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Preface

This volume contains papers presented at E-Vote-ID 2017: International Joint Con-
ference on Electronic Voting held during October 24–27, 2017 in Bregenz, Austria.
The current edition represents the Second International Joint Conference on Electronic
Voting (E-Vote-ID), after the merging of EVOTE and Vote-ID.

Together with last year’s conference, more than 800 experts from over 35 countries
over the last 13 years have attended the conference series. Thus, the conference con-
tinues as one of the major events in the field of electronic voting providing ample room
for interdisciplinary and open discussion of all issues relating to electronic voting.

This year, too, the conference consisted of:

– Security, Usability and Technical Issues Track
– Administrative, Legal, Political, and Social Issues Track
– Election and Practical Experiences Track
– PhD Colloquium (on the day before the conference)

This year’s edition, E-VOTE-ID 2017, received 48 submissions, with each of them
being reviewed by three to four Program Committee members, using a double
blind-review process. As a result, 16 papers were accepted for this issue, representing
33% of the submitted proposals. The selected papers cover a wide range of topics
connected with electronic voting including experiences and revisions of the real uses of
e-voting systems and corresponding processes in elections. Beside the accepted papers,
the volume contains three invited papers from the conference keynote speakers.

Special thanks go to the members of the international Program Committee for their
hard work in reviewing, discussing, and shepherding papers. They ensured the high
quality of these proceedings with their knowledge and experience.

We also would like to thank the German Informatics Society (Gesellschaft für
Informatik) with its ECOM working group for their partnership over several years.
A big thank you goes also to the Swiss Federal Chancellery for their continued support.

October 2017 Robert Krimmer
Melanie Volkamer

Nadja Braun Binder
Norbert Kersting
Olivier Pereira

Carsten Schürmann
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Election Security and Economics:
It’s All About Eve

David Basin1(B), Hans Gersbach2, Akaki Mamageishvili2,
Lara Schmid1, and Oriol Tejada2

1 Institute of Information Security, ETH Zurich, Zurich, Switzerland
basin@inf.ethz.ch

2 Chair of Macroeconomics: Innovation and Policy, ETH Zurich,
Zurich, Switzerland

Abstract. A system’s security must be understood with respect to the
capabilities and behaviors of an adversary Eve. It is often assumed in
security analysis that Eve acts as maliciously as possible. From an eco-
nomic perspective, Eve tries to maximize her utility in a game with
other participants. The game’s rules are determined by the system and
its security mechanisms, but Eve can invent new ways of interacting with
participants. We show that Eve can be used as an interface to explore
the interplay between security and economics in the domain of elections.
Through examples, we illustrate how reasoning from both disciplines
may be combined to explicate Eve’s motives and capabilities and how
this analysis could be used for reasoning about the security and perfor-
mance of elections. We also point to future research directions at the
intersection of these disciplines.

1 Introduction

Election security is an important societal problem as attacks on elections put
democracy at risk. When establishing that an election system is secure, one
must reason about the adversarial environment in which the system is used.
This requires specifying the capabilities of the adversary, henceforth called Eve.

In the security community, one provides an adversary model that specifies
Eve’s capabilities and assumes she will exploit these capabilities, independent of
the costs. For election security, one typically assumes the existence of reasonably
strong adversaries when designing the system, for example adversaries that may
compromise the client’s platform but not the voting server or the postal channel.
Such assumptions are usually made without detailed economic justifications.
In economics, one considers what Eve is rationally motivated to do and one
looks at the entire range of sophisticated mechanisms available to her to exploit
the humans that use the system. For example, a wealthy adversary might try
to buy votes in elections, with adverse consequence; see e.g. [14]. Moreover,
economists may consider the scenario where a majority of citizens base their
voting decisions on false assumptions about their decisions’ effects, with adverse
long-term societal consequences [6].
c© Springer International Publishing AG 2017
R. Krimmer et al. (Eds.): E-Vote-ID 2017, LNCS 10615, pp. 1–20, 2017.
DOI: 10.1007/978-3-319-68687-5 1



2 D. Basin et al.

In this paper, we outline these two perspectives of Eve. We show that the
perspective used in one discipline can sharpen the assumptions, models, and
results used in the other discipline. Hence, both disciplines together can best
ensure election security and the quality of election outcomes.

First, security analysis is central to economic models of elections since these
models always depend implicitly on security properties such as integrity or coer-
cion resistance, as we will illustrate in this paper. Hence, trust in an election’s
outcome depends on whether such security properties can be proven to hold.
Moreover, when harmful adversarial behavior cannot be ruled out, an analysis
of the adversary’s capabilities provides a guide to constructing economic mod-
els involving these adversaries. One can then calculate the expected election
outcome in the presence of the modeled adversary.

Second, economic analysis is important for security analysis in order to deter-
mine what a rational adversary will do. On the one hand, Eve may never under-
take certain actions and thus these actions can be omitted from the security
analysis. On the other hand, Eve may invent entirely new games to interact
with a system’s participants, which can undermine the system’s security proper-
ties. This may necessitate modeling Eve or other participants differently in the
security analysis. We illustrate this with two examples in this paper. In the first
example, we show that the use of decoy ballots, which are fake ballots that are
introduced to avoid vote buying, are much less secure than assumed so far. In
the second example, we explain why the authenticity of voting-related informa-
tion must be considered to be a central security property since, otherwise, an
adversary could spoof a trusted information source and send biased information
to voters, which could lead to undesirable voting outcomes.

Most research in security analysis and economics has been carried out inde-
pendently. In recent times, research straddling these two disciplines has emerged.
For example, malware researchers [8,25] have investigated the behavior of real-
life adversaries and how this behavior relates to their economic goals. Other
researchers [1,11,15] have modeled (coercible) users and security providers as
rational agents and used this to investigate the adequacy of different security
measures. Game-theoretic models have been employed [24,27] to analyze the
security of physical environments, such as airports and harbors, and to determine
the best strategies to protect them against adversaries. Recently, researchers in
elections have started investigating this interplay too, for example, in the con-
text of vote buying [18]. We see our work in line with this trend, explicating
the interplay between security and economics and highlighting Eve’s use as an
interface between these disciplines.

We proceed as follows. In Sect. 2, we review how (voting) protocols are gener-
ally formalized in information security and economics, highlighting Eve’s special
role. In Sect. 3, we describe two voting protocols, a simple voting protocol and
Chaum’s [9] random sample elections, which we use in Sects. 4 and 5 to illustrate
how information security researchers and economists analyze voting protocols
and to investigate the interplay between these two disciplines. Finally, in Sect. 6,
we draw conclusions and provide a perspective on the scope and some of the
challenges of this important interdisciplinary research area.
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2 General Approaches

2.1 Information Security

To analyze a system in information security, one must specify the system P ,
the adversary (alias “Eve”) A, and the desired security properties Prop. The
system’s security is established by proving an assertion of the form P,A � Prop,
which states that all possible system behaviors satisfy the property Prop, when
P is executed in an environment with the adversary A. When the system is
distributed, such as (voting) protocols are, this essentially means that all possible
behaviors arising from agents executing the protocol, operating in parallel with
the adversary, satisfy the property Prop. Rigorously establishing this requires
precise specifications of P , A, and Prop and constructing proofs, ideally, using
theorem provers or model checkers. For security protocols, the specifications
are often given using symbolic models, and proofs are constructed using model
checkers like ProVerif [7] or Tamarin [17,20]. See [4] for more on this.

We now further describe P , A, and Prop, focusing on the distributed set-
ting. Here, P specifies the protocol that honest agents follow. For example, P
is defined by role specifications that describe the behavior of honest agents in
terms of which messages they send and receive and in which order. The proto-
col’s execution semantics is defined by all possible interleavings of instantiated
roles, also interleaved with actions of the adversary A.

A property Prop is intended to hold in every possible execution of the pro-
tocol. What Prop specifies depends on the system under consideration. For vot-
ing protocols, we are typically interested in the following properties. Integrity
demands that information, e.g., votes, cannot be changed by an unauthorized
entity. Verifiability additionally stipulates that integrity can be verifiably estab-
lished, e.g., by individuals who check that their own votes are recorded as cast
(individual verifiability) or that all votes are counted as recorded (universal ver-
ifiability). Secrecy and privacy guarantee that it is indistinguishable who voted
for what. Finally, coercion resistance states that a voter cannot prove to an
adversary how he voted, even if he actively collaborates with the adversary.

Eve, the adversary A, is the focus of this paper. We emphasize that a system’s
security can only be analyzed meaningfully with respect to a class of adversaries.
For example, a system P that keeps data secret (Prop) in the face of a network
adversary A, may be insecure against a stronger adversary with physical access
to the system, who can perform side channel attacks or even remove and copy the
hard disk. For security protocols, a popular adversary is the Dolev-Yao adver-
sary [10], who has full control over the network. This adversary can read and
change everything sent over the network, and can also send messages herself.
Furthermore, this adversary can compromise agents and learn their secrets. We
will consider a number of other adversaries shortly in the context of voting.

2.2 Economics

Economic models of collective decision mechanisms help to analyze the design
and goals thereof. In particular, they can be used to establish if a given voting
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protocol is based on principles of liberal democracies and whether it yields wel-
fare gains.

Game-theoretical models, in particular, are best suited for assessing the prop-
erties of collective decision mechanisms. These models aim to explain the strate-
gic interaction between agents with opposing interests and to discern why some
agents may opt for particular behaviors. A game-theoretical model of a collective
decision mechanism demands that we specify the following elements:

1. The player set (Who): who are the agents that can participate in the game?
2. The game rules (How): what is each agent allowed to do and what information

is available to him when he takes his decisions?
3. The strategy set (What): what strategies are available to the agents, where a

strategy describes what the agent does in each game situation?
4. Utilities (Why): what does each player want to achieve in such a game?

Each player aims to maximize his (expected) utility, given his observations
about other players’ past actions and his predictions about past and future
actions. Given a game, one looks for its equilibria, i.e., for the situations where
no player has an incentive to change his decision given the (expected) decisions
of the remaining players. These equilibria are predictions about the outcome of
collective decisions, and can be investigated with respect to the quality and costs
of the game’s outcome. Most game-theoretical models do not assume the exis-
tence of an adversary that can influence the outcome of the collective decision.
There is however a strand of literature that explicitly incorporates an adversary
as an active player of the game. In this paper we examine one instance of such
a model.

3 Voting Protocols

Numerous voting protocols have been proposed in the past. We introduce here
two protocols that we will subsequently use to illustrate how voting protocols
are analyzed from the information security and economic perspectives.

Voting protocols often involve players (or agents) acting in roles, which are
called principals. These include a voting server/election authority, with a data-
base that processes all the cast votes, stores them, and tallies them. Often, the
election authority, who conducts the elections, and the voting server are consid-
ered to be one principal. The eligible voters are the principals who are legally
entitled to vote. When voting electronically, they cast their vote using a com-
puting platform. Usually, one considers a public bulletin board where votes are
published in an authentic way and cannot be altered afterwards. Finally, auditors
are the principals who check the published information for consistency. Auditors
may be voters, party members, candidates, or independent parties.
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3.1 Simple Voting Protocol

A simple voting protocol is shown in Fig. 1. This protocol is overly simple;
it merely serves to illustrate Eve’s role in the following sections. The three
involved principals, from left to right, denote a voter, a voting server, and a
database where votes are collected. Here we explicitly separate the server from
the database to model a traditional three-tier architecture with a presentation
tier (browser on the client), a server tier, and a storage tier. In the protocol, a
voter sends his vote to the server, which stores the vote in the database. After
all votes have been collected, the votes in the database are tallied and the result
is published on the server. A voter can read the published result from the server.

Fig. 1. A simple voting protocol.

3.2 Random Sample Elections

A more complex protocol, but with stronger security guarantees, is random sam-
ple elections as introduced by Chaum [9]. The main novelty is that only a ran-
dom sample of the electorate votes. The motivation is economic: this procedure
should be less costly than voting by the entire electorate, and voters may be
better informed when they vote less frequently.

In more detail, random sample elections partition the electorate into three
sets. The first set consists of the randomly selected (real) voters, whose votes
will be counted. The second set consists of decoy voters who can ask for, and
receive, fake ballots, which they can sell to adversaries. The third set contains
those members of the electorate who are not selected and do not ask for fake
ballots. Votes cast with fake ballots will have no effect on the tally. Neverthe-
less, after a decoy voter has ordered a ballot, he behaves exactly as a normal
voter when casting his vote. As we explain below, decoy votes are intended to
prevent coercion. Additionally, there are auditors, who may be voters or other
individuals.

Figure 2 illustrates some of the actions that can take place in random sam-
ple elections. As a preliminary step, decoy voters can actively order ballots; in
contrast, selected real voters receive ballots without prior actions. This optional
step for decoy voters is illustrated by the dashed arrow. Afterwards, the protocol
for real voters and decoy voters is identical. First, each voter is provided a pair of
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Fig. 2. The voting protocol for random sample elections, illustrated on an example.
The dashed arrow indicates the message only sent by decoy voters.

ballots by mail. Each ballot has a serial number, 200a and 200b in the example,
and two answers, yes/no, each with a unique code. A voter can choose either
ballot for voting. Second, to cast his vote, the voter enters online the serial num-
ber of the chosen ballot and the code of his choice. Figure 2 depicts an example
of this in gray. Namely, the voter decides to vote with the ballot with the serial
number 200b and the vote yes. Therefore, he looks up the code corresponding
to yes on this ballot, which is 987, and he casts his vote by entering the serial
number and this code online. Finally, the voter destroys the ballot with the serial
number 200b so that no one can learn to which vote this code corresponds. He
may write down the code 987 to help him remember later what he has sent.

During the voting procedure, the election authority posts information on
the bulletin board to enable auditors to verify that the voting procedure was
correctly followed. We explain next, on an example, the election authority’s
internal representation of this information.

Consider a random sample election with two voters, a real voter Vr and a
decoy voter Vd. We assume that there are the two pairs of ballots given in Fig. 3.
The first pair (the two ballots on the left) is from Fig. 2 and we assume that it
was sent to the real voter Vr. The second pair (the two ballots on the right) is
sent to the decoy voter Vd. Furthermore, we assume that, as in Fig. 2, Vr selects
ballot 200b and votes yes and that Vd selects ballot 023a and votes yes.

Figure 4 illustrates the table that is known only to the election authority after
the votes are cast. The first column denotes the serial numbers and the codes as
appearing on the ballots. The second column indicates which ballots have not
been used for casting votes and lists the serial number and codes of these ballots
again. Recall that each voter receives two ballots, but only uses one for voting.
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Fig. 3. Two pairs of ballots, where the left pair is from a real voter and the right pair
is from a decoy voter. Choices are circled in gray.

code print vote voted decoy

200a, 543 200a, 543 yes - -

200a, 275 200a, 275 no - -

200b, 987 - yes x -

200b, 325 - no - -

023a, 642 - yes x decoy

023a, 735 - no - decoy

023b, 555 023b, 555 yes - decoy

023b, 524 023b, 524 no - decoy

Fig. 4. Internal representation of the information stored by the election authority in
random sample elections (simplified).

In the example, the ballots 200a and 023b have not been used for casting votes.
The third column indicates the vote that corresponds to the respective code in
this column. For example, the first row indicates that on the ballot with serial
number 200a, the code 543 represents the vote yes. The fourth column marks
which votes have been chosen. For example, the third row indicates that on ballot
200b, the code 987, which encodes the choice yes, has been voted. Finally, the
last column indicates whether the respective ballot was sent to a decoy voter,
which is the case here for the ballots 023a and 023b.

We will explain in the next section how protocols for posting parts of this
information enable verifiability.

4 Information Security Analysis

We first present the information security approach to analyzing security pro-
tocols. We start with the simple protocol from Sect. 3 and use it to highlight
the importance of adversary models and also the relationship of these models to
trust assumptions. Afterwards, we turn to random sample elections.

4.1 Adversary

Trust and compromised principals. In information security, one reasons about
the adversary Eve, as formalized by an adversary model, or by trust assumptions.
These notions are dual: if we trust a principal, for example a system component,
to act in a certain way (e.g., to follow a specification), this is equivalent to
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assuming that Eve cannot compromise the component and thereby alter its
behavior. For example, if we consider a trusted client and server in our simple
voting protocol (Fig. 1), we can send messages to the server over the Transport
Layer Security protocol TLS (which establishes a secure channel) and hence an
adversary who can only observe the network cannot eavesdrop or tamper with
transmitted messages, such as votes or election results. However, if we consider
a compromised client platform, the adversary can both learn and alter the votes
sent. Similarly, if we do not trust the server, i.e., if it can be compromised, then
it does not help to use a secure channel to send votes over the network. Eve can
still learn and alter the votes because she can learn all the server’s secrets.

The following example illustrates that considering different trust assumptions
for different usage scenarios is commonplace.

Example 1. The Swiss regulations for electronic voting [22,23] dictate that if
at least 30% of the electorate vote electronically, it is assumed that the platform
is untrusted but the server is trusted. However, if at least 50% of the electorate
vote electronically, it must be assumed that both the platform and the server
are untrusted. Equivalently, in the first case, it is assumed that Eve can corrupt
just the platform, whereas in the second case, she can corrupt the server as well.
Hence two different adversary models are used for the two scenarios. �

Channel assumptions. Continuing with our simple voting protocol, suppose the
connection from the voter to the server is not secured by TLS but instead that
the unencrypted votes are sent over the insecure network. The voting protocol
then does not achieve vote secrecy, even with respect to a weak adversary such
as a passive, eavesdropping adversary. It is thus crucial that we state for all prin-
cipals whether they can be compromised and, moreover, for all communication
channels, what Eve’s capabilities are.

For online voting, many formalisms assume a Dolev-Yao adversary who can
control the network. Assume now that in the simple protocol, votes are not cast
online but that the postal service is used instead. Some voting schemes effec-
tively introduce the postal service as an auxiliary (out-of-band) communication
channel, which is assumed to be trustworthy, i.e., a secure channel. However,
as the following example suggests, one must carefully examine whether such
assumptions are justified and what the effects are when these assumptions fail.

Example 2. A reported case of voter fraud took place in the canton of Valais,
Switzerland, in March 2017 [21,26]. Normally, ballots are sent to voters by the
postal service, after which they are filled out and signed by the voters. The
ballots are subsequently cast using the postal service or are hand-delivered to
a polling station. In the reported case, some empty ballots were never received
by the intended voters. The election protocol used allows voters to order new
ballots in such situations. However, when casting their newly ordered ballots,
the affected voters noticed that someone else had already voted in their name.
The most likely explanation is that the ballots were stolen from their mail boxes
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and cast by an adversary. Hence, the postal channel did not provide a secure
channel from the election authority to the voters, as an adversary had access to
the ballots. �

Summarizing, the adversary model must precisely define for each principal
involved and each channel used how Eve can interact with and possibly compro-
mise them. Otherwise security cannot be meaningfully established. See [4] for
an account of how to formalize such models in general. [2,3,5] explain how to
formalize channel models and adversaries with a wide range of capabilities.

4.2 Security Properties

There are many security properties relevant for voting protocols. We concen-
trate on coercion resistance, integrity, and verifiability, and consider them in the
context of random sample elections. We also present some additional properties
specific to random sample elections.

Coercion resistance. In voting, Eve may try to coerce voters or pay them to vote
as she wishes. Sometimes a distinction is made as to whether the voter is willing
to collaborate with Eve, for example, for money. In such a context, a protocol
where a voter cannot possibly prove that he voted as Eve demanded is more
secure with respect to coercion than a protocol where the voter can prove how
he voted if he chooses to collaborate with Eve.

In random sample elections, Chaum [9] suggests that coercion resistance can
be achieved by employing decoy votes. These votes are indistinguishable from
real votes, but they do not contribute to the tally. Since they can be sold, Eve
may be less interested in buying votes because she cannot distinguish a real vote
from a decoy vote. In terms of the adversary model, the security properties, and
the protocol, this can be understood as follows: if decoy votes are effective, Eve
will not buy votes and therefore we can exclude the action of vote buying from
the adversary model. Of course, if we model an adversary that does not engage
in vote buying, coercion resistance holds, independent of the protocol.

Whether or not Chaum’s proposal is an adequate countermeasure to vote
buying boils down to an economics question. Eve’s problem, according to [19],
is that she must offer a sufficiently high price for votes in order to attract real
votes in addition to the decoy votes that will always be offered to her. Whether
Eve engages in vote-buying in such a situation depends on two factors. First,
as the share of decoy votes increases, Eve can buy fewer real votes with a given
budget. However, an adversary with an extremely large budget might not be
deterred by decoy votes. Second, Eve must know the distribution of the real
voters’ willingness to sell their votes. Otherwise, she risks buying mainly decoy
votes if the price is low or, alternatively, vote-buying may be extremely expensive.

Current analysis of decoy votes [19] suggests that an appropriate design of
decoy votes is a viable tool to achieve coercion resistance, however, never in
an absolute sense. In Sect. 5.3, we will discuss new ways to buy votes when
there are decoy votes, which cast doubt on whether decoy votes achieve their
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intended purpose. Furthermore, we demonstrate that they allow an adversary to
distinguish real from decoy voters.

Finally, as a side remark, note that decoy votes may pose a challenge to
the credibility of the entire voting process since the electorate is encouraged to
interact with the adversary.

Integrity and verifiability. Integrity is the property that data cannot be changed
in unauthorized ways, for example, the votes cannot be manipulated. Verifiabil-
ity is the property that participants or outsiders can establish the integrity of
the election results. Equivalently, it is verifiable that no one, including the elec-
tion authority or even errors in the voting software, can alter the result without
this being detected. Verifiability properties are often classified as either indi-
vidual verifiability or universal verifiability. Individual verifiability states that
each voter can verify that his vote was recorded as cast. Universal verifiability
states that auditors, which can be anyone, can verify that the recorded votes were
counted correctly by the server. To establish such a property, the election author-
ity often publishes different stages of its computations. For example, it publishes
the recorded votes in encrypted form and then publishes the decrypted votes as
the final tally. Additionally, the authority proves that the tally corresponds to
the encrypted votes.

Verification can be performed in different ways. Take, for example, the prob-
lem of showing that the decrypted votes correspond to the encrypted ones. A
possible strategy is to verify this by a cut and choose argument. In cut and
choose, the authority constructs several tables of intermediate results and cryp-
tographically commit to them. Once committed, they cannot change the tables’
entries. A random event then decides which columns of each table must be
revealed. The revealed columns allow anyone to verify that the tables are con-
sistent, without revealing anything secret. Note that at the time it commits to
the tables, the election authority does not know which columns will later be
revealed. Therefore, if the consistency checks are verified in many iterations of
this procedure, all the computations must have been done correctly with high
probability.

Example 3, at the end of this section, illustrates cut and choose on the
example of random sample elections. Chaum does not explicitly formalize the
considered adversary model in random sample elections. However, the presented
mechanism establishes the verifiability of the voting tally even if the election
authority is compromised.

If we assume that an adversary cannot compromise the election authority, we
are usually not concerned with verifiability properties. If the election authority
behaves according to the protocol, the result will not be manipulated. However,
if we assume that the election authority can be compromised, then verifiability is
important. Also, as the adversary can manipulate each part of the computation,
we must ensure that we check all relevant parts, from ballot printing all the way
to the fact that the ballots are recorded as cast and counted as recorded.
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code print vote voted decoy

200a, 543 200a, 543 yes - -

200a, 275 200a, 275 no - -

200b, 987 - yes x -

200b, 325 - no - -

023a, 642 - yes x decoy

023a, 735 - no - decoy

023b, 555 023b, 555 yes - decoy

023b, 524 023b, 524 no - decoy

(a) Full (internal) representation.

code print vote voted decoy

023b, 524 023b, 524 no - decoy

023a, 735 - no - decoy

200b, 987 - yes x -

023a, 642 - yes x decoy

200b, 325 - no - -

023b, 555 023b, 555 yes - decoy

200a, 275 200a, 275 no - -

200a, 543 200a, 543 yes - -

(b) Check individual verifiability.

code print vote voted decoy

200b, 325 - no - -

200a, 275 200a, 275 no - -

023a, 735 - no - decoy

023a, 642 - yes x decoy

023b, 524 023b, 524 no - decoy

200a, 543 200a, 543 yes - -

200b, 987 - yes x -

023b, 555 023b, 555 yes - decoy

(c) Check print auditing.

code print vote voted decoy

023b, 555 023b, 555 yes - decoy

023a, 735 - no - decoy

200b, 987 - yes x -

200b, 325 - no - -

023b, 524 023b, 524 no - decoy

023a, 642 - yes x decoy

200a, 543 200a, 543 yes - -

200a, 275 200a, 275 no - -

(d) Check final tally.

Fig. 5. Simplified version of cut and choose for random sample elections.

Other Properties. Two other security properties specific to random sample elec-
tions are the integrity and the verifiability of the random selection. This means
that the sampled voters are drawn uniformly at random from the set of possi-
ble voters, that the election authority cannot manipulate the sample group, and
that everyone can verify this while still ensuring the anonymity of the real vot-
ers. Similarly to establishing the verifiability of the tally, the election authority
publishes information on the bulletin board that allows such verification. In par-
ticular, the election authority commits to certain values before an unpredictable
public random event produces the randomness for the random sampling.

Another important property for random sample elections is the anonymity
of the sample group. This states that no one can learn who the real voters are.
Random sample elections aim to achieve this with decoy voters that can interact
with the election authority in exactly the same way as real voters. Hence they are
indistinguishable from the perspective of an observing adversary. Interestingly,
if the adversary can also interact with real and decoy voters, she can use this to
her advantage as we explain in the following section.

Example 3. We present a simplified version of cut and choose for random sam-
ple elections, continuing the example from Sect. 3.2. For readability, in Fig. 5a
we present again the table that is only known to the election authority. We gray
out this table’s content to denote that the gray values are not visible on the
bulletin board, but only known internally.

Of course, at the beginning of the election, some of these entries are not
yet known. In a first phase, which takes place before the ballots are sent to
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the voters, the election authority fills in the first, third and fifth columns of the
table in Fig. 5a, while the second and fourth columns remain empty. The election
authority then produces multiple copies of this table, 3k copies in this example,
and randomly permutes their rows, resulting, for example, in the tables shown
in Figs. 5b–d. Then, it encrypts each column of each table with a different secret
key and publishes all the resulting encrypted tables on the bulletin board. At
this stage, the bulletin board contains 3k tables where columns one, three, and
five are filled in but the content is not yet readable by the auditors. The columns
are encrypted in such a way that they hide the contents of the columns but they
can later only be decrypted to the original plain text. With this mechanism, the
election authority commits to the content without revealing it at this point.

Afterwards, the real voters are chosen, the ballots are sent to the real and decoy
voters, and the voters cast their votes. Then, the second and fourth columns are
filled into all 3k copies of the table, after the votes have been recorded. The result-
ing columns are again encrypted and published, such that the bulletin board now
contains 3k full, but hidden tables; this concludes the “cut”-phase.

Next, in the “choose”-phase, the 3k tables are divided into three disjoint
batches, each containing k tables, based on an unpredictable, random event. The
membership of a table to a batch decides which of the table’s columns must be
revealed on the bulletin board for auditors to inspect. Each table in Figs. 5b–d
represents one batch. The white columns depict which columns are revealed
for all tables in this batch for the verifiability checks. The gray columns are
never revealed. It is important that the event that determines which tables go
into which batch is unpredictable so that the election authority cannot prepare
the tables in such a way that all the checks go through even when the tables
are inconsistent. Furthermore, it is crucial that the columns of all tables have
already been committed to, since this allows an auditor to discover if the election
authority has manipulated the tables after-the-fact. The following verifiability
checks are used by this procedure.

In the first batch, depicted by the table in Fig. 5b, the serial numbers and
codes, their repetition in unused ballots, and the voted marks (white columns)
are revealed on the bulletin board. This enables every voter to verify that his
vote has been recorded as cast. For example, the voter Vr can verify that the
ballot 200b was used to cast a vote (because the field in “print” is empty) and
that the code 987 was marked as voted. However, no one else learns that the
code 987 corresponds to the yes vote.

The published columns in Fig. 5c enable voters to verify print auditing, that is
that the ballots were printed correctly by the election authority. Each voter can
check that the code-vote association of his unused ballot is correctly depicted by
the table. For example, the voter Vr can check that for the ballot 200a, the code
275 corresponds to no and 543 to yes, corresponding to the copy of the ballot he
still has in his possession. This ensures that the election authority cannot forge
votes by printing ballots incorrectly. In particular, because the authority cannot
predict which ballot will be chosen by the voter, it cannot know which ballot
must be revealed for the consistency check.
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In the final batch, as depicted in Fig. 5d, the last three columns of the tables
are revealed. This enables all participants to verify the tally. In the example,
everyone can see that there are two votes for yes and one of them has been sent
by a decoy voter and will thus not be counted in the tally.1 Note that because all
tables have different row permutations, this procedure also ensures vote privacy.
No auditor of the bulletin board can conclude, for example, that the voter with
ballots 200a and 200b voted yes with code 987. �

Note that although Chaum does not provide formal models, the protocol we
have sketched (and his extensions) are sufficiently detailed that they can be
appropriately formalized and verified from the information security perspective.

5 Economic Perspective

In this section, we outline the economic analysis of random sample elections
with decoy votes, explore the required security properties, and show that more
sophisticated adversaries may violate some of the security properties of random
sample elections with decoy votes.

5.1 Economic Analysis

We illustrate the analysis of random sample elections. In the simplest setting
with private values and costly voting, we consider a model that has the following
features:

1. There are two alternatives (S and P), representing candidates or issues.
2. The electorate is a given finite set N , which is randomly split into three sub-

sets N1, N2 and N3. Members of N1 have the right to vote (henceforth called
“sample group”), members of N2 obtain decoy ballots (henceforth “decoy
group”), and members of N3 do not participate in the process. For any given
set S, we use |S| to denote its cardinality.

3. Voters i ∈ N are of two types ti = S and ti = P, that is, they either prefer S
or P.

4. A share λS prefers S and a share λP prefers P, with λS + λP = 1.
5. Any voter i’s utility is:

ti chosen ti not chosen

i votes 1 − c −c

i does not vote 1 0

1 The actual table in random sample elections is more involved and also includes
information allowing one to ascertain that the right voters have been provided with
ballots. We refer to [9] for further details, which are not relevant for this paper.
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In this table, we have normalized the utility gain to 1 when the preferred
alternative is chosen by the sample group. Voting is costly, as citizens need
time to make up their minds and to vote. These costs are captured by the
parameter c, 0 < c < 1, which is assumed to be the same for all voters for
illustrative purposes.

6. Real and decoy voters decide whether to abstain or to vote for one of the two
alternatives. The votes of decoy voters are disregarded.

Finding the equilibria of the above game is the core of the economic analysis.
For examples related to this game, see [16]. An immediate observation is that
no voter will cast a vote against his preferred alternative. Building on equilibria
outcomes, we can then make welfare comparisons relative to the standard voting
system where all N citizens vote simultaneously, which serves as a benchmark.

The equilibria can be used to assess whether the voting outcome will achieve a
low quality or high quality of collective decisions and whether or not the election
generates high costs for the citizens.

In the random sample elections game introduced before, we can immediately
observe that the highest decision quality is achieved if and only if

S is chosen ⇔ λS ≥ 1
2
.

Regarding the costs, the best possible situation occurs when nobody votes. In
this case, however, no democratic decision-making is possible. Accordingly, there
is a trade-off between quality and costs.2 Typically, this is resolved by a welfare
function that incorporates these two objectives or, alternatively, by achieving
a certain quality at minimal cost. In most of the well-established costly voting
models, the voting outcome does not achieve particularly high quality and the
margin between the votes cast for S and P is much smaller than the margin
between the support for the two alternatives in the entire population. Intuitively,
this can be explained as follows: If a voter is in favor of the same decision as most
voters are, he will more likely not vote. He can save the cost of voting because it
is probable that his favored choice wins anyways. The small difference between
votes cast for S and P opens up great opportunities for Eve. By manipulating a
small number of votes, Eve can arrange that her preferred alternative wins, even
if the support for the other alternative is much larger in the entire population.

5.2 Implicit Security Properties

In the following, we review some standard assumptions that are typically taken
for granted in the voting model in Sect. 5.1. We show that with the insights pro-
vided by information security analysis, these assumptions can be made explicit
and can be proven to hold.

2 In general, this does not hold for all citizens. A fraction of voters derives positive
value from engaging in deliberation and voting.
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Economic models usually assume that the adversary does not interfere with
the voting process. However, if one takes Eve seriously, it is easy to imagine dif-
ferent ways that she can affect the outcome of a collective decision directly. First,
a small fraction of votes may be manipulated after they have been submitted by
the voters, but before they have been made public. The severity of this problem
increases the more a voting system tends to compress the vote margin, say by
providing members of the majority with lower incentives to turn out than mem-
bers of the minority. When margins are small, manipulating a few votes may
suffice to change the outcome. As we have seen, the property of information
security that denotes that no one can alter the votes after they have been cast is
integrity. Additionally, one can require that everyone must be able to verify that
this property holds. This is captured by the properties individual and universal
verifiability.

Second, Eve may want to influence the selection of the voters in the sample
group. To ascertain that a protocol is not vulnerable to such attacks, the sample
group must be chosen randomly, and the integrity of the assignment of voters
to the sample group must hold. Again, an additional requirement can be that
these properties are verifiable.

Third, Eve may want to buy certain votes directly from the citizens. For this
to be possible, she must have access to the voters’ identities, who, in turn, need
to prove to Eve that they have voted as agreed. Hence, both the anonymity of
the sample group and coercion resistance are important properties.

Finally, Eve could try and send messages with political content to (targeted)
voters to influence their evaluations of alternatives, and ultimately their deci-
sions. This is related to the channel assumptions in the adversary model of
information security. If we assume that there are only insecure channels from
the election authority to the voter, then Eve could effectively influence voters
by forging information as coming from the authority. If, however, the channels
from the authority to the voter enable message authentication, then Eve cannot
convincingly send messages as coming from the authority; this might decrease
her chances to influence the voters.

For completeness, we summarize the security requirements needed for the
successful implementation of random sample elections. They are: integrity and
verifiability of the tally and the selection, random selection of the sample group,
anonymity of the sample group, coercion resistance, and message authentica-
tion. We have just argued that economic models rely on these properties, which
must be established by using the methods of information security. Conversely, as
discussed in Sect. 4.2, information security sometimes assumes certain adversary
capabilities that are based on economic reasoning, for example the argument
that Eve will not buy votes if decoy votes are deployed because they make vote
buying ineffective. Economic approaches can help to devise extremely sophis-
ticated adversaries that exploit humans. We demonstrate that if we model a
more sophisticated adversary, even with a very low budget she can break the
anonymity of the sample group when decoy votes are used.
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5.3 Vote Buying

Decoy ballots have been advocated as a viable tool against vote buying. For
instance, [19] analyze decoy ballots from a game-theoretic perspective and con-
clude that they are reasonably immune to vote-buying attempts by malicious
adversaries facing budget constraints. In their analysis, they only consider sim-
ple attacks by the adversary: she sets a price at which she is willing to buy
votes, both from real voters and decoy voters. With the help of a simple model,
we briefly discuss how a more sophisticated adversary Eve can separate decoy
votes from real votes in the process of vote-buying.3

Consider now that the electorate N is composed of risk-neutral citizens,
which base their decision solely on expected gains. We also assume that |N | is
sufficiently large so that we can work with the law of large numbers, and we
denote by p, for 0 < p < 1, the percentage of citizens who have real votes. These
voters are chosen randomly. The rest of the electorate obtains decoy votes.4 We
stress that the parameter p can be chosen by the election designer. Whether one’s
ballot is real or decoy is private information, and hence, there is no possibility
for an outside agent (including Eve) to distinguish between the two types of
ballots. For a voter i, let Vi be the utility he obtains from voting. If a voter i
has a decoy ballot, his utility is Vi = 0. If a voter i has a real ballot, his utility is
Vi = V > 0. The exact value of V is determined in equilibrium. We assume that
the adversary’s goal is to buy half of the real votes, which amount to a share
p/2 of the population.

We consider two possible procedures employed by Eve. First, suppose that
she offers each citizen a certain amount x in exchange for his vote. Clearly, if
x < V , she will only obtain decoy ballots. Hence assume that x = V , so that
all citizens who are offered the deal accept. In order for Eve to obtain half of
the real votes, on average she then needs to offer x to a half of the population
since decoy ballots and real ballots are indistinguishable. This means that Eve
expects per-capita costs denoted by B where

B =
V

2
.

Second, suppose that Eve chooses an entirely different approach and uses
so-called “Devil’s Raffles”, i.e. offering lotteries Lk = (pk, qk), (k = 1, 2, ...) of
the following kind: with probability pk, the voter will receive a sure payoff qk in
exchange for his vote, and with probability 1 − pk no transaction will occur and
the voter (real or decoy) will keep his ballot. Consider now two lotteries L1 and
L2 with

p2 := 1
2

q1 := V − ε
q2 := V + ε

3 The simple model we consider is different from, yet similar in spirit to, the one
considered by [19].

4 Thus we assume that |N3| = 0. This is without loss of generality. Moreover, a full-
fledged analysis reveals in our setting that all members of N2 will apply for decoy
votes.
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for some small value ε > 0. Moreover, let

p1 :=
ε + p2q2

q1
=

ε + 1
2 (V + ε)
V − ε

. (1)

Hence,

p1 · q1 = ε + p2 · q2 > p2 · q2 =
1
2

· (V + ε). (2)

Thus, the expected payoff from choosing lottery L1 is higher than that from
choosing L2.

Let us next examine the utilities of citizen i. On the one hand, if he accepts
the lottery Lk, for k ∈ {1, 2}, he expects

E[i sells his vote for Lk] = pk · qk + (1 − pk) · Vi. (3)

If, on the contrary, citizen i does not sell his vote, he expects

E[i does not sell his vote] = Vi, (4)

which is zero for decoy voters and V for real voters.
Since Vi = 0 for decoy voters, they will buy lottery L1 since p1q1 > p2q2. For

real voters Vi = V and choosing lottery L2 therefore yields the expected payoff

1
2
(V + ε) +

1
2
V = V +

1
2
ε, (5)

while selecting L1 yields

p1(V − ε) + (1 − p1)V = V − p1ε. (6)

Hence real voters will buy lottery L2.
Eve will offer these lotteries to a share s of the population. In order to obtain,

on average, half of the real votes again, s must satisfy

s · (p · p2 + (1 − p) · 0) = p/2 ⇔ s =
1

2p2
= 1.

This calculation reflects that p · p2 is the probability that a real voter gives
Eve his vote (in lottery two), whereas (1 − p) · 0 is the probability that Eve
receives a real vote from a decoy voter. The result makes sense: Real voters have
a chance of 1

2 to be able to sell their votes. Hence, the entire electorate must be
invited to apply for the lotteries.

We next calculate Eve’s expected aggregate costs. For this purpose, we make
ε arbitrarily small and neglect it in the calculation. Then the expected budget
amounts to

B = p · p2 · q2 + (1 − p) · p1 · q1 ≈ p2 · q2 =
1
2

· q2 =
V

2
.

We obtain two conclusions from an economics perspective. First, attacks with
Devil’s Raffles are useful to identify who has a decoy ballot and who does not
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have one because real and decoy voters choose the lottery L2 and L1 to sell their
votes, respectively. Moreover, Eve can elicit p if it is not known to her with a
small budget by selecting small values of p1 and p2. Second, regarding the budget
needed to obtain half of the real votes: there is no improvement compared to
the first procedure where a price is fixed at which a fraction of votes is bought.
However, there are more sophisticated forms of Devil’s Raffles that also lower
the budget [13].

From the security perspective, we learn that a sophisticated adversary can
buy votes, even in the presence of decoy ballots. Given this, a protocol using
decoy votes is unlikely to provide coercion resistance unless other more effec-
tive mechanisms are in place. Repairing this problem would require a protocol
redesign. Moreover, the economic analysis demonstrates that decoy votes vio-
late the anonymity of the sample group. Thus even if coercion resistance can
be established using decoy ballots, this mechanism should not be used when the
anonymity of the sample group is important.

6 Outlook

Through examples, we have shown how the adversary Eve provides an effective
interface between security and economics. In particular, information security
focuses on what Eve can technically do in a system that incorporates security
mechanisms with the aim of achieving security properties. In contrast, economic
models investigate what Eve is rationally motivated to do in a self-designed game
with the system’s participants. We have illustrated how these two viewpoints can
complement each other. Economic models implicitly assume security properties
that can be made explicit and be proven by using the techniques of information
security. Similarly, informal economic arguments motivating the adversary mod-
els used in information security must be analyzed with great care. The example
of the decoy votes, which are supposed to avoid coercion, shows that sophisti-
cated adversaries can design out-of-the box games that endanger other security
properties, such as the anonymity of the sample group.

An important future research direction is certainly to investigate the wide
spectrum of adversary models used in election research, their economic justifi-
cations, their effects on critical security properties, and as a consequence how
voting protocols must be strengthened (or weakened). In addition there are seri-
ous concerns that go beyond the actual voting and tallying protocol. Free and
fair elections [12] impose requirements before and after the election: including
basic freedoms like those of free speech, free press, free movement and assembly,
as well as more specialized rights like access to polls and protection from intim-
idation. Recent elections in America and France have shown that organizations
and other countries can attempt to influence public opinion by propaganda or
“fake news”.

Such election hacking is a major challenge for democracy and an impor-
tant research direction for both information security and economic research.
We conclude with an illustration based on our example from Sect. 5.1. Suppose
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that Eve manages to send a message about the relative merits of the two alter-
natives S and P that is perceived to be from a trusted authority and affects
through biased information (“fake news”) individual evaluations of the alterna-
tives. Assume in our random sample elections game that Eve can manipulate in
this way a small fraction of the sample group’s members. Two possibilities can
occur. First, and less plausibly, assume that it is common knowledge among all
voters that Eve has manipulated a fraction of voters who then vote as desired
by Eve and that Eve’s preferred alternative is also commonly known. Then, the
other voters could adjust their decision whether to abstain or not and could—
and would—neutralize this manipulation. Second, and more plausibly, assume
that Eve’s manipulation is hidden. Since vote margins are typically small in
costly voting setups, such a hidden manipulation—even of a small fraction of
voters—would affect the outcome significantly. This type of manipulation makes
voting outcomes extremely vulnerable and developing adequate security coun-
termeasures is a considerable challenge.
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Abstract. Rigorous cryptographic security analysis plays an important
role in the design of modern e-voting systems by now. There has been
huge progress in this field in the last decade or so in terms of formaliz-
ing security requirements and formally analyzing e-voting systems. This
paper summarizes some of the achievements and lessons learned, which,
among others, challenge common believes about the role of and the rela-
tionships between central security requirements.

1 Introduction

Privacy, verifiability, accountability, and coercion-resistance are fundamental
security requirements for modern e-voting systems. Privacy ensures that the
way a particular voter voted is not revealed to anybody. Intuitively, verifiabil-
ity guarantees that it is possible to verify that the published election result is
correct, even if voting machines/authorities are (partially) untrusted. In the lit-
erature, one often finds that verifiability is divided into individual and universal
verifiability. Accountability is a stronger form of verifiability: accountability does
not only require that it is detected if the published result is incorrect, but that
misbehaving parties can be singled out and thus held accountable. This notion
so far has gained much less attention than verifiability, although rather than
aiming for mere verifiability, modern e-voting system should really strive for
accountability in order to be useful in practice, as later explained and further
emphasized in this paper. Coercion-resistance protects voters against vote buy-
ing and coercion. A weaker form of coercion-resistance is called receipt-freeness.

In order to find out whether a given voting system achieves its desired secu-
rity properties, informally analyzing its security is not sufficient since critical
aspects can easily be overlooked. Therefore, it is necessary to formally ana-
lyze the security of voting systems based on reasonable and formal security
definitions.

There have been major achievements in the field of rigorous cryptographic
analysis of e-voting systems in the last decade or so. Formal definitions for the
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central security requirements have been proposed and intensively been stud-
ied (see, e.g., [5,12,31,32,35]). Some of these definitions are formulated in gen-
eral and widely applicable frameworks so that they can be applied to virtu-
ally any e-voting protocols. These frameworks and definitions have been applied
to perform rigorous security analysis of various existing e-voting systems (see,
e.g., [2,10,13,14,29,31,32,34,35,37,38]), often with surprising results, and newly
proposed systems more and more come with security proofs right away (see,
e.g., [7,25–28]).

The rigorous approach also has helped to reveal some confusions and common
misconceptions concerning security requirements and their relationships, and
by this aided the deeper understanding of such requirements, providing a solid
formal basis for the design and analysis of e-voting systems.

In this paper, some of these confusions and misconceptions will be highlighted
and explained. In particular, based on various works from the literature, we point
out the following:

– The still popular notions of individual and universal verifiability together are
neither sufficient nor necessary to achieve end-to-end (E2E) verifiability, as
explained in Sect. 2.

– E2E verifiability alone is typically insufficient for practical purposes. E-voting
systems should really be designed with accountability in mind, a notion pre-
sented in Sect. 3.

– While it is commonly believed that coercion-resistance implies privacy, sur-
prisingly, this is not true in general. Moreover, improving the level of privacy
can lead to a lower level of coercion resistance (see Sect. 4).

Throughout the paper, we also emphasize the importance of widely applicable
security definitions. The definitions which we recall in this paper are all based
on a common general framework where systems and protocols are formulated as
sets of interactive probabilistic polynomial time Turing machines (see Sect. 2.1).
By this, virtually any e-voting system can be modeled in such a framework.
All definitions presented here are cryptographic game-based definitions. The
definitions also allow one to measure the level of security an e-voting system
provides. This is crucial as security typically is not perfect, since, for example,
only a fraction of voters perform certain checks.

Before we conclude in Sect. 6, we briefly discuss limitations of the crypto-
graphic analysis of e-voting systems in Sect. 5, such as usability aspects, legal
requirements, implementation and deployment issues.

2 Verifiability

E-voting systems are complex hardware/software systems. In such systems, as in
all complex systems, it is almost impossible to avoid programming errors. Even
worse, components of e-voting systems, such as voters’ devices, voting machines,
and voting servers, might have deliberately been tampered with. In fact, it has
been demonstrated that numerous e-voting systems suffer from flaws that make it
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possible for more or less sophisticated attackers to change the election result (see,
e.g., [19,49,51,52]). Such manipulations are often hard or virtually impossible
to detect. In some occasions, announced results were incorrect and/or elections
had to be rerun (see, e.g., [23]).

Therefore, besides vote privacy, modern e-voting systems strive for what is
called verifiability, more precisely end-to-end (E2E) verifiability. Roughly speak-
ing, E2E verifiability means that voters and possibly external auditors should be
able to check whether the published election result is correct, i.e., corresponds to
the votes cast by the voters, even if voting devices and servers have programming
errors or are outright malicious.

In the remainder of this section, we first recapitulate the notion of E2E verifi-
ability and its formal definition. We then discuss other notions of verifiability, in
particular the prominent notions of individual and universal verifiability. Follow-
ing [28,35,37], we show that, unlike commonly believed, these two notions fail
to provide a solid basis for verifiability. In particular, they are neither necessary
nor sufficient to achieve E2E verifiability.

2.1 E2E Verifiability

About 30 years ago, Benaloh already provided a first definition of E2E verifi-
ability [4]. As discussed in [12], while Benaloh’s definition is fairly simple and
captures the essence of verifiability, it requires unrealistically strong properties
so that it would reject even reasonable e-voting systems.

In [32], Küsters, Truderung, and Vogt introduced a generic framework (the
KTV framework) for verifiability and, more precisely, the even stronger notion of
accountability (see Sect. 3). They also instantiated the framework to define E2E
verifiability; also called global verifiability in [32], in contrast to individual and
universal verifiability (see Sect. 2.2). This framework and definition since then
have been used to analyze several e-voting protocols and mix nets [28,29,32,35,
37,38], such as Helios, ThreeBallot, VAV, Wombat Voting, sElect, Chaumian
RPC mix nets, and re-encryption RPC mix nets. It can also be applied to other
domains, such as auctions and contract signing [32].

Cortier et al. [12] demonstrated that it is possible to cast all formal verifia-
bility definitions from the literature into the generic KTV framework (see also
below).

E2E Verifiability in Short. In short, Küsters et al. capture E2E verifiability in the
KTV framework as follows: The probability that a run is accepted (by a judge
or other observers), but the published result of the election does not correspond
to the actual votes cast by the voters is small (bounded by some parameter δ).
More specifically, the result should contain all votes of the honest voters, except
for at most k honest votes (for some parameter k ≥ 0), and it should contain at
most one vote for every dishonest voter.

In what follows, we first briefly recall the generic KTV framework and then
its instantiation which captures E2E verifiability (see [32] for details or the pre-
sentation of this framework in [12]). In [32], formalizations both in a symbolic as
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well as a computational model were presented. Here, as throughout the paper,
we concentrate on the computational model.
Protocol Model of the KTV Framework. A protocol is simply modeled as a set
of probabilistic polynomial-time interactive Turing machines (ITMs) where the
ITMs are connected via named tapes. We also refer to such a set as a process.
By this, arbitrary protocols can be modeled.

More specifically, a protocol P is defined by a set of agents/parties Σ and
an ITM πa for each agent a in Σ. The set Σ may contain voters, voting devices,
bulletin board(s), various tellers, auditors, etc. Note that one can easily model
voters and voting devices as separate entities (ITMs) in this framework. The
program πa is called the honest program of a. By πP we denote the process
consisting of all of these (connected) ITMs. This process is always run with an
adversary A which may run an arbitrary (probabilistic polynomial-time) program
πA and which is connected to all other parties. The adversary can model the
network and/or dishonest parties. Also, A may statically or dynamically corrupt
parties (by sending a corrupt messages to these parties); parties who should not
be corruptable would simply ignore corruption messages by the adversary. A run
of P with adversary πA is a run of the process πP ‖πA (the union of the ITMs in
πP and the ITM πA).
A Generic Verifiability Definition in the KTV Framework. The KTV framework
provides a general definition of verifiability, which in particular can be instan-
tiated to model E2E verifiability (see below). The definition assumes a judge J
whose role is to accept or reject a protocol run by outputting accept or reject (on
some tape). To make a decision, the judge runs a so-called judging procedure,
which performs certain checks (depending on the protocol specification), such
as verification of zero-knowledge proofs (if any) and taking voter complaints
into account. Typically, the judging procedure can be carried out by any party,
including external observers and even voters themselves, as the information to
be checked is public. Hence, the judge might just be a “virtual” entity.

The generic KTV verifiability definition is centered around a goal γ of the
protocol. Formally, γ is a set of protocol runs.1 The goal γ specifies those runs
which are correct or desired in some protocol-specific sense. In the context of
e-voting and for E2E verifiability, the goal would contain those runs where the
announced election result corresponds to the actual choices of the voters.

Now, the idea behind the definition of verifiability in the KTV framework is
very simple. Only those runs r should be accepted by the judge in which the goal
γ is met, i.e., r ∈ γ. In the context of e-voting, if in a run the published result
does not correspond to the actual choices of the voters, then the judge should
reject the run. More precisely, the definition requires that for all adversaries
the probability (over the set of all protocol runs) that a run is accepted by the
judge but the goal is not met is bounded by some constant δ (plus a negligible
function). Although δ = 0 is desirable, this would be too strong for almost
all e-voting protocols. For example, typically not all voters check whether their

1 Note that a single run is determined by the random coins used by the parties involved
in the run.
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ballots appear on the bulletin board. This give the adversary the opportunity to
manipulate or drop some votes without being detected. Therefore, δ = 0 cannot
be achieved in general. The parameter δ is called the verifiability tolerance of
the protocol.

By Pr(π(�) �→ ¬γ, (J : accept)) we denote the probability that the process π,
with security parameter 1�, produces a run which is not in γ but nevertheless
accepted by J.

Definition 1 (Verifiability). Let P be a protocol with the set of agents Σ. Let
δ ∈ [0, 1] be the tolerance, J ∈ Σ be the judge, and γ be a goal. Then, we say
that the protocol P is (γ, δ)-verifiable by the judge J if for all adversaries πA

and π = (πP ‖πA), the probability

Pr(π(�) �→ ¬γ, (J : accept))

is δ-bounded2 as a function of �.

We note that the original definition in [32] also captures soundness/fairness:
if the protocol runs with a benign adversary, which, in particular, would not
corrupt parties, then the judge accepts all runs. This kinds of fairness/soundness
can be considered to be a sanity check of the protocol, including the judging
procedure, and is typically easy to check.

We note that Definition 1 does not (need to) assume any specific protocol
structure, and hence, is widely applicable. It also takes into account real-world
uncertainties. As mentioned before and shown in [12], all definitions of verifia-
bility from the literature can be captured by appropriate choices of the goal γ.
The specific protocol structures often assumed in such definitions can also easily
be captured.

E2E Verifiability in the KTV Framework. In [32], Küsters et al. proposed an
instantiation of the generic verifiability definition to capture E2E verifiability.
To this end, they introduce a family of goals {γk}k≥0:3 the goal γk contains
exactly those runs of the voting protocol in which (i) all but up to k votes of the
honest voters are counted correctly, and (ii) every dishonest voter votes at most
once (see the technical report [33] of [32] or [12] for the formal definition). For
example, consider a run of an e-voting protocol with three honest voters and two
dishonest voters. Assume that there are two candidates/choices A and B, and
that the tallying function returns the number of votes for each candidate. Now,
if all honest voters vote for, say, A and the final result is (A,B) = (2, 2), then
γk is achieved for all k ≥ 1 but γ0 is not achieved: one vote of an honest voter
is missing (dropped or flipped to a vote for B), and there is at most one vote
for every dishonest voter; γ0 is not satisfied because it requires that all votes of
honest voters are counted, which is not the case here.

With this definition of goals, Definition 1 captures E2E verifiability: the prob-
ability that the judge accepts a run where more than k votes of honest voters
2 Bounded by δ, plus some negligible function in the security parameter �.
3 In [12] (Subsect. 10.2), these goals have been refined.
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were manipulated or dishonest voters could cast too many votes, is bounded
by δ. In security statements about concrete e-voting protocols, δ will typically
depend on various parameters, such as k and the probability that voters per-
forms certain checks. While k = 0 is desirable, this is in most cases impossible
to achieve because, for example, voters might not always perform the required
checks, and hence, there is a chance that manipulation of votes goes undetected.

Importantly, this definition of E2E verifiability allows one to measure the
level of E2E verifiability an e-voting protocol provides.

2.2 Individual and Universal Verifiability

Sako and Kilian [45] introduced the notions of individual and universal verifi-
ability. These requirements (and subsequent notions, such as cast-as-intended,
etc.) have become very popular and are still used to design and analyze e-voting
systems. According to Sako and Kilian, an e-voting system achieves individual
verifiability if “a sender can verify whether or not his message has reached its
destination, but cannot determine if this is true for the other voters”. Universal
verifiability guarantees that it is possible to publicly verify that the tallying of
the ballots is correct. That means that the final election result exactly reflects
the content of those ballots that have been accepted to be tallied.

The notions of individual and universal verifiability have later been for-
malized by Chevallier-Mames et al. [8] (only universal verifiability), Cortier
et al. [10], and Smyth et al. [48]. As mention in [32] and demonstrated in [12],
these notions can also be captured in the KTV framework.
A Common Misconception. Unfortunately, it is often believed that individual
together with universal verifiability implies E2E verifiability, which is the security
property that e-voting systems should achieve. However, in [32,37], and [28],
Küsters et al. have demonstrated that individual and universal verifiability are
neither sufficient nor necessary for E2E verifiability.

In short, there are e-voting systems, such as ThreeBallot and VAV [42] as well
as variants of Helios, that arguably provide individual and universal verifiability
but whose verifiability is nevertheless broken, i.e., they do not provide E2E
verifiability. Conversely, there are e-voting systems, such as sElect [28], which
provide E2E verifiability without having to rely on universal verifiability.

In what follows, we explain these results in more detail.

2.3 Not Sufficient

We recall several attacks that break the E2E verifiability of e-voting systems,
even though these systems provide individual and universal verifiability. The first
class of attacks uses that (dishonest) voters possibly with the help of malicious
authorities might cast malformed ballots. In the second class of attacks (so-called
clash attacks), the same receipt is shown to different voters who voted for the
same candidate, allowing malicious voting devices and authorities to drop or
manipulate ballots.
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An Illustrative Example: A Modification of Helios. Helios [1] is one of the most
prominent remote e-voting systems which, on a high level, works as follows.
Trustees share a secret key sk which belongs to a public/private ElGamal key
pair (pk, sk). Voters encrypt the candidate of their choice under the public key
pk and submit the resulting ciphertext to the bulletin board. Then all ciphertexts
are publicly multiplied so that, by the homomorphic property of the ElGamal
public-key encryption scheme, the resulting ciphertext encrypts the number of
votes for each candidate. Finally, the trustees perform distributed and verifiable
decryption of this ciphertext and publish the resulting plaintext as the outcome
of the election.

In order to guarantee the integrity of the final result, several zero-knowledge
proofs (ZKP) are used. Among others, a voter has to prove that her ciphertext
encrypts a valid choice, and, for privacy reasons, that she knows which choice it
encrypts.

It has been formally proven that under certain assumptions Helios is E2E
verifiable (see, [11,37]). Furthermore, assuming that the voting devices are hon-
est, Helios provides individual verifiability because each voter can check whether
her ballot appears on the bulletin board. Universal verifiability follows from the
fact that the multiplication of the ciphertexts on the bulletin board is public
and that the tellers perform verifiable decryption. Thus, Helios provides E2E
verifiability as well as individual and universal verifiability.

To see that individual and universal verifiability together do not imply E2E
verifiability consider a modification of Helios in which voters do not have to prove
that their votes are correct, i.e., dishonest voters may cast malformed ballots
without being detected. Then a (single!) dishonest voter could completely spoil
the election result by encrypting an invalid choice. Such a malformed ballot might
contain negative votes for certain candidates, and hence, effectively subtracting
votes from candidates, or the malformed ballot might contain many more votes
for a candidate then allowed. So, such a system certainly does not provide E2E
verifiability. At the same time, such a system can still be considered to provide
individual and universal verifiability. Voters can still check that their ballots
appear on the bulletin board (individual verifiability), and ballots on the bulletin
board can still be tallied in a universally verifiable way. But dishonest voters
might have spoiled the election result completely and this is not detected.4

This simple example demonstrates that, even if an e-voting system achieves
individual and universal verifiability, its overall verifiability can nevertheless
completely and trivially be broken.
Another Example: ThreeBallot. The attack illustrated above conceptually also
applies to the ThreeBallot voting system [42] (also to VAV), but the details of
the attack differ. We start by briefly describing how ThreeBallot works.

In ThreeBallot, a voter is given a multi-ballot consisting of three simple
ballots. On every simple ballot, the candidates, say A and B, are printed in
the same fixed order, say A is listed first and B is listed second. In the secrecy

4 Note that the arguments hold true even when assuming that only eligible voters
(honest or dishonest) may vote.
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of a voting booth, the voter is supposed to fill out all three simple ballots in
the following way: she marks the candidate of her choice on exactly two simple
ballots and every other candidate on exactly one simple ballot. Assume, for
example, that a voter votes for candidate A. Then
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would be valid multi-ballots to vote for A. After this, the voter feeds all three
simple ballots to a voting machine (a scanner) and indicates the simple ballot
she wants to get as a receipt. The machine checks the well-formedness of the
multi-ballot, prints secretly (pairwise independent) random numbers on each
simple ballot, and provides the voter with a copy of the chosen simple ballot,
with the random number printed on it. Note that the voter does not get to see
the random numbers of the remaining two simple ballots. The scanner keeps all
simple ballots (now separated) in a ballot box.

In the tallying phase, the voting machine posts on the bulletin board (elec-
tronic copies of) all the cast simple ballots in random order. From the ballots
shown on the bulletin board, the result can easily be computed: The number of
votes for the ith candidate is the number of simple ballots with the ith position
marked minus the total number of votes (since every voter marks every candidate
at least ones).

ThreeBallot offers (some level of) individual verifiability because each voter
may check whether the simple ballot she has taken as a receipt appears on
the bulletin board. Thus, it should be risky for any party to remove or alter
simple ballots. Additionally, ThreeBallot offers universal verifiability because the
tallying is completely public. However, as Küsters et al. [35] have pointed out,
ThreeBallot does not offer E2E verifiability. One variant of the attack presented
in [35] assumes that the scanner is dishonest. To illustrate the attack, assume
that an honest voter votes for, say, candidate A by submitting a multi-ballot of
one of the forms shown above. Now, a dishonest voter which collaborates with
the dishonest scanner could create a malformed ballot of the form(
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which, together with the ballot of the honest voter (no matter which one of the
two kinds shown above), yields two (valid!) votes for candidate B and no vote for
candidate A. Clearly, E2E verifiability is broken: a vote for A and one invalid bal-
lot result in two valid votes for B. But no honest voter would complain because
none of their single/multi-ballots were manipulated. So, this attack neither inval-
idates individual verifiability nor universal verifiability, showing again that these
notions together do not imply E2E verifiability, and are really insufficient.

Clash Attacks. The idea of individual and universal verifiability not only fails
due to undetected malformed ballots. Another problem are clash attacks [37],
which might break E2E verifiability, while individual and universal verifiability
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together again do not detect such attacks. As demonstrated in [37], several e-
voting system are vulnerable to clash attacks, including several variants of Helios.

To illustrate the attack, consider the Helios voting system, where the voting
devices might be dishonest and where the ballots of the voters are published
on the bulletin board without voter names or pseudonyms attached to them.
Now, if two voters vote for the same candidate, the voting devices might use the
same randomness to create the ballots, and hence, the two ballots are identi-
cal. However, instead of putting both ballots on the bulletin board, authorities
might add only one of them to the bulletin board and the other ballot might
be replaced by one for another candidate. The two voters can check individually
that “their” ballot appears on the bulletin board (individual verifiability); they
do not realize that they are looking at the same ballot, i.e., they do not realize
the “clash”. Universal verifiability is obviously guaranteed as well. Still, the sys-
tem does not provide E2E verifiability: a vote of an honest voter was replaced
in an undetectable way by another vote.
Adding More Subproperties? Now that we have seen that individual and universal
verifiability do not imply the desired security property E2E verifiability, it might
be tempting to search for more subproperties that would then, eventually, yield
a sufficiently strong verifiability notion.

In [12], it has been demonstrated that all verifiability notions proposed in
the literature so far that are split up into additional subproperties, such as
individual and universal verifiability, do not provide E2E verifiability, even if
more subproperties are added. In [10], for example, a subproperty was introduced
that rules out clash attacks but the resulting verifiability notion is still too weak
(see [12], Appendix B, for details).

When existing systems are analyzed w.r.t. verifiability or new systems are
proposed, one should always check for E2E verifiability as introduced above, as
E2E verifiability is the kind of verifiability modern e-voting systems ultimately
should aim for. While subproperties, such as individual and universal verifiabil-
ity, can guide the design of e-voting systems, unless formally proven that their
combination in fact implies E2E verifiability, such properties alone might miss
important aspects and can therefore not replace E2E verifiability.

2.4 Not Necessary

The examples and attacks above illustrate that the notions of individual and
universal verifiability are not sufficient to provide E2E verifiability. Following
[28], we now demonstrate that they are not necessary to achieve E2E verifia-
bility either. More specifically, in [28] the remote e-voting system sElect was
proposed, and it was shown that it provides E2E verifiability (under reasonable
assumptions). But sElect is not universally verifiable.

sElect. sElect [28] is a conceptually simple remote voting system which is based
on a Chaumian mix net.
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A Chaumian mix net consists of mix servers M1, . . . ,Mn where each one of
them holds a public/secret key pair (pki, ski) of a (CCA2-)secure public-key
encryption scheme. The input to the mix net is a set of ciphertexts c1, . . . , cl

where each ciphertext ci is a nested encryption of a plaintext mi under the
public keys of the mix servers in reverse order, i.e.,

ci = Enc (. . .Enc (mi, pkn) . . . , pk1) .

When the mix net is executed, the first mix server decrypts the outer encryption
layer with its secret key sk1, shuffles the result,5 and forwards it to the sec-
ond mix server, which decrypts the next encryption layer with sk2, shuffles the
resulting ciphertexts, and so on. Finally, the output of the mix net is a random
permutation π of the input plaintexts m1, . . . ,ml. As long as one of the mix
servers is honest, the permutation π remains secret. That is, it is not possible to
connect the input ciphertexts to their corresponding plaintexts.

Note that there are no ZKPs for correct shuffling or correct decryption, which
means that Chaumian mix nets are not universally verifiable.

Now, roughly speaking, sElect works as follows. A voter uses her voting
device (a browser) to select the candidate of her choice mi. Then, the voting
device creates a random nonce ni (which can be done jointly with the voter to
decrease trust in the voting device). Afterwards, the device encrypts (mi, ni)
under the public keys of the mix servers as explained above. For verification
purposes, the voter memorizes or writes down the nonce ni. In addition, the
voting device stores this information and the random coins that were used for
encryption. In the tallying phase, all input ciphertexts are processed by the
mix net as explained above, and the final result is, as well as all intermediate
ciphertexts, published on the bulletin board. Each voter is finally invited to use
her voting device in order to check whether her candidate mi appears next to
her personal nonce ni. In addition, the voting device performs a fully automated
verification procedure. In particular, if the voter’s vote and nonce do not appear
together in the final result, the voting device can provably single out the mix
servers that misbehaved because it has stored all information needed to follow
the trace of the voter’s ballot through the mix net (and because the mix servers
signed certain information).

E2E Verifiability Without Universal Verifiability. It has been formally proven [28]
that sElect provides a reasonable level of E2E verifiability (and even account-
ability) because it is extremely risky for an adversary to manipulate or drop even
only a few votes. At the same time, sElect does not rely on universal verifiability.
The Chaumian mix net is not verifiable by itself: it takes the voters to perform a
simple check. Therefore, the example of sElect shows that universal verifiability
is not necessary for E2E verifiability.

5 In order to protect against replay attacks [13], duplicates are removed, keeping one
copy only (see [28] for details.).
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3 Accountability

In e-voting systems, and for many other cryptographic tasks and protocols (e.g.,
secure multi-party computation, identity-based encryption, and auctions), it is
extremely important that (semi-)trusted parties can be held accountable in case
they misbehave. This fundamental security property is called accountability,6 and
it is a stronger form of verifiability: it not only allows one to verify whether a
desired property is guaranteed, for example that the election outcome is correct,
but it also ensures that misbehaving parties can be identified if this is not the
case.

Accountability is important for several practical reasons. First of all, account-
ability strengthens the incentive of all parties to follow their roles because they
can be singled out in case they misbehave and then might have to face, for
example, severe financial or legal penalties, or might lose their reputation. Fur-
thermore, accountability can resolve disputes that occur when it is only known
that some party misbehaved but not which one. This can, for instance, help to
increase the robustness of cryptographic protocols because misbehaving parties,
such as a dishonest trustee in an e-voting protocol, can be excluded and the
protocol can be re-run without the parties that misbehaved.

Unfortunately, despite its importance, accountability is often not taken into
account (at least not explicitly), neither to design e-voting protocols nor to
analyze their security (see, e.g., [1,7,9,11,15,25–27,43,44]).

In [32], Küsters et al. provided a general formal definition of accountabil-
ity and emphasized its importance. This formal definition has since been used
to analyze different e-voting protocols (Helios, sElect, Bingo Voting), mix nets
(re-encryption and Chaumian mix nets with random partial checking), auction
schemes (PRST [41]), and contract signing protocols (ASW [3]). These analy-
ses brought forward several accountability issues, e.g., for different versions of
Helios [37]. In what follows, we give a brief summary of the accountability defi-
nition, for details see the original paper [32].

A Formal Accountability Definition. The accountability definition by Küsters
et al. [32] is based on the same generic and expressive protocol model as the
verifiability definition (see Sect. 2), and can therefore be applied to all classes of
voting protocols and also to other domains.

In contrast to the verifiability definition, the judge now not only accepts or
rejects a run, but may output detailed verdicts. A verdict is a positive Boolean
formula ψ built from propositions of the form dis(a), for an agent a, where dis(a)
means that (the judge thinks that) agent a misbehaved, i.e., did not follow the
prescribed protocol. For example, in a voting protocol with voters V1, . . . ,Vn,
a bulletin board B, and trustees T1, . . . ,Tm, if the judge J states, say, dis(B) ∧
dis(T1)∧ . . .∧dis(Tm), then this expresses that the judge beliefs that the bulletin
board and all trustees misbehaved; the judge would state dis(Vi) ∨ dis(B) ∨

6 In the context of secure MPC, accountability is sometimes called identifiable
abort [22].
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(dis(T1) ∧ . . . ∧ dis(Tm)) if she is not sure whether voter Vi. the bulletin board,
or all trustees misbehaved.

Who should be blamed in which situation is expressed by a set Ψ of what
are called accountability constraints. These constrains are of the form

C = α ⇒ ψ1| · · · |ψk,

where α is a property of the voting system, similar to the goal γ in Sect. 2.1 (a
set of runs of the system, where one run is determined by the random coins used
by the parties), and ψ1, . . . , ψk are verdicts. Intuitively, the set α contains runs
in which some desired goal γ of the protocol is not met (due to the misbehavior
of some protocol participant). The formulas ψ1, . . . , ψk are the possible minimal
verdicts that are supposed to be stated by J in such a case; J is free to state
stronger verdicts (by the fairness condition these verdicts will be true). That is,
if a run belongs to α, then C requires that in this run the judge outputs a verdict
ψ which logically implies one of ψi.

To illustrate the notion of accountability constraints, let us continue the
example from above. Let α contain all runs in which the published election
result is incorrect, e.g., α = αk = ¬γk with the goal γk as defined in Sect. 2.
Now, consider the following constraints:

C1 = α ⇒ dis(B)|dis(T1)| · · · |dis(Tm), (1)
C2 = α ⇒ dis(V1) ∨ · · · ∨ dis(Vn) ∨ dis(B) ∨ (dis(T1) ∧ · · · ∧ dis(Tm)), (2)
C3 = α ⇒ dis(B)|dis(T1) ∧ · · · ∧ dis(Tm). (3)

Constraint C1 requires that if in a run the published election result is incorrect,
then at least one (individual) party among B,T1, . . . ,Tm can be held account-
able by the judge J; note that different parties can be blamed in different runs.
Constraint C2 states that if the published election result is not correct, then the
judge J can leave it open whether one of the voters, the bulletin board B, or all
trustees misbehaved. Constraint C3 requires that it is possible to hold B or all
trustees accountable.

As pointed out in [32], accountability constraints should provide at least indi-
vidual accountability. That is, the postulated minimal verdicts should at least
single out one misbehaving party. In the above example, C1 and C3 provide
individual accountability, but C2 does not. In fact, C2 is very weak, too weak for
practical purposes. If a judge states exactly this verdict, there are no real con-
sequences for any party, since no individual party can be held accountable. This
is particular problematic if in such a “fuzzy” verdict not only voting authorities
are involved but also voters.

A set Φ of constraints for a protocol P is called an accountability property
of P . Typically, an accountability property Φ covers all relevant cases in which
a desired goal γ for P is not met, i.e., whenever γ is not satisfied in a given
run r due to some misbehavior of some protocol participant, then there exists
a constraint C in Φ which covers r. We write Pr (π(�) → ¬(J : Φ)) to denote
the probability that π, with security parameter 1�, produces a run r such that
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J does not satisfies all accountability constrains for this run, i.e., there exists
C = α ⇒ ψ1| · · · |ψk with r ∈ α but the judge outputs a verdict which does not
imply some ψi.

Definition 2 (Accountability). Let P be a protocol with the set of agents Σ.
Let δ ∈ [0, 1] be the tolerance, J ∈ Σ be the judge, and Φ be an accountability
property of P . Then, we say that the protocol P is (Φ, δ)-accountable by the
judge J if for all adversaries πA and π = (πP ‖πA), the probability

Pr (π(�) → ¬(J : Φ))

is δ-bounded as a function of �.

Just as for the verifiability definition (Definition 1), the full definition in [32]
additionally requires that the judge J is fair, i.e., that she states false verdicts
only with negligible probability.

Küsters et al. also showed that verifiability (as defined in Definition 1) can
be considered to be a weak form of accountability, and, as mentioned before,
verifiability alone is typically too weak for practical purposes.

Instead of explicitly specifying Ψ as necessary in the above definition, there
have been attempts to find generic ways to define who actually caused a goal
to fail and ideally to blame all of these parties. There has been work pointing
into this direction (see, e.g., [16,20,21]). But this problem turns out to be very
tricky and has not been solved yet.

4 Coercion-Resistance and Privacy

To achieve verifiability, a voter typically obtains some kind of receipt which,
together with additional data published in the election, she can use to check
that her vote was counted. This, however, potentially opens up the possibility
for vote buying and voter coercion. Besides verifiability, many voting systems
therefore also intend to provide so-called coercion-resistance.

One would expect that privacy and coercion-resistance are closely related: If
the level of privacy is low, i.e., there is a good chance of correctly determining
how a voter voted, then this should give the coercer leverage to coerce a voter.
Some works in the literature (e.g., [17,39]) indeed suggest a close connection.
However, Küsters et al. [35] demonstrated that the relationship between privacy
and coercion-resistance is more subtle.

Among others, it turns out that improving the level of privacy of a protocol
in a natural way (e.g., by changing the way honest voters fill out ballots) can lead
to a lower level of coercion-resistance. Clearly, in general, one does not expect
privacy to imply coercion-resistance. Still, the effect is quite surprising.

A maybe even more important and unexpected finding that comes out of
the case studies in [35] is that the level of privacy of a protocol can be much
lower than its level of coercion-resistance. The reason behind this phenomenon
is basically that it may happen that the counter-strategy a coerced voter may
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carry out to defend against coercion hides the behavior of the coerced voter,
including her vote, better than the honest voting program.

On the positive side, in [35] Küsters et al. proved a theorem which states that
under a certain additional assumption a coercion-resistant protocol provides at
least the same level of privacy. This is the case when the counter-strategy does
not “outperform” the honest voting program in the above sense. The theorem is
applicable to a broad class of voting protocols.

In what follows, we explain the subtle relationships between coercion-
resistance and privacy in more detail. The findings are based on formal privacy
and coercion-resistance definitions proposed in [35] and [31,36], respectively.
These definitions build upon the same general protocol model as the one for ver-
ifiability, and hence, they are applicable to all classes of voting systems (see, e.g.,
[28,31,32,34–37]), and they also have been applied to analyze mix nets [29,38].
We only informally introduce the privacy and coercion-resistance definitions in
what follows and point to the reader to [31,35,36] for the formal definitions.

Intuitively, the privacy definition in [35] says that no (probabilistic
polynomial-time) observer, who may control some parties, such as some author-
ities or voters, should be able to tell how an honest voter, the voter under
observation, voted. More specifically, one considers two systems: in one system
the voter under consideration votes for candidate c and in the other system
the voter votes for candidate c′; all other honest voters vote according to some
probability distribution known by the observer. Now, the probability that the
observer correctly says with which system he interacts should be bounded by
some constant δ (plus some negligible function in the security parameter). Due
to the parameter δ, the definition allows one to measure privacy. As discussed
in [28], this ability is crucial in the analysis of protocols which provide a rea-
sonable but not perfect level of privacy. In fact, strictly speaking, most remote
e-voting protocols do not provide a perfect level of privacy: this is because there
is always a certain probability that voters do not check their receipts. Hence, the
probability that malicious servers/authorities drop or manipulate votes without
being detected is non-negligible. By dropping or manipulating votes, an adver-
saries obtains some non-negligible advantage in breaking privacy. Therefore, it
is essential to be able to precisely tell how much an adversary can actually learn.

For the definition of coercion-resistance (see [31,36]), the voter under obser-
vation considered for privacy is now replaced by a coerced voter and the observer
O is replaced by the coercer C. We imagine that the coercer demands full control
over the voting interface of the coerced users, i.e., the coercer wants the coerced
voter to run a dummy strategy dum which simply forwards all messages between
the coerced voter and the coercer C. If the coerced voter in fact runs dum, the
coercer can effectively vote on behalf of the coerced voter or decide to abstain
from voting. Of course, the coercer is not bound to follow the specified voting
procedure. Now, informally speaking, a protocol is called coercion-resistant if the
coerced voter, instead of running the dummy strategy, can run some counter-
strategy cs such that (i) by running this counter-strategy, the coerced voter
achieves her own goal γ (formally, again a set of runs), e.g., successfully votes
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for a specific candidate, and (ii) the coercer is not able to distinguish whether
the coerced voter followed his instructions (i.e., run dum) or tried to achieve her
own goal (by running cs). Similarly to the privacy definition, the probability in
(ii) is bounded by some constant δ (plus some negligible function). Again, δ is
important in order to be able to measure the level of coercion-resistance a pro-
tocol provides: there is always a non-negligible chance for the coercer to know
for sure whether the coerced voter followed his instructions or not (e.g., when
all voteres voted for the same candidate).

Improving Privacy Can Lower the Level of Coercion-Resistance. To illustrate
this phenomenon, we consider the following variant of ThreeBallot (for details
of ThreeBallot see Sect. 2). An honest voter is supposed to submit, according to
her favorite candidate,
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as her receipt. The scheme is ideal

in terms of privacy because the bulletin board and the receipts do not leak any
information apart from the pure election result. However, this scheme does not
provide any coercion-resistance. Assume that the coerced voter is instructed to
cast (
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and take the first single ballot as receipt (which is allowed but never done by
honest voters). If the coerced voter actually wants to vote for candidate A, the
voter would have to cast (
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the coercer could easily detect that he was cheated, by counting the number of

ballots of type
(
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)
on the bulletin board.

Coercion-Resistance Does Not Imply Privacy. For the original variant of Three-
Ballot and the simple variant of VAV, Küsters et al. proved that the level of
privacy is much lower than its level of coercion-resistance. The reason behind
this phenomenon is basically that the counter-strategy hides the behavior of
the coerced voter, including her vote, better than the honest voting program
hides the vote. In these voting systems, a receipt an honest voter obtains indeed
discloses more information than necessary (for details see [35]).

The following simple, but unlike ThreeBallot and VAV, artificial example,
carries this effect to extremes: Consider the ideal voting protocol which collects
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all votes and publishes the correct result. Now, imagine a voting protocol in
which voters use the ideal voting protocol to cast their vote, but where half of
the voters publish how they voted (e.g., based on a coin flip). Clearly, the privacy
level this protocol provides is very low, namely δ ≥ 1

2 . However, a coerced voter
can be more clever and simply lie about how she voted. This protocol indeed
provides a high level of coercion-resistance.

As mentioned at the beginning of Sect. 4, in [35] it is shown that if the
counter-strategy does not “outperform” the honest voting program (or con-
versely, the honest voting program does not leak more information than the
counter-strategy), then indeed if a voting system provides a certain level of
coercion-resistance, then it provides the same level of privacy. Fortunately, in
most systems which are supposed to provide coercion-resistance, the counter-
strategy indeed does not outperform the honest program.

5 Limitations of Cryptographic Security Analysis

The previous sections were concerned with and highlighted the importance of
formally analyzing the security of e-voting systems. However, to obtain a full
picture of an e-voting system and to carry out an election, many more aspects
have to be taken into account which are beyond formal/cryptographic analysis.
Some of these aspects are specific to the field of e-voting, while others apply to
virtually all complex systems.

In what follows, we briefly discuss some of these aspects. We start with
usability issues and legal requirements, as they are particularly important for
e-voting systems.

Usability and Its Relationship to Security. E-voting systems are used by human
beings, such as voters, administrators, and auditors. Therefore, the security an
e-voting system provides in practice crucially depends on whether, or at least to
which degree, the involved human parties follow the protocol.

For example, it is, by now, well-known that many voters are not sensitized
enough to verify whether their voting devices created a correct ballot, and even
if they are, they often fail to do so because the individual verification procedures,
such as Benaloh challenges, are too complex (see, e.g., [24,40]). Similarly to these
verification issues, many coercion-resistant e-voting protocols (e.g., Civitas [9])
require that coerced voters successfully deceive their coercer, e.g., by creating
faked receipts. It is questionable whether average voters are able to do this.

Therefore, usability of e-voting systems is not only important to ensure that
all voters can participate, but it also determines whether an e-voting system is
secure in the real world: if a security procedure is difficult to use, it worsens the
security of the system and may render it insecure. However, it is hard to measure
usability; instead, certain usability attributes can be measured and empirically
be tested, for example, how often users make the same error.

