
No More Excuses: Automated Synthesis
of Practical and Verifiable Vote-Counting
Programs for Complex Voting Schemes

Lyria Bennett Moses1, Rajeev Goré2, Ron Levy3, Dirk Pattinson2(B),
and Mukesh Tiwari2

1 Faculty of Law, UNSW, Sydney, Australia
2 Research School of Computer Science, ANU, Canberra, Australia

dirk.pattinson@anu.edu.au
3 College of Law, ANU, Canberra, Australia

Abstract. We argue that electronic vote-counting software can engen-
der broad-based public trust in elections to public office only if they
are formally verified against their legal definition and only if they can
produce an easily verifiable certificate for the correctness of the count.
We then show that both are achievable for the Schulze method of vote-
counting, even when the election involves millions of ballots. We argue
that our methodology is applicable to any vote-counting scheme that is
rigorously specified. Consequently, the current practice of using unveri-
fied and unverifiable vote counting software for elections to public office
is untenable. In particular, proprietary closed source vote-counting soft-
ware is simply inexcusable.

1 Introduction

The integrity of electronic elections depends on many factors and spans the entire
process from vote-casting to vote-counting, and the determination of winners.
The notion of universal verifiability of vote counting (any voter can check that
the announced result is correct on the basis of the published ballots [15]) has
long been recognised as being central, both for guaranteeing correctness, and
building trust, in electronic elections. For vote-counting (on which we focus in
this paper), verifiability means that every stakeholder, or indeed any member
of the general public, has the means to check that the computation of election
winners is correct.

In practice, however, the computer software used to determine winners from
the set of ballots cast, offers no such assurance. This applies for example to
the software used in the Australian state of New South Wales (where the vote-
counting software is closed-source and proprietary) and to the eVACS system
used in the Australian Capital territory (where the vote-counting software has
been open-sourced), see e.g. [2,9,10].

In this paper, we argue that both verification of the computer software that
counts votes, and verifiability of individual counts are critical for building trust in
c© Springer International Publishing AG 2017
R. Krimmer et al. (Eds.): E-Vote-ID 2017, LNCS 10615, pp. 66–83, 2017.
DOI: 10.1007/978-3-319-68687-5_5



No More Excuses 67

an election process where ballots are being counted by computer. We moreover
demonstrate by means of a case study that both are achievable for elections
of realistic sizes. Given the mission-critical importance of correctness of vote-
counting, both for the legal integrity of the process and for building public trust,
together with the fact that both can be achieved technologically, we argue that it
is imperative to replace the currently used, black-box software for vote-counting
with a counterpart that is both verified, and produces verifiable certificates that
guarantee correctness.

The leading analogy that informs our notion of verifiability of ballot counting
is that of counting by hand. We argue that the result of a count is correct, if
we have evidence that every action performed by a counting official is consistent
with the (legal) description of the voting protocol. In a setting where votes are
counted by hand, this is precisely the duty (and purpose) of election scrutineers.
In the absence of scrutineers, and as a thought experiment that is evidently
impractical, one can envisage one, or several, cameras that record the entire
vote-counting process to a level of detail that allows us to ascertain the validity
of every step that has been undertaken to determine the election result.

Correctness can then be verified independently by an analysis of the record-
ing, and potential errors can be identified by exhibiting precisely that part of
the recording where an incorrect action has been taken. The notion of certifi-
cate for the correctness of an electronic count implements this metaphor: instead
of producing a recording of a hand-count, we record every individual step that
has been undertaken by the software to determine the outcome electronically.
We understand this data as a certificate that can then subsequently be either
machine-checked in its entirety, or spot-checked for validity by humans.

This de-couples the process of counting the votes by computer from the
process of verifying that ballots have been correctly tallied. We argue this notion
of externally certifying electronic vote counting, together with transparency of
the entire process, is imperative to building public trust in the integrity of
electronic vote counting.

Our goal is therefore to closely integrate three pieces of data: the set of ballots
cast, the winner(s) of the election, and the certificate data that links both. This
leads to the following key requirements:

1. the ability to verify that a certificate is correctly constructed
2. the ability to verify that the certificate is indeed based on the ballots cast
3. the ability to verify that a correctly constructed certificate indeed provides

evidence for the claimed set of winners.

As long as all three requirements are met, we accept any valid certificate as
evidence of the correctness of the count, irrespective of the means by which it
was constructed. In particular, this completely eliminates the need for trust in
computer hardware or individuals operating the computing machinery.

We demonstrate, by means of a case study, that all three requirements can
be met simultaneously, and that the software that produces these results scales
to the size of real-world elections.



68 L. Bennett Moses et al.

For the case study, we choose the Schulze method [26]. Despite the fact that
the Schulze Method is not used for elections to public office, it provides an
interesting case study for our purposes, as there is a non-trivial gap to bridge
between certificates and the winning conditions of the vote counting scheme
(item 3 above). We close this gap by giving formal proofs that connect certificates
with the actual winning conditions.

One important aspect of our work is that it adds value to the integrity of
the electoral process along several dimensions. First, the formal specification
enforces a rigid analysis of the voting protocol that eliminates all disambiguities
inherent in a textual specification of the protocol. While an independent re-
implementation of the protcol (assuming that all votes are published) may give
assurance of the officially announced result, the question of correctness remains
open if both programs diverge. Checking the validity of a certificate, on the other
hand, allows us to precisely pinpoint any discrepancies. Finally, it is much simpler
to implement a program that validates a certificate compared to a fully-blown
re-implementation of the entire voting protocol which increases the number of
potential (electronic) scrutineers.
Related Work. This paper discusses the notions of verification, and verifiabil-
ity, from the perspective of law and trust, and we use the Schulze method as
an example to show that both can be achieved in realistic settings. We do not
describe the formalisation in detail which is the subject of the companion paper
[24]. Apart from the analysis of verifiably correct vote-counting from the per-
spective of law and trust, the main technical differences between this paper and
its companion is scalability: we refine both proofs and code given in [24] to
effortlessly scale to millions of ballots.

