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Introduction

This book is the result of a selection of papers accepted at the North Ameri-
can Productivity Workshop (NAPW), which is a major biennial conference of
researchers and practitioners on productivity and efficiency issues that is held every
two years. NAPW IX was being held between June 15 and June 18, 2015, in
Quebec City, and the theme of the conference was productivity and inequality.
The 2016 conference included several keynote speeches by leading international
productivity experts and presentations of specialized productivity-related research
such as Susanto Basu, Professor of Economics (Boston College); Allan Collard-
Wexler, Associate Professor of Economics (Duke University); Russell Davidson,
Professor of Economics (McGill University); Erwin Diewert, Professor in the
Vancouver School of Economics (University of British Columbia); Jonathan David
Ostry, Deputy Director of the Research Department (IMF); Ariel Pakes, Thomas
Professor of Economics (Harvard University); and Robin C. Sickles, Reginald
Henry Hargrove Professor of Economics, Professor of Statistics (Rice University).

Each plenary session allowed for the presentation of recent and ongoing research
in the areas of productivity, inequality, efficiency, data envelopment analysis, and
index number theory. The plenary sessions were organized to cover a broad
range of productivity, inequality, and efficiency topics. Basu looked at the general
topic of productivity and the welfare of nations; Collard-Wexler showed how to
estimate production functions with measurement error in inputs; Diewert presented
a decomposition of US business sector TFP growth into technical progress and
inefficiency components; Davidson presented the challenges of making statistical
inference with income distributions; Ostry discussed redistribution, inequality, and
growth; Pakes looked at new entries and new markets; and Sickles discussed the
sources of income inequality by exploring the role of productivity growth.

The conference included many other researchers (150) from around the world (28
countries: Australia, Austria, Belgium, Brazil, Canada, China, Denmark, France,
Germany, Greece, Hungary, Italy, Japan, Luxembourg, Macedonia, the Netherlands,
Norway, Poland, Portugal, Romania, Russia, Spain, Sweden, Switzerland, Taiwan,
Tunisia, the United Kingdom, and the United States), and the exposure of their
research was a real gain for the Canadian community that works on issues of
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vi Introduction

productivity and inequality. The conference was hosted by the Department of
Economics of Carleton University and organized in collaboration with Industry
Canada, Network to Study Productivity in Canada from a Firm-Level Perspective,
the Centre for Monetary and Financial Economics, and Bank of Canada.

The quality of the research papers presented at this conference attracted also
representatives from Industry Canada, Bank of Canada, and Statistics Canada. Their
participation was very important as the research ideas presented at the conference
are very helpful for policy makers and can be used to formulate policies that can
improve productivity performance of Canadian companies and, at the same time,
can reduce inequality among Canadians.
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Estimating Efficiency in the Presence
of Extreme Outliers: A Logistic-Half
Normal Stochastic Frontier Model
with Application to Highway
Maintenance Costs in England

Alexander D. Stead, Phill Wheat, and William H. Greene

Abstract In Stochastic Frontier Analysis the presence of outliers in the data, which
can often be safely ignored in other forms of linear modelling, has potentially
serious consequences in that it may lead to implausibly large variation in efficiency
predictions when based on the conditional mean. This motivates the development
of alternative stochastic frontier specifications which are appropriate when the
two-sided error has heavy tails. Several existing proposals to this effect have
proceeded by specifying thick tailed distributions for both error components in
order to arrive at a closed form log-likelihood. In contrast, we use simulation-
based methods to pair the canonical inefficiency distributions (in this example
half-normal) with a logistically distributed noise term. We apply this model to
estimate cost frontiers for highways authorities in England, and compare results
obtained from the conventional normal-half normal stochastic frontier model. We
show that the conditional mean yields less extreme inefficiency predictions for large
residuals relative to the use of the normal distribution for noise.

Keywords Stochastic frontier · Normal · Logistic · Outliers · Maximum simul-
ated likelhood
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2 A.D. Stead et al.

1 Introduction

The aim of frontier analysis is to estimate a frontier function based on efficient,
or at least best-practice in sample, production and cost relationships against which
the efficiency of firms and other decision making units (DMU) can be measured.
A challenge for such analyses is dealing with the existence of noise, resulting from
random shocks and measurement error in the dependent variable — in the data.
In particular, in the presence of outliers, there can be a disproportionate impact
on the estimated frontier and on all predictions of efficiency relative to it. The Data
Envelopment Analysis (DEA) model (Charnes et al. 1978) and related mathematical
programming approaches are deterministic, in that any noise present is attributed
wholly to variation in efficiency, and are therefore particularly sensitive. This is also
the case with some of the cruder econometric methods, such as Corrected Ordinary
Least Squares (COLS). Here we focus instead on Stochastic Frontier Analysis (SFA)
which should be more robust to noise given this is considered explicitly alongside
inefficiency in the model formulation.

The specific motivation for this paper comes from an issue arising from the
authors’ work studying cost efficiency in a number of datasets. The example
used in this paper is cost analysis of highways maintenance operations of local
government authorities in England, which utilises bespoke data on operating and
capital expenditure provided by each authority. When we compute the standard
Jondrow et al. (1982) predictor, an implausibly wide range of efficiency scores
is found. This issue is caused by large estimated error variances; in particular,
a large VAR(u) will lead to a large spread of efficiency scores, while a large
VAR(v) will lead to a greater degree of shrinkage of efficiency predictions toward
the unconditional mean (Wang and Schmidt 2009). Large error variances are in
our dataset caused by the presence of a relatively large number of outliers in the
data, due to a combination of under- or over-reporting, unobserved investment cycle
effects, and extreme weather events.

In this paper we consider methods to better deal with noise data in the stochastic
frontier setting. We consider alternative methods which are better suited to handling
outliers in the data, i.e. heavier tails in the error. After consideration of possible
existing approaches, this leads us to propose a new stochastic frontier model with a
logistic distribution for the noise error. This model is easy to estimate and has been
programmed into a bespoke version of LIMDEP.

The structure of this paper is as follows: Section 2 reviews the received methods
available to handle a large number of outliers in frontier analysis, and reviews the
relevant literature and Sect. 3 introduces a logistic-half normal stochastic frontier
(SF) models for dealing with heavy-tailed noise. Section 4 applies these models to
our data on highways maintenance costs in England and compares the results to
those obtained from the standard normal-half normal SF model, and Sect. 5 gives
our summary and conclusions.
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2 Literature Review: Potential Approaches to Dealing
with Outliers

2.1 Adopting Alternative Predictors for Inefficiency

Before considering amendments to the standard stochastic frontier model, it is
natural to ask whether there are alternative efficiency predictors which yield more
intuitive distributions of predictions. Given that in cross sectional models, point
predictors are known to be inconsistent for the quantity of interest; namely the firm
specific realisation of a random variable (Wheat et al. 2014), then several point and
interval predictors could be candidates.

One candidate is the conditional mode predictor (Jondrow et al. 1982) which,
for the normal-half normal model, treats all observations with positive (negative)
residuals in the production (cost) frontier case as fully efficient; likewise in the
normal-exponential model, all residuals past a certain threshold—i.e. the inverse of
the product of the squared rate parameter from the exponential component and the
standard deviation of the normal component—are predicted to be fully efficient. The
conditional mode predictor therefore yields more intuitive efficiency predictions at
the top relative to the conditional mean. This is because the conditional mean for all
firms will always be less than one (for VAR(u) > 0) and, in the case of large VAR(v)
i.e. data with many outliers, this difference is likely to be non-trivial even for the best
performing DMU (due to substantial shrinkage to the unconditional mean (Wang
and Schmidt 2009)). Furthermore, for all other observations the conditional mode
predictor yields a predicted efficiency score higher than that from the conditional
mean predictor; the latter difference, however, tends to be small in magnitude at
the bottom, and its usefulness in remedying implausibly low efficiency scores is
therefore limited.

Another approach is to calculate prediction intervals, which show the range of
plausible efficiency predictions for a given observation. Since in the normal-half
normal case the conditional distribution of u is that of a truncated normal random
variable (Jondrow et al. 1982), Horrace and Schmidt (1996) propose simply using
the quantile function for this distribution to compute the upper bound of a prediction
interval, which is also derived by Bera and Sharma (1999). However, Wheat et al.
(2014) note that this method does not necessarily yield a minimum width interval,
and derive minimum width intervals for the normal-half normal case, and discuss
various methods of accounting for parameter uncertainty in computing prediction
intervals. The use of prediction intervals in cases where predicted efficiency values
are at the extremes could be useful in that they allow us to qualify our point
predictions of efficiency by explicitly recognising that there are in fact a range of
probable values which efficiency can take; however, this is not a solution to the
underlying problem and of course, the range of probable values will include values
even more implausible than the point predictor.

Overall, while alternative predictors are useful in SFA in general, the mass of
the conditional distribution for the most efficient firm in our sample is still far from
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zero (even if the peak of the distribution—i.e. the mode—is zero. Thus the question
remains as to whether an alternative formulation of the stochastic frontier model
could yield a more intuitive distribution of efficiency predictions. In particular a
formulation which puts more weight on outlying observations being the result of
noise rather than inefficiency seems to be appropriate. We now consider possible
means to achieve this.

2.2 Heteroskedastic Stochastic Frontier Models

The basic SFA model assumes that both error components are homoskedastic,
i.e. that they have a constant variance. Outliers in the data could result from
heteroskedasticity in one or both error components, so that certain observations
have a higher error variance than others. Discussion of heteroskedastic SF models
have tended to focus on heteroskedasticity in the one-sided error; Reifschneider
and Stevenson (1991) propose a normal-half normal model in which �ui D g(Ui),
g(Ui) 2 (0, 1), Caudill and Ford (1993) propose a normal-half normal model in
which �ui D �u(Ui� )ı , and Caudill et al. (1995) propose a normal-half normal in
which �ui D exp(Ui� ), where in each case Ui is a vector of explanatory variables
including an intercept. Wang (2002) combined the Battese and Coelli (1995)
specification of the pre-truncation mean of a truncated normal one-sided error in
which �i D Ziˇ, where Zi is again a vector of explanatory variables, with a slight
variation in the Caudill et al. (1995) specification of the one-sided error variance
so that �2ui D exp .Ui�/ into a single model, which has the additional advantage
of allowing for non-monotonic relationships between inefficiency and explanatory
variables.

In terms of handling outliers where these are assumed to reflect an unusually
high variance in noise, it is more useful to allow for heteroskedasticity in the
two-sided error, however; Wang and Schmidt (2009) show for the normal-half
normal model that E(uij "i) is a shrinkage of ui towards E(ui), and that because
of this, as � vi ! 0, E(uij "i) ! ui, while as � vi ! 1 , E(uij "i) ! E(ui). Allowing
for heteroskedasticity in v therefore allows for varying levels of shrinkage. Hadri
(1999) introduces a doubly heteroskedastic SF model in which the variances of
both error components are a function of vectors of explanatory variables Ui and Vi

—which need not be the same—such that �ui D exp(Ui� ), � vi D exp(Vi� ). Finally,
Kumbhakar and Sun (2013) introduce a normal-truncated normal model which
combines the Battese and Coelli (1995) and Hadri (1999) specifications into a model
in which the pre-truncation mean of the one-sided error, as well as the variances of
both error components are functions of vectors of explanatory variables, so that
�i D Ziˇ, �ui D exp(Ui� ), � vi D exp(Vi� ).

Allowing for greater levels of variance in outlying observations is effectively
another method of allowing for a heavy tailed distribution. The problem with adopt-
ing this approach using existing heteroskedastic SF models is that an appropriate
variable is needed for inclusion in the variance function. A dummy variable identi-
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fying outlying observations could be used, for example, however the identification
of such outlying observations would either have to be done on an ex-post basis,
or with reference to some arbitrary partial metric, and of course there is an added
degree of arbitrariness in defining the cut-off point beyond which an observation is
deemed to be outlying.

2.3 Thick Frontier Analysis

Berger and Humphrey (1991, 1992) introduced Thick Frontier Analysis (TFA),
which is motivated by the observation of heavy-tailed errors in cost studies—
specifically, in the banking sector—but in contrast to the present study assumes that
this reflects a wide spread of efficiencies, rather than outliers in the data. In TFA,
DMUs are sorted into quantiles based on some partial measure, e.g. unit cost, and
separate regressions are run for the top and bottom quantiles. DMUs in the lowest
and highest unit cost quantiles are implicitly judged to be equally efficient, with
their residuals reflecting only error and luck. The difference in predicted unit costs
for different size classes is then decomposed into exogenous market factors, i.e. that
explained by differences in output mix, input prices, etc., and the remainder, which
is regarded as inefficiency.

TFA has a number of disadvantages, such as the implicit assumption of equal
efficiency among DMUs in the same quantile, and the implicit need for rather large
sample sizes so that samples can be sensibly divided in this way. Also problematic
is the arbitrariness of both the partial measure according to which DMUs are placed
into quantiles, and the number of quantiles specified; Wagenvoort and Schure (1999)
provide a solution to the latter problem, using a recursive algorithm by which,
starting with OLS on the full sample of observations, the sample is divided into
successively larger numbers of quantiles until the Lagrange multiplier test proposed
by Breusch and Pagan (1980) fails to reject normality of the error term. However, the
successive increases in the number of quantiles will require larger and larger sample
sizes, and will tend to increase the distortionary effect of outlying observations on
the estimated quantile regression lines, and hence on efficiency predictions.

The impact of outliers on efficiency scores in TFA is somewhat ambiguous.
On one hand, the impact of outliers on efficiency scores will tend to be muted
by the attribution of the residuals from the quantile regressions to noise, and by
construction the DMUs in the top quantile will be judged fully efficient, while
on the other hand the quantile regressions themselves will be more sensitive to
outliers, which could lead to an exaggerated gap between the quartile regression
lines, and hence an exaggerated range of inefficiency scores. This in fact reflects
the different motivations and assumptions behind TFA, since as stated above, the
underlying assumption behind TFA is that heavy tailed errors reflect a wide spread
of inefficiency, i.e. a heavy tailed distribution of inefficiency, rather than a heavy
tailed distribution of noise, making TFA inappropriate for the purpose of the current
study; we therefore do not pursue TFA any further.



6 A.D. Stead et al.

2.4 Non-Gaussian Stochastic Frontier Models

Another possible method of dealing with the impact of outliers in the data on
efficiency scores is to directly alter the distributional assumptions of the basic SF
model such that the noise component of the composed error, rather than being
normally distributed, follows an alternative symmetric distribution with heavier
tails.

One candidate for this is the Student’s t distribution, a heavy-tailed distribution
which approximates normality for finite sample sizes. Tancredi (2002) proposes a
model in which the two-sided error is t distributed and the one-sided error follows
a half t distribution—thus generalising the original normal-half normal of Aigner
et al. (1977) to allow for heavier tails in both components of the composed error—
and shows that as the residual approaches infinity, the conditional distribution of
the one-sided error (conditional on the composed error realisation) is concentrated
around zero in the normal-half normal model, and is completely flat in the t-half
t model; thus in the former case, an observation with a large positive residual is
judged to be close to the frontier with high probability, while in the latter case it
is judged to be basically uninformative, making the model better at handling such
outliers. Applying both models to the Christensen and Greene (1976) dataset on US
electric utilities, the author shows that the t-half t performs better than the normal-
half normal, and that allowing for heavy tails in this way increases the evidence for
inefficiency in the model and overturns the Ritter and Simar (1994) finding that the
basic SF model does not fit the data significantly better than OLS.

Nguyen (2010) introduces three additional non-Gaussian SF models, having two-
sided and one-sided errors that respectively follow Laplace and exponential, Cauchy
and half Cauchy, and Cauchy and truncated Cauchy distributions. These models
are considered in a cross-section context, with application to the Christensen and
Greene (1976) dataset, and Cauchy-half Cauchy balanced and unbalanced panel
data models with time invariant inefficiency are also introduced, with application to
the US banking dataset and to the WHO health sector dataset used in Greene (2004).
The usefulness of some of the aforementioned models is limited by the unjustifiable
assumptions made in order to simplify their derivation: the Laplace-exponential
model assumes the variances of the two error components to be the same, as does
the Cauchy-half Cauchy model for balanced panel data with respect to the variance
of the two-sided error and the (pre-truncation) variance of the one-sided error; the
latter model further assumes only two time periods. Nevertheless, both the cross-
section and unbalanced panel Cauchy-half Cauchy models appear acceptable, and
results from the latter are presented by Gupta and Nguyen (2010).

Horrace and Parmeter (forthcoming) discuss SFA with a Laplace-distributed
two-sided error generally, and introduce a Laplace-truncated Laplace model; this
is shown to reduce to a Laplace-exponential model when the pre-truncation mean
of the one-sided error is less than zero, and to a Least Absolute Deviations (LAD)
regression when the variance of the inefficiency term is zero. It is also shown that
the conditional distribution of inefficiency is constant when the residual is zero,
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so that all observations with positive residuals are given an identical efficiency
score; as with the t-half t, the model therefore treats outlying observations as
less informative. Results from Monte Carlo simulations suggest that the Laplace-
exponential model performs better than the normal-exponential model when the
error is miss-specified, and that it is more likely to produce non-zero estimates of the
variance in inefficiency when OLS residuals display the wrong skew. The Laplace-
truncated Laplace model is applied to estimate a cost frontier using the US airline
data used in Greene (2012).

An analogous Bayesian approach to non-Gaussian SFA exists; Tchumtchoua and
Dey (2007), estimate a t-half t Bayesian SF model, and Griffin and Steel (2007)
briefly discuss how to estimate t-half normal, t-exponential, and t-gamma Bayesian
SFA models using the WinBUGS software package.

To summarize, the non-Gaussian SF models are a potential way of dealing with
the impact of outliers on the spread of efficiency predictions in SFA, given the
different way the models treat outliers; they also have the advantage of being less
arbitrary than simply excluding observations, or than the other methods discussed.
A drawback of the existing models, however, is that in order to arrive at closed
form expressions for their log-likelihoods, they also adopted alternative—i.e. thick
tailed—distributions for u, which limits both the effectiveness of the models
in reducing the impact of outliers on the range of efficiency predictions, and
comparability with conventional SF models; we therefore prefer a model in which
only v is drawn from a thick tailed distribution.

3 The Logistic-Half Normal Stochastic Frontier Model

3.1 Formulation and Estimation

In this paper, our motivation is to amend the conventional stochastic frontier model
to accommodate data with large reporting errors. The work on non-Gaussian SF
models discussed above motivates us to propose a further model which departs from
the previous literature in that it amends the noise error term only and retains all of the
conventional SF assumptions on the inefficiency error and the relationship between
error components and regressors. This allows us to understand the extent to which
alternative assumptions on the noise error term influence the efficiency predictions
all other things equal.

In SFA, we have a composed error " consisting of a symmetric noise component
v and an inefficiency component u which is drawn from some one-sided distribution,
such that

" D v � su (1)
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Where s takes on a value of one for a production frontier and minus one for a
cost frontier. In our case, we assume that v is drawn from a logistic distribution, and
that v is from a half-normal distribution, such that

f .v/ D
exp

�
v
�v

�

�v

h
1C exp

�
v
�v

�i2 (2)

f .u/ D

(
2
�u
�
�

u
�u

�
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0; su � 0
(3)

Where � v and �u are scale parameters. The joint density of " and u is given by
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And the marginal density of " is given by the convolution
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Which is an integral with no closed form. It is therefore not possible to give an
analytic expression for the log-likelihood function, and to proceed with maximum
likelihood estimation. In such a case, maximum simulated likelihood techniques—
see Train (2003) for an introduction to simulation-based methods—allow us to
overcome this obstacle and estimate our model. The method followed here was first
outlined in the context of the normal-gamma SF model by Greene (2003). We begin
by noting that the integral in (5) is simply the expectation of f (v) given that u is
drawn from a half normal distribution

h.u/ D E Œ f .v/j u � 0� ; u � N Œ�; �u� (6)

And thus we can form a simulated probability density function for " by averaging
over Q draws from a half normal distribution. The usual method of taking draws
from a non-uniform distribution is to note that the cumulative density function
of a random variable follows a uniform distribution, and thus by inverting the
cumulative density function we can have the value of the random variable in terms
of a uniformly distributed random variable; this inverse cumulative density function
can therefore be used to transform draws from a uniform distribution into draws
from any given distribution. Thus to generate draw number q from the half normal
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distribution of our inefficiency term u we have

uq D �uˆ
�1

�
1

2
C

Fq

2

�
(7)

Where Fq is draw number q from a uniform distribution. This leads us to the
simulated probability density function for "

Qf ."/ D
1

Q

QX
qD1

exp
�
"Csuq

�v

�

�v

h
1C exp

�
"Csuq

�v

�i2 (8)

And, introducing subscripts for observation i, the simulated log-likelihood func-
tion is

ln SL D �N ln Q � N ln �v C

NX
iD1

ln
QX

qD1

exp
�
"iCsuqi

�v

�

h
1C exp

�
"iCsuqi

�v

�i2 (9)

Which may be maximised like any conventional log-likelihood function, pro-
vided we have our draws from the uniform distribution forming the uqis.

3.2 Efficiency Predictions

The conditional density of u given ", is the ratio of the joint distribution of v and u
and the density of "

f .uj"/ D
f .v/f .u/

f ."/
(10)

Which, in the logistic-half normal case, gives

f .uj"/ D

8̂
<̂
ˆ̂:

exp
�
"Csu
�v

�
=
h
1Cexp

�
"Csu
�v

�i2
2
�u
�
�

u
�u

�
=.�v/

R1
0

exp. "Csu
�v /

�vŒ1Cexp. "Csu
�v /�

2
2
�u
�
�

u
�u

�
du

; su > 0

0; su � 0

(11)

The Jondrow et al. (1982) and Battese and Coelli (1988) point predictors for
efficiency are exp[–E(uj ")] and E[exp(–uj ")], respectively; these are derived by
solving the integrals
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E .uj"/ D

1Z

0

uf .uj"/ du (12)

E Œexp.�u/j "� D

1Z

0

exp.�u/f .uj"/ du (13)

Which, in the logistic-half normal case, gives

E .uj"/ D
1

f ."/

Z 1

0

u exp
�
"Csu
�v

�

�v

h
1C exp

�
"Csu
�v

�i2
2

�u
�

�
u

�u

�
du (14)

E Œexp.�u/j "� D
1

f ."/

Z 1

0

exp.�u/ exp
�
"Csu
�v

�

�v

h
1C exp

�
"Csu
�v

�i2
2

�u
�

�
u

�u

�
du (15)

Both of which, again, contain integrals with no closed form solutions. Simulation

is therefore required to generate these point predictions: we substitute
�

f ."/ for
f ("), and the remaining integrals are the expectation of u and exp(su) respectively
multiplied by the probability density function of v, given that u is drawn from a
half-normal distribution; this leads us to the simulated expectations

QE .uj"/ D
1

Qf ."/

1

R

RX
rD1

ur exp
�
"Csur
�v

�

�v

h
1C exp

�
"Csur
�v

�i2 (16)

QE Œexp.�u/j "� D
1

Qf ."/

1

R

RX
rD1

exp
h
"C.sC�v/ur

�v

i

�v

h
1C exp

�
"Csur
�v

�i2 (17)

Which we use to generate our point predictions of cost efficiency. Note that
draws from the uniform distribution are also therefore needed to generate efficiency
predictions following estimation of the model. In the notation above we distinguish
between draws to approximate f (") using q and the additional draws required to
compute the further integral in (16) and (17) using r. This is to minimise any
simulation bias.
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4 Application to Highways Maintenance Costs in England

In this section, we apply the logistic-half normal SF model to a unique dataset
on highway maintenance costs in England. Responsibility for maintaining roads
in England is divided between Highways England—until 2015 the Highways
Agency—a government-owned company responsible for maintenance of the trunk
road network, and the county councils and unitary authorities which are responsible
for maintenance of the non-trunk roads in their respective areas. In recent years,
local authorities have been under increasing pressure to demonstrate efficient
practice or efficiency improvements in areas such as highway maintenance, e.g. by
undertaking benchmarking exercises with peers. This study uses data from the CQC
Efficiency Network,1 which is used to analyse the cost efficiency of local authorities’
highway maintenance activities.

Previous econometric studies of road maintenance costs have tended to focus of
the question of marginal costs of usage, and what these imply for road pricing, rather
than on the relative cost efficiency of local authorities. Previous studies estimate
cost functions using data on renewals and maintenance costs for motorways and
canton roads in Switzerland (Schreyer et al. 2002), Austrian motorways (Sedlacek
and Herry 2002), national—i.e. trunk—roads in Poland (Bak et al. 2006; Bak and
Borkowski 2009), roads in Sweden (Haraldsson 2006; Jonsson and Haraldsson
2008), and German motorways (Link 2006, 2009) and federal roads (Link 2014).
Much of this work is summarized by Link (2014), who estimates two cost models:
one in which, as the author argues should be the case, the size of the road network
maintained is used as the scale variable, and a second in which passenger car
traffic and goods vehicle traffic are used as scale variables can be derived; the
author apparently does not consider using both network size and traffic as outputs
in a single model. The only study to look at efficiency in the context of highway
maintenance is that of Fallah-Fini et al. (2009), which uses applies DEA to data
for eight counties from the US state of Virginia, using road area and a set of quality
measures as outputs, and maintenance expenditure, traffic and equivalent single axle
loads as inputs, and a set of climate factors as non-discretionary variables.

We use an unbalanced panel consisting of data on the 70 local authorities from
England that were members of the CQC efficiency network during 2014–15 and
supplied cost data for at least one of the 5 years from 2009–10 to that year; this
gives us a total of 327 observations. Cost data were supplied to the network by
each authority individually according to definitions decided by a working group
of network members, relating to operating expenditure and capital expenditure—
both divided into direct and indirect categories—on carriageway maintenance only,
i.e. excluding related activities such as winter service and footway maintenance, on
the basis that they should be understandable and yield consistent submissions; we
use the sum of these, total expenditure, as our dependent variable. Nevertheless,

1See http://www.nhtnetwork.org/cqc-efficiency-network/home/

http://www.nhtnetwork.org/cqc-efficiency-network/home/
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preliminary analysis of the data reveals large differences in unit costs with a large
number of extreme outliers in both direction, which are clearly subject to some kind
of reporting error. As a result, standard SF models, as discussed in Sect. 1, yields
a wide range of efficiency predictions, motivating the development of the model
presented here.

In line with the previous literature, we use road length and traffic as output
variables; road lengths are included as our measure of scale, while traffic—in terms
of passenger kilometres—we divide by road length and include as a density variable.
Detailed breakdowns of overall network length into urban and rural roads and also
by classification, the different classifications being, in order of importance, A roads,
B roads, classified unnumbered roads, and unclassified roads; we refer to the latter
two as C and U roads, respectively. B, C and U roads are always maintained by local
authorities, while A roads can be either trunk, and therefore the responsibility of
Highways England, or non trunk, maintained by local authorities. The road length
data we use include B, C, U and non trunk A roads; motorways, denoted by the
letter M, and trunk A roads, are not included. Likewise, we use traffic data supplied
directly by the Department for Transport (DfT) which relate only to local-authority
maintained roads.

We separate overall network length into urban and rural road lengths, and
further include the lengths relating to each classification as proportions of the
overall network length. We also include road condition indicators for each road
classification—also from DfT sources—and as input prices we include a measure
of median hourly wages in civil engineering for each NUTS1 region from the
Annual Survey of Hours and Earnings (ASHE) published by the Office for National
Statistics (ONS) and a national index of materials prices in road construction from
the Department for Business, Innovation and Skills (BIS). We employ a modified
Cobb-Douglas functional form, in which we include second-order terms relating to
urban and rural road length. The cost frontier we estimate is

ln TOTEX D ˇ0 C ˇ1 ln URL C ˇ2 ln RRL C ˇ3 ln URL2 C ˇ4 ln RRL2

C ˇ5 ln URL ln RRL C ˇ6 ln TRAFFIC C ˇ7RDCA C ˇ8RDCBC C ˇ9RDCU
C ˇ10PROPUA C ˇ11PROPUB C ˇ12PROPUC C ˇ13PROPUU

C ˇ14PROPRA C ˇ15PROPRB C ˇ16PROPRC C ˇ17YEAR C ˇ18 ln WAGE
C ˇ19 ln ROCOSM C "

(18)

Where TOTEX is total expenditure on carriageway maintenance, URL and RRL
are the lengths of an authority’s urban and rural road networks, respectively,
TRAFFIC is a traffic density measure—i.e. traffic count divided by total road
network length—and RDCA, RDCBC and RDCU are the proportions of A roads,
B and C roads, and unclassified roads where maintenance should be considered,
weighted by the shares of their respective road classifications in the total road
network length. PROPUA through to PROPRC are urban A roads, urban B roads, etc.
as proportions of the total network length, with the proportion of rural unclassified
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Table 1 Outputs from the logistic-half normal and normal-half normal models

Logistic-Half Normal Normal-Half Normal
Estimate s.e. Sig Estimate s.e. Sig

ˇ0 16.0631 0.0956 *** 16.0350 0.14502 ***
ˇ1 (ln URL) 0.13443 0.11162 0.12738 0.17112
ˇ2 (ln RRL) 0.90841 0.11836 *** 0.91675 0.17943 ***
ˇ3 (ln URL2) 0.23534 0.04447 *** 0.24091 0.06291 ***
ˇ4 (ln RRL2) 0.08315 0.01057 *** 0.08503 0.01586 ***
ˇ5 (ln URL ln RRL) �0.07189 0.02944 ** �0.08083 0.04421 *
ˇ6 (ln TRAFFIC) 0.37956 0.10259 *** 0.41532 0.15442 ***
ˇ7 (RDCA) 0.44014 0.09675 *** 0.46356 0.14373 ***
ˇ8 (RDCBC) �0.07142 0.02682 *** �0.07057 0.03909 *
ˇ9 (RDCU) �0.00397 0.00324 �0.00519 0.00529
ˇ10 (PROPUA) 8.28742 1.9879 *** 7.80954 3.24067 **
ˇ11 (PROPUB) 1.982 2.27009 0.66161 3.86852
ˇ12 (PROPUC) 0.62504 1.21835 0.44784 2.05441
ˇ13 (PROPUU) 1.10074 0.56802 * 1.09028 0.83493
ˇ14 (PROPRA) 2.57286 1.08575 ** 2.1196 1.57145
ˇ15 (PROPRB) 2.40330 1.10305 ** 2.67772 1.5444 *
ˇ16 (PROPRC) 1.11517 0.67064 * 0.98277 0.98812
ˇ17 (YEAR) 0.04055 0.01105 *** 0.04457 0.01661 ***
ˇ18 (ln WAGE) 0.82267 0.23264 *** 0.89086 0.34002 ***
(1 �ˇ18) (ln ROCOSM)1 0.17733 – – 0.10914 – –
�u 0.54321 0.02541 *** 0.56798 0.01482 –
� v 0.16005 0.00745 *** 0.27642 0.03015 –
Log Likelihood �188.52 �189.14

Statistical significance at the: * 10% level, ** 5% level, *** 1% level
Notes: (1) Parameter is equivalent to 1 �ˇ18 due to the imposition of linear homogeneity in input
prices

roads omitted to avoid perfect multicollinearity. Finally, we include a time trend,
YEAR, and two input prices: WAGE, a measure of regional gross hourly wages
in civil engineering, and ROCOSM, a national index of materials prices for road
construction. All variables are mean-centred, and linear homogeneity in input prices
is imposed by dividing our cost and wage variables by our materials price index,
which drops out of the model.

Table 1 shows the parameter estimates and associated standard errors and
significance levels from the logistic-half normal model, and for comparison, the
normal-half normal model, both estimated in LIMDEP. Following Greene (2003),
we use Halton draws rather than pseudorandom number generator to obtain our
draws from the uniform distribution; we use 1000 draws, and find that further
increases or small reductions in the number of draws do not significantly affect
our results.
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We can see that both models yield similar estimates for each parameter, and
that most of our variables are found to be statistically significant at the 10%,
5%, or 1% levels. To underline the similarities between the two models, we note
that the correlation between the predicted residuals from each model is 0.9994
(rank correlation 0.9993). The log likelihood for the logistic-half normal model is
higher than the corresponding value for the normal-half normal model indicating a
superior fit.

The parameter estimates indicate constant to decreasing returns to scale at the
sample average (the p-value for the null hypothesis of constant returns is 0.2396,
so we fail to reject it), with increasing returns to scale for smaller authorities,
and increasing returns to traffic density. It is also noticeable that the significance
associated with each of the frontier parameters increases using the logistic-half
normal model relative to the normal-half normal model. This is unsurprising, since
the use of a thick-tailed noise distribution increases the robustness of our parameter
estimates to outliers.

Also of interest here are the estimated error variances, and how these differ
between the two models. The variance of u is given in both cases by

VAR.u/ D
� � 2

�
�2u (19)

While the variances of v in the logistic-half normal and normal-half normal
models, respectively, are given by

VAR.v/ D
�2

3
�2v (20)

VAR.v/ D �2v (21)

Table 2 shows VAR(u) and VAR(v) for both the logistic-half normal and normal-
half normal models, along with total error variance, VAR("). We can see that
neither the overall error variance, nor its individual components, differ substantially
between the two models.

In spite of their similar error variances, however, we expect that the logistic-
half normal model will result in a significantly narrower distribution of predicted
efficiency scores, given the very different way that the two models handle outliers,
as discussed in Sect. 3.2. Cost efficiency predictions from both models are generated
using the Jondrow et al. (1982) conditional mean predictor, which is shown in (16)
for the logistic-half normal case.

Table 2 Estimated error
variances

Logistic-Half Normal Normal-half normal

VAR(u) 0.107225 0.117227
VAR(v) 0.084279 0.07641
VAR(") 0.191504 0.193637
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Table 3 Summary of
efficiency scores

Logistic-Half Normal Normal-half normal

Minimum 0.408882 0.225086
Mean 0.708911 0.659549
Median 0.724585 0.682412
Maximum 0.879474 0.918035
Range 0.470592 0.692949

Table 3 shows some summary statistics relating to the resulting efficiency
predictions from both models. The correlation between the two sets of efficiency
predictions is high, at 0.997. However, comparing the ranges of the two sets of
predictions, we can see that, as expected, the logistic-half normal model results in
a far narrower distribution of efficiency predictions. This is due mostly to a very
marked difference in the minimum predicted efficiency score, which is far higher in
the logistic-normal model, from which the mean and the median predictions are also
higher, though the difference is progressively smaller in each case. The maximum
prediction, however, is smaller in the logistic-half normal model than in the normal-
half normal model due to the way the model handles outliers in either direction,
though as discussed in Sect. 2.1, the maximum prediction from both models would
have been one if we had used the conditional mode predictor.

Figure 1 gives a more detailed comparison, showing kernel density estimates for
both sets of efficiency scores. In this, we can see a greater number of observations
with low predicted efficiency scores from the normal-half normal model generally,
and higher efficiency predictions generally more common in the logistic-half normal
model; the latter being in spite of the fact that, due to the model’s handling of
outlying observations, the highest several efficiency scores are somewhat lower than
those from the normal-half normal model. Our model therefore seems to result in
an overall more intuitive distribution of efficiency predictions, with far fewer at the
bottom of the range with only a relatively small impact on predictions at the top.

Figure 2 shows the relationship between efficiency predictions and corresponding
residuals in both models. Given the similarity of the estimated frontier parameters,
the ranges of the residuals across the two models are very similar, as are the
estimated error variances, but the relationship between the residuals and the
efficiency predictions are significantly different; in the normal-half normal model,
the slope of the function diminishes for large positive or negative residuals, but
in the logistic-half normal model, in addition to the slope being gentler overall,
this is much more pronounced, with the function becoming almost flat — i.e. there
being very little change in efficiency predictions — at either end of the range. This
suggests that, in line with our discussion of the way that the model treats outlying
observations, efficiency predictions do not approach zero or one for extreme values
of the residuals.
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5 Summary and Conclusions

This paper considers the issue of outliers and their impact on efficiency analyses.
After reviewing how these issues have been handled in the existing literature,
we have motivated and formulated a stochastic frontier (SF) model with a thick-
tailed noise component. In contrast to previous models, in which both the noise
and inefficiency terms have been drawn from a thick-tailed distribution, we use
maximum simulated likelihood to estimate a model which combines a thick-tailed
noise distribution—i.e. a logistic distribution—with a half normal inefficiency
distribution. This model is easy to estimate and has been programmed into a bespoke
version of LIMDEP. We show that the model handles outliers in both directions in
a way that can produce a much narrower—and in the presence of outliers, more
intuitive—range of efficiency predictions than standard SF models.

We apply our model to a unique dataset on highways maintenance costs in
England, and compare the results to those from the normal-half normal SF model.
The estimated frontier parameters and variances are found to be very similar to
those from the normal-half normal model, but the former with greater significance
due to the increased robustness of the model to outlying observations and we find,
as expected, that the model results in a narrower range of efficiency predictions. The
model is therefore effective in reducing the extent to which outlying observations
are treated as having extreme efficiency values.

Further development could consider alternative distributions for u, such as
truncated normal, exponential, or gamma, which would be easy to implement
using our estimation approach. The issue of testing between our model and the
standard SF model could also be explored. The authors are currently developing
an alternative model in which v follows a Student’s t distribution, which has the
normal distribution as a limiting case, meaning that the model nests the standard SF
model. A further advantage of the Student’s t is that the thickness of the tails can
be varied with its degrees of freedom parameter, making the model more general; a
Student’s t distribution with seven degrees of freedom is also a good approximation
of the logistic distribution used in this study.

Acknowledgements The authors acknowledge funding from the CQC Efficiency Network (see
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Alternative User Costs, Productivity
and Inequality in US Business Sectors

W. Erwin Diewert and Kevin J. Fox

Abstract Using the new Bureau of Economic Analysis (BEA) Integrated Macroe-
conomic Accounts as well as other BEA data, we construct productivity accounts
for two key sectors of the US economy: the Corporate Nonfinancial Sector (Sector
1) and the Noncorporate Nonfinancial Sector (Sector 2). Calculating user costs
of capital based on, alternatively, ex post and predicted asset price inflation rates,
we provide alternative estimates for capital services and Total Factor Productivity
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1 Introduction

The US Bureau of Economic Analysis (BEA), in conjunction with the Bureau
of Labor Statistics (BLS) and the Board of Governors of the Federal Reserve,
have developed a new set of production accounts, the Integrated Macroeconomic
Accounts, for two major private sectors of the US economy: the Corporate Non-
financial Sector (which we will call Sector 1) and the Noncorporate Nonfinancial
Sector (which we will call Sector 2). For both sectors we work out the rate of return
on assets employed back to 1960 and compute estimates of Total Factor Productivity
(TFP) growth. In addition to comparing results across the sectors, we are particularly
interested in determining whether rates of return and TFP growth have declined in
recent years compared to the long run trends.

Another contribution is to document what can happen to user costs when ex
post asset inflation rates are used in the user cost formula. Dale Jorgenson and his
coworkers have advocated the use of ex post inflation rates in a user cost formula and
so we call the resulting user costs “Jorgensonian”. We show that for many assets,
Jorgensonian user costs can be quite volatile and even negative at times which means
that they cannot be used in many contexts. We advocate the use of predicted asset
inflation rates in the user cost formula and we suggest a very simple moving average
method for forming these predicted asset inflation rates, which we implement and
compare with their Jorgensonian counterparts. We use Jorgensonian and predicted
user costs to construct alternative measures of capital services and TFP growth for
our two sectors of the US economy and, somewhat surprisingly, we find that there
was little difference in the resulting trend measures of TFP growth, even though
there are very large differences in the two sets of user costs.

An additional contribution is the examination of what happens to ex post rates
of return on assets employed and on TFP growth as we withdraw assets from the
asset base. This research has relevance for existing estimates of rates of return and
TFP growth since many productivity studies exclude land and inventories from their
asset base. We find that excluding these assets leads to exaggerated estimated rates
of return on the remaining assets (as could be expected) but the effects on estimates
of TFP growth are more variable. For our Sector 1, we found that excluding land and
inventories had little effect on measured TFP growth but in Sector 2, the exclusion
of land dramatically lowered measured TFP growth.

Finally, we use our data set to provide evidence on the debate regarding growing
inequality due to a falling labour share in income. We find that moving from value
added shares to (Hayekian) income shares provides stronger evidence of falling
labour shares, indicative of growing inequality, for both our sectors.

Our accounting framework is laid out in the following section and the empirical
results for the above measurement exercises follow in the subsequent sections.1

1The Appendix in Diewert and Fox (2016) explains in detail how we used the Integrated
Macroeconomic Accounts to construct our data set for the two sectors of the US economy.
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2 The Accounting Framework, User Costs and Rates
of Return on Assets

Following Jorgenson and Griliches (1967), the Total Factor Productivity growth of
a firm or industry of a sector is generally measured as an output index divided by
an input index. The basic ingredients that go into an index number formula are two
price vectors and two quantity vectors that list the output quantities and their prices
(or the input quantities and their prices) produced or used for the production unit for
the two observations being compared. Compiling prices and quantities for outputs
and nondurable inputs for each period or observation is generally straightforward,
but determining the flow price for a durable input is not straightforward. In order
to accomplish the latter task, we will use a model of production that is due to
the economist Hicks (1961) and the accountants Edwards and Bell (1961).2 In
each accounting period, the business unit combines the capital stocks and goods in
process that it has inherited from the previous period with “flow” inputs purchased in
the current period (such as labour, materials, services and additional durable inputs)
to produce current period “flow” outputs as well as end of the period depreciated
capital stock and inventory components which are regarded as outputs from the
perspective of the current period (but will be regarded as inputs from the perspective
of the next period). The model could be viewed as an Austrian model of production
in honour of the Austrian economist Böhm-Bawerk (1891) who viewed production
as an activity which used raw materials and labour to further process partly finished
goods into finally demanded goods.3 The beauty of this model is that a complex
intertemporal production model with many periods can be reduced to a sequence of
single period models.

Using this one period framework, we can now explain how user costs arise.
Consider a production unit which produces quantities qO of a single output, uses
qI units of an intermediate input, uses qL units of labour services during say period t
and purchases qK units of a capital stock at the beginning of the period. After using
the services of the capital input during period t, the production unit will have qK

u

units of used (depreciated) capital on hand at the end of period t. We suppose that
the production unit faces the positive prices PO

t, PI
t, PL

t for its output and variable
inputs during period t and it faces the beginning of period t price for units of the
capital input equal to PK

t and the price PK
t C 1u for (used) units of the depreciated

capital good at the end of period t. Finally, we assume that the production unit
has a one period financial opportunity cost of capital at the beginning of period t
(i.e., a beginning of the period nominal interest rate) equal to rt. We also assume
that the period t production possibilities set for this production unit is the set St.

2This model can be traced back in part to Walras (1954; 267–269) and Böhm-Bawerk (1891; 342)
and more explicitly to von Neumann (1945; 2).
3For more on this Austrian model of production and additional references to the literature, see
Diewert (1977; 108–111, 1980; 473, 2010, 2014a).
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Using all of these assumptions, the production unit’s (competitive) one period profit
maximization problem is the following constrained optimization problem:

max
qO;qI ;qL;qK ;q�

K

n
PO

tqO � PI
tqI � PL

tqL � PK
tqK C

�
1C rt

��1
PK

tC1uqK
�

W .qO; qI; qL; qK; qK
u/ 2 St

o
: (1)

Note that (1) assumes that all outputs and all variable inputs are paid for at the
beginning of period t, as is the payment for the initial capital stock, which is an
input. The depreciated capital stock qK

u is an output that is “produced” at the end of
period t and its end of period t market value, PK

t C 1uqK
u, is discounted by (1 C rt)

to account for the opportunity cost of tying up financial capital in the asset over
period t.

We make some additional assumptions at this point in order to further simplify
the constrained optimization problem defined by (1). First we assume that the capital
input depreciates at the constant geometric rate • per period. The geometric model
of depreciation has been advocated by Jorgenson (1989) and his coworkers and it
is currently used by the BEA to construct US business sector capital stocks. The
geometric model of depreciation implies that the depreciated quantity of end of
period capital, qK

u, is related to the corresponding beginning of the period capital
stock, qK, by the following equation4:

qK
u D .1 � •/ qK (2)

where • is the geometric rate of depreciation and satisfies the inequalities 0 � • < 1.
Let PK

t C 1 be the end of period t price of a unit of the capital stock that has the same
quality as the beginning of the period unit of the capital stock. Define the constant
quality asset inflation rate over period t, it, by the following equation:

1C it � PK
tC1=PK

t: (3)

Thus it is the constant quality inflation rate for the capital stock component from
the beginning of period t to the end of period t. We assume that the anticipated end
of period t price for the used beginning of the period capital stock is equal to the end
of period price for a constant quality unit of the capital stock, i.e., we assume that
PK

t C 1u D PK
t C 1 and thus we have the following equation:

PK
tC1u D

�
1C it

�
PK

t: (4)

4The assumption of Eq. (2) allows us to replace the initial production possibilities set St with a new
set St* which is the feasible set of (qO

t, qI,qL,qK).
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Our final additional assumption is that all revenues and variable input costs are
received and paid for at the end of period t instead of the beginning of period t. With
these changes, the producer’s constrained optimization problem becomes:

max
qO;qI ;qL;qK

n�
1C rt

��1 �
PO

tqO � PI
tqI � PL

tqL C
�
1C it

�
.1 � •/PK

tqK
	

�PK
tqK W .qO; qI; qL; qK/ 2 St�

o
: (5)

The terms involving qK (the beginning of the period capital stock) in the objective
function of (5) simplify to �fK

t � �.1C rt/
�1
Œ1C rt � .1C it/ .1 � •/� PK

t. Thus
fK

t is the discounted to the beginning of period t user cost of capital using the
geometric model of depreciation.5 However, instead of discounting end of period
cash flows to the beginning of period t, we could anti-discount or appreciate
beginning of the period cash flows to the end of period t.6 This can be accomplished
by multiplying the objective function in (5) by (1 C rt). If we do this, we obtain the
following one period profit maximization problem:

max
qO;qI ;qL;qK

n
PO

tqO � PI
tqI � PL

tqL � uK
tqK W .qO; qI; qL; qK/ 2 St�

o
(6)

where the end of period user cost of capital uK
t is defined as follows:

uK
t �

�
1C rt �

�
1C it

�
.1 � •/

	
PK

t D
�

rt � it C
�
1C it

�
•
	

PK
t: (7)

This formula for the user cost of capital was obtained by Christensen and Jor-
genson (1969; 302) for the geometric model of depreciation. It plays a fundamental
role in our analysis.7

5This simple discrete time derivation of a user cost (as the net cost of purchasing the durable good
at the beginning of the period and selling the depreciated good at an interest rate discounted price
at the end of the accounting period) was developed by Diewert (1974; 504, 1980; 472–473, 1992;
194). Simplified user cost formulae (the relationship between the rental price of a durable input
to its stock price) date back to Babbage (1835; 287) and to Walras (1954; 268–269). The original
version of Walras in French was published in 1874. The early industrial engineer, Church (1901;
907–909) also developed a simplified user cost formula.
6Assuming that all of the flow transactions within the accounting period are realized at the end
of each period is consistent with traditional accounting treatments of assets at the beginning and
end of the accounting period and the cash flows that occur during the period; see Peasnell (1981;
56). The idea of anti-discounting to the end of the period to form end of period user costs uK

t (as
opposed to the usual discounted to the beginning of period user costs fK

t) was explicitly suggested
by Diewert (2005a, b; 485). Anti-discounting is implicit in the derivation of the user cost of an
asset using the geometric model of depreciation that was made by Christensen and Jorgenson
(1969; 302).
7We have ignored tax complications in deriving (6). Any specific capital taxes (such as property
taxes on real estate assets) should be added to the user cost formula for the relevant assets. In
our empirical work, we were not able to obtain a breakdown of property taxes into land and
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There are two versions of the user cost formula uK
t defined by (7) that we will use

in this paper: (i) An ex post version that uses the actual beginning and end of period
constant quality asset prices, PK

t and PK
t C 1, in order to define the asset inflation rate

as it � (PK
t C 1/PK

t) � 1; and (ii) an ex ante version that uses the actual beginning
of period t constant quality asset price, PK

t, and an anticipated price for the asset at
the end of period t, PK

t C 1� , in order to define an anticipated asset inflation rate as
it

�

�
�
PK

tC1�=PK
t
�

� 1.
Jorgenson (1995, 1996) and his coworkers8 have endorsed the use of ex post user

costs, arguing that producers can perfectly anticipate future asset prices, and so we
refer to the user costs defined by (7) when ex post asset inflation rates are used in
the formula as Jorgensonian user costs. On the other hand, Diewert (1980; 476,
2005a; 492–493) and Hill and Hill (2003) endorsed the ex ante version for most
purposes, since these ex ante user costs will tend to be smoother than their ex post
counterparts and they will generally be closer to a rental or leasing price for the
asset.9 We will use our sectoral data on the US corporate and noncorporate financial
sector to compute capital services aggregates and the resulting rates of TFP growth
using both Jorgensonian and smoothed user costs that use predicted asset inflation
rates.

We now discuss the issues surrounding the choice for the cost of capital, rt, in the
user cost formula. There are many methods for choosing rt that have been suggested
in the literature but the methods break down into two classes: those that choose
exogenous estimates for rt and those that choose rt endogenously as the rate of return
which will just make the value of inputs used during the period (including capital
services) equal to the value of outputs produced during the accounting period. We
will use endogenous estimates for the cost of capital in this study.10

In order to explain how the cost of capital is determined endogenously, we need
to consider the case where the production unit uses N types of capital. Let PKn

t and
PKn

t C 1 be the beginning and end of period t prices for a new asset of type n, let 0
� •n < 1 be the associated geometric depreciation rate, let int � (PKn

t C 1/PKn
t) � 1

structure components and so property tax rates are missing in our user costs that we construct in the
following sections of this study. Business income taxes that fall on the gross return to the asset base
can be absorbed into the cost of capital, rt, so that rt can be interpreted as the before income tax
gross return to the asset base used by the production unit. For material on the construction of user
costs for more complex systems of business income taxation, see Diewert (1992) and Jorgenson
(1996).
8See in particular Jorgenson and Griliches (1967, 1972) and Christensen and Jorgenson (1969).
9Of course, the problem with using ex ante user costs is that there are many methods that could be
used to predict asset inflation rates and these different methods could generate very different user
costs. For empirical evidence on this point, see Harper, Berndt and Wood (1989), Diewert (2005a)
and Schreyer (2012).
10The problem with the exogenous method is that it is difficult to determine exactly the appropriate
external cost of financial capital. In particular, it is difficult to estimate the risk premium that is
associated with investing in a production unit that generates variable ex post rates of return on its
asset base over time. Nevertheless, the exogenous method is probably the preferred method from a
theoretical point of view. These issues are discussed more fully in Schreyer, Diewert and Harrison
(2005) and Schreyer (2009, 2012).
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be the associated period t ex post asset n inflation rate over period t and let rt be the
endogenously determined period t ex post rate of return on the asset base for the
production unit. The ex post end of period t user cost for asset n is defined as:

uKn
t �

�
1C rt �

�
1C in

t
�
.1 � •n/

	
PKn

t

D
�
rt � in

t C
�
1C in

t
�
•n
	

PKn
tI n D 1; : : : ;N: (8)

The period t technology set for the production unit is now the set of feasible
production vectors (qO,qI,qL,qK1,qK2,...,qKN) that belong to a period t production
possibilities set St*. Let qO

t, qI
t, qL

t denote the period t output produced, interme-
diate input used and labour used for the production unit and let (qK1

t,qK2
t,...,qKN

t)
denote the vector of beginning of period t capital stocks used by the production unit
during the period. The ex post rate of return on the period t asset base, rt, is defined
as the solution to the following (linear) equation which sets the value of period t
outputs equal to the value of period t inputs where capital inputs are valued at their
ex post user costs:

0 D PO
tqO

t � PI
tqI

t � PL
tqL

t �†nD1
N uKn

t qKn
t

D PO
tqO

t � PI
tqI

t � PL
tqL

t �†nD1
N
�
1C rt �

�
1C in

t
�
.1 � •n/

	
PKn

tqKn
t: (9)

The ex post cost of capital method for determining the opportunity cost of capital
that is based on solving Eq. (9) for rt is due to Jorgenson and Griliches (1967, 1972)
and Christensen and Jorgenson (1969). This method has been used frequently in the
regulatory context. The method can be applied to both a single enterprise as well
as to the economy as a whole. National statistical agencies that have programs that
measure the productivity of market sector industries generally use this method.11

From a national income accounting perspective, this method has the great advantage
for statistical agencies that it preserves the structure of the System of National
Accounts 1993 SNA 1993 (Eurostat et al., 1993); i.e., the resulting user cost values
just sum to the Gross Operating Surplus that was already in SNA 1993. Thus this
method can be viewed as a straightforward elaboration of the present system of
accounts which does not change its basic structure; it only provides a decomposition
of Gross Operating Surplus or Cash Flow into more basic components.12

11The Bureau of Labor Statistics in the U.S. was the first to introduce an official program to
measure Multifactor Productivity or Total Factor Productivity in 1983; see Dean and Harper
(2001). Other countries with TFP programs now include Canada, Australia, the UK and New
Zealand.
12This method for decomposing Gross Operating Surplus into explanatory factors (that are useful
when measuring TFP growth), was endorsed in the SNA 2008 (Eurostat et al., 2008); see Schreyer,
Diewert and Harrison (2005) for a discussion of the issues.
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In the following sections of this study, we will calculate these ex post rates of
return on assets for our Sectors 1 and 2 and also use the Jorgensonian user costs
defined by (8) when we calculate TFP growth rates for our two sectors.

The major disadvantage of using Jorgensonian user costs is their volatility and
their tendency to become negative for at least some periods when asset inflation rates
for particular assets (such as land) are high. These volatile and sometimes negative
user costs do not approximate corresponding asset rental prices (when they exist),
which do not exhibit the same volatility. Moreover, if these bouncing user costs are
used in production function studies where the underlying technology is estimated
using derived supply and demand functions, the resulting estimated parameters are
unlikely to be reliable. Finally, if statistical agencies report these volatile user costs
in their system of productivity accounts, users are likely to be skeptical of these
estimates. Thus there is a need to produce smoother user costs for a variety of
reasons.

Our approach to producing smoother user costs will be to use predicted asset
inflation rates, say int� , in the user cost formula instead of the actual ex post asset
inflation rates, int. The method for calculating these predicted asset inflation rates
will be explained more fully in subsequent sections but the predicted rates are
basically simple long run geometric averages of past ex post inflation rates. Once
the smoothed or ex ante asset inflation rate for asset n in period t, int� , has been
defined for n D 1,...,N, the ex ante or smoothed end of period t user cost for asset n
in period t, uKn

t� , is defined as:

uKn
t� �

h
1C rt� �

�
1C in

t�
�
.1 � •n/

i
PKn

t

D
h
rt� � in

t� C
�
1C in

t�
�
•n

i
PKn

tI n D 1; : : : ;N
(10)

where the smoothed balancing rate of return for period t, rt*, is defined as the
solution to the following equation (which is linear in rt*):

0 D PO
tqO

t � PI
tqI

t � PL
tqL

t �†nD1
N uKn

t� qKn
t

D PO
tqO

t � PI
tqI

t � PL
tqL

t �†nD1
N
h
1C rt� �

�
1C in

t�
�
.1 � •n/

i
PKn

tqKn
t:

(11)

The smoothed rate of return rt* can be viewed as a planned rate of return on assets
that is expected on the beginning of the period value of the capital stock used by the
production unit, provided expected asset inflation rates, the int� , are realized.13 The

13Period t predicted prices for output, intermediate input and labour, say PO
t� , PI

t� and PL
t� , should

be used in equation (11) in order to calculate the period t predicted rate of return, rt*, instead of the
actual ex post prices for output, intermediate input and labour, PO

t, PI
t and PL

t. However, it is the
usual convention in production theory to assume that actual ex post unit value prices for variable
outputs and inputs are equal to their predicted counterparts.
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smoothed user costs defined by (10) will also provide a decomposition of Gross
Operating Surplus into meaningful components. As we shall see, the ex ante user
costs are considerably smoother than their Jorgensonian counterparts.14 Note that
both of our user cost models use endogenous rates of return. One of the main
purposes of this study is to determine whether the choice of user cost formula affects
our estimates of TFP growth.

We conclude this section by discussing some of the problems associated with the
valuation of investments made by the production unit during period t and with the
sales of assets that might have occurred during period t. We discuss these issues in
the context of Eq. (9) but a similar discussion holds for the accounting framework
defined by Eq. (11).

Consider the second equation in (9). Upon noting that (1 C int)PKn
t is equal to

the end of period t price of a new unit of the nth capital stock component, PKn
t C 1,

(9) can be rewritten as follows:

0 D PO
tqO

t � PI
tqI

t � PL
tqL

t �†nD1
N
�
1C rt

�
PKn

tqKn
t

C†nD1
NPKn

tC1 .1 � •n/ qKn
t:

(12)

Recall our Austrian one period model of production where the beginning of
period t capital stocks are regarded as inputs and the end of period capital stocks
are regarded as outputs. The initial value of the capital stock, †n D 1

N PKn
tqKn

t, is
appreciated to end of period values by multiplying this initial capital stock value by
(1 C rt) so that the anti-discounted price for input asset n is (1 C rt)PKn

t. Looking
at (12), we see that the term �†n D 1

N(1 C rt)PKn
tqKn

t is (minus) the cost of the
beginning of period t capital stock at end of period prices. The other prices on the
right hand side of (12) are also expressed in end of period t prices. The first three
terms on the right hand side of (12) correspond to the value of outputs produced
during period t, less the value of intermediate and labour inputs used during the
period. The final set of terms, †n D 1

N PKn
t C 1(1 � •n)qKn

t, is the end of period t
value of the depreciated beginning of the period capital stock. Thus (1 � •n)qKn

t

is the depreciated quantity of the beginning of the period capital stock for asset n
that is left over at the end of period t. But this quantity is not the entire end of
period t capital stock for asset n: during period t, there may have been investments
in asset n. Suppose qGIn

t is the gross investment in asset n during period t (and

14There is a problem with interpreting these smoothed user costs as rental prices that might be
anticipated at the beginning of the accounting period. When there is a severe recession in the
economy in say period t, both rt defined by solving (9) and rt* defined by solving (11) will become
unusually low (or even negative) and it is unlikely that the resulting low (or negative) user costs
defined by (10) could be anticipated in practice. This limitation of our analysis should be kept in
mind, particularly when looking at the user costs for 2008. This suggests that exogenous estimates
for the cost of capital may be a more appropriate strategy for forming user costs that more closely
approximate rental prices. If an exogenous rt* is used, then equation (11) will not hold in general
and it will be necessary to include pure profits (or losses) as a balancing item in the SNA. However,
we do not pursue this line of inquiry in the present study.
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the average price that the statistical agency assigns to this investment is PGIn
t) for

n D 1,...,N. Thus the actual end of period t quantity of asset n that the production unit
has at its disposal is qKn

t C 1 � qGIn
t C (1 � •)qKn

t and according to our accounting
conventions, it should be valued at the end of period t asset price PKn

t C 1. Hence
the terms †N D 1

NPKn
t C 1qGIn

t seem to be missing from the right hand side of (12).
There is an explanation for this apparent puzzle.