In order to analyze the impact of a system’s usability w.r.t. its security,
security notions are necessary which allow one to take usability attributes into
account. To some degree, this is incorporated in the security definition presented
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in the previous sections. For example, Küsters et al. have studied the verifiability
levels of Helios, sElect, Bingo Voting, ThreeBallot, and VAV as functions of the
probability that a voter (successfully) carries out her verification procedure. For
example, for the system sElect [28]. Küsters et al. formally proved that sElect
(roughly) provides a verifiability level of δ ≈ (1−p)k+1 where p is the probability
that an honest voter carries out the verification procedure, i.e., checks whether
her vote along with the verification code is in the final result, and where k is the
tolerated number of manipulated (honest) votes (see Sect. 2 for details). Hence,
the probability that no one complains but more than k votes of honest voters
have been manipulated is bounded by (1 − p)k+1. Using results from usability
studies one can now estimate what realistic values for p are, and hence, better
assess the security of a system.

Perceived vs. Provable Security. In addition to the provable security a system
provides, the level of security perceived by regular voters might be just as impor-
tant and even more important for a system to be accepted. Regular voters simply
do not understand what a zero-knowledge proof is and for that reason might not
trust it. Therefore simplicity and comprehensibility are very crucial, which, for
example, was a driving factor for the system sElect [28]. This system features
a simple and easy to understand verification procedure, allows for fully auto-
mated verification, and uses asymmetric encryption and signatures as the only
cryptographic primitives.

Legal Requirements. Since e-voting systems are used in many countries for polit-
ical elections, they have to provide certain legal requirements which depend on
the political system. Unfortunately, it is difficult to formally capture all legal
requirements in order to rigorously analyze whether a given e-voting system
achieves them. Vice versa, it is also challenging to express formal security defin-
itions in legal terms. There are some approaches that address this problem (see,
e.g., [46,47,50]).

Cryptographic Analysis vs. Code-Level Analysis. Cryptographic analysis as con-
sidered in this paper, typically does not analyze the actual code of a system but
a more abstract (cryptographic) model. Hence, implementation flaws can easily
go undetected. While carrying out a full-fledged cryptographic security analysis
of an e-voting system is already far from trivial, performing such an analysis on
the code-level is even more challenging. A first such analysis for a simple e-voting
system implemented in Java has been carried out in [30]. In recent years, there
has also been successful code-level analysis of cryptographic protocols, such as
TLS (see, e.g., [6,18] for some of the most recent work in this direction).

Implementation and Deployment. It is possible to model strong adversaries and
capture potentially flawed program code in a formal model by weak trust assump-
tions and various kinds of corruptions. However, at least some parties have to
be assumed to be honest in essentially all voting systems to achieve a reasonable
security level. With the diverse ways systems can be and are attacked within
and outside the domain of e-voting, actually guaranteeing the trust assumptions
is highly non-trivial. This is even more true in political elections where e-voting
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systems can be targets of extremely powerful adversaries, such as intelligence
agencies and hostile states (see, e.g., [49]).

Even without assuming such powerful adversaries, securely deploying an
e-voting system in practice is non-trivial and involves a lot of organizational
issues which are not captured nor considered by formal analysis. For exam-
ple, abstract system descriptions assume that trust is distributed among several
trustees and that keys are securely generated and distributed. But it might not
always be clear in practice, who the trustees should be. Again, it is therefore
important to keep e-voting systems as simple as possible to avoid organizational
and technical overheads in order to improve the practical security of systems.

6 Conclusion

The development of secure e-voting systems that are also easy to use, to under-
stand, and to implement is still a big challenge. Rigorous formal analysis is an
important piece of the puzzle. This research area has made huge progress in the
last decade or so. Many central security requirements have been formulated by
now and their relationships have been studied intensively. As explained in this
paper, this helped to obtain a better understanding of desired security proper-
ties and to overcome some common misconceptions. This alone is already very
important to help thinking about the security of e-voting systems and shaping
the design of these systems. For newly proposed systems it is more and more
common and expected that they come with a cryptographic security analysis.
The general formal frameworks and solid formulations of fundamental security
requirements are available for such analyses. While rigorous analysis is highly
non-trivial and certainly does not and cannot cover all aspects in the design,
implementation, and deployment of e-voting systems, it forms an important and
indispensable corner stone.

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX 2008, pp. 335–348
(2008)

2. Arnaud, M., Cortier, V., Wiedling, C.: Analysis of an electronic boardroom voting
system. In: Heather, J., Schneider, S., Teague, V. (eds.) Vote-ID 2013. LNCS, vol.
7985, pp. 109–126. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39185-9 7

3. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
IEEE J. Sel. Areas Commun. 18(4), 593–610 (2000)

4. Benaloh, J.D.C.: Verifiable Secret-Ballot Elections. Ph.D. thesis (1987)
5. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: SoK: a com-

prehensive analysis of game-based ballot privacy definitions. In: S&P 2015, pp.
499–516 (2015)

6. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: S&P 2017, pp. 483–502 (2017)

7. Chaidos, P., Cortier, V., Fuchsbauer, G., Galindo, D.: BeleniosRF: a non-
interactive receipt-free electronic voting scheme. In: CCS 2016, pp. 1614–1625
(2016)

http://dx.doi.org/10.1007/978-3-642-39185-9_7


Cryptographic Security Analysis of E-voting Systems 39

8. Chevallier-Mames, B., Fouque, P.-A., Pointcheval, D., Stern, J., Traoré, J.: On
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Abstract. Voting is an important part of electronic participation whenever it
comes to finding a common opinion among the many participants. The impact of
the voting result on the outcome of the e-participation process might differ a lot as
voting can relate to approving, polling or co-decision making. The greater the
impact of the electronic voting on the outcomes of the e-participation process, the
more important become the regulations and technologies that stipulate the voting
system and its procedures. People need to have trust in the voting system in order
to accept the outcomes. Hence, it is important to use thoroughly trustworthy,
auditable and secure voting systems in e-participation; especially whenever the
voting within the e-participation process is likely to have a significant impact on
the outcome. This paper analyses the verdict of the Austrian Constitutional Court
in relation to the repeal of the Elections to the Austrian Federation of Students in
2009 where electronic voting was piloted as additional remote channel for casting
a ballot. The court states its perspectives on elections and electronic voting which
serve as sources for the derivation of legal requirements for electronic voting in
this paper, namely requirements for accountability and trust by the electoral
committee. Then, possible solutions for the requirements based on scholarly
literature are described. The paper does not intend to explicitly provide e-voting
solutions for elections, but instead proposes to serve as a basis for discussion of
electronic voting in different e-participation scenarios.

Keywords: E-participation � E-voting � Electoral committee � Accountability �
Trust

1 Introduction

Electronic participation is characterized by the participation of citizens in political
decision-making processes with tools based on modern information and communication
technologies (ICTs). Procedures for the participation of citizens in the decision-making
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process are possible at all administrative levels, from the municipality to the European
Union, but can also be integrated in other contexts such as private organisations. The
implementation of electronic participation has the potential to reduce hurdles for par-
ticipation and to lower the costs of these processes in the long-term [1].

E-participation can be used for various purposes and in different forms, hence, the
processes and platforms are often tailor-made for specific contexts. Models that
describe e-participation usually divide elements of participation according to the degree
of impact each has on the final decision [2]. While low levels of participation, such as
accessing information or commenting on ideas, do usually not require strong regula-
tions and high technical security standards, forms of participation with high impact on
decision-making outcomes require the implementation of higher standards. As soon as
selections and votes are part of the participation process, technical security and detailed
regulations are required in order to establish trust in the outcomes of the participatory
actions. The greater the impact of the participatory process on the final result, the
higher the demands for proper regulations, implementation and secure systems [3].

E-voting in its legally binding context of official elections is the form of
e-participation with the most direct impact on the actual decision. Consequently, it is
relevant to look closely at e-voting requirements for use in secure voting processes in
e-participation.

1.1 Background: The Elections to the Austrian Federation of Students

The elections to the Austrian Federation of Students in 2009 have been the first and
only instance of electronic voting in Austria up until now. As the level of participation
is traditionally low in the elections to the Austrian Federation of Students [4], e-voting
was seen as a means with the potential to increase engagement and to test new tech-
nology within a young target group. The implementation of an e-voting pilot as
additional remote channel to cast a vote along side the paper ballot in these elections
was accompanied by a controversial discussion among students and in the public.

The update of the Regulation of the Elections to the Austrian Federation of Stu-
dents from 20051 came into effect on 3 October 2008 and expired on 13 January 2012.
The regulation was challenged by individuals in the Austrian Constitutional Court,
which repealed the regulation on e-voting as it was not in alignment with the corre-
sponding Federation of Students law. Consequently, the election was considered
invalid. Major issues influencing the verdict of the Constitutional Court pertained to
regulations related to the electoral committee and a lack of clear definitions concerning
the processes of the verification within the entire voting system. For a comprehensive
analysis, see the works of Krimmer, Ehringfeld and Traxl [5, 6].

1 In German: “Hochschülerinnen- und Hochschülerschaftswahlordnung 2005”. Available at: https://
www.ris.bka.gv.at/Dokument.wxe?Abfrage=Bundesnormen&Dokumentnummer=NOR30006701.
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1.2 Relevance for the Electoral Committees and Accountability

The Austrian Constitutional Court dealt extensively with the Austrian Federation of
Students elections in 2009, and the relevant judgements can provide guidelines for the
implementation of secure e-voting in any context. This paper aims, therefore, to pro-
vide a basis for the discussion of possible solutions to legal and technical issues
encountered during the adoption of an e-voting system based on the demands made by
the Constitutional Court.

In the framework of electronic participation, participatory decision making is
usually not legally binding. E-voting regulations for officially binding elections hence
address the highest standards of security, audibility and reliability, and are of relevance
within the context of co-decision making in e-participation.

One must bear in mind that voting regulations and suffrage differ among countries,
and even differ within countries depending on the purpose and context of the voting
process. While the requirements formulated in this document may not be directly
applicable to different electronic voting contexts they do indeed serve as a base for the
creation of tailor-made solutions.

1.3 Structure of the Paper

In order to provide a robust analysis of e-voting as a participatory mechanism, and to
present an informed account of the legal concepts and technical solutions underpinning
the requirements for secure electronic voting in Austria, this research paper is struc-
tured as follows. First, the chapter entitled Methodology presents an account of the
research design and methodological tools employed by the authors within the context
of this research project. The next chapter, Requirements based on Literature, examines
the selected legal requirements as embedded case studies supported by evidence based
in scholarly and practitioner literature. The penultimate chapter, Discussion, offers an
informed concluding analysis of e-voting and its potential as a tool for greater public
engagement; locating the process within the broader conceptual framework of
e-participation in Europe. The paper closes with the final chapter, Acknowledgements.

2 Methodology

This paper takes into account the legal considerations of the Austrian Constitutional
Court ruling regarding the implementation of e-voting in the Elections of the Austrian
Federation of Students of 2009 in order to reflect the requirements for secure voting
systems that enable the electronic participation of citizens. For this purpose, legal
requirements for electronic voting were derived from the verdicts passed by the Aus-
trian Constitutional Court. Possible solutions for these requirements were then
extracted in a literature analysis of international scientific works. While the original
study takes into consideration all requirements derived from the judgements of the
Austrian Constitutional Court, this paper focuses on those that consider the require-
ments for the electoral committee and those that pertain to system accountability as
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these can potentially be transferred to other scenarios and contexts of voting as a form
of e-participation.

2.1 Deduction of Requirements

Sentences of the Austrian Constitutional Court were analysed for references to e-voting
in the Elections of the Austrian Student. Not all judgements with such references
included relevant information, for some appeals were rejected as they were not con-
sidered lawful or valid. The source of the sentences was the website of the Legal
Information System of the Republic of Austria.2 The following pronouncements of the
Constitutional Court were analysed, and they are listed below according to date of
sentence and reference number:

– 25 June 2009, V28/09, V29/09 ua
– 10 December 2009, G165/09, V39/09
– 23 February 2010, V89/09
– 9 March 2011, G287/09
– 02 December 2011, WI-1/11, V85/11ua, B1214/10, B1149/10, B898/10
– 5 March 2012, WI-2/11
– 22 August 2014, WI 2/2014

Once all possible legal requirements were extracted from the original texts they
were clustered and filtered. These requirements were then further simplified for the
purpose of better handling, and redundant requirements were merged with others or
deleted. The categories for the clustering were thereafter derived from the content of all
requirements and not prior based on literature. In this paper the authors only discuss the
requirements that are part of the categories electoral committee and accountability.

2.2 Literature Research for Solutions

This section consists of a description of the research strategy adopted by the authors
whilst conducting a review of existing literature for legal concepts and technological
solutions relevant to the research project. To search for literature pertaining to elec-
tronic voting in general and to the derived legal requirements in particular, this project
made use of one database of peer-reviewed literature (Scopus), one specialist search
engine (Google Scholar), and one database of full-text books (Google Books).

The Scopus Database was queried specifically for peer-reviewed, scholarly liter-
ature. In order to optimally utilize the resource, a systematic conventional query string
was constructed to conduct the search within the ‘title’, ‘abstract’ and ‘keywords’ fields
of the publications indexed by this database. Searches were also filtered by scholarly
discipline in order to narrow down search results and to identify highly relevant
material. This research project also made use of the Google Scholar search engine to
recover full-text sources of material previously discovered using Scopus, to identify
clusters of publications authored by the same person, and to obtain new citations

2 https://www.ris.bka.gv.at/defaultEn.aspx.
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through a conventional key word search. The Google Books database was also queried
exhaustively in order to access material from both single-author books and chapters
within edited volumes. Here, books identified from earlier literature searches were first
looked up, either by publication name or by author/editor name or a combination of the
two. A conventional keyword search was also pursued.

3 Requirements Based on Literature

This chapter outlines and analyses the legal requirements for the implementation of
secure e-voting in Austria derived from the rulings of the Austrian Constitutional
Court. In particular, it discusses in some detail an extensive collection of legal concepts
and technical solutions extracted through a systematic literature analysis of interna-
tional scientific works that are considered relevant to the two sets of legal requirements
selected as the embedded case studies for this research paper.

The research findings presented are organised in the following manner: first, the
chapter comprises of three sections. The first section presents the derivation of the
requirements based on judgements passed in Austria by the Constitutional Court, and
introduces the embedded case studies. The second section is then concerned with
derived legal requirements for the electoral committee, and the third with derived legal
requirements pertaining to electoral accountability. Each stipulated legal requirement is
listed individually, and is followed immediately by a discussion that touches upon how
existing scholarly literature informs the legal condition conceptually and/or where
developments in technology further reflect or advance key fundamental legal concepts.

As this paper does not seek to provide concrete solutions for electronic distance
voting, but guidelines for voting at different stages within e-participation processes,
literature about remote electronic voting and electronic voting machines was consid-
ered for the scholarly discussion below.

3.1 Legal Requirements at a Glance: The Embedded Case Studies

The analysis of the verdicts passed by the Austrian Constitutional Court yielded at total
of 28 legal requirements, grouped by these researchers within 5 categories. Of these 5
categories, two – electoral committee and accountability – were selected as embedded
case studies for this research paper.

Out of the 28 requirements identified, 5 relate to the category electoral committee.
The derived requirements for the category electoral committee include that: the elec-
toral committee must be able to carry out all its statutory tasks; the electoral committee
must accept/receive the ballot; the electoral committee must examine the electoral
authority/eligibility of the elector; the verification of the identity of the person entitled
to vote must take place before the transmission of the electoral form; and, a certification
of the e-voting system by experts cannot replace the state guarantee of the electoral
principles observed by electoral committees.

Another 5 derived requirements may be clustered around the category account-
ability. These include: the electoral committee must be able to determine the election
results and their validity; the verification of the validity of the ballot papers must be
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ensured by the electoral committee; the electoral committee and the judicial authorities
of public law must be able to carry out a verification of the electoral principles and
results after the election; the essential steps of the electoral process must be reliably
verified by the electoral committee (without the assistance of experts) and the judicial
authorities of public law; and, the essential steps of the determination of results must be
reliably verified by the electoral committee (without the participation of experts).

3.2 Requirements for Trust by Electoral Committees

This section discusses the legal concepts and technical solutions pertaining to the
requirements for trust by electoral committees as identified in the scholarly and prac-
titioner literature.

The electoral committee must be able to carry out all its statutory tasks. Today, a
large percentage of electoral management bodies (EMBs) use information and com-
munications technologies with the aim of improving administrative procedures asso-
ciated with the electoral process [7]. Technologies deployed range from the use of basic
office automation tools such as word processing and spreadsheets to the application of
more sophisticated data processing tools including data base management systems,
optical scanning, and geographic information systems [8].

According to Caarls (2010), for an EMB to successfully carry out all its statutory
tasks, therefore, it is important that a two-pronged approach be adopted [9]. On the
one hand, the tasks and responsibilities of the EMB need to be defined clearly in
legislation [10]. The extent to which the EMB is involved with the electoral process has
direct bearing on the type and nature of the technological solution it deploys. On the
other, it is also vital that personnel within the EMB possess the necessary technical
expertise to effectively manage the process of electronic voting [11]. Only when both
pre-conditions are fulfilled will the administering electoral body be able to successfully
adopt and implement technology solutions to effectively perform and enhance its
functions. For technical solutions see also (amongst others) Prosser et al. (2004) [12].

The electoral committee must accept/receive the ballot. Remote electronic voting
refers to the election process whereby electors can opt to cast their votes over the
Internet, most usually via a Web browser from home, or from possibly any other
location where they have Internet access [13]. Whilst many different aspects of this sort
of election warrant closer accountability, the focus of this recommendation is on
security.

Voting in the traditional way, according to Chiang (2009), with physical ballots
submitted at a true polling station, is usually done with confidence because the
tangible safeguards put in place ensure a tangible return to the electoral management
authority [14]. Technology-enabled elections are viewed with suspicion as votes might
be intercepted and tampered with at the time of transmission to the electoral authority
servers [15].

Just as the revamped election system needs to be seen as both reliable and trust-
worthy by electors [16], so must the system be considered impenetrable to external
malicious attacks or intent by the administering authority says Pieters (2006). In
recognising this, Andreu Riera Jorba and Jordi Castella Roca have developed and
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patented under United States law a secure electronic voting system that employs
interrelated cryptographic processes and protocols to provide reliability to vote casting,
ballot recounts, and verification of vote or poll results [17].

The electoral committee must examine the electoral authority/eligibility of the
elector. Within the European Union, Ikonomopoulos et al. (2002) have determined
that the process of examining the electoral authority/eligibility of the elector is a
two-fold procedure. First, the process of determining electors is performed, a step
essential for the current voting process, wherein all persons above a certain age have
either the right or the obligation to participate in the democratic process [18]. This stage
is realised by the state employees working for the electoral authority who determine,
according to the national census, each individual’s age and legal status. Second, the
requirement of providing a means of authentication to each elector then needs to be
fulfilled. This is achieved when state employees create a means of identification for
every elector, and when these are subsequently received by voters from the state.

Therefore, for an electronic voting system to be at once secure, legitimate and
complete, Ikonomopoulos et al. (2002) hold that it is important for the electoral
committee be able to determine and establish the electoral authority/eligibility of the
elector from a (1) legal, (2) functional, and (3) security systems-requirement per-
spective. The legal framework for the traditional model of voting advanced above
provides us with a basis for the e-voting system requirements specification. In terms of
functional requirements, the starting point of any of interaction with the information
system is thus the provision of access to system functions that each actor is authorised
to perform [18]. Building on this, Ibrahim et al. (2003) have proposed a secure e-voting
systems architecture that applies security mechanisms in order to meet the legal
security requirements needed for any election process. According to the proposed
system, as individuals register themselves with the administrator of e-voting to be
counted amongst eligible voters, a validator is made responsible for the verification of
elector authority/eligibility and for the production of a ballot ID [19].

The verification of the identity of the person entitled to vote must take place before
the transmission of the electoral form. In traditional voting/balloting, the authenti-
cation of an elector is generally performed prior to the act of electing, when the elector
appears in person to vote at the election centre where they are registered [18]. Iko-
nomopoulos et al. (2002) outline the process in some detail; wherein the voter arrives at
the polling station, presents to the on-duty member of staff his or her identity papers,
has them verified by the staffer in question, and is then presented with the current
electoral ballot paper. This process is performed to ensure that the elector themselves
votes, and consists of an interaction between the elector and the electoral authority as
represented by the personnel at the election centre [18].

For Internet voting to be secure, according to Regenscheid et al. (2011), a similar
procedural requirement has often to be met: that the identity of the eligible elector
needs to be verified prior to the electronic transmission of the electoral form. In the
United States of America, for instance, state and local jurisdictions are given the option
to employ systems to authenticate Uniformed and Overseas Citizen Absentee Voting
Act (UOCAVA) voters before serving them electoral forms, when permitted under
state law [20]. However, if voter identification data is indeed used to establish trust that
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a given ballot was completed and returned by an eligible elector, it is carried out on the
premise that the electronic authentication of the person entitled to vote was done prior
to any transmission of the electronic ballot form [20].

A certification of the e-voting system by experts cannot replace the state guarantee
of the electoral principles observed by electoral committees. Richter (2010) states
that “…all forms of voting, including Internet voting have been criticized for not
fulfilling the Principle of the Public Nature of the Election which was declared as a
constitutional principle in the Voting-Machine-Judgement of the German Federal
Constitutional Court (BVerfG09) and which requires verifiability of the election for
every citizen without technical knowledge” [21].

According to Gritzalis (2002), electronic voting should be considered only as a
complementary means to traditional election processes [22]. He argues that while
e-voting can be a cost-effective way to conduct the electoral process and a means of
attracting specific groups of people to participate, the continued prevalence of (1) the
digital divide within adopting societies, (2) an inherent distrust in the e-voting pro-
cedure across populations, and (3) inadequate mechanisms to protect information
systems against security risks make it only a supplement to, and not a replacement of,
existing paper-based voting systems.

Building on this argument, Caarls (2010) attempts to highlight the issues of trust
and confidence as necessary pre-conditions for the uptake of e-voting systems [9].
Here, Caarls argues that an e-voting system cannot be successfully adopted unless
citizens trust their current (paper-based) political and administrative systems. Further,
she maintains, the introduction of an e-voting system must not result in the exclusion of
certain groups within a given population. Security is also paramount, with time needing
to be set aside for research into the development of robust and secure system before the
eventual roll-out of the project. This is also tightly connected with the topic of veri-
fiability, which will be deal with in the next section.

3.3 Requirements for Accountability

This section considers the legal concepts and technical solutions pertinent to the
derived legal requirements for accountability as obtained from the scholarly and
practitioner literature.

The electoral committee must be able to determine the election results and their
validity. As part of the electoral process, the election authority needs to be able to
verify the validity of every ballot cast, and that the tallying of the valid ballots has been
correct.

In the electronic voting literature, the term verifiability is closely related to the
accountability requirement of the integrity of the election result [23]. Gritzalis (2002)
contends, therefore, that an e-voting system should allow for its verification by both
individual voters (individual verifiability), and also by election officials, parties, and
individual observers (institutional or universal verifiability) – despite being in conflict
with principles of transparency [22]. Systems providing both types of verification are
known as end-to-end (E2E) verifiablility [24]. However, the ability of currently existing
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electronic voting systems to enable the election authority to verify the integrity of the
election result has been criticised as being flawed by recent scholarship [25].

This is because, as maintained by Gharadaghy and Volkamer (2010), universal
verifiability is usually more complex to achieve than individual verifiability for, in
order to attain this condition, the election authority needs to ensure that all encrypted
votes cast and stored on the database are decrypted appropriately and properly tallied
whilst preserving ballot secrecy [24]. Gharadaghy and Volkamer go on to propose two
main cryptographic techniques to meet and overcome this challenge: either (1) the
application of homomorphic encryption schemes, such as the Helios 2.0 protocol [26],
that allow the encrypted sum of all encrypted votes to be computed without compro-
mising the secrecy of the ballot; or (2) the use ofMIX networks to anonymize encrypted
votes prior to their decryption and eventual tallying [24]. Further, for a discussion of
organisational issues see also Krimmer (2016) [27].

The verification of the validity of the ballot papers must be ensured by the elec-
toral committee. It is the task of the electoral committee to ensure the validity of the
each of the ballot papers counted towards the final election result.

The need for reliability of the e-voting process, according to Gritzalis (2002), is
derived from the democratic need to ensure that the outcome of the election correctly
reflects the voters will [22]. In other words, a reliable system should ensure that the
outcome of the voting process accurately corresponds to the votes cast. It should be
impossible from a systems architecture point of view to exclude from the tally a valid
vote and to include an invalid one [28].

Khaki (2014) proposes both basic and advanced security protocols that may be
applied by an electoral management body to successfully verify the validity of the
submitted ballot papers [29]. Basic security measures advanced by this author include
either the use of Message Authentication Code (MAC) keys shared between the voter
and the server, or server digital signatures that constitute keys stored on the server. In
both cases, the server is able to generate for verification purposes the MAC or digital
signature of any vote.

Further, according to Khaki, vote integrity and authenticity can be assured through
the use of advanced security measures in the form of voter digital signatures [28],
wherein votes are digitally signed by the voter after they have been encrypted in such a
manner that the recipient server can validate and verify the signature as authentic but
cannot manipulate it. For an early technical proposal see [30].

The electoral committee and the judicial authorities of public law must be able to
carry out a verification of the electoral principles and results after the election. In
the post-election period, Caarls (2010) recommends that an audit trail be established for
all aspects of the systems used in the elections so that “…all changes and decisions can
be explained and defended” [9]. Following from this, therefore, audits may be carried
out by all the parties involved in the electoral process and can serve many purposes. To
paraphrase Norden et al. (2007), such an audit can fulfil the following goals: (1) create
public confidence in the election results, (2) deter election fraud, (3) detect and provide
information about large-scale systemic errors, (4) provide feedback towards the
improvement of voting technology and election administration, (5) set benchmarks and
provide additional incentives for election staff to achieve higher standards of accuracy,
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and (6) confirm, to a high degree of confidence, that a complete manual recount would
not affect the election outcome [31].

There exist in the practitioner literature three noteworthy e-voting protocols that
overtly permit the electoral management body to carry out such a post-election veri-
fication of electoral principles and results [32–34].

A. Punchscan: Fisher et al. (2006) in their seminal paper put forward Punchscan, a
hybrid paper/electronic voting system based on a concept delineated by David Chaum in
December 2005 [32]. In improving upon the earlier idea, the Punchscan system
advanced by Fisher et al. employs a two-layer ballot and receipt system in combination
with a sophisticated cryptographic vote-tabulation mechanism called a “Punchboard”
that can be used to facilitate the running of an electronic election. During the
post-election phase, once the results of the ballot are posted online, auditors may con-
duct a post-election audit by choosing an area of the Punchboard’s decrypt table [32].
Any significant corruption of the Punchboard as a consequence of election malpractice
is almost certainly detectable.

B. Helios: Adida (2008) discusses the advantages of Helios, a web-based
open-audit voting system [33]. Designed to be deliberately simpler than most com-
plete cryptographic voting protocols, Helios focuses on the central precept of “public
auditability” – any group can outsource its election to Helios, and the integrity of that
election can be verified even if Helios itself is corrupted. To achieve this, the Helios
protocol provides users with the option of two verification programmes written in
Python: one for verifying a single encrypted vote produced by the ballot preparation
system with the “audit” option selected, and another for verifying the shuffling,
decryption, and tallying of an entire election [33].

C. Scantegrity: Chaum et al. (2008) propose Scantegrity, a security enhancement
for optical scan voting systems [34]. The Scantegrity voting system combines E2E
cryptographic ideas with a widely used vote-counting system to provide the end-user
with the strong security guarantees of an E2E set-up whilst not interfering with existing
procedural requirements such as a paper audit trail or a manual recount. Scantegrity is
furthermore universally verifiable, whereby, using special software of their choice,
anyone can verify online that the tally was computed correctly from official data [35].
This makes it particularly useful for those electoral management bodies wishing to
carry out a post-electoral audit.

The essential steps of the electoral process must be reliably verified by the elec-
toral committee (without the assistance of experts) and the judicial authorities of
public law. From general perspective, in cases where an e-voting system has been
deployed, Caarls (2010) advocates that every part of the process be audited
post-election; including, the electoral voter register and its compilation, together with
the processes of voting, counting, archiving, and the destruction of votes [9]. One part
of the audit process could be to verify that the systems used for the election were in fact
based on source code certified for use prior to the election. Other parts of the audit
process might include the review of other documentation, including the functional and
technical system design [9].
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In more particular terms of system functionality, and to paraphrase Prandini and
Ramilli (2012), e-voting systems are generally evaluated in terms of their security,
auditability, usability, efficiency, cost, accessibility, and reliability [36]. The principle
of auditability, most especially, refers to the necessary pre-condition of there being
reliable and demonstrably authentic election records [37] against which due process
can be accounted for. Software independence is one form of system auditability,
enabling the detection and possible correction of election outcome errors caused by
malicious software or software bugs [38]. The concept has been defined by Rivest
(2008) as follows: “A voting system is software independent if an (undetected) change
or error in its software cannot cause an undetectable change or error in an election
outcome” [39].

In other words, the principle of software independence addresses directly the diffi-
culty of assuring oneself that cast ballots will be recorded accurately in adherence to
prevailing election principles and standards by complex and often difficult-to-test soft-
ware in the case of an all-electronic voting system [39]. For users of software-independent
voting systems, therefore, verification of the correctness of the election result is possible
without there being any lingering concern that the election result was affected or even
determined by a software bug or malicious piece of code [38].

The essential steps of the determination of results must be reliably verified by the
electoral committee (without the participation of experts). Similar to the legal
principle of the “public nature of elections” in Germany [40], which prescribes that all
the essential steps of an election are subject to the possibility of open accountability by
general public, it is argued here that (when applied to the use of electronic voting
machines in Austria) both legal and technical provision needs be made for the electoral
management body to be able to verify independently and reliably the essential steps of
voting and the ascertainment of the result post-election without its personnel possessing
any prior specialist knowledge.

Considered in terms of e-voting in general, the holding makes the security objective
of election or end-to-end verifiability mandatory [41]. This is because, in contrast to
conventional paper-based elections, electronics-based ballots are still much less
transparent [42]. It may not be possible to observe all the electronic operations per-
formed on data, programming errors are usually difficult to detect, and attacks on a
system by malicious code might go unnoticed [26].

Remote electronic voting systems have to, therefore, also be considered from the
perspective of their usability [43]. The term ‘usability’, according to Winkler et al.
(2009), is often used to describe the perceived ease of use and usefulness of an
information technology system [43]. Several studies point out the importance of
undertaking a usability evaluation when validating a new e-voting system [44]. Within
the context of the discussion, it may be inferred that a verifiable system should be
user-friendly to ensure that its users are able to carry out verification processes with
relative ease and speed and independent of external specialists.
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4 Discussion

It has been a declared target by the Europe Ministers responsible for e-government to
empower citizens through information and communication technologies [45]. Citizens
shall receive better and more transparent access to information that shall serve as the
basis for stronger involvement in the policy process. Hence, information and com-
munication technologies shall enhance citizen participation. New political movements
and ideas all across Europe support the surge of an increasingly connected society
towards having a stronger say in political processes. Traditional parties seek to open up
to outside opinions, at least during election campaigns. These changes in the political
landscape must be supported with the necessary tools.

Citizens’ participation in general is a complex field with numerous different
approaches being adopted to achieve similar aims. It has become evident that there is
no single possible solution to resolve the various obstacles in the path of optimal citizen
participation, but it has also become obvious that digital technologies, the internet and
its networking connectivity can support the management of citizen participation at most
stages of engagement.

This research paper focuses on the voting process as an integral part of electronic
participation. Votes are used to assess the opinions of participants on comments or
proposals which might not necessarily need highly regulated and secure technological
systems. Voting can also be used to make the final decision in an e-participation
process that might have direct impact on actual implementations in reality or legal
regulations. In the latter example, observing regulations and ensuring system security
are essential for successful and satisfactory participation.

This paper describes the legal requirements for e-voting as stipulated by the
Austrian Constitutional Court in the context of the Austrian Federation of Students
Election of 2009. While the derived requirements are only valid for this specific
context, they can be a good indication for the way forward in other scenarios.

Large-scale e-participation will involve electronic voting at some point in the
process, and this must be manged and implemented in an appropriate manner. Public
authorities need to be ready to answer citizens’ questions, and to have in place a
strategy to help citizens understand the system and its underlying technology.
Trust-building is a vital component of the engineering of participatory processes.

The introduction of e-participation should be considered as means of promoting
social inclusion, and care must be taken to ensure that its proliferation does not result in
the privileging of certain groups within society (those who can afford regular Internet
access, for instance) over others. In theory, the use of technology in citizens’
engagement widens access to the democratic process by reaching out to and inviting a
greater number of people to participate. However, in practice existing digital and social
divides circumscribe who actually participates and, if not deployed sensibly, technol-
ogy could actually worsen prevailing democratic deficits.

Acknowledgements. The work of Robert Krimmer was supported in parts by the Estonian
Research Council project PUT1361 and the Tallinn Univerity of Technology project B42.

Voting in E-Participation 53



References

1. Viborg Andersen, K., Zinner Henriksen, H., Secher, C., Medaglia, R.: Costs of
e-participation: the management challenges. Transforming Gov. People Process Policy
1(1), 29–43 (2007)

2. Arnstein, S.R.: A ladder of citizen participation. J. Am. Inst. Planners 35(4), 216–224 (1969)
3. Schossböck, J., Rinnerbauer, B., Sachs, M., Wenda, G., Parycek, P.: Identification in

e-participation: a multi-dimensional model. Int. J. Electron. Gov. 8(4), 335–355 (2016)
4. Krimmer, R.: e-Voting.at: Elektronische Demokratie am Beispiel der österreichischen

Hochschülerschaftswahlen. Working Papers on Information Processing and Information
Management 05/2002 of the Vienna University of Economics and Business (2002)

5. Krimmer, R., Ehringfeld, A., Traxl, M.: The use of e-voting in the federation of students
elections 2009. In: Krimmer, R., Grimm, R. (eds.) Proceedings of the 4th International
Conference on Electronic Voting 2010, pp. 33–44, Bonn (2010)

6. Krimmer, R., Ehringfeld, A., Traxl, M.: Evaluierungsbericht. E-Voting bei den
Hochschülerinnen- und Hochschülerschaftswahlen 2009. BMWF, Vienna (2010)

7. Lopez-Pintor, R.: Electoral Management Bodies as Institutions of Governance. Bureau for
Development Policy, United Nations Development Programme (2000)

8. ACE Electoral Knowledge Network. Elections and Technology. http://aceproject.org/ace-en/
topics/et/onePage. Accessed 21 Apr 2017

9. Caarls, S.: E-voting Handbook: Key Steps in the Implementation of E-enabled Elections.
Council of Europe Publishing, Strasbourg (2010)

10. Mozaffar, S., Schedler, A.: The comparative study of electoral governance – introduction.
Int. Polit. Sci. Rev. 23(1), 5–27 (2002)

11. Gillard, S.: Soft-skills and technical expertise of effective project managers. Issues Inf. Sci.
Inf. Technol. 6, 723–729 (2009)

12. Prosser, A., Kofler, R., Krimmer, R., Unger, M.K.: Implementation of quorum-based
decisions in an election committee. In: Traunmüller, R. (ed.) EGOV 2004. LNCS, vol. 3183,
pp. 122–127. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30078-6_21

13. Rubin, A.D.: Security considerations for remote electronic voting. Commun. ACM 45(12),
39–44 (2002)

14. Chiang, L.: Trust and security in the e-voting system. Electron. Gov. Int. J. 6(4), 343–360
(2009)

15. Bishop, M., Wagner, D.: Risks of e-voting. Commun. ACM 50(11), 120 (2007)
16. Pieters, W.: Acceptance of voting technology: between confidence and trust. In: Stølen, K.,

Winsborough, W.H., Martinelli, F., Massacci, F. (eds.) iTrust 2006. LNCS, vol. 3986,
pp. 283–297. Springer, Heidelberg (2006). doi:10.1007/11755593_21

17. Jorba, A.R., Roca, J.C.: Secure remote electronic voting system and cryptographic protocols
and computer programs employed. U.S. Patent No. 7,260,552, 21 August 2007

18. Ikonomopoulos, S., Lambrinoudakis, C., Gritzalis, D., Kokolakis, S., Vassiliou, K.:
Functional requirements for a secure electronic voting system. In: Ghonaimy, M.A.,
El-Hadidi, M.T., Aslan, H.K. (eds.) Security in the Information Society. IAICT, vol. 86,
pp. 507–519. Springer, Boston, MA (2002). doi:10.1007/978-0-387-35586-3_40

19. Ibrahim, S., Kamat, M., Salleh, M., Aziz, S.R.A.: Secure E-voting with blind signature. In:
Proceedings of 4th National Conference on Telecommunication Technology. NCTT 2003,
pp. 193–197. IEEE Publications (2003)

20. Regenscheid, A., Beier, G.: Security Best Practices for the Electronic Transmission of
Election Materials for UOCAVA Voters, NISTIR 7711, National Institute of Standards and
Technology (NIST) – U.S. Department of Commerce, Gaithersburg, M.D. (2011)

54 P. Parycek et al.

http://aceproject.org/ace-en/topics/et/onePage
http://aceproject.org/ace-en/topics/et/onePage
http://dx.doi.org/10.1007/978-3-540-30078-6_21
http://dx.doi.org/10.1007/11755593_21
http://dx.doi.org/10.1007/978-0-387-35586-3_40


21. Richter, P.: The virtual polling station: transferring the sociocultural effect of poll site
elections to remote internet voting. In: Krimmer R., Grimm R. (eds.) Proceedings of the 4th
International Conference on Electronic Voting 2010, pp. 79–86. Bonn (2010)

22. Gritzalis, D.A.: Principles and requirements for a secure e-voting system. Comput. Secur.
21(6), 539–556 (2002)

23. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship to
verifiability. In: Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security (CCS 2010), pp. 526–535. ACM, Chicago (2010)

24. Gharadaghy, R., Volkamer, M.: Verifiability in electronic voting - explanations for non
security experts. In: Krimmer R., Grimm R. (eds.) Proceedings of the 4th International
Conference on Electronic Voting 2010, pp. 151–162. Bonn (2010)

25. Karayumak, F., Olembo, M.M., Kauer, M., Volkamer, M.: Usability analysis of helios-an
open source verifiable remote electronic voting system. EVT/WOTE 11, 5 (2011)

26. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting protocols. In:
Gritzalis, D.A., Preneel, B., Theoharidou, M. (eds.) Computer Security – ESORICS 2010.
LNCS, vol. 6345, pp. 389–404. Springer, Berlin/Heidelberg (2010). doi:10.1007/978-3-642-
15497-3_24

27. Krimmer, R.: Verifiability: a new concept challenging or contributing to existing election
paradigms? In: Proceedings of the 13th EMB Conference, pp. 102–107, Bucharest (2016)

28. Mitrou, L., Gritzalis, D., Katsikas, S.: Revisiting legal and regulatory requirements for secure
e-voting. In: Ghonaimy, M.A., El-Hadidi, M.T., Aslan, H.K. (eds.) Security in the
Information Society. IAICT, vol. 86, pp. 469–480. Springer, Boston, MA (2002). doi:10.
1007/978-0-387-35586-3_37

29. Khaki, F.: Implementing End-to-End Verifiable Online Voting for Secure, Transparent and
Tamper-Proof Elections. IDC Whitepaper 33 W (2014)

30. Prosser, A., Krimmer, R., Kofler, R., Unger, M.K.: The role of the election commission in
electronic voting. In: Proceedings of the 38th Annual Hawaii International Conference on
System Sciences. HICSS 2005, pp. 119–119. IEEE (2005)

31. Norden, L., Burstein, A., Hall, J.L., Chen, M.: Post-Election Audits: Restoring Trust in
Elections, Report by Brennan Center for Justice at The New York University School of Law
and The Samuelson Law, Technology and Public Policy Clinic at the University of
California, Berkeley School of Law (Boalt Hall) (2007)

32. Fisher, K., Carback, R., Sherman, A.T.: Punchscan: introduction and system definition of a
high-integrity election system. In: Preproceedings of the 2006 IAVoSS Workshop on
Trustworthy Elections, Robinson College (Cambridge, United Kingdom), International
Association for Voting System Sciences (2006). [full citation unavailable]

33. Adida, B.H.: Web-based open-audit voting. In: van Oorschot, P.C. (ed.) Proceedings of the
17th Conference on Security Symposium, pp. 335–348. USENIX Association, Berkley
(2008)

34. Chaum, D., Essex, A., Carback, R., Sherman, A., Clark, J., Popoveniuc, S., Vora, P.:
Scantegrity: end-to-end voter-verifiable optical scan voting. IEEE Secur. Priv. 6(3), 40–46
(2008)

35. Sherman, A.T., Carback, R., Chaum, D., Clark, J., Essex, A., Herrnson, P.S., Mayberry, T.,
Popovenuic, S., Rivest, R.L., Shen, E., Sinha, B., Vora, P.: Scantegrity mock election at
Takoma Park. In: Krimmer R., Grimm R. (eds.) Proceedings of the 4th International
Conference on Electronic Voting 2010, pp. 35–51. Kollen Druck+Verlag GmbH, Bonn
(2010)

36. Prandini, M., Ramilli, M.: A model for e-voting systems evaluation based on international
standards: definition and experimental validation. Serv. J. 8(3), 42–72 (2012)

Voting in E-Participation 55

http://dx.doi.org/10.1007/978-3-642-15497-3_24
http://dx.doi.org/10.1007/978-3-642-15497-3_24
http://dx.doi.org/10.1007/978-0-387-35586-3_37
http://dx.doi.org/10.1007/978-0-387-35586-3_37


37. Internet Policy Institute: Report of the National Workshop on Internet Voting: Issues and
Research Agenda, An Internet Policy Institute Publication (2001)

38. Rivest, R.L., Virza, M.: Software independence revisited. In: Hao, F., Ryan, P.Y.A. (eds.)
Real-World Electronic Voting: Design, Analysis and Deployment. CRC Press, Boca Raton
(2017). [full citation unavailable]

39. Rivest, R.L.: On the notion of ‘software independence’ in voting systems. Philos. Trans.
Math. Phys. Eng. Sci. 366(1881), 3759–3767 (2008)

40. German Federal Constitutional Court (Bundesverfassungsgericht): Use of voting computers
in 2005 Bundestag election unconstitutional. Press Release No. 19/2009 of 03 March 2009.
https://www.bundesverfassungsgericht.de/SharedDocs/Pressemitteilungen/EN/2009/bvg09-
019.html. Accessed 27 Apr 2017

41. Schmidt, A., Heinson, D., Langer, L., Opitz-Talidou, Z., Richter, P., Volkamer, M.,
Buchmann, J.: Developing a legal framework for remote electronic voting. In: Ryan, P.Y.A.,
Schoenmakers, B. (eds.) Vote-ID 2009. LNCS, vol. 5767, pp. 92–105. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04135-8_6

42. Enguehard, C.: Transparency in electronic voting: the great challenge. In: IPSA International
Political Science Association RC 10 on Electronic Democracy. Conference on
“E-democracy - State of the art and future agenda”, Jan 2008, Stellenbosch, South Africa,
édition électronique (2008)

43. Winckler, M., Bernhaupt, R., Palanque, P., Lundin, D., Leach, K., Ryan, P., Alberdi, E.,
Strigini, L.: Assessing the usability of open verifiable e-voting systems: a trial with the
system Prêt à Voter. In: Proceedings of ICE-GOV (2009)

44. Herrnson, P.S., Niemi, R. G., Hanmer, M.J., Bederson, B.B., Conrad, F.G., Traugott, M.:
The importance of usability testing of voting systems. In: Electronic Voting Technology
Workshop, Vancouver B.C., Canada, 1 August 2006 (2006)

45. Ministerial Declaration on eGovernment. https://ec.europa.eu/digital-agenda/sites/digital-
agenda/files/ministerial-declaration-on-egovernment-malmo.pdf. Accessed 7 May 2017

56 P. Parycek et al.

https://www.bundesverfassungsgericht.de/SharedDocs/Pressemitteilungen/EN/2009/bvg09-019.html
https://www.bundesverfassungsgericht.de/SharedDocs/Pressemitteilungen/EN/2009/bvg09-019.html
http://dx.doi.org/10.1007/978-3-642-04135-8_6
https://ec.europa.eu/digital-agenda/sites/digital-agenda/files/ministerial-declaration-on-egovernment-malmo.pdf
https://ec.europa.eu/digital-agenda/sites/digital-agenda/files/ministerial-declaration-on-egovernment-malmo.pdf


The Weakness of Cumulative Voting

Josh Benaloh(B)

Microsoft Research, Redmond, WA, USA
benaloh@microsoft.com

Abstract. Cumulative Voting is an electoral system in which each voter
is allowed to cast multiple votes — some or all of which may be duplicate
votes for a single candidate. It is sometimes used to elect members to
a legislative body such as a parliament or city council, and its purpose
is to achieve a more proportional representation than that which results
from many other voting systems. Cumulative voting is most commonly
used in municipal elections in the United States and Europe, but it has
also been used for larger elections and is often used by corporations to
elect their directors.

In this work, it will be argued that in all practical scenarios, voters
who are given the option to split their votes between multiple candidates
should refuse to do so and should concentrate all of their votes on a single
candidate. Thus, by giving voters multiple votes which the voter may
optionally split, many jurisdictions are adding unnecessary complication,
confusing voters and increasing the rate of voter errors, and encouraging
voters to act against their own interests.

1 Introduction

Cumulative voting is a process wherein a multi-seat body is elected by pooling
all of the candidates into a single race and allotting each voter multiple votes
(often one per seat to be filled). Candidates are ordered by the number of votes
they receive, and the body is filled by taking as many candidates from the top
of the ordering as there are seats to be filled [GM05,BDB03]. Cumulative voting
is frequently used as an alternative to a partitioned system in which a territory
is divided into districts which each elect a single representative [Chr10].

The usual rationale for cumulative voting is to achieve more proportionate
representation. For instance, if 60% of a partitioned electorate supports a par-
ticular party and the support is distributed homogenously, then one may expect
that every district will elect a member of this party and the elected represen-
tation will be completely composed of members of this party. In contrast, with
cumulative voting it is expected that only 60% of the seats to go to a party that
is supported by 60% of the electorate. A minority party with under 10% support
that would likely obtain no representation in a partitioned system could obtain
proportionate representation with cumulative voting.

Cumulative voting has been adopted in many U.S. jurisdictions includ-
ing Port Chester, New York [Rae10]; Worcester County, Maryland [Lew94];
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Boerne, Texas [Mac10]; and Peoria, Illinois [Sha09]. It was used for more than a
century to elect the lower house of the Illinois state legislature [NYT86b,GP01],
and is frequently used in Texas school board elections [Nic02]. In most cases,
the adoption of cumulative voting is the result of a legal challenge to a district
system which was deemed to produce a result that lacked adequate minority
representation [PD95]. Cumulative voting is also commonly used in corporate
shareholder elections to enable minority shareholders to achieve representation
on boards of directors. U.S. Corporations using cumulative voting include Sears-
Roebuck [Fly91], Avon [NYT90], Walgreen’s [Wal09], Hewlett-Packard [HP009],
and Craigslist [DiC10]. Cumulative voting is now required of all Taiwanese cor-
porations [TT009], and a North Dakota constitutional requirement for its use in
corporations was recently removed [Mac06].

There has been much research in the social choice literature on the mer-
rits of various voting systems — including cumulative voting (see, for instance,
[Tab01]). Chamberlin and Courant [ChCo83] and Monroe [Mon95] offer detailed
mechanisms and analyses of rule for achieving proportional representation. This
paper does not attempt find the best systems of achieving proportional repre-
sentation nor does is attempt to compare and contrast cumulative voting versus
the more common system of dividing a region into districts and using a simple
plurality system to elect a single representative from each district. Instead, it
will be argued that within any scenario in which a cumulative voting system
might provide value, it is almost always against voters’ interests to split their
votes. Hence, cumulative voting is, in all practical cases, inferior to the much
simpler “at large” system of a single non-transferable vote wherein each voter is
given only a single vote and the leading overall vote-recipients are elected. Thus,
as a practical matter, cumulative voting should never be used!

2 When Should Voters Split Their Votes?

A natural question when voters have an option, but no requirement, to split
their votes among multiple candidates is when, if ever, should they do so?

The most likely scenario where vote splitting is in a voter’s interest is when
this voter controls a large fraction of the electorate. This can arise in corporate
shareholder settings where a large shareholder may have enough voting power
to elect multiple directors. For example, a shareholder with a 40% interest in a
corporation that uses cumulative voting to elect a five-member board of directors
may want to split these shares and vote 20% for each of two candidates to ensure
their election. Similar scenarios may arise when a political party or coalition
strategizes over how to best use its support.

Vote splitting can also be in the interest of an individual voter with a rela-
tively small number of votes who has extremely precise information about the
rest of the electorate. For instance, if 100 voters are each given six votes to cast
for a six-member council and a voter knows or has good reason to believe that
all of the other 99 voters will cast votes giving 79 votes to each of candidates
A1, A2, and A3, 60 votes to each of candidates B1, B2, and B3, and 59 votes to
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each of candidates C1, C2, and C3, and if this voter prefers candidates C1, C2,
and C3 to candidates B1, B2, and B3, then the voter’s best strategy is clearly
to cast two votes for each of candidates C1, C2, and C3.

In another instance, if an individual voter knows or has good reason to believe
that no other voters will split their votes, then it may be in this last voter’s
interest to split the final vote and thereby have a greater potential to break
multiple ties.

Cumulative voting scenarios seem to fall into one of two classes — both of
which are better addressed by other voting systems.

The first class is when a large fraction of the total votes is controlled by
an entity such as large corporate shareholder or a political party. In these cases,
there is already sufficient granularity to allow virtually any desired vote splitting.
A shareholder with a 40% stake in a corporation can vote half of these shares
for each of two candidates just as easily in the single non-transferable voting
case of one vote per share as in the cumulative voting case which allots five
votes per share.1 There are some cases when additional vote granularity may
make it slightly easier for a political party to manage its constituents, but these
advantages are small and better addressed by alternative voting systems.

In the second class, each individual voter represents only a small fraction of
the electorate. It will be shown that, in realistic scenarios, such voters’ typical
interests are better served by not splitting their votes at all.

3 Voter Utility

A principal tool used in this paper is a voter utility function which assigns a
(monetary) value to a vote for each candidate. This function may be implicit
and its computation need not be specified. It is only necessary as a pedagogical
tool that such a function exist – implicitly or explicitly – for each voter.

The utility function described here is not necessarily the value a voter assigns
to election of each candidate nor does it necessarily match the probabilities that
a vote for each given candidate would alter the outcome of the election. Instead,
the value of a vote for a selected candidate may be regarded as the sum, over
all candidates, of the product formed as probability that the vote will elect
the selected candidate and displace the other candidate multiplied by the value
(positive, negative, or zero) of effecting this change in the electoral outcome.

To be formal, a voter’s view of an election is a collection of probabilities
{pi,j} where each pi,j is the voter’s (implicit) assessment of the probability that
a vote for the candidate denoted by Ci will cause Ci to be elected and candidate
Cj to be displaced. The view of a voter is, at least in part, informed by any
partial information that the voter may have of the probability distributions of
votes cast by other voters.
1 In a very small election, a single voter may represent a substantial fraction of an

electorate and may benefit from the added granularity of cumulative voting. Such
scenarios, e.g. three voters electing a multi-seat board, are not considered to be
“realistic” for the purposes of this work.
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For any pair of candidates Ci and Cj , the displacement value Mi,j to a voter
is the value to that voter of Ci being elected over Cj .

The voter’s utility function which describes, for each candidate Ci, the value
to that voter of a vote for Ci, can now be defined as

U(i) =
∑

j

pi,jMi,j .

For example, a voter may prefer candidate C1 over candidate C2 by a large
margin and candidate C2 over candidate C3 by a much smaller margin. In this
scenario, it might be the case that the voter assigns the highest utility to a vote
for C1 and the lowest to a vote for C3, but if the voter also perceives candidate
C1 as unlikely to win (or, perhaps, very likely to win) and expects a close election
between candidates C2 and C3 with only one of the two likely to obtain a seat,
then the voter may assign the highest utility to a vote for candidate C2 instead,
since the expected return of this vote may be of higher value than that of a vote
for candidate C1.

A vote for candidate Ci is optimal for a voter with utility function U if
U(i) = maxj U(j).

Note again that there is no expectation that voters explicitly compute their
utility functions. Instead, the assumption is merely that a function ascribing a
value to each possible vote exists implicitly for each voter. Rational voters who
each have a single vote to cast should always cast an optimal vote, but it is not
assumed that voters act rationally.

Note that describing the utility per vote in this way carries some implicit
assumptions. If, for instance, the most important outcome for a voter is that no
candidate receives zero votes (perhaps the voter is a judge in a school science
fair), then it may well be in the voter’s interest to spread votes among as many
candidates as possible. Such a goal not captured by the utility function described
herein and will not be considered further in this work.

4 A Continuity Assumption

Whether or not utilities are explicitly calculated, it seems very unlikely that the
change or addition of a single vote amongst anything beyond a miniscule set
of voters would have a significant effect on a rational voter’s utility function.
Specifically, if a rational voter is presented with two scenarios for the expected
distribution of votes which are identical except that a single known vote is added
in the second scenario, then the utility functions in these two scenarios are
unlikely to differ substantially.

The assumption is characterized as follows.
We say that utility function U(i) =

∑
j pi,jMi,j is ε-near utility function

U ′(i) =
∑

j p′
i,jM

′
i,j if maxj |pi,jMi,j − p′

i,jM
′
i,j | ≤ ε.

Let U be a voter’s utility function in a particular election including any
partial information about other votes that a voter may have, and let Uj be the



The Weakness of Cumulative Voting 61

utility function for the same election with the additional knowledge that a single
vote has been added to the tally of candidate Cj .

We say that u is ε-smooth if for all candidates Cj , U is ε-near Uj .

Lemma 1. If a voter has two votes to cast and the voter’s utility function is
ε-smooth, then repeating an optimal vote produces a utility which is within ε of
the maximum possible return for all possible vote pairs.

Commentary. While it seems extremely unlikely that in any practical election,
the addition of a single vote would change a voter’s utility function enough to
change a voter’s optimal vote; even if such a scenario were to occur, the benefit of
casting a second vote differently from an optimal first vote would be miniscule.

In contrast, in most practical situations casting a second vote which is dif-
ferent from an optimal first vote could result in a return which is substantially
less than optimal.

An immediate consequence of this analysis is that a rational voter whose
votes constitute only a small fraction of the electorate should almost always cast
a second vote (and any subsequent votes) in exactly the same way as the first.
A rational voter should almost never divide votes amongst multiple
candidates.

As noted above, this utility assumption may not be valid for a rational voter
who has exceptionally precise information about the ballots of other voters.
Additionally, even if a voter has such unrealistically precise information, this
information must indicate multiple near-perfect ties between candidates who
are each at the threshold of election. In no practical situation with more than a
very few voters will such precision be realistic, and the basic claim will hold in
all non-trivial practical situations. Hence, in any realistic scenario, it is against a
voters interest to split votes; and even in such extraordinarily unusual scenarios
where it may be in a voter’s interest to split votes, the benefit that a voter could
expect from splitting votes would be miniscule.

Since each rational voter should cast all allotted votes for a single candidate,
voters could instead each be given a single (non-transferable) vote. This leads to
the following principal result.

Lemma 2 (Main Result). The cumulative voting system of allotting multiple
votes to each voter and allowing a voter to cast multiple votes for a single
candidate complicates implementation, increases voter confusion and errors2,
and encourages voters to act against their own interests by dividing their votes
amongst multiple candidates!

Perhaps the confusion about the value of vote splitting comes from the fol-
lowing scenario. A voter might prefer both candidates C1 and C2 to candidate
C3 and believe that all three have a realistic possibility of being elected to the
final seat. The voter might decide to cast votes for both candidates C1 and C2

2 Some voters may not understand that they are allowed to cast multiple votes or
that multiple votes can be cast for the same candidate [BE98,O’M09,Bow03,Wil04].



62 J. Benaloh

in order to improve both of their chances of defeating candidate C3. This may
even be a rational strategy in a case where the voter has extraordinarily precise
information about the remainder of the electorate.3 However, the utility argu-
ment shows that in any realistic scenario, this voter is virtually certain to be
best served by deciding which of candidates C1 and C2 to support and casting all
votes in favor of this candidate — thereby maximizing the selected candidate’s
probability of being elected.

5 Related Voting Systems

The cumulative voting system discussed above allocates one vote to each voter
for each seat to be filled. One related system is limited voting in which each voter
receives multiple votes but fewer votes than there are seats to be filled.4 Another
variant is equal and even cumulative voting in which the votes of a voter who
casts fewer votes than allocated are “stretched” to reach the allocated number
(for example, a voter who is allocated four votes and casts only three is recorded
as having cast one and a third votes for each of the three selected candidates).

The arguments above regarding standard cumulative voting apply equally
well to both limited voting and equal and even cumulative voting. As in standard
cumulative voting, it is against the interest of individual voters with a small
fraction of the total vote to divide their votes amongst multiple candidates.

6 Single Non-transferable Votes

A single non-transferable voting system gives just one vote to each voter – regard-
less of the number of candidates to be elected. As with cumulative voting, the
candidates who receive the most votes are elected. Single non-transferable vot-
ing can be thought of as one extreme case of limited voting (with the other
extreme being standard cumulative voting). The above analysis indicates that a
single non-transferable voting system is essentially always preferable to standard
cumulative voting and related systems where voters are each allocated multiple
votes.

Jurisdictions and corporations which use cumulative voting should give seri-
ous consideration to replacing their electoral systems with single non-transferable
voting or another alternative. The results herein should not be construed as an
endorsement of single non-transferable voting but rather as a relative assessment
that single non-transferable voting is superior to cumulative voting and related
systems.

3 One such example would be an instance where a voter knows precisely how all other
voters except one will vote and that this unknown voter will bring either candidate
C1 or C2 — but not both — within close range of defeating candidate C3.

4 Note that limited voting actually comes in two flavors depending on whether or not
voters are allowed to cast multiple votes for a single candidate. Its use here applies
the case when a candidate can receive multiple votes from a single voter.
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A common criticism of single non-transferable voting is that a popular candi-
date can receive far more votes than necessary to be elected, and this can result
in disproportionate representation. For example, if 80% of the electorate favors
and votes for a particular candidate in an election for a six-member council,
this candidate will be elected, but this large majority constituency will be rep-
resented by only one of the six council members. (Note that cumulative voting
can lead to similarly disproportionate representation.)

The potential for “over-voting” for a candidate leads to substantial strategiz-
ing and coalition building among political parties and groups [GM05,NYT86a].
Parties may encourage their constituents to spread their votes amongst multi-
ple candidates in order to attempt to maximize the number of seats that they
will win. This strategizing occurs with both single non-transferable voting and
cumulative voting.

7 Alternative Electoral Systems

Because of the potential for disproportionate representation and the instabil-
ity of the strategizing that can result, other voting systems may be considered
preferable to single non-transferable voting.

In an environment where there are strict party loyalties and a candidate’s
party affiliation is considered more important than the candidate’s other qual-
ities, a party list system may be desirable. In such a system, parties submit
ordered lists of candidates, and voters cast votes for a party rather than an indi-
vidual. Parties are then assigned seats in proportion to the number of votes they
receive, and each party’s seats are assigned to candidates in accordance with
their pre-submitted lists.

When party loyalty is not strict, a preferential voting system such as single
transferable vote (or STV) may be used. With STV, voters are asked to rank can-
didates preferentially. Candidates who receive a necessary quota of first-choice
votes are elected, and excess votes are given to the next candidate on each voter’s
list – diluted according to the excess. For example, if a candidate receives twice
the number of first-choice votes necessary to be elected, that candidate is elected
and all ballots on which that candidate is listed first are transferred to their sec-
ond choice candidate with half of their original value (now worth one half vote
each). This process is iterated until all seats are filled. As with other preferential
voting systems, some process must also be provided for eliminating candidates
that have not received sufficient support to continue.

A third option is to allow elected candidates to carry their level of support
into the body to which they have been elected. For example, if candidate C1

receives 40% support, candidates C2 and C3 each receive 20% support, candi-
date C4 receives 10% support, and the remaining 10% of support is distributed
amongst other candidates, then candidates C1, C2, C3, and C4 could be deemed
elected with candidate C1 carrying four legislative votes, candidates C2 and C3

each carrying two legislative votes, and candidate C4 carrying a single legislative
vote.



64 J. Benaloh

Each of these systems has merits and weaknesses. There is substantial lit-
erature on other voting systems, and Chamberlin and Courant [ChCo83] and
Monroe [Mon95] offer valuable rules against which proportional voting systems
can be measured. The decision of whether to use one of these systems, single
non-transferable votes, or some other alternative is dependent upon numerous
factors including political realities, the desired electoral effects, and traditional
voting patterns. It is clear, however, that cumulative voting and related systems
should almost never be considered among the alternatives.

8 Conclusions and Further Work

There is no clear best choice for how to elect a multi-seat body that propor-
tionately represents the voting electorate. One increasingly popular approach is
cumulative voting, but it has been argued here that cumulative voting is inferior
in virtually all respects to the option of a single non-transferable voting system.

While single non-transferable voting has some significant weaknesses when
compared to other alternatives, it dominates cumulative voting in every prac-
tical respect. There are simply no realistic scenarios in which the option of
cumulative voting can be justified. Additional comparative analysis of single
non-transferable voting and other alternatives intended to achieve proportional
voting will help communities select the voting systems best suited to their needs.
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Abstract. We argue that electronic vote-counting software can engen-
der broad-based public trust in elections to public office only if they
are formally verified against their legal definition and only if they can
produce an easily verifiable certificate for the correctness of the count.
We then show that both are achievable for the Schulze method of vote-
counting, even when the election involves millions of ballots. We argue
that our methodology is applicable to any vote-counting scheme that is
rigorously specified. Consequently, the current practice of using unveri-
fied and unverifiable vote counting software for elections to public office
is untenable. In particular, proprietary closed source vote-counting soft-
ware is simply inexcusable.

1 Introduction

The integrity of electronic elections depends on many factors and spans the entire
process from vote-casting to vote-counting, and the determination of winners.
The notion of universal verifiability of vote counting (any voter can check that
the announced result is correct on the basis of the published ballots [15]) has
long been recognised as being central, both for guaranteeing correctness, and
building trust, in electronic elections. For vote-counting (on which we focus in
this paper), verifiability means that every stakeholder, or indeed any member
of the general public, has the means to check that the computation of election
winners is correct.

In practice, however, the computer software used to determine winners from
the set of ballots cast, offers no such assurance. This applies for example to
the software used in the Australian state of New South Wales (where the vote-
counting software is closed-source and proprietary) and to the eVACS system
used in the Australian Capital territory (where the vote-counting software has
been open-sourced), see e.g. [2,9,10].

In this paper, we argue that both verification of the computer software that
counts votes, and verifiability of individual counts are critical for building trust in
c© Springer International Publishing AG 2017
R. Krimmer et al. (Eds.): E-Vote-ID 2017, LNCS 10615, pp. 66–83, 2017.
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an election process where ballots are being counted by computer. We moreover
demonstrate by means of a case study that both are achievable for elections
of realistic sizes. Given the mission-critical importance of correctness of vote-
counting, both for the legal integrity of the process and for building public trust,
together with the fact that both can be achieved technologically, we argue that it
is imperative to replace the currently used, black-box software for vote-counting
with a counterpart that is both verified, and produces verifiable certificates that
guarantee correctness.

The leading analogy that informs our notion of verifiability of ballot counting
is that of counting by hand. We argue that the result of a count is correct, if
we have evidence that every action performed by a counting official is consistent
with the (legal) description of the voting protocol. In a setting where votes are
counted by hand, this is precisely the duty (and purpose) of election scrutineers.
In the absence of scrutineers, and as a thought experiment that is evidently
impractical, one can envisage one, or several, cameras that record the entire
vote-counting process to a level of detail that allows us to ascertain the validity
of every step that has been undertaken to determine the election result.

Correctness can then be verified independently by an analysis of the record-
ing, and potential errors can be identified by exhibiting precisely that part of
the recording where an incorrect action has been taken. The notion of certifi-
cate for the correctness of an electronic count implements this metaphor: instead
of producing a recording of a hand-count, we record every individual step that
has been undertaken by the software to determine the outcome electronically.
We understand this data as a certificate that can then subsequently be either
machine-checked in its entirety, or spot-checked for validity by humans.

This de-couples the process of counting the votes by computer from the
process of verifying that ballots have been correctly tallied. We argue this notion
of externally certifying electronic vote counting, together with transparency of
the entire process, is imperative to building public trust in the integrity of
electronic vote counting.

Our goal is therefore to closely integrate three pieces of data: the set of ballots
cast, the winner(s) of the election, and the certificate data that links both. This
leads to the following key requirements:

1. the ability to verify that a certificate is correctly constructed
2. the ability to verify that the certificate is indeed based on the ballots cast
3. the ability to verify that a correctly constructed certificate indeed provides

evidence for the claimed set of winners.

As long as all three requirements are met, we accept any valid certificate as
evidence of the correctness of the count, irrespective of the means by which it
was constructed. In particular, this completely eliminates the need for trust in
computer hardware or individuals operating the computing machinery.

We demonstrate, by means of a case study, that all three requirements can
be met simultaneously, and that the software that produces these results scales
to the size of real-world elections.
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For the case study, we choose the Schulze method [26]. Despite the fact that
the Schulze Method is not used for elections to public office, it provides an
interesting case study for our purposes, as there is a non-trivial gap to bridge
between certificates and the winning conditions of the vote counting scheme
(item 3 above). We close this gap by giving formal proofs that connect certificates
with the actual winning conditions.

One important aspect of our work is that it adds value to the integrity of
the electoral process along several dimensions. First, the formal specification
enforces a rigid analysis of the voting protocol that eliminates all disambiguities
inherent in a textual specification of the protocol. While an independent re-
implementation of the protcol (assuming that all votes are published) may give
assurance of the officially announced result, the question of correctness remains
open if both programs diverge. Checking the validity of a certificate, on the other
hand, allows us to precisely pinpoint any discrepancies. Finally, it is much simpler
to implement a program that validates a certificate compared to a fully-blown
re-implementation of the entire voting protocol which increases the number of
potential (electronic) scrutineers.
Related Work. This paper discusses the notions of verification, and verifiabil-
ity, from the perspective of law and trust, and we use the Schulze method as
an example to show that both can be achieved in realistic settings. We do not
describe the formalisation in detail which is the subject of the companion paper
[24]. Apart from the analysis of verifiably correct vote-counting from the per-
spective of law and trust, the main technical differences between this paper and
its companion is scalability: we refine both proofs and code given in [24] to
effortlessly scale to millions of ballots.

Formal specification and verification of vote-counting schemes have been dis-
cussed in [3,8] but none of these methods produce verifiable results, and as such
rely on trust in the tool chain that has been used in their production. The idea of
evidence for the correctness of a count has been put forward in [23] as a technical
possibility. This paper complements the picture by (a) establishing verification
and verifiability also as legal desiderata, and (b) showing, by means of a case
study, that both can be achieved for real-world size elections.

2 Verification and Verifiability

Verification is the process of proving that a computer program implements a
specification. Here, we focus on formal verification [12], where the specification
consists of formulae in a formal logic, and the correctness proof of a program
consists of applying logical deduction rules. This takes place inside a (formal)
theorem prover that then validates the correctness of each and every proof step.
One crucial aspect of this is that every correctness proof itself is machine-checked
which gives the highest possible level of correctness, as the proof-checking func-
tionality of a theorem prover is a comparatively small and heavily scrutinised
part of the entire system.
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As a consequence, once we are satisfied with the fact that the specification of
the program indeed expresses the intended notion of correctness, we have very
high assurance that the results of the computation are indeed correct.

In order to ascertain that the results of a verified program are indeed correct,
one therefore needs to

1. read, understand and validate the formal specification: is it error free, and
does it indeed reflect the intended functionality?

2. scrutinize the formal correctness proof: has the verification been carried out
with due diligence, is the proof complete or does it rely on other assumptions?

3. ensure that the computing equipment on which the (verified) program is
executed has not been tampered with or is otherwise compromised, and finally

4. ascertain that it was indeed the verified program that was executed in order
to obtain the claimed results.

The trust in correctness of any result rests on all items above. The last two items
are more problematic as they require trust in the integrity of equipment, and
individuals, both of which can be hard to ascertain once the computation has
completed. The first two trust requirements can be met by publishing both the
specification and the correctness proof so that the specification can be analysed,
and the proof can be replayed. Both need a considerable amount of expertise but
can be carried out by (ideally more than one group of) domain experts. Trust
in the correctness of the result can still be achieved if a large enough number
of domain experts manage to replicate the computation, using equipment they
know is not compromised, and running the program they know has been verified.
As such, trust in verified computation mainly rests on a relatively small number
of domain experts.

The argument for correctness via verification is that we have guarantees
that all executions of a program are correct, and we therefore argue that this in
particular applies to any one given instance.

Verifiability, on the other hand, refers to the ability to independently ascer-
tain that a particular execution of a program did deliver a correct result. This is
usually achieved by augmenting the computation so that it additionally produces
a certificate that can be independently checked, and attests to the correctness
of the computation, see e.g. [1]. Attesting to the correctness of the computation
therefore requires to

1. ensure that the certificate is valid (usually by means of machine-checking it)
2. ensure that the certificate is indeed associated to the computation being scru-

tinized, i.e. it matches both input and output of the computation
3. establish that a valid certificate indeed guarantees the correctness of the

computation.

Here, the first two items are mechanical and can be accomplished by relatively
simple and short, independently developed computer programs for which little
expert knowledge, other than basic programming skills, are necessary. The diffi-
culty lies in establishing the third requirement: to verify that a correct certificate
indeed implies the correctness of the result.
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To maximise trust, reliability and auditability of electronic vote counting, we
argue that both approaches need to be combined. To ensure (universal) verifiabil-
ity, we advocate that vote-counting programs do not only compute a final result,
but additionally produce an independently verifiable certificate that attests to
the correctness of the computation, together with a formal verification that valid
certificates indeed imply the correct determination of winners. In other words,
we solve the problem outlined under (3) above by giving a formal, machine-
checkable proof of the fact that validity of certificates indeed implies correct
determination of winners. In contrast to scrutiny sheet published by electoral
authorities, a certificate of this type contains all the data needed to reconstruct
the count.

Given a certificate-producing vote-counting program, external parties or
stakeholders can then satisfy themselves to the correctness of the count by check-
ing the certificate (and whether the certificate matches the election data), and
validate, by means of machine-checking the formal proof given for item (3) that
validity of certificates indeed entails the correctness of the count. In partic-
ular, once it has been established (and vetted by a large enough number of
domain experts) that valid certificates do indeed imply correctness, this step
does not have to be repeated for each individual election. For every particu-
lar election, trust in the correctness of the count can be established solely by
machine-checking the generated certificates. As argued above, this task can be
accomplished by a large class of individuals with basic programming skills.

In fact, we go one step further: we demonstrate that fully verified programs
can be employed to count real-size elections that involve millions of ballots and
produce both independently verifiable and provably correct certificates. While
the use of verified programs is not essential for building trust in the correctness
of the count (as long as certificates are validated), it gives us formal assurance
that the certificates produced will always be valid.

3 Legal Aspects of Verification and Verifiability

Any system for counting votes in democratic elections needs to satisfy at least
three conditions: (1) each person’s vote must be counted accurately, according
to a mandated procedure, (2) the system and process should be subjectively
trusted by the electorate, (3) there should be an objective basis for such trust,
or in other words the system must be trustworthy. While subjective trust cannot
be guaranteed through greater transparency [21], transparency about both the
voting system and the actual counting of the vote in a particular election are
important in reducing errors and ensuring an accurate count, promoting public
trust and providing the evidential basis for demonstrated trustworthiness. In par-
ticular, it is a lack of transparency that has been the primary source of criticism
of existing systems, both in the literature [7,9] and among civil society organ-
isations [27] (for example, blackboxvoting.org and trustvote.org). International
commitment to transparency is also demonstrated through initiatives such as
the Open Government Partnership. Another important concept referred to both

http://www.blackboxvoting.org
http://www.trustvote.org
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in the literature and by civil society organisations is public accountability, which
requires both giving an “account” or explanation to the public and when called
on (for example, in court) as well as being held publicly responsible for failures.
Transparency is thus a crucial component of accountability, although the latter
will involve other features (such as enforcement mechanisms) that are beyond
the scope of this paper.

There are two contexts in which transparency is important in the running
of elections. First, there should be transparency in Hood’s sense [14] as to the
process used in elections generally. This is generally done through legislation
with detailed provisions specifying such matters as the voting method to be used
as well as the requirements for a vote to count as valid. In a semi-automated
process, this requires a combination of legislation (instructions to humans) and
computer code (instructions to machines). The second kind of transparency,
corresponding to Meijer’s use of the term [20], is required in relation to the
performance of these procedures in a specific election. In a manual process,
procedural transparency is generally only to intermediaries, the scrutineers, who
are able to observe the handling and tallying of ballot papers in order to monitor
officials in the performance of their tasks. While the use of a limited number of
intermediaries is not ideal, measures such as allowing scrutineers to be selected by
candidates (e.g. Commonwealth Electoral Act 1918 (Australia) s 264) promote
public confidence that the procedure as a whole is unbiased. However imperfect,
procedural transparency reduces the risk of error and fraud in execution of the
mandated procedure and enhances trust.

Electronic vote counting ought to achieve at least a similar level of trans-
parency along both dimensions as manual systems in order to promote equiva-
lent levels of trust. Ideally, it would go further given physical limitations (such
as the number of scrutineers able to fit in a room) apply to a smaller part of
the process. The use of a verified, and fully verifiable system is transparent in
both senses, with members of the public able to monitor both the rules that
are followed and the workings and performance of the system in a particular
instance.

First, the vote counting procedure needs to be transparent. For electronic vote
counting, the procedure is specified in both legislation (which authorises the elec-
tronic vote counting procedure) and in the software employed. The use of open
source code ensures that the public has the same level of access to instructions
given to the computer as it has to legislative commands given to election officials.
The use of open source code is crucial as is demonstrated through a comparison
of different jurisdictions of Australia. In Australia, for example, the Federal Sen-
ate and NSW state election vote counting are based on proprietary black box
systems while the Australian Capital Territory uses open source eVACS software
[2,9,10]. This has significant impact on the ability of researchers to detect errors
both in advance of elections and in time to correct results [9]. Private verification
systems have been less successful, in both Australia and the US, in providing
equivalent protection against error to open source software [7,9]. Further, private
verification provides a lower level of public transparency than the use of manual
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systems which rely on public legislation (instructions to humans) as the primary
source of vote counting procedures [7]. It should also be noted that there are
few public advantages in secrecy since security is usually enhanced by adopting
an open approach (unless high quality open source vote counting software were
unavailable), and private profit advantages are outweighed by the importance of
trust in democratic elections.

Second, verifiability provides a method of ascertaining the correctness of
results of a specific election. External parties are able to check a certificate to
confirm that the counting process has operated according to the rules of the
voting procedure. Under a manual process, tallying and counting can only be
confirmed by a small number of scrutineers directly observing human officials.
The certification process allows greater transparency not limited to the number
of people able to fit within a physical space, although we recognise that physical
scrutiny is still required for earlier elements of the voting and vote counting
process (up to verification of optical scanning of ballots). Certification reduces
the risk of error and fraud that would compromise accuracy and provides an
evidence-base for trustworthiness. It is also likely to increase subjective public
trust, although this will require engagement with the public as to the nature of
verification involved. While it is likely that in practice checking will be limited to
a small group with the technical expertise, infrastructure and political interest to
pursue it, knowledge as to the openness of the model is likely to increase public
trust. Currently in Australia, neither open source nor proprietary vote counting
systems provide an equivalent level of procedural transparency for monitoring the
count in a particular election (for example, compare Commonwealth Electoral
Act 1918 (Australia) s 273A).

Ultimately, legislation, computer code (where relevant) and electoral proce-
dures need to combine to safeguard an accurate count in which the public has
justified confidence. The verification and verifiability measures suggested here
go further to ensure this than current methods used in Australia and, as far as
we are aware, public office elections around the world.

In the remainder of the paper, we describe a particular voting method (the
Schulze method) to demonstrate that we can achieve both verification and veri-
fiability for real-world size elections.

4 The Schulze Method

The Schulze Method [26] is a preferential voting scheme that elects a single
winner. While not used for elections to public office, it provides us with an
example that show-cases all aspects of verifiability discussed in Sect. 2, as the
correspondence between valid certificates and election winners is not trivial, i.e.
a valid certificate cannot immediately be matched to the winning condition. We
bridge this gap by a formal proof that we outline in Sect. 5.

In Schulze counting, each ballot expresses a preference ordering over the set
of candidates where all candidates need to be ranked, but candidates may be
given equal preference. The requirement of ranking all candidates can be relaxed
by assuming that non-ranked candidates tie for last position.
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From a social choice perspective, the Schulze voting scheme has been shown
to satisfy a large number of desirable properties, such as monotonicity, indepen-
dence of clones, and reversal symmetry, established in the original paper [26].

From a game theoretic perspective, it has also been experimentally estab-
lished that the Schulze Method is better than other, more established voting
schemes such as plurality and instant-runoff voting and Borda count [25]. Despite
the fact that the Schulze method isn’t used in elections for public office, there is
rapid uptake in a large number of organisations, including e.g. various national
branches of the Pirate Party and numerous open software initiatives.

Academically, the Schulze method has been investigated further, and it has
been established that Schulze voting is resistant to bribery and control [22] in the
sense that both problems are computationally infeasible, but have been found
to be fixed-parameter tractable with respect to the number of candidates [13].

The Schulze Method is guaranteed to always elect a Condorcet winner, that
is, a candidate that a majority prefers to every other candidate in a pairwise
comparison.

The distinguishing feature of Schulze counting is the resolving of cycles in
collective preferences. These situations appear to arise in real elections [16] and
it has been demonstrated that different choices of resolving cycles indeed lead
to different outcomes. Consider for example the following scenario taken from
[6] where we have three candidates A, B, and C and the following distribution
of votes:

4 : A > B > C 3 : B > C > A 2 : B > A > C 4 : C > A > B

where the number before the colon indicates the multiplicity of the vote, and >
indicates the order of preference so that e.g. 3 : B > C > A denotes three votes
where B is preferred over C who is in turn preferred over A. In this example, a
majority of candidates prefer A over B as eight ballots prefer A over B compared
to five ballots preferring B over A. Similarly, a majority of candidates prefer B
over C, and a majority prefer C over A, leading to a cyclic collective preference
relation.

The main idea of the method is to resolve cycles by considering transitive
preferences or a generalised notion of margin. That is, if m(c, d) is the margin
between candidates c and d (the difference between the number of votes that
rank c higher than d and the number of votes that rank d higher than c), Schulze
voting considers paths of the form

c1
m(c1,c2) �� c2

m(c2,c3) �� c3 ... cn−1
m(cn−1,cn) �� cn

i.e. sequences of candidates annoted with the margin between successive candi-
dates. A path like the above induces the path-based margin min{m(ci, ci+1 | 1 ≤
i < n} between c1 and cn given as the minimum of the margins between succes-
sive candidates, and the generalised margin between two candidates c and d is
the largest path-based margin considering all possible paths between c and d.
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This allows us to replace the margin used to determine Condorcet winners
by the generalised margin introduced above. The key result of Schulze’s paper
[26] (Sect. 4.1) is that the induced ordering is now indeed transitive.

A Schulze Winner can then be taken to be a candidate that is not defeated
by any other candidate in a pairwise comparision, using generalised margins. In
symbols, candidate c is a winner if g(c, d) ≥ g(d, c) for all other candidates d,
where g(·, ·) denotes generalised margins.

In the above example, we have the following margins (on the left) and gen-
eralised margins (on the right):

A
3

��

−1

��

B
−3

��

5

��
C

1

��

−5

�� A
3

��

3

��

B
1

��

5

��
C

1

��

1

��

Note that the margins on the left are necessarily symmetric in the sense that
m(x, y) = −m(y, x) as margins are computed as the difference between the
number of ballots that rank x higher than y and the number of ballots that rank
y higher than x. This property is no longer present for generalised margins, and A
is the (only) winner as A wins every pairwise comparison based on generalised
margins. In summary, vote counting according to the Schulze method can be
described as follows:

1. compute the margin function m(c, d) as the number of ballots that strictly
prefer c over d, minus the number of ballots that strictly prefer d over c

2. compute the generalised margin function g(c, d) as the maximal path-based
margin between c and d

3. Compute winning candidate, i.e. candidates for which g(c, d) ≥ g(c, d), for all
other candidates d, and apply tie-breaking if more than one winning candidate
has been elected.

It has been shown in Schulze’s original paper that at least one winner in this
sense always exists, and that this winner is unique in most cases, i.e. Schulze
counting satisfies the resolvability criterion.

