applied not just to RAMP, but to many
other distributed systems, more case studies like the one presented here should be
developed to both improve the methodology, and to demonstrate its effectiveness.

Acknowledgments. We thank the anonymous reviewers for helpful comments on a
previous version of this paper. This work was partially supported by NSF CNS 1409416,
AFOSR/AFRL FA8750-11-2-0084, and NSF CNS 1319527.

References

1. PRISM. http://www.prismmodelchecker.org/
2. Uppaal SMC. http://people.cs.aau.dk/adavid/smc/
3. Agha, G.A., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language

for probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2), 213–239
(2006)

4. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22944-2 28

5. Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Scalable atomic
visibility with RAMP transactions. ACM Trans. Database Syst. 41(3) (2016)

6. Bailis, P., Fekete, A., Hellerstein, J.M., Ghodsi, A., Stoica, I.: Scalable atomic
visibility with RAMP transactions. In: Proceedings SIGMOD 2014. ACM (2014)

7. Barbierato, E., Gribaudo, M., Iacono, M.: Performance evaluation of NoSQL big-
data applications using multi-formalism models. Future Gen. Comp. Syst. 37, 345–
353 (2014)

8. Benson, T., Akella, A., Maltz, D.A.: Network traffic characteristics of data centers
in the wild. In: IMC, pp. 267–280 (2010)

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)

10. Gandini, A., Gribaudo, M., Knottenbelt, W.J., Osman, R., Piazzolla, P.: Per-
formance evaluation of NoSQL databases. In: Horváth, A., Wolter, K. (eds.)
EPEW 2014. LNCS, vol. 8721, pp. 16–29. Springer, Cham (2014). doi:10.1007/
978-3-319-10885-8 2

11. Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s Megastore
in Real-Time Maude. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification,
Algebra, and Software. LNCS, vol. 8373, pp. 494–519. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54624-2 25

12. Grov, J., Ölveczky, P.C.: Increasing consistency in multi-site data stores:
Megastore-CGC and its formal analysis. In: Giannakopoulou, D., Salaün, G. (eds.)
SEFM 2014. LNCS, vol. 8702, pp. 159–174. Springer, Cham (2014). doi:10.1007/
978-3-319-10431-7 12

13. Liu, S., Ganhotra, J., Rahman, M., Nguyen, S., Gupta, I., Meseguer, J.: Quanti-
tative analysis of consistency in NoSQL key-value stores. Leibniz Trans. Embed.
Syst. 4(1), 031–0326 (2017)

http://www.prismmodelchecker.org/
http://people.cs.aau.dk/adavid/smc/
http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://dx.doi.org/10.1007/978-3-319-10885-8_2
http://dx.doi.org/10.1007/978-3-319-10885-8_2
http://dx.doi.org/10.1007/978-3-642-54624-2_25
http://dx.doi.org/10.1007/978-3-319-10431-7_12
http://dx.doi.org/10.1007/978-3-319-10431-7_12

314 S. Liu et al.

14. Liu, S., Ölveczky, P.C., Ganhotra, J., Gupta, I., Meseguer, J.: Exploring design
alternatives for RAMP transactions through statistical model checking. Technical
report (2017). https://sites.google.com/site/siliunobi/ramp-smc

15. Liu, S., Ölveczky, P.C., Rahman, M.R., Ganhotra, J., Gupta, I., Meseguer, J.:
Formal modeling and analysis of RAMP transaction systems. In: SAC. ACM (2016)

16. Liu, S., Rahman, M.R., Skeirik, S., Gupta, I., Meseguer, J.: Formal modeling and
analysis of Cassandra in Maude. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS,
vol. 8829, pp. 332–347. Springer, Cham (2014). doi:10.1007/978-3-319-11737-9 22

17. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oret. Comput. Sci. 96(1), 73–155 (1992)

18. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005). doi:10.1007/11513988 26

19. Sen, K., Viswanathan, M., Agha, G.A.: VESTA: a statistical model-checker and
analyzer for probabilistic systems. In: QEST 2005. IEEE Computer Society (2005)

20. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

https://sites.google.com/site/siliunobi/ramp-smc
http://dx.doi.org/10.1007/978-3-319-11737-9_22
http://dx.doi.org/10.1007/11513988_26

An Improved Android Collusion Attack
Detection Method Based on Program Slicing

Yunhao Liu1,3, Xiaohong Li1,3(B), Zhiyong Feng2, and Jianye Hao2

1 School of Computer Science and Technology,
Tianjin University, Tianjin 300350, China

{yunhaoliu,xiaohongli}@tju.edu.cn
2 School of Computer Software, Tianjin University, Tianjin 300350, China

{zyfeng,jianye.hao}@tju.edu.cn
3 Tianjin Key Laboratory of Advanced Networking (TANK),

School of Computer Science and Technology,
Tianjin University, Tianjin 300350, China

Abstract. Android applications can leak sensitive information through
collusion, which gives the smartphone users a great security risk. We pro-
pose an Android collusion attack detection method based on control flow
and data flow analysis. This method gives analysis of data propagation
between different applications firstly. And then, a multi-apps program
slice model based on both data and control flow are given. Last, the pri-
vacy data leakage paths of multi-apps are computed by reaching-definition
analysis. Meanwhile, the criterions of mobile device information leakage
edge are redefined according to the correlation of mobile devices. Based
on the above principle, we implemented an Android collusion attack sen-
sitive information leakage detection tools called CollusionDetector. Case
study is carried out for typical collusion attack scenarios and it can obtain
better results than existing tools and methods. Experiments show that the
analysis of control flow can more accurately find the path of privacy prop-
agation, and more effectively to identify collusion attacks.

Keywords: Android Collusion Attack · Privacy leakage · Taint
analysis · Program slicing

1 Introduction

Many privacy leak attacks are accomplished by multi-apps collaboration [7,18],
and these kinds of attacks are called “Android Collusion Attack” [25]. Different
from traditional privacy leak attack which rely on single app, Android Collusion
Attack often lunched by at least two apps, called source app and sink app. Source
app often responsible for acquiring sensitive data and passing it to the sink app
while the sink app sends the sensitive data out of the device. Each collusion
app has different task and corresponding required permissions, this can easily
circumvent those detection methods which focus on single app [3,9,12].

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 315–331, 2017.
https://doi.org/10.1007/978-3-319-68690-5 19

316 Y. Liu et al.

To address this problem, Android Collusion Attack [1,26] are widely studied.
A complete survey on those topics can be found in [19]. In particular, Epicc [18]
and IccTA [17] makes precisely static taint analysis on single app and it can find
propagation of privacy cross apps with the help of ApkCombiner [16]. Amandroid
[23] and SCanDroid [11] can do static taint analysis for a group of app and detect
the privacy leak caused by multi-apps.

Nevertheless, the propagation of sensitive information depends not only on
the assignment between variables, but also on the control statements such as
branch and loop. According to [4], most exist methods and tools ignore the
detection of taint propagation based on control flow and this can cause some
malicious app could not be found. Moreover, to prevent missing report, current
approaches regard the privacy has leaked when they are sent out of an app. But
actually, when sensitive information is sent out of an application does not mean
it is certain to be sent out of the device. In other words, existing rules can cause
false positives. Therefore, detecting Android Collusion Attack accurately and
protecting the smartphone users’ privacy data have become urgent needs.

In this paper, we design and build CollusionDetector – an improved detection
framework for Android Collusion Attack. Static taint analysis method is adopted
to build the taint propagation path between multi-apps and find the app group
which can leak privacy. In order to solve the above problems, an improved taint
checking algorithm both focus on control flow and data flow taint analysis is
proposed. Meanwhile, Android APIs are re-classified to re-define the boundaries
of sensitive information. For a set of Apk file to be detected, the interaction
information between apps from resource and manifest files of apps are extracted.
Together with each app’s control flow graph, an inter-app control flow graph
(IACFG) can be built. Last, privacy leakage and the collusion app groups can
be detected by the improved taint analysis. CollusionDetector can detect the
collusion attack which use the control flow to propagate sensitive information
and improve the accuracy of detection.

Challenges also exist. The real-world applications may have complex business
logic, which can lead to a large control flow graph. When building an inter-app
control flow graph and perform taint analysis over it, the efficiency will be low.
To this end, we extract suspicious paths from each Apk’s control flow graph and
build inter-app suspicious paths according to interaction information between
apps before doing taint analysis. Suspicious path is a statement path in control
flow graph which has the ability to send any information out of device whether
the information is sensitive. Obviously, the size of inter-app suspicious paths is
much smaller than IACFG and it narrowed the scope of our taint analysis.

To verify our approach, we implement three groups of Android Collusion
Attack examples as test cases. Each group includes several Android apps that
can collaborate to leak privacy and these three groups stands for different kinds of
Android Collusion Attack. CollusionDetector perform analysis on test cases with
other existing tool at the same time and our methods can detect all test cases
successfully. Moreover, CollusionDetector is used to detect real-world privacy

An Improved Android Collusion Attack Detection Method 317

leak and the result is as good as other tools. These illustrate that our work has
improvement on the detection of Android Collusion Attack.

The rest of the paper is organized as follow. Section 2 describe the attack
scenario of Android Collusion Attack. Section 3 shows each step of our work.
Case study and results are presented in Sect. 4 and the limitations of this work
are presented in Sect. 5. We conclude the paper in Sect. 6.

2 Attack Scenario

According to the Android security report [15] published by Nokia Threat Intel-
ligence Laboratories in 2016, Android Collusion Attack is widely found in real-
world Android apps. As Fig. 1 shows, the attacker repackage malicious code into
an benign app’s Apk. Because Android allow user to install app from any source,
these repackaged apps are easily installed by users from some insecure third party
sources. After the user install these collusion apps, malicious programs execute
in the background, and the functionality of these apps do not appear abnormal,
so it is hard for users to find that privacy information has been leaked.

User

Get repackaged apps Install malicious apps

User privacy is leakedInsecure app source

Fig. 1. Android Collusion Attack in real-world

When collusion apps are installed on the device, they begin to work together
to leak the user privacy. Figure 2 shows an example of two apps that cooper-
ate to leak user privacy. First, ContactReader obtains the contacts information
and send it to InfoSender. And then, InfoSender send these sensitive data to
attackers server.

Contact Informa on

Android Opera ng System

Android Device

Remote Server
(Malicious)

App: InfoSender
It can send contacts

informa on out of device.

Permission: INTERNET

App: ContactReader
It can get contacts informa on.

Permission: READ_CONTACTS

Data flow

Fig. 2. Mechanism of Android Collusion Attack

318 Y. Liu et al.

Actually, the above-mentioned attack scenario can be easily detect out by
current approaches. To circumvent current approaches, attackers change the way
of data propagation. Many prior works [5,6,10,13,21] have mentioned the limi-
tation of detecting control dependence attack and the threat of these attack is
large. In [4], there are two types of control flow based data propagation, called
Simple Encoding and File Length.

2.1 Simple Encoding

Simple Encoding is an effective way to spoof current taint checking mechanisms
for Android app. In Fig. 3, ASCII Table is the string which contains all character
in ASCII table and Tainted is the privacy data. Attackers often build a new
string called unTainted to save the sensitive data. Secondly, they traverse each
character (called taintedChar) in Tainted and compare taintedChar with every
character in ASCII Table. And curValue is used to store the current character
when traverse the ASCII Table. Lastly, if the two variables, taintedChar and
curValue, are equal in this matching process, the curValue will be appended to
unTainted.

ASCII_Table

taintedChar

Tainted'P'
'R'
'I'
'V'
'A'
'C'
'Y'

...
'0'
...
'1'
...
'A'
...
'Z'
...
'a'
...
'z'
...

curValue

unTainted

'P'
'R'
'I'
'V'

'A'
+

Fig. 3. If the values in curValue and taintedChar are equal, copy curValue to unTainted

Simple Encoding prevent direct assignments from Tainted to unTainted, thus
unTainted will not regarded as an tainted object according to current taint check-
ing mechanisms. Figure 4 shows Simple Encoding can spoof these tradition mech-
anisms successfully and send the privacy out of device. The red variables and lines
are taint propagation path detected by traditional taint checking mechanism.

2.2 File Length

Traditional taint checking mechanisms can be circumvented by File Length with
ease. A file should be regarded as an untainted object only if there is no sensitive
data is written into it. And the metadata of the file can store information such
as length of file. In Fig. 5, attackers encode the taint data firstly, because file

An Improved Android Collusion Attack Detection Method 319

String Tainted = source();//sensi ve data
String ASCII_Table;
String unTainted = new String();

for(int i = 0; i < Tainted.length(); ++i)
{
 char taintedChar = Tainted.charAt(i);
 for(int j = 0; j < ASCII_Table.length(); ++j)
 {
 char curValue = ASCII_Table.charAt(j);
 if(taintedChar == curValue)
 {
 unTainted += curValue;
 }
 }
}
SendToRemoteServer(unTainted);

Fig. 4. Current taint checking mechanisms track taints according to assignments

length can only store integer types of information. The sensitive data code is
an integer and its value is N. Secondly, random data is written, one byte at the
time, to a file until its size equals N. Last, attackers get the file length N and
decode the number into a string.

Sensitive
data

Sensitive
data code

Encoding informa on

File length

Sensitive
data

Get file length

Decoding informa onIf code of sensi ve data equals N
 do N mes
 write one byte to file

Fig. 5. File length example

In this way, the file is not a tainted object and its size can be read as an
untainted variable. As shown in Fig. 6, the sensitive data can circumvents tradi-
tional taint checking mechanism and successfully leaked by using File Length.

String Sensi ve_data = source();
int Sensi ve_data_code = Encode(Sensi ve_data);
File file = new File();
for(int i = 0; i < Sensi ve_data_code; ++i)
{
 writeOneByte(file);
}
int fileLength = file.length();
String Untainted_Sensi ve_data = Decode(fileLength);
SendToRemoteServer(Untainted_Sensi ve_data);

Fig. 6. Taint tracking is ended at the condition statement and privacy is leaked

320 Y. Liu et al.

Traditional taint checking mechanism neglect to analysis the control flow
based taint propagation. This can cause huge security risks to the users’ privacy.
While one could extend the prior works to address this limitation, we use a
different approach (outlined in Sect. 1) which we describe in more details in the
following sections.

3 CollusionDetector

As Fig. 7 shows, CollusionDetector contains four phases. First, the control flow
graph (CFG) for each Apk will be built and the IAC information will be extracted
from each Apk’s manifest file. On this basis, the suspicious paths for each Apk
can be sliced out from corresponding CFG. In the third step, inter-app suspi-
cious paths can be made up of several suspicious paths according to the IAC
information in Phase 1. Last, the privacy propagation can be detected on inter-
app suspicious paths by doing improved taint analysis thus the collusion apps
can be found.

Phase 1 . Graph Construction

App set

1. Build Control Flow
Graph for each app

Control Flow Graph
for each app

2. Extract which apps
have ability to do IAC

IAC Informa on

App 1 App 2

App 3 App 4

Phase 2 . Suspicious Path Construction

3. Slice suspicious paths
for each app on their CFG

1

2 3

Suspicious Paths
for each app

Control Flow
graphs

Phase 4 . Taint Analysis

Inter-app Suspicious
Paths

5. Analysis taint
propaga on on
suspicious path

1

2

3

4

5 Taint Paths &
Collusion Group

Phase 3 . Suspicious Path Combination

4. Combine suspicious paths
according to IAC informa on

App 1 suspicious path

App 2 suspicious path

IAC Informa on Suspicious Paths

Inter-app
Suspicious Paths

(Input)

(Output)

Fig. 7. Overview of CollusionDetector

3.1 Analysing Each APK

According to the Phase 1 in Fig. 7, there are two tasks in this step, one is
obtaining each input APK’s CFG. Another task is parsing each APK’s manifest
file to find out the IAC information which determine the destination of data flow.

The CFG for each app can be obtained with the help of a static analy-
sis framework for Android app, called FlowDroid. This framework can analyze
Android app accurately and provides a series of API to allow user to obtain
each Apk’s CFG by programming. The IAC information need to be extracted

An Improved Android Collusion Attack Detection Method 321

Intent

APP1 APP2

APP1 broadcasts an intent with:
Ac on: "com.lyh.source.ACTION"
Extra: {key: “Privacy”, value: privacy }

APP2 can receive the intent with:
Ac on: “com.lyh.source.ACTION”

Fig. 8. Inter-app communication with specific attribute value

by analysing AndroidManifest.xml. This file lists all components which an app
owned and the configuration of these components. One of the configuration for
components is Intent-Filter, which can determine the component can receive
Intent objects with specific attribute. In addition, We need to extract the
attribute values for each of the Intent objects being sent. As shown in Fig. 8,
Attackers predefined same Action attribute values to ensure two collusion app
can communicate.

An IAC information is defined as a 5-tuple I = (σ, α, δ, ρ) and IAC informa-
tion for an app set is a collection of I. For one IAC information, σ stands for an
app and α is the Action property of the Intent object to which the application is
sent. If the app can not send any Intent object, the element α can be null. δ rep-
resents the property value of the Intent object that the application can receive
and ρ means which applications can receive Intent objects whose property value
is α. If the app can not receive any Intent object, its δ can be null.

Algorithm 1. IAC Matching Algorithm
Input : Initial collection: InfoSetI
Output: Complete InfoSetI

1 some description;
2 Size ← The number of I in InfoSetI ;
3 for i = 0 to Size do
4 tmp1 ← the ith element of InfoSetI ;
5 for j = i to Size do
6 tmp2 ← the jth element of InfoSetI ;
7 if tmp1 · α == tmp2 · δ then
8 tmp2 · ρ ← tmp1 · α;
9 end

10 end

11 end

To compute IAC information for an app set, we use InfoSetI to express all
I for each app. In the initial state, the value of σ, α and δ for each I should
be determined because the analysis for every app. The last element ρ should be
calculate by Algorithm 1.

322 Y. Liu et al.

3.2 Computing Suspicious Paths

To reduce the scope of taint analysis, Suspicious Paths should be built firstly. It
is a code execution path that can cause information leakage, whether or not the
information is sensitive. In this step, static program slicing is used to obtain each
Apk’s suspicious paths. There has been a numbers of approaches about program
slicing [14,20,24] and computing dependency graph is used in this work. Next
subsections describe the process of computing suspicious paths.

Slicing Criterion. To slice Suspicious Paths for each APK, the first challenge
is to define slicing criterion. Suspicious Paths focus on sending data out an app,
therefore, only those functions which can send information out should be defined
as slicing criterion. In Android, there are many APIs can be points of interest
such as sendBrodcast(), sendTextMessage(), Log.i() and the objects or variables
sent by them.

Computing Dependency Graph. In order to compute program slice, Data
Dependency Graph (DDG) and Control Dependency Graph (CDG) are neces-
sary. CDG can be built according to CFG easily. In a CFG, statements a and
b has a control dependency if the outcome of a determines whether b should be
executed or not. Meanwhile, Reaching-Definition analysis is used for the calcu-
lation of DDG. In a program, a variable’s value depends on its definition and it
can be used to define other variables. A definition of variable is defined as a two
tuple, Def = (S, V). In Def , V is the variable and S is the statement where V
is defined lately. During the execution of the program, the value of each variable
may be change, new definitions can be generated, old definitions can be killed,
and some definitions may remain unchanged. Therefore, we use collection GenS

to save the Defs are newly created in statement S. Meanwhile, collection KillS
is defined for storing the Defs which are redefined. For each statement S, there
are two set, called InSetS and OutSetS , to describe the definitions of status
before and after the execution of statement S. Equation (1) shows that InSetS
is the union set of definitions after execute all predecessors of S, pred[S]. While
Eq. (2) shows that OutSetS adds the newly created definitions and delete the
killed definitions after execute S.

InSetS =
⋃

p∈pred[S]

OutSetp (1)

OutSetS = GenS ∪ (InSetS − KillS) (2)

Reaching Definition Analysis is to compute each statement’s InSet and
OutSet, Algorithm 2 shows a worklist algorithm. The input of this algorithm
is each Apk’s CFG with all InSetS and OutSetS are initialized to empty. When
Algorithm start running, it loads all statements V into worklist and repeats the

An Improved Android Collusion Attack Detection Method 323

calculation shown by Eqs. (1) and (2), until InSetS and OutSetS for all elements
are no longer changed. During the calculation, if the OutSetS is different from
the old one after analyzed the statement S, it means that the InSet of successors
of S (succ[S]) is change. Hence, the successors of S should be recalculated and
succ[S] are send back to worklist again.

Algorithm 2. Reaching Definition Analysis WorkList Algorithm
Input : control flow graph G = (V, E)
Output: ∀S ∈ V, InSetS

1 some description;
2 foreach S in V do
3 InSetS ← ∅;
4 OutSetS ← ∅;

5 end
6 WorkList ← V ;
7 while WorkList �= ∅ do
8 S ← Pop one basic block from WorkList;
9 OldOutSetS ← OutSetS ;

10 InSetS ← ⋃

p∈pred[S]

OutSetp;

11 OutSetS = GenS ∪ (InSetS − KillS);
12 if OutSetS �= OldOutSetS then
13 WorkList ← WorkList ∪ succ[S];
14 end

15 end

After getting the reaching definitions for each statement (e.g., InSetS), which
statements have data dependency relationship with slicing criterion is clear.
Moreover, the data dependency graph (DDG) can be worked out and we can
obtain the program slice by performing union operation on DDG and CDG.

3.3 Combination of Suspicious Paths

When we do inter-app static analysis, the cross app dataflow should be con-
sidered. In previous step, we obtain each APK’s suspicious paths and these
statements sequences are probably send data to another app. That is to say,
suspicious belongs to different APKs can be combine.

In the first section, we get the connection points between dataflow through
the analyze for AndroidManifest.xml and source files. Here, we combine cross
app suspicious paths according to IAC information. Like the example in Sect. 3.1,
Fig. 9 shows that two suspicious paths can be combined into an inter-app suspi-
cious path.

324 Y. Liu et al.

App2 can receive the Intent object which Ac on a ribute is
"com.apk1". So these two dataflow can be combined.

Suspicious path in App1 Suspicious path in App2

Intent i2 = getIntent();

String id = i2.getStringExtra("sensitive");

SendMessage(id);

String private = getPrivateData();

i1.setAction("com.apk1");

i1.putExtra("sensitive", private);

Intent i1 = getIntent();

SendBroadcast(i1);

Fig. 9. The Combination of Dataflow

3.4 Improved Inter-App Taint Analysis

This step consists doing taint analysis on inter-app suspicious paths. In other
words, we need to determine whether these suspicious paths will leak sensitive
information. Firstly, the source and sink functions should be ascertained. In this
work, source is the method which can get the private data (e.g., getLatitude(),
getDeviceId()) or receive information from other apps (e.g., getIntent()). Dif-
ferent from prior works, the definition of sink is the method which can send
the sensitive information out of the device (e.g., sendTextMessage(), Log.i()). In
most current approaches, the method which can send data out of an app is also
regarded as sink. However, the privacy data is safe until it flow out of device.

Meanwhile, to address the problem in Sect. 2, we propose a new static taint
checking mechanism for Android app. To be able to explain our taint propagation
rules in detail we declare the following formalization descriptions and helper
functions.

To describe the whole program, we use 2-tuple P =< B,E >. B is the set
of all basic blocks in the program and E is the edge between basic blocks. B is
defined as 3-tuple B =< R,L, V >. R is the variable in stack area and it can
be a basic type variable or a reference of an object. L is the memory location of
object in heap area. V is the value of variable.

Besides the descriptions above, there are several helper functions to ensure
our precise model for program.

arrayElem(x) can determines whether a variable belongs to an array. The
parameter x is the input variable and the return value will be true when x is an
array’s element.

source() returns sensitive data and the variable which is assigned by this
function is tainted variable.

A tainted path T is defined for the basic blocks which contain tainted vari-
ables and at the beginning it holds that T ← ∅. Tainted access paths are added
to the set whenever the analysis reaches a call to a source, or when process-
ing a statement that propagates an existing taint to a new memory location.
Algorithm 3 shows the taint checking for each basic block in a program.

An Improved Android Collusion Attack Detection Method 325

Algorithm 3. Improved Taint Analysis Algorithm
Input : One BasicBlock, Current tainted variable set T
Output: Tainted variable set T

1 some description;
2 if BasicBlock is like V arx = V ary then
3 if ∀V ary ∈ T then
4 T ∪ {V arx};
5 end
6 if V ary /∈ T ∧ ¬arrayElem(V arx then
7 T \ {V arx};
8 end
9 if x ∈ source() then

10 T ∪ {V arx};
11 end
12 if ∀V ary ∈ T then
13 T ∪ {V arx};
14 end

15 end
16 if The type of BasicBlock is V arx = new Object() then
17 if V arx ∈ T |¬arrayElem(V arx) then
18 T \ {V arx};
19 end

20 end
21 if The type of BasicBlock is branch structure then
22 if V ary ∈ condition ∧ V ary ∈ T then
23 T ∪ {V arx};
24 end

25 end

For an assignment basic block with the structure V arx = V ary, we should
consider that whether variable V arx is an element of an array first. To ensure the
accuracy of analysis if any element in the array is tainted, the array is polluted.
According to this rule, if V arx is a polluted variable, the array is tainted. Even
if V arx is assigned a new ObjectLocation, as long as it belongs to the array, it
must be contaminated.

Another case is the new basic block which creates a fresh object (e.g., V arx =
new Object()), whether the V arx was tainted before, the variable V arx should
be removed from T .

When the basic block is a branch structure like if(condition) then statements
or loop(condition) do statements, the principle of this rule is that the variable
V arx are tainted if its condition expression contains tainted variables.

According to the above algorithm, the implementation of taint analysis on
inter-app suspicious paths by doing Reaching Definition analysis. The difference
is that the point of interest is the source, because the inter-app suspicious paths
have the ability to send any information out. When a variable defined by source()
can reach the sink() and can be send by sink method, this path is a taint path.

326 Y. Liu et al.

4 Case Study

In this section, we firstly introduce the implementation of CollusionDetector
and some examples of Android collusion attack. Then, we use our approach to
analysis these attack examples to show the effectiveness of this work. Third,
in order to show the improvement of this work in the Android collusion attack
detection, we use three other different tools to detect the above attack examples
and compare all results.

4.1 Implementation

There are already many outstanding static analysis tools for Android applica-
tion, such as SCanDroid, FlowDroid and Amandroid. Although most of these
tools are open source software, there is a lack of interface specification and pro-
gramming guide. Only FlowDroid provides detailed develop guidance, therefore,
our approach is implemented based on it. FlowDroid can be deployed in a devel-
opment environment as several java projects and it provides us a lot of useful
programming interfaces and a dataflow analysis framework. To prove the effec-
tiveness of our approach, we implement several groups of Android Collusion
Attack examples and these examples will be analyzed by CollusionDetector and
other tools as test cases.

Implementation of CollusionDetector. Because we need programming
interfaces offered by FlowDroid, the related FlowDroid projects should be
imported into our IDE. We finished this work under the guidance of the Wiki of
FlowDroid [2] and build the programming framework successfully according to
the guide book [8]. The input of CollusionDetector is am APK file set and the
out put is:

– Whether there is collusion attack in the input APK file set?
– If collusion attack exists, which apps are collaborated to leak privacy?
– The conjunction point of each collusion group.
– The control flow graph which can identifies taint paths.

Implementation of Android Collusion Attack Example. We implement
three groups of Android Collusion Attack examples, including one group of tra-
ditional collusion attack and two groups of collusion attack based on control
flow (Simple Encoding and File Length). As shown in Table 1, the example of
traditional collusion attack has two applications, one application called “Con-
tactReader” is responsible for obtaining the contacts information which stored
in the mobile phone and send them to another application. Another one called
“InfoSender” is responsible for receiving contacts information and transmitting
the information through the network to attackers remote server. The difference
between examples of collusion attack based on control flow and traditional col-
lusion attack is that they exploit the vulnerabilities of prior works to ensure the
tainted data to be “washed up”.

An Improved Android Collusion Attack Detection Method 327

Table 1. Different kinds of Android Collusion Attack examples

Type Name Permission

Traditional collusion attack ContactReader.apk CONTACT INFO

InfoSender.apk INTERNET

Simple encoding SEContactReader.apk CONTACT INFO

SEInfoSender.apk INTERNET

File length FLContactReader.apk CONTACT INFO

FLInfoSender.apk INTERNET

4.2 Evaluation

After the implementation, we use CollusionDetector to analysis test cases to
demonstrate the effectiveness of our approach. And then, in order to compare the
results of different methods, we use four existing Android privacy leak detection
methods and CollusionDetector to analysis the above three groups of test cases.
Our evaluation addresses the following research questions:

RQ1. Can CollusionDetector find Android Collusion Attack?
RQ2. How does CollusionDetector compare with existing tools?
RQ3. Can CollusionDetector detect real-world leak?

All the experiments discussed in this subsection are performed on a Core i5
CPU running with Java8.

RQ1: Experimental Results on Test Cases. We use CollusionDetector
to analysis three groups of test cases separately and the results of detection
are shown in command line. If there exist collusion attack in the test case, we
will map out the taint propagation path in the form of dot graph. FlowDroid
provides programming interfaces which can draw dot graph according to control
flow graph and we make further development to show taint path as dot graph.

RQ2: Comparison with Existing Tools. In this research question, we com-
pare CollusionDetector with four existing tools: FlowDroid, IccTA and Scan-
Droid. There are three issues we focus on:

– Can each tool or method find privacy leak in single app?
– Can each tool or method find traditional collusion attack in Android?
– Can each tool or method find File Length and Simple Encoding?

In Table 2,
⊙

means that this tool can detect privacy leak in a test case and⊕
has the opposite meaning. ✓ stands for the tool can detect the inter-app

taint propagation and find out the collusion apps. We can find that FlowDroid
and IccTA can not analysis multiple APK files. They can detect the privacy

328 Y. Liu et al.

Table 2. All methods and tools detection results

Test cases Methods

Type Name FlowDroid IccTA SCanDroid Collusion- detector

Traditional
android

ContactReader
⊙ ⊙ ⊙

✓
⊙

✓

collusion attack InfoSender
⊙ ⊙ ⊙

✓
⊙

✓

Simple SEContactReader
⊗ ⊙ ⊗ ⊙

✓

encoding SEInfoSender
⊗ ⊙ ⊗ ⊙

✓

File length FLContactReader
⊗ ⊙ ⊗ ⊙

✓

FLInfoSender
⊗ ⊙ ⊗ ⊙

✓

leak in single app without control flow based taint propagation successfully.
Furthermore, IccTA can detect the taint propagation with Simple Encoding and
File Length. ScanDroid can successfully find out the traditional collusion attack
but it is failed in File Length and Simple Encoding.

According to the results, the reason why ScanDroid is failed in detect test
case group “Simple Encoding” and “File Length” is same with FlowDroid: it
can not detect the privacy leak in single app without control flow based taint
propagation. We find a defect through the analysis of taint checking mechanism
in FlowDroid: they only focus on taint propagation like Y ← Xtainted but ignore
the taint propagation based on control flow. Because it is difficult to analyze the
source code for all existing tools, we hypothesized that SCanDroid use similar
taint propagation rules as FlowDroid but IccTA use a different one. And that
is why they can not track taint data propagate with Simple Encoding and File
Length methods.

RQ3: Can CollusionDetector Detect Real-World Leak? We use Collu-
sionDetector and tools which have been used in RQ3 to detect real-world leak.
The test cases are apps which downloaded from Google Play and we found sev-
eral apps have privacy leakage behavior.

In Table 3, the
⊙

,
⊗

and has the same meaning in Table 2. According to the
result, all methods can detect privacy leak except a failure caused by SCanDroid.
Limited by the size of the app collection, none of the tools found the collusion

Table 3. My caption

Test cases Methods and tools

Package name FlowDroid Epicc IccTA SCanDroid Collusion-detector

com.zsdevapp.renyu
⊙ ⊙ ⊙ ⊙ ⊙

com.y.lovefamily
⊙ ⊙ ⊙ ⊙ ⊙

com.gotonyu.android.PhotoShare
⊙ ⊙

✓
⊙

✓
⊙ ⊙

✓

com.liars.lineLearn
⊙ ⊙ ⊙ ⊗ ⊙

An Improved Android Collusion Attack Detection Method 329

app group based on control flow. While it still prove that CollusionDetector can
detect privacy leak in real-world.

5 Limitations

At the moment, CollusionDetector resolves traditional collusion attack and two
kinds of collusion attack depend on control flow. Currently, our approach still can
not do taint analysis for native code, web applications (e.g., applications devel-
oped using PhoneGap [22]) and dynamic linking library in Android. Although
CollusionDetector can avoid the false negative caused by control flow based taint
propagation, however, we neglect the false positive cause by analyzing condi-
tional statements. The principle of taint checking mechanism is simple and some
complicated situations are overlooked.

6 Conclusion

It is proved that this method can detect the Android Collusion Attacks which
contain the control flow based pollution, and we also use this method to detect
the general privacy leakage applications. Compared with the detection accuracy
of existing Android privacy leak detection methods, the result of the proposed
method is approximately the same as them. It can be proved that this method
can effectively detect the privacy leakage behavior of Android applications, and
can also detect collusion attacks that have control flow based pollution. Limited
by the size of the application set to be detected, we haven’t found privacy leaks
based on control flow. We will detect more real-world apps; Moreover, we are
prepared to repackage malicious code which can leak privacy data based on
control flow into some real-world apps, and then use our tools to detect them.

Acknowledgments. The authors are grateful to the anonymous reviews for their
insightful comments, and that will have a great significance to our future work. This
work is supported by Tianjin Key Laboratory of Advanced Networking (TANK), School
of Computer Science and Technology, Tianjin University, Tianjin China300350. This
work has partially been sponsored by the National Science Foundation of China (No.
61572349, 61272106).

References

1. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC
2010. LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-18178-8 30

2. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon,
Y.L., Octeau, D., Mcdaniel, P.: How to run flowdroid. https://github.com/secure-
software-engineering/soot-infoflow-android/wiki

http://dx.doi.org/10.1007/978-3-642-18178-8_30
http://dx.doi.org/10.1007/978-3-642-18178-8_30
https://github.com/secure-software-engineering/soot-infoflow-android/wiki
https://github.com/secure-software-engineering/soot-infoflow-android/wiki

330 Y. Liu et al.

3. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y.L.,
Octeau, D., Mcdaniel, P.: Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. ACM Sigplan Not. 49(6), 259–
269 (2014)

4. Babil, G.S., Mehani, O., Boreli, R., Kaafar, M.A.: On the effectiveness of dynamic
taint analysis for protecting against private information leaks on android-based
devices. In: International Conference on Security and Cryptography, pp. 1–8 (2013)

5. Cavallaro, L., Saxena, P., Sekar, R.: Anti-taint-analysis: practical evasion tech-
niques against information flow based malware defense. Stony Brook University
(2007)

6. Cavallaro, L., Saxena, P., Sekar, R.: On the limits of information flow techniques for
malware analysis and containment. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol.
5137, pp. 143–163. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70542-0 8

7. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in android. Plant Soil 269(1–2), 309–320 (2011)

8. Einarsson, A., Nielsen, J.D.: A survivor’s guide to java program analysis with soot.
Notes from Department of Computer Science (2008)

9. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification (2009)

10. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., Mcdaniel, P., Sheth, A.N.:
Taintdroid: an information-flow tracking system for realtime privacy monitoring on
smartphones. In: USENIX Conference on Operating Systems Design and Imple-
mentation, pp. 99–106 (2010)

11. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: automated security certifica-
tion of android applications (2009)

12. Gibler, C., Crussell, J., Erickson, J., Chen, H.: AndroidLeaks: automatically detect-
ing potential privacy leaks in android applications on a large scale. In: Katzen-
beisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds.)
Trust 2012. LNCS, vol. 7344, pp. 291–307. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-30921-2 17

13. Graa, M., Cuppens-Boulahia, N., Cuppens, F., Cavalli, A.: Detecting control flow
in smarphones: combining static and dynamic analyses. In: Xiang, Y., Lopez, J.,
Kuo, C.-C.J., Zhou, W. (eds.) CSS 2012. LNCS, vol. 7672, pp. 33–47. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-35362-8 4

14. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
In: ACM Sigplan 1988 Conference on Programming Language Design and Imple-
mentation, pp. 35–46 (1988)

15. Nokia Threat Intelligence Laboratories: Nokia threat intelligence report. http://
resources.alcatel-lucent.com/asset/200492

16. Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Traon, Y.L.: ApkCombiner: combining
multiple android apps to support inter-app analysis. In: Federrath, H., Gollmann,
D. (eds.) SEC 2015. IAICT, vol. 455, pp. 513–527. Springer, Cham (2015). doi:10.
1007/978-3-319-18467-8 34

17. Li, L., Bartel, A., Klein, J., Traon, Y.L., Arzt, S., Rasthofer, S., Bodden, E.,
Octeau, D., Mcdaniel, P.: IccTA: detecting inter-component privacy leaks in
android apps. In: IEEE/ACM IEEE International Conference on Software Engi-
neering, pp. 280–291 (2015)

18. Octeau, D., Mcdaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J., Traon, Y.L.:
Effective inter-component communication mapping in android with epicc: an essen-
tial step towards holistic security analysis. In: USENIX Conference on Security, pp.
543–558 (2013)

http://dx.doi.org/10.1007/978-3-540-70542-0_8
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1007/978-3-642-35362-8_4
http://resources.alcatel-lucent.com/asset/200492
http://resources.alcatel-lucent.com/asset/200492
http://dx.doi.org/10.1007/978-3-319-18467-8_34
http://dx.doi.org/10.1007/978-3-319-18467-8_34

An Improved Android Collusion Attack Detection Method 331

19. Rashidi, B., Fung, C.: A survey of android security threats and defenses. J. Wirel.
Mob. Netw. Ubiquitous Comput. Dependable Appl. 6, 3–35 (2015)

20. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL 1995, vol. 167(96), pp. 49–61 (1995). Lecture Notes
in Computer Science

21. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: Security and Privacy, pp. 317–331 (2010)

22. Wargo, J.M.: Phonegap Essentials: Building Cross-platform Mobile Apps. Pearson
Schweiz AG, Zug (2012)

23. Wei, F., Roy, S., Ou, X., Robby.: Amandroid: a precise and general inter-component
data flow analysis framework for security vetting of android apps. In: ACM SIGSAC
Conference on Computer and Communications Security, pp. 1329–1341 (2014)

24. Weiser, M.: Program slicing. In: International Conference on Software Engineering,
pp. 439–449 (1981)

25. Wu, L., Grace, M., Zhou, Y., Wu, C., Jiang, X.: The impact of vendor customiza-
tions on android security. In: ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 623–634 (2013)

26. Xing, L., Pan, X., Wang, R., Yuan, K., Wang, X.F.: Upgrading your android,
elevating my malware: privilege escalation through mobile OS updating. In: IEEE
Symposium on Security and Privacy, pp. 393–408 (2014)

Parameterized Complexity of Resilience
Decision for Database Debugging

Dongjing Miao1(B) and Zhipeng Cai1,2

1 Department of Computer Science, Georgia State University,
Atlanta, GA 30303, USA
dmiao1@student.gsu.edu

2 College of Computer Science and Technology, Harbin Engineering University,

Harbin 150001, China

Abstract. Resilience decision problem plays a fundamental and impor-
tant role in database debugging, query explanation and error tracing.
Resilience decision problem is defined on a database d, given a boolean
query q which is true initially, and a constant k > 0, it is to decide if
there is a fact set res of size no more than k such that query q becomes
false after deleting all facts in res. Previous results showed it is NP-hard
in many cases. However, we revisit this decision problem, in the light
of the recent parametric refinement of complexity theory, provide some
new results including negative and positive ones. We show that, there
are still some cases intractable if only consider the query size or variable
numbers as the parameter.

Keywords: Resilience · Database · Parameterized complexity

1 Introduction

Resilience of a given query q with respect to a database d is defined as a set res
of facts in d, whose deletion will result in a boolean query getting false which
initially is true. Formally, its decision problem can be defined as follow,

Definition 1 (RES decision problem [1]). Given a database d, a fixed natural
constant kres, and a boolean query q where q(d) is true, it is to decide if there
is subset res of d such that (i) |res| < kres;(ii) q(d − res) is false.

This is a fundamental decision problem in the study of database debugging,
cleansing, error tracing, query result explanation and many other applications,
since the most important and common task in these applications is to answer
the question that given some partial result T of a query q on a database d, why
the result T happens here (why-provenance), by means of different definitions
on why, so that we can locate these witnesses of T inside d if we found it.

This work is partly supported by the National Science Foundation (NSF) under
grant NOs 1252292, 1741277 and 1704287, and the NSF of China under contract
61502116 and 61370084.

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 332–344, 2017.
https://doi.org/10.1007/978-3-319-68690-5_20

Parameterized Complexity of Resilience Decision for Database Debugging 333

Typically, there are two ways to define ‘why’, as identified in [2], way of
source side effect free (ssef) and way of view side effect free (vsef). Intuitively,
given a source database d, a query q, its materialized view q(d) and a testing
result t ⊆ q(d), the former is to find an r of size k such that q(d − r) ⊆ q(d) − t,
while the later is to find an r such that q(d − r) = q(d) − t.

Example 1. Let’s visit an example of resilience in tracing error in database debug-
ging process. Consider a file management database of a company including
two relations, Dept(dept, user) records department each user belongs to, and
Author(dept, file) records files that each group has the authority to access. There
is also a view defined as a conjunctive query (Selection-Projection-Join) “show
the file and users have authority to access it”

q(x, z) :− dept(y, x), author(y, z)

Dept :

dept user

d1 u1

d2 u2

d2 u3

Author :

dept file

d1 f1

d2 f2

d2 f3

q(x, z) :

user file

u1 f1

u2 f2

u2 f3

u3 f2

u3 f3

First, we want to check if there is a single fact in the database whose absence
will result in the query result q(u2, z) becoming false, that are two alternative
set of facts in source data d,

(a) fact ‘(d1,u1)’ in Dept,
(b) fact ‘(d1, f1)’ in Author,

In this case, either of the two facts is the res for query q(u2, z).
But consider another suspicious query result ‘q(u2, z)’, we also want to check
if there is a single fact whose absence will make it false, then potential candi-
dates are

(a) fact ‘(d2,u2)’ in Dept,
(b) fact ‘(d2, f2)’ in Author.
(b) fact ‘(d2, f3)’ in Author.

Here, ‘(a)’ is the resilience we want, because it will make the query false.
However, either of ‘(d2, f2)’ and ‘(d2, f3)’ is not able to make the query false.

Therefore, we regard the resilience ‘(d2,u2)’ as a suspicious error or expla-
nation candidate of the query result q(u2, z).

As shown by Freire et al. 2015 [1], RES can be reduced polynomially to
the two above decision problems (ssef and vsef). This is to say that, RES is a
more fundamental part of the two problems, the lower bound of RES will also

334 D. Miao and Z. Cai

Table 1. Polynomial tractable cases of source side effect free decision problem

Complexity Citations Query fragment

PTime Buneman et al. 2002 [2] Conjunctive query without projection and
self-join

Cong et al. 2012 [3] Conjunctive query with key-preserving

Freire et al. 2015 [1] Conjunctive query without triad and
self-join

Conjunctive query without fd-induced triad
and self-join

Table 2. Hard cases of source side effect free decision problem

Complexity Citations Query fragment

NP-complete Buneman et al. 2002 [2] Conjunctive query without selection

Cong et al. 2012 [3] Conjunctive query without
key-preserving

Freire et al. 2015 [1] Conjunctive query containing triad

Conjunctive query containing fd-induced
triad

co-W[1]-complete This paper Conjunctive query parameterized by
query size or #variables

Positive query parameterized by query
size

co-W[SAT]-hard Positive query parameterized by
#variables

co-W[t]-hard First-order query parameterized by query
size

co-W[P]-hard First-order query parameterized by
#variables

dominate the lower bound of the two problems. Therefore, we want to revisit
the complexity of RES in this paper.

The previous studies provides the pictures of the classical complexity results
of these two ways, we summary these as Tables 1, 2, 3 and 4. In total, the previous
results is mainly on the classical computational complexity. In this case, the
complexity of query languages proposed by Chandra and Merlin has been next
to expressibility one of the main preoccupations of database theory ever since
two four decades ago. It has been noted rather early that, when considering
the complexity of evaluating a query on an instance, one has to distinguish
between two kinds of complexity metric: Data complexity is the complexity of
evaluating a query on a database instance, when the query is fixed, and we
express the complexity as a function of the size of the database. The other one is

Parameterized Complexity of Resilience Decision for Database Debugging 335

Table 3. Polynomial tractable cases of view side effect free decision problem

Complexity Citations query fragment

PTime

Buneman et al. 2002 [2]
Conjunctive query

without projection and self-join

Cong et al.2012 [3] Conjunctive query with key-preserving

Kimefeld et al.

2012 [4]

Conjunctive query

with head-domination and

without self-join

Conjunctive query

with fd-head-domination and

without self-join

Kimefeld et al.

2013 [5]

Conjunctive query

with level-k head-domination and

without self-join under k view deletions

FPT

Conjunctive query

with head-domination and

without self-join under c view deletions

called combined complexity, considers both the query and the database instance
as input variables; The combined complexity of a query language is typically
one exponential higher than data complexity. Of the two, data complexity is
somehow regarded as more meaningful and relevant to database if only consider
query evaluation.

There have been some complexity results on the view side effect free
problem [2–7]. On the data complexity of deletion propagation, Kimelfeld
et al. [6] showed the dichotomy ‘head domination’ for every conjunctive query
without self-join, deletion propagation is either APX-hard or solvable (in poly-
nomial time) by the unidimensional algorithm. For functional dependency
restricted version, it is radically different from the case without functional
dependency (FD), they also showed the dichotomy ‘fd-head domination’ [4].
For multiple or group deletion [5], they especially showed the trichotomy for
group deletion a more general case including level-k head domination and so on;
On the combined complexity of deletion propagation, [3,7] showed the variety
results for different combination of relational algebraic operators. At the same
time, [8] studied the functional dependency restricted version deletion propaga-
tion problem and showed the tractable and intractable results on both data and
combined complexity aspects.

Besides research on view side effect, there are previous works on source side
effect decision problem [1–3,7], they show some complexity results on the source

336 D. Miao and Z. Cai

side-effect problem on both data and combined complexity. Basically, Freire
et al. show that for RES studied in this paper is PTime if q is a conjunctive
query without structure of triad, NP-complete otherwise. They also extend the
dichotomy condition ‘triad ’ into a more general one ‘fd-induced triad ’ for case
with presence of functional dependencies. All the previous results in Tables 1, 2,
3 and 4 showed that, for most cases, the deletion propagation is hard due to the
huge searching space.

Table 4. Hard cases of view side effect free decision problem

Complexity Citations query fragment

NPcomplete Buneman et al. 2002 [2] Conjunctive query without selection

Cong et al. 2012 [3] Conjunctive query non-key-preserving

Kimefeld et al. 2012 [4] Conjunctive query without
head-domination

Conjunctive query without
fd-head-domination

Kimefeld et al. 2013 [5] Optimal version of Conjunctive query
with level k head-domination under k
view deletions

NP(k)-complete Miao et al. 2016 [8] Conjunctive query under bounded source
deletions

ΣP
2 -complete Miao et al. 2016 [8] Conjunctive query

Additionally, a related topic the view update problem in database has been
extensively investigated for more than three decades in the database community,
which is stated as follows: given a desired update to a database view, what
update should be performed towards the source tables to reflect this update
to the view [9–13]. Generally, previous works mainly focus on identifying the
condition to make the update unique, and studying under the identified condition
how to carry out the update. These works are only effective for very restricted
circumstances where there is a unique update Δd to a source database d that
will cause a specified update to the view q(d). In practice, an update to d is
not always unique. Therefore, an alternative is to find a minimum update to d
resulting in the specified update to q(d), which is a more practical task of view
propagation.

However, two metrics of complexity seem to be not completely reasonable
and appropriate. To the hard one, combined complexity is so restrictive that it
takes both input queries and databases in account equally, no matter the relation
between the size of query q and the size of database d. Generally, the query size
is always much smaller than the size of database, say q ∼ o(d). Due to this
usual case, study of the complexity of query languages mostly concentrates on
data complexity. But as argued in [14], “polynomial time in the context of data

Parameterized Complexity of Resilience Decision for Database Debugging 337

complexity means time O(dq), and in fact the known algorithms that place the
above-mentioned languages in PTime have precisely such a running time. Besides
this, in the case of fix-point logic, this is known to be inherently unavoidable. Even
if q < n, it is not reasonable to consider q fixed, because even for small values
of q, a running time of nq hardly qualifies as tractable, especially in view of the
fact that n is typically huge.”

Therefore, in this paper, we want to re-examine the parameterized complexity
of RES decision problem, since the running time in which n is not raised to a
power that depends on q, that is, the dependence on n is only permitted as
the nc where c is a constant independent of the query, and this is the typical
paradigm of the parameterized complexity theory.

2 Preparation

We first give a necessary introduction of the Parameterized complexity the-
ory [15]. The concerns of parameterized complexity theory are (decision) prob-
lems with two or more inputs. Formally, considering languages L ⊆ Σ∗ ×Σ∗. We
refer to such languages as parameterized languages. If (x, k) is in a parameterized
language L, we call k the parameter. Usually the parameter will be provided as
a positive integer, no matter it is a graph or algebraic structure, the domain of
the parameter is usually identified as the natural numbers N and hence consider
languages L ⊆ Σ∗ ×N. For a fixed k, we call Lk = {(x, k)|(x, k) ∈ L} as the k-th
slice of L. Such as in this paper, input of the RES is

(
〈q, d〉, 〈kres, kq/v〉

)

where the parameter k is the size of query q or the number of variables in the
query q.

Fixed parameter tractable (f.p.t). The main idea of the parameterized complexity
theory is to study languages that are tractable “by the slice.” A problem is said
to be tractable by the slice meant that there is a constant c, independent of
parameter k, such that for all k, membership of Lk can be determined in time
polynomial of the size of input x. Formally speaking, let P be a parameterized
problem, P is fixed-parameter tractable if there is an algorithm A, a constant
c, and an arbitrary computable function f : N → N such that A outputs yes on
input (x, k) within a running time of f(k) × |x|c iff ‘(x, k)’ is yes.

W-hierarchy. In parameterized complexity theory, for the problems probably not
in f.p.t, W-hierarchy was introduced by Downey and Fellows, which is analogous
to the polynomial hierarchy in the classical complexity theory. It contains a series
of complexity classes of parametrized problems. They are jointly called the W-
hierarchy, which classifies the problems under the parameterized perspective [15].
Concretely, classes in W-hierarchy beyond FPT (in which, every problem can be
solved in time of f(k) · nc) are W[i] where i = 1, 2, . . . , and limits to two classes
W[P] and W[SAT]. It means that problem in W[i] is at least harder than W[j] if
i ≥ j.

338 D. Miao and Z. Cai

Database. A database schema is a finite set {R1, . . . , Rm} of distinct relations.
Each relation Ri has ri attributes, say {A1, . . . , Ari

}, where ri is the arity of Ri.
Each attribute Aj has a corresponding domain dom(Aj) which is a set of valid
values. A domain dom(Ri) of a relation Ri is a set dom(A1) × · · · × dom(Ari

).
Any element of dom(Ri) is called a fact. A database d can be written as
{D; R1, . . . , Rm}, representing a schema over certain domain D, where D is
a set dom(R1) × · · · × dom(Rm).

Boolean database queries. A boolean query q is a function mapping database d
to {true, false}. We limit our study inside the first order query language, so that
queries can be written by a certain fragment of the first order query language.
We consider three important query fragments, in descending order of expressive
capability, first-order, positive and conjunctive query.

Conjunctive query. By datalog-style notation, a boolean conjunctive query
can be written as following

q :− Ri1(x̄1), Ri2(x̄2), . . . , Rik(x̄k)

where each x̄i has an arity of ri1 consisting of constants and variables. Query
result q(d) is true if there exists facts {t1, t2, . . . , tk} in d can be mapped to
build-in variables x̄1, x̄2, . . . , x̄k consistently, say consistent with constants in
each x̄1; Otherwise, q(d) is false. Intuitively, the {t1, t2, . . . , tk} is a witness
such that q is true. From the perspective of relational algebra, conjunctive
query written as a paradigm with combination of selection, projection and
join operation equivalently.
In the example above, we have a conjunctive query with two atoms(or rela-
tions),

q(x, z) :− dept(y, x), author(y, z)

Positive query. Positive query can be written as a disjunction of conjunctive
queries. That is also equivalence to a paradigm written with union, selection,
projection and join operations. In this paper, we denote a boolean positive
query as following

q :− q1 ∧ q2 ∧ · · · ∧ qs

where each qi is a conjunctive query. Due to the semantic of disjunction, q(d)
is true if there exists at least one qi is true; Otherwise, it is false.

First-order query. First-order query can be written as positive query with
negation, that is also equivalence to an arbitrary first-order formula by only
using the predicates R1, . . . , Rm.

We follow the metric using in [14], where the two parameters are, separately,
the number of variables x appearing in the query q, and the size of query q which
is the number of atoms in the query. The relationship between both parameters
is that the query size is no more than the number variables.

Therefore, if the complexity class of the latter case should belong to the class
of the former case for our decision problem. However, both are between the data
and combined complexity.

Parameterized Complexity of Resilience Decision for Database Debugging 339

3 Results of Query Fragments

In this section, we examine the parameterized complexity of different fragments
of first-order query on number of variables and query size.

Complement of classes in the W-hierarchy. A parameterized problem is in co-
W[i], i ∈ N, if its complement is in W[i], where the complement of a parame-
terized problem is the parameterized problem resulting from reversing the YES
and NO answers. If any co-W[i]-complete problem is fixed-parameter tractable,
then co-W[i] = FPT = co-FPT = W[i] follows, but this will cause the Exponen-
tial Time Hypothesis to fail [15]. Hence co-W[i]-completeness provides strong
theoretical evidence that a problem is not fixed-parameter tractable.

Theorem 1. The parametric complexity of RES over conjunctive query is co-
W[1]-complete, for cases with parameter of both query size and number of vari-
ables in the input query.

Proof. To the upper bound, we can transform RES for conjunctive queries to the
weighted satisfiability problem for boolean formulas in 2-CNF. The complemen-
tary of RES should be stated to decide if there is no tuple deletion of size less or
equal than k. Let q and d be the conjunctive query and database given in RES.
Without loss of generality, let

q :− p1(x̄1), . . . , pk(x̄k)

It is to decide if there is an instantiation of the variables in q such that every
atom of q maps to at least kRES +1 different tuples in the database d, due to the
following lemma.

Lemma 1. The answer of the complementary of RES for constant kRES is yes
iff for the given q, there are at least kRES + 1 disjoint join paths can be taken
from the input database d.

Proof. Here, we say a fact t is ‘consistent ’ with an atom p if (1) the i-th entry
of fact t is the constant c whenever the i-th entry of atom p is some constant c;
(2) the i-th and j-th entries of fact t are the same constant whenever the i-th
and j-th entries of atom p are the same variables.

For each atom pi in the given query q, and each fact t of the same relation
pi in the database d which is consistent with atom pi, we introduce kRES + 1
boolean variables, z

(j)
i,t where 0 ≤ j ≤ kRES. Intuitively, it means that

z
(j)
i,t :=

{
1, if atom pi is mapped to fact t; (1)
0, otherwise. (2)

Now we build the 2-CNF as follows by using only the variables introduced
above,

– For each fact t, build a 2-CNF expression “Et” as follow
∧

0≤j1 �=j2≤kRES,1≤i≤k

(¬z
(j1)
i,t ∨ ¬z

(j2)
i,t)

340 D. Miao and Z. Cai

– For each atom pi and two different facts t, t′ consistent with it, build a 2-CNF
expression “Ei” ∧

0≤j≤kRES

(¬z
(j)
i,t ∨ ¬z

(j)
i,t′)

– For two joining atoms pi, pi′ and corresponding pair of facts t, t′, that is,
pi and pi′ has the same joining variable v, but facts t and t′ have different
constants on position of v, (i.e., t and t′ will not occur in the same join path),
we build a 2-CNF expression “E(i,t),(i′,t′)”

∧
0≤j≤kRES

(¬z
(j)
i,t ∨ ¬z

(j)
i′,t′)

– Using three kinds of 2-CNF above to build the complete 2-CNF F as follow
∧

1≤i�=i′≤k,t�=t′∈d

E(i,t),(i′,t′)

∧
1≤i≤k,t∈d

Ei

∧
t∈d

Et

– Finally, the parameter of 2-CNF is (kRES + 1) · k, where k is the parameter of
RES, i.e., number of atom in given query q.

Note that such construction can be done in

O
(
(kRES + 1)2k · n + (kRES + 1)k · n2 + k2(kRES + 1) · n2

)

Consider some instantiation of variables in given query q, it guarantees that
z
(j)
i,t is true if atom pi in q is mapped to tuple t; the assignment has exactly

“(kRES+1)k” true variables and make all the clauses true. Meanwhile, an assign-
ment with “(kRES + 1)k” true variables making all clauses true, should have
exactly one set of true variable z

(j)
i,t for each of the k atoms due to the expres-

sion Ei. It will also induce an assignment for the variables of q that maps each
atom p to a tuple t due to expression E(i,t),(i′,t′). And Et guarantees the k + 1
disjoint joining paths. Therefore, it is easy to see that 2-CNF boolean formula
constructed by this reduction has a satisfying assignment with k true variables,
iff the answer of RES is no for constant kRES, that is, there exist kRES initiations
of the variables in q that maps all the atoms to tuples of the database d, and
these initiations are totally disjoint.