Suppose asset n is a reproducible capital stock; i.e., an asset which is produced
internally by the production unit or purchased from another producer. In this case,
the value of the gross investment in asset n during period t, PGIn

tqGIn
t, will be part of

the period t value of output for the production unit; i.e., it should be included as part
of PO

tqO
t. This resolves the puzzle for reproducible capital stock components.15

Now suppose asset n is an inventory stock. External purchases of the inventory
stock will be part of intermediate input purchases, PI

tqI
t. Sales of the inventory item

will be reflected in the value of gross output, PO
tqO

t. But at the end of period t,
there will be a net change in inventory stocks equal to qKn

t C 1 � qKn
t. Hence it

appears that the term PKn
t C 1(qKn

t C 1 � qKn
t) is missing on the right hand side of

(12). Note that since asset n is an inventory item, we assume •n � 0 and so the
term PKn

t C 1(1 � •n)qKn
t D PKn

t C 1qKn
t is present on the right hand side of (12)

and adding PKn
t C 1(qKn

t C 1 � qKn
t) to this term gives us the end of period value

of inventory stocks, PKn
t C 1qKn

t C 1, which is the right answer from the perspec-
tive of the Austrian approach to production theory. But statistical agencies treat
inventory change over a period as part of sectoral output and so the missing term
PKn

t C 1(qKn
t C 1 � qKn

t) should be included as a part of the value of gross output,
PO

tqO
t.16 This resolves the puzzle for inventory components of the capital stock.

Suppose asset n is a type of land asset. As was the case for inventory items, we
assume that the land depreciation rate is •n D 0 and again, we find that the term
PKn

t C 1(qKn
t C 1 � qKn

t) is missing on the right hand side of (12). This term now
represents the value of net purchases of land of type n over period t, qKn

t C 1 � qKn
t,

valued at end of period t price for this type of land, PKn
t C 1. Statistical agencies

typically do not treat land as an output or an intermediate input so in this case, the net
quantity of land purchases over period t, valued at end of period land prices, will not
appear as part of the gross output (if land was sold during period t) or intermediate
input of the sector (if land was purchased during period t). Thus we need to treat

15However, to make the accounting precisely consistent with the Austrian model of production, we
require that the price used to value gross investments in asset n during period, PGIn

t, be equal to
the end of period t imputed value for a unit of the nth capital stock. Setting PKn

t C 1 D PGIn
t will

ensure consistency. In our empirical work, we used the BEA end of period price for reproducible
units of the capital stock which may be slightly different from the corresponding investment price
for the asset.
16The BEA in particular does include the value of inventory change as part of the gross output of
an industry. However, they may not value the change in inventories at end of period prices of the
inventory item and so again there may be a slight inconsistency in our empirical work due to this
pricing difference. For a more complete treatment of the accounting problems associated with the
treatment of inventories in the Austrian model of production, see Diewert (2005b).
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these net purchases as an input cost item, so �PKn
t C 1(qKn

t C 1 � qKn
t) should be

added to the right hand side of (12), but this net cost value is offset by the increase
in the value of land holdings at the end of the period, so �PKn

t C 1(qKn
t C 1 � qKn

t)
should be added to the right hand side of (12). These two entries cancel and so this
resolves the puzzle for the land components of the capital stock.17

Real monetary balances are not regarded as productive inputs by national income
accountants. However, we treat real monetary balances as being necessary for
production.18 Our accounting treatment of real balances is entirely analogous to
our treatment of land and, as was the case with land, the accounting decomposition
given by (9) or (12) is consistent with our Austrian theory of production.

Equations (9) and (12) provided an accounting treatment of production using ex
post asset prices. As mentioned above, it is possible to build a similar accounting
treatment of production using ex ante asset prices; i.e., instead of using Eq. (9)
as our starting point for our accounting decomposition, we could have used Eq.
(11). The consistency of Eq. (11) with the Austrian view of production is similar to
our analysis of the consistency of Eqs. (9) and (12) with the Austrian approach to
production theory.

We conclude this section with an important observation. Although we do not
think that the Jorgensonian ex post user costs are useful in all contexts, we do think
that they are the right user costs to use in the context of finding the ex post rate
of return on assets for a production unit. Ex post rates of return are extremely
important indicators of economic efficiency (along with TFP growth rates) and it
is important to measure these rates of return accurately to guide the allocation of
resources between sectors.19

Before we use the data that are described in the Appendix to construct ex post
rates of return on assets and TFP growth rates, in the following section we describe
the use of our data base to construct estimates for real wages and labour productivity.

17Suppose some land is purchased during period t at the price PKn
t� where this purchase price is

not equal to the end of period price of land, PKn
t C 1. The quantity of new land purchased will be

equal to qKn
t C 1 � qKn

t. Then the term �PKn
t�
�
qKn

tC1 � qKn
t
�

should be added to the right hand
side of (12) as a purchase of a primary input (a cost item) and at the same time, we should add the
term PKn

t C 1(qKn
t C 1 � qKn

t) to the right hand side of (12) to value this land purchase at the end
of period t price of this type of land (a revenue item). Thus in principle, we should add the term�

PKn
tC1 � PKn

t�
� �

qKn
tC1 � qKn

t
�

to the right hand side of (12). If some land is sold during the

period at the price PKn
t� , then qKn

t C 1 � qKn
t is negative and is equal to minus the quantity sold.

In this case, we should still add the term
�

PKn
tC1 � PKn

t�
� �

qKn
tC1 � qKn

t
�

to the right hand side

of (12) to make the accounting consistent with our Austrian model of production. In our empirical
work, we did not make these adjustments to the accounting identity given by (12); we simply
assumed that PKn

t� is equal to our end of period price for the asset, PKn
t C 1.

18This is consistent with the cash-in-advance, or vending machine model of the demand for money
consider by Fischer (1974). For a more extensive discussion of the issues surrounding money in
the production function, see Diewert and Fox (2015).
19See Harberger (1998) on the importance of the rate of return on assets.
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3 Real Wages and Labour Productivity Growth
in Sectors 1 and 2

In this section, we draw on our data base in order to calculate real wages and
labour productivity for the two sectors.20 We start with the data for Sector 1, the
Nonfinancial Corporate Sector of the US economy.

Value Added of Sector 1 in year t, VVA1
t (in billions of dollars), and the

corresponding year t price index, PVA1
t are listed in Table 1. Define the year t

real value added of Sector 1 as QVA1
t � VVA1

t/PVA1
t for t D 1960,...,2014. The price

and quantity of employee labour in Sector 1, are PL1
t and QL1

t and define the value
of labour input in Sector 1 for year t as VL1

t � PL1
tQL1

t. The labour series VL1
t and

PL1
t are also listed in Table 1. The value of capital services in Sector 1 for year t,

VKS1
t, can be defined residually by subtracting the value of labour input from value

added; i.e., VKS1
t � VVA1

t � VL1
t. The shares of labour and capital services in value

added are defined as sL1
t � VL1

t/VVA1
t and sKS1

t � VKS1
t/VVA1

t. These Sector 1
value added shares along with the value of capital services are also listed in Table 1.

A beginning of year t price index for personal consumption expenditures, PC
t,

for t D 1960–2015, is converted to a centered consumer price index for year t,
PC

t� , by averaging PC
t and PC

t C 1; i.e., define PC
t� � .1=2/

�
PC

t C PC
tC1
�

for
t D 1960,...,2014.21 This series, along with the wage rate index PL1

t, was used to
define the Sector 1 real wage for year t, defined as follows:

RW1
t � PL1

t=PC
t� I t D 1960; : : : ; 2014: (13)

Finally, Sector 1 Labour Productivity in year t (relative to the level in 1960),
ProdL1

t, is defined as follows (and is listed in Table 1):

ProdL1t �
�
QVA1

t=QL1
t
	
=
�
QVA1

1960=QVA1
1960

	
I t D 1960; : : : ; 2014: (14)

The price of (value added) output in Sector 1 grew 4.56 fold over the sample
period while employee wages grew 13.95 fold. The geometric rates of growth were
3.61% per year for output and 5.00% per year for wages. Real wages grew 2.25 fold
over the sample period while labour productivity grew 3.41 fold (the corresponding
geometric rates of growth were 1.51% and 2.30% per year). The sample average
labour and capital services shares were 68.6% and 31.4% respectively. The upward
trend in the capital services share is noticeable in Fig. 1 which plots the series sL1

t,
sKS1

t, PVA1
t, RW1

t and ProdL1
t. Note that the capital services share finishes up at

36.7%, well above its long term average of 31.4%. It can be seen that real wages
have grown very slowly since 2007. Note also that real wage growth was fairly
similar to labour productivity growth until 1982 and then labour productivity grew
substantially faster than real wages. Finally, it can be seen that labour productivity

20This data base is described in more detail in the Appendix of Diewert and Fox (2016).
21This series was normalized to equal 1 in 1960. Note that the Sector 1 wage rate series PL1

t is also
normalized to equal 1 in 1960.
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Table 1 Sector 1 value added VVA1
t, value of labour input VL1

t, value of capital services VKS1
t,

value added shares of labour and capital services, sL1
t and sKS1

t . price of labour PL1
t, real wage

RW1
t and labour productivity ProdL1

t for year t

Year VVA1
t VL1

t VKS1
t sL1

t sKS1
t PVA1

t PL1
t RW1

t ProdL1 t

1960 255.9 180.4 75.5 0.7050 0.2950 1.0000 1.0000 1.0000 1.0000
1961 262.8 184.5 78.3 0.7021 0.2979 1.0030 1.0290 1.0181 1.0301
1962 286.9 199.3 87.6 0.6947 0.3053 1.0095 1.0725 1.0505 1.0781
1963 306.1 210.1 96.0 0.6864 0.3136 1.0145 1.1094 1.0725 1.1231
1964 330.6 225.7 104.9 0.6827 0.3173 1.0239 1.1640 1.1104 1.1739
1965 364.7 245.4 119.3 0.6729 0.3271 1.0419 1.2085 1.1364 1.2152
1966 403.1 272.9 130.2 0.6770 0.3230 1.0723 1.2792 1.1753 1.2422
1967 423.9 291.1 132.8 0.6867 0.3133 1.0962 1.3501 1.2058 1.2643
1968 465.4 320.9 144.5 0.6895 0.3105 1.1302 1.4519 1.2537 1.3134
1969 504.4 356.1 148.3 0.7060 0.2940 1.1779 1.5545 1.2842 1.3178
1970 518.6 374.5 144.1 0.7221 0.2779 1.2216 1.6690 1.3173 1.3337
1971 558.5 396.2 162.3 0.7094 0.2906 1.2657 1.7739 1.3441 1.3927
1972 622.2 439.9 182.3 0.7070 0.2930 1.3108 1.8849 1.3791 1.4339
1973 698.7 495.1 203.6 0.7086 0.2914 1.3876 2.0157 1.4004 1.4452
1974 755.7 542.9 212.8 0.7184 0.2816 1.5239 2.2140 1.4058 1.4256
1975 818.1 569.0 249.1 0.6955 0.3045 1.6735 2.4284 1.4139 1.4708
1976 928.1 640.0 288.1 0.6896 0.3104 1.7549 2.6233 1.4415 1.5282
1977 1052.9 723.3 329.6 0.6870 0.3130 1.8543 2.8320 1.4697 1.5673
1978 1201.4 829.5 371.9 0.6904 0.3096 1.9868 3.0722 1.4886 1.5788
1979 1341.6 942.4 399.2 0.7024 0.2976 2.1497 3.3668 1.5002 1.5718
1980 1452.7 1030.7 422.0 0.7095 0.2905 2.3508 3.7310 1.5079 1.5770
1981 1641.7 1139.8 501.9 0.6943 0.3057 2.5530 4.0746 1.5100 1.6206
1982 1701.4 1183.3 518.1 0.6955 0.3045 2.7049 4.3920 1.5317 1.6459
1983 1817.5 1250.1 567.4 0.6878 0.3122 2.7546 4.5656 1.5253 1.6988
1984 2040.5 1388.2 652.3 0.6803 0.3197 2.8397 4.7838 1.5419 1.7456
1985 2172.9 1490.1 682.8 0.6858 0.3142 2.8900 5.0489 1.5719 1.7959
1986 2260.7 1578.2 682.5 0.6981 0.3019 2.9303 5.3247 1.6154 1.8349
1987 2425.7 1685.5 740.2 0.6949 0.3051 2.9859 5.5326 1.6337 1.8799
1988 2640.7 1825.3 815.4 0.6912 0.3088 3.0624 5.8270 1.6549 1.9406
1989 2772.6 1934.8 837.8 0.6978 0.3022 3.1554 6.0175 1.6431 1.9265
1990 2897.7 2037.5 860.2 0.7031 0.2969 3.2507 6.3362 1.6568 1.9542
1991 2946.1 2071.1 875.0 0.7030 0.2970 3.3222 6.6568 1.6788 2.0093
1992 3074.6 2188.7 885.9 0.7119 0.2881 3.3645 6.9976 1.7209 2.0597
1993 3216.0 2271.0 945.0 0.7062 0.2938 3.4346 7.1064 1.6915 2.0656
1994 3465.8 2398.7 1067.1 0.6921 0.3079 3.4868 7.2530 1.6773 2.1188
1995 3682.7 2524.6 1158.1 0.6855 0.3145 3.5344 7.3930 1.6759 2.1510
1996 3924.4 2667.7 1256.7 0.6798 0.3202 3.5578 7.6890 1.7111 2.2413
1997 4219.5 2862.6 1356.9 0.6784 0.3216 3.5860 7.9603 1.7545 2.3067
1998 4470.8 3093.8 1377.0 0.6920 0.3080 3.5955 8.4875 1.8610 2.4048
1999 4745.3 3310.0 1435.3 0.6975 0.3025 3.6193 8.8505 1.9151 2.4714

(continued)
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Table 1 (continued)

Year VVA1
t VL1

t VKS1
t sL1

t sKS1
t PVA1

t PL1
t RW1

t ProdL1 t

2000 5063.1 3597.3 1465.8 0.7105 0.2895 3.6610 9.4524 2.0011 2.5618
2001 5026.2 3584.6 1441.6 0.7132 0.2868 3.7132 9.8280 2.0421 2.6163
2002 5066.0 3542.0 1524.0 0.6992 0.3008 3.7109 10.0373 2.0525 2.7272
2003 5228.7 3595.7 1633.0 0.6877 0.3123 3.7486 10.4012 2.0878 2.8444
2004 5577.0 3762.8 1814.2 0.6747 0.3253 3.8262 10.8273 2.1235 2.9567
2005 5958.9 3930.3 2028.6 0.6596 0.3404 3.9577 11.2147 2.1357 3.0287
2006 6377.9 4129.3 2248.6 0.6474 0.3526 4.0789 11.6165 2.1598 3.1010
2007 6571.4 4305.3 2266.1 0.6552 0.3448 4.1610 12.0778 2.1894 3.1233
2008 6624.1 4358.0 2266.1 0.6579 0.3421 4.2492 12.4226 2.1993 3.1326
2009 6253.9 4088.4 2165.5 0.6537 0.3463 4.3182 12.6545 2.2109 3.1601
2010 6605.7 4158.7 2447.0 0.6296 0.3704 4.3216 12.8807 2.2228 3.3375
2011 6921.7 4363.4 2558.3 0.6304 0.3696 4.4176 13.1669 2.2282 3.3331
2012 7321.5 4593.3 2728.2 0.6274 0.3726 4.4916 13.4816 2.2322 3.3727
2013 7591.9 4747.4 2844.5 0.6253 0.3747 4.5205 13.6248 2.2228 3.3978
2014 7895.8 4995.8 2900.0 0.6327 0.3673 4.5568 13.9548 2.2503 3.4121

Note: All values are in billions of dollars

Fig. 1 Sector 1 labour and capital shares of value added, output price, real wage and labour
productivity

in Sector 1 is still growing fairly steadily since 2006 at the geometric average rate
of 1.20% per year but this rate is lower than the historical average rate of 1.51% per
year.
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We turn our attention to Sector 2, the Nonfinancial Noncorporate Sector of the
US economy. Value Added of Sector 2 in year t, VVA2

t (in billions of dollars) and
the corresponding year t price index, PVA2

t are listed in Table 2. Define the year
t real value added of Sector 2 as QVA2

t � VVA2
t/PVA2

t for t D 1960,...,2014. The
value and price of labour in Sector 2, VL2

t and PL2
t are listed in Table 2. The

value of capital services in Sector 2 for year t, VKS2
t, can be defined residually by

subtracting the value of labour input from value added; i.e., VKS2
t � VVA2

t � VL2
t.

The shares of labour and capital services in value added for Sector 2 are defined
as sL2

t � VL2
t/VVA2

t and sKS2
t � VKS2

t/VVA2
t. These Sector 2 value added shares

along with the value of capital services are also listed in Table 2.
Again, we use the consumption price series PC

t� along with the Sector 2 wage
rate index PL2

t to define the Sector 2 real wage for year t, RW2
t � PL2

t=PC
t� for

t D 1960,...,2014. This series also appears in Table 2.
Finally, Sector 2 Labour Productivity of Sector 1 in year t (relative to the level in

1960), ProdL2
t, is defined as follows (and listed in Table 2):

ProdL2t �
�
QVA2

t=QL2
t
	
=
�
QVA2

1960=QL2
1960

	
I t D 1960; : : : 2014: (15)

The price of (value added) output in Sector 2 grew 7.71 fold over the sample
period (much higher than the Sector 1 price growth of 4.56 fold) while wages grew
12.67 fold. The geometric rates of growth were 3.61% per year for real value added,
3.86% per year for the value added deflator and 4.81% per year for wages. Real
wages grew 2.04 fold over the sample period while labour productivity grew 2.36
fold, much lower than the 3.41 fold of labour productivity in Sector 1. The long run
average geometric rates of growth of real wages and labour productivity for Sector
2 were 1.33% and 1.61% per year while the corresponding growth rates for Sector
1 were 1.51% and 2.30% per year. Thus real wage growth and labour productivity
growth in Sector 2 were substantially below their Sector 1 counterparts. The sample
average labour and capital services shares in Sector 2 were 56.7% and 43.3% (68.6%
and 31.4% in Sector 1). It can be seen that Sector 2 is much more capital intensive
than Sector 1. The upward trend in the capital services share is very noticeable in
Fig. 2, which plots the series sL2

t, sKS2
t, PVA2

t, RW2
t and ProdLL2

t. Note that the
capital services share finishes up at 50.4%, well above its long term average of
43.3%. It can be seen that real wages have grown very slowly since 2001. Note
also that real wage growth stagnated after 2007 while labour productivity continued
to grow. It can be seen that the structure of production is entirely different in the
noncorporate nonfinancial sector as compared to the corporate nonfinancial sector.

In the following section, we will calculate price and quantity indexes for the
capital stocks used in both sectors as well as the corresponding real and nominal
capital output ratios for the two sectors.
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Table 2 Sector 2 value added VVA2
t, value of labour input VL2

t, value of capital services VKS2
t,

value added shares of labour and capital services, sL2
t and sKS2

t. price of labour PL2
t, real wage

RW2
t and labour productivity ProdL2

t for year t

Year VVA2
t VL2

t VKS2
t sL2

t sKS2
t PVA2t PL2

t RW2
t ProdL2 t

1960 107.4 76.6 30.8 0.7135 0.2865 1.0000 1.0000 1.0000 1.0000
1961 110.2 76.8 33.4 0.6967 0.3033 1.0161 1.0297 1.0187 1.0378
1962 114.2 78.4 35.8 0.6864 0.3136 1.0306 1.0720 1.0500 1.0811
1963 117.1 79.2 37.9 0.6767 0.3233 1.0424 1.1087 1.0719 1.1216
1964 123.0 82.9 40.1 0.6737 0.3263 1.0599 1.1635 1.1100 1.1626
1965 130.0 84.7 45.3 0.6512 0.3488 1.0810 1.2053 1.1334 1.2216
1966 138.5 87.5 51.0 0.6318 0.3682 1.1142 1.2675 1.1646 1.2848
1967 142.1 89.4 52.7 0.6291 0.3709 1.1494 1.3281 1.1862 1.3104
1968 149.8 93.5 56.3 0.6241 0.3759 1.2014 1.4232 1.2289 1.3543
1969 157.8 99.1 58.7 0.6279 0.3721 1.2540 1.5223 1.2577 1.3795
1970 163.4 102.8 60.6 0.6294 0.3706 1.3032 1.6246 1.2823 1.4131
1971 173.1 106.8 66.3 0.6172 0.3828 1.3646 1.7248 1.3069 1.4613
1972 191.2 113.2 78.0 0.5919 0.4081 1.4302 1.8305 1.3393 1.5429
1973 223.5 124.1 99.4 0.5553 0.4447 1.4928 1.9487 1.3539 1.6773
1974 235.2 135.6 99.6 0.5763 0.4237 1.6334 2.1193 1.3456 1.6064
1975 252.0 144.1 107.9 0.5718 0.4282 1.8018 2.3053 1.3423 1.5966
1976 275.6 155.4 120.2 0.5638 0.4362 1.9586 2.4811 1.3634 1.6031
1977 300.7 170.1 130.6 0.5655 0.4345 2.1231 2.6649 1.3830 1.5835
1978 340.7 189.5 151.2 0.5562 0.4438 2.2748 2.8772 1.3941 1.6224
1979 380.3 211.6 168.7 0.5565 0.4435 2.5432 3.1382 1.3983 1.5821
1980 399.8 233.2 166.6 0.5832 0.4168 2.7131 3.4595 1.3982 1.5599
1981 435.5 253.4 182.1 0.5819 0.4181 2.9761 3.7703 1.3972 1.5534
1982 454.5 272.6 181.9 0.5998 0.4002 3.1681 4.0618 1.4166 1.5252
1983 480.7 290.0 190.7 0.6032 0.3968 3.4070 4.2399 1.4165 1.4720
1984 556.3 314.0 242.3 0.5644 0.4356 3.4506 4.4382 1.4305 1.6259
1985 600.4 330.0 270.4 0.5497 0.4503 3.6182 4.6619 1.4514 1.6725
1986 636.3 346.1 290.2 0.5439 0.4561 3.6821 4.8851 1.4821 1.7404
1987 667.5 365.3 302.2 0.5472 0.4528 3.8627 5.0870 1.5021 1.7171
1988 727.1 390.9 336.2 0.5376 0.4624 4.0499 5.3541 1.5206 1.7546
1989 774.1 413.1 361.0 0.5337 0.4663 4.2668 5.5205 1.5074 1.7298
1990 807.5 437.7 369.8 0.5420 0.4580 4.4449 5.7961 1.5155 1.7165
1991 815.0 458.3 356.7 0.5623 0.4377 4.6295 6.0487 1.5254 1.6579
1992 869.8 471.9 397.9 0.5425 0.4575 4.7022 6.3684 1.5661 1.7813
1993 903.5 501.4 402.1 0.5550 0.4450 4.8129 6.4767 1.5417 1.7301
1994 951.2 522.6 428.6 0.5494 0.4506 4.8685 6.6155 1.5299 1.7648
1995 992.0 541.2 450.8 0.5456 0.4544 5.0990 6.7770 1.5363 1.7381
1996 1069.5 566.7 502.8 0.5299 0.4701 5.3611 7.0498 1.5688 1.7707
1997 1136.9 601.8 535.1 0.5294 0.4706 5.5402 7.3528 1.6206 1.7889
1998 1229.4 637.3 592.1 0.5184 0.4816 5.6619 7.7929 1.7087 1.8943
1999 1312.3 662.7 649.6 0.5050 0.4950 5.7664 8.1347 1.7602 1.9933

(continued)
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Table 2 (continued)

Year VVA2
t VL2

t VKS2
t sL2

t sKS2
t PVA2t PL2

t RW2
t ProdL2 t

2000 1420.7 712.9 707.8 0.5018 0.4982 6.0680 8.6602 1.8334 2.0293
2001 1637.1 830.6 806.5 0.5073 0.4927 6.3365 8.9251 1.8545 1.9809
2002 1707.0 861.7 845.3 0.5048 0.4952 6.3650 9.0834 1.8575 2.0170
2003 1800.5 934.1 866.4 0.5188 0.4812 6.4184 9.3894 1.8847 2.0118
2004 1953.7 1023.3 930.4 0.5238 0.4762 6.5464 9.7942 1.9209 2.0381
2005 2088.6 1102.8 985.8 0.5280 0.4720 6.6842 10.1199 1.9272 2.0460
2006 2293.1 1210.0 1083.1 0.5277 0.4723 6.8051 10.5245 1.9567 2.0912
2007 2356.3 1303.0 1053.3 0.5530 0.4470 6.9719 10.9629 1.9872 2.0289
2008 2474.5 1315.8 1158.7 0.5317 0.4683 6.9994 11.2585 1.9932 2.1583
2009 2321.0 1271.1 1049.9 0.5477 0.4523 6.8638 11.4066 1.9929 2.1651
2010 2395.5 1291.9 1103.6 0.5393 0.4607 7.0960 11.6811 2.0158 2.1779
2011 2592.9 1324.2 1268.7 0.5107 0.4893 7.2228 11.9747 2.0264 2.3162
2012 2742.3 1386.7 1355.6 0.5057 0.4943 7.3719 12.2744 2.0323 2.3493
2013 2839.8 1410.8 1429.0 0.4968 0.5032 7.5334 12.3977 2.0226 2.3635
2014 2966.3 1470.3 1496.0 0.4957 0.5043 7.7110 12.6666 2.0426 2.3645

Note: All values are in billions of dollars

Fig. 2 Sector 2 labour and capital shares of value added, output price, real wage and labour
productivity

4 Capital Stocks and Capital Output Ratios
for Sectors 1 and 2

We constructed chained Fisher capital stock price and quantity indexes for Sector
1 using price and quantity information for each of the nine assets that are used as
inputs, which are as follows: 1 D Equipment; 2 D Intellectual property products;
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3 D Nonresidential structures; 4 D Residential structures; 5 D Residential land;
6 D Farm land; 7 D Commercial land; 8 D Beginning of year inventory stocks, and
9 D Beginning of the year real holdings of currency and deposits.

Denote the resulting period t price and quantity indexes as PK1
t and QK1

t for
t D 1960,...,2015. Define the Sector 1 capital stock value at the beginning of year
t as VK1

t � PK1
tQK1

t. Now define the year t nominal and real capital output ratios
as VK/O, 1

t � VK1
t/VVA1

t and QK/O, 1
t � QK1

t/QVA1
t. VK1

t, QK1
t, PK1

t, VK/O, 1
t and

QK/O, 1
t are listed in Table 3.

It can be seen that the Sector 1 aggregate capital stock price PK1
t increased 7.36

fold over the sample period. The average geometric growth rates for the price and
quantity of the Sector 1 capital stock were 3.70% per year and 2.74% per year
respectively. The real capital output ratio, QK/O, 1

t, declined more or less steadily
from 2.47 in 1960 to 1.59 in 2014. The nominal capital output ratio, VK/O, 1

t, did not
decline nearly as much due to increasing land prices.22 The nominal capital output
ratio started at 2.47 and ended up at 2.52 with many fluctuations in between (VK/O, 1

t

had a low of 2.00 in 1966 and a high of 2.80 in 2009).
We similarly constructed chained Fisher capital stock price and quantity indexes

for Sector 2 using the price and quantity information for each of the fourteen
assets that are used as inputs,23 which are as follows: 1 D Equipment held by sole
proprietors; 2 D Equipment held by partners; 3 D Equipment held by cooperatives;
4 D Intellectual property products held by sole proprietors; 5 D Intellectual
property products held by partners; 6 D Nonresidential structures held by sole
proprietors; 7 D Nonresidential structures held by partners; 8 D Nonresidential
structures held by cooperatives; 9 D Residential structures held by the noncorporate
nonfinancial sector; 10 D Residential land held by the noncorporate nonfinancial
sector; 11 D Farm land held by the noncorporate nonfinancial sector; 12 D Com-
mercial land held by noncorporate nonfinancial sector; 13 D Beginning of the year
inventories held by the noncorporate nonfinancial sector, and 14 D Beginning of the
year real holdings of currency and deposits by noncorporate nonfinancial sector.

Denote the resulting beginning of period t price and quantity indexes as PK2
t and

QK2
t for t D 1960,...,2015. Define the Sector 2 capital stock value at the beginning

of year t as VK2
t � PK2

tQK2
t. Now define the year t nominal and real capital output

ratios for Sector 2 as VK/O, 2
t � VK2

t/VVA2
t and QK/O, 2

t � QK2
t/QVA2

t. VK2
t, QK2

t,
PK2

t, VK/O, 2
t and QK/O, 2

t are listed in Table 3.

22We constructed chained Fisher land price and quantity indexes for Sector 1 and then compared
the value of land to value added and the quantity of land to the quantity of output. The nominal land
to output ratio went from 36.7% in 1960 to a peak of 51.2% in 2006, declined to 22.0% in 2012
and finished up in 2014 at 30.4%. The corresponding real land to output ratio declined steadily
from 36.7% in 1960 to 9.8% in 2014. The inclusion or exclusion of land from the productive asset
base does make a significant difference to capital output ratios.
23The BEA Fixed Asset Tables are organized somewhat differently for the Nonfinancial Noncor-
porate Sector as compared to Sector 1, with a decomposition of Sector 2 into subsectors. This led
us to organize the capital stock data for Sector 2 into fourteen rather than nine components.
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Table 3 Capital stock values, prices and quantities and nominal and real capital output ratios for
Sectors 1 and 2

Year VK1
t QK1

t PK1
t VK=O;1

t QK=O;1
t VK2

t QK2
t PK2

t VK=O;2
t QK=O;2

t

1960 633.4 633.4 1.0000 2.4752 2.4752 368.9 368.9 1.0000 3.4345 3.4345
1961 641.2 650.0 0.9865 2.4399 2.4807 373.3 371.4 1.0049 3.3872 3.4248
1962 662.5 668.8 0.9906 2.3092 2.3533 385.6 376.4 1.0244 3.3762 3.3969
1963 689.9 691.8 0.9972 2.2539 2.2930 402.2 382.0 1.0530 3.4348 3.4002
1964 712.8 713.3 0.9993 2.1561 2.2090 411.5 384.3 1.0707 3.3455 3.3116
1965 750.5 739.3 1.0151 2.0579 2.1122 422.5 389.6 1.0844 3.2499 3.2397
1966 804.3 773.4 1.0400 1.9953 2.0572 445.9 399.5 1.1162 3.2197 3.2139
1967 874.7 816.8 1.0709 2.0634 2.1124 472.1 407.0 1.1601 3.3222 3.2916
1968 944.1 858.8 1.0994 2.0286 2.0855 500.5 412.4 1.2136 3.3409 3.3074
1969 1028.6 895.4 1.1487 2.0393 2.0909 548.1 422.7 1.2967 3.4733 3.3591
1970 1131.9 931.5 1.2152 2.1826 2.1942 614.3 436.1 1.4086 3.7596 3.4784
1971 1233.1 961.7 1.2823 2.2079 2.1794 675.1 445.3 1.5161 3.8998 3.5101
1972 1342.0 989.3 1.3565 2.1569 2.0841 746.7 459.5 1.6249 3.9052 3.4373
1973 1462.6 1020.1 1.4338 2.0933 2.0259 838.5 476.2 1.7609 3.7515 3.1803
1974 1663.0 1056.7 1.5738 2.2006 2.1309 1005.7 495.0 2.0320 4.2761 3.4374
1975 2016.4 1109.2 1.8180 2.4647 2.2689 1183.2 500.6 2.3634 4.6952 3.5795
1976 2216.9 1130.3 1.9613 2.3886 2.1373 1342.6 506.9 2.6486 4.8716 3.6025
1977 2449.5 1166.5 2.0999 2.3264 2.0544 1497.6 509.0 2.9422 4.9803 3.5939
1978 2725.9 1206.9 2.2587 2.2689 1.9958 1705.4 515.1 3.3106 5.0057 3.4396
1979 3098.1 1249.0 2.4806 2.3093 2.0013 2007.9 527.2 3.8085 5.2798 3.5257
1980 3569.1 1296.1 2.7537 2.4569 2.0974 2296.6 538.1 4.2683 5.7445 3.6514
1981 4058.3 1331.1 3.0488 2.4720 2.0700 2488.8 544.4 4.5719 5.7149 3.7201
1982 4528.4 1377.0 3.2886 2.6616 2.1892 2647.9 554.8 4.7728 5.8260 3.8671
1983 4779.9 1405.0 3.4020 2.6299 2.1295 2736.8 565.4 4.8408 5.6934 4.0070
1984 4966.4 1436.6 3.4570 2.4339 1.9993 2866.2 570.4 5.0250 5.1523 3.5380
1985 5280.1 1493.8 3.5346 2.4300 1.9868 2962.8 582.3 5.0879 4.9347 3.5092
1986 5540.5 1546.5 3.5826 2.4508 2.0046 3134.5 597.4 5.2473 4.9262 3.4568
1987 5742.8 1584.8 3.6237 2.3675 1.9508 3314.2 603.7 5.4899 4.9651 3.4934
1988 6041.1 1614.4 3.7420 2.2877 1.8722 3522.6 609.2 5.7828 4.8448 3.3930
1989 6434.3 1643.3 3.9156 2.3207 1.8701 3777.3 616.6 6.1259 4.8796 3.3988
1990 6749.5 1674.7 4.0303 2.3293 1.8787 4005.2 622.3 6.4360 4.9600 3.4255
1991 7057.4 1707.1 4.1343 2.3955 1.9250 4108.2 627.4 6.5480 5.0407 3.5639
1992 7229.2 1732.9 4.1716 2.3513 1.8963 4206.9 626.7 6.7131 4.8367 3.3879
1993 7421.0 1754.3 4.2302 2.3075 1.8735 4256.2 625.6 6.8033 4.7108 3.3327
1994 7775.5 1793.9 4.3345 2.2435 1.8047 4388.0 626.2 7.0077 4.6132 3.2049
1995 8173.3 1842.8 4.4353 2.2194 1.7686 4487.7 629.3 7.1314 4.5239 3.2346
1996 8648.2 1895.7 4.5619 2.2037 1.7187 4688.9 635.2 7.3817 4.3842 3.1841
1997 9059.0 1956.6 4.6299 2.1469 1.6629 4897.0 647.3 7.5658 4.3073 3.1541
1998 9577.5 2032.2 4.7129 2.1422 1.6343 5191.2 658.6 7.8816 4.2225 3.0334
1999 10131.9 2110.4 4.8009 2.1352 1.6096 5607.1 669.6 8.3735 4.2727 2.9424
2000 10861.3 2200.2 4.9366 2.1452 1.5909 6082.2 682.9 8.9060 4.2811 2.9169
2001 11758.9 2291.5 5.1316 2.3395 1.6929 6733.2 701.0 9.6050 4.1129 2.7133

(continued)
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Table 3 (continued)

Year VK1
t QK1

t PK1
t VK=O;1

t QK=O;1
t VK2

t QK2
t PK2

t VK=O;2
t QK=O;2

t

2002 12238.7 2324.1 5.2661 2.4159 1.7024 7256.3 709.3 10.230 4.2509 2.6448
2003 12832.2 2348.3 5.4645 2.4542 1.6836 7847.9 710.4 11.048 4.3588 2.5323
2004 13575.4 2393.6 5.6715 2.4342 1.6422 8495.9 715.8 11.869 4.3486 2.3986
2005 14835.3 2432.0 6.1000 2.4896 1.6153 9558.0 726.9 13.149 4.5763 2.3262
2006 16327.0 2484.1 6.5727 2.5599 1.5887 10742.6 737.0 14.577 4.6847 2.1870
2007 17248.2 2519.9 6.8447 2.6247 1.5956 11334.8 750.9 15.094 4.8104 2.2219
2008 17652.5 2538.6 6.9537 2.6649 1.6284 11138.3 764.9 14.561 4.5012 2.1637
2009 17527.8 2561.5 6.8429 2.8027 1.7687 10275.4 775.7 13.247 4.4272 2.2938
2010 17154.9 2583.4 6.6405 2.5970 1.6901 9937.9 772.2 12.869 4.1486 2.2876
2011 17460.2 2620.2 6.6637 2.5225 1.6723 9464.8 773.8 12.232 3.6503 2.1555
2012 18064.0 2648.8 6.8197 2.4673 1.6250 9539.9 779.4 12.240 3.4788 2.0953
2013 18919.5 2688.7 7.0367 2.4921 1.6010 10491.4 788.3 13.309 3.6944 2.0912
2014 19908.8 2754.4 7.2281 2.5215 1.5896 11284.8 797.0 14.160 3.8043 2.0717
2015 20661.5 2806.7 7.3615 11960.3 810.2 14.762

Note: All values are in billions of dollars and the quantities are in billions of 1960 dollars

It can be seen that the Sector 2 aggregate capital stock price PK2
t increased 14.76

fold over the sample period whereas the Sector 1 capital stock price increased only
7.36 fold. The average geometric growth rates for the price and quantity of the
Sector 2 capital stock were 5.02% per year (3.70% per year for Sector 1) and 1.44%
per year (2.74% per year for Sector 1) respectively. This large difference in growth
rates between sectors is explained by the relatively very large land component in
the Sector 2 capital stock.24 The price of land tends to grow more rapidly and the
quantity less rapidly than other assets. The real capital output ratio for Sector 2,
QK/O, 2

t, increased (erratically) from 3.43 in 1960 to 4.01 in 1983 and then declined
to 2.07 in 2014. The corresponding nominal capital output ratio, VK/O, 2

t, did not
decline nearly as much, due to increasing land prices. The nominal capital output
ratio started at 3.43 and remained roughly constant until 1969 and then increased
rapidly to hit a peak of 5.83 in 1982 and then fell to 3.48 in 2012 and increased a
little to end up at 3.80 in 2014. It can be seen that the real and nominal capital output
ratios are in general, much larger in Sector 2 than in Sector 1.

The nominal and real capital output ratios for Sectors 1 and 2 are plotted in Fig. 3,
where the overall decline in the real capital output ratios from 1983 is visible. The
much higher capital output ratios for Sector 2 over Sector 1 are also apparent.

Figure 4 plots real value added, labour input and beginning of the period capital
stocks for Sectors 1 and 2, except that each series is divided by its starting 1960
value. Thus real value added in Sectors 1 and 2 grew 6.77 fold and 3.58 fold

24The average share of residential land in Sector 2 value of the capital stock is 28.2%, farm land
is 16.4% and commercial (nonresidential and nonfarm) land is 7.1%. Thus the overall average
land share in the total value of Sector 2 assets is 51.6% and for reproducible assets is 48.4%. The
average land share of asset value in Sector 1 is only 14.4% and the corresponding reproducible
asset share is 85.6%.
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Fig. 3 Nominal and real capital output ratios for Sectors 1 and 2

Fig. 4 Normalized and real value added, labour input and capital stocks for Sectors 1 and 2

respectively, labour input grew 1.98 fold in Sector 1 and 1.51 fold in Sector 2 and
capital stocks grew 4.35 fold in Sector 1 and only 2.16 fold for Sector 2. Note that
labour input in Sector 2 did not recover to its starting value in 1960 until 1993 after
which it grew fairly rapidly until 2007 when it levelled off.

In the following section, we turn our attention to deriving the alternative
balancing rates of return on assets, and the resulting user costs, for our two sectors
that were discussed in Sect. 2.
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5 Balancing Rates of Return and Alternative User Costs
for Sectors 1 and 2

Denote the beginning of the year t asset prices for Sector 1 by PK1, n
t for n D 1,...,9.

The year t inflation rate for asset n, i1, n
t, is defined as follows:

i1;nt �
�
PK1;n

tC1=PK1;n
t
�

� 1I n D 1; : : : ; 9I t D 1960; : : : ; 2014:

(16)

Denote the depreciation rate for asset n in year t used in Sector 1 by •1, n
t. Define

the depreciation rates for assets n D 5,...,9 to be 0 for all years t.25

Recall Eq. (9) in Sect. 2 which defined the ex post rate of return on assets for
year t, rt. For Sector 1, we will use the following counterpart to (9) to define the
year t ex post rate of return on assets for Sector 1, r1

t:

VVA1
t � VL1

t �
X
nD1

9 �
1C r1

t �
�
1C i1;n

t
� �
1 � •1;n

t�	PK1;n
tQK1;n

t D 0I

t D 1960; : : : ; 2014; (17)

where Sector 1 value added and the value of labour input in year t, VVA1
t and VL1

t,
are listed in Table 1. The Sector 1 ex post rates of return on assets (the r1

t which
solve (17) for year t data) are plotted in Fig. 5.

Recall that the personal consumption deflator for the beginning of year t was
defined in Sect. 3 as PC

t for t D 1960,...,2014. Define the corresponding year t
consumption inflation rate, iCt, by (18) and the corresponding year t ex post real
rate of return on assets for Sector 1, R1

t, by (19):

iC
t �

�
PC

tC1=PC
t
�

� 1I t D 1960 : : : ; 2014I (18)

R1t �
�
.1C r1t/ =

�
1C iCt

�	
� 1I t D 1960 : : : ; 2014: (19)

The personal consumption deflator inflation rates iCt and the Sector 1 ex post real
rates of return R1

t are also plotted in Fig. 5.
We also calculated a balancing rate of return for Sector 1 for each year t, r1t� ,

using a modification of Eq. (11) in Sect. 3. In order to calculate this alternative rate
of return on assets, we need to form expected or predicted asset inflation rates, i1;nt� ,
for each asset n. For the first six years in our sample, we used the actual geometric

25The nonzero depreciation rates for assets n D 1,2,3,4 used in Sector 1 are listed in Table A10 in
the Appendix of Diewert and Fox (2016).
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Fig. 5 Sector 1 nominal and real rates of return, predicted nominal and real rates of return, and
personal consumption deflator inflation rate

average growth rate of the asset prices, starting at the beginning of 1960 and ending
at the beginning of 1965. Thus we defined i1;nt� as follows for the first six years in
our sample:

i1;nt� �
�
PK1;n

1965=PK1;n
1960

�1=5
�1I nD1; : : : ; 9I tD1960; : : : ; 1965:

(20)

For the years 1966–1985 we defined the i1, n
t� as geometric average growth rates

of the asset price from the beginning of 1960 to the beginning of year t as follows
for n D 1,...,9:

i1;n1960� �
�
PK1;n

1966=PK1;n
1960

�1=6
� 1;

i1;n1967� �
�
PK1;n

1967=PK1;n
1960

�1=7
� 1;

: : :

i1;n1985� �
�
PK1;n

1985=PK1;n
1960

�1=25
� 1:

(21)

For t greater than 1985, we simply used the geometric average growth rate of
the asset price over the 25 years prior to year t; i.e., define i1, n

t� for t � 1985 as
follows26:

26It may be that the length of our moving average process is too long or that better methods for
predicting asset prices one year hence could be devised. However, our goal is to obtain user costs
that could approximate one year rental prices for assets used in production (when they exist). Since
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i1;nt� �
�
PK1;n

t=PK1;n
t�25

�1=25
� 1I n D 1; : : : ; 9I t D 1985; : : : ; 2014: (22)

Recall Eq. (11) in Sect. 2 which decomposed value added into labour and capital
service components using predicted asset inflation rates, which we now denote by
i1, n

t� , and a predicted or expected balancing nominal rate of return on assets for year
t, which we now denote by r1

t� . For Sector 1, we will use the following counterpart
to (11) to define the year t predicted balancing rate of return on assets for Sector
1, r1

t� :

VVA1
t � VL1

t �
X
nD1

9 h
1C r1

t� �
�
1C i1;n

t�
� �
1 � •1;n

t�i PK1;n
tQK1;n

t D 0I

t D 1960; : : : ; 2014 (23)

where Sector 1 value added and the value of labour input in year t. The Sector 1
predicted rates of return on assets (the r1t� which solve (23) for year t data) are
plotted in Fig. 5.27 The corresponding year t predicted real rate of return on assets
for Sector 1, R1t� , is defined by (24) and also plotted in Fig. 5:

R1t� �
h�
1C r1t�

�
=
�
1C iCt

�i
� 1I t D 1960 : : : ; 2014: (24)

The mean nominal rate of return r1t over the sample period in Sector 1 was
11.25% (minimum rate was 3.21% in 2009 and the maximum was 21.97% in 1974)
while the mean real ex post rate of return on assets R1t was 7.57% (minimum was
1.99% in 2009; maximum was 11.83% in 1965). These ex post real rates have
been above average for the last three years at 9.73%, 9.82% and 8.68%. The mean
nominal predicted rate of return r1t� over the sample period in Sector 1 was 10.04%
(minimum rate was 6.96% in 2001 and the maximum was 12.56% in 1978) while the
mean expected real rate of return on assets R1t� was 6.44% (minimum was �0.94%
in 1974; maximum was 9.77% in 1965).28

The most important series is R1
t, the before income tax realized real rate of

return on assets used in the Corporate Nonfinancial Sector.29 This real rate has
remained above 5% except for the 10 years 1960, 1982–83, 1985, 1990–93 and
2008–09, and has remained below 11% except for the 3 years 1965 and 2004–05.
There is no indication of a real rate of return slowdown that shows up in our data.
However, the 2008 financial crisis certainly drove down ex post realized rates of
return temporarily in 2008 and 2009.

observed rental prices are relatively smooth, our suggested method for generating predicted asset
prices does lead to relatively smooth user costs as will be seen later.
27Tabulated data for the series in this and following figures are available in Diewert and Fox (2016).
28Note that our expected real rate of return on Sector 1 assets has been fairly stable over the period
1982–2014. R1t� ranged between 4.62% (1990) and 9.33% (1997) over this period.
29The average corporate income tax paid by the nonfinancial corporate sector on assets during our
sample period as a percentage of the asset base is 1.98% per year; see the series VTI1

t in Appendix
Table A3 of Diewert and Fox (2016).
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We turn our attention to Sector 2. Denote the beginning of the year t asset prices
for Sector 2 by PK2, n

t for n D 1,...,14. The year t inflation rate for asset n in Sector
2, i2, n

t, is defined as follows:

i2;nt �
�
PK2;n

tC1=PK2;n
t
�

� 1I n D 1; : : : ; 14I t D 1960; : : : ; 2014: (25)

Denote the depreciation rate for asset n in year t used in Sector 2 by •2, n
t. Define

the depreciation rates for assets n D 10,...,14 to be 0 for all years t.30 Again recall
Eq. (9) in Sect. 2 which defined the ex post rate of return on assets for year t, rt. For
Sector 2, we will use the following counterpart to Eq. (9) to define the year t ex post
rate of return on assets for Sector 2, r2

t:

VVA2
t � VL2

t �
X
nD1

14 �
1C r2

t �
�
1C i2;n

t
� �
1 � •2;n

t�	PK2;n
tQK2;n

t D 0I

t D 1960; : : : ; 2014 (26)

where Sector 2 value added and the value of labour input in year t, VVA2
t and VL2

t,
are listed in Table 2. The Sector 2 ex post rates of return on assets (the r2

t which
solve (26) for year t data) are plotted in Fig. 6. The year t ex post real rate of return
on assets for Sector 2, R2

t, is defined by (27):

Fig. 6 Sector 2 nominal and real rates of return, predicted nominal and real rates of return

30The nonzero depreciation rates for assets n D 1,...,9 used in Sector 2 are listed in Table A11 in
the Appendix of Diewert and Fox (2016).
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R2t �
�
.1C r2t/ =

�
1C iCt

�	
� 1I t D 1960 : : : ; 2014: (27)

We also calculated a balancing rate of return for Sector 2 for each year t, r2t� ,
using a modification of Eq. (11) in Sect. 3. In order to calculate this alternative rate
of return on assets, we need to form expected or predicted asset inflation rates, i2;nt� ,
for each asset n. We formed Sector 2 predicted asset inflation rates using exactly the
same method that we used to form Sector 1 predicted inflation rates.

Recall Eq. (11) in Sect. 2 which decomposed value added into labour and capital
service components using predicted asset inflation rates, which we now denote
by i2;nt� , and a predicted or expected balancing nominal rate of return on assets
for year t, which we now denote by r2t� . For Sector 2, we will use the following
counterpart to (11) to define the year t predicted balancing rate of return on assets
for Sector 2, r2t� :

VVA2
t � VL2

t �
X
nD1

14 h
1C r2

t� �
�
1C i2;n

t�
� �
1 � •2;n

t�i PK2;n
tQK2;n

t D 0I

t D 1960; : : : ; 2014 (28)

where Sector 2 value added and the value of labour input in year t, VVA2
t and VL2

t,
are listed in Table 2. The Sector 2 predicted rates of return on assets (the r2t� which
solve (28) for year t data) are plotted in Fig. 6, along with the corresponding year t
predicted real rate of return on assets for Sector 2, R2t� , as defined by (29):

R2t� �
h�
1C r2t�

�
=
�
1C iCt

�i
� 1I t D 1960 : : : ; 2014: (29)

The mean nominal ex post rate of return r2
t over the sample period in Sector 2

was 12.76% (minimum rate was �0.70% in 2008 and the maximum was 24.60% in
1973) while the mean real ex post rate of return on assets R2

t was 9.03% (minimum
was �2.14% in 2008; maximum was 18.29% in 2012). Note that the average real
rate of return in Sector 2 was a very high 9.03% per year which is considerably
above the average real rate of return on assets used in Sector 1, which was 7.57%
per year. This result was somewhat surprising. The Sector 2 ex post real rates have
been above average for the last 3 years at 18.29%, 16.13% and 13.86%. These are
very high real rates of return. The corresponding Sector 1 ex post real rates were
only 9.73%, 9.82% and 8.68%.31 The mean nominal predicted rate of return rn

t�

over the sample period in Sector 2 was 11.35% (minimum rate was 7.12% in 1960
and the maximum was 13.72% in 1979) while the mean expected real predicted rate
of return on assets R1t� was 7.73% (minimum was 0.92% in 1974; maximum was
11.91% in 2013).

31The reason why nominal and real ex post rates of return on assets are much higher in Sector
2 compared to Sector 1 can be explained by the fact that production in Sector 2 is highly land
intensive and land inflation rates are much higher than inflation rates for other assets.
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The most important series is R2
t, the before income tax realized real rate of return

on assets used in the Noncorporate Nonfinancial Sector.32 This series has fluctuated
considerably during the sample period, driven by large fluctuations in the price of
land. There does not appear to be a long run decline in the real rate of return on
assets in Sector 2. The predicted nominal rate of return series r2t� is much smoother
than the corresponding realized return series r2

t and so the use of the r2t� series in
our user costs will lead to much smoother user costs for this sector.

We turn our attention to the calculation of user costs for Sector 1. Recall Eqs.
(16) and (17). The year t Jorgensonian user cost for asset n used in Sector 1, u1, n

t,
is defined as follows:

u1;n
t �

�
1C r1

t �
�
1C i1;n

t
� �
1 � •1;n

t�	 PK1;n
tI n D 1; : : : ; 9I t D 1960; : : : ; 2014

(30)

where the i1, n
t are the ex post asset inflation rates defined by (16) and the r1

t are the
Sector 1 balancing nominal rates of return defined by eqs. (17). These Jorgensonian
user costs are plotted in Fig. 7. It can be seen that there are numerous negative
Jorgensonian user costs for assets 5–8 (residential land, farm land, commercial land
and inventory stocks). It can also be seen that these user costs are in general quite
volatile. Thus while Jorgensonian user costs are the “right” user costs to use when

Fig. 7 Jorgensonian user costs for Sector 1

32The average business income tax paid by the nonfinancial noncorporate sector on assets during
our sample period as a percentage of the asset base is only 0.15% per year; see the series VT12

t in
Appendix Table A3 of Diewert and Fox (2016). This income tax rate for Sector 2 seems to be too
low to be true!
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Fig. 8 Predicted user costs for Sector 1

computing ex post rates of return on assets, they are not good approximations to
rental prices for these assets.33

Recall Eqs. (20, 21, 22 and 23). The year t predicted user cost for asset n used in
Sector 1, u1;nt� , is defined as follows:

u1;nt� �
h
1Cr1t��

�
1Ci1;nt�

� �
1�•1;n

t�i PK1;n
tI nD1; : : : ; 9I tD1960; : : : ; 2014

(31)

where the i1;nt� are the predicted asset inflation rates defined by (20, 21 and 22)
and the r1t� are the predicted Sector 1 balancing nominal rates of return defined by
Eq. (23). These predicted user costs are plotted in Fig. 8.

The predicted user costs are much smoother than the Jorgensonian user costs
and the negative user costs have been eliminated. Thus in what follows, we will
sometimes refer to these predicted user costs as smoothed user costs. These user
costs are suitable for production or cost function econometric studies. They are
also more suitable for statistical agencies to use when computing capital services
aggregates for publication. It can be seen that the user costs for residential, farm
and commercial land (u1;5t� ; u1;6t� and u1;7t� ) have been quite volatile for the
last 20 years in our sample period but the remaining user cost series are fairly
smooth.

33Thus the use of Jorgensonian user costs is not recommended in econometric studies where cost
functions are estimated or where production functions are estimated using inverse factor demand
equations as additional estimating equations.
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Fig. 9 Jorgensonian user costs for Sector 2

We turn our attention to the calculation of user costs for Sector 2. Recall Eq. (26).
The year t Jorgensonian user cost for asset n used in Sector 2, u2, n

t, is defined as
follows:

u2;n
t �

�
1C r2

t �
�
1C i2;n

t
� �
1 � •2;n

t�	 PK2;n
tI

n D 1; : : : ; 14I t D 1960; : : : ; 2014 (32)

where the i2, n
t are the ex post asset inflation rates defined by (25) and the r2

t

are the Sector 2 balancing nominal rates of return defined by Eq. (26). These
Jorgensonian user costs are plotted in Fig. 9. Again, these user costs are volatile
and there are numerous negative user costs in assets, 6–7 (nonresidential structures
held by proprietors, partners and cooperatives) and 10–14 (residential land, farm
land, commercial land, inventory stocks and monetary stocks). It can be seen at a
glance that these user costs are not suitable approximations to asset rental prices.

Recall Eq. (28). The year t predicted user cost for asset n used in Sector 2, u2;nt� ,
is defined as follows:

u2;nt� �
�
1Cr2t��

�
1Ci2;nt�

� �
1�•2;n

t�	PK2;n
tI nD1; : : : ; 14I t D 1960; : : : ; 2014

(33)

where the i2, n
t� are the predicted asset inflation rates for Sector 2 defined by

counterparts to definitions (20, 21 and 22) and the r2
t� are the predicted Sector 2

balancing nominal rates of return defined by Eq. (28). These predicted user costs
are plotted in Fig. 10. It can be seen that these predicted user costs are all positive,
and that all of the series have fairly smooth trends, with the exception of assets 10,
11 and 12 (residential land, farm land and commercial land).
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Fig. 10 Predicted user costs for Sector 2

We conclude that our rather simple method for forming predicted asset inflation
rates does lead to relatively smooth (and reasonable) user costs that could be
published by statistical agencies for general use by economic analysts as well as
for the construction of capital services aggregates. In the following section, we
will compute capital services aggregates (and the resulting measures of Total Factor
Productivity) using both Jorgensonian and predicted user costs to determine if the
alternative user costs affect aggregate capital services growth for our two sectors.

6 Jorgensonian and Predicted Measures of Capital Services
and Total Factor Productivity Growth

We use the Törnqvist formula to aggregate capital services and to aggregate all
inputs, including labour services.34 Our methodology for measuring Total Factor
Productivity growth follows the methodology proposed by Diewert and Morrison

34This formula was attributed to Törnqvist (1936) by Jorgenson and Griliches (1972; 83) as a
discrete time approximation to the continuous time Divisia indexes that Jorgenson and Griliches
(1967, 1972) advocated for aggregating inputs and outputs in productivity studies. The formula
does not explicitly appear in Törnqvist (1936) but it is explicit in a follow up paper co-authored by
Törnqvist; see Törnqvist and Törnqvist (1937). The formula was derived in an instructive manner
by Theil (1967; 136–137) and so it is also known as the Törnqvist-Theil formula. Jorgenson
and Nishimizu (1982) called the index the translog index. Diewert (1976; 118–129), Diewert and
Morrison (1986) and Kohli (1990) related Törnqvist price and quantity indexes to various translog
functional forms for cost, revenue and production functions.
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(1986) and Kohli (1990). This methodology measures TFP growth over two periods
as an implicit Törnqvist quantity index defined over gross outputs and intermediate
inputs divided by a direct Törnqvist quantity index of primary inputs.35 Since we
have only one value added output in our BEA data base for each sector, our output
index going from year t to year t C 1 is simply QVA1

t C 1/QVA1
t for Sector 1 and

QVA2
t C 1/QVA2

t for Sector 2. However, we will use the Törnqvist quantity index to
aggregate inputs.

Let pt � [p1
t, : : : , pN

t] and qt � [q1
t, : : : , qN

t] denote a generic price and quantity
vector for year t. Then the logarithm of the Törnqvist chain link quantity index QT

going from year t to t C 1 is defined as follows:

ln QT
�
pt; ptC1; qt; qtC1

�
�
X
nD1

N
.1=2/

�
sn

t C sn
tC1
�

ln
�
qn

tC1=qn
t
�

(34)

where the cost share of input n in year t is defined as sn
t � pn

tqn
t/pt � qt for

n D 1,...,N. Note that this index can be used to aggregate quantities as long as they
are all positive even though some prices may be negative.

The Törnqvist quantity index was used to aggregate the nine types of capital
services used by Sector 1. Denote the aggregate chained Törnqvist quantity index
of Jorgensonian capital services and of predicted capital services for Sector 1 for
year t by QKJ1

t and QKP1
t respectively.36 The Törnqvist quantity index was also used

to aggregate the nine types of capital services and the one type of labour used by
Sector 1. Denote the chained index for year t using Jorgensonian and predicted user
costs by QXJ1

t and QXP1
t respectively.37 Finally, the year t levels of Jorgensonian

and Predicted TFP are defined as follows:

TFPJ1
t �

�
QVA1

t=QVA1
1960

	
=QXJ1

t=QXJ1
1960

i
I t D 1960; : : : ; 2014I (35)

TFPP1
t �

�
QVA1

t=QVA1
1960

	
=QXP1

t=QXP1
1960

i
I t D 1960; : : : ; 2014: (36)

The quantity and TFP series are plotted in Fig. 11, along with the labour input
series QL1

t (normalized to equal 1 in 1960).
It can be seen that labour input into the Corporate Nonfinancial Sector grew

fairly steadily to a 2.11 fold increase in 2000 but then growth levelled off and fell to

35See Diewert (2014b) for a detailed explanation of the methodology and an application to US
data. The land data used in this earlier study was of lower quality than the land data used in the
current study.
36These series are normalized to equal one in 1960.
37These series were also normalized to equal one in 1960. The price and value of labour input for
Sector 1 in year t, PL1

t and VL1
t, are listed in Table 1. Define the quantity of labour used in Sector

1 in year t as QL1
t � VL1

t/PL1
t. Thus we added PL1

t and QL1
t to our user costs and capital stock

quantities to form the overall chained Törnqvist input quantity indexes.
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Fig. 11 Sector 1 indexes of labour quantity, and alternative capital services, aggregate input and
TFP estimates

a 1.79 fold increase over 1960 in 2009 and 2010. Labour input has since increased
to finish off at a 1.98 fold increase over 1960 in 2014. We note that the price of
labour has increased steadily (even through the Great Recession period) to end up
increasing 13.95 fold over the sample period. The geometric average rate of growth
of QL1

t was 1.28% per year and the geometric average rate of growth of PL1
t over

the sample period was 5.00% per year.
The quantity of Jorgensonian capital services increased 6.02 fold over the sample

period while the quantity of predicted capital services increased only 5.75 fold.
The geometric average rates of growth for these two measures of capital services
were 3.38% and 3.29% per year. This difference is surprisingly small considering
how different the two sets of user costs were. The price index of Jorgensonian
capital services increased 6.37 fold over the sample period while the price index
of predicted capital services increased 6.68 fold. The geometric average rates of
growth for these two measures of capital services prices were 3.49% and 3.58%
per year. One reason why there is so little difference between the two measures of
capital services is that land as a share of total capital services in Sector 1 is relatively
small.38

Sector 1 Jorgensonian input QXJ1
t increased 2.78 fold over the sample period

while the quantity of predicted capital services QXP1
t increased 2.74 fold.39 The

38Using Jorgensonian user costs, we find that the sample average input cost shares of labour, land
services and reproducible capital stock services in Sector 1 were 68.6%, 2.1% and 29.3%. The
sample average cost shares of residential, farm and commercial land (assets 5, 6 and 7) were only
0.05%, 0.17% and 1.85%.
39Note that QXJ1

t and QXP1
t (and TFPJ1

t and TFPP1
t) cannot be distinguished in Figure 11.
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geometric average rates of growth for these two input measures were 1.91% and
1.89% per year. This is a very small difference in growth rates. Sector 1 real value
added QVA1

t grew 6.77 fold over the sample period (geometric average rate of
growth was 3.61% per year). Jorgensonian TFP in Sector 1, TFPJ1

t, grew 2.43 fold
over the sample period while predicted TFP, TFPP1

t, grew 2.47 fold. The geometric
average rates of growth for these two measures of Total Factor Productivity were
1.66% and 1.69% per year, a surprisingly small difference.