5 Provably Correct and Verifiable Schulze Counting

Our implementation of the Schulze method consists of three parts:

Formal Specification. First, we provide a formal specification of the winning
condition for elections counted according to Schulze. This takes the form of
a logical formula that directly reflects the voting scheme.
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Certificate. Second, we establish what counts as a certificate for the winning
condition to hold, and give a formal proof that existence of a certificate for
winning is equivalent to winning in the sense of the initial specification. The
main difference between both notions of winning is that the former is a mere
logical assertion, whereas the latter is formulated in terms of verifiable data.

Proofs. Third, we provide a full proof of the fact that the existence of a certifi-
cate is logically equivalent to the specification being met. Moreover, we give
a full proof of the fact that winners can always be computed correctly, and
certificates can be produced, for any set of ballots.

We exemplify the relationship of these components with a simple example. Con-
sider the notion of being a list of integers sorted in ascending order. The formal
specification of this operation consists of two sentences:

– the elements of the resulting list should be in ascending order
– the elements of the resulting list should be a permutation of the elements of

the input list.

In this case, we don’t need to certify that a list is sorted: this can be checked easily
(in linear time). Ascertaining that the result list is a permutation of the input
list is (slightly) less trivial. Here, a certificate can be a recipe that permutes
the input list to the resulting list: to verify that the resulting list is indeed a
permutation, the only thing the verifier needs to do is to alter the input list
according to the given recipe, and then checking whether the two lists are equal.

In this case, the computation produces two pieces of data: we not only get
to see the sorted list, but also a permutation that witnesses that the resulting
list is a permutation of the input list. A proof then amounts to establishing that
given

– the input list, and the (sorted) resulting list, and
– a recipe that permutes the input list to its sorted version

we can conclude that the sorting operation indeed meets the formal specification.
The main (and important) difference between the specification and the cer-

tificate is that the former is merely a proposition, i.e. a statement that can either
be true or false. The certificate, on the other hand, gives us concrete means to
verify or ascertain the truth of the specification. The proofs provide the glue
between both: if a certificate-producing computation delivers a result together
with a certificate, we in fact know that the specification holds. On the other hand,
we need to establish that every correct computation can in fact be accompanied
by a valid certificate.

For vote counting, our development takes place inside the Coq theorem prover
[5] that is based on the Calculus of Inductive Constructions. Technically, Coq
distinguishes logical formulae or propositions (that are of type Prop) from data
(that is of type Set or Type). The former are correctness assertions and are erased
when programs are generated from proofs, whereas the latter are computed
values that are preserved: our certificates therefore need to be Types. To give
a simple example, a function that sorts a list will take a list (say, of integers)
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and produce a sorted list, where the fact that the list is sorted is expressed as
a proposition, so that sorted lists are pairs where the second component is a
proof that the first component is ordered, and is deleted by extraction. To make
sorting of lists verifiable, we would need to additionally output a certificate, i.e.
data from which we can infer that the result list is really a permutation of the
input list.

The logical specification of the winning condition is based on an integer-
valued margin function and a path between candidates:

Variable marg : cand -> cand -> Z.

Inductive Path (k: Z) : cand -> cand -> Prop :=
| unit c d : marg c d >= k -> Path k c d
| cons c d e : marg c d >= k -> Path k d e -> Path k c e.

Paths are additionally parameterised by integers that give a lower bound on
the path-based margin (the strength of the path in the terminology of [26]). We
interpret an assertion Path k c d as the existence of a path between c and d
that induces a path-based margin of at least k. Such a path can be constructed if
the margin between c and d is ≥ k (the unit constructor). Alternatively, a path
between c and e of strength ≥ k can be obtained if there is there is candidate d
for which the margin between c and d is ≥ k and d and e are already connected
by a path of strength ≥ k (via the cons constructor). This gives the following
formula that expresses that a candidate c wins a Schulze vote:

Definition wins_prop (c: cand) :=
forall d : cand, exists k : Z,
Path k c d /\ (forall l, Path l d c -> l <= k).

Simply put, it says that for each candidate d, there exists an integer k and a path
from c to d of strength k, and any other path going the reverse direction induces
at most the same path-based margin. In terms of the generalized margin function,
candidate c wins, if for every candidate d, the generalized margin between c and
d is greater than or equal to the generalised margin between d and c. We reflect
the fact that the above is a logical proposition in the name of the formula. The
certificate for winning then needs to consist of data that evidences precisely this.

One crucial component of a certificate that evidences that a particular can-
didate c is a Schulze-winner therefore consists of displaying a sufficiently strong
path between c and any other candidate. We achieve this by pairing the propo-
sitional notion of path with a type-level notion PathT that can be displayed as
part of a certificate for winning, and will not be erased by extraction.

Inductive PathT (k: Z) : cand -> cand -> Type :=
| unitT c d : marg c d >= k -> PathT k c d
| consT c d e : marg c d >= k -> PathT k d e -> PathT k c e.

The second part of the winning condition, i.e. the non-existence of a stronger
path going the other way, is more difficult to evidence. Rather than listing all
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possible paths going the other way, we use co-closed sets of pairs of candidates
which leads to smaller certificates. Given an integer k, a set S ⊆ cand× cand of
candidate pairs is k-coclosed if none of its elements (c, d) can be connected by
a path of strength k or greater. This means that

– for any element (c, d) ∈ S, the margin between c and d is < k, and
– if (c, d) is in the co-closed set and m is a candidate (a “midpoint”), then

either the margin between c and m is < k, or m and d cannot be connected by
a path of strength ≥ k.

The second condition says that c and d cannot be connected by a path of the
form c, m, ..., d whose overall strength is ≥ k.

We represent co-closed sets by boolean functions of type cand -> cand ->
bool and obtain the following formal definitions:

Definition coclosed (k : Z) (f : (cand * cand) -> bool) :=
forall x, f x = true -> W k f x = true.

where W: (cand -> cand -> bool) -> (cand -> cand -> bool) is an oper-
ator on sets of pairs of candidates that is given by

Definition W (k: Z) (p: cand * cand -> bool) (x: cand * cand) :=
andb (marg_lt k x)
(forallb (fun m => orb (marg_lt k (fst x, m)) (p (m, snd x)))

cand_all).

and marg lt is a boolean function that decides whether the margin between
two candidates is less than a given integer, and cand all is a list containing all
candidates that stand for election.

The certificate for a candidate c to be winning can then be represented by a
table where for every other (competing) candidate d, we have

– an integer k and a path from c to d of strength k, and
– a k+1-coclosed set that evidences that no path of strength > k exists between

d and c.

This leads to the following definition and equivalence proof where f plays the
role of coclosed set:

Definition wins_type c := forall d : cand,
existsT (k : Z), ((PathT k c d) *

(existsT (f : (cand * cand) -> bool),
f (d, c) = true /\ coclosed (k + 1) f))%type.

Lemma wins_type_prop : forall c, wins_type c -> wins_prop c.
Lemma wins_prop_type : forall c, wins_prop c -> wins_type c.
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and existsT is a type-level existential quantifier (technically, a Σ-type).
Going back to the trichotomy of specification, certificate and proof outlined

at the beginning of the section, the first lemma (wins type prop) says that the
existence of a certificate indeed implies the validity of the specification. The
second lemma (wins prop type) tells us that the notion of the certificate is so
that any correct computation can indeed be certified. That is, the notion of
certificate is general enough to certify all correct computations.

It is precisely the formal proof of equivalence of both notions of winning that
formally justifies our notion of certificate, as it ensures that a valid certificate
indeed witnesses the winning condition. This implements the third requirement
discussed on page 2.

The considerations so far rely on a previously computed margin function. To
obtain a formal specification and ensuing notion of certificates, all we need to
do is to provide a way of constructing the margin function step-by-step. We do
this by exhibiting two stages of the count:

1. in the first state, we process all ballots and iteratively update the margin func-
tion until all ballots have been processed. This gives us the margin function
on which subsequent computations are based.

2. in the second step, we compute winners, and evidence for winning, on the
basis of the margin function we have constructed in the first step.

The complete specification then takes the form of an inductive type that only
allows us to construct valid stages of the count. In more detail, we have four
constructors:

– ax where we construe all ballots as uncounted, and start with the zero margin
– cvalid where we update the margin function based on a formal ballot
– cinvalid where we discard an informal ballot and do not change the margin
– fin, where we assume that all ballots have been processed, and we finalise

the count by providing winners, and evidence for winning.

As a consequence, every element of this type represents a valid state of the
computation, and a count in state fin describes the result of the process.

Inductive Count (bs : list ballot) : State -> Type :=

| ax us m : us = bs -> (forall c d, m c d = 0) ->

Count bs (partial (us, []) m) (* zero margin *)

| cvalid u us m nm inbs : Count bs (partial (u :: us, inbs) m) ->

(forall c, (u c > 0)%nat) -> (* u is valid *)

(forall c d : cand,

((u c < u d) -> nm c d = m c d + 1) (* c preferred to d *) /\

((u c = u d) -> nm c d = m c d) (* c, d rank equal *) /\

((u c > u d) -> nm c d = m c d - 1))(* d preferred to c *) ->

Count bs (partial (us, inbs) nm)

| cinvalid u us m inbs : Count bs (partial (u :: us, inbs) m) ->

(exists c, (u c = 0)%nat) (* u is invalid *) ->

Count bs (partial (us, u :: inbs) m)

| fin m inbs w (d: (forall c, (wins_type m c)+(loses_type m c))):
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Count bs (partial ([], inbs) m) (* no ballots left *) ->

(forall c, w c = true <-> (exists x, d c = inl x)) ->

(forall c, w c = false <-> (exists x, d c = inr x)) ->

Count bs (winners w).

The formulation above relies on the following assumptions. First, ballots are
represented as functions from candidates into natural numbers that represent the
ranking. We assume that preferences start with 1 and interpret 0 as the failure
to denote a preference for a given candidate which renders the vote invalid. A
State is either a partial count that consists of a list of unprocessed ballots, a list
of informal ballots, and a partially constructed margin function, or of a boolean
function that determines the election winners. We have elided the definition of
losing that is dual to that of winning.

The task of computing the winners of a Schulze election given a list bs of
ballots is then reduced to exhibiting a boolean function w: cand -> bool that
determines the winners, and an element of the type Count bs (winners w).
While the first part (the boolean function) is the result of the computation, the
second part (the element of the Count-type) consists of the verifiable certificate
for the correctness of the count.

We exemplify the nature of certificates by returning to the example presented
in Sect. 4. We construe e.g. the ballot A > B > C as the function A �→ 1,
B �→ 2 and C �→ 3. Running a Schulze-election then corresponds to executing
the function that computes winners, which produces the following certificate (we
have added some pretty-printing):

V: [A1 B2 C3,..], I: [], M: [AB:0 AC:0 BC:0]
---------------------------------------------
V: [A1 B2 C3,..], I: [], M: [AB:1 AC:1 BC:1]
---------------------------------------------

. . .
---------------------------------------------
V: [A2 B3 C1], I: [], M: [AB:2 AC:0 BC:6]
------------------------------------------
V: [], I: [], M: [AB:3 AC:-1 BC:5]
----------------------------------
winning: A

for B: path A --> B of strenght 3, 4-coclosed set:
[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C)]

for C: path A --> B --> C of strenght 3, 4-coclosed set:
[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C)]

losing: B
exists A: path A --> B of strength 3, 3-coclosed set:

[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C)]
losing: C

exists A: path A --> B --> C of strength 3, 3-coclosed set:
[(A,A),(B,A),(B,B),(C,A),(C,B),(C,C)]
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The initial stages are the construction of the margin function, where the first
component are the ballots to be processed. Here, a ballot of the form A2, B3, C1
represents a first preference for C, a second preference for A and a third preference
for B. The partial margin function is displayed in the rightmost column, and lists
pairwise margins, for example AB:1 encodes m(A,B) = 1. Note that the margin
function is symmetric, i.e. m(x, y) = −m(y, x) so that the above is a complete
representation. We do not have any invalid votes so that the I-component always
remains empty. The ellipsis (. . .) indicates the omission of some steps of
constructing the margin which we have elided to save space. Once the margin
is fully constructed, we present evidence, in this case, for A winning the election
(and everybody else losing). As described above, this evidence consists of a path,
and a coclosed set, for each candidate distinct from A. The subsequent entries
(that we haven’t discussed in this paper) show that every candidate except A
is not winning. A losing candidate (in this example, e.g. B) is a candidate for
which there exists a competitor (here: A) so that the generalised margin of A over
B is strictly larger than the generalised margin of B over A. This is evidenced
similarly to winning candidates, by giving a path and a co-closed set.

6 Experimental Results

We report on the results of implementing the Schulze method in the Coq theorem
prover [5] that automatically extracts into the OCaml programming language
[18]. Coq comes with an extraction mechanism [19] that allows us to extract both
functions and proofs into executable code via the Haskell, Ocaml and Scheme
programming languages. As Coq is written in OCaml itself, the OCaml extrac-
tion mechanism is the best developed, and OCaml produces faster executables
than the other two languages. As Coq is based on constructive logic, we can turn
both functions written in Coq, as well as proofs into executable code. Given that
the correctness of the count is witnessed by an inductive data type, counting itself
amounts to populating this type, and we use a mix of proofs (showing that a
count exists amounts to a function that produces a count) and verified functional
programs (that compute data directly), using the latter for performance-critical
tasks.

The most performance critical aspect of our code is the margin function.
Recall that the margin function is of type cand -> cand -> Z and that it
depends on the entire set of ballots. Internally, it is represented by a closure [17]
so that margins are re-computed with every call. The single largest efficiency
improvement in our code was achieved by memorization, i.e. representing the
margin function (in Coq) via list lookup. With this (and several smaller) opti-
misation, we can count millions of votes using verified code. Below, we include
our timing graphs, based on randomly generated ballots while keeping number
of candidates constant i.e. 4.

On the left, we report timings (in seconds) for the computation of winners,
whereas on the right, we include the time to additionally compute a universally
verifiable certificate that attests to the correctness of the count. This is consistent



No More Excuses 81

(a) Computation of Winners
(b) Computation of Winners and Certifi-
cate

Fig. 1. Experimental results

with known computational complexity of Schulze counting i.e. linear in number
of ballots and cubic in candidates. The experiments were carried out on a system
equipped with Intel core i7 processor and 16 GB of RAM. We notice that the
computation of the certificate adds comparatively little in computational cost
(Fig. 1).

At this moment, our implementation requires that we store all ballots in
main memory as we need to parse the entire list of ballots before making it
available to our verified implementation so that the total number of ballots we
can count is limited by main memory in practise. We can count real-world size
elections (8 million ballot papers) on a standard, commodity desktop computer
with 16 GB of main memory.

7 Discussion and Further Work

This paper argues that there is no excuse to use vote counting software in elec-
tions to public office (or otherwise) that is neither verified (i.e. the correctness of
the software has been established using formal methods) nor verifiable (i.e. stake-
holders can independently ascertain the correctness of individual executions of
the software). We have argued that both verification and verifiability are desider-
ata from the perspective of law and trust. Finally, our experimental results show
that both verification and verifiability can be achieved in realistic settings.

Our case study (Schulze voting) was chosen as it showcases how we can bridge
a non-trivial gap between certificates and the winning conditions of the voting
scheme under consideration. Despite the fact that the Schulze method is not
used for elections to public office, we are convinced that the same programme
can (and should!) be carried out for other preferential voting schemes.

As the precise notion of certificate depends on the exact description of the
voting protocol, it is clear that this paper merely provides a case study. For
other voting systems, in particular the notion of certificate needs to be adapted
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to in fact witness the correctness of the determination of winners. As a toy
example, this has been carried out for first-past-the-post (plurality) voting and
a simple version of single transferable vote [23]. The more realistic scenario of
single transferable vote with fractional transfer values is being considered in
[11] where real-word size case studies are being reported. Given that the nature
of certificates is crucially dependent on the voting protocol under scrutiny, the
complexity and size of certificates necessarily differs from case to case. While
our general experience seems to indicate that computing certificates incurs little
overhead, this remains to be investigated more formally.

One aspect that we have not considered here is encryption of ballots to safe-
guard voter privacy which can be incorporated using protocols such as shuffle-
sum [4] and homomorphic encryption [28]. The key idea here is to formalise a
given voting scheme based on encrypted ballots, and then to establish a homo-
morphic property: the decryption of the result obtained from encrypted ballots
is the same as the result obtained from the decrypted ballots. We leave this to
further work.
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Abstract. Elections seem simple—aren’t they just about counting? But
they have a unique, challenging combination of security and privacy
requirements. The stakes are high; the context is adversarial; the elec-
torate needs to be convinced that the results are correct; and the secrecy
of the ballot must be ensured. They also have practical constraints: time
is of the essence, and voting systems need to be affordable and main-
tainable, as well as usable by voters, election officials, and pollworkers.
It is thus not surprising that voting is a rich research area spanning
theory, applied cryptography, practical systems analysis, usable security,
and statistics. Election integrity involves two key concepts: convincing
evidence that outcomes are correct and privacy, which amounts to con-
vincing assurance that there is no evidence about how any given person
voted. These are obviously in tension. We examine how current systems
walk this tightrope.

1 Introduction: What Is the Evidence?

It is not enough for an election to produce the correct outcome. The electorate
must also be convinced that the announced result reflects the will of the people.
For a rational person to be convinced, evidence is required.

Modern technology—computer and communications systems—is fragile and
vulnerable to programming errors and undetectable manipulation. No current
system that relies on electronic technology alone to capture and tally votes can
provide convincing evidence that election results are accurate without endanger-
ing or sacrificing the anonymity of votes.1

A more in-depth version of this paper can be found at https://arxiv.org/abs/1707.
08619.

1 Moreover, the systems that come closest are not readily usable by a typical voter.
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Paper ballots, on the other hand, have some very helpful security properties:
they are readable (and countable, and re-countable) by humans; they are rela-
tively durable; and they are tamper-evident. Votes cast on paper can be counted
using electronic technology; then the accuracy of the count can be checked man-
ually to ensure that the technology functioned adequately. Statistical methods
allow the accuracy of the count to be assessed by examining only a fraction of
the ballots manually, often a very small fraction. If there is also convincing evi-
dence that the collection of ballots has been conserved (no ballots added, lost,
or modified) then this combination—voter-verifiable paper ballots, a mechanized
count, and a manual check of the accuracy of that count—can provide convincing
evidence that announced electoral outcomes are correct.

Conversely, absent convincing evidence that the paper trail has been con-
served, a manual double-check of electronic results against the paper trail will
not be convincing. If the paper trail has been conserved adequately, then a full
manual tally of the ballots can correct the electronic count if the electronic count
is incorrect.

These considerations have led many election integrity advocates to push for
a voter-verifiable paper audit trail (VVPAT2) in the absence of paper ballots.

In the 2016 U.S. presidential election, about three quarters of Americans
voted using systems that generated voter-verifiable paper records. The aftermath
of the election proved that even if 100% of voters had used such systems, it would
not have sufficed to provide convincing evidence that the reported results are
accurate.

– No state has laws or regulations to ensure that the paper trail is conserved
adequately, and that evidence to that effect is provided.

– No state had laws or regulations that ensured adequate manual scrutiny of
the paper to determine that the electronically-generated results were correct.

– Many states that have a paper trail also have laws that make it hard for
anyone to check the results using the paper trail—even candidates with war
chests for litigation. Not only can other candidates fight attempts to check
the results, the states themselves can fight such attempts. This treats the
paper as a nuisance, rather than a safeguard.

The bottom line is that the paper trail is not worth the paper it’s printed
on. Clearly this must change.

Other approaches like software independence and end-to-end verifiability offer
tools to improve electronic voting systems, but these methods have not been
broadly applied.

2 The VVPAT consists of a cash-register style printout of each vote that the voter
can check but cannot touch. Voter-marked paper ballots or ballots marked using a
ballot-marking device are preferable to VVPAT because voters may not check the
VVPAT record.
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1.1 Why so Hard?

Several factors make it difficult to generate convincing evidence that reported
results are correct. The first is the trust model.

No one is trusted. In any significant election, voters, election officials, and
equipment used to vote cannot necessarily be trusted by anyone with a stake
in the outcome. Voters, operators, system designers, and external parties are all
potential adversaries.

The need for evidence. Because officials and equipment may not be trustwor-
thy, elections should be evidence-based. Any observer should be able to verify the
reported results based on trustworthy evidence from the voting system. Many
in-person voting systems fail to provide sufficient evidence; and as we shall see
Internet systems scarcely provide any at all.

The secret ballot. Perhaps the most distinctive element of elections is the
secret ballot, a critical safeguard that defends against vote selling and voter
coercion. In practical terms, voters should not be able to prove how they voted
to anyone, even if they wish to do so. This restricts the types of evidence that
can be produced by the voting system. For example, the voting system may not
provide votes encrypted by the voter as evidence, because the voters may choose
to reveal their selections and the randomness used during encryption in response
to bribery or coercion.

The challenge of voting is thus to use fragile technology to produce trustwor-
thy, convincing evidence of the correctness of the outcome while protecting voter
privacy in a world where no person or machine may be trusted. The resulting
voting system and its security features must also be usable by regular voters.

The aim of this paper is to explain the important requirements of secure
elections and the solutions already available from e-voting research, then to
identify the most important directions for research, which we present as Open
Problems throughout.

Prior to delving into our discussion, we need to make a distinction in termi-
nology. Pollsite voting systems are those in which voters record and cast ballots
at predetermined locations, often in public areas with strict monitoring. Remote
voting refers to a system where voters fill out ballots anywhere, and then send
them to a central location to cast them, either physically mailing them in the
case of vote-by-mail, or sending them over the Internet in the case of Internet
voting.

Section 2 defines the requirements related to notions of election evidence,
Sect. 3 on privacy and voter authentication, and Sect. 4 on more general usabil-
ity, availability and local regulatory requirements. Section 5 describes the cryp-
tographic, statistical, and engineering tools that have been developed for design-
ing voting systems with verifiably correct election outcomes. Section 6 concludes
with the promise and problems associated with Internet voting.
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2 Secure Voting Requirements: Trust, Verifiability,
and Evidence

For an election to be accepted as legitimate, the outcome should be convincing
to all—and in particular to the losers—leaving no valid grounds to challenge
the outcome. Whether elections are conducted by counting paper ballots by
hand or using computer technology, the possibility of error or fraud necessitates
assurances of the accuracy of the outcome.

It is clear that a naive introduction of computers into voting introduces the
possibility of wholesale and largely undetectable fraud. If we can’t detect it, how
can we prevent it?

2.1 Risk Limiting Audits

Statistical post-election audits provide assurance that a reported outcome is
correct, by examining some or all of an audit trail consisting of durable, tamper-
evident, voter-verifiable records. Typically the audit trail consists of paper
ballots.

The outcome of an election is the set of winners. An outcome is incorrect if it
differs from the set of winners output by a perfectly accurate manual tabulation
of the audit trail.

Definition 1. An audit of an election contest is a risk-limiting audit (RLA)
with risk limit α if it has the following two properties:

1. If the reported contest outcome under audit is incorrect, the probability that
the audit enables outcome correction is at least 1 − α.

2. The audit will not indicate a need to alter a reported outcome that is correct.

Together, these two properties imply that post-RLA, either the reported set
of winners is the set that a perfectly accurate hand count of the audit trail would
show, or an event which altered the election’s outcome has occurred and was not
detected by the audit (this event has probability no larger than bound α). RLAs
amount to a limited form of probabilistic error correction: by relying on the audit
trail, they have a knownminimumprobability of correcting the reported outcome if
it is incorrect. They are not designed to detect (or correct) an incorrectly-reported
tally, only an incorrectly-reported outcome.

The following procedure is a trivial RLA: with probability 1 − α, perform
a full manual tally of the audit trail. Amend the outcome to match the set of
winners the full hand count shows if that set is different.

The art in constructing RLAs consists of maintaining the risk limit while per-
forming less work than a full hand count when the outcome is correct. Typically,
this involves framing the audit as a sequential test of the statistical hypothesis
that the outcome is incorrect. To reject that hypothesis is to conclude that the
outcome is correct. RLAs have been developed for majority contests, plurality
contests, and vote-for-k contests and complex social choice functions includ-
ing D’Hondt—see below. RLAs have also been devised to check more than one
election contest simultaneously [84].
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2.2 Software Independence

Rivest and Wack introduced a definition targeted specifically at detecting mis-
behavior in computer-based elections:

Definition 2. [68] A voting system is software independent if an undetected
change or error in its software cannot cause an undetectable change or error in
an election outcome.

Software independence clearly expresses that it should not be necessary to
trust software to determine election outcomes, but it does not say what pro-
cedures or types of evidence should be trusted instead. A system that is not
software independent cannot produce a convincing evidence trail, but neither
can a paper-based system that does not ensure that the paper trail is complete
and intact, a cryptographic voting system that relies on an invalid cryptographic
assumption, or a system that relies on audit procedures but lacks a means of
assuring that those procedures are properly followed. We could likewise demand
independence of many other kinds of trust assumptions: hardware, paper chain-
of-custody, cryptographic setup, computational hardness, procedures, good ran-
domness generation etc.

Rivest and Wack also define a stronger form of the property that includes
error recovery:

Definition 3. [68] A voting system is strongly software independent if it
is software independent and a detected change or error in an election outcome
(due to the software) can be corrected without rerunning the election.

A strongly software-independent system can recover from software errors or
bugs, but that recovery in turn is generally based on some other trail of evidence.

Software independence can be viewed as a form of tamper-evident system: a
material software problem leaves a trace. Strongly software independent systems
are resilient: not only do material software problems leave a trace, the overall
election system can recover from those problems.

One mechanism to provide software independence is to record votes on a
paper record that provides physical evidence of voter’s intent, can be inspected
by the voter prior to casting the vote, and—if preserved intact—can later
be manually audited to verify the election outcome. Risk-limiting audits (see
Sect. 5.2) can then achieve a prespecified level of assurance that results are cor-
rect; machine assisted risk-limiting audits [20], can help minimize the amount of
labor required.

Open problems:
– How can systems handle errors in the event that elections don’t verify?

Can they recover?
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2.3 End-to-end Verifiability

The concern regarding fraud and desire for transparency has motivated the secu-
rity and crypto communities to develop another approach to voting system assur-
ance: end-to-end verifiability (E2E-V). An election that is end-to-end verifiable
achieves software independence together with the analagous notion of hardware
independence, as well as independence from actions of election personnel and
vendors. Rather than attempting to verify thousands of lines of code or closely
monitor all of the many processes in an election, E2E-V focuses on providing
a means to detect errors or fraud in the process of voting and counting. The
idea behind E2E-V is to enable voters themselves to monitor the integrity of the
election. This is challenging because total transparency is not possible without
undermining the secret ballot, hence the mechanisms to generate such evidence
have to be carefully designed.

Definition 4. (adapted from [14]).
A voting system is end-to-end verifiable if it has the following three kinds

of verifiability:

– Cast as intended: Voters can independently verify that their selections are
correctly recorded.

– Collected as cast: Voters can independently verify that the representation
of their vote is correctly collected in the tally.

– Tallied as collected: Anyone can verify that every well-formed, collected
vote is correctly included in the tally.

If verification relies on trusting entities, software, or hardware, the voter and/or
auditor should be able to choose them freely. Trusted procedures, if there are any,
must be open to meaningful observation by every voter.

Note that the above definition allows each voter to check that her vote is
correctly collected, thus ensuring that attempts to change or delete cast votes
are detected. In addition, it should also be possible to check the list of voters
who cast ballots, to ensure that votes are not added to the collection (i.e., to
prevent ballot-box stuffing). This is called eligibility verifiability [53,81].

2.4 Collection Accountability

In an E2E-V election protocol, voters can check whether their votes have been
properly counted, but if they discover a problem, there may not be adequate
evidence to correct it. An election system that is collection-accountable provides
voters with evidence of any failure to collect their votes.

Definition 5. An election system is collection accountable if any voter who
detects that her vote has not been collected has, as part of the vote-casting proto-
col, convincing evidence that can be presented to an independent party to demon-
strate that the vote has not been collected.



90 M. Bernhard et al.

Another form of evidence involves providing each voter with a code repre-
senting her votes, such that knowledge of a correct code is evidence of casting a
particular vote [27]. Yet another mechanism is a suitable paper receipt. Forensic
analysis may provide evidence that this receipt was not forged by a voter [7,11].

Open problems:
– Can independently verifiable evidence be provided by the voting system

for incorrect ballot casting?

2.5 Dispute Resolution

While accountability helps secure the election process, it is not very useful if there
is no way to handle disputes. If a voter claims, on the basis of accountability
checks provided by a system, that something has gone wrong, there needs to be
a mechanism to address this. This is known as dispute resolution:

Definition 6. [46] A voting system is said to have dispute resolution if, when
there is a dispute between two participants regarding honest participation, a third
party can correctly resolve the dispute.

An alternative to dispute resolution is dispute freeness:

Definition 7. [50] A dispute free voting system has built-in prevention mech-
anisms that eliminate disputes between the active participants; any third party
can check whether an active participant has cheated.

Open problems:
– Can dispute resolution for all classes of possible errors exist in a given

system?
– Are there other reasonable definitions and mechanisms for dispute

resolution?
– Can a system offer complete dispute resolution capabilities in which every

dispute can be adjudicated using evidence produced by the election system?

2.6 From Verifiable to Verified

Constructing a voting system that creates sufficient evidence to reveal prob-
lems is not enough on its own. That evidence must actually be used—and used
appropriately—to ensure the accuracy of election outcomes.

An election result may not be verified, even if it is generated by an end-to-end
verifiable voting system. For verification of the result, we need several further
conditions to be satisfied:

– Enough voters and observers must be sufficiently diligent in performing the
appropriate checks.
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– Random audits (including those initiated by voters) must be sufficiently
extensive and unpredictable that attempts at election manipulation have a
high chance of being detected.

– If checks fail, this must be reported to the authorities who, in turn, must take
appropriate action.

These issues involve complex human factors, including voters’ incentives to par-
ticipate in verification. Little work has been done on this aspect of the problem.

An E2E-V system might give an individual voter assurance that her vote has
not been tampered with if that voter performs certain checks. However, suffi-
ciently many voters must do this in order to provide evidence that the election
outcome as a whole is correct. Combining risk-limiting audits with E2E-V sys-
tems can provide a valuable layer of protection in the case that an insufficient
number of voters participate in verification.

Finally, another critical verification problem that has received little attention
to date is how to make schemes that are recoverable in the face of errors. We
do not want to have to abort and rerun an election every time a check a fails.
Certain levels of detected errors can be shown to be highly unlikely to affect the
outcome, and hence can be tolerated. Other types and patterns of error can be
handled and corrected for, either post hoc or dynamically.

Both Küsters et al. [55] and Kiayias et al. [52] model voter-initiated audit-
ing [10] and its implications for detection of an incorrect election result. Both
definitions turn uncertainty about voter initiated auditing into a bound on the
probability of detecting deviations of the announced election result from the
truth.

Open problems:
– Can systems be designed so that the extent and diligence of checks per-

formed can be measured?
– Can verification checks be abstracted from the voter, either by embedding

them in other election processes or automating them?

3 Secure Voting Requirements: Voter Authentication,
Privacy, Receipt-Freeness and Coercion-Resistance

This section focuses on secure voting system requirements related to authenti-
cating the voter and ensuring that the evidence provided for verifiability cannot
be used to coerce or bribe the voter to vote in a certain manner.

3.1 Voter Authentication

A significant challenge for election systems is the credentialing of voters to ensure
that all eligible voters, and no one else, can cast votes. This presents numerous
questions: what kinds of credentials should be used? How should they be issued?
Can they be revoked or de-activated? Are credentials good for a single election or



92 M. Bernhard et al.

for an extended period? How difficult are they to share, transfer, steal, or forge?
Can the ability to create genuine-looking forgeries help prevent coercion? These
questions must be answered carefully, and until they are satisfied for remote vot-
ing, pollsite voting is the only robust way to address these questions—and even
then, in-person credentialing is subject to forgery, distribution, and revocation
concerns (for instance, the Dominican Republic recently held a pollsite election
where voters openly sold their credentials [35]). In the U.S., there is concern
that requiring in-person credentialing, in the form of voter ID, disenfranchises
legitimate voters.

Open problems:
– Is there a sufficiently secure way to distribute credentials for Internet

voting?
– Is a traditional PKI sufficient to ensure eligibility for remote voting?
– How does use of a PKI change coercion assumptions?

3.2 Privacy, Receipt Freeness, and Coercion Resistance

In most security applications, privacy and confidentiality are synonymous. In
elections, however, privacy has numerous components that go well beyond typical
confidentiality. Individual privacy can be compromised by “normal” election
processes such as a unanimous result. Voters may be coerced if they can produce
a proof of how they voted, even if they have to work to do so.

Privacy for votes is a means to an end: if voters don’t express their true
preferences then the election may not produce the right outcome. This section
gives an overview of increasingly strong definitions of what it means for voters
to be free of coercion.

Basic Confidentiality. We will take ballot privacy to mean that the election
does not leak any information about how any voter voted beyond what can
be deduced from the announced results. Confidentiality is not the only privacy
requirement in elections, but even simple confidentiality poses significant chal-
lenges. It is remarkable how many deployed e-voting systems have been shown
to lack even the most basic confidentiality properties (e.g., [21,24,34,42,59]).

Perhaps more discouraging to basic privacy is the fact that remote voting
systems (both paper and electronic) inherently allow voters to eschew confiden-
tiality. Because remote systems enable voters to fill out their ballots outside a
controlled environment, anyone can watch over the voter’s shoulder while she
fills out her ballot.

In an election—unlike, say, in a financial transaction—even the candidate
receiving an encrypted vote should not be able to decrypt it. Instead, an
encrypted (or otherwise shrouded) vote must remain confidential to keep votes
from being directly visible to election authorities.

Some systems, such as code voting [26] and the Norwegian and Swiss
Internet voting schemes, defend privacy against an attacker who controls the
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computer used for voting; however, this relies on assumptions about the privacy
and integrity of the code sheet. Some schemes, such as JCJ/Civitas [45], obscure
who has voted while providing a proof that only eligible votes were included in
the tally.

Several works [33,55], following Benaloh [16] formalize the notion of privacy
as preventing an attacker from noticing when two parties swap their votes.

Open problems:
– Can we develop more effective, verifiable assurance that vote privacy is

preserved?
– Can we build privacy for remote voting through computer-based systems?

Everlasting Privacy. Moran and Naor expressed concern over what might
happen to encrypted votes that can still be linked to their voter’s name some
decades into the future, and hence decrypted by superior technology. They define
a requirement to prevent this:

Definition 8. [60] A voting scheme has everlasting privacy if its privacy
does not depend on assumptions of cryptographic hardness.

Their solution uses perfectly hiding commitments to the votes, which are
aggregated homomorphically. Instead of privacy depending upon a cryptographic
hardness assumption, it is the integrity of an election that depends upon a hard-
ness assumption; and only a real-time compromise of the assumption can have
an impact.

Systemic Privacy Loss. We generally accept that without further information,
a voter is more likely to have voted for a candidate who has received more votes,
but additional data is commonly released which can further erode voter privacy.
Even if we exclude privacy compromises, there are other privacy risks which
must be managed. If voters achieve privacy by encrypting their selections, the
holders of decryption keys can view their votes. If voters make their selections
on devices out of their immediate control (e.g. official election equipment), then
it is difficult to assure them that these devices are not retaining information that
could later compromise their privacy. If voters make their selections on their own
devices, then there is an even greater risk that these devices could be infected
with malware that records (and perhaps even alters) their selections (see, for
instance, the Estonian system [82]).

Open problems:
– Are there ways to quantify systemic privacy loss?
– How can elections minimize privacy loss?
– How can elections provide verifiable integrity while minimizing privacy loss?
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Receipt-Freeness. The problem of preventing coercion and vote-selling was
considered solved with the introduction of the Australian ballot. The process of
voting privately within a public environment where privacy can be monitored
and enforced prevents improper influence. Recent systems have complicated this
notion, however. If a voting protocol provides a receipt but is not carefully
designed, the receipt can be a channel for information to the coercive adversary.

Benaloh and Tuinstra [15] pointed out that passive privacy is insufficient for
resisting coercion in elections:

Definition 9. A voting system is receipt free if a voter is unable to prove
how she voted even if she actively colludes with a coercer and deviates from the
protocol in order to try to produce a proof.

Traditional elections may fail receipt-freeness too. In general, if a vote consists
of a long list of choices, the number of possible votes may be much larger than
the number of likely voters. This is sometimes called (a failure of) the short
ballot assumption [71]. Prior to each election, coercers assign a particular voting
pattern to each voter. When the individual votes are made public, any voter who
did not cast their pattern can then be found out. This is sometimes called the
Italian attack , after a once prevalent practice in Sicily. It can be easily mitigated
when a vote can be broken up, but is difficult to mitigate in systems like IRV in
which the vote is complex but must be kept together. Mitigations are discussed
in Sects. 5.2 and 5.3.

Incoercibility has been defined and examined in the universally composable
framework in the context of general multiparty computation [22,90]. These def-
initions examine whether the protocol introduces additional opportunities for
coercion that are not present when the computation is performed by a trusted
party. With some exceptions (such as [5]), they usually focus on a passive notion
of receipt-freeness, which is not strong enough for voting.

Coercion Resistance. Schemes can be receipt-free, but not entirely resistant
to coercion. Schemes like Prêt à Voter [74] that rely on randomization for receipt-
freeness can be susceptible to forced randomization, where a coercer forces a voter
to always choose the first choice on the ballot. Due to randomized candidate
order, the resulting vote will be randomly distributed. If a specific group of
voters are coerced in this way, it can have a disproportionate impact on the
election outcome.

If voting rolls are public and voting is not mandatory, this has an effect
equivalent to forced abstention, wherein a coercer prevents the voter from voting.
Schemes that rely on credentialing are also susceptible to coercion by forced
surrender of credentials.

One way to fully resist forced abstention is to obscure who voted. However,
this is difficult to reconcile with the opportunity to verify that only eligible voters
have voted (eligibility verifiability), though some schemes achieve both [41].

Moran and Naor [60] provide a strong definition of receipt freeness in which
a voter may deviate actively from the protocol in order to convince a coercer
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that she obeyed. Their model accommodates forced randomization. A scheme
is resistant to coercion if the voter can always pretend to have obeyed while
actually voting as she likes.

Definition 10. A voting scheme S is coercion resistant if the following holds:
There exists a strategy for a coerced voter V such that, for any strategy

adopted by the Coercer C, V is able to cast her intended vote in a manner
that is indistinguishable to C from her having followed C’s instructions.

Coercion resistance is defined in [45] to include receipt freeness and defence
against forced-randomization, forced abstention and the forced surrender of
credentials. More general definitions include [56], which incorporates all these
attacks along with Moran and Naor’s notion of a coercion resistance strategy.

Note that if the coercer can monitor the voter throughout the vote casting
period, then resistance is futile. For in-person voting, we assume that the voter is
isolated from any coercer while she is in the booth (although this is questionable
in the era of mobile phones). For remote voting, we need to assume that voters
will have some time when they can interact with the voting system (or the
credential-granting system) unobserved.

More Coercion Considerations. Some authors have tried to provide some
protection against coercion without achieving full coercion resistance. Caveat
coercitor [39] proposes the notion of coercion evidence and allows voters to cast
multiple votes using the same credential.

Open problems:
– Can we design usable, verifiable, coercion-resistant voting for a remote

setting?

4 Other Secure Voting Requirements

In this section we briefly review more general secure voting system requirements
such as usability, availability and those resulting from local election regulations.

4.1 Availability

Denial-of-Service (DoS) is an ever-present threat to elections which can be mit-
igated but never fully eliminated. A simple service outage can disenfranchise
voters, and the threat of attack from foreign state-level adversaries is a pressing
concern. Indeed, one of the countries that regularly uses Internet voting, Estonia,
has been subject to malicious outages [89].

A variant of DoS specific to the context of elections is selective DoS, which
presents a fundamentally different threat than general DoS. Voting populations
are rarely homogeneous, and disruption of service, for instance, in urban (or
rural) areas can skew results and potentially change election outcomes. If DoS
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cannot be entirely eliminated, can service standards be prescribed so that if
an outcome falls below the standards it is vacated? Should these standards be
dependent on the reported margin of victory? What, if any, recovery methods
are possible? Because elections are more vulnerable to minor perturbations than
most other settings, selective DoS is a concern which cannot be ignored.

4.2 Usability

A voting system must be usable by voters, poll-workers, election officials,
observers, and so on. Voters who may not be computer literate—and sometimes
not literate at all—should be able to vote with very low error rates. Although
some error is regarded as inevitable, it is also critical that the interface not drive
errors in a particular direction. For instance, a list of candidates that crosses
a page boundary could cause the candidates on the second page to be missed.
Whatever security mechanisms we add to the voting process should operate
without degrading usability, otherwise the resulting system will likely be unac-
ceptable. A full treatment of usability in voting is beyond the scope of this
paper. However, we note that E2E-V systems (and I-voting systems, even when
not E2E-V) add additional processes for voters and poll workers to follow. If ver-
ification processes can’t be used properly by real voters, the outcome will not be
properly verified. One great advantage of statistical audits is to shift complexity
from voters to auditors.

Open problems:
– How can usability be integrated into the design process of a voting system?
– How can we ensure full E2E-V, coercion resistance, etc., in a usable fashion?

4.3 Local Regulatory Requirements

A variety of other mechanical requirements are often imposed by legal require-
ments that vary among jurisdictions. For example:

– Allowing voters to “write-in” vote for a candidate not listed on the ballot.
– Mandating the use of paper ballots (in some states without unique identifying

marks or serial numbers; in other states requiring such marks)
– Mandating the use of certain social choice functions (see section on Complex

Election Methods below).
– Supporting absentee voting.
– Requiring or forbidding that “ballot rotation” be used (listing the candidates

in different orders in different jurisdictions).
– Requiring that voting equipment be certified under government guidelines.

Newer electronic and I-voting systems raise important policy challenges for
real-world adoption. For example, in STAR-Vote [7], there will be multiple copies
of every vote record: mostly electronic records, but also paper records. There may
be instances where one is damaged or destroyed and the other is all that remains.
When laws speak to retention of “the ballot”, that term is no longer well-defined.
Such requirements may need to be adapted to newer voting systems.
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Complex Election Methods. Many countries allow voters to select, score,
or rank candidates or parties. Votes can then be tallied in a variety of complex
ways [19,76]. None of the requirements for privacy, coercion-resistance, or the
provision of verifiable evidence change. However, many tools that achieve these
properties for traditional “first-past-the-post” elections need to be redesigned.

An election method might be complex at the voting or the tallying end. For
example, party-list methods such as D’Hondt and Sainte-Laguë have simple vot-
ing, in which voters select their candidate or party, but complex proportional
seat allocation. Borda, Range Voting, and Approval Voting allow votes to be
quite expressive but are simple to tally by addition. Condorcet’s method and
related functions [80,88] can be arbitrarily complex, as they can combine with
any social choice function. Instant Runoff Voting (IRV) and the Single Transfer-
able Vote (STV) are both expressive and complicated to tally. This makes for
several challenges.

Open problems:
– Which methods for cast-as-intended verification (e.g. code voting [26]) work

for complex voting schemes?
– How do Risk-limiting audits apply to complex schemes? (See Sect. 5.2)
– How can complex ballots mitigate failures of the short ballot assump-

tion [71]?
– Can we achieve everlasting privacy for complex elections?

5 How Can We Secure Voting?

The goal of this section is to provide a state-of-the-art picture of current solutions
to voting problems and ongoing voting research, to motivate further work on
open problems, and to define clear directions both in research and election policy.

5.1 The Role of Paper and Ceremonies

Following security problems with direct-recording electronic voting systems
(DREs) noted in [21,34,59,92] and others, many parts of the U.S. returned to the
use of paper ballots (as have many places around the world). If secure custody of
the paper ballots is assumed, paper provides durable evidence required to deter-
mine the correctness of the election outcome. For this reason, when humans vote
from untrusted computers, cryptographic voting system specifications often use
paper for security, included in the notions of dispute-freeness, dispute resolution,
collection accountability and accountability [54] (all as defined in Sect. 2).

Note that the standard approach to dispute resolution, based on non-
repudiation, cannot be applied to the voting problem in the standard fashion,
because the human voter does not have the ability to check digital signatures
or digitally sign the vote (or other messages that may be part of the protocol)
unassisted.
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Dispute-freeness or accountability are often achieved in a polling place
through the use of cast paper ballots, and the evidence of their chain of cus-
tody (e.g., wet-ink signatures). Paper provides an interface for data entry for
the voter—not simply to enter the vote, but also to enter other messages that
the protocol might require—and data on unforgeable paper serves many of the
purposes of digitally signed data. Thus, for example, when a voter marks a Prêt
à Voter [74] or Scantegrity [27] ballot, she is providing an instruction that the
voting system cannot pretend was something else. The resulting vote encryption
has been physically committed to by the voting system—by the mere act of
printing the ballot—before the voter “casts” her vote.

Physical ceremony, such as can be witnessed while the election is ongoing,
also supports verifiable cryptographic election protocols (see Sect. 5.3). Such cer-
emonies include the verification of voter credentials, any generation of random-
ness if required for the choice between cast and audit, any vote-encryption-
verification performed by election officials, etc.

The key aspect of these ceremonies is the chance for observers to see that
they are properly conducted.

Open problems:
– Can we achieve dispute-resolution or -freeness without the use of paper and

physical ceremony?

5.2 Statistics and Auditing

Two types of Risk Limiting Audits have been devised: ballot polling and com-
parison [12,57,83]. Both types continue to examine random samples of ballots
until either there is strong statistical evidence that the outcome is correct, or
until there has been a complete manual tally. “Strong statistical evidence” means
that the p-value of the hypothesis that the outcome is incorrect is at most α,
within tolerable risk.

Both methods rely on the existence of a ballot manifest that describes how the
audit trail is stored. Selecting the random sample can include a public ceremony
in which observers contribute by rolling dice to seed a PRNG [31].

Ballot-polling audits examine random samples of individual ballots. They
demand almost nothing of the voting technology other than the reported out-
come. When the reported outcome is correct, the expected number of ballots
a ballot-polling audit inspects is approximately quadratic in the reciprocal of
the (true) margin of victory, resulting in large expected sample sizes for small
margins.

Comparison audits compare reported results for randomly selected subsets
of ballots to manual tallies of those ballots. Comparison audits require the vot-
ing system to commit to tallies of subsets of ballots (“clusters”) corresponding
to identifiable physical subsets of the audit trail. Comparison audits have two
parts: confirm that the outcome computed from the commitment matches the
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reported outcome, and check the accuracy of randomly selected clusters by man-
ually inspecting the corresponding subsets of the audit trail. When the reported
cluster tallies are correct, the number of clusters a comparison audit inspects is
approximately linear in the reciprocal of the reported margin. The efficiency of
comparison audits also depends approximately linearly on the size of the clus-
ters. Efficiency is highest for clusters consisting of individual ballots: individual
cast vote records. To audit at the level of individual ballots requires the voting
system to commit to the interpretation of each ballot in a way that is linked to
the corresponding element of the audit trail.

In addition to RLAs, auditing methods have been proposed with Bayesian
citeRivestShenspsbayes or heuristic [69] justifications.

All post-election audits implicitly assume that the audit trail is adequately
complete and accurate, and that a full manual count would reflect the correct
contest outcome. Compliance audits are designed to determine whether there
is convincing evidence that the audit trail was curated well, by checking ballot
accounting, registration records, pollbooks, election procedures, physical security
of the audit trail, chain of custody logs, and so on. Evidence-based elections [86]
combine compliance audits and risk-limiting audits to determine whether the
audit trail is adequately accurate, and if so, whether the reported outcome is
correct. If there is not convincing evidence that the audit trail is adequately
accurate and complete, there cannot be convincing evidence that the outcome
is correct.

Audits in Complex Elections. Generally, in traditional and complex elec-
tions, whenever an election margin is known and the infrastructure for a com-
parison audit is available, it is possible to conduct a rigorous risk-limiting com-
parison audit. This motivates many works on practical margin computation for
IRV [18,25,58,79].

However, such an audit for a complex election may not be efficient, which
motivates the extension of Stark’s sharper discrepancy measure to D’Hondt and
related schemes [85]. For Schulze and some related schemes, neither efficient
margin computation nor any other form of RLA is known (see [43]); a Bayesian
audit [28,70] may nonetheless be used when one is able to specify suitable priors.

Open problems:
– Can comparison audits for complex ballots be performed without exposing

voters to “Italian” attacks?
– Can risk-limiting or other sound statistical audits be developed for systems

too complex to compute margins efficiently?
– Can the notion of RLAs be extended to situations where physical evidence

is not available (i.e. Internet voting)?
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5.3 Cryptographic Tools and Designs

Major Approaches to Voting Cryptography. Typically E2E-V involves
providing each voter with a protected receipt—an encrypted or encoded version
of their vote—at the time the vote is cast. The voter can later use her receipt to
check whether her vote is included correctly in the tabulation process. Further-
more, given the set of encrypted votes (as well as other relevant information,
like the public keys), the tabulation is universally verifiable: anyone can check
whether it is correct. To achieve this, most E2E-V systems rely on a public bul-
letin board, where the set of encrypted ballots is published in an append-only
fashion.

The votes can then be turned into a tally in one of two main ways. Homo-
morphic encryption schemes [16,30] allow the tally to be produced on encrypted
votes. Verifiable shuffling transforms a list of encrypted votes into a shuffled list
that can be decrypted without the input votes being linked to the (decrypted)
output. There are efficient ways to prove that the input list exactly matches the
output [6,40,63,77,87].

Techniques for Cast-as-Intended Verification. How can a voter verify that
her cast vote is the one she wanted? Code Voting, first introduced by Chaum [26],
gives each voter a sheet of codes for each candidate. Assuming the code sheet
is valid, the voter can cast a vote on an untrusted machine by entering the
code corresponding to her chosen candidate and waiting to receive the correct
confirmation code. Modern interpretations of code voting include [44,73,93].

The alternative is to ask the machine to encrypt a vote directly, but verify
that it does so correctly. Benaloh [9] developed a simple protocol to enable vote
encryption on an untrusted voting machine. A voter uses a voting machine to
encrypt any number of votes, and casts only one of these encrypted votes. All
the other votes may be “audited” by the voter. If the encryption is audited, the
voting system provides a proof that it encrypted the vote correctly, and the proof
is public. The corresponding ballot cannot be cast as the correspondence between
the encryption and the ballot is now public, and the vote is no longer secret.
Voters take home receipts corresponding to the encryptions of their cast ballots
as well as any ballots that are to be audited. They may check the presence of these
on a bulletin board, and the correctness proofs of the audited encryptions using
software obtained from any of several sources. However, even the most diligent
voters need only check that their receipts match the public record and that any
ballots selected for audit display correct candidate selections. The correctness
proofs are part of the public record that can be verified by any individual or
observer that is verifying correct tallying.

A Rigorous Understanding of E2E-V Protocols. In addition to the work of
Adida on assisted-human interactive proofs (AHIPs, see [1]), there has been some
work on a rigorous understanding of one or more properties of single protocols,
including the work of Moran and Naor [61,62] and Küsters et al. [54].
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There have also been formalizations of voting protocols with human partic-
ipants, such as by Moran and Naor [61] (for a polling protocol using tamper-
evident seals on envelopes) and Kiayias et al. [51]. However, there is no one
model that is sufficient for the rigorous understanding of the prominent proto-
cols used/proposed for use in real elections. The absence of proofs has led to the
overlooking of vulnerabilities in the protocols in the past, see [38,47–49].

Many systems use a combination of paper, cryptography, and auditing to
achieve E2E-V in the polling place, including Markpledge [3,64], Moran and
Naor’s scheme [60], Prêt à Voter [74], Scantegrity II [23], Wombat [8,72], STAR-
Vote [7] and Demos [52]. Their properties are summarised in Table 1.

The cryptographic literature has numerous constructions of end-to-end ver-
ifiable election schemes (e.g., [7,23,36,44,64,65,71,72,74,78]). There are also
various detailed descriptions of what it means to verify the correctness of the
output of E2E-V systems (e.g., [15,52,60]). Others have attempted to define
alternative forms of the E2E-V properties [32,54,66]. There are also less techni-
cal explanations of E2E-V intended for voters and election officials [14,91].

Open problems:
– Can we develop a rigorous model for human participants and the use of

paper and ceremonies in cryptographic voting protocols?
– Can we examine rigorously the combination of statistical and cryptographic

methods for election verification?

Techniques for Coercion Resistance. Some simple approaches to coercion
resistance have been suggested in the literature. These include allowing mul-
tiple votes with only the last counting and allowing in-person voting to over-
ride remotely cast votes (both used in Estonian, Norwegian, and Utah elec-
tions [17,37,82]). It is not clear that this mitigates coercion at all. Alarm codes
can also be provided to voters: seemingly real but actually fake election creden-
tials, along with the ability for voters to create their own fake credentials. Any
such approach can be considered a partial solution at best, particularly given
the usability challenges.

One voting system, Civitas [29], based on a protocol by Juels, Catalano and
Jakobsson [45], allows voters to vote with fake credentials to lead the coercive
adversary into believing the desired vote was cast. Note that the protocol must
enable universal verification of the tally from a list of votes cast with both
genuine and fake credentials, proving to the verifier that only the ones with
genuine credentials were tallied, without identifying which ones they were.

Open problems:
– Can we develop cryptographic techniques that provide fully coercion resis-

tant remote voting?
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Cryptographic Solutions in Complex Elections. Cast-as-intended verifi-
cation based on creating and then challenging a vote works regardless of the
scheme (e.g. Benaloh challenges). Cut-and-choose based schemes such as Prêt à
Voter and Scantegrity II need to be modified to work.

Both uses of end-to-end verifiable voting schemes in government elections,
the Takoma Park run of Scantegrity II and the Victorian run of Prêt à Voter,
used IRV (and one used STV). Verifiable IRV/STV counting that doesn’t expose
individual votes to the Italian attack has been considered [13], but may not be
efficient enough for use in large elections in practice, and was not employed in
either practical implementation.

Open problems:
– Is usable cast-as-intended verification for complex voting methods possible?

Table 1 summarizes how various election systems built out of these tools
satisfy the definitions given in Sects. 2, 3, and 4.

6 A Look Ahead

Voting has always used available technology, whether pebbles dropped in an
urn or marked paper put in a ballot box; it now uses computers, networks,
and cryptography. The core requirement, to provide public evidence of the right
result from secret ballots, hasn’t changed in 2500 years.

Computers can improve convenience and accessibility over plain paper and
manual counting. In the polling place there are good solutions, including Risk
Limiting Audits and end-to-end verifiable systems. These must be more widely
deployed and their options for verifying the election result must actually be used.

Many of the open problems described in this paper—usable and accessible
voting systems, dispute resolution, incoercibility—come together in the challenge
of a remote voting system that is verifiable and usable without supervision. The
open problem of a system specification that (a) does not use any paper at all
and (b) is based on a simple procedure for voters and poll workers will motivate
researchers for a long time. Perhaps a better goal is a hybrid system combining
paper evidence with some auditing or cryptographic verification.

Research in voting brings together knowledge in many fields—cryptography,
systems security, statistics, usability and accessibility, software verification, elec-
tions, law and policy to name a few—to address a critical real-world problem.

The peaceful transfer of power depends on confidence in the electoral process.
That confidence should not automatically be given to any outcome that seems
plausible—it must be earned by producing evidence that the election result is
what the people chose. Insisting on evidence reduces the opportunities for fraud,
hence bringing greater security to citizens the world over.
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Table 1. Applying our threat model to fielded and proposed voting schemes
–Note that certain features like credentialing and availability are excluded, as these
factors impact all systems in roughly equivalent ways.
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Abstract. Selene is a novel voting protocol that supports individual
verifiability, Vote-Privacy and Receipt-Freeness. The scheme provides
tracker numbers that allow voters to retrieve their votes from a public
bulletin board and a commitment scheme that allows them to hide their
vote from a potential coercer. So far, however, Selene was never stud-
ied formally. The Selene protocol was neither completely formalized, nor
were the correctness proofs for Vote-Privacy and Receipt-Freeness.

In this paper, we give a formal model for a simplified version of Selene
in the symbolic model, along with a machine-checked proof of Vote-
Privacy and Receipt-Freeness. All proofs are checked with the Tamarin
theorem prover.

1 Introduction

The original motivation of the Selene voting protocol [17] was to design a vot-
ing protocol that is verifiable, usable, and guarantees Vote-Privacy (VP) and
Receipt-Freeness (RF). Selene’s hallmark characteristics is that it does not
require voters to check their votes on a bulletin board using long hashes of
encrypted ballots, but instead works with readable and memorisable tracker
numbers.

Selene is a voting protocol that could, at least in theory, be used in binding
elections. One way to increase the confidence in its correctness is to use formal
methods. The more complex a protocol the more likely are design mistakes,
and the earlier such mistakes can be found and fixed, the better it is for all
stakeholders involved. Selene uses an ElGamal crypto system, two independent
phases of mixing, Pedersen style trap-door commitments and zero-knowledge
proofs of knowledge.

In this paper we apply Tamarin to mechanize the proofs of correctness for VP
and RF for Selene. First, we model Selene in the Tamarin language. The first
model corresponds to the original Selene protocol described in Sect. 2. Using
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Tamarin, we prove VP and RF, but only under the assumptions that coercer
and voters do not collude. Tamarin constructs a counter example otherwise. We
then strengthen the model according to a fix that was already described in the
original Selene paper and then show VP and RF. Tamarin can no longer find a
counter example.

For the purpose of mechanization, we also develop a precise message sequence
chart for full Selene, which we then simplify further to become suitably rep-
resentable in Tamarin. Tamarin is described in Sect. 3. While working with
Tamarin, we also discovered a few completeness issues with the implementation
of Tamarin that are currently being worked on by the Tamarin team.

Contributions. We describe a formalisation of Selene. A description of the full
formalization can be found in [9]. We propose a simplified model of Selene,
where explicit mixing is replaced by random multi-set reductions. We formalise
our simplified model of Selene in Tamarin, and express the properties of VP
and RF in our model. We describe the counter example and the modified model
for which show VP and RF. All Tamarin proof scripts can be found at https://
github.com/EvaSleva/selene-proofs.

Related work. The extended version of the original Selene paper [17] includes in
the appendix a partial argument of correctness of the main construction, however
it does not provide a formal proof of the scheme. Other voting protocols have
undergone formal analysis, such as the FOO [11], Okamoto [15] and Lee et
al. [13], which have been analysed in [7]. An analysis of Helios [2] is presented
in [5] and of the Norwegian e-voting protocol [12] in [6]. The arguments are partly
formalized, for example in the applied π-calculus [1] and the theorem prover
ProVerif [4]. Recently the Dreier et al. [8] extended the equational reasoning of
multiset rewrite rules in Tamarin, which have been pivotal for our development,
and applied this technique to the analyses of the FOO and Okamoto protocols.

Organization. This paper is organized as follows. In Sect. 2 we describe the
full Selene voting protocol as described in [17] as message sequence charts. In
Sect. 3 we give a brief introduction into the Tamarin tool and explain syntactic
categories and the Tamarin rewrite engine. In Sect. 4, we describe then the two
Tamarin models, and present the result of mechanizing the proofs of VP and
RF. Finally, we conclude and assess results in Sect. 7.

2 The Selene Voting Protocol

The purpose of Selene is to construct a receipt-free scheme ensuring individual
verifiability, i.e. voters can check that their vote is tallied in the final result.
Selene achieves this by giving each user a tracker number that will point to their
vote on a public bulletin board, containing all cast votes. The scheme maintains
vote-privacy, since none of the involved parties—besides the voters themselves—
learns who cast each vote; individual verifiability, since the protocol gives a proof
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to the voters that their vote has been tallied; and receipt-freeness, since voters
have no way of proving how they voted to a potential coercer, because they can
fake the proof that should convince the coercer how they voted.

The involved parties in the protocol are the Voters (Vi); an Election Authority
(EA) responsible for checking their identities and issuing the tracking numbers; a
Web Bulletin Board (WBB) that publishes the intermediate stages of the voting
process, as well as the anonymized, decrypted votes; a Mixnet (M) performing
distributed re-encryption of the tracking numbers and the votes; and a number
of Tellers (T ), performing distributed threshold decryption of the votes.

Tracker numbers must remain unlinkable to the voter from the perspective
of the various parties involved; at the same time, one must be assured that
each voter is given a distinct tracker number. This problem is solved by the
distributed Mixnet carrying along proofs of re-encryption. The Tellers produce
a Pedersen-style commitment for each voter to their tracker number, also in
a distributed fashion; they also decrypt the votes and tracker numbers, which
are finally posted publicly on the Bulletin Board. To ensure that the computa-
tions are performed correctly, non-interactive zero knowledge proofs are carried
throughout the protocol.

2.1 Re-Encryption Mixnets and Pedersen-Style Commitments

At the heart of the Selene protocol are two useful properties of the ElGamal cryp-
tosystem, which we now briefly review: it can perform randomized re-encryptions
and can act as a commitment scheme.

The ElGamal encryption scheme operates under a cyclic group G of order q
and generator g. For any given private key sk ∈ Zq; the corresponding public
key is pk = gsk ; the encryption of a message m ∈ G intended for the owner of
sk is the ElGamal tuple (α, β) = (gr,m · pkr) given a uniformly random choice
of r ∈ Zq; finally, decryption is performed by computing m = β

αsk .

Re-encryption. Given an encryption pair (α, β) = (gr,m · pkr) with m ∈ G and
uniformly random r ∈ Zq, one can compute a randomized re-encryption of m

without knowing the secret key sk . Computing the pair (α · gr′
, β · pkr′

) with
uniformly random r′ ∈ Zq, is equal to (g(r+r′),m · pk (r+r′)) and hence decrypts
to the same value of m while being indistinguishable from the former encryption
without having the secret key sk . Shuffling mixnets chain this sort of encryption
on a set of encrypted values, such that if at least one link in the mixnet is
kept secret, the final cipher texts will be unlinkable to the original input, albeit
encrypting the same values.

Pedersen-style commitments. ElGamal cryptosystems also allow to commit to
a message without revealing it right away. Given a message m ∈ M, with M ⊆
G and small |M| (e.g. the number of random tracker numbers chosen for the
election), one computes the commitment of m as β = gm ·pkr for some randomly
uniform r ∈ Zq. To reveal the message m, simply output α = gr and compute
γ = β

αsk = gm, then check against all m′ ∈ M to find the matching gm′
= γ.
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The Pedersen-style commitment scheme constitutes the core of the individual
verifiability and receipt-freeness in Selene. First, the voters can be convinced that
the protocol behaved correctly by committing in advance to the tracking number
that will be linked to their vote, which they can publicly check. It is in fact
believed to be hard to compute a reveal message α′ that decrypts to a different
m′ knowing only m, pk and r, as it reduces to solving the discrete logarithm
problem. Most importantly, the voters (knowing sk and α) can construct the fake
α′ by computing α′ = g

m−m′
sk ·α. This makes it practically impossible for anyone

but the voter to construct a fake receipt, thus the voters can trust that the
protocol behaved correctly, whereas a potential coercer cannot trust any receipt
from the voter. For a more detailed explanation of Pedersen-style commitment
schemes we refer to the original paper [16].

2.2 Protocol Steps

We will now explain the main steps of Selene. Before voting begins, each
voter Vi must be given a tuple on the WBB containing their public key, the
encrypted tracker number and the trap door commitment to the tracker num-
ber: (pk i, {gni}pkT

, β). This process is as follows:

Set up. All voters are assumed to have their public/secret key pairs: (pk i =
gski , sk i). The election authority publicly creates unique tracker numbers ni for
each voter, computes gni and the ElGamal encryption under the teller’s public
key: {gni}pkT

. These terms are posted on the WBB:

(ni, g
ni , {gni}pkT

)

These are put through a sequence of verifiable re-encryption mixes and the shuf-
fled numbers are assigned to the voters and posted on the WBB:

(pk i, {gnπ(i)}pkT
)

Since the numbers have gone through multiple mixes, no single teller knows
this assignment. The shuffling is verifiable however, so it preserves the original
tracker numbers.

Creation of trap-door commitments. The trapdoor commitments are created in
a distributed fashion among the tellers. For each voter i, each teller j creates
a fresh random ri,j , computes {gri,j }pkT

and {pkri,j

i }pkT
. For each voter, the

product of the second elements are formed:

{pkri
i }pkT

=
t∏

j=1

{pkri,j

i }pkT

where by exploiting the multiplicative homomorphic property of ElGamal:

ri :=
t∑

j=1

ri,j
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Then the product of {pkri
i }pkT

and {gnπ(i)}pkT
is formed to obtain the encrypted

trapdoor commitment: {pkri
i · gnπ(i)}pkT

. The commitments are decrypted and
posted on the WBB along with the voter’s identity and the encrypted tracker
number:

(pk i, {gnπ(i)}pkT
, (pkri

i · gnπ(i)), )

All these steps with proofs and audits are also posted. The last entry is left blank
for the vote. The tellers keep their gri,j terms secret for now.

Voting. Each voter encrypts and signs their vote SignVi
({V otei}pkT

) and sends
it along with a proof of knowledge of the plaintext. The signature and proof are
needed to ensure “ballot independence” [19] and to prevent an attacker copying
the vote as their own. The server checks for duplication, checks proofs and pairs
off the vote with the key corresponding to the private key which it was signed.
The entry on the WBB now looks like this:

(pk i, {gnπ(i)}pkT
, (pkri

i · gnπ(i)), SignVi
({V otei}pkT

))

Decryption and tabulation. For each row on the WBB, the second and fourth
terms (which are the tracker and vote) are taken out and put through verifiable,
parallel, re-encryption mixes, and threshold decrypted. We then have a list of
pairs: (gnπ(i) , V otei) from which the tracker can be derived:

(nπ(i), V otei)

Revealing the trackers. After the trackers and votes have been available for a
suitable amount of time, the voter receives the gri,j terms from all the tellers
through a private channel and combines them to form gri , which is the α term
of the ElGamal encryption under the voters’ PKs. The gnπ(i) ·pkri

i posted earlier
is the β component, and the voter can now form the ElGamal cryptogram:
(gri , gnπ(i) · pkri

i ), which they can decrypt with their secret key to reveal gnπ(i)

and hence nπ(i).
In case of coercion, it is easy for the voter to compute an alternative (gr′

i),
which will open the encryption to any tracker number they would like. However,
this is hard to do without the secret key, so it would not be feasible for an
attacker to reveal the wrong tracker to the voter. Due to space limitations, we
refer to [9] for the full formalization of Selene.

3 Tamarin

Tamarin is a specialised theorem prover for security protocols based on labelled
multiset rewriting. It can prove both trace properties and equivalence properties
on labelled transition systems. Tamarin supports convergent equational theories
and the AC theories for Diffie-Hellman and multisets [8,18]. In Tamarin models,
multiset rewriting rules encode both the protocol specification and the Dolev-
Yao attacker. Because of its multiset semantics, the tool supports precise analysis
of protocols with state and unbounded numer of sessions, however at the cost of
non-termination, since the problem is undecidable in general.
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Definition 1 (Rules, facts, terms, equational theories and semantics).
A term is either a variable x or a function f(t1, . . . , tn) of fixed arity n, with
t1, . . . , tn terms. Equality of terms =E is defined as the smallest reflexive, sym-
metric and transitive closure of a user-defined equational theory E. Variables
are annotated with a sort system, with a top generic sort msg and two incom-
patible sub-sorts: ˜ for nonces and $ for public messages. Facts are of the form
F(t1, . . . , tn), with fixed arity n and t1, . . . , tn terms. There are six reserved fact
symbols: Fr for fresh nonces; In and Out for protocol input and output; KU, KD
and K for attacker knowledge. All other facts are user-defined. Persistent facts
are prefixed with the ! (bang) modality, and can be consumed arbitrarily often.

A labelled multiset rewrite rule is a rule of the form l−[a]→r, where the
multisets of facts l, a and r represent the rule premise, label and conclusion. We
omit the brackets when a = ∅. A state S is a multiset of facts. We define the

semantics of a rule l−[a]→r as the relation S
σ(a)−−−→ S′ with substitution σ where

σ(l) ⊆E S and S′ = S \E σ(l) � σ(r).

Functions and equations model cryptography symbolically: for example
asymmetric encryption and decryption with the equation adec(aenc(m, pk(sk)),
sk) =E m, saying that the encryption of m using pk(sk) only succeeds with the
corresponding secret key sk. In Sect. 4.2 we present a more advanced equational
theory that covers the commitment and re-encryption schemes used in Selene.

Observational Equivalences. Tamarin supports both trace-based properties and
observational equivalence in the models. Trace-based peoperties suffice to model
secrecy and authentication. However in this work we focus on observational
equivalences, i.e. show that an adversary cannot distinguish between two sys-
tems, specified by the left and the right projections of special terms diff (t1, t2)
occurring in the model. To define observational equivalence we split the rules
into system rules (Sys), environment rules (Env) and interface rules (IF ). In
the following, F# and G# are finite multisets of facts and ground facts, while ρ
is the set of all rule recipes. For a detailed definition of these concepts see [3].

Definition 2 (Observational Equivalence). Two sets of multiset rewrite
rules SA and SB are observational equivalent with respect to an environment
Env, written SA ≈Env SB, if, given the labelled transition system defined by the
rules SA ∪ IF ∪ Env and SB ∪ IF ∪ Env, there is a relation R containing the
initial states, such that for all states (SA, SB) ∈ R we have:

– If SA
r−→
a

S′
A and r is the recipe of a rule in Env ∪ IF , then there exists action

a′ ∈ F#, and S′
B ∈ G#, such that SB

r−→
a′

S′
B, and (S′

A, S′
B) ∈ R.

– If SA
r−→
a

S′
A and r is the recipe of a rule in SA, then there exist recipes

r1, . . . , rn ∈ ρ of rules in SB, actions a1, . . . , an ∈ F#, n ≥ 0, and S′
B ∈ G#,

such that SB
r1−→
a1

. . .
rn−−→
an

S′
B, and (S′

A, S′
B) ∈ R.

– We have the same in the other direction.
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Tamarin does not directly prove observational equivalences: it rather proves a
stronger notion of equivalence, called mirroring of dependency graphs. A depen-
dency graph is defined as a graph where the nodes are ground rule instances, and
there is a directed arc from a rule r1 to r2 iff r1 produces a fact that is consumed
by r2. Furthermore, it is required that all input facts have incoming edges, that
non-persistent facts are consumed at most once, and that exactly one rule has no
outgoing edges (the goal rule). Mirroring is defined as an isomorphism between
two graphs modulo the equational theory. Let mirrors(dg) denote the mirrors of
a dependency graph dg .

To prove mirroring, Tamarin constructs all possible instantiations of depen-
dency graphs for the left- and right-hand side systems, and shows that for each
dependency graph on one side, there exists one on the other that mirrors it. If
such construction is possible, then we say that the two systems are dependency
graph equivalent. We will not dive into the details however, but rather present
the essential result of the proof technique that this paper uses.

Theorem 1 (Dependency graph equivalence implies observational
equivalence). Let S be a bi-system. If L(S) ∼DG,Env R(S) then L(S) ≈Env

R(S)

Our proofs of vote-privacy and receipt-freeness in Selene rely on constructing
two systems using diff -terms and then checking whether mirroring holds. For a
full explanation of Tamarin and the techniques we just briefly covered, we refer
to the official documentation [20] and research papers [3,8,14,18].

4 Selene Tamarin Model

Assumptions. To make the protocol amenable to formal verification we have
made the following assumptions in the model: firstly, we assume that all the
participants in the protocol behave honestly, except the attacker and the voter
being coerced. Selene claims to be secure even under partially compromised
Tellers and Mixnets, by using threshold and distributed encryption schemes. The
original Selene paper does not commit to specific schemes in this regard, and
these are complex verification problems out of reach for current symbolic theorem
provers like Tamarin. Instead of explicitly modeling them, we only model their
defining features and assume a proper implementation. Furthermore, our voting
system is restricted to two voters and two candidates. For modeling vote-privacy
and receipt-freeness properties in voting systems two voters are enough [7], hence
this restriction does not pose further limitations in the analysis.

Simplifications to the Protocol. Given said assumptions we have made the
following simplifications to our model. Since the protocol is honest, we do not
need to model zero knowledge proofs, e.g. reencryption proofs in Selene: by
the model each entity executes the protocol, hence no proof of computation
is needed. Only one teller is modelled, as multiple tellers in Selene are used
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to perform cryptographic operations (e.g. reencryption of the tracker numbers)
without having access to the decrypted data so that one dishonest teller cannot
link a decrypted tracker number to the voter. Since we assume that the tellers
are honest, we do not need more than one. Similarly we do not model the mixnet
explicitly, and we take advantage of the non-determinism of Tamarin rules, and
of the associative-commutative multiset operators, to ensure that the link is lost
between the identities of the voters and their tracker numbers, at least from the
perspective of the attacker. In our model, every occurrence of mixing is replaced
with a synchronisation point and a multiset operation. Finally, whenever an
authentic and confidential channel is required in the protocol, we model that
with a linear fact that is not accessible to the attacker, whereas if the channel
is only authentic, but public, the attacker receives the value separately.

4.1 The Protocol

We model our protocol after the scheme presented in Fig. 1. As discussed earlier,
the Mixnet does not appear in our simplified scheme, whose behaviour we model
with the non-deterministic semantic of rewrite rules. We assume that each voter
Vi has a public key pk i, and the teller public key is pkT . Initially the EA generates
a unique tracker number for each voter Vi, and publishes them through the
WBB. With respect to the full version, we omit the zero-knowledge proofs, the
re-encryption mixing and the distributed decryption, as we assume to trust the
Tellers, Mixnet and the Election Authority.

The teller then creates a commitment to the tracker number for each voter
with their public key, and posts them on the WBB. Voters can now cast their
vote by sending to their teller the encrypted and signed choice. After voting has
ended, the encrypted votes are posted on the WBB along with the voter iden-
tity and commitment. Again the model omits the second pass of re-encryption
randomisation by the mixnet, and posts directly the decrypted vote and tracker
number on the WBB.

After a suitable period, the randomness of the commitments is sent to the
voters. The voters can then combine this with their commitment to find their
tracker number, and check the corresponding vote on the WBB.

4.2 Modelling Approach

Channels. Selene assumes the existence of secure and authentic communication
channels. We model these by the use of linear facts that ensure a correspondence
between inputs and outputs, and add a corresponding Out fact when the com-
munication is also public, e.g.:

Fr(˜x) → SendValue(˜x),Out(˜x) (AuthCh)

We use this approach as an alternative to explicitly modelling encryption in
public channels: this has the advantage of greatly reducing the search space.
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Bulletin board
WBB

Teller
T

Voter
Vi

Election authority
EA

∀i ∈ {1..max}.
choose ni

ni

ni

post ni
choose ri
β = pkri

i · gni

〈pki, β〉

post 〈pki, β〉
evi = {vi}pkT

si = sign(evi, ski)〈pki, evi, si〉

post 〈pki, β, evi, si〉

∀i ∈ {1..max′}.
read 〈ni, evi〉

〈ni, evi〉

vi = decrypt evi

〈ni, vi〉

post 〈ni, vi〉
α = gri

α

read 〈pki, β〉 〈pki, β〉

gni = decrypt el〈α, β〉
ni

read 〈ni, v
′
i〉

v′

msc Simplified Selene protocol

Fig. 1. Simplified Selene protocol



Towards a Mechanized Proof of Selene Receipt-Freeness and Vote-Privacy 119

Equations. Trap-door commitments are the central cryptographic primitive
of the Selene protocol. We model them with the functions commit/3, open/3
and fake/4. The term commit(m, r, pk) models a commitment to value m using
the randomness r and the public key pk = pk(sk). To open the commitment
one applies open(commit(m, r, pk(sk)), r, sk). Those in possession of the secret
key sk can construct a receipt fake(m, r, sk ,m2) for another message m2, and it
should hold that open(commit(m, r, pk(sk)), fake(m, r, sk ,m2), sk) = m2. Thus
we have:

open(commit(n1, r, pk(sk)), r, sk) → n1

commit(n2, fake(n1, r, sk , n2), pk(sk)) → commit(n1, r, pk(sk))

These equations do not produce a confluent rewriting system, and it is therefore
not convergent, and this can cause Tamarin to produce false results. We use
the Maude Church-Rosser checker to produce their Knuth-Bendix completion
and get:

open(commit(n1, r, pk(sk)), fake(n1, r, sk , n2), sk) → n2

However adding this equation still does not make it confluent, since the checker
keeps finding new and larger critical pairs whenever the resulting equation is
added. In order to fix this we add the equation:

fake(n2, fake(n1, r, sk , n2), sk , n3) → fake(n1, r, sk , n3)

Using the Maude Church-Rosser checker this is now confirmed to yield a conflu-
ent rewriting system [10].

Shuffling. When the full Selene protocol of Sect. 2 requires shuffling the votes
through a re-encryption mixnet, we use multisets to model the reordering, for
example:

SendTracker(n1),SendTracker(n2) →
!PublishTrackers(n1 + n2),Out(n1 + n2) (Shuffle)

!PublishTrackers(n′
1 + n′

2) → (Receive)

In Tamarin, the AC symbol + denotes multiset union. It is therefore possi-
ble to match the two rules (Shuffle) and (Receive) both with the substitution
{n1/n′

1, n2/n′
2} and {n1/n′

2, n2/n′
1}, making irrelevant the order of inputs and

outputs. Furthermore, this rule acts as a synchronization point.

4.3 Basic Model

In this section, we describe the common rules between the models used for the
vote-privacy and receipt-freeness proofs of Sects. 5 and 6. Our models have a
fixed set of agents, that is two voters V1 and V2 and a teller T . Rule (Setup)
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generates the keys for both agents, and outputs the corresponding public keys.
The state of each agent is initialised with a predicate StX0 where X denotes
the agent type and the arguments denote their knowledge, including—for the
voters—their choice of candidates specified using diff terms. Two teller instances
are created to interact with each of the voters. The fact EA starts the generation
of the random tracker numbers by the Election Authority, as described by the
next rule.

Fr(˜skV1),Fr(˜skV2),Fr(˜skT )−[OnlyOnce]→
Out(pk(˜skV1)),Out(pk(˜skV2)),Out(pk(˜skT )),
StV0(V1, diff (A,B), ˜skV1 , pk(˜skV1)),
StV0(V2, diff (B,A), ˜skV2 , pk(˜skV2)),
StT0(T, ˜skT, pk(˜skV1)),
StT0(T, ˜skT, pk(˜skV2)),
EA(pk(˜skV1), pk(˜skV2))

(Setup)

In rule (EA) the Election Authority generates the tracker numbers ni and out-
puts them publicly. The trackers are shuffled using the + operator, and the pkV s
are used to ensure that both voters don’t get assigned the same tracker.

EA(pkV1
, pkV2

),Fr(˜n1),Fr(˜n2) →
!ShuffleTrackers(〈˜n1, pkV1

〉 + 〈˜n2, pkV2
〉),

Out(˜n1, ˜n2) (EA)

Rule (T1) represents the teller receiving one shuffled tracker ni from the multiset
produced by EA. The teller assigns ni to a voter Vi by creating a commitment
to its value with the voter’s public key and a newly generated random value α,
then stored in the state fact. The commitment is published on the WBB using
both PostCommitment and an Out fact:

let βi = commit(ni, αi, pkVi
) in

!ShuffleTrackers(〈ni, pkVi
〉 + y),Fr(αi),StT0(T, ˜skT , pkVi

) →
Out(〈pkVi

, βi〉), !PostCommitment(pkVi
, βi),

StT1(T, ˜skT , pkVi
, αi, ni, βi) (T1)

Rule (V1) enacts the voting stage. To simplify the model and since we assume
a trusted teller, voting is represented by a predicate SendVote that includes the
choice and the teller’s public key:

StV0(Vi, vi, ˜skVi
, pkVi

) → SendVote(vi, pkVi
),StV1(Vi, vi, ˜skVi

, pkVi
) (V1)

Rules (T2) and (T2-Sync) represent the teller receiving the two votes cast, reveal-
ing to each voter the randomness to recover their tracker numbers, synchronising
and outputting both pairs of vote and tracker number publicly.
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SendVote(vi, pkVi
),StT1(T, ˜skT , pkVi

, αi, ni, βi) →
SendSecretToVoter(αi),PassVote(vi, ni) (T2)

PassVote(v1, n1),PassVote(v2, n2) →
!PublishVote(〈n1, v1〉 + 〈n2, v2〉),Out(〈n1, v1〉 + 〈n2, v2〉) (T2-Sync)

Finally, rule (V2) models the checking phase, where the voter retrieves their com-
mitment and their secret randomness to compute their tracker number. The rule
also checks that the vote is posted correctly on the bulletin board by requiring
the presence of the corresponding tuple in PublishVote.

let ni = open(βi, αi, ˜skVi
) in

SendSecretToVoter(αi), !PostCommitment(pkVi
, βi),

!PublishVote(〈ni, vi〉 + y),StV1(Vi, vi, ˜skVi
, pkVi

) → (V2)

5 Vote-Privacy

Vote-privacy is the basic requirement to any electronic voting system, where
running the protocol should not reveal the intention of each voter. Obviously
one cannot simply model vote-privacy as an observational equivalence property
where one voter votes in two possible ways and the rest remains unchanged,
since the result would show up in the final tally. Instead, Delaune et al. [7] define
vote-privacy as an equivalence between two systems where two voters V1 and V2

swap their choices of candidates A and B. The public outcome of the election
remains unchanged, hence an attacker must observe the difference between the
two systems from other information that is exchanged throughout the election.