To the lower bound, we build a simple reduction from the clique problem to
the complement of RES (q, k′). Clique problem is W[1]-complete, so that RES is
co-W[1]-hard.

– For any instance (G, k) of clique we construct a database consisting of one
binary relation G(·, ·) (the graph), i.e., G(xi, xj) if (vi, vj) ∈ E.

– Then insert a unique dummy tuple (x, x).
– Let k′ = 1.

Parameterized Complexity of Resilience Decision for Database Debugging 341

The boolean query for parameter k is simply

q :−
∧

1≤i<j≤k

G(xi, xj).

One can verify that (a) the query size is bounded by O(k2); (b) the boolean
query q is true at first; (c) since (x, x) must be deleted in order to guarantee
q is false, therefore, deletion of any k′ tuple makes query still true iff G has a
clique of size k. �
Theorem 2. The parametric complexity of RES over positive query is co-W[1]-
complete, for case with parameter of query size.

Proof. To the lower bound, conjunctive query is a special case of positive query,
therefore, we can simply reduce the case of conjunctive query to this case of
positive query, and we can know it is co-W[1]-hard.

To the upper bound, case of positive query is also co-W[1]. This is really
because that we can rewrite any positive query q into a disjunction of several
conjunctive queries, and the number of conjunctive queries introduced is at most
exponential to the size of q. Therefore, this rewriting is fixed parameter tractable.
However, it is not naive to build the new dummy element and the corresponding
parameter k. Therefore, we show the detailed reduction. Concretely, first we
know that “there is no solution deletion of size k in d for query q iff for each
conjunctive query qi in the transformed disjunction expression of q, there is no
deletion of size k in d making qi false.” Then, we can transform each (qi, k) into
the corresponding clique instance (Gi, ki) by f.p.t reduction, such that “there is
no solution deletion of size k in d for query qi iff Gi has a clique of size ki.”

To the correctness, we should uniform all the different ki. Pick the kclique =
max

i
{ki}. Then in each Gi, add kclique − ki new nodes adjacent to each other,

and link them to all the other nodes in Gi. Finally, one can verify that “RES
has a solution of size k for a positive query iff G (disjoint set of all the Gi) has
a clique of size kclique”. �
Theorem 3. The parametric complexity of RES over positive query is co-
W[SAT]-hard, for case with parameter of number of variables.

Proof. We now give a proof that for RES in the condition of exactly k deletions.
Here we reduce the k-Weighted SAT to RES. In k-weighted SAT problem, given
a Boolean formula F (with no restriction on depth) and integer k, it is to decide
if F has a satisfying assignment of Hamming weight exactly k.

We can also use dummy element to construct the reduction by combining
the technique in [14].

– Build a database d with three relations, say

Pos(x, y), Neg(x, y), Dummy(x)

For each variables x1, . . . , xn in the given boolean formula F , fill in the
Pos(X,Y) with facts (1, 1), . . . , (n, n), fill in the Neg(x, y) with (i, j) for each
pair 1 ≤ i �= j ≤ n, and let unary relation Dummy(x) includes a fact (a).

342 D. Miao and Z. Cai

– Build query q as follows. First, to simulate the k weighted solution, introduce
a sentence

P :− (∃z1, . . . , zk)
∧

1≤i�=j≤k

Neg(zi, zj)

Then, for each literal li of variable xi in the given boolean formula F , define
a transform as

τ(li) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∧
1≤j≤k

Neg(i, zj), if li is negative literal; (3)

∨
1≤j≤k

Pos(i, zj), if li is positive literal. (4)

We denote the proposition transformed by τ as Fτ . At last, build query as

q :− (P ∧ Fτ) ∨ Dummy(a)

– let k′ = 1.

Clearly, one can verify that (a) the number of variables is bounded by k; (b)
the boolean query q is true initially due to the dummy elements; (c) since unary
fact (a) must be deleted in order to guarantee q is false, therefore, deletion of
any k′ tuple makes query still true iff F has no satisfying assignment of Hamming
weight exactly k. �
Theorem 4. The parametric complexity of RES over first-order query is

– co-W[P]-hard, for case with parameter of the number of variables.
– co-W[t]-hard, for case with parameter of query size.

The proof is basically established by reductions from “weighted circuit sat-
isfiability” and “depth-t weighted circuit satisfiability” separately, which are the
typical problem in W[P]-hard and W[t]-hard [16]. For simplicity, we omit the
detail of the reduction here.

4 Conclusion

We study the complexity of the RES problem by means of parameterized com-
plexity, and provide the results of conjunctive query, positive query and first-
order query. The results are summarized in Table 2. In the future work, We
plan to investigate the tractable condition and approximation algorithms for
intractable cases. Furthermore, we plan to study another objective of this prob-
lem which is the side effect on source database. The cases considering other types
of dependency constraints on database, such as independent dependencies, also
need to be further explored.

Parameterized Complexity of Resilience Decision for Database Debugging 343

References

1. Freire, C., Gatterbauer, W., Immerman, N., Meliou, A.: The complexity of
resilience and responsibility for self-join-free conjunctive queries. Proc. VLDB
Endow. 9(3), 180–191 (2015). doi:10.14778/2850583.2850592

2. Buneman, P., Khanna, S., Tan, W.-C.: On propagation of deletions and annota-
tions through views. In: Proceedings of the Twenty-first ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2002, pp. 150–158.
ACM, New York (2002). doi:10.1145/543613.543633

3. Cong, G., Fan, W., Geerts, F., Li, J., Luo, J.: On the complexity of view update
analysis and its application to annotation propagation. IEEE Trans. Knowl. Data
Eng. 24(3), 506–519 (2012). doi:10.1109/TKDE.2011.27

4. Kimelfeld, B.: A dichotomy in the complexity of deletion propagation with func-
tional dependencies. In: Proceedings of the 31st Symposium on Principles of Data-
base Systems, PODS 2012, pp. 191–202. ACM, New York (2012). doi:10.1145/
2213556.2213584

5. Kimelfeld, B., Vondrák, J., Woodruff, D.P.: Multi-tuple deletion propagation:
approximations and complexity. Proc. VLDB Endow. 6(13), 1558–1569 (2013).
doi:10.14778/2536258.2536267

6. Kimelfeld, B., Vondrák, J., Williams, R.: Maximizing conjunctive views in dele-
tion propagation. ACM Trans. Database Syst. 37(4), 1–237 (2012). doi:10.1145/
2389241.2389243

7. Cong, G., Fan, W., Geerts, F.: Annotation propagation revisited for key preserving
views. In: Proceedings of the 15th ACM International Conference on Information
and Knowledge Management, CIKM 2006, pp. 632–641. ACM, New (2006). doi:10.
1145/1183614.1183705

8. Miao, D., Liu, X., Li, J.: On the complexity of sampling query feedback restricted
database repair of functional dependency violations. Theor. Comput. Sci. 609,
594–605 (2016)

9. Dayal, U., Bernstein, P.A.: On the correct translation of update operations on
relational views. ACM Trans. Database Syst. 7(3), 381–416 (1982). doi:10.1145/
319732.319740

10. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans.
Database Syst. 6(4), 557–575 (1981). doi:10.1145/319628.319634

11. Cosmadakis, S., Papadimitriou, C.H.: Updates of relational views. J. ACM 31(4),
742–760 (1984). doi:10.1145/1634.1887

12. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for updat-
able views. In: Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2006, pp. 338–347. ACM,
New York (2006). doi:10.1145/1142351.1142399

13. Keller, A.M.: Algorithms for translating view updates to database updates for
views involving selections, projections, and joins. In: Proceedings of the Fourth
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, PODS
1985, pp. 154–163. ACM, New York (1985). doi:10.1145/325405.325423

14. Papadimitriou, C.H., Yannakakis, M.: On the complexity of database queries
(extended abstract). In: Proceedings of the Sixteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, PODS 1997, pp. 12–19.
ACM, New York (1997). doi:10.1145/263661.263664

http://dx.doi.org/10.14778/2850583.2850592
http://dx.doi.org/10.1145/543613.543633
http://dx.doi.org/10.1109/TKDE.2011.27
http://dx.doi.org/10.1145/2213556.2213584
http://dx.doi.org/10.1145/2213556.2213584
http://dx.doi.org/10.14778/2536258.2536267
http://dx.doi.org/10.1145/2389241.2389243
http://dx.doi.org/10.1145/2389241.2389243
http://dx.doi.org/10.1145/1183614.1183705
http://dx.doi.org/10.1145/1183614.1183705
http://dx.doi.org/10.1145/319732.319740
http://dx.doi.org/10.1145/319732.319740
http://dx.doi.org/10.1145/319628.319634
http://dx.doi.org/10.1145/1634.1887
http://dx.doi.org/10.1145/1142351.1142399
http://dx.doi.org/10.1145/325405.325423
http://dx.doi.org/10.1145/263661.263664

344 D. Miao and Z. Cai

15. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer Publishing
Company Incorporated, New York (2012)

16. Grohe, M.: The parameterized complexity of database queries. In: Proceedings
of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2001, pp. 82–92. ACM, New York (2001). doi:10.1145/
375551.375564

http://dx.doi.org/10.1145/375551.375564
http://dx.doi.org/10.1145/375551.375564

Formal Analysis of Linear Control Systems
Using Theorem Proving

Adnan Rashid(B) and Osman Hasan

School of Electrical Engineering and Computer Science (SEECS)
National University of Sciences and Technology (NUST), Islamabad, Pakistan

{adnan.rashid,osman.hasan}@seecs.nust.edu.pk

Abstract. Control systems are an integral part of almost every engi-
neering and physical system and thus their accurate analysis is of utmost
importance. Traditionally, control systems are analyzed using paper-and-
pencil proof and computer simulation methods, however, both of these
methods cannot provide accurate analysis due to their inherent limita-
tions. Model checking has been widely used to analyze control systems
but the continuous nature of their environment and physical components
cannot be truly captured by a state-transition system in this technique.
To overcome these limitations, we propose to use higher-order-logic the-
orem proving for analyzing linear control systems based on a formalized
theory of the Laplace transform method. For this purpose, we have for-
malized the foundations of linear control system analysis in higher-order
logic so that a linear control system can be readily modeled and ana-
lyzed. The paper presents a new formalization of the Laplace transform
and the formal verification of its properties that are frequently used in
the transfer function based analysis to judge the frequency response,
gain margin and phase margin, and stability of a linear control sys-
tem. We also formalize the active realizations of various controllers,
like Proportional-Integral-Derivative (PID), Proportional-Integral (PI),
Proportional-Derivative (PD), and various active and passive compen-
sators, like lead, lag and lag-lead. For illustration, we present a formal
analysis of an unmanned free-swimming submersible vehicle using the
HOL Light theorem prover.

Keywords: Control systems · Higher-order logic · Theorem proving

1 Introduction

Linear control systems are widely used to regulate the behavior of many safety-
critical applications, such as process control, aerospace, robotics and transporta-
tion. The first step in the analysis of a linear control system is the construction of
its equivalent mathematical model by using the physical and engineering laws.
For example, in the case of electrical systems, we need to model the currents
and voltages passing through the electrical components and their interactions
in the corresponding electrical circuit using the system governing laws, such as
c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 345–361, 2017.
https://doi.org/10.1007/978-3-319-68690-5 21

346 A. Rashid and O. Hasan

Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL). The mathe-
matical model is then used to derive differential equations describing the rela-
tionship between the inputs and outputs of the underlying system. The next step
in the analysis of a linear control system is to solve these equations to obtain a
transfer function, which is in turn used to assess many interesting control system
characteristics, such as frequency response, phase margin and gain margin. How-
ever, solving these equations in the time domain is not so straightforward as they
usually involve the integral and differential operators. The Laplace transform,
which is an integral based transform method, is thus often used to convert these
differential equations to their equivalent algebraic equations in s-domain by con-
verting the differential and integral operations into multiplication and division
operators, respectively. This algebraic equation can be quite easily solved to
obtain the corresponding transfer function, frequency response, gain margin and
the phase margin and perform the stability analysis of the given control system.

Traditionally, the linear control system analysis is performed using paper-
and-pencil proof methods. However, these methods are human-error prone and
cannot be relied upon for the analysis of safety-critical applications. Moreover,
there is always a risk of misusing an existing mathematical result as this manual
analysis method does not provide the assurance that a mathematical law would
be used only if all of its required assumptions are valid. Computer simulation and
numerical methods are also frequently used to analyze linear control systems.
However, they also compromise the accuracy of the results due to the involvement
of computer arithmetic and the associated round-off errors. Computer algebra
systems (CAS), such as Mathematica [14], are also used for the Laplace transform
based analysis of linear control systems. However, CAS are primarily based on
unverified symbolic algorithms and thus there is no formal proof to ascertain the
accuracy of their analysis results. Given the inaccurate nature of all the above-
mentioned analysis techniques, they are not very suitable to analyze control
systems used in safety-critical domains, where even a slight error in analysis
may lead to disastrous consequences, including the loss of human lives.

To overcome the above-mentioned limitations, model checking [11] has been
also used to analyze control systems [12,22] but the continuous nature of their
environment and physical components cannot be truly captured by a state-
transition system in this technique. Similarly, a Hoare logic based framework [6]
and the KeYmaera tool [2] have been used for the formal frequency domain
analysis and verification of the safety properties of control systems with sampled-
time controllers, respectively. However, the former is limited to the analysis of
systems that can be expressed using a block diagram with a tree structure,
whereas in the later, the continuous nature of the models is abstracted in the
formal modeling process and hence the completeness of the analysis is compro-
mised in both cases.

Recently, the HOL Light theorem prover has been used for the formal analysis
of control systems. Hasan et al. presented a formalization of the block diagrams
in HOL Light and used it to reason about the transfer function and the steady-
state error analysis of a feedback control system [10]. Ahmed et al. used this

Formal Analysis of Linear Control Systems 347

formalization of block diagrams to verify the steady-state error of a unity feed-
back control system [1]. Similarly, Beillahi et al. formalized the signal flow graphs
in HOL Light, which can be used to formally verify transfer functions of linear
control systems [5]. However, all these existing works focus on the verification
of the transfer functions for a control system and, to the best of our knowledge,
no prior work dealing with the formal analysis of dynamics of a linear control
system exists in the literature of higher-order-logic theorem proving.

In this paper, we present a framework to conduct the formal analysis of
dynamical characteristics of a linear control system using higher-order-logic the-
orem proving. The main idea behind the proposed framework, depicted in Fig. 1,
is to formalize all the foundational components of a linear control system to
facilitate formal modeling and reasoning about linear control systems within the
sound core of a theorem prover. For this purpose, we built upon the higher-
order-logic formalizations of Multivariable calculus [9] and a library of analog
components, like resistor, capacitor and inductor [21]. We present a new for-
malization of Laplace transform, which includes the formal verification of some
of its frequently used properties in reasoning about the transfer function of an
n-order system. We also formalized some widely used characteristics of linear
control systems, such as frequency response, gain margin and phase margin,
which can be used for the stability analysis of a linear control system. Moreover,
we formalize the active realizations of various controllers, such as Proportional-
Integral-Derivative (PID), Proportional-Integral (PI), Proportional-Derivative
(PD), Proportional (P), Integral (I) and Derivative (D) and various active and
passive compensators, such as lag, lead and lag-lead.

The proposed framework, depicted in Fig. 1, allows us to build a formal model
of the given linear control system, based on the active realizations of its con-
trollers and compensators, the passive realizations of compensators and differ-
ential equations. Moreover, it also allows to formalize the behavior of the given
linear control system in terms of its differential equation, transfer function spec-
ification and its properties, such as phase margin, frequency response and gain

Fig. 1. Proposed framework

348 A. Rashid and O. Hasan

margin. We can then use these formalized models and properties to verify an
implication relationship between them, i.e., model implies its specification. In
order to demonstrate the effectiveness of our proposed formalization, we formal-
ize the control system of an unmanned free-swimming submersible vehicle [15].
We have used the HOL Light theorem prover [8] for the proposed formalization
in order to build upon its multivariable calculus theories. We have also devel-
oped a tactic that can be used to automatically verify the transfer function of
any control system up to 20thorder. This tactic was found to be very handy in
the formal analysis of the unmanned submersible vehicle.

2 Multivariable Calculus Theories in HOL Light

An N-dimensional vector is formalized in the multivariable theory of HOL Light
as a RN column matrix of real numbers [9]. All of the multivariable calculus
theorems are verified for functions with an arbitrary data-type RN → RM .

A complex number is defined as a 2-dimensional vector, i.e., a R2 matrix.

Definition 1. � ∀ a. Cx a = complex (a, &0)

� ii = complex (&0, &1)

Cx : R → R2 is a type casting function that accepts a real number and returns
its corresponding complex number with the imaginary part equal to zero, where
the & operator type casts a natural number to its corresponding real number.
Similarly, ii (iota) represents a complex number having the real part equal to
zero and the magnitude of the imaginary part equal to 1.

Definition 2. � ∀ z. Re z = z$1

� ∀ z. Im z = z$2

� ∀ x. lift x = (lambda i. x)

� ∀ x. drop x = x$1

The function Re accepts a complex number (2-dimensional vector) and returns
its real part. Here, the notation z$i represents the ith component of vector
z. Similarly, Im takes a complex number and returns its imaginary part. The
function lift accepts a variable of type R and maps it to a 1-dimensional
vector with the input variable as its single component. Similarly, drop takes a
1-dimensional vector and returns its single element as a real number.

Definition 3. � ∀ x. exp x = Re (cexp (Cx x))

The complex exponential and real exponentials are represented as cexp : R2 →
R2 and exp : R → R in HOL Light, respectively.

Definition 4. � ∀ f i. integral i f = (@y. (f has integral y) i)

� ∀ f i. real integral i f = (@y. (f has real integral y) i)

Formal Analysis of Linear Control Systems 349

The function integral represents the vector integral and is defined using the
Hilbert choice operator @ in the functional form. It takes the integrand function
f, having an arbitrary type RN → RM , and a vector-space i : RN → B, which
defines the region of convergence as B represents the boolean data type, and
returns a vector RM , which is the integral of f on i. The function has integral
represents the same relationship in the relational form. Similarly, the function
real integral accepts the integrand function f : R → R and a set of real
numbers i : R → B and returns the real-valued integral of function f over i.
The region of integration, for both of the above integrals can be defined to be
bounded by a vector interval [a, b] or real interval [a, b] using the HOL Light
functions interval [a, b] and real interval [a, b], respectively.

Definition 5. � ∀ f net. vector derivative f net =

(@f’.(f has vector derivative f’) net)

The function vector derivative takes a function f : R1 → RM and a net :
R1 → B, which defines the point at which f has to be differentiated, and returns
a vector of data-type RM , which represents the differential of f at net. The
function has vector derivative defines this relationship in the relational form.

Definition 6. � ∀ f net. lim net f = (@l. (f → l) net)

The function lim accepts a net with elements of arbitrary data-type A and a
function f : A → RM and returns l of data-type RM , i.e., the value to which f
converges at the given net.

3 Formalization of Laplace Transform

Mathematically, Laplace transform is defined for a function f : R1 → R2 as [4]:

L[f(t)] = F (s) =
∫ ∞

0

f(t)e−stdt, s ε C (1)

We formalize Eq. 1 in HOL Light as follows:

Definition 7. � ∀ s f. laplace transform f s =

integral {t| &0 <= drop t} (λt. cexp (--(s ∗ Cx (drop t))) ∗ f t)

The function laplace transform accepts a complex-valued function f : R1 →
R2 and a complex number s and returns the Laplace transform of f as rep-
resented by Eq. 1. In the above definition, we used the complex exponential
function cexp : R2 → R2 because the return data-type of the function f is R2.
Here, the data-type of t is R1 and to multiply it with the complex number s, it
is first converted into a real number by using drop and then it is converted to
data-type R2 using Cx. Next, we use the vector function integral (Definition 4)

350 A. Rashid and O. Hasan

to integrate the expression f(t)e−iωt over the positive real line since the data-
type of this expression is R2. The region of integration is {t | &0 <= drop t},
which represents the positive real line. Laplace transform was earlier formalized
using a limiting process as [20]:

� ∀ s f. laplace f s = lim at posinfinity (λb. integral

(interval [lift (&0), lift b]) (λt. cexp (--(s ∗ Cx (drop t))) ∗ f t))

However, the HOL Light definition of the integral function implicitly encom-
passes infinite limits of integration. So, our definition covers the region of integra-
tion, i.e., [0,∞), as {t | &0 <= drop t} and is equivalent to the definition given
in [20]. However, our definition considerably simplifies the reasoning process in
the verification of Laplace transform properties since it does not involve the
notion of limit.

The Laplace transform of a function f exists, if f is piecewise smooth and
is of exponential order on the positive real line [4,19]. A function is said to be
piecewise smooth on an interval if it is piecewise differentiable on that interval.

Definition 8. � ∀ s f. laplace exists f s ⇔
(∀ b. f piecewise differentiable on interval [lift (&0),lift b]) ∧
(∃ M a. Re s > drop a ∧ exp order cond f M a)

The function exp order cond in the above definition represents the exponential
order condition necessary for the existence of the Laplace transform [4,20]:

Definition 9. � ∀ f M a. exp order cond f M a ⇔ &0 < M ∧
(∀ t. &0 <= t ⇒ norm (f (lift t)) <= M ∗ exp (drop a ∗ t))

We used Definitions 7, 8 and 9 to formally verify some of the classical prop-
erties of Laplace transform, given in Table 1. The properties namely linearity,
frequency shifting, differentiation and integration were already verified using
the formal definition of the Laplace transform [20]. We formally verified these
using our new definition of the Laplace transform. Moreover, we formally veri-
fied some new properties, such as, time shifting, time scaling, cosine and sine-
based modulations and the Laplace transform of a n-order differential equation.
The assumptions of these theorems describe the existence of the corresponding
Laplace transforms. For example, the predicate laplace exists higher deriv
in the theorem corresponding to the n-order differential equation ensures that
the Laplace of all the derivatives up to the nth order of the function f exist.
Similarly, the predicate differentiable higher derivative provides the dif-
ferentiability of the function f and its higher derivatives up to the nth order.
The verification of these properties not only ensures the correctness of our defin-
itions but also plays a vital role in minimizing the user effort in reasoning about
Laplace transform based analysis of systems, as will be depicted in Sects. 4 and 5
of this paper.

Formal Analysis of Linear Control Systems 351

The generalized linear differential equation describes the input-output rela-
tionship for a generic n-order linear control system [15]:

n∑
k=0

αk
dk

dtk
y(t) =

m∑
k=0

βk
dk

dtk
x(t), m ≤ n (2)

where y(t) is the output and x(t) is the input to the system. The constants αk

and βk are the coefficients of the output and input differentials with order k,
respectively. The greatest index n of the non-zero coefficient αn determines the
order of the underlying system. The corresponding transfer function is obtained

Table 1. Properties of Laplace transform

Property Formalized Form

Integrability
e−stf(t) integrable

on [0, ∞)

� ∀ f s. laplace exists f s

⇒ (λt. cexp (--(s ∗ Cx (drop t))) ∗ f t)

integrable on {t | &0 <= drop t}

Linearity
L[αf(t) + βg(t)] =

αF (s) + βG(s)

� ∀ f g s a b.

laplace exists f s ∧ laplace exists g s

⇒ laplace transform (λt. a ∗ f t + b ∗ g t) s =

a ∗ laplace transform f s +

b ∗ laplace transform g s

Frequency Shifting
L[es0tf(t)] =

F (s − s0)

� ∀ f s s0. laplace exists f s

⇒ laplace transform

(λt. cexp (s0 ∗ Cx (drop t)) ∗ f t) s =

laplace transform f (s - s0)

First-order Differ-
entiation in Time
Domain

L
[

d

dt
f(t)

]
=

sF (s) − f(0)

� ∀ f s. laplace exists f s ∧
(∀ t. f differentiable at t) ∧

laplace exists (λt. vector derivative f (at t)) s

⇒ laplace transform

(λt. vector derivative f (at t)) s =

s ∗ laplace transform f s - f (lift (&0))

Higher-order Diffe-
rentiation in Time
Domain

L[
dn

dtn f(t)] = snF (s)

− ∑n
k=1 sk−1 dn−kf(0)

dxn−k

� ∀ f s n. laplace exists higher deriv n f s ∧
(∀ t. differentiable higher derivative n f t)

⇒ laplace transform

(λt. higher vector derivative n f t) s =

s pow n ∗ laplace transform f s -

vsum (1..n) (λx. s pow (x - 1) ∗
higher vector derivative (n - x) f (lift (&0)))

Integration in
Time Domain

L
[∫ t

0
f(τ)dτ

]
=

1

s
F (s)

� ∀ f s. &0 < Re s ∧ laplace exists f s ∧
laplace exists

(λx. integral (interval [lift (&0),x]) f) s ∧
(∀ x. f continuous on interval [lift (&0),x])

⇒ laplace transform

(λx. integral (interval [lift (&0),x]) f) s =
Cx(&1)

s
∗ laplace transform f s

(continued)

352 A. Rashid and O. Hasan

Table 1. (continued)

Time Shifting
L [f(t − t0)u(t − t0)] =

e−t0sF (s)

� ∀ f s t0. &0 < drop t0 ∧ laplace exists f s

⇒ laplace transform (shifted fun f t0) s =

cexp (--(s ∗ Cx (drop t0))) ∗
laplace transform f s

Time Scaling

L [f(ct)] =
1

c
F

(s

c

)
,

0 < c

� ∀ f s c. &0 < c ∧ laplace exists f s ∧
laplace exists f

(s

Cx c

)
⇒ laplace transform (λt. f(c % t)) s =

Cx(&1)

Cx c
∗ laplace transform f

(s

Cx c

)
Cosine Based
Modulation
L [f(t)cos(ω0t)] =
F (s − iω0)

2
+

F (s + iω0)

2

� ∀ f s w0. laplace exists f s

⇒ laplace transform

(λt. ccos (Cx w0 ∗ Cx (drop t)) ∗ f t) s =
laplace transform f (s − ii ∗ Cx w0)

Cx(&2)
+

laplace transform f (s + ii ∗ Cx w0)

Cx(&2)

Sine Based
Modulation
L [f(t)cos(ω0t)] =
F (s − iω0)

2i
−

F (s + iω0)

2i

� ∀ f s w0. laplace exists f s

⇒ laplace transform

(λt. csin (Cx w0 ∗ Cx (drop t)) ∗ f t) s =
laplace transform f (s − ii ∗ Cx w0)

Cx(&2) ∗ ii
−

laplace transform f (s + ii ∗ Cx w0)

Cx(&2) ∗ ii

n-order Differ-
ential Equation

L
(∑n

k=0 αk
dky

dtk

)
=

F (s)
∑n

k=0 αksk

− ∑n
k=0

∑k
i=1

si−1 dk−if(0)

dtk−i

� ∀ f lst s n. laplace exists higher deriv n f s ∧
(∀ t. differentiable higher derivative n f t)

⇒ laplace transform

(λt. diff eq n order n lst f t) s =

laplace transform f s ∗
vsum (0..n) (λk. EL k lst ∗ s pow k)

- vsum (0..n) (λk. EL k lst ∗
vsum (1..k) (λi. s pow (i - 1)

∗ higher vector derivative (k - i) f (lift (&0))))

by setting the initial conditions equal to zero [15]:

Y (s)
X(s)

=
∑m

k=0 βksk∑n
k=0 αksk

(3)

We verified the transfer function, given in Eq. 3, for the generic n-order linear
control system as the following HOL Light theorem.

Theorem 1. � ∀ y x m n inlst outlst s.

(∀ t. differentiable higher deriv m n x y t) ∧
laplace exists of higher deriv m n x y s ∧ zero init conditions m n x y ∧
diff eq n order sys m n inlst outlst y x ∧
∼(laplace transform x s = Cx (&0)) ∧

Formal Analysis of Linear Control Systems 353

∼(vsum (0..n) (λt. EL t outlst ∗ s pow t) = Cx (&0))

⇒ laplace transform y s

laplace transform x s
=

vsum (0..m) (λt. EL t inlst ∗ s pow t)

vsum (0..n) (λt. EL t outlst ∗ s pow t)

The first assumption ensures that the functions y and x are differentiable up to
the nth and mth order, respectively. The next assumption represents the Laplace
transform existence condition up to the nth order derivative of function y and mth

order derivative of the function x. The next assumption models the zero initial
conditions for both of the functions y and x, respectively. The next assumption
represents the formalization of Eq. 2 and the last two assumptions provide the
conditions for the design of a reliable linear control system. Finally, the conclu-
sion of the above theorem represents the transfer function given by Eq. 3. The
verification of this theorem is very useful as it allows to automate the verifica-
tion of the transfer function of any linear control system as described in Sects. 4
and 5 of the paper. The formalization, described in this section, took around
2000 lines of HOL Light code [17] and around 130 man-hours.

4 Formalization of Linear Control Systems Foundations

A general closed-loop control system is depicted in Fig. 2a. Here, X(s) and Y (s)
represent the Laplace transforms of the time domain input x(t) and the out-
put y(t), respectively. G(s) and H(s) represent the forward path and the feed-
back path transfer functions, respectively. Similarly, G(s)H(s) is the open loop
transfer function of the system and Y (s)/X(s) is the closed loop transfer func-
tion [7]. Table 2 presents the formalization of the frequency response, phase mar-
gin and gain margin of this control system. These properties are used to study
the dynamics of a linear control system in the frequency domain and to perform
its stability analysis.

The frequency response is used to analyze the dynamics of the system by
studying the impact of different frequency components on the intended behav-
iour of the given linear control system. We also formally verified the frequency
response of a generic n-order system based on assumptions that are very similar
to the ones used for Theorem 1.

Phase margin and gain margin provide useful information about controlling
the stability of the system [7]. Phase margin represents 180o shifted phase angle
of the open loop transfer function evaluated at the gain crossover frequency
(ωgc), which is the frequency at which the magnitude of the open loop transfer
function is equal to 0 dB. The gain margin represents the magnitude of the open
loop transfer function evaluated at the phase crossover frequency (ωpc), which
is the frequency at which the resultant phase curve of the open loop gain has
a phase of 180o. In our formal definitions of these notions, the function Arg(z)
represents the argument of a complex number z.

The controllers form the most vital part of any control system as they are
mainly responsible for the correct operation of every component of the under-
lying system. Controllers are modeled using their active realizations based on

354 A. Rashid and O. Hasan

Table 2. Properties of linear control systems

Property Formalized Form

Frequency Response
M(jω) = M(s)|(jω) =

Y (s)

X(s)

∣∣∣∣∣
(jω)

=
Y (jω)

X(jω)

� ∀ y x w. frequency response x y w =
laplace transform y (ii ∗ Cx w)

laplace transform x (ii ∗ Cx w)

Frequency Response
of an n-order
System

Y (jω)

X(jω)
=

∑m
k=0 βk(jω)k∑n
k=0 αk(jω)k

� ∀ y x m n inlst outlst s.

(∀ t. differentiable higher deriv m n x y t) ∧
laplace exists of higher deriv m n x y w ∧
zero init conditions m n x y ∧
diff eq n order sys m n inlst outlst y x ∧
non zero denom cond n x w outlst ⇒

frequency response x y w =
vsum (0..m) (λt. EL t inlst ∗ (ii ∗ Cx w) pow t)

vsum (0..n) (λt. EL t outlst ∗ (ii ∗ Cx w) pow t)
Phase Margin
[∠G(jω)H(jω)]ω=ωgc

+ 180o

� ∀ g h wgc. phase margin g h wgc =

pi + Arg (g (ii ∗ Cx wgc) ∗ h (ii ∗ Cx wgc))

Gain Margin[
20log10

∣∣∣G(jω)

H(jω)
∣∣∣
ω=ωpc

]
dB

� ∀ g h wpc. gain margin db g h wpc = &20 ∗
log (norm (g (ii ∗ Cx wpc) ∗ h (ii ∗ Cx wpc)))

log (&10)

an electrical circuit, which comprises of an inverting operational amplifier (op-
amp) with unity gain, and two components, i.e., CA and CB , which are shown as
rectangular boxes in Fig. 2b. The boxes CA and CB contain different configura-
tions of the passive components, i.e., resistors and capacitors [16]. By making an
appropriate choice of these passive components, we obtain various controllers,
such as P, I, D, PI, PD, PID [15]. For the analysis of these controllers, we first
need to formalize them in higher-order logic. This step requires a formal library of
analog components [17,21], describing the voltage-current relationships of resis-
tor, capacitors and inductors, and the KCL and KVL, which model the currents
and voltages in an electrical circuit.

The PID controller, depicted in Fig. 2c, can be formalized as follows:

Definition 10. � ∀ C1 R1 Vi R2 C2 Vo Vb Va.

pid controller implem Vi Vo Va Vb C1 C2 R1 R2 ⇔
(∀ t. &0 < drop t ⇒ kcl [λt. capacitor current C1 (λt. Vi t - Va t) t;

λt. resistor current R1 (λt. Vi t - Va t) t;

λt. resistor current R2 (λt. Vb t - Va t) t] t ∧
(∀ t. &0 < drop t ⇒ kcl [λt. resistor current R2 (λt. Va t - Vb t) t;

λt. capacitor current C2 (λt. Vo t - Vb t) t] t ∧
(∀ t. &0 < drop t ⇒ Va t = Cx (&0))

where Vi and Vo are the input and the output voltages, respectively, having data
type R1 → R2, and Va and Vb are the voltages at nodes a and b, respectively. The

Formal Analysis of Linear Control Systems 355

(a)

-

+

(b) (c)

(d)

+ +

- -

(e) (f)

Fig. 2. Control Systems Foundations (a) Closed Loop Control System (b) Generic
Active Realization of Controller (c) PID Configuration (d) Lag/lead Compensator Con-
figuration (e) Generic Passive Realization of Compensator (f) Lag-lead Compensator
Configuration

functions resistor current and capcitor current are the currents across the
resistor and capacitor, respectively. The function kcl accepts a list of currents
across the components of the circuit and a time variable t and returns the pred-
icate that guarantees that the sum of all the currents leaving a particular node
at time t is zero. The first conjunct of the above definition represents the appli-
cation of KCL across node a. Similarly, the second conjunct models the KCL at
node b, whereas the last conjunct provides the voltage across the non-inverting
input of the op-amp using the virtual ground condition, as shown in Fig. 2b. We
also develop a simplification tactic KCL SIMP TAC, which simplifies the imple-
mentations of the PID controller as well as other controllers and compensators.
The details can be found in [17].

Next, we model the dynamical behaviour of the PID controller using the
n-order differential equation:

Definition 11. � ∀ R1 R2 C1 C2. inlst pid contr R1 R2 C1 C2 =

[--Cx (&1); --Cx (R2 ∗ C2 + R1 ∗ C1); --Cx (R1 ∗ R2 ∗ C1 ∗ C2)]

� ∀ R1 C2. outlst pid contr R1 C2 = [Cx (&0); Cx (R1 ∗ C2)]

� ∀ Vo R1 R2 C1 C2 Vi t. pid controller behav spec R1 R2 C1 C2 Vi Vo t ⇔
diff eq n order 1 (outlst pid contr R1 C2) Vo t =

diff eq n order 2 (inlst pid contr R1 R2 C1 C2) Vi t

356 A. Rashid and O. Hasan

We verified the behavioural specification based on the implementation of the
PID controller as the following theorem:

Theorem 2. � ∀ R1 R2 C1 C2 Vi Va Vb Vo t. &0 < R1 ∧ &0 < R2 ∧
&0 < C1 ∧ &0 < C2 ∧ (∀ t. differentiable higher derivative Vi Vo Vb t) ∧

pid controller implem Vi Vo Va Vb C1 C2 R1 R2

⇒ (&0 < drop t ⇒ pid controller behav spec R1 R2 C1 C2 Vi Vo t)

The first four assumptions model the design requirement for the underlying
system. The next assumption provides the differentiability of the higher-order
derivatives of Vi, Vo and Vb up to the order 1, 2 and 2, respectively. The last
assumption presents the implementation for the PID controller. Finally, the con-
clusion presents its behavioral specification. We also develop a simplification
tactic DIFF SIMP TAC, which simplifies the behavioural specifications of the PID
controller as well as the other controllers and compensators [17].

Next, we verified the transfer function of the PID controller as follows:

Theorem 3. � ∀ R1 R2 C1 C2 Vi Vo s t. &0 < R1 ∧ &0 < R2 ∧ &0 < C1 ∧
∼(laplace transform Vi s = Cx (&0)) ∧ ∼(Cx R1 ∗ Cx C2 ∗ s = Cx (&0)) ∧
&0 < C2 ∧ (∀ t. differentiable higher derivative Vi Vo t) ∧
laplace exists higher deriv Vi Vo s ∧ zero initial conditions Vi Vo ∧
(∀ t. pid controller behav spec R1 R2 C1 C2 Vi Vo t)

⇒ laplace transform Vo s

laplace transform Vi s
=

--
(
Cx(R1 ∗ C1 ∗ R2 ∗ C2) ∗ s pow 2 + (Cx(R2 ∗ C2) + Cx(C1 ∗ R1)) ∗ s + Cx(&1)

)

Cx(R1 ∗ C2) ∗ s

The first six assumptions present the design requirements for the underlying
system. The next two assumptions provide the differentiability and the Laplace
existence condition for the higher-order derivatives of Vi and Vo up to the order
2 and 1, respectively. The next assumption models the zero initial conditions
for the voltage functions Vi and Vo. The last assumption presents the behav-
ioural specification of the PID controller. Finally, the conclusion of Theorem 3
presents its required transfer function. By judicious selection of the configuration
of passive components, we obtain various controllers, such as P, I, D, PI, PD and
perform the above-mentioned analysis for all of them.

Compensators are widely used in control systems, to improve their frequency
response, steady-state error and the stability and hence, act as a fundamen-
tal block of a control system. Like controllers, the compensators are also mod-
eled using their active realizations. A compensator uses the same analog circuit,
which is used for the controllers, presented in Fig. 2b, by making an appropriate
choice of the passive components CA and CB , as shown in Fig. 2d. It acts as
a lag-compensator under the condition R2C2 > R1C1, whereas for the case of
R1C1 > R2C2, it acts as a lead-compensator. The configurations of the pas-
sive components for the controllers and compensators, and their formalization
is presented in [17].

Formal Analysis of Linear Control Systems 357

Compensators are also modeled using their passive realizations based on an
electrical circuit, which comprises of two components, i.e., CA and CB , which
are shown as rectangular boxes in Fig. 2e. The boxes CA and CB contain dif-
ferent configurations of the passive components, i.e., resistors and capacitors.
By making an appropriate choice of these passive components, we obtain vari-
ous compensators, such as lag, lead and lag-lead [15]. The configuration of the
lag-lead compensator is shown in Fig. 2f. Moreover, the configurations of the
passive components for the compensators and their formalization in HOL Light
is presented in [17].

The formalization of this section took around 300 lines of HOL Light code
and around 14 man-hours. This clearly illustrates the effectiveness of our foun-
dational formalization, presented in the previous section.

5 Unmanned Free-Swimming Submersible Vehicle

Unmanned Free-Swimming Submersible (UFSS) vehicles are a kind of
autonomous underwater vehicles (AUVs) that are used to perform different tasks
and operations in the submerged areas of the water. These vehicles have their
own power and control systems, which are autonomously operated and controlled
by the onboard computer system without any involvement of human assistance
as it is difficult for humans to work in an underwater environment. UFSS vehi-
cles are used in many safety-critical domains to perform different tasks, such as
underwater navigation and object detection [13], performing deep sea rescue and
salvage operations [23], searching for sea mines [24] and securing sea harbour [24].
Due to their wider usage in the above-mentioned safety-critical applications, an
accurate analysis of their control system is of utmost importance.

We present a formal analysis of the pitch control system of a UFSS vehicle.
The pitch control system is responsible for the uninterrupted operation and
functionality of the UFSS vehicle by manipulating different parameters, such as,
elevator surface, pitch angle [15]. Figure 3 depicts its block diagram.

Fig. 3. Pitch control model for unmanned free-swimming submersible vehicle

358 A. Rashid and O. Hasan

The dynamics of the UFSS vehicle are represented by its corresponding dif-
ferential equation, which presents the relationship between the pitch command
angle θe(t) and the pitch angle θ(t), and is given as follows:

d4θ

dt4
+ 3.456

d3θ

dt3
+ (3.207 + 0.25K2)

d2θ

dt2
+ (0.616 + 0.1088K2 + 0.25K1)

dθ

dt
+

(0.1088K1 + 0.0416) = 0.25K1
dθe

dt
+ 0.1088K1

(4)
We formalize the above differential equation as follows [18]:

Definition 12. � ∀ K1.inlst ufsv K1 = [Cx (#0.1088) ∗ Cx K1; Cx (#0.25) ∗ Cx K1]
� ∀ K1 K2. outlst ufsv K1 K2 =[
Cx (#0.1088) ∗ Cx K1 + Cx (#0.0416) ; Cx (#0.25) ∗ Cx K1 + Cx (#0.1088) ∗ Cx K2

+ Cx (#0.6106) ; Cx (#0.25) ∗ Cx K2 + Cx (#3.207) ; Cx (#3.456) ; Cx (&1)
]

� diff eq ufsv inlst ufsv outlst ufsv theta thetae K1 K2 ⇔
(∀t. diff eq n order 4 (outlst ufsv K1 K2) theta t =

diff eq n order 1 (inlst ufsv K1) thetae t)

where thetae and theta represent the input and the output of the pitch control
system and K1 and K2 are the pitch gain and pitch rate sensor gain, respectively.
The symbol # is used to represent a decimal number of data type R in HOL
Light and is same as symbol & for the integer literal of data type R.

The transfer function of the pitch control of the UFSS vehicle is as follows:

θ(s)
θe(s)

=
0.25K1s + 0.1088K1

s4 + 3.456s3 + (3.207 + 0.25K2)s2 + (0.6106 + 0.1088K2+
0.25K1)s + (0.1088K1 + 0.0416)

(5)

We verified the above transfer function as the following HOL Light theorem:

Theorem 4. � ∀ thetae theta s K1 K2.

(∀ t. differentiable higher deriv theta thetae t) ∧
laplace exists of higher deriv theta thetae s ∧
zero init conditions theta thetae ∧
diff eq ufsv inlst ufsv outlst ufsv theta thetae K1 K2 ∧
non zero denominator condition theta s

⇒ laplace transform theta s

laplace transform thetae s
=

(Cx (#0.25) ∗ Cx K1) ∗ s + Cx (#0.1088) ∗ Cx K1

s pow 4 + Cx (#3.456) ∗ s pow 3 +
(
Cx (#0.25) ∗ Cx K2 + Cx (#3.207)

)

∗ s pow 2 +
(
Cx (#0.25) ∗ Cx K1 + Cx (#0.1088) ∗ Cx K2 + Cx (#0.6106)

)

∗ s + Cx (#0.1088) ∗ Cx K1 + Cx (#0.0416)

The first two assumptions present the differentiability and the Laplace exis-
tence condition of the higher-order derivatives of thetae and theta up to order

Formal Analysis of Linear Control Systems 359

1 and 4, respectively. The next assumption provides the zero initial conditions
for thetae and theta. The next assumption presents the differential equation
specification for the pitch control system of UFSS vehicle. The final assumption
models the non-negativity of the denominator of the transfer function presented
in the conclusion of the above theorem. We also verified the open loop transfer
function θ(s)/δe(s), frequency response (open and closed loop) and gain margin,
for the UFSS vehicle and the details can be found in [17].

The distinguishing feature of Theorem 4 and the other properties, compared
to traditional analysis methods is their generic nature, i.e., all of the variables and
functions are universally quantified and can thus be specialized in order to obtain
the results for some given values. Moreover, all of the required assumptions
are guaranteed to be explicitly mentioned along with the theorems due to the
inherent soundness of the theorem proving approach. The high expressiveness
of the higher-order logic enables us to model the differential equation and the
corresponding transfer function in their true continuous form, whereas, in model
checking they are mostly discretized and modeled using a state-transition system,
which compromises the accuracy of the analysis.

To facilitate control engineers in using our formalization, we developed an
automatic tactic TRANSFER FUN TAC, which automatically verifies the transfer func-
tion of the systems up to 20th-order. This tactic was successfully used for the
automatic verification of the transfer functions of the controllers, compensators
and the pitch control system of the UFSS vehicle. This automatic verification
tactic only requires the differential equation and the transfer function of the
underlying system and automatically verifies the transfer function. Thus, the
formal analysis of the UFSS vehicle took only 25 lines of code and about half
an hour, thanks to our automatic tactic and the foundational formalization of
Sect. 3.

6 Conclusion

This paper presented a higher-order-logic theorem proving based approach for
the formal analysis of the dynamical aspects of linear control systems using
theorem proving. The main idea behind the proposed framework is to use a for-
malization of Laplace transform theory in higher-order logic to formally analyze
the dynamic aspects of linear control systems. For this purpose, we develop a
new formalization of Laplace transform theory, which includes its formal defin-
ition and verification of its properties, such as linearity, frequency shifting, dif-
ferentiation and integration in time domain, time shifting, time scaling, cosine
and sine-based modulation and the Laplace transform of an n-order differen-
tial equation, which are used for the verification of the transfer function of a
generic n-order linear control system. Moreover, the paper also presents the for-
mal verification of some widely used linear control system characteristics, such as
frequency response, phase margin and the gain margin, using the verified transfer
function, which can be used for the stability analysis of a linear control system.
We also formalize the active realization of various controllers, such as PID, PD,

360 A. Rashid and O. Hasan

PI, P, I, D, and various compensators, such as lag and lead. Finally, we formalize
the passive realization of the various compensators, such as lag, lead and lag-
lead and verified the corresponding behavioral (differential equation) and the
transfer function specifications. To facilitate the usage of these formalizations
in analyzing real-world linear control systems, we developed some simplifica-
tion and automatic verification tactics, in particular the tactic TRANSFER FUN TAC,
which automatically verifies the transfer function of any real-world linear con-
trol system based on its differential equation. These foundations can be used to
analyze a wide range of linear control systems and for illustration purposes, the
paper presents the formal analysis of an unmanned free-swimming submersible
vehicle.

In future, we plan to link the proposed formalization with Simulink so that
the users can provide the system model as a block diagram. This diagram can
be used to extract the corresponding transfer function [3], which can in turn be
formally verified, almost automatically, to be equivalent to the corresponding
block diagram based on the reported formalization and reasoning support.

Acknowledgements. This work was supported by the National Research Program for
Universities grant (number 1543) of Higher Education Commission (HEC), Pakistan.

References

1. Ahmad, M., Hasan, O.: Formal verification of steady-state errors in unity-feedback
control systems. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718,
pp. 1–15. Springer, Cham (2014). doi:10.1007/978-3-319-10702-8 1

2. Aréchiga, N., Loos, S.M., Platzer, A., Krogh, B.H.: Using theorem provers to
guarantee closed-loop system properties. In: American Control Conference (ACC),
2012, pp. 3573–3580. IEEE (2012)

3. Babuska, R., Stramigioli, S.: Matlab and Simulink for Modeling and Control. Delft
University of Technology (1999)

4. Beerends, R.J., Morsche, H.G., Van den Berg, J.C., Van de Vrie, E.M.: Fourier and
Laplace Transforms. Cambridge University Press, Cambridge (2003)

5. Beillahi, S.M., Siddique, U., Tahar, S.: Formal analysis of power electronic systems.
In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp.
270–286. Springer, Cham (2015). doi:10.1007/978-3-319-25423-4 17

6. Boulton, R.J., Hardy, R., Martin, U.: A hoare logic for single-input single-
output continuous-time control systems. In: Maler, O., Pnueli, A. (eds.) HSCC
2003. LNCS, vol. 2623, pp. 113–125. Springer, Heidelberg (2003). doi:10.1007/
3-540-36580-X 11

7. Ghosh, S.: Control Systems, vol. 1000. Pearson Education, New Delhi (2010)
8. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)

FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). doi:10.
1007/BFb0031814

9. Harrison, J.: The HOL light theory of euclidean space. J. Autom. Reason. 50(2),
173–190 (2013)

10. Hasan, O., Ahmad, M.: Formal analysis of steady state errors in feedback control
systems using HOL-light. In: Design, Automation and Test in Europe, pp. 1423–
1426 (2013)

http://dx.doi.org/10.1007/978-3-319-10702-8_1
http://dx.doi.org/10.1007/978-3-319-25423-4_17
http://dx.doi.org/10.1007/3-540-36580-X_11
http://dx.doi.org/10.1007/3-540-36580-X_11
http://dx.doi.org/10.1007/BFb0031814
http://dx.doi.org/10.1007/BFb0031814

Formal Analysis of Linear Control Systems 361

11. Hasan, O., Tahar, S.: Formal verification methods. In: Khosrow-Pour, M. (ed.)
Encyclopedia of Information Science and Technology, pp. 7162–7170. IGI Global
Pub, Hershey (2015)

12. Johnson, M.E.: Model checking safety properties of servo-loop control systems. In:
Dependable Systems and Networks, pp. 45–50. IEEE (2002)

13. Kondo, H., Ura, T.: Navigation of an AUV for investigation of underwater struc-
tures. Control Eng. Pract. 12(12), 1551–1559 (2004)

14. Lutovac, M., Tošić, D.: Symbolic analysis and design of control systems using
mathematica. Int. J. Control 79(11), 1368–1381 (2006)

15. Nise, N.S.: Control Systems Engineering. Wiley, New York (2007)
16. Ogata, K., Yang, Y.: Modern Control Engineering. Prentice-Hall, Englewood Cliffs

(1970)
17. Rashid, A.: Formal Analysis of Linear Control Systems using Theorem Proving

(2017). http://save.seecs.nust.edu.pk/projects/falcstp
18. Rashid, A., Hasan, O.: On the formalization of fourier transform in higher-order

logic. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 483–490.
Springer, Cham (2016). doi:10.1007/978-3-319-43144-4 31

19. Rashid, A., Hasan, O.: Formalization of transform methods using HOL light. In:
Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017.
LNCS(LNAI), vol. 10383, pp. 319–332. Springer, Cham (2017)

20. Taqdees, S.H., Hasan, O.: Formalization of laplace transform using the multivari-
able calculus theory of HOL-light. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 744–758. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-45221-5 50

21. Taqdees, S.H., Hasan, O.: Formally verifying transfer functions of linear analog
circuits. IEEE Des. Test 5(99), 1–7 (2017)

22. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin,
C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer,
Heidelberg (2002). doi:10.1007/3-540-45873-5 36

23. Wernli, R.L.: Low cost UUV’s for military applications: is the technology ready?
In: Pacific Congress on Marine Science and Technology (2001)

24. Willcox, S., Vaganay, J., Grieve, R., Rish, J.: The Bluefin BPAUV: An Organic
Widearea Bottom Mapping and Mine-hunting Vehicle. Unmanned Untethered Sub-
mersible Technology (2001)

http://save.seecs.nust.edu.pk/projects/falcstp
http://dx.doi.org/10.1007/978-3-319-43144-4_31
http://dx.doi.org/10.1007/978-3-642-45221-5_50
http://dx.doi.org/10.1007/3-540-45873-5_36

Policy Dependent and Independent Information
Flow Analyses

Manuel Töws(B) and Heike Wehrheim

Department of Computer Science, Paderborn University, Paderborn, Germany
mtoews@mail.uni-paderborn.de

Abstract. Information Flow Analysis (IFA) aims at detecting illegal flows of
information between program entities. “Legality” is therein specified in terms of
various security policies. For the analysis, this opens up two possibilities: building
generic, policy independent and building specific, policy dependent IFAs. While
the former needs to track all dependencies between program entities, the latter
allows for a reduced and thus more efficient analysis.

In this paper, we start out by formally defining a policy independent infor-
mation flow analysis. Next, we show how to specialize this IFA via policy spe-
cific variable tracking, and prove soundness of the specialization. We further-
more investigate refinement relationships between policies, allowing an IFA for
one policy to be employed for its refinements. As policy refinement depends on
concrete program entities, we additionally propose a precomputation of policy
refinement conditions, enabling an efficient refinement check for concrete pro-
grams.

1 Introduction

Information Flow Analysis (IFA) is concerned with the detection of illegal flows of
information between program entities. The most prominent application for IFA today is
the analysis of apps, answering questions like “is my contact data being sent to a third
party via the internet?”. Consequently, a number of information flow analyses specialize
to this area [2,9,14,24,25].

In an information flow analysis, illegal flows can be specified in various ways: while
some analyses aim at simply detecting flows from specific sources (e.g., my contact
data) to specific sinks (e.g., internet) [2], others need to find flows violating complex
security policies [6,7,11,17,19]. A security policy specifies the allowed flows of infor-
mation between security classes, and the analysis of a program requires a mapping of
program entities (e.g., variables) onto these classes. The source-to-sink analysis can be
seen as a specific instance of a policy dependent analysis, classifying sources as secret
(or high), sinks as public (low), all other program entities as internal, and disallowing
direct or indirect flows from high to low entities.

Today, the majority of approaches for information flow analysis follows this high-
low policy, implicitly specified via sources and sinks (e.g., [1,8,15,22]). More compli-
cated policies often just confine to lattices that specify multiple layers (e.g., confidential,

This work was partially supported by the German Research Foundation (DFG) within the
Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 362–378, 2017.
https://doi.org/10.1007/978-3-319-68690-5 22

Policy Dependent and Independent Information Flow Analyses 363

secret and top-secret) [11]. Analysis frameworks for arbitrary policies are rather uncom-
mon but exist. Our comprehension of security policies is based on Foley’s framework
[6,7] (slightly differing in notation). However, even the approaches with more com-
plicated policies always carry out a policy dependent analysis: the analysis results are
just valid for the specific policy, and once the policy is changed, the analysis has to be
repeated.

To get around policy dependency, some techniques propose refinement relations
between policies. In Foley’s work [6,7], a refinement relation on policies is contained
in the policy algebra operations. However, the relationship is coarse and considers
only policies where the security classes of one policy form a subset of another. The
concrete program scenario with its mapping to security classes is not considered in
this definition. Hunt and Sands [11] consider policy dependent as well as independent
IFAs. Their policy dependent analysis information is, however, more abstract than ours:
instead of keeping flow information between program entities, they keep flow informa-
tion between entities and security classes, thereby maintaining even less information
than our policy dependent analysis. Mantel et al. [17–19] studies re-use of analyses
checking for specific security concerns (such as generalized non-interference or sepa-
rability properties). In this re-use, the security policy is always kept the same.

In this paper, we investigate the usefulness of policy independent as well as depen-
dent information flow analyses. Our policy independent analysis tracks all dependen-
cies among program entities. While this opens up the possibility of checking the pro-
gram against arbitrary policies, this naturally enlarges the complexity of the analysis.
We consequently introduce a specialization of this policy independent IFA to a policy
dependent one via a policy specific variable tracking, and furthermore prove its sound-
ness.

Our major contribution is the investigation of conditions under which an informa-
tion flow analysis for policy P1 can be used to check security with respect to policy
P2. This allows for a re-use of policy dependent flow information, and helps to avoid
several analysis runs on the same program for different policies. To this end, we define
two sorts of refinement (or coverage) relationships between policies, and prove flow
information valid for one policy to be valid for refined policies as well. For the second
relationship we generalize similar scenarios by abstracting away program dependent
information and describe precomputations that can be carried out for efficiently check-
ing the second refinement relationship.

Finally, we report on some experimental evaluation, showing the gain in going from
policy independent to dependent IFAs, and the runtime-complexity in checking refine-
ment relationships among policies compared to running a completely new analysis.

The paper is structured as follows. Next, we introduce in Sect. 2 some background
notation on programs and policies. In Sect. 3 we formally specify the policy indepen-
dent variant. We continue in Sect. 4 by extending the analysis to be policy dependent
with respect to the security policy and security mapping, and prove soundness of the
analysis as well as preservation of violation detection between both analyses. In Sect. 5
we investigate re-use of policy specific flow information. We present two refinement
relations there. For the second one, we continue to show how prior precomputations

364 M. Töws and H. Wehrheim

can help in an efficient refinement check at runtime. We finally present our experimen-
tal results in Sect. 6.

2 Background

In this section, we formalize the basics we use later. We start by defining the programs
which we consider in this paper. A program is given in the form of a control-flow
automaton (CFA) G = (L, flow, cd), where L stands for a set of program locations,
flow : L × L stands for a set of control flow edges and the mapping cd : L → 2L is
an extension of the control-flow graph that represents control dependencies. Control
dependencies are not standardly included in control flow graphs. A control dependency
states that the execution of a statement in a program depends on another, typically a
conditional statement in an IF or WHILE: �′ ∈ cd(�) denotes that �′ controls whether �
can be executed or not. We require a pre-computation of control dependencies, e.g. like
proposed in [10,16].

Each location � ∈ L represents an operation from a set Ops given by a total mapping
Θ : L→ Ops. Therein,

Ops ::=skip | b | x := e

describes three kind of operations: skip an empty operation, b a boolean condition (of
an IF or WHILE) and x := e an assignment. We let Var be the set of variables. From the
CFA of a program S, we derive a set of starting locations init(S) ⊆ L, which are locations
without predecessors in the control flow relation. Furthermore, we write vars(e) for the
set W ⊆ Var that contains all variables occurring in the expression e.