Another surprise is the rather high overall rate of TFP growth that the Corporate
Nonfinancial Sector has been able to achieve over the 55 years in our sample. To
see if there has been a TFP slowdown over the past 15 years, we computed decade
by decade geometric average rates of TFP growth.40 Using Jorgensonian estimates
for input growth, the resulting decade by decade averages were as follows: 2.57%
(1960s), 1.22% (1970s), 1.51% (1980s), 1.99% (1990s), 1.09% (2000s) and 1.71%
(2010s) per year.41 There is little evidence of a productivity slowdown in Sector
1 using these sub-periods; the average TFP growth rate over the last 5 years in
our sample is 1.71% per year, which is slightly higher than long run Jorgensonian
average of 1.66% per year. However, if we consider the sub-period 2005–2014,
the geometric average was 0.88%, which is substantially lower than the long run
average.42

We turn our attention to developing alternative measures of capital services and
productivity growth for Sector 2, the Noncorporate Nonfinancial Sector of the US
private sector.

Again, the Törnqvist quantity index was used to aggregate the fourteen types of
capital services used by Sector 2. Denote the aggregate chained Törnqvist quantity
index of Jorgensonian capital services and of predicted capital services for Sector
2 for year t by QKJ2

t and QKP2
t respectively.43 The Törnqvist quantity index was

also used to aggregate the fourteen types of capital services and the one type of
labour used by Sector 2. Denote the chained index for year t using Jorgensonian and
predicted user costs by QXJ2

t and QXP2
t respectively.44 Finally, the year t levels of

Jorgensonian and Predicted TFP are defined as follows:

40The last “decade” covers only the years 2010–2014.
41Using predicted user costs, the corresponding decade by decade geometric average rates of TFP
growth in Sector 1 were as follows: 2.59%, 1.26%, 1.49%, 2.02%, 1.16% and 1.72% per year.
42See Diewert and Fox (2017) on potential sources of the productivity slowdown.
43These series are normalized to equal one in 1960 when they are listed in Table 13. The input price
and quantity series used in the index number formula for QKJ2

t and QKP2
t are the u2, n

t and u2;nt�

listed in Tables 9 and 11 respectively and the corresponding quantity series QK2, n
t are described in

Table 5.
44These series were also normalized to equal one in 1960. The price and value of labour input for
Sector 1 in year t, PL2

t and VL2
t, are listed in Table 2. Define the quantity of labour used in Sector

2 in year t as QL2
t � VL2

t/PL2
t. Thus we added PL2

t and QL2
t to our user costs and capital stock

quantities to form the overall chained Törnqvist input quantity indexes.
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Fig. 12 Sector 2 indexes of labour quantity, and alternative capital services, aggregate input and
TFP estimates

TFPJ2
t �

�
QVA2

t=QVA2
1960

	
=QXJ2

t=QXJ2
1960

i
I t D 1960; : : : ; 2014I (37)

TFPP2
t �

�
QVA2

t=QVA2
1960

	
=QXP2

t=QXP2
1960

i
I t D 1960; : : : ; 2014: (38)

These quantity and TFP series, along with the labour input series QL2
t (nor-

malized to equal 1 in 1960), are plotted in Fig. 12. The rates of input, output and
productivity growth in Sector 2 are quite different from the corresponding rates in
Sector 1 as can be seen by comparing Figs. 11 and 12.

Labour input into the Noncorporate Nonfinancial Sector fell to 80.7% of its initial
1960 level in 1972 but then grew fairly steadily to a 1.07 fold increase in 2000 over
its initial level. Then labour input growth grew rapidly to a 1.55 fold increase in
2007, fell to 1.44 in 2010 and then slowly increased to finish up with a 1.51 fold
increase over its initial level. We note that the price of labour PL2

t has increased
steadily to end up increasing 12.67 fold over the sample period. The geometric
average rate of growth of QL2

t was only 0.77% per year (compared to a 1.28%
geometric rate of increase for QL1

t) and the geometric average rate of growth of PL2
t

over the sample period was 4.81% per year, which is close to the rate of increase for
PL1

t (5.00% per year).
The quantity of Jorgensonian capital services increased 2.71 fold in Sector 2

over the sample period (the Sector 1 increase was 6.02 fold) while the quantity of
Sector 2 predicted capital services increased 2.74 fold. The geometric average rates
of growth for these two measures of capital services were 1.86% and 1.88% per
year (compared to 3.38% and 3.29% per year for Sector 1). Again, this difference
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in average rates of capital services growth is surprisingly small considering how
different the two sets of user costs were.45 The price index for Jorgensonian
capital services increased 17.94 fold over the sample period while the price index
of predicted capital services increased 17.75 fold (only 6.37 fold and 6.68 fold
increases for Sector 1 capital service prices). The geometric average rates of growth
for these two measures of Sector 2 capital services prices were 5.49% and 5.47%
per year (the corresponding rates for Sector 1 were 3.49% and 3.58% per year).
Thus since land is a much more important input in Sector 2 compared to Sector 1,
the overall rate of growth in the price of capital services in Sector 2 is much greater
than in Sector 1.46 Note that these rates of service price increase for Sector 2 are
higher than the rate of increase in wages for Sector 2, which was only 4.81% per
year.47 Looking at Fig. 12, it can be seen that the level of predicted capital services,
QKP2

t, bulged above the corresponding level of Jorgensonian capital services, QKJ2
t,

over the middle of the sample period but the two series were quite close near the
endpoints of our sample period.

Sector 2 Jorgensonian input QXJ2
t and predicted input QXP2

t increased 1.87 fold
over the sample period (the Sector 1 counterparts were 2.78 fold and 2.74 fold
increases).48 The geometric average rates of growth for these two input measures
were both 1.17% per year (1.91% and 1.89% for Sector 1). Sector 2 real value
added QVA2

t grew 3.58 fold (6.77 fold for Sector 1) over the sample period and
the geometric average rate of growth was 2.39% per year (3.61% for Sector 1).
Jorgensonian TFP and predicted TFP in Sector 2, TFPJ2

t and TFPJ2
t, both grew 1.91

fold over the sample period (2.43 and 2.47 for Sector 1). The geometric average
rates of growth for the two Sector 2 measures of Total Factor Productivity were
both 1.21% per year (1.66% and 1.69% per year for Sector 1).

Another surprise is the rather high overall rate of TFP growth that the Noncorpo-
rate Nonfinancial Sector has been able to achieve over the 55 years in our sample. To
see if there has been a TFP slowdown over the past 15 years, we computed decade

45However, the predicted asset price inflation rates are on average quite close to the average ex
post asset price inflation rates. Thus on average, the two sets of user costs are similar, giving rise
to similar trends in the two sets of capital service prices.
46Using Jorgensonian and predicted user costs, we find that the sample average input cost shares
of labour and capital services were 56.7% and 43.3%. Using Jorgensonian user costs, the sample
average cost shares of residential, farm and commercial land services (assets 10, 11 and 12) were
7.51%, 4.44% and 2.43%. Using predicted user costs, the sample average input cost shares for
assets 10, 11 and 12 were 8.04%, 4.05% and 2.44%. These input cost shares for land are low
compared to the share of land assets in total asset value: the average overall land share of total asset
value was 51.6% while reproducible assets contributed 48.4% of total asset value. The average
shares of the three types of land in total asset value were 28.2%, 16.4% and 7.1%. The user cost
shares of capital services for land are lower than their corresponding asset value shares because the
high land price inflation terms dramatically reduce land user costs relative to their asset prices.
47These trends in the prices and quantities of labour and capital input into Sector 2 indicate the
presence of labour saving technical progress in this sector.
48Note that QXJ2

t and QXP2
t (and TFPJ2

t and TFPP2
t) can hardly be distinguished in Figure 12.
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by decade geometric average rates of TFP growth.49 Using Jorgensonian estimates
for input growth, the resulting decade by decade TFPJ2

t averages were as follows:
2.32% (1960s), 0.41% (1970s), 0.64% (1980s), 1.29% (1990s), 1.22% (2000s) and
1.81% (2010s) per year.50 Thus there is little evidence of a productivity slowdown
in Sector 2 using these sub-periods; the average Jorgensonian TFP growth rate for
Sector 2 over the last 5 years in our sample is 1.81% per year, which is slightly
higher than the corresponding Jorgensonian rate of 1.71% for Sector 1 over the past
5 years and higher than the long run Jorgensonian average of 1.66% per year for
Sector 1. However, if we consider the sub-period 2005–2014, the geometric average
was 1.27%, which is substantially lower than the long run average.

Finally, we note that for the period 2000–2009, Jorgensonian TFP growth
averaged 1.22% per year while the corresponding predicted TFP growth averaged
1.37% per year. This is a substantial difference. Thus, although for the most part
Jorgensonian TFP growth rates based on the use of ex post asset inflation rates are
close to our preferred TFP growth rates based on the use of predicted asset inflation
rates, it can be seen that it is not always the case that these rates are close.

In the following section, we look at what happens to the rate of return on assets
and on Jorgensonian TFP growth rates when we drop assets from the asset boundary.

7 Rates of Return and TFP Growth in Sector 1
with Alternative Asset Bases

Many national and international productivity data bases do not include money,
inventories or land in their asset base.51 Thus it is of interest to see what happens to
rates of return on assets and on TFP growth when these assets are dropped from the
list of productive inputs.

Recall Eqs. (17) and (19) in Sect. 5 which defined the year t nominal and real
rate of return on all nine assets used in Sector 1, r1

t and R1
t respectively. Modify

Eq. (17) by dropping asset 9 from the asset base, which gives rise to a new nominal
and real rate of return on the new asset base without monetary services, which we
denote by r1, M

t and R1, M
t respectively. Now modify Eq. (17) by dropping assets 8

and 9 from the asset base, which gives rise to a new nominal and real rate of return
on the new asset base without inventory and monetary services, which we denote
by r1, IM

t and R1, IM
t respectively. Finally modify Eq. (17) by dropping assets 5–9

from the asset base, which gives rise to a new nominal and real rate of return on

49Again, the last “decade” covers only the years 2010–2014.
50Using predicted user costs, the corresponding decade by decade geometric average rates of
predicted TFP growth, TFPP2

t, were as follows, with the corresponding Jorgensonian rates of
growth in brackets: 2.28% (2.32), 0.39% (0.41), 0.49% (0.64), 1.35% (1.29), 1.37% (1.22) and
1.80% (1.81) per year. Note that the difference is particularly large for the 2000s.
51See the EUKLEMS and World KLEMS data bases on line; Jorgenson and Timmer (2016).
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Fig. 13 Sector 1 nominal rates of return on alternative asset bases

Fig. 14 Sector 1 real rates of return on alternative asset bases

the new asset base without land, inventory and monetary services, which we denote
by r1, LIM

t and R1, LIM
t respectively. The alternative nominal rates can be found in

Fig. 13 and the alternative real rates of return can be found in Fig. 14.
For each asset base, the value of capital services adds up to value added less the

value of labour input. Thus as we decrease the number of assets in the asset base, the
nominal and real rate of return on the remaining assets must increase and this fact
is reflected in Figs. 13 and 14. With all assets in the asset base, the average nominal
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rate of return on assets is 11.25%. Dropping monetary holdings from the asset base
increases the average rate of return to 11.60% and then dropping inventory stocks
further increases the average rate of return to 12.97%. Finally dropping residential,
farm and commercial land from the asset base further increases the average rate of
return on the remaining assets to 14.59% per year. Similarly, decreasing the asset
base causes the average real rate of return on the remaining assets to go from 7.57%
per year when all assets are included to 10.80% per year when money, inventories
and land are dropped from the asset base. Our conclusion here is that dropping assets
can substantially distort the estimated return on assets.

Recall that the year t Jorgensonian user costs u1, n
t for the nine assets used by

Sector 1 were defined by Eq. (30) in Sect. 5. These user costs involved the nominal
rates of return on assets for Sector 1, the r1

t. The user costs u1, n
t were used to form

the Sector 1 Jorgensonian year t capital services aggregate, QKJ1
t, and the overall

Sector 1 year t input aggregate, QXJ1
t. These input aggregates along with the Sector

1 output aggregates, QVA1
t, were used to form the year t Total Factor Productivity

levels, TFPJ1
t, for Sector 1; see Eq. (35). When we drop monetary assets from the list

of assets, we obtain the new year t Jorgensonian balancing nominal rate of return for
year t, r1, M

t, and this new rate of return can be inserted into Eq. (30) for n D 1,...,8
in order to obtain new year t Jorgensonian user costs for Sector 1, which we define
as u1M, n

t. These new user costs can be used to form new year t capital services
aggregates, QK1M

t, and new year t aggregate input indexes, QX1M
t, for Sector 1.

In a similar fashion, when we drop both monetary assets and inventory stocks, we
obtain the year t capital services aggregates, QK1IM

t, and the year t aggregate input
indexes, QX1IM

t, for Sector 1. Finally, when we drop monetary assets, inventory and
land stocks from the list of productive assets, we obtain the year t capital services
aggregates, QK1LIM

t, and the year t aggregate input indexes, QX1LIM
t, for Sector

1. These alternative measures of aggregate capital services are used to form the
alternative TFP levels, TFP1M

t, TFP1IM
t and TFP1LIM

t. These alternative measures
of (normalized) Jorgensonian capital services and TFP are plotted in Fig. 15 along
with the (normalized) measure of labour input for Sector 1, QL1

t.52

It can be seen that there are some small differences in the growth of Jorgensonian
capital services for Sector 1 as we drop assets. With all assets included, capital
services grew 6.026 fold; dropping money led to a 5.959 fold increase; dropping
money and inventories led to a 5.706 fold increase and dropping money, inventories
and land led to a 6.184 fold increase (see the highest line on Fig. 15). These small
differences in the rates of growth of capital services as we decrease the number
of assets led to even smaller differences in the rates of TFP growth. With all
assets included, Jorgensonian TFP increased 2.433 fold and as we dropped assets,
there were 2.444, 2.478 and 2.416 fold increases in TFP over the sample period

52To recover the un-normalized QL1
t, multiply the listed QL1

t series by the value of labour input
in Sector 1 for 1960, which is 180.4. To recover the four un-normalized capital services series,
multiply QKJ1

t, QK1M
t, QK1IM

t and QK1LIM
t by the Gross Operating Surplus for Sector 1 for 1960,

which is 75.5.
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Fig. 15 Sector 1 labour and measures of capital services and TFP with alternative asset bases

for Sector 1. The corresponding geometric rates of growth were 1.661%, 1.668%,
1.695% and 1.647% per year so that all of these annual average TFP growth rates
were within 0.05 of a percentage point. These differences are too small to show up
in Fig. 15.

Dropping nonreproducible assets (or zero depreciation assets) from the asset
base had a significant effect on ex post rates of return on assets employed in the
US Corporate Nonfinancial Sector. However, dropping zero depreciation assets
had a negligible effect on overall rates of TFP growth for Sector 1. In the
following section, we will see if the same conclusions hold for the US Noncorporate
Nonfinancial Sector.

8 Rates of Return and TFP Growth in Sector 2
with Alternative Asset Bases

Recall Eqs. (26) and (27) in Sect. 5 which defined the year t nominal and real rate
of return on all fourteen assets used in Sector 2, r2

t and R2
t respectively. Modify Eq.

(26) by dropping asset 14 from the asset base, which gives rise to a new nominal and
real rate of return on the new asset base without monetary services, which we denote
by r2, M

t and R2, M
t respectively. Further modify Eq. (26) by dropping assets 13 and

14 from the asset base, which gives rise to a new nominal and real rate of return
on the new asset base without inventory and monetary services, which we denote
by r2, IM

t and R2, IM
t respectively. Finally modify Eq. (26) by dropping assets 10–14

from the asset base, which gives rise to a new nominal and real rate of return on
the new asset base without land, inventory and monetary services, which we denote
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Fig. 16 Sector 2 nominal rates of return on alternative asset bases

Fig. 17 Sector 2 real rates of return on alternative asset bases

by r2, LIM
t and R2, LIM

t respectively. The alternative nominal rates can be found in
Fig. 16 and the alternative real rates of return can be found in Fig. 17.

It can be seen that dropping assets leads to significant increases in the measured
rates of return on the asset base. With all assets included, the Sector 2 average real
rate of return was 9.03%; dropping money leads to a 9.49% rate of return, further
dropping inventory stocks leads to a 10.03% rate of return and further dropping land
leads to a huge 19.68% average rate of return on the remaining assets. Again, our
conclusion here is that dropping assets can substantially distort the estimated return
on assets.
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Recall that the year t Jorgensonian user costs u2, n
t for the fourteen assets used

by Sector 2 were defined by Eq. (32) in Sect. 5. These user costs involved the
nominal rates of return on assets for Sector 2, the r2

t defined by Eq. (26). The
user costs u2, n

t were used to form the Sector 2 Jorgensonian year t capital services
aggregate, QKJ2

t, and the overall Sector 2 year t input aggregate, QXJ2
t. These input

aggregates along with the Sector 2 output aggregates, QVA2
t, were used to form the

year t Total Factor Productivity levels, TFPJ2
t, for Sector 2; see Eq. (37). When we

drop monetary assets from the list of assets, we obtain the new year t Jorgensonian
balancing nominal rate of return for year t, r2, M

t, and this new rate of return can be
inserted into Eq. (32) for n D 1,...,13 in order to obtain new year t Jorgensonian user
costs for Sector 2, which we define as u2M, n

t. These new user costs can be used to
form new year t capital services aggregates, QK2M

t, and new year t aggregate input
indexes, QX2M

t, for Sector 2. In a similar fashion, when we drop both monetary
assets and inventory stocks, we obtain the year t capital services aggregates, QK2IM

t,
and the year t aggregate input indexes, QX2IM

t, for Sector 2. Finally, when we drop
monetary assets, inventory and land stocks from the list of productive assets, we
obtain the year t capital services aggregates, QK2LIM

t, and the year t aggregate
input indexes, QX2LIM

t, for Sector 2. These alternative measures of aggregate capital
services are used to form the alternative TFP levels, TFP2M

t, TFP2IM
t and TFP2LIM

t.
These alternative measures of (normalized) Jorgensonian capital services and TFP
are plotted in Fig. 18 along with the (normalized) measure of labour input for Sector
2, QL2

t.53

Fig. 18 Sector 2 labour and measures of capital services and TFP with alternative asset bases

53To recover the un-normalized QL2
t, multiply the listed QL2

t series by the value of labour input in
Sector 2 for 1960, which is 76.6. To recover the four un-normalized capital services series, multiply
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It can be seen that there are some large differences in the growth of Jorgensonian
capital services for Sector 2 as we drop assets. With all assets included, capital
services grew 2.71 fold; dropping real monetary balances (which increased more
rapidly than other assets, particularly in recent years) led to a 2.49 fold increase
in the remaining capital services; dropping money and inventories led to a 2.52
fold increase and dropping money, inventories and land led to a 3.57 fold increase
in the remaining capital services (see the highest line on Fig. 17). Since land
stocks grow more slowly than other capital stocks and since land is a very large
component of the Sector 2 capital stock, these results are not unexpected. These
large differences in the rates of growth of capital services as we decrease the number
of assets led to significant differences in the rates of TFP growth. With all assets
included, Jorgensonian TFP increased 1.91 fold and as we dropped assets, there
were 2.00, 1.99 and 1.71 fold increases in TFP over the sample period for Sector
2. The corresponding geometric average rates of TFP growth for Sector 2 were
1.21%, 1.29%, 1.28% and 1.00% per year. Thus dropping land from the list of in
scope assets significantly reduced the measured rate of Jorgensonian TFP growth.
Excluding money from the list of assets also had a significant (but smaller) effect.

Our conclusion is that dropping zero depreciation assets will in general signifi-
cantly increase measured rates of return on assets. On the other hand, dropping zero
depreciation assets will not always significantly affect long run average rates of TFP
growth for a sector but for land intensive sectors, it is likely to significantly decrease
measured long run average rates of TFP growth.

9 Changing Shares and Inequality

There has been significant recent interest in the measured fall in the labour share
of income across many industrialised economies; the implication is that there has
been a change in the distribution of income as households have hetereogeneous
assets, and skills which are not equally substitutable with capital.54 In this section
we examine the issue of relative labour and capital shares using our two sector
data set. Specifically, we consider how the shares change if we draw a distinction
between value added and (net) income.

Our approach is based on that of Hayek (1941). Recall the expression of Jorgen-
sonian user cost for asset n from either (30) or (32): um, n

t � [1 C rm
t � (1 C im, n

t)
(1 � •m, n

t)]PKm, n
t, for sectors m D 1, 2. It is convenient for current purposes to

express the user cost value, UCVm, n
t, for asset n in sector m in the following form:

QKJ2
t, QK2M

t, QK2IM
t and QK2LIM

t by the Gross Operating Surplus for Sector 2 for 1960, which is
30.8.
54See, for example, Karabarbounis and Neiman (2014), Bridgman (2014) and Cho, Hwang and
Schreyer (2017).
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UCVm;n
t �

�
rm

t � im;n
t C

�
1C im;n

t
�
•m;n

t	 PKm;n
tQKm;n: (39)

Thus, for each asset n the user cost value, or capital services of asset n, can
be decomposed into the sum of the following terms: financing cost, or waiting
services,55 rm

t Pm, n
t QKm, n, asset revaluation, �im, n

t PK, m
t QKm, n, and depreciation,

•m, n
t Pm, n

t C 1 QKm, n. Pigou (1941) argued that an appropriate measure of income
is valued added less depreciation; this accounts for the physical deterioration of
assets used in producing consumption goods. It is hence an income concept that
emphasizes the maintenance of physical capital. Hayek (1941), however, argued that
this would overstate income due to not taking into account the revaluation of assets
from, for example, foreseen obsolescence. Thus, Hayek’s is an income concept that
emphasizes the real financial maintenance of capital.

Bridgman (2014) and Cho, Hwang and Schreyer (2017) have examined the
impact on relative labour and capital shares of changing from a value added measure
of income to a Pigou-type of income by subtracting depreciation from value added.
Here we highlight the Hayekian concept of income, and thus also subtract asset
revaluation to form our income measure.

That is, income is equal to the wage bill plus the capital stock times the ex post
nominal rate of return on this stock, or rm

t PKm, n
t QKm, n rather than the full user cost

value of (39). Hence the difference between value added and this income measure
is the value of depreciation and asset revaluation.

A comparison of nominal value added with Hayekian and Pigouvian nominal
income is provided in Fig. 19 for Sector 1.56 It can be seen that nominal value
added is generally higher than nominal income, especially since 2007. Comparing
the Hayekian and Pigouvian income measures, it can be seen that the Hayekian
measure is typically larger, due to positive asset revaluations in most years, and
more volatile. With depreciation rates evolving relatively smoothly,57 changes in
prices of residential and commercial land in particular appear to drive much of this
difference in volatility, especially around 2008.58

The share of capital services in value added is the user cost value of (39) summed
over all assets and divided by nominal value added. These shares are plotted in
Fig. 20.59 The greater volatility of nominal Hayekian income seen in Fig. 19 is
reflected in the capial income shares in Fig. 20.60 The generally lower capital shares
in either Hayekian of Pigouvian income indicate less inequality than implied by
the corresponding value added shares. In terms of long-term trends, the share of
capital services in value added goes from 0.295 in 1960 to 0.367 in 2014 (a 24%
increase), while our preferred share of capital in total Hayekian income goes from

55See Rymes (1969, 1983) on the concept of waiting services.
56Jorgensonian ex post rates of return are appropriate in this context; see Sect. 5.
57See Appendix A8 of Diewert and Fox (2016).
58See tables A1 and A9 of Diewert and Fox (2016).
59The value added shares are the same as those in Table 1.
60Labour shares are of course a mirror image of these capital shares.
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Fig. 19 Sector 1 nominal value added and nominal income

Fig. 20 Sector 1 capital shares of value added and income

0.179 in 1960 to 0.283 in 2014 (a 58% increase). Thus, while all capital shares have
grown, the Hayekian income share has grown more, although with much higher
year-on-year volatility. This somewhat strengthens the view of long-term increasing
inequality through a shift in the relative distribution of income from labour to
capital.
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Fig. 21 Sector 2 nominal value added and nominal income

Fig. 22 Sector 2 capital shares of value added and income

The corresponding results for Sector 2 are shown in Figs. 21 and 22.61 From
Fig. 21 we again see the increased deviation between value added and income from
2007. As for Sector 1, the shares in Fig. 22 indicate less inequality using income
shares compared to value added shares. In terms of long-term trends, the share of

61The value added shares are the same as those in Table 2.
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capital services in value added goes from 0.287 in 1960 to 0.504 in 2014 (a 76%
increase), while the share of capital income in total Hayekian income goes from
0.209 in 1960 to 0.472 in 2014 (a 125% increase). Hence, while all capital income
shares have grown, the Hayekian income share has grown more. Thus, evidence for
Sector 2 also strengthens the view of increasing inequality through a shift in the
relative distribution of income from labour to capital.

10 Conclusions

A number of tentative conclusions can be drawn from the above analysis:

1. The technologies used in the Corporate Nonfinancial (Sector 1) and Non-
corporate Nonfinancial (Sector 2) sectors are quite different. Sector 1 uses
reproducible assets quite intensively while Sector 2 uses land and structure
assets quite intensively.

2. Total Factor Productivity growth in our two sectors over the years 1960–2014
has been excellent: the TFP growth rate for Sector 1 averaged 1.66% per year
using Jorgensonian user costs (1.69% per year using predicted user costs) and
1.21% per year for Sector 2 using both sets of user costs. These are very high
average rates of TFP growth over such a long period, even though there has been
a significant productivity slowdown over 2005–2014, especially for Sector 1.

3. Average real rates of return on productive assets employed have been quite
high in both sectors. The average annual real rate of return was 7.6% per year
in Sector 1 and 9.0% per year in Sector 2. There is no indication of a long
run slowdown in these rates of return (but there have been massive short run
fluctuations in these rates).

4. Jorgensonian user costs use actual ex post asset inflation rates in place of
predicted asset inflation rates and as a result, Jorgensonian user costs are volatile
and frequently negative if land assets are included in the asset boundary. These
user costs are not suitable for many analytical purposes. Our predicted asset
inflation rates generated relatively smooth user costs that could be used in
production and cost function studies. However, Jorgensonian user costs are the
right type of user cost to use when calculating ex post rates of return on assets
employed.

5. Somewhat surprisingly, Jorgensonian and predicted user costs can give rise to
rates of growth of capital services and Total Factor Productivity that are very
close to each other. Thus for Sector 1, we found that the long run average
geometric rate of capital services growth generated by the alternative user cost
approaches were 3.38% and 3.29% per year for Sector 1 and 1.86% and 1.88%
per year for Sector 2. The resulting alternative annual rates of TFP growth
were 1.66% and 1.69% per year in Sector 1 and 1.21% per year using both
Jorgensonian and predicted user costs for Sector 2. These differences are not
large.
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6. Dropping assets from the asset base can lead to very large biases in the
measured rates of return on assets employed. Dropping land, inventory and
monetary balances from the list of assets in scope increased the measured
average ex post real rate of return on assets from 7.6% to 10.8% per year for
Sector 1 and from 9.0% to 19.7% per year for Sector 2.

7. Dropping assets from the asset base can lead to little change in measured TFP
growth rates or it can lead to significant changes. Thus the Jorgensonian average
TFP growth rate for Sector 1 changed from 1.66% per year with all assets in the
base to 1.65% per year, after land, inventories and real monetary balances were
dropped from the list of assets. On the other hand, the Jorgensonian average
TFP growth rate for Sector 2 changed from 1.21% per year with all assets in
the base to 1.00% per year after land, inventories and real monetary balances
were dropped from the list of assets. This is a significant change.

8. Our data are subject to a considerable degree of uncertainty. Hopefully, in future
years, the BEA in cooperation with the BLS, the USDA and the Federal Reserve
Board of Governors will be able to improve the quality of the underlying data.
In particular, we note that our land and labour data are weak and we are missing
data on resource stocks.

9. More research is needed on choosing appropriate predicted asset inflation rates.
10. Using (net of depreciation and asset revaluation) income is more appropriate

than value added for examining changes in the relative distribution of income
between labour and capital, with potentially different results relating to the
extent of changes in inequality.
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Abstract We estimate the determinants of income inequality focusing on the U.S.
over 1985—2013. We decompose widely used inequality indices by subgroups,
income sources, and factor components based on regression approaches to discover
the significant sources of widening inequality in the United States. Our results
indicate that education, marriage, gender, race, asset income, as well as employment
in manufacturing and financial industries all expand the gap across different income
classes.
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1 Introduction
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supply chain network. However, economic challenges exist and feasible solutions
to them appear far from certain. One of the deep and important issues of our
time is the distributional implication of productivity growth and the closely related
issue of rising income inequality. The gap between the growth in productivity
and wage compensation has widened since the late 1970s in the United States,
and it has been a phenomenon across the world. This poses important research
questions as to why inequality has risen and why relatively recent productivity
growth disproportionately has been allocated to capital returns and away from wage
compensation.

Looking at how wage compensation has changed in the last three decades, one
is alarmed by the stagnating median wage in the U.S. compared to significant
productivity growth and rising inequality indices. In fact, the U.S. has become the
most unequal country among developed countries as well as one of the unequal
countries in the world in terms of wealth and income, with a Gini index based on
income increasing by over 30% from 1979 to 2013 (0.31–0.40). The bottom 90% of
households has seen their incomes stagnate over the last three decades. Against this
backdrop of increasing income inequality is the misconception by the voting public
that income inequality is not as severe as it is and that free-market capitalism is the
working mechanism to ameliorate the problem with no need for public policies to
assist in this process.

What happened that prevented the growth in wage compensation from keeping
up with the growth in TFP? We will discuss different socioeconomic aspects that
may have contributed to the gap between the growth in productivity and wage
compensation.

Technology is arguably one of the most important factors contributing to the gap
between wage and productivity growth. Many believe that technological innovation
is the key factor that has increased income inequality since the late 1970s. The
U.S. is in transition from manufacturing to a service economy with significant
technological advances that have improved TFP over the last three decades. The
transition has created jobs that require highly skilled workers to perform tasks such
as writing software, and service jobs such as customized tailoring. However, jobs
in the middle which compose the majority of manufacturing jobs are shrinking.
According to Brynjolfsson and McAfee (2011), the demand for some types of
skills or abilities will likely decrease significantly with technological advancements,
worsening the employment levels and wages of people with those skills or work in
related industries. In addition, the recent recession accelerated the displacement of
these mid-wage jobs, according to a study by Cortes and his colleagues (2014).
People blame computer technology for the lost jobs. Indeed, computers are more
likely to replace routine jobs, leaving those with no advanced training trapped in
unemployment. Tyler Cowen (2013) argued that computing technology accelerates
the division of American workforce into two classes: the highly skilled workforce
that will tremendously benefit from working with technologies, and the other
group whose wages will stagnate or even decline. Autor, Katz and Kearney (2008)
further pointed out that inequality within the upper half of the income class keeps
increasing, while the inequality trend in the lower half of the distribution is slowing
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down. On the other hand, it is still debatable whether technical innovation is the
main source of income inequality if we account for the complementary effect
of information technology (IT) on the labor market. Certain technologies create
professions for which creativity and dexterity are indispensable and thus boost
demand for certain types of labor. Skilled manual labor, such as sewing machine
operators, boilermakers, etc., is currently fortunate professions that have had the
largest recent wage gains. In addition to replacing routine jobs, technology also
impacts non-routine jobs which were considered to be confined to humans. The
thought that machinery will replace all these jobs challenges our perspective on
technology. As Moshe Vardi (2016) pointed out, what would technology leave us
in the future with all these jobs replaced by machines and how would the increased
productivity from the IT revolution benefit social wellbeing?

Even though technology may be more easily linked to the current dynamic of
capital deepening, education is considered by many to be the underlying source of
income inequality. As technological innovation has accelerated, increasing educa-
tional attainment is necessary to earn higher incomes. Goldin and Katz (2008) have
noted that the U.S. economy bloomed during the twentieth century largely because
the educational attainment of the U.S. population raced along with technological
improvements. However, educational attainment has not kept up with recent changes
in technology. The educational choices Americans make will determine if they can
gain higher wages in the computing era and shape the future of the U.S. economy.
Not everyone holds the same view that we should increase educational attainment
to keep up with technological development, however. Autor (2015) has noted that
highly skilled workers have less rapid career growth and are moving into less skilled
occupations, and that technology may not be progressing as rapidly as people once
thought. Productivity growth has slowed down dramatically after 1995. A significant
employment growth in the past 15 years has been in the relatively low-education,
in-person service occupations. As Paul Krugman has also pointed out in a New York
Times article on February 23, 2015, educational failing is not the reason for income
inequality. Employers offer higher wages to attract workers with certain skills to
perform tasks that require visual perception, mobility, and etc.

The significant income growth at the top of the income distribution over the last
three decades has been the driving force in productivity growth and in also making
the U.S. income distribution one of the most unequal. According to Sabadish and
Mishel (2012), annual earnings of the top 0.1% have increased by more than 300%
since the late 1970s, while the bottom 10% of earners only have seen a 34% increase
in their wages. The share of total income in the U.S. received by the top 1% of
earners has doubled from the late 1970s to pre-recession. An important contributor
to the drastic difference in income growth is CEO compensation and the financial
industry. Average executive compensation has increased more than 725%, much
greater than stock market growth, while average worker compensation has fallen by
5.7% from 1979 to 2005.

The increasing presence of “power couples” may also play an important role in
driving income inequality. Couples are more likely to have similar backgrounds
such as educational attainment, earnings potential, and lifestyle. The fact that
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women have had increasing educational attainment as well as growing participation
in the labor force has changed their social role and status in marriage. Women
have more freedom in choosing their partners and tend to marry those who share
similar backgrounds. This assortative mating process leads to higher levels of social
segregation and inequality, and the impact is magnified through future generations
who are likely to share their parents’ values and conventions. Inequality thus
reinforces itself by increasing the incentive for assortative mating.

Additional factors that have significant impacts on income inequality are race
and gender. The income gap between different races, particularly between white
and black families, has continued even as the U.S. is becoming more diverse. The
income disparity between white and minority groups aggravates problems with
political and economic instability. Moreover, the reduction in the progressivity of
the federal tax system in the early 1980’s has reinforced inequality by increasing the
after tax incomes and the wealth of those with high incomes and wealth. Although
women have more access to employment opportunities in today’s economy than
in years past, the gender wage gap still exists even though women receive more
college and graduate degrees than men and have substantially increased their share
of employment. Wage differentials still exist for the same job for those with
comparable skill and experience levels in almost every occupation, although the
exact percentage gap is subject to some debate. However, a consensus would agree
that persistent occupational segregation is a contributor to the lack of significant
progress in closing the wage gap. Outright racial and gender discrimination in pay,
hiring, or promotions is still a significant feature in workplaces.

We study these potential causes of income inequality and how they impact
income distributions. Analyzing the role of inequality that emanates from the
dynamic of productivity growth is essential if one is to understand and address
its social and economic challenges. Labor displacement, healthcare reform, and
political stability are still major social and economic issues and these issues are
fundamentally linked to inequality. Being able to answer why inequality has risen
and how inequality is connected to productivity growth will better inform us of the
implication of polices meant to remedy this dynamic.

2 Literature Review

2.1 Technology

Over the past several decades, technological advances, especially computing ones,
have improved the total factor productivity of the U.S. (Cardarelli and Lusinyan
2015). IT-intensive industries have experienced a larger acceleration in produc-
tivity than other industries and have been the most important contributor to this
productivity growth (Stiroh 2002). Nevertheless, despite the substantial growth of
productivity since the 1970s, the median American male worker’s real wage rose
by only 3% from the late 1970s to 2014, as pointed out by many researchers
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(DeNavas-Walt and Proctor 2014). Technology confers tremendous benefits on non-
wage earners and may have led to income growth among all income groups (Mishel
et al. 2012).

Goldin and Katz (2008) have pointed out that technological innovation, espe-
cially the involvement of the computer in the workplace, is the key factor that gave
rise to the increase in income inequality between 1979 and 2008. They argued that
new technologies alter the relative demand for different types of labor by shifting the
demand for skilled workers, thus changing the overall wage structure. Cowen (2013)
has proposed that the acceleration of computing technological innovation will result
in two classes in America: a highly skilled class that will profit tremendously by
learning to work with technologies, and the rest of the population whose wages
will stagnate or even decline. Lawrence Summers has pointed out in a Wall Street
Journal article on July 7, 2014 that technological advance is the driving factor in the
reducing job opportunities in many industries.

According to Autor, Katz, and Kearney (2008), the relation between changing
demands for job tasks and the pervasiveness of computerization also can partially to
explain ‘polarization’—inequality within the upper half of the income class keeps
increasing, while the inequality trend in the lower half of distribution gradually
slows down. IT is quick to substitute middle skills for occupations requiring routine
tasks, such as certain bank clerks’ work that has already been replaced by the
ATM technology. Computerization, on the other hand, cannot substitute the jobs
that require more ‘abstract tasks’ and cognitive and interpersonal skills, such as
lawyers, managers, and professors, at least not yet. Furthermore, some non-routine
‘low-skilled’ services jobs, like security guards, health aids, and servers, are also
hard for technologies to replace. Autor, et al. concluded that due to the substitution
effect, technological advance increases labor demand for the ‘two tails’ of skilled
workers, but reduces demand for ‘middle skilled’ labor.

However, both Summers and Autor later renounced their previous assertion
of technology as the major driver of inequality after taking into account of the
complementary effect of IT on the labor market. Specifically, certain technologies
such as information process and motor power are prone to create professions, to
which creativity and dexterity are indispensable, thereby boosting demand for labor.
Moreover, despite the general consensus on the pervasive effect of technology on
the labor market, there is not yet a consensus, pointed out by Summers, on the
overall effect of technology as a substitute or a complement to labor and thus
wage earners and thus whether technological innovation is a leading main source
of income inequality in the US.

2.2 Executive Compensation and Financial-Sector Pay

Sabadish and Mishel (2012) have noted that the wage gap between the very highest
earners and other earners, including low, middle and other high earners, might
be one of the sources that contribute to overall income inequality in the United
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States. They pointed to the remarkable growth of earnings at the top of the income
distribution as a major cause of income inequality. Their study shows that the annual
earnings of the top 0.1% has grown 362% since the late 1970s, approximately ten
times than the 34% of wage growth in the 90th to 95th percentile. Additionally, from
1979 to 2007, the share of total income in the United States received by the top 1%
of earners doubled.

Sabadish and Mishel ascribed income inequality to CEO compensation and
growth in the financial industry. They found that a large number of the highest
earning households are headed by either executives or those employed in the
financial sector. These professions account for 58% of income expansion in the top
1% and 67% in the top 0.1% from 1979 to 2005.

2.3 Workplace Heterogeneity

Few studies have been conducted to investigate how income levels differ along the
lines of firm types and worker allocation across those firms. We now turn to research
that has focused on the inequality issue from the workplaces’ perspective.

Card, Heining and Kline (2013) examined the effects of workplace heterogeneity
on wage inequality. Even though their empirical study utilized German data, it
offered potential explanations for inequality in the United States. Card et al.
examined how much of the rise in inequality could be attributed to a rise in the
variation in pay premiums offered by different employers, and on how much could
be explained by rising heterogeneity among workers. By decomposing changing
inequality patterns in this way, they showed that both factors partly contribute to
overall inequality. Along with the growth in the gap between consistently high-
and low-wage workers is the expanding divergence between the high- and low-pay
jobs, which suggests the increasing importance of the often education-mediated job
search and matching process. Card, et al.’s results show that people with higher
pay increasingly cluster at establishments that generally pay higher wages to their
employees. This polarization causes inequality in average wages across industries
to rise substantially. Card et al. also found that the distribution of establishment
effects is relatively disperse for new establishments and thus concluded that new
establishments contribute more to the workplace heterogeneity effects on wage
inequality. Barth and his colleagues (2016) applied Card’s approach to study
inequality in the U.S. and illustrated that workplace heterogeneity is an important
part of recent rises in wage inequality in the United States.

2.4 Education

Considered an indispensable part of economic growth, disparate educational oppor-
tunities, along with technology effects, have been singled out by many economists
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as a leading cause of income inequality. Goldin and Katz (2008) called the
twentieth century ‘The American Century’, as well as the ‘Human Capital Century’,
indicating that economic growth in the U.S. in the past century was largely fueled
by the increasing educational attainment of the U.S. population. Kearney, Hershbein
and Boddy (2015) from the Hamilton Project also pointed out that education is
integral to inequality, as more advanced education is necessary for laborers to
capture higher wages in job market. Card, Heining and Kline (2013) also noted
that higher productivity normally associated with higher education tends to make
higher degree holders more attractive to the higher-paying establishments, leading
to higher overall inequality.

Before the 1970s, the increasing popularity of high-school degree attainment
rendered real income growth fastest near the bottom of income distribution and
slowest at the top, slightly decreasing overall income inequalities (Goldin and Katz
2008). However, after the 1970s, family incomes grew much faster in the top 5%
income-class than the middle and the lowest quintile. Goldin and Katz explained this
phenomenon by pointing to a race between education and technological advance-
ment. Before the 1970s, there was an increasing supply of educated American to
meet the increasing demand for skilled workers. Hence, inequality did not rise
dramatically, and economic gains were broadly shared. But afterward, as accelerated
technological innovation has outpaced the growth of educational attainment and
gains from technology have increased, people equipped with technological skills
from higher education tend to earn much higher incomes.

While some researchers emphasized the failure of an increase in educational
attainment to keep up with technological development, Autor (2015) argued that it
is not the main reason for wage inequality. He argued that technological progress
is not growing as rapidly as people thought. He observed that the premium to
higher education has stagnated over the last 10 years, as Paul Krugman in his
New York Times article on February 23, 2015 also argued that inflation-adjusted
earnings of highly educated Americans have plateaued since the 1990s. On the other
hand, there is employment growth in the relatively low-education, in-person service
occupations, which offer higher wages to attract workers who typically don’t receive
high education. For example, as we pointed out earlier, sewing machine operators
and boilermakers have seen wage gains recently.

2.5 Race

It is obvious that income in the United States is not distributed evenly among
races. Mishel and his colleagues (2012) showed that family money income differs
significantly across racial and ethnic groups. In 2010, the median income of black
families and that of Hispanic families was $39,715 and $40,785, which were less
than 63% of the median of white families income $65,138.

Wright (1978) showed that it is much harder for blacks to step into high-
income class than non-blacks and this appears not to have changed substantially
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in the ensuing almost 40 years. Both race and the present racial discrimination
play a critical role in income inequality across racial lines. First, racial identity
can be a useful dividing line that often corresponds to wage levels, as the current
prevailing criteria built into the mechanisms for both the job sorting and the
promoting process tend to favor white people while bringing disadvantages to
the black people. However, rather than as a cause for the wage gap, race simply
helps explain this phenomenon, since many criteria such as educational credentials
and connections themselves are not racist in nature. On the other hand, the still
existing pattern of racial discrimination and the social dynamics of domination in
managerial hierarchies may tend to legitimatize the current racially informed job
position hierarchy. As a result, Wright claimed that blacks are more likely to cluster
at the working class level and have little chance to gain promotion into managerial
positions, in which they would gain much higher income. These factors appear no
less relevant today than they did 40 years ago.

2.6 Gender

The report launched by the Council of Economic Advisers of the White House
(2015) suggests income inequality along gender lines, despite the apparent sym-
metry of female and male worker numbers. This study contrasts with the previous
data, which shows that the gender wage gap has generally narrowed since 1970s, by
pointing out the still existing difference—in 2013, the median full-time working
females only earned 78% of what earned by median male full-time workers.
Moreover, beyond wages, employer-sponsored health and retirement benefits and
other compensation should also be taken into account when considering the causes
for income difference between genders. Study shows that it is less likely for women,
especially those women with lower incomes, to have retirement saving plans.

Furthermore, even though women take almost 50% of job positions, women tend
to cluster at lower-paying occupations and industries. Representing more than half
of employers in the three industries with the lowest average wages—leisure and
hospitality, retail trade, and other services—women continue to have relatively low
shares in the three industries with the highest average wages—information services,
mining and logging, and utilities. Therefore, the gender income gap is partly an
occupational one as shown in the allocation pattern of male and female across
industries.

2.7 Marriage

Studies have found that the patterns of marriage also affect income inequality.
Homogamy within households has increased more for the most and least educated
households than for those in the middle (Kalmijn 1991, Rosenfeld 2008, Schwartz
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and Mare 2005). This explains that the real earnings of households with the least
education decline while those of households headed by high school graduates
stagnate for years. The findings suggest that educational homogamy leads to the
increasing income gap between high and low income couples. Schwartz (2010) also
finds the effects of the growing earning homogamy between spouses on inequality
across married-couple families to be 17–51% depending on the measures and time
periods. The earning homogamy can be explained partially by the increase in
positive assortative mating.

Positive assortative mating is termed by sociologists to describe the phenomenon
that people search to marry those with similar backgrounds including education
attainment, earning potential, value systems, personal preferences, and lifestyle.
Studies have found that assortative mating increases household income inequality
at all levels of education (Eika et al. 2014). The time trend is particularly evident
for less educated who are more likely to sort into homogamous marriages. Further
finding suggests that educational assortative mating contributes significantly to the
income inequality of households with different educational backgrounds. Conse-
quently, we speculate that the assortative process is magnified through replication
into the future generations. More likely to be raised by couples with the same
backgrounds, children tend to resemble their parents’ level of income, as their
opportunities and achievements are highly correlated with their parents’ education
and income level.

3 Decomposition Methods

Many economists have utilized income inequality decompositional analyses to study
and quantify the effects of various factors on income inequality. Shorrocks (1983)
used data on the distribution of net family incomes in the United States between
1968 and 1977 to determine the proportion of total income inequality attributed
to various factors. Heshmati (2004) discussed methods to decompose income
inequality, including through subgroups, income sources, and factor components
such as characteristics of households. These decomposition methods summarized
by Shorrocks and Heshmati have had wide applications among economists who
wish to better understand the income inequality issue in the United States.

3.1 By Subgroups

Jenkins (1995), Cowell and Jenkins (1995), and Shorrocks (1983) have developed
and popularized an approach to study the factors influencing income inequality by
decomposing total income inequality into within and between subgroups’ inequality.
Not all inequality indices are suitable for this type of decomposition, however.
Heshmati (2004) proposed decomposing the Gini index by subgroups. However,
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the Gini coefficient does not satisfy the properties of uniform addition (Cowell 1988,
1995; Shorrocks 1980). Furthermore, other widely accepted inequality indices, such
as relative mean deviation, the variance and logarithmic variance, also cannot be
decomposed by subgroups. However, it can be shown that the Theil index and other
Generalized Entropy indices satisfy the uniform addition property and thus admit to
a standard decomposition often sought after by researchers (Papatheodorou 2000).

Notwithstanding the interpretation issues due to the failure to adhere to the uni-
form addition property, Yitzhaki (2002) decomposed the Gini index by the rich and
the poor subgroups in Romania in 1993 and calculated income inequalities within
and between these subgroups. He found that a poverty index can be derived from
a decomposition of an appropriate index of inequality, such that poverty indices
are redundant since the decomposition provides additional information to measure
poverty. Papatheodorou (2000) used Greek family income data to decompose the
Theil and other Generalized Entropy indices into within- and between-subgroups
inequality. In his study, he divided the population into subgroups by characteristics
of households such as locality, region, age of head, educational level of head,
and occupational status of head. He found that except for education, within-group
inequality components are larger than between-group inequality components for
most population subgroups.

3.2 By Income Sources

The second approach to decompose income inequality focuses the extent to which
inequality in different income sources contributes to total income inequality.
Shorrock (1983) studied the contribution of various income sources to total income
inequality between 1968 and 1977. His research showed that the largest proportion
of total income inequality is attributable to labor income and the second largest
is attributable to capital earnings. The results from this study, however, differ by
the areas studied. For example, El-Osta (1995) found that non-farm income has an
equalizing effect on inequality of the United States. For a developing country such
as Ecuador, studied by Elbers and Lanjouw (2001), income from non-farm activities
increased overall income inequality.

3.3 By Factor Components (Regression-Based Decomposition)

Overcoming many of the limitations to other approaches based on standard decom-
position by groups, the decomposition with regression-based approaches is built
on decomposition by income sources and has more appealing properties. Through
appropriate specification of the explanatory variables, the potential influence on
inequality of various factors that otherwise might require separate modeling can
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be easily and uniformly incorporated within the same econometric model (Cowell
and Fiorio 2011).

To study the cause for cross-country income inequality for OECD countries
from 1962 to 1993, Gisbert (2001) decomposed the Theil index by causal factors
that include productivity, employment rate and activity rate (reverse causality from
income to productivity is acknowledged but not addressed herein). He found from
this analysis that while the decrease in productivity inequality across countries
causes income inequality to decrease, the employment and activity rate factors have
opposite effects on income inequality among OECD countries. Morduch and Sicular
(2002) decomposed income inequality by factor components to study the cause
of the uneven income distribution in rural China. Morduch and Sicular’s results,
however, vary substantially based on which indices they use. The decomposition
using the Theil index shows that education and demographic variables have strongly
reduced inequality. On the other hand, the Gini decomposition indicates that these
variables contribute positively, although modestly, to inequality. Baye and Eop
(2011) also utilized the regression-based income inequality method to study the
cause for income inequality in Cameroon. They found that education is one of the
major contributions to income inequality.

Although the results of income inequality decomposition differ by countries and
data, these methods provide a useful baseline for studying income inequality in the
United States.

4 Data

The data we use to examine the sources of and factors related to income inequality
in the U. S. are from Panel Study of Income Dynamics. We use data from the
years 1985, 1990, 1995, 1999, 2005, 2009 and 2013. The income of a householder
can be roughly categorized into three types: labor income, asset income, and
transfers. Labor income includes wages and salaries, bonuses, overtime, tips,
commissions, professional practice and trade, market gardening, additional job
income, miscellaneous labor income, farm income, and the labor portion of business
income. Asset income consists of dividends, interest, rent, trust fund, annuities
and the asset portion of business income. Other transfer income is composed of
supplemental security income, welfare, pension, and alimony. Other variables that
represent the characteristics of the householders are years of education, gender, race,
age, marital status, and industries. We drop all the observations indicating non-
positive or missing incomes. In addition, we use the selection model to filter out
the zero income observations. We use predicted estimators to calculate the inverse
mills ratio, which will be used as a new explanatory variable in the income equation.
Then, all the zero income observations are dropped.

The number of observations for each year is between 6000 and 8000. Table 1
summarizes information about the head of the household’s income for each year.
The mean of income increases from $19,931 in 1985 to $45,638 in 2013. Table 2
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Table 1 Summary statistics
of income of PISD data

Obs Mean Std. Dev Min Max

1985 6067 19931.11 26213.84 1 999,999
1990 7897 24110.67 29121.82 5 1,000,000
1995 7536 29710.57 49148.31 1 1,999,992
1999 6317 36095.93 50088.64 1 1,985,000
2005 7208 41749.47 54897.09 1 1,250,000
2009 7779 46038.47 58372.21 1 974,500
2013 7675 45637.98 53685.52 1 990,000

Table 2 Summary statistics
of PISD data

Education Age White % Male % Married %

1985 12.18 44.62 65.40 74.95 59.40
1990 12.31 45.65 66.43 75.65 58.95
1995 12.72 43.10 62.82 71.66 53.17
1999 12.86 43.55 62.48 72.27 54.82
2005 13.07 43.79 62.47 71.84 52.12
2009 13.38 43.89 61.22 71.02 49.40
2013 13.58 43.82 59.58 70.80 47.91

provides more demographic information for the head of the household. The mean
of education years increases from 12.18 in 1985 to 13.58 in 2013. The average
age of people in this data decreases from 44.6 to 43.8. In addition, the percentages
of white people, the male and married people in this survey all decrease. Table 3
summarizes the share of total population from each industry. There are 13 industries
in the present analysis:

Table 3 shows that the manufacturing industry, wholesale and retail trade
industry, and professional and related services industry have the largest numbers
of employees. In addition, there are a moderate number of people who do not
work for money in this population and they are grouped into industry 0. Wee
decompose income inequality of this population by subgroups, income sources and
factor components with regression.

5 Empirical Methodology

5.1 Decomposition by Subgroups

We now present the indices that are suitable for decomposition by the population
subgroup approach (Bourguignon 1979; Cowell 1980, 1988, 1995; Shorrocks 1980;
Anand 1983). Generalized entropy indices, denoted as E� , come from a family
of indices that is decomposable by population subgroup (Shorrocks 1983, Cowell
1995). The generalized entropy indices E� can be written as:
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Table 3 Percentage of
totally population in the
industry (ind0-ind12)

Ind1 Ind2 Ind3 Ind4 Ind5 Ind6 Ind7

1985 2.88 0.87 6.94 20.2 7.57 13.7 3.43
1990 3.19 0.66 7.48 19.3 6.83 13.6 3.91
1995 2.32 0.52 6.67 16.1 6.9 13.6 3.73
1999 2.56 0.44 7.00 16.6 7.46 12.4 4.37
2005 2.29 0.29 8.32 13.4 6.16 12.1 5.08
2009 2.03 0.6 8.45 12.2 6.12 10.7 5.26
2013 2.07 0.66 7.32 12.2 6.12 11.4 5.12

Summary statistics of PISD data (Cont.)
Ind8 Ind9 Ind 10 Ind 11 Ind 12 Ind 0

1985 4.25 3.4 0.69 12.6 6.63 16.8
1990 4.98 3.19 0.75 12.6 6.42 17.1
1995 4.79 2.64 0.98 15.1 6.81 19.9
1999 6.13 2.79 1.01 15.0 7.08 17.2
2005 8.84 8.42 1.48 14.8 5.95 12.9
2009 10.0 9.35 1.58 14.9 6.45 12.3
2013 10.4 10.8 1.51 15.7 6.63 10.2

Industry 1: Agriculture, Forestry, and Fisheries.
Industry 2: Mining.
Industry 3: Construction.
Industry 4: Manufacturing.
Industry 5: Transportation, Communications, and Other
Public Utilities.
Industry 6: Wholesale and Retail trade.
Industry 7: Finance, Insurance, and Real estate.
Industry 8: Business and Repair Services.
Industry 9: Personal Services.
Industry 10: Entertainment and Recreation Services.
Industry 11: Professional and Related Services.
Industry 12: Public Administration.
Industry 0: not working for money now at all.
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where the parameter � can take any positive, zero or negative value. � is the mean
level of income of the population, and n is the population.

Total income inequality indices in this population subgroup can be decomposed
into between- and within-subgroup inequality, which can be written as:

IT D IB C Iw; (2)

where IT is the overall inequality of the population. IW is within-group inequality
and IB is between-group inequality.
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Between-group inequality can be represented as:
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while within-subgroup inequality can be calculated by:
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where nk is the population in group k, �k is the mean income in group k, and Ik is
the inequality in group k.

5.2 Decomposition by Income Sources

Stark, Taylor and Yitzhaki (1986) proposed that the influence of any income source
on total income inequality depends on how much the income source contributes to
income, how equally or unequally distributed the income source is, and how the
distribution of the income source and the distribution of total income are correlated.
They express the composite Gini coefficient as:

G D
X

k
SkGkRk; (5)

where Sk is the share of source k in total income, Gk is the Gini coefficient
corresponding to the distribution of income from source k, and Rk is the correlation
of income from source k with the distribution of total income.

5.3 Decomposition by Factor Components (Regression-Based
Decomposition)

Using ‘natural decomposition rules’, inequality indices can be written as a weighted
sum of incomes (Shorrocks 1982):

I .y/ D
X

ai .y/ yi: (6)

The proportional contribution of source k to overall inequality can be written as:

sk D

Pn
iD1 ai .y/ yk

i

I .y/
: (7)
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The regression-based decomposition approach brings together inequality
decomposition by income source and decomposition by population subgroup. We
begin with the income equation (Morduch and Sicular, 2002):

y D Xˇ C "; (8)

where X is an n � M matrix of independent explanatory variables, ˇ is an M-vector
of regression estimates, and " is an n-vector of residuals. The coefficient ˇ can
be estimated using appropriate econometric model and the prediction of y can be
formed byby D Xb̌. In this model, we can estimate the income flows attributed to
different household factors byby m D Xb̌m, where the household variables include
education, age, marriage etc. Therefore, the total income of individual i can be
written as the sum of income flows from different source:

yi D
XMC1

mD1
bym

i ; for all i: (9)

whereby m
i D b̌

mxm
i , for m D 1, : : : , M andby m

i D b"i, for m D M C 1. The share of
variable m is then modified to be:

sm D b̌
m
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; for m D 1; : : : ;M: (10)

Since the decompositions above are linear in the estimated parameters, the
standard error of sm can be obtained by:
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6 Results

6.1 Decomposition by Subgroup

Using the decomposition by subgroup method, we categorize the total population by
education level, gender and race. Education levels include primary level, secondary
level and above secondary level. Genders consist of males and females. White and
non-white are used to categorize the total population by races.
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Table 4 Decomposition of inequality by education subgroups

Popn. Share Mean Income Share GE(0) GE(1) Gini

By Education
1985
Primary 0.026 8762 0.011 0.88 0.52 0.54
Secondary 0.622 18,089 0.565 0.53 0.41 0.46
Above Secondary 0.352 23,998 0.424 0.45 0.38 0.44
Within Groups 0.51 0.40
Between Groups 0.016 0.015
2013
Primary 0.010 21,894 0.005 0.465 0.25 0.371
Secondary 0.400 30,355 0.263 0.639 0.397 0.474
Above Secondary 0.594 56,336 0.732 0.589 0.426 0.482
Within Groups 0.608 0.417
Between Groups 0.045 0.042

Differences in equality have been found among the subgroups categorized by
educational level as we can see in Table 4. An increasing number of people receive
above secondary education from 1985 to 2013. In 1985, people who receive above-
secondary education only earn on average about $6000 more than the secondary
school graduates. This number jumps to $26,000 in 2013, reflecting the effect of
high-level education on the earnings.

The group with the highest within-group income inequality in 1985 contains
those with primary school as their highest education attainments. However, in 2013
inequalities within both secondary and above secondary group exceed the inequality
within primary school group. One explanation may lie in the fact that these two
latter groups contain a large number of individuals who have undergone further
training and acquired a variety of certificates, diplomas and degrees. These different
levels of training within the groups create greater income disparities (Okatch 2012).
Moreover, inequality between these three subgroups almost triples, as it increases
from 0.015 to around 0.045. Therefore, we can conclude that educational disparities
do increase inequality. However, for all indices between-group inequality is much
lower than within-group inequality, so one would need to identify more factors
within the subgroups to explain the pervasive inequality we observe in America.