The model introduced in Sect. 4.3 is sufficient to prove vote-privacy of Selene:
it produces two systems where the two candidates V1 and V2 swap their votes A
and B, using the diff terms. Tamarin can prove mirroring automatically, hence
by Theorem 1 we conclude that they are observationally equivalent.

6 Receipt-Freeness

Receipt-freeness is a stronger property than vote-privacy. To be receipt-free, a
protocol must not reveal the choice of a voter even when the voter reveals all
their private information to an attacker [7].

Selene claims to be receipt-free as long as the underlying vote-casting scheme
is receipt-free. The extra information the voter has in Selene is a commitment to
the tracking number linked to their vote, and a receipt that opens the commit-
ment. However each voter can fake their own receipt hence the attacker cannot
infer from the voter’s private information whether the receipt is fake or real [17].

6.1 Modelling

Like in vote-privacy, the model shows two systems in which two voters swap
votes. However, V1 always outputs a receipt for A regardless of how they voted.
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The coercer should not be able to determine that V1 is producing fake receipts.
We modify the model of Sect. 4.3 by splitting the rule (V2) into the rules (V2-1)
and (V2-2). Rule (V2-2) is identical to (V2) for voter V2 and only checks that
their vote appears on the WBB, while (V2-1) outputs the secret information of
V1 (the coerced voter), including their secret key, the desired tracker number,
and either a fake or a real receipt:

let n1 = open(β, α, ˜skV ) in

SendSecretToVoter(α), !PostCommitment(pkV , β),
!PublishVote(〈n1, v〉 + 〈n2, diff (B,A)〉),
StV1(V1, v, ˜skV , pkV ) →

Out(˜skV ),Out(β),
Out(diff (n1, n2)),
Out(diff (fake(n1, α, ˜skV , n1), fake(n1, α, ˜skV , n2)),
Out(diff (v,A)) (V2-1)

Here, V1 checks for their vote, as well V2’s vote, and saves this tracker number as
n2. In the first system V1 actually voted for A as the coercer wanted, and outputs
the real receipts. In the second system V1 voted for B , but outputs fake receipts,
as if they voted for A. In the rule’s conclusion V1 outputs all the available values,
which are: the private key ˜skV , the commitment β, the tracker number n1 , or
n2 , the secret randomness, and finally either the actual vote or the fake vote.

The randomness is a fake function that either opens the commitment to the
voter’s real tracker number n1 , or to the other tracker number n2 . As a modeling
expedient we use the term fake(n1, α, ˜skV , n1) to denote the real receipt for V1,
instead of simply α. This is required because Tamarin converts the directed
equational theories into rewrite rules, and hence the rules produced for the fake
constructors would not apply to the basic αs. Using the model just presented
Tamarin automatically proves receipt-freeness for the protocol.

Attack. The scheme poses a problem if the voter accidentally picks the coercer’s
own tracker number, or a tracker number of another voter under coercion. This
does not reveal the voter’s actual vote, but the coercer will know the voter is
lying. This is a known flaw in the protocol and is also explained in the paper
presenting Selene. We can reproduce this attack in our model by changing the
rule (V2-2) to also output V2’s tracker number:

let n1 = open(β, α, ˜skV ) in

SendSecretToVoter(α), !PostCommitment(pkV , β),
!PublishVote(〈n1, v〉 + y),StV1(V2, v, ˜skV , pkV ) → Out(n1) (V2-2)

In fact, if the adversary knows both tracker numbers, then they can compare the
trackers and see that they match when V1 chooses to fake their receipt, while
they differ when V1 behaves honestly, violating the observational equivalence.
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Fix. The authors of Selene [17] proposed a construction that removes the pos-
sibility of voters picking the coercer’s tracker number. Each voter v gets |C|
additional tracker numbers that point to fake votes cast for each candidate of
the possible choices C. The bulletin board contains |C| · v + v tracker-vote pairs,
and computing the final tally amounts to removing |C| · v votes to each candi-
date. If a voter is being coerced and wants to reveal a fake receipt, they only
need to pick one of their fake trackers that points to the desired candidate.

We model this fix in a simplified version of our original model, where we
remove the non-determinism in the shuffling that contributes to space explosion.
Tamarin could not terminate within 16 h on the full version using a server with
16 Intel Xeon cores and 120 GB of RAM. The partial model has no EA and
does not output the trackers or the pairs on a public WBB. It works as follows:
the teller generates three tracker numbers for each voter, but only creates a
commitment to the first one, which will act as the voter’s real tracker number.

let β = commit(n0, αi, pkVi
) in

Fr(n0),Fr(n1),Fr(n2),Fr(αi),
StT0(T, ˜skT , pkVi

, v′
i) →

Out(〈pkVi
, βi〉), !PostCommitment(pkVi

, βi),
StT1(T, ˜skT , pkVi

, v′
i, αi, n0, n1, n2) (T1’)

After receiving the vote, the teller assigns each tracker to a vote. The real vote
is therefore assigned to the voter’s real tracker number and to one other tracker
number. All |C| + 1 trackers are published along with their corresponding vote.
For each voter |C| trackers are published along with the voter’s identity, so the
voter can use these in case of coercion. The extra tracker, that also points to the
voter’s actual cast vote, is removed from set, and therefore not published with
the voter’s identity.

SendVote(vi, pkVi
),StT1(T, ˜skT , pkVi

, v′
i, αi, n0, n1, n2) →

SendSecretToVoter(αi),
!PublishTracker(pkVi

, n0), !PublishTracker(pkVi
, n2),

!PublishVote(n0, vi), !PublishVote(n1, vi), !PublishVote(n2, v
′
i) (T2’)

The difference in the checking phase is that V1 needs to check the WBB for their
personal tracker number corresponding to the coercer’s desired candidate. Both
votes can then be checked using the voter’s two tracker numbers. The process is
unchanged for voter V2.
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let n0 = open(β, α, ˜skV ) in

SendSecretToVoter(α), !PostCommitment(pkV , β),
!PublishTracker(pkV , nF ), !PublishVote(n0, v), !PublishVote(nF , diff (B,A)),
StV1(V1, v, ˜skV , pkV ) →

Out(˜skV ),Out(β),
Out(diff (n0, nF )),
Out(diff (fake(n0, α, ˜skV , n0), fake(n0, α, ˜skV , nF ))),
Out(diff (v,A)) (V2-1’)

As with the previous RF model, we can prove that the two systems produced
by this model satisfy mirroring, therefore issuing a fake certificate for each candi-
date allows us to prove receipt-freeness even when the attacker knows the other
voter’s vote. This alternative protocol ensures a stronger type of receipt-freeness
in which other voters’ receipts can also be revealed.

7 Conclusions

In this work we built mechanised proofs receipt-freeness and vote-privacy for
Selene, which claims to also offer individual and universal verifiability. Selene
uses re-encryption mixnets and Pedersen-style commitment schemes, which lead
to complex equational theories that were out of reach for many cryptographic
theorem provers, including ProVerif [4]. We overcame the limitation on mixing
by using the AC multiset operator of Tamarin, and built a confluent equational
theory for the commitment scheme used in Selene.

Our models show that the Selene scheme preserves vote-privacy and that it
is receipt-free as long as the fake receipts do not match the choice of another
colluding voter. We also model the proposed fix, whereby each voter receives a
fake tracker numbers for each candidate. These proofs confirm the claims of the
original paper [17], albeit under the stricter condition that the Tellers, Mixnet
and Election Authority are honest and not compromised. These restrictions were
necessary since distributed re-encryptions and decryptions produce state explo-
sions that makes it infeasible to find a proof, even when running on a virtual
server with 16 Intel Xeon cores and 120 GB of RAM.

We believe that this study contributes to a better understanding of Selene,
and to discover necessary conditions for its security, such as the synchronisation
points required after the setup and the voting phases. As future work, it will
be interesting to explore how to relax the assumption that all principals behave
honestly and introduce zero-knowledge proofs to ensure their correct behaviour.
Also, this study has not considered universal verifiability: while the protocol
maintains individual verifiability—and that can be checked as a correspondence
property in our current model—checking universal verifiability requires combin-
ing Selene with other receipt-free, universally verifiable schemes.
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Abstract. Online elections make a natural target for distributed denial
of service attacks. Election agencies wary of disruptions to voting may
procure DDoS protection services from a cloud provider. However, cur-
rent DDoS detection and mitigation methods come at the cost of signifi-
cantly increased trust in the cloud provider. In this paper we examine the
security implications of denial-of-service prevention in the context of the
2017 state election in Western Australia, revealing a complex interaction
between actors and infrastructure extending far beyond its borders.

Based on the publicly observable properties of this deployment, we
outline several attack scenarios including one that could allow a nation
state to acquire the credentials necessary to man-in-the-middle a for-
eign election in the context of an unrelated domestic law enforcement
or national security operation, and we argue that a fundamental tension
currently exists between trust and availability in online elections.

1 Introduction

Democratically elected governments may still aspire to the old principle of being
of the people, by the people, and for the people. But when it comes to contem-
porary deployments of internet voting, the technology underpinning how gov-
ernments are elected is a different story, and we are beginning to observe local
elections carrying an increasingly multi-national footprint.

In this paper we present an analysis of the 2017 state election of Western
Australia (WA) as one such case study. We found a complex interaction between
jurisdictions extending far beyond WA’s borders. The election software was cre-
ated by a Spanish based company. The election servers were hosted in the neigh-
bouring state of New South Wales. Voters connected to the election website via a
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U.S. based cloud provider. They were presented with a TLS certificate that was
shared with dozens of unrelated websites in countries such as the Philippines,
Lithuania, and Argentina, and that was served out of data centers in countries
such as Japan, Poland, and China.

In particular this work focuses on the implications of cloud-based distributed
denial of service (DDoS) protection in an election setting, revealing the existence
of a tension between availability and authentication.

1.1 Background

The acceptance of an election result should not come down to trust, but it often
does. Some systems, such as fully scrutinised manual counting, Risk Limiting
Audits [13] and end-to-end verifiable cryptographic systems [3,5,7,11,12,16],
allow voters and observers to derive evidence of an accurate election result, or
to detect an inaccurate result.

Australia’s iVote Internet voting system, implemented by third-party vendor
Scytl, does not provide a genuine protocol for verifying the accuracy of the
election outcome, relying instead on a collection of trusted and semi-trusted
authorities and auditors [10]. At the time of writing, it is the largest continuing
Internet voting system in the world by number of votes cast.1 The Western
Australian run was, however, very small: about 2000 votes were received, out of
an electorate of 1.6 million. Election day was March 11th 2017, but iVote was
available during the early voting period starting on 20th February.

For recent elections conducted in the Australian states of Western Australia
and New South Wales, the iVote system was used in conjunction with Imperva
Incapsula, a global content delivery network which provides mitigation of Dis-
tributed Denial of Service (DDoS) attacks.

DDoS attacks involve using a large number of connections to flood a target
website, overloading systems and preventing legitimate users from logging in. It
was a DDoS attack which was blamed for the failure of the Australian Govern-
ment online eCensus system in August 2016 [4,14]. To mitigate these attacks,
Incapsula’s systems act as a TLS proxy, intercepting secure connections between
the voter and the iVote servers and filtering malicious traffic.

Following our analysis of the unintended consequences of TLS proxying in the
Western Australian Election, a subsequent by-election in New South Wales used
Incapsula only for registrations and demonstration of iVote, not for the actual
voting process itself. However, valid TLS certificates for the Western Australian
and New South Wales election systems continue to be served by Incapsula servers
all over the world. This illustrates the difficulty of reversing a decision to out-
source trust.

Contributions. Our contributions are threefold. Firstly, we provide an analysis
of the front-end iVote protocol, including the associated credential exchange and
key derivation.
1 The largest as a fraction of the electorate is Estonia’s.
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Secondly, we analyse the implications of running an internet voting system
through a cloud based DDoS protection service acting as a non-transparent TLS
proxy. We provide the results of a global scan to assess the scale with which
Western Australian election related TLS certificates had been globally deployed.
We identify and discuss the misconfigurations we discovered in the case of the
Western Australian state election 2017, and analyse the feasibility of a malicious
TLS proxy performing a brute force attack on voter credentials.

Finally, we examine the injection of JavaScript performed by the DDoS pro-
tection service, and provide a proof of concept of how this could be utilised by
a malicious entity to compromise voter credentials and modify ballots. We dis-
closed our findings to the Western Australian Electoral Commission, both before
and during the election. They addressed the server misconfiguration, but con-
tinued to use the cloud based DDoS protection service for the duration of the
election.

Paper Organization. The rest of the paper is organized as follows. Section 2
describes the iVote protocol, and how a voter’s cryptographic credentials can
be recovered by a man-in-the-middle observing messages exchanged between the
client and iVote server. Section 3 describes technical findings of the cloud-based
DDoS protection service, focusing on their certificate management practices.
Based on these findings Sect. 4 proposes two attack scenarios that could allow the
cloud provider (or a coercive entity) to man-in-the-middle an election. Section 5
presents additional findings and Sect. 6 concludes.

2 The iVote Protocol

In this section we describe the iVote protocol. In particular we observed that
partial votes are sent—and stored on the server—encrypted by a symmetric key
which is only protected by a key derived from the voter’s ID and PIN. As we
shall discuss, this leads to the potential to recover votes via a brute force attack
of the iVoteID or PIN. When combined with the wider issue of using the same
TLS Proxy for registration as voting, the brute force attack becomes viable.

2.1 Key Findings

In iVote the secret keys used to construct an encrypted and digitally signed ballot
are cryptographically derived from two values: a voter’s ID and PIN. Knowledge
of these two values is sufficient information to allow an attacker to impersonate
a voter and cast a valid ballot on their behalf. iVote seemingly acknowledges the
sensitivity of these values.

The key finding of this section is that the iterative hashing scheme used by
iVote to protect the ID/PIN pair can be brute forced in practice by a man-in-
the-middle observing messages exchanged between a voter’s client and the iVote
server. While transport layer security (TLS) protects these values from the view
of most network observers, as we explain in Sect. 3, the non end-to-end nature
of TLS in DDoS prevention exposes these values to the cloud provider.
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2.2 Methodology

Publicly available technical documentation of the iVote system as deployed
in WA is limited. Significant information about the system and its configura-
tion, however, can be observed from its public internet-facing components via a
demonstration website set up by the Western Australian Electoral Commission
(WAEC) to allow voters to practice voting. To test the implementation we cre-
ated our own local server based on the publicly available JavaScript. There were,
however, two main limitations to this approach: (1) the practice website did not
include the registration step, and as such we were unable to observe network
messages exchanged during this phase, and (2) the responses by the practice
iVote server were mocked, and may not convey the full functionality of the live
election website. Following our initial analysis, we contacted the WEAC on Feb
17th, 2017 with a report of our findings, which WAEC acknowledged the same
day.

2.3 Voter Experience

An iVote election has three main phases:

1. Registration. A voter visits a registration website, enters her name, her
registered address and her date of birth. She may possibly be asked for further
identifiers such as a passport number. She then chooses and submits a 6-digit
PIN, which we will refer to as PIN. An 8-digit iVote ID number, which we
will refer to as iVoteID, is sent to her via an independent channel such as by
post or SMS.

2. Voting. The voter visits the voting website and enters her iVoteID and her
PIN. Her vote is encrypted in her browser using JavaScript downloaded over
TLS from the voting server. If she wishes, she may pause voting and resume
later—to facilitate this, a partially-completed vote is stored (encrypted) on
the server while she is voting. When she submits her vote, she receives a
12-digit receipt number.

3. Verification. All submitted votes are copied to a third-party verification
server. After voting, the voter may call this service, enter her iVoteID, PIN
and Receipt number, and then hear her vote read back to her.

2.4 Protocol Overview

A complete overview of the protocol is both beyond the scope of this paper, and
beyond what can be observed from the public-facing elements of the system. We
do, however, have sufficient information to outline how a brute force attack to
recover voter credentials could proceed. A high-level overview of login and ballot
casting is depicted in Fig. 1, with additional details as follows.
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Login. The voter first enters their iVoteID and PIN into the login page
in the browser. A cryptographic key derivation implementation in client-side
JavaScript then uses these values to derive a value, voterID, as follows. First a
string is created of the form iVoteID + "," + Base64(SHA256(PIN)) + "," +
"voterid". This string is used as the password input to the password-based key
derivation function PKCS#5 PBKDF2WithHmacSHA1. The function uses the gener-
ated password along with a salt of 20 null bytes; it performs 8000 iterations and
outputs a key of length 16 bytes. The result is hex encoded before being posted
to the server as voterID.

The purpose for this seems to be to protect the iVoteID and PIN by not
sending them to the server directly. However, as we discuss in Sect. 2.6, this
protection is insufficient as it is computationally feasible to recover these values
from voterID through brute-force search.

Voter Credentials. If the voterID submitted to the server corresponds to a
registered voter, the server responds with a file credential.json. An outline of
this file is shown in Listing 1. The demo system uses an internal mocked response
for a sample user, however we conjecture the real election server simply stores a
database of voterId/credential.json pairs, and responds with the associated
credential.json whenever a valid voterID is presented.

1 {

2 "v": "1",

3 "challenge_object": "Base64 Challenge Object",

4 "vad": {

5 "vk": "{

6 "salt": "Base64Encoded Salt",

7 "secrets": {

8 "symmetric": "Base64Encoded AES Key"

9 },

10 "store": "Base64Encoded PKCS12 KeyStore"

11 }",

12 "vkp": "Base64Encoded salt and password for KeyStore",

13 "eeca": "Base64Encoded CA Certificate",

14 "svca": "Base64Encoded CA Certificate",

15 "azca": "Base64Encoded CA Certificate",

16 "ab": "Base64Encoded Certificate to Verify XML Signatures",

17 },

18 "cert": "Base64Encoded Client Certificate"

19 }

Listing 1: Voter Credential File Skeleton

The vad object contains a number of keys and certificates. The vk object repre-
sents a Scytl KeyStore, which combines a PKCS#12 keystore with a JSON object
of encrypted secrets. The underlying PKCS#12 keystore is protected by what the
code refers to as the long password. The first step to deriving the long pass-
word is to derive an AES key to decrypt the password contained in vkp. To
do this a string is created similar to the one created during the login phase.



132 C. Culnane et al.

V
ot

er
B

ro
w

se
r

C
lo

ud
iV

ot
e

Se
rv

er

8
-d

ig
it

iV
o
te

ID
:
I
D
,
6
d
ig
it

P
IN

: P
I
N

v
o
te
rI
D

=
P
B
K
D
F
2
(
I
D

‖S
H
A
2
5
6
(
P
I
N
)
‖"

v
o
t
e
r
i
d
"
)

v
o
te
rI
D

c
r
e
d
e
n
t
i
a
l
.
j
s
o
n

p
a
ss
K
S

=
P
B
K
D
F
2
(
I
D

‖ S
H
A
2
5
6
(
P
I
N
)
‖"

p
a
s
s
K
S
"
)

d
k

=
P
B
K
D
F
2
(
D
ec

p
a
s
s
K
S
(
c
r
e
d
e
n
t
i
a
l
.
j
s
o
n
-
>
v
k
p
)
)

k
p

=
D
ec

d
k
(
c
r
e
d
e
n
t
i
a
l
.
j
s
o
n
-
>
v
k
-
>
s
e
c
r
e
t
s
)

s
k

=
D
ec

p
a
s
s
K
S
(
c
r
e
d
e
n
t
i
a
l
.
j
s
o
n
-
>
v
k
-
>
s
t
o
r
e
)

r
e
s
p

=
c
r
e
d
e
n
t
i
a
l
.
j
s
o
n
-
>
c
h
a
l
l
e
n
g
e
o
b
j
e
c
t
‖ n

o
n
c
e

re
sp

‖s
ig
n
sk
(r
e
sp

)

t
o
k
e
n
.
j
s
o
n

P
a
rt
ia
l
V
o
te

P
re
fe
re
n
c
e
s:

P
r
e
f
s

A
E
S
k
p
(
P
r
e
f
s
)
‖S

i
g
n
a
t
u
r
e

F
in
a
l
V
o
te

P
re
fe
re
n
c
e
s:

P
r
e
f
s p
k

←
t
o
k
e
n
.
j
s
o
n

b
a
ll
o
t
=

E
n
c p

k
(P

r
e
f
s
) b
a
l
l
o
t

‖ S
ig
n
s
k
(
b
a
l
l
o
t
)

F
ig
.
1
.
iV

o
te

P
ro

to
c
o
l.

H
ig

h
-l
ev

el
ov

er
v
ie

w
o
f

lo
g
in

a
n
d

b
a
ll
o
t

ca
st

in
g

p
ro

to
co

l
(n
.b
.,

so
m

e
d
et

a
il
s

o
m

it
te

d
fo

r
b
re

v
it
y
).

T
h
e

T
L
S

co
n
n
ec

ti
o
n

is
n
o
t

en
d
-t

o
-e

n
d

b
et

w
ee

n
th

e
b
ro

w
se

r
a
n
d

iV
o
te

se
rv

er
,

ex
p
o
si

n
g

b
ru

te
-f
o
rc

ib
le

v
o
te

r
cr

ed
en

ti
a
ls

to
th

e
cl

o
u
d

p
ro

v
id

er
.

(T
h
is

is
a
n

in
st

a
n
ce

o
f
a
P
K
C
S
#
5

P
B
K
D
F
2
W
i
t
h
H
m
a
c
S
H
A
1

fu
n
ct

io
n
,
w

it
h

a
sa

lt
co

n
si

st
in

g
o
f
2
0

n
u
ll

b
y
te

s,
p
er

fo
rm

in
g

8
0
0
0

it
er

a
ti

o
n
s,

a
n
d

g
en

er
a
ti

n
g

a
k
ey

o
f
1
6

b
y
te

s.
)



Trust Implications of DDoS Protection in Online Elections 133

This string has the form: iVoteID + "," + Base64(SHA256(PIN)) + "," +
"passKS". The string differs from the one constructed at login time using the
suffix “passKS” instead of “voterid”.

This password string, along with the salt value in vkp, is passed to another
instance of PKCS#5 PBKDF2WithHmacSHA1 that performs 8000 iterations. The
result is a 16-byte key, which is then used to initialise an AES cipher, using
GCM (Galois/Counter Mode) with no padding. The GCM nonce length is 12
bytes and the tag length is 16 bytes. The nonce is the first 12 bytes of the
password value stored in vkp. The remaining value of vkp is decrypted to form
what the code calls the derived password.

The long password is finally generated by a PBKDF2WithHmacSHA1 that per-
forms a single iteration on the derived password along with the salt value from vk,
yielding a 16 byte key. This value is used as both a password for the PKCS#12 key
store, and as an AES Key to decrypt the values in the secrets object. The keys in
the secrets object in vk are Base64Encoded ciphertexts. The long password is
used to initialize an AES Cipher using GCM with no padding. The GCM nonce
length is 12 bytes and the tag length is 16 bytes. The nonce is the first 12 bytes
of the value in the secrets object, with the remainder being the ciphertext that
is to be decrypted.

The final outcome of this intricate sequence of client-side key derivations and
decryptions is an AES symmetric key kp which is used by the browser to encrypt
partial votes, which we will continue in further detail in Sect. 2.5.

Token. The credential.json file is further processed and the contents
extracted, in addition the server’s signature on the received challenge is veri-
fied. In response to a valid signature, the browser generates a random nonce,
concatenates it with the server’s challenge, and returns this as a signed message.
The purpose of this check appears to be a means of confirming that a client has
successfully recovered their private signing key in the keystore.

The response is posted to vote-encoder/token/{voterKeysId}?v=1 where
v is taken from the configuration file, and voterKeysId comes from the voter
certificate common name, which contains the string “VoterAuth ” followed by
the votersKeysId. The voterKeysId value is important because it is used dur-
ing all subsequent posts, including voting and partial votes. It is unclear how
this value is derived or who generates it, but we suspect it is generated by the
registration server during the credential file generation.

Finally, the server responds to the token post with token.json that contains
the public-key group parameters for encrypting ballot preferences, the Election
Markup Language for the various races, and any partial votes that have been
recorded. The specifics of the encryption and signature of voter ballot preferences
are outside the scope of this paper.

2.5 Partial Votes

When a voter completes a voting screen, either the Legislative Assembly (lower
house) or Legislative Council (upper house), a partial vote of all currently
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entered preferences is created and sent to the server. The submission is sent to
vote-encoder/partial vote/{voterKeysId}?v=1, with JSON object shown in
Listing 2. The eo string is encrypted with the secret key contained in the secrets
object in credential.json, which was extracted as part of the credential file
processing, discussed in the previous section. When a partial vote is contained
within the Token Response the same AES key contained in the secrets object
is used to decrypt its contents and restore the screen for the user. The crucial
consequence of this is that unlike the final vote which is submitted under the
encryption of a randomly generated AES key, which is in turn encrypted with
the public key of the election, the partial vote is only protected by the AES key
stored in the credential file.

1 {

2 "token":"Base64 Copy of Token from Server",

3 "eo":"Base64 Encrypted String",

4 "signature":"Base64 Siganture of Vote",

5 "cert":"Base64 Encoded PEM Certificate of Voter Sign cert"

6 }

Listing 2: Partial Vote Skeleton

Given that the credential file itself is only protected by the an encryption key
derived from the iVoteID and PIN, if the iVoteID and PIN are susceptible to
brute force attacks, both the receiving server, and any TLS proxies in between,
would have the ability to recover votes. The attack is not mitigated by the fact
the final vote could be different, since the partial votes are always submitted as
the voter moves between the screens, and as such, the attacker need only look
for the last partial vote submission prior to final submission to be sure of the
contents of the final vote.

2.6 Brute Forcing Voter Credentials

One important question is how hard it would be for a man-in-the-middle to
recover a voter’s credentials from observed messages exchanged between the
browser and iVote server. Since WA opted to disable re-voting for their election,
a near real-time attack capability is needed in order to construct a valid (but
malicious) ballot and transparently swap it into the voter’s session before they
can cast. We now show that this requirement can feasibly be satisfied in practice.

As described in Sect. 2.4 the voterId value sent by the browser at login time
is derived from the voter’s iV oteID and PIN , and knowledge of these values
would be sufficient to recover all the voter’s other cryptographic values from
credential.json and token.json files.

Recall the voterID value is essentially 8000 iterations of SHA1 applied to
iV oteID, an 8-digit system-assigned value concatenated with PIN , a 6-digit
user-chosen value. This implies a brute-force upper bound of

8 · 103 · 108 · 106 ≈ 260
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operations. In other words, the voterID value provides 60 bits of security in the
best case.

This falls well below the minimum recommended NIST 112-bit security
level [15]. As a comparison, at the time of writing the Bitcoin network was
able to perform 262 SHA1 hashes per second.2

In practice, however, the voterID space may not be uniformly distributed.
Only a few thousand iV oteIDs were actually used. Moreover since the regis-
tration server is also covered by the DDoS cloud provider, we may assume that
a man-in-the-middle would also be able to observe the set of iV oteIDs in the
context of the registration step and associate an ID with a unique IP address.
Under the assumption of a known iV oteID, the search space to recover the
voter’s credential would be

8 · 103 · 106 ≈ 233

hashes. This space could be searched nearly instantly using a moderately sized
GPU cluster. For example, contemporary bitcoin mining ASICs now achieve hash
rates in the tera-hash-per-second (i.e., >240) range. Investment in expensive
and difficult to procure custom hardware, however, is not necessary. The rise
of inexpensive elastic cloud computing puts this attack within reach of nearly
any budget, and recent work has examined offering crypto brute forcing as a
service. Heninger et al. [18], for example, have deployed hundreds of concurrent
instances on Amazon EC2 in pursuit of factoring RSA moduli.

As a more immediate timing comparison demonstrating the real-world feasi-
bility of this attack, we implemented our own program to brute force voterIDs in
a threaded Python program using the Hashlib implementation of PBKDF2 and
deployed it on Digital Ocean. Using a single 20-core droplet, our unoptimized
(non-GPU) implementation was able to recover a 6-digit PIN in approximately
7 min at a cost of USD $0.11. With 10 concurrent droplets (Digital Ocean’s
default account max) the time to recovery is less than 1 min, which we believe
would plausibly be less than the time taken by the average vote to read, mark and
cast a ballot. Using a GPU-optimized hashing implementation (e.g., Hashcat),
however, we expect this time can be reduced to the millisecond range while
retaining a comparable cost of pennies per recovered credential.

3 Distributed Denial of Service Protection

Imperva Incapsula is a US-based cloud application delivery company which pro-
vides numerous security services to websites including prevention and mitiga-
tion of DDoS attacks. In this section we present a technical analysis of relevant
aspects of their service as used by the Western Australian Electoral Commission
(WAEC) for the 2017 WA State Election.

2 https://blockchain.info/stats.

https://blockchain.info/stats
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3.1 Key Findings

Our key finding in regards to the DDoS prevention service deployed in the 2017
WA State Election are threefold:

1. Encryption is not end-to-end between the voter and the iVote server;
2. The cloud provider’s practice involves the bundling of dozens of unrelated

website domains into a single certificate’s subject alternate name (SAN) list;
and

3. An internet-wide scan we conducted found valid TLS certificates for the elec-
tion website being served by servers around the world.

Taken together we argue that this opens the possibility of a foreign nation being
able to obtain the private key necessary to man-in-the-middle WA voters through
an unrelated domestic law enforcement or national security operation. It also
risks compromising the election as a result of error or malfeasance by server
administrators all over the world.

Additionally, we discovered that the system initially deployed for the election
did not correctly protect against DDoS attacks, despite the presence of Incap-
sula’s DDoS mitigation service. Due to misconfiguration of the iVote server, we
were able to determine the true IP address for the WA iVote server via histori-
cal domain registrations for the NSW iVote system used in 2015, which was also
being used to host the WA iVote system.

Upon discovering this vulnerability we notified the WAEC, who reconfigured
the server to stop accepting connections that did not originate from Incapsula’s
systems.

3.2 Non End-to-End TLS

In a typical TLS handshake the server presents its certificate to the client. Com-
pleting a TLS handshake takes time, and saving the session state requires the
server allocate memory. This and other strategies allow attackers with access to
numerous hosts to overwhelm a server by flooding it with connection requests.
When a DDoS mitigation service is involved, the TLS handshake is slightly
altered to allow the service to identify and filter malicious requests by forcing
incoming connections to be made through its infrastructure before being for-
warded on to the destination in a separate connection. The result is that the
service provider becomes an intermediary for all traffic to the iVote server.

Incapsula’s DDoS mitigation service operates by placing Incapsula servers
between the user and the destination website as a non-transparent TLS proxy,
intercepting all communications to and from the website in order to filter mali-
cious connections. For example, when connecting to the iVote Core Voting Sys-
tem (CVS) at https://ivote-cvs.elections.wa.gov.au, the voter’s connection first
travels to a server owned by Incapsula where it is decrypted, scanned, and then
forwarded on to the iVote server managed by the WAEC. This interaction is
shown in Fig. 2.

https://ivote-cvs.elections.wa.gov.au
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iVoteIncapsulaVoter

TLS Connection 1

Certificate 1
Issuer: GlobalSign
Subject: incapsula.com
SAN: *.elections.wa.gov.au

TLS Connection 2

Certificate 2
Issuer: COMODO
Subject: *.elections.wa.gov.au

Fig. 2. Non end-to-end TLS. Communication between a voter’s browser and the
iVote server pass through an Incapsula server and are decrypted, inspected, and re-
encrypted under a different key.

Nominally, if the iVote server was correctly covered by DDoS prevention,
we should not have been able to observe its certificate, as the server would
ignore any connection originating from a non-Incapsula IP address3. However,
a misconfiguration of the iVote server made it possible to identify its true IP
address, allowing us to request its TLS certificate directly. This issue is discussed
in more detail in Sect. 5.2.

The interception of connections allows Incapsula to filter out malicious traf-
fic during DDoS attacks, but also allows Incapsula to see all traffic travelling
through their systems. This behaviour is by design: modern DDoS mitigation
methods rely on scanning the plaintext traffic being transmitted to the server
they are protecting [2,20]. Without this ability, they would have a much harder
time determining the good connections from the bad ones. What it means, how-
ever, is that the voter’s interaction with the voting server exists as plaintext at
some point after leaving the voter’s computer, but before reaching the election
servers.

This fact is problematic since TLS authentication remains the only meaning-
ful form of server authentication in iVote, and using a cloud provider for DDoS
protection necessarily outsources this trust. Putting valid keys on a variety of
third-party servers throughout the world brings all of them into the set of trusted
parties, and increases the likelihood of a key leaking. Furthermore, ballot secrecy
in iVote depends critically on the assumption that a voter’s identity disclosed
during registration cannot be linked with a cast ballot making non end-to-end
encryption a concern in this matter as well.

3.3 Large-Scale Certificate Sharing

DDoS protection need not require a customer to surrender its private keys
to the cloud provider [2,20]. Instead, Incapsula outwardly presents their
own certificate in the handshake, which includes the iVote server’s domain
(ivote-cvs.elections.wa.gov.au) in the Subject Alternate Name (SAN) exten-

3 https://www.incapsula.com/blog/make-website-invisible-direct-to-origin-ddos-atta
cks.html.

https://ivote-cvs.elections.wa.gov.au
https://www.incapsula.com/blog/make-website-invisible-direct-to-origin-ddos-attacks.html
https://www.incapsula.com/blog/make-website-invisible-direct-to-origin-ddos-attacks.html
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incapsula.com, *.1strongteam.com, *.absolutewatches.com.au, *.advancemotors.com.au,
*.alconchirurgia.pl, *.amplex.com.au, *.bohemiocollection.com.au,
*.cheapcaribbean.com, *.compareit4me.com, *.elections.wa.gov.au, *.everafterhigh.com,
*.farmerslifeonline.com, *.floraandfauna.com.au, *.heypennyfabrics.com.au,
*.homeaway.com.ph, *.jetblackespresso.com.au, *.lifemapco.com, *.lovemyearth.net,
*.maklernetz.at, *.mobile-vertriebe.de, *.mobile.zurich.com.ar, *.monsterhigh.com,
*.mycommunitystarter.co.uk, *.noosacivicshopping.com.au, *.oilsforlifeaustralia.com.au,
*.planetparts.com.au, *.purina.lt, *.redsimaging.com.au, *.rlicorp.com,
*.roundup.fr, *.sassykat.com.au, *.spendwellhealth.com, *.sublimation.com.au,
*.uat.user.zurichpartnerzone.com, *.woodgrove.com.au, *.yamahamotor-webservice.com,
*.zlaponline.com, *.zurich-personal.co.uk, *.zurich.ae, *.zurich.co.jp,
*.zurich.es, *.zurich.jp, *.zurichlife.co.jp, *.zurichseguros.pt, 1strongteam.com,
absolutewatches.com.au, advancemotors.com.au, alconchirurgia.pl, amplex.com.au,
bohemiocollection.com.au, compareit4me.com, farmerslifeonline.com,
floraandfauna.com.au, heypennyfabrics.com.au, homeaway.com.ph, jetblackespresso.com.au,
lifemapco.com, lovemyearth.net, mycommunitystarter.co.uk, noosacivicshopping.com.au,
oilsforlifeaustralia.com.au, planetparts.com.au, purina.lt, redsimaging.com.au,
roundup.fr, sassykat.com.au, spendwellhealth.com, sublimation.com.au, woodgrove.com.au,
zurich.ae, zurich.es, zurich.jp, zurichlife.co.jp

Fig. 3. Subject alternate names in the Incapsula certificate. The same digital
certificate used to prove the identity of *.elections.wa.gov.au to WA voters is also
used to prove the identity of websites listed above. This list was transient and changed
several times in the month leading up to election day.

sion of their certificate. Specifically Incapsula includes the wildcard domain
*.elections.wa.gov.au in the SAN.

Obtaining this secondary certificate is a financial expense, and Incapsula
shares one certificate among numerous websites in order to reduce cost [20].
Specifically it lists itself as the certificate’s subject, and packs numerous domains
of its customers’ into a single certificate’s SAN. When a WA voter visits the iVote
website https://ivote-cvs.elections.wa.gov.au, their browser is presented with a
certificate with dozens of other unrelated domains in the SAN. A list of these
domains is given in Fig. 3, and includes websites for widely varying sectors and
countries of origin.

Through a combination of collecting our own TLS handshakes with the iVote
server as well as Censys [9] data we observed this certificate over a two month
period prior to the election and found the SAN list changed several times,
presumably as some clients joined and others left. For example, on Feb 1st
the SAN included several casinos (pandora-online-casino.com, caribiccasino.com,
regalo-casino.com, doublestarcasino.com), but they disappeared shortly after.
Importantly, visitors to any of these other websites are, in turn, presented with
the same certificate.

3.4 International Certificate Footprint

Incapsula’s global network consists of 32 data centres (Points of Presence, or
PoPs), located across the Americas, Europe, the Middle East, and the Asia
Pacific region.4 Due to the design of Incapsula’s network, TLS certificates hosted

4 https://www.incapsula.com/incapsula-global-network-map.html.

https://ivote-cvs.elections.wa.gov.au
http://pandora-online-casino.com
http://caribiccasino.com
http://regalo-casino.com
http://doublestarcasino.com
https://www.incapsula.com/incapsula-global-network-map.html
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in one PoP are propagated worldwide, so that users in any region served by Incap-
sula can have their connection proxied by the nearest PoP available. As stated by
Incapsula:5 “When using Incapsula, our servers become the intermediate for all
traffic to your website, including SSL traffic. To facilitate this, Incapsula needs
a valid SSL certificate for your domain installed on all its servers worldwide.”

We found Incapsula servers serving valid TLS certificates for
*.elections.wa.gov.au from locations around the world, including Eastern
and Western Europe, China, North and South America, and various points in
Australia.

These servers were identified through domain name look-ups for
ivote-cvs.elections.wa.gov.au originating from within each country, and subse-
quent TLS connections, using a Virtual Private Network (VPN). Our timing
analysis strongly indicates that the TLS certificates were being served directly
by these servers, and not proxied from elsewhere.

Internet Scan. We conducted an internet wide scan of the IPv4 space on
election day (March 11, 2017), collecting all TLS certificates served over port 443
using zgrab.6 In total we found 153 distinct IPs serving certificates containing
*.elections.wa.gov.au in the subject alternate name. A traceroute and timing
analysis showed that these IPs were consistent with cities in which Incapsula
advertises data centers (see Footnote 8). We were able to identify points of
presence serving WA’s certificate in Australia, Canada, China, France, Germany,
Japan, Poland, Singapore, Spain, Switzerland, United Kingdom, and throughout
the United States.

4 Man in the Middle Attack Scenarios

In this section we outline two scenarios in which a man-in-the-middle could
recover credentials necessary to be able to cast a valid ballot on a voter’s behalf.

4.1 Modify the Scripts the DDoS Provider Is Already Injecting

Overview and Significance. In this first scenario, a malicious cloud provider
injects Javascript into the voter’s client with the aim of capturing their creden-
tials. Since the cloud provider sits between the voter and iVote server, injecting
a malicious script is an obvious but risky approach for the cloud provider if both
the presence the script and its malicious purpose were detected. The significance
of our particular attack scenario, however, makes use of the following observa-
tions: (1) the cloud provider is already rewriting server content to injecting their
own JavaScript as part of their DDoS profiling functionality, and (2) the script
payloads are already being obfuscated.

We created a proof-of-concept vote-stealing script that leaks the voter’s ID
and PIN in the tracking cookie, and incorporated it into the script already being
injected by the cloud provider at no increased file size.
5 https://www.incapsula.com/blog/incapsula-ssl-support-features.html.
6 https://github.com/zmap/zgrab.

https://ivote-cvs.elections.wa.gov.au
https://www.incapsula.com/blog/incapsula-ssl-support-features.html
https://github.com/zmap/zgrab
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Script Injection for System Profiling. When a voter connects to the iVote
WA Core Voting System using the address https://ivote-cvs.elections.wa.gov.
au, the connection is proxied through Incapsula’s servers using an Incapsula-
controlled TLS certificate. The initial response to a voter’s connection sets a
number of Incapsula cookies.

In addition the response is modified by Incapsula to include JavaScript code
at the end of the HTML response. The included code inserts a <script> element
to cause the browser to load an additional JavaScript file, the contents of which
are obfuscated as a string of hex values. The included code is designed to perform
fingerprinting of the voter’s system. The HTTP responses for the resource files
do not contain x-cdn or x-iinfo headers, strongly suggesting they are served by
the Incapsula proxy (as would be expected), rather than by the iVote server.

When expanded into a more readable format, the injected JavaScript code is
revealed as a tracking function. The code is designed to probe various parts of the
voter’s computer, including: the web browser they are using; any browser plugins
they have installed; the operating system being used; their CPU type; and other
information designed to fingerprint individual user connections. Additionally,
this cookie calculates a digest of all other cookies set on the page, including
those set by the server.

This information is written into a profile cookie that is temporarily stored
on the voter’s computer. This profile cookie has an extremely short life of just
20 s, after which it will be deleted. Due to this being loaded during the page
load the remaining requests within the page will send this cookie to the server
before it disappears from the voter machine. As such, unless spotted within the
20 s period, or all requests/responses are being logged by the voter, it will be
difficult for a voter to detect that this profiling cookie was ever set or sent to
the server. The cookie is named utmvc, which is similar to a Google Analytics
cookie ( utmv), however, it does not appear to be related. The Google utmv
cookie is a persistent cookie used to store custom variables. The reason for the
choice of naming is not immediately clear.

Cookies and Voting. While the concept of profiling and tracking cookies may
seem invasive, there is nothing overtly malicious about this behaviour. Indeed,
the entire web advertising industry is built to perform similar tasks, in order to
track individual users across websites and better serve advertisements.

For Incapsula, the tracking cookie most likely forms part of the DDoS mit-
igation process: Incapsula can determine which requests are likely to be from
legitimate users. Combined with the profiling cookie, Incapsula can perform an
analysis of the requesting device and alter its behaviour accordingly.

In the context of iVote, however, this behaviour poses a significant risk for
voter security. As discussed in the introduction to this article, the iVote system
is designed with the assumption that the encryption and authentication covering
the communication between voter and server (Transport Layer Security, or TLS)
is secure. If a third party has the ability to intercept this communication and

https://ivote-cvs.elections.wa.gov.au
https://ivote-cvs.elections.wa.gov.au
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inject malicious JavaScript into server responses, it would be possible to hijack
the entire voting process.

The JavaScript we have witnessed being injected into server responses is non-
malicious, however, there remains the potential for this to not always be the
case. For example, a rogue Incapsula employee or a foreign intelligence service
with access to Incapsula’s systems could alter the injected JavaScript. If this
occurred, it would be possible to steal the iVoteID and PIN from the voter, and
subsequently modify their ballot, with a very low chance of detection by either
the voter or the iVote server itself.

Furthermore, with Incapsula’s cookies already being used to identify voters
between both the registration server and voting server, it would also be trivial
for such an attacker to link voters with their vote, removing the secrecy of their
ballot and opening voters to the risk of vote-buying or coercion.

The device fingerprinting behaviour of the injected JavaScript may also allow
these attacks to be performed in a selective fashion. Recent research by Cao
et al. [6] has shown that these fingerprinting methods can be used to identify
users with a high degree of confidence, even across different browsers on the
same device. This may provide an attacker with the ability to selectively target
individual voters or electoral divisions, and to avoid targeting voters who may
notice changes to the injected JavaScript (such as security researchers).

Proof of Concept. We developed a short script that would leak the iVoteID
and PIN by setting it in the profiling cookie. As such, the information would be
leaked without need for any additional requests, making detection extremely dif-
ficult. Furthermore, due to the original injected script from Incapsula not being
minimised, we were able to construct a malicious injection script that maintained
all the functionality of the original, along with our additional malicious code,
while still maintaining exactly the same length.

To achieve this we added two onChange listeners to the iVoteID and PIN
input boxes. We use these onChange listeners to take a copy of the values entered
and set them inside the profiling cookie. The advantage of this is that we are
not adding any additional cookies, or requests, in order to leak the information,
but instead using an existing side channel.

In order to facilitate this we had to extend the lifetime of the profiling cookie.
During testing we extended it to 1 hour, but realistically it only needs to be
extended by a few minutes, the only requirement is that the cookie exists at the
point the iVoteID and PIN is entered by the voter.

4.2 Foreign Access to TLS Private Keys

In this attack scenario a cloud provider uses the brute force attack described in
Sect. 2.6 to recover the iVoteID and PIN from the passively observed voterID
value sent by the browser at login time. In comparison to the script injec-
tion attack above, this approach is completely passive and has the benefit of
being undetectable at the cost of increased computational resources. Any cloud
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provider, therefore, must be trusted not to pursue such an attack unless the
combined ID/PIN space was made cryptographically strong.

A more interesting scenario is one in which the cloud provider (a multi-
national company operating in many jurisdictions) must inadvertantly grant a
foreign power the ability to man-in-the-middle an election through the course of
prosecuting an otherwise lawful national security request.

As discussed in Sect. 3.4, valid TLS certificates for *.elections.wa.gov.au
are served by Incapsula servers worldwide, with the associated TLS private keys
also stored on these servers. The TLS certificates served by Incapsula’s servers
are multi-use certificates covering a number of domains, as described in Sect. 3.3.
This design has significant implications for the security of the TLS private keys
associated with these certificates.

For example: a foreign government, as part of a legitimate domestic sur-
veillance operation, may request that Incapsula provide access to the TLS
private key for the domain *.example.com served by a PoP located in the
foreign country. If this domain is contained in the same TLS certificate as
*.elections.wa.gov.au, obtaining this private key would also provide the for-
eign government with the ability to perform man-in-the-middle attacks on voters
using iVote.

5 Additional Findings

5.1 Verifiability

The iVote system incorporates a telephone verification service [1], which allows
a voter to dial a provided number and connect with an interactive voice response
(IVR) system.

The telephone verification service requires the voter’s iVoteID, PIN, and the
receipt number provided by the iVote server after a vote has been successfully
cast. After these three numbers have been provided, the telephone verification
service reads back the list of candidates, in preference order, chosen by the voter
in their completed ballot.

During the 2015 New South Wales state election, which also used the iVote
system, Halderman and Teague identified several potential attacks against this
telephone verification system [10]. These attacks could allow an attacker who had
manipulated iVote ballots to avoid detection by voters who were attempting to
verify that their vote was cast as intended.

One of these attacks is known as a “clash attack,” and is designed to trick
voters by manipulating the registration and vote confirmation pages to provide
the iVoteID, PIN, and receipt number of a previous like-minded voter with the
same candidate preferences. The previous voter’s ballot has been allowed to
be recorded unmodified, and is then used as verification evidence for multiple
voters. The actual votes of these voters can then be manipulated at-will with
little chance of detection.

Crucially, the clash attack relies on accurate prediction of how a voter will
vote prior to registration, so that they can be provided with the iVoteID and
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PIN of a like-minded voter who has submitted an unmodified ballot. In addition,
the attack relies upon providing voters with a PIN rather than allowing them
to choose one. This may raise the suspicions of voters who are aware that the
iVote system is supposed to allow them to choose their own PIN.

For the 2017 WA State Election, the clash attack could be significantly
improved as a consequence of Incapsula being used to proxy all voter connections
to both the registration and voting servers. An attacker with access to Incapsula’s
systems could directly link each voter’s registration details with their completed
ballot, provided that the voter registers and votes using the same browser (and
potentially across browsers as well [6]).

Due to Incapsula’s position as a DDoS mitigation service for a number of
other online services, such an attacker would also have the ability to identify
voters (and their likely voting preferences) with significantly more accuracy than
if they only had access to the iVote system itself. This would allow for more
accurate clash attacks to be performed.

5.2 Bypassing DDoS Mitigation

It is assumed that the use of Incapsula’s service to proxy iVote connections was
an attempt to protect the iVote system from potential Distributed Denial of
Service (DDoS) attacks during the 2017 WA state election.

DDoS mitigation services such as Incapsula operate by intercepting connec-
tions to a service (in this case, iVote), thereby hiding the true public IP Address
of the service. If this protection is applied correctly, any attacker wishing to
attack the iVote system will be forced to do so via Incapsula’s systems—thereby
allowing Incapsula’s robust infrastructure to withstand the attack and filter legit-
imate connections through to the iVote system. For this protection to be effective,
the true IP address of the service must be properly hidden from attackers [19].

During the first several days of voting in the 2017 WA State Election, it was
possible to identify the public IP address of the server hosting the iVote Core
Voting System (CVS) for the WA election (https://ivote-cvs.elections.wa.gov.
au), through specific requests to known iVote infrastructure in Sydney, NSW.
This infrastructure could be publicly identified through DNS queries and other
methods requiring little sophistication on the part of an attacker. With knowl-
edge of this address, it would have been possible for an attacker to perform
DDoS attacks against the iVote system directly, rendering Incapsula’s protection
ineffective.

Recommended practice for the use of DDoS mitigation services such as Incap-
sula is to prevent the identification of the true IP address of the service being
protected, through techniques such as blocking all traffic from sources other than
Incapsula itself [8,17]. These protections were not correctly implemented for the
WA state election until we noticed the problem, several days after the opening
of iVote, and notified the WAEC.

https://ivote-cvs.elections.wa.gov.au
https://ivote-cvs.elections.wa.gov.au
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6 Conclusion

We have shown that utilizing cloud based DDoS protection servers can have
a significant impact on the trust model of an internet based election. Further-
more, we have analysed the increased risks of tracking and interception asso-
ciated with such services, and provided a proof of concept demonstrating how
malicious JavaScript could be injected into a voting client in order to read or
alter completed ballots.

At the time of writing, more than two months after the election, the Western
Australian Electoral Commission has published neither the raw voting data for
iVote, nor the verification success and failure statistics. Even if the votes were
broadly similar to those cast on paper, and the verification failure rate was
small, that would not constitute genuine evidence that the votes were accurately
recorded. A lack of transparency in the process is simply no longer acceptable.
In light of the trusted nature of cloud providers, their single point of failure, and
the remote nature of potential attackers, the need for evidence-based election
outcomes is greater than ever.

Acknowledgements. The authors thank the Western Australian Election Commis-
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Abstract. The Council of Europe is the only international organization to have
issued recommendations on the regulation of the use of e-voting. The 2004
Recommendation to member States, Rec(2004)11 and the two 2010 Guidelines
on certification and on transparency were recently repealed and replaced by Rec
(2017)5 on Standards for e-voting and the associated Guidelines on its imple-
mentation. We discuss the 2017 Recommendation and the main novelties
introduced by it. The Recommendation extends the definition of e-voting to
include pure e-counting. It enlists 49 standards which set objectives that e-voting
should fulfill to comply with the principles and conditions for democratic elec-
tions of the European electoral heritage. Detailed guidelines for the implemen-
tation of the objectives are collected in a lower level document, the Guidelines on
the implementation of the provisions of Rec(2017)5. The guidelines are expected
to be completed through further work. The main differences between the old and
the new Council of Europe standards on e-voting are outlined. Correlations are
illustrated. The expected use, impact and evolution of the Recommendation and
Guidelines are briefly explained.

Keywords: Council of Europe � E-voting � Principles � Standards �
Requirements � Recommendation Rec(2017)5 � (old) Recommendation Rec
(2004)11

1 Introduction

Since the beginning of the Millennium e-voting has been a recurrent theme at the
Council of Europe, both at the national and international levels.1 Discussions and
implementations of e-voting have taken place in several countries. Given the interest of

1 The Council of Europe is an international organization established in 1949 by a number of
like-minded European countries, to safeguard and realize the ideals and principles which are their
common heritage, as stated in article 1 of the Statute of the Council of Europe (ETS 1). Today it
includes 47 member States covering all European Union members as well as Albania, Andorra,
Armenia, Azerbaijan, Bosnia and Herzegovina, Georgia, Iceland, Liechtenstein, Republic of
Moldova, Monaco, Montenegro, Norway, Russian Federation, San Marino, Serbia, Switzerland, The
former Yugoslav Republic of Macedonia, Turkey and Ukraine. Other countries with a “special guest”
or “observer” status include Canada, Mexico, U.S., Holy See, Japan, countries in Central Asia etc.

© Springer International Publishing AG 2017
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member States, the Council of Europe has elaborated standards offering guidance to
countries on how to regulate the use of e-voting. It has also provided a forum for
regular discussion between national experts.2 Standards have both influenced devel-
opments in member States and have been influenced by them [1, 2].

A first Recommendation elaborated by national experts was adopted on 30
September 2004 by the Committee of Ministers of the Council of Europe. Recom-
mendation Rec(2004)11 on legal, operational and technical standards for e-voting
included 112 standards and requirements. Two guidelines were approved at the 2010
biannual review meeting: Guidelines on transparency of e-enabled elections (16 pro-
visions) and Guidelines for developing processes that confirm compliance with pre-
scribed requirements and standards in the region (Certification of e-voting systems)
(14 provisions). The guidelines were meant to provide a practical tool to facilitate the
implementation of the 2004 Recommendation, in particular its paragraphs 20 to 23
(transparency) and 111, 112 (certification).

After discussions and a report on the need to update Rec(2004)11 and the asso-
ciated guidelines [1],3 the Committee of Ministers set up in April 2015 an “Ad hoc
committee of legal experts on legal, operational and technical standards for e-voting”
(CAHVE) with the mandate to prepare a new Recommendation updating Rec(2004)11
in the light of recent technical and legal developments related to e-enabled elections in
the Council of Europe member States [3].4

The results of CAHVE’s work which took place between 2015 and 2016 are a new
Recommendation Rec(2017)5 on standards for e-voting (49 provisions), its Explana-
tory Memorandum, as well as the Guidelines on the implementation of the provisions of
Recommendation Rec(2017)5 on standards for e-voting [4–6].5 All three documents
were approved by CAHVE in November 2016. On 14 June 2017 the Committee of
Ministers adopted the new Recommendation Rec(2017)5 and took note of the other
documents.6 At the same time it repealed the 2004 Recommendation and the 2010
guidelines on transparency and on certification.7

This article presents the new Rec(2017)5 and the main novelties that it introduces.
We start by an overview of literature on the old standards, highlighting the main

2 Biannual meetings to review the implementation of Rec(2004)11 have been organised by the Council
of Europe. Meetings documents are available at https://www.coe.int/en/web/electoral-assistance/e-
voting .

3 An informal meeting of experts on the question of the update was held in Vienna in December 2013,
https://www.coe.int/en/web/electoral-assistance/informal-meeting-of-experts-e-voting.

4 The author of this article was appointed lead legal expert. She prepared a roadmap for the update and
led the draft update of the Recommendation. Intermediary and final results were approved by
CAHVE at its October 2015 and November 2016 meetings. More on http://www.coe.int/en/web/
electoral-assistance/e-voting.

5 The guidelines also include examples of effective implementation of standards in specific contexts,
called “good practice. Examples of good practice are included for information purposes.

6 The mandate of CAHVE foresaw an update of Rec(2004)11. However given its innovative character,
it was decided that Rec(2017)5 and the associated Guidelines shall repeal and replace the old
documents instead of simply modifying them (see § 27, Explanatory Memorandum).

7 https://www.coe.int/en/web/electoral-assistance/-/council-of-europe-adopts-new-recommendation-
on-standards-for-e-voting.

Updated European Standards for E-voting 147

https://www.coe.int/en/web/electoral-assistance/e-voting
https://www.coe.int/en/web/electoral-assistance/e-voting
https://www.coe.int/en/web/electoral-assistance/informal-meeting-of-experts-e-voting
http://www.coe.int/en/web/electoral-assistance/e-voting
http://www.coe.int/en/web/electoral-assistance/e-voting
https://www.coe.int/en/web/electoral-assistance/-/council-of-europe-adopts-new-recommendation-on-standards-for-e-voting
https://www.coe.int/en/web/electoral-assistance/-/council-of-europe-adopts-new-recommendation-on-standards-for-e-voting


suggestions for improvement made therein (Sect. 2). Next, we discuss the new Rec-
ommendation (Sect. 3). We start by clarifying the terms “principle”, “standard” and
“requirement” used in the Recommendation and the associated documents. The bulk of
this chapter discusses the new standards and highlights the main differences with Rec
(2004)11. Most novelties are based on suggestions coming from literature. Finally we
comment on the practical use of the standards; their influence on member States’
regulations; their future development (Sect. 4) and present some concluding remarks
(Sect. 5). Apart from a quick overview of literature on the old recommendation
(Sect. 2), the article mainly addresses documents of the Council of Europe, in particular
those in relation to the update work of CAHVE.

2 Suggestions from Literature

Writings that focus on the Council of Europe e-voting standards, namely on the old Rec
(2004)11 and associated guidelines, can be grouped in four categories.

The first category includes writings that examine the Rec(2004)11 itself and make
proposals for improvement. The second category consists of evaluations of specific
uses of e-voting in the region. Authors refer to Rec(2004)11 and to the associated
guidelines as legal benchmarks and sometime identify weak points in these documents
which they criticize and/or suggest improving. In the third category we include writings
that focus on specific aspects of e-voting (often technical ones, but also social, etc.).
When examining their topic or building new solutions, authors do refer to detailed
requirements derived from legal principles. The ways in which such requirements are
derived and their content are interesting from the perspective of updating the recom-
mendation and the guidelines. Finally, a fourth category regroups the documents of
experts working with the Council of Europe on the elaboration of standards on
e-voting, mainly in the CAHVE group which prepared Rec(2017)5.

We do not aim here to list8 and discuss the writings in each category (for details on
this see [1, 7]). Our point is to present an overview of suggestions to improve Rec
(2004)119 resulting from each category of writings (the four identified categories are as
many different perspectives on the standards developed by the Council of Europe). To
illustrate our purpose, we will refer to a few writings from each category.

The interest of presenting improvement suggestions from literature is that they were
effectively considered by experts during the update and several are reflected in the new
Rec(2017)5. Of the 250 provisions (proposed standards) that were considered by
CAHVE, 142 came from the old Recommendation and the Guidelines; and around one

8 The Centre for Direct Democracy (ZDA) of the University of Zurich (iVoting project) has
established and maintains a bibliography more specifically on internet voting covering all official
reports in the field and academic production from a legal or social science perspective. It can be
consulted at http://www.preferencematcher.com/edc/?page_id=338 (follow the link to the latest
version).

9 A detailed list of proposals for improvement, including those coming from academic research, was
considered by CAHVE experts during the updating work in 2015-2016 (see next paragraph and
footnote).
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hundred came from literature, namely from technical publications (third category) and
OSCE/ODIHR evaluations of e-voting implementations in the region (second cate-
gory).10 Not all suggestions from literature are “original” or “unique”. There are much
repetitions, redundancies, etc. in between them. Consolidation was necessary before
their integration in the Rec(2017)5 could be considered and eventually decided by
CAHVE.

Writings that examine the merits of the standards of Rec(2004)11 (first category)
are not numerous. Rec(2004)11’s approach of thinking e-voting “by analogy” with
paper-based channels is criticized [7, 8]. One of the reasons is that different voting
channels face different types of risk and this should also be reflected in the respective
regulations. Another conclusion is that it is important to distinguish between issues of
public policy and issues of technical implementation. A certain number of issues, for
instance whether to opt for absolute or relative secrecy, are to be decided (and regu-
lated) as a matter of public policy not of voting technology (alone).

Some writings examine Rec(2004)11 standards from the perspective of
evaluation/certification against standards [9] and highlight its many flaws related to
consistency, completeness and scope, over-/under-specification, redundancy, main-
tainability, extensibility. A restructuring is proposed with operational and technical
requirements grouped under each of the five rights (principles) identified in appendix I
of Rec(2004)11. Others propose a restructuring in the form of a merger of the
high-level recommendations of Rec(2004)11 with the detailed standards of US Vol-
untary Voting System Guidelines (VVSG)11 to obtain a document useful for system
certification purposes [10]. This group’s main input could be summarized as the need
for well-structured standards and the need for coherency and consistency within the
Recommendation and between it and the associated documents. As for their other
proposal, of having a Recommendation against which to evaluate and certify e-voting
systems, we will see below (in 3.1 and 4.1) whether the Recommendation can, alone,
become such a legal benchmark, or not.

Some writings evaluate specific implementations of e-voting in the region against
the Council of Europe standards (Rec(2004)11 and the associated guidelines)(second
category of writings). When doing so, authors identify a number of problems with Rec
(2004)11 itself. For instance, several standards included in Rec(2004)11 are too
detailed to be applied to all kinds of e-voting (as the Recommendation aims to). The
need for trade-offs between standards is ignored by Rec(2004)11. Also, the lack of
consideration for national provisions and the perceived pretention of the Recommen-
dation to cover a maximum of situations is criticized. One document in particular
crystallizes these empirical findings, the 2012 IFES (Barrat, Goldsmith) evaluation of
the Norwegian internet voting system’s conformity with international standards [11].
Here, the general conclusion is that when it comes to a specific implementation of

10 This working document has not been published but can be obtained from the Council of Europe.
The small group of experts that compiled the list, consolidated it and finally produced the draft of
the new Recommendation and Guidelines included A. Driza Maurer (lead), J. Barrat, R. Krimmer,
M. Volkamer and S. Neumann.

11 https://www.eac.gov/voting-equipment/voluntary-voting-system-guidelines/.

Updated European Standards for E-voting 149

https://www.eac.gov/voting-equipment/voluntary-voting-system-guidelines/


e-voting, a better interweaving between international standards and national regulations
is necessary. The former are by definition higher level and less detailed than the latter.

The third category of writings includes technical writings which present solutions
for e-voting or its evaluation, or which evaluate such solutions. Solutions and evalu-
ations should respect legal principles (such as universal, equal, free and secret elec-
tions) which stem from international treaties and national constitutions. However,
principles are too abstract for this purpose and need to be spelled out or “translated”
into detailed requirements. So, these writings usually start by identifying a number of
detailed requirements, for instance security ones, based on which they build their
systems/evaluation work. Although they do not necessarily refer to the standards of
Rec(2004)11, the methods used to derive detailed technical requirements from general
and broad legal principles are of interest also from the perspective of restructuring and
updating the Recommendation and the associated guidelines. Instead of many, consider
the contribution from Neumann and Volkamer (and references) [12] in which they
derive technical requirements from constitutional provisions and propose metrics to
estimate the fulfillment of these requirements within concrete voting systems.

Suggestions and conclusions of experts working on the update of the standards
(fourth category of documents) will be referred to throughout the following chapters.

All above-mentioned writings have one common feature: they directly or indirectly
advocate an update of Rec(2004)11 and provide indications of the direction to be taken.
These suggestions were considered and eventually reflected in Rec(2017)5 and the
associated guidelines, as we will see below.

3 Council of Europe Rec(2017)5 on Standards for E-Voting

3.1 Principles, Standards, Requirements

The terms “principles”, “standards” and “requirements” are all mentioned in
Rec(2017)5.What is their meaning and what’s the relationship between them?

Rec(2017)5 recommends the governments of members States to respect all the
principles of democratic elections and referendums in their legislation and practice of
e-voting. It also recommends them to be guided in their legislation, policies and
practice by the standards included in the Appendix I to Rec(2017)5. And it says that
the interconnection between the abovementioned standards and those included in the
accompanying Guidelines should be taken into account. Finally standard 36,
Appendix I, says that member States shall develop technical, evaluation and certifi-
cation requirements and shall ascertain that they fully reflect the relevant legal and
democratic principles.

“Principles” refers to high level electoral principles to be found in universal
instruments such as art. 21 of the Universal Declaration of Human Rights and art.
25 section b of the International Covenant on Civil and Political Rights (periodic,
universal, equal, secret, free elections) as well as in European (regional) instruments
such as art.3 of Protocol I to the European Convention on Human Rights which foresees
free, periodic and secret elections (universal and equal suffrage are also included
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according to the European Court of Human Rights)12 (see also §5, Explanatory
Memorandum). The preamble of Rec(2017)5 mentions obligations and commitments
undertaken by the member states within a number of treaties and conventions13, how-
ever the list is not exhaustive.14 At the national level, the same principles defined in the
same way, or more largely, as well as additional principles are found in the national
constitution, and maybe also in the formal law (i.e. law adopted by the highest leg-
islative authority, usually the Parliament and, in certain countries like Switzerland, also
subject to a popular vote). An example of an additional principle which only exists at the
national level is “the public nature of elections” in Germany [13]. In some federal
countries, where the sub-state entity has some degree of autonomy in electoral matters,
the same principles or even additional, local ones, are to be found in the respective
documents (e.g. in cantonal constitutions in Switzerland or State laws in the U.S.). For a
detailed account of regulatory frameworks of e-voting in 13 countries (Germany,
Austria, Brazil, India, Estonia, France, Argentina, Finland, Mexico, Switzerland, United
States, Australia and Venezuela) see the respective chapters in [14].

The Council of Europe’s core mission is to safeguard and realize the principles
which are common heritage of its member States (art. 1 of its Statute), including
principles for democratic elections. Principles which are common heritage are also
referred to as the European constitutional heritage. Part of it is the so-called European
electoral heritage. Principles of the European electoral heritage (which stem from
various instruments) have been identified and collected in a document adopted in 2002:
the Code of Good Practice in Electoral Matters [15] of the European Commission for
Democracy through Law (Venice Commission). Although non-binding, the Code is the
reference document of the Council of Europe when it comes to higher level principles
for democratic elections.

The Code identifies the following elements: universal, equal, free, secret, direct
suffrage; frequency of elections, respect for fundamental rights, regulatory levels and
stability of electoral law, procedural safeguards (organisation of elections by an
impartial body, observation of elections, an effective system of appeal, organisation and

12 See e.g. the ECtHR judgment of 2 March 1987, Mathieu-Mohin and Clerfayt, series A 113, § 54.
13 The International Covenant on Civil and Political Rights (ICCPR) (1966), the United Nations

Convention on the Elimination of All Forms of Racial Discrimination (ICERD) (1966), the United
Nations Convention on the Elimination of All Forms of Discrimination against Women (CEDAW)
(1979), the United Nations Convention on the Rights of Persons with Disabilities (CRPD) (2006),
the United Nations Convention against Corruption (UNCAC) (2003), the Convention for the
Protection of Human Rights and Fundamental Freedoms (CEDH) (1950), in particular its Protocol
No.1 (CEDH-P1) (1952), the European Charter of Local Self-Government (ETS No. 122), the
Convention on Cybercrime (ETS No. 185), the Convention for the Protection of Individuals with
Regard to Automatic Processing of Personal Data (ETS No. 108), the Additional Protocol to the
Convention for the Protection of Individuals with Regard to Automated Processing of Personal Data
regarding supervisory authorities and transborder data flows (ETS No.181) and the Convention on
the Standards of Democratic Elections, Electoral Rights and Freedoms in the Member States of the
Commonwealth of Independent States (CDL-EL(2006)031rev).

14 One could add the Convention on the Political Rights of Women (CPRW) (1952), the International
Convention on the Protection of the Rights of All Migrant Workers and Members of Their Families
(ICRMW) (1990), the Convention concerning Indigenous and Tribal Peoples in Independent
Countries, ILO C169 (1989), the UN Convention against Corruption (UNCAC) (2003).
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operation of polling stations, funding, and security). The Recommendation follows the
same structure (see also §§ 13 and 14 Explanatory Memorandum). However, not all
principles call for special attention when implementing e-voting. The standards in Rec
(2017)5 address only those matters (principles and conditions for implementing them)
that require specific measures to be taken when e-voting is introduced (§ 15
Explanatory Memorandum).

“Legal standards” refers to provisions contained in the Appendix I to the Rec(2017)
5 (Appendix II, Glossary of terms, under “standard”). The Recommendation contains
legal standards on e-voting which set objectives that e-voting shall fulfill to conform to
the principles of democratic elections. The aim is to harmonize the implementation of
the principles when e-voting is used in member States. Standards are common to the
Council of Europe region. Unless specific mention, standards apply to all forms of
e-voting. Standards which are specific only to one or to some forms do mention this
(§§ 4, 5, 7, 8, 28 Explanatory Memorandum).

Legal standards are to be distinguished from “technical standards” which refer to a
technical norm, usually in the form of a formal document that establishes uniform
engineering or technical criteria, methods, processes and practice (Appendix II,
Glossary of terms). The Recommendation and the associated Guidelines deal with legal
standards.

The specificity of the Guidelines is that they offer instructions on the implemen-
tation of the standards. They are less “binding”15 than the Recommendation and are
expected to evolve rapidly over time (§26 Explanatory Memorandum) to reflect
changes in law and technology. Also, the present (June 2017) version of the Guidelines
needs to be completed through further work to address all forms and all aspects of
e-voting covered by the new Recommendation.

“Requirement” is defined in the Recommendation (Appendix II) as a singular,
documented need of what a particular product or service should be or perform. Stan-
dard 36 (Appendix I) says that it’s up to member States to develop technical, evaluation
and certification requirements. Member States shall furthermore ascertain that
requirements fully reflect relevant legal principles and shall keep the requirements
up-to-date.

Requirements for a specific e-voting solution to be used in a given context, must be
defined with respect to that specific solution and context. They must be derived from
the international, national and, as the case may be, local legal principles applicable. So,
by definition, e-voting detailed requirements cannot be decided in an international
document like the Recommendation which is supposed to cover many different uses of
e-voting in all 47 member States.

The hierarchy between principles (top), standards (middle) and requirements (bot-
tom of the pyramid) reflects the hierarchy of the respective instruments from where they
stem: international conventions/treaties, national constitution and formal law (top) –

15 The Recommendation has no binding force per se. However it has an important influence and may
even acquire binding effect, in certain cases (see Sect. 4.2 below).

152 A. Driza Maurer



international recommendations/soft law16, national material law (middle) – lower level
regulations (bottom). The hierarchy means conformity with the higher level.

3.2 Main Features and Novelties of Rec(2017)5

New definition and broader scope of e-voting. E-voting was until recently defined in
two different ways by the two main international organisations active in the electoral
field in the region. Rec(2004)11 of the Council of Europe defined e-voting as the
casting of the vote through electronic means. OSCE/ODIHR, the international orga-
nization on observation of elections in the region, understands e-voting as the use of
information and communication technologies (ICT) applied to the casting and counting
of votes [16].

The new Rec(2017)5 defines e-voting as the use of electronic means to cast and/or
count the vote (Appendix II, Glossary of terms) (see also §8 Explanatory Memoran-
dum) thus including also the electronic scanning and counting of paper ballots. As a
result, both organizations now share a common understanding of e-voting which
contributes to a better understanding of the standards applicable to it in the region.

Some experts feared that by broadening the scope of e-voting to include pure
e-counting of paper ballots, the Recommendation would become less sharp or less
relevant. CAHVE was willing to take this risk, given the importance of raising
awareness on the regulation of the use of ICT to vote and/or to count votes.

Recommendations. The Committee of Ministers took three decision (points I, II, III at
the end of the preamble of Rec(2017)5). It decided (point I) to issue six recommen-
dations (i to vi) to governments of members States that introduce, revise or update as
the case may be, domestic legislation and practice in the field of e-voting (I). The
Committee recommends (i) to respect all the principles of democratic elections and
referendums when introducing e-voting; (ii) to assess and counter risks by appropriate
measures; (iii) to be guided in their legislation, policies and practice by the standards
included in Appendix I and to consider those included in the Guidelines; (iv) to review
their policy and experience of e-voting and to provide the Council of Europe with a
basis for holding review meetings at least every two years following its adoption.
Governments are further invited (v) to share their experience in this field as well as
(vi) to translate and disseminate as widely as possible the new recommendation more

16 Soft-law documents include political commitments, comments to treaty/convention provisions,
recommendations, good practices, etc. Examples are the comments to art.25 ICCPR, the Council of
Europe recommendations or the Venice Commission’s Codes of good practice. The preamble of
Rec(2017)5 refers to a number of soft law instruments (the list is not exhaustive): Recommendation
No. R (99) 5 of the Committee of Ministers to member States on the protection of privacy on the
Internet; Recommendation Rec(2004)15 of the Committee of Ministers to member States on
electronic governance; Recommendation CM/Rec(2009)1 of the Committee of Ministers to member
States on electronic democracy; the document of the Copenhagen Meeting of the Conference on the
Human Dimension of the OSCE; the Code of Good Practice in Electoral Matters, adopted by the
Council for democratic elections of the Council of Europe and the European Commission for
Democracy through Law and supported by the Parliamentary Assembly, the Congress of Local and
Regional Authorities and the Committee of Ministers of the Council of Europe.
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specifically among electoral management bodies, citizens, political parties, observers,
NGOs, academia, providers of solutions and e-voting controlling bodies.

The other decisions were to regularly update the provisions of the Guidelines that
accompany the Recommendation (point II) and to repeal the old Recommendation
(2004)11 and the Guidelines thereto (point III).

Novelties. All the following new elements were discussed and decided by CAHVE
during the update [17].

Recommendation i maintains that e-voting should respect all the principles of
democratic elections and referendums but drops the previous comparison that it should
be “as reliable and secure as” other (paper based) methods. The interpretation of this
comparison proved problematic in the past [7]. Furthermore the benchmark is respect
for all principles of democratic elections and referendums. So standards should be
derived directly from the applicable principles.

Recommendation ii stresses the need to assess risks, namely those specific to
e-voting and to adopt appropriate measures to counter them.

According to recommendation iii, whereas the Recommendation is intended to
provide a stable framework, Guidelines are meant to be updated on a regular basis (a
novelty decided by the Committee of Ministers in point II). The relationship between
standards included in Appendix I and those in the Guidelines which implement them is
underlined – which is also new.

Recommendation iv introduces a review policy for the Recommendation which is
based on the previous practice of biannual meetings, which however had no clear basis
in the Rec(2004)11 given that the (2004) rec. v foresaw (only) one (first) review
meeting within two years after the adoption of Rec(2004)11.17 The present Recom-
mendation clarifies that review meetings are to be held at least every two years fol-
lowing its adoption. The update of the Guidelines, among others, will be considered
and decided by member States at the periodic review meetings (§12 Explanatory
Memorandum).

Recommendation vi encourages translation and dissemination policies. Such pro-
vision is recently automatically included in all Council of Europe recommendations.

Standards and Guidelines. The old standards included 142 provisions (112 in Rec
(2004)11 and 30 in the associated guidelines). The new standards include 143 provi-
sions (49 in Rec(2017)5 and 94 in the associated Guidelines). It is foreseen that the new
Guidelines should be completed, i.e. expanded (§12 Explanatory Memorandum). By
looking at the figures alone (142 and 143) one could say that, so far, things have not
changed very much. This is not so. The structure of the old and new documents, the
type and content of standards, the relations between them, all have changed. The new
143 standards are different from the old 142 ones. Several are totally new. The table

17 Rec. v Rec(2004)11 read as follows: «in order to provide the Council of Europe with a basis for
possible further action on e-voting within two years after the adoption of this Recommendation, the
Committee of Ministers recommends that ….”. In French “…afin de fournir au Conseil de l’Europe
une base à partir de laquelle il pourra élaborer les actions futures en matière de vote électronique
dasn les deux ans après l’adoption de cette recommandation, le Comité des Ministres recommande
que…».
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appended at the end of this paper illustrates some of the changes, namely “what
happened” to the 112 standards of Rec(2004)11.

Novelties. Since the beginning of the updating process it was decided that the new
Recommendation should be homogenous, as opposed to the old one which contained a
mixture of higher and lower level standards [17]. The new Rec(2017) includes only
higher level, stable standards. Guidelines are grouped under the corresponding standard
in the Guidelines. Besides their detailed nature, the reason for putting the guidelines in
a separate document is that they are supposed to evolve frequently to take stock of legal
and technical developments. As an instrument, the Guidelines are more easily and
quickly reviewed than the Recommendation, which is a more rigid and stable
document.

Now, there is a clear interweaving between higher principles and conditions for
implementing them (identified by the Code of good practice and reflected as headings
in Appendix I of Rec(2017)5), standards (derived from the principles and included in
the Appendix I) and implementation guidelines of the standards (in the Guidelines).

For instance, to ensure compliance with the principle of universal suffrage as
defined in the Code (see also §14 Explanatory Memorandum), the following objectives
must be met: an e-voting system shall be easy to understand and use by all voters (1);
shall be designed, as far as practicable, to enable voters with special needs and the
disabled to vote independently (2); in case of remote e-voting, this channel shall be
only a complementary and optional one unless and until it is universally accessible (3);
and, in case of remote e-voting again, voters’ attention shall be drawn as to the validity
of their e-vote (4). To streamline the implementation of standard 1 (interface easy to
understand and use), the following guidelines are proposed: the presentation of the
voting options on the devices used by voters should be optimized for the average voter
who does not have specialized computer knowledge (a); voters should be involved in
the design of the e-voting system (b); consideration should be given to the compati-
bility of new products with existing ones (c). And so on with the other principles,
standards and guidelines.

Several new standards have been included in the Recommendation. They were
previously in the guidelines or suggested by research. Their inclusion translates
regional consensus on these new objectives that e-voting must fulfil to conform to the
principles. Prominent examples are standards 15, 17 and 18 which introduce individual
and universal verifiability; standard 20 on data minimisation; standard 29 which stip-
ulates that the responsibilities of the electoral management body with respect to
e-voting should be clarified in the relevant regulation and that this one should foresee
that the EMB has the control over e-voting systems; standard 36 which says that
member States develop technical, evaluation and certification requirements, that they
ascertain that requirements fully reflect relevant legal principles and that they keep
requirements up to date; or standard 40 which says that the electoral management body
shall be responsible for the respect and enforcement of all requirements even in the
presence of failures and attacks.

Many other provisions, initially inherited from the old standards were reviewed,
corrected, clarified (see also [18]). Examples include standard 9 which now takes into
account the multiple voting possibility (see criticism of the previous standard in [11])
or standard 23 which takes into account the verifiability proofs.
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4 Use, Impact and Evolution of Rec(2017)5

4.1 Use of Rec(2017)5

International, national and local regulatory instruments of e-voting. The adoption
of the old Rec(2004)11 was preceded by a Venice Commission report on the com-
patibility of remote voting and electronic voting with the standards of the Council of
Europe [19].18 The report notes that electronic voting is neither generally permitted by
human rights nor ruled out a priori. Instead, its acceptability depends on the standards
implemented in the procedure. The report concludes that e-voting’s compatibility
depends primarily on adequate provision, through national legislation and legal prac-
tice, of the prescribed conditions, taking particular account of technical and social
conditions.

This remains true and illustrates the importance of a good regulatory framework for
e-voting. International standards are only one part of it. Additionally, national and, as
the case may be, local regulations apply to the of e-voting in a specific case. The
challenge is to have a coherent corpus of international-national-local regulations. While
Rec(2017)5 contributes to clarifying the international standards, work is still necessary
at the national level (in most cases). Yet, as shown by several authors in this conference
and elsewhere (examples include [14, 20–22]) the national legislator faces several
difficulties and dilemmas when regulating e-voting.

By clarifying the application of European principles of democratic elections to
e-voting, Rec(2017)5 clarifies the corpus of international regulations that apply to
e-voting. The work of CAHVE to update the European standards to take stock of
experiences and developments in the technical and legal fields, followed a clear, pre-
viously agreed strategy. It can serve as an example to the national legislator too. The
challenges and ambitions are similar. Furthermore the national legislator should (ac-
cording to rec.iii) build upon the Council of Europe documents and does not need to
start to regulate e-voting from scratch.

What about national legal specificities? The Recommendation recognizes that
countries may have additional principles. They may make a stricter or broader inter-
pretation of the European principles and standards. There may be exceptions and
restrictions or the need to apply one principle in a stricter way and another one in a
looser way, etc. At the end, such decisions are to be taken by the national authority.
However, some basic conditions should be respected. Such decisions should be taken
by the competent authority. They are based on law, are in the general interest, respect
proportionality, etc. The overall aim of democratic elections should be respected (see
also §18 Explanatory Memorandum).