Our technique aims at the enforcement of a general specification of non-interference
wrt. arbitrary security policies via a data flow analysis that overapproximates the depen-
dencies of entities. Therefore, we first give a specification of what we understand by a
security policy. We base our definition of security policies on a generalization similar to
the one used by Foley [6,7]. Let Sec denote a set of security classes. A security policy
specifies the allowed flow of information for each individual security class. A security-
policy P is technical a collection of pairs of the form Sec × 2Sec. We call an element
(a, A) ∈ P a secure state. It describes that an element a ∈ Sec is allowed to depend on
information equal to the security classes A ∈ 2Sec.

Definition 1. Let Sec be a set of security classes. A security policy P is an element of
2Sec×2Sec . The set of all security-policies is defined as Pol(Sec) := 2Sec×2Sec .

We continue with our definition of a violation. For each set of security classes Sec, we
introduce the non-violating policy � ∈ Pol(Sec): �(Sec) := Sec × 2Sec. In �(Sec), every
possible single pair is allowed. With this at hand we can define the non-secure states of
a policy P ∈ Pol(Sec).

Definition 2. Let Sec be a set of security classes. An element (a, A) ∈ �(Sec) is a non-
secure state of a policy P ∈ Pol(Sec) iff (a, A) ∈ �(Sec) \ P holds.

In this paper, we focus on aggregation policies [6,7] where removing some security
classes from the right-hand side cannot turn a secure state into an non-secure state.

Policy Dependent and Independent Information Flow Analyses 365

Definition 3. Let Sec be a set of security classes. A security-policy P ∈ Pol(Sec) is an
aggregation policy iff for all a ∈ Sec and A ⊆ B ⊆ Sec

(a, B) ∈ P⇒ (a, A) ∈ P (1)

holds.

A connection between a program and a policy is given by a security class map-
ping SC : Var → Sec. A security class mapping defines a static mapping of program
entities onto security classes. We call a security class mapping together with a policy a
configuration.

Here, we use two policies as recurring examples. For defining them, we use the
following auxiliary operation according to Foley [6,7] (with d ∈ Sec and D ∈ 2Sec):

d� D :=
⋃

A∈2D

{(d, A)}

The first policy is the most often used one consisting of three security classes: l (low),
h (high) and i (internal). We denote this policy as LHI.

Definition 4. Let SecLHI = {l, h, i} be a set of security classes. The LHI-policy is defined
as

LHI :=
(
l� {l, i}

)
∪
(
i� {l, h, i}

)
∪
(
h� {l, h, i}

)
.

The security class h is used for entities that initially contain secret information. The
class l declares entities that could be observed at several program states (i.e., public
entities) whereas the class i is used for entities that are initially uninteresting. However,
we do not want that information of security class h can flow transitively via i entities
into l entities.

As second policy, we use a Chinese-wall policy [5] consisting of three security
classes: c, b1 and b2. Thereby, an entity with security class c (consultant) is allowed to
know information of at most one of the two banks b1, b2, but not of both of them.

Definition 5. Let SecCW = {c, b1, b2} be a set of security classes. The two-bank
Chinese-Wall policy (CW-policy) is defined as

CW :=
(
c� {c, b1}

)
∪
(
c� {c, b2}

)
∪
(
b1� {b1}

)
∪
(
b2� {b2}

)
.

Fig. 1. The secure states (gray) of the LHI-policy ordered according to
. Non-secure states are
not highlighted.

366 M. Töws and H. Wehrheim

Fig. 2. The secure states (gray) of the CW-policy ordered according to
. Non-secure states are
not highlighted.

In this notation the security states define a partial order
 : (Sec×2Sec)×(Sec×2Sec) with
((a, A)
 (b, B)) iff (a = b) ∧ A ⊆ B. By this relation we can display the secure states
of policies graphical. The LHI-policy is displayed in
-order in Fig. 1. Therein, secure
states are highlighted in gray. Analogously, the CW-policy is displayed in Fig. 2.

3 Policy Independent Information Flow Analysis

Resting upon the idea of our previous work [23], we define an information flow analy-
sis in form of a data flow analysis to overapproximate the actual dependencies. Techni-
cally, this is below formulated in the style of static analyses [21], in our case a forward
analysis. The analysis determines for each location � ∈ L two sorts of information:
Dependencies D = Var → 2Var and contexts C = L→ 2Var, i.e. the flow information for
a location � ∈ L is IF� ∈ D × C. An entry (v,V) ∈ D states that at location � the entity
v depends at most on the initial values of V . An entry (�′,V) ∈ C serves as a pending
additional information that tell us that a control dependency of � to �′ will result in
additional implicit dependencies to V ∈ 2Var.

Data flow analyses define the computation of analysis information by equations,
and use fixpoint computations to compute solutions to these equation systems. The
equations state how analysis information for a program location is computed from given
analysis information of its predecessors (in case of a forward analysis). To this end,
they define a transfer function which states how program statements change analysis
information.

We use the following transfer function ϕ : L × (D × C) → (D × C) for our forward
analysis. In this, [op]� denotes a statement (or block) in our program at location � with
Θ(�) = op, and � is the first parameter to ϕ.

– Empty statement: ϕ([skip]�)(d, c) = (d, c),
– boolean conditions: ϕ([b]�)(d, c) = (d, c′) with

c′(�′) =

⎧⎪⎪⎨⎪⎪⎩
c(�′) ∪ d(vars(b)) �′ = �
c(�′) else ,

– assignment: ϕ([x := e]�)(d, c) = (d′, c) with

d′(v) =

⎧⎪⎪⎨⎪⎪⎩
d(vars(e)) ∪⋃�′∈cd(�) c(�′) v = x

d(v) else .

Policy Dependent and Independent Information Flow Analyses 367

Note that the control dependencies are used here to determine implicit information
flows. When a location � has more than one predecessor in the flow relation, the analy-
sis information coming from the predecessors needs to be joined in an appropriate way.
A natural join operation for two information pairs (d, c) and (d′, c′) is given by

(d, c) � (d′, c′) = (d ∪ d′, c ∪ c′) with

∀v ∈ Var : (d ∪ d′)(v) = d(v) ∪ d′(v)

∀� ∈ L : (c ∪ c′)(�) = c(�′) ∪ c′(�)

With this at hand, we define the equation system for the policy independent information
flow analysis of a program S as

IF� =

{
({v �→ {v} | v ∈ Var}, {� �→ ∅ | � ∈ L}) if � ∈ init(S)⊎{ϕ�′ (IF�′) | (�′, �) ∈ flow(S)} else

The solution to this equation system will be computed by a fixpoint computation.
We call this analysis a policy independent analysis since policy and security map-

ping have no influence on the computations of the analysis itself, and changing the
policy and/or security mapping would still lead to the same results. However, the con-
clusion we draw from the analysis, i.e., whether a violation is occurring, has the policy
and security mapping involved.

Definition 6. Let S be a program, P ∈ Pol(Sec) a policy and SC a security mapping. S
violates (P, SC) iff

∃� ∈ L,∃v ∈ Var : IF� = (d, c) ∧ (SC(v), SC(d(v)) � P,

i.e. a non-secure state is occurring.

We do not state soundness of this data flow analysis here, for this see e.g. [23].
Because we statically compute dependencies, the analysis is overapproximating the
actual flows of information in program executions. The analysis might thus detect vio-
lations which are not in the program (false positives). For a technique to increase the
precision of the analysis see also [23]. In the following, we will nevertheless use the
prior definition of violation as a concept for comparing the soundness of policy depen-
dent analyses. Being a sound overapproximation, programs tagged as “secure” by the
analysis (i.e., no violation) will indeed be secure.

As an example for such an analysis, let us consider the following small pro-
gram snippet in Listing 3. The associated graph G = (L, flow, cd) contains the set
L = {1, 2, 3, 5, 6} as locations and the flow relation according to the Listing. The
control dependencies are cd := {3 �→ {2}}. For this example, the fixpoint computa-
tion for location 6 yields the result IF6 = (d, c) with d = {v �→ ∅;w �→ {w}; x �→
{x}; y �→ {w, x}; z �→ {w, x}}, c = {2 �→ {x}}. Using the policy-mapping-configuration
(LHI, SCLHI) with SCLHI = {v �→ i;w �→ i; x �→ h; y �→ i; z �→ l}, we conclude
that there is a violation since (SCLHI(z), SCLHI({w, x})) = (l, {i, h}) � LHI. With the
same result, we can conclude that also for another configuration (CW, SCCW) with
SCCW = {v �→ b2;w �→ b1; x �→ b2; y �→ c; z �→ c} we have a violation since for
(SCCW (y), SCCW ({w, x})) = (c, {b1, b2}),(SCCW (z), SCCW ({w, x})) = (c, {b1, b2}) � CW
holds.

368 M. Töws and H. Wehrheim

4 Policy Dependent Information Flow Analysis

The drawback of a policy independent analysis is its space-complexity which is O(|L| ·
(|Var|2 + |L| · |Var|)). In the following we improve on this by just tracking the necessary
policy dependent information needed to take the right conclusion.

Let us first introduce the set of critical security classes Crit(P) of a policy P. These
are those security classes that can cause a violation:

Crit(P) := {s ∈ Sec | ∃s′ ∈ Sec, S ′ ∈ 2Sec : (s′, S ′) ∈ P ∧ (s′, S ′ ∪ {s}) � P}
In addition, the critical entities Vt

(P,SC) are those entities whose initial contents are
mapped to a security class of Crit(P): Vt

(P,SC) := {v ∈ Var | SC(v) ∈ Crit(P)}. The
critical entities are those which need to be tracked during the analysis. To this end, we
slightly change our equation system by adapting the initialization of the information
flow analysis to IF(P,SC)

�
such that only this set Vt

(P,SC) is tracked:

IF(P,SC)
�

=
{

({v �→ {v} | v ∈ Vt
(P,SC)} ∪ {v �→ ∅ | v ∈ Var \ Vt

(P,SC)}, {� �→ ∅ | � ∈ L}) if � ∈ init(S)⊎{ϕ�′(IF(P,SC)
�′) | (�′, �) ∈ flow(S)} else

We leave the transfer relation and join operation untouched in comparison to Sect. 3,
since it is not necessary to intersect each state change with Vt

(P,SC) as this happens
implicitly. This is shown in the following Theorem 1:

Theorem 1. Let IF� = (d�, c�) and IF(P,SC)
�

= (d′�, c
′
�) be the analysis results for the

policy independent and policy dependent analyses, respectively. Then:

∀� ∈ L : (dP� , c
P
�) = (d� ∩ Vt

(P,SC), c� ∩ Vt
(P,SC))

Proof. We proof this by induction.
We show first that this relation holds for all initial locations �0 ∈ init(S):

∀� ∈ L :cP�0 (�) = ∅ = c�0 (�) = c�0 (�) ∩ Vt
(P,SC)

v ∈ Vt
(P,SC) :dP�0 (v) = v = d�0 (v) = d�0 (v) ∩ Vt

(P,SC)

v � Vt
(P,SC) :dP�0 (v) = ∅ = {v} ∩ Vt

(P,SC) = d�0 (v) ∩ Vt
(P,SC)

We show that each transfer relation will maintain the following induction hypothesis on
the result:

∀� ∈ L : (dP� , c
P
�) = (d� ∩ Vt

(P,SC), c� ∩ Vt
(P,SC)) (2)

For lack of space, the proof of join and skip preserving the hypothesis is elided.

– boolean conditions:

ϕ([b]�
′
)(dP� , c

P
�) = (dP� , c

′P
�) ∧ ϕ([b]�

′
)(d�, c�) = (d�, c

′
�)

2⇒ dP� = d� ∩ Vt
(P,SC)

Case �∗ � �′ : c′P� (�∗) = cP� (�
∗) 2
= c�(�

∗) ∩ Vt
(P,SC) = c′�(�

∗) ∩ Vt
(P,SC)

Case �∗ = �′ : c′P� (�∗) = cP� (�
∗) ∪

⋃

b′∈vars(b)

dP� (b′) 2
= (c�(�

∗) ∩ Vt
(P,SC)) ∪

⋃

b′∈vars(b)

(d�(b
′) ∩ Vt

(P,SC))

= (c�(�
∗) ∪

⋃

b′∈vars(b)

d�(b
′)) ∩ Vt

(P,SC) = c′�(�
∗) ∩ Vt

(P,SC)

Policy Dependent and Independent Information Flow Analyses 369

– assignments:

ϕ([x := e]�
′
)(dP� , c

P
�) = (d′P� , c

P
�) ∧ ϕ([x := e]�

′
)(d�, c�) = (d′�, c�)

2⇒ cP� = c� ∩ Vt
(P,SC)

Case v � x : d′P� (v) = dP� (v)
2
= d�(v) = d′�(v)

Case v = x : d′P� (v) =
⋃

e′∈vars(e)

dP� (e′) ∪
⋃

�∗∈cd(�′)
cP� (�

∗)

2
=
⋃

e′∈vars(e)

(d�(e
′) ∩ Vt

(P,SC)) ∪
⋃

�∗∈cd(�′)
(c�(�

∗) ∩ Vt
(P,SC))

=
(⋃

e′∈vars(e)

d�(e
′) ∪

⋃

�∗∈cd(�′)
c�(�

∗)
) ∩ Vt

(P,SC) = d′�(v) ∩ Vt
(P,SC)

��

A direct conclusion of this theorem is that a policy dependent analysis result can be
generated from a policy independent analysis result just by intersecting each com-
puted information with Vt

(P,SC). We assume that this improves space-complexity which
is O(|L| · (|Var| · |Vt

(P,SC)| + |L| · |Vt
(P,SC)|)) since Vt

(P,SC) ⊆ Var.
We continue by showing in Theorem 2 that we will not miss any violation of the

original analysis by computing an analysis result of IF(P,SC) instead of IF.

Theorem 2. Let S be a program. Let P ∈ Pol(Sec) be an aggregation policy and SC :
Var → Sec be a security mapping. Then

S violates (P, SC) in IF iff S violates (P, SC) in IF(P,SC)

holds.

Proof. From Theorem 1 we can conclude that d(P,SC)
�

⊆ d� and hence for the images of
SC

SC(d(P,SC)
�

(v)) ⊆ SC(d�(v)) (3)

holds as an auxiliary statement. We use this for both proof directions.
“ ⇐ ” : Suppose S violates (P, SC) in IF(P,SC). Then there exist � ∈ L, v ∈ Var
s.t. (SC(v), SC(d(P,SC)

�
(v)) � P. Combing Statement 3 with the contra-position of

the Definition 3 of aggregation policies we can therefore conclude that additionally
(SC(v), SC(d�(v)) � P holds. In other words, S violates (P, SC) in IF.
“ ⇒ ” : We take the contra-position. Suppose S does not violate (P, SC) in IF(P,SC).
We show now that additionally assuming S violates (P, SC) in IF leads to a con-
tradiction. Assuming this means there are � ∈ L, v ∈ Var s.t. (SC(v), SC(d�(v)) �
P ∧ (SC(v), SC(d(P,SC)

�
(v)) ∈ P. Combing auxiliary Statement 3 with the Definition

3 we can conclude that there has to be a set S ′ ∈ 2Sec that lies in the interval
SC(d(P,SC)

�
(v)) ⊆ S ′ ⊂ SC(d�(v)) s.t. for all T ⊆ S ′ (SC(v),T) ∈ P and there exist a

s′ ∈ SC(d�(v)) \ S ′ s.t. (SC(v), S ′ ∪ {s′}) � P. But this means s′ ∈ Crit(P) by definition
and so s′ ∈ SC(d(P,SC)

�
(v)) E. Therefore, S does not violate (P, SC) in IF. ��

For an example, we go back to the program of Fig. 3. Considering again the configu-
ration (LHI, SCLHI) with SCLHI = {v �→ i;w �→ i; x �→ h; y �→ i; z �→ l}, we conclude that

370 M. Töws and H. Wehrheim

Fig. 3. A small program and its control flow automaton

Vt
(LHI,SCLHI) = {x}. The result for location 6 computed by a policy dependent analysis is

IF6 = (d, c) with

d = {v �→ ∅;w �→ ∅; x �→ {x}; y �→ {x}; z �→ {x}}
c = {2 �→ {x}}.

Note that this is different from the policy independent result. Nevertheless, we can
still conclude that we have a violation of the LHI-policy since (SCLHI(z), SCLHI({x}))
= (l, {h}) � LHI. Note also that – though we do preserve the violation – the state pair
used for justifying the violation differs as the policy independent result used the state
pair (l, {h, i}) � LHI. However, application of a different policy and security mapping
configuration to the same analysis result is not possible anymore. For example, when
applying SCCW = {v �→ b2;w �→ b1; x �→ b2; y �→ c; z �→ c} to this analysis result, we
would miss both the violations in y and z since we removed the necessary information
about w. In both cases this would lead to the false conclusion of a secure analysis result
with (c, {b2}) ∈ CW .

5 Re-Use of Analysis Results

With the improvement in Sect. 4, we loose the property of checking violations of arbi-
trary policies and security mappings on a computed analysis result. In this section, we
investigate under which circumstances we can re-use a policy dependent analysis result
computed for a first configuration (P1, SC1) with P1 ∈ Pol(Sec1) and SC1 : Var → Sec1

for a second configuration (P2, SC2) with P2 ∈ Pol(Sec2) and SC2 : Var → Sec2.

Complete Re-Usability of Analysis Results. An intuitively easy case are the configura-
tions where the critical variables Vt

(P2,SC2) form a subset of Vt
(P1,SC1).

Policy Dependent and Independent Information Flow Analyses 371

Definition 7. A configuration (P2, SC2) is a relaxation of a configuration (P1, SC1) (or
(P1, SC1) is stricter as (SC2,P2)), (P2, SC2) � (P1, SC1), iff Vt

(P2,SC2) ⊆ Vt
(P1,SC1).

In this scenario – regardless of the analysis result – all information which is needed
for detecting a violation in the relaxed configuration was already tracked. So no relevant
information needed for applying the second configuration on the analysis result is lost.

Proposition 1. Let (P2, SC2) � (P1, SC1). Then S violates (P2, SC2) in IF(P1,SC1) iff S
violates (P2, SC2) in IF.

Proof. Analogously to the proof of Theorem 2 but with

SC2(d(P2,SC2)
�

(v)) ⊆ SC2(d(P1,SC1)
�

(v)) ⊆ SC2(d�(v))

as auxiliary statement instead. ��
Re-Use of Analysis Conclusion. Next, we investigate under which circumstances we
can transfer the non-violation conclusion from one configuration to another. Contrary
to the previous re-use, we do not want to check the analysis result again – against a
different configuration – but simply want to transfer the ultimate result of non-violation.
This requires a different kind of relationship between configurations.

Definition 8. A configuration (P1, SC1) covers (P2, SC2), (P2, SC2)
 (P1, SC1) iff

∀v ∈ Var,V ∈ 2Var : (SC2(v), SC2(V)) � P2 ⇒ (SC1(v), SC1(V)) � P1 .

A covering allows us to directly transfer analysis conclusions.

Theorem 3. Let (P1, SC1) and (P2, SC2) be configurations with (P2, SC2)
 (P1, SC1).
If S does not violate (P1, SC1) in IF(P1,SC1), then S does not violate (P2, SC2) in
IF(P2,SC2).

Proof. We take the contra-position. When S violates (P2, SC2) in IF(P2,SC2) than there
exist � ∈ L, v ∈ Var s.t. (SC2(v), SC2(d�(v)) � P2. By using Definition 8 for (P1, SC1) �
(P2, SC2) we know that this additionally implies (SC1(v), SC1(d�(v)) � P1 holds. But
this means S violates (P1, SC1) in IF. Using Theorem 2 we conclude that S violates
(P1, SC1) in IF(P1,SC1). ��
The two relationships between configurations are generally incomparable. First case:
(P1, SC1) � (P2, SC2) ⇒ (P1, SC1) � (P2, SC2) does not hold for example for the
following small program snippet

[
v = w;

]
with P2 = LHI and SC2 = {v �→ l;w �→ h}

and P1 = CW and SC1 = {v �→ c;w �→ b1} since (P1, SC1) � (P2, SC2) but (P1, SC1) �
(P2, SC2). Second case: (P1, SC1) � (P2, SC2) ⇒ (P1, SC1) � (P2, SC2) does not hold
for the same program with P2 = CW, SC2 = {v �→ b1;w �→ c} and P1 = LHI and SC1 =

{v �→ l;w �→ h} since (P1, SC1) � (P2, SC2) but (P1, SC1) � (P2, SC2). The reason is
that our definition of Crit(P) used in the definition of Vt

(P,SC) is too coarse. For example
the entry SC(v) = b1 in the security-mapping function causes us to consider pairs that
cannot occur. All violations that involve b1 are either not possible or would still be
violations even by removing b1: ((c, {c, b1, b2}), (c, {b1, b2}), (b2, {c, b1, b2}),(b2, {b1, b2}),
(b2, {c, b1}), (b2, {b1}), (b1, {c, b1, b2}), (b1, {b1, b2})). All pairs that contain b2 are not
possible simple for the reason that there are no b2-mapped entities. In the remaining
violation (b1, {c, b1}), b1 is not the critical variable but c.

372 M. Töws and H. Wehrheim

Program Independent Re-Usability Precomputations. In the previous paragraph, we
stated when we can re-use a conclusion of security from one analysis result for another
configuration. This relation is not solely dependent on the policy but also on the concrete
program S and security mappings SC1, SC2 that connect the program to the policy. Next,
we want to abstract from the concrete program and security mapping, and group similar
scenarios (i.e., programs and security mappings). The idea is to precompute certain
relationships just by considering the policies P1 ∈ Pol(Sec1),P2 ∈ Pol(Sec2), and later
– when supplied with programs and security mappings – simply check whether these
fit into one of the precomputed relationships. An analysis result for P1 could then be
used for P2 whenever the concrete security mappings fit into one of the precomputed
relationships.

Such relationships will be captured by constellations: A constellation F is a rela-
tion F ⊆ Sec1 × Sec2 grouping similar scenarios. Intuitively, a concrete constellation
F(S,SC1→SC2) for a program S and two different mappings SC1 and SC2 states that when-
ever (s1, s2) ∈ F, then there is at least one entity v in S with SC1(v) = s1 and SC2(v) = s2.
If (s1, s2) � F such a v does not exist:

F(S,SC1→SC2) := {(s1, s2) ∈ Sec1 × Sec2 | ∃v ∈ Var : SC1(v) = s1 and SC2(v) = s2} (4)

Concrete constellations require knowledge about security mappings. The precomputa-
tion should now derive all those constellations (i.e., relations between security classes)
which would potentially allow for a P1 analysis result to be re-usable for a policy P2.

Definition 9. Let P1 ∈ Pol(Sec1) and P2 ∈ Pol(Sec2) be security policies. An (abstract)
constellation F ⊆ Sec1 × Sec2 is valid for a P1 to P2 transfer iff

∀s2 ∈ F(Sec1);∀S 2 ⊆ F(Sec1);∀s1 ∈ F−1(s2);∀S 1 : S 1 =
⋃

s′2∈S 2

Rs′2 s.t.∅ ⊂ Rs′2 ⊆ F−1(s′2)

(s2, S 2) � P2 ⇒ (s1, S 1) � P1

holds. Here, F and F−1 are the image and reverse image of the relation F.

For the precomputation, we are not interested in all, but just in the maximal abstract
constellations. Constellations can simply be ordered by subset inclusion and validity of
transfer is closed under this ordering.

Proposition 2. Let F ⊆ Sec1 × Sec2 be a constellation valid for a P1 to P2 transfer.
Then all F′ ⊆ F are constellations valid for a P1 to P2 transfer as well.

We let Fmax
P1,P2

be the set of maximal constellations for P1 to P2 transfers. Whenever
we have a concrete constellation at hand (i.e., we have one program and two different
security mappings), we now just need to check the concrete constellation against all the
precomputed maximal abstract constellations.

Definition 10. A concrete constellation F(S,SC1→SC2) derived for a program S and the
two configurations (P1, SC1), (P2, SC2) fits the maximal constellations for P1 to P2

transfers iff ∃Fmax ∈ Fmax
P1,P2

s.t. F(S,SC1→SC2) ⊆ Fmax.

Policy Dependent and Independent Information Flow Analyses 373

Table 1. Maximal constellations for CW to LHI transfers

This finally gives us the intended result: Whenever a concrete constellation fits a max-
imal abstract one, then we obtain a covering relationship between the configurations
and, hence, the analysis result for one policy can be transfered to the other policy by
virtue of Theorem 3.

Proposition 3. If a constellation F(S,SC1→SC2) derived for a program S and the two con-
figurations (P1, SC1), (P2, SC2) fits the maximal constellations for P1 to P2 transfers,
then (P2, SC2)
 (P1, SC1) holds.

As an example consider the constellations in Table 1. A pair (s1, s2) is in such a con-
stellation whenever there is a

√
in the table. Table 1 gives the maximal constellations

for CW to LHI transfers. This now provides us with the following re-use possibility:
Assume that we are given a program S, the CW policy and a security mapping SC1

and our policy dependent analysis for CW has stated that the program does not violate
the CW policy. Next, we are interested in security wrt. the LHI policy and a different
mapping SC2. We now compute F(S,SC1→SC2) and check whether it fits to one of the
five maximal constellations in Table 1. If yes, we are done and can safely conclude the
program also not violating the LHI policy under mapping SC2.

6 Experimental Results

We have integrated our approach into the configurable program analysis framework
CPAchecker [3,4] and carried out a number of experiments to see in particular
whether our re-use techniques pay off. Our experiments were performed on a Intel(R)
Core(TM)i7 4600U @ 2.10GHz running a 64 bit Ubuntu 16.04 LTS1 with 4096 MB
RAM. The installed Java version was JDK 1.8.0.91.

For the evaluation we used a number of handcrafted programs (including our exam-
ple program here called example1) plus some benchmarks from the CPAchecker repos-
itory. The programs have up to 64 variables and up to 132 lines of code. We studied the
following research questions:

RQ1 Are policy dependent analyses faster than policy independent ones?
RQ2 How many maximal constellations do we get for policy transfers, and how long

does it take to compute them?
RQ3 How long does it take to determine whether a re-use of analysis results is

possible?

1 Actually, Ubuntu was executed in the Oracle VM Virtual Box version 4.3.28 running on a 64
bit Windows with 8192.

374 M. Töws and H. Wehrheim

Table 2. Runtimes and memory consumption of policy independent and dependent analyses

File IF [s] [MB] IF(P,SC) [s] [MB]

Example1 LHI × 0.042 60 × 0.052 51

CW × 0.061 52 × 0.047 52

Assignchain LHI
√

0.200 60
√

0.143 57

CW
√

0.209 57
√

0.190 60

Loops2 LHI
√

0.046 51
√

0.046 49

CW
√

0.054 60
√

0.064 61

Assign0 LHI
√

0.032 49
√

0.031 51

CW
√

0.036 52
√

0.028 48

CallstackSize5 LHI × 0.056 56 × 0.056 55

CW × 0.058 52 × 0.064 54

Double LHI
√

0.082 55
√

0.078 63

CW × 0.044 59 × 0.047 63

Float LHI
√

0.095 54
√

0.080 53

CW × 0.048 59 × 0.052 60

Float inaccuracy error LHI × 0.044 53 × 0.036 51

CW × 0.048 62 × 0.039 51

Implicit LHI × 0.051 51 × 0.047 58

CW × 0.075 53 × 0.042 63

Int LHI × 0.131 63 × 0.072 54

CW × 0.084 53 × 0.054 53

Large-64bit-constant LHI × 0.038 54 × 0.033 63

CW × 0.050 62 × 0.049 60

Mixed LHI × 0.064 53 × 0.051 54

CW × 0.050 59 × 0.076 53

Random LHI
√

0.073 63
√

0.051 62

CW × 0.050 52 × 0.055 59

Test-multiplefuntions LHI × 0.081 63 × 0.066 54

CW × 0.092 57 × 0.075 62

Table 3. Maximal constellation computation

Policy transfer |Fmax| Max pairs Runtime [ms]

LHI → LHI 3 6 4.746

LHI → CW 5 3 0.783

CW → LHI 5 6 4.012

CW → CW 11 3 1.956

Policy Dependent and Independent Information Flow Analyses 375

Table 4. Runtimes of re-use checks

Example � Runtime [ms] � Runtime [ms]

Example1 LHI → CW × 0.836 × 0.522

CW → LHI
√

0.288 × 0.203

Assignchain LHI → CW × 0.659
√

0.610

CW → LHI
√

0.606
√

0.512

Loops2 LHI → CW × 0.154 × 0.100

CW → LHI
√

0.179
√

0.113

Assign0 LHI → CW × 0.178
√

0.117

CW → LHI
√

0.161
√

0.109

Callstacksize5 LHI → CW
√

0.229
√

0.185

CW → LHI
√

0.189
√

0.131

Double LHI → CW × 0.150 × 0.102

CW → LHI
√

0.139 × 0.090

Float LHI → CW × 0.120 × 0.082

CW → LHI
√

0.128 × 0.093

Float inaccuracy error LHI → CW × 0.085 × 0.072

CW → LHI
√

0.124 × 0.090

Implicit LHI → CW × 0.113 × 0.080

CW → LHI
√

0.114 × 0.079

Int LHI → CW × 0.155 × 0.104

CW → LHI
√

0.165 × 0.126

Large-64bit-constant LHI → CW × 0.084 × 0.083

CW → LHI
√

0.098 × 0.070

Mixed LHI → CW × 0.147 × 0.138

CW → LHI
√

0.130 × 0.092

Random LHI → CW × 0.140 × 0.080

CW → LHI
√

0.123
√

0.079

Test-multiplefuntions LHI → CW × 0.118 × 0.105

CW → LHI
√

0.138 × 0.097

Table 2 presents runtimes (in seconds) and memory consumption (in MB) for policy
independent (IF) and policy dependent (IF(P,SC)) analyses and their outcomes (× or

√
).

In this, the security mappings were chosen randomly. We see that – as expected – the
policy dependent analysis is faster in almost all cases. However, the difference in run-
times is not that big. Note, that the runtime of IF(P,SC) includes computation of Crit(P)
and Vt

(P,SC). We conjecture that policy dependency will pay off for larger programs, but
for this we need to make more experiments.

We also measured how many maximal constellations we get for policy transfers.
Table 3 shows the number of maximal constellations, the maximal number of entries in

376 M. Töws and H. Wehrheim

these constellations (i.e., number of
√

s in a maximal constellation) plus the runtime for
computing them (given in milliseconds). Note that it also makes sense to precompute
constellations for P to P transfers, as we might be interested in checking a program wrt.
the same policy but with a different security mapping. We see that precomputation of
constellations is generally fast.

Finally, Table 4 gives the runtimes for checking relaxation and covering relation-
ships. For determining covering, we have used the precomputed maximal constella-
tions. Note that runtimes are again given in milliseconds. In summary, our experiments
show that policy dependent analyses plus re-use definitely pays off: precomputation of
constellations just has to be done once and is fast, the checking of covering is also fast
and – once it succeeds – can save us from doing another complete policy dependent
analysis.

7 Conclusion

In this paper, we presented two techniques for information flow analysis of arbitrary
aggregation policies. The first analysis computes policy independent information on
which a policy of interest can then be applied. The second analysis is goal-oriented and
computes reduced analysis information tailored to a specific configurations – at the cost
of loosing the property of policy independency.

We then focused on re-use of previously computed policy dependent results for dif-
ferent configurations. To this end, we studied two refinement relations between policies:
Starting with a policy dependent analysis result of a first configuration, the relaxation
relation tells us that the computed information can be used for checking violations for a
second configuration. The covering relation on the other hand allows to directly trans-
fer results of non-violation from one to another configuration, without further checking.
We furthermore introduced precomputations easing covering checks.

We performed experiments showing that the runtime of policy dependent analyses
can justify its usage. The experiments further showed that re-use can pay off as refine-
ment checking is very fast.

Future Work. As future work, building up on the techniques of Jakobs and Wehrheim
[12,13] we plan the development of proof-carrying-code techniques [20] (PCC) for
information flow analysis. We intend to expand the analysis information of our policy
dependent and independent analyses described in this paper together with the ideas
from goal-oriented refinement of false positives from our previous paper [23] to PCC-
techniques.

With respect to refinement relations, we plan to investigate whether we can enhance
the definition of �-relation in such a way that a �-relation implies a �-relation (at least
for aggregation policies). Also, we intend to remove our current restriction to aggrega-
tion policies (whose purpose is to guarantee sound joining in data-flow analyses) and
investigate refinement relations between unrestricted configurations.

Policy Dependent and Independent Information Flow Analyses 377

References

1. Amtoft, T., Banerjee, A.: Information flow analysis in logical form. In: Giacobazzi, R.
(ed.) SAS 2004. LNCS, vol. 3148, pp. 100–115. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-27864-1 10

2. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D.,
McDaniel, P.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In: PLDI, pp. 259–269. ACM (2014)

3. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: concretizing
the convergence of model checking and program analysis. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73368-3 51

4. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-block encod-
ing. In: Bloem, R., Sharygina, N. (eds.) FMCAD 2010, pp. 189–197. IEEE (2010)

5. Brewer, D.F.C., Nash, M.J.: The chinese wall security policy. In: IEEE Symposium on Secu-
rity and Privacy, 1989, pp. 206–214. IEEE Computer Society (1989)

6. Foley, S.N.: Unifying Information Flow Policies. Technical report, DTIC Document (1990)
7. Foley, S.N.: Aggregation and separation as noninterference properties. J. Comput. Secur.

1(2), 159–188 (1992)
8. Hammer, C., Krinke, J., Snelting, G.: Information flow control for java based on path con-

ditions in dependence graphs. In: IEEE International Symposium on Secure Software Engi-
neering 2006 (2006)

9. Holavanalli, S., Manuel, D., Nanjundaswamy, V., Rosenberg, B., Shen, F., Ko, S.Y., Ziarek,
L.: Flow permissions for android. In: ASE, pp. 652–657 (2013)

10. Horwitz, S., Reps, T.W.: The use of program dependence graphs in software engineering.
In: Montgomery, T., Clarke, L.A., Ghezzi, C. (eds.) ICSE 1992, pp. 392–411. ACM Press
(1992)

11. Hunt, S., Sands, D.: On flow-sensitive security types. In: POPL 2006 (2006)
12. Jakobs, M., Wehrheim, H.: Certification for configurable program analysis. In: Rungta, N.,

Tkachuk, O. (eds.) SPIN 2014, pp. 30–39. ACM (2014)
13. Jakobs, M., Wehrheim, H.: Programs from proofs of predicated dataflow analyses. In:

Wainwright, R.L., Corchado, J.M., Bechini, A., Hong, J. (eds.) SAC 2015, pp. 1729–1736.
ACM (2015)

14. Klieber, W., Flynn, L., Bhosale, A., Jia, L., Bauer, L.: Android taint flow analysis for app
sets. In: SOAP, pp. 1–6 (2014)

15. Rustan, K., Leino, M., Joshi, R.: A semantic approach to secure information flow. In: Jeuring,
J. (ed.) MPC 1998. LNCS, vol. 1422, pp. 254–271. Springer, Heidelberg (1998). doi:10.
1007/BFb0054294

16. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph. ACM
Trans. Program. Lang. Syst. 1(1), 121–141 (1979)

17. Mantel, H.: Possibilistic definitions of security - an assembly kit. In: IEEE Computer Secu-
rity Foundations Workshop, CSFW 2000. IEEE Computer Society (2000)

18. Mantel, H.: Preserving information flow properties under refinement. In: IEEE Symposium
on Security and Privacy 2001, pp. 78–91. IEEE Computer Society (2001)

19. Mantel, H.: On the composition of secure systems. In: IEEE Symposium on Security and
Privacy 2002 (2002)

20. Necula, G.C.: Proof-carrying code. In: Lee, P., Henglein, F., Jones, N.D. (eds.) POPL 1997,
pp. 106–119. ACM Press (1997)

21. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, New York
(1999)

http://dx.doi.org/10.1007/978-3-540-27864-1_10
http://dx.doi.org/10.1007/978-3-540-27864-1_10
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/BFb0054294
http://dx.doi.org/10.1007/BFb0054294

378 M. Töws and H. Wehrheim

22. Taghdiri, M., Snelting, G., Sinz, C.: Information flow analysis via path condition refine-
ment. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 65–79.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19751-2 5

23. Töws, M., Wehrheim, H.: A CEGAR scheme for information flow analysis. In: Ogata, K.,
Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol. 10009, pp. 466–483. Springer, Cham
(2016). doi:10.1007/978-3-319-47846-3 29

24. Wei, F., Roy, S., Ou, X., Robby: amandroid: a precise and general inter-component data flow
analysis framework for security vetting of android apps. In: CCS, pp. 1329–1341. ACM,
New York (2014)

25. Yang, Z., Yang, M.: LeakMiner: detect information leakage on android with static taint analy-
sis. In: WCSE, pp. 101–104 (2012)

http://dx.doi.org/10.1007/978-3-642-19751-2_5
http://dx.doi.org/10.1007/978-3-319-47846-3_29

Improving Probability Estimation Through
Active Probabilistic Model Learning

Jingyi Wang1(B), Xiaohong Chen1,2, Jun Sun1, and Shengchao Qin3

1 Singapore University of Technology and Design, Singapore, Singapore
wangjyee@gmail.com, jingyi wang@mymail.sutd.edu.sg

2 The University of Illinois at Urbana-Champaign, Champaign, USA
3 Teesside University, Middlesbrough, UK

Abstract. It is often necessary to estimate the probability of certain
events occurring in a system. For instance, knowing the probability of
events triggering a shutdown sequence allows us to estimate the availabil-
ity of the system. One approach is to run the system multiple times and
then construct a probabilistic model to estimate the probability. When
the probability of the event to be estimated is low, many system runs
are necessary in order to generate an accurate estimation. For complex
cyber-physical systems, each system run is costly and time-consuming,
and thus it is important to reduce the number of system runs while pro-
viding accurate estimation. In this work, we assume that the user can
actively tune the initial configuration of the system before the system
runs and answer the following research question: how should the user set
the initial configuration so that a better estimation can be learned with
fewer system runs. The proposed approach has been implemented and
evaluated with a set of benchmark models, random generated models,
and a real-world water treatment system.

1 Introduction

It is often necessary to estimate the probability of certain events occurring in
a given system. In the following, we describe a real-world scenario where such
a task arises. The SWaT testbed1 at Singapore University of Technology and
Design is a complex water treatment system that consists of multiple phases
including filtering and chemical dosing, etc. The system is safety critical and has
built-in monitors that check violation of safety requirements. For instance, water-
level monitors are put in place to check whether the level of water in tanks is too
low or too high. Whenever a monitor issues a safety alarm, a shutdown sequence
is triggered so that the system halts and expert engineers are called upon to
inspect the system. Such a design guarantees that safety violation is detected
at runtime, at the cost of potentially shutting the system down occasionally. To
show that the system satisfies certain availability requirements, we would like

This work was supported by project RG101NR0114A.
1 http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/.

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 379–395, 2017.
https://doi.org/10.1007/978-3-319-68690-5 23

http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/

380 J. Wang et al.

to show that the likelihood of triggering the shutdown sequence is low, i.e., the
probability of shutdown triggering events occurring is below a certain threshold.

One way to solve the problem is to run the system multiple times, observe
how the system evolves through time, construct a probabilistic model of the
system (i.e., a discrete-time Markov Chain [5]) and estimate the probability of
the interesting events based on the model. To observe how the system evolves
at runtime, we can introduce a logger in the system to record the system state,
e.g., to log the sensor readings of the water level and the status of the valves and
pumps in the system. To construct the Markov Chain model, we can apply an
estimation function to estimate the transition probability between system states.
Commonly used estimators include empirical frequency, Laplace estimator [9]
and Good-Turing estimator [10]. To estimate the probability of the interesting
events occurring, we additionally need an initial probability distribution, i.e.,
the probability of having certain initial configuration of the system (e.g., the
initial water level of the tanks and the status of the actuators), which we can
often obtain either through historical data or expert experience. When we run
the system multiple times, the same initial distribution is applied to configure
the system accordingly.

Such a method however may not be effective if the interesting events have
low probability. For instance, some events may only be triggered under certain
particular initial configurations. For instance, the event of water underflow may
only occur when the initial water level is set to be near the boundary and the
water valve is set to drain the water. If there are a large number of possible initial
configurations and these particular initial configurations have low probability
according to the initial distribution, it would take many system runs so that
we can trigger the events for a sufficient number of times and estimate their
probability accurately. However, conducting an experiment to run a system like
the water treatment system (or other real-world cyber-physical systems) often
has non-negligible cost. Thus, it is desirable to reduce the number of system
runs while being able to accurately estimate the transition probability based on
which we compute the probability of the interesting events.

In this work, we propose to smartly configure the system initially so that
during the system runs, “interesting” system transitions are more likely to be
triggered (than configuring the system according to the originally given initial
distribution). Our idea is to first get an initial estimation of the transition prob-
abilities, based on which we calculate an ‘optimal’ initial distribution which we
should follow to conduct further experiments. Intuitively, an initial distribution
is considered optimal if the estimation of the transition probabilities based on
the experiment results according to the initial distribution is more accurate than
other initial distributions. Afterwards, we run the system multiple times accord-
ing to the optimal initial distribution and update the estimation of the transi-
tion probabilities accordingly. We repeat the process until a stopping criteria is
satisfied.

Our method can be viewed as an active learning method for Markov
Chain models [5], which are useful in modeling and analyzing a wide range of

Improving Probability Estimation 381

systems [20]. The method is designed to learn a Markov Chain model actively in
a particular setting. That is, we assume that a prior initial distribution is given,
and we are allowed to tune the initial probability distribution but not the transi-
tion probability distributions, which yields a weaker and more realistic require-
ment than other distribution manipulation techniques for rare event analysis
like importance sampling [12]. In addition, our method is not restricted to one
particular way of estimating transition probability. We show that our method
works for common estimation techniques like empirical frequency, Laplace esti-
mator and Good-Turing estimator. In order to evaluate the effectiveness of our
approach, we implemented a prototype tool in Java called IDO (short for Initial
Distribution Optimizer). We set up experiments to compare IDO with alterna-
tive approaches. The experiment results show that IDO always estimates more
accurately with the same number of system runs, or requires fewer system runs to
achieve the same level of accuracy. Our test subjects include several benchmark
systems, a set of randomly generated models, and the SWaT testbed mentioned
above.

2 Problem Definition

We will formally state the problem that we consider in this paper upon discrete-
time Markov chains (DTMCs), a widely-used formalization that models proba-
bilistic transition system with a finite number of states [20]. Before that, we will
present a succinct review of DTMCs and introduce our notations.

2.1 The Model

Definition 1. A discrete-time Markov chain (DTMC) is a tuple M =
(S, S0, P, μ) with a finite nonempty set of states S, a nonempty set of initial
states S0 ⊆ S, a transition matrix P : S × S → [0, 1], and an initial probabil-
ity distribution μ over initial states. A path is a nonempty sequence of states
starting with an initial state.

s0start

s1start

s2

s3

0.9

0.01

0.09

0.95

0.05
1

1

Fig. 1. An example DTMC

Note that different from the standard def-
inition, we distinguish a set of initial states
from the rest and constrain that the initial
distribution μ only assign probabilities to ini-
tial states. The value P (s, s′) (where s, s′ ∈ S)
is the conditional probability of visiting s′

given the current state is s. When the set of
states S is indexed or enumerated in order
(which is often the case), we denote the ith
state of S as si, and P (si, sj) as pij . Given
a path si1 . . . sik , the probability of observ-
ing that path is μi1pi1i2 . . . pik−1ik , denoted2

2 We use P to denote transition matrices and P to denote the probability measure
defined by P .

382 J. Wang et al.

by P(i1 . . . ik). Which depends not only on the transition matrix P but also
on the initial distribution μ. Figure 1 shows an example DTMC with four states
and two initial states. Transition probabilities are labeled upon arrows, and the
initial states are attached by the label “start”. Not drawing an arrow means a
zero transition probability.

2.2 The Problem

The problem we investigate in this work can be defined as follows. Given a system
that is modeled as a DTMC with a fixed set of states and an initial distribution,
how to estimate (1) its transition matrix, and (2) the probability of reaching
certain states (a.k.a. the reachability probability)? In this paper, we assume the
transition matrix is fixed, but we can try different initial configurations when
running the system. In our SWaT testbed [1], for example, we can set different
levels of water in tanks (and/or other configurations such as the initial pH value
of the water) when we initialize the system, and once the system is turned on,
we can only observe how the system evolves through time, but not affect how
it goes.

Contrary to our approach, a passive approach to solve the problem is to
set the initial configuration of the system as the given initial distribution μ
and run the system multiple times. After a couple times of experiments, the
actual transition matrix P can be estimated based on the experiment results
(and subsequently the reachability probability can be estimated, too). In the
beginning of every experiment, an initial state s is randomly generated according
to the initial distribution μ. Starting from s, the system transits to the next state
according to the transition matrix P , and then transits the third state, and so
on, until a certain number of steps are taken and a path is obtained. Such
a random path, often denoted as π, is a random variable whose distribution is
fully decided by the initial distribution μ and the transition matrix P . We denote
that as π ∼ (P, μ). By abuse use of notation, we write Π ∼ (P, μ) if Π is a set
of paths that are independently generated from P and μ. Once a sample set
Π ∼ (P, μ) is obtained, an estimation function (a.k.a. an estimator) is applied
on Π to generate an estimation ̂P of the transition matrix P . In practice, there
are three commonly used estimators, which we introduce in the next definition.

Definition 2. Let Π ∼ (P, μ) be a set of path samples. For any states s and t,
let #s,t be the number of times that the one-step transition from s to t occurs in
Π, and #s = Σt#s,t. We provide three commonly-used estimators ̂P ’s that are
purely based on #s,t’s. They are

– The empirical frequency estimator: ̂PE(s, t) = #s,t/#s;
– The Laplace estimator [9]: ̂PL(s, t) = (1 + #s,t)/(n + #s), where n is the

total number of states in M;
– The Good-Turing estimator [10]: ̂PG(s, t) =

(#s,t+1)×N#s,t+1

#s×N#s,t
where Nr =

|{t ∈ S|#s,t = r}| is the number of states which are visited after s exactly r
times in Π.

Improving Probability Estimation 383

The empirical frequency estimator estimates the transition probability based on
the frequency. It may be problematic if the system contains transitions with low
probability. That is, if a transition from s to t is not observed in Π because the
actual P (s, t) is small, ̂PE(s, t) is zero by the empirical frequency estimator. The
Laplace estimator overcomes this problem by adding a constant 1 to the numer-
ator and the number of state to the denominator of the estimated transition
probability. In other words, if state t is never visited after state s, the probabil-
ity ̂PL(s, t) = 1/(n + #s). The Good-Turing estimator is widely used when the
amount of samples is relatively small compared to the number of states. We skip
the discussion on how the Good-Turing estimator works intuitively and refer
the readers to [10] for comprehensive discussion on when different estimators are
effective. Once an estimation of P is obtained, we can calculate the probability of
reaching certain state straightforwardly using methods like probabilistic model
checking [5].

All the above-mentioned estimators guarantee that they converge to an accu-
rate estimate of P with an unbounded number of samples. It might however take
a large number of samples in order to obtain an accurate estimate of P . In prac-
tice, we may not be able to run a complex system (like the SWaT tested) for
many times since each run has non-negligible cost in terms of money and time.
In this work, we aim to develop a method which allows us to reduce the number
of samples required to generate an accurate estimate of P by actively choosing
the initial state to sample from. Ideally, it should work with any of the above-
mentioned estimators. In particular, the question is: if a user is only allowed
to tune the initial distribution (e.g., by initializing the system using a proba-
bility distribution of initial configuration/inputs different from μ0), how should
she/he tune the initial distribution so that we can estimate P more effectively?
We believe this is a realistic assumption. Consider the above-mentioned SWaT
test bed for example. The user can only choose a set of initial configurations
following certain distribution to perform experiments and simply observe how
the system evolves afterwards.

3 Our Approach

Our approach is inspired and built on the idea of active learning, one that has
been studied extensively in automaton learning (e.g., [4]) and classifier learning
(e.g., [7]). The basic idea is to sample smartly, based on the current estimation
̂P of the transition matrix, so as to obtain informative samples that effectively
improve the estimation.

The overall algorithm is shown in Algorithm1. Initially, since we do not have
any knowledge of P , we obtain samples of the system with the user-provided
initial distribution μ. After obtaining some number of samples, we apply an esti-
mator to obtain an estimate ̂P at line 4. Based on ̂P and the current samples Π,
we compute an “optimal” initial distribution μ0 with respect to our objective at
line 5. Then, we repeat from line 3, i.e., acquire more samples Π ′ based on μ0,
add them to Π and apply the estimator on the updated Π to obtain an updated

384 J. Wang et al.

estimation of ̂P . The process continues until a stopping criterion is satisfied.
This approach is inspired by the expectation-maximization (EM) algorithm from
statistics [16].

Algorithm 1. Sampling based on active learning
1: Let μ0 be μ, Π be empty;
2: while stopping criteria unsatisfied do
3: Sample the system N times to obtain Π ′ ∼ (M, μ0);
4: Update Π = Π ∪ Π ′;

5: Apply an estimator to obtain ̂P based on Π;

6: Set μ0 to be the optimal initial distribution computed based on ̂P and Π;
7: end while
8: Output ̂P ;

3.1 Estimating Transition Probability

In order to identify the “optimal” initial distribution, we must firstly identify
our analysis objective. In this work, our overall objective is to estimate the
transition probability and reachability probability. In the following, we first focus
on estimating the transition matrix P . The accuracy of an estimation ̂P of P
can be measured using measurements such as the mean squared error (MSE),
the standard deviation, or bias [3]. As an example, the MSE of an estimation ̂P
is defined as

MSE(̂P , P) =
1

(|S|)2
∑

s,t∈S

(̂P (s, t) − P (s, t))2. (3.1)

Ideally, we would like to identify an initial distribution μ0 such that the esti-
mation would be most accurate. However, since the actual transition matrix P
is unknown, we cannot directly compare the estimation ̂P and P (e.g., in term
of MSE). Thus, we need to define an alternative optimization objective. The
optimization objective is important as it should guarantee that not only will
we eventually learn P accurately, but also we will do it in a more effective way
than sampling according to μ. Intuitively, a sample is most useful in improving
our estimation if it can help eliminate most uncertainty in our current learning
result. In general, if a state is rarely visited by the training samples, the esti-
mation of the transition probability from this state is likely to be inaccurate,
whereas transition probabilities from a state which is often visited is likely to be
estimated more accurately. For instance, given the DTMC in Fig. 1, it is hard
to estimate the probability of transitioning from state s1 to s2 if a limited num-
ber of samples are available and s1 is visited only a few times. Based on this
observation, the following optimization objective is adopted.

max
μ0∈D

min
s∈S

E(s, μ0, ̂P ,N, k) (3.2)

Improving Probability Estimation 385

where D is the set of all initial distributions that only assigns non-zero probability
to initial states; and E(s, μ0, ̂P ,N, k) is the expected number of times a state s
is visited if we sample N paths (each of which with k transitions) according to
the initial distribution μ0 and the transition matrix ̂P . It is defined as follows.

E(s, μ0, ̂P ,N, k) = N
(

μ0(s) + μ0
̂P (s) + μ0

̂P 2(s) + · · · + μ0
̂P k(s)

)

(3.3)

where μ0
̂P l(s) is the probability of visiting state s after l transitions. Intuitively,

we would like to identify an initial distribution μ0 so as to maximize the proba-
bility of visiting the least likely state to be visited within k steps.

Optimization. In each iteration, given current sample set Π, let γ = mins∈S #s

and i = argmins∈S#s. The optimization objective of Eq. 3.2 turns to the
following.

max
µ0∈D

E(i, μ0, ̂P , N, k) = max
µ0∈D

N
(

μ0(i) + μ0
̂P (i) + μ0

̂P 2(i) + · · · + μ0
̂P k(i)

)

(3.4)

The initial distribution μ0 has two constraints: (1) every element of μ0 is between
0 and 1; (2) the sum of the elements are equal to 1. This forms a standard linear
optimization problem [2] which can be solved by applying a linear optimization
solver like Gurobi [11]. We then generate the ‘optimal’ initial distribution μ0 by
solving the optimization problem stated in Eq. 3.4 over the constraints.

Convergence. In this section, we discuss why the above objective works. In
particular, we show that it guarantees we would always converge to an accurate
estimation of P and our estimation ̂P monotonically improves, no matter which
of the three above-mentioned estimators are used.

The following notations are frequently used. We define ‖ · ‖ as the max norm
‖A‖ = maxij |aij |. Notice that the estimator ̂P is a random variable that is fully
determined by the path samples, whose distribution is given by P, so we simply
use the same notation P(φ) with φ being a predicate to denote the probability
of φ being true. The choice of matrix normality in this paper is mainly a taste of
flavor. Different norms will result in different actual bounds of the inequalities
that will be presented later, but since our goal here is to establish that the
estimation ̂P getting closer and closer to the actual value P , i.e., ‖ ̂P − P‖ → 0,
using different norms will not make a difference, thanks to the next proposition,
whose proof we omit.

Proposition 1. Suppose ‖ · ‖1 and ‖ · ‖2 are two matrix norms, and A1, A2, . . .
is a sequence of m × n matrices. Then

‖An‖1 → 0 iff ‖An‖2 → 0.

Definition 3. An estimator is strongly-consistent, if P(‖ ̂P − P‖ < ε) →
1 as γ = mins∈S #s → ∞. It is stable, if P(‖ ̂P − P‖ < ε) > 1 − δ(ε, γ),
where for any ε > 0, δ(ε, γ) is a non-increasing function as γ increases.

386 J. Wang et al.

Estimators defined as above guarantee that, by optimizing our optimization
objective, ̂P will converge to P (strongly-consistency), and ̂P will improve
monotonically (stability). This is stated in the following Lemma.

Lemma 1. The return value of Algorithm1 converges to the exact transition
matrix P if an estimator is strongly-consistent and stable.

Proof. Recall that our algorithm samples according to an initial distribution
which maximizes mins∈S E(s, μ0, ̂P ,N, k) during each iteration. As it goes to ∞,
by the definition of a strongly-consistent and stable estimator, the maximum dif-
ference between two entries of P and ̂P converges to 0. Thus, for every entry (i, j),
we have |pij − p̂ij | ≤ ‖P − ̂P‖ → 0, i.e., the estimation ̂P converges to P . 	

Next, we establish all above-mentioned estimators are strongly-consistent and
stable.

Lemma 2. The empirical frequency estimator, Laplace estimator and Good-
Turing estimator are all strongly-consistent and stable.

Proof. Let n be the number of states in the DTMC, #s be the number that
state s is visited, and γ = mins #s. For each 1 ≤ k ≤ n, we have #k ≥ γ. Let
(i, j) be the index pair such that pij − p̂ij = ‖P − ̂P‖. By Chebyshev inequality,
we have

P(‖ ̂P − P‖ < ε) = P(|p̂ij − pij | < ε) ≥ 1 − 1
ε2

Var p̂ij

For strong-consistency, we only need to show that for each estimator we have
Var p̂ij → 0 as γ = mins #s → ∞. For stability, we only need to show that
for each estimator we have Var p̂ij is a non-increasing function as γ increases.
Respectively,
Empirical Frequency Estimator. It is easy to prove

Var p̂ij ≤ pij(1 − pij)
γ

→ 0 as γ → ∞ and is non-increasing as γ increases.

Laplace Estimator. It is easy to prove

Var p̂ij ≤ γ

4(γ + n)2
→ 0 as γ → ∞ and is non-increasing as γ increases.

Good-Turing Estimator. Assume state j occurs λ times after state i, i.e., #ij = λ.
From the results of [15], for ∀σ > 0, the approximate bound is:

‖ ̂PG − P‖ = |p̂ij − pij | ≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2 ln(3γ/σ)
√

2 ln 3/σ
γ if λ small compared to ln 3γ

σ

2λ
√

2 ln 3/σ
γ if λ large compared to ln 3γ

σ

.

Improving Probability Estimation 387

In both cases, the bounds go to 0 as γ → ∞ and is monotonically decreasing
as γ increases. 	

Thus, we have the following Theorem on the correctness of Algorithm 1.

Theorem 1. The estimation ̂P returned by Algorithm1 eventually converges
to P for the empirical frequency estimator, Laplace estimator and Good-Turing
estimator.

Proof. By Lemmas 1 and 2. 	

Stopping Criteria of Algorithm 1. We provide two stopping criteria for two com-
mon scenarios when the algorithm is used in practice. The first is when we have a
limited sampling budget, which is a very common case in reality. For instance, we
can run the system only for a bounded number of times, in which case Algorithm1
terminates when we run out of budget. The other scenario is when we require our
estimation ̂P be as close as possible to the actual P with a high probability. That
is, P(|pij − p̂ij | < ε) > 1 − α for all i and j, where the sampling parameters ε and
α are positive numbers close to 0. Given ε and α, we calculate a threshold ξ on the
minimum number of #i to satisfy the requirement based on the bounds described
in the proof of Lemma 2. Then we run Algorithm 1 until γ = mins∈S #s ≥ ξ. Note
that the latter scenario often results in a larger sample size given a small ε and α,
as we observed from our experiments described in Sect. 4.2.