Some researchers and policy-makers have emphasized the income difference
between males and females. Table 5 shows results based on the decomposition by
gender subgroups from 1985 to 2013. In 1985, women only contribute to 13% of
total income, which is much lower than their 25% share of population. By 2013,
females’ share of total income increases to 29%, which is roughly the same as their
population share in the workforce. This result also points to a shrinking, but still
significant, gender income gap, which is consistent with decreasing between-group
inequality.



On the Allocation of Productivity Growth and the Determinants of U. S. Income. . . 87

Table 5 Decomposition of inequality by gender subgroups

Popn. Share Mean Income Share GE(0) GE(1) Gini

By Gender
1985
Male 0.75 23,097 0.87 0.434 0.37 0.43
Female 0.25 10,459 0.13 0.6 0.38 0.47
Within Groups 0.474 0.37
Between Groups 0.051 0.043
2013
Male 0.708 52,525 0.815 0.608 0.43 0.483
Female 0.292 28,939 0.185 0.653 0.429 0.492
Within Groups 0.621 0.43
Between Groups 0.0335 0.0302

Table 6 Decomposition of inequality by race subgroups

Popn. Share Mean Income Share GE(0) GE(1) Gini

By Races
1985
Non-white 0.346 13,577 0.236 0.49 0.32 0.43
White 0.654 23,292 0.764 0.5 0.40 0.45
Within Groups 0.49 0.38
Between Groups 0.03 0.03
2013
Non-white 0.404 32,480 0.288 0.56 0.38 0.46
White 0.596 54,563 0.712 0.67 0.45 0.49
Within Groups 0.62 0.43
Between Groups 0.03 0.03

While inequality across gender groups decreases, inequality within each gender
group rises over years of our study. The within-group GE(0) increases from 0.474
to 0.621, and the GE(1) rises from 0.367 in 1985 to 0.43 in 2013. GE(0) that is
more sensitive to the population at the bottom of income distribution, increased
more than GE(1) (also called T-Theil), which is more sensitive to the population
with median income. This reflects greater inequality in the group of people with
low income. Moreover, all the inequality measures for 1985 and 2013 suggest that
income inequality among women is higher than that among men. One possible
reason for this is that some women continue pursuing their career after completing
their formal education, while some choose to work in the home. This disparity in
career choice leads the greater income gap within the female group.

Table 6 displays results based on the decomposition into white and nonwhite
subgroups. Whites always earn more than nonwhites, as they contribute 76.4%
of total income in 1985 and 71.2% in 2013, but the percentages decrease. The
decrease in the income share of whites is partially explained by the decrease in
the population share of whites, which falls from 65.4% to 59.6% between 1985
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and 2013. Inequality increases from 0.47 to 0.56 within the nonwhite subgroup and
from 0.50 to 0.67 for whites using GE(0). When measured by GE(1), inequality
within the nonwhite subgroup increases from 0.32 in 1985 to 0.38 in 2013, and
among the white subgroup, this increases from 0.40 to 0.45. The between-group
income inequality across those two groups remains constant from 1985 to 2013, but
the total within-group inequality values measured by GE(0), GE(1), and Gini all
increase. We find that rising inequality within these two race subgroups contributes
much more to the increase in overall income inequality than rising inequality across
these two racial subgroups.

6.2 Decomposition by Income Sources

Table 7 provides the results of income decomposition by income sources. Recall
that total income is categorized into three parts: labor income, asset income and
other transfers. From 1985 to 2013 labor income contributes most to total income.
Interestingly, labor income is the most evenly distributed income source among
these three. With its large share in total income and its relatively even distribution,
the labor income has negative numbers under the ‘% change’ column that shows the
percentage of increase in inequality caused by certain income source, reflecting that
labor income has an equalizing effect on income distribution.

Among these three sources, asset income, which includes dividends, interest,
rent, trust fund, annuities and the asset portion of business income, is the only source
that constantly positively contributes to income inequality. Its Gk is slightly lower
than other transfers but still at a high level. Moreover, asset income’s contribution
to total income is much larger than that of other transfers. From 1985 to 2013, the
portion of labor income increases while asset income and other transfers take fewer
shares. The contribution of asset income to total income inequality drops due to the
decrease of its portion in total income.

Other transfers have the highest level of inequality, with a Gk of around
0.99. However, the correlation between the distribution of other transfers and the
distribution of total income is relatively low, meaning that low-income classes can
still have high other transfers. Some people do not work for money, have no capital
gains, and thus are at the bottom of income distribution. However, they may receive
supplemental security income and well as other transfers. The direction of other
transfers’ effect on income inequality changes year to year but given its small
contribution to total income the magnitude is not significant.
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Table 7 Decomposition of inequality by income sources

Share Sk Gk Rk Share % Change

1985
Labor Income 0.8793 0.4701 0.9466 0.8526 �0.0268
Asset Income 0.1165 0.9079 0.6397 0.1474 0.0309
Other Transfer 0.0042 0.9882 0.0031 0.0000 �0.0041
Total Income 0.4590
1990
Labor Income 0.8684 0.4721 0.9481 0.8365 �0.0318
Asset Income 0.1275 0.9845 0.6557 0.1627 0.0353
Other Transfer 0.0042 0.9799 0.0844 0.0007 �0.0034
Total Income 0.4646
1995
Labor Income 0.9003 0.5165 0.9707 0.8729 �0.0275
Asset Income 0.089 0.9663 0.6845 0.1138 0.0248
Other Transfer 0.0107 0.9916 0.6504 0.0133 0.0026
Total Income 0.5171
1999
Labor Income 0.9111 0.4865 0.9644 0.8860 �0.0251
Asset Income 0.0824 0.9541 0.6545 0.1966 0.0242
Other Transfer 0.0065 0.9915 0.5546 0.0074 0.0009
Total Income 0.4825
2005
Labor Income 0.9196 0.5101 0.9762 0.9241 �0.0085
Asset Income 0.0768 0.9499 0.6274 0.0758 0.0119
Other Transfer 0.0036 0.9828 0.0178 0.0001 �0.0034
Total Income 0.5026
2009
Labor Income 0.9326 0.5101 0.9762 0.9241 �0.0085
Asset Income 0.0639 0.9499 0.6274 0.0758 0.0119
Other Transfer 0.0035 0.9828 0.0178 0.0001 �0.0034
Total Income 0.5026
2013
Labor Income 0.9345 0.5115 0.9726 0.9286 �0.0059
Asset Income 0.0603 0.9568 0.5944 0.0685 0.0082
Other Transfer 0.0052 0.9891 0.2788 0.0029 �0.0024
Total Income 0.5007

6.3 Decomposition by Factor Component (Regression-Based
Decomposition)

Table 8 shows the result of the decomposition of the Gini coefficient by factor com-
ponents using he regression-based approach for years 1985, 1990, 1995, 1999, 2005,
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Table 8 Results of regression-based approach

1985 1990 1995 1999 2005 2009 2013

Education 21.14 40.87 32.79 21.6 21.3 27.61 20.09
White 11.82 10.06 12.92 7.83 7.2 4.61 5.62
Married 5.43 7.19 4.23 7.78 5.5 8.83 8.08
Male 14.75 12.54 12.44 5.68 7.78 2.87 4.64
Age �15.72 �11.85 �15.17 �14.8 �6.9 �1.02 �1.04
Age2 16.01 12.49 18.24 25.29 6.65 0.18 0.33
Industry 1 �6.5 �3.41 0.24 �0.64 �0.53 �0.21 �0.16
Industry 2 3.46 1.60 1.91 0.97 2.29 4.8 3.11
Industry 3 3.21 6.26 7.64 3.95 15.85 13.1 4.35
Industry 4 42.84 30.38 30.82 17.64 35.4 32.41 21.75
Industry 5 22.42 19.14 17.01 11.98 19.03 17.17 8.31
Industry 6 �1.28 1.68 2.38 �2.51 �2.2 �6.88 �8.01
Industry 7 7.55 9.3 7.51 7.02 17.91 20.23 13.56
Industry 8 �0.2 1.36 2.77 3.44 �27.83 �36.51 �22.8
Industry 9 �13.55 �9.39 �6.72 �5.00 �4.99 �6.31 �4.22
Industry 10 0.09 �0.19 1.04 �0.095 �2.41 �2.15 �1.33
Industry 11 9.95 12.3 15.56 5.34 18.71 26.79 10.05
Industry 12 13.19 15.29 15.42 9.64 27.16 31.49 19.58
White male �14.44 �7.78 �9.2 �2.51 �1.17 3.72 �1.05
Inverse Mills �44.35 �78.04 �103.02 �57.1 �106.21 �97.77 �41.88
Residual 75.82 30.2 51.19 54.495 67.46 57.04 61.02

2009 and 2013. The detailed OLS regression results and income flow shares are
attached in the Appendix. All the coefficients from OLS regression are significant
at conventional levels except the coefficients on white males. They are significant at
only the 10% level in 1985 and 2013, insignificantly different from zero at the 10%
level in 1999 and 2005, and significant at the 1% level in 1990, 1995, and 2009.

From Table 8, we can see that the combined effects of age and age squared is
very close to 0 from year 1985 to 2013, except the year 1999 when the age and age
square contributes 10.49% to total inequality. However, for most of the years, age
is not the main factor that affects income inequality. Education has large positive
shares for all the years. Its effect rises to over 30% in 1990s, then decreases to 20%,
and stays at a pretty stable level after 1999. This result reflects that the educational
gap explains over 20% of income inequality. The dummy variable WHITE provides
11.82% contribution to overall inequality in 1985. Nevertheless, this value decreases
over years, and drops to 5.62% in 2013, which shows that even though race still
positively affects inequality, its influence has decreased. This result is consistent
with the finding by subgroup decomposition that inequality between different race
groups explains total income inequality to a smaller extent. The share taken by
MARRIED is positive for all years with a slight increase. This is in line with the
assortative matching theory in Sect. 2.7 that marriage causes social segregation
and income inequality. MALE also explains part of inequality, but its contribution
decreases from 14.75% in 1985 to 4.64% in 2013, indicating that gender inequality
is not a big cause for current inequality.
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Industry 4, the manufacturing industry, provides the most contribution to total
inequality among all industries. The manufacturing industry takes a 42.84% share
of inequality in 1985, which drops to 17.64% in 1999, and increases again after
the 2000s. One of possible explanations for why the manufacturing industry
contributes so much to inequality in the early years is that it has the largest
number of employees, and thus has a big effect on total income. Moreover, as
shown in the tables in Appendix, there are many more employees in this industry
clustering around the top 25% class of income distribution than in the bottom 25%.
According to Charles Kenny in his Bloomberg article on April 28, 2014, however,
the manufacturing industry has shrunk after the 1990s, due in part to the growth
in imports from China. Given fewer employees and thus smaller contributions to
total income, industry 4 has a lower effect on inequality in the 1990s. One reason
for the increase in the share of the manufacturing industry on inequality in the later
years might be the displacement of technology. Gary Becker has pointed out in The
Becker-Posner Blog posted on April 22, 2012 that labor costs will be a lower fraction
of the total cost of manufactured products with the advent of new technologies.
These technologies are unlikely to create job opportunities since they are generally
labor-saving, instead of labor-using. Jobs with new technologies will require skilled
and better-paid workers, which magnify income inequality in this industry.

Professional and related service (Industry 11) is another industry that has a
large work force and a positive contribution to total income inequality. Industry 11
generally maintains a more-than-10% contribution to income inequality, reaching
a peak at 26.79% in 2009. Jobs in this industry include lawyers, engineers,
accountants, consultants, doctors and other highly paid professionals. These jobs
require high education levels and advanced cognitive or interpersonal skills. They
tend to receive relatively high income and may be less likely to be replaced by
technology during the sample period.

The contribution provided by industry 7, which is finance, insurance, and real
estate industry, rises from 7.55% in 1985 to 20.23% in 2009. The increased impact
of this industry is due to the explosive growth of the financial sector. As Sabadish
and Mishel have argued, someone who is either an executive or is employed in
the financial sector is often in the top 1% income households in the United States.
With the large increased incomes in the financial industry and the high correlation
between the income distribution of the total population and the income distribution
within the financial sector, industry 7 explains a large proportion of total income
inequality.

7 Conclusion

The main goal of this paper is to study the causes of income inequality in the United
States. In order to quantify the effects of different factors on inequality, we use three
types of decomposition approaches: by subgroups, by income sources, and by factor
components based on regression.
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Using decomposition by subgroups, we find that inequality within the high-level
education group increases from 1985 to 2013, indicating that the availability of
more professional options for people with above secondary education degrees has
resulted in an increased dispersion of income levels within the group. Although
contributing much less to total inequality than within-group inequality, inequality
between different education groups has expanded. Between-group inequalities along
gender and racial lines decrease from 1985 to 2013, possibly reflecting to a certain
degree the effectiveness of measures aimed at addressing racial and gender income
inequality. Similar to the results of decomposition by education level, the effect of
within-group inequality on total income inequality outweighs that of between-group
inequality. This suggests that merely focusing on devising policies to address the
income gap across different groups may be misguided.

Decomposing inequality by income sources, we find that labor income is
more evenly distributed than asset income and other transfers. Asset income has
uneven distribution and is highly correlated with the distribution of total income. It
positively affects overall income inequality during our sample period.

In the regression-based decomposition analysis, education, marriage, race and
gender increase income inequality, but the effects of race and gender have decreased
between 1985 and 2013, reflecting in part more equalized income distributions
among races and genders. Different industries have influenced income inequality
in different directions and to different degrees. The manufacturing industry, finance,
insurance and real estate industry, public utilities industry, professional and related
services industry, and public administration industry all positively contribute to total
inequality.

For all the years of in our sample we find that a substantial percentage of income
inequality cannot be explained by the observable factors one typically argues are
at the heart of income inequality. The relatively high contribution of the residual’s
value is consistent with findings from other studies, such as those of Morduch and
Sicular (2002), Wan and Zhou (2005) and Yun (2006). For future research, other
unobserved factors that may explain total income inequality are worth exploring.

Appendix

Regression Results and Descriptive Statistics For 1985, 1990,
1995, 1999, 2005, 2009, 2013

In the following tables, income shares are calculated by multiplying the mean value
of each explanatory variable by its estimated coefficient from the earnings equation.
For each quartile in the distribution, shares equal the sum of estimated income flow
from each variable over all households in the quartile, divided by the sum of flows
from variable m for the entire sample.
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Table A.2 Year 1990

Linear Regression Equation Shares of Income Flows by Quartile

Est Coef Std Err
Income
Share Bottom Second Third Top Ratio

Education 5314.38 217.11 271.38 21.42 23.12 25.8 29.67 1.39
White 18532.97 1722.27 51.06 21.27 21.92 25.52 31.28 1.47
Married 8420.21 933.81 20.59 15.51 22.62 27.73 34.14 2.20
Male 16063.86 1690.38 50.4 17.55 23.72 27.27 31.46 1.79
Age 648.76 127.441 124.72 28.64 24.72 23.02 23.62 0.82
Ageˆ2 �5.22 1.27 �53.09 33.15 25.12 20.85 20.88 0.63
Industry1 97247.61 6540.81 12.87 32.94 30.16 17.06 19.84 0.60
Industry2 97721.43 7156.99 2.67 9.62 13.46 36.54 40.38 4.20
Industry3 100560.2 6375.42 31.21 15.4 28.6 29.27 26.73 1.74
Industry4 99427.55 6285.51 79.53 10.05 26.66 32.63 30.66 3.05
Industry5 100106.7 6235.72 28.34 7.61 19.29 28.01 45.08 5.92
Industry6 95028.59 6232.58 53.45 22.13 29.97 24.56 23.34 1.05
Industry7 98688.56 6225.88 16.02 8.09 24.92 25.89 41.1 5.08
Industry8 94078.49 6199.06 19.42 20.61 27.48 27.73 24.17 1.17
Industry9 94287.38 6678.33 12.5 50.79 30.16 11.51 7.54 0.15
Industry10 98138.85 7287.10 3.04 18.64 42.37 20.34 18.64 1.00
Industry11 92924.55 5987.46 48.61 14.56 28.01 29.92 27.51 1.89
Industry12 94193.10 6178.35 25.08 5.92 17.95 40.04 36.09 6.10
White_male �8939.70 1820.70 �19.1 15.51 20.91 26.91 36.67 2.36
Inv_mills 456553.1 33323.1 617.57 29.36 24.66 23.32 14.34 0.49
Constant �314705.6 18757.3
R-square 0.2283



On the Allocation of Productivity Growth and the Determinants of U. S. Income. . . 95

Table A.3 Year 1995

Linear Regression Equation Shares of Income Flows by Quartile

Est Coef Std Err
Income
Share Bottom Second Third Top Ratio

Education 7066.66 425.31 305.61 22.01 23.68 25.78 28.53 1.30
White 33268.94 3722.24 70.34 21.14 21.17 26.34 31.35 1.48
Married 6145.94 1518.75 11 14.75 19.27 29.95 36.04 2.44
Male 21554.59 2892.22 51.99 24.73 17.87 28.56 31.44 1.27
Age 1314.944 204.00 190.78 29.91 22.01 23.35 24.73 0.83
Ageˆ2 �11.93 2.08 �83.81 36.76 19.69 20.58 22.97 0.62
Industry1 113462.6 11348.08 8.87 22.29 30.29 21.14 26.29 1.18
Industry2 134565.8 14114.14 2.34 2.56 15.38 35.9 46.15 18.03
Industry3 123370.8 11740.82 27.72 11.73 26.44 34.19 27.63 2.36
Industry4 129076.2 11922.23 69.93 6.27 25.89 35.2 32.65 5.21
Industry5 129774.9 12086.40 30.14 7.88 19.62 31.15 41.35 5.25
Industry6 120969.8 11541.55 55.22 17.12 33.17 27.1 22.6 1.32
Industry7 127822.9 11818.79 16.04 9.25 27.76 26.33 36.65 3.96
Industry8 118944.5 11284.56 19.18 18.01 32.13 19.94 29.92 1.66
Industry9 120668.7 12547.71 10.72 44.22 32.66 15.58 7.54 0.17
Industry10 131447.2 12807.75 4.34 12.16 28.38 29.73 29.73 2.44
Industry11 124966.3 11539.37 63.4 13.73 28.87 29.31 28.08 2.05
Industry12 125065.7 11962.51 28.66 7.02 17.93 35.28 39.77 5.67
White_male �14894.25 3227.03 �24.79 15.78 19.16 28.49 36.57 2.32
Inv_mills 834787.6 88164.66 913.61 29.63 23.96 23.64 14.97 0.51
Constant �496781.4 44977.81
R-square 0.1332
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Table A.6 Year 2009

Linear Regression Equation Shares of Income Flows by Quartile
Est Coef Std Err Income Share Bottom Second Third Top Ratio

Education 10765.94 438.79 312.79 22.97 23.36 25.85 27.82 1.21
White 21046.96 1631.60 24.28 21.57 21.19 25.49 31.75 1.47
Married 18257.11 2535.15 22.58 15.64 18.92 28.36 37.08 2.37
Male 9016.56 2187.51 13.91 19.51 22.48 27.04 30.97 1.59
Age 376.21 48.89 35.87 27.61 22.39 24.3 25.71 0.93
Ageˆ2 �0.38 0.08 �1.9 30.18 19.43 26.54 26.85 0.79
Industry1 330934.9 22013.84 14.6 21.52 36.71 20.25 21.52 1.00
Industry2 377422.9 22994.77 4.95 2.13 12.77 27.66 57.45 26.97
Industry3 328990.6 21720.66 60.35 15.68 28.31 27.4 28.61 1.82
Industry4 327030.7 21519.31 86.48 10.67 24.5 33.16 31.68 2.97
Industry5 328333.2 21713.56 43.64 11.76 20.38 36.76 31.09 2.64
Industry6 321773.5 21684.89 75.02 22.04 35.33 23.11 19.52 0.89
Industry7 336969.6 21142.37 38.48 10.51 21.52 27.87 40.1 3.82
Industry8 324591.1 22094.86 70.69 39.10 33.08 18.97 8.85 0.33
Industry9 326452.6 21248.5 66.27 25.03 31.22 23.93 19.81 0.67
Industry10 303233.1 21485.7 10.41 27.64 31.71 25.2 15.45 0.56
Industry11 313692.2 20843.13 101.78 16.61 23.06 29.43 30.90 2.13
Industry12 321851.2 21207.37 45.11 7.37 13.15 33.47 46.02 6.24
White_male 10303.47 2712.92 10.92 17.66 19.35 26.83 36.83 1.79
Inv_mills 1,557,035 112926.3 1075 28.66 23.79 24.07 15.30 0.51
Constant �926876.7 60985.87
R-square 0.2166
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Table A.7 Year 2013

Linear Regression Equation Shares of Income Flows by Quartile
Est Coef Std Err Income Share Bottom Second Third Top Ratio

Education 8925.10 361.74 265.63 24.08 23.02 25.49 27.40 1.14
White 20833.19 2359.80 27.20 21.78 20.29 25.28 32.65 1.50
Married 19421.08 1488.70 20.39 16.10 18.17 28.37 37.37 2.32
Male 15893.45 2168.87 24.66 20.70 21.97 26.76 30.57 1.48
Age 1188.69 244.64 114.12 27.50 22.27 23.95 26.29 0.96
Ageˆ2 �8.27 2.66 �41.32 29.32 19.37 21.12 30.19 1.03
Industry1 199510.4 16706.5 9.06 22.01 30.82 28.93 18.24 0.83
Industry2 217222.6 17328.21 3.16 1.96 7.84 31.37 58.82 30.01
Industry3 196119.9 16607.4 31.47 18.15 26.51 28.50 26.87 1.48
Industry4 205820.2 16645.64 54.82 12.00 23.15 32.37 32.48 2.71
Industry5 203011.8 16807.62 27.24 14.89 22.77 32.55 29.79 2.00
Industry6 192523.9 16616.45 48.15 27.74 32.31 21.92 18.04 0.65
Industry7 213701.5 16413.12 23.98 10.94 20.87 27.48 40.71 3.72
Industry8 195163.4 16911.02 44.24 40.05 31.99 17.88 10.08 0.25
Industry9 203832.6 16763.34 48.30 24.46 32.05 24.10 19.40 0.79
Industry10 177873.6 16749.65 5.89 30.17 27.59 29.31 12.93 0.43
Industry11 191041.3 16275.06 65.61 22.53 21.78 25.60 30.09 1.34
Industry12 200,469 16542.88 29.13 7.07 14.54 34.77 43.61 6.17
White_male �2901.55 2571.52 2.99 17.97 18.74 26.09 37.21 2.07
Inv_mills 654915.5 61255.92 464.85 29.26 23.41 23.95 16.12 0.55
Constant �532260.3 37439.95
R-square 0.2475
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Frontier Estimation of a Cost Function
System Model with Local Least Squares:
An Application to Dutch Secondary
Education

Jos L. T. Blank

Abstract In this paper, we propose a method for cost efficiency measurement that
is based on local estimation in several stages. The method is based on weighted
least squares where weights depend on the distance of an observation to all other
observations and on the distance to the cost frontier. The new element in the method
is that it also includes the information from the cost share equations and includes
cost efficiency in the weighting matrix. The latter is derived from a first stage and
implemented in a second stage analysis. An application to a data set of Dutch school
boards in secondary education shows that it works well in practice. It produces a
number of reliable estimates. It also shows a variation in outcomes that would be
hard to cover with, for instance, traditional procedures such as SFA on a translog
cost function.

Keywords Local estimation · Cost efficiency · Scale economies · Technical
change · Education

JEL Classification: C01, D24, I21

1 Introduction

Stochastic frontier analysis (SFA) and data envelopment analysis (DEA) are very
popular methods for establishing the (cost) efficiency scores of firms. Both methods
have been extensively applied to firms in various industries in order to get an insight
into the relative (cost) efficiency of individual firms. The methods have also been
applied in order to compare the performance of departments within firms, and even
to compare the performance of different countries.
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SFA, which was developed by Aigner et al. (1977) and Meeusen & Van den
Broeck (1977), is a parametric method. The standard cost or production function is
estimated by maximum likelihood methods where the error component consists of
random noise and a random (cost) efficiency component, which can be separated
empirically. Extensive reviews of the SFA approach can be found in Fried et
al. (2008), Kumbhakar & Lovell (2000), Coelli et al. (2005), Blank (2000), and
Parmeter and Kumbhakar (2014).

DEA is a technique based on linear programming. This technique is derived from
early production work by Farrell (1957) and Debreu (1951) and was later formalised
using linear programming techniques (R. D. Banker et al. 1984; Charnes et al. 1978;
Färe et al. 1986). The objective of this approach is to envelop the data points as
closely as possible, and to produce the best practice frontier by linking several
line segments together. This technique thus identifies the efficient observations and
calculates the (cost) efficiency scores by measuring the distance to these efficient
observations or convex combinations of them.

Both methods have pros and cons. For several decades, each method has been
seriously criticised by proponents of the other. The critics of SFA focus on the
required functional specification of the model and the distributional assumptions
about the (cost) efficiency component. The critics of DEA focus on the absence of
a stochastic component and the difficulty of accounting for environmental variables
and deriving economic features such as economies of scale and scope and input (or
output) substitution.

It is generally recognised that the strong point of SFA is that it takes randomness
(measurement and specification errors) into account, whereas the strong point of
DEA is the flexibility of the production technology, which does not require a general
functional specification. DEA is an observation by an observation technique that
provides a local estimator.

Only in recent years has there been a tendency in the literature to try to combine
the best of both worlds. Kuosmanen (2008) developed a technique that converts a
DEA formulation into a stochastic formulation that can be estimated by maximum
likelihood techniques. Another approach was developed by Fan et al. (1996),
who used standard kernel methods based on maximum likelihood. He applied the
stochastic frontier model without the rigidity of a parametric representation of the
technology. For an extensive discussion, see Johnson and Kuosmanen (2015) in Ray
et al. (2015).

Less criticism is voiced about the fact that SFA has hardly been applied to the full
system of equations that can be derived from duality theory. Complicated solutions
have been provided by Kumbhakar & Tsionas (2005), based on Bayesian techniques
or through the reformulation of the model based on shadow pricing (Blank and
Eggink 2004; Kumbhakar 1997; Maietta 2002). Almost all empirical applications
of SFA are therefore limited to single equation models.

In this paper, we will present a method that is based on the idea of local estimation
and includes the information from the cost share equations. A possible answer to the
aforementioned issues is to apply weighted least squares where weights depend on
the distance of an observation to all other observations (more or less lookalikes)
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and on the distance to the cost frontier. The latter is derived from a first stage
and implemented in a second stage analysis. A similar method for deriving cost
efficiency scores in the case of a global estimation of a cost function was proposed
earlier by Blank & Meesters (2012). To show how the procedure works in practice,
it is applied to a data set of Dutch school boards in secondary education.

The outline is as follows. Section 2 describes the underlying model and the
estimation procedure for estimating the model. In Sect. 3 the data are described, and
in Sect. 4 the results are presented and discussed. Section 5 concludes the paper.

2 Methodology

The methodology can be applied to a production function, a cost function or any
other representation of the production technology and some behavioural assump-
tions. In this paper, we apply a cost function approach. A cost function describes
the relationship between minimum costs on one hand and services delivered and
resource prices on the other hand. Minimum costs refer to the assumption that a
firm is minimising its costs by allocating its resources optimally and using them in
the most technically efficient way. The services produced and resource prices are
given. Mathematically this can be described by:

C D c .y;w/ D minx fw � xj .y; x/ 2 T .x; y/g (1)

With:

C D (minimum) costs;
y D vector services produced;
w D vector of resource prices;
x D vector of resources;
T(x, y) D set of feasible combinations of services produced and resources.

It is known from duality theory that the optimum allocation of resources can be
derived from the cost function according to Shephard’s Lemma (Shephard 1953):

x D
rC

rw
(2)

Equation (2) tells us that the optimal allocation of resource x equals the gradient
of the cost function with respect to the corresponding resource prices.

A functional specification is required in order to conduct empirical research.
We assume that a mathematical specification c(y, w, � ) is at hand where costs are
dependent on the aforementioned services produced, resource prices and a set of
parameters � . If data are available, then the parameter set � can be established by
an estimating technique. However, in practice, no data are available on minimum
cost. Instead, observable costs may differ from minimum costs due to the (common)
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measurement error and to managerial errors. Whereas the first type of errors may
go either way, negative or positive, the second type only shows positive values.
Mismanagement can only lead to higher costs than the minimum cost. For reasons
of convenience we transform all the data to logarithms. In terms of the observable
cost we may then rewrite (1) as:

ln.C/ D c .ln.y/; ln.w/; �/C u C v (3)

With:

u D (percentage) extra cost due to mismanagement (cost inefficiency);
v D measurement error.

The corresponding share equations are (note that Eq. (2) is now expressed in terms
of cost shares due to the logarithmic transformation):

S D
rc .y;w; ™/

rw
C 	 (4)

With:

S D vector of cost shares;
	 D under or over utilisation of resources;

Common practice is to select an appropriate mathematical function and appropriate
statistical distributions for u (one-sided) and v (two-sided). An appropriate and
very popular choice for the cost function is the translog function, which relates
the logarithm of cost to the logarithms of services produced, resource prices
and of all quadratic and cross-terms of services and resource prices (see e.g.
Christensen et al. 1973). Many other functional forms are also available. In general,
measurement error is specified by a normal distribution and the cost inefficiency
component by a one-sided distribution such as half-normal, truncated normal or
exponential. The parameters of the cost function and the statistical distribution are
estimated by maximum likelihood methods (for the various estimation procedures
see Kumbhakar and Lovell 2000). A general criticism is that in spite of the alleged
flexibility of the functional specifications, it still is not flexible enough to model the
complex cost structure. Particularly, in the case of a wide range and scope of the
services delivered among firms, the cost structure of small and large firms or firms
with a complete different service mix may differ to such an extent that it may be
impossible to capture by a smooth function. It would make more sense to establish
the cost structure locally. The parameters of the cost function that are estimated then
depend on the data of firms that are assumed to have a similar cost structure. There
are several ways to proceed here. In the case of very large number of observations
Kernel estimators can be used. Put simply, kernel estimators calculate the average
in a very close neighbourhood of the observation under investigation (reference
observation), which can be regarded as a point estimate of the observation. Instead
of averaging, one may also think of applying some local regression and use the
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prediction of the regression as a point estimate. This would make more sense in
a case when the neighbourhood can be tight as one may wish due to a lack of
close neighbourhood observations. Another way to deal with this lack of close
neighbourhood is by applying methods that put less weight on observations that
are farther away from the observation under investigation such as weighted least
squares. Then, the following set of equations of a cost function model has to be
estimated:

– D weight� Œ ln.C/ � c .ln.y/; ln.w/; �/� (5)

˜ D weight�



S �
rc .ln.y/; ln.w/; �/

r ln.w/

�
(6)

Note that – reflects the composite error u C v. In the empirical application u will
be estimated in an iterative procedure, which will be explained later on. Because of
the singularity of the system one of the cost share equations must be dropped from
the set of Eq. (6).

Since we are only interested in a local estimator of the production technology at
a given observation i (D 1, .., I), it suffices to use a first-order Taylor approximation
at the given point. However, there is no objection whatsoever to using higher order
expansions, except for the number of parameters to be estimated. Note that we only
use the Taylor approximation for an estimate of the cost and the gradient of the cost
at that particular point. The cost function can be written as:

ln.C/ D a0 C
XM

m
bm ln .ym/C

XN

n
cn ln .wn/C

XK

k
dk ln .zk/C h1time (7)

With:

ym D output m;
wn D input price n;
zk D environmental characteristic k;
time D trend;
bm, cn, dk, h1 parameters to be estimated;

In addition, we also estimate the cost share equations simultaneously as:

shn D cn .n D 1; ::;N/ (8)

With:

shn D cost share of input n;

The system of equations will be estimated with weighted nonlinear least squares.
The weights are based on the distance of the reference observation to the other
observations and to the frontier. The idea behind this approach is, to put it simply,
that the estimates should be based on efficient neighbours whenever possible. The
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extent to which this is possible is an empirical matter. The weight function, for
instance, can be described as:

weight D eff � norm



dist

k 	 �tot

�
(9)

With:

eff D efficiency;
dist D distance to the observation under investigation;
� tot D standard deviation of distance measure;
k D scaling parameter;
norm(.) is the normal density function.

The cost efficiency score is derived from the cost efficiency component u in
the cost function. We therefore need a point estimate of u. Here we use the
conditional mode of the half-normal distribution, as suggested by Materov (1981).
This estimator has the useful property that the mode is proportionally related to
the composite error 
 in the case of 
 > 0 (with the proportion being the ratio
between the variance of the efficiency component and total variance) and equals
zero in the case of 
� 0. After each least squares estimation for observation i, we
set weighti D exp(�Mi) with Mi being the aforementioned conditional mode. Note
that the conditional mode is being used as a measure to disentangle the composite
error 
, as well as to set the weight variable.

In order to obtain a distance measure that does not depend on the unit of
measurement, all variables are standardised on their means. Then the distance is
measured by the Euclidean distance:

dist D

vuut MX
m

�
ym � y�

m

�2
(10)

With:

dist D average distance to the reference observation;
y�

m D value of output m of the reference observation.
weight D weight attached to an observation;
�2tot D sum of variances of ym;
k is a (fixed) parameter.

For each observation i D 1, .., I we apply weighted least squares (WLS) and
we preserve the error 
i. After the I-th analysis a point estimate of u and weight
can be established and the next iteration of I WLS-analyses can be conducted. This
procedure is repeated until the differences in cost efficiency between successive
iterations become very small.
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To summarise:
The procedure is conducted in several stages s D 1, . . , S and stops at iteration S
when the efficiency scores change less than a threshold value (D 0.01). At s D 1, the
vector of weight parameters is set to 1.

At each stage, weighted least squares is applied to a cost function model for each
DMU separately, consisting of a cost function and cost share equations. The weights
are based on the distance (dist) between a DMU and the DMU under investigation
(reference observation) and the cost efficiency (eff ) of the DMU: The larger the
Euclidean distance, the smaller the weight, and the larger the cost efficiency, the
larger the weight.

Each separate WLS for a DMU provides an estimate of the cost efficiency
parameter (u), which can be used in the next stage of the procedure to set the
weight parameter. Note that the efficiency parameter varies only per stage and the
dist parameter per WLS analysis.

At s D S, economic outcomes can be presented, such as scale elasticity, marginal
cost, technical change, and cost efficiency scores.

3 Data

3.1 Production

The different types of schools in secondary education require different educational
processes and consequently lead to different costs. For example, a teacher who
teaches students in the final year of pre-academic education is generally more
expensive than a teacher for students in the first year of vocational training.
Therefore, production cannot be captured in a single number. Production indicators
are based on the different types of education and grades. We therefore distinguish:

• Grade 1 and 2 of all types of education;
• Grade 3–4 vocational training;
• Grade 3–6 general higher and pre-academic.

Quality in education is generally difficult to measure. In order to take the
quality of education into account, passes to next grades and examination results
are included. The influence of the initial skills of pupils on quality measures are
taken into account by including the so-called school recommendation at the start of
a pupil’s school career.

3.2 The Resources

The resources used can be divided into five categories or types of costs:

• Teaching personnel;
• Administrative personnel;
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• Executive board and management;
• Housing (excluding rent);
• Material supplies.

We exclude capital cost because for most institutions, local government is
responsible for providing the school buildings. Therefore, rent and amortisation of
buildings are excluded in order to provide a meaningful comparison with institutions
that own their school buildings.

3.3 Resource Prices

The relative prices of the staff categories differ by region and year. Averaging
personnel costs per full-time equivalent over regions and years by a regression
analysis provides a labour price for each staff category for each region in a particular
year.

The prices for housing and material are assumed to be equal for all educational
institutions and thus only vary over the years. Since housing costs are restricted
to building-related costs such as energy and cleaning, the energy price indices of
Statistics Netherlands are used for housing costs. For material costs, the consumer
price index of Statistics Netherlands is used.

3.4 Data Resources, Data Checks and Manipulations

For the analyses, we used different databases. The number of pupils was taken from
the public files of the Office of Education (DUO) and the Ministry of Education,
Culture and Science. The numbers on education returns were supplied by the
Education Inspectorate. The staff numbers and salary data were also provided by
DUO. Finally, the price development of energy and consumer goods and services
was collected by Statistics Netherlands. The period for which all the necessary data
are available is 2007–2010.

3.5 Data Checks and Manipulations

We applied a number of checks and manipulations to these data (for details, see
Urlings and Blank 2012). A statistical description of the data for the year 2010 is
given in Table 1.
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Table 1 Statistical description variables in analysis, 2010

Variable Mean Std. Error Minimum Maximum

Grades 1-2a 1148.5 821.5 185.1 5783.3
Vocational training grades 3-4a 515.8 375.7 76.5 2501.3
General education grades 4-6a 650.7 491.4 93.1 3095.3
Total cost (x AC 1000) 19,179 14,358 5100 105,563
Cost share board/management 0.05 0.02 0.00 0.16
Cost share administrative personnel 0.09 0.04 0.00 0.24
Cost share teaching personnel 0.65 0.05 0.44 0.81
Cost share housing 0.07 0.03 0.02 0.28
Cost share material supplies 0.14 0.03 0.06 0.29
Price management (AC) 100014.3 4960.3 88393.0 110339.0
Price administrative personnel (AC) 46388.9 3872.6 37756.0 52967.0
Price board/management (AC) 65278.5 3937.8 57210.0 74661.0
Price housing (AC) 358.5 14.4 342.0 380.5
Price material supplies (2007 D 100) 104.6 1.8 101.6 106.7

aCorrected with pass rate

3.6 Secondary Education Statistics

In 2010, the average secondary school in the Netherlands had 3300 pupils. Of these,
38% were in the first two grades, 19% in junior vocational education, 35% in senior
general secondary education or pre-university education, and 8% in other education
(practical education, primary education or senior vocational education). The costs
can be divided across five categories:

• teaching staff (65%);
• administrative staff (9%);
• management (5%);
• accommodation (6%);
• material supplies (15%).

There is a strong variation in the scale of the educational institutions. Half of the
educational institutions have fewer than 2100 pupils and costs of under 17.5 million
euros. The largest educational institution has over 62,000 pupils and costs totalling
482 million euros.

4 Results

The outcomes are presented as graphs. Figures 1, 2 and 3 present the marginal costs
of the different types of pupils who passed. The marginal cost gives a first indication
of the plausibility of the estimates. The marginal costs of an undergraduate pupil
follow more or less a normal distribution ofAC8000 with a limited variance. Marginal
costs of pupils in vocational training are higher, distributed around AC 10,000. This
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Fig. 1 Estimated marginal costs of undergraduate pupils (corrected for passes)

Fig. 2 Estimated marginal costs of pupils in vocational training (corrected for passes)
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Fig. 3 Estimated marginal costs of pupils in general education (corrected for passes)

distribution is skewed to the right. A number of schools tend to have higher marginal
costs than the modus. The marginal costs of pupils in general education (Fig. 3) has
a distribution around AC 6000. This distribution is skewed to the left, indicating that
there are relatively more schools with lower marginal costs than schools with higher
marginal costs. The outcomes make sense, since it is known that vocational training
is more expensive than general education due to higher material costs (machinery,
etc.). General education is less expensive than undergraduate education due to the
substantially lower number of teaching hours in the graduate phase of education.

Figure 4 represents the estimated cost flexibility of each school board (the red C

signs). Each school board is reflected by its size, expressed in terms of a number
of times the average size. So two, for instance, reflects a school board that is twice
the size of the average school board. The green and purple lines represent the lower
and upper bounds of the 95% confidence interval. Outcomes less than one indicate
economies of scale, and outcomes greater than one indicate diseconomies of scale.
From Fig. 4 we can conclude that school boards less than two times the size of the
average school board face economies of scale, whereas school boards greater than
three times the average size face diseconomies of scale. The optimum size (with
neither economies nor diseconomies of scale) lies between two and three times the
average size.

Figure 5 represents the distribution of the cost efficiency scores. It shows that the
majority of the school boards are cost efficient or close to cost efficient. This is due
to the fact that school boards are only regarded as suitable references when they have
a broadly similar production profile. Observations with deviated production profiles
receive a low weight in the estimation procedure. Sensitivity analysis based on local



114 J.L.T. Blank

Fig. 4 Economies of scale (cost flexibility with 95% CI)

Fig. 5 Cost efficiency scores

estimation with a different weighting scheme may result in a different cost efficiency
pattern. However, it shows that estimation with different weighting schemes leads
to almost identical distributions of efficiency scores.
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Fig. 6 Technical change (with 95% CI)

Figure 6 displays technical change. The mean is represented by the red dots,
while the 95% confidence intervals are represented by the upper (green) and lower
bounds (blue). It shows that technical change is significantly negative for all schools,
implying a loss of productivity of about 3% annually. It also shows that for a few
larger school boards, technical change is even more negative. This may seem to
be an incredible outcome. However, education is certainly not an exception. In
recent years, an extensive research programme on public sector productivity has
been carried out in the Netherlands. A substantial number of studies in different
sectors show negative technical change (see e.g. Blank and Heezik van 2017; Blank
and van Heezik 2015; Blank et al. 2016). An intensifying administrative burden,
obligatory protocols and systems, and other bureaucratic tendencies may explain
this negative development.

Additionally, we checked the outcomes on the conditional mean of the cost
shares. They show a very consistent pattern with respect to size.

We also conducted some sensitivity analyses by varying the scaling parameter
(k parameter in Eq. 9). The scaling parameter refers to the weighting scheme
for conducting WLS. The weighting scheme follows a normal distribution with a
variance parameter depending on the (Euclidean) distance of the service variables
between the reference observation and other observations. Eq. (9) implies that
for large k the weight distribution will be flatter than for small k. We calculated
the outcomes for different k (D 0.25, 0.50 and 1.00) and tested the effect on
the outcome. Table 2 summarises the outcomes by presenting a test of the mean
difference in the cost efficiency scores, the estimates of technical change and the
estimated cost flexibilities.



116 J.L.T. Blank

Table 2 Test results of mean
differences for varying
weighting schemes (k D 0.25,
0.5 and 1)

Test of mean difference Mean T-test

Cost efficiency k D 1vs k D 0.5 �0.001 1.58
Cost efficiency k D 0.5 vs k D 0.25 �0.002 �3.34
Technical change k D 1 vs k D 0.5 �0.000 �1.91
Technical change k D 0.5 vs k D 0.25 �0.001 �16.30
Cost flexibility k D 1vs k D 0.5 0.002 0.67
Cost flexibility k D 0.5 vs k D 0.25 �0.008 �8.05

From Table 2 we conclude that the differences between the different (point)
estimators are relatively low. In the case of the cost efficiency scores, a flatter
weighting scheme (corresponding to a larger k) corresponds to lower cost efficiency
scores. This makes sense, since observations that are far away from the reference
point still have a substantial influence (in contrast with the case where these
observations get a small weight with small k). The differences, however, are very
small and in one case not significantly different from zero. Note here that cost
efficiency scores are about 95% on average. For technical change, the differences
are also very small, in spite of the fact that the mean differences between technical
change for k D 0.5 and k D 0.25 are significant. The same holds for cost flexibility.
The differences are less than 1%. Flatter weighting schemes (k D 0.5 versus
k D 0.25) correspond to a slight decrease in cost flexibility, implying that economies
of scale are stronger. Furthermore, it is striking that, although the differences are
very small, all differences are significant at the 5%-level with respect to the test
k D 0.5 versus k D 0.25.

5 Conclusion

In this paper, we have presented a method for (cost) efficiency measurement that
is based on the idea of local estimation in several stages. The new element in the
method is that it also includes the information from the cost share equations and
includes cost efficiency in the distance measure. The method is based on weighted
least squares, where weights depend on the distance of an observation to all other
observations (more or less lookalikes) and on the distance to the cost frontier. The
latter is derived from a former stage and implemented in a next stage analysis.
An application to a data set of Dutch school boards in secondary education shows
that it works well. The approach produces a number of reliable estimates. It also
shows a variation in outcomes that would be hard to cover with, for instance,
traditional procedures such as SFA on a translog cost function. It therefore seems
that the proposed approach could be an interesting alternative to standard frontier
techniques. This approach adds more flexibility to the modelling of production
technology.
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Nevertheless, a number of issues still need to be addressed. The set of weights
is based on a distance measure and the cost efficiency score. For the distance
measure, a traditional Euclidean measure is used, whereas cost efficiency scores
are assumed to be directly related to the estimated errors in the first stage of the
procedure. Alternative distance measures and cost efficiency estimates should be
used to indicate the sensitivity to these assumptions. Some sensitivity analyses have
been carried out here. The application that has been demonstrated here indicates that
varying the weighting schemes has only limited effects on the outcomes. However,
more research on the effect of alternative distance and cost efficiency measures is
required.
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Aggregate Productivity and Productivity
of the Aggregate: Connecting the
Bottom-Up and Top-Down Approaches

Bert M. Balk

Abstract Productivity analysis is carried out at various levels of aggregation. In
microdata studies the emphasis is on individual firms (or plants), whereas in sectoral
studies it is on (groupings of) industries. An industry is an ensemble of individual
firms (decision making units) that may or may not interact with each other. In
National Accounts terms this is symbolized by the fact that industry (aggregate)
nominal value added is the simple sum of firm-specific nominal value added.
From this viewpoint it is natural to expect there to be a relation between industry
productivity and the firm-specific productivities. Yet, microdata researchers do not
appear to pay much attention to the interpretation of the weighted means of firm-
specific productivities they employ in their analyses. In this paper the consequences
of this are explored, based on a review of the literature.

However, a structurally similar phenomenon happens in sectoral studies, where
the productivity change of industries is compared to each other and to the productiv-
ity change of some next-higher aggregate, which is usually the (measurable part of
the) economy. Though there must be a relation between sectoral and economy-level
measures, in most publications by statistical agencies and academic researchers this
aspect is more or less neglected.

The point of departure of this paper is that aggregate productivity should be
interpreted as productivity of the aggregate. It is shown that this implies restrictive

This paper draws from an extended version available at SSRN: http://ssrn.com/abstract=2585452.
Presentations took place at the North American Productivity Workshop IX, 15–18 June 2016,
Québec City, and the 34th General Conference of the International Association for Research in
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written a paper with a virtually identical title. On inspection this turned out to be an embryonic
version of Basu and Fernald (2002). Though related, my paper has a different focus.
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relations between the productivity measure, the set of weights, and the type of mean
employed. For instance, value-added based total factor productivities and output
based weights require a harmonic mean, if additivity is assumed.

Keywords Producer · Productivity · Aggregation · Bottom-up approach ·
Top-down approach · Index number theory

JEL code: C43, D24, O47

1 Introduction

In the first article of this series, Balk (2010), I considered productivity measurement
for a single, consolidated production unit. In terms of levels, productivity is defined
as real output divided by real input. Real output or input means nominal output
or input deflated by some output- or input-specific price index, respectively. For
the production unit considered, productivity change (through time) can then be
measured as a difference or a ratio of productivities. In the latter case it appears that
productivity change can also be defined directly as output quantity index divided by
input quantity index.

The choice of the output and input concepts appears to be critical. Three
main models can be distinguished: KLEMS-Y, KL-VA, and K-CF. Taking the
composition of capital input cost into account, as set out in Balk (2011), two
more models can be added, namely KL-NVA and K-NCF. Assuming profit (defined
as revenue minus total cost) to be equal to zero, or, what amounts to the same,
replacing an exogenous interest rate by an endogenous rate, multiplies the number of
models by two. And the introduction of a capital utilization rate further complicates
the picture. Thus, there is a lot of choice here, with not unimportant empirical
consequences, as illustrated by Vancauteren et al. (2012).

Production units exist at various levels of aggregation. We see plants, enterprises,
industries, countries, to name just some types of production units materializing in
analyses of productivity change. Usually such units appear, more or less naturally,
arranged into higher level aggregates: a number of plants belonging to the same
enterprise; a certain type of enterprises defining an industry; a number of industries
defining the ‘measurable’ part of a national economy; national economies making
up the world economy. It is not difficult to perceive several sorts of hierarchy here.

As in any of these situations the structure is the same – there is an ensemble of
production units, and the ensemble itself may or may not be considered as a higher
level production unit –, it is interesting to study the relation between aggregate
productivity (change) and productivity (change) of the aggregate.

There are basically two approaches here. Balk (2016) reviews and discusses the
so-called bottom-up approach, the approach that takes an ensemble of individual
production units as the fundamental frame of reference. The top-down approach
is the subject of three other papers, namely Balk (2014) plus Dumagan and Balk
(2016) on labour productivity, and Balk (2015) on total factor productivity.
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The present paper investigates the connection between the two approaches,
bottom-up and top-down. Characteristic of the approach taken in this paper is that
aggregate productivity (change) should be interpreted as productivity (change) of
the aggregate. It will be shown that this implies restrictive relations between the
productivity measures involved, including the weights of the individual production
units, and the type of mean employed. For instance, it appears that, assuming
additivity, value-added based total factor productivities and output based weights
require a harmonic mean.

The order of this paper is as follows. Section 2 reviews basic accounting relations.
Section 3 defines the problem. Sections 4 and 5 consider value-added based total
factor productivity and labour productivity, respectively. Section 6 considers gross-
output based productivity. Section 7 concludes.

2 Accounting Framework

We consider1 an ensemble (or set) Kt of consolidated production units,2 operating
during a certain time period t in a certain country or region. For each unit the
KLEMS-Y ex post accounting identity in nominal values (or, in current prices) reads

Ckt
KL C Ckt

EMS C…kt D Rkt .k 2 Kt/; (1)

where Ckt
KL denotes the primary input cost, Ckt

EMS the intermediate inputs cost,
Rkt the revenue, and …kt the profit (defined as remainder). Intermediate inputs
cost (on energy, materials, and business services) and revenue concern generally
tradeable commodities. It is presupposed that there is some agreed-on commodity
classification, such that Ckt

EMS and Rkt can be written as sums of quantities times
(unit) prices of these commodities. Of course, for any production unit most of these
quantities will be zero. It is also presupposed that output prices are available from a
market or else can be imputed. Taxes on production are supposed to be allocated to
the K and L classes.

The commodities in the capital class K concern owned tangible and intangible
assets, organized according to industry, type, and age class. Each production unit
uses certain quantities of those assets, and the configuration of assets used is in
general unique for the unit. Thus, again, for any production unit most of the asset
cells are empty. Prices are defined as unit user costs and, hence, capital input cost
Ckt

K is a sum of prices times quantities.
Finally, the commodities in the labour class L concern detailed types of labour.

Though any production unit employs specific persons with certain capabilities, it is

1This section has been copied from Balk (2016). Though the time dimension does not play an
explicit role in the present paper, the notation is retained for consistency.
2“Consolidated” means that intra-unit deliveries are netted out. At the industry level, in some parts
of the literature this is called “sectoral”. At the economy level, “sectoral” output reduces to GDP
plus imports, and “sectoral” intermediate input to imports. In terms of variables to be defined
below, consolidation means that Ckkt

EMS D Rkkt D 0.
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usually their hours of work that count. Corresponding prices are hourly wages. Like
the capital assets, the persons employed by a certain production unit are unique for
that unit. It is presupposed that, wherever necessary, imputations have been made for
self-employed workers. Henceforth, labour input cost Ckt

L is a sum of prices times
quantities.

Total primary input cost is the sum of capital and labour input cost, Ckt
KL D Ckt

K C

Ckt
L . Profit …kt is the balancing item and thus may be positive, negative, or zero.

The KL-VA accounting identity then reads

Ckt
KL C…kt D Rkt � Ckt

EMS � VAkt .k 2 Kt/; (2)

where VAkt denotes value added, defined as revenue minus intermediate inputs cost.
In this paper it will always be assumed that VAkt > 0.

We now consider whether the ensemble of production units Kt can be considered
as a consolidated production unit. Though aggregation basically is addition, adding-
up the KLEMS-Y relations (1) over all the units would imply double-counting
because of deliveries between units. To see this, it is useful to split intermediate
input cost and revenue into two parts, respectively concerning units belonging to
the ensemble Kt and units belonging to the rest of the world. Thus,

Ckt
EMS D

X
k02Kt ;k0¤k

Ck0kt
EMS C Cekt

EMS; (3)

where Ck0kt
EMS is the cost of the intermediate inputs purchased by unit k from unit k0,

and Cekt
EMS is the cost of the intermediate inputs purchased by unit k from the world

beyond the ensemble Kt. Similarly,

Rkt D
X

k02Kt ;k0¤k

Rkk0t C Rket; (4)

where Rkk0t is the revenue obtained by unit k from delivering to unit k0, and Rket is
the revenue obtained by unit k from delivering to units outside of Kt. Adding up the
KLEMS-Y relations (1) then delivers

X
k2Kt

Ckt
KL C

X
k2Kt

X
k02Kt ;k0¤k

Ck0kt
EMS C

X
k2Kt

Cekt
EMS C

X
k2Kt

…kt D

X
k2Kt

X
k02Kt ;k0¤k

Rkk0t C
X
k2Kt

Rket: (5)

If for all the tradeable commodities output prices are identical to input prices (which
is ensured by National Accounting conventions), then the two intra-Kt-trade terms
cancel, and the foregoing expression reduces to3

X
k2Kt

Ckt
KL C

X
k2Kt

Cekt
EMS C

X
k2Kt

…kt D
X
k2Kt

Rket: (6)

3See Balk (2015, footnote 2) for the treatment of net taxes on intermediates.
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Recall that capital assets and hours worked are unique for each production unit,
which implies that primary input cost may simply be added over the units, without
any fear for double-counting. Thus expression (6) is the KLEMS-Y accounting
relation for the ensemble Kt, considered as a consolidated production unit. The
corresponding KL-VA relation is then

X
k2Kt

Ckt
KL C

X
k2Kt

…kt D
X
k2Kt

Rket �
X
k2Kt

Cekt
EMS; (7)

which can be written as

CKt t
KL C…Kt t D RKt t � CKt t

EMS � VAKt t: (8)

where CKt t
KL �

P
k2Kt Ckt

KL, …Kt t �
P

k2Kt …kt, RKt t �
P

k2Kt Rket, and
CKt t

EMS �
P

k2Kt Cekt
EMS. One verifies immediately that

VAKt t D
X
k2Kt

VAkt: (9)

The structural similarity between expressions (2) and (8), together with the additive
relations between all their elements, is the reason why the KL-VA production
model is the natural starting point for studying the relation between individual and
aggregate measures of productivity change. We will soon discover, however, that
the bottom-up approach basically neglects this framework.

3 Bottom-Up and Top-Down Approaches Connected

Let the productivity level4 of unit k at period t be denoted by PRODkt. The generic
definition here employed is: real output divided by real input. Output can be
measured as revenue (also called ‘gross output’) (Rkt) or as value added (VAkt). Input
can be measured as total cost (Ckt

KLEMS � Ckt
KL C Ckt

EMS), as primary input cost (Ckt
KL),

as labour input cost (Ckt
L ), or as total labour quantity (Lkt, where a common unit

is used for the various types of labour). In all these cases, ‘real’ means nominal
deflated by some price index, which may or may not be specific for each production
unit. It is supposed that the reference period b, that is, the period for which the price
index equals 1 by definition, is the same for all the units.

Each production unit comes with some measure of relative size (or, importance)
in the form of a weight � kt. For each period these weights usually but not necessarily
add up to 1.

4On the relation between levels and indices, see Balk (2016, 21–28).
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The question as to which weights � kt are appropriate when a choice has been
made as to the productivity levels PRODkt .k 2 Kt/ has received some attention
in the literature. Given that somehow PRODkt is output divided by input, should
the weight � kt be output- or input-based? And how is this related to the type of
mean – arithmetic, geometric, or harmonic? The literature does not provide us with
definitive answers.5 Indeed, as long as one stays in the bottom-up framework it is
unlikely that a convincing answer can be obtained. We need the complementary
top-down view.

A bit formally, the problem can be posed as follows. Generalizing the definitions
introduced in Balk (2016), aggregate productivity is a weighted ‘mean’ of the
individual productivities

PRODt � M.� kt;PRODktI k 2 Kt/; (10)

where the ‘mean’ M.:/ can be arithmetic, geometric, or harmonic; the weights � kt

may or may not add up to 1; and PRODkt can be value-added based total factor
productivity, labour productivity or simple labour productivity, as defined in Balk
(2016), or gross-output based total factor productivity or simple labour productivity,
to be defined in this paper.

Microdata studies, where the production units considered are plants or enter-
prises, then concentrate on the distributional characteristics of the (large) set of
individual productivities PRODkt, the development over time of aggregate produc-
tivity PRODt, and the decomposition of this development with respect to several
types of firms.

Sectoral studies, where the production units considered are industries (according
to some national or international classification), are usually interested in industry-
specific productivity change and its components, such as capital deepening and
labour-composition change. The number of industries distinguished is generally so
small that separate attention can be devoted to each specific case.

In both situations the ensemble Kt itself can be considered as a (consolidated)
higher level production unit. Using the same definitions, its productivity PRODKt t

can be calculated. In general it will then turn out, explicitly or implicitly, that
the productivity of the aggregate, PRODKt t, is unequal to aggregate productivity,
PRODt, as defined above.6

5de Loecker and Konings (2006) noted that there is no clear consensus on the appropriate weights
(shares) that should be used. In their own work they used employment based shares Lkt=

P
k Lkt

to weigh value-added based total factor productivity indices Qk
VA.t; b/=Qk

KL.t; b/. We will return to
this example.
6PRODt can be considered as a 2-stage aggregation procedure: first PRODkt aggregates over basic
inputs and outputs per production unit k, and then PRODt aggregates over all the units k 2 Kt.
PRODKt t can be considered as a 1-stage aggregate of the same basic inputs and outputs. See
Diewert (1980, 495–498) for a similar discussion in terms of variable profit (or, value added)
functions and technological change (assuming continuous time and differentiability), and the PPI
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Microdata analysis is usually not interested in the productivity of the aggregate.
As a consequence the problem of the choice of weights and type of mean arises.
Sectoral analysis usually does show productivity change of the aggregate (e.g.,
the economy) alongside productivity change of the component industries, however
without an explicit discussion of their relationship. If there is some comparison of
aggregate productivity change and productivity change of the aggregate at all, then
their difference is classified as an “unexplained residual”.

In this paper we will ask whether it is possible to find a set of weights and a type
of ‘mean’ such that

PRODt D PRODKt tI (11)

that is, such that aggregate productivity can be interpreted as productivity of the
aggregate.

As we know, there are a number of options here. We start with the case where
PRODkt and PRODKt t is value-added based total factor productivity. Next we
consider value-added based labour productivity. Finally we turn to gross-output
based labour and total factor productivity respectively.

4 Value-Added Based Total Factor Productivity

The top-down approach starts with the adding-up relation (9). This relation tells us
that nominal value added of the ensemble Kt is the sum of nominal value added of
the individual production units k making up this ensemble. Next it is important
to recall that the KL-VA accounting identities of the individual units, given by
expression (2), are structurally identical to the KL-VA accounting identity of the
ensemble (8). This means that we can treat the ensemble as a higher level production
unit, and that all the definitions of indices and levels can be applied to the individual
units and the ensemble in the same way.