18 The word “standards” in the title of this Venice Commission report from 2004 corresponds to the
concept “principles” as defined in this paper and as referred to in Rec(2017)5. This inconsistency
illustrates the fact that e-voting challenges legal regulations among others because it requires a very
well structured and coherent body of regulations, including terminology, which of course is far from
being the case.
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Rec(2017)5 and certification of e-voting solutions. Compliance with the European
standards alone does not guarantee the democratic quality of a specific e-election.
National (and, as the case may be, local) principles apply to the use of e-voting in a
specific context. Detailed requirements should be derived from all applicable princi-
ples, including national and local ones. This task, as well as ensuring that such
requirements comply with higher principles and are up-to-date, fall on member States
(standard 36). It follows that detailed requirements for a specific use of e-voting cannot
logically be put in a document like the Recommendation which ambitions to cover all
kinds of e-voting in all 47 member States (see also Sect. 3.1 above).

Detailed requirements are necessary in order to evaluate and certify a specific
e-voting system to be used in a given election. It follows that such certification cannot be
done against the standards included in the Recommendation alone. Whether it is pos-
sible and whether it makes sense to have a “partial certification” against the European
standards alone is another question which is not discussed in the Recommendation.

4.2 Impact of the Recommendation

As a soft-law instrument (not binding by definition), the Recommendation has however
an important influence on member States and may even become binding, in certain
circumstances. This is briefly explained below (for more details see [23]).

Influence. As a legal instrument, a recommendation indicates unanimous agreement
regarding the measures contained in it. According to articles 15 (§a and b) and 20 of the
Council of Europe Statutes, a recommendation requires the unanimous vote of the
representatives casting a vote and the presence of a majority of the representatives
entitled to sit on the Committee. So Rec(2017)5 contains unanimously accepted
interpretations of the principles on democratic elections as applied to e-voting and this
in the whole region and for all kinds of e- elections.

According to [19] where the contracting States share a common or homogenous
standard on a question related to the ECHR’s guarantees, this tends to favour accep-
tance of this standard at European level as well. Where it is impossible to identify a
common point of view among the various member States, national authorities have
greater scope for discretion. This gives the standards in the Recommendation a clear
advantage. This also explains why they are used as legal benchmark for evaluating
e-voting by observers [16].

Furthermore, as foreseen in the Council of Europe Statue, Rec(2017)5 recommends
that governments keep under review their policy on e-voting and experience of it (rec.
iv). They are encouraged to share their experience in this field (rec. v) and to translate
and disseminate it (rec. vi). All this helps increase acceptance of the Recommendation.

Possible binding character. Soft law instruments reflect common agreement on the
interpretation of conventional principles. In the Council of Europe region, the European
Court of Human Rights (ECtHR), which rules on alleged violations of the rights set out
in the ECHR, including of the right to free elections by secret ballot (P1-3), adopts a
dynamic interpretation of the rights and freedoms granted by the Convention. With the
aim to ensure the effectiveness of rights, the Court considers the Convention as being a
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living instrument which must be interpreted in the light of present-day conditions.19 In
practice, this means that the Court makes a dynamic interpretation of the Convention:
in interpreting the principles in the light of present conditions, the Court seeks guidance
(some say legitimacy) in the common trends of legal and social developments in the
region. In the electoral field, Venice Commission’s Code of Good practice in electoral
matters is regularly referred to by the Court. This may be the case, in the future, with
Rec(2017)5. When included in a Court judgment (binding on member states) the
referenced soft law provision becomes binding.

4.3 Future Work on E-voting at the Council of Europe

The new Recommendation foresees periodical review meetings at least every two years
and introduces a review mechanism for the Guidelines. These new elements were
strongly supported by national experts at CAHVE.

The Recommendation provides precious guidance to member States. However it
only includes a set of minimum standards applicable throughout the region. Countries
can and actually do more, going beyond the minimum European standard, namely to
reflect their specific traditions and needs. At some point, there may be a broader,
regional consensus, on new standards. Such novelty will probably be reflected in (a
new version of) the recommendation.

For instance, the old Guidelines on transparency suggested that countries experi-
ment verifiability techniques which allow for more transparency. However the old
Recommendation had no provisions on verifiability. A few years later, almost all
countries that were using e-voting (both remote internet voting and e-voting on voting
machines at polling stations) introduced mandatory regulations requiring certain veri-
fiability tools (individual and/or universal verifiability tools) as a precondition for
allowing e-voting.20 The new Rec(2017)5 now has integrated such consensus and
recommends the introduction of verifiability tools to create a chain of trust (provisions
§15 - §18) in the text of the recommendation itself.

It is the task of the review meetings to monitor such developments and decide as the
case may be to update the Guidelines. A possible decision, at some later point, to
update the Recommendation will require the preliminary approval of the Committee of
Ministers.

5 Conclusion

This paper explains the new European standards on e-voting, the novelties introduced
by Rec(2017)5 compared to the previous Rec(2004)11 and the underlying motivations,
inputs and work to update/produce the new standards. It further explains the relations
and mutual influences between international and national standards and comments on
the future development of the European standards.

19 Constant case law of the ECtHR.
20 This happened for instance in Norway, Estonia, Switzerland, Belgium.
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If there is one general conclusion to be drawn, it is about the importance of
maintaining a regular dialogue between international standard setting bodies, national
authorities and experts, academia and other e-voting interested stakeholders on the
interpretation of standards, their implementation and their possible evolution. This has
taken place in the past at the Council of Europe and is foreseen to continue in the
future. Thanks to this dialogue the new Rec(2017)5 and the associated Guidelines have
integrated lessons learned from past developments and have adopted the necessary
structure and mechanisms that allow them to remain up-to-date in the future.

Appendix

See Table 1.

Table 1. Correlation between (old) Rec(2004)11 standards and the Rec(2017)5 and accompa-
nying Guidelines. Decisions with respect to the old standards (under Explanation)

Standards
Rec(2004)
11 (App. I,
II and III)

Standards Rec
(2017)5
(App. I) and
Guidelinesa

Explanation Standards
Rec(2004)
11 (App. I,
II and III)

Standards Rec
(2017)5
(App. I) and
Guidelines

Explanation

1 1 Changed 57 30a Unchanged

2 Discarded Out of
scope

58 49 Changed

3 2 Unchanged 59 39 Changed
4 3 Unchanged 60 39c Changed

5 9 Changed 61 1, 2a Changed
6 9 Changed) 62 1b Unchanged
7 9 Changed 63 2a Unchanged

8 6 Changed 64 1c Changed
9 10 Changed 65 1a Changed

10 12 Unchanged 66 35 Changed
11 12a Changed 67 discarded

Mentioned in
Explanatory
Memorandum

Over-specified

12 10b Unchanged 68 discarded Over-specified
13 13 Changed 69 31a, 43, 40j Changed
14 16 Changed 70 40i, 40 k, 40 l-i Changed

15 10c Changed 71 40i, 40 k Changed
16 19 Changed 72 40j Changed

17 26, 19 Changed 73 42a Changed
18 26, 19 Changed 74 40 l-ii Unchanged

(continued)
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Table 1. (continued)

Standards
Rec(2004)
11 (App. I,
II and III)

Standards Rec
(2017)5
(App. I) and
Guidelinesa

Explanation Standards
Rec(2004)
11 (App. I,
II and III)

Standards Rec
(2017)5
(App. I) and
Guidelines

Explanation

19 18, 19 Changed 75 40 h, 40i, 40 m Changed

20 32 Changed 76 47, 47a Changed
21 32 Changed 77 40e Unchanged

22 32c Changed 78 21 Changed
23 34 Unchanged 79 40 g Unchanged
24 33 Unchanged 80 41a Changed

25 37 Changed 81 21, 21a Changed
26 15-18 Changed 82 7 Changed

27 Discarded Unclear 83 33a Unchanged
28 40 Changed 84 39b Unchanged
29 40-49 Changed 85 40, 37, 39 Changed

30 40 Changed 86 48 Unchanged
31 42 Unchanged 87 discarded out of scope

32 41 Changed 88 discarded out of scope
33 41b, 41c Unchanged 89 48 Changed
34 40, 44, 45, 46 Changed 90 11, 10a Changed

35 21, 45 Changed 91 49a Unchanged
36 32 Changed 92 15 Changed

37 32 Changed 93 23b, 23c Changed
38 32 Changed 94 7, 8, 9 Changed
39 Discarded Registering

is not
considered

95 15 Changed

40 Discarded Out of
scope

96 28 k Split

41 Discarded Bad
practice

97 48 Changed

42 Discarded Out of
scope

98 30b Changed

43 Discarded Out of
scope

99 30d Unchanged

44 9 Changed 100 39 Changed
45 32 Changed 101 39, 39a-c Changed
46 32 Changed 102 39 Unchanged

47 5 Changed 103 39a Unchanged
48 5, 10, 11 Changed 104 39 Changed

49 5 Language 105 41e Changed
50 4, 32 Changed 106 26 Changed
51 23 Changed 107 39 Changed

52 23 Changed 108 15–18 Changed

(continued)
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Abstract. We formalise a variant of the Single Transferable Vote
scheme with fractional transfer values in the theorem prover Coq. Our
method advocates the idea of vote counting as application of a sequence
of rules. The rules are an intermediate step for specifying the protocol
for vote-counting in a precise symbolic language. We then formalise these
rules in Coq. This reduces the gap between the legislation and formalisa-
tion so that, without knowledge of formal methods, one can still validate
the process. Moreover our encoding is modular which enables us to cap-
ture other Single Transferable Vote schemes without significant changes.
Using the built-in extraction mechanism of Coq, a Haskell program is
extracted automatically. This program is guaranteed to meet its specifi-
cation. Each run of the program outputs a certificate which is a precise,
independently checkable record of the trace of computation and provides
all relevant details of how the final result is obtained. This establishes
correctness, reliability, and verifiability of the count.

1 Introduction

Elections are at the heart of democratic systems, where people choose whom they
perceive as the fittest candidate according to their preferences. Consequently,
providing public trust into correctness of elections, including the count of votes,
becomes crucial. Usually this trust is established by allowing observers of each
party, or members of the public, to scrutinise the count, thereby ascertaining
the authenticity of the final outcome of the election. Moreover, scrutiny sheets
are published later to provide detail about the process.

In practice, scrutiny leaves much to be desired. For example, costly mistakes
have happened in Australia so that the whole election was cancelled and had
to be re-run again [9]. Because of such incidents, and the cost of hand-counted
elections, use of computers for vote counting has received more attention. Unfor-
tunately, the source code of the program used to count votes is kept secret in
most cases as it is “commercial in confidence” [2]. These programs merely out-
put the final result without giving information as to how and through what
exact steps they reached the final result. Since legislation often leaves some cor-
ner cases open to interpretation, for instance tie breaking, implementation of
the protocol is not straightforward. Due to this inexactness, examining the out-
put of such commercial-in-confidence programs against any other program for
c© Springer International Publishing AG 2017
R. Krimmer et al. (Eds.): E-Vote-ID 2017, LNCS 10615, pp. 163–182, 2017.
DOI: 10.1007/978-3-319-68687-5 10
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(hopefully) producing the same output becomes extremely difficult. Therefore
questions about correctness of the count by these programs are still addressed
unsatisfactorily.

Formal verification [6] now is mature enough to solve this problem. In this
paper, we understand the process of counting votes in accordance to the protocol
as a finite sequence of atomic steps, where uncounted ballots are dealt with
and distributed among candidates according to the algorithm laid down by the
protocol. Each of these stages can be formally expressed mathematically. For
example, every count begins from a set of ballots and continues through some
intermediate steps where candidates are elected or excluded until eventually the
final stage where winners of the election are declared is reached. We represent
every single possible stage of the count (or computation) by formal objects called
judgements. Judgements are categorised into three kinds: initial, intermediate
and final.

Initial judgements are the ones that an election begins with, namely the set
of uncounted ballots.

Intermediate judgements consist of recording: the uncounted ballots; the
tally of each candidate; elected and excluded candidates; those awaiting their
surplus to be transferred; and a backlog of already elected candidates whose
surplus still needs to be transferred.

Final judgements are the ones where the election has come to an end by
declaring winners.

Therefore at each stage of the count, judgements record all the necessary informa-
tion that represents a state of the process of tallying the ballots. In every election,
the protocol specifies how to move from one point of the count to another, for
instance, by electing or eliminating a candidate. Each of these statements telling
us what to do in counting are captured by mathematical rules which state when
and how precisely one can progress from a given judgement to another judgement
(stage of the count). Every rule has side conditions that specify when precisely
the rule may be applied. An election count therefore simply becomes a sequence
of correctly applied mathematical rules for counting which begin with an initial
judgement and end with a final one. For the purpose of this paper, we have
translated the textual specification of the protocol into a mathematical, rule-
based formulation. While we have taken care to correctly capture the protocol,
this step would need to be validated by legal professionals.

Judgements and rules specified mathematically are formalised in the
theorem-prover Coq [1]. We formally prove three main properties of the
formalised scheme.

Measure decrease: at each stage of the computation, if there is an applicable
rule of counting, applying it decreases a well-defined measure of complexity.

Rule application: whenever we are in a non-final stage of the count one can
always apply at least one rule. (In fact, exactly one rule can be applied.)

Termination: from every non-final judgement, we can always reach a final
judgement via rule applications, i.e. a stage where winners are announced.
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Coq has a built-in automatic extraction mechanisms [8] that allow us to auto-
matically synthesise functional programs (we choose to extract into Haskell) from
Coq code. As we show by experiment, the extracted code is capable of dealing
with real-size elections. More importantly, every run of the program produces
a certificate. This is the trace of the computation performed by the program.
It records each single step taken from an initial to a final stage of the count
along with the rules applied to move between judgements. The certificate can
then be taken and checked for correctness by other programs in which the scru-
tineers trusts, or simply spot-checked by hand. This allows for a larger group
of observers (in particular, more than can fit into the room where hand count-
ing takes place) to ascertain the correctness of the count. Furthermore, we no
longer need to be concerned with the integrity of hardware, as the validity of
the certificate will guarantee the correctness of the count. Indeed, we no longer
need to trust anyone or anything, including the actual program which output
the certificate. By itself the certificate implements universal verifiability [7] as a
qualitative measure of the reliability of elections.

Finally our encoding is modular : if the rules are changed, we only need to
adapt the (formal) proof of the applicability and the measure decrease theorem.
When we prove any assertion about the rules, since the definition of each of
them stands alone, we break the assertion into small pieces and prove it for
each rule separately, thus minimising number of steps needed to establish the
proof obligations. Also, to capture other STV schemes, only part of one single
rule might need modification. Combined with the above feature this allows us
to prove the same assertions for the new STV encoded fairly smoothly.

Related work. DeYoung and Schürmann [4] pioneered vote counting as com-
putation in a logical system. They use a formal system called Linear Logic [5]
as a bridge between the legislation and their formalisation of the voting proto-
col in the logical framework Celf [11]. The gap between the protocol and linear
logic specification is less compared to a direct implementation in a main stream
programming language. However, technical understanding of linear logic and
its syntax is required to fully follow their formal specification. Furthermore, to
the best of our knowledge, their work could not deal with real-size elections.
Pattinson and Schürmann [10], and Verity [13] approached the task for dealing
with First-Past-The-Post and a simple form of STV in a similar way except
that they use type-theory as a bridge between protocol and formalisation, and
the theorem-prover Coq to formalise the rules and establish their properties,
like existence of winners at each election. Dawson et al. [3] employ the HOL4
theorem prover to formalise Hare-Clark STV. A specification of the scheme is
given based on Higher-order Logic. Then an SML program is produced inside
HOL4 along with some properties proved about the code which is then manually
translated into executable code. There is no proof that the manual translitera-
tion from HOL4 to ML is correct, and no certificate is output after a run of the
program. While there is no formal proof of the correctness of the (automated)
extraction of code from Coq proofs, our approach, in particular the certificate,
increases trust in the final result. Sources of this paper are available at: https://

github.com/MiladKetabGhale/STV-Counting-ProtocolVerification.

https://github.com/MiladKetabGhale/STV-Counting-ProtocolVerification
https://github.com/MiladKetabGhale/STV-Counting-ProtocolVerification
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2 From Legal Text to Logical Rules

There are many variants of STV schemes used around the world, e.g. in the
Netherlands, India, and Australia. They mostly differ in the quota, the mecha-
nism to transfer the surplus, the computation of transfer values, and the method
of tie breaking. Our formalisation is based on the ANU-Union STV scheme [12],
a basic version of STV that very similar e.g. to the scheme used to elect the
Australian Senate. The main features of this scheme are:

Step-by-step surplus transfer. Surplus votes of already elected candidates,
who are awaiting for their surplus to be transferred, are dealt with, one at a
time, in order of first preferences.

Electing after each transfer. After each transfer of values, candidates that
reach the quota are elected immediately.

Fractional transfer. The value of vote transfer is a fractional number
determined by a specific formula.

For the description of the protocol, we refer to the votes in excess of the quota
that contribute to the election of a candidate as the surplus votes (of that can-
didate). The ANU-Union counting protocol proceeds as follows:

1. decide which ballots are formal.
2. determine what the quota exactly is.
3. count the first preference for each formal ballot paper and place the vote in

the pile of the votes of the preferred candidate.
4. if there are vacancies, any candidate that reaches the quota is declared

elected.
5. if all the vacancies have been filled, counting terminates and the result is

announced.
6. if the number of vacancies exceeds the number of continuing candidates, all

of them are declared elected and the result is announced.
7. if there are still vacancies and all ballots are counted, and there is an elected

candidate with surplus, go to step 8 otherwise go to step 9.
8. in case of surplus votes, transfer them to the next continuing preference

appearing on each of those votes at a fractional value according to the
following formula:

new value =
number of votes of elected candidate − quota

number of votes of elected candidate
(1)

Subsequent transfer values are computed as the product of the current trans-
fer value with previous transfer value.

9. if there are still vacancies and all ballots are counted, and all surplus votes
are transferred, choose the candidate with the least amount of votes and
exclude that candidate from the list of continuing candidates. Also transfer
all of their votes according to the next preference appearing on each of the
votes in his pile. The transfer value of the ballots shall remain unchanged.
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10. if there is more than one elected candidate, first transfer the surplus of
the candidate who has the largest surplus. If after a transfer of surplus, a
continuing candidate exceeds the quota, declare them elected and transfer
their surplus, only after all of the earlier elected candidates’ surpluses have
been dealt with.

11. at transfer stage, candidates who are already elected or eliminated receive
no vote.

2.1 Formalisation as Logical Rules

We need to introduce some symbols which formally represent concepts in the
protocol. Then by using them, we can mathematically express different parts of
the protocol. Below is a list of concepts along with the corresponding symbols
used to express them.

C a set of candidates
Q the set of rational numbers
List(C) the set of all possible list of candidates
List(C) × Q the set of all (possible) ballots (with transfer values)
B shorthand for List(C) × Q

A initial list of all of the candidates
st initial number of vacancies
bs initial list of ballots cast to be counted
bl the list of elected candidates whose surplus is to be transferred
b, d to represent a ballot
ba, ba′ list of ballots
baε empty list of ballots
c, c′ to represent a candidate
t, nt, t′ tally function, from C into Q

p, np function for computing pile of a candidate, from C to B
e, ne for characterizing list of elected candidates so far
[] representing empty list of candidates
l1++l2 list l2 is appended to the end of list l1
h, nh for representing list of continuing candidates in the election
qu for the quota of the election as a rational number

Before explaining the role of above symbols in the formalisation, we decompose
counting of an election into its integral parts. Every election count has compo-
nents which put together form the whole process:

1. candidates competing in the election
2. ballots consisting of a list of candidates to be ranked and a fractional value

of the ballot
3. quota of the election
4. stages of the counting (or computation)
5. a group of candidates called elected candidates
6. a group of candidates called continuing candidates
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7. a group of candidates already elected who have exceeded the quota
8. the tally of votes of each candidate
9. the set of ballots that have been counted for each individual candidate.

Here a ballot b ∈ B has two parts: one part is a list of candidates and the other
is the value that the ballot has. So a ballot b is a pair (l, q), for some l ∈ List
(C) and a number q ∈ Q. The character ba ∈ B, is reserved to show the set
of ballots which require to be counted in each single state of the count (ba for
“ballots requiring attention”). The current tally for each candidate is represented
by the function t. Item 9 above is expressed by the function pile p. At each stage
of the count for any candidate c, p(c) determines which votes are given to the
candidate c. The list bl ∈ List(C) which is the backlog, is the list of already
elected candidates whose votes are yet to be transferred. The notation e (for
“elected”) and h (for “hopeful”, as c already represents candidates) respectively
represent the list of elected and continuing candidates at each stage.

We must formally express stages of the computation that occur during a
counting process. For this purpose, we introduce three kinds of judgements,
which encapsulate the concept of stages of the computation. When forming a
judgement, there could be assumptions that are hypothesised in order to assert
that judgement. The symbol � is used to enclose those assumptions in the
judgement.

Initial. bs, st, A � initial(ba) where A is the initial list of all continuing candi-
dates, bs is the initial list of all ballots, and st is the initial number of vacancies.

In an election, assuming we have an initial list of ballots bs, initial number of
vacancies st, and a list A of all candidates competing in the election, initial(ba) is
an initial stage of computation, where ba is the list of uncounted formal ballots.

Intermediate. bs, st, A � state(ba, t, p, bl, e, h) where A, bs and st are as above.
In an election, assuming we have an initial list of ballots bs, initial num-

ber of vacancies st, and a list A of all candidates competing in the election,
state(ba, t, p, bl, e, h) is an intermediate stage of the computation, where ba is
the list of uncounted ballots at this point, for a candidate c, t(c) is the tally
recording the number of votes c has received up to this point, p(c) is the pile of
votes counted towards the tall of candidate c, bl is the list of elected candidates
whose surpluses have not yet been transferred, e is the list of elected candidates
by this point, and h is the list of continuing candidates up to this stage.

Final. bs, st, A � winners(w) where A, bs and st are as above.
In an election, assuming we have an initial list of ballots bs, initial number of

vacancies st, and a list A of all candidates competing in the election, winners(w)
is a final stage of the computation, where w is the final list consisting of all of
the declared elected candidates.
Assumptions on the left of the turnstile symbol (�) are not shown from now
on to improve readability of the formalisation and we shall employ the term
judgement interchangeably with stage of computation. Also we note that our
computations make no essential use of the employed concepts such as continuing
candidates as lists of candidates instead of a set of candidates, and ballots as
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lists instead of multi-sets. The rules defined later are ignorant of the order of
continuing candidates or the ballots cast. Therefore use of lists is simply a matter
of convenience in view of the formalisation in a theorem prover.

Now we are in a position to present formal rules capturing the scheme. For
each of the rules, there are side conditions stated inside the definitions of the
rules. They are propositions which impose constraints on the formalisation of
rules so that we can apply the rules only if those conditions are met. These
conditions are formal counterpart of the protocol clauses. Satisfying them when
applying rules ascertains us that the protocol is (formally) met.

The first rule start specifies how the process of computation begins. An initial
list of ballots ba ∈ List (B) is filtered so that informal ballots are eliminated.
Based on the number of formal ballots the quota qu is determined. Here we use
the Droop quota, but later we explain that one can simply choose a different
formulation of qu suited for their particular STV scheme.

Definition 1 (start). Let the list of uncounted ballots ba and the judgement
initial (ba) be given. Then by the counting rule start, we can transit to the judge-
ment state (ba′, nt, np, [], [], A) where

initial (ba)
state (ba′, nt, np, [], [], A)

start

1. ba′ is the list of formal ballots, qu = length(ba′)
st+1 + 1 is the quota (a fractional

value in the ANU union voting protocol)
2. the list of formal ballots appended to the list of informal ballots is a permuta-

tion of the list of total ballots.
3. for every candidate c, the tally nt(c) is zero and the pile np(c) is empty, i.e.

∀c, nt(c) = 0 and np(c) = baε

4. no one is elected yet, i.e. e = [], and no one has any surplus yet, i.e. bl = []

The second rule count states how votes are counted. Assume we are in a stage
state (ba, t, p, bl, e, h). The rule count determines what the next stage of the
computation is. First of all ba should not be empty, as it would not make sense
to count because there would be no ballots to deal with. Besides, the rule asserts
that the next judgement is of an intermediate kind. Therefore it will look like
state(baε, nt, np, nbl, ne, nh). Moreover, it tells us what each of the components
are exactly. baε is the empty list of ballots. Take a candidate c. If c /∈ h then c
receives no vote and therefore np(c) = p(c) and also the tally of c will remain the
same so that nt(c) = t(c). But if c ∈ h, then we collect all of those votes which
prefer the candidate c and collect them into a list lc and finally append lc to the
rest of the votes which c already has (namely p(c)). Subsequently, the tally of
c is updated by adding the fractional values of all of the votes which favour c
by adding the second component of each ballot in np(c). When moving through
the rule count, no one is declared elected or excluded from the election, and no
change happens to the backlog as well, i.e. nh = h, ne = e, nbl = bl. Therefore
only ba, t, and p are updated when we apply count. The rule deals with all of
the uncounted ballots in ba in on step.
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Definition 2 (count). Suppose for ba ∈List(B), t : C → Q, p : C →List(B),
bl ∈List(C), and e, h ∈List(C), and state(ba, t, p, bl, e, h) is an intermediate stage
of the computation and ba is not empty. Then the count inference rule states
that we can move to state(baε, nt, np, bl, e, h) as our next stage of the computation
with the conditions below met.

state(ba, t, p, bl, e, h)
state(baε, nt, np, bl, e, h)

count

1. if a candidate c is not continuing, then c’s pile and tally remain the same,
i.e. ∀c /∈ h, np(c) = p(c) and nt(c) = t(c)

2. if a candidate c is continuing, then find all of the ballots which have c as
their first continuing preference and put them in the pile of c, i.e. ∀c ∈ h,
np(c) = p(c)++ lc, and nt(c) equals to the sum of values of the ballots in the
updated pile

After counting the first preferences, we are expected to check if any candidates
have reached the quota and subsequently declare them elected. The rule elect
takes in an intermediate judgement and checks who has reached the quota and
declares all of them elected in one go. The rule computes the fractional value of
the surplus of each of those candidates according to the mentioned formula and
puts those elected candidates into the backlog bl in order of the amount of votes
they have received. Notice that the rule cannot be applied if ba is not empty.

Definition 3 (elect). Assume state (baε, t, p, bl, e, h) is a judgement and baε is
the empty list of ballots. Then we have the following rule whenever there exists
l ∈List (C), a list of candidates to be elected, such that each of the conditions
below hold:

state (baε, t, p, bl, e, h)
state (baε, t, np, nbl, ne, nh)

elect

1. length of the list l is less than or equal to st − length(e) (there are enough
vacant seats)

2. every candidate in the list l has reached (or exceeded) the quota qu
3. the list l is ordered with respect to the number of votes each elected candidate

(whose name appears in l) has received.
4. the updated list of elected candidates ne, contains every already elected can-

didates (in e) plus the ones appearing in the list l
5. the updated list nh has every continuing candidate whose name is in h, except

those whose name also exists in l
6. nbl equals to bl appended by the list l, i.e. nbl = bl ++ l
7. if a candidate c is not in the list l, then pile of c is kept the same, i.e.

∀c /∈ l, np(c) = p(c)
8. if a candidate c is in l, then update their pile by keeping the votes already

attributed to them, but changing the value of those votes to a new fractional
value according to formula (1).
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Definition 4 (ewin). Let state (ba, t, p, bl, e, h) be a stage of the computation.
The inference rule ewin asserts that winners (e) is the next judgement, provided
that length (e) = st.

state (ba, t, p, bl, e, h)
winners (e)

ewin

Close to the above, is the rule hwin which finishes the counting process if the
sum of the number of elected and continuing candidates does not exceed st.

Definition 5 (hwin). If state (ba, t, p, bl, e, h) is a judgement and (length (e)
+ length (h) ≤ st), then we can transit to the stage winners (e ++ h).

state (ba, t, p, bl, e, h)
winners (e ++ h)

hwin

The sixth rule transfer tells us how and when to transfer votes. In order to apply
the rule, the list of uncounted ballots should be empty, the backlog must contain
at least one elected candidate and the number of elected candidates must be
strictly less than the vacancies. Moreover, no continuing candidate should have
reached the quota so it is impossible to elect someone. We then remove the
candidate who is at the head position of the backlog and update the list of
uncounted ballots, the pile of this particular candidate and the backlog.

Definition 6 (transfer). Suppose state (baε, t, p, bl, e, h) is the current judge-
ment. Then the rule transfer allows us to progress the count to state
(nba, t, np, nbl, e, h)

state (baε, t, p, bl, e, h)
state (nba, t, np, nbl, e, h)

transfer

and the side conditions for applying the rule are

1. there are still seats to fill, i.e. length (e) < st
2. no candidate has reached the quota, i.e. ∀c′, c′ ∈ h → (t(c) < qu)
3. there exist a list l ∈List(C) and a candidate c′ such that

3.1 c′ is the first candidate in the backlog and l is the tail of bl, i.e. bl = c′ :: l
3.2 remove c′ from the backlog bl and update it, i.e. nbl = l
3.3 move the votes in the pile of c′ to the list of uncounted ballots, nba = p(c′)
3.4 empty the pile of c′, i.e. np(c′) = baε

3.5 do not tamper with pile of candidates other than c′, i.e. ∀c′′, c′′ �= c′ →
np(c′′) = p(c′′).

The last rule elim deals with excluding the weakest candidate among continuing
candidates when there is no ballot to count, no one has been elected, or there
are no votes to transfer. We find the candidate with the least amount of votes,
put his votes into the list of ballots to be counted and update this particular
candidate’s pile and remove him from the list of candidates.
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Definition 7 (elim). Suppose state (baε, t, p, [], e, h) is the current stage of com-
putation. If st < (length (e) + length (h)), and no candidate has reached the
quota then subject to the side conditions below, the rule elim progresses to the
judgement state (nba, t, np, [], e, h).

state (baε, t, p, [], e, h)
state (nba, t, np, [], e, h)

elim

1. All continuing candidates are below the quota
2. there exists a weakest candidate c′ such that

2.1 other continuing candidates have strictly more votes than c′

2.2 exclude c′ from current continuing list of candidates (namely h) and
update it to nh

2.3 remove the ballots in the pile of c′ without changing the value of those
ballots and put them in the list of uncounted ballots, i.e. nba = p(c′) and
np(c′) = baε.

2.4 do not tamper with the pile of other candidates, i.e. ∀c′′, c′′ �= c′ →
np(c′′) = p(c′′)

Remark 1. In the formulation of the rule elim above, note that it allows the
exclusion of one candidate (with the least number of votes). The rule does not
specify any tie-breaking. That is, if two (or more) candidates tie for the smallest
tally, one of them can be eliminated non-deterministically. To conform with
the specification, any tie-breaking scheme may be used. Put differently: the
specification that we give does not mandate any way of tie breaking, as long as
a candidate with the least tally is chosen.

3 Formalisation as Inductive Types

Formal rules expressing the protocol were laid down in the previous section. Each
of the notions introduced previously have an equivalent in the Coq formalisation.
To express some of them, using Coq libraries is enough, such as rational numbers
and lists. However, notions such as judgement, ballot and candidate must be
defined by the user. Coq provides the user with powerful tools to state their
desirable notions and properties by means of dependent inductive types.

In a nutshell, a type is a collection of values of similar structure, and a
dependent inductive type is a type that depends on additional data. In our case,
this data is the set of ballots cast, the initial set of candidates, and the number
of vacancies. That is, we only get to speak about an election count once these
parameters are fixed.

3.1 ANU-Union STV

Judgements are defined as an inductive type in Fig. 1. Recall that there are
three kind of judgements. We only describe the Coq formalisation of interme-
diate judgements in detail. In Fig. 1, the second item asserts that state is a
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Fig. 1. Inductive definition of judgements

constructor which takes in seven values each of which has a type on its own. For
example the type of the first argument is list ballot, and the second one is
of type (cand ->Q).

Recall that an intermediate judgement was of the form state (ba, t, p, bl, e, h).
The definition above captures such a stage introduced earlier. However, there
are two small differences in our encoding and mathematical representation of
the last section. Here, we have added one more argument to an intermediate
state which is of type Q (for rational numbers) and represents the quota qu. In
addition, we require that the list of elected candidates doesn’t exceed the number
of available seats, and that the list of continuing candidates is duplicate-free. In
Coq-notation, this is achieved by adding the respective constraints as in Fig. 1.

Elected candidates. The first one is the formalisation we have chosen for list
of elected candidates. What it expresses is that a value of this type is a pair
like (a, pa), such that a is a list of candidates (thus of type list cand) and
pa is a constraint that the length of this value a (which is a list) does not
exceed the number of vacancies, namely st.

Continuing candidates. The second one is the type of continuing candidates.
Similarly values of this types are composed of two parts; a list part and proof
showing the list component has no duplicate.

Owing to the additional constraints on elected and continuing candidates, we
must discharge the corresponding proof obligation for every theorem formally
established in Coq.

Now we can talk about the encoding of rules. Due to space limitation only one
of them is described here. Figure 2 is the encoding for the logical formalisation
of the rule elim given earlier in Definition 7. Each number in Fig. 2 corresponds
to the number given to the clauses in Definition 7. Items † are the premise and
conclusion of the elim rule, respectively. Recall that continuing candidates are
represented as values which have two parts: a list component and a constraint
component about that list. The function proj1-sig takes a value e of such
type and returns the list part. The property eqe encodes the idea that the list
part of updated continuing candidates is exactly equal to the list part of the old
continuing candidates, except that it does not contain the weakest candidate c.
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Fig. 2. Coq definition of elim rule

Definition eqe {A: Type} (x:A) (l: list A) (nl: list A) : Prop :=

exists (l1 l2: list A),

l = l1 ++ l2 /\ nl = l1 ++[x]++ l2 /\ not(In x l1) /\ not(In x l2).

Fig. 3. Definition of eqe

We argue that there is no essential gap from the mathematical specifica-
tion of the protocol defined earlier to the Coq formalisation. Other formal rules
are encoded similarly in correspondence to their formal counterpart in the last
section. Having defined rules of counting, we can state and prove properties
about their behaviour. We establish three main properties about them.

To prove the first result, by defining a well-founded ordering on the set N

and extending it to a lexicographic ordering on the set N×N×N×N, we impose
a complexity measure on judgements.

Definition 8 (measure on judgements). The complexity measure FTm is
defined on non-final judgements as

FTm : {j : FT -Judgement |non-final(j)} −→ N × N × N × N

1. FTm(initial(ba)) = (1, 0, 0, 0), for any ba
2. FTm(state(ba, t, p, bl, e, h, qu)) = (0, length(h), length(bl), length(ba))

This imposed complexity measure is well-behaved with respect to the lexico-
graphic ordering imposed.

Theorem 1 (Measure decrease). Given the definition of FT-Judgements,
rules of counting, and the ordering defined on non-final judgements, application
of any of the rules to a non-final judgement decreases the complexity measure.

Proof. Proof of the theorem proceeds by separating in into lemmas each of which
shows the same assertion for a single rule. Each of the rules that we apply reduces
at least one of the components of the measure. Since every component is finite,
we reach to a base eventually.
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Theorem 2 (Rule application). For the FT-Judgements and rules of count-
ing defined, at each non-final stage, at least one rule is applicable.

Proof. We provide a sketch of the proof. First we check what kind of judgement
the current stage of computation is.

1. If it is an initial, we apply the rule initial-step.
2. If it is an intermediate stage like state(ba, t, p, bl, e, h, qu), then we first

check whether ba is an empty list of ballots. If ba is empty then there
are two possibilities at first instance: (length(e)+length(h)) ≤ st, or
(length(e)+length(h)) > st.

2.1 If (length(e)+length(h)) ≤ st we have two possibilities:
(length(e)+length(h)) = st, or (length(e)+length(h)) < st. In case of the for-
mer, we can apply the rule ewin. If the latter occurs then the rule hwin is
applicable.

2.2 But if (length(e)+length(h)) > st, we have two possibilities: bl is empty, or
bl is not empty. If the former, then elim is applicable. Otherwise the rule
transfer is applied.

2.3 If ba is not empty then count applies.

Remark 2. The structure of the proof along with tactics used in the Coq proof of
the above theorem provides us with a stronger assertion: at each non-final stage
of the computation, exactly one rule is applicable. Hence by checking carefully
when and how the rules are applied, one can see our encoding matches exactly
with expectations of the protocol. For instance, as the protocol specifies, if there
are ballots requiring attention, they must be counted first before anything else
can happen in the process of the count. It is impossible to apply any rule other
than count if ba is not empty.

Theorem 3 (Termination). Beginning from a non-final judgement, we always
reach a final judgement.

Proof. Given a non-final judgement by Theorem 2 we know there is one applica-
ble rule. By Theorem 1 the application of rules is a finite process. Hence we
reach to a final stage eventually.

We note that all proofs are fully formalised in the Coq code that accompanies
the paper.

3.2 Certificate

The extracted Haskell programme, described in the next section, provides a trace
of the computation.

Example 1. Suppose in an election, there are three candidates and two vacancies,
where the initial set of ballots is ba = [b1, b2, b3, b4, b5].

b1 = ([A,C], 1) b2 = ([A,B,C], 1) b3 = ([A,C,B], 1)
b4 = ([B,A], 1) b5 = ([C,B,A], 1)
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We explain how the counting would proceed in the hand-counted case.
start. Ballots which are informal are excluded. Since each ballot is non-empty
and does not list a candidate more than once (i.e. represents a preference order)
all ballots are formal.
count. First preferences for each candidates are determined and put into their
pile. Hence candidate A receives the ballots b1, b2, and b3. Candidate B receives
the ballot b4, and C receives b5. Tallies are updated so that tally of A becomes
3, and candidate B and C reach 1.
elect. Candidate A exceeds the quota, they are elected and value of surplus votes
changes to 0.11 according to the mentioned formula (1). The updated pile of A
is ([A,C], 0.11), ([A,B,C], 0.11), and ([A,C,B], 0.11). Nothing changes about C
and B at this stage.
transfer. As there are vacancies and no one else has reached or exceeded the
quota, surplus of A is dealt with. The list of uncounted ballots is updated to
contain the surplus of A.
count. The list of uncounted ballots is dealt with and votes are distributed
according to next continuing preference. Therefore, C receives two new votes
(each of value 0.11) which are ([C], 0.11) and ([C,B], 0.113). Candidate B receives
one vote, which is ([B,C], 0.11).
elim. No continuing candidate has reached the quota, one vacancy is left, and
there are no more votes to deal with. So the weakest candidate is found and
excluded, which is B.
count. Candidate C receives the vote ([c], 0.11) from the excluded candidate B.
hwin. The only continuing candidate, that is C, is elected and as we have filled
all the vacancies, a final stage has been obtained.

Figure 4 shows how our formal rules deal with the counting. They proceed
according to the protocol specified earlier. The starting point is the initial state
initial(ba). Then, sequentially, counting rules are applied until a final stage is
obtained. The quota is a fractional value, which is computed by the rule appli-
cation start. Notice that our program computes numbers by using the extracted
data type of rational numbers. So the actual arithmetic behind the computation
is based on this extracted data type.

In Fig. 4, all rational numbers are rounded to two decimal places for the sake of
readability. At each intermediate step of the computation represented in Fig. 4,
relevant information necessary for an external observer to verify correctness of
that step and consequently of the whole process is provided. A visualisation
of a computation similar to the one in Fig. 4 frees any examiner from putting
trust in robustness of our counting rules, their correctness both in mathematical
formalisation and implementation, and from fear of hardware malfunctioning
that might lead to distortion of computation. This trace of computation acts
as evidence independently verifiable by a third party on any other theorem-
prover or machines which they have trust in. Figure 4 is a visualisation of a
formal concept in our system, namely provable judgement. Informally speaking,
a provable judgement is a judgement that is reachable (or constructable) from
an initial stage by a sequence of counting rule applications. For example, in
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initial ba ; quota = 2.66 ; formal ballots = 5 ; total ballots = 5
start

state bs; A[0.0] B[0.0] C[0.0]; A[] B[] C[]; []; []; [A,B,C]
count

state []; A[3.0] B[1.0] C[1.0]; A[b1,b2,b3] B[b4] C[b5]; []; []; [A,B,C]
elect

state []; A[3.0] B[1.0] C[1.0]; A[([A,C],0.11),([A,B,C],0.11),([A,C,B],0.11)] B[b4] C[b5]; [A]; [A]; [B,C]
transfer

state [([A,C],0.11),([A,B,C],0.11),([A,C,B],0.11)]; A[3.0] B[1.0] C[1.0]; A[] B[b4] C[b5]; []; [A]; [B,C]
count

state []; A[3.0] B[1.11] C[1.22], A[] B[b4,([B,C],0.11)] C[b5,([C],0.11),([C,B],0.113)]; []; [A]; [B,C]
elim

state [b4,([B,C],0.11)]; A[3.0] B[1.11] C[1.22], A[] B[b4,([B,C],0.11)] C[b5,([C],0.11),([C,B],0.11)]; []; [A]; [C]
count

state []; A[3.0] B[1.11] C[1.33]; A[] B[] C[b5,([C],0.11),([C,B],0.11),([C],0.11)]; []; [A]; [C]
hwin

winners [A,C]

Fig. 4. Example of a certificate

Fig. 4 the last judgement is a provable judgement because it is constructed from
the step before it, that is already reachable from initial stage witnessed by the
proof above it, and application of the rule ewin. Certificates resemble the one in
Fig. 4, and they are output by the extracted Haskell code upon each run of the
extracted function which computes an election.

4 Extraction and Experiments

Coq has a built-in mechanism for automatic code extraction into some functional
languages such as Haskell. The extraction is essentially a syntactic translation
of the encoded Coq types and non-propositional declarations into Haskell types,
as their semantics differ. While this may (rarely) be a possible source of diver-
gence of counting process happening in Coq with its counterpart proceeding in
Haskell, we alleviate this risk by producing a certificate that can be verified inde-
pendently. As a consequence, simply checking the certificate (using hardware and
software that is trusted by the verifier) eliminates the need of trust in the entire
tool chain that has been used to generate election results. We have tested our
approach against some of the past Australian Legislative Assembly elections in
ACT for years 2008 and 2012 (Fig. 5). Our program returns the winners exactly
as the outcome of the elections have been (despite the fact that the protocol for
counting votes is slightly different). We have not benchmarked our verified and
certificate-producing implementation against other, publicly available implemen-
tations as neither of them are sufficiently specified for a meaningful comparison.

electoral ballots vacancies candidates time (sec) certificate size (MB) year

Brindabella 63334 5 19 212 84.0 2008
Ginninderra 60049 5 27 502 124.8 2008
Molonglo 88266 7 40 1915 324.0 2008
Brindabella 63562 5 20 638 95.8 2012
Ginninderra 66076 5 28 412 131.5 2012
Molonglo 91534 7 27 2409 213.7 2012

Fig. 5. ACT Legislative Assembly 2008 and 2012



178 M.K. Ghale et al.

We have also benchmarked the extracted program by generating random ballot
samples (Figs. 6, 7 and 8)1.

ballots vacancies candidates time (sec)

160000 5 40 2076
80000 5 40 938
40000 5 40 461

Fig. 6. Varying list of ballots size

ballots vacancies candidates time (sec)

80000 5 40 938
80000 5 20 213
80000 5 10 51

Fig. 7. Varying number of candidates

It appears that the complexity in list of initial ballots and number of candi-
dates is linear and quadratic, respectively. However, the program behaves differ-
ently with respect to the vacancies. As Fig. 8 shows, termination of the program
does not show a necessary relation with increase or decrease in the number of
vacancies. The reason is due to a complex combination of factors such as the
difference of the number of candidates and vacancies, the overall length of each
of the initial ballots, the number of elim rules that occur in the execution tree,
and the amount of the transfer values as the result of elim applications.

ballots vacancies candidates time (sec)

80000 1 40 982
80000 5 40 938
80000 10 40 798
80000 20 40 977

Fig. 8. Varying vacancies

To elaborate more, randomly generated ballots are almost uniformly distrib-
uted among candidates. Therefore, all of the candidates receive, more or less, the
same preferences. As a result, when testing the program on random ballots since
they are uniformly allocating preferences, the rule elect almost never applies.
So only count, transfer, and elim apply along with hwin. None of these rules
introduces fractional values. The only rule that creates fractional values is elect.
The arithmetic behind our computation is that of Coq for rational numbers.
Its operations perform calculations such as addition and multiplication and are
not implemented tail-recursive in Coq. As a result, computations proceed slower
compared to the case were values are just integers. This situation becomes worse
when number of elect rules applied in a execution increases, because both of nom-
inator and denominator of fractions become larger thus increasing the amount
of time for these function to do the computation. Unlike randomly generated

1 Results have been produced on an Intel i7 3.60 GHz Linux desktop computer with
16 GB of RAM.
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elections, in real-world elections there could be many instances of the elect rule
applications. This explains why the real elections often take longer to tally than
randomly generated ballots. Also this same reason tells us why the ACT Leg-
islative Assembly of Molonglo 2012 terminates slower than its counterpart in
2008, despite the fact that the former has fewer candidates than the later. In
the Molonglo 2012, instances of the elect application happen for candidates with
larger numbers of votes. Hence, the fractional numbers created as the result of
computation of the new transfer values to be distributed according to the trans-
fer rule are lager than the ones which occur in Molonglo 2008. This costs us
almost ten more minutes to terminate.

Moreover, in case of varying vacancies, as the number of empty seats
increases, the length of each of the initial ballots would increase too. This is
because people would list more number of candidates if there are 20 seats to fill
as compared to when there are merely 5 seat. Length of ballots to be counted
plays a crucial role in termination time, because two of the functions which do
costly computations are called by the count rule. These two functions are used
to find the first continuing candidates of each ballot and place it into the pile of
the appropriate candidate. If the length of ballots increase, cost of performing
the counting increases as well. This explains why in Fig. 8, we see an increase in
termination time. In Fig. 8, as the number of vacancies grow larger, the cost of
counting increases as well. However, at the same time, the number of elim rule
applications decreases which means that computationally we pay less from this
aspect. Therefore, it happens that the cost of more number of elim rule appli-
cations outweighs the cost of counting as we increase the number of vacancies
up to 15. However, when we reach 20 vacancies, scenario reverses in such a way
that we experience a different balance between the two factors mentioned above.

Consequently, for the role which number of vacancies plays in termination
time, one has to consider all of the aforementioned factors two of which were
discussed above. Since combination of the factor is complicated, prediction of the
program behaviour becomes challenging with respect to variation of vacancies.

5 Discussion

Our work represents the counting of an election as a formal process, where
every component of the election count is represented syntactically. Here, we
refer not to the specification (which is inherently non-deterministic) but to any
implementation (including ours that we have extracted form the formal Coq
development). In terms of the meta-theory, we can think about this in at least
three distinct ways. The first approach is to take the process as a finite state
machine (FSM). Given the initial list of candidates, M =< Σ,S, I, δ,F > is the
mathematical characterisation of the machine where

Σ := the name of rules as the input alphabet
S := the set of all possible stages
I := the set of all possible initial stages
F := the set of all possible final stages
δ := the state transition function: δ : S × Σ → S
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The content of rule application theorem and termination theorem, respectively,
show that the FSM is deterministic, and that for every initial stage of the
machine, the execution of the machine terminates in (exactly) one of the unam-
biguous final stages. Therefore, the certificate produced upon each execution of
the machine can be thought of as a trace of the states which the machine goes
through to terminate the execution.

A different interpretation is to understand the initial ballots as a program and
the counting rules as its (small step) operational semantics. In this way, every
valid program (initial list of ballots) is interpreted as a sequence of the com-
putational small-steps taken in an execution. Therefore, the final step reached
upon the execution of the program (initial list of ballots) is the value computed
by the program. The termination theorem tells us that (1) every program has
a meaning, (2) this meaning is unambiguous, and (3) there is a value for it.
The certificate, then, plays the role of an instruction trace of a classical program
execution.

Finally, one can preferably think of ANU-Union STV as similar to a typed
lambda-calculus. This perspective advocates considering the concept of compu-
tation as constructive manipulation of syntactic entities, everything is taken as
mere symbols without any meaning. To be more concrete, given the names of
candidates and the number of seats, one can perceive the initial ballots as a
combination of symbols constituted of names of candidates, symbol representing
a rational number and some symbols for characterising lists (such as brackets).
Then one can construct other symbols such as initial stages by simply putting
together an already constructed list of ballots and the name initial to obtain a
new syntactic entity. This process can proceed so that all of the concepts, like
judgement and provable judgement, with the hierarchy between them are cap-
tured as pure symbols. The rules of the count would play the role of reduction
rules in the calculus. Therefore, the termination theorem can be rephrased as
stipulation of the strong normalisation property of the calculus so that beginning
from a symbol initial (ba), for some ba, we always reach to a single normal form
such as winners (w) for some symbol w. Every instance of a certificate output
would be a visualisation of an instance of a provable judgement along with all
of the reduction steps taken to reach a normal form for the judgement.

6 Future Work

Protocols of STV schemes are sometimes vague with respect to tie breaking
between candidates. Consequently, the legislation remains open to interpretation
and therefore divergent formalisations. ANU-Union, in particular, only stipulates
that when a tie occurs between two candidates one of which is to be removed,
“the Returning Officer”should determine how to break the tie. This sentence
does not specify as to how the officer decides the matter exactly. For this reason,
we chose to avoid dealing in depth with tie breaking at the moment (see Remark
1). The program extracted from the proof of Theorem 2 is deterministic and
simply breaks ties by removing the candidate whose name precedes the other
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candidates who are tied with them. So one way of tie breaking rather fairly would
be to list the initial list of candidates in the conclusion of the rule start randomly.
Even though the authors do not favour the proposal, it could be a naive, yet
fair, solution so that when a tie is broken no one would feel disadvantaged.
Alternatively, one can additionally stipulate that the program takes a sequence
of random integers as additional inputs that are then used to break ties.

Moreover, there are other STV schemes which differ from ANU-Union’s in one
way or another. For example, some versions STV diverge from ANU-Union only
in the way they transfer surplus votes. In those versions, all of the surplus must
be dealt with before any other rule can apply. Modularity of the formalisation
makes it considerably easier to adjust the system to such contrasts and discharge
the proof burdens with smaller workload. Also it would help in establishing the
strong normalisation property for STV scheme, in general, as a class of typed
lambda-calculi by proving the same three theorems given for ANU-Union.

Also we have ideas for speeding the program up. Increase in number of can-
didates costs our program more than any other factor as Fig. 5 shows. But we
can improve our encoding to compute faster. When some candidate is elected or
eliminated, their name is not removed from ballots. Instead the program checks,
each time, if a candidate whose name appears in the ballot, is in the continuing
list and proceeds until it finds the first one who actually is. However, we can sep-
arate the list component of a ballot into two parts; one of which includes already
elected or eliminated candidates and the other part for continuing candidates in
the ballot so that we reduce excessive computations.

Most importantly, currently we are trying to write a checker for the certificate
and verify the checker inside the theorem prover HOL4. Then by the built-in
mechanisms of the CakeML, extract SML code which would be provably-correct
down to the machine level. This provides us with the highest guarantee possible
in verifying a certificate.
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Abstract. E-voting literature has long recognised the threat of denial-
of-service attacks: as attacks that (partially) disrupt the services needed
to run the voting system. Such attacks violate availability. Thankfully,
they are typically easily detected. We identify and investigate a denial-
of-service attack on a voter’s spam filters, which is not so easily detected:
reverse Bayesian poisoning, an attack that lets the attacker silently sup-
press mails from the voting system. Reverse Bayesian poisoning can dis-
enfranchise voters in voting systems which rely on emails for essential
communication (such as voter invitation or credential distribution). The
attacker stealthily trains the voter’s spam filter by sending spam mails
crafted to include keywords from genuine mails from the voting system.

To test the potential effect of reverse Bayesian poisoning, we took
keywords from the Helios voting system’s email templates and poisoned
the Bogofilter spam filter using these keywords. Then we tested how
genuine Helios mails are classified. Our experiments show that reverse
Bayesian poisoning can easily suppress genuine emails from the Helios
voting system.

1 Introduction

System security is typically divided into Confidentiality, Integrity and Avail-
ability. Voting systems present an interesting research challenge where confi-
dentiality of the vote (privacy) and verification of integrity of the vote (verifia-
bility) must be combined in one system. As these two requirements cannot be
fully satisfied simultaneously [CFS+06], their interplay thus poses an interest-
ing topic for research. Much research attention has been invested in address-
ing the interplay of confidentiality and integrity in voting. This has led to the
development of various notions of verifiability, e.g. [Cha04,JCJ05,CRS05], and
privacy [Cha81,BT94,JCJ05]. The efforts towards formalising verifiability cul-
minated in the concept of end-to-end verifiability. The name derives from the
fact that the voter can verify every step from the input of her choice up to and
c© Springer International Publishing AG 2017
R. Krimmer et al. (Eds.): E-Vote-ID 2017, LNCS 10615, pp. 183–197, 2017.
DOI: 10.1007/978-3-319-68687-5 11
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including the counting of her ballot. As such, end-to-end verifiability ensures
verifiability for a voter who casts a vote.

Availability requirements have also been considered: for more than a decade,
denial-of-service (DoS) attacks have been considered a serious threat to e-voting
systems. Various authors have argued including this class of attacks in the secu-
rity analysis of e-voting systems [GNR+02,Rub02,JRSW04,Agg16]. Until now,
however, DoS attacks have mainly been considered from a generic point of view:
a DoS attack is seen as disrupting (some of) the services that are necessary for an
e-voting system to operate. The occurrence of such attacks can relatively easily
be detected by one or more of the involved parties. It can be expected that the
goal of such a DoS attacker is mainly to disrupt the election process and not to
directly influence its outcome. Hence, literature views DoS attacks as attacking
availability of the system and not integrity of the election.

In this view on availability, either an attack on availability is noted (and
action is taken to rectify this), or every voter who wants to vote, is not impeded
by the system from doing so. In the latter case, end-to-end verifiability ensures
that the result of the election process matches the collective intent of the voters.

In this paper, we will explore one DoS-related vulnerability that will influence
the result without disrupting general availability of the system: using spam filters
to suppress voter invitation, thereby impeding voters to vote.

Though various sources have different estimates for the current global amount
of spam email, they agree that it is above 50%. As such, spam filters have become
a necessity – most incoming emails will be filtered for spam. We investigate the
extent to which an attacker can exploit this. We find a novel attack on voting
systems: the attacker trains a voter’s spam filter to ensure that legitimate emails
from the voting system are marked as spam and thus likely remain unseen by
the voter. This borrows from the notion of Bayesian poisoning, in which an
attacker sends emails to ensure that his spam is not detected by the target’s
filter. Since our attacker seeks the reverse, we call this type of attack reverse
Bayesian poisoning.

In contrast to DoS attacks as considered in e-voting literature, a reverse
Bayesian poisoning attack is stealthy and targeted. It is stealthy in the sense
that it is not obvious that the system is under attack, and after the attack it may
not even be possible to prove the system has been attacked. It is targeted in the
sense that it does not attempt to exceed system capacity, but it is an attack on
a particular essential service that maliciously alters that service’s behaviour. As
this change of behaviour is under the control of the attacker, he can manipulate
the outcome of the elections. Thus, this type of DoS attacker focusses on the
integrity of the elections.

Consequently, the question whether this type of stealthy and targeted attacks
are possible in e-voting systems becomes a concern that goes beyond the generic
problem of service availability and influences the integrity of the election process.

For the purposes of this paper, we investigate whether the well-known Helios
voting system [Adi08] is susceptible to reverse Bayesian poisoning. Helios is
an online election system that provides end-to-end verifiability. It offers email
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facilities for communicating election particulars to voters. The Helios voting sys-
tem was used in a number of elections, such as by the International Association
for Cryptologic Research for electing board members and directors.

Contributions. In this paper:

– We argue that e-voting security also depends on availability of supporting
procedures and systems. We identify and investigate one example of a vul-
nerability in such a supporting system: email interaction between the voting
system and the voter.

– We demonstrate that it is possible and even fairly easy to suppress relevant
emails from a voting system by means of a reverse Bayesian poisoning attack.
In particular, we are able to manipulate the BogoFilter spam filter such that
it suppresses emails from the Helios voting system.

– Finally, we discuss several possible solution directions.

2 Notions of Election Security

An election has to satisfy a wide range of security and privacy requirements. In
literature and in practical systems, the focus tends to be on preventing misuse
of the system. As such, there are requirements to prevent double voting and to
allow a voter to verify that her vote counts in favor of the candidate for whom
she submitted a ballot. Little attention is paid to the setup of the election:
determining who is eligible, and distributing voting credentials to authorized
voters.

This lack of attention to election setup is natural for voting systems targeting
supervised voting (i.e. a setup with a polling station). In supervised voting,
such security requirements are supposed to be guaranteed by the supervision.
However, online voting systems have no such infrastructure to fall back upon
and must therefore address security and privacy aspects of this part as well.

To determine the limits of the scope of end-to-end verifiability, we divide the
election into the below administrative processes. These processes are placed into
the first election phase where they can be executed. Remark that some processes
can be postponed. For example, voter eligibility can be checked before, during
or after the election.

– Pre-election phase. Processes typically executed in this phase are:
• Voter registration. For some elections, voters need to register them-

selves. For other elections (e.g. in associations), the register is pre-existing
(e.g. the membership list). This process establishes the voter register.

• Voter eligibility. Not all those who are registered are eligible. For exam-
ple, general elections typically only allow people above a certain age to
vote. This process eliminates all people from the register who are found
to not satisfy the rules of eligibility.
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• Announcement and credential distribution. To cast a vote, voters
typically have to show some form of voter credentials. This process dis-
tributes the announcement of the election and voting credentials to all
voters.

– Election phase. Processes typically executed in this phase are:
• Vote casting. In this process, the voters communicate the expression of

their choice to the voting system.
• Vote eligibility. The votes received by the system are checked for eligi-

bility, to ensure that only those votes that should be taken into account
are considered.

– Post-election phase. Processes typically executed in this phase are:
• Vote aggregation. In some elections, the encoded ballots are aggregated

before opening them (e.g. systems using homomorphic encryption). In
other elections, this process is omitted.

• Result determination. In this process, the result of the election is
determined. This can be an exact count per candidate (or option), or a
simple determination of which candidate(s) (or options) won.

• Result announcement. In this process, the election result is communi-
cated to the voters and (when applicable) the world at large.

Over the last two decades, research in e-voting security has steadily worked
towards designing practically usable voting systems that satisfy privacy and secu-
rity requirements. Since elections have already been organised before, researchers
sought to update parts of the existing process with new techniques. In particu-
lar, research was focused primarily confidentiality and integrity of the election
and post-election phases. This was highly successful and led to a better under-
standing of the security and privacy principles involved as well as the design and
development of systems that safeguard most if not all of those principles.

Availability concerns are recognised as generic concerns, but so far not as a
specific risk for online election systems. However, online election systems also
depend on the internet for the pre-election phase. Availability attacks on online
election systems may also target the pre-election phase. To highlight the necessity
for considering this part of the election process, we explore one stealthy attack
upon the announcement and credential distribution process: abusing spam fil-
tering to suppress emails sent by the voting system.

3 Spam, Filtering and Poisoning

3.1 Spam Filtering

A significant fraction of mail traffic is spam – over half, by most reports1. There-
fore, a thorough spam filter is a necessity for any email address.

Spam filters are filters that distinguish between non-spam emails and spam
emails. The output of the filter typically is a classification (non-spam, spam, or
1 E.g. Kaspersky’s quarterly spam reports, https://securelist.com/all/?category=442,

pegs the amount of spam in email traffic in the first three months of 2017 at 55.19%.

https://securelist.com/all/?category=442
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unknown) plus a score specifying the extent to which the evaluated mail satisfied
filter rules for spam. This output is then used to (automatically or not) delete
mails classified as spam or divert such mails to a dedicated spam folder. Mails
that end up in the category unknown can be flagged as such and presented to
the user for further processing.

Spam filters use various tests to arrive at their result. Each test evaluates
the mail and arrives at its own estimate for the probability of the examined
mail being spam. These probabilities are then aggregated by the spam filter to
classify the mail.

Spam filters classify emails using two thresholds: a non-spam and a spam
threshold. A probability below the non-spam threshold ensures a mail is classified
as non-spam. A probability above the (higher) spam threshold ensures that a
mail is classified as spam. Probabilities in between are not classified – tagging the
message as potential spam, while letting the mail through to the user’s inbox.

There is a wide variety in tests spam filters use to determine the probability
that a mail is spam, and any given spam filter will use its own subset of tests.
Some of these tests focus on the body of the email, others on the header. One test,
for example, checks URLs found in the mail body against a database of URLs
associated with spam mail. Other tests check if the formatting of the MIME parts
in the mail body is suspicious or if the mail body contains obfuscated HTML
or HTML trackers. Some header tests check whether the mail was received via
known open relays or if the subject refers to a specific medicine (such as viagra).

Remark that the tests are not perfect: some spam mails will not be marked
as spam (false negatives), while some normal mails will be marked as spam (false
positives). A false positive is worse than a false negative: a mail that is auto-
matically directed to a spam mailbox might escape the user’s notice completely,
while a spam mail in a user’s inbox will be easily and swiftly dealt with.

3.2 Bayesian Classification of Spam

One type of test to help reduce false positives is to determine how similar an
incoming message is to known spam mails, and how similar it is to known non-
spam mails. In effect, this allows the spam filter to learn from previously encoun-
tered mails and become “smarter” in separating spam from non-spam.

Such tests are based on Bayes’ theorem. Bayes theorem is used to “flip”
conditional probabilities: if we know P (B | A), the probability that event B
occurs if event A has occurred, and we know the probabilities P (A) and P (B),
we can derive the “flipped” probability P (A | B), the probability that event A
would occur if event B occurred. Formally, Bayes theorem is stated as:

P (A | B) =
P (B | A) · P (A)

P (B | A) · P (A) + P (B | ¬A) · P (¬A)

In terms of spam filters, Bayes theorem can be used to determine the proba-
bility that a mail is spam given that it contains a certain word, P (spam | word), if
we know the probability that word occurs in spam mails, P (word | spam). Given
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a corpus of already-classified mails (either spam or non-spam), the probabilities
necessary to compute the “flipped” probability can be estimated.

For example, consider the question of whether a mail containing the word
“viagra” is spam. The probability that it is, is denoted P (spam | viagra). If we
have an existing corpus of mails already classified as spam or non-spam, we can
estimate how often this word occurs in spam messages, P (viagra | spam), and in
non-spam mails, P (viagra | ¬spam). We also know the percentage of incoming
messages that is spam, P (spam). The probability that an unclassified message
containing “viagra” is spam is then computed as:

P (spam | viagra) =
P (viagra | spam) · P (spam)

P (viagra | spam) · P (spam) + P (viagra | ¬spam) · P (¬spam)

In actual use, the result is refined further to prevent the filter from acting on
insufficient information. For example, if only one email has ever been received
with the word “viagra”, then the classification of that one email determines
how a new mail with that word will be classified. To prevent this, the resulting
probability is scaled with the number of received emails (spam and non-spam)
and averaged with an assumed probability of any mail being spam (e.g. set at
50%).

3.3 Bayesian Poisoning

Bayesian spam filtering is effective, and therefore widely used. Its ubiquity raises
the question if the Bayesian filtering could be deliberately exploited by one
or more carefully crafted messages to fool the filter in letting through a spam
message – a deliberately triggered false negative. This type of attacks on Bayesian
spam filtering is known as Bayesian poisoning, as effectively, the spam filter is
poisoned to not recognise the offending messages as spam. To achieve this, the
spam mail must include a sufficient amount of sufficiently “non-spammy” words,
such that in aggregate, the spam mail is marked as non-spam.

In 2004, Graham-Cumming presented the first study [GC04] into Bayesian
poisoning. His experiment found that randomly adding words was not successful.
He was able to devise a different attack which probes the spam filter to determine
words which help ensure a non-spam classification.

To their surprise, Wittel and Wu had contradictory findings: adding random
words did influence certain spam filters [WW04]. They suspected this contradic-
tion with Graham-Cummings may be due to differences in used spam corpora
or filters tested. Stern et al. [SMS04] showed that Bayesian poisoning can affect
filter performance, skewing results to generate more false positives. Lowd and
Meek [LM05] find that adding about 150 well-chosen words is effective in getting
the average spam message through a filter. They also find that frequent retrain-
ing the spam filter is effective against this type of attack. This finding matches
the intuition that retraining is important: when the spam filter fails to block
spam, it should be retrained.

From existing research, we see that it is possible to masquerade spam as
non-spam by using Bayesian poisoning. The concept we explore is turning this
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around: is it possible to masquerade non-spam as spam by using Bayesian poi-
soning? That is: instead of using Bayesian poisoning to increase the false positive
rate, can it be used to increase the spam filter’s false negative rate? In particular,
can Bayesian poisoning be used to suppress mails from an online voting system?
We call this reverse Bayesian poisoning.

Remark that the mails that the attacker sends to poison the filter are spam
mails. The only aim of these spam mails is to associate words that are likely used
in mails of the voting system with spam. Recall that spam filter retraining is
important, especially when a false negative occurs, that is: when a spam message
is not filtered. Therefore, reverse Bayesian poisoning is a stealthy attack: sending
emails is trivial, and the emails sent by the attacker can easily be made to look
like spam (since they are spam). A regular user who retrains her spam filter
when spam gets through (as is normal) is thus aiding the attacker.

4 Experiment Setup

In order to investigate the possibility of using reverse Bayesian poisoning to
suppress legitimate mails, we set up an experiment with a local spam filter and
attempted to suppress emails by poisoning the filter.

The goal of this experiment was to test the feasibility of this attack, not
to perform a thorough evaluation of spam filters and their susceptibility to this
attack. As the attack relies on the victim training her spam filter on the attacker’s
poisoning mails, a thorough evaluation must also take into account the human
factor.

Our feasibility experiment analyses whether, for one particular system setup
in a fully-controlled and minimal environment, using one or more realistic para-
meter settings, it is possible to construct a limited number of attack mails that,
when fed to the spam filter lead to the suppression of a particular administrative
message.

In particular we will use the Bogofilter, trained with (a part of) the Enron
spam corpus, aiming to suppress emails formatted according to the templates
used by the Helios [Adi08] online voting system, such as the template depicted
in Fig. 1.

As the experiment focuses on the feasibility of poisoning a Bayesian spam
filter, we did not set up an email infrastructure (procmail, mailclient, postfix),
but applied Bogofilter directly to the emails. We also assume the worst case for
victim actions: the victim will always mark attack mails as spam.

4.1 Bogofilter

Bogofilter2, originally written by Eric S. Raymond, was based on the ideas of
Paul Graham [Gra04]. Graham proposed to apply Bayesian filtering of spam
messages based on combining the probabilities for spam of the 15 words with the

2 http://bogofilter.sourceforge.net/

http://bogofilter.sourceforge.net/
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strongest probabilities: the 15 words for which the absolute value of the difference
between that word’s spam probability and the neutral spam probability (50%) is
the largest. Bogofilter applies Bayesian filtering in the classification of spam/non-
spam mails.

The program can be trained on a given corpus of spam and non-spam mail.
Moreover, explicit user input on the classification of individual emails can be used
to fine-tune or correct the system’s decision logic. Furthermore, the user (or sys-
tem administrator) can fine-tune the statistical algorithms by modifying certain
configuration parameters of the Bogofilter system. Examples are the earlier men-
tioned thresholds: spam-cutoff for spam and ham-cutoff for non-spam.

An interesting and relevant feature of Bogofilter is the auto-update feature.
When this feature is used and Bogofilter classifies a message as spam or non-
spam, the message will be automatically added to the wordlist for recognizing
spam or non-spam, respectively. Bogofilter documentation warns that this behav-
iour may cause classification errors to propagate.

Retraining a Bayesian spam filter is important and can be done without user
intervention – for Bogofilter by using the auto-update feature, for other spam
filters by using similar automated updating features or publicly available scripts.

As the Bogofilter documentation warns, automatic retraining may cause clas-
sification errors to be exacerbated. This is exactly the goal of our attack: to
exacerbate misclassification. To understand the risk that auto-update features
pose with respect to this attack, we will conduct two types of experiments: one
in which the user will have to classify the attack mails as spam, and one in
which the auto-update feature is used to automatically classify the attack mails
as spam. In the first case, the number of attack mails should be rather limited,
as it involves user interaction. In the second case, we could use a larger number
of attack mails.

4.2 Enron Mail Corpus

The Enron [KY04] corpus3 is a widely-used dataset consisting of e-mail commu-
nication among executives from the (now-defunct) Enron corporation. It con-
tains over 600.000 emails generated by 158 employees. For the experiments, we
used the corpus that was enriched by Metsis et al. with spam from various
sources [MAP06].

4.3 Helios

Helios [Adi08] is an end-to-end verifiable online voting system with strong pri-
vacy guarantees (receipt-free but not coercion-resistant). Its strong security fea-
tures apply to the election phase and the post-election phase. However, our
attack is upon the announcement and credential distribution process, which is
out of scope of Helios’ security features – and therefore not protected.

3 http://www-2.cs.cmu.edu/∼enron/

http://www-2.cs.cmu.edu/~enron/
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For the purpose of this paper, we omit all technical details of Helios and
only focus on the features it offers to support announcement and credential
distribution.

Helios is initialized by the voting officials by providing the relevant informa-
tion, the register of voters and their email addresses, and customizing various
emails to be sent out (announcement, credential distribution, etc.).

All voters receive an automatically generated voting invitation from Helios
(see Fig. 1). To vote, the voter visits the emailed election URL and authenticates
using the credentials from the email. After having voted, the voter receives an
email confirmation that her ballot has been received and stored. After the elec-
tions close, the stored votes are tallied and the voter receives an email that the
tally has been released. The voter can inspect the tally page through the URL
provided in the tally email and she can verify that her vote is correctly counted
through the provided administrative information.

Dear <voter.name>,

<custom message>

Election URL: <election vote url>
Election Fingerprint: <voter.election.hash>

Your voter ID: <voter.voter login id>
Your password: <voter.voter password>

Log in with your <voter.voter type> account.

We have recorded your vote with smart tracker: <voter.vote hash>
You may re-vote if you wish: only your last vote counts.

In order to protect your privacy, this election is configured
to never display your voter login ID, name, or email address to the public.
Instead, the ballot tracking center will only display your alias.

Your voter alias is <voter.alias>.

IMPORTANTLY, when you are prompted to log in to vote,
please use your *voter ID*, not your alias.

–
Helios

Fig. 1. Template of a Helios invitation.

Remark that if a particular voter does not vote (e.g. because she did not
receive the invitation), this does not lead to any further action from the Helios
system. Further, notice that it is impossible to vote without the email containing
the authentication credentials.
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4.4 Generating Attack Mails

The essence of the reverse poisoning attack is in generating the poison. To gen-
erate the attack emails, we alternated words from the genuine Helios adminis-
trative mails with words from typical spam messages. An example of an attack
mail is shown in Fig. 2. Each attack mail contains 115 words, which is equal to
the average size of a genuine Helios mail. Regular users will probably mark such
emails as spam, even if they are expecting a communication from Helios.

We readily acknowledge that this is a rather rudimentary approach to gen-
erating attack emails. However, this experiment aims only to test feasibility
of Bayesian poisoning attacks, for which purpose the thusly generated attack
emails seem sufficient. Thus, we keep in mind that an attacker can likely gener-
ate stronger attack emails.

From: Luxury@experience.com
Subject: Lower monthly payment passwords
Remuneration Election Subsidiary Link: payment Dear
Usury – Reapportionment Helios Reply How Syndicate
to Wholesale Vote Return ======== Computer
Election roots URL: Coattail Your Challenger voter
Believe ID: Decide Your Permit password: Advertisement
Log Pamphlets in Broadcast with Downsize your
. . .

Fig. 2. Fragment of an example attack mail. The underlined words are from genuine
Helios mails.

5 Experiments and Analysis

5.1 Experiments

To execute our experiments, we used a standard laptop and installed Bogofilter.
Bogofilter’s initial database was cleared and trained with part of the Enron
corpus. We conducted the experiments with various sizes of the training set.

To test the susceptibility of Bogofilter to reverse Bayesian poisoning, we
constructed 50 attack emails. We then iterated over these mails. Each iteration
trained Bogofilter on one attack mail and then tested Bogofilter’s classification
of Helios emails. We used four fictional elections, each of which generated three
genuine emails. In total, each time the classifier was tested on 12 genuine emails
from Helios, see Fig. 3.
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Learn
1 attack email

Classify
4 elections × 3 mails

Fig. 3. The process of the experiments.

5.2 Analysis of Results

The results of the experiments are depicted in Fig. 4. The figure shows, per
election, the averaged probability of genuine Helios mails being marked as spam
against the number of attack emails processed by Bogofilter.

Figure 4 shows the results when training the spamfilter with 11000 messages
from the Enron corpus. Each line represents the average probability of emails
being spam for one of the four hypothetical elections. For each election we average
the results of the three administrative Helios messages. The vertical axis shows
the classification of the Helios messages as a number between 0 (non-spam) and
1 (spam). The horizontal axis shows the number of attack messages sent before
feeding the genuine Helios messages to the spam filter.

As can be seen in the figure, classification of mails from every test election
reacted strongly to the presence of only a few attack emails. Bogofilter has a
default spam threshold of 99%. We found that it was possible to rate the official
emails above this threshold. We also found that the efficacy depended on the
size of the training corpus. Nevertheless, even when using the full Enron corpus
for training, we found cases where less than 50 attack emails sufficed to have
a genuine election email have a spam probability over 99%. When Bogofilter’s

Fig. 4. Average classification of the three genuine Helios emails for each of the four
hypothetical elections.
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auto-update feature is switched on, this number of attack emails will be processed
without any user interaction.

In other words, notwithstanding the crudeness of our attack, fifty attack
emails can be sufficient to reverse Bayesian poison a spam filter to suppress
official election emails.

6 Conclusions

Our simple experiments show that reverse Bayesian poisoning is indeed a feasible
attack on the administrative processes surrounding a voting system. We expect
that the attack mails can be further optimized as to achieve the attacker’s goal
with fewer attack mails.

Discussion. As the experiments were aimed at testing feasibility, we only
tested one particular spam filter (Bogofilter) and made various assumptions:
the attacker knows whom to target, the attacker’s guess of the format of the
genuine emails is sufficiently close to the actually sent emails, and the victims
will mark the attack emails all as spam. Moreover, for reverse Bayesian poison-
ing to constitute an actual attack upon online elections a few more assumptions
are made: victims ignore the fact that they did not receive voting credentials,
election officials are not alerting voters to check their spam filters, and elections
are not repeated if a voter finds an election email in her spam mailbox.

Remark the stealthy nature of this attack. The attack could be executed
slowly, over time. The attacker would send attack emails that recipients use to
train the spam filter and possibly even discard afterwards. This means that it
is possible for a reverse Bayesian poisoning attack to occur without leaving a
visible trace on the victim’s side.

Moreover, while our experiments focused on local spam filtering by the user,
spam is also filtered at the email service provider. Such filters may be trained
upon user-classified mails from all users. Such a set is almost perfectly classified4

and therefore used to classify mails for all users.
The downside is that an attacker can sign up for a popular email service

and carry out the reverse Bayesian poisoning attack by himself, poisoning the
service’s spam filter without sending mails to anyone but his own mail account.
The consequences of such an attack can affect many or all users of the service.
It is for this reason that we did not dare to execute our experiments on GMail:
Helios is used in elections (e.g. by the IACR), and even our crude experiments
may train GMail’s spam filters to classify genuine election emails as spam. As
such, we believe that any experiment with reverse Bayesian poisoning must be
done in a controlled environment. If not, others relying on the shared spam filter
will be affected without adequate means of reversing the experiment’s effects.

Note that reverse Bayesian poisoning of shared spam filters allows an attacker
to target groups of voters that share the same spam filter, such as all voters from
4 https://www.quora.com/What-does-the-Report-Spam-feature-really-do-in-Gmail

https://www.quora.com/What-does-the-Report-Spam-feature-really-do-in-Gmail


Reverse Bayesian Poisoning 195

one institute. As large institutes typically have a generic, shared spam filter, an
attacker could thus prevent any voters from a given institute from voting.

Mitigation Approaches. Mitigation approaches against reverse Bayesian poi-
soning can be classified by who should implement the measure:

– User-side mitigation measures (e.g. whitelisting),
– Centrally taken mitigation measures (e.g. multi-channel communication).

Users can mitigate the effects of reverse Bayesian poisoning in various ways.
On a filter level, they could whitelist the election email address. This trumps
any other spam test, and so would prevent the emails from being suppressed.
Another option is to use a reminder service (e.g. a calendar service) to remind
them of when credentials are to arrive, and contact election authorities if the
credentials did not arrive.

Election officials can also mitigate this attack on different levels. On a tech-
nical level, they can use alternative channels (e.g. SMS messages) to notify the
users that credentials have been mailed. Remark that these other channels might
be attacked as well – for example, the SMS channel in the Norwegian voting sys-
tem was subverted [KLH13]. They can also address this on a social level, by
effectively campaigning that credentials have been sent out and spam filters
should be checked.

Future Directions. In this work, we investigated a practical attack on the
pre-election phase of the Helios voting system. We have not formalised this
type of attack, though we see several approaches to doing so. In particular, our
attack touches upon the interaction between humans and computers in voting.
The security implications of such interactions have been considered before, e.g.
Ryan for Prêt á Voter [Rya11], and Kiayias et al. for Helios [KZZ17]. Both these
works consider the privacy and verifiability requirements on voting. In terms of
the work by Kiayias et al., the reverse Bayesian poisoning attack constitutes an
attack upon the setup ceremony. It is possible to formally define a requirement
in their framework which would catch any shenanigans with voter credential dis-
tribution. Such a requirement could ascertain that credentials were not correctly
received, but not whether this is due to lossy communication channels or due to
an active attack such as reverse Bayesian poisoning. To formalise a requirement
such that active attacks can be distinguished from regularly occurring circum-
stances requires further work.
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Abstract. We describe several return code schemes for secure vote sub-
mission in electronic voting systems. We consider a unified treatment
where a return code is generated as a multiparty computation of a secure
MAC tag applied on an encrypted message submitted by a voter. Our
proposals enjoy a great level of flexibility with respect to various usabil-
ity, security, and performance tradeoffs.

1 Introduction

Electronic voting systems have the potential of achieving end-to-end verifiability.
This is obtained through different verification mechanisms throughout all the
stages of the entire voting process, known as cast-as-intended, recorded-as-cast
and counted-as-recorded [2].

Cast-as-intended verification assures each individual voter that his vote has
been cast according to his intention. Mechanisms that ensures the cast votes
have been correctly received and stored are called recorded-as-cast. Counted-as-
recorded verification allows any third party observer, such as voters and auditors,
to verify that the result of the tally corresponds to the received votes.

In some electronic voting systems, the voter casts his encrypted vote using
some voting device which might either belong to the election authorities, e.g.,
a computer with a touch screen in a furnished voting booth, or to the voter
himself, when the risk of coercion is limited. A malicious voting device (due to
malware or hostile hardware) may change a voter’s intended choice. Cast-as-
intended verifiability detects such attacks on voting devices.

There are two basic approaches to verifying that a vote was cast as intended:
(a) verify that the right choice was encrypted and that the ciphertext was
recorded, and (b) verify that the ciphertext decrypts to the intended choice.

The most straightforward solution to the first problem is to simply perform
the encryption independently on a different device and compare the results as is
done in Estonia [17].

Another approach is continuous blackbox testing as proposed by Benaloh [5],
and adopted in Helios [1], Wombat [23], and VoteBox [25]. Here the device
provides a ciphertext and the voter can choose to either use it, or to challenge
c© Springer International Publishing AG 2017
R. Krimmer et al. (Eds.): E-Vote-ID 2017, LNCS 10615, pp. 198–209, 2017.
DOI: 10.1007/978-3-319-68687-5 12
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the device to prove that it was formed correctly. Note that the latter choice
amounts to normal blackbox testing. The key insight of Benaloh is that we can
not only interlace testing with normal use (which is often done in safety critical
software), we can let the voters control when and where testing takes place to
provide maximum individual assurance. The importance of this observation lies
in part in that concerned voters can run more tests, so the testing seamlessly
aligns with the level of assurance needed by individual voters.

Depending on trust assumptions, i.e., who performs the verification of out-
puts that have been challenged (an electronic device, jointly with a human, or
third parties), Benaloh’s approach is more or less practical and gives different
types of assurances.

The reader may object that the encryption device must commit to its output
before the choice to verify it is made or not, but this is no different from many
other types of testing done on software. Benaloh’s approach is often confused
with cut-and-choose zero knowledge proofs due to the choice given to the voter
between two choices, but is better described as a have-or-eat protocol: you can’t
have your cake and eat it too (to see that the cake is not poisonous).

So called return codes have received a considerable amount of attention par-
ticularly due to their usability properties. We refer the reader to [3,4,12,14,18,
19,22] for several proposals. This approach has been used in nation-wide elec-
tions in Norway [12,13,22] and Switzerland [10].