Approximation of Optimization. In Algorithm 1, the optimal initial distri-
bution is calculated based on the estimation ̂P , instead of the actual P . In the
following, we aim to show that sampling according to the optimal initial distri-
butions calculated based on ̂P approximates sampling according to the actual
optimal initial distribution in terms of the numbers that states are visited.

Assume ̂P and P are n × n square matrices and their difference is bounded
by ε. Define ̂A = I + ̂P + ̂P 2 + · · · + ̂P l−1 and A = I + P + P 2 + · · · + P l−1

be the l-step accumulation matrices of ̂P and P respectively for l > 0. The next
proposition shows the difference between ̂A and A is bounded by O(l2)ε.

Proposition 2. ‖ ̂A − A‖ ≤ l(l − 1)nε/2.

Proof. Let τk = ‖ ̂P k − P k‖ for any k ≥ 0, then

‖ ̂A − A‖ ≤ ‖(I − I) + (̂P − P) + · · · + (̂P l−1 − P l−1)‖
≤ ‖I − I‖ + ‖ ̂P − P‖ + · · · + ‖ ̂P l−1 − P l−1‖
= τ0 + τ1 + · · · + τl−1.

Recall that ̂P and P are transition matrices. We have τ0 = 0, and for any k > 0,

τk = ‖ ̂P k − P k‖ = ‖ ̂P k − ̂P k−1P + ̂P k−1P − P k‖
≤ ‖ ̂P k−1(̂P − P)‖ + ‖(̂P k−1 − P k−1)P‖
≤ n‖ ̂P − P‖ + ‖ ̂P k−1 − P k−1‖
≤ nε + τk−1 ≤ 2nε + τk−2 ≤ · · · ≤ knε + τ0 = knε.

Therefore ‖ ̂A − A‖ ≤ (0 + 1 + 2 + · · · + l)nε = l(l − 1)nε/2. 	

388 J. Wang et al.

Next, we take the initial distribution μ into consideration. We use subscript
i to denote the ith projection of vectors.

Proposition 3. For any μ and i, |(μA)i − (μ ̂A)i| ≤ l(l − 1)nε/2.

Proof. Assume μ = (μ1, . . . , μn), A = (aij)n×n, and ̂A = (âij)n×n. Notice that
μ is a distribution, so μ1+ · · ·+μn = 1 and 0 ≤ μi ≤ 1, for each i = 1, . . . , n, and

|(μ ̂A)i − (μA)i| ≤ μ1|â1i − a1i| + · · · + μn|âni − ani|
≤ max(|â1i − a1i|, . . . , |âni − ani|)
≤ ‖ ̂A − A‖ ≤ l(l − 1)nε/2. 	

Recall that our optimization goal is formula (3.2), in which the estimation ̂P
is used as an approximation of the actual transition matrix P , and as a result,
the optimal initial distribution μ̂opt = arg maxμ mini(μ ̂A)i is in general not the
actual (unknown) optimal initial distribution μopt = arg maxμ mini(μA)i. The
next proposition shows that even so, it makes little difference whether we do
sampling according to μ̂opt or μopt, as long as our estimation ̂P gets close enough
to the actual P .

Proposition 4. Under previous notations and conditions, |mini(μ̂optA)i −
mini(μoptA)i| ≤ l(l − 1)nε.

Proof.

|min
i

(μ̂optA)i − min
i

(μoptA)i| = |min
i

(μ̂optA)i − max
μ

min
i

(μA)i|

≤ |min
i

(μ̂optA)i − max
μ

min
i

(μ ̂A)i| + |max
μ

min
i

(μ ̂A)i − max
μ

min
i

(μA)i|

≤ |min
i

(μ̂optA)i − min
i

(μ̂opt
̂A)i| + l(l − 1)nε/2 ≤ l(l − 1)nε.

	

Recall that #s is the expected number of times we visit a state s when sam-
pling according to (P, μ). In particular, we write ̂#s if paths are sampled from the
optimal initial distribution obtained by solving the optimization problem (3.2),
i.e., from (P, μ̂opt). Then Proposition 4 directly leads to the next main theorem,
which guarantees that solving the approximate optimization problem gives us
an approximate solution to the original optimization problem, and thus justifies
our approach.

Theorem 2. Using previous notations, |maxμ mini #s − mini
̂#s| ≤ l(l − 1)nε

if ‖ ̂P −P‖ < ε, where l is the length of each path sample and n is the dimension
of the transition matrix P and its estimation ̂P .

Improving Probability Estimation 389

3.2 Estimating Reachability Probability

In previous sections, we have shown how to obtain an approximation ̂P of the
actual transition matrix P . From now on we will assume such an approximation
exists, and will use ̂P to denote the probability measure that it defines. In
this section, we will show one important application of such approximation ̂P,
which is estimating the reachability probability, the probability of reaching certain
states or observing certain events occurring. Given a DTMC M = (S, S0, P, μ),
the probability of reaching state t from state s within l steps is defined as follows.

P(Reachl(s, t)) =

⎧

⎪

⎨

⎪

⎩

1 if s = t ∧ l ≥ 0,

0 if s �= t ∧ l = 0,
∑

x∈S P (s, x)P(Reachl−1(x, t)) otherwise.

We aim to prove that estimating reachability probability using the estimation
returned by Algorithm1 also converges to the actual reachability probability and
improves monotonically, no matter which estimator is used.

To facilitate discussion, let us fix a target state si ∈ S. We will show that

̂P(Reachl(si)) → P(Reachl(si)) as ̂P → P.

Notice that P(Reachl(si)) (and similarly ̂P(Reachl(si))) can be computed by

P(Reachl(si)) =

⎛

⎝μ · Pa · Pa · · · Pa
︸ ︷︷ ︸

l times

⎞

⎠

i

= (μP l
a)i, (3.5)

where Pa is the amended transition matrix in which we make the state s absorb-
ing, i.e., all outgoing transitions from s are replaced by a single self-loop at s.

The next proposition provides an O(l)ε bound on the difference between ̂P l
a

and P l
a. We omit the proofs of Propositions 5 and 6 because they use the same

tricks that we have seen in proving Propositions 2 and 3.

Proposition 5. ‖ ̂P l
a − P l

a‖ ≤ nlε if ‖ ̂P − P‖ < ε, where n is the dimension
of P .

Now let us take the initial distribution μ into consideration.

Proposition 6. For any μ and i, if ‖ ̂P − P‖ < ε, then |(μ ̂P l
a)i − (μP l

a)i| ≤ nlε.

This leads to the following theorem on the bound of reachability probability.

Theorem 3. | ̂P(Reachl(si)) − P(Reachl(si))| ≤ nlε for any state si ∈ S and
a bounded number of steps l.

Proof. By Eq. (3.5) and Proposition 6. 	

390 J. Wang et al.

4 Evaluation

We have developed a prototype implementation of our approach called IDO in 4k
lines of Java code. To evaluate the effectiveness of IDO, we compare it with the
passive approach (i.e., random sampling, referred to as PA) using the following
metrics. Firstly, we count the minimum number of times that a state is visited
among all the reachable states (referred to as MV). Note that this is precisely
our optimization objective. By measuring MV, we aim to check whether the
optimization technique we adopt has worked as expected. The larger the MV
value is, the better. Secondly, we compare the estimated probability of reaching a
state of interest. We use the relative difference from the estimated reachability
probability to the actual reachability probability (RRD) as a measure, which is
defined as

| ̂P(Reachk(s)) − P(Reachk(s))|
P(Reachk(s))

.

A smaller RRD indicates a more precise estimation of reachability probability. If
there are more than one state of interest, we calculate the average RRD. Thirdly,
we compare the estimated transition matrix ̂P using the standard notion MSE
(defined by Eq. 3.1). A smaller MSE indicates a more precise estimation. For a
fair comparison, the experiments are designed such that the number of samples
used are the same for IDO and PA, i.e., using the first stopping criteria.

4.1 Test Subjects

Three groups of systems are used for our evaluation. The first set contains three
benchmark systems, i.e., the small example shown in Fig. 1 and two systems
from the literature [6]. One is the queuing model. In a queuing model, customers
arrive at a station for service. States represent the number of persons in the
queue. We consider a scenario where the only possible transitions are the arrival
or departure of someone. The number of transitions between two consecutive
observations are assumed to be independent and identically distributed (i.i.d.).
For convenience, we assume a maximum number of persons in the queue to be
10. Thus, the Markov chain has 11 possible states and a transition matrix as
follows:

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0 0 0 0 0 0
0.53 0 0.47 0 0 0 0 0 0 0 0
0 0.65 0 0.35 0 0 0 0 0 0 0
0 0 0.45 0 0.55 0 0 0 0 0 0
0 0 0 0.30 0 0.70 0 0 0 0 0
0 0 0 0 0.62 0 0.38 0 0 0 0
0 0 0 0 0 0.68 0 0.32 0 0 0
0 0 0 0 0 0 0.64 0 0.36 0 0
0 0 0 0 0 0 0 0.52 0 0.48 0
0 0 0 0 0 0 0 0 0.61 0 0.39
0 0 0 0 0 0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4.1)

Improving Probability Estimation 391

We set the first 6 states as initial states and assume an initial uniform distribution
over the 6 states. The reachability probability of interest is the probability of
reaching the last 3 states in 11 (which is the number of states) steps. Based
on the above model, the precise reachability probability can be calculated as:
0.0444, 0.0194 and 0.0075 respectively. The other model is the hollow matrix.
This case study deals with Markov chains that changes state at each transition.
The transition matrix is as follows.

P =

⎡

⎢

⎢

⎣

0 0.992 0.0003 0.0005
0.98 0 0.01 0.01
0.40 0.13 0 0.47
0.42 0.20 0.38 0

⎤

⎥

⎥

⎦

(4.2)

We set the first 2 states as initial states and assume a distribution (0.99, 0.01)
over them. The reachability probabilities of interests are reaching the last 2
states in 4 (number of states) steps, which are 0.0147 and 0.0159 respectively.

The second group is a set of randomly generated models (referred to as rmc).
These models are generated with different numbers of states and transition den-
sities using an approach similar to the approach in [17]. For reachability analysis,
we choose first half of the states to be the initial states and assume a uniform
initial distribution over them. We select those states with reachability proba-
bility less than 0.05 as states of interest, since we are interested in improving
reachability probability of low probability states.

The last group contains the SWaT testbed [1]. SWaT is a real world complex
system which involves a series of water treatments process from raw water like
ultra-filtration, chemical dosing, dechlorination through an ultraviolet system,
etc. The system is safety critical and ideally we want to accurately estimate the
probability of reaching some bad states, like tank overflow or underflow, abnor-
mal water pH level, etc. Modeling SWaT is challenging and thus we would like to
have a way of estimating the transition probability as well as some reachability
probability. SWaT has many configurable parameters which can be set before
the system starts and it can be restarted if necessary. However, restarting SWaT
is non-trivial as we have to follow a predefined shutdown sequence and thus we
would like to obtain some precise estimation with as few restarts as possible. In
our experiment, we focus on tank overflow or underflow. We select states with
normal tank levels as initial states and assume a uniform initial distribution
over them. Furthermore, we select states with abnormal tank level as states of
interest.

4.2 Experiment Results

We first show the experiment results on the benchmark systems. Figure 2
presents the comparison of IDO and PA in terms of MV, RRD, and MSE respec-
tively for the three benchmark systems. The first row shows the results of the first
example. It can be observed that MV of IDO improves linearly as we increase
the number of samples, whereas MV of PA remains almost zero due to the low

392 J. Wang et al.

0.5 1 1.5 2
Sample size 105

0

2000

4000

6000

8000

10000

M
V

Example

IDO
PA

0.5 1 1.5 2
Sample size 105

2

4

6

8

10

R
R

D

10-3 Example

IDO
PA

0.5 1 1.5 2
Sample size 105

2

4

6

8

M
S

E

10-4 Example

IDO
PA

0.5 1 1.5 2
Sample size 105

500

1000

1500

2000

2500

3000

3500

M
V

Hollow Matrix

IDO
PA

0.5 1 1.5 2
Sample size 105

0.005

0.01

0.015

0.02

0.025

0.03
R

R
D

Hollow Matrix

IDO
PA

0.5 1 1.5 2
Sample size 105

2

3

4

5

M
S

E

10-3 Hollow Matrix

IDO
PA

0.5 1 1.5 2
Sample size 105

0

1000

2000

3000

4000

M
V

Queue Model

IDO
PA

0.5 1 1.5 2
Sample size 105

0.01

0.015

0.02

0.025

0.03

0.035

R
R

D

Queue Model

IDO
PA

0.5 1 1.5 2
Sample size 105

2

3

4

5

M
S

E

10-4 Queue Model

IDO
PA

Fig. 2. Experiment results of benchmark systems.

probability of reaching some states according to the original initial distribution.
IDO has significantly better estimation of both the reachability probability (in
terms of RRD) as well as the transition probability (in terms of MSE). The
second row shows the results of the hollow matrix. It can be observed that the
improvement of MV and the probability estimation are not as significant as for
the first example. A closer investigation shows that the reason is that its two ini-
tial states have very high probability of transitioning to each other. As a result,
adjusting the initial distribution does not effectively change how the other states
are visited. The third row shows the results of the queuing model. We observe a
noticeable improvement in terms of MV, RRD ad MSE. This is because that a
state of the queuing model can only be transit from its neighboring states. Since
the states of interests here are the states in the last (e.g. state 9, 10, 11), an
initial distribution which favors the latter part of the initial states (e.g. state 5,
6) is more likely to reach the target states. IDO successfully identifies such an
initial distribution, which subsequently leads to more visits of the target states.

Next, we present the experiment results on the random models. The results
are shown in Fig. 3. We consider random models with 8 states or 16 states. We
randomly generate a set of 20 models of 8 states and 20 models of 16 states
and present the average results, to avoid the influence of randomness. It can

Improving Probability Estimation 393

0.5 1 1.5 2
Sample size 105

1000

2000

3000

4000

5000
M

V
8 states RMC

IDO
PA

0.5 1 1.5 2
Sample size 105

0.01

0.02

0.03

0.04

R
R

D

8 states RMC

IDO
PA

0.5 1 1.5 2
Sample size 105

1.5

2

2.5

M
S

E

10-3 8 states RMC

IDO
PA

0.5 1 1.5 2
Sample size 105

1000

2000

3000

4000

M
V

16 states RMC

IDO
PA

0.5 1 1.5 2
Sample size 105

0.01

0.015

0.02

0.025

0.03

0.035

R
R

D

16 states RMC

IDO
PA

0.5 1 1.5 2
Sample size 105

0.6

0.8

1

1.2

1.4

M
S

E

10-3 16 states RMC

IDO
PA

Fig. 3. Experiment results of rmc.

be observed that IDO improves MV, RRD and MSE in almost all the cases.
On one hand, we observe from the results that as the state number increases,
IDO’s improvement over PA in terms of MSE goes down. The reason is that
IDO targets to improve the worst estimated transitions, while MSE is computed
in terms of all transitions. Consequently, the improvement is flattened with a
large number of transitions. On the other hand, we observe a more and more
significant improvement in terms of reachability estimation when the number
of states increases. This is due to the fact that IDO actively selects an initial
distribution which is likely to visit the target state most often, which effectively
improves the estimation. In comparison, random sampling using a uniform initial
distribution may visit the target states much less. We remark this is an important
advantage of IDO since for complex systems, there are often many states and we
are often interested in estimating the probability of certain unlikely states (e.g.,
unsafe states). Considering the extreme case when only one initial state s0 would
lead to visit of some target state st. If the number of initial states is large, there
is a very low probability to sample s0 through uniform random sampling. As a
result, st is rarely visited. In comparison, IDO optimizes the initial distribution
and samples from s0 with probability 1.

Lastly, we report the results on the SWaT testbed. One difficulty we face in
evaluating the effectiveness of our approach for SWaT is that we do not have
the actual DTMC model. To overcome this problem, we run a large number of
simulations (120 k traces, each trace is a simulation of half an hour of real world
system with uniform initial distribution), and then apply empirical frequency to
estimate the transition probability, which we regard as an approximation of the
actual transition matrix. We remark that all the traces of SWaT are generated
using a simulator which fully mimics the testbed, and for each trace the running
time of the simulator is scaled less than the running time of the actual system.

394 J. Wang et al.

Note that we define a state of SWaT as a combination of sensor values. Since the
target states that we are looking into are overflow and underflow of water tanks,
we collect those sensors that indicate water levels to encode states. In other
words, we abstract away the internal states for simplicity. We further abstract
the sensor values (which are continuous float variables) into discrete states. Two
different abstraction are experimented, one with 64 states and the other with 216
states. In our experiment, we generate the first estimation ̂P based on 5000 traces
(randomly selected from the 120 K traces). Afterwards, we iteratively refine the
estimation using IDO by adding and learning from additional 5000 traces each
time. The total number of traces used by IDO and PA are the same. Similarly,
we compare the MV, MSE and RRD of a set of target states, whose reachability
probabilities are less than 0.01, for IDO and PA respectively. The results are
shown in Table 1. It can be observed that the MSE is expectedly not improving
as we have many states to take average on. However, we can see from the results
of RRD that IDO effectively improves our estimation of probability of water
tank overflow or underflow which interests us. Furthermore, we observe almost
negligible overhead of IDO over PA in terms of running time.

Table 1. Results of SWaT.

#state MV RRD MSE Time cost(s)

IDO PA IDO PA IDO PA IDO PA

64 19 8 6.31 7.13 4.58E-4 3.93E-4 12553 12601

216 3 1 43 59.7 5.49E-4 4.86E-4 13700 12785

5 Conclusion and Related Work

In this paper, we proposed an active learning approach to “smartly” tune the
system configurations so as to generate traces that can effectively improve our
current probability estimation. We prove that our algorithm converges under
three existing common estimators. Our experiment results show that our app-
roach effectively improves random sampling in terms of probability estimation
and reachability analysis (especially).

This work is mainly related to the following three lines of work. Firstly, it
is a further effort in the recent trend of learning probabilistic models for model
checking [14,18,19]. Instead of learning from fixed data, we propose to actively
sample the system for more informative traces to make learning more effective
for reachability analysis [13]. Such an active learning idea is applied in [8] to
learn Markov decision process actively by choosing optimal actions in each step.
Secondly, importance sampling [12] is another approach of smart sampling, but
it may require us to change the probability distribution in the process of system
operation, which is sometimes unrealistic for cyber-physical systems. Our work
differs in that we only require to tune the initial distribution by adjusting the
initial configuration of the system. Lastly, this work relies and works on a variety
of estimators [9,10,15], which are designed for different applications.

Improving Probability Estimation 395

References

1. http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/
2. Linear programming – Wikipedia, the free encyclopedia (2016). Accessed 24 Nov

2016
3. Mean squared error – Wikipedia, the free encyclopedia (2016). Accessed 7 Dec

2016
4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.

75(2), 87–106 (1987)
5. Baier, C., Katoen, J.-P., et al.: Principles of Model Checking, vol. 26202649. MIT

Press, Cambridge (2008)
6. Barsotti, F., De Castro, Y., Espinasse, T., Rochet, P.: Estimating the transition

matrix of a markov chain observed at random times. Stat. Probab. Lett. 94, 98–105
(2014)

7. Brinker, K.: Incorporating diversity in active learning with support vector
machines. In: Machine Learning, Proceedings of the Twentieth International Con-
ference (ICML 2003), 21–24 August 2003, Washington, DC, USA, pp. 59–66 (2003)

8. Chen, Y., Nielsen, T.D.: Active learning of markov decision processes for sys-
tem verification. In: 2012 11th International Conference on Machine Learning and
Applications (ICMLA), vol. 2, pp. 289–294. IEEE (2012)

9. Cochran, G.: Laplace’s ratio estimator. In: David, H.A. (ed.) Contributions to
Survey Sampling and Applied Statistics, pp. 3–10. Academic Press, New York
(1978)

10. Gale, W.A., Sampson, G.: Good-turing frequency estimation without tears*. J.
Quant. Linguist. 2(3), 217–237 (1995)

11. Gurobi Optimization Incorporation: Gurobi optimizer reference manual (2016)
12. Heidelberger, P.: Fast simulation of rare events in queueing and reliability models.

ACM Trans. Model. Comput. Simul. (TOMACS) 5(1), 43–85 (1995)
13. Lesser, K., Oishi, M.: Reachability for partially observable discrete time stochastic

hybrid systems. Automatica 50(8), 1989–1998 (2014)
14. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning

probabilistic automata for model checking. In: Eighth International Conference on
Quantitative Evaluation of Systems (QEST), pp. 111–120. IEEE (2011)

15. McAllester, D.A., Schapire, R.E.: On the convergence rate of good-turing estima-
tors. In: COLT, pp. 1–6 (2000)

16. Moon, T.K.: The expectation-maximization algorithm. IEEE Sig. Proces. Mag.
13(6), 47–60 (1996)

17. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 396–411. Springer, Heidelberg (2005). doi:10.1007/11591191 28

18. Wang, J., Sun, J., Qin, S.: Verifying complex systems probabilistically through
learning, abstraction and refinement. arXiv preprint arXiv:1610.06371 (2016)

19. Wang, J., Sun, J., Yuan, Q., Pang, J.: Should we learn probabilistic models for
model checking? a new approach and an empirical study. In: Huisman, M., Rubin,
J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 3–21. Springer, Heidelberg (2017).
doi:10.1007/978-3-662-54494-5 1

20. Whittaker, J.A., Thomason, M.G.: A markov chain model for statistical software
testing. IEEE Trans. Softw. Eng. 20(10), 812–824 (1994)

http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/
http://dx.doi.org/10.1007/11591191_28
http://arxiv.org/abs/1610.06371
http://dx.doi.org/10.1007/978-3-662-54494-5_1

Nested Timed Automata with Diagonal
Constraints

Yuwei Wang1, Yunqing Wen1, Guoqiang Li1(B), and Shoji Yuen2

1 School of Software, Shanghai Jiao Tong University, Shanghai, China
{wangywgg,wyqwyq,li.g}@sjtu.edu.cn

2 Graduate School of Information Science, Nagoya University, Nagoya, Japan
yuen@is.nagoya-u.ac.jp

Abstract. Time constraints are usually used in timed systems to rule on
discrete behaviours based on the valuations of clocks. They are catego-
rized into diagonal-free constraints and diagonal constraints. In timed
automata, it is well-known that diagonal constraints are just a use-
ful syntax sugar since each diagonal constraint can be encoded into
diagonal-free constraints. However, it is yet unknown when recursion is
taken into consideration. This paper investigates the decidability results
of these systems with diagonal constraints, under the model of nested
timed automata (NeTAs). We show that the NeTAs containing a sin-
gleton global clock with diagonal constraints are Turing complete, even
when the clock assignment is restricted to the clock reset. In comparison,
the reachability problem for a subclass, NeTAs without frozen clocks, is
decidable under diagonal constraints.

1 Introduction

For decades, lots of formal models [1], such as timed automata [2,3], have been
proposed and widely used for modelling and analysis of real-time systems. Time
constraints are usually used in these models to rule on discrete behaviours based
on the valuations of clocks. A time constraint that checks whether the value of a
clock belongs to a given interval is named a diagonal-free constraint, while checks
whether the difference between two clocks belongs to an interval is a diagonal
constraint. Diagonal constraints usually play an important role in applications
of modelling and verification [4]. It is well-known that timed automata with two
kinds of constraints have the same expressiveness [2]. When recursions are taken
into account, researchers usually believe the same result [5].

A nested timed automaton (NeTA) [6,7] is a pushdown system whose stack
symbols are TAs. In such a system clocks are naturally classified into global
clocks, which can be updated and observed by all TAs, local clocks, which belong
to a TA and will be stored in the stack when the TA is interrupted. A special
type of local clocks are frozen clocks, whose values are not updated while their
context is preempted and restart update when resumed. Other local clocks are
proceeding. This hierarchical design captures the dynamic feature of event-driven
timed systems and programs, such as real-time embedded systems, interrupts
c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 396–412, 2017.
https://doi.org/10.1007/978-3-319-68690-5_24

Nested Timed Automata with Diagonal Constraints 397

and asynchronous programs, which are suitable to be modeled by NeTAs. For
example, in interrupts each time-aware interrupt handler is described as an inde-
pendent TA, and preemptions and resumptions are depicted as push and pop
operations. Different types of clocks are flexible to describe the different time
requirement of each interrupt handler. Recently, NeTAs are used as a backbone
for the schedulability analysis of complex task systems without the information
of a worst-case execution time [8].

This paper investigates the decidability result of NeTAs with diagonal con-
straints. The expressiveness of such a system is one of the main contributions
of this paper. The reachability problem of a NeTA with one global clock under
diagonal-free constraints is known to be decidable [7]. In comparison, in this
paper we prove that a general NeTA with one global clock under diagonal con-
straints is Turing complete even for a subclass, where the clock assignment,
through which the value of a clock is adjusted to an arbitrary value in an inter-
val, is restricted to clock reset, through which the value of a clock can only be
reset to zero. This difference in decidability implies that the diagonal constraints
strictly increases the expressiveness of a subclass of NeTAs, NeTAs with one
global clock. We further show that the reachability of another subclass, NeTAs
without frozen clocks [6] and with bounded assignment and diagonal constraints
is decidable.

Paper Organization. The rest of the paper is organized as follows: Sect. 2
introduces time constraints and assignments, and timed automata (TAs).
Section 3 gives an introduction of general NeTAs. Section 4 shows the unde-
cidability results of general NeTAs, when the clock assignments, through which
arbitrary value in an interval is restricted to clock reset. Section 5 introduces
Extended Dense Timed Pushdown Automata (EDTPDAs) and proves their
decidability results. Section 6 shows the decidable reachability of NeTAs without
frozen clocks by encoding them to EDTPDAs. Section 7 introduces related work
and Sect. 8 concludes the paper.

2 Preliminaries

For two sets A and B, we denote the set difference of set B from set A, A \ B =
{e | e ∈ A ∧ e /∈ B}.

For finite words w = aw′, we denote a = head(w) and w′ = tail(w). The
concatenation of two words w, v is denoted by w.v, and ε is the empty word.

Let R, R
≥0 and Z denote the sets of real, non-negative real and integer

numbers respectively. Let ω denote the first limit ordinal. Let I denote the set
of intervals over Zω. An interval can be written as a pair of a lower limit and an
upper limit in the form of either (a, b), [a′, b), [a′, b′], (a, b′], where a ∈ Z∪ {−ω},
a′ ∈ Z, b ∈ Z ∪ {ω}, b′ ∈ Z ,‘(’ and ‘)’ denote open limits, and ‘[’ and ‘]’ denote
closed limits. Let I≥0 denote the sets of intervals that do not cover any negative
number. Given a natural number n, we define the bounded intervals I≥0

≤n as
{I \ (n, ω) | I ∈ I≥0}.

398 Y. Wang et al.

Let X = {x1, . . . , xn} be a finite set of clocks. A clock valuation ν : X → R
≥0,

assigns a value to each clock x ∈ X. ν0 represents all clocks in X assigned to
zero. Given a clock valuation ν and a time t ∈ R

≥0, (ν + t)(x) = ν(x) + t, for
x ∈ X. A clock assignment function ν[y ← b] is defined by ν[y ← b](x) = b
if x = y, and ν(x) otherwise. We also define a clock valuation ν over X by
{t1, . . . , tn}, which means ν(xi) = ti for 1 ≤ i ≤ n, where ∀i ∈ [1..k], ti ∈ R

≥0.
Val(X) is used to denote the set of clock valuations of X.

2.1 Time Constraints and Assignments

Definition 1 (Time Constraint). Given a finite set of clocks X, we define
diagonal-free constraints condf and diagonal constraints con as follows:

condf ::= x ∈ I? con ::= x ∈ I? | x − x′ ∈ I ′?

where, x, x′ ∈ X, I ∈ I≥0 and I ′ ∈ I.

Definition 2 (Clock Assignment). Given a finite set of clocks X, we define
unbounded assignments assgnω, bounded assignments assignn and resets reset
as follows:

assgnω ::= x ← I assignn ::= x ← I ′ reset ::= x ← I0

where x ∈ X, n is the maximum integer to which a clock is allowed to be assigned,
I ∈ I≥0, I ′ ∈ I≥0

≤n and I0 = [0, 0].

2.2 Timed Automata

Definition 3 (Timed Automata). A timed automaton (TA) is a tuple A =
(Q, q0, F,X,Δ) ∈ A , where

– Q is a finite set of control locations, with the initial location q0 ∈ Q,
– F ⊆ Q is the set of final locations,
– X is a finite set of clocks,
– Δ ⊆ Q × O × Q, where O is a set of operations. A transition δ ∈ Δ is a

triplet (q1, φ, q2), written as q1
φ−→ q2, in which φ is either of

• Local ε, an empty operation,
• Test condf or con on X,
• Assignment assign on X, where assign ∈ {assignω, assignn, reset},

and
• Value passing x ← x′, where x, x′ ∈ X.

Given a TA A ∈ A , we use Q(A), q0(A), F (A), X(A) and Δ(A) to represent
its set of control locations, initial location, set of final locations, set of clocks and
set of transitions, respectively. We will use similar notations for other models.

Definition 4 (Semantics of TAs). Given a TA A = (Q, q0, F,X,Δ), a con-
figuration is a pair (q, ν) of a control location q ∈ Q, and a clock valuation ν
on X. The transition relation of the TA is represented as follows,

Nested Timed Automata with Diagonal Constraints 399

– Progress transition: (q, ν) t−→A (q, ν + t), where t ∈ R
≥0.

– Discrete transition: (q1, ν1)
φ−→A (q2, ν2), if q1

φ−→ q2 ∈ Δ, and one of the
following holds,

• Local φ = ε, then ν1 = ν2.
• Test φ = x ∈ I?or x − x′ ∈ I ′, then ν1 = ν2 and ν2(x) ∈ I or ν2(x) −

ν(x′) ∈ I ′ holds respectively.
• Assignment φ = x ← I, ν2 = ν1[x ← r], where r ∈ I.
• Value passing ϕ = x ← x′, ν2 = ν1[x ← ν1(x′)].

The initial configuration is (q0, ν0). The transition relation is → and we define

→ = t−→A ∪ φ−→A , and define →∗ to be the reflexive and transitive closure of →.

Definition 3 involves choices of Test and Assignment. In the following, we
will specify the type of time constraint and clock assignment when a TA is
mentioned.

3 General Nested Timed Automata

Definition 5 (Nested Timed Automata). A general nested timed automa-
ton (NeTA) is a quadruplet N = (T,A0,X,C,Δ), where

– T is a finite set {A0,A1, · · · ,Ak} of TAs, with the initial TA A0 ∈ T . We
assume the sets of control locations of Ai, Q(Ai), are mutually disjoint, i.e.,
Q(Ai) ∩ Q(Aj) = ∅ for i �= j.

– C is a finite set of global clocks, and X is a finite set of k local clocks.
– Δ ⊆ Q × (Q ∪ {ε}) × Actions+ × Q × (Q ∪ {ε}) describes transition rules

below, where Q = ∪Ai∈T Q(Ai).

A transition rule is described by a sequence of Actions+ =
{internal, push, fpush, pop, c ∈ I?, c − c′ ∈ I ′?, c ← I, x ← c, c ← x} for c ∈ C,
x ∈ ⋃

Ai∈T X(Ai), I ∈ I≥0 and I ′ ∈ I. The internal actions are Local, Test,
Assignment, and Value-passing in Definition 3.

– Internal (q, ε, internal, q′, ε), which describes an internal transition in the
working TA (placed at a control location) with q, q′ ∈ Ai.

– Push (q, ε, push, q0(Ai′), q), which interrupts the currently working TA Ai

at q ∈ Q(Ai) and pushes it to the stack with all local clocks of Ai. The local
clocks in the stack generated by Push operation still evolve as time elapses.
Then, a TA Ai′ newly starts.

– F-Push (q, ε, fpush, q0(Ai′), q), which is similar to Push except that all local
clocks in the stack generated by F-Push are frozen (i.e. stay the same as time
elapses).

– Pop (q, q′, pop, q′, ε), which restarts Ai′ in the stack from q′ ∈ Q(Ai′) after
Ai has finished at q ∈ Q(Ai).

– Global-testdf (q, ε, c ∈ I?, q′, ε), which tests whether the value of a global
clock c is in I.

400 Y. Wang et al.

– Global-test (q, ε, c − c′ ∈ I?, q′, ε), which tests whether the difference of two
clocks c and c′ is in I, where c, c′ ∈ C.

– Global-assign (q, ε, c ← I, q′, ε), which assigns a value in r ∈ I to a global
clock c.

– Global-load (q, ε, x ← c, q′, ε), which assign the value of a global clock c to
a local clock x ∈ X in the working TA.

– Global-store (q, ε, c ← x, q′, ε), which assign the value of a local clock x ∈ X
of the working TA to a global clock c.

Definition 6 (Semantics of general NeTAs). Given a general NeTA
(T,A0,X,C,Δ), the current control state is referred by q. Let ValX = {ν :
X → R

≥0} and ValC = {μ : C → R
≥0}. A configuration of a general NeTA

is an element in Q × ValX × ValC × (Q × {0, 1} × ValX)∗. For w =
(q1, f lag1, ν1). · · · .(qn, f lagn, νn) ∈ (Q × {0, 1} × ValX)∗, t-time passage on
the stack, written as w + t, is (q1, f lag1, progress(ν1, t, f lag1)). · · · .(qn, f lagn,
progress(νn, t, f lagn)), where

progress(ν, t, flag) =

{ {ν(x1) + t, · · · , ν(xk) + t} flag = 1
ν flag = 0

– Time progress transitions: (〈q, ν, μ〉, v) t−→ (〈q, ν + t, μ + t〉, v + t) for t ∈ R
≥0,

where v + t set ν′ := progress(ν′, t, f lag) of each 〈q′, f lag, ν′〉 in the stack.
– Discrete transitions: κ

ϕ−→ κ′ is defined as follows.
• Internal (〈q, ν, μ〉, v)

ϕ−→ (〈q′, ν′, μ〉, v), if 〈q, ν〉 ϕ−→ 〈q′, ν′〉 is in
Definition 4.

• Push (〈q, ν, μ〉, v)
push−−−→ (〈q0(Ai′), ν0, μ〉, 〈q, 1, ν〉.v).

• F-Push (〈q, ν, μ〉, v)
f-push−−−−→ (〈q0(Ai′), ν0, μ〉, 〈q, 0, ν〉.v).

• Pop (〈q, ν, μ〉, 〈q′, f lag, ν′〉.w)
pop−−→ (〈q′, ν′, μ〉, w).

• Global-test (〈q, ν, μ〉, v) c∈I?−−−→ (〈q′, ν, μ〉, v), if μ(c) ∈ I.
• Global-test (〈q, ν, μ〉, v) c−c′∈I?−−−−−→ (〈q′, ν, μ〉, v), if μ(c) − μ(c′) ∈ I holds.
• Global-assign (〈q, ν, μ〉, v) c←I−−−→ (〈q′, ν, μ[c ← r]〉, v) for r ∈ I.
• Global-load (〈q, ν, μ〉, v) x←c−−−→ (〈q′, ν[x ← μ(c)], μ〉, v).
• Global-store (〈q, ν, μ〉, v) c←x−−−→ (〈q′, ν, μ[c ← ν(x)]〉, v).

The initial configuration of a general NeTA is (〈q0(A0), ν0, μ0〉, ε), where
ν0(x) = 0 for x ∈ X and μ0(c) = 0 for c ∈ C. We use −→ to range over
these transitions.

Definition 5 for general NeTAs extends Definition 12 in [7] with diagonal con-
straints. We already have the following result for general NeTAs with diagonal-
free constraints [7].

Theorem 1 (Theorem 2 in [7]). The reachability of NeTAs (T,A0,X,C,Δ)
with diagonal-free constraints is undecidable, if |C| > 1.

Theorem 2 (Theorem 3 in [7]). The reachability of NeTAs (T,A0,X,C,Δ)
with diagonal-free constraints is decidable, if |C| = 1.

From the above result, obviously general NeTAs with multiple global clocks
are undecidable. We will focus on some subclasses to expand the frontier between
decidable and undecidable classes of NeTAs with diagonal constraints.

Nested Timed Automata with Diagonal Constraints 401

4 Undecidability Result of NeTAs

Note that a TA with diagonal constraints and unbounded assignments is
already Turing-complete. In this section we show the undecidability of NeTAs
with a single global clock variable, even when global-assign is restricted to clock
reset.

For showing the undecidability, we encode the halting problem of Minsky
machines [11] in a general NeTA with a single global clock and reset assignment.

Definition 7 (Minsky machine). A Minsky machine M is a tuple (L,C,D)
where:

– L is a finite set of states, and l0, lf ∈ L are the initial state and terminal
state respectively,

– C = {ct1, ct2} is the set of two counters, and
– D is the finite set of transition rules of the following types,

• increment counter di : ct := ct + 1, goto lk,
• test-and-decrement counter di : if (ct > 0) then (ct := ct − 1, goto

lk) else goto lm,
where ct ∈ C, di ∈ D and lk, lm ∈ L.

A Minsky machine M = (L,C,D) can be encoded into a general NeTA with
a single global clock and reset assignment N = (T,A0,X,C,Δ), with T =
{A0,A1} where

– C = {c} and Q(A0) = {ql | l ∈ L(M)}⋃{qi
l | l ∈ L(M), 3 ≤ i ≤ 4} and

Q(A1) = {qi
l | l ∈ L(M), 1 ≤ i ≤ 2}.

– X = {x1, x2, x3}, where for i = 1, 2, xi is a local clock to encode the value of
counter cti and x3 is introduced to ensure no time passage in A0. Here x1, x2

and x3 are all local clocks of A0, which is critical in the encoding.

Zero-test of a counter cti for i = 1, 2, in the form of l
cti=0?−−−−→ lm, where

l, lm ∈ L(M) is simply simulated by ql
xi∈[0,0]?−−−−−−→ qlm .

Increment of a counter cti for i = 1, 2, in the form of l
cti:=cti+1−−−−−−−→ lk, where

l, lk ∈ L(M) is simulated by the following transitions: ql
fpush−−−−→ q1

l

c←[0,0]−−−−−→
q2
l

pop−−→ ql
c−xi∈[1,1]?−−−−−−−→ q3

lk

xi←c−−−→ q4
lk

x3∈[0,0]?−−−−−−→ qlk Intuitively, we frozen-push the
initial TA A0, reset the global clock c, wait for some time, later pop back to
A0. Only when c − xi = 1 holds, the execution can continue. Then the value of
c is passed to xi, which is equivalent to increasing xi by one. Note that, if qlk

is reachable, then time does not elapse in A0 in this execution. Firstly, a local
clock of A0, x3, is initialized to 0 and afterwards never changes the value during
the simulation. The zero-test for x3 at the tail of the simulation ensures this.
Secondly, thanks to the frozen push, when the global clock c elapses, local clocks
of A0 are frozen.

402 Y. Wang et al.

Decrement of a counter cti for i = 1, 2, in the form of l
cti:=cti−1−−−−−−−→ lk, is

simulated in a way similar to the increment of a counter cti, except for testing
xi − c ∈ [1, 1]? instead of c − xi ∈ [1, 1]?

By the above encoding, we have the following results.

Theorem 3. The reachability of NeTAs with one global clock, diagonal con-
straints, and resets is undecidable.

5 Extended Dense Timed Pushdown Automata

In this section, we introduce extended dense timed pushdown automata (EDT-
PDAs) and prove their decidability results. Later in Sect. 6 the decidability of
the reachability on NeTAs without frozen clocks is shown by encoding them to
EDTPDAs. We extend DTPDAs from Definition 1 in [7] with global clocks for
which the value is not affected by push and pop actions.

Definition 8 (Extended Dense Timed Pushdown Automata). An
extended dense timed pushdown automaton (EDTPDA) is a tuple D =
〈S, s0, Γ,X,C,Δ〉 ∈ D , where

– S is a finite set of states with the initial state s0 ∈ S,
– Γ is finite stack alphabet,
– X is a finite set of local clocks (with |X| = k),
– C is a finite set of global clocks (with |C| = k′) and,
– Δ ⊆ S × Actions × S is a finite set of actions.

A (discrete) transition δ ∈ Δ is a sequence of actions (s1, ϕ1, s2), · · · ,

(si, ϕi, si+1) written as s1
ϕ1;··· ;ϕi−−−−−→ si+1, in which ϕj (for 1 ≤ j ≤ i) is one

of the followings,

– Local ε, an empty operation,
– Test con on X ∪ C,
– Assign assignn on X ∪ C, where n is the maximum integer appearing in Δ,
– Value passing x ← y where x, y ∈ X ∪ C.
– Push push(γ), where γ ∈ Γ , and
– Pop pop(γ), where γ ∈ Γ .

Definition 9 (Semantics of EDTPDA). For an EDTPDA 〈S, s0, Γ,X,
C,Δ〉, a configuration is a triplet (s, w, ν) with s ∈ S, w ∈ (Γ × (R≥0)k)∗, and a
clock valuation ν on X ∪ C. For t ∈ R

≥0 and t̄ = (t1, t2, . . . , tk) ∈ (R≥0)k,
t̄ + t = (t1 + t, t2 + t, . . . , tk + t). For w = (γ1, t̄1). · · · .(γn, t̄n), w + t =
(γ1, t̄1 + t). · · · .(γn, t̄n + t).

The transition relation consists of time progress and a discrete transition.

– Time progress: (s, w, ν) t−→D (s, w + t, ν + t), where t ∈ R
≥0.

– Discrete transition: (s1, w1, ν1)
ϕ−→D (s2, w2, ν2), if s1

ϕ−→ s2, and one of the
following holds,

Nested Timed Automata with Diagonal Constraints 403

• Local ϕ = ε, then w1 = w2, and ν1 = ν2.
• Test ϕ = x ∈ I? or x − y ∈ I ′?, then w1 = w2, ν1 = ν2, and ν1(x) ∈ I

holds or ν1(x) − ν1(y) ∈ I ′ holds respectively.
• Assign ϕ = x ← I, then w1 = w2, ν2 = ν1[x ← r], where r ∈ I.
• Value passing ϕ = x ← x′, then w1 = w2, ν2 = ν1[x ← ν1(x′)].
• Push ϕ = push(γ), then ν2 = ν1[x̄ ← (0, · · · , 0)], w2 =

(γ, (ν1(x1), · · · , ν1(xk))).w1, where x̄ = (x1, · · · , xk).
• Pop ϕ = pop(γ), then ν2 = ν1[x̄ ← (t1, · · · , tk)], w1 =

(γ, (t1, · · · , tk)).w2, where x̄ = (x1, · · · , xk).

The initial configuration 0 = (s0, ε, ν0).

Example 1. Figure 1 shows transitions of an EDTPDA with S = {•} (omitted
in the figure), X = {x1, x2}, C = {c1} and Γ = {a, b, d}. At 1 ↪→ 2, the values
of x1 and x2 (0.5 and 3.9) are pushed with d. After pushing, value of x1 and
x2 will be reset to zero, Then, x2 is set a value in (1, 2], say 1.7. At 2 ↪→ 3,
time elapses 2.6, and both clocks and ages in the stack (in bold) proceed. At
3 ↪→ 4, test whether the difference between the value of x2 and the value of
x1 is in (1, 2). Yes, then pop the stack and x1, x2 are set to the popped ages.

(a, (1.9, 4.5))
(b, (6.7, 2.9))
(a, (3.1, 5.2))
(d, (4.2, 3.3))

x1 ← 0.5
x2 ← 3.9
c1 ← 2.3

(d, (0.5, 3.9))
(a, (1.9, 4.5))
(b, (6.7, 2.9))
(a, (3.1, 5.2))
(d, (4.2, 3.3))

x1 ← 0
x2 ← 1.7
c1 ← 2.3

(d, (3.1,6.5))
(a, (4.5,7.1))
(b, (9.3,5.5))
(a, (5.7,7.8))
(d, (6.8,5.9))

x1 ← 2.6
x2 ← 4.3
c1 ← 4.9

(a, (4.5, 7.1))
(b, (9.3, 5.5))
(a, (5.7, 7.8))
(d, (6.8, 5.9))

x1 ← 3.1
x2 ← 6.5
c1 ← 4.9

1
push(d);x2←(1,2]−−−−−−−−−−−−−−−→D 2

2.6−−−−−−−−−−−−−−→D 3
x2−x1∈(1,2)?;pop(d)−−−−−−−−−−−−−−−→D 4

Fig. 1. An example of EDTPDA

In the following subsections, we prove the decidability result of EDTPDAs.
We denote the set of finite multisets over D by MP(D), and the union of

two multisets M,M ′ by M � M ′. We regard a finite set as a multiset with the
multiplicity 1, and a finite word as a multiset by ignoring the ordering.

5.1 Digiword and Operations

Let 〈S, s0, Γ,X,C,Δ〉 be an EDTPDA and let n be the largest integer (except
for ω) appearing in Δ. For v ∈ R, proj(v) = ri if v ∈ ri ∈ Intv(n), where
Intv(n) = {r2i = [i, i] | −n ≤ i ≤ n} ∪ {r2i+1 = (i, i + 1) | −n ≤ i <
n} ∪ {r2n+1 = (n, ω)} ∪ {r−2n−1 = (−ω,−n)}.

404 Y. Wang et al.

For a set of clocks X = {x1, · · · , xk} ∪ C = {c1, · · · , ck′}, an index function
idx(x) over X∪C is defined by i if x = xi ∈ X otherwise i+k for x = ci ∈ C. Also,
we denote its inverse function by ridx(i) (i.e., if idx(x) = i, then ridx(i) = x for
x ∈ X ∪ C).

Definition 10 (Difference Bound Matrix). A difference bound matrix
(DBM) D is a (k + k′) − by − (k + k′) matrix, where Dij (i.e., element (i, j)
in the matrix) is an interval r ∈ Intv(n), which represents the ν(ridx(i)) −
ν(ridx(j)) ∈ r. Dbm(X ∪ C) is used to denote the set of DBMs over X ∪ C.

Note that the indexes for the first row and first column are 1. We say a
clock valuation ν over X ∪ C is compatible with a DBM D ∈ Dbm(X ∪ C) if
∀x, y ∈ X ∪ C, ν(x) − ν(y) ∈ Didx(x),idx(y). We also denote DBM(ν) = D if a
clock valuation ν is compatible with a DBM D.

The idea of the next digitization is inspired by [12–14].

Definition 11. Let frac(x, t) = t − floor(t) for (x, t) ∈ (X ∪ C ∪ Γ) × R
≥0,

and Φ ⊂ MP((X ∪ C ∪ Γ) × R
≥0) be the set whose element has exactly one

occurrence of (x, t), for each x ∈ X ∪ C, where t ∈ R
≥0. A digitization digi :

Φ → MP((X ∪ C ∪ Γ) × Intv(n))∗ × Dbm(X ∪ C) is defined as follows.
For Ȳ ∈ Φ, let Y0, Y1, · · · , Ym be multisets that collect (x, proj(t))’s having the

same frac(x, t) for (x, t) ∈ Ȳ and D be the corresponding DBM in which Dij is
an interval r ∈ Intv(n) satisfying t − t′ ∈ r, where (ridx(i), t), (ridx(j), t′) ∈ Ȳ.
Among Y0, Y1, · · · , Ym, Y0 (which is possibly empty) is reserved for the collection
of (x, proj(t)) with frac(t) = 0. We assume that Yi’s except for Y0 is non-empty
(i.e., Yi = ∅ with i > 0 is omitted), and Yi’s are sorted by the increasing order of
frac(x, t) (i.e., frac(x, t) < frac(x′, t′) for (x, proj(t)) ∈ Yi and (x′, proj(t′)) ∈
Yi+1).

For a stack frame v = (γ, (t1, · · · , tk)) of an EDTPDA, we denote a word
(γ, t1) · · · (γ, tk) by dist(v). Given a clock valuation ν, we denote a clock word
(x1, ν(x1)) . . . (xn, ν(xn)) by time(ν), where x1 . . . xn ∈ X ∪ C.

Example 2. If n = 6, we have 25 intervals illustrated in Fig. 2.

r-13 -6 r-11 -5 r-9 -4 r-7 -3 r-5 -2 r-3 -1 r-1 0 r1 1 r3 2 r5 3 r7 4 r9 5 r11 6 r13

r-12 r-10 r-8 r-6 r-4 r-2 r0 r2 r4 r6 r8 r10 r12

Fig. 2. An interval with n = 6

For the configuration 1 = (•, v4 · · · v1, ν), let Ȳ = dist(v4) � . . . � dist(v1) �
time(ν) be a word, and U = digi(Ȳ), i.e.,

Nested Timed Automata with Diagonal Constraints 405

Ȳ = {(a, 1.9), (a, 4.5), (b, 6.7), (b, 2.9), (a, 3.1), (a, 5.2),
(d, 4.2), (d, 3.3), (x1, 0.5), (x2, 3.9), (c1, 2.3)}

Ȳ = {(a, r7)}{(a, r11), (d, r9)}{(c1, r5), (d, r7)}{(x1, r1),
(a, r9)}{(b, r13)}{(x2, r7), (a, r3), (b, r5)}

D =

⎡
⎣r0 r-7 r-3
r7 r0 r3
r3 r-3 r0

⎤
⎦

U = (Ȳ , D)

A word in (MP((X ∪C ∪Γ)×Intv(n)))∗ ×Dbm(X ∪C) is called a digiword.
Let U = (Ȳ ,D) be a digiword, where Ȳ is a word of multisets and D is a DBM.
We denote Y |Λ for Λ ⊆ X ∪C ∪Γ , by removing (x, ri) with x �∈ Λ in Ȳ . We also
denote U |Λ = (Y |Λ,D). A k-pointer ρ̄ of a digiword U is a tuple of k pointers to
mutually different k elements in Ȳ of U |Γ , where k is the number of local clocks.
We refer to the element pointed by the i-th pointer by ρ̄[i]. From now on, we
assume that a digiword has one pair of k-pointers (ρ̄1, ρ̄2). We also assume that
they do not overlap each other, i.e., there are no i, j, such that ρ̄1[i] = ρ̄2[j].

ρ̄1 and ρ̄2 intend the store of values of the local clocks at the last and one
before the last Push, respectively.

Definition 12. For Ȳ = Y0, Y1, · · · , Ym ∈ (MP((X ∪ C ∪ Γ) × Intv(n)))∗, [Ȳ]
is defined by {ν | digi(time(ν)) = (Z̄,D)∧ Ȳ |X∪C = Z̄}, and DBM(Ȳ) defined
by {D | ν ∈ [Ȳ] ∧ DBM(ν) = D}.
Remark 1. For Ȳ = Y0, Y1, · · · , Ym ∈ (MP((X ∪C ∪Γ)×Intv(n)))∗, DBM(Ȳ)
is computable, since there are fixed number of DBMs over X ∪ C and for D ∈
Dbm(X ∪ C), we can easily check if it is compatible with Ȳ (i.e. check if there
exists at least one feasible solution when combining all constraints represented
by Ȳ and D).

Definition 13. For digiwords U = (Y1 · · · Ym,D) and V = (Z1 · · · Zm′ ,D′) with
pairs of k-pointers (ρ̄1, ρ̄2), and (ρ̄′

1, ρ̄
′
2), respectively. We define an embedding

U � V , if D = D′ and there exists a monotonic injection f : [1..m] → [1..m′]
such that Yi ⊆ Zf(i) for each i ∈ [1..m], and ρ̄i = ρ̄′

i ◦ f , for i = 1, 2.

Definition 14. Let U = (Ȳ ,D), U ′ = (Ȳ ′,D′) ∈ (MP((X ∪ C ∪ Γ) ×
Intv(n)))∗ ×Dbm(X ∪C) such that U (resp. U ′) has a pair of k-pointers (ρ̄1, ρ̄2)
(resp. (ρ̄′

1, ρ̄
′
2)), where Ȳ = Y0 · · · Ym and Ȳ ′ = Y ′

0 · · · Y ′
m′ . We define digiword

operations as follows. Note that except for Map→, Map←, and Permutation,
k-pointers do not change.

– InsertI insertI(U, (x, ri)) for x ∈ X ∪ C and ri ⊂ [0, n] inserts (x, ri) to Ȳ
at
⎧
⎨

⎩

either put into Yj for j > 0, or put the singleton set {(x, ri)}
at any place after Y0 if i is odd

put into Y0 if i is even

and then replaces the DBM D with Dnew, where Dnew ∈ {D′′ | D′′ ∈
DBM(Ȳ ′′)∧∀i, j ∈ [1..(k+k′)]\{idx(x)},Dij = D′′

ij}, and Ȳ ′′ is the resulting
multisets after insertion.

406 Y. Wang et al.

– Insertx insertx(U, x, y) adds (x, ri) to Yj for (y, ri) ∈ Yj ∈ Ȳ , x, y ∈
X ∪ C and updates DBM D in the following way: replace Didx(x),idx(y) and
Didx(y),idx(x) with r0, and then for 1 ≤ i′ ≤ k + k′, replace Di′,idx(x) and
Didx(x),i′ with Di′,idx(y) and Didx(y),i′ respectively.

– Init init(U) is obtained by removing all elements (x, r) for x ∈ X, updating
Y0 with Y0 � {(x, r0) | x ∈ X} and updating DBM D in the following way:
replace Dij for ∀i, j ∈ [1..k] with r0, and for ∀i ∈ [1..k] and ∀j ∈ [(k+1)..(k+
k′)], replace Dij and Dji with r−t and rt respectively, where (ridx(j), rt) ∈
Y ∈ Ȳ .

– Delete delete(U, x) for x ∈ X ∪C is obtained from Ȳ by deleting the element
(x, r) indexed by x.

– Shift. A one-step shift U = (Ȳ ,D) ⇒ U ′ = (Ȳ ′,D′) if and only if Ȳ � Ȳ ′

and D = D′, where a one-step shift Ȳ = Y0Y1 · · · Ym � Ȳ ′ = Y ′
0Y ′

1 · · · Y ′
m′ is

defined in the following.
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ȳ ′ = Y ′
0 , Y ′

1 , · · · , Y ′
m+1 if Y0 �= ∅, then Y ′

0 = ∅,
Y ′

1 = {(x, rmin{i+1,2n+1}) | (x, ri) ∈ Y0} and
Y ′

j = Yj−1 for j ∈ [2..m + 1].
Ȳ ′ = Y ′

0 , Y ′
1 , · · · , Y ′

m−1 otherwise, then Y ′
0 =

{(x, rmin{i+1,2n+1}) | (x, ri) ∈ Ym} and
Y ′

j = Yj for j ∈ [1..m − 1].

(ρ̄1, ρ̄2) is updated to correspond to the shift accordingly. As convention, we
define ⇒∗ as reflexive transitive closure of ⇒.

– Rotate. For k-pointers (ρ̄1, ρ̄2) of U and ρ̄′ of V , let U |Γ ⇒∗ V |Γ such
that the permutation makes ρ̄1 match with ρ̄. Then, rotateρ̄1 �→ρ̄(ρ̄2) is the
corresponding k-pointer of V to ρ̄2.

– Map→ map→(U, γ) for γ ∈ Γ is obtained from U by, for each xi ∈ X,
replacing (xi, rj) with (γ, rj). Accordingly, ρ̄1[i] is updated to point to the
replacement (γ, rj), and ρ̄2 is set to the original ρ̄1.

– Map← map←(U,U ′, γ) for γ ∈ Γ is obtained from U , by removing (xi, rj)
for xi ∈ X, and replacing each ρ̄1[i] = (γ, rj) in U |Γ with (xi, rj) for xi ∈ X
and DBM D by Dnew ∈ DBM(Ȳ ′′), where Ȳ ′′ is the resulting multisets after
replacement. Accordingly, new ρ̄1 is set to the original ρ̄2, and new ρ̄2 is set
to rotateρ̄′

1 �→ρ̄2(ρ̄
′
2).

5.2 Snapshot PDS

A snapshot pushdown system (snapshot PDS) keeps the digitization of all values
of clocks and ages and the difference between all pairs of two clocks in the top
stack frame, as a digiword.

We show that an EDTPDA can be encoded into its digitization, called a
snapshot PDS. The key of the encoding is that when a pop occurs, the time
progress recorded at the top stack symbol is propagated to the next stack symbol
after finding some shifts by matching between k-pointers ρ̄2 and ρ̄′

1.

Nested Timed Automata with Diagonal Constraints 407

Definition 15. Let π : 0 = (q0, ε, ν0) ↪→∗ = (s, w, ν) be a transition sequence
of an EDTPDA from the initial configuration. If π is not empty, we refer the
last step as λ : ′ ↪→ , and the preceding sequence by π′ : 0 ↪→∗ ′. Let
w = vm · · · v1. A snapshot is snap(π) = U , where

U = digi(�idist(vi) � {(x, ν(x)) | x ∈ X ∪ C})
Let a k-pointer ξ̄(π) be ξ̄(π)[i] = (γ, proj(ti)) for (γ, ti) ∈ dist(vm). A snap-

shot configuration Snap(π) is inductively defined from Snap(π′).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q0, snap(ε)) if π = ε. (ρ̄1, ρ̄2) are undefined.
(s′, snap(π) tail(Snap(π′))) if λ is Time progress with U ′ ⇒∗ U .