Real value added, RVAk.t; b/, is nominal value added, VAkt, divided (or, deflated)
by some price index with reference period b, Pk

VA.t; b/. Rewriting this defini-
tion gives

VAkt D Pk
VA.t; b/RVAk.t; b/ .k 2 Kt/: (12)

Nominal value added is here decomposed into a price component and a quantity
component. For the ensemble we have similarly

VAKt t D PKt

VA.t; b/RVAKt
.t; b/; (13)

Manual (2004, Chapter 18) for the cases of revenue, intermediate-input-cost, and value-added
based price indices. Notice the double role of the variable t in PRODKt t.
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where PKt

VA.t; b/ is a value-added based price index for the ensemble Kt for period
t relative to the reference period b. This index is supposed to be estimated from a
sample of enterprises and products.

Substituting expressions (12) and (13) into expression (9) and dividing both sides
by the price index PKt

VA.t; b/ delivers a relation between real value added of the
ensemble and real value added of the individual units,

RVAKt
.t; b/ D

X
k2Kt

Pk
VA.t; b/

PKt

VA.t; b/
RVAk.t; b/: (14)

It is important to observe that, unlike nominal value added – see expression (9) –
real value added in general is not additive; that is, RVAKt

.t; b/ ¤
P

k2Kt RVAk.t; b/.
For any individual production unit, real primary input is defined by

Xk
KL.t; b/ � Ckt

KL=Pk
KL.t; b/ .k 2 Kt/ (15)

where Pk
KL.t; b/ is a suitable deflator for the primary input cost of production unit k.

For the ensemble the corresponding definition reads

XKt

KL.t; b/ � CKt t
KL =PKt

KL.t; b/; (16)

where CKt t
KL �

P
k2Kt Ckt

KL and PKt

KL.t; b/ is a suitable deflator for the primary input
cost of the ensemble Kt. Now, dividing both sides of expression (14) by XKt

KL.t; b/
and inserting at the right-hand side Xk

KL.t; b/=Xk
KL.t; b/ D 1 .k 2 Kt/, one obtains

RVAKt
.t; b/

XKt

KL.t; b/
D
X
k2Kt

Pk
VA.t; b/

PKt

VA.t; b/

Xk
KL.t; b/

XKt

KL.t; b/

RVAk.t; b/

Xk
KL.t; b/

: (17)

At both sides of this identity we see value-added based total factor productivity, as
introduced by Balk (2016), for the aggregate and the individual production units,
respectively. Thus expression (17) can be written as

TFPRODKt

VA.t; b/ D
X
k2Kt

Pk
VA.t; b/

PKt

VA.t; b/

Xk
KL.t; b/

XKt

KL.t; b/
TFPRODk

VA.t; b/: (18)

This is our desired result. It means that if PRODkt is defined as value-added based
total factor productivity TFPRODk

VA.t; b/, then the appropriate weights are given by

�kt �
Pk

VA.t; b/

PKt

VA.t; b/

Xk
KL.t; b/

XKt

KL.t; b/
.k 2 Kt/: (19)

When these weights are used, then aggregate productivity
P

k2Kt �ktPRODkt can
be interpreted as the value-added based total factor productivity of the ensemble,
considered as a higher-level production unit. Notice that the weights �kt .k 2 Kt/
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do not necessarily add up to 1. Thus, though expression (18) is a weighted sum of
individual productivities, it is not a genuine mean.7

There is, however, another way of looking at expression (18). To see this,
notice that .Pk

VA.t; b/=PKt

VA.t; b//TFPRODk
VA.t; b/ is so-called revenue total factor

productivity; that is, the result of deflating VAkt not by its unit-k-specific deflator
Pk

VA.t; b/ but by the ensemble-specific deflator PKt

VA.t; b/. Weighing these revenue
total factor productivities by real input shares Xk

KL .t; b/=XKt

KL.t; b/ then delivers
aggregate total factor productivity. Notice that these real input shares also do not
necessarily add up to 1.

Another interesting viewpoint8 emerges when the weights �kt are decomposed as

�kt �
Pk

VA.t; b/X
k
KL.t; b/P

k2Kt Pk
VA.t; b/X

k
KL.t; b/

P
k2Kt Pk

VA.t; b/X
k
KL.t; b/

PKt

VA.t; b/X
Kt

KL.t; b/
.k 2 Kt/: (20)

The first factor at the right-hand side is a share, adding up to 1 when summed over
all k 2 Kt, whereas the second factor can be considered as an adjustment factor
common to all the individual productivities TFPRODk

VA.t; b/. Then expression (18)
is a weighted (arithmetic) mean of adjusted individual productivities.

Expression (18) as a relation between aggregate and individual productivities
is, however, not unique. To see this, instead of the adding-up relation for value
added (9), we consider the adding-up relation for primary input cost,

CKt t
KL D

X
k2Kt

Ckt
KL: (21)

Employing definitions (15) and (16), expression (21) can be rewritten as

XKt

KL.t; b/ D
X
k2Kt

Pk
KL.t; b/

PKt

KL.t; b/
Xk

KL.t; b/: (22)

It is not unimportant to observe that, unlike nominal primary input cost, real primary
input appears generally to be non-additive; that is, XKt

KL.t; b/ ¤
P

k2Kt Xk
KL.t; b/.

7Expression (18) is the model underlying GEAD-TFP as implemented by Calver and Murray
(2016). Stated in our notation, instead of the right-hand side of expression (18) Basu and Fernald
(2002) consider

X
k2Kt

VAkt

VAKt t TFPRODk
VA.t; b/I

that is, mean value-added based total factor productivity where the weights are nominal value-
added shares. This, then, cannot be interpreted as value-added based total factor productivity of the
ensemble, unless special conditions apply.
8This paragraph has been inserted at the suggestion of a referee.
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Individual and aggregate real value added were defined by expressions (12)
and (13) respectively. Now, dividing both sides of expression (22) by RVAKt

.t; b/
and inserting at the right-hand side RVAk.t; b/=RVAk.t; b/ D 1 .k 2 Kt/, one obtains

XKt

KL.t; b/

RVAKt
.t; b/

D
X
k2Kt

Pk
KL.t; b/

PKt

KL.t; b/

RVAk.t; b/

RVAKt
.t; b/

Xk
KL.t; b/

RVAk.t; b/
: (23)

Again employing the definition of value-added based total factor productivity,
expression (23) can be written as

�
TFPRODKt

VA.t; b/
��1

D
X
k2Kt

Pk
KL.t; b/

PKt

KL.t; b/

RVAk.t; b/

RVAKt
.t; b/

�
TFPRODk

VA.t; b/
��1

; (24)

or

TFPRODKt

VA.t; b/ D

 X
k2Kt

Pk
KL.t; b/

PKt

KL.t; b/

RVAk.t; b/

RVAKt
.t; b/

�
TFPRODk

VA.t; b/
��1
!�1

: (25)

This is our alternative result. Thus, aggregate total factor productivity can also be
obtained as a weighted harmonic sum of individual productivities, with weights

 kt �
Pk

KL.t; b/

PKt

KL.t; b/

RVAk.t; b/

RVAKt
.t; b/

.k 2 Kt/: (26)

Notice that these weights do not necessarily add up to 1. However, like above, the
weights  kt can be decomposed such that expression (25) can be considered as a
weighted (harmonic) mean of adjusted individual productivities.

It is interesting to compare the structure of the two sets of weights �kt and  kt.
The former are based on real primary input shares and relative value-added price
levels, whereas the latter are based on real output (value added) shares and relative
primary input price levels.

Summarizing, there is no unique relation between the individual total factor
productivities and the total factor productivity of the aggregate. One must either
multiply the individual productivities by weights �kt and add up, or use weights  kt

and take the harmonic sum.

4.1 Additivity Imposed

We observed that both real valued added and real primary input are generally non-
additive.9 A sufficient condition for additivity is that deflators for the ensemble, for
value added as well as primary input, are Paasche-type indices. This can be seen as

9Notice that we are considering here additivity of production units, which is different from
additivity of commodities as considered in Balk (2016, Section 4.2).
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follows. Additivity of real value added,

RVAKt
.t; b/ D

X
k2Kt

RVAk.t; b/; (27)

is, by inserting the definitions of real value added, equivalent to

1

PKt

VA.t; b/
D
X
k2Kt

VAkt

VAKt t

1

Pk
VA.t; b/

: (28)

But this relation simply expresses that the value-added based deflator for the
ensemble is a Paasche index of the deflators for the individual production units
(recall that nominal value added is additive). Similarly, if the primary-input based
deflator for the ensemble is a Paasche index of the unit-specific deflators, then

XKt

KL.t; b/ D
X
k2Kt

Xk
KL.t; b/: (29)

It is straightforward to check that if conditions (27) and (29) are satisfied, then
instead of expression (18) we obtain the simpler expression10

TFPRODKt

VA.t; b/ D
X
k2Kt

Xk
KL.t; b/

XKt

KL.t; b/
TFPRODk

VA.t; b/; (30)

and instead of expression (25) we obtain the simpler expression

TFPRODKt

VA.t; b/ D

 X
k2Kt

RVAk.t; b/

RVAKt
.t; b/

�
TFPRODk

VA.t; b/
��1
!�1

: (31)

In both cases the weights now do add up to 1. The result is simple to summarize.
If one weighs individual total factor productivities by real input shares then the
arithmetic mean must be used, but if one weighs by real output shares then the
harmonic mean must be used to arrive at an interpretable result.

Mixing this leads to unwanted effects. For example, combining the harmonic
mean with real input shares leads to understating the productivity of the aggregate:

 X
k2Kt

Xk
KL.t; b/

XKt

KL.t; b/

�
TFPRODk

VA.t; b/
��1
!�1

� TFPRODKt

VA.t; b/; (32)

10This is the model underlying the CSLS decomposition as implemented by Calver and Murray
(2016).
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and combining the arithmetic mean with real output shares leads to overstating the
productivity of the aggregate:

X
k2Kt

RVAk.t; b/

RVAKt
.t; b/

TFPRODk
VA.t; b/ � TFPRODKt

VA.t; b/: (33)

Both results rest on combining the mathematical fact that a harmonic mean is always
less than or equal to an arithmetic mean with expressions (30) and (31). Equality
in expressions (32) and (33) holds only when all the individual productivities
TFPRODk

VA.t; b/ .k 2 Kt/ are the same. Interestingly, the left-hand side of
expression (33) is the target variable considered by Olley and Pakes (1996).

Also the type of mean matters. A geometric mean is greater than or equal to an
harmonic mean, which implies that, using expression (31),

Y
k2Kt

�
TFPRODk

VA.t; b/
�RVAk.t;b/=RVAKt

.t;b/
� TFPRODKt

VA.t; b/: (34)

Such a geometric mean was a target variable considered by Melitz and Polanec
(2015). It is thus seen to overstate productivity of the aggregate.

Returning to the de Loecker and Konings (2006) case, it can be seen that instead
of the right-hand side of expression (30) these authors considered

X
k2Kt

Lkt

LKt t
TFPRODk

VA.t; b/; (35)

which is a biased estimator of TFPRODKt

VA.t; b/. The magnitude of the bias, and its
sign, is of course an empirical matter.

5 Value-Added Based Labour Productivity

For value-added based labour productivity the setup of the previous section can
simply be repeated. The only thing one needs to do is replacing real primary input
by real labour input. Thus, for the individual production units real labour input is
defined as

Xk
L.t; b/ � Ckt

L =Pk
L.t; b/ .k 2 Kt/: (36)

Likewise, for the ensemble

XKt

L .t; b/ � CKt t
L =PKt

L .t; b/; (37)

where CKt t
L �

P
k2Kt Ckt

L and Pk
L.t; b/ and PKt

L .t; b/ are suitable deflators for the
labour cost of the individual production units and the ensemble, respectively.
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Labour productivity was defined as real value added divided by real labour
input. Starting from the numerator of the labour productivity of the ensemble the
decomposition appears to be

LPRODKt

VA.t; b/ D
X
k2Kt

Pk
VA.t; b/

PKt

VA.t; b/

Xk
L.t; b/

XKt

L .t; b/
LPRODk

VA.t; b/; (38)

whereas starting from the denominator one obtains

LPRODKt

VA.t; b/ D

 X
k2Kt

Pk
L.t; b/

PKt

L .t; b/

RVAk.t; b/

RVAKt
.t; b/

�
LPRODk

VA.t; b/
��1
!�1

: (39)

Both expressions relate value-added based labour productivity of the ensemble,
considered as a higher level production unit, to the labour productivities of the
constituent production units. Notice that the weights do not necessarily add up
to 1. However, like shown before, these weights can be decomposed such that
expressions (38) and (39) can be considered as weighted means of adjusted
individual labour productivities.

5.1 Simple Labour Productivity

Two special cases deserve our attention. First, when for labour the simple sum
quantity index is used then for the individual production units labour productivity is
given by

LPRODk
VA.t; b/ D

RVAk.t; b/

Ckt
L =Pk

L.t; b/
D

RVAk.t; b/

Ckb
L Qk

L.t; b/
D

RVAk.t; b/

.Ckb
L =Lkb/Lkt

.k 2 Kt/; (40)

and real labour input by Xk
L.t; b/ D .Ckb

L =Lkb/Lkt, where Lk� denotes production
unit k’s total labour quantity at period � .� D b; t/. For the ensemble similar
expressions hold.

Substitution, for the individual production units as well as for the ensemble, into
expression (38) and some simplification delivers the following expression,

RVAKt
.t; b/

LKt t
D
X
k2Kt

Pk
VA.t; b/

PKt

VA.t; b/

Lkt

LKt t

RVAk.t; b/

Lkt
: (41)

This is an expression in terms of simple labour productivities, as defined in Balk
(2016). Put otherwise, expression (41) can be written as

SLPRODKt

VA.t; b/ D
X
k2Kt

Pk
VA.t; b/

PKt

VA.t; b/

Lkt

LKt t
SLPRODk

VA.t; b/: (42)
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It is quite natural to assume that the labour input of the ensemble, considered as a
higher level production unit, is a simple sum of the labour inputs of the constituent
units; that is, LKt t D

P
k2Kt Lkt. Then the fractions Lkt=LKt t .k 2 Kt/ are labour

shares, adding up to 1. Notice, however, that these labour shares are premultiplied
by relative price levels, so that the weights of the labour productivities themselves
do not necessarily add up to 1. However, like shown before, these weights can
be decomposed such that expression (42) can be considered as weighted mean
of adjusted individual labour productivities. The relative price levels vanish when
Pk

VA.t; b/ D PKt

VA.t; b/ .k 2 Kt/; that is, when there is no differential output price
change among the production units.

There is, however, another way of looking at expression (42). To see this, recall
that .Pk

VA.t; b/=PKt

VA.t; b//.RVAk.t; b/=Lkt/ is so-called revenue labour productivity;
that is, the result of deflating VAkt not by its unit-k-specific deflator Pk

VA.t; b/
but by the ensemble-specific deflator PKt

VA.t; b/. Weighing these revenue labour
productivities by labour shares Lkt=LKt t then delivers aggregate labour productivity.

Finally, we notice that expression (41) is the model underlying the Generalized
Exactly Additive Decomposition (GEAD) (see Balk 2016, Section 5.2). But it now
turns out that an alternative decomposition can be developed.

To see this, notice that, by substituting expression (40) into expression (39) and
using the product relation Ckt

L =Ckt0
L D Pk

L.t; t
0/Qk

L.t; t
0/, expression (39) reduces to

SLPRODKt

VA.t; b/ D

 X
k2Kt

Ckt
L =Lkt

CKt t
L =LKt t

RVAk.t; b/

RVAKt
.t; b/

�
SLPRODk

VA.t; b/
��1
!�1

: (43)

This expression can be used to develop an alternative to the GEAD.
If the unit labour prices are the same across production units, that is, Ckt

L =Lkt D ˛

.k 2 Kt/ and CKt t
L =LKt t D ˛, then expression (43) further reduces to

SLPRODKt

VA.t; b/ D

 X
k2Kt

RVAk.t; b/

RVAKt
.t; b/

�
SLPRODk

VA.t; b/
��1
!�1

: (44)

An alternative route to obtain this expression is the following. The assump-
tion of equal unit labour prices across production units implies that LKt t DP

k2Kt Lkt. Then, starting with this relation, dividing its left- and right-hand sides by
RVAKt

.t; b/, and inserting at the right-hand side RVAk.t; b/=RVAk.t; b/D 1 .k 2 Kt/

one obtains expression (44).
Notice that the weights in expression (44) do not add up to 1, unless additivity

holds. However, like shown before, these weights can be decomposed such that
expression (44) can be considered as weighted (harmonic) mean of adjusted
individual labour productivities.
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5.2 Additivity Imposed

Second, let us assume that additivity holds; that is, RVAKt
.t; b/ D

P
k2Kt RVAk .t; b/

and LKt t D
P

k2Kt Lkt. Instead of expression (38) we then obtain

SLPRODKt

VA.t; b/ D
X
k2Kt

Lkt

LKt t
SLPRODk

VA.t; b/; (45)

and instead of expression (39) we obtain

SLPRODKt

VA.t; b/ D

 X
k2Kt

RVAk.t; b/

RVAKt
.t; b/

�
SLPRODk

VA.t; b/
��1
!�1

: (46)

Now in both cases the weights add up to 1. The labour-share weighted arithmetic
mean of simple labour productivities appears to be equal to the real-value-added-
share weighted harmonic mean of simple labour productivities, and both are equal
to the simple labour productivity of the aggregate.

Mixing means and weights leads to undesirable results. Using the general relation
between harmonic and arithmetic means, we conclude that

 X
k2Kt

Lkt

LKt t

�
SLPRODk

VA.t; b/
��1
!�1

� SLPRODKt

VA.t; b/ (47)

X
k2Kt

RVAk.t; b/

RVAKt
.t; b/

SLPRODk
VA.t; b/ � SLPRODKt

VA.t; b/: (48)

Thus, a labour-share weighted harmonic mean of simple labour productivities
understates labour productivity of the aggregate, while a real-value-added-share
weighted arithmetic mean overstates this. The second inequality was also obtained
by van Biesebroeck (2008), though in a less direct way.

Also here the type of mean matters. As a geometric mean is less then or equal to
an arithmetic mean, we conclude that

Y
k2Kt

�
SLPRODk

VA.t; b/
�Lkt=LKt t

� SLPRODKt

VA.t; b/: (49)

Such a geometric mean of simple labour productivities features prominently in
Melitz and Polanec (2015). In the Appendix of their paper decompositions based
on the left-hand side and the right-hand side of expression (49) are empirically
compared. The geometric mean was also considered as target variable for firms by
Hyytinen and Maliranta (2013) and Maliranta and Määttänen (2015).

Notice that the right-hand side of expression (45) is the target variable of
the TRAD and CSLS decompositions considered in Balk (2016, Section 5.2).
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Thus these decompositions are consistent; that is, aggregate productivity can be
interpreted as productivity of the aggregate. However, underlying this result is the
assumption of additivity, which is quite restrictive.

6 Gross-Output Based Productivity

There are not so many microdata studies dealing with the concept of gross-output
based productivity. For any individual production unit gross-output based total
factor productivity is defined as

TFPRODk
Y.t; b/ �

Yk.t; b/

Xk
KLEMS.t; b/

D
Rkt=Pk

R.t; b/

Ckt
KLEMS=Pk

KLEMS.t; b/
.k 2 Kt/: (50)

In the numerator we have real revenue Yk.t; b/; that is, nominal revenue Rkt deflated
by a k-specific revenue based price index with reference period b, Pk

R.t; b/. In the
denominator we have real KLEMS input Xk

KLEMS.t; b/; that is, nominal KLEMS
input cost Ckt

KLEMS deflated by a k-specific KLEMS input based price index with
the same reference period, Pk

KLEMS.t; b/; so that the ratio TFPRODk
Y.t; b/ is a

dimensionless variable.
Similarly, gross-output based simple labour productivity is defined as

SLPRODk
Y.t; b/ �

Yk.t; b/

Lkt
.k 2 Kt/I (51)

that is, real revenue per unit of labour. The dimension of this variable is money of
reference period b.

Suppose that we have access to production-unit specific data such that either of
these measures can be compiled. Which weights would be appropriate? We review
a number of typical studies.

6.1 Simple Labour Productivity

Let us start with the target variable considered by Baily et al. (BBH) (2001). This
is SLPRODk

Y.t; b/, though instead of unit-specific deflators industry-level deflators
were used. The labour unit was an hour worked. These simple labour productivities
were weighed by labour shares; that is, by Lkt=LKt t D Lkt=

P
k2Kt Lkt. Thus,

aggregate productivity was compiled as11

11This measure was also considered by Foster et al. (2001). Actually, two variants were considered,
one where the labour unit is an hour worked and one where it is a worker. The geometric alternative
was employed by Hyytinen and Maliranta (2013) for plants; labour quantity was thereby measured
in full time equivalents.
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LPRODKt

BBH.t; b/ �
X
k2Kt

Lkt

P
k2Kt Lkt

SLPRODk
Y.t; b/ D

P
k2Kt Yk.t; b/

LKt t
: (52)

But what precisely does this mean? To see this, we must return to the accounting
identities discussed in Sect. 2 and notice that

X
k2Kt

Rkt D
X
k2Kt

X
k02Kt ;k0¤k

Rkk0t C RKt t: (53)

Thus, total revenue is the sum of revenue obtained by internal deliveries (recall that
Rkk0t is the revenue obtained by unit k from delivering to unit k0) and aggregate
revenue RKt t, which is the revenue obtained by the ensemble Kt, when the ensemble
is considered as a consolidated production unit. Now, imposing additivity, that is,
defining the aggregate revenue-based price index as a Paasche index of the k-specific
revenue based price indices,

1

PKt

R .t; b/
�
X
k2Kt

Rkt

P
k2Kt Rkt

1

Pk
R.t; b/

; (54)

implies that expression (53) can be written as

PKt

R .t; b/
X
k2Kt

Yk.t; b/ D
X
k2Kt

X
k02Kt ;k0¤k

Rkk0t C RKt t; (55)

or

X
k2Kt

Yk.t; b/ D

P
k2Kt

P
k02Kt ;k0¤k Rkk0t

PKt

R .t; b/
C

RKt t

PKt

R .t; b/
: (56)

If we define real revenue of the ensemble Kt, considered as a consolidated produc-
tion unit, by YKt

.t; b/ � RKt t=PKt

R .t; b/, then expression (56) can be simplified to

X
k2Kt

Yk.t; b/ D

P
k2Kt

P
k02Kt ;k0¤k Rkk0t

PKt

R .t; b/
C YKt

.t; b/: (57)

Substituting expression (57) into expression (52) and applying definition (51) to the
ensemble considered as a production unit delivers the following relation:

LPRODKt

BBH.t; b/ D SLPRODKt

Y .t; b/

 
1C

P
k2Kt

P
k02Kt ;k0¤k Rkk0t

RKt t

!
: (58)

Since nominal revenue is non-negative, it appears that aggregate BBH productivity
overstates simple labour productivity of the aggregate, and that the magnitude of
the bias depends on the relative extent of the intra-ensemble deliveries. The bias
vanishes only when there are no intra-ensemble deliveries.
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Foster et al. (FHK) (2001) considered simple labour productivities weighed by
real output shares; that is,

LPRODKt

FHK.t; b/ �
X
k2Kt

Yk.t; b/P
k2Kt Yk.t; b/

SLPRODk
Y.t; b/: (59)

Applying the arithmetic-harmonic mean inequality, and definitions (51) and (52)
respectively, we obtain

LPRODKt

FHK.t; b/ �

P
k2Kt Yk.t; b/

LKt t
D LPRODKt

BBH.t; b/: (60)

The right-hand side is familiar from the foregoing. Combining expressions (60)
and (58) we may conclude that, even in the case of industries exhibiting no
intra-ensemble trade, LPRODKt

FHK.t; b/ overstates simple labour productivity of the
aggregate, SLPRODKt

Y .t; b/.

6.2 Total Factor Productivity

We now turn to TFPRODk
Y.t; b/, a key variable considered by Bartelsman

and Dhrymes (BD) (1998). They had industry and time effects removed
econometrically, but that does not need to concern us here. The individual gross-
output based total factor productivities were weighed by real KLEMS input shares
Xk

KLEMS.t; b/=
P

k2Kt Xk
KLEMS.t; b/, so that aggregate total factor productivity was

compiled as

TFPRODKt

BD.t; b/ �
X
k2Kt

Xk
KLEMS.t; b/P

k2Kt Xk
KLEMS.t; b/

TFPRODk
Y.t; b/

D

P
k2Kt Yk.t; b/P

k2Kt Xk
KLEMS.t; b/

: (61)

Notice that, assuming that additivity at the output side holds, the numerator is given
by expression (57). For the denominator a similar expression can be derived. To see
this, we again return to the accounting identities in Sect. 2 and notice that

X
k2Kt

Ckt
EMS D

X
k2Kt

X
k02Kt ;k0¤k

Ck0kt
EMS C CKt t

EMS; (62)

Adding at both sides CKt t
KL D

P
k2Kt Ckt

KL, we obtain the following accounting
relation:

X
k2Kt

Ckt
KLEMS D

X
k2Kt

X
k02Kt ;k0¤k

Ck0kt
EMS C CKt t

KLEMS: (63)
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Thus, total cost is the sum of cost incurred by internal deliveries (recall that Ck0kt
EMS

is the cost incurred by unit k for purchases from unit k0) and aggregate cost CKt t
KLEMS,

which is the KLEMS input cost of the ensemble Kt, considered as a consolidated
production unit. Now, imposing additivity at the input side, that is, defining the
aggregate KLEMS input based price index as a Paasche index of the k-specific
KLEMS input based price indices,

1

PKt

KLEMS.t; b/
�
X
k2Kt

Ckt
KLEMSP

k2Kt Ckt
KLEMS

1

Pk
KLEMS.t; b/

; (64)

implies that expression (63) can be written as

PKt

KLEMS.t; b/
X
k2Kt

Xk
KLEMS.t; b/ D

X
k2Kt

X
k02Kt ;k0¤k

Ck0kt
EMS C CKt t

KLEMS; (65)

or

X
k2Kt

Xk
KLEMS.t; b/ D

P
k2Kt

P
k02Kt ;k0¤k Ck0kt

EMS

PKt

KLEMS.t; b/
C

CKt t
KLEMS

PKt

KLEMS.t; b/
: (66)

If we define real KLEMS input of the ensemble Kt, considered as a consolidated
production unit, as XKt

KLEMS.t; b/ � CKt t
KLEMS=PKt

KLEMS.t; b/, then expression (66) can
be simplified to

X
k2Kt

Xk
KLEMS.t; b/ D

P
k2Kt

P
k02Kt ;k0¤k Ck0kt

EMS

PKt

KLEMS.t; b/
C XKt

KLEMS.t; b/: (67)

Substituting expressions (57) and (67) into expression (61) and applying defini-
tion (50) to the ensemble considered as a production unit delivers the following
relation:

TFPRODKt

BD.t; b/

D TFPRODKt

Y .t; b/
1C

P
k2Kt

P
k02Kt ;k0¤k Rkk0t=RKt t

1C
P

k2Kt

P
k02Kt ;k0¤k Ck0kt

EMS=CKt t
KLEMS

: (68)

As observed in Sect. 2, National Accounting conventions imply that revenue and
cost of the intra-ensemble transactions are equal; that is,

X
k2Kt

X
k02Kt ;k0¤k

Rkk0t D
X
k2Kt

X
k02Kt ;k0¤k

Ck0kt
EMS:

Thus the magnitude of the bias of aggregate BD total factor productivity depends
on the magnitude of aggregate revenue RKt t relative to aggregate KLEMS input cost
CKt t

KLEMS. Put otherwise, the magnitude of the bias depends on aggregate profit …Kt t.
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If aggregate profit is positive (negative), then aggregate BD total factor productivity
understates (overstates) total factor productivity of the aggregate. If aggregate profit
equals 0, then the bias vanishes. A sufficient condition for zero aggregate profit is
that …kt D 0 for each individual production unit k 2 Kt. Of course, the bias also
vanishes in the trivial case when there are no intra-ensemble deliveries.

Foster et al. (2001) considered total factor productivities weighed by real output
shares; that is,12

TFPRODKt

FHK.t; b/ �
X
k2Kt

Yk.t; b/P
k2Kt Yk.t; b/

TFPRODk
Y.t; b/: (69)

Applying the arithmetic-harmonic mean inequality and using the definitions in
expressions (50) and (61), we find that

TFPRODKt

FHK.t; b/ � TFPRODKt

BD.t; b/: (70)

Now expression (68) above tells us that, under additivity at the input and the output
side, TFPRODKt

BD.t; b/ is an unbiased measure of total factor productivity of the
aggregate if there are no intra-ensemble deliveries. Thus, we may conclude that in
the cases studied by Foster et al., which were four-digit level industries where intra-
industry deliveries are unlikely, TFPRODKt

FHK.t; b/most likely overstates total factor
productivity of the aggregate, TFPRODKt

Y .t; b/.
The target variable of Eslava et al. (EHKK) (2013) appears to be

TFPRODKt

EHKK.t; b/ �
Y

k2Kt

.TFPRODk
Y.t; b//

Yk.t;b/=
P

k2Kt Yk.t;b/I (71)

that is, the geometric variant of the FHK measure defined by expression (69).
Using subsequently the geometric-harmonic mean inequality, definition (50), and
expression (61), we obtain

TFPRODKt

EHKK.t; b/ � TFPRODKt

BD.t; b/: (72)

As we have seen, the right-hand side of this expression may or may not approximate
TFPRODKt

Y .t; b/.
It is now interesting to consider a recent paper by Collard-Wexler and de Loecker

(CWL) (2015). These authors also dealt with TFPRODk
Y.t; b/ .k 2 Kt/, but to obtain

aggregate productivity the individual total factor productivities were weighed by
nominal revenue shares Rkt=

P
k2Kt Rkt. Thus aggregate productivity was defined as

TFPRODKt

CWL.t; b/ �
X
k2Kt

Rkt

P
k2Kt Rkt

TFPRODk
Y.t; b/: (73)

12Actually, their multi-factor productivity index, discussed in the extended version of this paper,
can be seen as a special case of TFPRODk

Y .t; b/.
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To obtain an interpretation for this mean, we first relate it to the alternative where
real shares Yk.t; b/=

P
k2Kt Yk.t; b/ are used as weights,

TFPRODKt

CWL.t; b/ D

X
k2Kt

Yk.t; b/P
k2Kt Yk.t; b/

TFPRODk
Y.t; b/

C
X
k2Kt

�
Rkt

P
k2Kt Rkt

�
Yk.t; b/P

k2Kt Yk.t; b/

�
TFPRODk

Y.t; b/: (74)

The first term at the right-hand side of this equation is familiar; it is the FHK
measure as defined by expression (69). The second term has the form of a
covariance, but there is in general no compelling reason for this covariance to be
positive or negative, large or small. Taken together, on the assumption that the
covariance in Eq. (74) equals 0, it seems likely that aggregate CWL productivity
overstates the productivity of the aggregate.

6.3 Some Empirical Comparisons

The primary purpose of the classic paper by Foster et al. (2001) was to com-
pare decompositions of intertemporal change of the three aggregate measures
TFPRODKt

FHK.t; b/, LPRODKt

FHK.t; b/, and LPRODKt

BBH .t; b/. They specifically exam-
ined the Foster-Haltiwanger-Krizan (FHK) and the Griliches-Regev (GR) decom-
position methods (see Balk (2016), expressions (2.43) and (2.50) respectively). It
turned out that, though the levels were of course different, the FHK decompositions
of �TFPRODKt

FHK.t; b/ and �LPRODKt

FHK .t; b/ were strikingly similar. The levels
as well as the FHK decompositions of �LPRODKt

FHK.t; b/ and �LPRODKt

BBH.t; b/
differed, however, remarkably. Interestingly, for the three aggregate measures the
GR decomposition delivered almost the same results. Overall, the ‘within’ term
appeared dominant.

7 Conclusion

Our overall conclusion is that not every combination of micro-, or meso-level
productivities, weights, and aggregator function (mean) leads to a nice interpretation
of aggregate productivity as productivity of the aggregate. Specifically:

• An arithmetic ‘mean’ of value-added based total factor productivities requires
weights based on relative real primary input times relative value-added based
price levels.
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• A harmonic ‘mean’ of value-added based total factor productivities requires
weights based on relative real value added times relative primary input price
levels.

• Under additivity the relative price levels disappear from the expressions.
• Similar results hold for value-added based (simple) labour productivities.
• An arithmetic mean of gross-output (revenue) based simple labour productivities

weighed with (physical) labour input shares is likely to overstate its aggregate
counterpart.

• An arithmetic mean of gross-output (revenue) based total factor productivities
weighed with real input shares approximates gross-output (revenue) based total
factor productivity of the aggregate; the magnitude of the bias depends on
aggregate profit.
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available inference methods. Our simulation results exhibit several cases where a
Fieller-type method improves coverage. This occurs in particular when the Data
Generating Process (DGP) follows a finite mixture of distributions, which reflects
irregularities arising from low observations (close to zero) as opposed to large
(right-tail) observations. Designs that forgo the interconnected effects of both
boundaries provide possibly misleading finite-sample evidence. This suggests a
useful prescription for simulation studies in this literature.

Keywords Inequality measures · Fieller-type confidence set · Delta method ·
Singh-Maddala distribution · Gamma distribution · Mixture

1 Introduction

Asymptotic inference methods for inequality indices are for the most part unreliable
due to the complex empirical features of the underlying distributions, particularly
in the case of income. Typically, the presence of heavy tails invalidates standard
parametric and nonparametric inference methods based on central limit theory
(CLT), leading to spurious conclusions with samples of realistic size. This problem
persists even with very large samples. Moreover, for some parameter values, the
moments of widely used distributions in this literature, such as the Singh-Maddala
and Pareto distributions, do not exist. Early references can be traced back to
Maasoumi (1997) or Mills and Zandvakili (1997); for a survey, see Cowell and
Flachaire (2015).

Bootstrap inference methods emerge as an appealing alternative, since observa-
tions can often be viewed as independent random draws from the population. The
first study to use and recommend bootstrap methods for inequality indices is the one
of Mills and Zandvakili (1997). Biewen (2002) studied the performance of standard
bootstrap methods in the context of inequality measures assuming a lognormal
distribution as the Data Generating Process (DGP). Although his results suggest
that the bootstrap performs well in finite samples, the lognormal distribution he used
does not capture the thick tails typically observed in empirical work (Davidson and
Flachaire 2007). Other simulation studies based on heavy-tailed distributions, such
as the Singh-Maddala distribution, confirm that bootstrapping fails – often by far –
to control coverage rates, despite the fact that they lead to higher-order refinements
relative to asymptotic methods (Davidson and Flachaire 2007; Cowell and Flachaire
2007).

Non-standard inference methods have recently been suggested in an attempt to
improve the quality of inference for inequality measures. Two notable approaches
are permutation tests (Dufour et al. 2017) and semi-parametric methods (Davidson
and Flachaire 2007; Cowell and Flachaire 2007). The permutational approach
focuses on testing the equality of two indices, and the authors show that it
performs very well when the two indices come from similar distributions. The semi-
parametric bootstrap approach assumes a parametric distribution for the right tail
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and a nonparametric empirical distribution function (EDF) for the rest. This method
leads to considerable refinement over their asymptotic and bootstrap counterparts,
provided the probability of the tail (p) and the ordered statistics defining the upper
tail (k) are well chosen, which is usually not an easy task. Thus except for very
specific cases, accurate inference methods on inequality measures are not available.

In this paper, we introduce the Fieller method for the Theil Index, and we
assess its finite-sample properties through a Monte Carlo simulation study. Fieller’s
method was originally introduced for inference on the ratio of two means of normal
variates. It is based on inverting a t-test of a linear restriction associated with the
ratio, and allows one to get exact confidence sets for this ratio. This holds promise
relative to the standard Delta method especially when the denominator of the ratio
approaches zero, since the implicit linear reformulation addresses the underlying
weak identification. Most inequality indices can be written as a ratio of functions of
moments; so a Fieller-type method may plausibly lead to more reliable inference on
these indices. However, given the non-linear dependence between the numerator
and the denominator of the indices along with the typically positive support of
the underlying distributions, the advantages from employing a Fieller-type method
should not be taken for granted. This motivates the present work.

The method first introduced by Fieller (1940, 1954) was extended to independent
samples of different sizes (Bennett 1953), multivariate models (Bennett 1959; Zerbe
et al. 1982), general exponential regression models (Cox 1967), general linear
regression models (Zerbe 1978; Dufour 1997), and dynamic models with possibly
persistent covariates (Bernard et al. 2007, 2015; Stock and Lazarus 2016). Bolduc
et al. (2010) used several variants of Fieller’s approach to build simultaneous
confidence sets for multiple (possibly weakly identified) ratios and they showed
in a simulation study that a Fieller-type method outperforms the Delta method and
controls level globally. Empirically, Fieller’s approach has been routinely applied in
medical research and to a lesser extent in economics (Srivastava 1986; Willan and
O’Brien 1996; Johannesson et al. 1996; Laska et al. 1997; Stock and Lazarus 2016).

Fieller-type confidence sets may be perceived as counter-intuitive, because they
can produce unbounded regions including the whole real line.1 This perhaps gives
reason for their unpopularity in applied work relative to Delta method-based
confidence sets (DCS), despite their solid theoretical foundation. However, the
geometric interpretation of Fieller’s method is quite intuitive (see von Luxburg and
Franz 2004). More to the point here, in the presence of identification problems, valid
coverage requires possibly unbounded outcomes (Gleser and Hwang 1987; Dufour
1997), which is allowed by a Fieller-type solution as opposed to the Delta method.

Our simulation results provide evidence on the superiority of a Fieller-type
method in terms of reducing size distortions in many useful cases. In particular, a
Fieller-type method improves coverage over the Delta method when the distribution
under the null allows for bunching of low observations (close to zero) in addition to
a thick right tail. For such cases, the denominator of the Theil index is small relative

1See Scheffé (1970) for a modified version of Fieller’s method that avoid the confidence set R.
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to the numerator and inequality is high. Methodologically, our findings suggest that
studies focusing only on the upper tail may misrepresent finite-sample distortions
with positive support distributions. In contrast, our design does allow us to assess
further irregularities arising from low observations. As illustrated by Cowell and
Victoria-Feser (1996), both boundaries may matter for general entropy class of
indices, although not necessarily for the Theil index.

The paper is organized as follows. Section 2 presents the Fieller-type method for
the Theil index. In Sect. 3, Monte Carlo results are provided. Section 4 concludes.

2 Fieller-Type Inference for Inequality Measures

Most income inequality indices depend solely on the underlying distribution of
income. Technically speaking, they can be typically written as a functional which
maps the space of cumulative distribution functions (CDFs) of income to the positive
real line.

2.1 General Functional Ratios

Denote by Y the random variable representing income, and by FY.y/ its CDF. The
class of indices considered in this paper can be written as the ratio of functions of
two moments, namely the mean � and another moment  D EŒ�.Y/�, where �.�/
is a given function. In particular, for the Theil index �.Y/ D Y log.Y/. In general,
most inequality indices can be written as

I D  .�I / D
 1.�I /

 2.�I /
: (1)

The index I can be estimated using sample moments:

O� D
1

n

nX
iD1

Yi ; O D
1

n

nX
iD1

�.Yi/ ; (2)

where Y1; : : : ; Yn is a sample of observations on Y , and �.Yi/ is a function that takes
different forms for different inequality indices. If we assume that the estimator is
asymptotically normal, then the asymptotic covariance matrix can be estimated by
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where OV.OI/ � V.OI/j�D O�IDO . Here, O�2�, O�2 and O�� are, respectively, estimates of
the variance of Y , the variance of �.Y/, and the covariance of Y and �.Y/.2

In this paper, we consider the problem of building Fieller-type confidence sets
(FCS) and Delta method confidence sets (DCS) for an index of the form I in (1). In
general, this can be viewed as equivalent to finding the values of I0 which are not
rejected when one tests null hypotheses of the form

H0.I0/ W
 1.�; /

 2.�; /
D I0 (4)

where I0 is any admissible value of I: Here, this can be achieved by inverting the
absolute value or the square of the relevant t-type statistic. To invert a t-test with
respect to the parameter tested, we collect all the values of this parameter for which
the test is not significant at a given level.

Following the Delta method, we invert the test statistic

t.I0/
2 D

.OI � I0/2

OV.OI/
(5)

which leads to the confidence set

DCS.II 1 � ˛/ D
h
OI � z˛=2Œ OV.OI/�

1=2 I OI C z˛=2Œ OV.OI/
1=2�

i
(6)

where z˛=2 is the usual ˛ critical point based on the normal distribution (i.e., PŒZ �

z˛=2� D ˛=2 for Z ∼ NŒ0; 1�).
By contrast, the Fieller approach can be applied as follows. For each possible

value I0, the Fieller-type approach consists in considering the equivalent linear
hypothesis

HL.I0/ W �.I0/ D 0 ; where �.I0/ D  1.�; / � I0  2.�; / (7)

where the superscript L is added to differentiate the original null hypothesis from
its linear reformulation. Through this exact linearization, the Fieller-type method
avoids possible (weak) identification problems when the denominator  2.�; /
is close to zero. To construct the FCS, we consider the square of the t-statistic
associated with HL.I0/ in (7):

t.I0/
2 D

O�.I0/2

OVŒ O�.I0/�
(8)

2Note that the variance of O�, the variance of O and covariance of the . O�; O/ are equal to O�2�=n,
O�2 =n and O��=n.
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where OVŒ O�.I0/� is an estimate of the variance of O�.I0/. If the statistic follows
asymptotically a standard normal distribution, then a confidence set with level 1�˛

for the index I can be built by noting that

t.I0/
2 � z2˛=2 ,

O�.I0/2

OVŒ O�.I0/�
� z2˛=2 , O�.I0/

2 � z2˛=2 OVŒ O�.I0/� � 0 : (9)

This yields the confidence set

FCS.II 1 � ˛/ D
n
I0 W O�.I0/

2 � z2˛=2 OVŒ O�.I0/� � 0
o
: (10)

Since O�.I0/ is linear in I0, O�.I0/2 and OVŒ O�.I0/� are quadratic functions of I0:

O�.I0/
2 D A1I

2
0 C B1I0 C C1 ; VŒ O�.I0/� D A2I

2
0 C B2I0 C C2 ; (11)

where the coefficients (defined below) depend on the data and the Gaussian critical
point. On substituting (11) into (10), we get the quadratic inequality

AI20 C BI0 C C � 0 (12)

where

A D A1 � z2˛=2A2 ; B D B1 � z2˛=2B2 ; C D C1 � z2˛=2C2 : (13)

The coefficients, A1; B1; C1; A2; B2; C2 are functions of the sample moments and
their variance estimates. The FCS solve the second degree polynomial inequality
in (12) for I0. Let � D B2 � 4AC, then the .1� ˛/-level Fieller-type confidence set
is characterized as follows:

1. if � > 0 and A > 0, then FC.II 1 � ˛/ D
h

�B�
p
�

2A ; �BC
p
�

2A

i
,

2. if � > 0 and A < 0, then FC.II 1 � ˛/ D
i
�1; �BC

p
�

2A

i
[
h

�B�
p
�

2A ; C1
h
,

3. if � < 0, then A < 0 and FC.II 1 � ˛/ DR.

For more details, see Bolduc et al. (2010) and the references therein.

2.2 Fieller-Type Inference for the Theil Index

The Theil index belongs to the family of GE indices and can be written as a function
of two moments � D E.Y/ and  D EŒY log.Y/�, where � and  can be estimated
using their sample counterparts. In this paper, we will use the following expression
for the Theil index:

IT D


�
� log.�/: (14)
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For the Theil index (IT ), the null hypothesis defined in (4) can be written as:

H0.IT0/ W


�
� log .�/ D IT0 : (15)

The variance of the estimated Theil index can be derived using the Delta method
and it is defined by (3) where the expressions of the derivatives in this context are:

@ 

@�
D �

. C �/

�2
;

@ 

@
D
1

�
: (16)

The Fieller-type method for the Theil index starts by considering the equivalent
linear hypothesis as shown in (7):

H0.IT0/ W  � � log.�/ � � IT0 D 0 ; (17)

along with the corresponding t-statistics (squared). The confidence set for IT is
then obtained by solving the quadratic inequality described by (10), (11) and (12).
For this, we derive the parameters A1; B1; C1; A2; B2 and C2 in Eq. (11) for the
Theil index:

A1 D O�2 ; B1 D �2 O� Œ O � O� log. O�/� ; C1 D Œ O � O� log. O�/�2 : (18)

To get the variance of O�.I0/, we apply the Delta method to �.I0/ in (7):

A2 D O�2�=n ; B2 D
�
2 O�2� Œlog. O�/C 1� � 2 O��

�
=n ; (19)

C2 D
�
O�2�Œlog. O�/C 1�2 � 2 O��Œlog. O�/C 1�C O�2�

�
=n ; (20)

where O�2�, O�2 and O�� are defined in (3).

3 Simulation Results

In this section, we provide Monte Carlo evidence on the finite-sample properties of
the Fieller-type method for the Theil index. We conduct several simulation studies
focusing on the behaviour of the Fieller method when the hypothesized income
distribution under the null is characterized by thick tails. To this end, we simulate
data sets from the Singh-Maddala distribution [Yi ∼ SM.a; b; q/], the Gamma
distribution [Gamma.k; �/], and finite mixtures of the latter. These distributions
have been used in the literature in the context of income inequality measures
(Brachmann et al. 1996; McDonald 1984; Kleiber and Kotz 2003; Cowell and
Victoria-Feser 1996).

The CDF of the Singh-Maddala distribution can be written as

F.y/ D 1 �
h
1C

� y

b

�ai�q
; (21)
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where a is a shape parameter which affects both tails, q is another shape parameter
which affects only the right tail, and b is a scale parameter which has no impact on
our analysis (for the indices in question are scale invariant. For this distribution, the
k-th moment exists for �a < k < aq.

The expectation of the Singh-Maddala distribution can be expressed as

� D
q b�

�
a�1 C 1

�
�
�
q � a�1

�

� .q C 1/
: (22)

In this case, a closed-form expression for  D EŒY log.Y/� is also available:

 D � a�1Œ .a�1 C 1/ �  .q � a�1/C a log.b/� (23)

where �.�/ is the Gamma function and  .�/� � 0.�/=�.�/ is the digamma function.
The other distribution we consider in the simulations is the Gamma distribution

with density function

f .y/ D
yk�1e�.k=�/

� k�.k/
; y > 0 ; (24)

where k is a shape parameter and � is a scale parameter. The expectation of this
distribution (�) is the scale multiplied by the shape parameter (� D k� ). The value
of  for the Gamma distribution was computed by numerical methods.

The number of replications was set to N D 10;000. For each sample, we compute
the Theil inequality, and the underlying estimated variance, and the t-type statistics
associated with the Delta and Fieller-type methods. Because of the duality between
tests and confidence sets, the coverage rate of the confidence sets can be evaluated
by computing the rejection probabilities of these tests. The coverage error rate (or
equivalently the rejection probability) is computed as the proportion of times the
relevant t-statistic rejects the null hypothesis. For a significance level ˛, we say the
test approaches the nominal level when the rejection rate approaches ˛.

The main results of the simulation experiments are presented in the form of plots
where the numbers of observations are on the x-axis and the coverage error rates
on the y-axis. The 5% nominal level is maintained for all tests. The horizontal solid
lines in the graphs represent the nominal level 0:05.

Our simulation results show that the Fieller-type method has better coverage
than the Delta method in several cases, especially when the underlying distribution
involves heavy lower and upper tails.

Figure 1 plots the rejection probabilities of the Fieller-type and Delta methods
under Singh-Maddala distributions. In the left panel, the distribution is Singh-
Maddala with parameters a D 2:8 and q D 1:7. The Fieller-type and Delta methods
have similar coverage. However, the other designs considered reveal important
improvement with the Fieller method. In the right panel, the distribution is Singh-
Maddala with parameters a D 1:1 and q D 5. For this choice of parameters,
the distribution exhibits bunching of low observations. In this context, the Fieller-
type method outperforms the Delta method for relatively small samples up to 400
observations.
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Fig. 1 Rejection probabilities for Delta and Fieller methods (Note – The Delta method and Fieller
method statistics are defined by (5) and (8) respectively. The null hypothesis tested is H.IT0/ W I D
I0 where I0 is computed analytically)

Fig. 2 Rejection probabilities for Delta and Fieller methods (Note – The Delta method and Fieller
method statistics are defined by (5) and (8) respectively. The null hypothesis tested is H.IT0/ W I D
I0 where I0 is computed analytically)

The same conclusion can be drawn from the case where we assume a Gamma
distribution under the null. The size improvements we find with the Fieller-type
method increase as the left tail of the distribution gets thicker. In the left panel of
Fig. 2, we plot the rejection probabilities under both methods under a Gamma.k D

1; � D 1/ distribution. The differences in the rejection probabilities for samples of
size 20 is around 4%, and around 2% with 100 observations. As we increase the
proportion of low observations, the Fieller-type method provides remarkable size
improvements, and in some cases it approaches the 5% nominal level for sample
sizes as small as 200. In the right panel of this figure, the Fieller-type method
coverage error is less than that of Delta method by around 9% going down from
almost 15–6%.
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Fig. 3 Rejection probabilities for Delta and Fieller methods (Note – The Delta method and Fieller
method statistics are defined by (5) and (8) respectively. The null hypothesis tested is H.IT0/ W I D
I0 where I0 is calibrated via a separate simulation)

Fig. 4 Rejection probabilities for Delta and Fieller methods (Note – The Delta method and Fieller
method statistics are defined by (5) and (8) respectively. The null hypothesis tested is H.IT0/ W I D
I0 where I0 is calibrated via a separate simulation)

The shape of the distributions underlying the aforementioned results represent
populations where most of the individuals are poor and few are rich. The choice of
these distributions was made to study the performance of the two methods when
tails are fat both near the zero boundary and to the right. As we will discuss shortly
our findings conform with the theoretical work of Cowell and Victoria-Feser (1996).

In Figs. 3 and 4, we consider mixed designs with bimodal distributions under the
null. These distributions, their parameters and the associated mixture weights are
chosen to capture represent tail thickness at both ends of the distribution.
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Since the analytical expression for the Theil under the null of mixtures does
not exist, we used an estimate of the Theil index based on a very large sample
(n=1000,000,000). This approach of computing the true Theil index under the null
is justified by the consistency of the Theil Index.

Figure 3 plots the rejection probabilities for mixtures of two Singh-Maddala
distributions. In the left panel, the mixture combines a SM.1:1; 5/ with probability
0:7 weight and SM.2:8; 1:7/ with probability 0:3: i.e. on average, we draw 70%
of the sample from a distribution with a peak near low incomes, and 30% from
a distribution characterized by a thick right tail. For this design, the Fieller-type
method approaches the nominal significance level for samples as small as 50
observations.

In the right panel, we increase the weight for the first distribution from 0:7 to
0:9. Thus we are giving more weight to the distribution with irregularities on the
left tail rather than the one characterized with right tail thickness. The Fieller-type
method dominates the Delta method by wide margins. This confirms our previous
conclusion that the Fieller-type method is superior to the Delta method, especially
when the distribution exhibits bunching of low observations.

Further evidence appears in Fig. 4 where we consider mixtures of Gamma.0:3; 1/
and SM.2:8; 1:7/ distributions. Again the left panel gives to the first distribution (the
Gamma distribution) a weight of 0:7, while the right one increases this weight to 0:9.
Again, the Fieller-type method improves coverage, especially for small samples.

The designs we considered can be interpreted through the work of Cowell and
Victoria-Feser (1996). This paper views the underlying distribution as a mixture
of a finite number of other distributions where bunching and tail behaviour can
be formally modelled. Results for cases of “extreme” behaviour are pointed out,
including the zero and infinite boundaries. In particular, the Theil index can have an
unbounded influence function when some of the data approaches 1, although the
zero boundary may matter for other inequality indices.

The influence function measures the change in the estimator for a small
perturbation of the data. It is related to the bias of the estimator in the sense
that when the IF is unbounded the bias can be infinite. Cowell and Victoria-Feser
(1996) show that any decomposable scale invariant index for which the mean is
estimated from the sample has an unbounded IF. We find that the Fieller-type
method improves coverage, especially when small (near zero) or large observations
are highly probable.

4 Conclusion

This paper proposes Fieller-type procedures for inference on the Theil inequality
index and illustrates its superiority relative to its standard Delta method counterpart,
using various empirically relevant simulation designs. Our results confirm that, in
contrast with the Delta method, the proposed procedures can capture some of the
distributional irregularities arising from the concentration of low observations and
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the thickness of the right tail. More broadly, our findings suggest that the Fieller-
type approach holds concrete promise for many other inequality measures, as well
as for inference on differences between measures.
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Poverty-Dominant Marginal Transfer
Reforms in Socially Risky Situations

Paul Makdissi and Quentin Wodon

Abstract Public transfer programs have a dual objective of redistributing income
and providing insurance when individual incomes are subject to variability. To
our knowledge, the normative literature on marginal policy reform has not yet
provided a method to account for individual’s exposure to risk in the evaluation of
public transfer programs. Stochastic dominance tests are proposed to identify robust
marginal poverty-reducing transfer reforms in socially risky situations.

Keywords Poverty · Policy reform · Risk · Stochastic dominance

JEL Codes: H23, I32

1 Introduction

When constructing poverty comparisons or analyzing the impact of marginal policy
reforms on poverty, economists usually rely on cross-sectional data which give
information on income at one point in time. However, it has long been recognized
that incomes are subject to uncertainty and that this may affect welfare if individuals
are risk averse and cannot insure properly. Indeed, many transfer programs are
especially designed to enable households to better cope with negative income
shocks. This is the case in OECD countries for unemployment benefits, among
others. In developing countries, safety nets often take the form of public works
which are expanded during recessions and phased out, or at least reduced during
booms.
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While such transfers are designed to cope with risk, the analysis of their impact
on poverty and social welfare is typically based on cross-sectional household survey
data that provide income or consumption information for one period of time only.
With the progressively wider availability of panel data on households, even in
developing countries, it becomes feasible to directly take into account uncertainty
in poverty comparisons and policy or program reform evaluations.

In this paper, we use the standard concept of a household’s certainty equivalent
income (which depends on both expected income and income variability) in order
to develop stochastic dominance tests for poverty comparisons and for evaluation
of the impact on poverty of marginal policy reforms in socially risky situations.
In doing so, we build on two strands of the literature. We first follow Gravel
and Tarroux (2015) and show how to use in a risk framework the results on
robust poverty ordering tests developed among others by Atkinson (1987), Foster
and Shorrocks (1988a,b), and Zheng (1999), and extended to multidimensional
comparisons by Duclos et al. (2006) and Bourguignon and Chakravarty (2002). Our
proposition differs from Gravel and Tarroux (2015) by allowing for a continuum
of risk levels. Next, building on Makdissi and Wodon (2002) and Duclos et al.
(2005a,b, 2008) who extended the work on the impact of marginal policy reforms
by Yitzhaki and Slemrod (1991) and Mayshar and Yitzhaki (1995), we show how to
integrate uncertainty in the evaluation of marginal policy reforms in socially risky
situations.

Section 2 of ther paper provides our framework for robust poverty comparisons.
Section 3 deals with robust policy reform orderings. A brief conclusion follows.

2 Robust Poverty Comparisons

In this section, we adapt Duclos et al. (2006) multidimensional stochastic domi-
nance test to the context of income and risk. We also extend their result to higher
order of dominance.

Income poverty is measured using a bivariate distribution of expected income, �,
and income variance, �2, drawn from the set = W

= WD fF W Œ0; a� � Œ0; v� ! Œ0; 1� jF is nondecreasing; continuous and ontog ; (1)

where F is the bivariate cumulative distribution of expected income and income
variance, and a and v are values equal to or exceeding the maximum conceivable
expected income and variance, respectively. Theoretically, those values are the
support of the data generating process underlying F. In an empirical application
the values can be chosen to excess substantially all observations in the data set.
As long as the chosen value are finite, the exact values do not play a role in
the dominance tests derived below. Under risk aversion, poverty measures should
be based on a household’s certainty equivalent income rather than on expected
income. For simplicity, we assume that income variability represents risk and that
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households cannot insure. The poverty line function z
�
�2
�

identifies a household as
poor if its expected income falls under z

�
�2
�
. The poverty index P .z .�// used to

aggregate household level contributions to poverty is additive such that P .z .�// DR v
0

R a
0

p
�
�; �2

�
f
�
�; �2

�
d�d�2 where f is the density function associated with F.

This implies that F
�
�; �2

�
D
R �2
0

R �
0

f .x; y/ dxdy, p
�
�; �2

�
� 0 for all � and �2

and p
�
�; �2

�
D 0 if � � �2. The function p

�
�; �2

�
is the contribution to total

poverty of a household with expected income � and variance �2. For expositional
simplicity and ease of proofs, we define income security, � , as � D v � �2, and
rewrite the poverty line function as � .�/ D z .v � �/. We assume that �0 .�/ � 0

so that if uncertainty decreases or income security increases, the household needs a
lower expected income in order not to be poor. LeteF 2 = be the bivariate cumulative
distribution of .�; �/ such that eF.�; �/ D F.�; v � �/ and let ef be the density
function associated witheF. The poverty indices are

eP .� .�// D

Z v

0

Z a

0

ep .�; �/ef .�; �/ d�d�; (2)

with

ep .�; �/ � 0 forall�and�
ep .�; �/ D 0 if� � � .�/

�
: (3)

These indices are classified into classes …s such that

…s .� .�// D

8
<
:eP .�/

ˇ̌
ˇ̌
ˇ̌

ep .�; �/ � 08�;8�;ep .�; �/ 2 Cs

ep .�; �/ D 0if� � � .�/

.�1/iep .i;0/ � 0;ep.0;1/ � 0; .�1/iep.i;1/ � 0

9
=
; ; (4)

where Cs is the set of continuous and piecewise differentiable functions over Œ0; a��
Œo; v�, andep.i;j/ represents the .i C j/th partial derivative with i times with respect to
� and j times with respect to � . The Foster et al. (1984) poverty index corresponding
to any given value of ˛

FGT˛ .� .�// D

Z v

0

Z �.�/

0

Œ.� .�/ � �/ =� .�/�˛ef .�; �/ d�d� (5)

belongs to the class s D ˛ C 1.
The definition of …1 .� .�// is such that an increase of expected income cannot

increase poverty for a given level of income security. It also implies that an increase
in income security cannot increase poverty whatever the expected income. Note that
the poverty reduction through a one dollar increase in expected income is larger at
lower levels of income security, an assumption similar to Sen (1997) weak equity
axiom.