The idea of return codes is that each possible choice of the voter is associated
with a random code that is returned upon submission of the encrypted vote as
an acknowledgement that the ciphertext received encrypts the intended choice.
To ensure privacy, the random codes of different voters are chosen independently.
In other words, individual codes reveal nothing about the vote itself.

Note that at its core this is classical code book encryption, i.e., the parties
receiving a vote in encrypted form send back the vote in encoded form to the
voter. However, we only use the return codes for acknowledgement, so there is
no need for the codes to uniquely identify the choices. Thus, for each voter we
need a fairly regular random map from the set of choices to a set of codes, i.e.,
a message authentication code (MAC) with a guaranteed privacy property.

For coherent integration with electronic voting systems, the following prop-
erties must be taken into account:

1. Secure printing. It must be possible to generate and secretly transmit
return codes for all voting options to a trusted printer.

2. Distributed evaluation. It must be possible to compute the return codes in
a distributed way such that no knowledge is leaked about the selected voting
option by the voter.

The first property can be achieved as follows. Let Epk (m) be a cipher-
text encrypted using a homomorphic cryptosystem. The secret key, unknown
to printer, is verifiably secret shared among some parties. For printing m, the
trusted printer, chooses a random one-time pad α and hands Epk (α) to the par-
ties who will then execute a distributed decryption protocol for Epk (α)Epk (m) =
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Epk (αm). When αm is received back, the random pad is removed and m is
printed.

Remark 1 (Code voting). One potentially serious privacy drawback with any
system where votes are encrypted even in a relatively well protected environment
is that it is hard to guarantee that no information about votes is leaked through
malicious hardware, software, or any form of side channel.

Chaum’s code voting idea [7] addresses this problem by letting the voters
use code book encryption to submit their votes, i.e., each voter is given a list of
codes along with their plaintext meanings who will then enter the code as is into
a device. The Prêt à Voter [8,24] system can be viewed as a code voting scheme
that uses a public key cryptosystem to prepare the code book and decode in a
distributed way using a mix-net.

Motivation and contribution. We provide several proposals achieving the
second property with different trust assumptions and trade-offs. Some allow a
single vote to be submitted and some do not have such a restriction. Some
are safe to use with write-ins and some are not. In some schemes, for each
individual voter some value must be verifiably secret shared (making them less
practical); whereas in other schemes, the verifiably secret shared values are not
voter dependent. Some schemes demand that the tallying servers be online during
the vote collecting phase, which is not desirable from a security point of view;
some others allow online servers to collect the votes without any help from the
tallying servers. The latter property is highly desirable since the tallying servers
can decrypt the votes off-line behind an airwall.

We think it is important to provide a tool box to practitioners that allow them
to choose the best trade-off between security properties, how trust is distributed,
and practical and cost considerations for the given setting, since the requirements
differ substantially in different election schemes and cultural contexts.

Most of our schemes work with any homomorphic public key cryptosystem,
however, we concentrate on the El Gamal cryptosystem for concreteness.

2 Notation

We assume that the reader is familiar with standard definitions of public key
cryptosystems, message authentication codes (MAC), zero-knowledge proofs and
the random oracle model. The reader is referred to [15,16] for the required back-
ground.

El Gamal cryptosystem. Recall that the El Gamal public key cryptosystem
is defined over a group Gq of prime order q with generator g over which the
Decisional Diffie-Hellman assumption holds. The secret key is a random x ∈ Zq

and the corresponding public key is y = gx . The encryption of a message m ∈ Gq

is Ey(m) = Ey(m, r) = (gr,myr), where the randomness r ∈ Zq is chosen
randomly.
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The encryption of a ciphertext (u, v) ∈ Gq ×Gq is then defined by Dx (u, v) =
vu−x . El Gamal is homomorphic, which means that for every two encryp-
tions (u1, v1) = Ey(m1, r1) and (u2, v2) = Ey(m2, r2), the product ciphertext
(u1u1, v1v2) is an encryption of m1m2 with randomness r1 + r2. Consequently, a
ciphertext (u, v) = Ey(m) can be re-encrypted to produce a fresh re-encryption
of m. This can be done without knowing the secret key, by simply multiplying
the ciphertext with an encryption of identity to compute REy(u, v) = (ugr, vhr),
for some randomness r.

Verifiable secret sharing and distributed key generation of El Gamal.
Sometimes we require that a number of M parties jointly generate a public key.
The corresponding secret key is verifiably secret shared among them such that
it can be recovered by any subset of size at least λ of the parties, but it remains
hidden to any coalition of size at most λ − 1. Feldman’s verifiable secret sharing
protocol [9] is an efficient way for distributed key generation for El Gamal.
In Feldman’s method, parties jointly produce a random tuple (y0, . . . , yλ−1) =
(gx0 , . . . , gxλ−1) where xj ∈ Zq, j ∈ [λ]. The parties do not know xj ’s; rather,
each party � ∈ [M ] receives a share s� = f(�), where f(z) =

∑λ−1
i=0 xiz

i. This can
be viewed as sharing a secret key x = x0 using the Shamir’s [26] method, but
parties also compute a public key y = y0 and receive the Feldman commitment
gs� to the share of �th party. The same idea can be extended to Pedersen’s
perfectly-hiding commitment scheme [21], when verifiably sharing a secret is a
preliminary goal; details are omitted.

Distributed exponentiation. Suppose an El Gamal secret key x is shared
among the M parties and, given u ∈ Gq, they wish to jointly compute ux .
This can be done using the following procedure [11]. Each party �, publishes
f� = us� along with a zero-knowledge proof of discrete logarithm equality. From
any subset Δ ⊆ [M ] of size λ of published shares, parties then compute ux =∏

�∈Δ fc�

� , where c�’s are Lagrange coefficients defined as c� =
∏

i∈Δ−{�} i/(i−�).
The method can be modified to work with Pedersen’s verifiable secret sharing [21]
as well.

Distributed decryption of El Gamal ciphertexts. When an El Gamal
secret key is shared among some parties, distributed decryption of a given cipher-
text (u, v) is also possible, without recovering the secret key itself. The parties
first go through a distributed exponentiation protocol and compute ux . The
plaintext is then simply recovered as m = v/ux .

Mix-nets. Mix-net, first introduced by Chaum [6], is an important crypto-
graphic protocol which lies at the heart of several electronic voting systems and
has other applications as well. It is executed by N voters and M mix-servers.
In a re-encryption mix-net [20], mix-servers jointly generate a public key for
a homomorphic cryptosystem and keep shares of the corresponding secret key.
Each voter i ∈ [N ] submits a ciphertext along with a zero-knowledge proof of
knowledge. When write-ins is not allowed, we assume that the voters have to
choose among a set {mj}j∈[s] of pre-defined voting options. In this case, a zero-
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knowledge proof must guarantee that the submitted ciphertext decrypts to one
of the pre-defined choices.

When all encrypted votes have been received, the mix-net takes the list of
all valid submitted ciphertexts and produces a mixed list of the decrypted plain-
texts. More precisely, mix-servers take turns and re-encrypt each ciphertext.
A permuted list of ciphertexts is then published along with a so called zero-
knowledge proof of shuffle. The output list of the last mix-server is then jointly
decrypted to determine the permuted list of submitted plaintexts. Any coalition
of size less than λ mix-servers cannot obtain any knowledge about the corre-
spondence between input ciphertexts and output plaintexts.

3 Online Tallying Servers

In this section we consider four return code schemes, including a few variations.
All are practical but the drawback is that the tallying servers must be online dur-
ing the online voting stage. The main differences between the proposed schemes
come from the choice of the underlying MAC scheme Mac. Tallying servers run
the mixnet and in a setup phase they jointly generate a public key y while shares
of the corresponding secret key are kept private.

We assume that each voter is allowed to vote for one of a pre-defined set of
choices {mj}j∈[s]. In all schemes, the ith voter submits a ciphertext Ey(m), where
m is either one of the pre-defined choices or some random (known or unknown)
representation of the designated choice. A corresponding zero-knowledge proof
will also be submitted. The voter then receives a MAC tag Macki

(m) as his
return code, through the execution of a secure multiparty computation. Here,
ki is some (possibly) voter-dependent symmetric key shared between online vote
collecting parties. Computation of such return codes are only possible by online
participation of tallying servers.

In some schemes, we need to assign to each voter i a secret random value
βi and/or choice-dependent secret random values βi,j for every j ∈ [s]. This is
done by assigning random encryptions Ey(βi) and Epk (βi,j) to the corresponding
voter. In practice the ciphertexts can be defined as the output of a random
oracle applied to the voter’s identifier (along with that of voting alternative, if
required, and other session identifiers). Thus, there is no need for the mix-servers
to generate and communicate the ciphertexts to the voter.

Remark 2. We use the term “message authentication code” loosely in the sense
that the schemes may not satisfy the standard definition of MACs for general
purpose and the security level may also be much lower, since this suffices in our
context.

3.1 Universal Hash Functions Used as MACs

Consider the ensemble of functions F = {fa,b}(a,b)∈Z2
q
, where fa,b(x) = ax +

b mod q. This is the canonical example of a universal2 hash function. It is well
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known that this is an unconditionally secure one-time MAC scheme if q is prime
and large enough.

The function fa,b is linear, so it can be computed over homomorphic
encryptions, i.e., given a ciphertext Ey(gx) we can compute Ey(gx)aEy(gb) =
Ey(gfa,b(x)), which can then be decrypted in a distributed way. Any element
m ∈ Gq can be represented as gx for a unique x ∈ Zq since Gq is cyclic, so we
can express the same relation as Ey(m)aEy(β) = Ey(gfa,b(x)), where m = gx and
β = gb.

Thus, we can trivially compute a MAC tag for any individual party that
submits a ciphertext as long as we do not do it more than once. More precisely,
in a voting system we generate for the ith voter a verifiably secret shared ai ∈
Zq and an encryption Ey(βi) for a randomly chosen βi ∈ Gq. When the voter
submits a ciphertext Ey(mj) along with a zero-knowledge proof indicating that
indeed one the pre-defined choices has been encrypted, he receives back the
return code mai

j βi. Therefore, the underline MAC function is Macai,βi
(m) =

maiβi for the ith voter. Return codes can be computed online using protocols for
distributed exponentiation and decryption as explained in Sect. 2. In the setup
phase, only distributed exponentiation is performed for every pre-defined voting
option. The resulting ciphertexts are then communicated to a trusted third party
to be securely printed, e.g., using the method described in the introduction.
Furthermore, by construction the MAC tag is randomly distributed, so it can
be truncated directly.

The security follows directly from the underlying MAC scheme. In addition
to the danger of tallying servers being online, the drawback is that it only allows
a single vote to be submitted and we need to generate a verifiably secret shared
value for each voter.

3.2 One-Time Pad and Random Choice Representatives

Consider the MAC function Macβ(m) = βm where key and message spaces are
both Gq. The tag is a one-time pad symmetric encryption of the message and
clearly not a secure MAC scheme. Indeed, an adversary can guess m and compute
βm′/m for another message m′ to attempt to construct a valid MAC tag for m′.
However, it is a one-time secure MAC for a random choice of plaintext unknown
to the adversary.

A simple way to make sure that this is the case is to assign unique representa-
tives of the choices for each voter, i.e., for the ith voter we generate random ele-
ments βi,j ∈ Gq for j ∈ [s], but in encrypted form as ciphertexts wi,j = Ey(βi,j).
We can now provide the ciphertexts wi,1, . . . , wi,s to the ith voter. The voter
then chooses the encryption of its choice, re-encrypts it, and proves in zero-
knowledge that it is a re-encryption of one of its designated ciphertexts. This is
a small constant factor more expensive than the corresponding proof for public
choice representatives.

In the setup phase, for each voting option all representatives are shuffled,
but they are published in encrypted form. More precisely, for each j ∈ [s], the
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ciphertext list w1,j , . . . , wN,j is shuffled without decrypting and the re-encrypted
list is made public.

The return code corresponding to the jth alternative of ith voter is then
βi,jβi where again βi is a random secret value known in encrypted form Ey(βi).

When all votes have been submitted and return codes have been received,
the ciphertexts are mixed and the random elements encrypted by voters are
published in permuted order. To be able to decode the actual voters’ choices,
the shuffled lists of representatives are also decrypted for every voting option. It is
of course important that the shuffled random representatives are only decrypted
after all votes have been collected.

The advantage of this system is that there is no need for verifiably secret
shared exponents and re-voting is allowed. But zero-knowledge proofs are slightly
more costly.

3.3 One-Time Pad and Standard MAC Schemes

Another way to resolve the problem encountered by solely using one-time pad is
to construct a MAC scheme Mac′ by combining it with a standard MAC scheme
Mac [27]. More precisely, a key consists of a pair (β, k), where β ∈ Gq is chosen
randomly, and k is a randomly chosen key for Mac. The combined scheme Mac′

is then defined by Mac′
β,k(m) = Mack(βm).

This can be distributed in the generic way between M servers, each holding a
secret key k�, by replacing the application of Mack by an array that is compressed
with a collision resistant hash function H, i.e., we can define

Macβ,K(m) = H
(
(Mack�

(βm))�∈[M ]

)
,

where K = (k1, . . . , kM ). It may seem that this does not suffice to satisfy our
requirements for secure printing in electronic voting systems, since apparently
the printer must send βm to the servers. However, the MAC keys k1, . . . , kM

can be shared with the trusted party to print the pre-computed return codes
without loss of security.

In an electronic voting system a ciphertext Ey(βi) is generated for the ith
voter and the MAC key for that voter is (βi,K) = (βi, k1, . . . , kM ). The mix-
servers simply take an input ciphertext Ey(m) submitted by the ith voter,
decrypt Ey(βi)Ey(m) = Ey(βim), and output H

(
(Mack�

(βim))�∈[M ]

)
.

The advantage of this system is that there is no need for mix-servers to gen-
erate a secret shared value for each individual voter and re-voting is also allowed.
The disadvantage is that it is not robust. If a server is down, the return code
cannot be computed. One way to resolve this problem is to let each server veri-
fiably secret share his symmetric key between other servers. But this guarantees
security only against semi-honest adversaries and malicious servers cannot be
detected.

3.4 Diffie-Hellman MAC Schemes

Recall that the Diffie-Hellman assumption states that no efficient algorithm can
compute gab given ga and gb as input, where a, b ∈ Zq are randomly chosen.
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Furthermore, a standard hybrid argument shows that it is also hard to compute
any gaibj given gai and gbj for i ∈ [N ] and j ∈ [s] for some N and s, where ai, bj ∈
Zq are randomly chosen. If we accept the decisional Diffie-Hellman assumption,
then this is strengthened to the claim that gaibj is indistinguishable from a
randomly chosen element in Gq.

This immediately gives two MAC schemes that are compatible with mix-nets
based on the El Gamal cryptosystem. Both schemes use random representations
of voting options. The first variant is voter independent while the second is not.
In both cases hashing the MAC tag allows truncation for any underlying group.

3.5 First Variant

We encode the jth choice by a randomly chosen element γj ∈ Gq, where in
contrast to Sect. 3.2, γ1, . . . , γs may be public and known at the beginning. Let
the mix-servers generate a verifiably secret shared MAC key ai for the ith voter.
Then, computing the MAC of the plaintext γj provided in encrypted form Ey(γj)
is done by simply computing γai

j by distributed exponentiation and decryption.
Note that γj = gbj for some bj ∈ Zq, so the result is gaibj . To summarize, the
underlying MAC scheme is defined by Macai

(m) = mai for the ith voter. This
can be computed under encryption, which means that we can also provide the
result in one-time pad encrypted form to a third party. This system remains
secure when re-voting is allowed.

3.6 Second Variant

The first variant is somewhat impractical in that the mix-servers must generate a
secret shared exponent ai ∈ Zq for each individual voter. We can switch the roles
of randomly chosen representatives of choices and verifiably distributed secret
exponents. More precisely, random elements βi,j in encrypted form as ciphertexts
Ey(βi,j) are generated for every i ∈ [N ] and j ∈ [s]. The preparation phase and
encryption procedure is exactly like that of Sect. 3.2, but now a single verifiably
secret shared value a is generated and the same function Maca(m) = ma is used
for all voters.

The advantage of this scheme is that the MAC function can be evaluated in
batches on submitted ciphertexts and in contrast to the construction in Sect. 3.2
the representatives may be shuffled and decrypted before all ciphertexts have
been received. Re-voting is still allowed.

4 Offline Tallying Servers

In this section, we propose two schemes to resolve the online-server danger of
presented schemes of Sect. 3. This is achieved without a considerable amount of
performance loss or organizational overhead. The main idea is to use two inde-
pendent public keys with shared secret keys. More precisely, in the setup phase,
the tallying servers generate a public key y and keep shares of the corresponding
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secret key. Additionally, the vote collecting servers produce a public key z in the
same manner.

In the online voting phase, ith voter submits a pair of ciphertexts (vi, wi),
along with some scheme-dependent zero-knowledge proof. Here, vi and wi are
ciphertexts encrypted under public keys y and z , respectively. The first cipher-
text, vi, is used to decode voter’s choice after mixing. The second ciphertext, wi,
is an encryption of a random value, so it basically contains no information about
the voter’s choice. To compute the return code, wi is simply decrypted by online
servers who collect the encrypted votes. Therefore, the shares of y are never
exposed during the online voting phase. Even if the secret key of z is revealed,
no knowledge is leaked about the voter’s choice which is encrypted under y .

When all ciphertexts have been collected, the ciphertexts list v1, . . . , vN is
shuffled. Then, they are decrypted, and if necessary decoded, to obtain the cast
votes. Since tallying can be performed behind an airwall, this approach ensures
a high level of privacy for the voters.

As an alternative approach to print the pre-computed return codes, the online
servers can simply share their secret key with the trusted party without loss of
security.

The main requirement to be satisfied is that the two submitted ciphertexts
are constructed such that they cannot be split. Below, we propose two such con-
structions. In addition to enhanced privacy due to airwalling, the advantage of
these systems is that there is no need for voter-dependent verifiably secret shared
values and re-voting is also allowed. The drawback is that the zero-knowledge
proofs are more costly compared with the schemes of Sect. 3.

4.1 First Variant

In setup phase, for every i ∈ [N ] and j ∈ [s], servers generate secret random pairs
of elements (αi,j , βi,j) in encrypted form as random ciphertext pairs (vi,j , wi,j) =(
Ey(αi,j),Ez (βi,j)

)
As it was explained in Sect. 3, such ciphertexts can be simply

interpreted as the output of a random oracle. To vote for jth choice, the ith voter
computes vi and wi as respective re-encryptions of vi,j and wi,j . The pair (vi, wi)
is then submitted along with a zero-knowledge proof.

In the setup phase, for each voting option j all representatives v1,j , . . . , vN,j

are mixed and a permutation of the decrypted list α1,j , . . . , αN,j is published.
When every voter i has submitted a ciphertext pair (vi, wi), the first elements
are shuffled, decrypted and decoded.

4.2 Second Variant

In the second variant, for every i ∈ [N ] and j ∈ [s], the pre-computed random
values wi,j = Ez (βi,j) are prepared as before. To vote for jth choice, the ith voter
computes vi as an encryption Ey(mj) and wi as a re-encryptions of wi,j . The pair
(vi, wi) is then submitted along with a zero-knowledge proof. Computation of
return codes and tallying is straightforward. Zero-knowledge proofs are slightly
less costly compared with the first variant.
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5 About Write-In Candidates

Some of the systems can be adapted to allow write-ins in the sense that voters
simply encrypt a representation of one of the pre-determined choices, or an arbi-
trary message. The zero knowledge proof of knowledge would then not impose
any additional structure. Naturally, return codes can not be provided in printed
form for a relatively small number of messages, so to have a chance to verify a
return code for an arbitrary message the voter needs the shared MAC key.

The scheme of Sect. 3.1 is based on an unconditionally secure one-time MAC
scheme, so it remains as secure for any message. The scheme of Sect. 3.2 does
provide some security, but for reasons discussed in that section only if write-in
votes are rare and unpredictable. Finally, the scheme of Sect. 3.5 also works for
write-ins, but under a strong non-standard DDH-assumption with some care. We
must assume that δai is indistinguishable from a random element even when the
message δ strictly speaking is not randomly chosen. One way to make this a more
plausible assumption is to pad a message with random bits before interpreting
it as a group element, but it remains a non-standard assumption that is fragile
in a complex system where slight changes may render it difficult to defend.

6 Conclusion

We present several return code systems for electronic voting applications, some of
which overlaps or encompasses schemes previously proposed as separate schemes.
We are unable to single out one scheme that is superior to all the other schemes
in every way.

Table 1. Summary of: what is pre-computed by the tallying servers, the form of
ciphertexts submitted by the ith voter to vote for the jth choice, the form of the
corresponding return codes for different features of proposed schemes. Furthermore,
for each scheme it is indicated if: a single global MAC key is used or if a separate key
must be secret shared for each individual voter, if multiple votes can be submitted,
and if the scheme matches well with write-in votes (for which the voter can not receive
any pre-computed return codes in advance of course).

Section Pre-computed Submitted Return code Global
MAC key

Re-voting Write-ins

Section 3.1 Ey (βi) Ey (mj) m
ai
j βi – – �

Section 3.2 Ey (βi)wi,j =
Ey (βi,j)

REy (wi,j) βi,jβi � � Partly

Section 3.3 Ey (βi) Ey (mj) Macβi,K(mj) – � –

Section 3.5 γj Ey (γj) γ
ai
j – � Partly

Section 3.6 wi,j = Ey (βi,j) REy (wi,j) βa
i,j � � –

Section 4.1 vi,j = Ez (αi,j)

wi,j = Ey (βi,j)

REy (vi,j)

REz (wi,j)

βi,j � � –

Section 4.2 wi,j = Ez (βi,j) Ey (mj)
REz (wi,j)

βi,j � � –
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Instead our view is that all the schemes are simple combinations of crypto-
graphic constructions that are well understood and that they together give a
powerful toolbox to construct return codes for many types of elections. Table 1
summarizes different features of proposed schemes.
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Abstract. We present the voting protocol Eos that is based on a con-
ditional linkable ring signatures scheme. Voters are organized in rings
allowing them to sign votes anonymously. Voters may assume multiple
pseudo identities, one of which is legitimate. We use the others to signal
coercion to the Election Authority. Eos uses two mixing phases with the
goal to break the connection between the voter and vote, not to preserve
vote privacy (which is given already) but to guarantee coercion resis-
tance by making it (nearly) impossible for a coercer to follow their vote
through the bulletin board. Eos is universally verifiable.

1 Introduction

Most well-known voting protocols use a form of mixing to break the connection
between vote and voter. Prêt-à-Voter [19], Helios [1], JCJ [12], Civitas [14],
encrypt the votes at the time of casting, and then mix them before decrypting
them for tabulation. Under the assumptions that at least one mixer is honest, so
the argument, it is impossible to link a decrypted vote back to the identity of its
voter. BeliniosRF [5] uses randomizable cipher-texts instead. Selene [20] follows
a different approach. It uses tracker numbers and assigns them to voters, who
eventually will be able to identify their votes on a bulletin board but only after
the election authority has shared cryptographic information with the voter. In
Selene, voters can fool a coercer into believing that any and not just one vote on
the bulletin board was theirs. Both JCJ and Selene are receipt-free and coercion-
resistant.

To our knowledge not much work has been done to leverage the power of ring
signatures [18] to the design of voting protocols, besides perhaps the mention
in [7,13,22]. Here, a ring refers to a group of participants who have the ability to
sign messages anonymously by hiding their respective identities within the group.
Assuming that the message is sent over an anonymous channel, the receiver of
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the message will not be able to trace the signature back to the signer. Ring
signatures bring also other advantages. For example, an election authority will
be able to publish all ballots and their signatures on a public bulletin board for
public scrutiny without revealing the voters’ identities. Every voter can check
their vote by accessing the bulletin board. But there are also challenges: First,
the administration of the voter’s identities, i.e. private keys, and second the
protection of such identities from misuse, for example, for the purpose of vote-
selling or voter coercion.

For the first challenge, we do not provide a solution in this paper, we merely
assume that an effective, trusted identity infrastructure is in place that allows
a voter to access a private key on a secure platform, for example, by means
of a trusted Hardware Security Module (HSM), such as for example, a Bitcoin
wallet called Trezor. This may seem like a controversial assumption, but it really
is not: Our experiments have shown that suitable HSMs exist. They may not
be totally secure, but they are reasonable well designed to protect private keys
against malicious agents and against malicious firmware. Hacking such an HSM
is possible and requires fiddling with firmware and hardware, but we argue that
this is difficult to do on a large scale in practice.

In this paper, we tackle a second challenge. We devise a ring signature scheme
that allows voters to assume different pseudo identities, and that provides mech-
anisms for linking such identities from the point of view of the signature verifier.
This scheme is a generalization of the so called linkable spontaneous anonymous
group (LSAG) signatures [13], where all signatures from the same signer are
linked. Correspondingly, we refer to this scheme as a conditional-linking ring
(CLR) signature scheme. Using CLR signatures it is up to the voter to allow
linking or not. Linking does not break anonymity. Compared to BeliniosRF [5],
which is not based on conditional linkability but on signatures based on ran-
domizable cipher-texts [3], anonymity follows directly from the definition of ring
signatures and does not have to be added by another mechanism.

Based on CLR signatures, we develop the Eos voting protocol. Every voter
is assumed to have physical access to an HSM and a way to authenticate. The
HSM guards the voter’s private key. The authentication method yields additional
entropy, such as, for example, a PIN number, a picture, or a fingerprint. When
casting a vote, before submission, it is either put into a “green envelope” marking
it as valid, or a “red envelope” marking it as invalid or possibly coerced.

The entropy collected during the authentication procedure determines which
pseudo-identity is used. We encrypt the color of the envelope and the electoral
identity of the voter (which is unique), alongside the vote itself. All envelopes
together with their corresponding CLR signatures are recorded and shared on a
public bulletin board. Pseudo identities are malleable, which means that from
the point of view of the voter or the coercer, it will be “discrete logarithm hard”
to link any two ballots from the bulletin board. Voters and coercers will be able
to check whether the ballot was recorded as cast but neither the voter nor the
coercer will be able to link their ballots.
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The protocol proceeds and executes two verifiable decryption mixes. The first
mix-net shuffles the ballots and decrypts color and the electoral identity, but
leaves the votes encrypted. All information is posted on a public bulletin board
accompanied by zero-knowledge proofs of correct shuffle and correct decryption.
Red envelopes are discarded and green envelopes are opened. The encrypted
votes contained within (and only those) are passed to the second and last mixing
stage. If two green envelopes are cast from two different pseudo-identities that
correspond to the same electoral identity, this indicates a malicious attempt
to double vote. In this case we discard all votes associated with this electoral
identity. In the second and final mixing stage, we use a verifiable decryption mix
to shuffle and decrypt votes. Also here, the resulting bulletin board is published
including zero-knowledge proofs for public scrutiny.

For the subsequent security analysis of Eos, we consider an adversarial envi-
ronment where only voters and their respective HSM devices have to be trusted.
Election authorities, mixing nodes, and tellers may be assumed to be under
the adversary’s control. The adversary is assumed to have the usual adversar-
ial capabilities, which includes deletion, addition or modification of any kind
of information, including votes, logs entries, or messages. We show that Eos is
universally verifiable.

Closely related to the adversary is the coercer, an agent that aims to exert
undue influence onto the voter, for example by forcing the voter to vote in a
particular way. In addition also election authorities, mix nodes and tellers, may
be under the coercer’s control. A coercer may be physically present in the room
when voting takes place, or he may observe the voting procedure remotely. We
consider a coercion attempt successful, if the coercer succeeds to force voter to
vote a particular way and the coerced vote is then included in the final tally, in
a way that is observable by the coercer. For the analysis of coercion resistance
to make sense, we must assume that the coercer and the voter are different
principals, and we do this by assuming that only the voter can authenticate
successfully to the HSM device. In this paper we consider three different attacks
against the coercion-freeness: (1) A coercer steals a voter’s identity, (2) a coercer
obtains a receipt by tracking a vote through the system and (3) a coercer steals
the HSM and impersonates the voter.

Eos is constructed to be resistant against all three kinds of coercion attacks:
Because of the use of CLR signatures, a coercer can always be assigned an
alternate valid identity (1). Under a commonly accepted assumption, it is always
possible to guarantee that not all mixing nodes are under the coercer’s control,
which means that neither voter nor coercer will be able to track the votes, but will
have to revert to checking zero-knowledge proofs of knowledge (2). And finally,
the authentication mechanisms provided by an HSM can be made arbitrarily
complex, making it increasingly hard for a coercer to brute-force his way in (3).

Contributions. The contributions of this paper are (1) a Conditional Linkable
Ring (CLR) signature scheme, described in Sect. 3, (2) an efficient mixer that
satisfies special soundness but still produces a proof of correct shuffle (2n mod-
exp operations to generate and 4n modexp operations to verify shuffle proofs),
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described in Sect. 4, (3) the Eos voting protocol, described in Sect. 5, and (4)
proofs that the Eos is vote secrecy and integrity preserving, universally verifi-
able, receipt-free and coercion resistant, discussed in Sect. 6.

2 Basic Notations

We define the following notations that we will use throughout our paper. We
work with an ElGamal cryptosystem that is defined over a cyclic group G of
prime p order q generated by g. All mathematical operations presented in this
paper are done modulo p.

We use standard notation and write
{
m

}r

y
= (gr, yrm) for the ElGamal tuple

that one obtains by encrypting message m with randomness r and a public key
y. We use r to denote randomness, and write r ∈R Zq to express that we choose
r from Z modulo q at random using a uniform distribution. We will also use
sequences of n elements over Zq, written as 〈x1, ..., xn〉 ∈ Z

n
q . We define [n]

to denote the index set of natural numbers up to n as {1, ..., n}. Furthermore,
we use Greek letters σ for signatures and π to denote permutations. We write
Pn as the set of all permutation of n elements. Concatenation of two elements
a, b ∈ {0, 1}∗ is written as a‖b.

3 Conditional-Linkable Ring Signatures

We begin the technical exposition of this paper by defining the concept of
Conditional Linkable Ring (CLR) signatures. In a linkable ring (LR) signature
scheme [13], a verifier can learn which signatures originate from the same signer.
Note that this does not mean that the verifier learns something about the iden-
tity of the signer — ring signatures always guarantee the anonymity of the signer.
For our application however, linkability is overly restrictive – if we were to use LR
signatures naively, we could not achieve coercion-resistance. Therefore, we relax
the notion of linkability, and introduce conditional linkability giving the signer
the ability to link (revealing that the signatures originate from the same signer)
or not to link (making it look like as if two signatures were produced by two dif-
ferent signers) and claimability allowing the signer to claim the authenticity of a
signature by proving his position in the ring in zero knowledge. When a signature
is claimed, the signer reveals his position in the ring an looses anonymity.

Preparation Phase: Every prospective member of the ring creates a secret key
xi ∈ Zq, and shares the public key yi = gxi with a designated election authority.

Set-Up Phase: The election authority produces the set of ring members L =
〈y1, ..., yn〉, which represents eligible voters.

Identity Selection Phase: Assume that the signer is the member of the ring at
position α. The signer selects a pseudo-identity by choosing φ ∈R G and by
forming the pair (φ, θ) where θ = φxα . The pair (φ, θ) is called a pseudo identity.
If the signer wishes his signature to be linkable, he will always choose the same
value of φ, otherwise, he will choose a different value for φ for every signature.
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CLR signatures give us quite a lot of freedom to choose φ. To see that LR
signatures proposed in [13] are simply an instance of CLR signatures, choose φ
to be the cryptographic hash value of L (written as h = H2(L) in their paper)
and compute θ = hxα . Liu et al. denote this value as ỹ. The security of linkability
reduces therefore to a secure choice of φ, for which it is sufficient to require that
finding logg φ is a hard problem.

Signing Algorithm. We begin now with the presentation of the signing algo-
rithm. Our algorithm follows closely the original LR signing algorithm described
in [13], the most notable difference being that we use φ and θ instead of h and
ỹ, respectively. Given the message to be signed m ∈ {0, 1}∗, for each element in
the ring L, a cipher text is computed, starting from the position of the signer in
the ring, α, to the end of the list and from the beginning of the list back to α.

The first computed cipher text is therefore

cα+1 = H (m‖gu‖φu)

where, H is a cryptographic hash function that returns a number from Zq

(referred to as H1 in [13]) and u ∈R Zq. Next, for each element in L from
i = α + 1 to n and from i = 1 to α − 1, the signer computes:

ci+1 = H (m‖gsi · yci
i ‖φsi · θci)

where each si ∈R Zq is a random number assigned for each entity in L. Note
that at step i = n, we generate c1 = ci+1. The signer computes:

sα = u − xα · cα mod q

Finally, the output of the CLR signing algorithm is the signature σ on mes-
sage m with the pseudo-identity (φ, θ) that has the following structure:

σ (m) = (c1, 〈s1, ..., sn〉)

Verification Algorithm. After having received a message m and the corre-
sponding signature, σ (m) = (c1, 〈s1, .., sn〉) from the pseudo-identity (φ, θ),
anybody can now verify the signature by executing the following steps of the
verification algorithm, which is computationally linear in terms of size of L, that
should output either the signature is valid or not, i.e. it was generated by a ring
member or not. For each element in L starting from i = 1 to n compute:

ci+1 = H (m‖gsi · yci
i ‖φsi · θci)

The algorithm validates the signature if and only if the last cn+1 = c1, where
c1 is contained as the first argument in the signature.

Discussion. The idea to consider other ways to compute φ was already dis-
cussed in [13]. What is new in our work is to allow φ to be drawn at random
from G. We shall see in Sect. 5 how to choose φ to encode pseudo-identities.



Eos a Universal Verifiable and Coercion Resistant Voting Protocol 215

The definition, properties and proofs of the signature scheme presented in [13],
such as existential unforgability and signer ambiguity, and the rewind-on-success
lemma, carry over verbatim to the CLR signature scheme. CLR signatures are
conditionally linkable and claimable. Once generated, the signer and only the
signer can claim responsibility of a signature generated by him by providing in
zero knowledge a discrete logarithm equality proof between logφ θ = logg yα.

4 Mix-Net

Next, we describe the mix-net the we will be using. The goal of the mixing is to
shuffle ballots in such a way that it is impossible to correlate outputs to inputs.

The mixing task is standard, the literature on mix-nets that emit proofs
of correct (parallel) shuffle is mature. In essence, any state-of-the-art mix-net
could be used as long as it supports parallel shuffle, for example, Bayer [2],
Groth [10,11], Wikström [23], or more recently Fauzi and Lempaa [8] whose
security proof no longer relies on the Random Oracle Model.

While analyzing the different mix-net protocols, in particular [9,15,16,21],
we observed simplifications to Neff’s protocol that we describe next. These make
the proof of parallel shuffle more efficient while still satisfying special soundness,
justifying why we have included a description of the simplified Neff’s protocol
in this paper. The protocol is mathematically elegant, intuitive, and easier to
understand than Neff’s original protocol as it follows closely the classic discrete
logarithm equality zero knowledge proof.

Our proof of shuffle also relies on the Random Oracle Model. In comparison
with Groth’s work, our proof has only three rounds and requires only 2n modexps
for generating a proof and 4n modexps for verifying a proof. On the other hand,
Bayer’s [2] protocol requires only sub-linear operations but needs 9 rounds to
finish.

Below, we provide a semi-formal analysis that our proposed protocol is a
zero-knowledge proof of correct shuffle.

4.1 Proof of Correct Shuffle

Our mix-net consists of several mixing servers, each of which receives as input
a bulletin board of n ElGamal tuples (ai, bi) and produces an output bulletin
board, where all tuples are re-encrypted and shuffled:

(ci, di) =
(
aπ(i) · gsπ(i) , bπ(i) · ysπ(i)

)
for i ∈ [n]

where y is the encryption key, 〈s1, ..., sn〉 ∈R Z
n
q the randomness used for re-

encryption, and π ∈R Pn the permutation underlying the shuffle.
The challenge when defining a mix-net is how each mixing server can prove

the correctness of the shuffle to a public verifier, without revealing information
about the permutation π or the randomness 〈s1, ...sn〉 used for re-encryption.

The following proof of correct shuffle is inspired by the protocol developed
by Sako and Kilian [21], where they say that the proof should show that the
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P secretly generates: k ∈R Zq and 〈m1, ..., mn〉 ∈R Z
n
q and publishes commitment:

A = gk ·
∏

i∈[n]

ai
mi B = yk ·

∏
i∈[n]

bi
mi

V sends challenge: 〈e1, ..., en〉 ∈R Z
n
q

P publishes response:

ri = mi + eπ−1(i) mod q for i ∈ [n]

t = k +
∑
i∈[n]

ei · sπ(i)

)
mod q

V accepts the proof if the following verification calculations match:

gt ·
∏

i∈[n]

ai
ri = A ·

∏
i∈[n]

ci
ei yt ·

∏
i∈[n]

bi
ri = B ·

∏
i∈[n]

di
ei

Fig. 1. Protocol: proof of correct shuffle

output of the mixer could be generated in some manner from the input. Finally,
the aggregation of the entire set of ElGamal pairs, is inspired by Ramchen’s
work [17]. Our proof follows the natural flow of a classic discrete logarithm
equality zero knowledge proof depicted in Fig. 1, i.e. the mix server publishes
a commitment of the input, a verifier challenges the output of the mixer and
then mixer generates a response, which convinces the verifier that the shuffle
was correct.

Let (ai, bi) be the n ElGamal tuples that form the input for the mix server.
Let (ci, di) be n ElGamal tuples, computed as above, be the output of the mix
server. To prove the correctness of the shuffle, the mix server P and a public
verifier V have to follow the protocol that is described in Fig. 1.

Theorem 1. The protocol described in Fig. 1 is complete.

Proof. To show that our protocol is correct, we have to prove that the equations
that V verifies hold when the response (〈r1, ..., rn〉, t) is computed correctly.

gt ·
∏

i∈[n]

ai
ri = A ·

∏

i∈[n]

ci
ei

gk+
∑

i∈[n] ei·sπ(i) ·
∏

i∈[n]

ai
mi+e

π−1(i) = gk ·
∏

i∈[n]

ai
mi ·

∏

i∈[n]

(aπ(i) · gsπ(i))ei

gk · g
∑

i∈[n] ei·sπ(i) ·
∏

i∈[n]

ai
mi ·

∏

i∈[n]

ai
e

π−1(i) = gk ·
∏

i∈[n]

ai
mi ·

∏

i∈[n]

(aπ(i)
ei · gsπ(i)·ei)

∏

i∈[n]

gei·sπ(i) ·
∏

i∈[n]

ai
e

π−1(i) =
∏

i∈[n]

aπ(i)
ei ·
∏

i∈[n]

gsπ(i)·ei

∏

i∈[n]

ai
e

π−1(i) =
∏

i∈[n]

aπ(i)
ei
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The last equation in the proof is true because the product aggregation hap-
pens through the entire set of n elements. This means we can compute the prod-
uct aggregation of a

eπ−1(i)
i in a permuted way, namely aπ(i)

eπ(π−1(i)) = aπ(i)
ei .

In the same way, the second equations that V has to verify can be proven to
hold if the response (〈r1, ..., rn〉, t) is computed correctly. �

Theorem 2. The protocol described in Fig. 1 satisfies special soundness.

Proof. Each transcript of our protocol has the following form:

View [P ↔ V] = (A,B, 〈e1, ...en〉, 〈r1, ..., rn〉, t)
where A and B represent the initial commitment, sequence 〈e1, ...en〉 is the
random challenge picked by the verifier, and the sequence 〈r1, ..., rn〉 together
with the value t represent the response to the challenge.

For any cheating prover P∗ (that does not know the permutation
π(i) and the re-encryption coefficients 〈s1, ..., sn〉), given two valid con-
versations between P and the verifier V, (A,B, 〈e1, ...en〉, 〈r1, ..., rn〉, t) and
(A,B, 〈e′

1, ...e
′
n〉, 〈r′

1, ..., r
′
n〉, t′) that have the same commitment but different

challenge ei �= e′
i, the permutation π(i) used for shuffling the board can be

computed in polynomial time in the following way:

∀i ∈ [n], ∃p such that π(i) = p, where rp − r′
p = ei − e′

i

The permutation π(i) is the actual secret the mixing server has to hide. The
re-encryption coefficients 〈s1, ..., sn〉 are also assumed to be kept secret.

This is precisely what our choice of re-encryption mechanism guarantees. �

Theorem 3. The protocol described in Fig. 1 is honest verifier zero knowledge.

Proof. We prove that for any cheating verifier V∗, there exists a simulator S
that can produce a computationally indistinguishable transcript of the protocol
that would take place between P and V∗ if it knew the challenge in advance.

Our simulator S gets as input: the initial set of n ElGamal tuples (ai, bi),
the mixed set of ElGamal tuples (ci, di) and a challenge in the form of a random
sequence 〈e1, ..., en〉. S proceeds by picking a random response of the transcript:

〈r1, ..., rn〉 ∈R Z
n
q

t ∈R Zq

S computes the initial commitment:

A = gt ·
∏

i∈[n]

(
ai

ri · ci
−ei

)
B = yt ·

∏

i∈[n]

(
bi

ri · di
−ei

)

S outputs the transcript: (A,B, 〈e1, ..., en〉, 〈r1, ..., rn〉, t).
It is obvious that the transcript S outputs will always pass the equations

that V has to verify. Note that this transcript was generated independently of
the permutation π(i) and the re-encryption coefficients 〈s1, ...sn〉 used for mixing,
thus is zero knowledge. �
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4.2 Proof of Correct Parallel Shuffle

The proof of shuffle for mixing individual cipher texts can be extended to a
proof of correct parallel shuffle for sequences of ElGamal tuples. Such a parallel
mixer expects as input a matrix over ElGamal tuples with n rows and � columns:
(ai,j , bi,j), where i ∈ [n] and j ∈ [�], the Mixer then outputs a mixed and re-
encrypted matrix where only the rows are shuffled. This matrix is defined as

(ci,j , di,j) =
(
aπ(i),j · gsπ(i),j , bπ(i),j · ysπ(i),j

)

where y is the encryption key, 〈s1,1, ..., sn,�〉 ∈R Z
n×�
q are the re-encryption

coefficients and π ∈R Pn is a permutation.
The proof of correct parallel shuffle depicted in Fig. 2 is designed to convince

a public verifier that the same permutation π(i) was applied to each column.
The proof, inspired by [17], deviates slightly from the construction that we have
presented for the simple case in the previous section. By applying the same
challenge ei to all columns in the matrix, the verifier will be assured that the
same permutation π(i) was applied consistently across all columns.

P secretly generates: 〈k1, ..., k�〉 ∈R Z
�
q and 〈m1, ..., mn〉 ∈R Z

n
q and publishes commit-

ment:

Aj = gkj ·
∏

i∈[n]

ai,j
mi for j ∈ [�] Bj = ykj ·

∏
i∈[n]

bi,j
mi for j ∈ [�]

V sends challenge: 〈e1, ..., en〉 ∈R Z
n
q

P publishes response:

ri = mi + eπ−1(i) mod q for i ∈ [n]

tj = kj +
∑
i∈[n]

ei · sπ(i),j

)
mod q for j ∈ [�]

V verifies for each j ∈ [�] and accepts the proof if all calculations match:

gtj ·
∏

i∈[n]

ai,j
ri = Aj ·

∏
i∈[n]

ci,j
ei ytj ·

∏
i∈[n]

bi,j
ri = Bj ·

∏
i∈[n]

di,j
ei

Fig. 2. Protocol: proof of correct parallel shuffle

Our proof has the same security properties as the simple proof presented in
the previous section. Completeness holds as it follows a slightly more generalized
version of the calculation done in the proof of Theorem1, as now we need to take
into account index j for each ElGamal tuple in a sequence. Special soundness
follows exactly the same arguments as in the proof of Theorem 2. The proof
of honest verifier zero knowledge is an elegant generalization of the proof of
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Theorem 3: The simulator S is modified in such a way that it outputs a sequence
of initial commitments for each j ∈ [�]:

Aj = gtj · ∏
i∈[n] (ai,j

ri · ci,j
−ei) Bj = ytj · ∏

i∈[n]

(
bi,j

ri · di,j
−ei

)

where 〈r1, ..., rn〉 ∈R Z
n
q and 〈t1, ..., t�〉 ∈R Z

�
q represent the response of the

challenge 〈e1, ..., en〉.
This proof might be seen as an �-run of the simple protocol, to which we feed

the same challenge sequence 〈e1, ..., en〉. Note that our proof of correct parallel
shuffle does not break the honest verifier zero knowledge property because in each
run, the prover picks a different value kj . Moreover, each run of the protocol is
applied on a different partial board (ai,j , bi,j), for i ∈ [n]. We summarize these
findings in form of a theorem.

Theorem 4. The proof of correct shuffle satisfies completeness, special sound-
ness, and honest verifier zero knowledge.

As for complexity, the computation cost for the proof of correct parallel shuf-
fle is summarized as follows. To generate a proof of correct shuffle of the entire
matrix, a prover will require 2n� + 2� exponentiations and 3n� multiplications.
In contrast, the verifier will be more expensive, because it requires 4n� + 2�
exponentiations and 4n� multiplications.

5 Eos Protocol

CLR signatures and mix-nets are the building blocks of the Eos Voting protocol
that we define next. The hallmark characteristics of the protocol is that voters
are organized in rings and they can sign their ballots anonymously. The use of
mix-nets make it impossible for coercers to trace the coerced ballot. Each voter
has the possibility to assume one out of many pseudo identities. This mechanism
can be used, as least in theory, to signal to the election authority that the ballot
was submitted as coerced. More research is necessary to study how to do this in
practice. For the purpose of this paper, we can assume that voter has access to
green and red envelopes. A green envelope means that the vote contained within
reflects the voter’s intention while a red envelope signals coercion. The color of
the envelope will be encrypted.

A voter is a person that can participate legitimately in the election process.
All voters together generate a set of CLR signed ballots as input. Every ballot
cast must be signed by an eligible voter, but not every eligible voter is required
to cast a ballot. A voter may be under the influence of a coercer, who may be
colluding with the election authorities, mix nodes, or tellers, to steal a voter’s
identity, tries to track the vote, or steals the voter’s HSM.

The election authority administrates the election. Its role is to initialize the
election, form the ring for CLR signing and collect the signed ballots cast by the
voters. Each ballot is recorded on a public bulletin board allowing the voter to
check that it was recorded as cast. The election authority is responsible for start-
ing and supervising the mixing phase. Eos assumes that all bulletin boards are
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append-only, but other variants are possible (although not discussed here). Votes
are cast for one candidate only. The result of Eos is a public bulletin board with
all votes recorded in clear text. Eos supports distributed and threshold decryp-
tion schemes, which entails that shares of the decryption key are distributed
among different tellers.

Election Set-Up Phase. The election authority prepares L = 〈y1, ..., yn〉, the
list of all eligible voter public keys that will form the ring. In addition, the election
authority prepares the set of candidates as vote choices V ⊂ Z

∗
p. We assume that

there are several mixing servers maintained by different non-colluding principals,
each with access to a good source of entropy. We call a mixing server honest, if
it is correct and not controlled by either the adversary or the coercer. An honest
mixing server does not reveal the permutation used for mixing.

As it is common practice, we use a (t, e)-threshold cryptosystem, as described
in [6], to encrypt and decrypt ballots. All ballots will be encrypted with a public
key Y , while the corresponding private key is split and shared among e tellers.
Recall that in threshold encryption, it takes the shares of at least t tellers in order
to decrypt successfully. Decryption will fail, if less than t shares are available.

Voting Phase. The voter commits to the color of the envelope, using the respec-
tive private key xi ∈ Zq associated with a public key yi = gxi ∈ L and some
entropy generated during the authentication process. We use both, private key
and entropy to derive (deterministically) using a secure hashing function, the
randomness needed in the ElGamal encryption. Once the ballot is generated
and signed, it is sent to the election authority that publishes it on the (append
only) public bulletin board.

Ballot Generation. A ballot consists of three ElGamal tuples: an encryption of
the color of the envelope, an encryption of the electoral identity of the signer
and an encryption of the vote. Encryption of the color: Recall from Sect. 3 the
definition of h and ỹ. A green envelope is formed as an encryption of h, whereas
the red envelope is an encryption of 1. Encryption of the electoral identity: In
the case of a green envelope, there will be an encryption of ỹ, while in the case
of a red envelope, there will be again an encryption of 1. Encryption of the vote:
The vote, to be encrypted, will be represented as value v ∈ V.

The ballot generation algorithm is depicted in Fig. 3. Formally, the ballot
generation algorithm for voter α depends on the following inputs, the authenti-
cation entropy E (such as PIN, a picture, a fingerprint), the private key xα, and
an election specific generator h. The first two ElGamal tuples (F, φ) and (T, θ)
of the generated ballot play an important role in forming the pseudo identity.
Let φ be the second projection (trap door commitment) of the encryption of the
color of the envelope, and θ is the second projection of the encryption of the
electoral identity. Together, (φ, θ) form the pseudo identity of the signer.

Due to the deterministic nature of the randomness used for ElGamal encryp-
tion, a voter is able to generate the same pseudo identity deterministically multi-
ple times. If an implementation of Eos uses, for example, a PIN code as entropy
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The algorithm of Ballot Generation starts by the device computing:

f = H (E‖xα‖h)

t = f · xα mod q

d ∈R Zq

(D, δ) =
{
v
}d

Y
=

(
gd, Y d · v

)

If authentication was successful:

(F, φ) =
{
h
}f

Y
=

(
gf , Y f · h

)
(T, θ) =

{
ỹ
}t

Y
= gt, Y t · ỹ

)

If authentication was unsuccessful:

(F, φ) =
{
1
}f

Y
=

(
gf , Y f

)
(T, θ) =

{
1
}t

Y
= gt, Y t)

The generated ballot is: (F, φ) , (T, θ) , (D, δ)
)
.

Fig. 3. Algorithm: ballot generation

for authentication, the pseudo identity of the voter is uniquely defined by the
choice of PIN. The valid pseudo identity is selected locally on the voting device
by correct authentication, i.e. by using the correct PIN. If the same coercer forces
the same voter to vote multiple times, Eos will do so, as it computes the same
coerced pseudo identity.

In addition, to guarantee the internal consistency of an encrypted ballot, the
signer proves in zero knowledge that the encryptions of the color of the envelope
and of the electoral identity are correct by providing a proof of the discrete
logarithm equality between logF T = logφθ. This means that there will be only
one pseudo identity per device, for each value of f . Note that logφ θ = xα (i.e.
private key of an eligible voter) is enforced by the CLR signature verification
algorithm. Together with the encrypted vote, one must include also a proof of
knowledge of the discrete logarithm of logg D. This will protect against vote
copying.

A malicious user might also try to cast multiple countable votes by encrypting
his electoral identity with different values of f . Obviously, this could happen in
theory, but practically this attack would require the malicious voter to tamper
with software or hardware to trick the protocol. This however, would be noticed
as we discuss later in the description of the Ballot Verification Phase Sect. 5 where
the value of ỹ will be decrypted and duplicates will be visible. We suggest, in
this case, to discard the multiple votes from the same electoral identity.

Note that only during the Tallying Phase (Sect. 5), the vote v will be visible
in plain text. There the public can scrutinize and validate each plain text and
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if it represents a valid candidate v, such that v ∈ V. Otherwise, the vote should
be disregarded.

Signing a Ballot. The CLR signature of a ballot is computed as described in
Sect. 3. Concretely, the pseudo-identity (φ, θ) is embedded in the ballot and the
message to be signed is publicly computable.

m = H (D‖δ)

The CLR signature will then be computed as:

σ (m) = (c1, 〈s1, ..., sn〉) .

Beside the ballot and the signature, a voter has to send also the two zero
knowledge proofs described above: one for proving the correct encryptions and
the second for proving the knowledge of the vote.

Public Bulletin Board. The public bulletin board is a public file, to which only
the election authority is allowed to append to. Each entry on the board contains
a ballot, its corresponding CLR signature and two zero knowledge proofs. Note
that no ballots will ever be removed from the public bulletin board, only added.
Each voter and coercer is able to check that their respective vote have been
appended on the bulletin board after submission, hence individually verifiable.
Ballots from the same pseudo identity can be related on the board as they have
pseudo identity (φ, θ). Assuming that voter and coercer use different pseudo
identities, their votes can only be related with a negligible probability.

Ballot Verification Phase. Once the Voting Phase finished and all votes have
been collected, the election authority no longer accepts signed ballots and seals
the public bulletin board cryptographically. The election authority performs a
cleansing operation on the public bulletin board and only copies those ballots
(without signatures and zero knowledge proofs) to a new board, for which both
zero knowledge proofs are checked and the CLR signature is validated. In the case
multiple ballots were cast from the same pseudo identity, only the most recent
ballot is copied. The cleansing operation is publicly verifiable. This procedure is
visible in Fig. 4, as some of the ballots get crossed out and disregarded.

Parallel Mixing. Before the election authority commences with decrypting the
ballots, it first uses the parallel shuffle described in Sect. 4.2 to shuffle the entire
bulletin board by re-encrypting all three ElGamal tuples of each entry. We
assume that there are multiple mixing servers, at least one of which is honest,
which protects confidentiality and prevents a coercer to follow a vote through the
protocol. Each mixing server performs a mixing operation on the output of the
previous mix server and constructs a mixed board together with a Proof of Cor-
rect Parallel Shuffle, which is subsequently validated by the election authority. In
case a proof fails, an error has occurred, and the output of this particular server
is disregarded and another mixing server is used. After the shuffle is complete
neither voters nor coercers will be able to identify their ballots on the mixed
board, unless all mixing servers collude.
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Fig. 4. Protocol overview

Pseudo Identity Decryption. To decrypt the pseudo identities for each entry, t
tellers out of e must come together and decrypt the contents of the mixed board
using the threshold decryption scheme. At this stage, only the first two ElGamal
tuples will be decrypted, i.e. the color of the envelope and the electoral identity of
each entry. The vote itself will not be decrypted and this is guaranteed assuming
that strictly more than e−t tellers are honest. All ballots whose color of envelope
do not decrypt to the value of h or 1 will be disregarded as they are not well-
formed. All ballots whose color decrypts to 1 will be discarded because they are
coerced. The remaining ballots should all have unique values for the electoral
identity. In case there are multiple ballots whose electoral identity decrypts to the
same value ỹ, these ballots should be disregarded as they represent an attempt
to cast multiple votes. This scenario might happen in case of a malicious voter
misusing the Eos protocol. These examples can be seen in Fig. 4 as some ballots
are crossed out in the Ballot Verification Phase.

Tallying Phase. The remaining ballots are those that encrypt valid votes that
must be counted. To extract the votes from these ballots, we drop the encryptions
of the color and electoral identity and create a new bulletin board to undergo
another round of mixing before decryption. The bulletin board only contains
encrypted votes of the form (D, δ). This way, we assure that the link between
an electoral identity and the vote is broken.

Mixing. Recall that CLR signatures are claimable as the voter can prove in zero
knowledge the discrete logarithm equality between loggyi = loghỹ. By mixing
the list of encrypted votes once more, a voter might only prove to a potential
coercer, that he voted but not who he voted for. For this phase, the simple
mixing protocol described in Sect. 4.1 is used.

Vote Decryption. Finally, the tellers get together once more and perform a thresh-
old decryption of the board of remaining encrypted votes and produce a proof
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of correct decryption. After decryption, each value of v should be counted as a
valid vote for the respective candidate if v ∈ V.

6 Analysis

Eos is individually verifiable, because every voter (and also every coercer) can
check if his ballot was correctly recorded by checking the public bulletin board.
Eos is also universally verifiable, because all zero knowledge proofs generated by
the mixing servers and the tellers are public. Eos is designed to assure that every
ballot published on any of the public bulletin boards is mixed and decrypted
correctly.

The integrity of the Eos protocol follows from the proofs of correct decryp-
tions for each of the two bulletin boards. Mixing and decryption operations are
applied to the entire bulletin board and can be challenged by any public verifier.
The removal of invalid and coerced votes from any of the bulletin boards is ver-
ifiable, because it can also be challenged by a public verifier as the color (red or
green) of the envelopes will be made visible during the Ballot Verification Phase.

The secrecy of the vote is guaranteed by the ElGamal cryptosystem and the
use of a cryptographically secure hashing function. The anonymity of the voter
is guaranteed by the CLR signature scheme, which protects the voter’s true
identity. At the same time, we have to assume that there will be at least one
honest mixing server that will not disclose its choice of permutation. This assures
that a coercer is not able to trace his ballot all the way to the decrypted board
and learn if the coerced vote was cast in a green or red envelope. Last but not
least, we assume that there will be at least e − t + 1 honest tellers to participate
in the threshold decryption. This means that we assume that t dishonest tellers
will never collude to decrypt the ballots from the bulletin board before the final
step of the protocol as this will represent an attack to the fairness of the election.

In terms of receipt-freeness, Eos guarantees that neither a voter nor a coercer
can identify his ballot on the decrypted board. This is achieved through two
mixing phases which break the connection between the ballot on the public
bulletin board and the one on the decrypted board. In addition, a coercer may
force a voter to cast a particular vote. In this case, the voter will use one of
the alternate pseudo identities to sign the ballot, which will subsequently be
discarded during the Ballot Verification Phase.

Eos is constructed in such a way that the pseudo identity used for a coerced
vote is computationally indistinguishable from the real pseudo identity of the
voter. Even if the coercer had stolen the voter’s identity, he would not be able
to use it to identify the signer of the CLR signature, because this identity is
encrypted and will only be decrypted after the first round of mixing. As Eos
is receipt-free, the coercer will not be able to track a coerced vote through the
system. And lastly, if a coercer steals the voter’s HSM, he might in principle
be able to cast a vote for each pseudo-identity. However, clever authentication
schemes, possibly even using a combination of pin numbers and biometrics, can
be devised to make the space of pseudo identities prohibitively large. We conclude
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that Eos is resistant against the three coercion attacks we have outlined in the
introduction of this paper.

One bit of power that the coercer has over the voter is that of an abstention
attack, to force a vote for a particular candidate for which he knows will receive
only this one vote, something like an invalid write-in vote. All the coercer has
to do is to check that this vote appears on the final decrypted board of votes.
If it does, this would mean that the coercer forced the voter to cast an invalid
vote, spoiling the ballot. This situation can be mitigated by the voter proving
that his vote is part of the valid set of votes V without revealing what the vote
is, for example using a disjunctive zero knowledge proof protocol as described in
[4]. These votes could be cleansed earlier, and would therefore never appear on
the final board.

7 Conclusion and Future Work

We have described in this paper a verifiable, privacy preserving coercion-resistant
voting protocol that was inspired by Conditional-Linkable Ring (CLR) signa-
tures. Furthermore, we argued for why this protocol protects the integrity of
the election, how it guarantees the secrecy of the vote, receipt freeness and is
coercion resistant as long as one of the mixing servers is honest. In future work,
we plan to reduce the size of CLR signatures from linear to constant size, for
example using “accumulators” such as described in [7]. These constant sized
signatures can also be made linkable [22].

Our protocol is different from other coercion mitigating protocols, such as
Selene [20] or JCJ [12]. In Selene tracker numbers are generated prior to the
election, and once a vote is cast, only the trap-door commitment is shared with
the voter. After the election is over, the randomness necessary to decrypt the
tracker number is shared, allowing each voter to gain confidence in that his or her
vote was recorded correctly. Moreover, this protocol allows every voter to trick
a potential coercer into believing that he or she voted for the coercer’s choice.
In JCJ, every voter has access to different kinds of credentials. One credential is
there to be used to cast a valid vote, whereas as the other credentials are there
to cast a vote that from the outset looks like a valid vote, but really is not. The
election authority will be able to weed out coerced votes. A detailed comparison
to Selene and JCJ is left to future work.
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Abstract. STAR-Vote is an end-to-end cryptographic voting system
that produces both plaintext paper ballots and encrypted electronic
records of each ballot. We describe how clash attacks against STAR-Vote
could weaken its security guarantees: corrupt voting terminals could iden-
tify voters with identical ballot preferences and print identical receipts
for them, while generating electronic ballot ciphertexts for other candi-
dates. Each voter would then be able to “verify” their ballot on the public
bulletin board, but the electronic tally would include alternative cipher-
texts corresponding to the duplicate voters. We describe how this threat
can be exploited and mitigated with existing STAR-Vote mechanisms,
including STAR-Vote’s use of Benaloh challenges and a cryptographic
hash chain. We also describe how this threat can be mitigated through
statistical sampling of the printed paper ballots as an extension to the
risk-limiting audits that STAR-Vote already requires.

1 Introduction

Clash attacks, a term coined by Küsters, Truderung and Vogt [12], are a fam-
ily of attacks on verifiable voting systems in which corrupted voting machines
manage to provide the same vote receipt to multiple voters, so that the veri-
fication procedure succeeds for each voter individually, while corrupted voting
machines are able to cast whatever vote they like for each of the voters who were
given a duplicate receipt. Examples of clash attacks have been proposed against
ThreeBallot [15], Wombat [3], and a variant of the Helios voting system [1].

Clash attacks happen when voting machines can prepare ballots in such a
way that a voter cannot verify that they contain an element that is unique to
them. This is the case for STAR-Vote [2], since a voter will not have seen any
other ballots, and thus won’t know that ballot ID numbers are reused.

How would a clash attack on STAR-Vote appear in practice? Under the
assumption that the software running inside one or more STAR-Vote voting sta-
tions was corrupt, the voting station could detect when a voter casts an identical
ballot to a previous voter. At this point, the voting station would print a paper
ballot corresponding to the previous voter while potentially having the freedom
to generate a ciphertext ballot completely unrelated to the voter’s intent.

Each of these voters now has a receipt that includes the hash of a completely
valid vote for exactly each voter’s intent. Unfortunately, the two receipts are
c© Springer International Publishing AG 2017
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pointing to same exact ballot, which neither voter would necessarily discover,
while meanwhile a fraudulent ballot would be counted as part of the electronic
tally. STAR-Vote provides evidence to auditors both while the election is ongoing
and after it has completed that could potentially detect clash attacks like this,
but suitable procedures were not part of the original STAR-Vote design. In this
paper, we describe several variants on clash attacks and present a number of
countermeasures to discover or rule out the presence of clash attacks.

2 STAR-Vote

We describe the key elements of STAR-Vote, omitting in various places details
that are not relevant for our analysis in this paper.

Entities. Running a STAR-Vote election requires the participation of four
groups of persons: (1) Voters, who submit votes and are invited to participate
in various optional auditing operations as part of the end-to-end (E2E) verifi-
able component of STAR-Vote; (2) Internal auditors, who run the risk limiting
audit (RLA) part of STAR-Vote; (3) Trustees, who are responsible of holding
and using the decryption keys responsible for the confidentiality of the votes;
and (4) Election managers, who are responsible of setting-up and supervise the
election operations.

As part of their role, the election managers need to setup in each voting
station a locally networked set of devices: (1) Voting stations, to be used by
the voters to produce ballots, under electronic and paper format; (2) Ballot
boxes that receive the paper ballots; (3) a Ballot control station (BCS) that
orchestrates the various devices in a voting precinct.

Setup. Before an election starts, the trustees jointly produce an election public
key kT for a threshold commitment consistent encryption scheme [9], and two
unique hash chain seeds are chosen: zp0 and zi0, one for the public audit chain,
and one for the internal audit chain. The internal audit chain logs, and replicates
on all machines connected to the local network, all the events happening in each
voting station, ballot box and on the BCS, with a fine-grained modularity, with
the intent of collecting as much evidence as possible in case of a disaster (while
making sure to encrypt all potentially sensitive data). The public audit chain
logs all the elements that are needed in order to run the end-to-end verification of
the election, and is designed so that it can be used and verified while only using
data that hide the content of the ballots in an information theoretic sense (in
particular, this hash chain does not include any encrypted vote). Every time a
ballot is printed, the current state of the public chain is printed on the take-home
receipt prepared for the voter.

The BCS also selects a public key kC for an internal use and, through the
BCS, all voting stations and ballot boxes are initialized with kT , kC , zp0, zi0.
The final step of the setup is to initialize both chains with a unique identifier of
the precinct in which the machines are located.
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Casting a Ballot. When signing-in, a voter receives a unique token t associated
to his ballot style bst . When entering the booth, the voter enters his token and
the voting station displays an empty ballot of style bst , so that the voter can
make his selection v.

The voting station processes these choices as follows, based on the current
values zii−1 and zpi−1 of the hash chains:

1. It broadcasts the information that the token t introduced by the user is con-
sumed.

2. It computes the number of pages that the printed ballot will take and, for
each page, selects an unpredictable ballot page identifier bpid . This identifier
is not intended to become public or listed anywhere in digital form, for vote
privacy reasons that will be explained later, and is used as part of the RLA.

3. It computes an encryption of the vote cv = EnckT
(v‖zii−1) and a vector cbpid

of ciphertexts that encrypt H(bpid‖ri) with kT for each race ri printed on
page bpid of the ballot.

4. It selects a unique ballot casting identifier bcid and computes cC
bcid =

EnckC
(bcid), which will be used by the BCS to detect when a paper ballot

corresponding to a given electronic record is cast in a ballot box.
5. It broadcasts a message containing the time t, bst , cC

bcid , cbpid , cv and com-
putes a hash zii := H(zii−1‖t‖bst‖cC

bcid‖cbpid‖cv) for inclusion in the internal
audit trail.

6. It prints each page of the ballot, the last page being made of two pieces that
can be easily taken apart. The first part contains a human readable summary
of v and a machine readable version of bpid , bcid and the ballot style bst . The
second part is a take home receipt that contains a human readable version of
the election description, the time t and zpi := H(zpi−1‖bst‖t‖CExt(cv)). The
CExt() function extracts, from a ciphertext, a component that is a perfectly
hiding commitment on the encrypted plaintext. This commitment is expected
to include ZK proofs of knowledge on an opening to a valid vote.

When receiving this, the controller decrypts cC
bcid and appends the pair (bcid , zpi)

into a local table, until a ballot with that bcid is scanned by a ballot box.

Challenging a Voting Station. When a voter, or a local auditor, wants to
challenge the voting station, she brings the printed ballot to a pollworker. The
pollworker: (1) stamps the ballot to mark it as spoiled; (2) scans the bcid so that
the ballot is recorded in the internal and external hash chains to be treated as
part of the spoiled ballot box.

Later, at tallying time, the spoiled ballots are all decrypted (or their random-
ness is disclosed by the voting station that produced them) and they are posted
on the election bulletin board for public verification (including by the voter).

Casting a Ballot. If the voter is happy with the ballot printed by the voting
station, it brings it to a ballot box. There, the two pieces of the last ballot page
are split, the take-home receipt is kept by the voter, and all the pages are put
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into the ballot box, which scans the bcid printed on each page, and both hash
chains are then appended with the information that these pages have been cast
and that the corresponding encrypted votes need to be included in the tally. If
the scanned bcid is unknown to the BCS, the ballot is rejected by the ballot box
and an error signal is triggered.

Electronic Tallying. At the end of the day, all the encrypted votes cv’s that
have been marked as to be included for the tally are checked for validity and
aggregated into an encryption cv of the tally. This tally is then jointly decrypted
by the trustees and published. (This is done as needed for the different races,
ballot styles, . . . )

Then, CExt() is applied to all the cv’s, the result is published with all the
information needed to check the zp hash chain, and the trustees publish a proof
that the tally is consistent with zp. Eventually, the trustees jointly and verifiably
decrypt and publish the content of the spoiled ballots.

Audit of the Electronic Process. Anyone can perform a number of verifi-
cations from the published information: (1) check the validity of the published
CExt(cv)’s; (2) check that the tally is consistent with the published CExt(cv)’s;
(3) check the validity of the zp hash chain; (4) check the number of ballots
against the number of voters if the information is public; (5) check that the
scanned spoiled ballots were correctly built.

Furthermore, voters are invited to check whether the zpi value printed on
their receipt appears in the list of ballots included in the tally and, if they spoiled
a ballot, to check that their spoiled ballot really appears in the list of spoiled
ballots. If any of these verification steps fails, complaints should be filed.

Audit of the Paper Ballots. After having checked the validity of all the
encrypted votes, the trustees supervise (or perform), contest by contest, a shuffle
of all (cbpid , cv) pairs corresponding to valid ballots (after splitting the cv’s into
race components), yielding a list of (c′

bpid , c′
v) pairs. This shuffle needs to be

made verifiable, at least with respect to the privacy properties that it offers,
either by using a fully verifiable mix-net [11,17], or possibly by using a lighter
solution like a marked mix-net [13].

After completion of this shuffle, the trustees decrypt all c′
v and c′

bpid tuples.
This decryption yields, for each race ri, a list that contains H(bpid‖ri) and the
cleartext choices that should be those on the ballot page bpid for race ri. This
table is made available to all the people who are taking part to the risk-limiting
audit. The use of the hash function and high entropy bpid ’s guarantees that
noone is able to decide which race results belong to the same ballot page, which
helps defeating pattern voting attacks.

From this table, a ballot-comparison risk limiting audit (RLA) can take place.
The gist of the process is to start by verifying that all the hashes in the above-
computed table are unique, that the number of such hashes is consistent with the
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number of ballots and their ballot styles as reported for the ballot boxes, then
repeat, a number of times that is a function of the election margins computed
from the results of the electronic tally, a process that consists in: (1) selecting a
random ballot page (2) read its bpid and search for H(bpid‖ri) values in the table
for all races ri present on the ballot; (3) compare the corresponding plaintexts
to the paper ballot.

3 Clash Attacks on STAR-Vote

We now present a threat model for how a clash attacker might be able to operate
and discuss how clash attacks might be detected.

3.1 Threat Model

Clash attacks require a fairly sophisticated attacker, capable of running malicious
code on every computer in a given STAR-Vote precinct: the controller, every ballot
terminal, and the ballot box as well. Under normal circumstances, we might hope
that this is not feasible, but certainly many commercial voting systems have suf-
fered from vulnerabilities that allowed for the viral spread of malware (see, e.g., the
results of California’s “Top to Bottom Review” [7] and Ohio’s “EVEREST” [14]
studies in 2007). Consequently, under such an attack, many of STAR-Vote’s secu-
rity protections become weaker, but others remain strong.

– STAR-Vote specifies human-readable paper ballots, printed by its voting sta-
tions, and deposited in a ballot box. It remains possible to ignore the elec-
tronic results entirely and tally the paper ballots independently, whether by
hand or by scanning into another computer.

– STAR-Vote specifies the use of Benaloh challenges [5,6] to catch a voting
machine in the act if it tries to substitute a ciphertext that doesn’t correspond
to the voter’s intent, as printed on the plaintext ballot. Our attacker will try
to tamper with unchallenged ballots, and will try to take advantage of the
end-of-day distribution of STAR-Vote’s encrypted ballot records.

– STAR-Vote specifies a SOBA risk-limiting audit [4], which selects electronic
ballots at random and requires the audit to identify the corresponding paper
ballots. If this audit selects a printed ballot for which there is no corresponding
electronic record, then the audit will discover this absence.

– STAR-Vote encrypted ballots are constructed from homomorphically
encrypted counters which include non-interactive zero knowledge (NIZK)
proofs that they are well-formed (e.g., no counter indicates anything other
than one or zero votes for a given candidate). Our attacker does not have the
power to forge these proofs.

– STAR-Vote specifies the use of a cryptographic hash chain to preserve the
integrity of the encrypted ballots. Every voter is also given a printed receipt
containing the hash of the record of their vote, which in turn includes the hash
of the previous record. While we cannot guarantee that voters will verify every
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single receipt, any voter receipt protects the integrity of every vote cast before
it in the same precinct. Our attacker does not have the power to find hash
collisions and thus cannot create alternative histories consistent with each
voter’s hash.

Consequently, it’s within the scope of our threat model for a STAR-Vote
voting terminal, when given a voter who expresses selections identical with a
previous voter, to print a duplicate copy of the prior voter’s ballot and receipt,
while publishing an encrypted vote for other candidates STAR-Vote’s hash chain.
This paper analyzes the ways in which such a powerful adversary might attempt
to operate and how it might later be discovered.

Our threat model does not empower an attacker to tamper with every com-
puter in the world, merely every computer in the control of a given local elec-
tion authority. External computers might still be considered trustworthy. As an
example, a smartphone app that scans ballot receipts and posts them to an inde-
pendent cloud service for analysis could be considered beyond the reach of our
attacker.

3.2 How Could This Work on STAR-Vote?

A clash attack on STAR-Vote could happen in different ways, based on the
following approach:

1. Alice comes and expresses a vote v, encrypted as cA
v , and included in the hash

chain, leading to a public hash zpA, which is printed on the ballot with v,
bpid and bcid . The paper ballot is split and cast.

2. Bob comes and happens to express the same vote v, something that is noticed
by the malicious voting station. The voting station then produces a ciphertext
cB
v , encrypting a different vote v∗ (of the same style), and encrypts bcid∗’s

and bpid∗.
3. When printing Bob’s paper ballot, the voting station prints a ballot with v

written on it, the hash zpA that was printed for Alice, and bcid∗’s and bpid∗.

The expectation is that, when Alice and Bob read their paper ballot, they
see their vote intent correctly reflected and, at the end of the day, they will both
find a ballot containing the expected hash in the public hash chain: they will
both look at the same place. However, the cheating machines manage to replace
Bob’s vote v with a different vote, while not modifying the total number of votes.

Several variants of this attack can be considered, depending on whether
bcid = bcid∗ and bpid = bpid∗. Various strategies can also be adopted when
voting stations want to scale the attack: they can create many pairs of clashing
ballots, each pair having a distinct hash, or create one large clash, in which many
ballots would have the same hash, or adopt any strategy in between.

3.3 Can We Detect It?

The high-level description of STAR-Vote, as reflected above and in the STAR-
Vote documentation [2,16], does not seem to provide obvious ways of spotting
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the attack that we just described. We split our analysis according to the two parts
of the verification of a STAR-Vote election: the end-to-end electronic verification
part, and the RLA part.

End-to-end Verification. On the side of the electronic process, all the manda-
tory verification steps succeed: the trustees tally the expected number of ballots
with the expected races, the hash chains looks legitimate, and the voters find
their zpi on the election bulletin board. However, if the verification is pushed
further and ballots are challenged, then discrepancies can be detected.

If Bob decides to challenge its voting station, the voting station can offer a
decryption of cA

v , which will be consistent with the printed voter intent and be
included in the hash chains. Inspections can also be made regarding the bcid
and bpid (though they do not seem to be explicitly prescribed in the original
documentation).

The internal hash chain contains an encryption cC
bcid of the ballot casting

identifier bcid that is printed on the ballot. Here, the attacker has two options:

1. It can generate a fresh bcid for Bob’s ballot. In this case, the printed ballots
will have distinct bcid ’s, as expected, and a possibly honest ballot box or BCS
has no way of detecting a potential duplicate. But, if Bob’s ballot is spoiled,
there will be a discrepancy between the bcid printed on the ballot, and the
one pointed by the hash printed on the receipt, which will be Alice’s bcid . So,
if the voting station bets that Bob’s ballot will not be spoiled, no evidence is
left (at the bcid level, at least).

2. It can resuse Alice’s bcid on Bob’s ballot. In this case, the decryption of the
encrypted bcid pointed by the hash printed on the receipt will be consistent
with the bcid printed on the paper ballot. But the ballot box will contain
two ballots with identical bcid ’s. So, by adopting this strategy, the voting
station can pass an inspection of the bcid at spoiling time, but it will leave
(potentially hard to find) evidences in the ballot box. Also, if the BCS happens
to be honest, it may happen that it notices the same bcid coming twice.

With the current description of STAR-Vote, and given the above threat model,
the second strategy seems likely to be a successful one, at the electronic level at
least.

A deeper inspection of the hash chains will show other discrepancies, though:
every time a ballot is cast or spoiled, this event must be recorded in both
hash chains. There are again two attack strategies that can be followed here,
as depicted in Figs. 1 and 2.

1. As depicted in Fig. 1, the BCS may mark Alice’s ballot as cast in both chains
as soon as it is notified of Alice’s dropping of her ballot in the ballot box. If
Bob cast’s his ballot, then the BCS marks the malicious ciphertexts prepared
on Bob’s behave as cast too, and nothing is visible. However, if Bob decides to
spoil his ballot, then the machines are facing a difficulty: the public hash chain
should have Alice’s ballot marked as spoiled, but this creates an inconsistency
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in the chain since this ballot has already been marked as cast. So, a public
evidence is left, and this one is easy to notice.

2. As depicted in Fig. 2, the BCS can record that Alice cast her ballot, but not
append that information in the hash chains, and wait to see what Bob will
do with his ballot. Now, if Bob casts or spoils his ballot, the BCS can simply
append that instruction in the chain (and always mark Bob’s ciphertext as
cast, in order to preserve a consitency in the number of ballots cast and
spoiled). However, if Bob spoils his ballot, Alice’s ballot will be shown as
spoiled on the bulletin board, and Alice may file on complaint on the ground
that she cast her ballot.

Still, this last strategy seems to be the “safest” for malicious machines: a dis-
crepancy will only become visible if Bob challenges his ballot and if Alice checks
her ballot on the election board, notices the problem, and files a complaint.

To conclude, it appears that all clash attack variants can be detected by the
audit trail left by the end-to-end verifiable part of STAR-Vote. Our analysis sheds
a new light on the importance of the “cast” and “spoil” marks that are included
in the hash chains, and stresses that the system should provide easy mechanisms
to detect that no single ballot appears as cast or spoiled in the bulletin board. (If
the cast and spoiled ballots appear separately, as it is done in many end-to-end
verifiable voting system prototypes, this may be easily overlooked.)

Taking a look back, a countermeasure against clash attacks proposed by
Küsters et al. [12] consists in asking voters to type a random number and to
print that number on the receipt, for verification. This would be feasible with
STAR-Vote and would render duplicate ballots very difficult to produce, as dupli-
cates could only happen between voters with identical vote intents and picking
choosing the same random number. However, we would prefer to avoid extra
interaction with the user. As a variant, we imagine that receipts could add a
sequence number, synchronized across every voting station, printed in large type
so it’s visible to poll workers and watchers. Any repeats of recent numbers or
incidences of numbers wildly out of sequence would be suspicious.
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Risk Limiting Audit. The risk limiting audit component of STAR-Vote is
expected to offer confidence in the election results, independently of the effec-
tiveness of the end-to-end verifiable component. The inputs of the RLA are:

1. Ballot manifests, that list all ballot boxes, as well as the number of ballots
contained in each box, and the style of these ballots.

2. An electronic vote record, that contains, race by race, a list of hashes of the
form H(bpid‖ri), and associated to each of these hashes, the choices made
for race ri that must be printed on the ballot page bpid .

3. Paper ballots in boxes, as per the ballot manifests.

For the sake of our discussion, we assume that the manifests are correct, and
that the election outcome resulting from the electronic record is consistent with
the one announced from the end-to-end verifiable tally.

The bcid ’s are not part of the electronic records, and are therefore not used
in the RLA. The bpid ’s, though, offer the crucial link that is expected to define
the bijection between paper ballots and electronic records. Again, there are two
possible strategies for malicious machines running a clash attack:

1. A malicious voting station can print different bpid ’s on the ballots with clash-
ing receipts. In this case, if Bob’s ballot is selected as part of the RLA, the
bpid printed there won’t point to the electronic record of Alice’s ballot, which
is precisely the kind of discrepancy that the RLA is designed to efficiently
detect.

2. A malicious voting station can print identical bpid ’s on Alice’s and Bob’s
ballots. Assuming that both ballots are cast, the boxes now contains two
ballots with the same bpid . And, even if one of the two ballots is picked as
part of the RLA, no discrepancy will appear: Alice’s electronic record will be
picked in both cases, and will match the paper ballot content.

This second strategy seems to be a successful one: the RLA assumes that
there is a bijection between the paper and electronic ballots, and does not
attempt at verifying that there is a bijection indeed. In order to solve this issue,
we investigate the possibility of a bijection audit.

4 Bijection Audit

We want to determine whether there is a bijection (i.e., a one-to-one correspon-
dence) from the paper ballots to the electronic ballots. Paper ballots that do
not have a match in the electronic records are easy to detect. However, bijection
failures resulting from clashing ballots can only be detected if we pick duplicate
paper ballots. Of course, as described earlier, two voters might well have iden-
tical voting selections, but every ballot page is supposed to have a unique bpid ,
which is a randomly selected 128-bit number, and thus highly unlikely to repeat
(from the birthday paradox, this will only become likeley after casting around
264 ballots in the same box). The discovery of two identical bpid numbers on two
separate pages would imply election fraud. For the remainder of this section, we
will assume that we want an auditing procedure that’s completely independent
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of the end-to-end verifiable side of STAR-Vote. We don’t want to rely on the
hash chains, the cryptographic receipts, or the Benaloh challenges. We wish to
design a process for validating the bijection by considering the paper ballots
and the cleartext electronic vote records, alone. We assume that the shuffle and
audit data are kept at the precinct level, so that inter-precinct clashes would be
equivalent to missing ballots.