Formal specification and verification of vote-counting schemes have been dis-
cussed in [3,8] but none of these methods produce verifiable results, and as such
rely on trust in the tool chain that has been used in their production. The idea of
evidence for the correctness of a count has been put forward in [23] as a technical
possibility. This paper complements the picture by (a) establishing verification
and verifiability also as legal desiderata, and (b) showing, by means of a case
study, that both can be achieved for real-world size elections.

2 Verification and Verifiability

Verification is the process of proving that a computer program implements a
specification. Here, we focus on formal verification [12], where the specification
consists of formulae in a formal logic, and the correctness proof of a program
consists of applying logical deduction rules. This takes place inside a (formal)
theorem prover that then validates the correctness of each and every proof step.
One crucial aspect of this is that every correctness proof itself is machine-checked
which gives the highest possible level of correctness, as the proof-checking func-
tionality of a theorem prover is a comparatively small and heavily scrutinised
part of the entire system.



No More Excuses 69

As a consequence, once we are satisfied with the fact that the specification of
the program indeed expresses the intended notion of correctness, we have very
high assurance that the results of the computation are indeed correct.

In order to ascertain that the results of a verified program are indeed correct,
one therefore needs to

1. read, understand and validate the formal specification: is it error free, and
does it indeed reflect the intended functionality?

2. scrutinize the formal correctness proof: has the verification been carried out
with due diligence, is the proof complete or does it rely on other assumptions?

3. ensure that the computing equipment on which the (verified) program is
executed has not been tampered with or is otherwise compromised, and finally

4. ascertain that it was indeed the verified program that was executed in order
to obtain the claimed results.

The trust in correctness of any result rests on all items above. The last two items
are more problematic as they require trust in the integrity of equipment, and
individuals, both of which can be hard to ascertain once the computation has
completed. The first two trust requirements can be met by publishing both the
specification and the correctness proof so that the specification can be analysed,
and the proof can be replayed. Both need a considerable amount of expertise but
can be carried out by (ideally more than one group of) domain experts. Trust
in the correctness of the result can still be achieved if a large enough number
of domain experts manage to replicate the computation, using equipment they
know is not compromised, and running the program they know has been verified.
As such, trust in verified computation mainly rests on a relatively small number
of domain experts.

The argument for correctness via verification is that we have guarantees
that all executions of a program are correct, and we therefore argue that this in
particular applies to any one given instance.

Verifiability, on the other hand, refers to the ability to independently ascer-
tain that a particular execution of a program did deliver a correct result. This is
usually achieved by augmenting the computation so that it additionally produces
a certificate that can be independently checked, and attests to the correctness
of the computation, see e.g. [1]. Attesting to the correctness of the computation
therefore requires to

1. ensure that the certificate is valid (usually by means of machine-checking it)
2. ensure that the certificate is indeed associated to the computation being scru-

tinized, i.e. it matches both input and output of the computation
3. establish that a valid certificate indeed guarantees the correctness of the

computation.

Here, the first two items are mechanical and can be accomplished by relatively
simple and short, independently developed computer programs for which little
expert knowledge, other than basic programming skills, are necessary. The diffi-
culty lies in establishing the third requirement: to verify that a correct certificate
indeed implies the correctness of the result.



70 L. Bennett Moses et al.

To maximise trust, reliability and auditability of electronic vote counting, we
argue that both approaches need to be combined. To ensure (universal) verifiabil-
ity, we advocate that vote-counting programs do not only compute a final result,
but additionally produce an independently verifiable certificate that attests to
the correctness of the computation, together with a formal verification that valid
certificates indeed imply the correct determination of winners. In other words,
we solve the problem outlined under (3) above by giving a formal, machine-
checkable proof of the fact that validity of certificates indeed implies correct
determination of winners. In contrast to scrutiny sheet published by electoral
authorities, a certificate of this type contains all the data needed to reconstruct
the count.

Given a certificate-producing vote-counting program, external parties or
stakeholders can then satisfy themselves to the correctness of the count by check-
ing the certificate (and whether the certificate matches the election data), and
validate, by means of machine-checking the formal proof given for item (3) that
validity of certificates indeed entails the correctness of the count. In partic-
ular, once it has been established (and vetted by a large enough number of
domain experts) that valid certificates do indeed imply correctness, this step
does not have to be repeated for each individual election. For every particu-
lar election, trust in the correctness of the count can be established solely by
machine-checking the generated certificates. As argued above, this task can be
accomplished by a large class of individuals with basic programming skills.

In fact, we go one step further: we demonstrate that fully verified programs
can be employed to count real-size elections that involve millions of ballots and
produce both independently verifiable and provably correct certificates. While
the use of verified programs is not essential for building trust in the correctness
of the count (as long as certificates are validated), it gives us formal assurance
that the certificates produced will always be valid.