For …2 .� .�//, the definition (4) says that an equalizing transfer of $1 to a
poor from a richer individual with the same income security decreases poverty,
and this effect is stronger across individuals at lower levels of income security.
The normative interpretation of (4) for higher s can be made using Fishburn



160 P. Makdissi and Q. Wodon

and Willig (1984), whose general transfer principles give increasing weights to
transfers occurring at the bottom of the distribution as s increases. Again, (4) makes
the associated poverty reduction larger for households at lower levels of income
security.1

Let �‚AB D ‚B �‚A for any function ‚, and define:

Ds .�; �/ D

 eF .�; �/ fors D 1R �
0

Ds�1 .�; �/ d� fors 2 f2; 3; 4; : : :g
: (6)

Proposition 1 �ePAB � 0 for all poverty indiceseP 2 …s .� .�// and for all poverty
line functions � .�/ � �C .�/ 8� if

�Ds
AB .�; �/ � 08� 2

�
0; �C .�/

	
^ 8� 2 Œ0; v� : (7)

Proof Integrating by parts equation (2) with respect to � gives

eP .� .�// D

Z v

0

ep .�; �/F .� j� /j
�.�/

0
ef .�/ d� (8)

�

Z v

0

Z �.�/

0

ep .1;0/ .�; �/eF .� j� /ef .�/ d�d�:

Since eF .� D 0 j� / D 0 andep .� .�/ ; �/ D 0, the first term on the right hand side
of the equation equals 0. Define I .�/ D

R �.�/
0

ep .1;0/ .�; �/eF .�; �/ d� and note that

dI .�/

d�
D �0 .�/ep .1;0/ .� .�/ ; �/eF .� .�/ ; �/ (9)

C

Z �.�/

0

ep .1;1/ .�; �/eF .�; �/ d�

C

Z �.�/

0

ep .1;0/ .�; �/eF .� j� /ef .�/ d�:

Integrating (9) from 0 to v gives

Z v

0

Z �.�/

0
ep .1;0/ .�; �/eF .� j� /ef .�/ d�d� D

Z v

0
�0 .�/ep .1;0/ .� .�/ ; �/eF .� .�/ ; �/ d� (10)

C

Z v

0

Z �.�/

0
ep.1;1/ .�; �/eF .�; �/ d�d�

C

Z v

0

Z �.�/

0
ep .1;0/ .�; �/eF .� j� /ef .�/ d�d�:

1For each order s, we have the standard Fishburn and Willig normative interpretation of s-order
unidimensional dominance (that is, the interpretation of .�1/iep.i;0/ � 0), joined with a weak
version of the traditional normative interpretation of s C 1-order dominance (the interpretation of
.�1/iep.i;1/ � 0).
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Using Eq. (10), we can rewrite Eq. (8) as

eP .� .�// D �

Z �.v/

0

ep .1;0/ .�; �/eF .�; �/ d� (11)

C

Z v

0

�0 .�/ep.1;0/ .� .�/ ; �/eF .� .�/ ; �/ d�

C

Z v

0

Z �.�/

0

ep.1;1/ .�; �/eF .�; �/ d�d�:

The definition of …1 .� .�// implies that the second term on the right hand side of
the equation is equal to 0. Noting that D1 .�; �/ D eF .�; �/ we can rewrite (11) as

eP .� .�// D �

Z �.v/

0

ep.1;0/ .�; �/D1 .�; �/ d� (12)

C

Z v

0

Z �.�/

0

ep.1;1/ .�; �/D1 .�; �/ d�d�:

Now assume that for s � 1 we have

eP .� .�// D .�1/s�1
Z �.v/

0

ep.s�1;0/ .�; �/Ds�1 .�; �/ d� (13)

C .�1/s
Z v

0

Z �.�/

0

ep.s�1;1/ .�; �/Ds�1 .�; �/ d�d�

Integrating (13) by parts with respect to � gives

eP .� .�// D .�1/s�1ep.s�1;0/ .�; �/Ds .�; �/
ˇ̌
ˇ
�.v/

0
(14)

� .�1/s�1
Z �.v/

0

ep.s;0/ .�; �/Ds .�; �/ d�

C .�1/s
Z v

0

ep.s�1;1/ .�; �/Ds .�; �/ d�

ˇ̌
ˇ̌
�.v/

0

� .�1/s
Z v

0

Z �.�/

0

ep.s;1/ .�; �/Ds .�; �/ d�d�:

The first and third terms on the right hand side of the equation are equal to 0.
Equation (14) than be rewritten as

eP .� .�// D .�1/s
Z �.v/

0

ep.s;0/ .�; �/Ds .�; �/ d� (15)

C .�1/sC1
Z v

0

Z �.�/

0

ep.s;1/ .�; �/Ds .�; �/ d�d�:
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Equations (12) and (15) have the same structure than Eq. (13). This implies that
Eq. (15) is true for every s 2 f1; 2; 3; : : :g Using (15), we can write

�ePAB D .�1/s
Z �.v/

0

ep.s;0/ .�; �/�Ds
AB .�; �/ d� (16)

C .�1/sC1
Z v

0

Z �.�/

0

ep.s;1/ .�; �/�Ds
AB .�; �/ d�d�

The definition of …s .� .�// and Eq. (16) imply that Proposition 1 is true. �
Essentially, the graphical analysis of �Ds

AB .�; �/ implies the comparison of
surfaces to make sure that they do not intersect. This enables us to make robust
bi-dimentional poverty comparisons in a way similar to Duclos et al. (2006) except
that we have extended their result for all orders of stochastic dominance.

3 Robust Policy Reform Orderings

In addition to their redistributive objective, transfer policies often have a dual role
of providing insurance for income shocks. Any change in these policies affects both
individuals’ expected incomes and income variability. In this section, we use the
dominance surface of the observed distribution as an anchor point and analyze how
a marginal reform of transfer policies affects it. This allows us to derive a dominance
condition for policy reforms focussing on both channels of transmission: expected
income and income variability.

We now turn to the analysis of the impact on poverty of marginal policy reforms.
Household income is the sum of k income sources, some of them being public
transfers, so that expected total income is � D

Pk
iD1 �i, where �i is the expected

income from source i at total expected income level �. Using the definition of the
variance of income �2 D

Pk
iD1 �

2
i C 2

Pk
iD1

Pk
jDiC1 COVi;j, where COVi;j is the

covariance between income source i and income source j, we can write

� D v �

kX
iD1

�2i �

kX
iD1

COVi;�i; (17)

where COVi;�i represents the covariance between income source i and all other
sources of income. The impact of a proportional marginal increase of income from
source i onep .�; �/ is

dep .�; �/ D



ep .1;0/ .�; �/

@�

@ti
Cep .0;1/ .�; �/

@�

@ti

�
dti (18)

D
h
ep .1;0/ .�; �/ ti .�; �/Cep .0;1/ .�; �/

�
��2i .�; �/ � COVi;�i .�; �/

�i
dti;
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where ti .�; �/, �2i .�; �/ and COVi;�i .�; �/ represent respectively the expected
income or transfer from source i, the variance of transfers from that source and
the covariance between transfers from that source and other sources of incomes for
a household with expected income � and income security � .

The impact onep .�; �/ of a marginal policy reform that reduces transfers from
income source k and increases transfers from income source l is

dep .�; �/ D
h
ep.1;0/ .�; �/ tl .�; �/Cep.0;1/ .�; �/

�
��2l .�; �/ � COVl;�l .�; �/

�i
dtl (19)

C
h
ep.1;0/ .�; �/ tk .�; �/Cep.0;1/ .�; �/

�
��2k .�; �/ � COVk;�k .�; �/

�i
dtk:

The impact of the reform on the government budget B is

dB D
@B

@tl
dtl C

@B

@tk
dtk: (20)

Under budget neutrality, dB D 0. Following Duclos et al. (2005a), we define the
economic efficiency ratio for the reform, � , as

� D
.@B=@tl/ =Tl

.@B=@tk/ =Tk
; (21)

where Tl D
R v
0

R a
0

tl .�; �/ef .�; �/ d�d� represents the average expected transfer
from source l in the population and Tk is defined analogously. The numerator and
denominator in (21) give the budgetary costs per dollar of increasing household
through sources k and l. Thus, � takes into account potential differences in the
marginal cost of fund of the two transfers.

Using Eqs. (21) and (20), we can rewrite (19) as

dep .�; �/ D


ep .1;0/ .�; �/



tl .�; �/

Tl
� �

tk .�; �/

Tk

�
Tl (22)

�ep .0;1/ .�; �/



�2l .�; �/

Tl
� �

�2k .�; �/

Tk

�
Tl

�ep .0;1/ .�; �/



COVl;�l .�; �/

Tl
� �

COVk;�k .�; �/

Tk

�
Tl

�
dtl:

The impact of the reform on poverty is

deP .� .�// D


Tl

Z v

0

Z a

0

ep .1;0/ .�; �/



tl .�; �/

Tl
� �

tk .�; �/

Tk

�
ef .�; �/ d�d� (23)

�2Tl

Z v

0

Z a

0

ep .0;1/ .�; �/



�2l .�; �/

Tl
� �

�2k .�; �/

Tk

�
ef .�; �/ d�d�

�Tl

Z v

0

Z a

0

ep .0;1/ .�; �/



COVl;�l .�; �/

Tl
� �

COVk;�k .�; �/

Tk

�
ef .�; �/ d�d�

�
dtl:
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Using (5) and (23) we can find the impact of this reform on the FGT indices using

ep .1;0/ .�; �/ D �
˛

� .�/

�
.� .�/ � �/

� .�/

�˛�1

(24)

and

ep .0;1/ .�; �/ D ˛

�
.� .�/ � �/

� .�/

�˛�1
�0 .�/ �

.� .�//2
: (25)

Returning to the dominance surfaces Ds .�; �/ for s 2 f2; 3; 4; : : :g, and noting
that Ds .�; �/ D ..s � 1/Š/�1

R �
0

R �
0
.� � x/ef .x; y/ dxdy, the impact of a reform

reducing at the margin the resources devoted to source k and increasing marginally
the resources allocated to source l leads to

dDs .�; �/ D



@Ds .�; �/

@�
tl .�; �/C

@Ds .�; �/

@�

�
��2l .�; �/ � COVl;�l .�; �/

��
dtl (26)

C



@Ds .�; �/

@�
tk .�; �/C

@Ds .�; �/

@�

�
��2k .�; �/ � COVk;�k .�; �/

��
dtk;

where

@Ds .�; �/

@�
D

1

.s � 2/Š

Z �

0

Z �

0

.� � x/s�2ef .x; y/ dxdy (27)

D Ds�1 .�; �/ ;

and

@Ds .�; �/

@�
D

1

.s � 1/Š

Z �

0

.� � x/s�1ef .x; �/ dx: (28)

D Ds.�j�/

Using (27) and (28), we can rewrite (26) as

dDs .�; �/ D
h
Ds�1 .�; �/ tl .�; �/C Ds .�j�/

�
��2l .�; �/ � COVl;�l .�; �/

�i
dtl (29)

C
h
Ds�1 .�; �/ tk .�; �/C Ds .�j�/

�
��2k .�; �/ � COVk;�k .�; �/

�i
dtk:

Using Eqs. (21) and (20), we can rewrite (29) as

dDs .�; �/ D


Ds�1 .�; �/



tl .�; �/

Tl
� �

tk .�; �/

Tk

�
Tl (30)
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�Ds .�j�/



�2l .�; �/

Tl
� �

�2k .�; �/

Tk

�
Tl

�Ds .�j�/



COVl;�l .�; �/

Tl
� �

COVk;�k .�; �/

Tk

�
Tl

�
dtl:

We now introduce the concept of Program Dominance Surfaces. For each order
of stochastic dominance, two pairs of dominance surfaces must be compared. The
first pair relates to mean dominance (MD) and is used to assess the impact of a
reform on expected total income. The second pair relates to variance dominance
(VD) and is used to assess the impact of a reform on income variance. The surfaces
are defined as

MDs
i .�; �/ D

(
ti.�;�/

Ti
ef .�; �/ fors D 1

ti.�;�/
Ti

Ds�1 .�; �/ fors 2 f2; 3; 4; : : :g
: (31)

VDs
i .�; �/ D

8
<
:

h
�2i .�;�/

Ti
C

COVi;�i.�;�/

Ti

ief .�; �/ fors D 1h
�2i .�;�/

Ti
C

COVi;�i.�;�/

Ti

i
Ds .�j�/ fors 2 f2; 3; 4; : : :g

: (32)

Note that MD1
i .�; �/ gives the density of public spending on source i spent on

households with the corresponding expected income and income security, divided
by the average public spending on source i. The interpretation of VD1

i .�; �/ is less
straightforward: it gives the density of extra income security generated by public
spending on source i on households with the corresponding income and income
security, again divided by the average public spending on source i. Using (23), (31),
and (32), we can now state a second result.

Proposition 2 A revenue-neutral marginal policy reform that increases proportion-
ately all transfers under source l and reduces proportionately all those under source
k will reduce poverty for all poverty indices eP 2 …s .� .�// and all poverty line
functions � .�/ � �C .�/ 8� 2 Œ0; v� if

MDs
l .�; �/ � �MDs

k .�; �/ � 08� 2
�
0; �C .�/

	
^ 8� 2 Œ0; v� (33)

and

VDs
l .�; �/ � �VDs

k .�; �/ � 08� 2 Œ0; � .�/� ^ 8� 2 Œ0; v� : (34)

Proof For s D 1, dtl being negative, Eq. (23) proves Proposition 2. For s 2

f2; 3; 4; : : :g we refer to Proposition 1 which implies that deP � 0 for all poverty
indiceseP 2 …s .� .�// and for all poverty line functions � .�/ � �C .�/ 8� if

dDs .�; �/ � 08� 2
�
0; �C .�/

	
^ 8� 2 Œ0; v� : (35)

Equations (30) and (35) prove Proposition 2 for s 2 f2; 3; 4; : : :g.�
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Comparing Proposition 2 with the unidimensional program dominance result in
Duclos et al. (2005a), we see that we have two conditions here instead of one,
and each condition is stated in terms of the comparison of surfaces rather than
curves. Condition (33) is similar to the program dominance condition in Duclos et al.
(2005a) except that we must test the condition for every level of income security. In
addition, we have an additional test (34). At the first order of dominance, the two
conditions mean that in order to be poverty-efficient in a robust way, a policy reform
must increase expected income and increase income security for poor households.

Note also that the VD surfaces are additive and can be decomposed into

the source’s own variance dominance surfaces, corresponding to the term �2i .�;�/

Ti
in (32), and the source’s covariance dominance surfaces, corresponding to the term
COVi;�i.�;�/

Ti
. In a situation in which test (33) succeeds but test (34) fails, it may be

interesting to analyze which dimension induces this failure, namely we can compare
the own variance surfaces for the two sources of income targeted by the reform, as
well as their covariance surfaces. Such additional tests may be useful for a more
in-depth understanding of the impact of marginal program reforms under income
variability.

4 Conclusion

The certainty equivalent income of households depends on both expected income
and income security. This means that in order to provide stochastic dominance
tests for robust poverty comparisons and marginal policy reform orderings, we must
deal with income security as well as expected income. The solution is to compare
stochastic dominance surfaces rather than curves. The tools could easily be extended
to deal with comparisons of social welfare by allowing the maximum poverty lines
to exceed the highest levels of certainty equivalent income in the data.
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Exploring the Covariance Term in the
Olley-Pakes Productivity Decomposition

Giannis Karagiannis and Suzanna M. Paleologou

Abstract The aim of this paper is to explore the covariance term in the Olley-
Pakes productivity decomposition in order to provide further insights underlying
the reallocation effect. In particular, we consider how firms are classified according
to their size and productivity scores. We use this information to examine the extent
and the importance of the reallocation effect in the Greek cotton industry during
a period of high price support. The empirical results show that the policy regime
not only allowed least productive farms to survive more than otherwise but also
caused the downsizing of the most productive farms and/or the expansion of the
least productive ones.

Keywords Olley-Pakes decomposition · Covariance term · Reallocation effect ·
Price distortions

1 Introduction

The Olley-Pakes (OP) decomposition (Olley and Pakes 1996) is one of the
decompositions often used to explain aggregate productivity changes by means of
individual firm achievements and resource reallocation. Others decompositions used
for similar purposes are those developed by Baily, Hulten and Campbell (1992),
Griliches and Regev (1995), Foster, Haltiwanger and Krizan (2001), Baldwin and
Gu (2006), Diewert and Fox (2010) and Petrin and Levinsohn (2012). The original
formulation of the OP productivity decomposition accounts only for reallocation
at the internal margin (i.e., restructuring). However, recent developments have
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extended it to incorporate the effect of entry and exit (Melitz and Polanec 2015;
Maliranta and Maattanen 2015) and to deal with cases where groups of different
firms in terms of technology, organization, or ownership co-exist in the same
industry (Collard-Wexler and de Loecker 2015).

The reallocation effect in the original formulation of the OP productivity
decomposition is depicted by a covariance term between firm size and productivity.
In the absence of any market intervention, this term is expected to be positive while
in the presence of policy-induced distortions and/or market frictions it may turn
zero or even negative. The former is the canonical prediction of firm heterogeneity
models (i.e., Jovanovic (1982), Hopenhayn (1992) and Ericson and Pakes (1995)),
which presupposes that the largest firms are the most productive while the latter
implies that the most productive firms are forced to stay smaller and the least
productive to survive and to grow larger than otherwise (see also Restuccia and
Rogerson (2008)). According to Bartelsman, Haltiwanger and Scarpetta (2013), the
covariance term in the OP productivity decomposition reflects more accurately the
meaning of the reallocation effect compared to other dispersion measures used in
the literature and thus, it is more relevant for performance evaluation studies as well
as for policy analysis.

The aim of this paper is to explore the covariance term (which is equal to the
sum across firms of the products of size and productivity deviations from their
average values) in the OP productivity decomposition in order to provide further
insights for the reallocation effect. For this purpose, we sort out the components
of the covariance term into nine groups covering all possible combinations of size
and productivity deviations from their average values. The sign and the magnitude
of the covariance term depend on the extent of these deviations as well as the
percentage of firms in each of these nine groups. Hence, their analysis could provide
useful insights of the forces shaping the reallocation effect. For the example, a
near zero covariance term may reflect either the absence of almost any productivity
and/or size differences across firms or that the combined effect of relatively large
firms with above average productivity and of relatively small firms with below
average productivity cancels out that of relatively large firms with below average
productivity and of relatively small firms with above average productivity. The
analytical implications of these two cases are however different as the former points
to the representative firm paradigm while the latter to firm heterogeneity models.
Moreover, the relative importance of the four groups involving in the latter case
is essential for understanding the forces behind the reallocation effect. It is thus
important to examine whether or not all of them are involved in determining the
covariance term and of course to what extent, as each group has a different impact
on aggregate productivity through the reallocation effect. Therefore, from both an
analytical and a policy point of view, it really matters how a near zero covariance
term emerges in empirical studies. Analogous reasoning applies to the cases of a
positive or a negative covariance term.

The rest of this paper is organized as follows: in the next section, we present
the OP productivity decomposition and we examine in more details the components
of the covariance term. In the third section, we provide background information
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about the Greek cotton industry, which consists our case study. Empirical results
concerning labor productivity are presented and discussed in the fourth section with
particular emphasis on the components of the covariance term and their impact of
the reallocation effect. Concluding remarks follow in the last section.

2 The OP Productivity Decomposition

Moving away from the representative firm paradigm, firms are assumed to differ in
some observable characteristics such as size, age, capital vintage, etc., as well as
in some unobservable characteristics such as entrepreneurial and managerial ability.
These differences tend to result in widespread performance heterogeneity with large
dispersion and persistence in productivity scores across firms producing the same
product. In such a case, each firm could contribute to aggregate (industry-level)
productivity growth through its individual performance and its relative importance.
Improvements in either one or both would raise aggregate productivity. The firm-
level achievements should be aggregated adopting a weighting scheme that accounts
for the observed performance heterogeneity. Ideally, the weights used should reflect
the relative importance of each unit in the industry as a whole.

Olley and Pakes (1996) proposed the following decomposition to analyze
aggregate (industry-level) productivity at a given period t:

At D

KX
kD1

�itAit D At C

KX
kD1

�
�it � � t

� �
Ait � At

�
D At C

KX
kD1

Q�it QAit (1)

where A refers to a productivity measure and � to firm size, k is used to index firms,
and a bar over a variable denotes its (arithmetic) average value while a tilde over a
variable denotes deviations from its average value. Thus, aggregate productivity,
which is equal to a weighted average of firm-level productivities with firm size
used as weights, is decomposed into two components: an unweighted average of
firm-level productivities and a sample covariance between productivity and size.
The latter reflects real economic phenomena, namely what has been called market
selection mechanism. In an economy driven solely by market forces, selection
depends only on market fundaments (i.e., productivity, demand shocks, market
power, and input cost). In such a case, as firms located in the low tail of the
productivity distribution contract their activity in favor of more productive firms
(restructuring), aggregate productivity may increase even if there is no firm-level
productivity improvements. For this reason, Bartelsman, Haltiwanger and Scarpetta
(2013) argued that the covariance term is an ideal measure to capture the extent of
reallocation. Policy distortions and market regulations make the role of productivity
and other market fundamentals less relevant for market selection and thus, affect the
sign and the magnitude of the covariance term.
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The OP decomposition has a clear intuitive interpretation related to the way we
may see a number of firms in a group or in an industry as a whole. First, we may
employ the concept of the representative firm, which implies that there is a firm
that can be representative of the whole group or industry or equivalently, the group
or industry can be viewed as a replication of the representative firm. In this case,
average productivity reflects accurately aggregate productivity. Second, we may
consider instead the firm heterogeneity models where any firm represents a single
point in the productivity and size distributions. In this case, we need a weighted
average to reflect aggregate performance accurately, where the productivity of each
firm counts but with different weights.1 The question is then how these two views
of the group or the industry differ each other. This depends on whether firms differ
in terms of importance and productivity. Apparently, it is essential to account for
both and a simple metric that does so is the OP covariance term, which is given by
the sum across firms of the products of productivity and size deviations from their
averages. Then, aggregate productivity may be seen as the sum of what productivity
could have been if all firms were the same (i.e., the representative firm) and the
contribution of heterogeneity in terms of both size and productivity that may exist in
some industries or groups of firms. The above interpretation questions Balk (2016)
intention to call these two sources of aggregate productivity as the Olley-Pakes
fallacy.

The covariance term in the OP productivity decomposition is zero if either (a)
all firms in the sample or in the industry have the same level of productivity, (b)
all firms have the same relative size which would be � it D 1/K (for all i), or (c)
performance and size are uncorrelated. In these cases, the simple arithmetic average
is an unbiased estimate of industry (aggregate) productivity. On the other hand,
the covariance term is positive (negative) if either firms with higher than average
productivity also have a larger (smaller) than average size and firms with lower
than average productivity have a smaller (larger) than average size. Therefore,
a positive (negative) covariance term suggests a positive (negative) relationship
between size and productivity. Moreover, the larger the covariance term the higher
the share of economic activity that goes to more productive firms and thus the higher
is aggregate productivity. As a result, the un-weighted average under-estimates
(over-estimates) the aggregate industry productivity when the covariance term is
positive (negative). The extent of this difference depends on the number of firms for
which the covariance term is non-zero and the magnitude of productivity and size
deviations from the industry averages.

We may also provide statistical inference about the significance of the two
components of the OP productivity decomposition following the econometric model
suggested by Hyytinen, Ilmakunnas and Maliranta (2016). They show that the two
right-hand side terms in the OP productivity decomposition can be estimated jointly

1It is important to determine the right importance metric in the sense that the resulting aggregate
productivity measure should have the same meaning and interpretation as the individual measures.
We will return to this issue later in the forth section.
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by regressing Ait on a constant and an appropriately scaled ™it term. Written in terms
of a pooled regression equation, this is given as:

Ait D ˛tDt C ˇt�
�
it Dt C 
it (2)
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, and �2 refers to sample variance, Dt to time dummies,

and 
it to an i.i.d. error term. Based on this regression model we can test the
statistical significance of both the average productivity and the covariance term by
means of the statistical significance of the estimated parameters ˛t and ˇt for every
time period t.

More useful insights about the covariance term and thus the forces behind the
reallocation effect can be gained by classifying its components into nine different
groups depending on whether firm size is less, equal or greater than average
size and firm productivity is less, equal or greater than average productivity,
that is:
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From these nine groups, five groups represented by the second, fourth, fifth, sixth
and eighth right-hand side terms in (3) make no contribution to the magnitude of the
covariance term because either size or productivity or both do not deviate from their
averages. From the remaining four groups, two groups represented by the first and
the last right-hand side terms in (3) and corresponding to firms with lower than

average productivity
�
Ait < At

�
that also have a smaller than average size

�
�it < � t

�

and to firms with higher than average productivity
�
Ait > At

�
that also have a larger

than average size
�
�it > � t

�
make a positive contribution to the covariance term

while the other two groups represented by the third and the seventh right-hand
side terms in (3) and corresponding to firms with higher than average productivity�
Ait > At

�
that also have a smaller than average size

�
�it < � t

�
, and to firms with
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lower than average productivity
�
Ait < At

�
that also have a larger than average size�

�it > � t

�
make a negative contribution.

From these we can now see that a zero or around zero covariance term may result
under two different circumstances: first, if all or most of firms fall into the groups
with either Ait D At or �it D � t or both; and second, if the sum across firms with
Ait < At and �it < � t and firms with Ait > At and �it > � t is equal to the sum across
firms with Ait < At and �it > � t and firms with Ait > At and �it < � t. On the other
hand, a positive (negative) covariance term may result if the sum across firms with
Ait < At and �it < � t and firms with Ait > At and �it > � t exceeds (fall short of) the
sum across firms with Ait < At and �it > � t and firms with Ait > At and �it < � t.
These sums depend on the magnitude of the productivity and size deviations from
the mean and of course on the number of firms in each category. The latter provide
information about the group(s) of firms that determine the sign and the magnitude
of the covariance term and thus the forces behind the reallocation effect.

We may further examine the role of these nine groups of firms in productivity
dispersion. For this purpose, we use the following variance decomposition (see e.g.
Juhn et al. 1993):

var .Ait/ D

9X
hD1

mhtvar .Aht/C

9X
hD1

mht
�
Aht � At

�2
.4/

where h is used to index groups and m refers to their relative size in percentage
terms. According to (4), the variance of firm-level productivity in a particular year
depends on the variance of productivity within each of the nine groups and the
deviations of their group average productivity from the sample mean, each weighted
by group’s relative size in percentage terms. The first right-hand side term in (4)
captures the within-group variance component and the second the between-group
component. More widespread performance heterogeneity within a group tends to
increase the first component while larger deviations of groups from sample means
tend to increase the second component. We will use the variance decomposition
analysis to examine whether the extent of performance heterogeneity is related to a
negative or a positive contribution to the covariance terms and thus, whether groups
more heterogeneous in performance terms tend to increase or not the impact of the
reallocation effect.

Next, we provide an illustrative example concerning the cotton industry in Greece
during the period that the era of deregulation had started using an unbalanced data
set of 1258 farms taken from a harmonized database, the Farm Accounting Data
Network (FADN), which collects annual production and cost related data across EU
member states.



Exploring the Covariance Term in the Olley-Pakes Productivity Decomposition 175

3 Case Study: Cotton Industry in Greece

Greece is by far the largest supplier of cotton in EU producing around to 3–3.5
times more than Spain, the second larger producer.2 There is a large number of
growers (around 70,000) and cotton accounts for almost 10% of the country’s total
agricultural output. The main production regions are located in the central and
northern parts of the country, where cotton accounts for more than 50% of arable
land (Karagiannis 2004). It is grown almost entirely in irrigated land using drip
irrigation techniques and is mainly produced by highly specialized farms. Cotton
exhibit higher relative profitability compared to competing crops such as maize and
durum wheat and for this reason, consist farmers’ preferred choice in areas where
water supply is sufficient.

The Common Market Organization (CMO) for cotton was introduced in 1981
with Greece’s accession to the EU in order to support cotton production and
to offer a satisfactory farm income. It is organized on the basis of three policy
tools: deficiency payment, co-responsibility levy and maximum quantity guaranteed
(MQG). The EU authorities set a target price and its difference from the world price
determines the level of the production subsidy that farmers receive at the end of
the cropping period. In fact, the deficiency payment is given to cotton ginners on
the condition that farmers have received a minimum price per tonne of unginned
cotton. The minimum price is associated with the co-responsibility levy mechanism
and the MQG. If actual production exceeds the MQG, the minimum and the target
prices are reduced by the amount of the co-responsibility levy in order to keep the
budgetary cost of aid to predetermined levels.

This intervention scheme remained mainly unchanged until the most recent CAP
reform when it was transformed into a scheme with direct income and production aid
(i.e., decoupling). Whatever changes in the CMO for cotton prior to 2005 regarded
the way MQG and the co-responsibility levy were determined. In the period 1981–
1995, the MQG was set at the EU level while in the period 1996–2005, it was set at a
national level for each member-state. Accordingly, the level of the co-responsibility
levy was determined per fixed amounts of excess production during the period
1981–1995 and as a percentage of excess production since then (Karagiannis 2004).
Notice that in the period prior to Spain and Portugal accession to the EU, the scheme
operated as a pure deficiency payment as the MQG was never exceeded. The co-
responsibility levy mechanism was activated afterwards as Community production
exceeded the MQG.

Our analysis is focused on the last part of the period when the MQG was set at the
EU level, namely the period 1991–1995. During this period, Community production
steadily exceeded the MQG and Spanish growers felt that the uniform reduction
of the target price throughout the EU was unfair as the fast production expansion
in Greece was responsible for the violation of the MQG. Political pressure from

2In ginned cotton, the EU is considered as a small trading country accounting for around 5% of
world imports. A more detailed discussion of the world cotton market see Baffes (2004).
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their side induced afterwards the division of the Community MQG into national
quantities guaranteed. In the case that government agencies adjust policy regimes
in response to industry performance levels and/or industry lobbying, as seems to be
the case with the introduction of national quantities guaranteed, this may induce
a spurious correlation between productivity and policy changes. By restricting
attention to the period immediately before or after the policy changes we can,
according to Topalova and Khandelwal (2011), mitigate the confounding effect that
may arise because of possible endogeneity of policy changes.

Distortions and market interventions tend in general to squeeze the importance of
market forces in shaping industry-level productivity and thus decrease the relative
importance of the reallocation effect (see Retruccia and Rogerson 2008; Hsieh and
Klenow 2009; Eslava et al. 2013). Price support schemes in particular lower the
level of productivity needed to earn positive expected profits and this makes it a
lot easier for the relatively low productivity firms to survive. This implies a higher
concentration of industry output resulting from firms in the lower tail of productivity
distribution and it is consistent with a weaker market selection mechanism (Aw et
al. 2003). In addition, policy distortions may prevent efficient firms from achieving
optimal scale, increase managerial slack, shrink innovation adoption incentives
and keep inefficient firms from contracting economic activity (Hsieh and Klenow
2009). All these according to Bartelsman, Haltiwanger and Scarpetta (2009) tend to
decrease the magnitude of the covariance term in the OP decomposition and even
turn it negative, as in de Loecker and Konings (2006). As a result, the difference
between the weighted and the unweighted average of individual productivities
would be small.

The data for the present study are from a harmonized European database, the
Farm Accounting Data Network (FADN). The FADN provides annual statistics on
the state of agriculture in the EU based on a sample of almost 60,000 farms, around
10% of which are located in Greece. Data are collected from a rotating panel of
farms. The FADN field of observation covers large entrepreneurial farms as defined
in the farm structure survey of the EU and excludes smaller farms below FADN
thresholds; in particular, farms with less than 2 ESU (European Size Units) are
excluded. The relevant data are collected in a consistent manner across EU member
countries using the same methodology and accounting standards.

In the FADN, farms are classified by commodity according to their source of
revenue. That is, a farm is classified as cotton-oriented as long as at least two thirds
of its revenue come from cotton production. During the period under consideration,
2827 observations were available for cotton producers in Greece. These referred to
a total of 1258 farms implying that on average each farm is observed 2 to 3 times
during the 5 years period. In particular, the sample includes 436 farms in 1991, 526
in 1992, 553 in 1993, 600 in 1994, and 722 in 1995.
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4 Empirical Results

In the present study, we use labor productivity as our preferred performance
measure. Output is measured in terms of deflated total gross farm revenue and
labor, which includes both family and hired workers, is measured in annual working
hours. The gross revenue of each farm is deflated by a common industry price index.
The use of a common industry deflator is not expected to induce any measurement
errors in our case as the cotton industry contains no elements of horizontal product
differentiation and any output price variation reflects quality differences.

The second issue related to the estimates of labor productivity reported in
Table 1 is the choice of aggregation weights. Consistency in aggregation requires
the resulting aggregate labor productivity measure to have the same interpretation
as the firm-level labor productivity measures. Following van Biesebroeck (2008)
and Färe and Karagiannis (2017), this is ensured as long as the weights are defined
in terms of the variable that is in the denominator of the ratio-type productivity
measure. For labor productivity, this implies that the aggregation weights should be
in terms of the labor input rather than in terms of output market share as is often
done in the literature. Only in this case the aggregate productivity measure reflects
the ratio of total industry or group output to total industry or group labor input.

The empirical results for the OP decomposition of labor productivity are given
in Table 1. From there we can see that the aggregate productivity was lower than
average productivity for the whole period under consideration. The negative sign of
the covariance term reflects the distortion placed in the unginned cotton market by
means of a target price, the MQG, and the associated co-responsibility levy. Such
policy measures often tend to squeeze the relative importance of the reallocation
term because they allow unproductive farms to stay in business more than otherwise
and as a result, a relatively smaller market share remains for reallocation. However,
there is a declining trend in the size of the covariance term as the changes in policy
regime induced some competitive pressure to farmers. In relative terms though the
importance of individual achievements, as reflected in the average productivity, were
more important in shaping aggregate productivity than the reallocation effect.

The estimated parameters of the regression model reported in Table 2 confirm the
statistical importance of both the average productivity and the reallocation effect for

Table 1 Decomposition of aggregate labor productivity in Greek cotton industry

Aggregate labor productivity Average labor productivity Covariance term
(1) (2) (3) (4) (5)

1991 3.726 4.423 118.7 �0.698 �18.7

1992 3.145 3.672 116.8 �0.527 �16.8

1993 3.958 4.445 112.4 �0.490 �12.4

1994 4.010 4.595 114.6 �0.585 �14.6

1995 4.028 4.395 109.1 �0.367 �9.1

Note: Columns (3) and (5) give the percentage contribution of average productivity and the
covariance term in aggregate productivity.
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Table 2 Statistical inference of the aggregate labor productivity decomposition components for
the Greek cotton industry

Parameters Estimated value t-statistic 95% Confidence interval

˛1991 4.423 23.45 [4.053, 4793]
˛1992 3.672 34.35 [3.462, 3.881]
˛1993 4.445 39.03 [4.222, 4.669]
˛1994 4.595 43.51 [4.388, 4.802]
˛1995 4.395 49.44 [4.221, 4.570]
ˇ1991 �0.698 �4.84 [�0.980, �0.415]
ˇ1992 �0.527 �10.23 [�0.628, �0.426]
ˇ1993 �0.490 �9.40 [�0.592, �0.387]
ˇ1994 �0.585 �10.13 [�0.698, �0.472]
ˇ1995 �0.367 �7.89 [�0.459, �0.276]

all years from 1991 to 1995. In addition, the individual statistical significance of
the covariance terms implies that average productivity cannot represent accurately
the aggregate productivity of the industry in any of the years under consideration.3

Consequently, the representative firm paradigm is not supported in our case. Instead,
the empirical results suggest that farms heterogeneity and reallocation at the internal
margin (i.e., restructuring) have contributed negatively to aggregate productivity in a
statistically significant way. This provides the basis for further analysis of the covari-
ance term to examine the forces behind restructuring in the Greek cotton industry.

The relevant results are reported in Table 3 and from there we can see that, on
average over the period under consideration, we have 39.3% of the farms with a
positive contribution to the covariance term, 57.1% with a negative contribution and
only 3.6% with no contribution.4 These figures provide a first interpretation for the
negative sign of the covariance term. A further look in Table 3 indicates that the vast
majority of farms (around 86%) is almost equally split into three groups, namely the
relatively small farms with below average labor productivity (28.5%), the relatively
small farms with above average labor productivity (28.8%), and the relatively large
farms with below average labor productivity (28.3%). Of these three groups, the
latter two contribute negatively to the covariance term and the former positively.
Even if we account for the 10.8% of farms in the group of relatively large farms
with above average productivity, which also contribute positively, the covariance
term ends up negative.

3We also reject at any level of significance the hypothesis that the covariance terms for all periods
are jointly equal to zero as the value of the calculated F(5, 2817) D 59.00 is larger than the tabulated
one. In addition, we reject at the 5% level of significance the hypothesis that the covariance term
was common to all periods as the value of the calculated F(4, 2817) D3.21 is larger than tabulated
one.
4Notice that we found no farms with average productivity and for this reason Table 3 contains six
instead of nine entries for each year.
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Table 3 Analysis of the covariance term for the Greek cotton industry

Ait � At < 0 Ait � At > 0

�it � � t < 0 1991 0.160 27.5 �0.473 30.0

1992 0.141 26.8 �0.358 30.4

1993 0.175 30.9 �0.357 27.7

1994 0.155 27.8 �0.381 29.3

1995 0.149 29.8 �0.314 26.7

�it � � t > 0 1991 0 1.9 0 0.2

1992 0 1.7 0 1.1

1993 0 2.0 0 1.8

1994 0 2.3 0 1.7

1995 0 2.5 0 2.2

�it � � t D 0 1991 �0.430 31.5 0.045 8.9

1992 �0.358 29.5 0.049 10.5

1993 �0.369 27.3 0.062 10.3

1994 �0.431 27.8 0.072 10.5

1995 �0.292 25.5 0.090 13.3

Notes: (1) The sum of the nine entries per year gives the covariance terms reported in column (4)
of Table 1.
(2) In italics are the percentages of farms in each group per year.

In terms of farm numbers, among the relatively small ones (which on average
account for 57%), the percentage of those with above average productivity is
on average equal to the percentage of those with below average productivity. In
contrast, among the relatively large farms (which on average account for 40%),
the percentage of those with below average productivity is on average greater than
the percentage of those with above average labor productivity. In particular, 75%
of relatively large farms achieved below average productivity and the remaining
25% above average productivity. Therefore, from a size perspective, the group
of relatively large farms with below average labor productivity is the one that
essentially determines the negative sign of the covariance term. Alternatively,
among the farms with below average productivity (which on average account for
58%), the percentage of small farms is on average equal to the percentage of large
farms while among the farms with above average productivity (which on average
account for 42%) the percentage of small farms is on average greater than that
of large farms. In particular, 75% of farms with above average productivity are
relatively small and the remaining 25% are relatively large. Therefore, from a
performance perspective, the category of relatively small farms with above average
productivity is the one that determines the negative sign of the covariance term.

Nevertheless, there was no a one-to-one correspondence between the number of
farms in each group and contribution of each group into the covariance term. That
is, smaller deviations, particularly in terms of labor productivity, were found for
the two groups with positive covariance components compared to those for the two
groups with negative covariance components. These two latter groups made an equal
contribution to the covariance term, which on average was around 0.376, while the
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contribution of the group of the relative small farms with below average productivity
was much smaller; in fact, less than half (0.156) of the other two. The contribution of
the other group with positive covariance components, namely that of the relatively
large farms with above average productivity, was even smaller, around 0.064.

During the period under consideration, the number of farms in the two groups
with negative covariance components declined while that in the two groups with
positive covariance components increased, reflecting the competitive pressure from
policy changes. For this reason, the magnitude of the covariance term decreased over
time. On the other hand, the contribution of relatively small farms in the covariance
term fell while that of relatively large farms rose over time. The latter is mainly due
to the gradual increase of the contribution of the relative large farms with above
average productivity, which doubled from 0.045 in 1991 to 0.090 in 1995 (see
Table 3). This indicates another positive aspect of the accomplished policy changes
that enhance the role of relatively large farms with above average labor productivity
in shaping the reallocation effect in the Greek cotton industry.

The empirical results related to variance decomposition are reported in Table 4.
From there we can see that the groups with above average productivity exhibited
larger performance heterogeneity, as reflected in their higher within-group vari-
ances, compared to the groups with below average productivity. For the whole
period, the group of relatively small farms with above average productivity had
by far the larger performance heterogeneity, followed by the group of relatively
large farms with below average productivity. These are the two groups with
negative covariance components. From Table 4 we can see that the contribution
to productivity dispersion of the groups with negative covariance components is
greater than that of the groups with positive covariance components. Furthermore,

Table 4 Variance decomposition of labor productivity in Greek cotton industry

Group 1991 1992 1993 1994 1995

�it � � t < 0 Aht 2.617 2.088 2.729 2.957 2.136
Ait � At < 0 var(Aht) 0.959 0.809 1.005 0.850 0.668
�it � � t < 0 Aht 7.712 6.353 7.441 7.303 6.832
Ait � At > 0 var(Aht) 31.982 6.197 5.638 4.871 5.878
�it � � t D 0 Aht 2.397 1.919 2.380 2.947 2.938
Ait � At < 0 var(Aht) 1.325 0.323 0.657 0.705 1.239
�it � � t D 0 Aht 5.294 5.276 8.523 6.327 6.614
Ait � At < 0 var(Aht) 0 3.423 8.571 2.085 5.581
�it � � t > 0 Aht 2.412 1.857 2.591 2.568 2.653
Ait � At < 0 var(Aht) 0.809 0.724 1.221 1.068 0.928
�it � � t > 0 Aht 6.401 5.159 6.144 6.528 6.012
Ait � At > 0 var(Aht) 3.555 1.340 2.082 4.411 2.056

var(Ait) 16.447 6.630 7.581 7.167 5.903

within-group 10.454 2.498 2.585 2.474 2.448

between-group 5.843 4.141 5.015 4.670 3.502

Note: The mht values for the calculation of the within-group and the between-group components
are given in Table 3 in the column with italics.



Exploring the Covariance Term in the Olley-Pakes Productivity Decomposition 181

the three groups that contribute the most to the reallocation effect are the same ones
that contribute the most to performance heterogeneity. On the other hand, in all but
the first sample year, the within-group component dominated the between-group
component indicating that group differences from average productivity were more
important in determining productivity dispersion than within-group variability.

5 Concluding Remarks

In this paper we explore the covariance term in the OP productivity decomposition in
order to examine the extent and the importance of the reallocation effect in the Greek
cotton industry. We first examine whether and to what extent the reallocation of
economic activity towards more productive farms and/or away from less productive
ones has been productivity enhancing. The empirical results clearly illustrate that it
did not. Due to policy-induced distortions, it had a negative effect on aggregate
productivity. The then CAP support system not only allowed least productive
farms to survive more than otherwise but also allowed the downsizing of the most
productive farms and/or the expansion of the least productive ones. The detailed
analysis of the covariance term shown that, from a performance perspective, the
category of relatively small farms with above average productivity is the one
that mainly determines the negative sign of the covariance term while, from a
size perspective, the category of relatively large farms with below average labor
productivity is the main responsible.
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The Decline of Manufacturing
in Canada: Resource Curse, Productivity
Malaise or Natural Evolution?

Robert Petrunia and Livio Di Matteo

Abstract The state of Canadian manufacturing is a constant issue in current
economic and public policy debates. Over the past 50 years, there has been a decline
in the contribution of manufacturing to the overall Canadian economy. This decline
is especially true for the economies of two provinces, Ontario and Quebec, which
traditionally were the most manufacturing intensive. Ontario, in particular, is hit
hard by the 2008 recession in terms of both employment and output share decline
of its manufacturing sector. This paper explores the relative importance of three
explanations for the decline of the Canadian manufacturing sector. Natural evolution
offers the first explanation as the economies of most Western countries move away
from manufacturing and toward the services. A second explanation for this decline
is Dutch Disease. The period from 2003 to 2014 sees both a significant rise in
commodity prices and the Canadian dollar. This period also saw a booming resource
sector – in particular, the energy / commodity producing provinces of Alberta,
Saskatchewan and Newfoundland and Labrador. Finally, Canada’s manufacturing
productivity performance has been weak relative to other countries, which may also
be a factor in its manufacturing decline. Our results show that most of the Canadian
manufacturing sector decline occurs in Ontario and Quebec, while manufacturing’s
contribution remains flat or slightly increases in most of the other provinces.
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1 Introduction

The state of Canadian manufacturing is a constant issue in current economic
and public policy debates especially with respect to the economies of central
Canada. Both Ontario and Quebec have seen manufacturing employment decline
with Ontario particularly hard hit during the 2009 recession. Between 2000 and
2013, manufacturing employment in Ontario drops from 1,072,000 jobs to 777,300
jobs – a drop of 27% – while in Quebec it drops from 629,000 to 486,000 –
a 23% decline. In 2000, Ontario and Quebec together accounted for 76% of
Canada’s 2,242,300 manufacturing jobs whereas by 2013 it was 73% of 1,734,200
jobs.1

The explanations for this manufacturing decline and the lament of deindustri-
alization have often focused on a Dutch disease or resource curse explanation. A
booming resource sector – in particular, energy in Alberta, Saskatchewan and New-
foundland and Labrador- ostensibly contribute to the Canadian dollar’s appreciation
which in turn causes manufacturing exports to decline.2 The relationship between
resources and a shrinking manufacturing sector in response to exchange rate and
productivity effects caused by a booming resource sector was explored by the work
of Corden and Neary (1982, 1983) during the North Sea oil boom. Furthermore,
Sachs and Warner (1995, 1999, 2001) show resource abundant economies grew
slower than resource scarce economies since 1970 and dubbed this phenomenon
the “Curse of Resources.”

Resource exports have always been important in Canadian economic history
but manufacturing decline has generated some discomfort with our resource sector
and its alleged impact on the rest of the economy. This is despite the fact that
nearly half of Canada’s total manufacturing output – from pulp mills to automobile
production – is indeed still resource based.3 The resource sector is also vital to the
economic health of our transportation sector as natural resource products account
for more than two-thirds of rail and marine shipments in Canada. This suggests that

1Data Source: Table 2 820012 - Labour force survey estimates (LFS), employment by class of
worker, North American Industry Classification System (NAICS) and sex, annually (Persons).
2Natural resources have been an important driver of general Canadian economic prosperity. For
Canada, Keay (2007) finds that the exploitation of Canada’s natural resources during the 20th
century made direct and indirect contributions to the size and efficiency of the Canadian economy
and had a substantial positive impact on the level of real per capita GDP, contributing about
20 percent. Another comprehensive study by Baldwin and MacDonald (2012) also finds natural
resources and trade to be important contributors to Canadian real gross national income between
1870 and 2010.
3Cross (2015) states that 46.2 percent of all manufacturing output in Canada in 2010 was resource
based.
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there are substantial economic linkages between Canada’s resource sector and the
rest of the economy.4

Other explanations of this manufacturing decline have sought other sources of
changes in Canada’s manufacturing sector. Cross (2013), for example, argues that
the appreciation of the Canadian dollar in the early twenty-first century was not
driven solely by commodity prices but was due to a decline in the value of the
US dollar and increased investment flows into Canada. Moreover, the struggles
in Canadian manufacturing affected mainly automobile production, clothing and
forestry related manufacturing and these industries also all contracted in the United
States at the same time. Baldwin and MacDonald (2009) actually find little evidence
of long-term manufacturing decline as in terms of volume of output, Canadian
manufacturing production as a share of the economy has not changed much in about
half a century.

Capeluck (2015a, b) finds that demand side factors and outsourcing have been
factors explaining the decline in Canadian manufacturing but labour productivity
growth has been a particularly important factor. Capeluck finds above average
labour productivity growth explains most of the decline in the manufacturing
employment share before 2000, while the post 2000 decline is explained by a loss
in cost competitiveness linked to an appreciation of the Canadian dollar; increased
competition in the U.S. import market; and a slowdown in domestic demand growth
in the United States.

This paper provides an examination of three explanations for Canada’s manufac-
turing decline. First, a comparison is done with other developed countries to see if
Canada differs markedly from them or is also part of a gradual evolution away from
goods production underway in most developed countries. Second, is the decline
of manufacturing simply a function of Canadian productivity growth being weaker
than other countries? Third, can Canada’s manufacturing decline be attributed to a
resource curse argument related to the appreciation of Canada’s currency especially
with regards to its major trade partner-the United States. The overall results of our
analysis suggest that Canada’s manufacturing decline is more related to general
international trends in manufacturing decline and productivity results rather than
the effects of currency appreciation.

4“Staples” (natural resources for export) approaches to economic development describe a process
by which “linkages” associated with the natural resource production encourage industrialization
provided the linkages are strong enough, and the income associated with them is retained in
the domestic economy. The economic development of resource abundant, sparsely populated
regions has been explained by the classic staples approach or models of export-led development
as originally set out in the work of H.A. Innis (1969[1956]) who followed earlier work by G.S.
Callender (1902, 1965[1909]) and W.A. Mackintosh (1923). The classic works on Canadian staples
by Innis are The Fur Trade in Canada (1984[1930]) and The Cod Fisheries (1978[1940]). Modern
versions of staple theory see economic development as a process of diversification around an export
base. For relevant literature, see the papers by Baldwin (1956), Watkins (1963) and Caves (1966,
1971).
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2 Decline of Manufacturing Across Canada and the G7
Countries

Canada has witnessed a decline in manufacturing’s share of GDP since 1926
(See Fig. 1). From 1926 to 1943, the manufacturing share of GDP rose from 20%
to 29% and then declined to reach 18% by 1981. Between 1981 and 2001, the
manufacturing to GDP ratio stabilized averaging 17% and ranging from a high
of 19% to a low of 16%. Since 2001, the ratio has declined going from 19% to
approximately 13% by 2014.

This manufacturing decline is a feature of numerous other economies around the
world. Figures 2a–c and 3 a, b present United Nations data on the manufacturing
share of total value-added in the other G-7 and in world regions from 1970 to
2013. Between 1970 and 2014, the manufacturing sector’s share of total value added
declined in all of the G-7 countries with the exception of Japan and Italy where it
rose slightly. The average percentage point decline across the G-7 countries between
1970 and 2014 was 2.6% with the largest declines registered by Germany and the
UK at �6.5 and �8.8% points respectively with Canada as the next largest drop at
�3.7 points. Compared to the G-7 as a whole, Canada has generally always had a
lower manufacturing to GDP ratio. The G-7 as a whole sees a continuous decline in
the manufacturing share of GDP over the period, while Canada sees a sharp decline
since 2001. However, Fig. 2c indicates a strong positive correlation between the two.
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Fig. 1 Manufacturing to GDP Ratio, Canada, 1926–2014
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Fig. 2 (a) Manufacturing value added as a percent share of total value added,1970 to 2014, G-7
countries (b) Manufacturing value added as a percent share of total value added, 1970 to 2014,
Canada and G-7 countries minus Canada Average. (c) Comparison of manufacturing value added
as a percent Share of Total Value Added,1970 to 2014, Canada and G-7 countries minus Canada
average (d) Growth of manufacturing percent share of total value added,1970 to 2014, Canada and
G-7 countries minus Canada average (e) Comparison of growth of manufacturing percent share of
total value added,1970 to 2014, Canada and G-7 countries minus Canada average

To better capture short-term fluctuations, Fig. 2d, we compare the growth rate of
the manufacturing sector’s share of value added for both Canada and the average for
the other G-7 countries.5 The movement of this growth rate for Canada and the other

5The growth rate is calculated as the difference in the logarithm values of the variables.
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Table 1 Regressions comparing manufacturing sector’s share of value added, Canada and G-7
minus Canada average (1970–2014)

Dependent Variable
Canada Manu Share Growth Canada Manu Share

G-7 Manu Share 0.937***(0.199) –
Growth G-7 Manu Share – 0.991***(0.198)
Constant �1.014(3.402) �0.003(0.005)

Note: ***, **, and * indicate significance at the 1% level, 5% level and 10% level, respectively.
Standard errors are in parentheses

G-7 countries follow similar patterns over the 1970 to 2013 period. Prior to 2000, the
manufacturing sector’s share growth experiences both positive and negative years
but there is a gradual drop in the manufacturing sector’s contribution due to the
larger absolute value during negative years. The post 2000 period shows mainly
negative growth in manufacturing’s share of the Canadian economy. Both Canada
and the G-7 countries experience a large drop in their manufacturing sector’s share
in 2008, but this substantial drop is followed by a large rise in 2010.

To summarize the relationship, Table 1 provides results for a regression of
the manufacturing share of GDP in Canada against the average in the other G-7
countries. Column 1 presents estimates using the levels variables, while column
2 shows estimates comparing growth rates. The results indicate that Canada’s
manufacturing share of GDP moves almost in tandem with the other G-7 countries
both in terms of levels and growth rates. In both cases, the coefficient on the G-
7 variable is not statistically significantly different from one. A general picture
emerges from Table 1 and Fig. 2a–e. The long-term trend is that the contribution
of manufacturing to the economy is declining across all the G-7 countries. Further,
short-term fluctuations in this contribution are also similar across the G-7 countries.

Over the period 1970 to 2014, the manufacturing share of world economic
activity has remained relatively stable ranging from 15% to 18%. Figure 3a, b look at
manufacturing’s contribution in various world regions. However, with the exception
of Asia, the Caribbean, and Eastern Europe, most regions have seen a decline in the
manufacturing share of economic activity. When compared to the world as a whole,
Canada’s manufacturing share of economic activity has been close to the world
average until approximately 2003 when it has fallen dramatically below. However,
Canada has still managed to retain more manufacturing than Australia and New
Zealand – countries with a resource export orientation that parallels Canada. Indeed,
over the period 1970 to 2014, Canada saw its manufacturing share of valued added
fall from 17% to 11% while Australia and New Zealand combined fell from 20%
to 9%.

Any discussion of manufacturing decline in Canada invariably focuses on the
sector’s declining share of GDP and employment. In the case of employment, there
is a difference in performance between the sector share of total employment – which
has seen a decline – and the absolute level of employment which has fluctuated
but at present is not that much different than it was several decades ago. Figure 4
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Fig. 4 Manufacturing employment in Canada total and employment shares, 1976–2015

illustrates the sector’s employment performance in terms of total job numbers and
total employment share from 1976 to 2015. Total manufacturing employment has
been marked by several cycles of increase and decrease with the decline period since
2000 amongst the steepest. Yet, total manufacturing employment in 2015 is only 8%
lower than 1976. On the other hand, manufacturing’s share of total employment has
been much more pronounced dropping by 50% over the same period.

3 Productivity Decline

Given the growth in value of manufacturing output over time, another important
variable is productivity. Figure 5 presents Canadian manufacturing value added
per employee in 2005 constant U.S. dollars over the period 1970 to 2008 using
United Nations data and compared to a select number of other countries.6 The
increase in Canadian manufacturing value added per employee is striking. However,
Canadian productivity growth in manufacturing has slowed since 2000 especially
compared to the United States and Japan – both of which have not seen the decline
in manufacturing seen by Canada. Indeed, of these five countries over the period
2000 to 2008, Canada actually had the second lowest average annual growth rate in

6Huynh et al. (2011) and Huynh and Petrunia (2016) examine labor productivity growth for firms
in the manufacturing sector.



The Decline of Manufacturing in Canada: Resource Curse, Productivity. . . 191

1970

0
40

00
0

80
00

0
12

00
00

1975 1980 1985 1990
Year

USA
UK
Canada

Japan
Australia

1995 2000 2005 2010

Fig. 5 Manufacturing value added per employee, 1970 to 2008

manufacturing value added per employee at 1.4%. The United States and the United
Kingdom in contrast had growth rates of 5.2% and 3.3% respectively while Japan’s
was 4.5%. Only Australia was lower at 0.7%.

Figure 6a–d provide a comparison of the manufacturing sector’s share of
Canadian GDP to labour productivity of the Canadian manufacturing sector.
Labour productivity measures real output per employee. Figure 6 demonstrates a
negative relationship between the share of manufacturing and labour productivity
in manufacturing. Figure 6b confirms this relationship by looking at the time
series patterns of the two variables. Naturally, labour productivity in the Canadian
manufacturing factor increases over time with the accumulation of capital and
technological growth.

One problem with comparing levels of manufacturing sector’s share of GDP
with labour productivity is the relationship may be spurious due to the time series
properties of the variables. To address any potential spurious correlation and look
at the short term fluctuations, Fig. 6c, d compare the growth of the two variables.
These figures indicate a positive short term growth relationship between the two
variables. Further, Table 2 provides the results from the regression of the growth
rate of manufacturing’s share on its labour productivity growth and confirms that
there is a strong positive unconditional relationship between these two variables
over the short run. Thus, declining labour productivity growth can be considered a
factor in manufacturing decline.
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Table 2 Regressions
comparing manufacturing
sector’s share of GDP and
Labour productivity
(1970–2011)

Dependent variable: Growth of manufacturing share of GDP

Growth Labour Productivity 0.661***(0.141)
Constant �0.023***(0.006)

Note: ***, **, and * indicate significance at the 1% level,
5% level and 10% level, respectively. Standard errors are in
parentheses

4 The Exchange Rate Impact

Canada’s manufacturing sector has declined over the course of the twentieth century
in a manner similar to other developed countries though its manufacturing share of
economic activity was remarkably stable between 1970 and 2000. While the recent
steep decline since 2000 has been ascribed to the effect of a resource commodity
boom and an appreciating Canadian dollar, there have been other periods of currency
appreciation prior to 2000 which do not appear to have resulted in a shrinking
manufacturing sector. Moreover, the depreciation of the Canadian dollar since 2013
does not appear to have sparked a rebound in Canadian manufacturing.

This section compares the manufacturing sector’s share of GDP with exchange
rate movements. The bilateral Canada-US exchange rate (CAD per USD) is used.
A trade-weighted exchange rate provides an alternative to capture the movements
of the Canadian dollar. Traditionally, imports from the US represent over 65% of
total imports, while exports to the US represent over 75% of total exports.7 Thus,
most of the movements in the trade-weighted exchange rate are due to movements
in Canada-US exchange rate.8

As for the effect of resources and currency appreciation on the manufacturing
sector, Fig. 7a presents a plot of the relationship between the Canada-US exchange
rate (CAD per USD) and the manufacturing share of GDP for the period 1926 to
2014. The diagram suggests that over the course of most of the twentieth century
and into the twenty-first century, there has not been a strong relationship between a
lower Canadian dollar and a larger manufacturing sector. Between parity and 1.15
CAD/USD, there is a wide variation in manufacturing to GDP ratios. Between 1.15
and 1.60 CAD/USD, there is much less fluctuation in the size of the manufacturing
sector. Indeed, the manufacturing sector’s share of GDP appears to be quite inelastic
with respect to a Canadian dollar that depreciates to more than 1.15 CAD/USD (that
is a value below about 85 cents US).

Figure 7b, c examine the relationship between Canada-US exchange rate (CAD
per USD) and the manufacturing share of GDP in terms of growth rates. These
figures indicate no discernible pattern or correlation between the two variables.

7Source: Cansim Table 228–0069.
8The correlation between the two variables is 0.97.
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5 Conditional Analysis

To sum up the analysis thus far, the reasons for Canada’s manufacturing decline
are indeed complex. First, there is the “natural” evolution away from primary and
secondary industry and into services which has marked the development of most
advanced industrial countries. In this regard, the world’s share of manufacturing
output has stayed relatively constant since 1970 but the regions and countries
accounting for that output have changed. Canada actually was close to the world
average in terms of its manufacturing share of output for most of the latter half of
the twentieth century but it has only been since 2000 that the share has significantly
declined and diverged from the world average.

Second, Canada’s manufacturing productivity performance has been weak rel-
ative to other countries and this may also be a factor in its relative manufacturing
decline. While output per employee has increased over time, since 2000 the growth
rate has slowed substantially especially compared to the United States. The decline
relative to the United States is significant given the cross-border integrated nature of
manufacturing – especially in the automobile sector. While the tendency has been
to blame the appreciation of the Canadian dollar, the fact remains that there is not a
visibly strong relationship between the manufacturing share of GDP and the value
of the Canadian dollar.

Thirdly, productivity may indeed be the key variable behind the weaker perfor-
mance of Canadian manufacturing especially since 2000. However, even manufac-
turing productivity is quite variable within Canada and may be a factor behind why
Ontario and Quebec have been particularly hard hit by the recent loss of manufac-
turing employment. Our international productivity in manufacturing is ultimately
founded on productivity across Canada’s regions and the preliminary evidence
suggests that manufacturing output per employee in Canada is actually high in the
resource intensive provinces of Canada and particularly in western Canada which is
more resource intensive than the remainder of the country. This would suggest that
being resource intensive need not necessarily harm manufacturing productivity and
need not be a factor in the current malaise.