4.1 Why Not Sort?

A seemingly attractive solution is to sort the ballots by bpid , after which detect-
ing duplicates would be a simple linear scan. The problem is that we’re dealing
with as many as N = 1000 paper ballots in a given precinct. We need a com-
pletely manual process that a small set of poll workers can accomplish quickly.
Manual sorting doesn’t scale well.

A merge sort, wherein the pile of ballots is partitioned into smaller piles, each
of which is sorted, and then the sorted piles are merged, might seem attractive.
The initial partition happens quickly, giving a hypothetical sixteen poll workers
1/16 of the ballots. If our workers sorted their initial piles using an insertion
sort, taking 10 s per ballot, then the initial phase would only take ten minutes.
The merging phase, however, would be more cumbersome. If we followed a tree-
like binary merging process, each merge phase must consider twice as many
ballots and would use half as many poll workers. Again, assuming ten seconds
per ballot, the first phase would reduce 16 to 8 piles in 21 min. The second phase
would reduce 8 to 4 piles in 42 min, then 4 to 2 piles in 84 min, with the final
merge taking 168 min. The whole process totals up to almost 5.5 h. Even if our
poll workers can insert a ballot every 5 s instead of 10 s, this process might still
take 3 h.

Of course, there are many variations, but they all suffer from expensive
phases. A bucket sort, for example, requires a linear scan to begin, partitioning
the ballots based on their prefixes, but it makes the merging process trivial, since
the sorted buckets can simply be stacked rather than painstakingly merged.

If we lived in the 1960’s, we might suggest the use of a sorting machine,
such as were used with punchcard decks [8]. Alas, such devices now only exist in
museums, with any modern need to sort pieces of paper being handled digitally
after the use of a high-speed scanner. We need a procedure that can be accom-
plished without the use of computers, and this procedure must only take a few
minutes, not hours. In return, we’re willing to trade off a guarantee of finding a
duplicate for a chosen probability of that detection.

4.2 Audit Methodology

The SOBA risk limiting audit [4] is designed to provide a required degree of
confidence in its outcome, regardless of the number of ballots. We will now specify
a simple sampling procedure that can audit a pile of ballots for uniqueness of
the bpid numbers, assuming that the bpid ’s are actually random and that at
most one duplicate is made of any given bpid . (We will relax this assumption in
Sect. 4.3.).
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Variable Definition Example value

m margin of victory (fraction) 0.05

d duplicated ballots (fraction) 0.03

n number of ballots sampled 100

N total number of ballots in the box 1000

Pd probability of discovering duplicates 0.95

T number of trials (e.g., precincts sampled) 5

Subsampling the Ballots. We will start with N ballots (perhaps as many as
1000 in a box) and need an efficient procedure for subsampling a more reasonable
number n (perhaps 50, perhaps 100), with the added concern that our adversary
will be aware of our subsampling methodology. We imagine that our poll workers
can roll dice to select specific digits for use in a search. (Since digits are printed
in hexadecimal, a 16-sided dice would be most convenient.) We have a variety
of options for how to proceed. For example, to sample 1

16 · 1
16 = 1

256 , we can roll
dice to select specific values for the first and second digit of the bpid . To sample
1

128 of the ballots, we could pick two possible values for one of the digits (i.e.,
1
16 · 2

16 = 1
128 ).

In this fashion, we can design samples to get close to any ratio that we might
want. For example, if we truly want to sample exactly 10% of the ballots, we
might select three possible values for the first digit and nine possible values for
the second digit, yielding roughly 3

16 · 9
16 = 0.1055. So long as the resulting

fraction is slightly larger than the target ratio of n
N , we will have the number

of samples that we want. It doesn’t matter if the adversary knows the digit
locations we will consider (e.g., most-significant vs. least-significant). If there
exists duplicate bpid numbers anywhere in the pile, then they have a chance
of being selected by the sample (i.e., we are not making n random draws from
the pile of ballots; we are making queries against bpid digits). Conversely, and
anticipating on our further discussion, it’s important that we roll dice for the
specific values of the digits. Otherwise, the adversary could guarantee that the
bpid values on duplicate ballots were never selected for an audit.

Discovering Duplicates. Once we have our sample of ballots, we then must
discover duplicates in the sample. If the sample is small enough, sorting is going
to be much more feasible. For example, ballots could be split into piles based on
the most-significant-digit of bpid and then each pile could be sorted by hand.
This process would take minutes, not hours. But what are the odds of discovering
a duplicate? We can solve for the probability of discovery and then rearrange
the equation to solve for the fraction f of the bpid ’s to be sampled. The first
line below expresses that the probability of detection Pd equals one minus the
probability that all Nd bpid ’s which are duplicates are not picked, which will
happen with probability 1 − f every time.
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Pd = 1 − (1 − f)Nd

f = 1 − (1 − Pd)1/Nd

Of these, it’s helpful to use the equation for f and plug in values we might
expect for d, Pd and N . For example, if d = 0.03, N = 1000, and we want
Pd = 0.95, then n = 95. With a sample of 95 ballots, we can thus have a 95%
chance of discovering a duplicate. Here are some other solutions:

d Pd f n

0.010 0.95 0.259 259

0.030 0.95 0.095 95

0.050 0.95 0.058 58

0.100 0.95 0.03 30

If the duplication rate d is high, we can detect it with a fairly small number
of samples n and a very high probability of success Pd. However, we can see that
we need more than 250 samples when d is only 1%. So when might poll workers
be required to conduct such a large sample? Consider that every process like
this occurs after the election is complete, which means that we know the margin
of victory m. We can simply specify that d = m, i.e., we’re looking for enough
ballot duplication to change the election outcome. Consequently, as the margin
of victory shrinks, only then do we need to sample a large number of ballots.

Repeated Trials. Consider what might happen if we repeated the above
process across multiple precincts, selected at random. It’s entirely possible, from
the attacker’s perspective, that they could just as well attack one precinct or
attack every precinct, so as an auditor, we should look at more precincts. Or,
if we simply want to avoid the non-linear costs of manually sorting large num-
bers of paper ballots, we could conduct multiple trials in the same precinct. The
resulting AggregatePd = 1 − (1 − Pd)T , simply multiplying together the odds
that the attacker gets away with it in each trial.

d Pd n T AggregatePd

0.010 0.60 88 1 0.60

0.005 0.40 97 1 0.40

0.010 0.60 88 5 0.99

0.010 0.50 67 5 0.97

0.005 0.40 97 5 0.92

Now, even with very small duplicate rates like d = 0.01, we can conduct five
trials, perhaps across five precincts or perhaps within the same precinct, of only
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67 ballots per trial. While each trial has only a 50% chance of discovering a
duplicate, all five together have a 97% chance. (Sorting 67 ballots, five times, is
significantly easier than sorting 259 ballots, even once.).

4.3 Non-random Duplicates

Next, we will consider the possibility that an attacker arranges for every dupli-
cate ballot in the box to share the same bpid . In this case, the odds of detection
are only the odds that the dice match the attacker’s bpid . If we match, then we
get every duplicate. If we fail to match, then we get no duplicates.

Furthermore, in our threat model, the attacker can control the bpid number
distributions, making sure that any biases introduced through the duplicates
is evened out over the other ballots. For example, if the duplicates were more
likely to have a “3” in the first digit, the attacker could arrange for other ballots
to never start with a “3”, and could go further and arrange for “9” to occur
most often. Consequently, we cannot rely on relatively simple procedures, like
splitting on digits and counting each pile, as a statistic to detect duplicates.

Instead, we will propose a sampling methodology with a relatively low success
rate, in any given precinct, but which will gain its power in aggregate when
repeated across many precincts. We will only assume that we can make a random
draw of n ballots from any given ballot box. Rather than this process involving
dice, we instead imagine a process similar to “cutting” a deck of cards, whereby
each draw involves splitting a pile of ballots and selecting the next ballot from
the location of the cut.

Given this sample, we can then manually sort it and look for duplicates. If n
is, for example, 100 ballots, this process will only take a few minutes. The odds
of successfully detecting duplicates are a function of the size of the sample n and
of the fraction of duplicates d. We compute this by measuring the probability
of selecting only from the non-duplicates and the probability of selecting exactly
one of the duplicates: Pd = 1 − (1 − d)n − n · (1 − d)n−1 · d.

If d = 0.01 and n = 100, then Pd is approximately 26%1. If this is repeated
for T trials, we can compute AggregatePd in the same fashion. For example, with
T = 10 trials, we again can find a precinct with duplicates with a 95% proba-
bility. This represents significantly more work than we needed in the case with
randomly distributed duplicates, but it’s still feasible to conduct this without
requiring hours of effort.

(We note that sampling without replacement would be preferable, both
because it would slightly increase the odds of success, and because we wish
to physically demonstrate the existence two separate ballots with the same bpid .
The equation above, however, assumes sampling with replacement, which is only
an approximation that becomes less accurate when N gets smaller. An accurate
combinatorial expression of Pd is not particularly necessary for our discussion.).

1 If we select values for n and d where n · d = 1, then the expression for Pd tends to
1 − 2/e.
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4.4 Non-random Precinct Corruption

We first considered uniformly distributed duplicates within a precinct. We next
considered how every duplicate in a precinct could share the same bpid , making
them harder to find via sampling. Here, We apply the same consideration to
the election as a whole. We now assume that our attacker wants to do all of the
corruption in a very small number of precincts rather than spreading it uniformly
out across every precinct.

Let’s revisit Pd and AggregatePd from above. In the limiting case where every
ballot in a precinct is a duplicate, then any audit that touches more than one
ballot will detect the duplication. This means that Pd is either trivially 1 or 0. A
similarly process we can conduct in every precinct might be to draw a handful
of ballots and eyeball them for duplicate bpid numbers. This would guarantee
the detection of a precinct with 100% duplicates.

4.5 Linear Auditing with Buckets

The subsampling methods described above all begin with a linear pass to select
ballots having IDs with a desired pattern. This section presents an alternative
method for detecting duplicates that requires only two linear passes over the
ballots.

This method requires some basic record-keeping that can be accomplished
with pencil and paper. In the first pass, we will be mapping from ballot IDs to
buckets. Let’s say we use the first two hex digits of the bpid , which we can map
to a 16× 16 grid, pre-printed on a single sheet of paper; a poll worker would then
write down the third (and maybe fourth) hex digit in the bucket. At the end of
the pass, the buckets are searched for duplicates. If the number of ballots and
buckets are well chosen, the number of ballots per bucket will be small, and this
search will be easy. If a collision is found, the bucket is marked as suspicious:
this may come from a collision on the first hex digits that will stop after a few
more digits, or be the result of a clash. The purpose of the second pass is to
inspect the suspicious buckets: during that pass, the ballots belonging to these
buckets are further inspected, in order to make sure that no clash happens.

An exact estimation of the expected number of ballots per buckets is chal-
lenging to express: these are non-trivial variations around the “birthday para-
dox” problem. However, fairly accurate approximations based on the Poisson
distribution can be obtained (see, e.g., DasGupta [10]).

Let us say that we want to estimate the probability P (b, n, k,m) that, in a
setting with b buckets and n ballots, there are k buckets containing m ballots.
We first compute the probability that m ballots with randomly selected bpid
would go into the same bucket: that probability is b1−m. Now, we consider the
process of selecting n ballots as actually picking

(
n
m

)
m-tuples of ballots. This

is of course an approximation, since the independence between these m-tuples
is not obtained when we just have a pile of n ballots, but it turns out that it is
accurate enough for our purpose (it over-estimates the number of collisions, while
being asymptotically exact). The last step consists in estimating the probability
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Table 1. Estimation of bucket fillings. The last two columns indicate bounds on the
number of buckets containing at least “multiplicity” ballots, bounds that are satisfied
with probability 50% and 95% respectively.

Ballots Buckets Multiplicity 50% 95%

100 256 2 19 27

100 256 3 2 5

100 256 4 0 1

100 256 × 163 2 0 0

1000 1024 5 7 12

1000 1024 6 1 3

1000 1024 7 0 1

1000 1024 × 16 2 30 40

1000 1024 × 16 3 0 2

P (b, n, k,m) as the probability that an event happening with probability λ =(
n
m

)
/b1−m happens k times, as given by the Poisson probability mass function:

P (b, n, k,m) = e−λ λk

k! .
Let us consider two examples: one in which we apply this approach to around

100 ballots, as would occur in the non-random duplicate search mechanism of
Sect. 4.3 for instance, and one in which we apply this approach to a full box of
around 1000 ballots.

Linear Search of Duplicates Among 100 Ballots. Let us consider that
we have a 16× 16 grid on a single tabloid format page, providing 256 buckets,
and that each bucket is split into 3 blocks in which 3 hex characters can be
written (the page would be large enough to offer blocks of 8× 15 mm, which is
comfortable).

Based on the expression above, there is a probability 0.5 that at most 19
buckets will contain two (or more) ballots, and 0.95 that at most 27 buckets
contain two (or more) ballots (see Table 1). A small number (less than 5) buckets
will contain 3 ballots, and it is most likely (80% probability) that no bucket
would take 4 ballots. If this happens, then a separate note could be created at
the bottom of the page, in order to compensate for the lack of space. So, all the
ballots are expected to fit easily on the grid that we just described.

Now, we can estimate the probability that a collision happens inside a bucket,
that is, that two ballots share identical 5 first digits. Here, there is a 0.995
probability that no such collision would happen. In the unlikely case that one
happens, then a second linear search is performed in order to determine whether
a clash has been detected. As we can see, this procedure is extremely effective.

Linear Search of Duplicates Among 1000 Ballots. Let us now consider
that we have four tabloid format pages, each having a 16× 16 grid providing
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256 buckets, and that each bucket is split into 6 blocks in which 1 hex character
can be written. Let us also consider that the first character of the bpid is chosen
among 4 values instead of 16 (this could be just by prefixing the bpid with an
extra random symbol).

Now, during the linear pass, four poll workers hold one page each. An other
audit officer (possibly under surveillance) makes a linear pass on the ballots,
reads the first digit of the bpid in order to point to one of the four poll workers
holding the grids, then reads the next two hex digit in order to point to one
bucket, and finally read the next hex digit to be written in that bucket.

Based on the Poisson estimate, it is fairly unlikely that a single bucket will
need to contain more than 6 ballots: this would happen with probability 0.16,
and just one or two buckets will contain exactly 6 ballots (again, see Table 1).
If we turn to the number of collisions that will be found on the single hex digit
written on the bucket, we can expect that around 30 buckets will contain a
single collision, and that it is quite unlikely to observe more than a 2-collision
in a single bucket.

In order to sort these collisions out, we make a second linear pass on all the
ballots, but only focusing on the collisions. The four officers take a fresh grid,
mark the colliding buckets and the prefixes that need to be examined, and now
write 3 more hex digits in the bucket when a suspected ballot is read (there
will be enough space, since we only write something down for the few colliding
ballots). Any collision repeating on these extra digits would be an overwhelming
indication of a clash.

4.6 Other Potential Uses of Bijection Audits

The assumption of a bijection is at the core of comparison audit processes like
SOBA. Our work raises the question of whether bijection audits would be useful
to detect clash attacks in other circumstances that could be completely inde-
pendent of STAR-Vote or even of end-to-end verifiable systems. For instance, in
locations where paper ballots have a serial number and paper ballots are scanned
in order to perform an electronic tally, ballots with clashing serial numbers could
be distributed to voters who are known to vote in the same way (e.g., straight
party), and a malicious scanner could replace the images of those paper ballots
with clashing serial numbers with fresh ballots of its choice. This would break
the bijection from the paper and electronic records, and potentially make a risk
limiting audit ineffective, unless a bijection audit is run first.

5 Recommendations and Conclusions

STAR-Vote has a variety of security mechanisms and we’ve described a number
of different auditing and testing procedures. This section considers how these
individual procedures and tests might best be combined to defeat clash attacks.
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Real-Time Receipt Auditing. The bijection-audit procedures described in
the previous section are feasible, but are considerably more expensive than a
SOBA audit, so it would be helpful to have a cheaper alternative.

Recall that a clash attack would cause the receipts of a significant number
of voters to be exactly the same. As such, we propose that independent poll
watchers, or perhaps the official poll workers themselves, use an independent
electronic tool to sample these receipts as they go by. This could be implemented
with a smartphone app that scans a printed QRcode, provided that a comparison
between the result of the scan and the printed value is made. If the same value
is ever scanned twice, then either a ballot receipt was accidentally scanned twice
or a duplicate was produced.

One nice aspect of this procedure is that we can rely on independent com-
puters, outside the influence of our attacker, to simplify the process. The odds of
successfully detecting a duplicate are the same as with the audit procedure we
described in Sect. 4.3, only without the requirement for sorting the sampled bal-
lots. This makes the procedure easy to perform. And because the ballot receipts
are safe to share with the world, this procedure can be performed by anybody.
Of course, if a duplicate is ever discovered, suitable alarms should be raised and
a more invasive audit conducted.

We note that this process would be easy to perform across every precinct in an
election, making it particularly valuable for detecting focused attacks on a small
number of precincts as described in Sect. 4.4. Also, as described in Sect. 3.3,
Benaloh challenges may discover clash attacks in real-time, provided that the
public hash chain is inspected on the fly, and an attackers that aims for multiple
clashes on a single receipt will be more easily spotted than an adversary focusing
on mere duplicates, since a single challenged ballot among n+1 clashing receipts
will make it possible for n voters to see their ballot unduly marked as spoiled
on the bulletin board. We discuss how to resolve these issues below.

Post-election Ballot Auditing. In Sect. 4.2, we described a subsampling audit
process based on digits selected by rolling dice. This is a relatively efficient
procedure, but local poll workers might be unwilling to perform it, or might
introduce errors by performing it poorly. Also, it’s preferable to know the margin
of victory for the election, which can be used to select an appropriate number
of samples to achieve a desired level of confidence. This won’t be possible until
the election is complete, so it’s probably better to wait until all the ballots are
brought back from the local precincts to the election headquarters. The bijection
audit procedure could then be performed centrally, on a subset of precincts,
alongside the SOBA audits that STAR-Vote already requires.

SOBA risk-limiting audits will sample ballots from across an entire election,
while our bijection audits happen at the level of a local precinct. This sug-
gests that the two audits could be conducted concurrently, although it might
be procedurally simpler to first conduct the SOBA audit, since it’s fast. The
bijection audit will be slower, although it’s amenable to parallelization in that
each precinct can be audited independently.
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If the bijection audit fails, this invalidates one of the assumptions behind
SOBA, which assumes there is a bijection. Similarly, if post-election verifica-
tion of the hash chains on the public bulletin board turn up discrepancies (see
Sect. 3.3), we must again resolve these discrepancies.

What if a Duplicate Is Found? If a precinct fails its bijection audit or if
independent auditors discover duplicate receipts, we now have compelling evi-
dence that a clash attack has occurred. Now, the local election official will be
under pressure from all sides. Lawsuits will be filed. Reporters will be asking
hard questions. It’s essential to have clear procedures to resolve the conflict.
Under our definition of a clash attack, duplicates appear in the paper ballots,
but the paper ballots still reflect the intent of the voters, while the ciphertexts
are more likely than not fraudulent.

Consequently, faced with this attack, we might discard the encrypted ballots
in their entirety and do a manual tally from the paper ballot boxes. This would be
slow and would also face the risk that our attacker introduced a small clash attack
for precisely the purpose of triggering the fallback to paper ballots, which might
as well have been tampered in a coordinated effort. Consequently, we believe an
appropriate procedure is to render a judgment on a precinct-by-precinct basis
as to whether the paper ballots or electronic ballots are more trustworthy. This
judgment would be informed by:

– Conducting a bijection audit and SOBA audit on every precinct.
– Considering the available physical evidence (e.g., tamper-evident seals on

voting terminals and ballot boxes).
– Auditing the voting terminals for software and/or hardware tampering.
– Auditing the hash chain copies, which should be copied identically across all

voting terminals in a precinct.
– Considering other factors outside of the voting system itself (e.g., correlations

between different delivery trucks and the confirmed incidences of clash attacks
or other election attacks).

STAR-Vote provides multiple forms of evidence of the voters’ intent. It’s entirely
possible, for example, that only a fraction of the voting terminals in a given
precinct were tampered, and their hash chains may store a different version
of the history of the election. That version of history, for the non-tampered
terminals, may be judged worthwhile for the votes cast on those terminals, and
then the electronic records might only need to be discarded for the tampered
voting terminals. Ultimately, the power of STAR-Vote’s design is that it provides
election officials with redundant evidence of what happened during the election.
We might never anticipate every possible attack, but with STAR-Vote’s evidence,
we can support a variety of auditing and resolution procedures, enabling the
detective work necessary to identify and, if possible, remediate issues.

Concluding Thoughts. Clash attacks present a tricky challenge for an election
auditor, faced with the possibility of systematic computer tampering. We have
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shown a number of auditing techniques that can be conducted by poll workers,
in a post-election setting, in a tolerable amount of time, mitigating the risk of
clash attacks.
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Abstract. Since the introduction of verifiability in the online govern-
ment elections of Norway in 2011, different governments have followed
similar steps and have implemented these properties in their voting sys-
tems. However, not all the systems have adopted the same levels of veri-
fiability nor the same range of cryptographic mechanisms. For instance,
Estonia (2013) and New South Wales (Australia, 2015) started by adopt-
ing individual verifiability to their systems. Switzerland updated its reg-
ulation in 2014 to include individual and universal verifiability in order
to by-pass the previous limitation of voting online up to 30% of the elec-
torate. Geneva and Swiss Post voting systems are adapting their systems
to this regulation and currently provide individual verifiability (and uni-
versal in the case of Swiss Post). In this exploratory paper, we study the
different approaches followed by the election organizers that offer online
voting, their current status and derived future tendencies.

Keywords: Electronic voting protocols · Election verifiability

1 Introduction

Whenever an election process is carried out using traditional or electronic means,
transparency and auditability are the basis to ensure the accuracy of the results.
In traditional elections, audit processes can be easily implemented since they are
based on physical tangible elements: paper ballots, physical ballot boxes, manual
recount, etc. These items can be supervised by both, voters and external auditors
or international election observers (see, amongst others, [7]).

However, in electronic environments, the same elements are not tangible and
most of the processes are performed through computers and communication
networks, making human audits almost impossible [35]. While security mea-
sures such as vote encryption or digital signatures can protect the secrecy and
integrity of votes, it is also important to verify that these mechanisms are behav-
ing properly: i.e., they are certainly encrypting, decrypting and digitally signing
the selection made by the voter. Some governments publish the source code of
c© Springer International Publishing AG 2017
R. Krimmer et al. (Eds.): E-Vote-ID 2017, LNCS 10615, pp. 248–263, 2017.
DOI: 10.1007/978-3-319-68687-5 15
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their voting systems to ensure that these security mechanisms have been cor-
rectly implemented (for a discussion of its relevance see [19]), like Norway in 2011
(fully disclosure), Estonia in 2013 (partial disclosure) or Geneva (Switzerland)
in 2017 (partial disclosure). Nevertheless, while this measure provides certain
transparency as it allows to auditing the implementation of the system, it does
not provide any proof of accuracy in the election process. For instance, it does
not avoid an undiscovered bug in the source code to be exploited during the
election, neither it guarantees that the source code used in the voting system is
the one published. For this reason, it is essential to provide means to audit the
proper behavior of the systems during the election, regardless of the correctness
of the software source code neither its proper execution. Apart from the evalua-
tion and certification (for a discussion see [13]) the solution suggested would be
the implementation of mechanisms that allow both voters and external auditors
to verify the proper behavior of the voting system: verifiable voting.

1.1 Verifiability Concepts

Verifiable voting systems are those that implement mechanisms, based either on
physical means (e.g., paper trails [36]) or cryptographic ones (e.g., cryptographic
proofs [21]), that can be used to audit the proper execution of computer-based
electronic processes. Generally, these mechanisms are classified in the electronic
voting literature [5,10,23] in two types, based on who performs the verification:
individual verifiability and universal verifiability.

– Individual verifiability: It is related to the verification mechanisms that
can be used by the voter during the voting process. These can be subdivided in
two complementary mechanisms [23]: cast-as-intended and recorded-as cast
verifiability. Cast-as-intended verifiability enables the voter to verify if the
electronic vote registered in the system really contains the selections made.
In other words, it allows the voter to detect if any error or attack manipulated
the vote contents when it was recorded (i.e., encrypted) by the voting system.
Recorded-as-cast enables the voter to verify that her verified vote has been
successfully stored in the electronic Ballot Box that will be used in the tallying
phase. Like in any audit process, the number of verified votes is important
to have a more accurate audit. So, the larger amount of voters able to verify
their votes, the higher is the probability to detect even small inconsistencies.
For instance, in an election with 10.000 votes, if there is a manipulation of 100
votes (1%) the verification of 1% of the voters (100 votes) has a probability
of 64% of being detected (see General Recount Formula in [39]). Whether the
manipulation is larger the chances are closer to 100% (e.g., a manipulation
of 200 votes will be detected with a probability of 87% by the same amount
of verifier voters). Therefore, it is important that these mechanisms facilitate
the participation of the voters in the verification process.

– Universal verifiability: It refers to the verification mechanisms [23] that can
be performed by anyone regardless of the level of privileges of the actor of the
system (i.e., a voter or election manager of the voting system). In this sense,
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universal verification does not include cast-as-intended and recorded-as-cast
verifiability mechanisms because they are processes that can be only used
by voters. However, it includes the so called counted-as-recorded verifiability
mechanisms, whose purpose is allowing anyone the verification of accurate
results in both vote opening (decryption) and counting.

In both cases, individual and universal verifiability should not compromise any
of the other security requirements of an election, specially voter privacy. When
individual and universal verifiability are given, it is said that systems provide
end-to-end verifiability.

Another significant aspect related to verifiability is to prove that the verifiable
mechanism implements this property in a sound way. Therefore, it is possible to
discern if the verification mechanism is weak or strong against attackers, or even
if it just a fake claim. To this end, provable security [14] is used to make a for-
mal statement of the security properties of the verification mechanism (security
proof) and the assumptions under which these properties must be evaluated, so
the academic community or experts can validate the correctness or robustness of
the verifiability claims. Security proofs can be complemented with formal proofs
(i.e., formal languages) to facilitate the security proof automatic validation.

1.2 Methodology

To date, verifiability is an understudied phenomenon in electronic voting, and
elections in general. Hence there is a need for an empirical study within its real-
life context, ideally by means of a case study [44]. The present topic at hand is
ideal for an exploration of the matter in deep. For this study, election systems
in countries, where verifiability has been introduced in a recent legally-binding
election on regional or federal level, are analyzed.

1.3 Government Adoption

Since the first government experiences in early 2000 [33], the security of internet
voting systems has improved notably. One of the main enhancements was the
adoption of audit processes based on verifiability mechanisms, which provided
more transparency to electronic voting elections. The relevancy of verifiability
in elections was already present in the first version of the e-voting standards
of the Council of Europe [6]. Being this concept further developed in the new
revision of these standards [5] and related implementation guidelines [4]. Fol-
lowing the recommendations of the Council of Europe, verifiability mechanisms
were initially introduced by the Norwegian government in 2011 [8], and later by
Estonia (2013) [9], Switzerland (2015) [11] and Australia (2015). However, the
approach followed in each of the four contexts differs on the verifiability scope
(individual and/or universal) and the verifiability mechanism implemented.
Despite there are other well-known government online voting experiences, such
as Canada or other Swiss voting systems, they are not considered because they
have not adopted yet any type of verifiability (e.g., Zurich that currently lost its
authorization).
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Scope: Norway adopted in 2011 individual and universal verifiability, with the
particularity that universal verifiability was only publicly accessible on demand
(i.e., auditors needed to apply for an audit). Estonia adopted in 2013 individ-
ual verifiability, and it is planing to include universal verifiability in the near
future. Switzerland changed in 2014 its Federal regulation to request individual
and universal verifiability in their voting systems. In addition to it, Swiss regu-
lation has a particular interpretation of universal verifiability as the publication
of information is not required for verification. Neuchâtel and Geneva adopted
individual verifiability in 2015. Finally, Australia adopted individual verifiability
in 2015 but without universal verifiability like the Estonian case.

Mechanism: Both Norway and Switzerland follow the approach based on Return
Codes as the way voters can verify the content of their vote (see Sect. 2). The
main difference within both countries is that while Norway allowed voters to vote
multiple times and therefore, in case of discrepancy, voters could vote again, in
Switzerland, voters are only allowed to cast one vote. In this scenario then, voters
need to introduce a Confirmation Code to confirm or reject the vote after verifi-
cation. On the other hand, Estonia and Australia use the approach of decrypting
votes after casting them. In Estonia verification requires the installation of an
application to the mobile phone and the verification period is only possible dur-
ing a limited period after casting the vote (between 30 min and 1 h). In Australia
(New South Wales State), the verification is done by contacting a specific call
center that decrypts the vote and describes the content to the voter. In this case,
the verification process was open until the end of the election.

This paper is focused on the verifiable internet voting systems implemented
by different governments in the last years, their advances regarding verifiability
and future plans. Section 2 includes an explanation of the individual verification
mechanisms introduced by the governments who are or have been providing
internet voting. Section 3 is focused on universal verification mechanisms, while
in Sect. 4 there is a comparative analysis together with some conclusions.

2 Individual Verifiability in Government Implementations

There are multiple proposals in academia of cryptographic protocols implement-
ing individual verifiability and more concretely cast-as-intended verifiability.
However, current government implementations can be classified in two main
groups:

– Return Codes mechanisms: In this case, voters cast their votes and receive
from the voting system a set of numeric codes that are calculated over the
encrypted vote (e.g., four numbers sent though SMS or shown in the same
screen). By using a Voting Card sent during the election setup, voters can
check whether the received codes are related to their selected voting options.
The main references of this mechanism are the Norwegian [37] and Neuchâtel
(Switzerland) [22] voting systems. Geneva implements Return Codes over
unencrypted votes.
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– Cast and decrypt: In this approach, voters cast their votes, latterly, they have
the option of recovering and decrypting them to see the contents. Recovery
can be done through a trusted device (e.g., mobile phone) or a trusted third
party (e.g., a verification server). Reference implementations are Estonia [28]
and Australia [16].

Despite that one of the most well known open source voting system is
Helios, none of the government voting systems implement its “cast or verify”
method [12]. That is why it is not considered for this analysis.

In addition to cast-as-intended, the recorded-as-cast verifiability is also imple-
mented by some government electronic voting solutions. The most common app-
roach consists in providing the voter with a Receipt that can be used to check
whether the vote was recorded (stored) in the Ballot Box. The Receipt contains
a fingerprint of the encrypted vote and whenever the vote is cast and recorded
into the Ballot Box, a fingerprint of this encrypted vote is published in a Bul-
letin Board. A Bulletin Board is an append-only public repository (e.g., website)
accessible to voters for them to search for the fingerprint contained within their
Receipts. The presence of the fingerprint ensures voters that their votes are
stored in the Ballot Box. The fingerprints in the Bulletin Board can also be
used by auditors to crosscheck them with the actual votes, guaranteeing this
way the integrity of the Ballot Box and adding the universal verifiability value
to the process. The main reference of this mechanism is the Norwegian voting
system [37].

Finally, some of the individual verifiable propososals also included a vote
correctness property [15]. Vote correctness allows the voting systems to check
if the encrypted votes contain a valid vote without decryption. Hence, in case
of a potential mistake or attack in the client side that could invalidate the vote
casting, it will be detected in the server before storing the vote in the Ballot
Box. This way, the voter can be notified and can try to cast the vote again. For
instance, the system will detect whether the content of an encrypted vote has
either an invalid option or an invalid combination of options without learning
the vote contents (i.e., repeated candidates or an invalid combination of them).
It is not a specific requirement for individual verifiability but a property used in
Norway and Switzerland inherit from their verification mechanism.

2.1 Individual Verifiability in Norway

Norway introduced individual verifiability in the voting system requirements
of the public process started in 2009 [29]. Among different proposals, the gov-
ernment finally chose a solution based on using Return Codes for individual
verifiability. The voting system was used by 10 municipalities during the 2011
Municipal Elections, and 13 municipalities during the 2013 General Elections.
After 2013 elections, there was a change of government and the new winning
party (contrary to internet voting) stopped using the voting system [31]. How-
ever, online voting is currently still in use in Norway by municipalities, especially
for referendums and consultations.
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Fig. 1. Norwegian voting system

The Norwegian voting system (Fig. 1) is based on Return Codes, i.e. genera-
tion of specific Voting Cards for voters containing 4 digits code for each possible
voting option. The 4 digits codes of each Voting Card are different for each voter,
so it is not possible to deduce the Return Code without having the Voting Card.
When the voter casts a vote, this is encrypted and digitally signed in the voter
device, and it is also sent to the voting servers. One first server (Vote Collector
Server) performs a cryptographic operation over the encrypted vote and sends
the result of this operation to a second server (Return Code Generator). The
Return Code Generator performs a second cryptographic operation, uses the
result of this operation to obtain the 4 digits of the Return Code and sends
it to the voter through SMS. Using their voting card, voters can verify if the
received Return Code corresponds to their selection, ensuring that the encrypted
vote received by the server contains the correct selections. If the contents of the
encrypted vote are different, the operation will not return the correct Return
Code. However, as the Norwegian voting system permits multiple voting, the
voter can cast another vote if does not agree with the previous one. This cast-
as-intended mechanism is responsible of the individual verifiability of the system,
but does not include recorded-as-cast verification. For a detailed description of
this voting system the following references are recommended [30,37].

In the 2013 National Elections, the Norwegian voting system included
recorded-as-cast to individual verifiability by means of Voting Receipts. The
Voting Receipt was provided to the voter once the vote was accepted and stored
in the Ballot Box. This receipt contains a fingerprint of the encrypted and digi-
tally signed vote cast by the voter.

In addition to the receipt, the fingerprints of all the votes stored in the Ballot
Box were also published, so voters were able to check the presence of their votes
by searching the fingerprint of the Voting Receipt in a public Bulletin Board.
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The individual verifiability properties of the voting system were security
proven using a security proof of the cryptographic protocol [24]. As an addi-
tional property, the system allowed to check the correctness of the votes in the
server without decrypting them (vote correctness) applying some rules to the
Return Codes generated. For instance, it detects if one Return Code appears
multiple times (i.e., the same option is encrypted more than once in the vote) or
if the Return Code is the expected one for the selection (e.g., if the Return Code
of the selected Candidate is related to the Return Code of the selected Party).

One of the main concerns of the individual verifiability is the percentage of
voters that verified their votes. The limitation of this system is that it cannot
monitor the number of voters that performed the verification, since verifica-
tion does not require interaction with the server after sending Return Codes.
However, during some small-scale test elections (referendums) done before the
2011 municipal elections, the Ministry conducted a voter survey that shown
that almost 90% of the voters admitted the Return Codes verification [40]. Fur-
thermore, during these elections an error in the printing process made 1% of the
voters of some municipalities to receive a wrong Voting Card. Based on the num-
ber of calls received from voters claiming that the Return Code was incorrect,
the election manager was able to infer the percentage of voters that verified
the votes. The verification was carried out by more than 70% of the affected
voters. However, this number cannot be considered representative of the whole
participants since in both cases was obtained from an small sample of voters
(hundreds).

Finally, the source code of the voting system was also made publicly available
before the election [30].

2.2 Individual Verifiability in Estonia

The Estonia voting system individual verifiability was introduced in 2013 Munic-
ipal Elections [28]. The individual verifiability cast-as-intended mechanism is
based on using a mobile phone application for the voter verification process. In
the Estonian example (Fig. 2), the votes are encrypted and digitally signed in
the voting terminal (computer) and sent to the server. If the vote is accepted,
the voting terminal displays a 2D barcode containing the ballot identity and the
secret padding used for encrypting the vote. By using this application, voters
can scan the 2D barcode, obtain the ballot identifier and used it to download the
encrypted vote from the voting server. Once the encrypted vote is downloaded,
the mobile application uses the secret padding to recover the contents of the
encrypted vote and present it to the voter. Since the Estonian voting system
allows multiple voting, voters can cast another vote if they do not agree with
the contents shown in the mobile phone application. To avoid coercion or vote
buying, the voter has a predefined limited verification period (between 30 min
and 1 h). More details about the voting systems can be found in the following
reference [28].
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Fig. 2. Estonian voting system

Since the voter downloads the encrypted vote from the voting system, it can
be assumed that the verification process also involves recorded-as-cast verifia-
bility. However, the limitation of verification time does not ensure that the vote
remains in the Ballot Box or reaches the counting process.

This system allows monitoring the number of voters that performs the veri-
fication process, since voters need to be connected to the server to download the
ballot. Current verification percentage is about 4% of the voters [27].

Regarding provable security, there is no proof yet published that demon-
strates the security of the individual verifiable protocol properties of the sys-
tem. Additionally, it does not support server vote correctness verification of the
encrypted vote. In 2013, the Estonia government published the source code of
the system, but just the server and mobile application part [3]. The source code
of the voting client was not published to avoid the creation of fake voting clients.

2.3 Individual Verifiability in Switzerland

Switzerland updated its Internet Voting regulation in 2014 including both indi-
vidual and universal verifiability [18]. The main aim was to authorize Swiss
Cantons to increase up to 50% and 100% the percentage of the electorate that
could use online voting (Originally, authorization was restricted to 30% of the
Canton electorate). In order to authorize to increase the electorate up to 50%,
systems needed to include individual verifiability and must be certified by an
entity accredited by the Federal Chancellery. The certification process includes
the provision of security and formal proofs of the individual verifiability protocol,
as well as passing a Common Criteria certification with assurance level 2. Geneva
[2] and Neuchâtel [22] cantons updated their voting systems to achieve individ-
ual verifiability in 2015, but they did not start the 50% electorate authorization
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process. In 2016 Swiss Post implemented a voting system [41] with individual
verifiability (based on the same technology used in Neuchâtel) and started the
authorization process to achieve the 50% electorate regulation requirements. In
the meantime, Geneva announced plans to redesign its voting system to achieve
100% electorate authorization in the future [25].

Geneva and Swiss Post voting systems (Neuchâtel is currently using Swiss
Post one), provide individual verifiability based on Return Codes (Fig. 3). How-
ever, the approach differs on how the Return Codes are generated. In the Swiss
Post voting system, the protocol is an evolution of the one used in Norway but
without the need of using two servers for the Return Codes. In this implemen-
tation, the encrypted and digitally signed vote is concatenated with verification
information obtained by performing a second cryptographic operation over each
voting option (known as partial Return Codes). The encrypted and digitally
signed vote together with the verification information is sent to the voting server.
This server validates the received information and performs a second operation
over the verification information, obtaining the information that allows to recover
the 4-digit Return Code of the selected voting options. These Return Codes are
sent back to the voter and displayed in the same voting device. If the voter
agrees, then a Confirmation Code is sent, which is required for the acceptance of
the vote in the counting process and the update of the voting status in the elec-
toral roll. If the voter disagrees, the vote remains unconfirmed and the Internet
voting channel cannot be used again, but the voter can still use another voting
channel for contingency (postal or pollsite) because her vote casting status in

Fig. 3. Swiss voting systems
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the electoral roll has not been updated. More detailed information of the voting
system can be found in [41,42].

In the Geneva voting system, the cast vote is not encrypted in the voter
device but sent though an encrypted communication channel (SSL) to the voting
server. The voting server can see the selected voting options, calculates the 4-digit
Return Codes and sends the codes back to the voter. The vote is then encrypted
by the server and stored waiting for voter confirmation. Voter confirmation is also
based on a Confirmation Code that must be sent by the voter after verification.
Without confirmation, the vote will not be used in the counting phase. Detailed
information about the voting system can be found in [2].

Both voting systems provide cast-as-intended verifiability, nevertheless
Geneva checking the presence of the vote in the counting phase (recorded-as-
cast) is not possible in the Genevan model. Only in the case of Swiss Post voting
system a Voting Receipt is provided together with a fingerprint of the encrypted
and digitally signed vote (as in Norway). Apart from that, the list of the finger-
prints of the votes present in the Ballot Box is published after the voting period
ends. Both voting systems provide vote correctness properties as in Norway,
but only the Swiss Post model has security and formal proofs of the individual
verifiability protocol. Geneva published in 2017 the source code of its voting
system, but only the administration offline components [1]. In none of the cases,
there are numbers of the percentage of voters that verified their votes, since the
verification is offline.

2.4 Individual Verifiability in Australia

Australia introduced individual verifiability in 2015 through the New South
Wales (NSW) State election [16]. The year before, the State of Victoria imple-
mented a pollsite voting system that provided also individual verifiability (vVote
[17]). However, this voting system was designed to be deployed in local and
remote polling stations (e.g., consulates), so it has not been considered as an
online voting system for this study.

The individual verifiability mechanism implemented by the NSW voting sys-
tem (Fig. 4), known as iVote, was based on phone calls that voters had to make
to verify the content of their cast votes (i.e., cast-and-decrypt approach). During
the voting process, votes were encrypted and digitally signed in the voter device
and after casting, the voter received a Receipt with a unique Receipt Number.
Votes were encrypted with a double encryption mechanism, to allow both the
decryption by the Electoral Board and the decryption by a Verification Server
with the help of the voter (using the Receipt Number). The voter was able then
to call before the voting period expired to validate her vote. When calling, the
voter needed to introduce her voting credentials and the voter Receipt Number.
The Verification Server used the voter credentials to retrieve the encrypted vote,
and used its private key and Receipt Number to decrypt it. Through the phone,
the voter was able to listen the vote contents. To make the phone voting process
more user friendly, the voter credentials and Receipt Number were numerical.
In case voters did not agree with the voting options, they had to contact the
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Fig. 4. New South Wales voting system

election authorities. Multiple voting was not allowed, but election officers were
able to cancel the vote and provide new credentials to the voter when necessary.

The NSW individual verification approach, provided cast-as-intended and
recorded-as-cast verifiability, since the validation process allowed to check that
the vote was present in the Ballot Box until the voting period ended. Since
the verification required to be connect to a server, it was possible to monitor
the number of voters that verified their votes. In this case the verification ratio
was 1,7% in 2015 election [16]. Regarding the availability of the source code
and security proofs, the source code is not available and no security proofs of
the voting protocol were generated. The verification mechanism did not provide
vote correctness either.

3 Universal Verifiability in Government Implementations

Currently, universal verifiability is only implemented the Norwegian and the
Swiss Post voting systems. In both cases, this is mainly achieved by means of a
universal verifiable mixnet and decryption components.

In the case of Norway, in 2011 a universal verifiable mixnet designed by Scytl
[38] was used, while in 2013 the Verificatum Mixnet [43] was also used. In both
cases, instead of publishing the verification data, the Norwegian government
made a public call for participating in the universal verification of the results.
However, the source code of the system was made publicly available.
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In Switzerland, the Swiss Post voting system has been using a verifiable
Mixnet since 2015 (Geneva only implements a standard Mixnet without verifia-
bility). However, the Federal Chancellery regulation requires a specific universal
verifiability approach to certify a voting system and achieve the 100% electorate
authorization process [18]. This model requires that the universal and individ-
ual verification processes use specific and independent trusted components for
the audit proofs generation, known as Control Components. According to the
regulation [18], these Control Components can be implemented in two different
ways: (i) as two Hardware Security Modules (HSM) from two different vendors,
or (ii) as 4 standard computers using different operating systems. These Con-
trol Components should be deployed completely isolated one from the other
and operated by different teams. With these conditions, the Federal Chancellery
considers that universal verifiability can be implemented without publishing the
verification information.

Swiss Post and Geneva are working on adapting their voting system architec-
ture to achieve these requirements (Geneva announced in 2016 a new redesign
of the voting protocol to accomplish these requirements).

Estonia does not implement universal verifiability (it does not implement any
Mixing process), but announced plans to incorporate it in a short-mid term [26].
In Australia, the NSW voting system does not implement any Mixing process
and it has not announced any plans for universal verifiability yet. However, it
implements a mechanism to match the decrypted votes with the ones present in
the Verification Server (performing a reencryption of the decrypted votes).

4 Comparison

Table 1 summarizes the different verifiability properties compiled from the infor-
mation of the online voting systems studied in this paper.

Despite the Norwegian voting system was the first in introducing verifiability
to online voting systems, it can be still considered one of the most complete ones
in the sector.

Switzerland (and more concretely the Swiss Post voting system) has a similar
level of verifiability, which is explained by the fact the Chancellery used the
Norwegian government experience as a reference for its regulation.

The other voting systems (except for Australia) have already started incor-
porating individual verifiability and have even announced plans to incorporate
universal verifiability in a near future. Therefore, it is clear that verifiability is
becoming essential for any online voting system.

Regarding the percentage of voters that participate in the verification
process, it is easier to monitor it on the systems that perform vote decryp-
tion for verification (i.e. Cast and decrypt). Numbers in these cases seem to be
low, but they are a good reference to calculate the probability in issues detec-
tion. In the case of Return Codes, the only reference comes from Norway and
it seems extraordinarily high. However, further analysis should be done in this
mechanism because numbers are based on small samples.
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Table 1. Properties of evaluated systems

Norway Estonia Switzerland
(Swiss Post)

Switzerland
(Geneva)

Australia
(NSW)

Cast-as-intended Return
codes

Decryption
in device

Return
codes

Return
codes

Decryption
in server

Recorded-as-cast At any time
with receipts

Up to 1 h After
counting
with receipts

None N

Counted-as-recorded Verifiable
mixnet

None Verifiable
mixnet

None Yes, through
vote re-
encryption

Voter verification 90–70%
(small
sample)

4% (large
sample)

No data No data 1% (large
sample)

Public source code All the
system

Only server
side

None Only
counting
side

None

Vote correctness Yes None Yes Yes None

Provable security Yes
(Individual
and
Universal)

None Yes
(Individual
and
Universal)

None None

Regarding the publication of the source code, only Norway had a full disclo-
sure. The other voting systems that published the source code did it partially.
This can be in part justified based on the fact that these other voting systems
do not provide end-to-end verifiability and therefore, the risk of an undetected
attack is higher. In any case, Estonia and Geneva announced plans of full dis-
closure in the future, which indicates a general tendency among online voting
systems. In the meantime, the Swiss Federal Chancellery is not demanding source
code disclosure yet for systems that are under the 100% electorate authorization.

Vote correctness was present in the Norwegian voting system and latterly
adopted by the Swiss voting system as well. It is still uncertain whether other
voting systems will also adopt this trend, which was initially provided by homo-
morphic tally voting systems [20] and currently by those using Return Codes.

Finally, from the point of view of provable security, only Norway and
Switzerland used security proofs to demonstrate the security properties of their
verification mechanisms. In fact, Switzerland is even more exigent as also formal
proofs for authorization of the voting systems are required. Proving the security
of the voting systems using cryptographic and formal proofs is a recommended
practice that it is expected to be extended, since it allows security experts to
verify whether the claimed verifiability properties are certainly present in the
voting system and whether they are robust (i.e., under which assumptions these
properties are present). This way the governments can certify the verifiability of
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the voting systems and discard those that are not providding these guarantees
or are poorly implemented.

As a general conclusion, the assumption is that verifiability in elections will
be implemented in the future, in particular due to transparency needs and to the
inherent general distrust in not visible or tangible processes. Still, none approach
can be identified as “best-practice”. However, Norway and Switzerland can be
identified as the ones that have made so far more efforts towards verifiability
implementation. It can be certainly stated that election operators start imple-
menting individual verifiability before the universal one due to the mentioned
additional advantage for the individual voter. Nevertheless, while universal ver-
ifiability brings a significant security gain, its implementation is less frequent
mainly due to trusted arguments defended by governments (audit environments
considered secure because they are under the control of election authorities) and
due to its mathematical complexity hard to understand for most.
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Abstract. We propose a method providing cast-as-intended verifiabil-
ity for remote electronic voting. The method is based on plaintext equiv-
alence tests (PETs), used to match the cast ballots against the pre-
generated encrypted code tables.

Our solution provides an attractive balance of security and functional
properties. It is based on well-known cryptographic building blocks and
relies on standard cryptographic assumptions, which allows for relatively
simple security analysis. Our scheme is designed with a built-in fine-
grained distributed trust mechanism based on threshold decryption. It,
finally, imposes only very little additional computational burden on the
voting platform, which is especially important when voters use devices
of restricted computational power such as mobile phones. At the same
time, the computational cost on the server side is very reasonable and
scales well with the increasing ballot size.

1 Introduction

Modern electronic voting systems are expected to provide a combination of secu-
rity guarantees which includes, most importantly, ballot secrecy and end-to-end
verifiability. For the latter, one crucial part is so-called cast-as-intended verifi-
ability which means that a voter has means to make sure that the ballot cast
on his or her behalf by the voting client application and recorded by the voting
server contains the intended voting option, as chosen by the voter. This property
must be guaranteed without assuming that the voter platform is honest. Indeed,
such assumption would be unjustified especially in the context of remote voting,
where voting client programs (typically HTML/JS applications) run on voters’
devices. One cannot reasonably assume that such devices are properly main-
tained, patched and free of malware. Moreover, as often the code of the voting
client application is served by the voting server, such trust assumption would
have to be extended to such servers as well.

The problem of providing adequate and usable solutions for cast-as-intended
verifiability has recently attracted significant attention. In particular, various
solutions based on the idea of return codes have been proposed [2,6,8–11,14],
where different solutions provide different balance of security and usability fea-
tures. Notably, solutions based on return codes [8,9,16] were used in Norway in
legally binding municipal and county council elections in 2011 and 2013, [6] was
c© Springer International Publishing AG 2017
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used in 2015 in binding elections in the Swiss canton of Neuchâtel, while [10],
as stated in the paper, is planned to be used as a part of the electronic voting
system for the State of Geneva (Switzerland) [11].

The above mentioned solutions share the following underlying idea. In the
registration phase, each voter obtains over a trusted channel a ballot sheet, where
pre-generated return codes (typically short random alpha-numeric sequences)
are printed next to each voting choice. Then, in the voting phase, after the
voter has selected her voting choices and the voting client application has sub-
mitted an encrypted vote to the remote voting server, the voting authorities
compute/retrieve (in some way dependent on the specific solution) return codes
which are meant to correspond to the choices made by the voter. These codes are
sent back to the voter (possibly using an independent channel) who compares
them with the codes printed on her ballot sheet next to the selected choices. The
idea here is that when this match succeeds, the voter can be sure that the sub-
mitted (encrypted) vote indeed contains her intended choices (as otherwise the
voter would not have obtained the matching codes). The voter may then finalize
the ballot casting process (by, for instance, submitting some kind of finalization
code) or, if the match does not succeed, she may undertake different steps (for
instance, vote from another device or use a completely different voting method).

Our Contribution. In this paper we propose a new cast-as-intended mechanism
based on return codes. Our solution provides an attractive balance of security
and functional properties:

1. It is based on well-known cryptographic building blocks and relies on stan-
dard cryptographic assumptions, which allows for relatively simple security
analysis. In fact, our analysis is modular in that it does not depend on the
details of the underlying voting protocol to which our return code scheme is
added.

2. Our scheme is designed with distributed trust in mind: the computations
carried out to retrieve/compute return codes are distributed in their nature,
such that a threshold of trustees must be corrupted in order to carry out a
successful attack and fool the voter.

3. Our solution imposes only very little additional computational burden on
the voting platform, which is especially important if voters use devices of
restricted computational power such as mobile phones. The computational
cost on the server side is very reasonable and scales well with the increasing
ballot size (it is, up to ballots of fairly big size, essentially constant).

Our scheme is meant to provide cast as intended verifiability even if the
voting platform is controlled by the adversary under the following assumptions.
First, we assume that not more than t − 1 tellers are corrupted (i.e. controlled by
the adversary), where t is the threshold of the used threshold-decryption scheme.
Second, we assume that the printing facility and the ballot delivery channel are
not corrupted. Under these assumptions, if the voter, during the voting process,
obtains the expected return codes (that is the codes printed on her ballot sheet
next to her intended choices), then the cast ballot is guaranteed to contain the
intended voter’s choice.
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We note that the second assumption is shared with other return code solu-
tions. It is a strong assumption and requires special measures in order to be jus-
tified in specific deployments. The same assumption (in addition to the standard
assumptions that the voter platform is honest and that at most t − 1 tellers are
corrupted) is necessary for voters’ privacy. Finally, note that our scheme (simi-
larly to most of the return code solutions; see below for more discussion) is not
meant to provide receipt freeness.

On the technical level, our scheme is inspired by the PGD system [12,15]
which however does not implement the idea of returns codes, but instead the
one of voting codes (where a voter submits codes corresponding to her choice).
Sharing some similarities with this construction, our system differs substantially
from PGD in many aspects.

As an additional contribution of this paper, we demonstrate an attack on a
return code scheme recently proposed in [10,11] which was planned to be used in
the context of the Geneva Internet voting project (see below for more details).

Related Work. As already mentioned, our scheme is inspired by the PGD sys-
tem [12,15] and, on the technical level, uses some similar ideas: it uses distrib-
uted PETs (plaintext equivalence tests) to match the submitted ballots against
a pre-published encrypted code table. Our scheme, however, differs from PGD in
some significant ways. Our scheme scales better with increasing ballot complex-
ity (PGP performs one PET for every entry in the voter’s code table; we perform
only one PET per voter even for relatively complex ballots). On the technical
level we avoid the use of encrypted permutations (onions). Finally, PGD uses
the idea of voting codes, where a voter submits codes corresponding to the cho-
sen candidates (although the authors also suggest the possibility of using return
codes). We note here that the use of voting codes (as in PGD) results in stronger
ballot secrecy (the voting client does not get to learn how the voter’s choice and
hence it does not have to be trusted for ballot secrecy). As a trade-off, using
voting codes tends to be less convenient for the voters.

In a series of results including [2,8,9,14], related to the Norwegian Internet
voting projects (eValg2011 and eValg2013 ) [16], the underlying, shared idea is
as follows. The code for a voting option v (which is cast in an encrypted form
Encpk(v)) is deterministically derived from v using a per-voter secret s (it typi-
cally is vs). This derivation process is carried out by two servers (playing fixed,
specific roles) in such a way that if only one of them is corrupted, the security
goal of the return codes is not subverted. In order to make this idea work for
more complex ballots, [8,9] uses a technique of combining codes, which however
requires some non-standard cryptographic assumption (hardness of the SGSP
problem, where SGSP stands for Subgroup Generated by Small Primes). These
schemes (as opposed to ours) do not allow for more fine-grained distribution of
trust: there are exactly two parties with specific roles, one of which must be
honest.

The above idea was further transformed in a scheme proposed for the vot-
ing system in the canton of Neuchâtel in Switzerland [6], with the main technical
difference that in this system a voter holds one part of the secret used for code
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generation (which causes some usability issues which were addressed by introduc-
ing of a so-calledusability layer,whichunfortunatelyweakens security guarantees).
Security of this construction relies on the same non-standard security assumption
as [8,9] do and, similarly, there is no built-in fine grained mechanism for distributed
trust. Compared to our system, this system requires much more complex compu-
tations on the voting platform, but less computations for the election authorities
(although in both cases the ballot processing time on the server side is essentially
constant independently of the number of voting options).

Recently, an interesting solution has been proposed in the context of the
Geneva Internet voting project [10,11]. This solution is based on oblivious trans-
fer, where, intuitively, the security of the mechanism is provided by the fact that
the authorities (even although they may know all the codes) do not know which
codes are actually transfered to the voter. This provides some level of protection
against vote buying schemes which otherwise could be very easily mounted by a
dishonest authority (if a voter was willing to disclose her ballot sheet). To our
knowledge, this is the only return-codes scheme with this property.

As a downside, in this protocol, codes cannot be transfered using an indepen-
dent channel (they must be transfered via the voter’s platform), which rules out
the use of this protocol in elections where re-voting is allowed. Furthermore, this
protocol, again, uses the same non-standard cryptographic assumption as [8,9].

Finally, as already mentioned, we have discovered a serious flaw in this con-
struction, described in detail in AppendixA. Our attack violates the cast-as-
intended property of the scheme (the voter cannot be sure that the cast ballot
represents her intended choice even if she receives the expected return codes) and
can be mounted by an attacker who only controls the voting platform. In short,
we show that such an attacker (which is exactly the kind of attacker the system
is meant to defend against) can cast invalid ballots and still provide the voters
with valid return codes. These invalid ballots are accepted by the voting server,
tallied, and only discovered and rejected after tallying, when the link between
the ballot and the voter has been hidden. Note that even if the protocol could
be augmented with a mechanism enabling us to trace the malformed decrypted
ballots back to the voters, it would only point to dishonest voters’ devices which
cannot be held accountable.

While there is a natural countermeasure for this attack (adding appropriate
zero-knowledge proofs of well-formedness of the ballot), it comes with significant
degradation of performance: it works, roughly, in quadratic time with respect to
the number of voting options, which renders this solution impractical for bigger
ballots.1

Structure of the Paper. After introducing some preliminary definitions
(Sect. 2) and providing an overview of the election process (Sect. 3), we describe
in Sect. 4 a simple variant our scheme, applicable only for ballots with one binary
choice. The general variant is described in Sect. 5, after which the security analysis

1 We contacted the authors who confirmed the flaw and are working on a more efficient
countermeasure for the attack which is described in [11].
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is presented in Sect. 6. The mentioned attack on [10] is described in the appendix.
More details are available in the extended version of this paper [4].

2 Preliminaries

Our return code scheme uses the well-known ElGamal cryptosystem over a cyclic
group G of quadratic residues modulo a safe prime p = 2q + 1. This cryptosys-
tem is multiplicatively homomorphic (that is Encpk(m) · Encpk(m′) results in an
encryption Encpk(m · m′) if m and m′ are elements of the underlying group).
A distributed key generation protocol for the ElGamal cryptosystem (where
n tellers jointly generate a secret key and the corresponding public key, and
pre-determined threshold t < n out of n tellers is necessary for decryption) is
proposed, for instance, in [7].

A plaintext-equivalence test [13] is a zero-knowledge protocol that allows the
(threshold of) tellers to verifiably check if two ciphertexts c and c′ contain the
same plaintext, i.e. to check if Decsk(c) = Decsk(c′), but nothing more about the
plaintexts of c and c′.

Our return codes solution can be added to any voting system with encrypted
ballot of a form which is compatible with our scheme in the following sense:
(1) ElGamal cryptosystem with threshold decryption, as introduced above, is
used to encrypt voters’ choices and (2) ballots contain zero-knowledge proofs of
knowledge of the encrypted choices (which is a very common case); additionally,
for the general case, we require that (3) voters’ choices are encoded in a specific
way (see Sect. 5) before encryption. We do not fix details of the authentication
mechanism nor those of the tallying process. In fact, our security analysis works
independently of these details. Examples of voting systems compatible with our
scheme are Helios [1] and Belenios [5] with mix-net-based tallying and, for the
simple variant, also with homomorphic tallying (so our cast-as-intended mecha-
nism can be used in addition to or instead of the ballot audit procedure used in
Helios and Belenios).

3 Overview of the Election Process

In this section we present an overview of the voting process. Because our scheme
(like other return codes solutions) is aimed at providing cast-as-intended veri-
fiability even when the voting platform is potentially corrupted, we make the
distinction between voters and their voting platform, that is devices, including
the software potentially served by the voting server, voters use to cast ballots.

The election process is run by the set of authorities including:

– Tellers who jointly generate the public election key pke key and share the cor-
responding decryption key in a threshold manner. They also, similarly, jointly
generate the public code key pkc which will be used to encrypt codes in code
tables and an auxiliary public key pka for which the corresponding secret key
is known to every teller (here we do not need threshold decryption and use
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any CCA2-secure cryptosystem). The tellers take part in code table genera-
tion and generation of additional codes for voters (authentication, finalisation
and confirmation codes). They may also carry out additional steps (such as
ballots shuffling), as specified by the underlying protocol.

– Secure bulletin boards which, traditionally for e-voting systems, are used by
voting authorities to publish results of various steps of the election procedure,
including the final election result. Secure bulletin boards provide append-only
storage, where records can be published (appended) but never changed or
removed.

– Voting server which is responsible for voters’ authentication and ballot
recording (where a ballot is published on a designated secure bulletin board).

– Printing facility, including the ballot sheets delivery, used to print ballot
sheets in a trusted way and to deliver ballot sheets to eligible voters. The
printing facility, in the setup phase generates its private/public encryption
key pair and publishes the public key pkp.

Our return code schemes supports the following, general ballot structure:
a ballot may contain a number of voting options (candidates), where a voter can
independently select each of these options (or, put differently, provide ‘yes’/‘no’
choice independently for each voting option). Further restrictions can be imposed
(such as for example, that exactly k or at most k options are selected) and
checked after the ballots are decrypted. Note that with this ballot structure we
can encode different types of ballots, such as for instance, ballots where each
candidate can get more than one vote.

The election process consists of the following voting phases:
In the setup phase the tellers and the printing facility generate keys and

codes, as described above. In the registration phase every eligible voter obtains
(via a trusted channel) a ballot sheet. The ballot sheet contains an authentication
code (used as a authentication measure; we abstract here from the details of the
authentication mechanism and simply assume that a mechanism with sufficient
security level is used), a finalization code, a confirmation code, and a list of voting
options (candidates) with printed next to each of them two return codes: one
for the ‘no’ choice and one for the ‘yes’ choice.

In the voting phase, the voter, using her voting platform and the authentica-
tion code, authenticates to the voting server and selects her choices. The voting
platform creates a ballot with the selected choices and submits it to the voting
server. The ballot is then processed by the voting authorities who send back
to the voter (via the voting platform or via some other, independent channel)
sequence of return codes that correspond to the cast (encrypted) choices. The
voter compares the obtained codes with the ones printed on her ballot sheet to
make sure that they indeed correspond to her intended choices. If this is the case,
the voter provides the voting platform with the finalization code which is for-
warded to the voting server. Given this finalization code, the voting server sends
the confirmation code to the voter and completes the ballot casting process by
adding the ballot to the ballot box. If something does not work as expected (the
voter does not get the expected return codes or does not obtain the confirmation
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code after providing her finalisation code), the voter can undertake special steps,
as prescribed by the election procedure (use, for instance, another device or the
conventional voting method).

Finally, in the tallying phase, the ballots published on the ballot box are
tallied and the result is computed.

4 The Variant with One Binary Choice

In this section, we present a simple variant of our scheme, where the ballot
contains only one binary choice (two candidate races or ‘yes’/‘no’ elections). This
variant, while avoiding the technical details of the general variant, demonstrates
the main ideas of the scheme.

Code Table and Ballot Sheet. As shortly mentioned before, in the setup phase,
the voting authorities generate for every voter an encrypted code table. We will
now only describe the expected result of the code generation procedure, without
going into the detail. Such details will be given in Sect. 5.2, where the general
case is covered (which subsumes the simple case discussed in this section). We
only mention here that code tables are generated in fully verifiable way.

The code generation procedure generates, for every voter, two random codes
c0 and c1, corresponding to the ‘no’ and ‘yes’ choice, and a random bit b, called
a flip bit. It also generates for every voter a random finalization code and a
confirmation code. Additionally, we assume that some kind of authentication
codes for voters may be generated by this procedure as well, but we abstract away
from the details of the authentication mechanism, as the presented construction
does not depend on them.

The ballot sheet (delivered to the voter over a trusted channel) contains the
authentication, finalization, and confirmation codes, the return codes c0 and
c1 printed in clear next to, respectively, the ‘no’ and the ‘yes’ voting choice,
and the flip bit b. For usability reasons, the flip bit can be integrated into the
authentication code, so that the voter does not have to enter it separately.

The code table associated with the voter, published on a bulletin board, is of
the form

cfin, econf, (e0, d0), (e1, d1)

where cfin is a commitment to the finalization code, econf is encryption of the
confirmation code under pk c and

e0 = Encpke
(b), d0 = Encpkc

(cb), e1 = Encpke
(1 − b), d0 = Encpkc

(c1−b).

Note that the this record contains the pair of ciphertexts corresponding to the
‘no’ choice (encrypted 0 and encrypted code c0) and the pair of ciphertexts
corresponding to the ‘yes’ choice (encrypted 1 and encrypted code c1). The
order in which these two pairs are placed depends on the flip bit (if the flip bit
is 1 the order is flipped).2

2 Note that the plaintext are first mapped into G before being encrypted; for an
appropriate choice of the mapping, we obtain a system which coincides with the
general variant with k = 1 and, furthermore, allows for homomorphic tallying.
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Ballot Casting. The voter provides her voting application with her authentica-
tion code, the flip bit b, and her voting choice v ∈ {0, 1}. The voting application
produces a ballot containing

w = Encpke
(v), Encpka

(b̃), π

where b̃ = v ⊕ b and π is a zero-knowledge proof of knowledge of the plaintext
in the ciphertext w (b̃ is encrypted in order to hide it from an external observer;
the tellers will decrypt this value in the next step).

The voting authorities check the zero-knowledge proof π, decrypt b̃, select eb̃

from the voter’s table and perform the PET of this ciphertext with the cipher-
text w submitted by the voter’s platform. It is expected that this PET succeeds
(which is the case if the voting platform follows the protocol and the ballot sheet
and the code table are correctly generated). If this is the case, the corresponding
encrypted code db̃ is decrypted (which should result in cv) and delivered to the
voter. The voter makes sure that, indeed, the return code is cv, i.e. it corresponds
to the voting choice v, before she provides her finalization code (in order to final-
ize the ballot casting process). The voting authorities check that the provided
finalization code is a valid opening for the commitment cfin. If this is the case,
they finalise the ballot casting process: they jointly decrypt the confirmation
code, send it to the voter, and add the voter’s ballot to the ballot box.

Tallying. Finally, after the voting phase is over, ballots collected in the ballot
box are tallied. We abstract here from the details of the tallying procedure.
Importantly, our security results work regardless of the details of this procedure.

The intuition behind security of this scheme is as follows. Because, of the
correctness of the code table and PET operations (which is ensured by zero-
knowledge proofs), if the PET succeeds, then the decrypted code must be the
return code corresponding to the actual plaintext in the encrypted ballot. To
fool the voter, an adversary would have to send him the code contained in the
second ciphertext which has not been decrypted. But the best the adversary can
do—not being able to break the used encryption scheme—is blindly guess this
code, which gives him very small probability of success.

Remark 1. For this simple variant, we do not really need to include the flip bit
in the ballot sheet: the ciphertext w could be matched, using the PET protocol,
against both e0 and e1, one of which should succeed, which would determine b̃.
Including the flip bits in the ballot sheets is however crucial for efficiency of the
general variant.

We can note that the additional computational cost of this scheme added to the
voting platform is only one encryption. The computational cost incurred by this
scheme on the server side (per one voter) is one additional decryption to decrypt
b̃, one verifiable PET, and one distributed decryption to decrypt the return code.
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As we will see in a moment, the general variant of our scheme (with k inde-
pendent choices) can be seen as a combination of k simple cases as described here
with some optimisations. Interestingly, with these optimisations, the additional
computational cost incurred by our scheme—if the size of the ballot does not
grow too much—remains essentially the same.

5 The General Variant

In this section we present the general variant of our code voting scheme, where
ballots can contain some number k of independent binary choices, one for each
voting option. This variant is expressive enough to handle wide variety of com-
plex ballots. Despite some technical details used for optimisation, this variant
shares the same underlying idea, illustrated by the simple variant.

We assume some encoding γ of the voting options 1, . . . , k as elements of the
group G such that the voter’s choice, which is now a subset of individual voting
options, can be encoded as the multiplication of the encodings of these individual
options. Of course, we assume that the individual voting options can be later
efficiently retrieved from such an encoding. As an example of such encoding we
can use the technique used for instance in [6,10], where the voting options are
encodes as small prime numbers which belong to the group G.

Similarly, we assume a family of efficient encodings δi (i ∈ {1, . . . , k}) from
the set of return codes to the group G, such that individual codes c1, . . . , ck can
be efficiently extracted from the product δ1(c1) · · · · · δk(ck). An example of such
an encoding is given in the full version of this paper [4].

5.1 Ballot Structure and Voting Procedure

Code Table and Ballot Sheets. The code generation procedure is described in
details in Sect. 5.2. In addition to finalisation and confirmation codes which
are generated as previously, this procedure generates, for every voter and every
voting option i ∈ {1, . . . , k}, two random codes c0i and c1i corresponding to,
respectively, the ‘no’ and ‘yes’ choice. It then generates a random sequence of
flip bits b = b1, . . . , bk, where bi ∈ {0, 1}.

The ballot sheet sent to the voter contains now, besides the authentication,
finalisation, and confirmation codes, return codes (c01, c

1
1), . . . , (c

0
k, c1k) printed in

clear next to corresponding voting options and marked as, respectively the ‘no’
and the ‘yes’ choice. It also contains the flip bits b (as before, this vector can be
integrated in the authentication code).

The published code table associated with the voter contains, as before cfin,
econf and (

u0
i , u

1
i

)k

i=0
=

(
tbii , t1−bi

i

)k

i=0

where

t0i = (Encpke
(1)), Encpkc

(δi(c0i )) and t1i = (Encpke
(γ(i))), Encpkc

(δi(c1i )).
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Note that t0i corresponds to the ‘no’ choice (it contains an encryption of 1 and
the encoded code for ‘no’) and t1i corresponds to the ‘yes’ choice (it contains an
encryption of the encoded option i and the encoded code for ‘yes’). Note also
that ubi

i = t0i and u1−bi
i = t1i .

Ballot Casting. The voter provides her voting application with her voting choice
v1, . . . , vk ∈ {0, 1} and the bit sequence b. The voting application computes
v =

∏
i∈V γ(i), where we define V as the set {j : 1 ≤ j ≤ k, vj = 1}, and

produces a ballot containing

w = Encpke
(v), Encpka

(b̃), π

where π is, as before, a zero-knowledge proof of knowledge of the plaintext of w
and b̃ = b̃1, . . . , b̃k with b̃i = bi ⊕ vi.

The voting authorities decrypt b̃ and select the values wi = ub̃i
i , for i ∈

{1, . . . , k}. Note that if the voter has not chosen the i-th election option, then
wi = ubi

i = t0i , by the definition of u. Otherwise, wi = u1−bi
i = t1i .

The voting authorities multiply w1, . . . , wk (component-wise) obtaining the
pair (e∗, c∗), where e∗ should be (if the voter platform followed the protocol)
encryption of v =

∏
i∈V γ(i). The voting authorities perform the PET of e∗ with

the encrypted choice w from the ballot. If this PET fails, the casting procedure
is canceled. Otherwise, the decryption tellers jointly decrypt c∗. Observe that,
by the properties of the published code table, this decrypted value is the product
of δj(c

vj

j ), i.e. it is the product of the codes corresponding to the choices made
by the voter. This value is decomposed into individual codes cv1

1 , . . . cvk

k and sent
to the voter (via the voting platform or an independent channel). As before,
the voter makes sure that the received codes correspond to her choices before
providing the finalisation code.

Note that the ballot processing on the server side only requires one verifiable
PET, one decryption and one threshold decryption, independently of the number
k of the voting options, plus some number of multiplications and divisions (which
depends on k), as long as k codes can be efficiently represented as one element
of the group G which is in detail discussed in the full version of this paper [4].

5.2 Code Table Generation

The code table generation presented below is fully verifiable. Note that we could
also consider a version without zero-knowledge proofs, but with partial checking
instead, where a bigger number of records is produced and the some of them
(randomly selected) are open for audit.

We will assume that the code generation procedure is carried out by the
tellers, but it can by carried out by any set of independent parties, as it does not
require possession of any secret keys. We will present here a version, where, for
the same voting option, distinct voters obtain distinct codes, although different
variants are also possible (and may be useful if the number of voters is very big).
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The set of codes is Codes = {1, . . . ,m} with m > 2n, where n is the number of
voters (reasonable values for m, that is values corresponding to desired security
levels, can be determined using the result below).

For simplicity of presentation, in the following, we will leave out handling of
the authentication, finalization and confirmation codes. The procedure consists
of the following steps.

1. For every voting option j, the tellers deterministically compute

Encpkc
(δj(1)),Encpkp

(1), . . . ,Encpkc
(δj(m)),Encpkp

(m).

where all the ciphertext are obtained using the pre-agreed randomness 1.
2. The tellers shuffle the above sequence of ciphertexts using a verifiable mix

net obtaining a sequence of the form

Encpkc
(δj(c1)),Encpkp

(c1), . . . ,Encpkc
(δj(cm)),Encpkp

(cm),

where ci = π(i) for some permutation π and the ciphertext are re-randomized.
Note that for this we need to use a version of verifiable mixing which applies
the same permutation (but independent re-randomization factors) to pairs of
ciphertexts. Such generalizations of know verifiable shuffling algorithms are
possible.3

3. The tellers take the consecutive encrypted codes produced in the previous
step and organize them into the records of the following form, one for each
voter i:

{
Encpkp

(0),Encpkp
(c′

j),Encpkp
(1),Encpkp

(c′′
j ),

Encpke
(1),Encpkc

(δj(c′
j)),Encpke

(γ(j)),Encpkc
(δj(c′′

j ))
}

j∈{1,...,k}

where the ciphertext with (encoded) choices are generated deterministically
with the randomness 1.

4. The tellers perform, one after another, series of micro-mixes for every such
a record: Each teller, for the input record R = (a1, b1, a2, b2, a

′
1, b

′
1, a

′
2, b

′
2)

(which is the output of the previous teller or, for the first teller, the record
produced in the previous step) picks a random bit. If this bit is 0, then it
only re-encrypts all the elements R. If the flip bit is 1, then, in addition, it
accordingly flips the elements of the record and outputs a re-encryption of
R′ = (a2, b2, a1, b1, a

′
2, b

′
2, a

′
1, b

′
1). The teller produces a zero-knowledge proof

of correctness of this operation (such step can be implemented as a verifiable
mixing operation; it can be also realized using disjunctive Chaum-Pedersen
zero-knowledge proofs of the fact that the resulting record is either a re-
encryption of R or R′).

5. The parts of the records encrypted with pkc and pke are published in voters’
code tables. The parts encrypted with pkp are given to the printing facility
which decrypts the records. The decrypted content contains the return codes
and (implicitly, via the order of plaintexts) the flip bit sequence b.

3 In particular, it is straightforward to generalize the shuffle protocol of [3] to provide
such functionality.
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Note that, in the above procedure, all the steps are fully deterministic or
come with appropriate zero-knowledge proofs. This design is meant to provide
the following correctness guarantees:

The code generation procedure produces correctly linked ballot sheets and
encrypted code tables with overwhelming probability. Moreover, unless the
threshold of trustees are dishonest, only the printing facility learns how
codes are distributed amongst voters.

6 Security Analysis

As noted in the introduction, coercion resistance and receipt-freeness are not the
goals of our scheme. In fact, the use of return codes, as in many similar solutions,
specifically makes the scheme prone to vote selling if dishonest authorities are
involved in the malicious behaviour.

The results presented in this section are stated for the case where re-voting
is not allowed. For the case with re-voting (casting multiple ballots, of which,
say, the last is counted), we expect that the privacy result holds, while only a
weaker form of cast-as-intended verifiability than the one presented in Sect. 6.2
can be guaranteed: namely, we have to assume that an independent channel is
used to send return codes to voters and that both the tellers (who see the sent
return codes) and this channel are honest.

6.1 Ballot Secrecy

Ballot secrecy means, informally, that it is impossible (for an adversary) to
obtain more information about the choices of individual honest voters (that is
voters following the protocol), than can be inferred from the explicit election
result. Our code voting scheme is designed to provide voters privacy under the
following assumptions:

P1. The voting platform is not corrupted.
P2. At most t − 1 tellers are corrupted, where t is the threshold for decryption.
P3. The printing facility and the ballot sheet delivery channel are not corrupted.

The first two assumptions are standard and for voters’ privacy and shared by
many e-voting protocols (using and not using return codes). The third assump-
tion is also shared by any code voting scheme (where codes need to be printed and
delivered to the voter). Therefore, in this sense, these are the minimal assump-
tions for electronic voting with return codes.

Note also, that the informal definition of privacy given above only protect
honest voters who, in particular, do not reveal their ballot sheet to another
parties, excluding voters who want to sell their ballots.

We formalize the above notion of privacy using the following game between
the adversary and the system P representing the honest components of the e-
voting system, where the adversary gets to control all but two (honest) voters.
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For simplicity of presentation, we consider here the simple case where voters have
only one yes/no choice. We will consider two variants of P : variant P0, where
the first of the honest voters votes for the ‘no’ option and the second honest
voters chooses the ‘yes’ option, and variant P1, where the choices of the honest
voters are swapped. With these definitions, we express the notion of privacy by
requiring that there is no polynomially bounded adversary A which can detect
if he is interacting with P0 or P1 (up to some negligible probability), that is:

Prob[P0 ‖A �→ 1] ≡negl Prob[P1 ‖A �→ 1] (1)

where Pi ‖A �→ 1 denotes the event that in the run of the system composed of Pi

and A, the adversary outputs 1 (accepts the run). We assume that the adversary
can interact with the system in the following way: it interacts with the honest
tellers playing the role of the dishonest tellers (in all the protocol stages). It
also casts ballots of the dishonest voters and, at some chosen time, triggers the
honest voters to cast their ballots.

We will now formulate our privacy result in a modular way, independently of
many details of the underlying voting system to which our return code scheme
is added. We only assume that the system has the structure which allows for
the described above game and which uses ballot encoding ‘compatible’ with our
construction, as described in Sect. 2. Under these assumptions, our code voting
scheme is meant to satisfy the following property:

Let U be the underlying voting protocol and let P denote the protocol
obtained from U by adding our return code scheme. If U provides ballot
secrecy, as expressed by (1), then P provides secrecy as well.

A sketch of the proof of this statement is given in the full version of the paper
[4] where we show that all the additional elements of P (related to codes) can
be simulated by a simulator which has only black-box access to U .

6.2 Cast-as-Intended Verifiability

Cast-as-intended verifiability means that an honest voter can, with high proba-
bility, make sure that the ballot cast on her behalf by her voting platform and
recorded in the ballot box by the voting server contains her intended choice. Our
scheme provides cast-as-intended verifiability under one of the following cases:
(1) The voter client is honest. (2) The following trust assumptions are satisfied:

V1. At most t − 1 tellers are corrupted.
V2. The printing facility and the ballot sheet delivery channel are not corrupted.

The first case is trivial (note that the very purpose of code voting is to provide
cast-as-intended verifiability in the case the voter client is not honest). We only
need to assume that the voting client has means to check that the cast ballot has
been in fact added to the ballot box and that there is a mechanism preventing
any party from removing or modifying this ballot (which is the case if we assume
that the ballot box is an instance of a secure bulletin board).
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In the following, we analyse the second case. We claim that the following
result holds for our system.

Under the assumption V1 and V2, for any given honest voter (possibly
using a dishonest voting platform) and for any of the k voting options, the
probability that the voter obtains the expected code (that is the code printed
next to voter’s choices), while the recorded ballot contains different choices
for this voting option is not bigger than 1

m−n−n′ (plus a negligible value),
where m is the number of generated codes, n is the total number of voters,
and n′ < n is the number of corrupted voters.

This result, similarly to the privacy result, does not depend on the details of
the authentication mechanism nor on the details of the tallying phase.

The intuition behind this statement is that everything that the adversary can
learn about code distribution is, essentially (up to cases of a negligible probabil-
ity), what is explicitly given to him, that is (a) n codes that have been decrypted
by the tellers (b) n′ remaining codes of dishonest voters (because the adversary
gets to see all the codes of these voters). So, if the adversary wants to come up
with the code corresponding to the opposite choice (for the considered voting
option) of the honest voter in order to fool her, the best he can do is pick one
of the remaining m − n − n′ codes at random.

In order to prove this statement, similarly to the privacy result, one can use
the ideal (honest) code generation procedure and replace PETs by the appro-
priate ideal functionality. In this setting we argue that the following is true.

Because the code table is correct (correctly corresponds to the printed ballot
sheets) and the results of PETs is correct too (as we are using the ideal function-
ality), it follows that the decrypted codes correspond to the actual voting options
in the encrypted ballots. One can then show that, if the adversary had a strategy
of guessing an unencrypted code of an honest voter with better probability than
given by the blind guess as described above (where the adversary picks one of
the possible codes at random), this would break the IND-CPA property of the
underlying encryption scheme.

A Attack on [10]

In order to understand the attack presented below, it may be useful for the
reader to first consult the original paper [10]. It is worth noting that this attack
scenario does not undermine the underlying (k out of n)-OT scheme. It only
utilizes the fact that a dishonest receiver in this scheme can obtain up to k (but
not more) values even if it does not follow the protocol. We describe here an
attack for the case with n = k = 2.