3 Legal Aspects of Verification and Verifiability

Any system for counting votes in democratic elections needs to satisfy at least
three conditions: (1) each person’s vote must be counted accurately, according
to a mandated procedure, (2) the system and process should be subjectively
trusted by the electorate, (3) there should be an objective basis for such trust,
or in other words the system must be trustworthy. While subjective trust cannot
be guaranteed through greater transparency [21], transparency about both the
voting system and the actual counting of the vote in a particular election are
important in reducing errors and ensuring an accurate count, promoting public
trust and providing the evidential basis for demonstrated trustworthiness. In par-
ticular, it is a lack of transparency that has been the primary source of criticism
of existing systems, both in the literature [7,9] and among civil society organ-
isations [27] (for example, blackboxvoting.org and trustvote.org). International
commitment to transparency is also demonstrated through initiatives such as
the Open Government Partnership. Another important concept referred to both

http://www.blackboxvoting.org
http://www.trustvote.org


No More Excuses 71

in the literature and by civil society organisations is public accountability, which
requires both giving an “account” or explanation to the public and when called
on (for example, in court) as well as being held publicly responsible for failures.
Transparency is thus a crucial component of accountability, although the latter
will involve other features (such as enforcement mechanisms) that are beyond
the scope of this paper.

There are two contexts in which transparency is important in the running
of elections. First, there should be transparency in Hood’s sense [14] as to the
process used in elections generally. This is generally done through legislation
with detailed provisions specifying such matters as the voting method to be used
as well as the requirements for a vote to count as valid. In a semi-automated
process, this requires a combination of legislation (instructions to humans) and
computer code (instructions to machines). The second kind of transparency,
corresponding to Meijer’s use of the term [20], is required in relation to the
performance of these procedures in a specific election. In a manual process,
procedural transparency is generally only to intermediaries, the scrutineers, who
are able to observe the handling and tallying of ballot papers in order to monitor
officials in the performance of their tasks. While the use of a limited number of
intermediaries is not ideal, measures such as allowing scrutineers to be selected by
candidates (e.g. Commonwealth Electoral Act 1918 (Australia) s 264) promote
public confidence that the procedure as a whole is unbiased. However imperfect,
procedural transparency reduces the risk of error and fraud in execution of the
mandated procedure and enhances trust.

Electronic vote counting ought to achieve at least a similar level of trans-
parency along both dimensions as manual systems in order to promote equiva-
lent levels of trust. Ideally, it would go further given physical limitations (such
as the number of scrutineers able to fit in a room) apply to a smaller part of
the process. The use of a verified, and fully verifiable system is transparent in
both senses, with members of the public able to monitor both the rules that
are followed and the workings and performance of the system in a particular
instance.

First, the vote counting procedure needs to be transparent. For electronic vote
counting, the procedure is specified in both legislation (which authorises the elec-
tronic vote counting procedure) and in the software employed. The use of open
source code ensures that the public has the same level of access to instructions
given to the computer as it has to legislative commands given to election officials.
The use of open source code is crucial as is demonstrated through a comparison
of different jurisdictions of Australia. In Australia, for example, the Federal Sen-
ate and NSW state election vote counting are based on proprietary black box
systems while the Australian Capital Territory uses open source eVACS software
[2,9,10]. This has significant impact on the ability of researchers to detect errors
both in advance of elections and in time to correct results [9]. Private verification
systems have been less successful, in both Australia and the US, in providing
equivalent protection against error to open source software [7,9]. Further, private
verification provides a lower level of public transparency than the use of manual



72 L. Bennett Moses et al.

systems which rely on public legislation (instructions to humans) as the primary
source of vote counting procedures [7]. It should also be noted that there are
few public advantages in secrecy since security is usually enhanced by adopting
an open approach (unless high quality open source vote counting software were
unavailable), and private profit advantages are outweighed by the importance of
trust in democratic elections.

Second, verifiability provides a method of ascertaining the correctness of
results of a specific election. External parties are able to check a certificate to
confirm that the counting process has operated according to the rules of the
voting procedure. Under a manual process, tallying and counting can only be
confirmed by a small number of scrutineers directly observing human officials.
The certification process allows greater transparency not limited to the number
of people able to fit within a physical space, although we recognise that physical
scrutiny is still required for earlier elements of the voting and vote counting
process (up to verification of optical scanning of ballots). Certification reduces
the risk of error and fraud that would compromise accuracy and provides an
evidence-base for trustworthiness. It is also likely to increase subjective public
trust, although this will require engagement with the public as to the nature of
verification involved. While it is likely that in practice checking will be limited to
a small group with the technical expertise, infrastructure and political interest to
pursue it, knowledge as to the openness of the model is likely to increase public
trust. Currently in Australia, neither open source nor proprietary vote counting
systems provide an equivalent level of procedural transparency for monitoring the
count in a particular election (for example, compare Commonwealth Electoral
Act 1918 (Australia) s 273A).

Ultimately, legislation, computer code (where relevant) and electoral proce-
dures need to combine to safeguard an accurate count in which the public has
justified confidence. The verification and verifiability measures suggested here
go further to ensure this than current methods used in Australia and, as far as
we are aware, public office elections around the world.

In the remainder of the paper, we describe a particular voting method (the
Schulze method) to demonstrate that we can achieve both verification and veri-
fiability for real-world size elections.

4 The Schulze Method

The Schulze Method [26] is a preferential voting scheme that elects a single
winner. While not used for elections to public office, it provides us with an
example that show-cases all aspects of verifiability discussed in Sect. 2, as the
correspondence between valid certificates and election winners is not trivial, i.e.
a valid certificate cannot immediately be matched to the winning condition. We
bridge this gap by a formal proof that we outline in Sect. 5.

In Schulze counting, each ballot expresses a preference ordering over the set
of candidates where all candidates need to be ranked, but candidates may be
given equal preference. The requirement of ranking all candidates can be relaxed
by assuming that non-ranked candidates tie for last position.