Tables 3 and 4 present regression analysis for the period 1971 to 2011. Table 3
presents estimates from the regression of the level value of manufacturing share
of GDP against level values of our three variables of interest: (i) G-7 (excluding
Canada) share of manufacturing value added; (ii) Manufacturing labour productiv-
ity; and (iii) CAD/USD exchange rate. Table 4 provides estimates for the regressions
in terms of growth rates. Each table contains seven regression specifications, which
reflect the various possible combinations of the right hand side variables.

Table 3 suggests a stable relationship in level values between the manufacturing
share of GDP in Canada with the three variables of interest. The coefficient on G-
7 share of manufacturing value added is close to a value of two and statistically
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significant at the 1% level across the specifications.9 Column 7 of Table 3 presents
the full specification with all three independent variables. The coefficient on labour
productivity is essentially zero and statistically insignificant, while the coefficient on
CAD/USD exchange rate is 0.03 and statistically significant at the 1% level. Overall,
these results indicate that the main drivers of the long-term movements in the
Canadian manufacturing share relate to long-term movements in the manufacturing
share across all the G-7 countries. This fall in manufacturing share across the G-7 is
likely related to the increased importance of the service sector in these economies.

For growth rates, the relationships are less stable across various specifications
as demonstrated in Table 4. Column 7 presents the full specification containing
all of the variables. In this specification, the coefficients on all the variables are
positive and statistically significant at the 5% level. The growth rates of the G-7
manufacturing share of value added, Canadian manufacturing labour productivity,
and the CAD/USD exchange rate all provide a contribution to the growth rate in the
Canadian manufacturing share of GDP. The coefficient values suggest the following.
First, short-term movements of the Canadian manufacturing share follow short-term
movements in the G-7 manufacturing share, but the other variables are also relevant.
Second, growth in the manufacturing labour productivity leads to expansion of
the manufacturing share of the Canadian economy. Finally, the positive coefficient
on the CAD/USD exchange rate growth rate indicates that the appreciation of the
Canadian dollar vis-à-vis the US dollar associates with a fall in the manufacturing
share.

6 Manufacturing Share Across the Provinces

An examination of manufacturing and productivity over time at the provincial
level is illustrative in understanding the forces behind the decline of Canadian
manufacturing in light of the basic reasons advanced in this analysis. Figure 8
presents a long-term series of manufacturing as a share of GDP for Canada
constructed from Statistics Canada data10 overall as well as each of the provinces
from 1961 to 2014.

The overall decline in manufacturing’s share of GDP can certainly be interpreted
as part of a natural evolution away from goods to service producing industries, as
is the case in most developed economies. However, this natural evolution is not
consistent across all the provinces. Ontario, Quebec and British Columbia have

9The estimates in column 1 of Table 3 do not match the estimates from Table 1, since the dependent
variable is from different sources. In Table 1, the dependent variable is Canadian manufacturing
share of value added taken from UN data source. In Table 3, the dependent variable is Canadian
manufacturing share of GDP taken from CANSIM tables 379–0023 and 379–0028.
10Provincial GDP is taken from CANSIM tables 384–0015 and 384–0038. Provincial manufactur-
ing GDP comes from CANSIM tables 379–0028, 379–0009, 379–0025 and the Historical Statistics
of Canada.
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seen a steady decline with Ontario in particular dropping from over 30% to just
over 10% over the span of 50 years. While the Prairies have historically been less
manufacturing intensive than central Canada, at the same time, the declines for
Saskatchewan, Alberta and Manitoba have been less pronounced. Even the Atlantic
region has seen relatively stable manufacturing shares particularly since the late
1980s.

The case for either a resource curse effect or productivity malaise in explaining
the performance of the manufacturing share of GDP is also mixed. Alberta,
Saskatchewan and Manitoba are all much more resource intensive than either
Ontario or Quebec and yet appear to have done a better job in maintaining their
manufacturing sector share of GDP. If a resource curse is operating via exchange
rate effects, surely it would also serve to reduce manufacturing in resource intensive
provinces.

7 Conclusion

Deindustrialization and manufacturing decline have become perpetual laments in
the developed world and Canada is no exception to this narrative. Recent years have
seen the manufacturing heartland of Ontario and Quebec particularly hard hit by the
shedding of manufacturing employment and as is inevitably the case the search for
explanations has intensified. Much of the blame in recent years has focused on the
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resource boom driven by Canada’s energy producing provinces and the attendant
effects on the appreciation of the Canadian dollar.

Our evidence suggests that manufacturing decline in Canada is indeed a complex
phenomenon. To start, while it has intensified since 2000, it has generally paralleled
the trend in other developed countries that over time sees an evolution away from
goods production to more service intensive economies. In this sense, one could term
manufacturing decline a natural evolution.

As well, Canada has seen weaker productivity growth especially since 2000
and this correlates well with the intensification of the decline during the same
period. The productivity story is further reinforced by the fact that resource intensive
provinces appear to have done a better job in maintaining their manufacturing sector
GDP shares.

As for exchange rate effects, as an explanation this does not appear to be as well
supported by our evidence suggesting the other two explanations are better. Rather
than the simple story of a resource curse, Canada’s manufacturing decline is more
rooted in long term economic factors such as productivity growth and the evolution
of economies towards service production.
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Flexible Functional Forms and Curvature
Conditions: Parametric Productivity
Estimation in Canadian and U.S.
Manufacturing Industries
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Abstract It is well-known that econometric productivity estimation using flexi-
ble functional forms often encounters violations of curvature conditions. However,
the productivity literature does not provide any guidance on the selection of
appropriate functional forms once they satisfy the theoretical regularity conditions.
In this paper, we provide an empirical evidence that imposing local curvature
conditions on the flexible functional forms affect total factor productivity (TFP)
estimates in addition to the elasticity estimates. Moreover, we use this as a criterion
for evaluating the performances of three widely used locally flexible cost functional
forms—the translog (TL), the Generalized Leontief (GL), and the Normalized
Quadratic (NQ)—in providing TFP estimates. Results suggest that the NQ model
performs better than the other two functional forms in providing TFP estimates.
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1 Introduction

The standard econometric approach to modelling technical change, introduced by
Binswanger (1974a,b), involves representing the rate and biases through constant
time trends in a flexible functional form and estimating the unknown parameters
using econometric methods.1 See Jin and Jorgenson (2010) for a list of studies that
rely on this widely used approach for modelling technical change. It is well known
that among the regularity conditions—positivity, monotonicity, and curvature—that
are implied by economic theory, curvature conditions are often violated in empirical
applications of flexible functional forms (see Diewert and Wales 1987; Ryan and
Wales 2000).

Theoretical curvature properties are crucial, especially, in estimating the flexible
functional forms. For example, Diewert and Wales (1987) noted that it is necessary
for the estimated production and utility functions used in applied general equi-
librium models to globally satisfy the theoretical curvature conditions. Empirical
rejection of concavity by the estimated cost function casts a doubt on the underlying
true model of production as it could lead to a non-continuous input demand function.
Moreover, any inferences based on this result would be unconvincing since the input
demand functions derived from the cost function may not be cost minimizing due
to the violation of curvature property. This casts a serious doubt on the assumption
that firms in the sample are cost minimizers.

No parametric restrictions can ensure global curvature conditions while main-
taining flexibility in the translog (TL) and the Generalized Leontief (GL) functional
forms as this property is data dependent. Violation of curvature conditions by the
TL and the GL has led Diewert and Wales (1987) to develop a more complex
locally flexible functional form—the Normalized Quadratic (NQ) (see Diewert and
Wales 1987)—which allows imposing global curvature conditions and maintaining
flexibility at the same time. However, instead of imposing global concavity on
the TL and the GL cost functions, Ryan and Wales (2000) propose a method to
impose it locally, at a chosen reference point. They show that their procedure of
curvature imposition does not destroy the flexibility property of the functional forms
and it leads to satisfaction of curvature property at all data points for their data set.
Since they do not find any impact on productivity estimates they conclude that the
effect of imposing concavity is limited, in their case, only to the price responses.
However, the productivity literature does not provide any guidance on the selection
of appropriate flexible functional forms once they satisfy all theoretical regularity
conditions (see Feng and Serletis 2008).

1Slade (1989) criticizes the traditional method of modelling the state of technology by including
time trend in the production or cost function and, instead, suggests the use of state-space approach
through the Kalman filter in estimating technical change. More recently, Jin and Jorgenson (2010)
replaces the constant time trend by latent variables and use the Kalman filter to estimate the latent
variables in the translog (TL) model.
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In this paper we provide empirical evidence that imposing local concavity on the
TL and the GL cost functions affects the productivity estimates, in addition to its
effect on the elasticity estimates which has attracted the attention in the literature
thus far. In doing so, we employ three well-known locally flexible functional
forms—the TL, the GL, and the NQ cost functions, and present an empirical
comparison and evaluation of the effectiveness of these cost functions in providing
total factor productivity (TFP) estimates when they satisfy all theoretical regularity
conditions.2 We use the difference in TFP estimates, with and without curvature
constraint, as a criterion for comparing performances of different functional forms.
In estimating the models we utilize manufacturing KLEM (capital, labour, energy,
and material) data covering the period from 1961 to 2003 for Canada and the U.S.
Moreover, we follow Ryan and Wales (2000) to impose local curvature conditions
on the TL and the GL models, and for the NQ we impose global curvature
conditions following Diewert and Wales (1987).

While comparing the functional forms in providing TFP estimates, we provide
examples of all three possible scenarios: First, the cases where all three regularity
conditions are satisfied without curvature being imposed; second, the cases where
curvature conditions are not satisfied even with local curvature being imposed;
finally, the cases where imposing curvature resulted in the satisfaction of regularity
conditions. We also provide the price elasticity estimates for factors of production
in the U.S. and Canadian manufacturing industries.

Feng and Serletis (2008) estimate TFP in the U.S. manufacturing industry using
four flexible functional forms. In addition to the three functional forms that we use
in this study, they also estimate the asymptotically ideal model (AIM) cost function.
Although they impose concavity on the three locally flexible functional forms
using the same techniques that we use in this study, only the NQ model satisfies
curvature conditions. As a result, they provide a comparison between the NQ and
the AIM cost functions—the only models that satisfy all regularity conditions. Using
a smoothed Fisher TFP index as the benchmark they conclude that the AIM, with
curvature imposed, performs better in estimating TFP. However, there is not a single
case where concavity is satisfied without curvature being imposed and as a result
they are unable to analyze this aspect. Moreover, since they fail to include the TL
and the GL functional forms in the analysis they could not analyze the impact of
local curvature imposition. Based on a different criterion we provide comparisons
between all three locally flexible functional forms that we consider in this study. We
also compare the effects of local and global curvature imposition while Feng and
Serletis (2008) evaluate the effect of global curvature imposition. Our estimation
results provide us the opportunity to analyze all three possible scenarios mentioned
earlier, which is not the case in Feng and Serletis (2008).

2Fisher et al. (2001) provide an empirical evaluation of the performances of eight flexible
functional forms in the context of consumer demand.
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Our empirical findings support the result provided by Feng and Serletis (2008)
that imposing local curvature conditions on the TL and the GL does not always
assure theoretical regularity conditions at all data points in the sample. Moreover,
using the estimation results we show that when curvature condition is met by
imposition, the NQ model performs better in providing TFP estimates than the TL
and GL models, at least for our data sets. However, the GL model performs equally
well when all regularity conditions are satisfied without curvature being imposed.
Our findings also provide evidence that local curvature imposition on the TL and
the GL models affect the productivity estimates. Based on our results we argue that
since concavity is not guaranteed in the TL and the GL models even with curvature
being imposed, functional forms with global curvature conditions appear to be a
better choice for econometric productivity estimation.

The rest of the paper is organized as follows. Section 2 reviews the theoreti-
cal background on different approaches to productivity measurement. Section 3
presents the functional forms and relevant techniques for imposing curvature
conditions while Sect. 4 discusses the index number techniques used in this study.
Section 5 describes the data sets and outlines the empirical estimation strategies.
Section 6 reports the estimation results, and finally, Sect. 7 concludes.

2 Theoretical Background

2.1 Productivity Measurement

Recent shift in attention to the rate and biases of technical change has put the
econometric approach to productivity measurement in the forefront of empirical
productivity analysis even though the most commonly utilized approach is the index
number technique.3 See, for example, Acemoglu (2002, 2007), Jaffe et al. (2003),
Jin and Jorgenson (2010) for different applications of the biases of technical change.
As opposed to the index number approach, it is ideal to have a productivity measure
that would also shed some light on the production structure, for example, the factor
biases and the elasticities of factor substitution. Accurate information on these
estimates is vital for policy making, in particular energy policies. See, for example,
León-Ledesma et al. (2010) for a discussion on the importance of parameters of
the elasticity of substitution and the direction of technical change. In what follows,
we briefly discuss the index number and the econometric approaches to productivity
measurement.4

3See Hulten (2001) for a discussion on the historical development of quantitative analysis of
productivity. For a brief discussion on various approaches to productivity measurement see Feng
and Serletis (2008). Using simulation Van Biesebroeck (2007) provides a discussion on the
robustness of productivity estimates obtained by different measurement approaches.
4As in Feng and Serletis (2008), this section builds heavily on standard notations in the literature,
mainly from Berndt (1991).
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With the index number approach, the difference between the rate of change of
output and a share weighted index of rates of change in inputs provides a measure
of the rate of technical change,

@y=@t

y
�

nX
iD1

si
@xi=@t

xi
(1)

where inputs x � 0 are used to produce output y, and si � pixi
C is the share of input

xi in total cost C.
The econometric approach typically involves estimating a production or cost

function which is then differentiated with respect to time. Technical change is
associated with any temporal shift in the production or cost frontier, and under
constant returns to scale both production and cost function approaches would yield
equivalent results. With the cost function approach it is assumed that there exists a
cost function,

C D C.p; y; t/; (2)

that relates the vector of factor prices p, output y, and a proxy of technical change
t with total cost C.5 The cost function in (2) is a solution to the following cost
minimization problem,

min
x

px s:t: y � f .x; t/; x � 0;

and is the corresponding dual of the following strictly monotonic, strictly quasi-
concave, and continuously twice differentiable production function,

y D f .x; t/: (3)

To be able to successfully represent the underlying production process in (3),
the cost function (2) must be nonnegative, non-decreasing in y and p, and linear
homogeneous and concave in p. Under constant returns to scale, Eq. (2) becomes

C.p; y; t/ D yc.p; t/ (4)

where c is the corresponding unit cost function. Invoking Shephard’s Lemma yields
the optimal factor demand equations,

xi D @C.p; y; t/=@pi; i D 1; : : : ; n: (5)

5For notational simplicity we suppress the time subscripts.
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Rate of technical change in the cost function approach is measured in the
following way,

TFP D �
@ln C.p; y; t/=@t

@ln C.p; y; t/=@ln y
(6)

where @ln C.p; y; t/=@t represents the rate of cost reduction and @ln C.p; y; t/=@ln y
represents the inverse of rate of returns to scale which equals to unity under constant
returns to scale,

TFP D �
@ln C.p; y; t/

@t
D �

@C.p; y; t/=@t

C
: (7)

Hence, an upward shift in the production function is equal to an equivalent
downward shift in the cost function under constant returns to scale. We can easily
obtain the TFP estimates by estimating the parameters of C once we assume the
specific functional form for C in (2).

The effects of technological change on factor use, which is often referred to as
the input bias due to technical change, can also be measured as follows

�i D
@ln xi.p; y; t/

@t
: (8)

They provide us with the information about how the usage of inputs changes as a
result of technical change. With regards to the direction of bias, if �i > 0.< 0/, then
technical change is factor i using (saving). Moreover, the input price elasticities are
computed as

	ij D
@ln xi.p; y; t/

@ln pj
D
@xi.p; y; t/

@pj

pj

xi.p; y; t/
: (9)

2.2 Curvature Conditions

A crucial requirement about the cost function is that it must be concave in prices.
Necessary and sufficient condition for concavity is that the Hessian matrix of the
cost function be negative semi-definite. To check for concavity, eigenvalues of
the estimated Hessian matrix of the cost functions are computed at each point in
the sample space. Morey (1986) provides an excellent overview of the curvature
conditions and checking process for empirical applications of different flexible
functional forms.

As mentioned earlier, curvature properties are often violated in empirical applica-
tions of flexible functional forms. One way to deal with these violations is to perform
some simple checking procedures. For example, Caves et al. (1980) check whether
the parameter generating positive own price elasticity is significantly different
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from a value of the parameter generating non-positive elasticity estimate. Another
simple procedure is adopted by Slade (1989) which involves checking whether the
concavity violations occurred by chance. This procedure uses a technique developed
by Geweke (1986) and involves Monte Carlo simulation method to generate
replications of the estimated coefficients from a multivariate normal distribution.

The other available option is to impose local or global curvature restrictions.
Curvature restrictions are imposed in many different contexts. For applications,
in consumer theory, see, for example, Ryan and Wales (1998), Moschini (1999),
in case of production theory, see Gallant and Golub (1984), Terrell (1996), and
Ryan and Wales (2000), and in the context of GNP functions, see Kohli (1992).
Global curvature restrictions can be imposed using Cholesky decomposition on the
NQ cost function without destroying its flexibility property. For a discussion on
the restrictions and implementation technique, see Diewert and Wales (1987) and
Wiley et al. (1973). However, imposing global restrictions on the TL and the GL
cost functions destroys their flexibility property.

Instead of imposing global concavity, Ryan and Wales (2000) propose a method
to impose it locally at a chosen reference point. Using the same dataset as Diewert
and Wales (1987), they show that their procedure of imposing local curvature
guarantees concavity at the data point where it is imposed without destroying
the flexibility of the functional form. Although imposing concavity on a single
observation does not guarantee concavity for other data points, they hope that
a judicious choice of point of imposition may lead to satisfaction of concavity
at most or all data points. This procedure of local curvature imposition provides
the expected concavity coverage for their data set; however, this result is not
universal. Other techniques for imposing local curvature conditions include the
general computational methods used by Lau (1978) and Gallant and Golub (1984),
and the Bayesian approach used by Chalfant and Wallace (1992), Terrell (1996),
and Griffiths et al. (2000).

In what follows, we take the econometric approach to productivity measurement
for three Canadian and two U.S. energy intensive industries and provide a com-
parison between three widely used locally flexible cost functional forms—the TL,
the GL, and the NQ cost functions. For all cost functional forms, we assume cross-
equation symmetry restrictions, linear homogeneity in prices as well as constant
returns to scale in the production process as a maintained hypothesis. Obviously
one can test for whether these assumptions actually hold.

3 Locally Flexible Functional Forms

3.1 The TL Cost Function

If we assume that the unit cost function in (4) takes the TL functional form
(Christensen et al. 1971, 1973), then we get
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ln C.p; y; t/ D ˇ0 C ln y C

nX
iD1

ˇi ln pi C
1

2

nX
iD1

ˇiiŒln pi�
2C

1

2

nX
i¤j

nX
jD1

ˇij ln pi ln pj C

nX
iD1

ˇitt ln pi C ˇtt C
1

2
ˇttt

2:

(10)

Together with the assumption of symmetry—that is, ˇij D ˇji—homogeneity of
degree one in prices imposes the following constraints

nX
iD1

ˇi D 1;

nX
iD1

ˇij D

nX
jD1

ˇij D

nX
iD1

ˇit D 0: (11)

The corresponding factor cost share equations are

si D
pixi

C
D ˇi C ˇii ln pi C

nX
j¤i

ˇij ln pj C ˇitt: (12)

Equation (12) imposes another adding-up restriction,
Pn

iD1 si D 1, which already
holds through the assumption of linear homogeneity in prices. Since all parameters
of the share equations are also present in the cost function, we can directly
estimate (10). However, joint estimation of (10) and (12) as a system of equations
reduces possible high degree of multicollinearity in the independent variables, and
increases efficiency and degrees of freedom available.

However, as mentioned earlier, in empirical applications failure of the TL to
satisfy the regularity conditions is very common. To overcome this problem local
concavity can be imposed at a chosen reference point following the route suggested
by Ryan and Wales (2000). Diewert and Wales (1987) show that the Hessian of the
TL cost function will be negative semidefinite, providing C.p; y; t/ > 0, if and only
if the following matrix is negative semidefinite

H D B � Sn C SS0 (13)

where B D Œˇij� is the n � n symmetric matrix of ˇij, S D Œs1; : : : ; sn�
0 is the vector

of input shares, and Sn is the n � n diagonal matrix of input shares.
To impose local concavity, Eq. (10) is rewritten as

ln C.p; y; t/ Dˇ0 C ln y C

nX
iD1

ˇi ln pi C
1

2

nX
iD1

ˇiiŒln pi�
2 C

1

2

nX
i¤j

nX
jD1

ˇij ln pi ln pjC

nX
iD1

ˇitt ln pi C ˇtŒt � t��C
1

2
ˇttŒt � t��2 (14)
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where t� is the chosen reference point—that is, the point of imposition of local
concavity—where all prices are normalized to one. The corresponding input share
equations are

si D ˇi C ˇii ln pi C

nX
j¤i

ˇij ln pj C ˇitŒt � t��: (15)

Normalizing all input prices to one at t� makes si D ˇi for all i at this data point.
The ijth element of H evaluated at t� is

Hij D ˇij C ˇiˇj � ˇiıij i; j D 1; : : : ; n; (16)

where ıij D 1 if i D j and 0 otherwise. Curvature is imposed at the reference point,
t�, by setting H D �AA0, where A is a lower triangular matrix with elements aij for
i � j and 0 elsewhere. Now solving for A in (16) gives us

ˇij D �.AA0/ij C ˇiıij � ˇiˇj i; j D 1; : : : ; n; (17)

where .AA0/ij is the ijth element of AA0.
Equation (17) gives us the following relationships, in the case of four factors:

ˇ11 D � a211 C ˇ1 � ˇ21; ˇ12 D � a11a21 � ˇ1ˇ2;

ˇ13 D � a11a31 � ˇ1ˇ3; ˇ14 D � a11a41 � ˇ1ˇ4;

ˇ22 D � .a221 C a222/C ˇ2 � ˇ22; ˇ23 D � .a21a31 C a22a32/� ˇ2ˇ3;

ˇ24 D � .a21a41 C a22a42/� ˇ2ˇ4; ˇ33 D � .a231 C a232 C a233/C ˇ3 � ˇ23;

ˇ34 D � .a31a41 C a32a42 C a33a43/� ˇ3ˇ4; ˇ44 D � .a241 C a242 C a243 C a244/C ˇ4 � ˇ24:

Replacing the elements of B D Œˇij� in (14) and (15) by the above relationships
and estimating aij will ensure that the TL cost function will be concave at the
normalization point t�, and may also encompass concavity at other data points in
the sample. However, this replacement makes the system of equations nonlinear in
parameters aij.

Equation (7) yields the rate of technical change for the TL as

TFP D �
@ln C.p; y; t/

@t
D �

 
ˇt C ˇttt C

nX
iD1

ˇit ln pi

!
: (18)

Moreover, following Jin and Jorgenson (2010), we decompose the rate of technical
change into autonomous and induced technical change components. Together, the
first two parts on the right hand side, which depends only on changes in the level of
technology, gives us the rate of autonomous technical change. The last part on the
right hand side of (18), which depends on the prices as well as the biases of technical
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change, measures the contribution to rate of productivity growth due to the biased
effect of technical change and the change in relative input prices. We refer to this as
the rate of induced technical change.

Own- and cross-price elasticities are calculated as

	ij D
b̌

ij Cbsibsj

bsi
; for i ¤ j; (19)

	ii D
b̌

ii Cbs2i �bsi

bsi
; i; j D 1; : : : ; n: (20)

3.2 The Generalized Leontief Cost Function

If we choose the functional form in (4) to be the GL cost function (Diewert and
Wales 1987), we get

C.p; y; t/ D y

0
@

nX
iD1

nX
jD1

ˇij.pipj/
1
2 C

nX
iD1

ˇitpit C

nX
iD1

�itpit
2

1
A (21)

where ˇij D ˇji. Using (5) we get the corresponding optimal input-output demand
equations as follows,

ai D
xi

y
D

nX
jD1

ˇijp
1
2

j p
� 1
2

i C ˇitt C �itt
2; i D 1; : : : ; n: (22)

There is no intercept term in (21) due to the assumption of constant returns to scale
and hence all the parameters in (21) can be obtained by estimating only (22). When
i D j in (22), ˇii becomes a constant term in the ith input-output equation and if
ˇij D 0 for all i; j; i ¤ j, (22) becomes independent of relative input prices and all
the cross-price elasticities become zero.

Necessary and sufficient condition for concavity is that the Hessian matrix of (21)
be negative semi-definite. The elements of the Hessian matrix for (21) are as follows

Hij D
1

2
ˇij.pipj/

� 1
2 i ¤ j

D �
1

2

nX
j¤i

ˇij.pj=pi/
1
2 .1=pi/ i D j:

(23)
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Following Ryan and Wales (2000), we reparametrize Eq. (21) to impose local
concavity. First, we set

Pn
kD1 ˇik D 0 for all i, and then we add .

Pn
iD1 pidi/y to

the right hand side of (21) which will introduce n new parameters. Therefore, the
new set of input-output demand equations are

ai D
xi

y
D

nX
jD1

ˇijp
1
2

j p
� 1
2

i C ˇitt C �itt
2 C di i D 1; : : : ; n: (24)

Second, we normalize all prices and output to one at the reference point and, as a
result, the ijth element of H evaluated at this data point becomes

Hij D
ˇij

2
i ¤ j

D �
1

2

nX
j¤i

ˇij D
ˇii

2
i D j:

(25)

Finally, we set ˇij D �.DD0/ij, where .DD0/ij is the ijth element of DD0, and D is
a lower triangular matrix with elements dij for i � j and 0 elsewhere. This gives us
the following relationships between ˇij and dij, in the case of four factors,

ˇ11 D � d211; ˇ12 D � d11d21;

ˇ13 D � d11d31; ˇ14 D � d11d41;

ˇ22 D � .d221 C d222/; ˇ23 D � .d21d31 C d22d32/;

ˇ24 D � .d21d41 C d22d42/; ˇ33 D � .d231 C d232 C d233/;

ˇ34 D � .d31d41 C d32d42 C d33d43/; ˇ44 D � .d241 C d242 C d243 C d244/:
(26)

Replacing the elements of B D Œˇij� in (24) by the relationships in (26) and
estimating dij will guarantee that the estimated GL cost function will be concave
at the normalization point and it may also lead to the satisfaction of concavity at
other data points in the sample.

For the GL specification we compute the price elasticities as

	ij D
1

2

ˇij.pi=pj/
� 1
2

ai
; for i ¤ j; (27)

	ii D �
1

2

Pn
j¤i ˇij.pi=pj/

� 1
2

ai
: (28)
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3.3 The Normalized Quadratic Cost Function

If we consider the functional form in (4) to be the NQ cost function (Diewert and
Wales 1987), we get

C.p; y; t/ D y
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ˇipi C
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#
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where ˇij D ˇji. Equation (29) can be rewritten as

C.p; y; t/ D y
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ˇipi C g.p/C
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ˇitpit C

nX
iD1
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(30)

where g.p/ � p0Bp
2�0p . B � Œˇij� is a n�n symmetric matrix, and � D Œ�1; : : : ; �n� > 0

is a vector of nonnegative constants, not all equal to zero. Usually � is predeter-
mined, and we set �i equal to the sample average values of the respective inputs. In
order to identify all parameters in the model, n extra restrictions on the elements of
B are imposed as

Bp� D 0; (31)

for some chosen p� > 0.
Application of (5) yields the following system of n equations
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(32)

Equation (32) can also be expressed as

xi

y
D ˇi C
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jD1 ˇijpi

� 0p
�
�i

2

p0Bp
.� 0p/2

C ˇitt C �itt
2: (33)

Furthermore, we assume p� D 1n which, in terms of (31), implies
Pn

jD1 ˇij D 0.
With these n restrictions on matrix B and after denoting wi D piPn

jD1 �ipi
, the system

of factor demand equations (32), in the case of four factors, can be expressed as,
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Estimates of ˇi, ˇit, and the elements of matrix B, except for the parameters ˇi4 .i D

1; 2; 3; 4/, are obtained by estimating the system of input-output equations (34),
(35), (36), and (37). ˇi4 can then be recovered from the imposed restrictions.

Global concavity for the NQ cost function requires that the estimated B matrix
is negative semidefinite, provided that � > 0. However, in empirical applications
the estimated B matrix may not be negative semidefinite and if this turns out to be
the case, Diewert and Wales (1987) show that global concavity on the NQ function
can be imposed without destroying its flexibility by using the technique suggested
by Wiley et al. (1973).

To impose global concavity we set

B D �AA0;

where A is a lower triangular matrix, with elements aij for i � j and 0 elsewhere,
that satisfies

A0p� D 0n:
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This gives us the following relationships between ˇij and aij,

ˇ11 D � a211; ˇ12 D � a11a21;

ˇ13 D � a11a31; ˇ22 D � .a221 C a222/;

ˇ23 D � .a21a31 C a22a32/; ˇ33 D � .a231 C a232 C a233/:

(38)

Finally, we replace the elements of B in the system of input-output equations (34),
(35), (36), and (37) by the relationships in (38) and estimate aij which ensures global
concavity for the NQ function in (29). This replacement makes the system of input-
output equations nonlinear in parameters aij.

For the NQ specification the price elasticities have the following expressions,

	ii D

2
64
ˇii
Pn

jD1 �jpj � 2�i
Pn

jD1 ˇijpj C 2�2i g.p/
hPn

jD1 �jpj

i2

3
75 piy

xi
(39)

	ij D

2
64
ˇij
Pn

jD1 �jpj � �i
Pn

iD1 ˇijpj � �j
Pn

jD1 ˇijpj C 2�i�jg.p/hPn
jD1 �jpj

i2

3
75 pjy

xj
: (40)

4 Index Number Techniques

We also calculate the productivity growth in our sample industries using two widely
used index number techniques—the Tornqvist index and the Fisher ideal index.
Results from the index number techniques can be used to check the performance
of the flexible functional forms. The Tornqvist index is the discrete approximation
of Eq. (1), and the rate of technical change is calculated as follows

ln yt � ln yt�1 �

nX
iD1

1

2
.sit C sit�1/.ln xit � ln xit�1/: (41)

Equation (41) can also be written as

ln
nY

iD1



.y=xi/t

.y=xi/t�1

� 1
2 .sitCsit�1/

: (42)

The advantage of using the Tornqvist index is that it is exact for the linear
homogeneous TL aggregator function (see Diewert 1976). However, in practice
estimates of technical change obtained from the two approaches can be markedly
different (Slade 1989).
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With the Fisher ideal index, first the Fisher ideal quantity index for inputs is
calculated as

It D

" Pn
jD1 pt

jx
t
jPn

jD1 pt
jx

t�1
j

Pn
jD1 pt�1

j xt
jPn

jD1 pt�1
j xt�1

j

#1=2
(43)

and then the quantity index for the single output is calculated as Qt D yt=yt�1.
Finally, the Fisher ideal total factor productivity index is computed as .Qt

It � 1/:

We also obtain a smoothed Fisher ideal index of total factor productivity, following
Feng and Serletis (2008), by regressing the raw total factor productivity index on a
constant and a time trend, and then calculating the fitted values.6

5 Data and Estimation Strategy

5.1 Data

In this study we use two different data sets that cover the period from 1961 to
2003 for the Canadian and U.S. manufacturing industries. Data for the Canadian
manufacturing industries come from annual Canadian KLEMS database developed
by the “Industry Multifactor Productivity Program” of Statistics Canada—see
Baldwin et al. (2007) for a detailed description on the methodology used to
construct this database.7 Among the Canadian manufacturing industries we consider
primary metal (NAICS 331), cement (NAICS 32731), and paper (NAICS 322)
manufacturing industries in our sample.8 The Canadian KLEMS data set contains
annual information on chained Fisher quantity and price indexes for capital, labour,
energy, material and services together with the information on quantity index of
gross output as well as their nominal values.

The Jorgenson (2008) KLEM database, developed by Dale W. Jorgenson,
and described in Jorgenson et al. (2000), provides the sample data for the U.S.
manufacturing industries. The database is a combination of industry data collected
from the U.S. Bureau of Labor Statistics (BLS) and the U.S. Bureau of Economic
Analysis (BEA). It contains information on value and the price of output together
with information on the values and prices for four inputs—capital, labour, energy,
and material—for thirty-five U.S. industries covering the period from 1960 to 2005.
The industries generally correspond to the 2-digit sectors in the Standard Industrial

6TFP estimates obtained from the smoothed Tornqvist index are almost identical to that obtained
from the smoothed Fisher ideal index, and are not reported for brevity.
7Dissou and Ghazal (2010) utilize this dataset to examine energy substitutability in the primary
metal and cement industries.
8The industries are at the L-level of aggregation in the North American Industry Classification
System 2012.

http://www.statcan.gc.ca/pub/12-501-x/12-501-x2012001-eng.pdf
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Table 1 Input cost shares and growth rates of inputs, output and input prices: 1961–2003

Canada U.S.

Cement Metal Paper Metal Paper

Average annual growth rates

Price of capital 5:80 4:63 2:10 3:62 2:14

Price of labour 5:30 5:42 5:45 4:42 5:13

Price of material 4:20 3:94 4:00 3:34 3:54

Price of energy 6:37 5:40 6:59 4:37 4:54

Quantity of capital 0:94 1:79 2:09 1:00 3:11

Quantity of labour 1:56 0:68 1:15 �0:52 0:81

Quantity of material 3:04 2:96 3:21 0:50 1:94

Quantity of energy 0:20 1:58 1:11 �0:13 1:15

Output 2:67 2:72 2:31 0:61 2:09

Average cost share

Capital 17:54 9:03 16:08 9:52 13:29

Labour 24:38 20:16 22:67 20:86 25:55

Material 51:17 63:00 51:97 63:38 56:57

Energy 6:91 7:81 9:27 6:24 4:59

Classification (SIC) system.9 In this study, we consider two of the thirty-five U.S.
manufacturing industries—‘primary metal’ and ‘paper and allied’—which roughly
match with two of the Canadian industries in our sample and we also match the time
period with the period covered in the Canadian KLEMS database. Average annual
growth rates of inputs, output, and input prices along with the average input cost
shares are presented in Table 1.

5.2 Estimation

For the TL specification, we perform joint estimation of the cost function (10)
and the share equations (12) as a system of equations. Error disturbances, vt,
which are assumed to have a multivariate normal distribution with zero mean and
constant covariance over time, are added to the set of equations in the system.
However, to avoid the problem of singularity we arbitrarily delete the material
share equation. We use the iterative Zellner’s technique for Seemingly Unrelated
Regression (SUR) to estimate the system of equations. Parameter estimates of the
deleted material share equation are obtained by using the linear homogeneity and
symmetry restrictions.

9Young (2013), for example, uses this dataset to provide U.S. industry level estimates of the
elasticity of substitution between labour and capital.
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For the GL and the NQ specifications we only estimate the system of input-
output equations (22) and (32), respectively, since the cost functions do not contain
any additional parameters in both cases. All four input-output equations are used for
the iterative SUR estimation. In estimating the NQ model for Canadian industries
we normalize inputs prices in the first year to one. However, for the U.S. industries
normalization is not required as input prices are equal to one for the base year (1996)
in the data set.

If estimated models fail to satisfy the curvature condition, we follow the
procedures explained in Sect. 3 to impose concavity. For the TL and the GL
models, we follow the route suggested by Ryan and Wales (2000) to impose local
concavity. It is important to note that the point of concavity imposition is arbitrary.
If imposition of local concavity at all reference points fails to provide the expected
concavity coverage at all sample points, then we choose the data point that provides
the lowest number of curvature violations as the best approximation point and report
results for that. For the NQ model we follow the technique described in Diewert and
Wales (1987) to impose global concavity. For all three functional forms, imposing
curvature conditions transforms the linear system of equations into nonlinear in
parameters. Thus we use the nonlinear iterative SUR technique to estimate the
systems restricted for concavity.

To verify whether the economic theoretical regularity conditions are satisfied by
the estimated models we perform checks on positivity, monotonicity, and concavity.
We evaluate fitted values of the cost function at each observation as a check for
whether the estimated cost function is strictly positive. For monotonicity, we check
whether the estimated input demand functions are all strictly positive at all data
points. Necessary and sufficient condition for concavity is that the Hessian matrix
of the cost function be negative semi-definite, and a real symmetric matrix will be
negative semi-definite if it has non-positive eigenvalues. To check for the curvature
condition, we compute eigenvalues of the estimated Hessian matrix of the cost
function at each point in the sample space.

Although the full basic models are presented in Sect. 3, we test for the presence
of technical change in all three functional forms using the likelihood ratio test.
Since constant returns to scale are built in the datasets used in this study, test for
the presence of returns to scale is ruled out. Moreover, in the TL model we test for
the presence of neutral technical change. Finally, inclusion of the squared time trend
is also tested for each model.

6 Result

6.1 Theoretical Regularity

Results from the likelihood ratio tests are presented in Table 2. Possibility of no
technical change is rejected at 1% level of significance for all industries in the
sample. In the TL model, the possibility of neutral technical change is also rejected
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Table 2 Test statistics for likelihood ratio tests

Canada U.S.

Functional form Cement Metal Paper Metal Paper

No technical change

TL 72:62 152:39 127:12 77.63 160:88

GL 124:84 185:23 179:20 101.04 248:86

NQ 138:10 160:68 200:64 105.23 206:22

No squared term of time

TL 2:17� 42:13 8:71 33.91 28:64

GL 22:23 45:00 11:80� 66.53 97:00

NQ 29:76 44:68 10:85� 62.43 92:39

Neutral technical change

TL 15:12 78:82 78:56 52.24 117:85

Notes: Test for the possibility of no technical change involves five restrictions in the TL, ˇt D
ˇtt D ˇit D 0, for i D 1; : : : ; n � 1, and eight restrictions in both the GL and the NQ models,
ˇit D �it D 0, for i D 1; : : : ; n. Test for the possibility of neutral technical change in the TL
imposes three restrictions, ˇit D 0, for i D 1; : : : ; n � 1. Again, test for the inclusion of squared
time trend involves one parameter restriction in the TL, ˇtt D 0, and in both the GL and the NQ
models it involves four restrictions, �it D 0, for i D 1; : : : ; n. In all cases, prob > �2 D 0:0000

except for the cases identified with *. For the Canadian Paper industry, in case of GL prob > �2 D
0:0189, and in case of NQ prob > �2 D 0:0283, while for the Canadian Cement industry, in TL
prob > �2 D 0:1406

for all industries. However, for the Canadian cement industry in the TL model and
for the Canadian paper industry in the GL and the NQ models we fail to reject the
null hypothesis of no squared time trend at 1% level of significance.

Results from estimating the TL, the GL, and the NQ models with and without
curvature conditions reveal that the models satisfy positivity and monotonicity at all
data points in the sample when curvature conditions are not imposed.10 However,
results for the concavity condition are not quite satisfactory. Counts on the incidence
of curvature violations are reported in Table 3. When curvature conditions are not
imposed only the GL model satisfies concavity at all data points for three out of the
five sample industries; the TL and the NQ models violate curvature conditions in all
cases.

Results from estimating the models with curvature conditions being imposed
reveal that imposing curvature conditions does not always completely eliminate
curvature violations in the TL and the GL models. For example, in the TL model
for the Canadian metal and paper industries and in the GL model for the U.S. metal
industry it fails to completely eliminate curvature violations. On the other hand,
imposing global curvature conditions on the NQ reduces curvature violations to
zero, as expected, in all cases.

10Tables with estimated coefficients and their standard errors are not reported here for brevity.
However, they are available upon request to the corresponding author.
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Table 3 Curvature violations by the estimated functional forms

TL GL NQ

Curvature Curvature Curvature Curvature Curvature Curvature
not imposed imposed not imposed imposed not imposed Imposed

Canada

Cement 11 0 43 0 43 0

Paper 43 3 0 — 43 0

Metal 15 3 0 — 43 0

U.S.

Paper 43 0 0 — 43 0

Metal 28 0 43 1 43 0

Notes: Annual data, 1961–2003. Positivity and monotonicity violations are 0 in each case

Feng and Serletis (2008) find the performances of the TL and the GL models
as poor when curvature conditions are being imposed on these models, and since
both models fail to meet the curvature condition they do not provide productivity
estimates based on these models. In this study, we present a more comprehensive
case in the sense that our results include examples where imposing concavity on
the TL and the GL models does successfully reduce curvature violations to zero.
For example, in both the TL and the GL models for the Canadian cement industry
it reduces curvature violations to zero. Moreover, the GL cost function satisfies all
regularity conditions even without curvature being imposed for the Canadian metal
and paper industries, for example. In what follows, we discuss the productivity and
elasticity estimates only for those industries where the model satisfies all economic
regularity conditions.

6.2 Productivity and Elasticity Estimates

Tables 4 and 5 report the average total factor productivity measures estimated
with all three functional forms used in this paper. With the TL model, for the
Canadian cement industry as well as for U.S. metal and paper industries, imposing
curvature restrictions result in the satisfaction of all regularity conditions. However,
the difference in TFP estimates, with and without curvature conditions, for these
industries are noticeable in Table 4. Moreover, this discrepancy is also present in
the estimates of autonomous and biased technical change. Given the importance of
the rate and biases of technical change it is highly desirable that we get accurate
estimates of those parameters. Results for the GL model in the case of Canadian
cement industry, presented in Table 5, exhibit similar difference in TFP estimates
with and without curvature being imposed. It can be seen more vividly in Fig. 1
which provides year-by-year TFP estimates for the Canadian cement industry
estimated by the GL model with and without curvature being imposed.
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Table 4 Average annual rates of technical change (%) using TL

Autonomous Biased Total

technical change technical change technical change

Curvature Curvature Curvature Curvature Curvature Curvature
not imposed imposed not imposed imposed not imposed imposed

Canada

Cement 0:44 0:35 �0.06 0:02 0:38 0:37

U.S.

Metal 0:17 0:18 �0.01 0:08 0:16 0:26

Paper 0:20 0:21 �0.01 0:07 0:19 0:28

Notes: Annual data, 1961–2003. Positivity and monotonicity violations are 0 in each case

Table 5 Average annual rates of technical change (%) using GL and NQ

GL NQ

Curvature Curvature Curvature Curvature

not imposed imposed not imposed imposed

Canada

Cement 1:12 1:44 1:42 1:42

Paper 0:28 — 0:69 0:69

Metal 1:00 — 1:23 1:20

U.S.

Paper 0:17 — 0:20 0:20

Metal — — 0:16 0:16

Notes: Annual data, 1961–2003. Positivity and monotonicity violations are 0 in each case

Fig. 1 Total factor
productivity in Canadian
cement industry using GL
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The NQ model, on the other hand, performs better than the TL and the GL models
when curvature condition is being imposed. Average TFP estimates for the NQ
model are reported in Table 5. TFP estimates with curvature imposed are almost
identical to the ones without curvature being imposed. Year-by-year TFP estimates
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Fig. 3 Total factor productivity in U.S. manufacturing using NQ. (a) Metal. (b) Paper

for this model are presented in Figs. 2 and 3. It can be seen that the TFP estimates
obtained from the restricted and unrestricted models are almost identical.
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Figures 4 and 5 plot year-by-year TFP estimates from the NQ model, together
with the productivity measures obtained from the Tornqvist, Fisher, and smoothed
Fisher ideal indexes. Estimates from the GL model, when all economic regularity
conditions are satisfied without curvature being imposed, are also included. The
Tornqvist and the Fisher ideal indexes produce similar TFP estimates and for U.S.
industries they are virtually identical. Productivity estimates from the NQ and
GL models exhibit similar patterns during the sample period. Furthermore, both
series of the GL and NQ estimates follow the smoothed Fisher ideal index very
closely. Feng and Serletis (2008) use this criterion in evaluating the performance
of NQ and AIM functional forms in providing TFP estimates. However, there is no
theoretical correspondence of the smoothed Fisher Ideal index with the NQ or the
AIM functional forms, although the correspondence between the Tornqvist index
and the TL functional forms is well known (Diewert 1976). If we consider the
benchmark adopted by Feng and Serletis (2008), both the NQ (with curvature being
imposed) and the GL (without curvature being imposed) functional forms perform
equally well in providing TFP estimates.
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Fig. 5 Total factor productivity in U.S. manufacturing. (a) Metal. (b) Paper

Table 6 presents own and cross price elasticities of factor demand for our sample
industries in U.S. and Canada. We calculate elasticities at the middle year of
the sample period. Although not reported here for brevity, we also compute the
elasticities when curvature conditions are not imposed. In most of the cases they
follow closely to the ones reported in the table. In general, elasticity estimates
obtained from the NQ model are smaller in absolute terms than the ones obtained
from the TL and GL models. Estimated own price elasticities of demand in all cases
have the correct sign. For all industries in the sample we find the derived factor
demands inelastic as the estimated own price elasticities are below one in absolute
terms.

7 Conclusion

In this paper we provide an empirical comparison and evaluation of three widely
used locally flexible cost functional forms—the TL, the GL, and the NQ—in pro-
viding TFP estimates once they satisfy the economic theoretic regularity conditions.
Estimation results for the sample industries provide us the opportunity to cover
all possible cases that one might encounter in terms of curvature violations while
estimating these three locally flexible functional forms: (i) curvature conditions are
satisfied without curvature restrictions being imposed, (ii) curvature conditions are
satisfied when curvature restrictions are imposed, and (iii) curvature conditions
are not satisfied even with curvature restrictions being imposed. Findings reveal
evidences of concavity violations even with curvature being imposed locally for the
TL and the GL models. However, curvature violations reduce to zero for the NQ
model when concavity is imposed globally.

When all economic regularity conditions are satisfied with curvature being
imposed, our results suggest that the NQ model performs better than the other two
models in providing TFP estimates. Estimates of productivity from the unrestricted
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Table 6 Price elasticities for the Canadian and U.S. industries

Canada U.S.

Factor i Model 	Ki 	Li 	Mi 	Ei 	Ki 	Li 	Mi 	Ei

Metal

.K/ NQ �0.007 0.001 �0.006 0.002 �0.048 �0.136 0.158 �0.011

GL �0.190 �0.005 0.009 0.012 �0.557 0.016 0.046 �0.020

TL �0.364 �0.032 0.056 0.009 �0.362 0.069 0.039 �0.218

.L/ NQ 0.014 �0.124 �0.086 0.168 �0.122 �0.381 0.368 0.017

GL �0.085 �0.144 �0.010 0.157 0.077 �0.085 0.033 �0.015

TL �0.083 �0.435 0.092 0.440 0.404 �0.171 0.000 0.241

.M/ NQ 0.011 �0.028 �0.058 0.054 �0.091 0.487 �0.675 0.109

GL 0.088 �0.007 �0.161 0.104 0.529 0.077 �0.088 0.049

TL 0.437 0.279 �0.144 �0.023 0.497 0.001 �0.125 0.444

.E/ NQ �0.030 0.151 0.150 �0.223 0.189 0.030 0.148 �0.114

GL 0.186 0.156 0.162 �0.273 �0.048 �0.007 0.010 �0.013

TL 0.010 0.188 �0.003 �0.426 �0.539 0.101 0.086 �0.466

Paper

.K/ NQ �0.011 �0.011 0.005 0.009 �0.168 �0.059 0.173 0.016

GL �0.037 �0.006 0.025 0.007 �0.281 �0.112 0.110 �0.058

TL �0.208 0.004 0.040 0.008 �0.189 �0.084 0.090 �0.058

.L/ NQ �0.057 �0.144 �0.031 0.133 �0.071 �0.031 0.045 0.030

GL �0.013 �0.137 �0.004 0.173 �0.269 �0.422 0.227 0.112

TL 0.009 �0.210 0.051 0.197 �0.320 �0.667 0.375 0.491

.M/ NQ �0.017 �0.012 �0.020 0.014 �0.059 0.046 �0.328 0.077

GL 0.037 �0.003 �0.080 0.050 0.585 0.505 �0.344 0.060

TL 0.191 0.113 �0.143 0.248 0.568 0.619 �0.456 �0.057

.E/ NQ 0.056 0.166 0.046 �0.156 0.274 0.044 0.110 �0.123

GL 0.012 0.146 0.059 �0.230 �0.036 0.029 0.007 �0.115

TL 0.008 0.094 0.053 �0.452 �0.059 0.132 �0.009 �0.376

Cement

.K/ NQ �0.047 �0.036 �0.091 0.058 —

GL �0.248 �0.020 �0.039 0.074

TL �0.159 �0.048 0.086 �0.148

.L/ NQ �0.048 �0.264 0.346 0.067 —

GL �0.034 �0.098 �0.035 0.055

TL �0.112 �0.432 0.243 0.012

.M/ NQ �0.064 �0.169 �0.533 0.069 —

GL �0.043 �0.022 �0.106 0.045

TL 0.396 0.475 �0.440 0.600

.E/ NQ �0.014 0.131 0.278 �0.194 —

GL 0.326 0.139 0.180 �0.175

TL �0.125 0.004 0.111 �0.465

Notes: Annual data, 1961–2003. Elasticities are calculated at the middle year of the sample period
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and the restricted NQ models are almost identical. However, the GL cost function
performs equally well when all the regularity conditions are satisfied without
curvature being imposed. Based on the evidences provided in this study we argue
that since desired curvature coverage is not guaranteed in the TL and the GL models
and local curvature imposition on these functional forms affects the productivity
estimates, functional forms with global curvature conditions appear to be a better
choice for econometric productivity estimation.
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Abstract There is a long-standing view that economic growth is the most powerful
instrument for reducing poverty. In dynamic economies most economic growth
comes from productivity growth, and yet the literature concerning the relationship
between productivity changes and poverty is sparse. Against this backdrop, this
paper examines the impact of productivity growth on income and human poverty,
and assesses the role played by the income distribution in that relationship.
Using cross-country data to conduct a regional comparative analysis, we find
that productivity growth is more relevant for poverty reduction than the more
commonly used indicator economic growth – a finding that is robust across
regions. We also find that the poverty-reducing impact of productivity growth is
stronger in countries with relatively low income inequality. These findings suggest
that countries attempting to reach their objectives of eradicating poverty should
pursue policies that foster productivity growth; and that productivity growth that
is accompanied by progressive distributional change is even better for alleviating
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1 Introduction

According to the Organisation for Economic Co-operation and Development –
OECD (2008), if you asked a typical person to list the major problems that the
world faces today, the likelihood is that “poverty and inequality” would be one
of the first things they mentioned. For example, as shown in Fig. 1, in the most
recent World Values Survey, 65.3 percent of respondents across the world stated
that “people living in poverty and need” was the most serious problem facing the
world, and 60 percent considered it as such in their own country.1 Reducing poverty
represents a key objective and a fundamental challenge for policymakers in both
developing and developed countries. It has received a greater attention since the
adoption of the Millennium Development Goals (MDGs) in 2000, which among
other things, targeted the halving of the rate of poverty between 1990 and 2015.
This attention was recently renewed by the establishment of a new set of Sustainable
Development Goals (SDGs) in September 2015. The SDGs replace the MDGs and
shift the poverty reduction objective from halving to eliminating by 2030. What
is more, unlike the MDGs that focused solely on developing countries, the SDGs
are a universal framework for achieving sustainable development outcomes in all
countries; i.e., they apply to all countries, including developed ones.

66.7
63.7

59.5

43.7

65.3

59.8

0
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Non OECD countries OECD countries World

Source: Authors' calculations based on data from the fifth wave of the World Values Survey

Most serious problem of the world Most serious problem for own country

Fig. 1 Percentage of people who consider “living in poverty and need” as the most serious
problem for the world or for the own country

1World Values Survey – Wave 5 (2005–2009), Online Data Analysis.

http://www.worldvaluessurvey.org/
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There is a long-standing view that economic growth is a prerequisite for poverty
reduction. The World Bank (2006) reported that countries that have historically
experienced the greatest reduction in poverty are those that have experienced
prolonged periods of sustained economic growth. For example, over the 1981–2000
period, China’s poverty rate fell from more than 50 percent to about 8 percent,
thanks to an impressive per capita growth rate of almost 8.5 percent a year. Similarly,
between 1993 and 2002 Vietnam cut its poverty rate in half, from about 58 percent
to about 29 percent, by growing at almost 6 percent a year. Besides, several recent
studies have also found that the higher is income inequality within a country, the
more limited is the impact of growth on reducing poverty. Thus, economic growth
that is associated with progressive and redistributive policies will reduce poverty
more than growth that leaves the distribution unchanged.

Nonetheless, in dynamic economies, most of the economic growth comes from
productivity growth. Relatedly, there is a strong consensus that productivity is
the single most important determinant of a nation’s living standard or its level
of real income over the medium to long run. To put it differently, productivity
sets the sustainable level and path of prosperity that a country can achieve. From
this perspective, productivity growth appears to be the key for attaining the global
objective of eradicating poverty and improving living standards. Yet, poverty
reduction strategies seldom focus explicitly on productivity.

An interesting illustration of the prominence of productivity improvements (for
poverty reduction and rising living standards) stems from the Africa’s recent
experience. According to the International Monetary Fund – IMF (2015), the
African continent has enjoyed a strong and persistent economic growth for more
than a decade. For 15 years GDP growth rates have averaged over 5 percent.
However, the World Economic Forum – WEF (2013 and 2015) underscored this
impressive and unprecedented growth on the continent has not translated into
any meaningful poverty reduction or rapidly improving living standards, as has
happened in other regions (such as much of emerging and developing Asia) with
a similar growth performance. In other words, more than a decade of consistently
high growth rates have not yet trickled down to significant parts of the population.2

Indeed, as potential underlying causes, the WEF has recurrently argued that low
and falling productivity figures in Africa are at the core of these differences in living
standards relative to other regions – see the next section for some cross-regional
stylized facts.

Thus, it seems that the poverty-reducing (or the living standard enhancing)
impact of economic growth depends more on the source of growth as opposed to
growth itself. For example, for many observers (see, Lipton, 2012) there is no doubt
that the decisive underlying driver of African growth performance was the high
commodity prices. However, an increase in commodity prices does not necessarily

2Actually, nearly one out of two Africans (i.e., about 47 percent) continue to live in extreme
poverty – this figure is measured against a threshold of US$1.25 dollar a day. See http://
povertydata.worldbank.org/poverty/region/SSA for details.

http://povertydata.worldbank.org/poverty/region/SSA
http://povertydata.worldbank.org/poverty/region/SSA
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translate into higher productivity unless it is accompanied by appropriate measures
and policies (WEF, 2011).3 Thus, it is important to give a special attention to
productivity among the sources of economic growth.4

Nonetheless, in other developing regions (such as several countries in Latin
America and the Caribbean) that have experienced little poverty reduction or
even increasing poverty despite some economic growth, high and growing income
inequality has been identified as a major culprit. Thus, it has been suggested
that while economic growth is important for poverty reduction, growth that is
accompanied by inequality-reducing policies is even more suitable.

Although there is an abundant literature on the links among economic growth,
poverty and inequality, very few studies have investigated the relationship of
productivity growth and income distribution to poverty reduction. Against this
backdrop, this paper contributes to the literature by analysing empirically the
relationships among these variables. To this end, the paper uses cross-country data
to conduct a regional comparative analysis. The rest of the paper is organized as
follows. In the next section, we present some stylized facts and a brief review
of the literature. These stylized facts underscore the importance of productivity
being a key driver of economic growth for poverty reduction and improvement
in living standards; and the literature review presents briefly the few existing
studies that explored the link between productivity (growth) and poverty, which
typically overlooked the role of income distribution. Section 3 outlines the empirical
framework, describes the variables and data sources, and presents empirical results
for the relationship between productivity growth and poverty, and that between
productivity growth, income distribution and poverty. These results are contrast
with the corresponding relationships involving economic growth. Finally, section
4 discuses some policy implications and concludes the paper.

3As another case in point, over the 2000s, Canada fared relatively well in terms of economic growth
as the country posted the largest growth rate among the G7 countries. However, many academics
and policymakers have expressed concerns about future prospects for Canada’s economic growth
and improvements in living standards, mainly because (over the same period) the country has
suffered from a stubborn lack of productivity growth relative to the U.S. and other OECD countries.
A consensus from this hotly policy debate is that lower Canadian productivity is the main cause
of the country’s lower living standard compared with the U.S., and closing this productivity gap is
the only sustainable way to reduce the two-country income gap.
4One reason that may explain why productivity has been neglected in the literature as a determinant
of poverty reduction is that economic growth already subsumes productivity growth. It may
have been felt that its impact was already covered. Moreover, the difficulty of obtaining reliable
labour input data in most developing countries, needed to calculate labour productivity, may have
contributed to the use of GDP per capita or mean income in poverty reduction studies as well.
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2 Some Stylised Facts and Review of Literature

2.1 The Importance of Productivity as a Key Driver
of Economic Growth

We begin this section by stressing the role of productivity enhancements as a driver
of economic growth for poverty reduction and improvement in living standards. To
this end, we compare Africa’s performance with other regions, such as developing
Asia, to help understand that a fast-growing but generally low-productivity economy
does not offer strong prospects for poverty reduction and rising living standards.
Although high and persistent economic growth rates characterize Africa for more
than a decade – growth rates have averaged well above 5 percent in the past 15 years,
the continent has not experienced the rapidly improving living standards that have
been seen in other regions with a similar growth performance (see Fig. 2).

As shown in Fig. 2, although both Africa and Southeast Asia had approximately
the same levels of GDP per capita in the 1990s, Southeast Asia’s GDP per capita has
since risen considerably more rapidly than sub-Saharan Africa. According to several
WEF’s reports on the Africa competiveness (published on a biennial basis since
1998), low and falling productivity fundamentals are at the core of these differences
in living standards.
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Fig. 2 Prosperity and economic growth, 1990–2013-GDP based on purchasing power parity (PPP)
per capita, current int’l dollars (Source: WEF, 2015.)
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Fig. 3 Cross-regional productivity Labor productivity per person employed in 1990 US$ (con-
verted at Geary Khamis PPPs) (Source: The Conference Board Total Economy Database™, June
2015, http://www.conference-board.org/data/economydatabase. Note: Southeast Asia includes
Cambodia, Indonesia, Malaysia, Myanmar, Philippines, Singapore, Thailand, and Vietnam; Africa
includes Algeria, Angola, Burkina Faso, Cameroon, Côte d’Ivoire, the Democratic Republic of
Congo, Egypt, Ethiopia, Ghana, Kenya, Madagascar, Malawi, Mali, Morocco, Mozambique, Niger,
Nigeria, Senegal, South Africa, Sudan, Tanzania, Tunisia, Uganda, Zambia, and Zimbabwe; Latin
America and the Caribbean includes Argentina, Barbados, Bolivia, Brazil, Chile, Colombia,
Costa Rica, Dominican Republic, Ecuador, Guatemala, Jamaica, Mexico, Peru, St. Lucia, Trinidad
and Tobago, Uruguay, and Venezuela; OECD countries include Australia, Austria, Belgium,
Canada, Chile, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hun-
gary, Iceland, Ireland, Israel, Italy, Japan, Korea, Rep., Luxembourg, Mexico, the Netherlands, New
Zealand, Norway, Poland, Portugal, the Slovak Republic, Slovenia, Spain, Sweden, Switzerland,
Turkey, the United Kingdom, and the United States)

Figure 3 compares labor productivity – as a proxy for overall productivity –
in Africa with that of other regions for the past 50 years. Although Africa and
Southeast Asia started from similar, very low levels, labor in Southeast Asia has
since become more productive, effectively converging toward the OECD average.
In contrast, as Fig. 3 shows, not only has Africa been trailing Southeast Asia,
but in fact the productivity gap between the two regions deepened between 1960
and 2005. What is more, using data at the sectoral levels, WEF (2015) shows that
across sectors – from agriculture to manufacturing and services – productivity levels
remain low in Africa. This illustrates the importance of growth being driven by
productivity enhancements that are associated with rising living standards.

http://www.conference-board.org/data/economydatabase
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Fig. 4 Poverty and productivity growth

Finally, as a preliminary investigation of the relative relevance of productivity
and economic growth for poverty reduction, Figs. 4 and 5 present the scatterplot
diagrams of the headcount poverty measure (vertical axis) and logged labour
productivity and real GDP (horizontal axis), respectively. It clearly appears that the
negative relationship is more pronounced with productivity growth compared to that
with the economic growth, and also with the former relationship showing a far better
goodness of fit.