Then, the permutation U ′ ⇒∗ U updates (ρ̄′
1, ρ̄

′
2) to (ρ̄1, ρ̄2).

(s′, snap(π) tail(Snap(π′))) if λ is Local,Test,Assign,Value-passing.
(s, snap(π) Snap(π′)) if λ is Push.Then, (ρ̄1, ρ̄2) = (ξ̄(π), ρ̄′

1).
(s, snap(π) tail(tail(Snap(π′)))) if λ is Pop.

Then, (ρ̄1, ρ̄2) = (ρ̄′
2, rotateρ̄′′

1 �→ρ̄′
2
(ρ̄′′

2)).

We refer head(Snap(π′)) by U ′, head(tail(Snap(π′)) by U ′′. Pairs of k-
pointers of U , U ′, and U ′′ are denoted by (ρ̄1, ρ̄2), (ρ̄′

1, ρ̄
′
2), and (ρ̄′′

1 , ρ̄′′
2), respec-

tively. If not mentioned, k-pointers are kept as is.

Definition 16. For an EDTPDA 〈S, s0, Γ,X,C,Δ〉, a snapshot PDS S is a
PDS (with possibly infinite stack alphabet) 〈S, s0,MP((X ∪C ∪Γ)×Intv(n))∗ ×
Dbm(X ∪ C),Δd〉, with the initial configuration 〈sinit, {(x, r0) | x ∈ X ∪ C}〉.
Then Δd consists of:

– Time progress 〈s, U〉 ↪→S 〈s, U ′〉 for U ⇒∗ U ′.
– Local (s ε−→ s′ ∈ Δ) 〈s, U〉 ↪→S 〈s′, U〉.
– Test (s x∈I?−−−→ s′ ∈ Δ) If U = (Ȳ ,D), (x, ri) ∈ Y ∈ Ȳ and ri ⊆ I,

〈s, U〉 ↪→S 〈s′, U〉.
– Test (s

x−y∈I?−−−−−→ s′ ∈ Δ) If U = (Ȳ ,D), Didx(x),idx(y) = ri and ri ⊆ I,
〈s, U〉 ↪→S 〈s′, U〉.

– Assign (s x←I−−−→ s′ ∈ Δ with x ∈ X) for ∀r ⊆ I,
〈s, U〉 ↪→S 〈s′, insertI(delete(U, x), (x, r))〉.

– Value-passing (s
x←y−−−→ s′ ∈ Δ with x, y ∈ X ∪ C)

〈s, U〉 ↪→S 〈s′, insertx(delete(U, x), x, y)〉.
– Push (s

push(γ)−−−−−→ s′ ∈ Δ)
〈s, U〉 ↪→S 〈s′, init(map→(U, γ))U〉.

– Pop (s
pop(γ)−−−−→ s′ ∈ Δ)

〈s, UU ′〉 ↪→S 〈s′,map←(U,U ′, γ)〉.

By induction on the number of steps of transitions, the encoding relation
between an EDTPDA and a snapshot PDS is observed. Note that the initial
clock valuation of the DTPDA to be set ν0 is essential.

408 Y. Wang et al.

Lemma 1. Let us denote 0 and (resp. 〈q0, w̃0〉 and 〈s, w̃〉) for the initial
configuration and a configuration of an EDTPDA (resp. its snapshot PDS S).

(Preservation). If π : 0 ↪→∗ , there exists 〈s, w̃〉 such that 〈q0, w̃0〉 ↪→∗
S

〈s, w̃〉 and Snap(π) = 〈s, w̃〉.
(Reflection). If 〈q0, w̃0〉 ↪→∗

S 〈s, w̃〉, there exists π : 0 ↪→∗ with Snap(π) =
〈s, w̃〉.

5.3 Well-Formed Constraints

A snapshot PDS is a growing WSPDS (Definition 6 in [15]) and ⇓Υ gives a well-
formed constraint (Definition 8 in [15]). Let us recall the definitions.

Let P be a set of control locations and let Γ be a stack alphabet. Different
from an ordinary definition of PDSs, we do not assume that P and Γ are finite,
but associated with well-quasi-orderings (WQOs) � and ≤, respectively. Note
that the embedding � over digiwords is a WQO by Higman’s lemma.

For w = α1α2 · · · αn, v = β1β2 · · · βm ∈ Γ ∗, let w � v if m = n and ∀i ∈
[1..n].αi ≤ βi. We extend � on configurations such that (p,w) � (q, v) if p � q
and w � v for p, q ∈ P and w, v ∈ Γ ∗. A partial function ψ ∈ PFun(X,Y) is
monotonic if γ ≤ γ′ with γ ∈ dom(ψ) implies ψ(γ) � ψ(γ′) and γ′ ∈ dom(ψ).

A well-structured PDS (WSPDS) is a triplet 〈(P,�), (Γ,≤),Δ〉 of a set (P,�)
of WQO states, a WQO stack alphabet (Γ,≤), and a finite set Δ ⊆ PFun(P ×
Γ, P × Γ≤2) of monotonic partial functions. A WSPDS is growing if, for each
ψ(p, γ) = (q, w) with ψ ∈ Δ and (q′, w′) � (q, w), there exists (p′, γ′) with
(p′, γ′) � (p, γ) such that ψ(p′, γ′) � (q′, w′).

A well-formed constraint describes a syntactical feature that is pre-
served under transitions. Theorem 3 in [15] ensures the decidability the quasi-
coverability of a growing WSPDS, and Theorem 5 in [15] lifts it to reachability
when a growing WSPDS has a well-formed constraint. Theorem 4 in [15] shows
the finite convergence of a P-automaton for the quasi-coverability, which con-
cludes that a WSPDS with a well-formed constraint holds the decidability of the
reachability.

Definition 17. Let (s, w̃) be a configuration of a snapshot PDS S. An element
in a stack frame of w̃ has a parent if it has a corresponding element in the
next stack frame. The transitive closure of the parent relation is an ancestor. An
element in w̃ is marked, if its ancestor is pointed by a k-pointer in some stack
frame. We define a projection ⇓Υ (w̃) by removing unmarked elements in w̃. We
say that w̃ is well-formed if ⇓Υ (w̃) = w̃.

The idea of ⇓Υ is to remove unnecessary elements (i.e., elements not related
to previous actions) from the stack content. Note that a configuration reachable
from the initial configuration by ↪→∗

S is always well-formed. Since a snapshot
PDS is a growing WSPDS with ⇓Υ, we conclude the following theorem from
Lemma 1.

Theorem 4. The reachability of an EDTPDA 〈S, s0, Γ,X,C,Δ〉 is decidable.

Nested Timed Automata with Diagonal Constraints 409

6 Decidability Results of NeTAs Without Frozen Clocks

In this section, for clarity we will introduce a subclass of general NeTAs, NeTAs
with diagonal constraints and bounded assignment and without frozen
clocks, and then prove that the decidability results by encoding them to EDT-
PDAs.

Note that such a model is just the Definition 5 by removing F-Push rules,
and choosing bounded assignment in Assignment rules.

6.1 Encoding

Let N = (T,A0,X,C,Δ) be a NeTA without frozen clocks. We define a corre-
sponding EDTPDA E(N) = 〈S, s0, Γ,X,C,∇〉, such that

– S = Γ =
⋃

Ai∈T Q(Ai) is the set of all locations of TAs in T , with
– s0 = q0(A0) is the initial location of the initial TA A0 of N .
– X = {x1, . . . , xk} is the set of k local clocks, and C = {c1, . . . , ck′} is the set

of k′ global clocks.
– ∇ is the union

⋃
Ai∈T Δ(Ai)

⋃ G(N)
⋃ H(N) where

⎧
⎨

⎩

Δ(Ai) = {Local,Test,Assignment,Value-passing},
G(N) = {Global-test,Global-assign,Global-load,Global-store},
H(N) consists of rules below.

Push q
push(q)−−−−−→ q0(Ai′) if (q, ε, push, q0(Ai′), q) ∈ Δ(N)

Pop q
pop(q′)−−−−→ q′ if (q, q′, pop, q′, ε) ∈ Δ(N)

Definition 18. Let N be a NeTA without frozen clocks (T,A0,X,C,Δ) and let
E(N) be an EDTPDA 〈S, s0, Γ,X,C,∇〉. For a configuration κ = (〈A, q, ν, μ〉, v)
of N such that v = (q1, ν1) . . . (qn, νn), �κ denotes a configuration (q, w(κ), ν∪μ)
of E(N) where w(κ) = w1 · · · wn with wi = (qi, νi).

Lemma 2. For a NeTA without frozen clocks N , an EDTPDA E(N), and con-
figurations κ, κ′ of N ,

(Preservation) if κ −→N κ′, then �κ� ↪→∗
E(N) �κ′�, and

(Reflection) if �κ� ↪→∗
N , there exists κ′ with ↪→∗

E(N) �κ′� and κ −→∗
N κ′.

By this encoding, we have our main result.

Theorem 5. The reachability of a NeTA without frozen clocks is decidable.

410 Y. Wang et al.

7 Related Work

Timed automata (TAs) proposed in [2] are finite automata with a finite set of
clocks and only allow reset assignment. Reachability of TAs is proved to be
decidable based on the construction of region automata, which finitely abstracts
timed behaviors of TA. It is also shown that diagonal constraints does not effect
the decidability and thus only a syntax sugar.

Dense timed pushdown automata (DTPDAs) [5,16] provided a backbone of
our technologies In original DTPDAs, local clocks must be dealt within some
proper bookkeeping process, which was not an essential part of the analysis.
In [17], a discrete version of DTPDAs, named discrete timed pushdown automata,
was introduced, where time was incremented in discrete steps and thus the ages of
clocks and stack symbols are in the natural numbers. This made the reachability
problem much simpler, and easier for efficient implementation.

Based on recursive state machines [18], two similar timed extensions,
timed recursive state machines (TRSMs) [19] and recursive timed automata
(RTAs) [10], were given independently. A finite number of clocks was distin-
guished into two categories, call-by-reference and call-by-value. When entering
a fresh context, clock values were stored in the stack. After popping, the values
of call-by-reference clocks were unaltered, while the values of call-by-value ones
restored to the previous value from the stack. When either all of clocks or none
of them were call-by-reference, the state reachability problem was decidable.

Interrupt timed automata (ITAs) [9], which are well suited to the description
of multi-task systems with interruptions in a single processor environment, is a
subclass of hybrid automata. It is shown that in ITA the reachability problem is
in 2-EXPSPACE and in PSPACE when the number of clocks is fixed. Recursive
timed automata (RTAs) [10] is an extension of TAs with recursive structure. It
has clocks by the mechanism of “pass-by-value”. When the condition of “glitch-
freeness”, i.e. all the clocks of components are uniformly either by “pass-by-
value” or by “pass-by-reference”, the reachability is shown to be decidable.

Nested timed automata (NeTAs) [6,7,20] extend TAs with recursive structure
in another way. They allowed clocks of some TAs in the stack elapse simulta-
neously with the current running clocks during time passage. Those clocks are
named local clocks, while clocks in other TAs kept unaltered clocks during time
passage are named frozen clocks. It is shown that the reachability of NeTAs with
both types of clocks and a singleton global clock that can be observed by all TAs
is decidable, while that with two or more global clocks is undecidable [7].

8 Conclusion

This paper investigates the decidability results of nested timed automata with
diagonal constraints. We show that the general NeTAs with diagonal constraints
are Turing complete, even when the clock assignment, say, arbitrary value in
an interval, is restricted to clock reset. In comparison, reachability problem of a
subclass, NeTAs with bounded assignment and without frozen clocks are decid-
able, which is shown by encoding them to snapshot PDSs. They are WSPDSs

Nested Timed Automata with Diagonal Constraints 411

with a well-formed constraint [15]. The future work includes to efficiently imple-
ment the general NeTA by adopting data structure BDD as backbones, and
CEGAR [21,22] as the verification technique, and to investigate more model
checking problem on the model [23].

Acknowledgements. This work is supported by National Natural Science Founda-
tion of China with grant No. 61472240, 61672340, 61472238, and the NSFC-JSPS
bilateral joint research project with grant No. 61511140100.

References

1. Mattai, J.: Real-Time Systems: Specification, Verification, and Analysis. Prentice
Hall, Englewood Cliffs (1995)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126,
183–235 (1994)

3. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
real-time systems. Inf. Comput. 111, 193–244 (1994)

4. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-27755-2 3

5. Clemente, L., Lasota, S.: Timed pushdown automata, revisited. In: Proceedings of
LICS 2015, pp. 738–749

6. Li, G., Cai, X., Ogawa, M., Yuen, S.: Nested timed automata. In: Braberman,
V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 168–182. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40229-6 12

7. Li, G., Ogawa, M., Yuen, S.: Nested timed automata with frozen clocks. In:
Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp.
189–205. Springer, Cham (2015). doi:10.1007/978-3-319-22975-1 13

8. Fang, B., Li, G., Sun, D., Cai, H.: Schedulability analysis of timed regular tasks
by under-approximation on WCET. In: Fränzle, M., Kapur, D., Zhan, N. (eds.)
SETTA 2016. LNCS, vol. 9984, pp. 147–162. Springer, Cham (2016). doi:10.1007/
978-3-319-47677-3 10

9. Berard, B., Haddad, S., Sassolas, M.: Real time properties for interrupt timed
automata. In: Proceedings of TIME 2010, pp. 69–76. IEEE Computer Society
(2010)

10. Trivedi, A., Wojtczak, D.: Recursive timed automata. In: Bouajjani, A., Chin, W.-
N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 306–324. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-15643-4 23

11. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs (1967)

12. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata:
closing a decidability gap. In: Proceedings of LICS 2004, pp. 54–63. IEEE Com-
puter Society (2004)

13. Abdulla, P.A., Jonsson, B.: Verifying networks of timed processes. In: Steffen, B.
(ed.) TACAS 1998. LNCS, vol. 1384, pp. 298–312. Springer, Heidelberg (1998).
doi:10.1007/BFb0054179

14. Abdulla, P., Jonsson, B.: Model checking of systems with many identical time
processes. Theoret. Comput. Sci. 290, 241–264 (2003)

http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1007/978-3-642-40229-6_12
http://dx.doi.org/10.1007/978-3-319-22975-1_13
http://dx.doi.org/10.1007/978-3-319-47677-3_10
http://dx.doi.org/10.1007/978-3-319-47677-3_10
http://dx.doi.org/10.1007/978-3-642-15643-4_23
http://dx.doi.org/10.1007/BFb0054179

412 Y. Wang et al.

15. Cai, X., Ogawa, M.: Well-structured pushdown system: case of dense timed push-
down automata. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475,
pp. 336–352. Springer, Cham (2014). doi:10.1007/978-3-319-07151-0 21

16. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In: Pro-
ceedings of LICS 2012, pp. 35–44. IEEE Computer Society (2012)

17. Abdulla, P.A., Atig, M.F., Stenman, J.: The minimal cost reachability prob-
lem in priced timed pushdown systems. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.)
LATA 2012. LNCS, vol. 7183, pp. 58–69. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28332-1 6

18. Alur, R., Etessami, K., Yannakakis, M.: Analysis of recursive state machines. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 207–220.
Springer, Heidelberg (2001). doi:10.1007/3-540-44585-4 18

19. Benerecetti, M., Minopoli, S., Peron, A.: Analysis of timed recursive state
machines, pp. 61–68. In: Proceedings of the TIME 2010. IEEE Computer Soci-
ety (2010)

20. Wang, Y., Li, G., Yuen, S.: Nested timed automata with various clocks. Sci. Found.
Chin. 24, 51–68 (2016)

21. Tian, C., Duan, Z.: Detecting spurious counterexamples efficiently in abstract
model checking. In: Proceedings of the ICSE 2013, pp. 202–211. IEEE/ACM (2013)

22. Tian, C., Duan, Z., Duan, Z.: Making CEGAR more efficient in software model
checking. IEEE Trans. Softw. Eng. 40, 1206–1223 (2014)

23. Liu, Y., Duan, Z., Tian, C.: A decision procedure for a fragment of linear time Mu-
calculus. In: Proceedings of the IJCAI 2016, pp. 1195–1201. IJCAI/AAAI Press
(2016)

http://dx.doi.org/10.1007/978-3-319-07151-0_21
http://dx.doi.org/10.1007/978-3-642-28332-1_6
http://dx.doi.org/10.1007/978-3-642-28332-1_6
http://dx.doi.org/10.1007/3-540-44585-4_18

Integration of Metamorphic Testing
with Program Repair Methods Based

on Adaptive Search Strategies
and Program Equivalence

Tingting Wu1,2(B), Yunwei Dong1, Tsong Yueh Chen2, Mingyue Jiang3,
Man Lau2, Fei-Ching Kuo2, and Sebastian Ng2

1 School of Computer Science and Engineering,
Northwestern Polytechnical University,

Xi’an 710072, People’s Republic of China
2 Department of Computer Science and Software Engineering,

Swinburne University of Technology, Hawthorn, VIC 3122, Australia
tingtingwu@swin.edu.au

3 School of Information Science, Zhejiang Sci-Tech University,
Hangzhou 310018, People’s Republic of China

Abstract. Automated program repair (APR) is a promising approach
to localize faults and generate patches for program under repair. One
of the test suite based APR techniques, a method leveraging Adaptive
search strategies and program Equivalence (AE), has been commonly
used for program repair. AE assumes the availability of test oracles,
which brings the oracle problem to AE repair procedure. Metamorphic
Testing (MT) has been introduced to alleviate the test oracle problem,
and it tests the correctness of programs through metamorphic relations
(MRs) which are relations among multiple inputs and outputs. This
paper presents an integration of AE with MT (referred to as AE-MT)
to extend the applicability of AE to those applications with oracle prob-
lems. To evaluate the repair effectiveness of AE-MT, an empirical study
is conducted against IntroClass benchmark. We conclude that AE-MT
outperforms AE in terms of success rate, but is of lower repair quality
than AE.

Keywords: Automated program repair · Metamorphic testing · Meta-
morphic relation · Test oracle problem

1 Introduction

After testing reveals a program having errors, a software developer debugs the
buggy version, hoping to fix the mistakes so that the revised version passes the
original test cases that reveal the mistakes. The developer also needs to ensure
that this revised version also passes the original test suite. By doing so, the
developer can then be sure that no new mistakes are introduced to the revised
c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 413–429, 2017.
https://doi.org/10.1007/978-3-319-68690-5 25

414 T. Wu et al.

version during the repair process. During the manual debugging process, software
developers rely on a given test suite to determine whether the program succeeds
or fails by comparing the actual result to the expected result.

Automated Program Repair (APR) aims at automating this manual and
labour-intensive repair process. There are mainly two kinds of APR approaches,
namely program specifications based APR and test suite based APR. Program
specification based APR such as ABF [1] uses information from the program
specifications to guide the APR process whereas test suite based APR such as
GenProg [8,25] uses test suite to guide the APR process. We focus on test suite
based APR approach in this paper.

Many different test suite based APR techniques have been proposed. They fall
roughly into two main categories, namely the Generate-and-Validate (GaV) tech-
niques and Correct-by-Construction (CbC) techniques [14]. The GaV techniques,
search based techniques, generate multiple revised versions, referred to as candi-
date repairs, and then validate them with selected test cases (e.g., GenProg [25],
AE [24], TrpAutoRepair [20], Kali [21]). On the other hand, the CbC techniques,
semantics based techniques, fix programs by program synthesis or constraint
solving to generate patches (e.g., CETI [19], SemFix [18], Angelix [16]).

The generic APR process accepts two inputs: (1) a buggy program Pbuggy

and (2) a test suite T containing at least some test cases that can reveal the
bugs in Pbuggy. It then applies a specific APR technique to find a fixed version,
which is referred to as a repair Prepair. If it can find one, it will return the repair
that passes the original test suite T . Otherwise, it reports that no repair could
be found. As T is only a partial subset of the entire input domain, it may not
reveal any other faults in Prepair and hence, Prepair may not be “correct.” The
original test suite is referred to as the input test suite because the APR process
uses this test suite as one of its inputs. In order to determine whether Prepair is
of good quality, we need to evaluate it using an independent test suite. Such a
test suite is called the evaluation test suite (ET) because it is used for evaluating
the quality of the repair.

Researchers have been using three different metrics to measure and compare
the performance of individual APR technique, namely success rate, repair qual-
ity and repair time. First, the success rate is defined as the number of repairs
successfully found over the total number of trails to find a repair. Second, the
repair quality is defined as the number of test cases in the evaluation test suite
ET that can be passed by the repair returned by the APR process over the
total number of test cases in ET . Finally, the repair time is defined as the time
required to find a repair.

Test suite based APR approach relies heavily on the existence of a test oracle
of the program under repair [12]. A test oracle of a program is a mechanism
to determine whether the input-output relationship holds for the program. In
software testing, there are programs that (1) do not have a test oracle or (2)
are too time consuming to verify the input-output relationship. This problem
is usually referred to as the test oracle problem of software testing [2]. In the
repairing procedure of APR, it relies on the test oracles to determine whether

Integration of Metamorphic Testing with Program Repair 415

the candidate program can pass the test cases in the input test suite or test cases
in the evaluation test suite when assessing the repair quality. We would then ask
the question: For programs having test oracle problems, how could we perform
APR on such programs?

Metamorphic Testing (MT) has long been used in software testing to alleviate
the test oracle problem [4,5]. Assume we have a program P without test oracles.
After executing P with a test case t, we obtained an output o. MT uses certain
property of the algorithm to be implemented by the program P , the source test
case t and its output o to generate a follow-up test case t′. Such a property is
usually referred to as the metamorphic relation (MR) of the algorithm. After exe-
cuting P with the follow-up test case t′, the corresponding output o′ is obtained.
MT then verifies whether t, o, t′ and o′ satisfy the relevant MR. If they do not
satisfy the MR, the program P is incorrect. If they satisfy the MR, we have
more confidence on P . For example, assume Psp is a program that computes the
shortest path (SP) between two nodes x and y in an undirected graph G (that
is, Psp implements SP(G, x, y)). Since “length(SP(G, a, b)) = length(SP(G, a, h))
+ length(SP(G,h, b))” where h is a node in the shortest path from a to b in G,
MT uses this MR to generate and execute two follow-up test cases, (G, a, h) and
(G,h, b). If this MR does not hold, Psp is incorrect. If this MR holds, Psp passes
the metamorphic test cases generated based on this MR. As illustrated in this
example, depending on the actual MR being used, a source test case t may give
rise to multiple follow-up test cases t′1, t

′
2, Hence, the source test case and its

follow-up test cases (that is, {t, t′1, t′2, . . . }) forms a metamorphic testing group
(MTG), used to test the correctness of program P .

Recent research proposed a framework APR-MT to integrate test suite based
APR techniques with MT. This framework was applied to form two integrated
techniques GenProg-MT [12] and CETI-MT [11] to demonstrate the feasibility
and effectiveness of APR-MT. It seems that MT can also be integrated with other
APR techniques. However, after the integration, it is still not known about the
effectiveness and efficiency of the integrated technique. Hence, more in-depth
research is needed.

In this paper, we investigate the possibility of integrating MT with another
GaV technique, known as Adaptive search strategies and program Equivalance
(AE) [24], denoted as AE-MT. We choose AE rather than other APR techniques
because AE not only delivers a repair for a faulty program, but also reduces
search spaces significantly through adaptive search strategies. We also compare
the performance of AE-MT with AE against the same benchmark IntroClass [14]
and the same metamorphic relations in [12], using three metrics mentioned earlier
(that is, success rate, repair quality, and repair time). In addition, we proposed
to use one more MR to investigate the repair capability of AE-MT using different
metamorphic relations.

The remainder of this paper is organized as follows. Section 2 presents the
background information of AE and MT. In Sect. 3, we discuss how to inte-
grate AE and MT. Sections 4 and 5 discuss our empirical study and the results.
Section 6 briefly discusses the related work of APR-MT. Section 7 concludes the
paper and discusses the future work.

416 T. Wu et al.

2 Background

2.1 Adaptive Search Strategies and Program Equivalence

AE [24] is a typical GaV APR technique, and the whole repair procedure is
based on the existence of test oracles of program under repair. AE has been
commonly used as a comparison object in APR researches [14,21]. AE leverages
two adaptive search strategies and program equivalence to conduct program
repair and reduce repair cost and search spaces more significantly than other
APR techniques [14,23,24].

AE first generates a candidate repair set CR by operator Edits for the
given faulty program P , such as delete a possible faulty statement or insert
a statement from elsewhere of the program after a possible faulty statement.
Then, AE reduces the number of candidate repairs through program equivalence
relation (∼). For instance, given two candidate repairs A and A′ of P , if A and A′

are semantically equivalent and have the same test case behavior, A′ is regarded
as an equivalent program of A, denoted as A ∼ A′. When A ∼ A′, AE algorithm
will only take one of them as a candidate repair. After determining the set of
candidate repairs, AE iterates the adaptive repair strategy and adaptive
test strategy nested in the former one. It then repeats the process that selects
a candidate program P ′ from the set CR not tried before, and selects test cases
that satisfy the input restriction of P ′ from the input test suite T . Then, it
validates P ′ on these test cases. The repair iteration stops only if (1) a repair
program is found that passes all test cases in T , or (2) when no repair can be
found in a candidate repair set. AE prioritizes the candidate repairs in CR so
as to choose one that is most likely to pass all test cases according to the repair
strategy. Similarly, the test iteration terminates only when a failed test is found,
or the entire test set T is tried. It favours the test case that is most likely to fail
as early as possible according to the test strategy.

Although these strategies are quite effective, test oracle is still an indispens-
able element to evaluate the execution result of individual test case, pass or fail,
through the whole repair process. Therefore, it is necessary to solve the oracle
problem of AE process.

2.2 Metamorphic Testing

MT is a testing approach widely used to alleviate the test oracle problem [5,15,
22]. MT verifies a program using the source and follow-up test cases based on
the MRs. MT involves the following steps:

(1) Identify effective MRs for the program;
(2) Select source test cases that satisfy restrictions in MRs according to some

test case selection strategies;
(3) Construct follow-up test cases based on the source test cases and MRs;
(4) Construct MTG sets according to source, follow-up test cases and MRs;
(5) Verify the correctness of program by evaluating whether MRs are satisfied

or not by MTGs.

Integration of Metamorphic Testing with Program Repair 417

Algorithm 1. AE-MT algorithm
Input: faulty program P
Input: a set of metamorphic testing groups MTGs with at least one violated MTG
Output: Program repair P ′ satisfying all MTGs or no repair.
1: EC ← ∅ // EC is a set of equivalent class of candidate repairs
2: CR ← GenerateCandidateRepair(P) // CR is a set of candidate repairs
3: while CR �= ∅ do
4: P ′ ← RepairStrat(CR) // select a repair that is most likely to pass
5: CR ← CR \ {P ′}
6: //Is P ′ equal to any candidate repair previously tried?
7: if ¬(∃Previous ∈ EC and P ′ ∼ Previous) then
8: EC ← EC ∪ {P ′}
9: TR ← MTGs // TR is the remaining mtgs in the set of MTGs
10: r ← non-violated
11: while TR �= ∅ and r = non-violated do
12: mtg ← TestStrat(TR) // select a mtg that is most likely to fail
13: TR ← TR \ {mtg}
14: r ← Perform(P ′,mtg) // perform MT with P ′ using test cases in mtg
15: end while
16: if r = non-violated then
17: return P ′

18: end if
19: end if
20: end while
21: if CR = ∅ and r = violated then
22: return “no repair”
23: end if

Metamorphic testing has been integrated with many other application
domains, such as model driven engineering [13], APR [12], machine learn-
ing [17], constraint logic programming [9], fault localization [27] and symbolic
execution [7]. Furthermore, it is essential to investigate more systematic and
automatic approaches for MR identification [15] and study the detection capa-
bility of different MRs [3,6,15].

3 Integration of Adaptive Search Strategies and Program
Equivalence (AE) with Metamorphic Testing (MT)

As previously discussed, AE strongly relies on a test oracle to verify the
“correctness” of the actual outputs of the test cases. Therefore, our key steps of
integrating MT with AE are (1) using a set of MTGs instead of an input test
suite and (2) the satisfaction or violation of MR by the relevant MTG set instead
of the pass or fail of the candidate repair with respect to the individual test case.
When all MTGs are satisfied, a program is said to be repaired by AE-MT.

AE-MT is an integration of AE with MT to deliver a repair in the absence
of test oracles. Algorithm 1 presents the pseudocode of AE-MT. Given a faulty
program P and a set of MTGs, with at least one violated. This denotes that the
relevant MR is not satisfied.

AE-MT first generates a set of candidate repairs CR. AE-MT iteratively
checks the candidate repair P ′ that is not in the equivalent class set EC (line 3 ∼
line 20). Then, AE-MT repeatedly tests P ′ on each mtg from the set of MTGs
and returns execution result r (line 11 ∼ line 15). If P ′ satisfies the entire set

418 T. Wu et al.

of MTGs, P ′ is a repair of the faulty program P . If each candidate repair in CR
violates its corresponding MTG set, no repair can be found for program P .

The main difference between AE-MT and AE is the procedure of candidate
program validation. AE deals with a candidate program based on outcomes of
test suite, while AE-MT tests each candidate program against MTGs and exe-
cution result of each mtg . Once an mtg is violated, that is, its relevant MR is not
satisfied, validation procedure for this candidate program will stop immediately.
When the set of MTGs is satisfied, this candidate will be output and considered
as a repair for the input faulty program.

4 Experimental Design

In previous two studies [11,12], the effectiveness of APR-MT techniques is found
to be comparable to the original APR techniques. It is not sufficient to achieve
this conclusion by only two experiments. Therefore, we investigate a further
APR-MT technique, AE-MT. An empirical study is conducted to study the
effectiveness of AE-MT against the same benchmark and two MRs [12], namely
MR1 and MR2. Interested readers may refer to [12] for details of MR1 and MR2.
Moreover, one more metamorphic relation, referred to as MR3, for each target
program is applied to investigate the detection capability of different MRs in
order to have a more thorough analysis.

4.1 Subject Programs

The IntroClass benchmark [14] includes 6 small C programs and 1143 faulty
versions altogether. This benchmark was designed for assessing the effective-
ness of APR techniques. Two kinds of test suites, black-box and white-box, for
each subject program were also designed to reveal various types of faults. The
information of IntroClass and test suites are listed in Table 1.

Checksum. Program checksum takes as input a line of string. It computes the
sum of all characters, and outputs the relative character after the sum modulo
64 and pluses the ASCII value of space character.

Table 1. Subject programs and test data

Program LOC Version Test data Description

Tb Tw M1
b M1

w M2
b M2

w M3
b M3

w

Checksum 13 69 6 10 6 10 6 10 6 10 Computing the sum of a string

Digits 15 236 6 10 6 10 6 10 6 10 Listing all digits of an integer

Grade 19 268 9 9 9 9 7 7 9 9 Computing the grade of a score

Median 24 232 7 6 7 6 7 6 7 6 Computing the median of three integers

Smallest 20 177 8 8 8 8 8 8 8 8 Computing the smallest of four integers

Syllables 23 161 6 10 6 10 6 10 6 10 Counting vowels of a string

Integration of Metamorphic Testing with Program Repair 419

Input: c1c2...ci...cn, in which 1 � i � n.
Output: “Check sum is X”, where ASCII(X) = (int)(c1 + c2 + ...+ ci + ...+

cn)%64 + 32.
Take ts and tf as source and follow-up test cases, os and of as the ASCII

value of source and follow-up output characters.
MR3: Construct tf by permutating any two characters in ts (that is, tf =

cs1 ...csj ...csi ...csn). Then of = os.

Digits. Program digits takes as input an integer. It outputs each base-10 digit
on a single line from the least significant to the most significant. For example, if
input is −6789, the output is an integer array {9,8,7,−6}.

Input: N = n1n2...ni...nm, in which 1 � i � m, and ni indicates a base-10
digit.

Output: {nm, nm−1, ... , ni, ni−1, ... , n1}
Take Ns = ns1ns2 ...nsi ...nsm (1 � i � m) and Nf = nf1nf2 ...nfj ...nfp

(1 � j � p) as source and follow-up test cases, two integer arrays os =
{os1 , os2 , ..., osm} and of = {of1 , of2 , ..., ofj , ..., ofp} as source and follow-up
outputs.

MR3: Construct Nf by reversing the digits in Ns except the sign, then we
have the following cases:

(1) Ns does not have trailing zeros (that is, nsm �= 0):- we have (a) of .size =
os.size (p = m), (b) of [0] = |os[m − 1]|, (c) of [j] = os[m − j − 1], for all
j where 0 < j < p − 1, (d) |of [p − 1]| = os[0], and (e) both of [p − 1] and
os[m − 1] are of the same sign (either both positive or both negative).

(2) Ns has k trailing zeros where 1 ≤ k ≤ m (that is, nsm−k+1 = 0, nsm−k+2 =
0,..., nsm = 0):- we have (a) of .size = os.size − k (p = m − k), (b) of [0] =
|os[m − 1]|, (c) of [j] = os[m − j − 1], for all j where 0 < j < p − 1, (d)
|of [p− 1]| = os[k], and (e) both of [p− 1] and os[m− 1] are of the same sign
when k < m or both are ‘0’ when k = m.

Grade. Program grade takes as input five double values. The first four represent
the thresholds for grade level A, B, C and D separately. The last one represents
a score of a student. Program grade outputs the corresponding grade level by
comparing score with four thresholds. For example, the first four values are 90.0,
80.0, 70.0, 60.0, and the student’s score is 75.0. Then the student gets a grade
level of B.

Input: a double array T = {t1, t2, t3, t4, t5}, in which t1, t2, t3, t4 denote the
thresholds for grade level A, B, C and D, and t5 is a student’s score.

Output: “Student has an X grade” when ti � t5 < ti−1 (1 � i � 4), where
X is the grade level corresponded to ti; or “Student has failed the course”.

Take Ts = {ts1 , ts2 , ts3 , ts4 , ts5} and Tf = {tf1 , tf2 , tf3 , tf4 , tf5} as source and
follow-up test cases, os, of as source and follow-up outputs. To identify the
relationship between os and of , the first four thresholds in two double arrays are
the same respectively.

420 T. Wu et al.

MR3: Construct tf5 = ts5 + 1 when ts5 = tsi , 1 � i � 4, then of = os;
constructing tf5 = ts5 + x when ts5 /∈ {ts1 , ts2 , ts3 , ts4}, and x is a random
positive value, then of is not lower than os.

Median. Program median takes as input three integer values and outputs their
median.

Input: int array T = {t1, t2, t3}
Output: “X is the median”
Take Ts = {ts1 , ts2 , ts3} and Tf = {tf1 , tf2 , tf3} as source and follow-up test

cases, os, of as source and follow-up outputs.
MR3: Construct Tf by permutating any two integers in Ts, then of = os.

Smallest. Program smallest takes as input four integer values and outputs the
smallest one.

Input: int array T = {t1, t2, t3, t4}
Output: “X is the smallest”
Take Ts = {ts1 , ts2 , ts3 , ts4} and Tf = {tf1 , tf2 , tf3 , tf4} as source and follow-

up test cases, and and os, of as source and follow-up outputs.
MR3: Construct Tf by permutating any two integers in Ts, then of = os.

Syllables. Program syllables takes as input a line of string with maximum
length 20, counts the number of vowels (‘a’, ‘e’, ‘i’, ‘o’, ‘u’ and ‘y’) in this string.

Input: string t = c1c2...ci...cn, in which n � 20.
Output: “The number of syllables is N”.
Take ts = cs1cs2 ...csi ...csj ...csn and tf = cf1cf2 ...cfk ...cfl ...cfm as source and

follow-up test cases, os and of as source and follow-up outputs.
MR3: Construct tf by permutating any two characters in ts, that is, tf =

cs1cs2 ...csj ...csi ...csn , then of = os.

4.2 Test Data

Table 1 also shows the sizes of individual black-box and white-box test suite for
subject programs. Tb and Tw are used as black-box and white-box test suites for
AE and to construct source test cases for M i

b , M
i
w (1 � i � 3) respectively. M i

b

and M i
w denote the black-box and white-box MTG sets of MRi (1 � i � 3) for

each subject program. As shown in Table 1, some sizes of MTG sets are smaller
than Tb or Tw, e.g. |M2

b | < |Tb| for program grade. It is because there exist some
restrictions in MRs, and only those MTG sets satisfying restrictions are used.

Since AE and AE-MT use different test suites and MTG sets, we present the
following scenarios.

(1) AEb: AE with input test suite Tb;
(2) AEw: AE with input test suite Tw;
(3) AE-MT1

b : AE-MT with input MTG set M1
b ;

Integration of Metamorphic Testing with Program Repair 421

(4) AE-MT1
w: AE-MT with input MTG set M1

w;
(5) AE-MT2

b : AE-MT with input MTG set M2
b ;

(6) AE-MT2
w: AE-MT with input MTG set M2

w;
(7) AE-MT3

b : AE-MT with input MTG set M3
b ;

(8) AE-MT3
w: AE-MT with input MTG set M3

w;

All the experiments ran on Ubuntu 10.04 virtual machine with one processor
and memory of size 4 GB, and got the experimental results about the success
rate, repair quality and average repair time for each program. Since AE is deter-
ministic [24], we ran AE and AE-MT with a single time on related test suites
and MTG sets for each faulty version.

5 Experimental Results

5.1 Success Rates

The success rate, a ratio of the number of programs successfully repaired to the
total number of faulty programs being applied in relative scenarios, is used to
measure the repair capability of an APR tool. Note that, only if the input test
suite and MTG set contain at least one fail test case or one violated MTG, the
scenario could be applied to start the repair procedure. The number of programs
repaired by AE and AE-MT are listed in Table 2.

Table 2. Success rates for AE and AE-MT

(a) Success rates for black-box scenarios

Program AEb AE −MT 1
b AE −MT 2

b AE −MT 3
b

Checksum 1
30

= 0.033 11
31

= 0.355 2
31

= 0.067 27
27

= 1.000

Digits 14
93

= 0.151 65
80

= 0.813 1
236

= 0.004 26
79

= 0.329

Grade 2
228

= 0.009 0
226

= 0.000 0
226

= 0.000 147
148

= 0.993

Median 77
167

= 0.461 111
120

= 0.925 109
154

= 0.708 132
166

= 0.795

Smallest 124
148

= 0.838 89
91

= 0.978 86
101

= 0.851 97
113

= 0.858

Syllables 20
116

= 0.172 92
98

= 0.939 11
102

= 0.108 4
4

= 1.000

(b) Success rates for white-box scenarios

Program AEw AE −MT 1
w AE −MT 2

w AE −MT 3
w

Checksum 1
53

= 0.019 1
30

= 0.033 12
52

= 0.231 29
30

= 0.967

Digits 47
170

= 0.276 117
145

= 0.807 0
236

= 0.000 4
236

= 0.017

Grade 2
224

= 0.009 0
168

= 0.000 0
168

= 0.000 145
146

= 0.993

Median 17
151

= 0.113 103
103

= 1.000 75
137

= 0.547 149
198

= 0.793

Smallest 118
121

= 0.975 86
91

= 0.945 133
141

= 0.943 127
152

= 0.836

Syllables 6
118

= 0.051 103
109

= 0.945 1
160

= 0.006 79
79

= 1.000

422 T. Wu et al.

According to Table 2(a), AE-MT1
b achieves a higher success rate than AEb for

five of six subject programs and lower rate for one. While AE-MT2
b has a higher

success rate than AEb for three of six and lower for three. And AE-MT3
b has a

higher success rate than AEb for six programs. Similarly, as shown in Table 2(b),
AE-MT1

w achieves a higher success rate than AEw for four of six, and lower
for two. AE-MT2

w performs higher for two, and lower for four. And AE-MT3
w

performs higher for four, and lower for two. We can conclude that AE-MT is
not only comparable to AE in terms of success rate, but also outperforms AE,
sometimes quite higher.

The success rates also vary with different MRs. According to Table 2,
AE-MT1

b has a higher success rate than AE-MT2
b for five of six, and equal

for one, while it has a higher success rate for three programs than AE-MT3
b

and lower for three respectively. And AE-MT2
b even has no higher success rate

than AE-MT3
b . On the other hand, AE-MT1

w achieves a higher success rate than
AE-MT2

w for four of six, equal for one and lower for one, while compared to
AE-MT3

w it has a higher and lower success rate for three programs and three
programs respectively. And AE-MT2

w has a higher success rate than AE-MT3
w

for only one program while worse for five programs. Therefore, MR1 performs
best while MR2 performs worst in terms of success rate.

5.2 Repair Quality

We would like to investigate that whether AE-MT produces repairs are of similar
quality to those produced by AE. In our empirical study, each repair is evaluated
by four test sets, that is, a test suite with test oracles and three MTGs sets.
For instance, a repair generated by scenario AEb is evaluated by Tw and Mi

w

(1 � i � 3). A repair produced by AE-MTj
b (1 � j � 3) is measured by Tw and

Mi
w (1 � i � 3). Note that, the passing rates of test suite and non-violating rate

of MTG set are used as the measurement criterion of repair quality and a higher
rate indicates higher quality of a repair.

Statistical Analysis. To measure the repair quality of AE and AE-MT, we
conduct a statistical analysis for repairs produced from black-box and white-
box scenarios. Repair comparison between AEb and AE-MTi

b (1 � i � 3) and
between AEw and AE-MTi

w with one test suite and three MTGs sets requires
totally 24 comparison pairs for each subject program.

Because the size of two groups of data may be different, and data distribution
may not be normal, we applied the Mann-Whitney U Test [26] to verify the null
hypothesis H0 that the distribution of repair quality is the same across AE and
AE-MT with the significance level 0.05.

Then, we applied the Vargha and Delaney Â12 [10] statistics to measure the
effect size of repairs produced by AE and AE-MT. The Â12 statistics measures
the probability that the first technique (AE) is superior to the second technique
(AE-MT). Â12 < 0.44 suggests that repairs generated from AE-MT are superior
to AE; Â12 > 0.56 suggests that repairs by AE are of higher quality; 0.44 <
Â12 < 0.56 indicates that repairs produced by two techniques are of similar
quality.

Integration of Metamorphic Testing with Program Repair 423

Table 3. Statistical analysis of AE and AE-MT repair quality

(a) Checksum

Pairwise comparison Evaluation data

Tw M1
w M2

w M3
w

AEb vs. AE-MT1
b p=0.167, Â12=0.955 p=0.333, Â12=0.909 p=0.333, Â12=0.909 p=0.333, Â12=0.909

AEb is better AEb is better AEb is better AEb is better

AEb vs. AE-MT2
b p=0.667, Â12=0.750 p=0.667, Â12=0.750 p=1.000, Â12=0.500 p=1.000, Â12=0.500

AEb is better AEb is better Similar Similar

AEb vs. AE-MT3
b p=0.071, Â12=0.981 p=0.071, Â12=0.981 p=0.143, Â12=0.944 p=1.000, Â12=0.519

AEb is better AEb is better AEb is better Similar

Pairwise comparison Evaluation data

Tb M1
b M2

b M3
b

AEw vs. AE-MT1
w p=1.000, Â12=1.000 p=1.000, Â12=0.500 p=1.000, Â12=0.500 p=1.000, Â12=0.500

AEw is better Similar Similar Similar

AEw vs. AE-MT2
w p=0.154, Â12=0.958 p=0.923, Â12=0.542 p=1.000, Â12=0.500 p=1.000, Â12=0.500

AEw is better Similar Similar Similar

AEw vs. AE-MT3
w p=0.067, Â12=0.983 p=0.067, Â12=0.983 p=0.133, Â12=0.948 p=1.000, Â12=0.500

AEw is better AEw is better AEw is better Similar

(b) Digits

Pairwise comparison Evaluation data

Tw M1
w M2

w M3
w

AEb vs. AE-MT1
b p=0.000, Â12=0.888 p=0.020, Â12=0.698 p=0.004, Â12=0.738 p=0.000, Â12=0.785

AEb is better AEb is better AEb is better AEb is better

AEb vs. AE-MT2
b p=0.133, Â12=1.000 p=0.133, Â12=1.000 p=0.533, Â12=0.210 p=0.133, Â12=0.000

AEb is better AEb is better AE-MT2
b is better AE-MT2

b is better

AEb vs. AE-MT3
b p=0.585, Â12=0.555 p=0.726, Â12=0.464 p=0.664, Â12=0.544 p=0.000, Â12=0.077

Similar Similar Similar AE-MT3
b is better

Pairwise comparison Evaluation data

Tb M1
b M2

b M3
b

AEw vs. AE-MT1
w p=0.000, Â12=0.898 p=0.182, Â12=0.550 p=0.000, Â12=0.705 p=0.000, Â12=0.881

AEw is better Similar AEw is better AEw is better

AEw vs. AE-MT2
w - - - -

AEw is better AEw is better AEw is better AEw is better

AEw vs. AE-MT3
w p=0.000, Â12=1.000 p=0.332, Â12=0.655 p=0.000, Â12=1.000 p=0.298, Â12=0.665

AEw is better AEw is better AEw is better AEw is better

(c) Grade

Pairwise comparison Evaluation data

Tw M1
w M2

w M3
w

AEb vs. AE-MT1
b - - - -

AEb is better AEb is better AEb is better AEb is better

AEb vs. AE-MT2
b - - - -

AEb is better AEb is better AEb is better AEb is better

AEb vs. AE-MT3
b p=0.000, Â12=1.000 p=0.011, Â12=0.953 p=0.000, Â12=1.000 p=0.000, Â12=0.000

AEb is better AEb is better AEb is better AE-MT3
b is better

Pairwise comparison Evaluation data

Tb M1
b M2

b M3
b

AEw vs. AE-MT1
w - - - -

AEw is better AEw is better AEw is better AEw is better

AEw vs. AE-MT2
w - - - -

AEw is better AEw is better AEw is better AEw is better

AEw vs. AE-MT3
w p=0.001, Â12=0.993 p=0.015, Â12=0.945 p=0.000, Â12=0.996 p=0.000, Â12=0.000

AEw is better AEw is better AEw is better AE-MT3
w is better

(continued)

424 T. Wu et al.

Table 3. (continued)

(d) Median

Pairwise comparison Evaluation data

Tw M1
w M2

w M3
w

AEb vs. AE-MT1
b p=0.000, Â12=0.648 p=0.332, Â12=0.465 p=0.667, Â12=0.517 p=0.000, Â12=0.699

AEb is better Similar Similar AEb is better

AEb vs. AE-MT2
b p=0.000, Â12=0.679 p=0.203, Â12=0.455 p=0.000, Â12=0.349 p=0.000, Â12=0.683

AEb is better Similar AE-MT2
b is better AEb is better

AEb vs. AE-MT3
b p=0.000, Â12=0.639 p=0.174, Â12=0.550 p=0.082, Â12=0.570 p=0.546, Â12=0.478

AEb is better Similar AEb is better Similar

Pairwise comparison Evaluation data

Tb M1
b M2

b M3
b

AEw vs. AE-MT1
w p=0.040, Â12=0.363 p=1.000, Â12=0.500 p=0.940, Â12=0.505 p=0.002, Â12=0.296

AE-MT1
w is better Similar Similar AE-MT1

w is better

AEw vs. AE-MT2
w p=0.000, Â12=0.786 p=1.000, Â12=0.500 p=0.000, Â12=0.152 p=0.063, Â12=0.638

AEw is better Similar AE-MT2
w is better AEw is better

AEw vs. AE-MT3
w p=0.930, Â12=0.494 p=0.020, Â12=0.624 p=0.132, Â12=0.607 p=0.000, Â12=0.171

Similar AEw is better AEw is better AE-MT3
w is better

(e) Smallest

Pairwise comparison Evaluation data

Tw M1
w M2

w M3
w

AEb vs. AE-MT1
b p=0.000, Â12=0.804 p=0.359, Â12=0.521 p=0.000, Â12=0.816 p=0.361, Â12=0.465

AEb is better Similar AEb is better Similar

AEb vs. AE-MT2
b p=0.000, Â12=0.752 p=0.005, Â12=0.449 p=0.000, Â12=0.693 p=0.404, Â12=0.533

AEb is better Similar AEb is better Similar

AEb vs. AE-MT3
b p=0.000, Â12=0.619 p=0.163, Â12=0.533 p=0.000, Â12=0.744 p=0.027, Â12=0.416

AEb is better Similar AEb is better AE-MT3
b is better

Pairwise comparison Evaluation data

Tb M1
b M2

b M3
b

AEw vs. AE-MT1
w p=0.008, Â12=0.401 p=0.022, Â12=0.341 p=0.455, Â12=0.475 p=0.115, Â12=0.447

AE-MT1
w is better AE-MT1

w is better Similar Similar

AEw vs. AE-MT2
w p=0.046, Â12=0.432 p=0.042, Â12=0.539 p=0.000, Â12=0.328 p=0.009, Â12=0.586

AE-MT2
w is better Similar AE-MT2

w is better AEw is better

AEw vs. AE-MT3
w p=0.000, Â12=0.688 p=0.000, Â12=0.808 p=0.000, Â12=0.768 p=0.000, Â12=0.394

AEw is better AEw is better AEw is better AE-MT3
w is better

(f) Syllables

Pairwise comparison Evaluation data

Tw M1
w M2

w M3
w

AEb vs. AE-MT1
b p=0.000, Â12=0.959 p=0.000, Â12=0.864 p=0.000, Â12=0.983 p=0.000, Â12=0.913

AEb is better AEb is better AEb is better AEb is better

AEb vs. AE-MT2
b p=0.451, Â12=0.584 p=0.008, Â12=0.784 p=0.555, Â12=0.569 p=0.699, Â12=0.554

AEb is better AEb is better AEb is better AEb is better

AEb vs. AE-MT3
b p=0.000, Â12=1.000 p=0.000, Â12=1.000 p=0.682, Â12=0.425 p=1.000, Â12=0.500

AEb is better AEb is better AE-MT3
b is better Similar

Pairwise comparison Evaluation data

Tb M1
b M2

b M3
b

AEw vs. AE-MT1
w p=0.000, Â12=0.995 p=0.010, Â12=0.743 p=0.000, Â12=0.995 p=0.509, Â12=0.534

AEw is better AEw is better AEw is better Similar

AEw vs. AE-MT2
w p=0.286, Â12=1.000 p=1.000, Â12=0.420 p=0.286, Â12=1.000 p=1.000, Â12=0.500

AEw is better AE-MT2
w is better AEw is better Similar

AEw vs. AE-MT3
w p=0.000, Â12=1.000 p=0.000, Â12=0.831 p=0.000, Â12=0.962 p=1.000, Â12=0.500

AEw is better AEw is better AEw is better Similar

Integration of Metamorphic Testing with Program Repair 425

The statistical analysis of AE and AE-MT repair quality is listed in Table 3,
and the comparison results are summarized in Table 4 with the number of repair
quality between AE-MT and AE in terms of better, similar and worse.

According to Tables 3 and 4, AE outperforms AE-MT in terms of repair
quality. Among all of the 144 comparison pairs, AE-MT only has 18 better and
35 similar results, while there are 91 lower cases than AE. Therefore, we conclude
that repairs generated by AE-MT are of lower quality than those from AE. This
is expected that AE produces a better repair than AE-MT because MR is a
property weaker than test oracle.

Table 4. Summary of repair quality comparison

(a) Black-box scenarios

Comparison ET Better Similar Worse

AEb vs. AE-MT1
b

Tw 6 0 0

M1
w 4 2 0

M2
w 5 1 0

M3
w 5 1 0

AEb vs. AE-MT2
b

Tw 6 0 0

M1
w 4 2 0

M2
w 3 1 2

M3
w 3 2 1

AEb vs. AE-MT3
b

Tw 5 1 0

M1
w 3 3 0

M2
w 4 1 1

M3
w 0 3 3

(b) White-box scenarios

Comparison ET Better Similar Worse

AEw vs. AE-MT1
w

Tb 4 0 2

M1
b 2 3 1

M2
b 3 3 0

M3
b 2 3 1

AEw vs. AE-MT2
w

Tb 5 0 1

M1
b 2 3 1

M2
b 3 1 2

M3
b 4 2 0

AEw vs. AE-MT3
w

Tb 5 1 0

M1
b 6 0 0

M2
b 6 0 0

M3
b 1 2 3

5.3 Repair Time

The average repair time for a successful repair is listed in Table 5. According to
Table 5, AE-MT uses more time to produce a repair than AE in most cases. The
reason is that AE only needs to execute test suite and verify it at each single
time, while AE-MT executes source and follow-up test cases respectively, and
verifies whether the input MTGs sets are satisfied or not.

5.4 Discussion

Impact of Source Test Case on the Effectiveness for AE-MT. Since each
subject program has two test suites of Tb and Tw, we constructed two MTG sets
for each MR from Tb and Tw, referred to as M i

b and M i
w for MRi (1 � i � 3).

These two different MTG sets can cause different repair results for AE-MT. For
example, M1

b and M1
w of MR1 used for checksum generate quite different repair

results. While AE-MT produces several repairs using M1
b , only one repair is

generated by M1
w. M1

b for checksum performs more effectively than M1
w in this

experiment. Thus, selection of good source test cases will undoubtedly improve
AE-MT performance.

426 T. Wu et al.

Table 5. Average repair time (s)

(a) Black-box scenarios

program AEb AE-MT1
b AE-MT2

b AE-MT3
b

checksum 3.629 25.952 0.986 3.023

digits 4.225 6.562 1.251 3.318

grade 42.627 - - 6.804

median 6.639 14.103 17.945 6.551

smallest 16.183 13.284 14.813 18.918

syllables 35.799 4.640 21.344 13.447

(b) White-box scenarios

program AEw AE-MT1
w AE-MT2

w AE-MT3
w

checksum 2.398 3.144 9.321 3.715

digits 10.111 16.771 - 3.485

grade 40.369 - - 6.844

median 2.829 24.523 31.319 5.752

smallest 11.081 21.211 27.820 61.286

syllables 19.316 5.122 245.900 3.890

Impact of MRs on the Effectiveness of AE-MT. Considering the scenarios
related to MR1 and MR2 showed in Table 2, while both scenarios AE − MT 1

b

and AE − MT 1
w produces success rate up to 80%, AE − MT 2

b and AE − MT 2
w

yield only one repair and none repair for digits. Similar results are observed
for program median and syllables. When compared to the success rate of MR1,
MR3 performs better on checksum, grade and syllables, but worse on other three
programs. When compared to MR2, MR3 is always inferior to MR2. Therefore,
it will be worthwhile to identify sufficient diverse MRs for AE-MT.

6 Related Work

GenProg-MT [12] applies a genetic algorithm to repair a faulty program. It
first constructs an initial set of candidate repairs, and then selects a candidate
program with higher fitness through the fitness function by leveraging the input
MTGs set. GenProg-MT stops if a candidate repair is found to satisfy the entire
input MTGs set; otherwise no repair is found within the maximum number of
generations.

CETI-MT [11] constructs a reachability instance program from a faulty pro-
gram by replacing a suspicious statement with a parameterized statement encod-
ing all the requirements of MTGs set. Then CETI-MT checks the reachability
by an independent MR checking function. Once the relevant MR on all input
MTGs is satisfied, this instance program is considered reachable and a repair for
the given faulty program is found as well.

Based on our experimental results of AE-MT and those of GenProg-MT
reported in [12], GenProg-MT is more effective than AE-MT in terms of success
rate and repair quality, even though AE-MT requires much less time on the
same MRs. Compared to the empirical results on MR1 and MR2 of CETI-MT
reported in [11], AE-MT performs comparably to CETI-MT in terms of success
rate but worse in terms of repair quality. By comparing with GenProg-MT,
CETI-MT has a higher success rate and higher repair quality than GenProg-
MT. In summary, among the existing APR-MT techniques, CETI-MT performs
better than another two techniques.

Integration of Metamorphic Testing with Program Repair 427

7 Conclusion and Future Work

To alleviate test oracle problem in APR, the integrated framework APR-MT was
proposed and applied to implement GenProg-MT and CETI-MT respectively.
However, it is necessary to distinguish the effectiveness of different APR-MT
techniques. Therefore, we propose one more APR-MT, AE-MT. According to
the empirical results and discussion, AE-MT can achieve a much higher success
rate but a lower repair quality than AE. Based on the individual experimental
results reported so far, among the three APR-MT techniques, CETI-MT is the
most effective so that researchers can make use of CETI-MT to alleviate test
oracle problem of APR and get comparable performance as well.

In this paper, we investigate the effectiveness of APR-MT techniques against
different MRs separately. Intuitively speaking, a repair satisfying all of the MRs
must be of higher repair quality than the one satisfying some MRs but not
all MRs. Therefore, our future work will investigate the repair capability of
APR-MT against a set of MTGs which is constructed from a group of diverse
metamorphic relations.

Acknowledgments. This work is supported by the National Key Research and Devel-
opment Program of China under Grant No. 2017YFB0903000, and the program of
China Scholarship Council (CSC).