No More Excuses 73

From a social choice perspective, the Schulze voting scheme has been shown
to satisfy a large number of desirable properties, such as monotonicity, indepen-
dence of clones, and reversal symmetry, established in the original paper [26].

From a game theoretic perspective, it has also been experimentally estab-
lished that the Schulze Method is better than other, more established voting
schemes such as plurality and instant-runoff voting and Borda count [25]. Despite
the fact that the Schulze method isn’t used in elections for public office, there is
rapid uptake in a large number of organisations, including e.g. various national
branches of the Pirate Party and numerous open software initiatives.

Academically, the Schulze method has been investigated further, and it has
been established that Schulze voting is resistant to bribery and control [22] in the
sense that both problems are computationally infeasible, but have been found
to be fixed-parameter tractable with respect to the number of candidates [13].

The Schulze Method is guaranteed to always elect a Condorcet winner, that
is, a candidate that a majority prefers to every other candidate in a pairwise
comparison.

The distinguishing feature of Schulze counting is the resolving of cycles in
collective preferences. These situations appear to arise in real elections [16] and
it has been demonstrated that different choices of resolving cycles indeed lead
to different outcomes. Consider for example the following scenario taken from
[6] where we have three candidates A, B, and C and the following distribution
of votes:

4 : A > B > C 3 : B > C > A 2 : B > A > C 4 : C > A > B

where the number before the colon indicates the multiplicity of the vote, and >
indicates the order of preference so that e.g. 3 : B > C > A denotes three votes
where B is preferred over C who is in turn preferred over A. In this example, a
majority of candidates prefer A over B as eight ballots prefer A over B compared
to five ballots preferring B over A. Similarly, a majority of candidates prefer B
over C, and a majority prefer C over A, leading to a cyclic collective preference
relation.

The main idea of the method is to resolve cycles by considering transitive
preferences or a generalised notion of margin. That is, if m(c, d) is the margin
between candidates c and d (the difference between the number of votes that
rank c higher than d and the number of votes that rank d higher than c), Schulze
voting considers paths of the form

c1
m(c1,c2) �� c2

m(c2,c3) �� c3 ... cn−1
m(cn−1,cn) �� cn

i.e. sequences of candidates annoted with the margin between successive candi-
dates. A path like the above induces the path-based margin min{m(ci, ci+1 | 1 ≤
i < n} between c1 and cn given as the minimum of the margins between succes-
sive candidates, and the generalised margin between two candidates c and d is
the largest path-based margin considering all possible paths between c and d.



74 L. Bennett Moses et al.

This allows us to replace the margin used to determine Condorcet winners
by the generalised margin introduced above. The key result of Schulze’s paper
[26] (Sect. 4.1) is that the induced ordering is now indeed transitive.

A Schulze Winner can then be taken to be a candidate that is not defeated
by any other candidate in a pairwise comparision, using generalised margins. In
symbols, candidate c is a winner if g(c, d) ≥ g(d, c) for all other candidates d,
where g(·, ·) denotes generalised margins.

In the above example, we have the following margins (on the left) and gen-
eralised margins (on the right):

A
3

��

−1

��

B
−3

��

5

��
C

1

��

−5

�� A
3

��

3

��

B
1

��

5

��
C

1

��

1

��

Note that the margins on the left are necessarily symmetric in the sense that
m(x, y) = −m(y, x) as margins are computed as the difference between the
number of ballots that rank x higher than y and the number of ballots that rank
y higher than x. This property is no longer present for generalised margins, and A
is the (only) winner as A wins every pairwise comparison based on generalised
margins. In summary, vote counting according to the Schulze method can be
described as follows:

1. compute the margin function m(c, d) as the number of ballots that strictly
prefer c over d, minus the number of ballots that strictly prefer d over c

2. compute the generalised margin function g(c, d) as the maximal path-based
margin between c and d

3. Compute winning candidate, i.e. candidates for which g(c, d) ≥ g(c, d), for all
other candidates d, and apply tie-breaking if more than one winning candidate
has been elected.

It has been shown in Schulze’s original paper that at least one winner in this
sense always exists, and that this winner is unique in most cases, i.e. Schulze
counting satisfies the resolvability criterion.

5 Provably Correct and Verifiable Schulze Counting

Our implementation of the Schulze method consists of three parts:

Formal Specification. First, we provide a formal specification of the winning
condition for elections counted according to Schulze. This takes the form of
a logical formula that directly reflects the voting scheme.



No More Excuses 75

Certificate. Second, we establish what counts as a certificate for the winning
condition to hold, and give a formal proof that existence of a certificate for
winning is equivalent to winning in the sense of the initial specification. The
main difference between both notions of winning is that the former is a mere
logical assertion, whereas the latter is formulated in terms of verifiable data.

Proofs. Third, we provide a full proof of the fact that the existence of a certifi-
cate is logically equivalent to the specification being met. Moreover, we give
a full proof of the fact that winners can always be computed correctly, and
certificates can be produced, for any set of ballots.

We exemplify the relationship of these components with a simple example. Con-
sider the notion of being a list of integers sorted in ascending order. The formal
specification of this operation consists of two sentences:

– the elements of the resulting list should be in ascending order
– the elements of the resulting list should be a permutation of the elements of

the input list.

In this case, we don’t need to certify that a list is sorted: this can be checked easily
(in linear time). Ascertaining that the result list is a permutation of the input
list is (slightly) less trivial. Here, a certificate can be a recipe that permutes
the input list to the resulting list: to verify that the resulting list is indeed a
permutation, the only thing the verifier needs to do is to alter the input list
according to the given recipe, and then checking whether the two lists are equal.