The intended run of the protocol is as follows. For the voter’s choice s =
(s1, s2), the voting platform (VP) prepares an OT query

a = (a1, a2), where aj = Γ (sj) · yrj ,
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for random rj , where y is the public election key. It also computes b = gr1+r2 .
Let a denote the product of elements of a that is a1 ·a2. Note that c = (b, a) is an
ElGamal ciphertext (which, although not explicitly sent, will be considered to be
the ciphertext cast by the voter) encrypting the plaintext p = Γ (s1) ·Γ (s2) with
randomness r = r1 + r2. The VP sends a and b along with a ZKP of knowledge
of r and p.

From the OT response, the VP can now compute the codes for s1 and s2
which are shown to the voter who provides the confirmation code and the proto-
col goes on. Here are the details of how the codes are retrieved. The OT response
contains:

aα
1 , aα

2 , yα,

c1 ⊕ H(Γ (s1)α), c2 ⊕ H(Γ (s2)α), . . .

for some random α, where c1 and c2 are the codes corresponding to choices s1
and s2. Knowing r1 and r2, the VP can compute Γ (s1)α and Γ (s2)α and, in
turn, the codes c1, c2.

The dishonest run goes, for example, like this: For the voter’s choice s =
(s1, s2) as before, the VP prepares the OT query

ã = (a1, ã2), where ã2 = Γ (s1)7 · Γ (s2) · yr2

and sends ã along with b and a ZKP of knowledge of r and the plaintext p̃,
which is now Γ (s1)8 · Γ (s2). Jumping ahead, this plaintext will be rejected as
invalid, but only after (mixing) and final decryption, when there is no visible
link between the decrypted ballot and the voter.

Nevertheless, from the OT response, the VT can easily compute the codes
for s1 and s2 and make the protocol proceed as if the intended, valid ballot was
cast. To see this, we can notice that, given the OT response, the VT can compute
values Γ (s1)α and (Γ (s1)7 · Γ (s2))α, from which it is easy to compute Γ (s2)α

and the same codes c1 and c2 as in the honest run. These codes are delivered to
the voter who then continues the procedure.

A straightforward countermeasure for this attack would be adding appro-
priate zero-knowledge proofs of correctness of each aj , which however adds a
significant computational overhead (it works in time O(k · n)).
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Abstract. We discuss a new type of attack on voting systems that
in contrast to attacks described in the literature does not disrupt the
expected behavior of the voting system itself. Instead the attack abuses
the normal functionality to link the tallying of the election to disclos-
ing sensitive information assumed to be held by the adversary. Thus the
attack forces election officials to choose between two undesirable options:
Not to publish the election result or to play into the adversary’s hand and
to publicize sensitive information. We stress that the attack is different
from extortion and not restricted to electronic voting systems.

1 Introduction

Existing paper-based voting systems are often considered to be the gold standard
against which any other voting system is measured, despite that the classic
systems have security weaknesses.

For example, a certain degree of errors when voters fill in ballots is sometimes
accepted as long as the voters’ intent can still be determined. Similarly, blank
ballots may be allowed to give the possibility to vote for unlisted candidates, or
as a last resort to counter attacks where ballot papers are stolen from a polling
station.

Another example is how the results are reported, e.g., in Norway the results
for voting districts that are deemed too small are reported at an aggregate level
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to preserve the privacy of voters. Even when a result for a given voting district
is not needed to compute the distribution of seats, the result is often considered
an important channel of information of the broader democratic system.

However, such weaknesses are typically well known and due to a careful
tradeoff between several conflicting goals such as security, availability, cultural
values and traditions, and economy.

In this paper we introduce a previously unknown type of attack that should
be added to the list of threats to be considered in such tradeoffs. How serious the
attack is depends strongly on the strategic value of the election and how well the
election management body is prepared to handle it. Important factors include
legal, procedural, and the strategic value of causing confusion or a delay in the
tabulation of an election. The vulnerability to the attack of an election depends
both on how ballot papers are designed and marked, and how the election is
tallied.

2 Contribution

We first present a novel attack that can be executed on numerous existing voting
systems with potentially far-reaching and serious implications. Then we identify
the most important parameters of the attack and discuss how and to what extent
the attack can be mitigated.

We hope that this paper will raise the awareness among researchers, govern-
ments, and other stakeholders. Short term, election owners must prepare plans
and procedures to handle an attack. Modest improvements may also be applied
to existing voting systems within current laws. Long term, each voting system
should be studied carefully to see if it is possible to mitigate the attack in a way
that is acceptable from a democratic point of view and election laws should be
changed if needed. Due to the diversity of the details of voting systems, election
schemes, legal frameworks, and democratic cultures, this is out of scope of this
paper.

In this paper we focus on the mechanics of the attack at a high level. We do
not consider the details of specific elections and voting systems to determine how
vulnerable they are to the attack, assess the strategic value of carrying out the
attack, and the threat model. Legal and political aspects are also out of scope
of this paper, but we hope to inspire such research.

In an appendix we consider to what extent the attack can be applied to the
particular voting systems of a handful of countries and informally propose a
number of modest changes that could be deployed quickly to raise the cost to
execute the attack and improve the chance to identify the perpetrator.

3 The Attack

We first observe that most voting systems provide a channel to voters that not
only allow them to express their voting intents, but also to send arbitrary infor-
mation through the voting system. More precisely, given a piece of information,
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one or more voters can use their right to vote to encode the information into
the output of the voting system. In this context, the output consists not only of
the tally of the election, but also of all auxiliary information that is published or
otherwise available, e.g., the number of invalid votes and in what way they are
invalid. Depending on how restricted the access to different parts of the output
is, the attack is more or less feasible. In Sect. 4 we discuss several examples of
how the information can be encoded depending on the specifics of the voting
system.

Then we assume that the adversary has access to sensitive information that
must not be published by the election authority. Secret information is clearly
sensitive such as information published by WikiLeaks, but other information
which is not particularly secret may also be sensitive. In Sect. 3.1 we consider
different types of sensitive information.

We also assume that the adversary is able to publish information on “the
Internet” in the sense that the data is made broadly available and can not be
deleted. Today this is a very mild assumption due to the plethora of forums and
servers that store information for free without deep authentication of the users.

Throughout we write Enc(k,m) to denote the encryption of a message m
with a secret key k, and we denote by m the sensitive data. An example of a
suitable cryptosystem is AES. We denote by H a cryptographic hash function
such as SHA-3 that compresses an arbitrarily long input to a short digest. The
basic attack proceeds as follows:

1. The adversary forms a ciphertext c = Enc(k,m) using the sensitive informa-
tion m and a randomly chosen secret key k, and publishes it on the Internet
anonymously.

2. She uses corrupted voters to submit votes that encode the secret key k in
such a way that it can be easily derived from the output of the election after
tallying.

3. She anonymously informs the relevant authorities, and possibly media or
other parties, that if the result is tallied, then the sensitive data m will be
published by the election authority.

4. She makes sure that her claim is credible, e.g., by revealing parts of the
sensitive information to the owner of the election and chosen government
agencies and media.

Example 1. Suppose that the attacker has access to Snowden’s complete infor-
mation m and consider an election that allows write-in votes, and that the con-
tents of all votes are reported in the final result. Here the adversary picks a
random party name p, hashes it to form the key k = H(p), encrypts the sensitive
data to form the ciphertext c = Enc(k,m) which is published on the Internet.
Then it submits p using a write-in vote. Then it informs the election authority
and chosen media. If the election is tallied, then p appears in the result, k = H(p)
can be computed, and the sensitive information m = Dec(k, c) is disclosed.

We stress that the attack is easy to execute completely anonymously, since
the ciphertext c can be published through any electronic channel and the voting
system itself provides privacy to the attacker when k is encoded into the votes.
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The attack puts the owner of the election, e.g., a national election authority,
in a situation where they de-facto become fully responsible for publishing the
sensitive information and this is known by a wide audience. This immediately
spawns a number of questions that demands answers such as:

– How vulnerable is a given system to the attack?
– What can we do to counter the attack?
– Is it legal to tally, or conversely refuse to tally, and can tallying be delayed?
– Should the election authority tally unconditionally?
– Who is politically and legally responsible for publishing the information?
– Can individuals or organizations demand damages for disclosed information?

3.1 Types of Sensitive Information

Before we consider how the attack differs from extortion we give a number of
examples of sensitive information and discuss how the type of information influ-
ences the characteristics of the attack.

State Secrets. Imagine that a disgruntled officer in the military, or arms industry,
decides to execute the attack. The obvious real world example is somebody like
Edward Snowden, but with a more sinister agenda. The sensitive data may be
worth billions and threaten the lives of many people if it is leaked.

The motivation may be political to punish the establishment, or at a national
level to punish a foreign state. In the latter case, it may be clear that the attacker
has no intention to leak the information, i.e., the goal is specifically to stop or
delay the election.

We can even imagine an attack that is intended to look like an attack by an
insider, but which in reality is an attack by a corrupt state. It is not far-fetched
that elements of a country like USA or Russia sacrifices a measured amount
of sensitive information and manufactures an insider attack on their own, or
a foreign country, for political purposes. Consider the political pressure these
countries can exert on small states to delay an election if needed.

The motive could also be economical. We would expect that the stock market
reacts quickly if the tallying of the election is delayed. Trading on movements
on the stock market in a covert way is not difficult and could result in huge
revenues. A single individual with access to sensitive information and plausible
deniability could today with little risk of detection execute this attack in several
countries.

Private Information About Voters in the Election. Suppose that the election, or
part of it, is performed using an electronic voting system. Due to lack of analysis
and poor understanding of cryptography and computer security, several such
systems have been broken [3,4,6].

Consider a political activist that has repeatedly pointed out vulnerabilities
and tried to convince the authorities to not use the electronic voting system, and
that she in despair decides to grab the secret key, or the votes of many voters,
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and use it as the sensitive information in the attack. Note how this differs from
simply proving knowledge of the secret key where the government could dismiss
the complaint with various explanations. Here the election cannot be tallied (as
planned) and still preserve the privacy of voters.

We stress that the attacker has no intention to leak the information and has
no incitement to claim otherwise. The goal is in fact to protect the privacy of
voters.

This would of course be illegal, but it is also a form of whistleblowing on an
election authority that ignores valid criticism through legitimate channels. Thus,
we expect that many citizens would side with the attacker.

Information about how voters cast their votes could also be collected using
something as simple as covertly filming voters in the polling station. The attacker
would then cast her vote among the last in the election.

Illegal Information. Recall that the key feature of the attack is not that the sen-
sitive information is secret, but that the election authority becomes responsible
for publishing it. There are several examples of information that is sometimes
publicly available, but not in aggregated form that allows, e.g., searching, and
such information can be very difficult to collect without detection.

One example is an attacker that holds a large catalogue of child pornography.
Publishing this information would not only be illegal, it could also seriously
harm many children and people emotionally and constitute defamation leading
to lawsuits.

Another example is sensitive user data from, e.g., forums, social media, infi-
delity websites, and perhaps more seriously, medical journals. Disclosing medical
journals is not only problematic because it violates the privacy of people, it can
cause people to lose their jobs and insurance policies. In the case of medical
journals the goal could be to force the government to take action to improve the
privacy properties of systems to protect the citizens.

In both latter examples, it could be clear that the attacker has no malicious
intent and no intention of publishing the data on her own.

3.2 Is This Simply a Form of Extortion?

One may object that the attack is simply a form of extortion aiming to disrupt
an election, i.e., the attacker could just as well simply explain that if the elec-
tion is tallied, then it will publish the sensitive information. However, there are
prominent features of the attack that distinguishes it from extortion.

An extortionist must convince the victim that the threat is credible, i.e., that
she is willing to publish the data unless the victim stops the election. This is not
the case in our attack. As illustrated in the examples above, it can be clear that
the attacker has no intention to publish the data.

An extortionist can also change its mind. Thus, it is meaningful to negotiate
with her and if she is captured in time, then the attack can be stopped. In our
attack on the other hand, not even the attacker can stop the attack after it has
been set in motion.
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We believe that the distinction is of fundamental importance and changes
the way governments can, and should, respond.

4 Encoding Data into the Output of the Election

A closer look at a typical voting system reveals that the bandwidth from the
attacker to the output of the election is large. Below we give a non-exhaustive
list of ways to encode information, but note that these may be combined if
available. An additional factor is who is given access to the information and this
is discussed in the next section.

4.1 Write-In Votes

There are two types of votes that are sometimes called write-in, but are quite
different in our setting. Both assume that the voter can use a blank ballot and
simply write on it the name of their favorite candidate.

Type I assumes that the candidate has been registered in advance, so in
the election result such a write-in vote would be indistinguishable from votes
cast using pre-printed ballots. A narrow channel of information is given by such
ballots if available to the observers, since the candidate name may, e.g., be
positioned differently on the ballot paper to encode information, but the ballot
is difficult to spot even given access to the tallying.

Type II allows the voter to write anything on a blank ballot, and as long as
it can be interpreted as something meaningful when it appears in the election
result. This can be used directly to execute the attack if the vote is available to
the observers, since the voter can simply write the secret key k used to encrypt
the sensitive information as the candidate name. To make sure that the key
seems meaningful the attacker can first come up with a randomly chosen name
p and hash it to derive the actual secret key k as explained in Example 1.

4.2 Invalid Votes

In our setting invalid votes can be viewed as a form of write-in votes, but with
limited information capacity. There are numerous ways to make a vote invalid
and how they are processed depends on the type of election, so we can only give
some examples to illustrate the problem. In all variations the observers must of
course be able to record information about invalid votes.

In countries where detailed statistics about different types of invalid votes
are disclosed they are truly a form of write-in votes of Type II in the eyes of the
attacker.

In countries where envelopes are used and the observers may witness the
counting, the attacker can simply put, or not put, post-it notes of different
colors to encode a sequence of bits. Post-it notes stand out in the counting and
are easy to spot.
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4.3 Bundled Races

Countries that artificially bundle together multiple races create ballots that can
be exploited by encoding the key as a list of components of a few bits, where
each such component represents a choice in a race. For example, a bundled ballot
with three races containing two candidates each can encode three bits. To be of
use a larger number of races and/or multiple candidates is needed, but it is not
merely the number of possible votes that is important. It is the size of the space
of possibilities expected to remain unused by legitimate voters that determines
the feasibility of the attack.

4.4 Ranked Elections

In ranked elections a single ballot is used with a large number of different possible
votes corresponding to the possible permutations of the available candidates.
Variable-basis representations of integers are easily converted to and from more
natural representations of permutations and a key may be viewed as an integer,
so an arbitrary key can be cast as a vote. These ballots cannot in general be
tallied except by revealing a large part of each vote.

4.5 Supporting Evidence

Most voting systems have embedded features for auditing. The auxiliary infor-
mation provided for auditing can provide a channel for the attacker even if the
rest of the election output does not. Thus, the election output must be under-
stood as consisting of all information and all physical artifacts resulting from
the tallying of an election. A concrete example could be images of the ballots
scanned by ballot scanning machines that could embed information using tiny
markings, placement of text, or steganography.

4.6 Elections with a Fixed Set of Candidates

Even in single-seat elections where the election output consists only of the
reported election results, the attack may be feasible, but at a higher cost to
the adversary in terms of the needed number of corrupted voters. This is best
explained by an example.

Example 2. Consider an election with three fixed candidates where the election
result is reported per voting district among a large number of voting districts.
Assume that the first two candidates get almost all of the votes so that the third
candidates get zero votes in most voting districts.

Here an adversary that controls n voters throughout the voting districts
that typically receives zero votes for the third candidates can encode bits by
simply casting, or abstaining to cast, votes for the third candidate in those
districts. A somewhat more expensive encoding with more cast votes can add
error correction. A randomized encoding where zero and one are instead encoded
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as, say more or less than two votes, respectively, gives plausible denial for every
individual vote. This may protect the attacker against sanitation of the result
under governing laws, since votes of legitimate votes cannot be eliminated.

Note that the example does not require the attacker to register new candi-
dates, but the attack is of course facilitated if this is possible, since it almost
guarantees the existence of a candidate that can be expected to get very few
votes. In some countries this is unlikely to be the case due to requirements for
registering new parties or candidates.

The critical weakness of the election is how the result is reported. If there
are only a few large voting districts, then the attack is infeasible.

4.7 Multiple Elections

It is important to understand that the above encodings can not only be combined
with each other, but also for multiple elections. If the adversary is unable to
encode the needed number of bits into one election, then she may still be able to
encode a fraction of the bits in each election. The semantics are changed slightly
with this approach since when a key is partially disclosed outside parties may
be able to recover the remainder of the key using algorithmic methods.

4.8 Preventing Sanitation

An attacker may worry that authorities sanitize the output of the election in
a controlled environment to mitigate the attack. This may be possible apriori
depending on who has immediate access and governing laws. To circumvent any
such procedures the attacker can use a proof of work to make sure that nobody
can recover the key except after a certain suitable amount of time. A trivial way
to accomplish this is to only encode part of the secret key k used for encryption.
This means that a brute force search for the missing bits of the key is needed to
decrypt. This variation shows that there is little value in attempting to sanitize
the output of the election by trying to identify the encoding of k, since this can
only be done long after the result must be published.

4.9 Access to the Output of the Election

A necessary condition for the attack to succeed is that the sensitive information
is revealed to parties that must not have access to it. However, this is a not
a black or white property. For example, national security and military secrets
should not be disclosed to anybody, but it must not be disclosed to unfriendly
foreign states. Similarly, child pornography can safely, and should be, disclosed
to the Police, but must not fall into the hands of the general public.

Thus, to properly analyze the value of the attack and capabilities of the adver-
sary in a given election, we need a comprehensive and detailed understanding
of the voting system. This is important, since it is likely to be infeasible to
unconditionally mitigate the attack for many election schemes.
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The attack relies on the transfer of responsibility. Suppose election workers
perform their duties in a closed room and the encoded key only appears in the
room. Then if the key is disclosed we can argue that the election workers are
culpable and not the election authority or government. This way of looking at
the attack may be more or less realistic depending on the nature of the sensitive
information.

5 Mitigating the Attack

The best we can hope to achieve may seem to be a voting system that outputs
who won the election in a single seat race, or correspondly the distribution of
seats in a multi-seat election, but a closer look at democratic systems shows that
this is view is naive. The role of an election is not only to distribute seats, but
also to communicate the voice of the voters in a broader sense such as fringe
opinions and the geographic distribution of supporters of different candidates.

Thus, a more modest goal is that the voting system outputs the election
result in the form it is currently output in most voting systems. This can clearly
not be achieved if write-in votes are reported as part of the result without prior
registration. The number of bundled races and cardinality of ranked elections
combined with the number of candidates must also remain small. Furthermore,
the result can only be reported for subsets of voters such that the number of
votes for each candidate is large enough to hide encoded information in statistical
noise provided by the votes of honest voters.

In addition to the above requirements, it must be ensured that no additional
part of the output is leaked to the wrong parties. The specifics of this is inherently
tied to particular elections, but we can make some general observations.

In elections with a voting envelope we can not allow the counting to be
done in public. It is far too simple to insert arbitrary paper content into an
envelope. However, it is probably fine to randomly select people from the general
population to audit the counting and inform them to not leak any information
except that they can dispute the counting.

Statistics about invalid votes should be kept to a minimum and reported in
aggregate form and not per voting district or other small regions. The detailed
statistics and information should be considered secret.

6 Variations

The attack could possibly be combined with a deliberate manipulation of the
election result, and used to dissuade the authorities from publishing informa-
tion that would indicate the manipulation. The key may be encoded not in the
outcome, but in the evidence of the correctness of the outcome leading to a sit-
uation where the government is unable to allow a normal audit. Examples in an
electronic voting system includes logging information such as timing of various
events, flawed inputs, etc.
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7 Future Work

There are two natural directions for future work. Firstly, understanding vul-
nerabilities and developing techniques and procedures that increase the cost of
executing the attack is certainly possible, both for traditional and electronic
voting systems.

There are also natural theoretical questions to be investigated. A function
for which the adversary provides some of the inputs may be viewed as a channel
in an information theoretical sense and we could demand that its capacity is low
in the worst case, or average case, over the choice of the other inputs. Similarly
to the discussion above, in a multiparty computation of the function, we must
consider the output to be the complete view of the parties interested in the
communicated information.

Acknowledgments. We thank a number of researchers that took part in our early
discussions. We also thank civil servants and politicians in government organizations
in several countries for their valuable feedback.

A Situation in Selected Countries

To make things more concrete we briefly discuss how serious the attack is in a
handful of countries.

A.1 Australia

Many Australian elections allow each voter to rank many candidates, so each
ballot may have about 100! different possibilities. Furthermore, tallying by
Single Transferable Vote (STV) generally needs knowledge of most of each
permutation—there is no easy way to split up the vote when tallying. Many
Australian electoral authorities make complete voting data available on the web,
for the very good reason that third parties may independently redo the count.

These sorts of voting systems are also vulnerable to a coercion attack some-
times called the “Italian attack”, in which voters are coerced into casting a
particular voting pattern. The attack presented in this paper uses a similar fea-
ture, namely the large number of possible votes, but in a different way. Hence
there is already some literature on how to compute a verifiable STV tally using
cryptographic methods without revealing individual votes [2]. These mechanisms
would also address the attack described in this paper, though they remain com-
putationally intensive and not integrated into the Australian electoral process.

A.2 A.2 Estonia

A discussion related to the attack took place in Estonia in 2011 when an invalid
i-vote was experienced for the first time in the history of Estonian i-voting sys-
tem. The discussion is presented in [5] 3.1 Case: Invalid I-vote. Executive sum-
mary follows. One of the i-votes was registered invalid by the system during the
tabulation phase of the Parliamentary Elections on March 6th, 2011.
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The analysis of the system error logs showed that the invalid i-vote appeared
to be correctly encrypted with the election public key. The reason behind the
invalid i-vote could have been a bug in some of the components of the i-voting
system, human mistake in the system setup or somebody could have intentionally
cast an invalid i-vote (by implementing their own voting client or interfering with
the existing one).

Only human mistake in the setup procedures could be excluded without
decrypting the i-vote, so the National Electoral Committee (NEC) decided to
decrypt the invalid i-vote and examine its contents in hopes to find out the root
cause of the problem. The time window between the decision and the planned
action gave an opportunity to consider invalid i-vote as a possible attack. If the
attacker was aiming for publicity, then the simple scenario allowing manipulation
would be used by the attacker himself to decoy the election officials to show
whether the NEC – contrary to their claims – can find out who did cast the vote
from the contents of the ballot.

If some more sophisticated technique to invalidate the ballot would have
been applied, then the contents of the ballot could have been anything from the
personal identification of the attacker or personal identification of someone not
involved at all to a well formed ballot with an invalid candidate number.

After considering the matter of ballot secrecy and the possibility of an attack
against i-voting as such, the NEC reached the conclusion that it would be better
not to create a precedent of decrypting one i-vote separately from others. The
decision from April 1st was reverted on April 8th.

A.3 A.3 Sweden

In Sweden the elections for parliament, county councils, and municipalities all
take place at the same time, but using three distinct ballots and envelopes. Thus,
it is not a bundled election. A voter picks a ballot paper with a pre-printed party
name and a list of persons. He may make a single mark in front of one of the
persons to increase her chances of getting a seat. This is called a “personröst”
(person vote).

Votes are then counted and sieved for invalid votes at several levels and all
counting is open for the public. The ballot papers are first taken out of their
envelopes in the polling station by the election workers. Ballots that are deemed
invalid are put back into their envelopes and put in a separate stack. There
are exceptions, but broadly speaking a ballot is invalid if it is not formed as
described above. The votes are then recounted by another authority before the
final result is announced. During the first counting only party votes are counted
and the person votes are ignored.

The voting system in Sweden has been reformed in several ways in prepara-
tion for the 2018 elections. Fortunately, a side effect of these changes is that the
attack presented in this paper is harder to execute. Before the reform a voter
could cast a write-in vote for a party or person. As of 2018 all parties and per-
sons must be registered and acknowledge that they are willing to serve if they
are elected.
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We remark that parties such as “Kalleankapartiet” (Donald Duck party)
would always receive a couple of votes and the results from the 2014 election are
available at [1]. Although there are no longer any write-in votes (of Type II as
defined in Sect. 4.1), an attacker can demand to see invalid votes and she could
use post-it notes of multiple colors, corrupt a handful of voters and execute the
attack in this way. There is also a fair number of fringe parties that only get a
handful of votes and even more individuals listed for the parties that get even
fewer votes. Thus, there is plenty of room to encode a key.

The system could be substantially hardened by replacing the public counting
with counting in the presence of a randomly selected set of citizens and by not
reporting results for parties that receive a small number of votes, or reporting
them in aggregated form at a national level if the number of votes increases
notably by doing this. Furthermore, a threshold could be introduced to register
a party whereby it must be made plausible that it will receive, e.g., a few thou-
sand votes. Such thresholds are already in place in several countries. A similar
approach could be used for person votes.
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Abstract. This paper reviews several aspects where electronic/Internet
and paper voting can be compared (vote secrecy, verifiability, ballot box
integrity, transparency and trust base). We conclude that for many vul-
nerabilities of Internet voting systems, there exist related weakness in
paper systems as well. The main reason why paper-based elections are
perceived as more secure is historical experience. We argue that recent
criticism about Internet voting has unfairly concentrated on the associ-
ated risks and neglected the benefits. Remote electronic voting lowers
the cost of election participation and provides the most secure means for
absentee voting. The latter is something that is more and more needed
in the contemporary, increasingly mobile world. Hence, we need to give
Internet voting a chance, even if it means risking with unknown threats.

1 Introduction

The idea of using electronic means to assist in elections is as old as human use
of electricity itself. On June 1, 1869 Thomas A. Edison received U.S. Patent
90,646 for an “electrographic vote-recorder” to be used in Congress elections.
The system was never used, and the reason is very instructive – politicians
felt that machine-assisted elections would speed up the voting process so much
that they would lose their familiar way of verbal discussions about the political
matters [8].

The history has shown that, contrary to the fear of the 19th century politi-
cians, advances in technology have provided their modern colleagues with a much
wider choice of discussion platforms including radio, TV and Internet. However,
a certain amount of conservativism seems to be built into a human nature, and
hence many innovations have been met with opposition ranging from caution to
active objections.

The idea of casting a vote via electronic means or even via Internet is no
exception. Internet voting for example has a potential to change the whole elec-
tion process so drastically that it must be threatening for at least someone.
Improved absentee voting could mobilise many expatriates, a younger generation
otherwise indifferent towards paper-based alternatives could start participating
in democratic processes more actively, etc. All of these factors have a chance to
c© Springer International Publishing AG 2017
R. Krimmer et al. (Eds.): E-Vote-ID 2017, LNCS 10615, pp. 292–305, 2017.
DOI: 10.1007/978-3-319-68687-5 18
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bias the unstable political balance that many of the modern democracies seem
to have trouble with.

Hence, there are a lot of reasons to retain the status quo of the election
mechanism. However, the accessibility improvements provided by electronic vot-
ing are significant enough that they must at least be considered. The problem
from the e-voting opponent’s point of view is that the argument of introducing
a new bias into the electorate is not a valid counter-argument, at least in front
of the public.

Luckily, there are other arguments, with security of the new technologies
being on top of the list. Since almost any means of communication can in princi-
ple be used for vote transmission, any problem with any of these almost automat-
ically translates into an argument against electronic voting. There is an extensive
body of research revealing potential weaknesses in many of the proposed systems
and even whole communities devoted to criticising electronic voting1.

Majority of these e-voting-sceptic initiatives seem to rely on the implicit
assumption that the conventional paper-based voting systems are somehow
inherently more secure, so that mankind can always fall back to them once
all the electronic alternatives are banned. Of course, the history of paper-based
election fraud is as old as such systems themselves. Still, the mere fact that life
goes on and societies have learnt to limit this fraud on a somewhat reasonable
level seems to confirm that paper voting is at least secure enough.

Of course, the feeling of security based on historical experience is an impor-
tant argument when seeking continued acceptance for legacy systems in the
society. However, we argue that apart from a longer history, there is little in the
paper-based technology itself that ensures its superiority over electronic solu-
tions. Sure, the two have different characteristics and hence possess different
strengths and weaknesses, but only comparing strengths of one system to the
weaknesses of another is presenting a biased view.

The current paper aims at balancing this discussion. The author argues that
even though paper voting seems to limit the fraud on a reasonable level, this level
was not pre-set before paper voting systems were designed, but rather adjusted
post factum to what such systems were capable of providing. There is no reason
why we could not do the same thing with electronic voting.

This paper reviews some of the acclaimed security features of the paper-based
voting systems, matching them to the criticism against electronic ones. We also
point out some (often unfairly neglected) benefits that Internet voting provides
over paper elections.

The current paper was partly motivated by the recent report of Springall
et al. [18] criticising the Estonian Internet voting system. The following discus-
sion can be regarded as one possible reply to that report.

1 Examples of such communities include http://verifiedvoting.org/, http://
www.handcountedpaperballots.org/, http://thevotingnews.com/, http://www.
votersunite.org/, etc.

http://verifiedvoting.org/
http://www.handcountedpaperballots.org/
http://www.handcountedpaperballots.org/
http://thevotingnews.com/
http://www.votersunite.org/
http://www.votersunite.org/
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2 Vote Secrecy

Vote secrecy is one of the fundamental requirements in contemporary electoral
systems with the main aim of limiting manipulation and assuring the freedom
of choice for the voter. This requirement has even been considered important
enough to mention it in Article 21.3 of the Universal Declaration of Human
Rights.2

Estonian Internet voting has been criticised for its potential to break vote
secrecy if sufficiently many server-side actors collaborate either maliciously or
due to an attack [18].

In a typical paper-based voting system, vote secrecy is implemented via
anonymous ballot paper. What is typically not advertised while setting up such
a system is that on a physical level, fully unidentifiable paper is very difficult
to achieve. Real sheets of paper can be fingerprinted based on slight variations
in colour or 3D surface texture of paper, requiring only a commodity desktop
scanner and custom software [5]. This requires malicious access to the ballot
sheets both before and after the vote casting, but isn’t malicious activity also
what is assumed by Springall et al. [18]?

Of course, digital attacks scale better than the physical ones. However, in
case of harming vote secrecy the attacker is not necessarily after the scaling
effect anyway. Recall that the requirement of secret ballots is established to
guarantee voting freedom and non-coercion. On the other hand, coercion is an
inherently personal thing. This means that in order to fully utilise a large-scale
vote secrecy violation, the attacker would need to additionally take a number of
non-scaling real-life steps. This makes paper fingerprinting attacks comparable
to digital vote disclosure in terms of effort/effect ratio.

Even if perfectly unidentifiable paper would be possible, paper elections are
still susceptible to various types of fraud. Ballot box stuffing is the most well-
known example here, but voter impersonation may also lead to problems if an
impersonator manages to cast a vote (unfortunately, voter authentication is not
always as strong as we would like it to be). In this case a legitimate voter may
later discover that a vote has already been submitted on her behalf. If the ballots
are completely anonymous, there is no way of recovering from this attack.

With such problems in mind, several countries have made trade-offs between
vote secrecy and fraud-resistance. UK, Singapore and Nigeria use serial numbers
printed directly on ballots, whereas some others like Canada and Pakistan print
serial numbers on the counterfoil.3

Ballot numbering in UK has been criticised several times by OSCE/ODIHR
[1,2,4], because election officials have the capability of breaching vote secrecy.
However, the system is still perceived as secure in the society “because of the
high levels of public trust in the integrity of the electoral process” [1].

2 http://www.un.org/en/universal-declaration-human-rights/.
3 http://aceproject.org/electoral-advice/archive/questions/replies/912993749.

http://www.un.org/en/universal-declaration-human-rights/
http://aceproject.org/electoral-advice/archive/questions/replies/912993749
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In the author’s view, this is an excellent example of the feeling of security
being based on historical experience rather than rational risk analysis. From
the latter point of view, the trusted operational base is much larger, including
almost all the election officials, whereas for example the Estonian flavour of
Internet voting has only a single point of failure for a large scale vote secrecy
violation attack. Sure, a single point of failure makes the stakes higher, but on
the other hand it is also much easier to secure, if done properly.

Unfortunately, convincing the public that everything is done properly, is hard.
In case of UK, the legislation specifying ballot numbering has been in force since
1872 [1], whereas Internet voting in Estonia has only taken place since 2005.
So the difference really comes from generations-long experience which Estonian
Internet voting system can not yet possibly have.

For even a clearer comparison, let’s go through the following mental argu-
ment: If we would take all the requirements that we currently have about paper
voting and apply them to early elections, could we call those elections secure?
The answer would probably be no, since for example pre-19th century elections
did not typically feature vote privacy nor equal suffrage for all the citizens.

Does this mean that all the early elections should be called void and all their
results should be disqualified retrospectively? Of course not. It is impossible to
build a practical system by first imagining all the restrictions possible. A real
working system has to go through its evolution with trial and error.

One may argue that the stakes are too high and that the result may be an
election being “hijacked” by a wrong party. In this case, please look at history
again. We as mankind have come to where we are through a long series of
experiments, including failed ones. This is the nature of development.

3 Individual Verifiability and Ballot Box Integrity

When designing and evaluating Internet voting systems, two properties often
required are individual and universal verifiability. Individual verifiability essen-
tially means that any voter can verify that her own vote ended up in the ballot
box the way she intended to. Universal verifiability, on the other hand, refers to
the situation where anyone is able to check that the ballots in the box(es) have
been counted correctly.

In fact, these are reasonable requirements for any kind of a voting system,
and paper-based systems should comply with them as well. But how far does
this compliance go?

Indeed, everything can be made fine with individual verifiability of paper
voting up to the point where the voter drops her ballot into the box. It is
possible for a voter to take care marking the ballot the way that it would get
counted correctly with high probability. You can even use your own pen that
you trust not to have come with self-erasing ink (you never use pens provided
in the voting booth, do you?).

Contemporary Internet voting systems also possess the means to get a con-
firmation from the vote storage server about the safe and sound arrival of the
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vote. To get around possible vote manipulating malware living on the voter’s
computer, this confirmation must come via an independent channel. For exam-
ple, Norwegian Internet voting experiment used SMS as the second channel,
whereas the Estonian system uses a mobile device to download and verify the
vote [11].

Of course, independence of the voter’s PC and mobile device is the crucial
assumption here. As mentioned by Springall et al., the strength of the verification
claim is decreased if this assumption gets violated [18]. They also point out a
way of infecting both devices with coordinated malware when the user connects
them for, say, regular data transfer.

What Springall et al. do not say is that this attack is something the voter
can avoid by informed activity. Just like you should take care when marking the
ballot in a readable way, you can choose a verification device that is definitely
independent from your PC. The main reason why voters do not do it already
is insufficient understanding of the associated risks. Again, we may expect this
situation to improve in time when people gather more experience with vulnera-
bilities of digital communication devices.

The first real difficulty with both paper and electronic ballots manifests itself
in the storage stage as the ballot box integrity problem. In case of Estonian
Internet voting, integrity of the vote storage server is maintained using organ-
isational measures. One may argue that cryptographic techniques would give a
higher level of assurance, and since organisational and cryptographic measures
do not exclude each other, this would apparently be true.

But let’s look at the ballot box integrity assurance problem in case of paper
voting. If a voter wants to make sure that her vote is counted, she must check
that her vote was not maliciously removed before counting. The ballot box may
be sealed and stamped and the voter may even believe that the seal is checked
before counting, but if it was sealed once, there is a technical way to do it again
if someone would like to break it in the meantime.

Hence, the only way to be sure that the ballot is still intact is to stay next
to the ballot box during the time period between vote casting and counting.
The author had a discussion with professor Melanie Volkamer from Darmstadt
University, Germany, and she claimed to do exactly that. To make the time
frame manageable, she would go to the polling station 5 min before closing and
then follow the box to the counting area.

In this way, anyone can in principle observe the polling station workers count-
ing the ballots and later perform the recount him/herself. Can the observer now
be 100% sure that his/her vote was included in the final tally? No, unfortunately
not.

Human attention is limited and no single person can not observe all the poll
workers all the time. So it is still possible for a malicious official to silently put
some of the ballots aside and not count them.

Of course, the number of ballots in the box would then be smaller than the
number of issued empty ballot sheets, but what do you do? It is legal for a



Bits or Paper: Which Should Get to Carry Your Vote? 297

voter to obtain an empty ballot and not to cast a vote, so there is a plausible
explanation to this discrepancy.

Hence, if the observer really wants to be sure that his/her vote ended up in the
counted-pile, he/she should mark her ballot. However, this introduces another
problem – ballot marking can be used as a proof in the act of vote selling. It
is possible for a vote buyer to act as a legal observer during the counting and
demand to see a ballot with a prearranged sign on it. In Netherlands, for example,
a ballot sheet with a mark making it uniquely identifiable may be considered
invalid for that reason.

Thus, being sure that your vote safely reaches the counting stage only goes
as far as another requirement – vote anonymity for coercion resistance – allows
it to. Even if marked ballots are not declared void in some jurisdictions, the mere
need for such a measure to check ballot box integrity is a deviation from clean
voting practices paper-based elections supposedly provide.

The next problem of universal verifiability, in turn, translates to the question
how transparently the vote counting procedure of paper voting can be managed.

4 Transparency and Accuracy of Counting

One of the fundamental properties of paper-based voting is the possibility of
independent recount. Ideally, written marks on paper ballots should be the lingua
franca that every human auditor perceives the same way, so that it will be easy
for a group of people to agree on the counting result (even if some of them have
a political motivation to bias the result).

However, reality is not that simple. A recent study by Goggin et al. [9] has
shown that, depending on the paper vote counting method used, the human
error rate is roughly between 1–2%. This is more than enough to raise reasonable
doubt in close cases, of which the history of democratic elections is very rich.
(Just recall the 2000 US presidential elections where the outcome was depending
on the convention to be used when counting ambiguous ballots.)

Even if the count is not close, an independent observer may still claim distrust
in the accuracy of the result and demand recounting. This opens up opportuni-
ties of attacks against the paper vote counting procedure. Namely, the auditor
demanding the recount and possibly even performing it may be an attacker him-
self. Having access to the first result, he knows exactly by how much the second
count has to differ to provide a different end result [21]. It is also possible for a
dishonest auditor to create havoc just by claiming that his count does not match
the previous count(s), and keep doing so for numerous times.

Of course, in practical systems there must be safeguards protecting against
such misuses. For example, the guidelines given to the returning officers in UK [3]
state:

6.35 You must consider any recount request but by law may refuse if, in
your opinion, the request is unreasonable. [. . . ]
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This introduces an interesting dilemma between the transparency advertised
by the paper-voting advocates, and practical resilience against system misuse.
Ultimately, a simple official will decide whether someone is allowed to exercise
his/her legal right to become convinced in correct vote counting, or whether such
a request is considered erroneous.

One way or another, we can argue that such a guideline is written for a reason.
Quite probably once upon a time there was someone who tried to abuse the sys-
tem by over-exaggerated references to his/her right of vote recount. That person
may have been forgotten long ago, but the regulation is still there, expressing the
current social agreement about the reasonable limitations to the transparency
enforcement. Again, there is no reason why a similar agreement could not be
achieved in case of electronic voting. It’s just that this medium for vote trans-
mission is yet too young for such a settlement.

Even though the error rates of hand counting and the implied disputes can be
decreased by adopting more error resistant practices [9], the errors and disputes
will never come down to zero. The root cause of this problem is the fact that a
paper vote (unlike its electronic counterpart) has no strictly defined semantics.
There will always be people with poor handwriting or intentionally willing to
spoil their ballot (and one may even argue that it is their legal right to do so).
This in turn means that until we stick with paper voting, there will always be
an option for a dispute.

Of course, electronic voting is not free from related problems either, but
they have a different nature. Namely, humans are very poor at perceiving bits
directly, so they need a mediating device, which may then become a target of
attack on its own. For example, a proof-of-concept malware was presented during
2011 Estonian Parliamentary elections changing the visual image displayed to
the user on the computer screen, allowing for undetected vote manipulation [10].

Ultimately, the problems with both paper and electronic votes come down to
agreeing on a single interpretation by all the parties. As already seen above, with
paper votes this is in principle not achievable, since an analogue medium can not
have a strict formal meaning. With electronic votes this is at least theoretically
possible. However, the problem of agreeing that everyone has the same view on
the bits still remains.

This is generally known as a secure bulletin board problem, and despite its
simple statement, it turns out to be highly non-trivial to implement. What seems
to be the difficult point is achieving consensus about the state of a digital system
in a distributed manner.

One interesting option for solving this problem is provided by a public hash
block chain in the style of BitCoin [15]. There are properties of vanilla BitCoin
protocol that make it less appealing from the viewpoint of voting, like involved
financial incentives. But at least as a proof-of-concept it shows that community-
wide agreement on a digital asset is possible in practice.

Of course, using a block chain does not prevent all integrity attacks on its
own. For example, BitCoin’s block chain “history” can be rewritten if more
than 50% of the participating peers decide to collaborate. However, even the
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deprecated/rewritten branches have still been made public, and hence such
attacks can easily be detected.

There have already been first attempts of using block chain technology as a
part of a voting system. One of the most prominent players is NASDAQ that has
offered shareholders a remote voting opportunity, using BitCoin as a public log
integrity provider.4 Another interesting initiative was taken by a minor Danish
political party (the Liberal Alliance) that reported using block chain based voting
technology during their meeting.5

Of course, the problem of shareholder voting is an easier one compared to, say,
parliamentary elections, since in the former case the vote secrecy requirement is
not that strict. BitCoin provides a privacy layer in the form of pseudonymous
public keys, but unfortunately it is not directly usable for real elections, since
one user may establish many pseudonyms, hence breaking the one-man-one-vote
requirement. Another block chain voting initiative, BitCongress6, acknowledges
this problem and admits that some collaboration with a central voter registration
service is still necessary. Other new implementations of block chain based voting
systems are being constantly developed, too.7,8

There has also been a resent proposal by Culnane and Schneider for a bulletin
board implementation targeted specifically for use in e-voting systems not using
block chain technology [6]. For correct operations, it relies on a threshold of (a
relatively few) computing peers to behave honestly. However, integrity violations
can always be detected by means of verifiable receipts, and this is the most
important property we expect any voting system to have.

All in all, it seems that the secure bulletin board problem is solvable in
practice, allowing at least in principle higher accuracy of counting than the
paper voting can ever provide.

5 Trust Base

Elections are an inherently social thing, involving millions of people, registration
lists, ballots, logistics, counting, etc. This means that no single person can do it
all, we have to rely on someone.

Relying implicitly assumes trust and this in turn makes attacking elections
really simple. You tell me what/whom you trust, I tell you I manipulate that
entity and my attack is complete.

This is the essence of the most severe claims that Springall et al. make about
Estonian Internet voting [18]. So you say that you use some computer to write
server installation disks? Good, then we say we can attack that one. Or you say
that you rely on SHA-256 hashes to prove integrity of these images? Excellent,

4 http://www.coindesk.com/nasdaq-shareholder-voting-estonia-blockchain/.
5 https://www.cryptocoinsnews.com/blockchain-voting-used-by-danish-political-

party/.
6 http://www.bitcongress.org/.
7 https://followmyvote.com/.
8 http://www.unchain.voting/.

http://www.coindesk.com/nasdaq-shareholder-voting-estonia-blockchain/
https://www.cryptocoinsnews.com/blockchain-voting-used-by-danish-political-party/
https://www.cryptocoinsnews.com/blockchain-voting-used-by-danish-political-party/
http://www.bitcongress.org/
https://followmyvote.com/
http://www.unchain.voting/
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then we can implement our own phony hash application. It does not matter if
you record all the server installation on the video and put it up on YouTube for
everyone to watch, there will always be something happening behind the scenes
before you start filming, and that’s what we are claiming to attack.

So all in all, the struggle goes over the trust base. What you do not usually
read in the papers such as [18] is that the trust base of paper voting has a much
more complex structure than the one of, say, voting over Internet. You implicitly
trust all the people who count the votes to do their job correctly, you trust the
paper manufacturers that they have not included tiny identifying marks on the
ballots, you trust the storage facility owner that some of the packages with
ballots do not mysteriously disappear, etc.

It is true that Internet voting concentrates a lot of trust around relatively few
components (like central servers and their administrators). Hence the attackers
have clear targets and can expect relatively larger effects if their attacks suc-
ceed [13].

On the other hand, such a trust concentration makes the crucial components
of Internet voting also easier to guard. For example background checks of server
administrators have to be very thorough, but there is only a rather limited
number of them.

At the same time, the number of people involved in hand counting easily
reaches tens of thousands of individuals for large elections. There is some redun-
dancy in the form of recounting, but there is a limit to that, too. Hence, in order
to manipulate the election result, an attacker has to bribe far less than 10,000
people. Even worse, the number of subsets of counting officials that may give rise
to undetected fraud is huge, and no-one is able to check all of them for honesty.

Stating it otherwise, the problem of one person being unable to check the
count of millions of ballots does not go away that easily. As a solution, risk-
limiting audits proposed by Philip Stark have recently become very popular [19].
The underlying idea is simple – using a predefined correctness threshold, a sta-
tistical sample of ballots is selected and manually recounted. If the threshold is
not met, more ballots are selected, etc. In the worst case, this method may end
up selecting all the ballots, but hopefully it will finish much earlier. For exam-
ple, after EU Parliament elections in Denmark, risk-limiting auditing was used
and only 1903 ballots were required to be studied to obtain 99.9% confidence
level [20].

Does this mean that risk-limiting audits reduce our trust assumptions? Not
really. In order to perform the statistical test, a random sample needs to be
generated. This means that we need to trust (=can attack) the random number
generator and manipulate it to give us the seed that the attacker needs to prove
that his version of the count is correct.

People preparing the Danish 2014 audit actually thought about this prob-
lem and established a dice-throwing ceremony that determined the seed. The
ceremony was also recorded and the video was made publicly available.

However, the “I claim to attack what’s behind the scenes” approach still
applies. We do not know how many attempts of filming this video were made
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until a suitable random seed was generated. We do not know where the dice came
from and whether they were fair or not. So all of a sudden, the dice manufacturer
and supplier are added to the trust base. Is this really what people had in mind
when introducing post-election statistical auditing? Not necessarily.

When comparing the trust bases of paper and Internet voting, the comparison
ultimately boils down to the questions like which one is harder to manipulate
without detection – dice or SHA-256 hash implementation? The answer is far
from being straightforward or clear.

6 Cost vs. Benefit

Even though many of the risks of Internet voting are not new and have accepted
analogues in paper-based systems, this is not true universally. The two are fun-
damentally different as a horse and a train, even though they serve the same
purpose.

However, when emphasising threats posed by remote electronic voting,
many esteemed researchers including Rivest et al. [8] and Springall, Halderman
et al. [18] present the situation in a biased light.

Namely, they concentrate on cost (in terms of potential problems) instead
of a more balanced cost-benefit analysis. Following similar reasoning, it would
never make sense to invest any money, take a plane or even go outside, since
these actions involve risks. However, in reality we do all of those things, because
we estimate the gains exceeding the potential losses.

When taking such decisions, we can rarely rely on precise scientific measure-
ment. Often the scale for such a measure can not even be properly defined. Is
it riskier to starve to death or catch a flu while shopping for food? Is it worse
to leave more people without a convenient voting method or to risk that a hos-
tile neighbouring country hacks its way into your government? There is no single
answer. In fact, the answer depends on subjective risk estimation, and this differs
from country to county, from person to person.

Coming back to the Estonian context, there definitely is a big neighbouring
country with its clear geopolitical agenda. However, would hacking the Inter-
net voting system be the easiest way to achieve its goals? Again, there is no
clear answer. But the author argues that bribing local politicians or using over-
whelming military power (and hoping that NATO is willing to give up Estonia,
avoiding World War III) are still good alternatives to consider.

More importantly, as said above, we also need to look at the potential bene-
fits. One of the clearest gains of Internet voting is solving the absentee problem.
In 2001, Ron Rivest wrote:

In my opinion, however, by allowing such an increase in absentee voting we
have sacrificed too much security for the sake of voter convenience. While
voters should certainly be allowed to vote by absentee ballot in cases of need,
allowing voting by absentee ballot merely for convenience seems wrong-
headed. I would prefer seeing “Voting Day” instituted as a national holi-
day to seeing the widespread adoption of unsupervised absentee or remote
electronic voting [16].
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These words nicely illustrate the way people lived just 15 years ago. However,
the world has changed a lot since then. Moving abroad is not a matter of con-
venience, but for many of us it is a need to find a job. For instance, according
to Eurostat, on January 1st 2016, in EU there were 19.3 million persons who
had been born in a different EU Member State from the one where they were
resident.9 It is unrealistic to assume that all those people would move back to
their country of origin just for the voting day. The question that the above-cited
researchers [8,16,18] conveniently ignore is how should these people vote.

One way or another, overseas voters must be given the means to exercise
their civil right and duty. In US, this is done under the Uniformed and Overseas
Citizens Absentee Voting Act. As of 2016, 32 states out of 50 states allow some
form of electronic transmission of ballots over the Internet [12] like downloading,
filling and submitting PDF forms via fax or e-mail.10

Security of this method is, on the other hand, still comparable to 19-century
postal voting. Strength of authentication is questionable, transmission lines are
vulnerable to tampering and voter coercion is insufficiently addressed.

As long as absentee voting is marginal, these problems may be ignored,
but this is no more the case. Despite its researcher-backed rhetoric, even US
is doing vote transmission over the Internet, and there is in fact no real alterna-
tive (see [14] for a further discussion on the comparison of Internet and postal
voting).

There are also benefits in Internet voting for the people who have not
migrated, but have stayed. In many parts of the world (including Estonia), a
strong drive towards urbanisation can be observed. A lot of people move to big-
ger cities, because the infrastructure is much better there, the salaries are higher,
etc. The remaining population in rural areas is no more sufficient to justify run-
ning the schools, cultural centres, shops, post offices, etc. As a result, many of
these institutions have been closed down recently in rural Estonia.

An unfortunate side effect for elections is that in such places, there is no more
location to put the polling station into. Also, there are no more school teachers
who used to act as polling station workers. The only alternative is to travel a
relatively long distance to a county capital to cast a vote, and the cost of this is
the higher, the further away the voters live.

A recent study by Solvak and Vassil [17] has shown that in Estonia, the prob-
ability of being an Internet voter reaches over 50% as soon as the round trip
duration to the polling station increases over 30 min. Following Rivest, we can
declare all the people who do not undertake this trip as being too convenience-
oriented, but the sad fact is that decrease in rural population has also made
public transportation considerably less available in those areas, making partici-
pation in paper elections simply too costly.

All in all, we see that compared to the conventional alternative, casting votes
over Internet increases availability and (if done properly) also security of absentee

9 http://ec.europa.eu/eurostat/statistics-explained/index.php/Migration and migra
nt population statistics.

10 https://www.sec.state.ma.us/ele/elemil/milidx.htm.

http://ec.europa.eu/eurostat/statistics-explained/index.php/Migration_and_migrant_population_statistics
http://ec.europa.eu/eurostat/statistics-explained/index.php/Migration_and_migrant_population_statistics
https://www.sec.state.ma.us/ele/elemil/milidx.htm
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voting. Additionally, it decreases the cost of participation in elections, allowing
to make the whole process more accessible for example in rural areas.

7 Conclusions

Voting on paper and by using the assistance of machines are two very different
things. Hence, their risk and trust models differ also by a fair margin; in fact to
an extent where comparing them becomes very complicated.

With paper voting, security assumptions are largely social (a person is able to
mark the ballot correctly, another person is able/willing to count it the intended
way, a third person verifies the counting fairly, a fourth one keeps a good guard
of the key for a ballot storage facility, etc.). In case of machine (and especially
Internet) voting, digital threats become prominent. The more a voting system
relies on electronic means, the more an attacker is able to utilise scalability of
digital attacks.

Mankind has been relying on voting with paper medium for centuries. Its
properties and potential vulnerabilities are considered to be known and threats
are considered as mitigated to an acceptable level by the current legislation.

Electronic means of communications and data processing are only a few
decades old. We have not yet seen all the evil that can be done with them, and
hence we tend to over-estimate the risks compared to what we feel comfortable
with.

Unfortunately, there is no a priory measure for the margin of this over-
estimation. The only reliable way to see which problems occur in practice and
how severe they are is to try the whole system out live.

Yes, there are risks involved, but these are inevitable if we want to move
the state of the art forward. Recall the loss of two British Overseas Airways
Corporation Comet airliners in 1954 [7]. These planes were revolutionary in their
own time, having some of the first commercial jet engines, pressurised cabins,
etc. Yet, they came crashing down. The reason established after a long series
of tests was that microscopic production defects were amplified in the corners
of the rectangular doors and windows. Thanks to that study, airplane windows
now have round corners.

Would it have been possible to predict those crashes? Theoretically, yes –
mathematical methods required to model stresses in surfaces had been developed
by that time already. But in practice there are so many aspects to consider that
ultimately the deployment in a real environment is what determines what is
important and what is not.

Of course, this does not mean that we should leave all the known vulnera-
bilities wide open for everyone to exploit. But waiting until the implementation
is theoretically perfect is not an option either. Requirements set to elections in
general are contradictory in nature (like vote secrecy vs full auditability), so
there will always exist a security definition according to which a given system is
not secure. Likewise, there will always be some parts of the setup that the voter
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will have to trust as given, and hence critically-minded researchers will have an
eternal chance to write papers about breaking them.

But let’s remember that this holds true universally and not only for electronic
voting. The only aspect where paper voting is really superior to its electronic
sibling is its centuries-long head start. But if we do not give electronic voting a
chance, we will also miss all the opportunities of increased accessibility, lowered
cost of participation and fully repeatable counting which, contrary to the paper
voting, really is doable by everyone.

I’d like to conclude the paper with a thought by the creator of Helios Inter-
net voting system Ben Adida who stated during the panel of EVT/WOTE’11
conference:

Internet Voting is terrifying, but it may be inevitable.

Indeed, the world has changed a lot in recent years. People move around
freely and we can not assume any more that all of our citizens are born, live
their lives and die in close proximity of the polling station. As a result, absentee
voting is going from an exception to a rule.

So instead of attacking the inevitable, let’s concentrate on making it as secure
as possible by introducing strong cryptographic authentication tokens, improving
digital ballot box integrity and developing verifiability techniques.

And last but not least – let’s remember that personal security is largely a
feeling that can be supported by voter education and positive experience. Our
children will not question Internet voting the way we do, since for them it will
have always been existing.
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Arnis Paršovs for useful and inspiring discussions.

The research leading to these results has received funding from the European
Regional Development Fund through Estonian Centre of Excellence in ICT Research
(EXCITE) and the Estonian Research Council under Institutional Research Grant
IUT27-1.

References

1. United Kingdom of Great Britain and Northern Ireland. General election 5 May
2005. OSCE/ODIHR Assessment Mission Report, May 2005. http://www.osce.
org/odihr/elections/uk/16204

2. United Kingdom of Great Britain and Northern Ireland. General election 6 May
2010. OSCE/ODIHR Election Assessment Mission Report, May 2010. http://www.
osce.org/odihr/elections/69072

3. Part E - Verifying and counting the votes. UK Parliamentary general elec-
tion in Great Britain on 7 May 2015: guidance for (Acting) Returning Offi-
cers, May 2015. http://www.electoralcommission.org.uk/ data/assets/pdf file/
0006/175389/Part-E-Verifying-and-counting-the-votes.pdf

4. United Kingdom of Great Britain and Northern Ireland. General election 7 May
2015. OSCE/ODIHR Election Expert Team Final Report, May 2015. http://www.
osce.org/odihr/elections/uk/174081

http://www.osce.org/odihr/elections/uk/16204
http://www.osce.org/odihr/elections/uk/16204
http://www.osce.org/odihr/elections/69072
http://www.osce.org/odihr/elections/69072
http://www.electoralcommission.org.uk/_data/assets/pdf_file/0006/175389/Part-E-Verifying-and-counting-the-votes.pdf
http://www.electoralcommission.org.uk/_data/assets/pdf_file/0006/175389/Part-E-Verifying-and-counting-the-votes.pdf
http://www.osce.org/odihr/elections/uk/174081
http://www.osce.org/odihr/elections/uk/174081


Bits or Paper: Which Should Get to Carry Your Vote? 305

5. Calandrino, J.A., Clarkson, W., Felten, E.W.: Some consequences of paper finger-
printing for elections. In: EVT/WOTE (2009)

6. Culnane, C., Schneider, S.: A peered bulletin board for robust use in verifiable
voting systems. In: 2014 IEEE 27th Computer Security Foundations Symposium
(CSF), pp. 169–183. IEEE (2014)

7. Fearon, P.: The growth of aviation in Britain. J. Contemp. History 20(1), 21–40
(1985)

8. Gerck, E., Neff, C.A., Rivest, R.L., Rubin, A.D., Yung, M.: The business of elec-
tronic voting. In: Syverson, P. (ed.) FC 2001. LNCS, vol. 2339, pp. 243–268.
Springer, Heidelberg (2002). doi:10.1007/3-540-46088-8 21

9. Goggin, S.N., Byrne, M.D., Gilbert, J.E.: Post-election auditing: effects of proce-
dure and ballot type on manual counting accuracy, efficiency, and auditor satisfac-
tion and confidence. Election Law J. 11(1), 36–51 (2012)

10. Heiberg, S., Laud, P., Willemson, J.: The application of I-voting for estonian
parliamentary elections of 2011. In: Kiayias, A., Lipmaa, H. (eds.) Vote-ID
2011. LNCS, vol. 7187, pp. 208–223. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32747-6 13

11. Heiberg, S., Willemson, J.: Verifiable internet voting in Estonia. In: 2014 6th Inter-
national Conference on Electronic Voting: Verifying the Vote (EVOTE), pp. 1–8.
IEEE (2014)

12. Horwitz, S.: More than 30 states offer online voting, but experts warn it isn’t
secure. The Washington Post, May 016

13. Jefferson, D.: If i can shop and bank online, why can’t i vote online? https://www.
verifiedvoting.org/resources/internet-voting/vote-online/

14. Krimmer, R., Volkamer, M.: Bits or paper? Comparing remote electronic voting
to postal voting. In: Electronic Government - Workshop and Poster Proceedings
of the Fourth International EGOV Conference, pp. 225–232 (2005)

15. Noizat, P.: Blockchain electronic vote. In: Lee Kuo Chuen, D. (ed.) Handbook of
Digital Currency. Elsevier, London (2015). Chap. 22

16. Rivest, R.L.: Electronic voting. In: Financial Cryptography, vol. 1, pp. 243–268
(2001)

17. Solvak, M., Vassil, K.: E-voting in Estonia: Technological Diffusion and Other
Developments Over Ten Years (2005–2015). University of Tartu, Johan Skytte
Institute of Political Studies (2016)

18. Springall, D., Finkenauer, T., Durumeric, Z., Kitcat, J., Hursti, H., MacAlpine, M.,
Halderman, J.A.: Security analysis of the Estonian internet voting system. In: Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pp. 703–715. ACM (2014)

19. Stark, P.B.: Conservative statistical post-election audits. Ann. Appl. Stat. 2,
550–581 (2008)

20. Stark, P.B., Teague, V.: Verifiable european elections: risk-limiting audits for
d’hondt and its relatives. USENIX J. Election Technol. Syst. (JETS) 1, 18–39
(2014)

21. Yasinsac, A., Bishop, M.: The dynamics of counting and recounting votes. IEEE
Secur. Priv. 6(3), 22–29 (2008)

http://dx.doi.org/10.1007/3-540-46088-8_21
http://dx.doi.org/10.1007/978-3-642-32747-6_13
http://dx.doi.org/10.1007/978-3-642-32747-6_13
https://www.verifiedvoting.org/resources/internet-voting/vote-online/
https://www.verifiedvoting.org/resources/internet-voting/vote-online/


Estonian Voting Verification Mechanism
Revisited Again

Ivo Kubjas1, Tiit Pikma1, and Jan Willemson2,3(B)

1 Smartmatic-Cybernetica Centre of Excellence for Internet Voting,
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Abstract. Recently, Muş, Kiraz, Cenk and Sertkaya proposed an
improvement over the present Estonian Internet voting vote verification
scheme [6]. This paper points to the weaknesses and questionable design
choices of the new scheme. We show that the scheme does not fix the
vote privacy issue it claims to. It also introduces a way for a malicious
voting application to manipulate the vote without being detected by the
verification mechanism, hence breaking the cast-as-intended property.
As a solution, we propose modifying the protocol of Muş et al. slightly
and argue for improvement of the security guarantees. However, there is
inherent drop in usability in the protocol as proposed by Muş et al., and
this issue will also remain in our improved protocol.

1 Introduction

Estonia is one of the pioneers in Internet voting. First feasibility studies were
conducted already in early 2000s, and the first legally binding country-wide
election event with the option of casting the vote over Internet was conducted in
2005. Up to 2015, this mode of voting has been available on every one of the 8
elections. In 2014 European Parliament and 2015 Parliamentary elections, more
than 30% of all the votes were cast over Internet [7].

During the period 2005–2011, the basic protocol stayed essentially the same,
mimicking double envelope postal voting. The effect of the inner envelope was
achieved by encrypting the vote with server’s public key, and the signed outer
envelope was replaced by using a national eID signing device (ID card, Mobile-ID
or Digi-ID) [1].

In 2011, several potential attacks were observed against this rather simple
scheme. The most significant one of them was developed by a student who imple-
mented proof-of-concept malware that could have either changed or blocked the
vote without the voter noticing it.

To counter such attacks, an individual verification mechanism was developed
for the 2013 elections [5]. The mechanism makes use of an independent mobile
c© Springer International Publishing AG 2017
R. Krimmer et al. (Eds.): E-Vote-ID 2017, LNCS 10615, pp. 306–317, 2017.
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computing device that downloads the vote cryptogram from the storage server
and brute forces it using the encryption random seed, obtained from the voter’s
computer via a QR code. The value of the vote corresponding to the downloaded
cryptogram is then displayed on the device screen, and the voter has to make
the decision about its match to her intent in her head.

The complete voting and verification protocol is shown in Fig. 1.

Fig. 1. Estonian Internet voting and verification protocol

In the figure, cv stands for the voter’s choice, r is the random seed used for
encryption, vr is the vote reference used to identify the vote on the server and
spub is the election system’s public key.

A recent report by Muş et al. [6] discusses the Estonian vote verification
scheme and draws attention to its weak privacy properties. It also proposes an
improvement over the existing system (we will give technical details of the pro-
posal in Sect. 2.2). The first objective of this paper is to dispute the motivation
of [6] and show vulnerabilities of the proposed improvement. Finally, in Sect. 3
we will also show how a relatively small modification of the protocol presented
in [6] will help to remove these vulnerabilities.

2 Analysis of the Scheme by Muş et al.

2.1 Assumptions and Motivation of [6]

Individual vote verification was introduced to Estonian Internet voting scheme in
2013 to detect potential vote manipulation attacks in the voter’s computer [1,5].
It was never designed as a privacy measure for a very simple reason.

Since the verification application needs access to the QR code displayed on
the screen of the voter’s computer, verification can only happen in close physical
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proximity of the voting action.1 But if this is the case, the verifier can any-
way observe the vote on the computer screen. For this reason we disagree that
the potential privacy leak from the verification application makes vote buying
attacks easier, as claimed in [6].

It is true that a malicious verification application sending the vote out of the
device would be unintended behaviour. However, the authors of [6] make several
debatable assessments analysing this scenario.

Firstly they claim that “all voter details including the real vote are displayed
by the verification device.” In fact, up to the 2015 parliamentary elections, the
vote has been the only piece of data actually displayed. Note that following
the protocol [5], the verification device only obtains the vote encrypted with the
voting system’s public key. The signature is being dropped before the cryptogram
is sent out for verification from the server, so the verification device has no idea
whose vote it is actually verifying.

The reason for this design decision was the problem that back in 2011 when
the development of the new protocol started, less than half of the mobile phones
used were smartphones. Hence the protocol needed to support verification device
sharing.

However, such an anonymised verification procedure is vulnerable to attacks
where, say, a coalition of malicious voting applications manipulates a vote and
submits a vote cryptogram from another voter for verification. This way they
can match the voter verification expectation, even though the actual vote to be
counted has been changed.

To counter such attacks, the protocol to be used in 2017 for Estonian local
municipal elections will be changed [2]. Among other modifications, the verifi-
cation app will get access to the vote signature and the identity of the voter
will be displayed on the screen of the verification device. Thus the privacy issue
pointed out by Muş et al. has not been as problematic previously, but starting
from 2017 its importance will rise.

Second, the authors of [6] argue that verification privacy leaks may be aggre-
gated to obtain the partial results of the election before it has concluded. We
feel that this scenario is too far-fetched. First, only about 4% of the Internet vot-
ers actually verify their votes [3]. Also, nothing is known about the preference
biases the verifiers may have, so the partial results obtained would be rather
low-quality. There are much easier, better-quality and completely legal methods
of obtaining the result (like polls). Hence this part of the motivation is not very
convincing.

Third, getting the user to accept a malicious verification application from
the app store is not as trivial as the report [6] assumes. For example Google
Play store displays various reliability information about the application like the
number it has been installed and the average mark given by the users. When
the voter sees several competing applications, a smaller number of installations

1 Of course we assume here that the voter’s computer is honest in the sense that it
does not send the QR code anywhere else. But if it would be willing to do so in order
to break the voter’s privacy, it could already send away the vote itself.
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should already give the first hint that this is not the officially recommended
verification app.

At the time of this writing (July 2017), the official application “Valimised”2

is the only one under that or similar name, with more than 10,000 installations
and an average score of about 3.6 points out of 5. If the attacker wants to roll
out his own version, he would need to beat those numbers first. Occurrence of an
alternative verification app is completely acceptable per se, but it will be widely
visible. App stores can and are being constantly monitored, and any independent
verification apps would undergo an investigation. In case malicious behaviour is
detected, the malicious applications can be requested to be removed from the
app store.

However, it is true that at this point the protocol relies on organisational
measures, not all of which (like removing a malicious app from the official app
store) are under control of the election management body. Organisational aspects
can probably never be fully removed from the security assumptions of elections,
but decreasing the number of such assumptions is definitely a desirable goal.

All in all, we agree that privacy enhancement of the Estonian vote verification
mechanism would be desirable. Hence the initiative by Muş et al. is welcome, but
their approach needs further improvements that we will discuss in this paper.

2.2 Description of the Scheme

The scheme proposed in [6] extends the Estonian vote verification protocol by
adding another parameter q to the scheme. The role of q is to serve as a random,
voter-picked verification code that will be encrypted using the hash of the vote
cryptogram h = H(Encspub

(cv, r)) as a symmetric key (see Fig. 2).

Fig. 2. Proposed update to the Estonian protocol

2 “Valimised” means “Elections” in Estonian.
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The verification mechanism will also be altered accordingly. In the original
Estonian verification scheme, the verification application goes through the candi-
date list and tries to re-create vote cryptogram, using the random seed obtained
from the voting application via a QR code. In the modification proposed by [6],
the candidate list is also traversed in a similar manner, but the hashes of all the
vote cryptogram candidates are used as symmetric keys to try to decrypt q.

The trick is that even an incorrect symmetric decryption key leads to some
sort of a decrypted value qi, so that the task of the verifier becomes recognizing
the correct one in the list of decrypted values q1, q2, . . . , qm (where m is the
number of election candidates) displayed to her.

More formally, let us have the candidate list L = {c1, c2, . . . , cm}. The ver-
ification application computes hi = H(Encspub

(ci, r)) for i = 1, 2, . . . ,m and
displays the list {q1, q2, . . . , qm} where

qi = SymDechi
(SymEnch(q)) (i = 1, 2, . . . ,m) . (1)

The voter accepts verification if q = qi, where ci was the candidate of her choice.

2.3 Analysis of the Scheme – Privacy and Usability

Even though clever conceptually, the scheme of Muş et al. fails in usability, and
this will unfortunately lead to considerable weakening of the protocol.

First and foremost, humans are notoriously poor random number genera-
tors [8]. This is also acknowledged by the authors of the scheme, so they propose
not to require the user to generate the entire value of q, but only 32 rightmost
bits denoted as qright. The remaining bits qleft would be generated by the voting
application, so that q = qleft ‖ qright. In the authors’ vision, the 32 bits could
be asked from the voter in the form of 4 characters, and these characters would
later also be displayed on the screen of the verification device.

Such an approach would assume that every possible byte has a corresponding
keyboard character. However, this is clearly not true. Capital and lower-case
letters, numbers and more common punctuation marks altogether give about
70–75 symbols, which amounts to slightly over 6 bits of entropy. Hence, four-
letter human entered codes can in practice have no more than 25 bits worth of
randomness.

Achieving this theoretical maximum assumes that humans would select every
character for every position equally likely and independently. This is clearly not
the case, and a relatively small set of strings like “1234”, “aaaa” or “qwer” may
be expected to occur much more frequently than others. This observation gives
the first simple attack against the proposed scheme – the attacker can observe
the output of the verification application and look for some of these frequent
codes.

Even if the voter takes care and selects a rather random-looking 4-character
pattern, the attacker still has a remarkable edge. Namely, when the 32-bit parts
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of the decrypted values are converted into characters, some of these characters
may fall out of the ∼75 character set. In fact, several of the 256 possible byte
values do not have a printable character assigned to them at all. Spotting such
a code, the adversary can disregard that one immediately.

To give a rough quantification of the attacker’s success probability, assume
that the set C of characters used by the voter to input a code consists of 75
elements. When in the Eq. (1) we have h �= hi, the resulting values qi (and
their 4-byte code parts qi,right) are essentially random (assuming the under-
lying symmetric encryption-decryption primitive behaves as a pseudorandom
permutation).

This means that the probability that one single character of an incorrect
qi,right falls outside of the set C is 256−75

256 ≈ 0.707. The probability that at least
one of the four characters falls outside of this set is

1 −
(

1 − 256 − 75
256

)4

≈ 0.993

which is very-very high. The attacker will have an excellent chance of spotting
the correct code, since with very high probability there are only very few candi-
dates qi,right that have all the characters belonging to the set C. This observation
completely breaks the privacy claims of [6].

Another usability problem is the need to display the list of all candidate
values of qright on the screen of the verification device. The list has the same
number of elements as there are candidates in a given district. In case of Estonian
elections, this number varies between tens and hundreds, with the most extreme
cases reaching over 400. It is unrealistic to expect the voter to scroll through
this amount of unintuitive values on a small screen.

Even worse – when the user really scrolls through the list until her candidate
of choice has been found, we obtain a side channel attack. A malicious verifi-
cation device may observe the moment when the user stops scrolling, making
an educated guess that the correct candidate number must have then been dis-
played on the screen. This attack does not lead to full disclosure, but may still
reveal the voter’s party preference when the candidates of one party are listed
sequentially (as they are in the Estonian case).

2.4 Vote Manipulation Attack

The core motivation of introducing an individual verifiability mechanism is to
detect vote manipulation attacks by a malicious voting application. In this
Section we show that with the updates proposed by Muş et al., vote manip-
ulation attacks actually become very easy to implement.

Consider an attack model where the attacker wants to increase the number of
votes for a particular candidate cj by manipulating the voting application or its
operational environment. The key to circumventing detection by the verification
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mechanism is to observe that the voting application has a lot of freedom when
choosing two random values – r for randomizing the encryption and qleft for
padding the voter-input code. By choosing these values specifically (even the
freedom of choosing r is sufficient), a malicious voting application can make the
vote it submitted for cj to verify as a vote for almost any other candidate ci.

To implement the attack, the attacker needs a pre-computation phase. During
this phase, the attacker fixes his preferred choice cj and the encryption random-
ness r� ∈ R, and computes h = H(Encspub

(cj , r
�)). The attacker can also set

his own q arbitrarily, say, q = 00 . . . 0.
For every possible pair of voter choice ci ∈ L and qright ∈ {0, 1, . . . , 232 − 1},

the attacker tries to find a suitable encryption randomness ri,qright that would
give the last 32 bits of q′ being equal to qright, where

h′ = H(Encspub
(ci, ri,qright)) and q′ = SymDech′(SymEnch(00 . . . 0)) . (2)

If the attacker succeeds in finding such a ri,qright , then later during the voting
phase he casts his vote to the server as Encspub

(cj , r
�), but sends ri,qright to the

verification application. This random seed will cause the voter picked qright to
occur next to the voter’s choice ci. The leftmost non–voter chosen bits of q′

would not match, but they are not important, since they are not shown to the
voter anyway.

The pre-computed values of encryption randomness for all candidates can be
tabulated as in Table 1.

Table 1. Pre-computation dictionary

qright choice ci ri,qright

0 c1 r1,0
...

...
...

232 − 1 c1 r1,232−1

0 c2 r2,0
...

...
...

232 − 1 c2 r2,232−1

...
...

...

0 cm rm,0

...
...

...

232 − 1 cm rm,232−1

Note that only the last column of this table needs to be stored. Hence the
size of required storage is 232m log2 |R|, where log2 |R| is the number of bits
required for representing elements in the randomness space R. In practice, the
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length of the random value is not more than 2048 bits. This means that the size
of the database is 1024m GB. By restricting the randomness space (for example,
by fixing some bits of the random value), we can decrease the table size.

Another option of limiting the storage requirement is referring to the obser-
vations described in Sect. 2.3. Human users will not be able to make use of
the whole 232 element code space, but at most 225. This will bring the storage
requirement down 27 times to only 8m GB. If the attacker is willing to settle
only with the most common codes, the table will become really small.

Even without reducing the table size, storing it is feasible as hard drives of
several TB are readily available. A malicious voting application only needs one
online query per vote to this database, hence the attacker can for example set
the query service up in a cloud environment.

There are several possible strategies for filling Table 1. We suggest starting
from the choice and randomness columns (selecting the randomness truly ran-
domly) and computing the corresponding qright values. In the latter case the com-
putation complexity of the pre-computation phase is 232m times one asymmet-
ric encryption, one hash function application and one symmetric decryption (see
Eq. (2)). This amount of computation is feasible even for an ordinary office PC.

This strategy is not guaranteed to 100% succeed, since we may hit the same
value of qright for different inputs ri,qright . To estimate the success probability,
consider generating the table for a fixed election candidate ci. Let us generate
N = 232 random values and use them to compute the corresponding values qright
using the Eq. (2).

The probability of one specific qright not being hit in one attempt is N−1
N .

Consequently, the probability of not hitting it in N attempts is

(
N − 1
N

)N

≈ 1
e
.

Hence, the expected probability of hitting one specific value at least once is
1 − 1

e ≈ 0.63.
By linearity of expectation, we may conclude that using 232m computation

rounds, about 63% of the whole table will be filled.
This percentage can be increased allowing more time for computations. For

example, if we would make twice as many experiments, we would get the expected
success probability

1 −
(
N − 1
N

)2N

≈ 1 − 1
e2

≈ 0.86 .

Allowing four times more computation time would give us already more than
98% of the values for qright filled.

Hence we obtain a vote manipulation attack by a malicious voting application
with very high success rate, essentially invalidating Theorem 2 of [6].
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Note that in order to implement this attack, it is not necessary to manipulate
the actual voting application. It is sufficient for the attacker to be able to only
change the values of the vote, random seed and q. He can achieve this e.g. by
manipulating suitable bytes in voter computer’s memory, similar to the vote
invalidation attack from 2015 Estonian Parliamentary elections [4]. The random
value transferred from the voting application to the verification application can
be manipulated by overlaying the QR code that carries it on the voter computer’s
screen similar to the Student’s Attack of 2011 [1].

3 Improving the Protocol

Analyzing the attacks presented above we see that the major vulnerabilities of
the scheme presented in [6] were enabled by the fact that the voter herself had
to choose q. This allowed both privacy leakage due to format guessing of qright
and fooling the verification application via carefully crafting the value of q.

Fixing these flaws starts from the observation that it is actually not necessary
for the voter to select q (or qright). We propose a solution where q is generated by
the server instead and later sent to the voter application to display. Note that the
cryptogram SymEnch(q) can be computed by the server, too. Hence the overall
change required to the high-level description given in Sect. 2.2 is relatively small.
On Fig. 2, q will be dropped from message 3, and will be sent from the server to
the voter application in a later pass.

Selection of the exact message pass for sending q is a question of design
choice, subject to trade-offs. The first obvious candidate is message number 4 of
Fig. 2, where q can be added to the vote reference vr.

The next choice one has to make is when to display the code to the voter.
This choice is potentially privacy critical. Displaying q on the voter screen next
to the QR code enables a malicious verification application to read it. Having
access to q will in turn allow the verification app to reveal the voter’s choice
during the verification process.

Hence the code q has to be displayed to the user after the QR code. The
question now becomes at which point this should be done. From the usability
point of view, displaying q should happen right after the voter has scanned
the QR code. However, the problem with the current protocol is that the voter
application is not informed about the moment of scanning. Thus a new message
needs to be added to the protocol. Once the need for a new message is already
established, it is natural to define q as its content.

This will also give rise to a cleaner cryptographic protocol design where a
party (voting application) does not have access to a value (q) before it absolutely
needs to. We will later see in Sect. 3.1 that such a design choice is crucial in
preventing the vote manipulation attack.

Finally we observe that the voting application does not need access to the
whole q, but only the part qright that will be displayed to the voter. Hence,
sending over only qright will be sufficient.
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The resulting protocol is depicted in Fig. 3.

Fig. 3. Improved update to the Estonian protocol

3.1 Analysis of the Improved Protocol

In this Section we will analyse to which extent does the proposed update help
to mitigate the vulnerabilities present in [6].

The vote manipulation attack described in Sect. 2.4 assumes access to q before
selecting the encryption randomness r. On the other hand, in the updated pro-
tocol, the voter application has to commit to r before it sees qright. Hence the
best it can do is to guess qright. Even if qright is only 32 bits long, the probability
of success is only 2−32, assuming the choice of q is truly random.

Of course this assumption may be violated if the server behaves dishonestly.
But note that even in this case we obtain a higher level of security as compared
to [6], since now coordinated malicious collaboration between the voter applica-
tion and the server is required to manipulate the vote in a manner undetected
by verification.

Non-random choice of q can also be used to violate privacy of the vote in case
of malicious collaboration between the server and the verification application. If
the verification app can predict the value of qright, it can trivially determine the
voter preference by looking at the list of verification code candidates q1, . . . , qm.
This attack would be equivalent to leaking the value of q to the verification app,
say, on step 7 of Fig. 3. Again, such an attack would only work if the server and
the verification application would collaborate maliciously.

When the server generates q honestly randomly, also the guessing attack pre-
sented in Sect. 2.3 can be prevented. To achieve this, the true value of qright must
be (visually) indistinguishable from all the candidates obtained by decryption.
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This is easy to implement for machine-generated random values. The only user
interface aspect to solve is the visual representation of qright and its candidates.
There are standard approaches for this problem, including hexadecimal and base-
64 representations, allowing to encode 4 and 6 per character, respectively. Since
6 bits allows for more entropy, we suggest using the base-64-like encoding.

As the final security observation we note that sending qright instead of q on
step 8 of Fig. 3 is in fact critical. If a malicious voting application would have
access to the entire q, it would know all the necessary values to compute qi (i =
1, . . . ,m). This would allow for a vote manipulation attack where the malicious
voting app casts a vote for a different candidate, but still shows the verification
code qi that the voter sees next to her own preference on the verification device.

A malicious voting app may attempt accessing SymEnch(q) (which would
also be sufficient to restore all the values qi) by faking a verification request. This
problem should also be mitigated, possibly by using out-of-protocol measures like
limiting the number of verification attempts, only allowing verifications from a
different IP address compared to voting, etc.

Since our update does not change the verification experience as compared
to [6], usability problems of scrolling through a long list of code candidates still
remains. Consequently, the side channel determined by the moment of stopping
the scrolling and leading to the hypothesis that the correct candidate number
must be displayed at that moment still remains. These problems may probably
be eased a little by packing as many code candidates to one screen as possible,
say, in form of a 2-dimensional table. This leads to another trade-off between
usability and privacy guarantees of the solution.

4 Conclusions and Further Work

Even though vote privacy was not the primary design goal of the Estonian vote
verification application, it would of course be nice to have extra privacy protec-
tion capabilities. Unfortunately, the proposal made in [6] is even at the voter’s
best effort still completely vulnerable to a guessing attack by just looking at the
characters used by the code candidates.

Also, we have demonstrated a vote manipulation attack that can be imple-
mented with reasonable amount of pre-computation by an attacker who manages
to compromise the voting application or voter’s computer. As a result, the ver-
ification application does not fulfil its purpose of ensuring correct operation of
the voting application.

As a possible solution, we presented an improvement to the protocol where
the verification code generation is performed by the server rather than the voter.
We have shown that the resulting protocol has stronger security properties,
requiring at least two parties to collaborate maliciously in order to break either
the verification or privacy properties.

The major drawback in both [6] and the present proposal is the drop in usabil-
ity. Unfortunately, this will lead to an additional side channel attack against vote
privacy in the course of verification. The question of the right balance between
usability and privacy remains the subject of future research.
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