References

1. Arcuri, A.: On the automation of fixing software bugs. In: Companion of the 30th
International Conference on Software Engineering, pp. 1003–1006. ACM (2008)

2. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: a survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2015)

3. Cao, Y., Zhou, Z.Q., Chen, T.Y.: On the correlation between the effectiveness of
metamorphic relations and dissimilarities of test case executions. In: 2013 13th
International Conference on Quality Software (QSIC), pp. 153–162. IEEE (2013)

4. Chan, F., Chen, T., Cheung, S.C., Lau, M., Yiu, S.: Application of metamorphic
testing in numerical analysis. In: Proceedings of the IASTED International Con-
ference on Software Engineering (SE98) (1998)

5. Chen, T.Y., Cheung, S.C., Yiu, S.M.: Metamorphic testing: a new approach
for generating next test cases. Department of Computer Science, Hong Kong
University of Science and Technology, Technical report HKUST-CS98-01 (1998)

6. Chen, T.Y., Huang, D., Tse, T., Zhou, Z.Q.: Case studies on the selection of
useful relations in metamorphic testing. In: Proceedings of the 4th Ibero-American
Symposium on Software Engineering and Knowledge Engineering (JIISIC 2004),
pp. 569–583. Polytechnic University of Madrid (2004)

7. Chen, T.Y., Tse, T., Zhou, Z.Q.: Semi-proving: an integrated method for program
proving, testing, and debugging. IEEE Trans. Softw. Eng. 37(1), 109–125 (2011)

8. Forrest, S., Nguyen, T., Weimer, W., Le Goues, C.: A genetic programming app-
roach to automated software repair. In: Proceedings of the 11th Annual conference
on Genetic and evolutionary computation, pp. 947–954. ACM (2009)

428 T. Wu et al.

9. Gotlieb, A., Botella, B.: Automated metamorphic testing. In: 2003 27th Annual
International Computer Software and Applications Conference (COMPSAC), pp.
34–40. IEEE (2003)

10. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess random-
ized algorithms in software engineering. In: 2011 33rd International Conference on
Software Engineering (ICSE), pp. 1–10. IEEE (2011)

11. Jiang, M., Chen, T.Y., Kuo, F.C., Ding, Z., Choi, E.H., Mizuno, O.: A revisit of
the integration of metamorphic testing and test suite based automated program
repair. In: The 2nd International Workshop on Metamorphic Testing, pp. 14–20.
IEEE (2017)

12. Jiang, M., Chen, T.Y., Kuo, F.C., Towey, D., Ding, Z.: A metamorphic testing
approach for supporting program repair without the need for a test oracle. J. Syst.
Softw. 126, 127–140 (2016)

13. Jiang, M., Chen, T.Y., Kuo, F.C., Zhou, Z., Ding, Z.: Testing model transformation
programs using metamorphic testing. In: The 26th International Conference on
Software Engineering and Knowledge Engineering (SEKE), pp. 94–99 (2014)

14. Le Goues, C., Holtschulte, N., Smith, E.K., Brun, Y., Devanbu, P., Forrest, S.,
Weimer, W.: The manybugs and introclass benchmarks for automated repair of c
programs. IEEE Trans. Softw. Eng. 41(12), 1236–1256 (2015)

15. Liu, H., Kuo, F.C., Towey, D., Chen, T.Y.: How effectively does metamorphic
testing alleviate the oracle problem? IEEE Trans. Softw. Eng. 40(1), 4–22 (2014)

16. Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: scalable multiline program patch
synthesis via symbolic analysis. In: Proceedings of the 38th International Confer-
ence on Software Engineering, pp. 691–701. ACM (2016)

17. Murphy, C., Shen, K., Kaiser, G.: Automatic system testing of programs with-
out test oracles. In: Proceedings of the Eighteenth International Symposium on
Software Testing and Analysis, pp. 189–200. ACM (2009)

18. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: program repair
via semantic analysis. In: Proceedings of the 2013 International Conference on
Software Engineering, pp. 772–781. IEEE Press (2013)

19. Nguyen, T.: Automating program verification and repair using invariant analysis
and test input generation. Ph.D. thesis (2014)

20. Qi, Y., Mao, X., Lei, Y.: Efficient automated program repair through fault-recorded
testing prioritization. In: 2013 29th IEEE International Conference on Software
Maintenance (ICSM), pp. 180–189. IEEE (2013)

21. Qi, Z., Long, F., Achour, S., Rinard, M.: An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In: Proceedings of
the 2015 International Symposium on Software Testing and Analysis, pp. 24–36.
ACM (2015)

22. Segura, S., Fraser, G., Sanchez, A.B., Ruiz-Cortés, A.: A survey on metamorphic
testing. IEEE Trans. Softw. Eng. 42(9), 805–824 (2016)

23. Sidiroglou-Douskos, S., Lahtinen, E., Long, F., Rinard, M.: Automatic error elim-
ination by horizontal code transfer across multiple applications. ACM SIGPLAN
Not. 50, 43–54 (2015). ACM

24. Weimer, W., Fry, Z.P., Forrest, S.: Leveraging program equivalence for adaptive
program repair: models and first results. In: 2013 IEEE/ACM 28th International
Conference on Automated Software Engineering (ASE), pp. 356–366. IEEE (2013)

Integration of Metamorphic Testing with Program Repair 429

25. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In: Proceedings of the 31st International Conference
on Software Engineering, pp. 364–374. IEEE Computer Society (2009)

26. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6),
80–83 (1945)

27. Xie, X., Wong, W.E., Chen, T.Y., Xu, B.: Metamorphic slice: an application in
spectrum-based fault localization. Inf. Softw. Technol. 55(5), 866–879 (2013)

Learning Types for Binaries

Zhiwu Xu1(B), Cheng Wen1, and Shengchao Qin1,2

1 College of Computer Science and Software Engineering, Shenzhen University,
Shenzhen, China

xuzhiwu@szu.edu.cn, 2150230509@email.szu.edu.cn
2 School of Computing, Teesside University, Middlesbrough, UK

shengchao.qin@gmail.com

Abstract. Type inference for Binary codes is a challenging problem due
partly to the fact that much type-related information has been lost dur-
ing the compilation from high-level source code. Most of the existing
research on binary code type inference tend to resort to program analy-
sis techniques, which can be too conservative to infer types with high
accuracy or too heavy-weight to be viable in practice. In this paper, we
propose a new approach to learning types for recovered variables from
their related representative instructions. Our idea is motivated by “duck
typing”, where the type of a variable is determined by its features and
properties. Our approach first learns a classifier from existing binaries
with debug information and then uses this classifier to predict types for
new, unseen binaries. We have implemented our approach in a tool called
BITY and used it to conduct some experiments on a well-known bench-
mark coreutils (v8.4). The results show that our tool is more precise
than the commercial tool Hey-Rays, both in terms of correct types and
compatible types.

1 Introduction

Binary code type inference aims to infer a high-level typed variables from exe-
cutables, which is required for, or significantly benefits, many applications such
as decompilation, binary code rewriting, vulnerability detection and analysis,
binary code reuse, protocol reverse engineering, virtual machine introspection,
game hacking, hooking, malware analysis, and so on. However, unlike high-level
source codes, binary code type inference is challenging because, during compila-
tion, much program information is lost, particularly, the variables that store the
data, and their types, which constrain how the data are stored, manipulated,
and interpreted.

A significant amount of research has been carried out on binary code
type inference, such as REWORD [1], TIE [2], SmartDec [3], SecondWrite [4],
Retypd [5] and Hex-Rays [6]. Most of them resort to program analysis tech-
niques, which are often too conservative to infer types with high accuracy. For
example, for a memory byte (i.e., a variable) that is only used to store 0 and 1,
most existing tools, such as SmartDec and Hex-Rays, recover the type char or
byte t (i.e., a type for bytes), which is clearly either incorrect or too conservative.
c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 430–446, 2017.
https://doi.org/10.1007/978-3-319-68690-5 26

Learning Types for Binaries 431

Moreover, some of them are too heavy-weight to use in practice, for example, in
the sense that they may generate too many constraints to solve for large-scale
programs.

In this paper, we propose a new approach to learning types for binaries. Our
idea is motivated by “duck typing”, where the type of a variable is determined
by its features and properties. Our approach first learns a classifier from existing
binaries with debug information and then uses this classifier to predict types for
new, unseen binaries. In detail, we first recover variables from binary codes using
Value-Set Analysis (VSA) [7], then extract the related representative instruc-
tions of the variables as well as some other useful information as their features.
Based on binaries with debug information collected from programs that are used
in teaching materials and from commonly used algorithms and real-world pro-
grams, we learn a classifier using Support Vector Machine (SVM) [8,9]. Using
this classifier, we then predict the most possible types for recovered variables.

We implement our approach as a prototype called BITY in Python. Using
BITY, we conduct some experiments on a benchmark coreutils (v8.4). Compared
with the commercial tool Hey-Rays, our tool is more precise, both in terms
of correct types and compatible types. We also perform BITY on binaries of
different sizes. The results show that our tool is scalable and suitable in practice.

Our main contributions are summarised as follows. We have proposed a new
approach to learning types for binaries, and implemented it in a tool BITY,
which is scalable and suitable in practice. Through experiments we have also
demonstrated that our approach can predict types with high accuracy and has
reasonable performance.

The rest of the paper is constructed as follows. Sect. 2 illustrates some moti-
vating examples. Sect. 3 presents our approach to learning types for binaries,
followed by the implementation in Sect. 4 and experimental results in Sect. 5.
Related work is given in Sect. 6 and Sect. 7 concludes.

2 Motivation

In this section, we illustrate some examples that are not easy to recover the
precise types by existing methods and explain our motivation.

The first example, shown in Fig. 1, comes from an encode and decode program
base64.c of C runtime Library. The program uses a variable decode with type
bool to record users’ options. Nevertheless, after compiling, the variable decode
is simply represented as a byte in stack (i.e., [ebp-1]) and the type bool is lost.
Due to the over-conservative program analysis they adopt, most existing tools,
such as SmartDec and Hex-Rays, recover for the variable [ebp-1] the type char
or byte t, which is clearly either incorrect or conservative.

To make matters worse, programs with fewer instructions are more difficult
to recover types correctly. Let us consider three simple assignments for three
variables with different types, shown in Fig. 2. SmartDec recovers the same type
int32 t for all these three variables, while Hex-Rays infers the type Dword* for i
and f and the type Qword* for d. Again, most of these results are either incorrect
or conservative.

432 Z. Xu et al.

Listing 1.1. C Source Code

int main ()
{

bool decode = f a l s e ;
int opt = getopt ;
switch (opt) {

case ’ d ’ :
decode = true ;
break ;

default :
break ;

}
i f (decode) do decode ;

}

Listing 1.2. Pseudo ASM Code

mov byte ptr [ebp −1] , 0
cmp dword ptr [ebp −8] , 64h
j z short loc 40101B
jmp short loc 40101F

loc 40101B :
mov byte ptr [ebp −1] , 1

loc 40101F :
movzx eax , byte ptr [ebp−1]
t e s t eax , eax
j z short l o c 401035
c a l l do decode

loc 401035 :
re tn

Fig. 1. Snippet code from base64.c

Listing 1.3. C Source Code

func1 (int∗ i){
∗ i = 10 ;

}
func2 (f loat ∗ f){

∗ f = 1 0 . 0 ;
}
func3 (double∗ d){

∗d = 10 . 0 ;
}

Listing 1.4. Pseudo ASM Code

mov [i] , 0Ah

movss xmm0, ds :XX
movss [f] , xmm0

movsd xmm0, ds :XX
movsd [d] , xmm0

Fig. 2. Assignments of different types

One may note that the variables of different types are compiled with different
instructions, that is, mov, movss and movsd. Hence, a simple solution is to
enhance the program analysis techniques with three new rules to infer these three
different types corresponding to these three different instructions. However, it is
pity that mov (movsd resp.) is not only used for int (double resp.). Even if it
works, there are too many instructions and types to figure out the reasonable
rules. For example, there are more than 30 kinds of mov instructions in the x86
instruction set and the source operand and the destination operand may have
different meanings.

Generally, the set of the related instructions of a variable reflects how the
variable is stored, manipulated, and interpreted. So our solution is to take the
related instruction set as a feature of a variable, and then to learn for the variable
the most possible type from the feature. This is motivated by “duck typing”,
where the type of a variable is determined by its features and properties instead
of being explicitly defined. Let us consider base64.c again. The related instruction
set of [ebp-1] is {mov , 0; mov , 1; movzx eax, }, which is most likely to be a
feature of bool, where denotes the concerning variable. Accordingly, we recover
bool as the type of [ebp-1]. Similarly to the variables of the second example. Note
that movsd may be a feature of double, but not all of them belong to double.

Learning Types for Binaries 433

3 Approach

In this section, we present our approach to learning the most possible type for
a recovered variable.

As mentioned in Sect. 2, we try to learn the most possible type for a vari-
able from its related instruction set. Our approach first learns a classifier from
existing binaries with debug information and then uses this classifier to predict
types for new, unseen binaries. Figure 3 shows the main idea of our approach.
In detail, our approach consists of the following steps: (1) target variable recov-
ery; (2) related instruction extraction; (3) feature selection and representation;
(4) classifier training; (5) type predicting. In the following, we describe each of
them, using another program memchr from C runtime Library as an illustrative
example, which is shown in Fig. 4.

Fig. 3. Approach

3.1 Target Variable Recovery

During compilation, variables of the source program and their type information
are not included in the resulting binary. So the first step is to identify the target
variables in binaries. Indeed, variables are abstractions of memory blocks, which
are accessed by data registers or specifying absolute address directly or indirectly
through address expressions of the form “[base+index×scale+offset]” in binaries,
where base and index are registers, and scale and offset are integer constants.
Take the variables in stack frame for example. Parameters1 are always accessed
by the form “[ebp+offset]”, while local variables are by “[ebp−offset]”, where ebp
is the stack base pointer register. We recover the possible variables in binaries
using Value-Set Analysis (VSA) [7], which is widely used in many binary analysis
platforms. Note that, due to compiler optimization, a stack location may be used
to represent multiple different local variables in the same function, which is not
considered here.

1 In FASTCALL convention, the first two parameters are passed in ECX and EDX.

434 Z. Xu et al.

%% C Code
char ∗memchr (char ∗buf , int chr , int cnt) {

while (cnt && ∗buf++ != chr) cnt−−;
return (cnt ? −−buf : NULL) ;

}
%% ASM Code Snippet
sub 401000 proc near
.
l o c 401009 :

0,]h01+pbe[rtpdrowdpmc70
zj80 short loc 40103A

]8+pbe[,xaevom90
]xae[rtpetyb,xcexsvom01

pbe[vom11 −44h] , ecx
]hC0+pbe[,xdevom21

pbe[vom31 −48h] , edx
]8+pbe[,xaevom41

1,xaedda51
xae,]8+pbe[vom61

pbe[,xcevom71 −44h]
pbe[,xcepmc81 −48h]

zj91 short loc 40103A
]h01+pbe[,xaevom02

1,xaebus12
xae,]h01+pbe[vom22

pmj32 short l o c 401009
loc 40103A :

0,]h01+pbe[rtpdrowdpmc42
zj52 short l o c 401051

]8+pbe[,xaevom62
1,xaebus72

xae,]8+pbe[vom82
]8+pbe[,xcevom92

pbe[vom03 −44h] , ecx
pmj13 short l o c 401058

loc 401051 :
pbe[rtpdrowdvom23 −44h] , 0

l oc 401058 :
.
sub 401000 endp

Fig. 4. Snippet code of memchr

Considering the illustrated example memchr in Fig. 4, the variables we recov-
ered in stack frame are listed in Table 1. There are three parameters, which con-
form to the declarations in the C code. Due to the low-level instructions, there
are two more local variables, which are used respectively to store the values of
*buf and chr temporarily.

Table 1. Target variables in memchr

Variable Offset Variable Offset Variable Offset

Parameter1 [ebp+8] Parameter2 [ebp+0Ch] Parameter3 [ebp+10h]

LocalVar1 [ebp-48h] LocalVar2 [ebp-44h]

Learning Types for Binaries 435

3.2 Related Instruction Extraction

Next, we want to extract the related instructions for the recovered target vari-
ables, which reflect how the variables are used and will be used as a feature to
learn the types.

The instructions using a variable directly are extracted for the variable. How-
ever, an instruction of a variable in high-level codes may be compiled into several
instructions in low-level codes, some of which may not use the corresponding vari-
able directly. For example, the statement if (decode) in base64 is complied into
two instructions in ASM codes (see Fig. 1), one of which uses the corresponding
variable directly (i.e., “movzx eax, byte ptr [ebp-1]”), while the other does not
(i.e., “test eax, eax”). Clearly, the second one is more representative for bool. On
the other hand, the data registers like eax, ebx, ecx and edx are usually used as an
intermediary to store data temporarily and they may store different data (i.e.,
have different types) in different time. Therefore, we make use of use-defined
chains on the data registers to extract the indirect usage instructions: if a data
register is defined by a variable, then all the uses of the register are considered
as the uses of the variable as well. Consequently, the instruction “test eax, eax”
belongs to the variable [ebp-1] in base64, since it is a use of eax, which is defined
by [epb-1].

Let us consider the target variable [epb+8] in the memchr example. The
instructions related with [epb+8] are shown in Fig. 5. There are 10 instructions
in total, 6 of which use [epb+8] directly and 4 are collected due to the use-defined
chain (denoted by “use of” followed by a data register).

09 mov eax , [ebp+8] // def of eax by epb+8
10 movsx ecx , byte ptr [eax] //use of eax
14 mov eax , [ebp+8] // def of eax by epb+8
15 add eax , 1 //use of eax
16 mov [ebp+8] , eax
26 mov eax , [ebp+8] // def of eax by epb+8
27 sub eax , 1 //use of eax
28 mov [ebp+8] , eax
29 mov ecx , [ebp+8] // def of ecx by epb+8
30 mov [ebp−44h] , ecx //use of ecx

Fig. 5. Related instructions of [ebp+8] in memchr

3.3 Feature Selection and Representation

In this paper, we focus on the x86 instruction set on Intel platforms. The others
are similar.

According to the official document of the x86 instruction set [10], different
instructions have different usages. So we perform some pre-processing on these
instructions based on their usages. Firstly, we note that not all the instructions
are interesting for type inference. For example, pop and push are usually used by

436 Z. Xu et al.

the stack, rather than variables. Secondly, as different operands may have differ-
ent meanings, we differentiate between two operands in a dyadic instruction, for
example, the operands of mov respectively represent the source and the desti-
nation, which are clearly not the same. Thirdly, some instructions need further
processing, since using them in different circumstances may have different mean-
ings. For instance, using mov with registers of different sizes offers us different
meaningful information. Table 2 lists the typical usage patterns of mov we use,
where denotes a variable, regn denotes a register with size n, imm denotes an
immediate number which is neither 0 nor 1, and addr denotes a memory address
(i.e., another variable).

Table 2. Usage patterns of mov

mov , reg32 mov reg32, mov , reg16 mov reg16, mov , reg8 mov reg8,

mov , addr mov addr, mov , 0 mov , 1 mov , imm

Moreover, not all the instructions are widely used or representative. For that
we do a statistical analysis on our dataset, which consists of real-world programs
and source codes from some course books, using the well-known scheme Term
Frequency Inverse Document Frequency (TF-IDF) weighting [11]. Based on the
result, we select the N most frequently used and representative instructions as
the feature indicators. Theoretically, the more instructions, the better. While in
practice, we found 100 instructions are enough.

In addition, we also take into account some other useful information as fea-
tures, namely, the memory size and being an argument of a function.

Finally, we represent the selected features of variables using a vector space
model [12], which is an algebraic model for representing any objects as vectors
of identifiers. We only concern that how many times an interesting instruction
are performed on a variable, leaving the order out of consideration. So a rep-
resentation of a variable is a vector consisting of the frequency of each selected
instruction and the extra useful information. Formally, a variable is represented
as the following vector v:

v = [f1 : t1, f2 : t2, . . . , fn : tn]

where fi is a feature term, ti is the value of feature fi, and n is the number of
features. For example, Table 3 shows the vector of the variable [ebp+8] in the
illustrated example memchr, where only the nonzero features are listed. Note
that “mov eax, ” and “mov ecx, ” are merged together, since both eax and
ecx are registers of 32 bits. To be more precise, one can also take into account
the IDF that have been computed for each selected instruction or some other
correlation functions.

Learning Types for Binaries 437

Table 3. Representation of epb+8

Before proceeding After proceeding

Feature Value Feature Value

size 32 size32 1

mov eax, 3 mov reg32, 4

movsx ecx, [] 1 movsx reg32, [] 1

add , imm 1 add , imm 1

mov ,eax 2 mov , reg32 2

sub , imm 1 sub , imm 1

mov ecx, 1 Merged to mov reg32,

mov [ebp-44h], 1 mov addr, 1

3.4 Classifier Training and Type Predicting

For now, we only consider the base types without type quantifiers, that is, the
set L of labels we are learning in this paper are

L = {bool, char, short, f loat, int, pointer, longlongint, double, longdouble}
The reason is that (1) the other types, such as structs, can be composed from
the base types; (2) too many levels may make against the classifier.

We use supervised learning to train our classifier, so a labeled dataset is
needed. For that, we compile a dataset of C programs with debugging and then
extract type information from the compiled binaries. Generally, our training
problem can be expressed as:

Given a labeled dataset D = {(v1, l1), (v2, l2), . . . , (vm, lm)}, the goal is to
learn a classifier C such that C(vi) = li for all i = 1, 2, . . . ,m, where vi is
the feature vector of a variable, li ∈ L is the corresponding type, m is the
number of variables.

We use Support Vector Machine (SVM) [8,9] to learn the classifier. Clearly,
our training problem is a multi-class one. By using the “one-against-one” app-
roach [13], we first reduce the multi-class problem into a binary classifier learning
one: for every two different types, a classifier is trained from the labeled dataset.
Some size information of variables may be unknown, so for simplicity, we do not
distinguish between types of different sizes. That is to say, assume there are k
types, we will train k × (k − 1)/2 binary classifiers.

As mentioned in Sect. 3.3, a variable is represented as a vector, namely, is
regarded as a point in the feature vector space. SVM tries to construct an
n-dimensional hyperplanes that optimally separates the variables into categories,
which is achieved by a linear or nonlinear separating surface in the input vector
space of the labeled dataset. Its main idea is to transform the original input set
to a high-dimensional feature space by using a kernel function, and then achieve
optimum classification in this new feature space.

438 Z. Xu et al.

After the binary classifiers are trained, we then can use them to predict the
most possible type for each variable that have been recovered from new or unseen
binaries. This proceeds as follows: we use each binary classifier to vote a type for
a variable, and then select the one that gets the most votes as the most possible
type. Let us consider the variable [epb+8] in the illustrative example again.
Note that its feature instructions contain “mov reg32, ; movsx reg32, []” (to
read from an address), “mov reg32, ; add ,imm” (to increase the address), and
“mov reg32, ; sub ,imm” (to decrease the address), which are the typical usages
of pointer. Most classifiers involved pointers will vote for the type pointer for
[epb+8], and thus the most possible type we learn is pointer. Another example
is the variable decode in the program base64 presented in Sect. 2. According to
its feature instructions (i.e., “mov , 0; mov , 1; movzx reg32, ; test , ”), most
of the classifiers will vote for the type bool.

3.5 Type Lattice

Finally, we present the lattice of our types we are learning, which gives the
hierarchy of types and will be used to measure the precision of our approach as
TIE does [2] (see Sect. 5).

Fig. 6. Type lattice

The lattice is given in Fig. 6, where � and ⊥ respectively denote that a
variable can or cannot be any type and there is a “pointer” to the lattice itself
for the type pointer, that is, the lattice is level-by-level. In other words, our
approach handles pointer level-by-level, which proceeds as follows:

1. once a variable v is predicted to have type pointer by the classifier, our app-
roach first tries to recover another variable that the pointer variable points to;

2. if such an indirect variable v′ exists, the approach then extracts related fea-
tures for this newly recovered variable v′ and continues to learn a (next-level)
type t for it;

3. finally, the type for v is a pointer to t if v′ exists, otherwise a pointer (to any
type).

Learning Types for Binaries 439

This enables us to predict pointer more precise (see Sect. 5) and to handle multi-
level pointers considered in [4]. Theoretically, our approach can handle a pointer
with any levels (and thus may not terminate). While in practice, we found only
3 levels are enough.

Let us go on with [epb+8] in the illustrative example. In Sect. 3.4, we have
learnt that the most possible type for [epb+8] is pointer. So our approach carries
on to recover an indirect variable, which is “byte ptr [eax]”, and then to extract
its feature vector [size8: 1; movsx reg32, : 1; mov addr, : 1], which covers the
data move with sign extension. There are two types with 8 bits, namely, bool
and char. Compared with bool, it is more like to have type char according to the
known binaries. Thus the final type for [epb+8] is pointer to char.

4 Implementation

We have implemented our approach as a prototype called BITY in 3k lines
of Python codes. We use IDA Pro [6] as a front end to disassemble binaries,
since it supports a variety of executable formats for different processors and
operating systems, and use LIBSVM [14], a Library for Support Vector Machines,
to implement our classifiers. Moreover, as mentioned before, we select 100 most
frequently used and representative instructions as features and consider 3 levels
for pointer types.

For a high precision, we consider a training dataset that should contain dif-
ferent possible usages of different types. For that, we collect binaries with debug
information obtained from programs that are used in teaching materials and
from commonly used algorithms and real-world programs. Programs of the first
kind always cover all the types and their possible usages, in particular, they
demonstrate how types and their corresponding operations are used for begin-
ners. While programs of the second kind reflect how (often) different types or
usages are used in practice, which help us to select the most possible type. In
detail, our training dataset consists of the binaries obtained from the following
programs:

– Source codes of the C programming language (K&R);
– Source codes of basic algorithms in C programming language [15];
– Source codes of commonly used algorithms [16];
– C Runtime Library;
– Some C programs from github.

Any other valuable data will be added into our data set in the future.

440 Z. Xu et al.

5 Experiments

In this section, we present the experiments.

5.1 Results on Benchmark coreutils

To evaluate our approach, we perform our tool BITY on programs from coreutils
(v8.4), a benchmark used by several existing work [1,2,17]. We first compile the
test programs into (stripped) binaries, and then use BITY to predict types for
the recovered variables. To measure the accuracy of our approach, we compare
the types that BITY predicts with the type information extracted from the
binaries that are obtained by compiling the test programs with debug support.
We also compare our tool BITY against Hex-Rays decompiler-v2.2.0.152, a plug-
in of the commercial tool IDA Pro [6]. All the experiments are run on a machine
with 3.30 GHz i5-4590 and 8 GB RAM.

Fig. 7. Type lattice for Hex-Rays and BITY

To measure between types, we borrow the notation distance from TIE [2].
For that, we extend our type lattice with the types recovered by Hex-Rays,
which is shown in Fig. 7, where our tool consider only the types in bold, while
Hex-Rays considers all the types except � and ⊥. We say that two types are
compatible if one of them is a subtype of the other one following the top-level
lattice. Given two types t1, t2, the distance between them, denoted as |t1 − t2|,
is defined as follows: (1) at most one of them is a pointer : the distance |t1 − t2|
is the number of hierarchies between them in the top-level lattice if they are
compatible, otherwise the maximum hierarchies’ height (i.e., 4); (2) both of
them are pointer, namely, pointer to t′1 and t′2 respectively: the distance |t1 − t2|
is the half3 of the maximum hierarchies height (i.e., 2) multiplied by 0, 0.5
2 Hex-Rays makes use of debug information, so we perform both our tool and Hex-

Rays on stripped binaries.
3 Theoretically, we can use the radio of the number of common levels among the

number of maximum levels between t1 and t2 [4]. Since we consider 3 levels in
practice, we use the half here.

Learning Types for Binaries 441

and 1, according to whether t′1 and t′2 are the same, compatible or incompatible
respectively. For example, |int − dword| = 1 and | ∗ int − ∗dword| = 1, while
|int − ∗dword| = 4.

The selected results of our tool BITY and Hex-Rays on the benchmark core-
utils are given in Table 4, where Vars denotes the number of recovered vari-
ables in stack, Corr denotes the number of variables, whose types are recovered
correctly, Comp denotes the number of variables, whose types are recovered
compatibly, Fail denotes the number of variables, whose types are recovered
incorrectly, and Dist denotes the average distance of each program.

The results show that our tool predicts correct types for 58.15% (1356) vari-
ables and compatible types for 31.22% (728) variables (most are due to the lack
of the type quantifier signed and unsigned), in total proper types for 89.37%
(2084) variables; while Hex-Rays recovers correct types for 54.80% (1278) vari-
ables and compatible types for 25.26% (589) variables (most are due to the
consideration of the conservative types), in total proper types for 80.06% (1876)
variables. This indicates that our tool is (11.63%) more precise than Hex-Rays,
both in terms of correct types and compatible types.

Moreover, we found 43.8% (1021 among 2332) of the recovered variables are
pointer ones. For these pointer types of the variables, our tool can recover 43.39%
(443) correct types and 38.98% (398) compatible types, in total 82.37% (841)
proper types; while Hex-Rays recovers 38.30% (391) correct types and 21.74%
(222) compatible types, in total 60.03% (613) proper types. Consequently, our
tool is also (37.21%) more precise than Hex-Rays in terms of pointer types.

Concerning the failures, most of them are due to pointer : 72.58% (180 among
248) for our tool and 87.74% (408 among 465) for Hex-Rays. We perform manual
analysis on some failure cases. There are two main reasons: (1) there are too
few representative instructions to predict the right types for some variables,
especially for pointer variables; (2) some variables are of composed types such
as struct and array, which are not considered by our tool yet.

Finally, let us consider the distance. For most programs, our tool predict
types with a shorter distance than Hex-Rays. While in several other cases (e.g.,
chroot and pinky), Hex-Rays recovers types better. One main reason is that
Hex-Rays can reconstruct some pointer to struct such as FILE*, FTSENT* and
FTS*. On average, our tool predicts more precise types.

5.2 Performance

To evaluate the scalability of our tool, we conduct experiments on binaries of
different sizes. Table 5 shows the experimental results, where ALOC denotes the
lines of the assemble codes, Vars denotes the number of recovered variables in
stack, ProT denotes the preprocessing time excluding the disassembling time
by IDA Pro and PreT denotes the predicting time. The results show that (1)
the preprocessing time accounts for a great proportion and is linear on LOC and
variable numbers; (2) the predicting time does not cost too much and is linear on
variable numbers; (3) our tool predicts types for binaries of sizes ranging from
7 KB to 1341.44 MB in just a few seconds, which indicates our tool is scalable
and viable in practice.

442 Z. Xu et al.

Table 4. Selected results of BITY and Hex-Rays on coreutils (v8.4)

Program Vars BITY Hex-Rays

Corr Comp Fail Dist Corr Comp Fail Dist

base64 41 20 19 2 0.66 29 7 5 0.80

basename 22 17 4 1 0.55 12 4 6 1.32

cat 50 29 19 2 0.60 18 19 13 1.52

chcon 55 39 8 8 0.73 32 7 16 1.36

chgrp 31 21 4 6 0.90 17 4 10 1.42

chmod 42 19 20 3 0.71 20 13 19 1.23

chown 42 19 4 3 0.94 5 6 5 1.65

chroot 23 12 9 2 0.74 18 4 10 0.39

cksum 14 7 6 1 0.71 7 6 1 0.79

comm 20 10 4 6 1.40 11 1 8 1.65

copy 135 69 48 18 0.92 53 42 40 1.60

cp 78 46 26 6 0.78 45 23 10 0.94

csplit 66 27 32 7 1.02 26 25 15 1.38

cut 47 32 14 1 0.47 31 15 1 0.64

date 30 18 8 4 0.77 15 8 7 1.37

dd 128 81 35 12 0.72 78 30 20 0.88

df 92 51 32 9 0.89 45 25 22 1.27

dircolors 55 31 23 1 0.62 26 23 6 0.98

du 68 27 28 13 1.19 26 15 27 1.90

echo 11 8 3 0 0.55 5 6 0 0.82

expand 25 16 8 1 0.48 16 9 0 0.48

expr 85 29 39 17 1.36 28 35 22 1.47

factor 30 20 9 1 0.43 22 4 4 0.73

fmt 62 40 15 7 0.71 40 7 15 1.12

fold 25 17 8 0 0.36 20 5 0 0.28

getlimits 20 17 3 0 0.15 17 2 1 0.30

groups 9 5 4 0 0.44 5 4 0 0.55

head 111 63 41 7 0.65 52 42 17 1.14

id 20 13 5 2 0.65 12 5 3 0.90

join 106 48 52 6 0.79 54 24 28 1.33

kill 27 18 6 3 0.70 15 9 3 0.89

ln 29 23 3 3 0.62 21 5 3 0.76

ls 352 189 105 58 1.04 186 73 93 1.32

mkdir 22 15 4 3 0.91 10 5 7 1.55

mkfifo 10 7 2 1 1.11 7 0 3 1.78

mktemp 35 23 9 3 0.60 16 15 4 1.09

mv 35 20 8 7 1.14 15 8 12 1.74

nice 16 15 1 0 0.13 15 1 0 0.13

nl 18 11 4 3 1.06 12 3 3 0.94

nohup 22 20 1 1 0.27 19 1 2 0.41

od 120 88 23 9 0.53 86 25 9 0.58

operand2sig 13 11 0 2 0.62 9 2 2 0.77

paste 35 26 7 2 0.54 24 9 2 0.71

pathchk 19 15 3 1 0.37 14 4 1 0.53

pinky 62 34 22 6 0.74 44 9 9 0.71

Total 2332 1356 728 248 - 1278 589 465 -

Avg − − − − 0.72 − − − 1.02

pointers 1021 443 398 180 - 391 222 408 -

Learning Types for Binaries 443

Table 5. Results on different sizes of binaries

Program Size ALOC Vars ProT PreT

strcat 7 KB 508 8 0.187 0.011

Notepad++ 7.3.3 Installer.exe 2.80 MB 12032 113 0.807 0.229

SmartPPTSetup 1.11.0.7.exe 4.76 MB 128381 166 1.156 0.365

DoroPDFWriter 2.0.9.exe 16.30 MB 25910 71 0.692 0.068

QuickTime 51.1052.0.0.exe 18.30 MB 61240 247 2.132 0.607

Firefox Portable.exe 110.79 MB 12068 113 0.906 0.254

VMware workstation v12.0.exe 282.00 MB 39857 352 3.739 0.911

opencv-2.4.9.exe 348.00 MB 61636 287 4.130 0.722

VSX6 pro TBYB.exe 1341.44 MB 129803 450 4.762 1.921

6 Related Work

There have been many works about type inference on binaries. In this section
we briefly discuss a number of more recent related work. Interested readers can
refer to [18] for more details.

TIE [2] is a static tool for inferring primitive types for variables in a binary,
where the inferred type is limited to integer and pointer type. Moreover, the
output of TIE is the upper bound or the lower bound rather than the specific
type, which may not be accurate enough for it to be useful for a binary engineer.
PointerScope [19] uses type inference on binary execution to detect the pointer
misuses induced by an exploit. Aiming for scalability, SecondWrite [4] combines
a best-effort VSA variant for points-to analysis with a unification-based type
inference engine. But accurate types depend on high-quality points-to data. The
work of Robbins et al. [17] reduces the type recovery to a rational-tree constraint
problem and solve it using an SMT solver. Yan and McCamant [20] propose a
graph-based algorithm to determine whether each integer variable is declared
as signed or unsigned. Retypd [5] is a novel static type-inference algorithm for
machine code that supports recursive types, polymorphism, and subtyping. Hex-
Rays [6] is a popular commercial tool for binary code analysis and its exact
algorithm is proprietary. However, these tools resort to static program analysis
approaches, which are either too conservative to infer types with high accuracy
or too heavy-weight for practical use.

REWARDS [1] and Howard [21] both take a dynamic approach, generating
type constraints from execution traces, to detect data structures. ARTISTE [22]
is another tool to detect data structures using a dynamic approach. ARTISTE
generates hybrid signatures that minimize false positives during scanning by
combining points-to relationships, value invariants, and cycle invariants. While
MemPick [23] is a tool that detects and classifies high-level data structures such
as singly- or doubly-linked lists, many types of trees (e.g., AVL, red-black trees,
B-trees), and graphs. But as dynamic analysis-based approaches, they cannot
achieve full coverage of variables defined in a program.

444 Z. Xu et al.

Some tools focus on recovering object oriented features from C++ binaries
[3,24–26]. Most of them adopt program analysis, while the work of Katz et al. [26]
uses object tracelets to capture potential runtime behaviors of objects and use
the behaviors to generate a ranking of their most likely types. Similar to Katz
et. al.’s work, we use the instructions set, leaving the order out of consideration,
to capture potential behaviours of variables. Thus our solution is simper.

In addition, Raychev et al. [27] present a new approach for predicting pro-
gram properties, including types, from big code based on conditional random
fields. Their approach leverages program structures to create dependencies and
constraints used for probabilistic reasoning. Their approach works well at high-
level source code since lots of program structures are easy to discover. While for
stripped binaries, less program structures can be recovered.

7 Conclusion

Recovering type information from binaries is valuable for binary analysis. In
this paper, we have proposed a new approach to predicting the most possible
types for recovered variables. Different with existing work, our approach bases
on classifiers, without resorting to program analysis like constraint solving tech-
niques. To demonstrate the viability of the approach, we have implemented our
approach in a prototype tool and carried out some interesting experiments. The
results show that our tool is more precise than the commercial tool Hey-Rays.

As for future work, we may consider the binary classifiers of different types
of the same size to improve the approach or try other classifiers. We can perform
a points-to analysis to improve our analysis on multi-level pointers. We can take
type quantifiers (e.g., signed) or the composite types (e.g., struct) into account.
We can also conduct more experiments on more real world programs to compare
BITY with other tools.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful comments. This work was partially supported by the National Natural
Science Foundation of China under Grants No. 61502308 and 61373033, Science and
Technology Foundation of Shenzhen City under Grant No. JCYJ20170302153712968.

References

1. Lin, Z., Zhang, X., Xu, D.: Automatic reverse engineering of data structures from
binary execution. In: Network and Distributed System Security Symposium (2010)

2. Lee, J.H., Avgerinos, T., Brumley, D.: Tie: principled reverse engineering of types in
binary programs. In: Network and Distributed System Security Symposium (2011)

3. Fokin, A., Derevenetc, E., Chernov, A., Troshina, K.: SmartDec: approaching C++
decompilation. In: Reverse Engineering, pp. 347–356 (2011)

4. Elwazeer, K., Anand, K., Kotha, A., Smithson, M., Barua, R.: Scalable variable
and data type detection in a binary rewriter. In: ACM Sigplan Conference on
Programming Language Design and Implementation, pp. 51–60 (2013)

Learning Types for Binaries 445

5. Noonan, M., Loginov, A., Cok, D.: Polymorphic type inference for machine code.
In: ACM Sigplan Conference on Programming Language Design and Implementa-
tion, pp. 27–41 (2016)

6. The IDA Pro and Hex-Rays. http://www.hex-rays.com/idapro/
7. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 binary executables.

University of Wisconsin-Madison Department of Computer Sciences (2012)
8. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition.

Data Min. Knowl. Disc. 2(2), 121–167 (1998)
9. Smola, A.J., Schlkopf, B.: On a kernel-based method for pattern recognition, regres-

sion, approximation, and operator inversion. Algorithmica 22(1), 211–231 (1998)
10. IntelCorporation: Intel 64 and IA-32 Architectures Software Developer Manuals,

December 2016
11. Crnic, J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York

(1983)
12. Salton, G.: A vector space model for automatic indexing. Commun. ACM 18(11),

613–620 (1975)
13. Kang, S., Cho, S., Kang, P.: Constructing a multi-class classifier using one-against-

one approach with different binary classifiers. Neurocomputing 149(PB), 677–682
(2015)

14. LIBSVM. http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
15. 178 Algorithm C language source code. http://www.codeforge.com/article/220463
16. Xu, S.: Commonly Used Algorithm Assembly (C Language Description). Tsinghua

University Press, Beijing (2004). (in Chinese)
17. Robbins, E., Howe, J.M., King, A.: Theory propagation and rational-trees. In:

Symposium on Principles and Practice of Declarative Programming, pp. 193–204
(2013)

18. Caballero, J., Lin, Z.: Type inference on executables. ACM Comput. Surv. 48(4),
65 (2016)

19. Zhang, M., Prakash, A., Li, X., Liang, Z., Yin, H.: Identifying and analyzing pointer
misuses for sophisticated memory-corruption exploit diagnosis. Proc. West. Phar-
macol. Soc. 47(47), 46–49 (2013)

20. Yan, Q., McCamant, S.: Conservative signed/unsigned type inference for binaries
using minimum cut. Technical report, University of Minnesota (2014)

21. Slowinska, A., Stancescu, T., Bos, H.: Howard: a dynamic excavator for reverse
engineering data structures. In: Network and Distributed System Security Sympo-
sium (2011)

22. Elwazeer, K., Anand, K., Kotha, A., Smithson, M., Barua, R.: Artiste: automatic
generation of hybrid data structure signatures from binary code executions. Tech-
nical report TRIMDEA-SW-2012-001, IMDEA Software Institute (2012)

23. Haller, I., Slowinska, A., Bos, H.: MemPick: high-level data structure detection in
C/C++ binaries. In: Reverse Engineering, pp. 32–41 (2013)

24. Jin, W., Cohen, C., Gennari, J., Hines, C., Chaki, S., Gurfinkel, A., Havrilla,
J., Narasimhan, P.: Recovering C++ objects from binaries using inter-procedural
data-flow analysis. In: ACM Sigplan on Program Protection and Reverse Engineer-
ing Workshop, p. 1 (2014)

25. Yoo, K., Barua, R.: Recovery of object oriented features from C++ binaries. In:
Asia-Pacific Software Engineering Conference, pp. 231–238 (2014)

http://www.hex-rays.com/idapro/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.codeforge.com/article/220463

446 Z. Xu et al.

26. Katz, O., El-Yaniv, R., Yahav, E.: Estimating types in binaries using predictive
modeling. In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 313–326 (2016)

27. Raychev, V., Vechev, M., Krause, A.: Predicting program properties from “big
code”. In: The ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 111–124 (2015)

Inconsistency Analysis of Time-Based Security
Policy and Firewall Policy

Yi Yin1,2(B), Yuichiro Tateiwa3, Yun Wang1, Yoshiaki Katayama3,
and Naohisa Takahashi3

1 School of Computer Science and Engineering,
Southeast University, Nanjing, China

yi837@hotmail.com, 101004974@seu.edu.cn
2 School of Computer Science and Technology,

Nanjing Normal University, Nanjing, China
3 Department of Computer Science and Engineering, Graduate School

of Engineering, Nagoya Institute of Technology, Nagoya, Japan
{tateiwa,katayama,naohisa}@nitech.ac.jp

Abstract. Packet filtering in firewall either accepts or denies packets
based upon a set of predefined rules called firewall policy. In recent years,
time-based firewall policies are widely used in many firewalls such as
CISCO ACLs. Firewall policy is always designed under the instruction
of security policy, which is a generic document that outlines the needs
for network access permissions. It is difficult to maintain the consistency
of normal firewall policy and security policy, not to mention time-based
firewall policy and security policy. Even though there are many analysis
methods for security policy and firewall policy, they cannot deal with
time constraint. To resolve this problem, we firstly represent time-based
security policy and firewall policy as logical formulas, and then use sat-
isfiability modulo theories (SMT) solver Z3 to verify them and analyze
inconsistency. We have implemented a prototype system to verify our
proposed method, experimental results showed the effectiveness.

Keywords: Security policy · Firewall policy · Time-based rules ·
Satisfiability modulo theories

1 Introduction

Firewall is a traditional and very important component for network security.
When packets come to firewall, they are accepted or denied based on a set
of predefined rules called firewall policy (represented as FP). FP is usually
designed under the instruction of some generic rules for network access permis-
sions, which is called security policy (represented as SP). SP is an essential
directory document in an organization, it defines the broad boundaries of infor-
mation security. In recent years, time-based rules are widely used by firewall
vendors to control network traffics, such as Cisco ACLs [1], Linux iptables [2],
and so on. Time-based rules are very useful when a service is required to be
c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 447–463, 2017.
https://doi.org/10.1007/978-3-319-68690-5 27

448 Y. Yin et al.

available only at certain times. For example, a bank will close WEB Server for
the maintenance during 24:00 to 8:00 in the next morning. A firewall policy
and a security policy with a time constraint are called time-based firewall
policy (represented as TFP) and time-based security policy (represented
as TSP) respectively. The design of TFP should be consistent with TSP, the
inconsistencies of TSP and TFP may bring about security hole and even lead to
irreparable consequences. Therefore, it is very important to detect and resolve
the inconsistencies of TSP and TFP. However, TSP and TFP are described in
different forms and abstractions, correctly verifying whether they are consistent
and detect their inconsistencies is by no means easy.

We have proposed some methods to verify whether SP and FP are consis-
tent [3,4]. In previous work [3], we developed a geometric analysis method and
interpreted SP and FP as a set of packets, and then we compared the two sets
of packets to decide whether SP and FP are consistent. In previous work [4],
we represented SP and FP as Constraint Satisfaction Problem, then used CSP
solver Sugar [5] to verify the consistency of SP and FP. Two previous works
could only verify whether SP and FP are consistent, if SP and FP are not con-
sistent, two previous works could not detect and deal with their inconsistencies.
In addition, previous two works did not consider time constraint of rules. Related
work [6] proposed a system to detect conflict rules of TFP by using bit-vectors.
Although this work could deal with time-based rules, its aim was conflict rules
detection of TFP rather than the inconsistencies detection of TSP and TFP.
To resolve the above problems, in this paper, by using SMT solver Z3 [7], we
propose a method that can detect and deal with the inconsistencies of TSP and
TFP. The major contributions of this paper are stated as follows:

(1) We propose an inconsistency detection method of TSP and TFP, that is, we
construct some logical formulas and use SMT solver Z3 to verify them, the
inconsistencies of TSP and TFP could be decided based on the verification
results of Z3. There is no need to interpret the meanings of TSP and TFP
rules by means of additional complex analysis technology.

(2) Since the SMT solver Z3 supports equality reasoning, and arithmetic, which
let the description of abstract TSP rules become more intuitively. For exam-
ple, to represent TSP rule, we introduce set operators of “not”, “and”, etc.

(3) We have developed a prototype system and evaluated the feasibility of our
proposed method. Experimental results show the effectiveness.

This paper is organized as follows. Section 2 introduces the specification of
TSP and TFP. Section 3 describes SMT solver and internal form of TSP and
TFP. Section 4 presents the inconsistency detection method of TSP and TFP.
Section 5 introduces our prototype system and experiments. Section 6 discusses
relevant works. Finally, Sect. 7 draws the conclusions and future works.

Inconsistency Analysis of Time-Based Security Policy and Firewall Policy 449

2 Specification of TSP and TFP

2.1 TFP Specification

We define a time-based firewall policy TFP usually consists of an ordered set of
n rules {f1, f2, ..., fn}. Each rule fi is shown as follows:

fi : pi1, pi2, ..., pit, timei, actioni,

where pi1∼pit are predicates for the values of key fields of header used in packet
filtering. The commonly used header fields are: protocol, source IP (SrcIP), des-
tination IP (DesIP), source port (SrcPort) and destination port (DesPort).
Possible values of actioni are accept and deny. We define the time constraint
timei has the following periodic or non-periodic formats.

(1) Type1: The periodic time constraint is represented as (T , W , M), where
subfield T is a range of start and end time. T is represented as 24-h format
of hh:mm, such as [18:00, 24:00). Subfield W is a subset of week days {Sun,
Mon, · · · , Sat}, for example, W = {Mon, Fri}. Subfield M is a set of
designated months with the format of yyyy/mm, such as M = {2017/06,
2017/11}.

(2) Type2: The non-periodic time constraint is represented as (T , D), where
subfield T is the same as the format of the periodic time constraint. Subfield
D is a set of designated days with the format of yyyy/mm/dd, for example,
D = {2017/06/17, 2017/09/20, 2017/11/30}.

A packet P matches a time-based rule if and only if the arrival time of P
satisfies the rule’s time constraint, and the values of P ’s key fields satisfy all
the predicates of the rule. For example, Fig. 1 shows periodic and non-periodic
time-based rules respectively. From 8:00 to 12:00 on every Monday and Friday in
June and November, 2017, when a packet P arrives and the header of P satisfies
all the predicates of rule f1, the packet P matches rule f1. From 12:00 to 24:00
on July 31, 2017 and December 31, 2017, when a packet P arrives and the header
of P satisfies all the predicates of rule f2, the packet P matches rule f2.

Fig. 1. Time-based rules example

450 Y. Yin et al.

2.2 TSP Specification

TSP is a generic instruction scenario for network access permissions, it is a
specification for TFP rules design. In our previous work [3], we have designed a
model to represent SP. To represent TSP rules, we add the time constraint based
on our previous SP representation model. We design the TSP representation
model includes specification of network, network services and rules.

To represent network, we divided the target network into several disjoint sub-
networks(called regions). Each region is a range of IP addresses or an address.
For example, the region “DMZ” shown in Fig. 2 is represented as 166.68.13.0/28.
We use Host List (shown in Table 1) to show all the available hosts and use a
Region Definition Table (RDT, shown in Table 4) to represent all the divided
regions of the network. In addition, we permit to use set operators to represent
TSP rule, such as “! (not)”, “and”, and so on. For example, “! (not)” represents
other than a certain subnet or a region, “and” connects two different regions or
subnets.

Fig. 2. Network example

Table 1. Host list

Host list

166.68.90.0/24

166.68.13.0/24

Table 2. Service definition table

Service name Protocol Des port Src port

WEBserver tcp 80 *

FTPserver tcp 21 *

To represent network services, we use a Service Definition Table (SDT, shown
in Table 2) and a Protocol Definition Table (PDT, shown in Table 3) to represent

Inconsistency Analysis of Time-Based Security Policy and Firewall Policy 451

Table 3. Protocol definition table

Protocol Protocol number

tcp 6

udp 17

any 0−255

Table 4. Region definition table

Region name IP address of region

DMZ 166.68.13.0/28

HostNet 166.68.13.128/28

Tk-Lab 166.68.13.0/24

ExtraNet !166.68.13.0/24

and !166.68.90.0/24

all the services provided in the network. SDT includes services name, protocol,
destination and source port number, PDT includes the protocol name and pro-
tocol number.

To represent TSP rules, we suppose that TSP consists of m rules {s1, s2,
......, sm} and each rule si (i ∈ [1, m]) is described as follows:

si : if Si in Ri1 from Ri2 at Wi then Ai

Each TSP rule si represents that firewall takes the action Ai (accept or deny)
to the access, which comes from the region of Ri2 to the service Si in the region
of Ri1 at the time Wi. The time constraint Wi uses the same two formats as
TFP rule. For example, the meaning of the following TSP rule s1 is that the
access from external network (represented as “ExtraNet”) to the FTP server in
“TK-Lab” is denied from 8:00 to 12:00 at November 30, 2017.

s1: if FTPserver in Tk-Lab from ExtraNet at [8:00, 12:00) 2017/11/30 then
deny

3 SMT Solver and Internal Form of TSP and TFP

3.1 SMT Solver and Internal Form of TSP and TFP

Satisfiability Modulo Theories (SMT) problem is a decision problem for logical
first order formulas with respect to combinations of background theories such as:
arithmetic, bit vectors, arrays, and so on. An SMT solver is a tool for deciding the
satisfiability of formulas in these theories. Z3 is a new SMT solver freely available
from Microsoft Research [8]. In this paper, we call Z3 solver procedurally by
using ANSI C API [9]. To construct logical formulas that could be verified by
using Z3, we transform TSP and TFP to the unified format.

Each predicate pij (i ∈ [1, n], j ∈ [1, t]) in a rule, is a matching condition
for a packet header field, and it commonly allows four kinds of matchings: exact
matching, prefix matching, range matching, and list matching. However, in this
work, for the simplicity, each predicate pij in a rule is represented as a uniform
range value, [aij , bij]. Predicates in other forms can be easily converted into one
or multiple rules with range values. Time constraint is represented as a uniform

452 Y. Yin et al.

UTC time range value. A rule where each predicate and time constraint are
represented as range values is called an internal form rule. An internal form
rule, fi (i∈[1, n]), is represented as follows:

fi : [ai1, bi1], [ai2, bi2],[ait, bit], [tsi, tei), actioni.

The range values [aij , bij] (i∈[1, n], j∈[1, t]) represent commonly used header
fields: protocol, SrcIP, SrcPort, DesIP and DesPort. [tsi, tei) represents the time
constraint. Assume a packet P comes within the time tsi to tei, and the header
values of P are (x1, x2,, xt), if and only if (ai1 ≤ x1 ≤ bi1) ∧ (ai2 ≤ x2 ≤
bi2) ∧ ∧ (ait ≤ xt ≤ bit), packet P matches the fi, and the action of rule fi
is performed on the packet P.

3.2 Transformation of TSP and TFP to Internal Form Rules

To detect the inconsistencies of TSP and TFP by using Z3 solver, we need to
transform TSP and TFP rules into internal form rules. We divide the transfor-
mation procedures into two phases, the first phase is the transformation of rule’s
predicates, and the second phase is the transformation of time constraint.

In the first phase, for TFP rule’s predicates transformation, the protocol
is transformed to integer protocol number. IP addresses are changed to long
integers. Port number could be transformed as integer range value. For example,
when the protocol is “tcp”, the range value in internal form rule is equal to [6, 6].
IP address 129.8.50.200 is transformed as long integer range value of [2164798152,
2164798152]. Transformation of TSP rules is the procedure that replace service
name, port number and region name by using their corresponding values shown
in Tables 1, 2, 3 and 4. For example, the service in TSP rule s1 shown in Sect. 2.2
is “FTPserver”, according to Tables 2 and 3, the source and destination port are
“*” and “21” respectively. Therefore, the corresponding range values in internal
form rule are equal to [0, 65535] and [21, 21].

In the second phase, we divided the transformation of time constraint into
two steps. The first step is changing periodic or non-periodic time constraint
into individual yyyy/mm/dd, hh:mm format time range values. In the second
step, we change the yyyy/mm/dd, hh:mm format values into UTC format time
range values.

For example, if the time constraint is non-periodic, such as (T, D) = ([12:00-
24:00), {2017/07/31, 2017/12/31}), in the first phase, we represent (T, D) as
ranges with yyyy/mm/dd, hh:mm format shown in Fig. 3. In the second phase,
the results in Fig. 3 are changed to UTC time ranges shown as in Fig. 4.

For another example, if the time constraint is periodic, such as, (T, W, M)
= ([08:00–12:00), {Mon}, {2017/04, 2017/05}), which means that there exist 8
Mondays in April and May. Therefore, in the first phase, we split (T, W, M) into
8 yyyy/mm/dd, hh:mm format ranges shown as in Fig. 5. In the second phase,
we change 8 time ranges into UTC time ranges shown as in Fig. 6.

The internal form transformation of TSP and TFP rules are the composition
of transformation results of predicates and time constraints. For example, rule
f2 shown in Fig. 1 is transformed into two internal form rules shown in Fig. 7.

Inconsistency Analysis of Time-Based Security Policy and Firewall Policy 453

Fig. 3. yyyy/mm/dd, hh:mm format range Fig. 4. UTC time ranges of Fig. 3

Fig. 5. Periodic time constraint split example Fig. 6. UTC time ranges of Fig. 5

Fig. 7. Internal rules example

4 Inconsistency Detection of TSP and TFP

4.1 Inclusion Relations Between TSP and TFP

We define S to represent a set of rules and P(S) to represent the set of packets
that match S. Despite the description forms of TSP and TFP are different,
they both stipulate some conditions for filtering packets. Therefore, TSP and
TFP could be viewed as sets of packets that satisfy some conditions. We use
P(TSP) to represent the set of packets that matches TSP, and use P(TFP) to
represent the set of packets that matches TFP. We also define R(TSP , TFP)
to represent inclusion relations between P(TSP) and P(TFP). According to set
theory, R(TSP, TFP) could be classified into five kinds shown as in formula (1).

R(TSP, TFP) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Equal when P (TSP) = P (TFP)
Inside when P (TSP) ⊆ P (TFP)
Cover when P (TSP) ⊇ P (TFP)
Disjoint when P (TSP) ∩ P (TFP) = ∅

Overlap Otherwise

(1)

454 Y. Yin et al.

4.2 Consistency Decision of TSP and TFP

According to the set theory, two sets A and B are equal if and only if they have
the same elements, which could be represented as in formula (2). Suppose TSP
consists of m rules {s1, s2, ..., sm} and TFP consists of n rules {f1, f2, ..., fn}.
To verify the consistency of TSP and TFP, we constructed P1 and P2 shown as
in formulas (3)(4). We can use “not” operator to unify the actions of rules, for
the simplicity, we suppose the actions of TSP or TFP rules are all accept.

A = B if and only if A ⊆ B and B ⊆ A (2)

P1 = (¬s1) ∧ (¬s2) ∧ ... ∧ (¬sm) ∧ (f1 ∨ f2 ∨ ... ∨ fn) (3)
P2 = (¬f1) ∧ (¬f2) ∧ ... ∧ (¬fn) ∧ (s1 ∨ s2 ∨ ... ∨ sm) (4)

The formula P1 wants to check whether the set of packets denied by TSP rules
have intersection with the set of packets accepted by the TFP rules. Similarly,
the formula P2 wants to check whether the set of packets denied by TFP rules
have intersection with the set of packets accepted by the TSP rules.