In this case, the computation produces two pieces of data: we not only get
to see the sorted list, but also a permutation that witnesses that the resulting
list is a permutation of the input list. A proof then amounts to establishing that
given

– the input list, and the (sorted) resulting list, and
– a recipe that permutes the input list to its sorted version

we can conclude that the sorting operation indeed meets the formal specification.
The main (and important) difference between the specification and the cer-

tificate is that the former is merely a proposition, i.e. a statement that can either
be true or false. The certificate, on the other hand, gives us concrete means to
verify or ascertain the truth of the specification. The proofs provide the glue
between both: if a certificate-producing computation delivers a result together
with a certificate, we in fact know that the specification holds. On the other hand,
we need to establish that every correct computation can in fact be accompanied
by a valid certificate.

For vote counting, our development takes place inside the Coq theorem prover
[5] that is based on the Calculus of Inductive Constructions. Technically, Coq
distinguishes logical formulae or propositions (that are of type Prop) from data
(that is of type Set or Type). The former are correctness assertions and are erased
when programs are generated from proofs, whereas the latter are computed
values that are preserved: our certificates therefore need to be Types. To give
a simple example, a function that sorts a list will take a list (say, of integers)



76 L. Bennett Moses et al.

and produce a sorted list, where the fact that the list is sorted is expressed as
a proposition, so that sorted lists are pairs where the second component is a
proof that the first component is ordered, and is deleted by extraction. To make
sorting of lists verifiable, we would need to additionally output a certificate, i.e.
data from which we can infer that the result list is really a permutation of the
input list.

The logical specification of the winning condition is based on an integer-
valued margin function and a path between candidates:

Variable marg : cand -> cand -> Z.

Inductive Path (k: Z) : cand -> cand -> Prop :=
| unit c d : marg c d >= k -> Path k c d
| cons c d e : marg c d >= k -> Path k d e -> Path k c e.

Paths are additionally parameterised by integers that give a lower bound on
the path-based margin (the strength of the path in the terminology of [26]). We
interpret an assertion Path k c d as the existence of a path between c and d
that induces a path-based margin of at least k. Such a path can be constructed if
the margin between c and d is ≥ k (the unit constructor). Alternatively, a path
between c and e of strength ≥ k can be obtained if there is there is candidate d
for which the margin between c and d is ≥ k and d and e are already connected
by a path of strength ≥ k (via the cons constructor). This gives the following
formula that expresses that a candidate c wins a Schulze vote:

Definition wins_prop (c: cand) :=
forall d : cand, exists k : Z,
Path k c d /\ (forall l, Path l d c -> l <= k).

Simply put, it says that for each candidate d, there exists an integer k and a path
from c to d of strength k, and any other path going the reverse direction induces
at most the same path-based margin. In terms of the generalized margin function,
candidate c wins, if for every candidate d, the generalized margin between c and
d is greater than or equal to the generalised margin between d and c. We reflect
the fact that the above is a logical proposition in the name of the formula. The
certificate for winning then needs to consist of data that evidences precisely this.

One crucial component of a certificate that evidences that a particular can-
didate c is a Schulze-winner therefore consists of displaying a sufficiently strong
path between c and any other candidate. We achieve this by pairing the propo-
sitional notion of path with a type-level notion PathT that can be displayed as
part of a certificate for winning, and will not be erased by extraction.

Inductive PathT (k: Z) : cand -> cand -> Type :=
| unitT c d : marg c d >= k -> PathT k c d
| consT c d e : marg c d >= k -> PathT k d e -> PathT k c e.

The second part of the winning condition, i.e. the non-existence of a stronger
path going the other way, is more difficult to evidence. Rather than listing all



No More Excuses 77

possible paths going the other way, we use co-closed sets of pairs of candidates
which leads to smaller certificates. Given an integer k, a set S ⊆ cand× cand of
candidate pairs is k-coclosed if none of its elements (c, d) can be connected by
a path of strength k or greater. This means that

– for any element (c, d) ∈ S, the margin between c and d is < k, and
– if (c, d) is in the co-closed set and m is a candidate (a “midpoint”), then

either the margin between c and m is < k, or m and d cannot be connected by
a path of strength ≥ k.

The second condition says that c and d cannot be connected by a path of the
form c, m, ..., d whose overall strength is ≥ k.

We represent co-closed sets by boolean functions of type cand -> cand ->
bool and obtain the following formal definitions:

Definition coclosed (k : Z) (f : (cand * cand) -> bool) :=
forall x, f x = true -> W k f x = true.

where W: (cand -> cand -> bool) -> (cand -> cand -> bool) is an oper-
ator on sets of pairs of candidates that is given by

Definition W (k: Z) (p: cand * cand -> bool) (x: cand * cand) :=
andb (marg_lt k x)
(forallb (fun m => orb (marg_lt k (fst x, m)) (p (m, snd x)))

cand_all).

and marg lt is a boolean function that decides whether the margin between
two candidates is less than a given integer, and cand all is a list containing all
candidates that stand for election.

The certificate for a candidate c to be winning can then be represented by a
table where for every other (competing) candidate d, we have

– an integer k and a path from c to d of strength k, and
– a k+1-coclosed set that evidences that no path of strength > k exists between

d and c.

This leads to the following definition and equivalence proof where f plays the
role of coclosed set:

Definition wins_type c := forall d : cand,
existsT (k : Z), ((PathT k c d) *

(existsT (f : (cand * cand) -> bool),
f (d, c) = true /\ coclosed (k + 1) f))%type.

Lemma wins_type_prop : forall c, wins_type c -> wins_prop c.
Lemma wins_prop_type : forall c, wins_prop c -> wins_type c.



78 L. Bennett Moses et al.

and existsT is a type-level existential quantifier (technically, a Σ-type).
Going back to the trichotomy of specification, certificate and proof outlined

at the beginning of the section, the first lemma (wins type prop) says that the
existence of a certificate indeed implies the validity of the specification. The
second lemma (wins prop type) tells us that the notion of the certificate is so
that any correct computation can indeed be certified. That is, the notion of
certificate is general enough to certify all correct computations.

It is precisely the formal proof of equivalence of both notions of winning that
formally justifies our notion of certificate, as it ensures that a valid certificate
indeed witnesses the winning condition. This implements the third requirement
discussed on page 2.

The considerations so far rely on a previously computed margin function. To
obtain a formal specification and ensuing notion of certificates, all we need to
do is to provide a way of constructing the margin function step-by-step. We do
this by exhibiting two stages of the count:

1. in the first state, we process all ballots and iteratively update the margin func-
tion until all ballots have been processed. This gives us the margin function
on which subsequent computations are based.

2. in the second step, we compute winners, and evidence for winning, on the
basis of the margin function we have constructed in the first step.

The complete specification then takes the form of an inductive type that only
allows us to construct valid stages of the count. In more detail, we have four
constructors:

– ax where we construe all ballots as uncounted, and start with the zero margin
– cvalid where we update the margin function based on a formal ballot
– cinvalid where we discard an informal ballot and do not change the margin
– fin, where we assume that all ballots have been processed, and we finalise

the count by providing winners, and evidence for winning.

As a consequence, every element of this type represents a valid state of the
computation, and a count in state fin describes the result of the process.

Inductive Count (bs : list ballot) : State -> Type :=

| ax us m : us = bs -> (forall c d, m c d = 0) ->

Count bs (partial (us, []) m) (* zero margin *)

| cvalid u us m nm inbs : Count bs (partial (u :: us, inbs) m) ->

(forall c, (u c > 0)%nat) -> (* u is valid *)

(forall c d : cand,

((u c < u d) -> nm c d = m c d + 1) (* c preferred to d *) /\

((u c = u d) -> nm c d = m c d) (* c, d rank equal *) /\

((u c > u d) -> nm c d = m c d - 1))(* d preferred to c *) ->

Count bs (partial (us, inbs) nm)

| cinvalid u us m inbs : Count bs (partial (u :: us, inbs) m) ->

(exists c, (u c = 0)%nat) (* u is invalid *) ->

Count bs (partial (us, u :: inbs) m)

| fin m inbs w (d: (forall c, (wins_type m c)+(loses_type m c))):



No More Excuses 79

Count bs (partial ([], inbs) m) (* no ballots left *) ->

(forall c, w c = true <-> (exists x, d c = inl x)) ->

(forall c, w c = false <-> (exists x, d c = inr x)) ->

Count bs (winners w).

The formulation above relies on the following assumptions. First, ballots are
represented as functions from candidates into natural numbers that represent the
ranking. We assume that preferences start with 1 and interpret 0 as the failure
to denote a preference for a given candidate which renders the vote invalid. A
State is either a partial count that consists of a list of unprocessed ballots, a list
of informal ballots, and a partially constructed margin function, or of a boolean
function that determines the election winners. We have elided the definition of
losing that is dual to that of winning.

The task of computing the winners of a Schulze election given a list bs of
ballots is then reduced to exhibiting a boolean function w: cand -> bool that
determines the winners, and an element of the type Count bs (winners w).
While the first part (the boolean function) is the result of the computation, the
second part (the element of the Count-type) consists of the verifiable certificate
for the correctness of the count.

We exemplify the nature of certificates by returning to the example presented
in Sect. 4. We construe e.g. the ballot A > B > C as the function A �→ 1,
B �→ 2 and C �→ 3. Running a Schulze-election then corresponds to executing
the function that computes winners, which produces the following certificate (we
have added some pretty-printing):

V: [A1 B2 C3,..], I: [], M: [AB:0 AC:0 BC:0]
---------------------------------------------
V: [A1 B2 C3,..], I: [], M: [AB:1 AC:1 BC:1]
---------------------------------------------

. . .
---------------------------------------------
V: [A2 B3 C1], I: [], M: [AB:2 AC:0 BC:6]
------------------------------------------
V: [], I: [], M: [AB:3 AC:-1 BC:5]
----------------------------------
winning: A

for B: path A --> B of strenght 3, 4-coclosed set:
[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C)]

for C: path A --> B --> C of strenght 3, 4-coclosed set:
[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C)]

losing: B
exists A: path A --> B of strength 3, 3-coclosed set:

[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C)]
losing: C

exists A: path A --> B --> C of strength 3, 3-coclosed set:
[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C)]



80 L. Bennett Moses et al.

The initial stages are the construction of the margin function, where the first
component are the ballots to be processed. Here, a ballot of the form A2, B3, C1
represents a first preference for C, a second preference for A and a third preference
for B. The partial margin function is displayed in the rightmost column, and lists
pairwise margins, for example AB:1 encodes m(A,B) = 1. Note that the margin
function is symmetric, i.e. m(x, y) = −m(y, x) so that the above is a complete
representation. We do not have any invalid votes so that the I-component always
remains empty. The ellipsis (. . .) indicates the omission of some steps of
constructing the margin which we have elided to save space. Once the margin
is fully constructed, we present evidence, in this case, for A winning the election
(and everybody else losing). As described above, this evidence consists of a path,
and a coclosed set, for each candidate distinct from A. The subsequent entries
(that we haven’t discussed in this paper) show that every candidate except A
is not winning. A losing candidate (in this example, e.g. B) is a candidate for
which there exists a competitor (here: A) so that the generalised margin of A over
B is strictly larger than the generalised margin of B over A. This is evidenced
similarly to winning candidates, by giving a path and a co-closed set.