Then we use SMT solver Z3 to verify P1 and P2. If the Z3 ’s output of P1

is UNSATISFIABLE, which means that the set of packets denied by TSP have
no intersection with the packets accepted by TFP. So, conversely, we can think
that the set of packets accepted by TSP includes or equals to the set of pack-
ets accepted by TFP, that is, P(TSP)⊇P(TFP). Similarly, if Z3 ’s output of
P2 is UNSATISFIABLE, which means P(TFP)⊇P(TSP), or P(TSP)⊆P(TFP).
According to the formula (2), when Z3 ’s outputs of P1 and P2 are both UNSAT-
ISFIABLE, we can decided that P(TFP) = P(TSP).

4.3 Classification of Inconsistency of TSP and TFP

Other than R(TSP, TFP) is Equal, we say that there exist inconsistencies
of TSP and TFP. We considered that TSP is an abstract demands outline for
firewall design, once TSP is constructed, it does not change frequently. For this
reason, we take the TSP as the standard, the inconsistencies are viewed as the
differences of TFP compared with TSP. To resolve the inconsistencies, we should
add rules in TFP or delete rules from TFP, and let TFP to be the same as TSP.
We also suppose that there have no anomalies in individual TSP or TFP. We
classify the inconsistencies of TFP and TSP as the following three kinds.

1. Redundancy: If we take the TSP as the standard, TFP have redundant
rules that should be deleted.

2. Insufficiency: If we take the TSP as the standard, there exist some rules
that should be added in TFP.

3. Warning: If we take the TSP as the standard, TFP have some special rules,
which are not completely redundant rules. Especially if we delete them from
TFP, which may affect the original intentions of TSP. To resolve this kind of
inconsistency, we detect and show them to the administrator. For example,
if TFP and TSP only consist one rule f and s respectively, and they are
transformed into internal form rules shown as in Fig. 8, rule f is a warning
rule to s.

Inconsistency Analysis of Time-Based Security Policy and Firewall Policy 455

Fig. 8. Warning rule example

4.4 Inconsistency Decision Analysis

We think that TSP and TFP have inconsistencies when R(TSP, TFP) are Cover,
Inside, Overlap, and Disjoint relations. We explain how to detect the correspond-
ing inconsistency of each inclusion relation as follows.

When R(TSP, TFP) is Cover, that is, P(TSP)⊇P(TFP), which means that
TFP has insufficient rules compared with TSP. We should check each TSP rule
si(i ∈[1, m]) to decide whether it should be added in TFP. To make further
detection, we define P(si) to represent the set of packets that matches rule si,
we also define R(si, TFP) to represent the inclusion relations between P(si)
and P(TFP). Similar as formula (1), R(si, TFP) also have five inclusion rela-
tions shown in formula (5), the corresponding inconsistency of each relation and
resolving method are summarized as in Table 5.

R(si, TFP) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Equal when P (si) = P (TFP)
Inside when P (si) ⊆ P (TFP)
Cover when P (si) ⊇ P (TFP)
Disjoint when P (si) ∩ P (TFP) = ∅

Overlap Otherwise

(5)

Table 5. Insufficiency analysis

R(si, TFP) Inconsistency Resolving inconsistency

Disjoint Insufficiency Add si in TFP

Inside No inconsistency −
Cover Insufficiency Add si in TFP

Overlap Insufficiency Add si in TFP

Equal No inconsistency −

When R(TSP, TFP) is Inside, that is, P(TSP)⊆P(TFP), which means that
there exist warning or redundant rules in TFP. We should check each TFP
rule fi(i ∈[1, n]) and decide whether it is a redundant or warning rule. To
make further detection, we define P(fi) to represent the set of packets that
matches rule fi, we also define R(fi, TSP) to represent the inclusion relations
between P(fi) and P(TSP). R(fi, TSP) also have five inclusion relations shown

456 Y. Yin et al.

as in formula (6), the corresponding inconsistency of each relation and resolving
method are summarized as in Table 6.

R(fi, TSP) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Equal when P (fi) = P (TSP)
Inside when P (fi) ⊆ P (TSP)
Cover when P (fi) ⊇ P (TSP)
Disjoint when P (fi) ∩ P (TSP) = ∅

Overlap Otherwise

(6)

Table 6. Redundancy or warning analysis

R(fi, TSP) Inconsistency Resolving inconsistency

Disjoint Redundancy Delete fi from TFP

Inside No inconsistency −
Cover Warning Show fi to administrator

Overlap Warning Show fi to administrator

Equal No inconsistency −

When R(TSP, TFP) are Overlap and Disjoint relations, the inconsistency
detection could be divided into insufficiency analysis and redundancy or warning
analysis, that is, we can firstly check whether exist insufficient rules, and then
check whether exist redundant or warning rules.

4.5 Algorithms for Inconsistency Decision

From the above analysis, if we know R(si, TFP) and R(fi, TSP), we can decide
which rules caused the inconsistencies. The following pseudo-code algorithm
describes the whole procedures of inconsistency detection. According to Sect. 4.2,
we firstly constructed formulas P1 and P2, then used Z3 to verify whether they
are SATISFIABLE (SAT) or UNSATISFIABLE (UNSAT). If Z3 ’s output of P1

and P2 are both UNSAT, which means that TSP is equal to TFP and then exit.
If only Z3 ’s output of P1 is UNSAT, which means that TSP⊇TFP. In line 11, we
call Insufficiency function to detect insufficient rules. If only Z3 ’s output of P2 is
UNSAT, which means that TSP⊆TFP. In line 13, we call Redundancy Warning
function to detect redundant or warning rules. Otherwise, we call Insufficiency
function and Redundancy Warning function in turn.

1: Input: TSP, TFP Output: NewTFP
2: Algorithm RuleSet Inconsistency Detection(TSP, TFP)
3: { RuleSet NewTFP, TFP Temp;
4: NewTFP=TFP; TFP Temp=TFP;

Inconsistency Analysis of Time-Based Security Policy and Firewall Policy 457

5: Construct P1=(¬s1)∧(¬s2)∧...∧(¬sm)∧(f1 ∨ f2 ∨ ... ∨ fn),
6: P2=(¬f1)∧(¬f2)∧...∧(¬fn)∧(s1 ∨ s2 ∨ ... ∨ sm),
7: Use Z3 to verify P1 and P2;
8: if((Z3(P1)==UNSAT)&&((Z3(P2)==UNSAT))
9: TSP=TFP, then exit;
10: else if(Z3(P1)==UNSAT)
11: NewTFP=Insufficiency(TSP, TFP);
12: else if(Z3(P2)==UNSAT)
13: NewTFP=Redundancy Warning(TSP, TFP);
14: else
15: { TFP Temp=Insufficiency(TSP, TFP);
16: NewTFP=Redundancy Warning(TSP, TFP Temp); }
17: Return NewTFP;
18: }
19: End of Algorithm

The following pseudo-code is Insufficiency detection algorithm, we firstly
constructed T1 shown as in formula (7), then used Z3 to verify it. If Z3 ’s output
of T1 is UNSAT, which means that P(si) and P(TFP) have no intersections,
R(si, TFP) is disjoint. According to Table 5, si is an insufficient rule to TFP, it
should be added in TFP. If Z3 ’s output of T1 is SAT, which means that si and
TFP have intersections, that is, R(si, TFP) is one of the Overlap, Inside, Cover
or Equal relations. To implement further detection, we constructed T2 and T3

shown as in formulas (8)(9), then we used Z3 to verify them. R(si, TFP) can
be decided by Z3 ’s outputs of T1 ∼ T3, which are summarized in Table 7. Then,
we can deal with rule si according to Table 5.

1: Input: TSP, TFP Output: NewTFP
2: Algorithm RuleSet Insufficiency(TSP, TFP)
3: { RuleSet NewTFP;
4: NewTFP=TFP;
5: for each si in TSP do
6: { Construct T1=(si)∧(f1 ∨ f2 ∨ ... ∨ fn),
7: T2=(¬si)∧(f1 ∨ f2 ∨ ... ∨ fn),
8: T3=(¬f1)∧(¬f2) ∧ ... ∧ (¬fn) ∧ (si);
9: if(Z3(T1)==UNSAT)
10: Add si in NewTFP;
11: if(Z3(T1)==SAT)
12: { if((Z3(T2)==UNSAT)&&(Z3(T3)==UNSAT))
13: Continue;
14: else if(Z3(T2)==UNSAT)
15: Add si into NewTFP;
16: else if(Z3(T3)==UNSAT)
17: Continue;
18: else
19: Add si into NewTFP;

458 Y. Yin et al.

20: }
21: }
22: Return NewTFP;
23: }
24: End of Insufficiency Algorithm

T1 = (si) ∧ (f1 ∨ f2 ∨ ... ∨ fn) (7)

T2 = (¬si) ∧ (f1 ∨ f2 ∨ ... ∨ fn) (8)

T3 = (¬f1) ∧ (¬f2) ∧ ... ∧ (¬fn) ∧ (si) (9)

Table 7. Z3 ’s outputs of T1 ∼ T3 and R(si, TFP)

T1 T2 T3 R(si, TFP)

UNSAT SAT SAT Disjoint when P(si)∩P(TFP) = ∅

SAT UNSAT SAT Cover when P(si)⊇P(TFP)

SAT SAT UNSAT Inside when P(si)⊆P(TFP)

SAT UNSAT UNSAT Equal when P(si) = P(TFP)

SAT SAT SAT Overlap when P(si)∩P(TFP)�= ∅

Similarly, in Redundancy Warning algorithm, we firstly constructed T4

shown as in formula (10) to verify whether R(fi, TSP) is disjoint. If Z3 ’s output
of T4 is UNSAT, which means that R(fi, TSP) is disjoint. According to Table 6,
fi is a redundant rule to TSP, it should be deleted from TFP. If Z3 ’s output of
T4 is SAT, we constructed T5 and T6 shown as in formulas (11)(12) to implement
further detection. Then, we used Z3 to verify them. R(fi, TSP) can be decided
by Z3 ’s outputs of T4 ∼ T6, which are summarized as in Table 8. Then, we can
deal with each fi according to Table 6.

1: Input: TSP, TFP Output: NewTFP
2: Algorithm RuleSet Redundancy Warning(TSP, TFP)
3: { RuleSet NewTFP;
4: NewTFP=TFP;
5: for each fi in TFP do
6: {Construct T4=(fi)∧(s1 ∨ s2 ∨ ... ∨ sm),
7: T5=(¬fi)∧(s1 ∨ s2 ∨ ... ∨ sm),
8: T6=(¬s1)∧(¬s2)∧ ... ∧(¬sm)∧(fi);
9: if (Z3(T4)==UNSAT)
10: Delete fi from NewTFP;
11: if (Z3(T4)==SAT)
12: { if ((Z3(T5)==UNSAT)&&(Z3(T6)==UNSAT))
13: Continue;
14: else if(Z3(T5)==UNSAT)

Inconsistency Analysis of Time-Based Security Policy and Firewall Policy 459

15: Show fi to Administrator;
16: else if(Z3(T6)==UNSAT)
17: Continue;
18: else
19: Show fi to Administrator;
20: }
21: }
22: Return NewTFP;
23: }
24: End of Redundancy Warning Algorithm

T4 = (fi) ∧ (s1 ∨ s2 ∨ ... ∨ sm) (10)

T5 = (¬fi) ∧ (s1 ∨ s2 ∨ ... ∨ sm) (11)

T6 = (¬s1) ∧ (¬s2) ∧ ... ∧ (¬sm) ∧ (fi) (12)

Table 8. Z3 ’s outputs of T4 ∼ T6 and R(fi, TSP)

T4 T5 T6 R(fi, TSP)

UNSAT SAT SAT Disjoint when P(fi)∩P(TSP) = ∅

SAT UNSAT SAT Cover when P(fi)⊇P(TSP)

SAT SAT UNSAT Inside when P(fi)⊆P(TSP)

SAT UNSAT UNSAT Equal when P(fi) = P(TSP)

SAT SAT SAT Overlap when P(fi)∩P(TSP)�= ∅

5 Implementation and Experiments

5.1 Prototype System

We have implemented a prototype system. Figure 9 shows the architecture of
the prototype system. The inputs are: abstract TSP rules, network topology
information, and TFP rules. According to network topology, TSP rules are rep-
resented as the same internal form with TFP rules. Then the prototype system
constructs formulas P1 and P2 and uses Z3 to verify them. According to Z3 ’s
results of P1 and P2, insufficiency detection and redundancy or warning detec-
tion functions are used to detect and deal with inconsistencies. The dashed line
rectangle in Fig. 9 is our proposed inconsistency detection procedures.

460 Y. Yin et al.

Fig. 9. Architecture of prototype sys-
tem

Fig. 10. Experimental results

5.2 Experiments and Considerations

The prototype system implemented in C language. Experiments were performed
using a computer equipped with an Intel Core i5 (3.2 GHz) and 8 GB RAM. To
evaluate the feasibility of our proposed method, we manually designed TSP and
TFP rules ranged from 100 ∼ 1000 respectively, then we did the following four
experiments. The experimental results are shown in Fig. 10.

1. Measure the execution time for verifying whether TSP is equal to TFP.
2. Measure the execution time for only detecting insufficiency of TFP.
3. Measure the execution time for only detecting redundancy or warning of TFP.
4. Measure the execution time for detecting insufficiency, redundancy or warning

of TFP.

The execution time of each experiment includes: the time of making formulas
of P1, P2, and T1 ∼ T6 in each loop; the time of using Z3 to verify P1, P2, and
T1 ∼ T6 in each loop; the time of inconsistency detection and resolving. The
results in Fig. 10 show that when TSP and TFP have 1000 rules respectively, in
the worst case, that is, when R(TSP, TFP) are Disjoint and Overlap relations,
it took about 700 s to detect and resolve all inconsistencies. When we only detect
and resolve insufficiencies, or when we only detect and resolve redundancies or
warnings, the prototype system took similar times, it took about 320 and 350
s respectively. If we only verify whether TSP and TFP are consistent, it took
about 0.35 second. In average, the prototype system needs about 0.35 s to check
whether each rule should be added in TFP or deleted from TFP.

6 Related Works

The anomalies classification and discovery of FP have gained a lot of atten-
tion. Wool [10] recently inspected FPs collected from different organizations and

Inconsistency Analysis of Time-Based Security Policy and Firewall Policy 461

indicated that all examined FPs have security flaws. Al-Shaer and Hamed [11]
reported comprehensive and in-depth study of automated FP analysis for design-
ing, configuring and managing distributed firewalls. It also provided methodolo-
gies, techniques, tools and case studies. Work [12] proposed a novel anomaly
management framework that facilitates systematic detection and resolution of
FP anomalies. A rule-based segmentation mechanism and a grid-based repre-
sentation technique were introduced to achieve the goal of effective and efficient
anomaly analysis. This work also provided an effective redundancy elimination
mechanism. Research [13] presented a FP checking model, then used SAT solver
to analyze reachability of policy definition. It also did some experiments and com-
pared the proposed model with BDD-based configuration analysis approaches.
The aims of the above works were anomalies detection methods only in FP, but
not the goal of inconsistency detection of SP and FP, not to mention inconsis-
tency detection of TSP and TFP.

Some similar works use formal representation to model FP and SP [14–16].
Work [14] presented a Firewall Policy Query Engine (FPQE) that renders the
whole process of anomaly resolution in a fully automated one, and no need to any
human intervention. FPQE used MiniSat solver to check whether FP rules are
correct and complete with respect to a SP. Work [15] defined Boolean formula
representation of SP and FP, and formulated the condition that ensures cor-
rectness of firewall configuration. Then, it also used MiniSat solver to check the
validity of the condition. If the configuration is not correct, this work produced
an example of packet to help users to correct the configuration. Work [16] pro-
posed a formal method and used SMT solver Yices [17] to certify automatically
that a FP is sound and complete with SP. The above works only considered how
to verify FP with SP by using formal methods, but these methods could not be
used to detect inconsistencies of TSP and TFP.

Work [18] provided the methods automatically perform comparisons alge-
braically of two FPs. It used algebraic structure to determine the semantics
required of a policy language, and to make comparisons rule-order and firewall
implementation independent. It also provided a formalism to compute the com-
position of rule sets. However, this work only took two FPs comparison as a goal.
Because SP and FP have different descriptions, the proposed method could not
be directly used to detect inconsistency of TSP and TFP. In works [19,20], the
authors address the problem of automatic verification by providing automatic
translation tool of the SP and FP. These methods can handle the whole problem
of conformance of FP to SP, but the validity of the compilation itself has not
been proved. In particular, the FP rules obtained may be in conflict. In addition,
these works also did not consider the time constraint of SP and FP.

7 Conclusion and Future Work

In this paper, we have proposed a method to detect the inconsistency of TSP and
TFP. We firstly construct consistency decision model and use SMT solver Z3 to
verify whether TSP and TFP are consistent. If TSP and TFP are not consistent,

462 Y. Yin et al.

to implement the inconsistency detection, we constructed some logical formulas
and used Z3 to verify them and analyze inconsistency. We also implemented
a prototype system and did some experiments to show the effectiveness of our
proposed method. Our future work includes optimization of our proposed method
and results visualization.

Acknowledgments. This research was partially supported by National scholarship
for studying abroad of China Scholarship Council (CSC); National Natural Science
Foundation of China (No. 60973122, 61572256).

References

1. Cisco PIX Firewall Release Notes. https://www.cisco.com/en/US/docs/security/
pix/pix63/release/notes/pixrn634.html

2. Linux man page. http://linux.die.net/man/8/iptables
3. Yin, Y., Xu, X., Katayama, Y., Takahashi, N.: Inconsistency detection system

for security policy and rewall policy. In: 2010 First International Conference on
Networking and Computing, pp. 294–297. IEEE (2011)

4. Yin, Y., Xu, J., Takahashi, N.: Verifying consistency between security policy and
firewall policy by using a constraint satisfaction problem server. In: Zhang, Y. (ed.)
Future Wireless Networks and Information Systems. LNEE, vol. 144, pp. 135–145.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-27326-1 18

5. Sugar: a SAT-based Constraint Solver. http://bach.istc.kobe-u.ac.jp/sugar/
6. Thanasegaran, S., Tateiwa, Y., Katayama, Y., Takahashi, N.: Design and imple-

mentation of conflict detection system for time-based firewall policies. J. Next
Gener. Inf. Technol. 2(4), 24–39 (2011)

7. Z3 Theorem Prover. https://github.com/Z3Prover/z3/wiki
8. Moura, L.D., Bjørner, N.: Z3: an efficient SMT solver. In: Proceedings of the Theory

and practice of software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pp. 337–340 (2008)

9. Z3 C API. https://z3prover.github.io/api/html/group capi.html
10. Wool, A.: Trends in firewall configuration errors: measuring the holes in swiss

cheese. IEEE Internet Comput. 14(4), 58–65 (2010)
11. Al-Shaer, E.: Automated Firewall Analytics Design, Configuration and Optimiza-

tion. Springer, Heidelberg (2014)
12. Hu, H., Ahn, G., Kulkarni, K.: Detecting and resolving firewall policy anomalies.

IEEE Trans. Secure Comput. 9(3), 318–331 (2012)
13. Jeffrey, A., Samak, T.: Model checking firewall policy configurations. In: IEEE

International Symposium on Policies for Distributed Systems and Networks, pp.
60–67 (2009)

14. Bouhoula, A., Yazidi, A.: A security policy query engine for fully automated resolu-
tion of anomalies in firewall configurations. In: IEEE 15th International Symposium
on Network Computing and Applications, pp. 76–80 (2016)

15. Matsumoto, S., Bouhoula, A.: Automatic verification of firewall configuration with
respect to security policy requirements. In: Proceedings of the International Work-
shop on Computational Intelligence in Security for Information Systems, pp. 123–
130 (2008)

16. Youssef, N.B., Bouhoula, A., Jacquemard, F.: Automatic verification of confor-
mance of firewall configurations to security policies. In: IEEE Symposium on Com-
puters and Communications, pp. 526–531 (2009)

https://www.cisco.com/en/US/docs/security/pix/pix63/release/notes/pixrn634.html
https://www.cisco.com/en/US/docs/security/pix/pix63/release/notes/pixrn634.html
http://linux.die.net/man/8/iptables
http://dx.doi.org/10.1007/978-3-642-27326-1_18
http://bach.istc.kobe-u.ac.jp/sugar/
https://github.com/Z3Prover/z3/wiki
https://z3prover.github.io/api/html/group__capi.html

Inconsistency Analysis of Time-Based Security Policy and Firewall Policy 463

17. Dutertre, B., Moura, L.D.: The YICES SMT solver. http://gauss.ececs.uc.edu/
Courses/c626/lectures/SMT/tool-paper.pdf

18. Ranathunga, D., Roughan, M., Kernick, P., Falkner, N.: Malachite: firewall policy
comparison. In: IEEE Symposium on Computers and Communication, pp. 310–317
(2016)

19. Cupens, F., Cuppens-Boulahia, N., Sans, T., Miege, A.: A formal approach to
specify and deploy a network security policy. In: Second Workshop on Formal
Aspects in Security and Trust, pp. 203–218 (2004)

20. Bartal, Y., Mayer, A.J., Nissim, K., Wool, A.: Firmato: a novel firewall manage-
ment toolkit. ACM Trans. Comput. Syst. 22(4), 381–420 (2004)

http://gauss.ececs.uc.edu/Courses/c626/lectures/SMT/tool-paper.pdf
http://gauss.ececs.uc.edu/Courses/c626/lectures/SMT/tool-paper.pdf

An Algebraic Approach to Automatic Reasoning
for NetKAT Based on Its Operational Semantics

Yuxin Deng, Min Zhang(B), and Guoqing Lei(B)

Shanghai Key Laboratory of Trustworthy Computing,
MOE International Joint Lab of Trustworthy Software,

and International Research Center of Trustworthy Software,
East China Normal University, Shanghai, China

zhangmin@sei.ecnu.edu.cn, 51151500022@ecnu.cn

Abstract. NetKAT is a network programming language with a solid
mathematical foundation. In this paper, we present an operational
semantics and show that it is sound and complete with respect to its orig-
inal axiomatic semantics. We achieve automatic reasoning for NetKAT
such as reachability analysis and model checking of temporal proper-
ties, by formalizing the operational semantics in an algebraic executable
specification language called Maude. In addition, as NetKAT policies are
normalizable, two policies are operationally equivalent if and only if they
can be converted into the same normal form. We provide a formal way of
reasoning about network properties by turning the equivalence checking
problem of NetKAT policies into the normalization problem that can be
automated in Maude.

Keywords: NetKAT · Operational semantics · Model checking · LTL ·
Maude

1 Introduction

In recent years, there has been exciting development in the area of software-
defined networking (SDN), where physically distributed switches are program-
mable and managed in a logically centralized way so as to effectively implement
many applications such as traffic monitoring, access control, and intrusion
detection. Several domain-specific languages for SDN have been proposed, e.g.
[3,6,9,11,14,15], in order to have a high-level abstraction of network programs
where it is more effective to specify, program and reason about the behaviour of
networks. Among them, NetKAT [3] is a network programming language based
on Kleene algebra with tests (KAT) [10]. The design of NetKAT was influenced
by NetCore [10] and Pyretic [12], both of which originate from Frenetic [6].
Different from other languages, NetKAT has a solid mathematical foundation

Partially supported by the National Natural Science Foundation of China (Grant No.
61672229, 61261130589, 61502171), Shanghai Municipal Natural Science Foundation
(16ZR1409100), and ANR 12IS02001 PACE.

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 464–480, 2017.
https://doi.org/10.1007/978-3-319-68690-5 28

An Algebraic Approach to Automatic Reasoning for NetKAT 465

with a denotational semantics and an axiomatic semantics based on KAT. It has
also been extended to the probabilistic setting [7].

In this paper we present an operational semantics for NetKAT. The basic
idea is to view the (global) state of a network as the set of all packets currently
available in the network. Transitions between states are enabled by the execu-
tion of policies: the behaviour of a policy is to transform a given packet into a
(possibly empty) set of packets, which leads to the change of state for the whole
network. The operational semantics induces a natural equivalence on policies.
Intuitively, two policies p and q are equivalent, if starting from any state Π,
both policies can change Π into the same state Π ′. We show that two policies
are operationally equivalent if and only if they are provably equal according to
the equational theory defined in [3]. In other words, our operational semantics is
sound and complete with respect to the original axiomatic semantics of NetKAT.

In order to facilitate the reasoning about NetKAT programs, we formalize the
operational semantics and the normalization theory of NetKAT in an algebraic
formal reasoning system Maude [5]. The operational semantics is executable in
Maude so we can search if a desired state is reachable from a starting state. The
normalization theory of NetKAT tells us that all policies are normalizable, and
two policies are operationally equivalent if and only if they can be converted
into the same normal form. This gives rise to a formal way of reasoning about
network properties by turning the equivalence checking problem of NetKAT poli-
cies into the normalization problem. More specifically, to check if two policies
are equivalent, we first normalize them and check if their normal forms are the
same. Both steps can be automated in Maude. For instance, in order to check
the reachability from one switch to another in a network, we first define a high-
level specification that is independent of the underlying network topology and
a low-level implementation that describes a hop-by-hop routing from the source
to the destination. Both the specification and the implementation are written
as NetKAT policies. We then exploit our rewriting-based reasoning to check the
(in)equivalence of the two policies. If Maude produces a positive answer, meaning
that the two policies are equivalent, we know that the implementation conforms
to the specification, thus the destination switch is indeed reachable from the
source switch. Equivalence checking of policies are also useful for other applica-
tions such as proving compilation correctness and non-interference property of
programs [3]. In addition, we combine the formalized operational semantics with
Maude LTL model checker to verify temporal properties of packets traveling in
a network. This differs from [4], which enriches the original NetKAT language
with temporal predicates to specify properties of a packet’s history. The current
work considers a lightweight NetKAT that does not record any packet history,
but we still achieve automatic reasoning about packet histories by using Maude.

The rest of this paper is structured as follows. In Sect. 2 we recall the syntax
and the axiomatic semantics of NetKAT as given in [3]. In Sect. 3 we present an
operational semantics and show that it is sound and complete with respect to
its axiomatic semantics. In Sect. 4 we formalize the operational and axiomatic
semantics of NetKAT in Maude. In Sect. 5 we use Maude to do reachability

466 Y. Deng et al.

analysis, model checking of LTL properties, and equivalence checking of policies.
In Sect. 6 we discuss our experiments. Finally, we conclude in Sect. 7.

2 NetKAT

We briefly review the syntax and the axiomatic semantics of NetKAT; see [3]
for a more detailed exposition.

NetKAT is based on Kleene algebra with tests (KAT) [10], an algebra for
reasoning about partial correctness of programs. KAT is Kleene algebra (KA),
the algebra of regular expressions, augmented with Boolean tests. Formally, a
KAT is a two-sorted structure (K,B,+, ·, ∗,¬, 0, 1) such that

– (K,+, ·, ∗, 0, 1) is a Kleene algebra
– (B,+, ·,¬, 0, 1) is a Boolean algebra
– (B,+, ·, 0, 1) is a subalgebra of (K,+, ·, 0, 1).
Elements of B and K are called tests and actions respectively; they are called
predicates and policies in NetKAT.

A packet π is a record with fields f1, ..., fk mapping to fixed-width integers
n1, ..., nk, respectively. We assume that every packet contains the same fields,
including two special fields for the switch (sw) and the port (pt) that identify
the position of a packet in a global network. We write π.f for the value in field
f of π, and π[n/f] for the packet obtained by updating field f of π by value n.

Table 1. Syntax of NetKAT

Fields f ::= f1 | · · · | fk

Packets π ::= {f1 = n1, · · · , fk = nk}
Predicates a, b, c ::= 1 Identity Policies

| 0 Drop p, q, r ::= a Filter

| f = n Match | f ← n Modification

| a + b Disjunction | p + q Parallel composition

| a · b Conjunction | p · q Sequential composition

| ¬a Negation | p∗ Kleene star

The syntax of NetKAT is given in Table 1. There are two categories of expres-
sions: predicates (a, b, c) and policies (p, q, r). Predicates include true (1) and
false (0), matches (f = n), negation (¬a), disjunction (a + b), and conjunction
(a · b) operators. Policies include predicates, modifications (f ← n), parallel
(p + q) and sequential (p · q) composition, and iteration (p∗). By convention,
(∗) binds tighter than (·), which binds tighter than (+). The only and key dif-
ference from the original NetKAT presented in [3] is the absence of the dup
operator. This operator is hardly used in practical network programming and is

An Algebraic Approach to Automatic Reasoning for NetKAT 467

introduced mainly to facilitate the completeness proof of an axiomatic semantics
with respect to a denotational semantics [3]. For easy formalization and reason-
ing in Maude, it seems more reasonable to drop this operator than to keep it.

The axiomatic semantics of NetKAT is displayed in Table 2, where p ≤ q is an
abbreviation for p+ q ≡ q. We write � p ≡ q if the equality p ≡ q is derivable by
using the axioms in Table 2. A denotational semantics based on packet histories
is shown to be sound and complete with respect to the axiomatic semantics in [3].

Table 2. Axioms of NetKAT

Kleene Algebra Axioms

p + (q + r) ≡ (p + q) + r KA-Plus-Assoc (p + q) · r ≡ p · r + q · r KA-Seq-Dist-R

p + q ≡ q + p KA-Plus-Comm 0 · p ≡ 0 KA-Zero-Seq

p + 0 ≡ p KA-Plus-Zero p · 0 ≡ 0 KA-Seq-Zero

p + p ≡ p KA-Plus-Idem 1+ p · p∗ ≡ p∗ KA-Unroll-L

p · (q · r) ≡ (p · q) · r KA-Seq-Assoc q + p · r ≤ r ⇒ p∗ · q ≤ r KA-Lfp-L

1 · p ≡ p KA-One-Seq 1+ p∗ · p ≡ p∗ KA-Unroll-R

p · 1 ≡ p KA-Seq-One q + r · p ≤ r ⇒ q · p∗ ≤ r KA-Lfp-R

p · (q + r) ≡ p · q + p · r KA-Seq-Dist-L

Additional Boolean Algebra Axioms

a + (b · c) ≡ (a + b) · (a + c) BA-Plus-Dist a · b ≡ b · a BA-Seq-Comm

a + 1 ≡ 1 BA-Plus-One a · ¬a ≡ 0 BA-Contra

a + ¬a ≡ 1 BA-Excl-Mid a · a ≡ a BA-Seq-Idem

Packet Algebra Axioms

f ← n · f ′ ← n′ ≡ f ′ ← n′ · f ← n, if f �= f ′ PA-Mod-Mod-Comm

f ← n · f ′ = n′ ≡ f ′ = n′ · f ← n, if f �= f ′ PA-Mod-Filter-Comm

f ← n · f = n ≡ f ← n PA-Mod-Filter

f = n · f ← n ≡ f = n PA-Filter-Mod

f ← n · f ← n′ ≡ f ← n′ PA-Mod-Mod

f = n · f = n′ ≡ 0, if n �= n′ PA-Contra
∑

i f = i ≡ 1 PA-Match-All

3 Operational Semantics

Below we give an operational semantics for NetKAT. We assume a global network
that consists of a finite number of switches. Each switch has a finite number of
ports. A state of the network is the set of all packets in the network. We denote
by S the set of all possible states in the network, ranged over by Π.

Intuitively, the behaviour of a policy is to transform a given packet into a
(possibly empty) set of packets. This can be described by an evaluation relation

468 Y. Deng et al.

of the form 〈p, π〉 → Π, where p is a policy, π is a packet to be processed and
Π is the set of packets obtained by applying p to π, as defined in Table 3. The
evaluation relation can be lifted to the form 〈p,Π〉 → Π ′, where both Π and Π ′

are sets of packets, according to the last rule in Table 3.

Table 3. Operational semantics of NetKAT

[Identity]
〈1, π〉 → {π}

[Drop]
〈0, π〉 → ∅

[Modification]
〈f ← n, π〉 → {π[n/f]}

π.f = n
[Match-I]

〈f = n, π〉 → {π}
π.f �= n

[Match-II]
〈f = n, π〉 → ∅

〈a, π〉 → Π
[Negation]

〈¬a, π〉 → {π}\Π

〈p, π〉 → Πp 〈q, π〉 → Πq

[Parallel composition]
〈p + q, π〉 → Πp ∪ Πq

∀i ∈ I : 〈p, πi〉 → Πi

[Packet set]
〈p, {πi}i∈I〉 → ∪i∈IΠi

〈p, π〉 → {πi | i ∈ I} ∀i ∈ I : 〈q, πi〉 → Πi

[Sequential composition]
〈p · q, π〉 → ∪i∈IΠi

〈p0, π〉 → Π0 = {π} ∀i ≥ 0 : 〈pi+1, π〉 = 〈p · pi, π〉 → Πi+1

[Kleene star]
〈p∗, π〉 → ∪i≥0Πi

A pair of the form 〈p,Π〉 represents a configuration from which it remains
to execute by applying policy p to state Π. The execution may terminate in a
final state, or may diverge and never yield a final state, because the rule for p∗

potentially requires infinite computations. However, in practical applications, we
often specify p in such a way that after finitely many iterations, the set Πi will
stabilize to be empty, thus we can terminate the computation when a sufficiently
large bound is reached. We will see in Sect. 6 a concrete example where the length
of the selected path between two nodes in a network actually gives a bound for
the number of iterations.

The operational semantics immediately induces an equivalence on policies.

Definition 1. Two policies are operationally equivalent, written p ∼ q, if

∀Π,Π ′ ∈ S : 〈p,Π〉 → Π ′ ⇔ 〈q,Π〉 → Π ′.

If two policies p and q are provably equal by using the axioms in Table 2,
then they are operationally equivalent.

An Algebraic Approach to Automatic Reasoning for NetKAT 469

Theorem 2 (Completeness). If � p ≡ q then p ∼ q.

Proof. Let us first define a denotational semantics as follows.

[[p]] ∈ Π → P(Π) [[¬a]]π := {π}\([[a]]π)
[[1]]π := {π} [[f ← n]]π := {π[n/f]}
[[0]]π := ∅ [[p + q]]π := [[p]]π ∪ [[q]]π

[[p · q]]π := ([[p]] • [[q]])π [[p∗]]π :=
⋃

i∈N
F iπ

[[f = n]]π :=

{
{π} if π.f = n

∅ otherwise
,

where F 0π := {π} and F i+1π := ([[p]] • F i)π, and • is the Kleisli composition of
functions of type Π → P(Π) defined as:

(f • g)(x) :=
⋃

{g(y) | y ∈ f(x)}.

This is essentially the standard packet-history semantics for NetKAT [3] without
the dup operator. In the absence of this operator, only the current packet is
recorded and all its history is forgotten. By the soundness of the packet-history
semantics, we know that

if � p ≡ q then [[p]] = [[q]]. (1)

By a simple induction on the structure of policies, it is not difficult to show that
[[p]]π = Π iff 〈p, π〉 → Π. It follows that

[[p]] = [[q]] iff p ∼ q. (2)

Combining (1) and (2), we obtain that � p ≡ q implies p ∼ q. ��
The inverse of the above theorem also holds, and the rest of this section

is devoted to proving it. Inspired by [3] we first introduce a notion of reduced
NetKAT in order to define normal forms of policies.

Let f1, ..., fk be a list of all fields of a packet in some fixed order. For each
tuple n̄ = n1, ..., nk of values, let f̄ = n̄ and f̄ ← n̄ denote the expressions

f1 = n1 · . . . · fk = nk f1 ← n1 · . . . · fk ← nk,

respectively. The former is a predicate called an atom and the latter a policy
called a complete assignment. The atoms and the complete assignments are in
one-to-one correspondence according to the values n̄. If α is an atom, we denote
by σα the corresponding complete assignment, and if σ is a complete assignment,
we denote by ασ the corresponding atom. We write At and P for the sets of atoms
and complete assignments, respectively. Note that all matches can be replaced
by atoms and all modifications by complete assignments. Hence, any NetKAT
policy may be viewed as a regular expression over the alphabet At ∪ P .

470 Y. Deng et al.

Definition 3. A policy is in normal form if it is in the form
∑

i∈I αi ·σi, where
I is a finite set, αi ∈ At and σi ∈ P . It degenerates into 0 if I is empty. A policy
p is normalizable if � p ≡ p′ for some p′ in normal form. A normal form p is
uniform if all the summands have the same atom α, that is p =

∑
i∈I α · σi.

Lemma 4. Every policy is normalizable.

Proof. Similar to the normalization proof in [3]. The most difficult case is Kleene
star. In order to obtain the normal form of p∗, we first need to consider the case
that p is a uniform normal form, based on which we consider the general form
and make use of an important KAT theorem called KAT-Denesting in [10]:

(p + q)∗ ≡ p∗ · (q · p∗)∗. ��
Theorem 5 (Soundness). If p ∼ q then � p ≡ q.

Proof. By Lemma 4, we know that there are normal forms p̂ and q̂ such that
� p ≡ p̂ and � q ≡ q̂. By completeness we have p ∼ p̂ and q ∼ q̂, which implies
p̂ ∼ q̂ by transitivity. Let p̂ =

∑
i∈I αi · σi and q̂ =

∑
j∈J βj · ρj . Note that for

each atom α there is a unique packet that satisfies it (if α is f̄ = n̄, then the
packet has fields fi = ni for each 1 ≤ i ≤ k). Let us denote this packet by πα.
The behaviour of any summand αi · σi is to block all packets that do not satisfy
αi and transform the packet παi

into πασi
. In view of KA-Plus-Idem, we may

assume that no two summands in p̂ are the same; similarly for q̂.
Below we infer from

∑

i∈I

αi · σi ∼
∑

j∈J

βj · ρj (3)

that I is in one-to-one correspondence with J and

∀i ∈ I,∃j ∈ J : αi · σi = βj · ρj . (4)

To see this, take any packet π. By the operational semantics of NetKAT, we
know that

〈
∑

i∈I

αi · σi, π〉 →
⋃

i∈I

Πi,

where Πi = {πασi
} if π = παi

, and ∅ otherwise. Similarly,

〈
∑

j∈J

βj · ρj , π〉 →
⋃

j∈J

Π ′
j ,

where Π ′
j = {παρj

} if π = πβj
, and ∅ otherwise. We know from (3) that

⋃

i∈I

Πi =
⋃

j∈J

Π ′
j . (5)

If indeed π = παk
for some k ∈ I, we let [k]1 be the set {i ∈ I | αk = αi} and

[k]2 be the set {j ∈ J | αk = βj}. We have that
⋃

i∈I Πi =
⋃

i∈[k]1
Πi =

⋃
i∈[k]1

{πασi
}

⋃
j∈J Π ′

i =
⋃

j∈[k]2
Π ′

i =
⋃

j∈[k]2
{παρj

}.

An Algebraic Approach to Automatic Reasoning for NetKAT 471

Combining them with (5), we obtain that
⋃

i∈[k]1

{πασi
} =

⋃

j∈[k]2

{παρj
}.

Note that the elements in the left union are pair-wise different and similarly for
the elements in the right union. Therefore, [k]1 is in one-to-one correspondence
with [k]2, that is, for each i ∈ [k]1 there is a unique j ∈ [k]2 such that πασi

= παρj
.

Observe that {[k]1 | k ∈ I} is actually a partition of I, and so is {[k]2 | k ∈ I}
for J (there is no j ∈ J with βj �= αi for all i ∈ I, otherwise the packet
πβj

would be blocked by p̂ but not by q̂). This means that I is in one-to-one
correspondence with J and for each i ∈ I there is a corresponding j ∈ J with
αi = βj and πασi

= παρj
. Note that the only complete assignment (a string in

P) that produces πασi
is σi. So we must have σi = ρj and hence αi ·σi = βj · ρj .

Therefore, we have completed the proof of (4).
As a consequence, we can derive � ∑

i∈I αi · σi ≡ ∑
j∈J βj · ρj by using

KA-Plus-Comm, and hence � p ≡ q by transitivity. ��
The proof of Lemma 4 is largely influenced by [3]. However, due to the absence

of the dup operator, our proof of Theorem 5 is much simpler and more elementary
than its counterpart [3, Theorem 2]; the latter is based on a reduction to the
completeness of Kleene algebra, which is not needed any more in our proof.

4 Formalization of NetKAT in Maude

4.1 Maude in a Nutshell

Maude is a state-of-the-art algebraic specification language and an efficient
rewrite engine [5], which can be used to formally define semantics of program-
ming languages. One main feature of Maude is that formal definitions in Maude
are executable [13], which allows us to execute programs with the defined seman-
tics and perform formal analysis for the programs.

Maude specifies both equational theories and rewrite theories. An equational
theory is a pair (Σ,E ∪ A), where Σ is a signature specifying the sorts and
operators, E is a set of equations, and A is a set of equational attributes. An
equation is an unoriented pair of two terms t1, t2 of the same sort. In Maude,
it is defined in the form of (eq t1 = t2.). An equation can be conditional, and
it is defined in the form of (ceq t1 = t2 if c.), where c can be an ordinary
equation t = t′, a matching equation t := t′, or a conjunction of such equations.
A matching equation, e.g., t := t′, is mathematically treated as an ordinary
equation, but operationally t is matched against the canonical form of t′ and
the new variables in t are instantiated by the matching. Although an equation
is unoriented mathematically, they are used only from left to right by Maude
for computation. Equations must be guaranteed terminating and confluent when
they are used as simplification rules. Intuitively, terminating means that there
must not exist an infinite sequence of applying these equations, and confluence
means that the final result after applying these equations must be unique.

472 Y. Deng et al.

A rewrite theory R = (Σ,E ∪ A,R) consists of an underlying equational
theory (Σ,E ∪ A) and a set of (possibly conditional) rewrite rules R. A rewrite
rule is an oriented pair (from left to right), which is defined in the form of
(rl t1 => t2.) for the case of unconditional rules or (crl t1 => t2 if c′.) for
the case of conditional rules, where c′ is a more general condition than that
in conditional equations by allowing rewrite condition in the form of t => t′.
A rewrite condition t => t′ holds if and only if there exists a finite rewrite
sequence from t to t′ by applying the rewrite rules in R. Computationally, both
equations and rewrite rules are used from left to right to rewrite target terms.
Mathematically, equations are interpreted as the definition of functions, while
rewrite rules are interpreted as transitions or inference rules. Unlike equations,
rewrite rules are not necessarily terminating and confluent.

Rewrite theories can be used to naturally specify transition systems or logi-
cal frameworks. The underlying equational theory is used to specify the statics
of systems such as data types, state structures, and R specifies the dynamics,
i.e., the transitions among states. System states are specified as elements of an
algebraic data type, namely, the initial algebra of the equational theory (Σ,E).
In Σ state constructors are declared to build up distributed states out of sim-
pler state components. The equations in E specify the algebraic identities that
such distributed states enjoy. The rewrite rules in R specify the local concurrent
transitions of transition systems.

4.2 Formalization of the Operational Semantics of NetKAT

Before formalizing the operational semantics of NetKAT, we need first formalize
the basic concepts such as fields, packets, policies and configuration in NetKAT.
Maude allows for user-defined data types. We explain the definition of some
important data types such as Field, Packet, Policy and Configuration.

1 sorts Fie ldId , Fie ld , Pol icy , Predicate , Conf igurat ion .
2 subsort Fie ld < Packet .
3 ops s r c typ dst vlan ip−s r c ip−dst tcp−s r c tcp−dst udp−s r c

udp−dst sw pt : −> Fie ld Id [c to r] .
4 op (:) : F i e ld Id Int −> Fie ld [c to r] .
5 op n i l : −> Packet [c t o r] .
6 op : Packet Packet −> Packet [assoc c to r id : n i l] .
7 op ← : F i e l d Id Int −> Pol i cy [c to r] .
8 op + : Po l i cy Po l i cy −> Pol i cy [c to r assoc comm] .
9 op · : Po l i cy Po l i cy −> Pol i cy [c to r assoc] .

10 op ∗ : Po l i cy −> Pol i cy [c to r] .
11 ops l o : −> Pred i cate [c t o r] .
12 op = : F i e ld Id Int −> Pred i cate [c t o r] .
13 op + : Pred i cate Pred i cate −> Pred i cate [c t o r assoc comm] .
14 op # : Pred i cate Pred i cate −> Pred i cate [c t o r assoc comm] .
15 op ˜ : Pred i cate −> Pred i cate [c t o r] .
16 op < , > : Po l i cy PackSet −> Conf igurat ion .

An Algebraic Approach to Automatic Reasoning for NetKAT 473

The Maude keyword sorts is used to declare sorts to represent sets of data
elements, and subsort declares a partial order relation of two sorts. By declaring
that Field is a subsort of Packet, it formalizes the fact that a field is also
regarded as a packet, but not vice versa. Keyword op (resp. ops) is used to declare
an operator (resp. multiple operators). Maude allows infix operators, in which the
underbars indicate the place where arguments should be located. Operator (:)
is used to construct fields with field identifiers and integer numbers. Operator
nil is called a constant because it does not take any arguments, and it represents
an empty packet. The union of two packets constitute a new one, as formalized
by the operator . The operators declared for policies and predicates have clear
correspondence to the syntax defined in Table 1, and thus we omit more detailed
explanations about them. It is worth mentioning that ctor, assoc and comm are
attributions of operators, declaring that an operator is a constructor, associative
and commutative, respectively. We use o to represent Drop and l for Identity.
We declare a new operator # instead of · to represent conjunction of predicates
because · is used for sequential composition of policies and is not commutative,
while conjunction of predicates is commutative.

We declare a sort Configration to represent the sets of the pairs of the form
〈p,Π〉. An element of sort Configuration is called a configuration, written in
the form of <p,PI> with a policy p and a set PI of packets.

The operational semantics of NetKAT is formalized by the transformation
of a configuration into another. As defined in Table 3, the execution of a policy
p · q can be viewed as a sequential execution of p and q. We define the following
set of rewrite rules with each formalizing one case for the structure of p.

1 rl [o] : < o, PI > => < l, empty > .

2 rl [MAT] : < (F = N) · P, PI > => < P, filter(PI ,F,N)> .

3 crl [NEG] : < (~ Q) · P, PI > => < P, PI \ PI’ >

4 if < Q, PI > => < l, PI ’ > .

5 rl [ASG] : < (F ← N) · P, PI > => < P, update(PI,F,N)> .

6 crl [COM] : < (P + Q) · R, PI > => < R, (PI1 , PI2) >

7 if < P, PI > => < l, PI1 > /\ < Q, PI > => < l, PI2 > .

8 rl [KLE -0] : < (P *) · R, PI > => < R, PI >

9 rl [KLE -1] : < (P *) · R, PI > => < P · R, PI1 > .

10 rl [KLE -n] : < (P *) · R, PI > => < P · (P *) · R, PI > .

The first rule specifies the semantics of Drop, i.e., 0 in NetKAT. The rule in
Line 2 formalizes the operational semantics of match. In the rule, F, N, P and PI
are Maude variables of sort Field, Nat, Policy and PackSet. These variables
are universally quantified. Thus, (F = N) represents an arbitrary match, P an
arbitrary policy, and PI an arbitrary set of packets. After the execution of (F =
N), those packets whose value of the field F is not N are removed from PI. The
rule in Line 3 formalizes the case of negation. It is worth mentioning that the
condition in the rule is a rewrite condition, meaning that the rule takes place if
there is a transition from <Q, PI> to <l, PI’>. The transition means that after
executing Q on a set PI of packets, we obtain a new set PI’ of packets. According
to the operational semantics of negation, the packets that are in both PI’ and
PI must be removed from PI after ~ Q is executed, as defined by the body of

474 Y. Deng et al.

the rule. The last three rules formalize the operational semantics of Kleene star
for the cases of executing policy P by zero, one or more times, respectively.

5 Automatic Reasoning for NetKAT

By the executable operational semantics we can perform various formal analysis
on NetKAT policies using Maude’s built-in functionalities such as simulation,
state space exploration and LTL model checking.

5.1 Reachability Analysis by State Exploration

Given a policy p and a set PI of packets, one fundamental analysis is to ver-
ify if the packets in PI will eventually reach their destination. Because all the
rules except for those about Kleene star are deterministic, there is one and only
one result if in p there is no Kleene star. We can check the reachability prob-
lem by calculating the execution result using Maude’s rewrite command, i.e.,
rew <p, PI>, which simulates the execution of the policy on PI using the rewrite
rules defined for the operational semantics of NetKAT.

If there are Kleene stars in p, the results after applying p on PI may be
multiple. If that is the case, it is important to verify if some desired result can
be obtained by applying p to PI. It is equivalent to checking the reachability
from the initial configuration <p, PI> to some desired destination <p’, PI’>,
where p’ is the remaining policy to execute when PI’ is reached after applying p
to PI. The reachability verification can be achieved by Maude’s state exploration
function using search command as follows:

1 search [m,n] < p, PI > =>* < p’, PI ’ > [such that condition] .

In the square brackets are optional arguments of the command, where m
and n are natural numbers specifying the expected number of solutions and
the maximal rewriting steps, and condition is a Boolean term specifying the
condition that target configurations must satisfy.

5.2 Model Checking of LTL Properties of NetKAT

Using Maude LTL model checker, we can verify not only the reachability of
packets with respect to a policy, but also some temporal properties that the
policy needs to satisfy. Temporal properties of a policy are used to describe
the behavior that the policy should have when packets are transmitted in the
network. By model checking the temporal properties, we study the process of
packet transmission as well as the transmission result.

The usage of Maude LTL model checker follows the conventional methodology
for model checking, i.e., we need first define state propositions, then define LTL
formulas with the state propositions and logical as well as temporal connectors,
and finally do model checking with a fixed initial state and an LTL formula.

An Algebraic Approach to Automatic Reasoning for NetKAT 475

1 mod NETKAT -LTL -MODELCHECKING is

2 including OPERATIONAL -SEMANTICS + MODEL -CHECKER .

3 subsort Configuration < State .

4 ops hasPS hasDS : Int Int -> Prop . vars SW PR DS : Int .

5 var P : Policy . var PS : PackSet . var PK : Packet .

6 eq < P , PS > |= hasDS(SW,PR) = checkHasDS(PS,DS,PR) .

7 eq < P , PS > |= hasPS(SW,PR) = checkHasPS(PS,SW,PR) .

8 eq C:Configuration |= PP:Prop = false [owise] .

9 endm

As an example, we show model checking of forwarding traces of packets in
Maude. In the above Maude module two state propositions hasDS and hasPS
are defined. Given a packet PR, a switch DS and a configuration <p,PS>, hasDS
returns true if there is a packet PR in PS whose destination is DS. The other one
i.e., hasPS, returns true if there is a packet PR at SW in PS. They are defined by
two equations at Lines 6 and 7, where two auxiliary predicates are needed. We
omit the detailed definition of the two predicates due to space limitation.

With predefined state propositions we can define and model check LTL prop-
erties that are composed by the propositions and LTL operators. For instance,
the first command below is used to model check whether a packet X whose des-
tination is switch Y eventually reaches the switch Y with respect to policy p.

1 red modelCheck(< p, PI >, [](hasDS(X,Y) -> <> hasPS(X,Y))) .

2 red modelCheck(< p, PI >, [](hasPS(X,Y1)/\hasDS(X,Y2) -> <>

hasPS(X,Y2))) .

The second command above is used to verify the property that wherever a
packet X is, e.g., Y1, it must be eventually delivered to switch Y2 if its destination
is Y2. This verification is more general than the first one in that we can verify the
reachability of two arbitrary switches in a topology w.r.t. to a forwarding policy.

5.3 Equivalence Proving by Normalization

By Theorem 5 we can verify the equivalence of two policies p, q by reducing them
to their normal forms and checking if they are syntactically equal. To automate
the process, we formalize the normalization of policies based on the proof of
Lemma 4 in Maude.

We declare a function norm which takes two arguments, i.e., a policy in
NetKAT and a set of field information, and returns the normal form of the
policy. Part of the declaration and the definition of norm is listed as follows:

1 op norm : Po l i cy FieldRangeSet −> NormalForm .
2 ceq norm(F = N, FS) = (i f PS =/= empty then normPred (F = N ·

PS) else normPred (F = N) f i) i f PS := com(rm(FS ,F)) .
3 eq norm(˜(F = N) , FS) = normPred ((˜ (F = N)) · com(FS)) .
4 eq norm(F ← N, FS) = normPoli (com(FS) , (F ← N)) .
5 eq norm(PL1 + PL2 , FS) = norm(PL1 , FS) + norm(PL2 , FS) .
6 eq norm(PD · PD1, FS) = product (norm(PD, FS) ,norm(PD1,FS)) .
7 . . .

476 Y. Deng et al.

8 ceq norm ((PL) ∗ , FS) = normPred (com(FS)) + NF
9 i f NF := norm(PL,FS) /\ uniform (NF) .

10 ceq norm ((PL) ∗ , FS) = product (NF2, normPred (com(FS)) + NF3)
11 i f NF := norm(PL,FS) /\ not uniform (NF) /\
12 (AT,PL1)+NF1 := NF /\ NF2 := norm(n f2po l (NF1) ∗ ,FS) /\
13 NF3 := product ((AT,PL1) ,NF2) .

We take the formalization of the normalization of match and Kleene star for
examples. The equation in Line 2 formalizes the normalization of match F = N
with respect to a set FS of field information. In the equation, com is a function
which takes a set of field information such as {(f1,m1), (f2,m2), . . . , (fk,mk)}
with each mi ∈ N (1 ≤ i ≤ k), and returns a predicate

∑

x1≤m1,x2≤m2,...,xn≤mn

(f1 = x1) · (f2 = x2) · . . . · (fk = xk). (6)

Each summand of the predicate and the match forms an atom α. The customized
function normPred returns a parallel composition of all α · σα.

The last two equations define the normalization of the Kleene star of a policy,
e.g., PL *, where PL is a policy. The equation in Line 9 defines the case where
the normal form of PL is uniform. The last equation recursively defines the
non-uniform case. If the normal form NF of the policy PL is not uniform, it
can be rewritten in the form of (AT, PL1) + NF1 where AT is an atom, PL1
is the complete assignment of AT, and (AT, PL1) is a Maude representation of
AT · PL1. We then compute the normal form of NF1 and denote it by NF2. Using
KAT-Denesting we obtain the normal form of PL, as defined by the right-hand
term in the body of the equation. The equation formalizes the normalization of
Kleene star when the summands in PL are not uniform, as described in the proof
of Lemma 4.

Fig. 1. An example of Australia network named aarnet

An Algebraic Approach to Automatic Reasoning for NetKAT 477

6 Experiments and Evaluation

In this section, we evaluate the proposed approach by formally verifying the
reachability of nodes in the network topologies defined in the website named
Internet Topology Zoo [1].

As a concrete example, we consider the network topology highlighting the
connection between Sydney and Darwin which is depicted in Fig. 1(a). There is a
path between Sydney1 and Darwin. It is marked by yellow nodes in the network.
The path can be formalized as t that specifies all the bi-directional links along
the path. We declare a forwarding policy p for the switches in that path, which
are defined in NetKAT as shown in Fig. 1(b).

The following search command verifies the reachability between Sydney1
and Darwin:

1 search [1] < (p · t)∗, | (dst : 5) (sw : 0) (pt : X:Nat) > =>!

2 < l | (dst : 5) (sw : 5) (pt : Y:Nat) > .

Maude returns one solution with Y being instantiated to be 2. It means that
there indeed exists a path, along which packets can reach node 5 from port 2 of
node 0 after applying the policy (p · t)∗.

Searching only shows the reachability of two nodes but cannot guarantee a
packet sent from node 0 must eventually reach node 5 based on the result. Such
property can be verified by Maude LTL model checking as explained in Sect. 5.2.
The following command is used to verify the property.

1 red modelCheck(< (p · t)∗, (dst : 5)(sw : 0)(pk : 1) >,

2 [](hasPS (1,0) /\ hasDS (1,5) -> <> hasPS (1,5))) .

Maude returns true with the above command, which means that if there is a
packet in Host 0 (Syndey1) with destination being Host 5 (Darwin), the packet
must eventually reach Darwin.

Another alternative of verifying the reachability between two nodes in a
network is to prove the equivalence of a specification and an implementation by
normalization, as explained in Sect. 5.3. In this example, we define a specification
policy s which only specifies the effect, but ignores the concrete implementation.
For instance, the first summand specifies that all the packets sent from node
0 to node 5 must arrive node 5. The policy i formalizes the implementation of
sending/receiving packets along the path described by t between nodes 0 and 5.

s �((sw = 0) · (dst = 5) · (sw ← 5) · (pt ← 2))

+ ((sw = 5) · (dst = 0) · (sw ← 0) · (pt ← 1)) (Specification)

i �((sw = 0) · (dst = 5)) · ((p · t)∗) · ((sw = 5) · (pt = 2))

+ ((sw = 5) · (dst = 0)) · ((p · t)∗) · ((sw = 0) · (pt = 1)) (Implementation)

We prove that the specification and the implementation are equal by check-
ing their normal forms are the same with the following command:

1 red norm(i,(sw ,5)(pt ,2)(dst ,5))==norm(s,(sw ,5)(pt ,2)(dst ,5)).

478 Y. Deng et al.

Maude returns true, meaning that the specification and the implementation
are operationally equivalent. Therefore, packets can be routed from node 0 to
node 5, and vice versa.