6 Experimental Results

We report on the results of implementing the Schulze method in the Coq theorem
prover [5] that automatically extracts into the OCaml programming language
[18]. Coq comes with an extraction mechanism [19] that allows us to extract both
functions and proofs into executable code via the Haskell, Ocaml and Scheme
programming languages. As Coq is written in OCaml itself, the OCaml extrac-
tion mechanism is the best developed, and OCaml produces faster executables
than the other two languages. As Coq is based on constructive logic, we can turn
both functions written in Coq, as well as proofs into executable code. Given that
the correctness of the count is witnessed by an inductive data type, counting itself
amounts to populating this type, and we use a mix of proofs (showing that a
count exists amounts to a function that produces a count) and verified functional
programs (that compute data directly), using the latter for performance-critical
tasks.

The most performance critical aspect of our code is the margin function.
Recall that the margin function is of type cand -> cand -> Z and that it
depends on the entire set of ballots. Internally, it is represented by a closure [17]
so that margins are re-computed with every call. The single largest efficiency
improvement in our code was achieved by memorization, i.e. representing the
margin function (in Coq) via list lookup. With this (and several smaller) opti-
misation, we can count millions of votes using verified code. Below, we include
our timing graphs, based on randomly generated ballots while keeping number
of candidates constant i.e. 4.

On the left, we report timings (in seconds) for the computation of winners,
whereas on the right, we include the time to additionally compute a universally
verifiable certificate that attests to the correctness of the count. This is consistent



No More Excuses 81

(a) Computation of Winners
(b) Computation of Winners and Certifi-
cate

Fig. 1. Experimental results

with known computational complexity of Schulze counting i.e. linear in number
of ballots and cubic in candidates. The experiments were carried out on a system
equipped with Intel core i7 processor and 16 GB of RAM. We notice that the
computation of the certificate adds comparatively little in computational cost
(Fig. 1).

At this moment, our implementation requires that we store all ballots in
main memory as we need to parse the entire list of ballots before making it
available to our verified implementation so that the total number of ballots we
can count is limited by main memory in practise. We can count real-world size
elections (8 million ballot papers) on a standard, commodity desktop computer
with 16 GB of main memory.

7 Discussion and Further Work

This paper argues that there is no excuse to use vote counting software in elec-
tions to public office (or otherwise) that is neither verified (i.e. the correctness of
the software has been established using formal methods) nor verifiable (i.e. stake-
holders can independently ascertain the correctness of individual executions of
the software). We have argued that both verification and verifiability are desider-
ata from the perspective of law and trust. Finally, our experimental results show
that both verification and verifiability can be achieved in realistic settings.

Our case study (Schulze voting) was chosen as it showcases how we can bridge
a non-trivial gap between certificates and the winning conditions of the voting
scheme under consideration. Despite the fact that the Schulze method is not
used for elections to public office, we are convinced that the same programme
can (and should!) be carried out for other preferential voting schemes.

As the precise notion of certificate depends on the exact description of the
voting protocol, it is clear that this paper merely provides a case study. For
other voting systems, in particular the notion of certificate needs to be adapted



82 L. Bennett Moses et al.

to in fact witness the correctness of the determination of winners. As a toy
example, this has been carried out for first-past-the-post (plurality) voting and
a simple version of single transferable vote [23]. The more realistic scenario of
single transferable vote with fractional transfer values is being considered in
[11] where real-word size case studies are being reported. Given that the nature
of certificates is crucially dependent on the voting protocol under scrutiny, the
complexity and size of certificates necessarily differs from case to case. While
our general experience seems to indicate that computing certificates incurs little
overhead, this remains to be investigated more formally.

One aspect that we have not considered here is encryption of ballots to safe-
guard voter privacy which can be incorporated using protocols such as shuffle-
sum [4] and homomorphic encryption [28]. The key idea here is to formalise a
given voting scheme based on encrypted ballots, and then to establish a homo-
morphic property: the decryption of the result obtained from encrypted ballots
is the same as the result obtained from the decrypted ballots. We leave this to
further work.

References

1. Arkoudas, K., Bringsjord, S.: Computers, justification, and mathematical knowl-
edge. Minds Mach. 17(2), 185–202 (2007)

2. Australian Electoral Commission. Letter to Mr Michael Cordover, LSS4883
Outcome of Internal Review of the Decision to Refuse your FOI Request
no. LS4849 (2013). http://www.aec.gov.au/information-access/foi/2014/files/
ls4912-1.pdf. Accessed 14 May 2017

3. Beckert, B., Goré, R., Schürmann, C., Bormer, T., Wang, J.: Verifying voting
schemes. J. Inf. Sec. Appl. 19(2), 115–129 (2014)

4. Benaloh, J., Moran, T., Naish, L., Ramchen, K., Teague, V.: Shuffle-sum: coercion-
resistant verifiable tallying for STV voting. IEEE Trans. Inf. Forensics Secur. 4(4),
685–698 (2009)

5. Bertot, Y., Castéran, P., Huet, G., Paulin-Mohring, C.: Interactive Theorem Prov-
ing and Program Development: Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg
(2004). doi:10.1007/978-3-662-07964-5

6. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D.: Introduction to
computational social choice. In: Brandt, F., Conitzer, V., Endriss, U., Lang, J.,
Procaccia, A.D. (eds.) Handbook of Computational Social Choice. Cambridge Uni-
versity Press, Cambridge (2016)

7. Carrier, M.A.: Vote counting, technology, and unintended consequences. St Johns
Law Rev. 79, 645–685 (2012)

8. Cochran, D., Kiniry, J.: Votail: a formally specified and verified ballot counting
system for Irish PR-STV elections. In: Pre-proceedings of the 1st International
Conference on Formal Verification of Object-Oriented Software (FoVeOOS) (2010)

9. Conway, A., Blom, M., Naish, L., Teague, V.: An analysis of new south wales
electronic vote counting. In: Proceedings of ACSW 2017, pp. 24:1–24:5 (2017)

10. Elections ACT. Electronic voting and counting (2016). http://www.elections.
act.gov.au/elections and voting/electronic voting and counting. Accessed 14 May
2017

http://www.aec.gov.au/information-access/foi/2014/files/ls4912-1.pdf
http://www.aec.gov.au/information-access/foi/2014/files/ls4912-1.pdf
http://dx.doi.org/10.1007/978-3-662-07964-5
http://www.elections.act.gov.au/elections_and_voting/electronic_voting_and_counting
http://www.elections.act.gov.au/elections_and_voting/electronic_voting_and_counting


No More Excuses 83

11. Ghale, M.K., Goré, R., Pattinson, D.: A formally verified single transferable vote
scheme with fractional values. In: Krimmer, R., Volkamer, M., Binder, N.B., Ker-
sting, N., Schürmann, C. (eds.) E-Vote-ID 2017. LNCS, vol. 10615, pp. 163–182.
Springer, Cham (2017)

12. Hales, T.: Formal proof. Not. AMS 55, 1370–1380 (2008)
13. Hemaspaandra, L.A., Lavaee, R., Menton, C.: Schulze and ranked-pairs voting are

fixed-parameter tractable to bribe, manipulate, and control. Ann. Math. Artif.
Intell. 77(3–4), 191–223 (2016)

14. Hood, C.: Transparency. In: Clarke, P.B., Foweraker, J. (eds.) Encyclopedia of
Democratic Thought, pp. 700–704. Routledge, London (2001)

15. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting
protocols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 389–404. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15497-3 24

16. Kurrild-Klitgaard, P.: An empirical example of the condorcet paradox of voting in
a large electorate. Publ. Choice 107(1/2), 135–145 (2001)

17. Landin, P.J.: The mechanical evaluation of expressions. Comput. J. 6(4), 308
(1964)

18. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system release 4.04 documentation and user’s manual. Technical report, Institut
National de Recherche en Informatique et en Automatique (INRIA) (2016)

19. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-69407-6 39

20. Meijer, A.: Transparency. In: Bovens, M., Goodin, R.E., Schillemans, T. (eds.) The
Oxford Handbook of Public Accountability, pp. 507–524. Oxford University Press,
Oxford (2014)

21. O’Neill, O.: A Question of Trust. Cambridge University Press, Cambridge (2002)
22. Parkes, D., Xia, L.: A complexity-of-strategic-behavior comparison between

Schulze’s rule and ranked pairs. In: Hoffmann, J., Selman, B. (eds.) Proceedings
of AAAI 26, pp. 1429–1435. AAAI Press (2012)

23. Pattinson, D., Schürmann, C.: Vote counting as mathematical proof. In:
Pfahringer, B., Renz, J. (eds.) AI 2015. LNCS, vol. 9457, pp. 464–475. Springer,
Cham (2015). doi:10.1007/978-3-319-26350-2 41

24. Pattinson, D., Tiwari, M.: Schulze voting as evidence carrying computation. In:
Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS, vol. 10499. Springer,
Cham (2017). doi:10.1007/978-3-319-66107-0 26

25. Rivest, R.L., Shen, E.: An optimal single-winner preferential voting system based
on game theory. In: Conitzer, V., Rothe, J. (eds.) Proceedings of COMSOC 2010.
Duesseldorf University Press (2010)

26. Schulze, M.: A new monotonic, clone-independent, reversal symmetric, and
Condorcet-consistent single-winner election method. Soc. Choice Welfare 36(2),
267–303 (2011)

27. Vogl, F.: Waging War on Corruption: Inside the Movement Fighting the Abuse of
Power. Rowman & Littlefield, Lanham (2012)

28. Yi, X., Paulet, R., Bertino, E.: Homomorphic Encryption and Applications.
SpringerBriefs in Computer Science. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-12229-8

http://dx.doi.org/10.1007/978-3-642-15497-3_24
http://dx.doi.org/10.1007/978-3-642-15497-3_24
http://dx.doi.org/10.1007/978-3-540-69407-6_39
http://dx.doi.org/10.1007/978-3-319-26350-2_41
http://dx.doi.org/10.1007/978-3-319-66107-0_26
http://dx.doi.org/10.1007/978-3-319-12229-8
http://dx.doi.org/10.1007/978-3-319-12229-8

	No More Excuses: Automated Synthesis of Practical and Verifiable Vote-Counting Programs for Complex Voting Schemes
	1 Introduction
	2 Verification and Verifiability
	3 Legal Aspects of Verification and Verifiability
	4 The Schulze Method
	5 Provably Correct and Verifiable Schulze Counting
	6 Experimental Results
	7 Discussion and Further Work
	References