Table 4. Reachability verification of the network topologies in Internet Topology Zoo
using searching, model checking and normalization

Network name Nodes By searching By model checking By normalization

Result Time Result Time Result Time

Aarnet 3 � 1ms � 0ms � 2.12min

Bellsouth 4 � 0ms � 1ms � 9.53min

Bellsouth 5 � 0ms � 1ms � 38.47min

Aarnet 6 � 4ms � 2ms � 1.92 h

Aarnet 7 � 6ms � 3ms � 5.84 h

Aarnet 8 � 5ms � 3ms � 10.52 h

Aarnet 9 � 8ms � 3ms � 21.89 h

Aarnet 10 � 8ms � 3ms � 23.13 h

We verify the reachability property of eight network topologies in Internet
Topology Zoo. For each we use three different approaches i.e., searching, model
checking, and normalization, as we explained above. Table 4 shows the verifica-
tion results. All the experiments are conducted on a desktop running Ubuntu
15.10 with an Intel(R) Core(TM) i5-4590 @ 3.30 GHz CPU and 2.00 GB memory.
The data shows that as far as reachability properties are concerned, it is faster to
search a desired path by executing the operational semantics than to check the
equivalence of two policies by normalization. The inefficiency of normalization
can be explained as follows. As we can see from (6), to obtain the normal form of
a policy we need to do the Cartesian product of terms. When the number of nodes
in a network increases, the size of the normal form of the term that describes
the network topology will grow exponentially. Maude expands terms according
to our definition of normal form without any optimization, which makes normal-
ization a very time-consuming process. However, equivalence checking can be
used for verifying other network properties such as loop-freedom and translation
validation [8]. It also shows that model checking has a better performance than
searching with the increment of node numbers.

7 Concluding Remarks

We have proposed an operational semantics for NetKAT and shown that it is
sound and complete with respect to the axiomatic semantics given by Anderson
et al. in their seminal paper. We have also formalized the operational semantics
and the equational theory of NetKAT in Maude, which allows us to normalize

An Algebraic Approach to Automatic Reasoning for NetKAT 479

NetKAT expressions and to check if two expressions are equivalent. In addition,
we have investigated other verification techniques including searching and model
checking. They constitute a formal approach of reasoning about NetKAT expres-
sions with applications such as checking reachability properties in networks. The
full Maude code is available online [2]. To our knowledge, the current work is
the first to employ a rewrite engine for manipulating NetKAT expressions so as
to verify network properties.

As mentioned in Sect. 1, NetKAT is proposed in [3], with its axiomatic and
denotational semantics carefully defined by building upon previous work on
Kleene algebra and earlier network programming languages; see the references
in the aforementioned work. In order to verify network properties, it is crucial
to develop highly efficient algorithms for checking the equivalence of NetKAT
expressions. An attempt in this direction is the coalgebraic decision procedure
proposed in [8]. It first converts two NetKAT expressions into two automata by
Brzozowski derivatives, and then tests if the automata are bisimilar. On the other
hand, our approach heavily relies on the rewriting of NetKAT expressions into
normal forms. In terms of time efficiency, unfortunately, both the coalgebraic
decision procedure in [8] and our rewriting-based approach are not satisfactory
when handling large networks. Therefore, an interesting future work is to pursue
faster algorithms for checking the equivalence of NetKAT expressions.

References

1. The Internet Topology Zoo Website. http://www.topology-zoo.org
2. The Maude Code. https://github.com/zhmtechie/NetKAT-Maude
3. Anderson, C.J., Foster, N., Guha, A., Jeannin, J., Kozen, D., Schlesinger, C.,

Walker, D.: NetKAT: semantic foundations for networks. In: Proceedings of the
POPL 2014, pp. 113–126. ACM (2014)

4. Beckett, R., Greenberg, M., Walker, D.: Temporal NetKAT. In: Proceedings of the
PLDI 2016, pp. 386–401. ACM (2016)

5. Clavel, M., Durán, F., Eker, S. (eds.): All About Maude - A High-Performance
Logical Framework, How to Specify, Program and Verify Systems in Rewriting
Logic. LNCS, vol. 4350. Springer, Heidelberg (2007)

6. Foster, N., Harrison, R., Freedman, M.J., Monsanto, C., Rexford, J., Story, A.,
Walker, D.: Frenetic: a network programming language. In: Proceedings of the
ICFP 2011, pp. 279–291. ACM (2011)

7. Foster, N., Kozen, D., Mamouras, K., Reitblatt, M., Silva, A.: Probabilistic
NetKAT. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 282–309.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49498-1 12

8. Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalgebraic decision
procedure for NetKAT. In: Proceedings of the POPL 2015, pp. 343–355. ACM
(2015)

9. Guha, A., Reitblatt, M., Foster, N.: Machine-verified network controllers. In: Pro-
ceedings of the PLDI 2013, pp. 483–494. ACM (2013)

10. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997)

http://www.topology-zoo.org
https://github.com/zhmtechie/NetKAT-Maude
http://dx.doi.org/10.1007/978-3-662-49498-1_12

480 Y. Deng et al.

11. Monsanto, C., Foster, N., Harrison, R., Walker, D.: A compiler and run-time system
for network programming languages. In: Proceedings of the POPL 2012, pp. 217–
230. ACM (2012)

12. Monsanto, C., Reich, J., Foster, N., Rexford, J., Walker, D.: Composing software
defined networks. In: Proceedings of the NSDI 2013, pp. 1–13. USENIX Association
(2013)

13. Verdejo, A., Mart́ı-Oliet, N.: Executable structural operational semantics in
Maude. J. Log. Algebr. Program. 67(1–2), 226–293 (2006)

14. Voellmy, A., Hudak, P.: Nettle: taking the sting out of programming network
routers. In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp.
235–249. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18378-2 19

15. Voellmy, A., Wang, J., Yang, Y.R., Ford, B., Hudak, P.: Maple: simplifying SDN
programming using algorithmic policies. In: Proceedings of the SIGCOMM 2013,
pp. 87–98. ACM (2013)

http://dx.doi.org/10.1007/978-3-642-18378-2_19

Pareto Optimal Reachability Analysis for Simple
Priced Timed Automata

Zhengkui Zhang1(B), Brian Nielsen1, Kim Guldstrand Larsen1, Gilles Nies2,
Marvin Stenger2, and Holger Hermanns2

1 Department of Computer Science, Aalborg University, Aalborg, Denmark
{zhzhang,bnielsen,kgl}@cs.aau.dk

2 Department of Computer Science, Saarland University, Saarbrücken, Germany
{nies,s9mnsten,hermanns}@cs.uni-saarland.de

Abstract. We propose Pareto optimal reachability analysis to solve
multi-objective scheduling and planing problems using real-time model
checking techniques. Not only the makespan of a schedule, but also other
objectives involving quantities like performance, energy, risk, cost etc., can
be optimized simultaneously in balance. We develop the Pareto optimal
reachability algorithm for Uppaal to explore the state-space and com-
pute the goal states on which all objectives will reach a Pareto optimum.
After that diagnostic traces are generated from the initial state to the goal
states, and Pareto optimal schedules are obtainable from those traces. We
demonstrate the usefulness of this new feature by two case studies.

1 Introduction

In reactive system design, engineers face the challenge of optimizing schedules
regarding a variety of quantitative objectives like the makespan of a schedule,
performance, energy consumption, resource intensiveness, risk assessment etc.
Because in most cases a subset of these objectives are conflicting, there may
not always exist any single solution that can simultaneously optimize all objec-
tives, but advisable trade-offs ought to be made by human decision makers. This
problem is generally called multi-objective optimization (MOO), which has been
studied extensively in the areas such as economics, operation research, game the-
ory, and control theory. Vilfredo Pareto (1848–1923) proposed the well-known
concept of Pareto optimality as “the state of allocating resources where it is
impossible to make any one individual better off without making at least one
individual worse off.” A solution is called Pareto optimal if none of the objec-
tives can be improved in value without degrading some of the other objective
values. Without additional preference information, all Pareto optimal solutions
are considered equally good.

One of the most popular formalisms to model stimuli and behaviors of real-
time reactive systems is timed automata (TA) [1], which was introduced by Alur
and Dill in 1994 for the purpose of verification. It is capable of modeling guards,

This work has been supported by Danish National Research Foundation – Center
for Foundations of Cyber-Physical Systems, a Sino-Danish research center.

c© Springer International Publishing AG 2017
Z. Duan and L. Ong (Eds.): ICFEM 2017, LNCS 10610, pp. 481–495, 2017.
https://doi.org/10.1007/978-3-319-68690-5 29

482 Z. Zhang et al.

time constraints, instantaneous actions and time elapsing in a natural way.
Real-time model checkers such as Uppaal [4] and Kronos [11] based on the
network of timed automata were developed. They have been successfully applied
to solve enormous industrial verification case studies including but not limited
to control protocols [7,20], schedulability analysis [10,13,19], etc.

Related Work. Pareto optimality concept is widely applied to solve many
multi-objective scheduling problems [3,15,16]. In real-time system design,
mature model checkers like Uppaal and Kronos have been successfully
extended to do quantitative analysis. In particular, Cora aims at solving opti-
mal scheduling and planning problems modeled by priced timed automata (PTA)
[2,6]. PTA uses an additional observer clock to accumulate cost according to
either discrete price annotations on transitions or price rates on locations. The
scheduling problem boils down to a cost-optimal reachability problem. The
reachability algorithm is also enhanced by branch and bound (B&B), which can
effectively prune parts of the state-space that for sure will not to lead to an
optimal solution, avoiding exploring the entire state-space. In [18] the optimal
reachability analysis on the multi-priced timed automata (MPTA) was proved
decidable. However, the model checking problem on MPTA was proven unde-
cidable [12]. In [14], efficient algorithms for multi-objective probabilisitic model
checking of a stochastic system were proposed and implemented in Prism.

Contributions. Firstly we introduce simple priced timed automata (SPTA) –
a priced extension of TA – to model a subset of multi-objective scheduling prob-
lems. Particularly we only allow discrete prices on transitions for multiple cost
variables. There exist more general multi-priced timed automata (MPTA) which
allow price rates on locations. However, data structures and reachability algo-
rithms on MPTA are difficult to implement, because multiple cost variables
with respect to price rates entail constructing high-dimensional priced zones
and complex operations on priced zones. In contrast, SPTA only need a vector
of integer variables to maintain different accumulated costs. Although price rate
on locations are not supported, SPTA may also suffice for a number of classi-
cal scheduling cases, where the tasks’ spans are pre-determined thus the energy
consumption of every task can be approximated in advance, or the resources
required by every task are not affected by the task’s span at all. Secondly we
provide the Pareto optimal reachability (POR) algorithms to compute Pareto
optimal costs when reaching target goal states. Diagnostic traces are obtainable
from the initial state to the goal states, and Pareto optimal schedules are obtain-
able from those traces. Thirdly we implement the semantics of SPTA and POR
algorithms as a new feature in Uppaal. Fourthly we demonstrate the usage of
this feature using two case studies: (1) time-optimal and power-aware scheduling
of a task graph; (2) power-aware scheduling of the GomX-3 nano satellite.

Outline. The rest of the paper is organized as follows. Section 2 defines
simple priced automata and Pareto optimality. Section 3 explains the Pareto
optimal reachability algorithms and implementation. Section 4 gives the experi-
ment results of two case studies. Section 5 concludes.

Pareto Optimal Reachability Analysis for Simple Priced Timed Automata 483

2 Preliminaries

This section gives the formal definitions for simple priced timed automata
(SPTA), and recalls the notition of Pareto optimality.

2.1 Simple Priced Timed Automata

Let X = {x, y, . . . } be a finite set of clocks. We define B(X) as the set of clock
constraints over X generated by grammar: g, g1, g2:: = x �� n |x−y �� n | g1∧g2,
where x, y ∈ X are clocks, n ∈ N and ��∈ {≤, <,=, >,≥}.

Definition 1. A Timed Automaton (TA) [1] is a 6-tuple A = (L, �0,X,
Σ, E, Inv), where: L is a finite set of locations; �0 ∈ L is the initial location;
X is a finite set of non-negative real-valued clocks; Σ is a finite set of actions;
E ⊆ L × B(X) × Σ × 2X × L is a finite set of edges, each of which contains
a source location, a guard, an action, a set of clocks to be reset and a target
location; Inv : L → B(X) sets an invariant for each location. For simplicity an
edge (�, g, a, r, �′) ∈ E is written as �

g,a,r−−−→ �′.

Let p̄ = [p1, p2, . . . , pk] denote a finite vector of k prices, where pi ∈ N.

Definition 2. A Simple Priced Timed Automaton (SPTA) extends TA as a
7-tuple S = (A, P), where: A is timed automaton, P : E → N

k assigns vectors
of prices p̄ to edges.

Definition 3. The semantics of a simple priced timed automaton S is a priced
timed transition system SS = (Q,Q0,Σ,→), where: Q = {(�, v) | (�, v) ∈ L ×
R

X
≥0 and v |= Inv(�)} are states, Q0 = (�0, 0) is the initial state, Σ is the finite

set of actions, → ⊆ Q×(Σ∪R≥0)×Q is the transition relation defined separately
for action a ∈ Σ and delay d ∈ R≥0 as:

(1) (�, v) a−→p̄ (�′, v′) if there is an edge (�
g,a,r−−−→ �′) ∈ E such that v |= g,

v′ = v[r 	→ 0], v′ |= Inv(�′), and p̄ = P (�
g,a,r−−−→ �′) is the vector of prices for

this edge;
(2) (�, v) d−→0̄ (�, v + d) such that v |= Inv(�), v + d |= Inv(�), and 0̄ denotes
the zero-price vector for delay.

Definition 4. A trace (or run) ρ of S can be expressed in SS as a sequence
of alternative delay and action transitions starting from the initial state: ρ =
q0

d1−→0̄ q′
0

a1−→p̄1 q1
d2−→0̄ q′

1
a2−→p̄2 · · · dn−→0̄ q′

n−1
an−→p̄n

qn · · · , where ai ∈ Σ,
di ∈ R≥0, qi is state (�i, vi), and q′

i is reached from qi after delay di+1. State q
is reachable if there exists a finite trace with the final state of q.

Definition 5. The cost (or cost vector) of a finite trace ρ is defined as the finite
sum of all the prices along the trace Cost(ρ) = Σn

i=1p̄i. For a given location �,
multi-objective scheduling on SPTA is to minimize Cost(ρ), where finite traces
ρ end in (�, v) for all possible v.

484 Z. Zhang et al.

A B C1
2

4
3

x ≤ 3 x := 0
x > 2

Fig. 1. An example of SPTA

An example SPTA (in Fig. 1) has a single clock x, and each transition is
decorated with a vector of two prices. A sample run1 of this SPTA is for instance:

(A, 0)

ε(2),

⎡
⎣0

0

⎤
⎦

−−−−−−→ (A, 2)

τ,

⎡
⎣1

2

⎤
⎦

−−−−→ (B, 2)

ε(0.5),

⎡
⎣0

0

⎤
⎦

−−−−−−−→ (B, 2.5)

τ,

⎡
⎣4

3

⎤
⎦

−−−−→ (C, 2.5)

The runtime of this trace to reach location C is 2.5 time units. The cost of this
trace, which is [5, 5]T , is the summary of all price vectors along the transitions.
It is worth noting that only discrete prices on the transitions contribute to the
final cost, while prices at locations during the delay stay at 0̄ constantly and
never accumulating with time elapsing.

2.2 Pareto Optimality

Multi-objective scheduling (MOS) tries to minimize a vector of costs. We resort
to the concept of Pareto optimality to compute a set of Pareto optimal result cost
vectors that are mutually incomparable. Then human decision makers can choose
the most appropriate results that best fit and balance the problem objectives.

Definition 6. Let c̄ = [c1, c2, . . . , ck] , b̄ = [b1, b2, . . . , bk] denote two cost vec-
tors. c̄ Pareto dominates b̄ (written as c̄ ≺ b̄), iff both the following conditions
are true:

(1) ∀i ∈ {1, . . . , k} ci ≤ bi;
(2) ∃j ∈ {1, . . . , k} cj < bj .

Definition 7. A result cost vector c̄ is Pareto optimal if there does not exist
another cost vector b̄ such that b̄ ≺ c̄. The set of Pareto optimal results is called
the Pareto frontier.

3 Pareto Optimal Reachability

The real-time model-checker Uppaal works by exploring a finite symbolic reach-
ability graph, where the nodes are symbolic states. A symbolic state of TA is a
pair (�, Z), where � ∈ L is a location, and Z = {v | v |= gz, gz ∈ B(X)} is
a convex set of clock valuations called zone [17], which is normally efficiently
represented and stored in memory as difference bound matrices (DBM) [8].
1 ε denotes a delay at locations; τ denotes an inner transition between locations.

Pareto Optimal Reachability Analysis for Simple Priced Timed Automata 485

The symbolic state of SPTA extends that of TA as (�, 〈Z, c̄〉), where c̄ is the
cost (or cost vector) of a finite trace ρ that ends in (�, v) and v ∈ Z. Therefore,
symbolic states in SPTA with the same � and Z are discriminated by c̄. We
call 〈Z, c̄〉 the discrete priced zone of a symbolic state in SPTA. We further
define Pareto dominance between discrete priced zones as: 〈G, ū〉 � 〈Z, c̄〉 iff
Z ⊆ G ∧ (ū = c̄ ∨ ū ≺ c̄).

3.1 Pareto Optimum on Prices

Algorithm 1 shows the Pareto optimal reachability algorithm that computes the
Pareto optimal cost vector at goal states satisfying the proposition Goal. Wait-

ing and Passed keep unexplored and explored symbolic states respectively; and
Waiting has the initial state. Front maintains the Pareto frontier consisting
of current Pareto optimal costs at goal states. Inside procedure Main, whenever
Waiting is not empty, an unexplored state is popped from Waiting in a loop.
If the state is a goal state, the current cost c̄ is passed into procedure Update
to check for Pareto dominance with the existing solutions inside Front, and
update Front if necessary. At line 10 all elements in Front that are Pareto
dominated by c̄ are discarded. At line 12 c̄ is added into Front, if existing
elements in Front do not Pareto dominate it.

If the state is not goal state, it is subject to both inclusion checking and B&B
elimination at line 5, and discarded if either test satisfies. Procedure Included
determines that a state is included, if a previously explored state in Passed with
the same location has its discrete priced zone dominate that of the current state
(as 〈Z ′, c̄′〉 � 〈Z, c̄〉). A state is eligible for pruning in procedure Prune, if c̄ is
Pareto dominated by an element in Front. If the state endures the two tests at
line 5, it is added to Passed as already explored, and then its successor states
are generated and added to Waiting. For simplicity we denote the action and
delay transitions between symbolic states uniformly as �.

Let TS be the zone-based transition system of SPTA with V symbolic states
and E transitions. Let n be the number of clocks and k be the number of price
variables. The time complexity of Algorithm 1 is in O((V + E) · (n3 + k + k2)),
where the first factor is the complexity for state-space exploration, the second
factor is the complexity for Pareto inclusion checking as well as pruning.

3.2 Implementation Issues

Algorithm 1 resembles the normal reachability algorithm [8] for TA. The imple-
mentation extensions into existing Uppaal are four folded as follows.

1. The symbolic state of SPTA is a pair of location and discrete prized zone as
(�, 〈Z, c̄〉). A Uppaal model may contain both cost variables (associated with
c̄) and normal variables (nothing to do with c̄). Therefore Uppaal should be
able to identify cost variables automatically by analyzing pareto objectives
in the query, because only cost variables will contribute to the objectives.

486 Z. Zhang et al.

Algorithm 1. Pareto Optimal Reachability
Waiting ←− {(�0, 〈Z0, 0̄〉)},Passed ←− ∅,Front ←− ∅
Procedure Main()

1 while Waiting �= ∅ do
2 select (�, 〈Z, c̄〉) from Waiting

3 if (�, 〈Z, c̄〉) |= Goal then
4 Update(c̄)

5 else if ¬Included((�, 〈Z, c̄〉)) and ¬Prune(c̄) then
6 add (�, 〈Z, c̄〉) to Passed

7 forall (�′, 〈Z′, c̄′〉) such that (�, 〈Z, c̄〉) � (�′, 〈Z′, c̄′〉) do
8 add (�′, 〈Z′, c̄′〉) to Waiting

9 return Front

Procedure Update(c̄)
10 Front ←− Front \ {ϕ ∈ Front | c̄ ≺ ϕ}
11 if ∀ϕ ∈ Front s.t. c̄ �≺ ϕ then
12 Front ←− Front ∪ {c̄}

Procedure Included((�, 〈Z, c̄〉))
13 if ∃(�, 〈Z′, c̄′〉) ∈ Passed s.t. Z ⊆ Z′ ∧ (c̄′ = c̄ ∨ c̄′ ≺ c̄) then return True

14 return False

Procedure Prune(c̄)
15 if ∃ϕ ∈ Front, ϕ ≺ c̄ then return True

16 return False

2. Uppaal should apply Pareto dominance between discrete priced zones as:
〈G, ū〉 � 〈Z, c̄〉 iff Z ⊆ G ∧ (ū = c̄ ∨ ū ≺ c̄). That is, 〈G, ū〉 dominates 〈Z, c̄〉,
if zone Z is included by or equal to zone G, and cost vector ū is equal to or
Pareto dominates cost vector c̄. During Pareto inclusion checking, for every
new waiting state (�, 〈Z, c̄〉), if ∃(�, 〈G, ū〉) ∈ Passed s.t. 〈G, ū〉 � 〈Z, c̄〉, then
(�, 〈Z, c̄〉) is discarded for further exploration.

3. A global container named frontier maintains the Pareto optimal cost vectors
at goal states. When a goal state is reached, the current cost at goal is checked
for Pareto dominance with the solutions in the frontier, and the frontier is
updated if necessary. In the pruning process, a state is discarded if its cost is
dominated by a solution in the frontier.

4. The algorithm only returns the frontier. In Uppaal, multiple traces, each of
which corresponding to a Pareto optimal solution inside the frontier, are also
computed and stored into different files.

3.3 Pareto Optimum on Objective Functions

We propose three extensions to make Algorithm 1 more powerful and flexible:
(1) support formatting multi-objectives as a vector of objective functions F (c̄) =
[f1(c̄), f2(c̄), . . . , fn(c̄)] parameterized by the cost vector c̄; (2) support a global

Pareto Optimal Reachability Analysis for Simple Priced Timed Automata 487

clock (let us call it now) as a singular objective function to measure the makespan
(accumulated delay on a finite trace); (3) support negative prices on action
transitions. The first extension requires procedures Update and Prune to evaluate
F (c̄), and Front to contain Pareto optimal outcomes of F (c̄) on goal states. We
define monotonically increasing for f ∈ F (c̄) as: c̄ ≺ c̄′ ⇒ f(c̄) < f(c̄′). These
three extensions however, are applied under specific additional conditions:

Cond 1. For extension 1, if ∃f ∈ F (c̄) is not monotonically increasing, Prune
must be disabled, and the Pareto check of cost vectors c̄′ ≺ c̄ at line 13 in
Included must be skipped.

Cond 2. For extension 2, clock now must not be reset nor tested in guards or
invariants.

Cond 3. For extension 3, (1) the state-space graph of the model must be acyclic;
(2) if ∀f ∈ F (c̄) are monotonically increasing, Prune must be disabled; (3) if
∃f ∈ F (c̄) is not monotonically increasing, do as in Cond 1.

B&B pruning and Pareto inclusion checking are valid only if the costs and
evaluation results of objective functions are monotonically increasing. Conditions
1 & 3 are of utmost importance to notice, otherwise there is a risk to have
incomplete results due to discarding some intermediate states prematurely that
may lead to better results on goal states. The consequence of applying these
two conditions is to explore the full state-space. Because the Pareto inclusion
checking decays to normal inclusion checking as in the standard reachability
algorithm, and the state-space is not pruned.

We extended Uppaal to compute Pareto optimum on prices and objective
functions of SPTA. The query to enable this new feature inside the verifier follows
the syntax of:

PO (f1, f2, . . . , fk) [−(L1|L2)] : E <> Goal,

where PO is the keywords for Pareto optimum, fi (i ∈ [1, k]) are objective func-
tions or cost variables. Next comes the optional switch: [−L1] disables pruning
only, or [−L2] disables both pruning and Pareto inclusion checking as in Cond 1.
Following the colon is the normal reachability query. Goal is the proposition to
specify the target goal states. If an objective is to be maximized, it is equiva-
lent to put it in negative. But this typically turns a monotonically increasing
objective function into decreasing, then [−L2] is necessary.

4 Experiment Results

4.1 Case Study 1: Task Graph Scheduling

A task graph consists of a number of computation tasks with precedence con-
straints (predecessor tasks) such that a task can start only if all its predecessor
tasks have completed. In this case study (Task-Graph-16), an embedded system
has 16 tasks, whose precedence constraints are within [0, 3] and processing time
are predictable and within the range of [1, 66] clock cycles. Those jobs can be

488 Z. Zhang et al.

scheduled on four processors with the speeds of [1, 1, 2, 2] clock cycles per time
unit and the power consumptions at busy state of [10, 10, 40, 40] micro watts
per time unit. We neglect the power for processors at idle state. The objective is
to synthesize a non-preemptive schedule that can minimize the time for all tasks
to terminate as well as the total power consumption by four processors.

Figure 2 depicts the dependency graph of 16 tasks. These precedence con-
straints are coded as a dependency matrix in the Uppaal model. Figure 3
shows the templates for task and processor. Task is scheduled if the guard
“dependsDone()” approves that all its predecessor tasks are completed. Once
a processor is available, the task is bound to that processor. The predefined
clock cycles for this task is also passed to that processor. Then the task starts
executing until it is notified for termination by signal “done[p]”. Processor
transforms from Free to InUse once it is scheduled to handle a task, meanwhile
“CPUTime()” calculates the expected execution time D in time units from clock
cycles of a task and current processor speed. After delaying at InUse for D time
units, Processor moves back to Free and notifies the binding task. R T[pid],
which keeps the accumulated elapsing time at InUse for each processor and acts
as cost variables, is also increased by D.

5

8 9 10 11

1413 15

12

3 4 6 72
10

28

10

1 57 66

5

38

5

15

1

10

1
10

5

24

15

Fig. 2. Task dependency graph. Task Ids are in the center of nodes. Predicted clock
cycles of tasks are in blue italic font on the top right corner of nodes. (Color figure
online)

�

PO (10∗ (R T[0]+R T [1]) +40∗(R T[2]+R T [3]) , now) :
E<> f o r a l l (i : TaskID) Task (i) . Done && now<=65

�� �

The original goal to minimize makespan and energy consumption is expressed
as the query above. The Pareto optimality section contains two objective func-
tions: the total energy consumption expressed as the linear combination of power
and processor in-use time, and a global clock now measuring the makespan.
The reachability proposition section specifies all tasks are to complete and the
makespan is equal to or less than 65 time units. Uppaal reports seven Pareto

Pareto Optimal Reachability Analysis for Simple Priced Timed Automata 489

Fig. 3. Templates for Task (left) and Processor (right)

optimal outcomes as follows with the corresponding traces. Assuming we prefer
the 3rd outcome (4700, 59) with the energy consumption of 4700 micro joules and
makespan of 59 time units, we can parse the trace into a visualizable schedule
as shown in Fig. 4.

�

1 . (4600 , 63) 3 . (4700 , 59) 5 . (4800 , 54) 7 . (4560 , 65)
2 . (4770 , 55) 4 . (4850 , 51) 6 . (4590 , 64)

�� �

5 10 15 20 25 30 35 40 50 55

0 8 13

1 156

2 5

3 7 9 12

103

1

0

4

0

2

14

11

6045

CPU

Runtime (time units)

Fig. 4. Schedule for the 3rd outcome (4700, 59). Horizontal bar denotes tasks scheduled
on a processor. The segments inside each bar denote individual tasks with the task ids
in the front of each segment.

We experimented this model on a Ubuntu 14.04 PC with 6 GB memory and
Intel Core i3 CPU at the frequency of 2.53 GHz. We made five runs for each
search order: breadth-first search (BFS), depth-first search (DFS) and random
depth-first search (RDFS). We measured the average runtime (RT) in seconds
and the average maximum residence memory (RSS) in GB as in Table 1. BFS
terminates the fastest, although the runtime of all three search orders are very
close. The empirical explanation is that BFS is good at making large zones,
while DFS/RDFS will cause higher degree of fragmentation of the underlying
symbolic state-space requiring exploring more symbolic states [5].

490 Z. Zhang et al.

Table 1. Runtime (sec) and memory (GB) of Task-Graph-16

BFS DFS RDFS

RT 77.22 80.21 81.05

RSS 1.17 1.16 1.16

The bad news is that the Uppaal engine cannot terminate on larger task
graph with more than 16 tasks. BFS on an example task graph with 17 tasks
consumed 5.22 GB memory, then the operating system started swapping, essen-
tially blocking the exploration process. For fully exploring larger models, one may
resort to parallel and distributed computing, or apply better guiding and heuris-
tics. Sometimes the absolute optimal results may not be necessary, but near
optimal results may suffice. In this case, random-depth-first search or swarm
strategy may be promising options.

4.2 Case Study 2: Nano Satellite Scheduling

The GomX-3 CubeSat is a 3 L 3 kg nano satellite commissioned by the European
Space Agency (ESA). It was designed, delivered, and operated by GomSpace
in Aalborg Denmark, and was launched from Japan aboard the HTV-5 cargo
spacecraft on August 19th 2015. GomX-3 was successfully deployed on Octo-
ber 5 2015. The satellite supports precise 3-axis rotation by gyroscopes and
magnetorquers which enable the following main payloads: (1) in-flight tracking
of ADS-B beacons emitted by commercial aircrafts, (2) monitoring signals from
geostationary InmarSat satellites by L-Band receiver, (3) high-speed downlink-
ing collected data to stations in Toulouse (France) or Kourou (French Guiana)
by X-Band transmitter and UHF radio module, (4) uplinking new instructions
to and monitoring status of GomX-3 from GomSpace by the UHF module.

The purposes of GomX-3 are tracking commercial aircrafts, testing X-Band
transmitters, and monitoring InmarSat satellites. ESA and GomSpace want to
maximize the amount of jobs (operations of payloads) without depleting the on-
board battery. Power is the most critical sparse resource for a satellite in orbit. In
particular when GomX-3 passes into eclipse, the battery is the only source for it
to draw power from. If battery voltage drops below 14.4 V, the satellite switches
to the safe mode, where all non-essential hardware components are switched
off, preventing the satellite from being productive. Since GomX-3 follows an
equatorial orbit, insolation periods and possible operation windows for different
payloads are predictable over the time horizon of a few days, hence the power
budget of jobs can be predicted.

In [9] a PTA model of GomX-3 was analyzed by Cora to generate productive
and power-aware schedules for GomX-3 to carry out jobs over 20 orbits (about
31 h) around the earth. Three types of jobs were scheduled in the model: data
collection by payloads (2), data downlink by payload (3), and satellite control
by payload (4). The principle idea was to assign a penalty price rate Ri to each

Pareto Optimal Reachability Analysis for Simple Priced Timed Automata 491

skipped job Ji (i ∈ [0, 6]). The satellite control jobs should always be scheduled
whenever possible, and data downlink jobs are given the highest penalty price
rate. If a job Jk is skipped, the integral of the Rk over the operation window Wk

of this skipped job (equal Rk × Wk) contributes to the global penalty cost (or
weighted sum of skipped jobs). Then Cora searches the entire state-space and
finds the cost optimal trace which has the smallest penalty cost.

In this paper we adapt the original PTA model in [9] into a SPTA model,
and use Pareto optimal reachability analysis to generate schedules that optimize
the productivity of payloads and energy consumption simultaneously in a nat-
ural way. Instead of using penalty price rates, we directly record the number of
operated jobs for data collection, data downlink and satellite control. Not only
to maximize the different kinds of operated jobs, but also the data collection
and downlink jobs are important to be kept in balance. We wish the remaining
battery level is high enough too.

There are six template automata in the model (detailed description in [9]).
Figure 5 shows the three principle ones. (1) Provider takes care of initiating and
terminating jobs on each payload repeatedly. It waits at location Idle for every
predicted operation window to come, notifies Experiment to start preheating
and to start actual operation after preheating is completed, then moves back
to Idle. (2) Battery represents a linear battery model with capacity. It can
be charged/discharged with piecewise constant energy gain from solar panels or
energy drain by payloads. If the battery level is below a threshold lb which is
40% of the maximum capacity, a deadlock state is reached via the transition
Check → Depletion. (3) Experiment models two possible outcomes when it is

Fig. 5. Templates for Provider (top left), Battery (top right) and Experiment (bot-
tom)

492 Z. Zhang et al.

notified of a job opportunity. A job can be skipped because of low priority or
resource constrains. Otherwise, the job can execute by slewing to the predefined
attitude, performing actual operation and slewing back to the normal attitude.
We count the number of fully executed jobs on each individual payloads as cost
variables. The remaining three templates are: (4) AttitudeControl for slewing
GomX-3 to the predetermined attitude of each job, (5) Sun for switching on
(off) energy harvesting from solar panels based on the predicted insolation and
eclipse time, and (6) OrbitCounter for monitoring and counting the completed
orbits of GomX-3.

�

PO (- ge tAl lJobs () , - g e tCo l l e c tJobs () , - getDownlinkJobs () , - l)

[- L2] : E<> n==20 && l >89856000 && ac l o ck==0 && lastXband
�� �

Our goal to maximize the number of all executed jobs, data collection and
downlink jobs, and remaining battery level over 20 orbits is expressed as the
query above. Functions getAllJobs, getCollectJobs and getDownlinkJobs
count the number of executions for all jobs and data collection jobs and data
downlink jobs respectively, and l is the battery level. They are put in negative
form because we want to get their maximum values. Realizing that prices on
battery level l are negative2 when discharging, and the former three objective
functions are monotonically decreasing, switch [−L2] is turned on (Sect. 3.3).
The reachability proposition section specifies that the orbit count is to reach
20, the battery level3 is above 55% of capacity, and two additional conditions
proposed by GomSpace engineers.

�

1 . (-11 , -4 , -1 , -124833863) 9 . (-14 , -3 , -5 , -118593763)
2 . (-11 , -3 , -2 , -138544388) 10 . (-14 , -4 , -4 , -104763388)
3 . (-12 , -3 , -3 , -133181973) 11 . (-14 , -2 , -6 , -131801398)
4 . (-12 , -4 , -2 , -118645643) 12 . (-15 , -4 , -5 , -97648603)
5 . (-12 , -5 , -1 , -100905253) 13 . (-15 , -3 , -6 , -110989688)
6 . (-13 , -4 , -3 , -112367463) 14 . (-15 , -2 , -7 , -123752127)
7 . (-13 , -3 , -4 , -126078388) 15 . (-16 , -3 , -7 , -102940417)
8 . (-13 , -5 , -2 , -96406878)

�� �

Uppaal reports 15 Pareto optimal outcomes as follows with the correspond-
ing traces. Assuming we prefer the 12th outcome (-15, -4, -5, -97648603) with 15
jobs in total, 4 data collection and 5 data downlink jobs, and remaining battery
level at 97648603 milli joules. We can parse the trace and obtain the visualizable
schedule as shown in Fig. 6.

We tested this model under the same experiment setting as in the 1st case
study. All search orders behaved equally well as shown in Table 2.

2 If negative prices are present, the state-space graph must be acyclic. This is guar-
anteed by the finite time horizon over 20 orbits (about 31 h).

3 This level is larger than the threshold of 40% in the linear battery model so as to
make the satellite on-board battery that is non-linear work safer in the real situation.

Pareto Optimal Reachability Analysis for Simple Priced Timed Automata 493

Fig. 6. Schedule for the 12th outcome (-15, -4, -5, -97648603) consisting of battery
level plot (top) and payload operation plot (bottom). In the payload operation plot,
L1 and L2 show 4 data collection jobs, X shows 5 data downlink jobs, and UHF shows
6 satellite control jobs. Data collection and downlink jobs are maximized and kept in
balance.

Table 2. Runtime (sec) and memory (GB) of GomX-3

BFS DFS RDFS

RT 69.23 69.17 69.73

RSS 1.18 1.18 1.18

5 Conclusions

Pareto optimality is about optimizing conflicting quantitative objectives simul-
taneously in balance for multi-objective optimization problems. We proposed the
Pareto optimal reachability analysis to solve a subset of multi-objective schedul-
ing and planing problems modeled by simple priced timed automata (SPTA).
We developed the algorithms for Uppaal and performed two case studies.

SPTA can only support discrete prices on transitions, not price rate on loca-
tions. So this is a start work of Pareto optimality analysis of multi-priced timed
automata (MPTA) models. Future directions include: (1) support price rate on
locations by construction multi-priced zones in Uppaal; (2) develop efficient
data structures for Pareto inclusion checking and pruning; (3) support larger
models using parallel and distributed computing.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata.
Theor. Comput. Sci. 318(3), 297–322 (2004)

494 Z. Zhang et al.

3. Beegom, A.S.A., Rajasree, M.S.: A particle swarm optimization based pareto opti-
mal task scheduling in cloud computing. In: Tan, Y., Shi, Y., Coello, C.A.C.
(eds.) ICSI 2014. LNCS, vol. 8795, pp. 79–86. Springer, Cham (2014). doi:10.1007/
978-3-319-11897-0 10

4. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30080-9 7

5. Behrmann, G., Hune, T., Vaandrager, F.: Distributing timed model checking
— how the search order matters. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 216–231. Springer, Heidelberg (2000). doi:10.1007/
10722167 19

6. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced timed automata: algorithms
and applications. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2004. LNCS, vol. 3657, pp. 162–182. Springer, Heidelberg (2005).
doi:10.1007/11561163 8

7. Bengtsson, J., Griffioen, W.O.D., Kristoffersen, K.J., Larsen, K.G., Larsson, F.,
Pettersson, P., Yi, W.: Automated verification of an audio-control protocol using
Uppaal. J. Logic Algebraic Program. 52–53, 163–181 (2002)

8. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-27755-2 3

9. Bisgaard, M., Gerhardt, D., Hermanns, H., Krčál, J., Nies, G., Stenger, M.:
Battery-aware scheduling in low orbit: the GomX–3 case. In: Fitzgerald, J.,
Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp.
559–576. Springer, Cham (2016). doi:10.1007/978-3-319-48989-6 34

10. Boudjadar, A., Kim, J.H., Larsen, K.G., Nyman, U.: Compositional schedulability
analysis of an avionics system using UPPAAL. In: ICAASE, CEUR Workshop
Proceedings, vol. 1294, pp. 140–147. CEUR-WS.org (2014)

11. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a
model-checking tool for real-time systems. In: CAV, pp. 546–550 (1998)

12. Brihaye, T., Bruyère, V., Raskin, J.-F.: Model-checking for weighted timed
automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004.
LNCS, vol. 3253, pp. 277–292. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30206-3 20

13. Fehnker, A.: Scheduling a steel plant with timed automata. In: RTCSA, pp. 280–
286. IEEE Computer Society (1999)

14. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model
checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 317–
332. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33386-6 25

15. Kacem, I., Hammadi, S., Borne, P.: Pareto-optimality approach for flexible job-
shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic.
Math. Comput. Simul. 60(3–5), 245–276 (2002)

16. Khalesian, M., Delavar, M.R.: Wireless sensors deployment optimization using a
constrained pareto-based multi-objective evolutionary approach. Eng. Appl. AI 53,
126–139 (2016)

17. Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for real-time systems. In:
Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 62–88. Springer, Heidelberg (1995).
doi:10.1007/3-540-60249-6 41

18. Larsen, K.G., Rasmussen, J.I.: Optimal reachability for multi-priced timed
automata. Theor. Comput. Sci. 390(2–3), 197–213 (2008)

http://dx.doi.org/10.1007/978-3-319-11897-0_10
http://dx.doi.org/10.1007/978-3-319-11897-0_10
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1007/10722167_19
http://dx.doi.org/10.1007/10722167_19
http://dx.doi.org/10.1007/11561163_8
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1007/978-3-319-48989-6_34
http://dx.doi.org/10.1007/978-3-540-30206-3_20
http://dx.doi.org/10.1007/978-3-540-30206-3_20
http://dx.doi.org/10.1007/978-3-642-33386-6_25
http://dx.doi.org/10.1007/3-540-60249-6_41

Pareto Optimal Reachability Analysis for Simple Priced Timed Automata 495

19. Mikučionis, M., Larsen, K.G., Rasmussen, J.I., Nielsen, B., Skou, A., Palm, S.U.,
Pedersen, J.S., Hougaard, P.: Schedulability analysis using Uppaal: Herschel-
Planck case study. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol.
6416, pp. 175–190. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16561-0 21

20. Schuts, M., Zhu, F., Heidarian, F., Vaandrager, F.W.: Modelling clock synchro-
nization in the chess gmac WSN protocol. QFM. EPTCS 13, 41–54 (2009)

http://dx.doi.org/10.1007/978-3-642-16561-0_21

Author Index

André, Étienne 243

Bai, Guangdong 262
Benduhn, Fabian 19
Bowles, Juliana K.F. 209

Cai, Zhipeng 332
Caminati, Marco B. 209
Chen, Taolue 36
Chen, Tsong Yueh 413
Chen, Xiaohong 54, 379
Chen, Yihai 71
Chin, Wei-Ngan 226
Conchon, Sylvain 88

Declerck, David 88
Deng, Yuxin 464
Dong, Jin Song 262
Dong, Naipeng 262
Dong, Yunwei 413
Doolan, Patrick 105
Duan, Zhao 122
Duan, Zhenhua 122

Farrell, Marie 140
Feng, Zhiyong 315

Ganhotra, Jatin 298
Gao, Bo 243
Göthel, Thomas 157
Gupta, Indranil 298

H. Pham, Long 174
Hao, Jianye 315
Hasan, Osman 345
Hermanns, Holger 481
Hobor, Aquinas 226

Jähnig, Nils 157
Jiang, Hao 192
Jiang, Mingyue 413
Jin, Zhi 54

Katayama, Yoshiaki 447
Khedri, Ridha 71
Krishnan, Padmanabhan 105
Kuo, Fei-Ching 413

Larsen, Kim Guldstrand 481
Lau, Man 413
Le, Xuan-Bach 226
Lei, Guoqing 464
Li, Guoqiang 396
Li, Jiaying 243
Li, Li 262
Li, Xiaohong 315
Li, Xin 281
Liu, Si 298
Liu, Yang 262
Liu, Yunhao 315

Meseguer, José 298
Miao, Dongjing 332
Miao, Huaikou 71
Monahan, Rosemary 140

Ng, Sebastian 413
Nguyen, Thanh-Toan 226
Nielsen, Brian 481
Nies, Gilles 481

Ogawa, Mizuhito 281
Ölveczky, Peter Csaba 298

Pang, Jun 262
Power, James F. 140

Qin, Shengchao 192, 379, 430

Rashid, Adnan 345

Saake, Gunter 19
Schaefer, Ina 19
Seif, Simon 157
Smith, Graeme 105

Song, Fu 36
Stenger, Marvin 481
Su, Zhendong 192
Sun, Jun 174, 243, 262, 379

Takahashi, Naohisa 447
Tateiwa, Yuichiro 447
Thüm, Thomas 19
Tian, Cong 122
Töws, Manuel 362
Tran Thi, Ly Ly 174

Wang, Jingyi 379
Wang, Yun 447
Wang, Yuwei 396
Wehrheim, Heike 362
Wen, Cheng 430
Wen, Yunqing 396

Wu, Tingting 413
Wu, Zhilin 36

Xu, Zhiwu 430

Yan, Jun 192
Yang, Hongli 192
Yi, Wang 3
Yin, Ling 54
Yin, Yi 447
Yu, Yijun 54
Yuen, Shoji 396

Zaïdi, Fatiha 88
Zhang, Bofang 71
Zhang, Chenyi 105
Zhang, Jian 192
Zhang, Min 464
Zhang, Zhengkui 481

498 Author Index

	Preface
	Organization
	Abstracts of the Invited Presentations
	The Challenges of Probabilistic Thinking: Keynote Talk
	A Logical Revolution
	Towards Customizable CPS: Composability, Efficiency and Predictability
	Contents
	Invited Talk
	Towards Customizable CPS: Composability, Efficiency and Predictability
	1 Background
	2 Why Update CPS in Operation?
	3 The Challenges
	4 Objectives
	5 Work Directions
	5.1 Towards Open Architectures for Updates
	5.2 Towards Precise Workload Modelling and Optimal Scheduling
	5.3 Towards Fully Separated Verification of Timing and Functional Properties

	References

	Contributed Papers
	Modularization of Refinement Steps for Agile Formal Methods
	1 Introduction
	2 Modularization of Refinement Steps
	2.1 Refinement in Formal Methods
	2.2 Superimposition-Based Modularization

	3 Modularization of ASM Refinement Steps
	3.1 Abstract State Machines and the Language AsmetaL
	3.2 Composition Rules for Refinement Steps in AsmetaL

	4 Tool Support and Evaluation
	4.1 Tool Support for Superimposition-Based Refinement in Eclipse
	4.2 Modularizing Refinement Steps of the Landing Gear System

	5 Related Work
	6 Conclusion and Future Work
	References

	Model Checking Pushdown Epistemic Game Structures
	1 Introduction
	2 Pushdown Epistemic Game Structures
	3 Specification Logics: ATEL, ATEL and AEMC
	3.1 ATEL and ATEL (where {Ir, IR, ir, iR })
	3.2 AEMC (where {Ir, IR, ir, iR })

	4 ATEL and ATEL Model Checking
	4.1 Pushdown Systems
	4.2 Model Checking for PEGSs with Simple EARs
	4.3 Model Checking for PEGSs with Regular EARs

	5 AEMC Model Checking
	6 Conclusion and Future Work
	References

	Transforming Timing Requirements into CCSL Constraints to Verify Cyber-Physical Systems
	1 Introduction
	2 A Motivating Example
	3 Our Approach
	3.1 Models
	3.2 Specification
	3.3 Consistency Checking

	4 A Case Study
	5 Empirical Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

	A Framework for Multi-view Reconciliation and for Medical Devices Personalization
	1 Introduction
	2 Mathematical Background: Product Family Algebra
	3 Multi-view Reconciliation Mathematical Framework
	4 Personalising Medical Devices as a Multi-view Reconciliation Construction
	4.1 Pacemaker Views and Their Constraints

	5 Related Work
	6 Conclusions and Future Work
	References

	Compiling Parameterized X86-TSO Concurrent Programs to Cubicle-W
	1 Introduction
	2 Overview of Cubicle-W
	3 Supported X86-TSO Fragment
	4 Translation to Cubicle-W
	5 Experiments
	6 Conclusion and Future Work
	References

	Improving the Scalability of Automatic Linearizability Checking in SPIN
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Scalability Issues of Automatic Checking with SPIN
	2.1 Existing Explanations for the Scalability Issues of Automatic Checking
	2.2 Testing Explanations for the Scalability Issues of Automatic Checking

	3 A Technique for Improving Scalability of Automatic Checking
	3.1 External Checking: Preliminary Implementation

	4 Results
	4.1 Discussion of External Checking Performance

	5 Potential Improvements: Integration with SPIN
	5.1 A Sound Verification Algorithm

	6 Conclusions
	References

	Verifying Temporal Properties of C Programs via Lazy Abstraction
	1 Introduction
	2 A General Approach
	2.1 Safety Property Verification
	2.2 Verifying Temporal Properties of General Programs
	2.3 Challenging Problem

	3 Verifying Temporal Properties of Programs over Finite Traces
	3.1 Linear Temporal Logic
	3.2 Producing Counterexamples On-the-Fly
	3.3 Working Together with CEGAR

	4 Implementation
	5 Experiments
	5.1 Comparison with Existing Approaches
	5.2 Scalability Evaluation on RERS

	6 Related Work
	7 Conclusions
	References

	Combining Event-B and CSP: An Institution Theoretic Approach to Interoperability
	1 Introduction
	1.1 Event-B and a Running Example
	1.2 Related Work on Adding Event Ordering to Event-B Machines

	2 Background on Institutions
	2.1 Tool Support and Avenues to Interoperability

	3 Translating EVTCASL specifications to CSPCASL specifications
	3.1 An Institution Theoretic Translation
	3.2 Translation via Sign and Sen

	4 The Refinement Cube
	4.1 Event and Process Refinement

	5 Conclusions and Future Work
	References

	Refinement-Based Modelling and Verification of Design Patterns for Self-adaptive Systems
	1 Introduction
	2 Related Work
	3 Background
	3.1 Design Patterns for Self-adaptive Systems
	3.2 Communicating Sequential Processes

	4 Formalisation of Adaptive Design Patterns
	4.1 Adaptable Component
	4.2 Sensor Factory
	4.3 Adaptation Detector

	5 Formal Relations Between Adaptive Design Patterns
	5.1 Behavioural Extension
	5.2 Relations Between Pattern Components

	6 Conclusion and Future Work
	References

	Assertion Generation Through Active Learning
	1 Introduction
	2 Overview with Examples
	3 Detailed Approach
	4 Implementation and Evaluation
	5 Related Work
	6 Conclusion
	References

	Detecting Energy Bugs in Android Apps Using Static Analysis
	1 Introduction
	2 Background
	2.1 Resource Leak Classification
	2.2 Layout Defect Classification

	3 Framework Overview
	4 Analysis
	4.1 Resource Leak Analysis
	4.2 Layout Defect Detection

	5 Evaluation
	5.1 Result of Resource Leak Detection
	5.2 Result of Layout Defect Detection

	6 Related Work
	6.1 Detecting and Testing Energy Bugs
	6.2 Estimating Energy Consumption
	6.3 Optimizing Energy

	7 Conclusion and Future Work
	References

	A Flexible Approach for Finding Optimal Paths with Minimal Conflicts
	1 Introduction
	2 Description of the Problem and Approach
	2.1 Score Model
	2.2 Output
	2.3 An Illustrative Example

	3 SMT Translation
	3.1 Scores in SMT

	4 Evaluation and Use Cases
	4.1 Results
	4.2 Introducing Time Offsets

	5 Formal Verification
	6 Related Work
	7 Conclusions
	References

	A Certified Decision Procedure for Tree Shares
	1 Introduction
	2 Share Constraints and Their Decision Procedures
	2.1 Share Constraints
	2.2 Overview of Our Decision Procedure

	3 Core Algorithms for the Decision Procedures
	3.1 Definitions and Notations
	3.2 Decision Procedure for SAT
	3.3 Decision Procedure for IMP

	4 Performance, Evaluation, and Implementation
	4.1 Performance-Enhancing Components
	4.2 Experimental Evaluation

	5 Related Work, Future Work, and Conclusion
	References

	Classification-Based Parameter Synthesis for Parametric Timed Automata
	1 Introduction
	2 The Overall Approach
	2.1 Problem Definition
	2.2 Overall Approach with an Illustrative Example

	3 Classification
	3.1 Classification
	3.2 Candidate Refinement

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	A Verification Framework for Stateful Security Protocols
	1 Introduction
	2 Protocol Specification
	2.1 Preliminary -- Specification Syntax Without States
	2.2 Protocol Specification with States
	2.3 Security Properties

	3 Verification Algorithm
	3.1 Preliminary Definitions
	3.2 Rule Operations
	3.3 Rule Base Construction
	3.4 Query Searching

	4 Case Studies
	5 Related Works
	6 Conclusions and Future Work
	References

	A Sliding-Window Algorithm for On-The-Fly Interprocedural Program Analysis
	1 Introduction
	2 Preliminaries
	2.1 Weighted Pushdown Model Checking
	2.2 Saturation-Based Algorithm for WPDS Model Checking

	3 On-The-Fly Interprocedural Program Analysis
	3.1 A Formal Description of OTFIPA
	3.2 A Running Example

	4 Algorithms for the OTFIPA Problem
	4.1 A Whole-Program Analysis Algorithm
	4.2 A Sliding-Window Analysis Algorithm

	5 Experiments
	6 Conclusion
	References

	Exploring Design Alternatives for RAMP Transactions Through Statistical Model Checking
	1 Introduction
	2 Preliminaries
	2.1 Read-Atomic Multi-Partition (RAMP) Transactions
	2.2 Rewriting Logic and Maude
	2.3 Statistical Model Checking and PVeStA

	3 The RAMP-Faster Design
	4 Probabilistic Modeling of RAMP Designs
	5 Quantitative Analysis of RAMP Designs
	5.1 Extracting Performance Measures from Executions
	5.2 Generating Initial States
	5.3 Statistical Model Checking Results

	6 Related Work
	7 Concluding Remarks
	References

	An Improved Android Collusion Attack Detection Method Based on Program Slicing
	1 Introduction
	2 Attack Scenario
	2.1 Simple Encoding
	2.2 File Length

	3 CollusionDetector
	3.1 Analysing Each APK
	3.2 Computing Suspicious Paths
	3.3 Combination of Suspicious Paths
	3.4 Improved Inter-App Taint Analysis

	4 Case Study
	4.1 Implementation
	4.2 Evaluation

	5 Limitations
	6 Conclusion
	References

	Parameterized Complexity of Resilience Decision for Database Debugging
	1 Introduction
	2 Preparation
	3 Results of Query Fragments
	4 Conclusion
	References

	Formal Analysis of Linear Control Systems Using Theorem Proving
	1 Introduction
	2 Multivariable Calculus Theories in HOL Light
	3 Formalization of Laplace Transform
	4 Formalization of Linear Control Systems Foundations
	5 Unmanned Free-Swimming Submersible Vehicle
	6 Conclusion
	References

	Policy Dependent and Independent Information Flow Analyses
	1 Introduction
	2 Background
	3 Policy Independent Information Flow Analysis
	4 Policy Dependent Information Flow Analysis
	5 Re-Use of Analysis Results
	6 Experimental Results
	7 Conclusion
	References

	Improving Probability Estimation Through Active Probabilistic Model Learning
	1 Introduction
	2 Problem Definition
	2.1 The Model
	2.2 The Problem

	3 Our Approach
	3.1 Estimating Transition Probability
	3.2 Estimating Reachability Probability

	4 Evaluation
	4.1 Test Subjects
	4.2 Experiment Results

	5 Conclusion and Related Work
	References

	Nested Timed Automata with Diagonal Constraints
	1 Introduction
	2 Preliminaries
	2.1 Time Constraints and Assignments
	2.2 Timed Automata

	3 General Nested Timed Automata
	4 Undecidability Result of NeTAs
	5 Extended Dense Timed Pushdown Automata
	5.1 Digiword and Operations
	5.2 Snapshot PDS
	5.3 Well-Formed Constraints

	6 Decidability Results of NeTAs Without Frozen Clocks
	6.1 Encoding

	7 Related Work
	8 Conclusion
	References

	Integration of Metamorphic Testing with Program Repair Methods Based on Adaptive Search Strategies and Program Equivalence
	1 Introduction
	2 Background
	2.1 Adaptive Search Strategies and Program Equivalence
	2.2 Metamorphic Testing

	3 Integration of Adaptive Search Strategies and Program Equivalence (AE) with Metamorphic Testing (MT)
	4 Experimental Design
	4.1 Subject Programs
	4.2 Test Data

	5 Experimental Results
	5.1 Success Rates
	5.2 Repair Quality
	5.3 Repair Time
	5.4 Discussion

	6 Related Work
	7 Conclusion and Future Work
	References

	Learning Types for Binaries
	1 Introduction
	2 Motivation
	3 Approach
	3.1 Target Variable Recovery
	3.2 Related Instruction Extraction
	3.3 Feature Selection and Representation
	3.4 Classifier Training and Type Predicting
	3.5 Type Lattice

	4 Implementation
	5 Experiments
	5.1 Results on Benchmark coreutils
	5.2 Performance

	6 Related Work
	7 Conclusion
	References

	Inconsistency Analysis of Time-Based Security Policy and Firewall Policy
	1 Introduction
	2 Specification of TSP and TFP
	2.1 TFP Specification
	2.2 TSP Specification

	3 SMT Solver and Internal Form of TSP and TFP
	3.1 SMT Solver and Internal Form of TSP and TFP
	3.2 Transformation of TSP and TFP to Internal Form Rules

	4 Inconsistency Detection of TSP and TFP
	4.1 Inclusion Relations Between TSP and TFP
	4.2 Consistency Decision of TSP and TFP
	4.3 Classification of Inconsistency of TSP and TFP
	4.4 Inconsistency Decision Analysis
	4.5 Algorithms for Inconsistency Decision

	5 Implementation and Experiments
	5.1 Prototype System
	5.2 Experiments and Considerations

	6 Related Works
	7 Conclusion and Future Work
	References

	An Algebraic Approach to Automatic Reasoning for NetKAT Based on Its Operational Semantics
	1 Introduction
	2 NetKAT
	3 Operational Semantics
	4 Formalization of NetKAT in Maude
	4.1 Maude in a Nutshell
	4.2 Formalization of the Operational Semantics of NetKAT

	5 Automatic Reasoning for NetKAT
	5.1 Reachability Analysis by State Exploration
	5.2 Model Checking of LTL Properties of NetKAT
	5.3 Equivalence Proving by Normalization

	6 Experiments and Evaluation
	7 Concluding Remarks
	References

	Pareto Optimal Reachability Analysis for Simple Priced Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Simple Priced Timed Automata
	2.2 Pareto Optimality

	3 Pareto Optimal Reachability
	3.1 Pareto Optimum on Prices
	3.2 Implementation Issues
	3.3 Pareto Optimum on Objective Functions

	4 Experiment Results
	4.1 Case Study 1: Task Graph Scheduling
	4.2 Case Study 2: Nano Satellite Scheduling

	5 Conclusions
	References

	Author Index