2.2 A Brief Review of Literature

The literature concerning with the relationship between productivity and poverty
is sparse. As noted above, although economic growth dominates world talks on
poverty, the specific role of productivity (which is the most important source of
long-term economic growth) is often overlooked and poverty reduction strategies
rarely underscore the importance of productivity. Moreover, the few existing studies
exploring the link between productivity and poverty also typically ignore the role
of income distribution. We now briefly review the few empirical literature on
productivity (growth) and poverty.

Pineau (2004) argues that in a world with limited available capital, especially
for developing countries, and rapid population growth, productivity increases are
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Fig. 5 Poverty and economic growth

the only source of growth that can lead to a sustainable expansion of income per
capita. He claims that in the long run and at the aggregate level, other sources of
growth cannot result in significant per capita increases, as the additional output
from these sources is proportional to additional inputs, which expand mostly
with population growth. This leaves per capita income unchanged, unless higher
productivity is achieved. In a Peruvian case study, Pineau documents the potential
of a specific micro-level institution to increase the productivity of labour, leading to
a significant poverty reduction across many dimensions (including material well-
being, psychological well-being, access to basic infrastructure, and capacity to
manage assets). He concludes that productivity is indeed what poor people need
to get out of poverty.

Fluet and Lefebvre (1987) contend that increased productivity produces, among
other things, an easier access to material goods and services (through higher
incomes and/or lower prices)5 and therefore reduces poverty. Relatedly, they
investigate how (total factor) productivity improvements in Canadian manufacturing
were apportioned among labour, capital, materials and government through an
increase in the price of these factors or through an increase in taxes levied on factor
inputs, and consumers through a decrease in the industry selling prices. They find

5Productivity gains will either lead to rising factor prices or to a reduction in the price of output.
In the first case, workers and capital owners gain, while in the second case, consumers gain.
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that about half of the manufacturing productivity gains were passed on to the rest of
the economy through lower relative prices. And the share of labour price increases
accounted for the bulk of the other half.

In a United States study, Hayes et al. (1995) examines the relationship between
labour productivity growth and poverty rate, accounting for other macroeconomic
variables. The authors do not assume that the relationship is unidirectional from
productivity to poverty. Specifically, their hypothesis is that there may be bidirec-
tional causality between poverty and changes in productivity. The empirical results
suggest that feedback does exist between productivity and poverty – i.e. productivity
growth both affects and is affected by changes in poverty.6 Thus, as a public policy
implication of their results, they propose that policies or measures intended to affect
productivity growth or poverty must be designed simultaneously. For example,
education and training programs may affect productivity not only directly but also
indirectly by lowering future poverty rates and raising the level of human capital
in the future. Besides, using data on developing countries, CSLS (2003) makes a
strong case for productivity increases as a tool to reduce poverty.

As it is common in developing countries that most of the poor live in rural
areas, and that a large share of them depend on agriculture for a living and spend
large shares of their income on food, many studies have focused on the specific
link between agricultural productivity growth and poverty. For example, using data
on the Indian economy, Datt and Ravallion (1998) investigate the impact of farm
productivity (as measured by output per acre) on rural poverty. They find that in
the short run, higher agricultural productivity reduces poverty through expanded
employment opportunities or more abundant harvests. However, in the long run,
increasing agricultural productivity reduces poverty through higher wages and lower
relative food prices. Byerlee et al. (2009) review 12 country case studies and use
bivariate analysis to compare agricultural growth per worker across countries. They
show that the countries with the highest agricultural growth per worker experienced
the greatest rate of rural poverty reduction. Fan et al. (1999) measure the relationship
between total factor productivity and poverty outcomes by investigating returns on
different productivity increasing investments. They find that investments in roads,
agricultural research, development, and extension had the greatest impact on both
productivity and poverty reduction in India. Using data on Ethiopia and Madagascar,
Abro et al. (2014) and Minten and Barrett (2008) find respectively that agricultural
productivity growth holds the key to poverty reduction. Other empirical studies
also reveal that productivity growth in agriculture helps reduce poverty (Cervantes-
Godoy & Dewbre, 2010; Christiaensen et al., 2010; Irz et al., 2001; Majid, 2004;
Ravallion & Chen, 2005; Thirtle et al., 2003; World Bank, 2008). Thus, regardless
of which productivity measure is used (output per worker, output per unit of
land, or TFP), empirical studies support the idea that improvements in agricultural
productivity are important for poverty reduction.

6In other words, poverty, through low investment in human capital, e.g., also reduces labour
productivity growth.
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To sum up, it emerges that despite the relative lack of literature on productivity
and poverty, the few existing studies show that rising productivity does contribute to
poverty reduction. Thus, the relationship between the two variables is an important
one and further research on the subject could make the fight against poverty more
effective. As a result, this paper contributes to the literature by not only investigating
the relationship between the two variables across many regions, but also accounting
for the role income inequality plays in that relationship.

3 Empirical Framework, Data Description and Empirical
Results

3.1 Productivity Growth and Poverty

As mentioned earlier, the literature has focused on the relationship between
economic growth and poverty and not on the relationship between productivity
growth and poverty. This paper contributes to the literature by attempting to close
this knowledge gap. In order to investigate the impact of productivity growth on
the incidence of poverty and compare its antipoverty effectiveness with that of
economic growth, we start by estimating the following two basic specifications:

lnPovit D �i C ˇ1lnProdit C "it (1)

lnPovit D �i C ˛1lnGDPit C !it (2)

where Pov represents either the income or human-based poverty measures, Prod
denotes productivity (as proxied by labour productivity), GDP is real gross domestic
product, i and t stand respectively for country and year, � i represents country
fixed or random effects, " and ! are error terms. Because of the fixed/random
effect term, it is noteworthy that only countries with data on poverty, labour
productivity and real income for more than 1 year will be included in the
regressions (see Table 6). Besides, with the double logarithmic equations, the
parameters of interest, ˇ1 and ˛1, are respectively the productivity and eco-
nomic growth elasticity of poverty, and therefore a key magnitude in assessing
the antipoverty effectiveness of the former variables.7 Following the develop-
ment literature, they correspondingly represent a measure of the “poverty effi-
ciency” of productivity and economic growth. We expect that b̌1 < 0 and

b̨1 < 0, but more importantly
ˇ̌
ˇb̌1
ˇ̌
ˇ > jb̨1j – that is, the poverty-reducing

impact of productivity growth should be greater than that of economic growth.

7Moreover, one other advantage of the use of the logarithmic form is that it weakens the potential
heteroscedasticity problems, in addition to reducing the impact of outlier observations.
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As mentioned above, the poverty reduction target with the MDGs was to halve,
between 1990 and 2015, the proportion of people living in poverty. However, the
SDGs, adopted in 2015, have a more ambitious agenda, seeking to eliminate rather
than reduce poverty by 2030. Interestingly, using Eq. (1), e.g., one can derive the
annual rate of productivity growth that will allow achieving a particular poverty
reduction goal between any given two periods, t1 and t2, as follows:

gLP D
ln .Povt2=Povt1/

ˇ1
� .t2 � t1/

; 8Povt2 and Povt1 ¤ 0 (3)

where Povt2 and Povt1 represent the poverty measure in year t2 and t1, respectively.8

At this stage, we consider three measures of poverty, namely the poverty
headcount ratio at $1.9/day and at $3.1/day poverty line, as well as the multidimen-
sional poverty index (MPI). The first two are the traditional income-based poverty
measures, indicating the proportion of people living with less than a threshold level
of income per day. With the $1.9 poverty line, the focus is on the poorest of the poor,
while with the $3.1 poverty line, the poverty concept is more inclusive. The third
measure of poverty (i.e., the MPI) is based on a human development notion and uses
a number of factors to determine poverty beyond income-based criterion. The MPI
provides a comprehensive picture of people living in poverty by using information
from 10 indicators which are organized into three dimensions: education (years of
schooling and school attendance), health (child mortality and nutrition), and living
standard (electricity, sanitation, water, floor, cooking fuel and assets).9 – see Table
7 for more details on the construction of the MPI. Table 8 provides a complete list
of the definitions, data sources and summary statistics of the regression variables,
including the later ones – these statistics pertain to the (regional) pooled country-
year sample.

We first estimate Eqs. (1) and (2) using the entire sample across all countries and
employing panel data techniques of fixed- and random-effects models (see Table
1). Table 1 shows the results for the three variables of poverty described above.
It clearly emerges that regardless of the poverty measures and estimation methods
used, the poverty-reducing efficiency of productivity growth is greater than that of
economic growth – the elasticity of poverty with respect to productivity growth is
1.4 to 3 times higher in absolute terms. Moreover, the goodness of fit, as measured
by the R-squared coefficients, for the relationship between poverty and productivity
growth is 9 to 11 times higher as well. In other words, productivity growth seems to

8Note that equation (3) is not defined if Pov2030 D 0 (i.e., at the target of the SDGs in 2030), and
therefore it will be used only for illustrative purposes for targets around that goal. Moreover, using
Eq. (2), one may derive a similar annual rate for economic growth.
9Moreover, the MPI reflects both the incidence or headcount ratio (H) of poverty – the proportion
of the population that is multidimensionally poor – and the average intensity (A) of their poverty –
the average proportion of indicators in which poor people are deprived. Thus, the MPI is calculated
by multiplying the incidence of poverty by the average intensity across the poor (H	A). A person
is identified as poor if he or she is deprived in at least one third of the weighted indicators.
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have a more explanatory power in terms of poverty reduction than economic growth.
Overall, the results suggest that productivity growth is a more important driver of
reductions in poverty than economic growth. Besides, for each poverty variable
we run a Hausman test to choose between fixed- and random-effects models. For
this test, random effects (RE) is preferred under the null hypothesis due to higher
efficiency, while under the alternative fixed effects (FE) is at least consistent and
thus preferred. As shown in Table 1, for all cases except one, the use of fixed-effects
model is recommended.

As the poverty concept is more inclusive with $3.1 poverty line and that there is
limited data availability for the multidimensional poverty measure across regions,
we use poverty measure based on $3.1 a day to estimate Eqs. (1) and (2) across
regions10 – see Table 2. This table only reports results as they pertain to the suitable
models suggested by the subsequent Hausman test. Once again, one can observe
that across all six regions, the marginal poverty-reducing impact of productivity
growth is greater than that of economic growth, with the largest gap occurring
in Sub-Saharan Africa.11 Moreover, as for the whole sample estimation above, a
stronger fit of the relationship between poverty and productivity growth (relative to
that between poverty and economic growth) is also found across all regions. These
results show again the importance of giving much attention to (labor) productivity
growth as a poverty-reducing variable relative to economic growth.

The bottom part of Table 2 displays the annual rate of productivity growth
that would be needed to reduce poverty rate by 80% in the world or in that
region between 2015 and 2030 if productivity growth alone is to reduce poverty.
Comparing this to the historical productivity growth rate between 1990 and 2012
(shown in the last row of Table 2), we see that at the average historical pace only two
regions in the world, East Asia and pacific and South Asia, will succeed in meeting
the above target of poverty reduction by 2030. Putting it differently, these are the
two developing regions where the historical rate of productivity growth exceeds
the rate of growth needed to reduce poverty by 80% over the next 15 years. In the
remaining regions, the historical growth rate is considerably below that required to
cut poverty rate 80%. It is also noteworthy that Sub-Saharan Africa experienced the
lowest historical productivity growth rate.

Table 3 provides across regions both the poverty trends (proportion and absolute
numbers of people living in poverty) and the decomposition of economic growth
into its components (i.e., population growth, growth in the employment to total
population ratio, and labour productivity growth) with their percentage contribution.
From Panel A of Table 3, we see that in East Asia, e.g., the poverty rate drops by
about 62 percentage points, from 83.9% in 1990 to 22.3% in 2012, and numbers in

10Nonetheless, the results in the whole sample estimation (Table 1) indicate that the poverty-
reducing power of both productivity and economic growth are lower when the poverty line is
set higher (i.e., at $3.1, relative to $1.9).
11This distinguished evidence on the African continent may be explained by the fact that a largest
proportion of the poor depend on labor income for a living.
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Table 3 Poverty trends and the decomposition of economic growth into its components

Panel A: Poverty trends
Poverty rate (% below $3.10) Number of poor (1,000,000)

Regions 1990 1999 2008 2012 1990 1999 2008 2012
East Asia & Pacific 83.86 65.00 35.33 22.23 1345 1168 684 443
Europe & Central Asia 7.85 19.56 7.32 6.24 19 48 19 16
Latin America & Caribbean 30.83 26.20 15.38 11.96 115 113 75 61
Middle East & North Africa 24.90 20.27 16.03 na 56 55 51 na
South Asia 81.76 na 67.88 54.5 926 na 1074 913
Sub-Saharan Africa 76.11 77.87 70.71 66.97 387 506 584 617
World* 53.90 31.32 36.81 28.93 2847 1890 2488 2051
Panel B: GDP growth and its components

GDP Growth Pop Empl/Pop GDP/worker
East Asia & Pacific 8.28 0.97 �0.35 7.61

100.00 11.66 �4.17 91.97
Europe & Central Asia 2.61 0.40 �0.31 2.52

100.00 15.39 �11.90 96.67
Latin America & Caribbean 3.22 1.47 0.37 1.35

100.00 45.54 11.62 41.99
Middle East & North Africa 4.08 1.89 0.00 2.15

100.00 46.34 0.06 52.70
South Asia 6.25 1.77 �0.41 4.83

100.00 28.38 �6.50 77.32
Sub-Saharan Africa 4.09 2.74 0.08 1.23

100.00 67.01 1.94 30.14

poverty fall from over 1.3 billion to 443 million. Over the same period, Sub-Saharan
Africa registered the lowest reduction in poverty rate, 9.1 percentage points –
from 76.1% to 67%. In addition, this modest reduction is accompanied with an
increase in the absolute numbers of people living in poverty, from 387 in 1990 to
617 million in 2012. Interestingly, “putting these trends in perspective” with the
magnitude of the labor productivity’s contribution to economic growth (as shown
in Panel B of Table 3), we observe that the labor productivity growth contributed
92% to economic growth in East Asia, compared with only 30% in Sub-Saharan
Africa, which represents the lowest contribution across regions. Thus, it emerges
that countries that have historically experienced the greatest reduction in poverty are
those in which labour productivity growth made the largest contribution to economic
growth.

This evidence helps underline the centrality of productivity growth for poverty
reduction efforts. Thus, understanding and implementing what drives productivity
growth is key to achieving the Sustainable Poverty Reduction Goals. Nonetheless,
as shown above the required productivity growth to reduce poverty rate 80% by
2030, e.g., is large relative to historical averages in many regions. This suggests that
productivity growth by itself seems unlikely to be enough to attain the Sustainable
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Development Goals for poverty reduction in those regions. Thus, an optimal poverty
reduction strategy should also identify policies and factors that can directly reduce
poverty, even if productivity growth does not increase, or which can improve the
mapping of productivity growth onto poverty (i.e., increase the elasticity of poverty
with respect to productivity growth). To this end, we explore the role of income
redistribution, along with productivity, in the next sub-section.

3.2 Productivity Growth, Income Distribution and Poverty

In the literature on poverty, alongside economic growth progressive income redistri-
bution has been considered as one of the main avenues leading to poverty reduction.
There are two main reasons for this. One is that, in general, for a fixed level of
income, progressive distributional change will shift resources from the richer to the
poorer and thus lead to poverty reduction12 – this is a one-shot instant impact on
poverty resulting from the pure positive redistribution effect. The other reason is
that poverty is more responsive to growth the more equal the income distribution.
In other words, reducing income inequality improves the mapping of growth onto
poverty by increasing (in absolute value) the growth elasticity of poverty and hence
makes future growth more effective in reducing poverty. In sum, an improvement in
the distribution of income has a double poverty-reducing impact. Therefore, we add
a measure of inequality in income distribution (Ineq) into Eqs. (1) and (2).

lnPovit D �i C ˇ1lnProdit C ˇ2Ineqit C "it (4)

lnPovit D �i C ˛1lnGDPit C ˛2Ineqit C !it (5)

where Ineq is measured by the log of the Gini index or by the standard deviation of
the income distribution in logs.

Table 4 shows the results when Eqs (4) and (5) are estimated using the whole
sample and the three variables of poverty described above. The first observation
is that increases in income inequality are positively associated with increases
in poverty, regardless of the inequality indicator. The second observation is that
the introduction of income inequality dampens the impacts of both productivity
and economic growth on poverty (in absolute terms).13 The third noteworthy
observation is that productivity growth is still more efficient in reducing poverty

12The exception is when per capita income levels are below the poverty line, in which case
progressive distributional change leads to increasing poverty.
13The negative impact of higher income inequality on the poverty-reducing impact of both
productivity and economic growth also emerges when we break the entire sample into high and
low income inequality countries.
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than economic growth, irrespective of poverty measures. Moreover, the equations
including productivity growth also still have a more explanatory power in terms of
poverty reduction. Together, these findings suggest that productivity growth is more
relevant for poverty reduction than the more commonly used economic growth, and
that productivity growth that is accompanied by progressive income distributional
change is even better for alleviating poverty.

Table 5 presents the results across regions when we use the poverty measure
based on $3.1 a day and consider the Gini index as a measure of inequality. The
three key findings just discussed above (from all sample estimation in Table 4) still
hold across each region. More importantly, in all cases, productivity growth has both
a larger impact on poverty reduction and a greater explanatory power. Besides, all
these findings are robust to measuring inequality by the standard deviation of the
income distribution in logs (see Table 9 in appendix).

4 Alternative Measures of Poverty Covering Developed
Countries

Viewed from a developed country perspective, living on $1.9 or even $3.1 a day
is unthinkable. This notion of poverty, generally used in developing countries, is
referred to in the literature as the absolute poverty measure. However, applying
this measure of poverty to most developed countries would result in virtually
nobody being classified as poor. The literature on cross-country trends of poverty
in developed countries is largely based on the relative poverty concept, generally
defined as the proportion of individuals with disposable income less than 50% of
the median income in a given country. Thus, there is not a one-to-one relationship
between economic/productivity growth and relative poverty, as the former may
reduce or increase the latter.14 This explains why some people criticize the concept
of relative poverty on the grounds that it is to do with ‘inequality’ rather than
‘poverty’ (see Nielsen, 2009). Relatedly, referring to the measurement of poverty
when the poverty line is set as a function of the income distribution, Fields (1980)
writes that “this is more an inequality measure than a poverty measure, because
if everyone’s income were to increase by the same percentage, poverty would be
unaffected.” Similarly, in Duclos and Makdissi (2007, 2004) relative poverty is

14For example, suppose an economic or productivity growth that increases real incomes along the
entire income distribution. If one can expect that growth to reduce absolute poverty, the effect
on relative poverty will vary depending on which income strata benefits the most. Imagine, e.g.,
that those with mid-level incomes experienced a stronger real income growth than those with low
incomes, this would move more people below the relative poverty line, although their real incomes
actually increased.
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depicted as a restricted or censored inequality measure.15 In other words, relative
poverty is considered as a special way of measuring income inequality. Thus, this
feature of the relative concept of poverty makes it less suitable to use in the study of
trends in poverty.

5 Conclusions and Policy Implications

The United Nations has set a universal goal to eradicate world’s poverty by
2030. To achieve that challenging goal, strong and sustained economic growth
is rightfully considered as the main driving force behind such a pace of poverty
reduction. In dynamic economies, however, most of the economic growth comes
from productivity growth. From this perspective, productivity growth is then the
key for attaining this global objective. Nonetheless, the literature concerning the
relationship between productivity changes and poverty is very sparse. Against this
background, this paper examines the impact of productivity growth on income and
human poverty, and assesses the role played by the income distribution in that
relationship.

Using cross-country data to conduct a regional comparative analysis, the paper
finds that productivity growth is more relevant for poverty reduction than the more
commonly used indicator economic growth – a finding that is robust across all
studied regions. The paper shows that countries that have historically experienced
the greatest reduction in poverty are those in which labour productivity growth made
the largest contribution to economic growth. Thus, although not always recognized
in the literature on poverty, these findings indicate that productivity should be
acknowledged as being central to poverty reduction, and hence be at the center of
any potential successful strategy aimed at reducing poverty. The paper also finds that
the level of income inequality plays an important role in the relationship between
the two variables. The poverty-reducing impact of productivity growth is stronger
in countries with relatively low income inequality. Thus, productivity growth that
is accompanied by progressive distributional change is even better for alleviating
poverty.

However, even though this paper provides strong support for the view that pro-
ductivity growth is essential for poverty reduction and should be a priority for each
and every country, it is much harder to identify and implement appropriate policies
that will increase productivity growth. Many determinants drive the productivity
of an economy, and the literature has stressed the following policies and factors
underpinning national productivity growth: policies and actions that support well-

15Nonetheless, commenting on the links between poverty and (relative) inequality, Sen (1983)
argues that poverty is an absolute notion in the space of capabilities (i.e., the set of functionings
available to an individual), but that it often takes a relative form in the space of income or
consumption because the achievement of some social functionings requires more income in a richer
society.
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functioning institutions (public and private), extensive and efficient infrastructure
investments (in transport, telecommunications, and energy, e.g.), a stable macroe-
conomic environment, human capital development (through quality education and
training, and better healthcare), openness and competition, structural transformation
of the economy (i.e., the transfer of resources from low productivity sectors to high
productivity sectors), the adoption and use of existing new technologies (which are
typically embodied in new machinery and equipment, including ICT capital) and
investment in technological innovation.

Nonetheless, in line with well-known economic theory of stages of development,
although all of the pro-productivity policies described above matter to a certain
extent for all economies, they affect different countries in different ways, depending
on their stage of development. More specifically, the best way for Guinea, e.g., to
improve its productivity is not the same as the best way for Canada to do so – this is
because the two countries are in different stages of development. Less-advanced
countries can substantially enhance their productivity by improving institutions,
building infrastructure, or reducing macroeconomic instability, but all these factors
eventually run into diminishing returns as countries move along the development
path. For more advanced economies, these ‘basic’ productivity-enhancing factors
are no longer sufficient for meaningfully increasing productivity; they have to
increasingly rely on technological innovation. In sum, the relative importance of
each productivity driver depends on a country’s particular stage of development.

Moreover, as the paper shows that the level of income inequality mediates
the relationship between productivity growth and poverty, with a progressive
income distribution increasing the impact of productivity on poverty, some focus
on inequality reduction is not unreasonable. Nonetheless, it is also noteworthy
that unlike in advanced economies, the potential for achieving redistribution via
conventional tax and transfer systems is limited in developing countries. Develop-
ment practitioners have instead advocated for other measures such as increasing
access to credit, strengthening property rights and improving the delivery of public
services. Relatedly, some attention also needs to be paid to the distributional
impact of productivity growth, which in turn suggests a focus on specific drivers
of productivity growth that can directly benefit the poor. The bottom line is that
policies geared toward alleviating poverty must include strategies for sustainable
productivity growth along with those aimed to improve income distribution.

Acknowledgements We would like to thank participants in the 2016 Canadian Economics
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Annexes

Table 6 List of countries by regions

East Asia
& Pacific

East Europe
& Central
Asia

Latin
America &
Caribbean

Middle East &
North Africa South Asia

Sub-Saharan
Africa

Cambodia Albania Belize Djibouti Bangladesh Angola
China Armenia Bolivia Iran, Islamic

Rep.
Bhutan Benin

Fiji Azerbaijan Brazil Jordan India Botswana
Indonesia Belarus Colombia Morocco Maldives Burkina Faso
Lao PDR Bosnia and

Herzegovina
Costa Rica Tunisia Nepal Burundi

Malaysia Bulgaria Dominican
Republic

West Bank and
Gaza

Pakistan Cabo Verde

Mongolia Georgia Ecuador Sri Lanka Cameroon
Papua New
Guinea

Kazakhstan Guatemala Central African
Republic

Philippines Kosovo Guyana Chad
Thailand Kyrgyz

Republic
Haiti Congo, Dem.

Rep.
Timor-Leste Macedonia,

FYR
Honduras Congo, Rep.

Vietnam Moldova Jamaica Cote d’Ivoire
Montenegro Mexico Ethiopia
Romania Nicaragua Gambia, The
Serbia Panama Ghana
Tajikistan Paraguay Guinea
Turkey Peru Guinea-Bissau
Turkmenistan Kenya
Ukraine Lesotho
Uzbekistan Madagascar

Malawi
Mali
Mauritania
Mauritius
Mozambique
Namibia
Niger
Nigeria
Rwanda
Senegal
Sierra Leone
South Africa
Swaziland

(continued)
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Table 6 (continued)

East Asia
& Pacific

East Europe
& Central
Asia

Latin
America &
Caribbean

Middle East &
North Africa South Asia

Sub-Saharan
Africa

Tanzania
Togo
Uganda
Zambia

In bold are countries that are not included when estimating the MPI model

Table 7 The dimensions, indicators, deprivation cut-offs and weights of the MPI

Dimensions of
poverty Indicator Deprived if : : : Weight

Education Years of
Schooling

No household member has completed 5 years of
schooling.

1/6

Child School
Attendance

Any school-aged child is not attending school
up to class 8.

1/6

Health Child Mortality Any child has died in the family. 1/6
Nutrition Any adult or child for whom there is nutritional

information is malnourished.
1/6

Living Standard Electricity The household has no electricity. 1/8
Improved
Sanitation

The household’s sanitation facility is not
improved (according to MDG guidelines), or it
is improved but shared with other households.

1/8

Improved
Drinking Water

The household does not have access to
improved drinking water (according to MDG
guidelines) or safe drinking water is more than a
30-minute walk from home, roundtrip.

1/8

Flooring The household has a dirt, sand or dung floor. 1/8
Cooking Fuel The household cooks with dung, wood or

charcoal.
1/8

Assets
ownership

The household does not own more than one
radio, TV, telephone, bike, motorbike or
refrigerator and does not own a car or truck.

1/8

Table 8 Definitions and sources of data

Variable Definition Mean Std. Dev.

Pov Poverty headcount ratio at $ 1.90 a day % population (constant
2011 PPP $)

19.84 21.64

Poverty headcount ratio at $ 3.10 a day % population (constant
2011 PPP $)

35.16 27.17

Multidimensional poverty index 37.65 29.95
Ineq Log(GINI index) 3.74 0.22

Standard deviation of Income distribution in log 0.37 0.09
Prod Productivity defined as real GDP per person employed (constant

2011 PPP $)
97.68 86.29

GDP Real GDP (constant 2011 PPP $)) 5164.16 4122.65

Source: World Development Indicators
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The Contribution of Productivity
and Price Change to Farm-level
Profitability: A Dual Approach Analysis
of Crop Production in Norway

Habtamu Alem

Abstract Previous studies estimating TFP and its components can be criticized
for not considering unobserved heterogeneity in their model. Moreover, the studies
focused on the technical evaluation of a sector. However, the technical evaluation
alone reveals how well farmers use the physical production process. There is a need
to closely examine the cost efficiency of the farmers. In this study, we used a cost
function (dual) approach to facilitating the decomposition and estimation of TFP
components. Using a translog stochastic cost function, we estimated the level and
source of productivity and profitability change for crop producing family firms in
Norway. We used the true random effect to account for farm heterogeneity. The
analysis is based on 23 years unbalanced panel data (1991–2013) from 455 only
crop-producing firms with a total of 3885 observations. The result indicates that
average annual productivity growth rate in grain and forage production was – 0.11%
per annum during the period 1991–2013. The profit change was �0.14% per annum.

Keywords Productivity · Profit · Panel data · Crop production and cost function

JEL Classification: C23, D24, M21

1 Introduction

Increasing agricultural productivity to feed the growing population is contempo-
rary development challenge for developing and developed countries. Compared
to other European countries, the total acreage of agricultural land in Norway
is small and, because of the topography, many fields are scattered and often
steep. These factors make agriculture costly. In recognition of these conditions,
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the Norwegian government has assigned relatively large subsidies to the agriculture
sector compared with other countries. The main goal of the Norwegian government
is sustainable agricultural production in all regions. Thus, livestock production is a
common practice all over the country. However, eastern Norway and central regions
are with geographical, soil and climatic conditions relatively favorable for grain and
forage production.

Agricultural productivity growth in Norway is a topic of continuing interest to
researchers and policy makers who aim to improve economic sustainability in the
sector. The Norwegian government white paper report no. 9 (2011–2012) stated that
the main goal of the Norwegian agriculture sector is to increase food production to
keep up the present level self-sufficiency. There is a need to measure and evaluate
the economic performance of farms to suggest possible improvements to achieve
agricultural policies.

The economic performance of a firm can be measured by the efficiency and
productivity measures. Efficiency estimation involves estimating the frontier based
on production, cost or profit functions and measuring the performance of the farmers
to the frontier (Coelli et al. 2005). The word productivity1 in economics is a broad
concept, but this study focused on total factor productivity (TFP) as an appropriate
measure of productivity. TFP is the ratio of aggregate output to aggregate inputs,
which shows how much output firms produce from a given quantity of inputs.
The dynamics of TFP can be measured by the evolution of the TFP over time.
TFP change is a widespread quantitative economic instrument used to evaluate
the performance and sustainability of agricultural systems over time. It has proven
valuable for policy measures geared towards fostering agricultural development
(Melfou et al. 2007).

Few studies conducted on the performance of agricultural production in Norway
particularly focused on a dairy farm. For instance (Koesling et al. 2008; Kumbhakar
et al. 2012; Lien et al. 2010; Odeck 2007; Sipilainen et al. 2013). We still very
little known about the performance of the Norwegian agricultural sector First, the
previous studies ignored forage production in spite of it being major output in the
Norwegian agriculture with, for instance, 2400 mill.kg of forage produced in the
year 2013 (Statistics Norway 2016). Second, the analysis for this study is based
on extensive farm-level panel data set for a long period of observations (1991–
2013). The firms, in the long run, can change all inputs and allows choosing the
combination of inputs that reduce the cost of production at a given output. Moreover,
previous productivity studies failed to consider unobserved heterogeneity within the
regions or groups. The efficiency estimated in the previous models didn’t distinguish
individual heterogeneity from the inefficiency. In these models, all the time-invariant
heterogeneity is confounded into inefficiency. Thus, the inefficiency component
might be picking up heterogeneity in addition to or even instead of inefficiency
(Greene 2005).

1Productivity is the ratio of output per unit of input(s) so that it can be measured in different
forms. For instance a partial productivity measure uses only one input e.g. productivity of labor D
aggregate output/labor.
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The rest of the paper organized as follows. Section two presents the theoretical
framework with a detailed derivation of productivity and profitability change
components from the cost function. Section three describes the empirical model
while section four discusses the data and definition of variables used in the cost
function. Empirical estimation and results presented in section five. The final section
encompasses a summary of our findings and conclusions.

2 Theoretical Framework

2.1 Theoretical Background

There are different approaches to measuring and decomposing the dynamics of
TFP. It can be measured by the index numbers such as the Divisia, Malmquist,
Tornquist, Luenberger, and Fisher TFP indexes depending on the aggregation of
outputs and inputs. The most commonly used measure is the Malmquist index,
but a conventional measure is the Divisia index (Zhu et al. 2012). A method first
proposed by Kumbhakar (1996) and Kumbhakar and Lovell (2003) decomposes
TFP into technical change, scale effects, technical efficiency, and a price component.
Following this approach, different papers decompose TFP change commonly using
either Malmquist or Divisia Indices. For instance, Balk (2001) using the Malmquist
index identifies four components of TFP change.

Technical change (TC) results from a shift in the cost frontier. TC captures
the improvement in best practices through the adoption of new technologies. For
instance, farmers using new crop varieties can produce more output at least cost. As
a result, the best farms are getting better. TC can be positive or negative depending
on whether the shift in the cost frontier down or up. The second component of
TFP change is efficiency change (EC), the improvement in the firm’s ability to
use available technology. EC includes movement towards the cost frontier due
to improved farm management, for example, or the wider adoption of better
technology (Kumbhakar and Lovell 2003). The third component is the change in
scale efficiency change (SC). SC shows movements along the cost function and a
decrease in the average cost of production (Coelli et al. 2005). The fourth component
is the input and the output mix effect (mixed-effect), which is very common in the
multiple-input-multiple-output firm. The mix effect measures the effects of change
in the composition of inputs and output vectors over time (Balk 2001).

Kumbhakar and Lozano-Vivas (2005) used the production frontier model to
decompose the Divisia TFP growth into Technical efficiency change (TEC), tech-
nical change (TC), allocative efficiency change (AEC) and scale change (SC)
components. On the other hand, Brümmer et al. (2002) decomposed the Divisa
TFP change into TEC, TC, AEC and SC component using output distance function.
Using input distance function Karagiannis et al. (2004) decompose Divisia TFP
change into the same four components.

There have been several attempts to identify the relationship between profitability
and productivity change. For instance, Miller and Rao (1989) decomposed profit
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change into a productivity effect, an activity effect, and price effect. Grifell-Tatjé
and Lovell (1999) developed an analytical framework in which profit change over
time decomposed into price effect, an activity effect and productivity change effect.
Activity effect includes resource mix, product mix, and scale effect. Productivity
change effect includes operating efficiency and technical change effect. Kumbhakar
and Lien (2009) decomposed the productivity effect further into technical efficiency
and technological change effects while the activity effect subdivided into the scale,
resource mix, and product mix effects see also (Sipilainen et al. 2013).

Our theoretical framework to a large extent follows the approach used by
Kumbhakar and Lien (2009) and Sipilainen et al. (2013). In these studies, the
dynamics of profitability change over time are measured as a change in profit based
on the input distance function approach. These studies focused on the technical
evaluation of dairy firms. However, the technical evaluation alone reveals how well
farmers use the physical production process. There is a need to closely examine the
cost efficiency of the farmers which will also address the management of financial
resources. Moreover, Binswanger (1974) has shown that the dual approach is more
desirable than the production function approach for economic analysis. The dual
cost minimization framework is widely used in productivity literature to estimate
and decompose productivity change through time (Kumbhakar and Lovell 2003).
The theory of the cost function relies on the assumption that firms choose inputs to
the production process that minimize the cost of producing output. The next sub-
section discusses measuring the level of productivity and profitability change using
the dual approach.

2.2 Application

2.2.1 Productivity (TFP) Change Decomposition

Suppose we have a dataset of N firms over T periods and let xitD(x1it, : : : ,xnit) be
the input quantity vector for firm i in period t and Xit � X(xit) be the aggregate
input function. yitD (y1it, : : : ,ymit) is the output quantity vector for firm i in period
t and Yit � Y(yit) is the aggregate output function. where X and Y are non-negative,
non-decreasing and linearly homogenous aggregator functions. Output quantities
are measures of quantities sold plus on-farm consumption and net changes in
inventories. Input quantities are measures of purchasing inputs as well as farm
production used on the farm. If a technology produces multiple outputs, TFP change
(T PFP) is defined as the difference between the rate of change of an output index
( PY) and the rate of change of an input index ( PX) (Kumbhakar et al. 2014). For the
development of expressions (1) to (6), we will suppress the firm subscript i.

T PFP D PY � PX �
X

m

Rm Pym �
X

j

Sj Pxj (1)
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where a dot above a variable will denote the rate of change in the log of that variable;
Rm D pmym/R, RD

P
m Pmym in which R is total revenue and Rm is the observed

revenue share of output ym; p is the output price vector (pDp1, : : : ,pm); y is the
vector of output; and Sj is the observed expenditure share of input Xj (Sj D wjxj/C).
C is the total cost (C D

P
j wjxj); and w is the vector of input price (wDw1, : : : ,wj).

As shown by Kumbhakar and Lien (2009) and Sipilåinen et al. (2013) Eq. (1) can
be re-written as:

T PFP D TC C EC C
�
1 � RTS�1

�
Pyc C

�
Pyp � Pyc

�
� TC C EC C Scale C Markup

(2)

where TC D� @lnC
@t ; RTS�1 D

P
m

@lnC
@lnym

, Pyc D RTS
hP

m
@lnC
@lnym

Pym

i
; Pyp D

P
m Rm Pym; and Pym is the rate of change in output ym. EC (efficiency change) D @TE

@t ;
TE is the mean efficiency level of the firm at a given time. RTS is returns to scale of
the firm. Using this concept we can decompose the profitability change in the next
subsection.

2.2.2 Profitability Change Decomposition

A profit of a firm (�/ D Revenue .R/� cost .C/ D
P

m pmym �
P

j wjxj and change
in profit using Eq. 2 is expressed as:

d�

dt
D

 X
m

pm
@ym

@t
C
X

m

ym
@pm

@t

!
�

0
@X

j

wj
@xj

@t
C
X

j

xj
@wj

@t

1
A

D

 X
m

pmym
@lnym

@t
C
X

m

ympm
@lnPm

@t

!
�

0
@X

j

wjxj
@lnxj

@t
C
X

j

xjwj
@lnwj

@t

1
A

D R

 X
m

Rm Pym C
X

m

Rm Ppm

!
� C

0
@X

j

Sj Pxj C
X

j

Sj Pwj

1
A (3)

Divide Eq. (3) by total cost

1

C

d�

dt
D

R

C

 X
m

Rm Pym C
X

m

Rm PPm

!
�

0
@X

j

Sj Pxj C
X

j

Sj Pwj

1
A (4)

From Eq. (1) and (2) we can get

�
X

j

Sj Pxj D TC C EC C
�
1 � RTS�1

�
Pyc C

�
Pyp � Pyc

�
�
X

m

Rm Pym (5)



260 H. Alem

Substituting (5) into (4)

1

C

d�

dt
D

R

C

"X
m

Rm Pym C
X

m

Rm Ppm

#
�
X

j

Sj Pwj C TC C ECC

 
1 �

X
m

@lnC

@lnym

!
Pyc C

�
Pyp � Pyc

�
�
X

m

Rm Pym

1

C

d�

dt
D

�
R

C
� 1

�
Pyp C

�
R

C

�
Pp � Pw C TC C EC C

�
1 � RTS�1

�
Pyc C

�
Pyp � Pyc

�

(6)

1

C

d�

dt
�

�
R

C
� 1

�
Pyp C

�
R

C

�
Pp � Pw C T PFP

where Pp D
P

m Rm Ppm and Pw D
P

j Sj Pwj. Equation (6) is of primary interest for
this study, which decomposes the change in profit as a percentage of total cost into
several components. Following Kumbhakar et al. (2009) and Sipilainen et al. (2013),
we can give an interpretation of each component in (6) as follows:

(a) TC is the technical change component
�
� @lnC

@t

�
, which will affect profitability

positively if there is technical progress;
(b)

�
1 � RTS�1

�
Pyc is the scale component and measures the effect scale economies.

It will increase profit if RTS >1 and the aggregate output cost (Pyc/ is small.
(c) Pyp � Pyc is the markup component. It will increase profitability of the farm if the

markup change is positive.
(d) EC is the efficiency change component (EC D @u

@t ), which will affect profit
positively if efficiency improves over time;

(e) Pyp
�

R
C � 1

�
is the output growth component, which will increase profitability if

the output growth rate is positive.
(f)

�
R
C

�
Pp is the output price change component; which will affect profit positively

if output price increase overtime;
(g) Pw is input price change component; which will affect profit positively if input

price change is negative

Output change, input and output price change components can be computed
simply from the data, while TC, scale, markup, and EC require econometric
estimation.
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3 The Econometric Model

A cost function gives the minimum2 cost of producing a given level of output
given input prices and technology. That is, we assume that a firm i (iD1, : : : ,N)
is a cost-minimizing entity that produces output Y subject to a production con-
straint F D (Y, X). The mathematical expression as follows:

Min C D

nX
jD1

WjXj .Y;W/ (7)

Subject to

F .Y;X/ D 0

The true cost function is unknown. Thus, consistent with most of the firm efficiency
literature (Christensen and Greene 1976), we can estimate a Transcendental Loga-
rithmic (TL) cost function. It is continuous and non-negative, as well as positively
linearly homogenous, non-decreasing, and concave on price; non-decreasing, and
quasi-convex on output. Our specification of a multi-product TL cost function C for
jD1, : : : , J inputs and mD1, : : : , M outputs can be specified in log form as:

lnc D ˛0 C

4X
jD2

ˇjln Lwj C

3X
mD1

/mlnym C

3X
lD1

/mtlnymt C

4X
jD2

ˇjtln LwjtC

C
1

2

2
4

3X
mD1

X3

mD1
�mmlnymlnym C

4X
jD2

X4

jD2
ıjjln Lwlln Lwj C �t2

3
5C

3X
jD2

X3

mD1
∅jmlnymln Lwj C dt C �i C Vit C Uit (8)

where lnc represents log form of total cost, wj represent the price of inputs j,
and yi is the quantity of output i. ln Lwj D ln wj � ln w1 .8j/ discussed in the
next paragraph. All Greek letters are parameters to be estimated and the white
noise error term (Vit) is added to allow for random measurement error in Eq.
(8). �i capture latent heterogeneity (farm-effect). Uit is the non-negative variable
representing technical inefficiency. We assumed Vit is symmetric and to satisfy the
classical assumptions, i.e. vit

iid � N
�
0; �2v

�
;Vit ? Uit. The trend variable, t, include

2In a cost minimization setup the output(y) is treated as exogenous and the inputs (x) are treated as
endogenous.
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to capture Hicks-neutral technology change starts with TD91 for 1991 and increases
by one annually. Economic theory imposes homogenous and symmetry restrictions
on the parameters. Any sensible cost function must be homogenous of degree 1 in
input prices; thus the restrictions in input prices

Pk
jˇj D 1;

Pk
j �jl D

Pk
j ıjl D 0Iand

the symmetry restriction � lj D � ji. From Eq. (8) we can derive the cost share
function (Sj) using Shephard’s lemma as follows:

sj D
@lnc

@lnwj
D

wjxj

c
D ˇj C

lX
jD2

ıjjln Lwl C
Xm

lD1
∅jmlnym C ˇjtt (9)

Since
Pj

jD1 sj D 1, the cost share Eq. (9) must satisfy the adding-up property.
However, this property implies the same restrictions as linear homogeneity in the
cost function, so we imposed both properties by dividing the quantity of all inputs
by the quantity of one of the inputs. Then, in Eq.(9) we imposed homogenous
restriction by re-defining both the left- and right-hand sides of the equations as

followsW ln Lwj D ln wj�ln w1 .8j/ and lnc D ln
�

c
.

w1

�
. This approach also implies

that one of the share equations has to be dropped. The parameters of the dropped
equation can be recovered from the homogeneity restrictions discussed above. Using
Eqs. (8) and (9), we computed the seven components of profitability change shown
in Eq. (6). We used Greene (2005) model to estimate parameters in Eq. (8). The next
section discusses data source and variables.

4 Data and Definition of Variables

The data used in this analysis is an unbalanced panel with 3885 observations from
farmers involved only in the production of crops (grain and forage) for the year
1991–2013. The data include production and economic data collected annually
by the Norwegian Institute of Bioeconomy Research (NIBIO) from about3 1000
farms in all regions of Norway. Participation in the survey is voluntary. There is
no limit on the number of years a farm included in the study. Some of the farmers
participated more than 20 years, and others have started participating for the first
time. To accommodate panel features in estimation, we included only those farms
for which at least three consecutive years of data are available.

The output measure at our disposal in the data set is the grain output in1000 FU4

(y1), forage output in1000 FU (y2), and other crop outputs in 1000 in Norwegian

3The number of participants varies from year to year. For example in 1991 data has been collected
from 1049 firms but in 2013 it was 924 firms. Approximately 10% of the survey farms are replaced
per year to incorporate changes in the population of farms in Norway.
4FU stands for feed units, which adjust the quality difference in output. 1 FU D 1 kg of grain with
the 15% water content. Thus the output is quality-adjusted yield in kilograms per year.
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Kroner (NOK) (y3). Grain output is an aggregate of four main species: barley, wheat,
oats, and oilseed species. The aggregate is quality adjusted and is measured in FU
(feed units) as defined by NIBIO. Thus, the natural output to use is the quality-
adjusted crop output in kilograms per decare (daa).5

To assess the efficiency and productivity growth, we need to be sure that farmers
under consideration are comparable. Forage and grain output can be an input for
livestock production so that it can be an intermediate product. To avoid double
counting, we have selected only 455 farmers who are involved producing grain,
forage and other crop products (potatoes, tomatoes, vegetables, etc.). These firms
are located in the eastern and central (Trøndlag) regions of Norway. Moreover,
we exclude government intervention like a subsidy in the main output because the
main task of the research is to know how the farmers allocate resources to produce
crop production. Several studies conducted on the effect of subsidizing conclude
that government farm support distorts efficiency (for instance Kleinhanß et al.
2007; Kumbhakar and Lien, 2009). Output prices (Pm) corresponding to the output
variables are estimated from the survey data. Implicit output prices are calculated
from output revenue for each kind of crop divided by the output quantity for each
crop type. Prices for other outputs are aggregated as a Fisher index (Diewert 1998).

Major inputs include labor, measured as the total labor hours used in the
farm, including hired labor, owners’ labor, and family labor; farmland, defined as
productive land (both owned and rented); material which includes inputs such as
fertilizer, seed, and pesticide, registered by their costs of purchase in NOK; and
capital is measured as the sum maintenance and running (hiring) costs, depreciation
and interest costs on the total capital stock (3%) deflated by an index for fixed cost
items figure from NIBIO and calculated at 2013 price levels.

The cost function (8) is specified with the following four input prices (wj). Land
prices are derived from the market prices for rental of farmland, in the area of each
farm. The price of labor is the wage of hiring labor. The price of other variable inputs
and capital costs were constructed as Laspeyres indices based on figures provided
by NIBIO. All prices are deflated to 2013 levels using the agricultural price index
figures also provided by NIBIO. Descriptive statistics of data are summarized in
Table 1. Norwegian farmers are small. The annual average output was about 61,000
FU of grain and 77,000 FU of forage. The average farm received on the output grain
price of 1.86 Norwegian kroner (NOK) per FU and 0.33 NOK per FU for forage.
Figure 1 shows crop output per year was increasing in all three agricultural outputs
and follows an almost similar trend.

5A decare (daa) is equal to 0.1 hectare (ha).
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Table 1 Descriptive statics of model variables in cost function

Variables Label Unit Mean Std. Dev.

Output (yi) y1 Grain output 1000 FU 60.829 65.715
y2 Forage output 1000 FU 76.657 54.278
y3 Other 1000 NOK 9.305 7.546
Inputs (xi) x1 Labor 1000 h 3.492 1.238
x2 Land 1000 daa 0.346 0.202
x3 Material cost 1000 NOK 217.639 133.380
x4 Capital cost 1000 NOK 352.743 343.190
Inputs (pi) p1 Grain price NOK/FU 1.855 0.559
p2 Forage price NOK/FU 0.324 0.477
p3 Other crop prices index 62.836 11.921
Inputs price (wj) w1 Wage NOK/h 144.496 31.926
w2 Rent NOK/daa 237.053 154.551
w3 material price index 67.187 15.590
w4 capital price index 80.741 10.359
T Trend (1Dyear 1991)
N Sample size 3885

NOK Norwegian Kroner and FU Feed Units

Fig. 1 Annual mean crop output from 1991–2013
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5 Estimation and Results

5.1 Testing Model Specification

The cost function is estimated using STATA® version14. The trend variable is
normalized to be zero in the year 2013. All other variables normalized before
taking the logarithms by dividing each variable by its mean value so that the first-
order parameters can be interpreted as elasticities at geometric mean. The estimated
parameters and associated standard errors are reported in Table 3. The results show
that the estimated variable cost function is not decreasing on each input price and
output quantity at any reasonable level of significance. Various specification tests
were conducted to obtain the best model and functional form for the data under
analysis (Table 2).

Before estimating the production function, the skewness of the data tested based
on Schmidt & Lin (1984). The test return of skewness with a P value less than
0.001 shows that the null hypothesis of no skewness confidently rejected. The null
hypothesis that there are no technical efficiency effect in the models was tested. The
null hypothesis rejected, in which the LR is greater than the (mixed) chi-square value
of 5.412. A generalized likelihood ratio test using a mixed chi-squared distribution is
consistent technical inefficiency constituting the largest share of total error variance,
suggesting the appropriateness of the stochastic frontier analysis (SF) approach as
opposed to ordinary least squares (OLS). Moreover, likelihood function expressed
in terms of the two variance parameters as � D �2u=�

2
u C �2v (� D 0.34 in Table

3) shows that technical inefficiency consist the largest share of total error variance
supports the appropriateness using SF approach. An LR tests reject a simplification
of the TL to CD rejected. The goodness of fit measured by the log of likelihood
function is statistically significant.

Table 2 Properties of grain and forage production technology

Restrictions Parametric restrictions chi2 p-value

Cobb-Douglas technology H0: All interaction terms are zero 1285 0.000
Scale technology effects in output H0: /mt D 0 12.31 0.006
Hicks technology effects in inputs H0: “jt D 0 50.63 0.000
Schmidt & Lin (1984) H0: no skewness 445.8 0.000
Generalized LR ratio test Test for one-sided error 61.02 a 0000

aDenotes significant at 1% level of significance using mixed chi-square distribution with 1 degree
of freedom and a critical value of 5.412
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Fig. 2 Histogram of the efficiency index from the Greene (2005) model (The solid line is the fitted
value for the model)

5.2 Inefficiency Score

We plot a histogram of efficiency index using the Greene (2005) true random-effects
model (TRE) model (Fig. 2). The estimated efficiency score across the years of
observation is 0.91. The estimated efficiency index implies that the minimum cost
is about 91% of the actual expenditure. Alternatively, the actual cost can be reduced
without reducing the output by 10% (1/0.91–1) if we remove inefficiency in crop
production in Norway.

5.3 Price and Output Elasticities

Table 3 shows the parameters of stochastic frontier model estimation. The models
exhibit positive and highly significant first-order parameters, fulfilling the mono-
tonicity condition as expected for a well-behaved cost function. The elasticity of cost
on the price of land, other variable input costs and capital costs were 0.04, 0.35 and
0.54, respectively. If one percent increases the price of land, costs will increase by
an estimated 0.04%, ceteris paribus. If the price of other variable inputs increases by
1%, costs will increase by an estimated 0.35%. The coefficient for the capital (fixed
input) price (0.54) is the largest among other partial elasticities and statistically
significant (p < 0.001). The result implies that crop production in Norway more of
capital intensive and the percentage change in the capital price has a larger influence
on crop production compared to other inputs. Thus, any intervention to improve the
crop sector needs to prioritize on these inputs. We can recover and estimate the
elasticity of cost on the price of labor, i.e., If the price of labor increases by 1%,
costs will increase by an estimated 0.07, i.e. 1� (0.04C0.35C0.54). The elasticity
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of cost on grain, forage, and other outputs were 0.14, 0.13 and 0.23, respectively.
This means for instance, if grain output increases by 1%, costs increased by an
estimated 0.14%, ceteris paribus.

5.4 TFP and Profitability Change

The components of TFP and profitability change are plotted in Figs. 3 and 4,
respectively. The estimated average TFP and profitability change are reported in
Table 4. The result indicates that the overall average annual change in the TFP
growth rate in grain and forage production during the period 1991–2013 was
�0.11% per annum. This result is consistent with the results from previous studies.
For instance, a survey conducted for Polish Agriculture reported TFP decreased
by 2% over the period 1996 to 2000 (Latruffe et al. 2008) Moreover, Baráth and
Fertő (2017) reported a decline in TFP for European agriculture from 2004 to 2013.
TFP decline was mainly due to negative contributions from the markup change
component. There are no similar studies conducted for multiple output technology
in forage and grain production for comparison. The estimated result shows that
technological change (TC) was – 0.03% per annum. Moreover, Wang and Ho (2010)
stated that the first order coefficients of the time trend variable show estimates of the

Fig. 3 Mean TFP change components estimated from cost function for the year 1991–2013
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Fig. 4 Mean profit change components for the year 1991–2013

Table 4 Annual TFP,
profitability change and its
components (in percent)

Variable Mean Std. Dev.

Efficiency change (EC) 0.0102 0.0031
Scale change(SC) 0.1001 0.4775
Technical change (TC) �0.0327 0.0228
Markup �0.1859 0.7348
TFP change �0.1122 0.2829
Output price change 0.00002 0.00005
Input price change 0.0259 0.0195
Output change �0.0011 0.0035
Profit change �0.1379 0.2867
Sample size (N) 3885

average annual rate of technical change (TC). The estimated parameter of the trend
variable is positive and statically different from zero at the 1% level of significance,
which suggests technical regress for Norwegian crop production during the study
period. A similar result reported in other studies, for instance, in the Latruffe et al.
(2008) study cited above for Poland for the period 1996–2000. The quadratic term in
Table 3 is positive (coefficient of t2), indicating that the technical regress is getting
stronger over time.

Technical regress may be explained by several factors as discussed in Kumbhakar
and Heshmati (1995) and Kumbhaker et al. (2008). First, they argue that changes in
the regulations concerning input use, for instance, government controls on the use
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of pesticides and fertilizers. Second, there might be increased technical inefficiency
over time due to lack of external competition and restrictions on the transfer of farms
between generations. Finally, a larger real increase in input prices than output prices
may lead to results that look like technical regress. In another study Atsbeha et al.
(2015) proposed that such apparent technical regress can occur if the sector under
consideration is subject to scale restrictions, results in the scale of production that is
sub-optimal to the latest technologies. The later reason is relevant for the Norwegian
crop producing farms, in which the sector is based on small scale family farms and
the land is fragmented. Thus, if there are economies of scale in the production of
crop-producing technologies, this development may result in a shift in the long-run
average cost of crop producing farms that leave small farms worse off over time.

As shown in Table 4 in the appendix, technical regress has been neither scale nor
Hicks neutral. Moreover, Hicks non-neutrality of technology regress is exhibited
as a significant interaction parameter with time (t) for cost share of variable inputs
( Lw3) and fixed input ( Lw4) (Table 2). Technological change exhibits a positive effect
on the cost share of fixed inputs and a negative effect for cost share of variable
inputs. Thus TC was non-neutral over the last 23 years. With respect to scale,
the interaction parameter with time (t) for grain production (tlny1) is negative and
statically significant, which suggests that the cost increasing effects of technical
regress get weaker as grain production increase. However, the interaction parameter
with time (t) for other output (tlny3) is positive and statistically significant, which
suggests that the cost increasing effects of technical regress have become stronger
for the other output production increase. These suggest that the technical regress
was more important for small scale grain production and big scale other output
production.

Efficiency change, which measures the change from observed cost towards the
best practice farmers, was positive (0.01) % per annum. The estimated result of a
decline in TC and an improvement in efficiency shows farmers are able to adopt the
prevailing technology and hence lie, on average, closer to the frontier (Latruffe et al.
2008). The scale component (SC) was positively contributed to the total productivity
change (0.10) % per annum. The contribution of the markup for the period 1991–
2013 was �0.19% per annum. A markup effect could show firms have some market
power and price above their marginal cost. However, a negative markup implies that
market power through price-making does not give effect on firms’ performance. A
non-zero markup effect on TFP means that output prices diverge from the marginal
cost of production, i.e. the output market is non-competitive (Sipiläinen et al.
2013). The contribution markup effects are shown in Fig. 1, which is fluctuating
considerably over time and has almost the same movement as that of TFP change.

Figure 4 and Table 4 shows the estimated results of annual profitability change
component (in percent). The profit change component was �0.14, suggesting that
profit has declined by 0.14% per annum. This is mainly because of the negative
TFP change of 0.11% per year with some contributions from an input price annual
change of 0.03%. The contributions from output change and output price change,
which might have a positive effect on the profitability change, are almost zero.



The Contribution of Productivity and Price Change to Farm-level Profitability: : : 271

6 Discussion and Conclusion

The economic performance of a farm is commonly measured by the efficiency
and productivity measures. We used farm level unbalanced panel data for the year
1991–2013. We have selected only crop producing specialized 455 farms located
in the eastern and central (Trøndlag) regions of Norway. We have estimated the
profitability and productivity of the Norwegian crop producing specialized farms
using a translog cost function. The result indicates that average annual TFP growth
rate in grain and forage production declined by 0.11% per annum during the period
1991–2013. The contributions of the technological change and markup change were
� 0.03% and �0.19% per annum, respectively. Efficiency change, which measures
the change from observed cost towards the best practice farmers, was positive
(0.01% per annum). Moreover, the scale component has positively contributed to the
total productivity change (0.04% per annum). The profit change declining by 0.14%
and this was mainly because of the negative TFP change with some contributions
from an input price change component increase by 0.03% per year.

Technical change captures the shift in technology and is the key driver of prof-
itability and productivity growth. Policy makers have to give priority to investing in
agricultural research and development, which can help in the innovation of new
technologies and improvement in TC. Investment in research and development
support for innovation of new technology and improves TC (O’Donnell 2010). The
study also shows that there was a small efficiency change for the last 23 years. Thus,
farmers continue to be lagging behind the best-practice farmers. Therefore, there is a
need for intensive work on agricultural extension and dissemination to help farmers
adopt the existing technologies.
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Estimation of Health Care Demand
and its Implication on Income Effects
of Individuals

Hossein Kavand and Marcel Voia

Abstract Zero inflation and over-dispersion issues can significantly affect the
predicted probabilities as well as lead to unreliable estimations in count data models.
This paper investigates whether considering this issue for German Socioeconomic
Panel (1984–1995), used by Riphahn et al. (2003), provides any evidence of
misspecification in their estimated models for adverse selection and moral hazard
effects in health demand market. The paper has the following contributions: first,
it shows that estimated parameters for adverse selection and moral hazard effects
are sensitive to the model choice; second, the random effects panel data as well
as standard pooled data models do not provide reliable estimates for health care
demand (doctor visits); third, it shows that by appropriately accounting for zero
inflation and over-dispersion there is no evidence of adverse selection behaviour
and that moral hazard plays a positive and significant role for visiting more doctors.
These results are robust for both males and females’ subsamples as well as for the
full data sample.

Keywords Over-dispersion · Zero-inflated distribution · Adverse selection ·
Moral hazard · Health demand

JEL Classification: C46, C52, I11, I13

1 Introduction and Literature Review

Pauly (1968), Rothschild and Stiglitz (1976), and Bundorf et al. (2005), respectively,
delineate the effect of moral hazard, adverse selection, and income effect in health
insurance markets. A number of studies have investigated these effects, though
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sometimes different econometric methodologies led to different interpretations
about the effects of similar data.

Following the model developed by Cameron et al. (1988), Riphahn et al.
(2003) we estimate the demand for doctor and hospital visits for the German
Socioeconomic Panel data (GSOEP, 1984–1995). The findings of this study suggest
that adverse selection, where a high-risk individual buys more insurance coverage,
affects positively the number of doctor and hospital visits for only the males’
hospital demand. Moral hazard, where an insured individual uses more health
care services because of its lower cost, does not have any significant effect
on any of the above health-care demands. Among other studies that looked at
the effect of asymmetry information on health care demand are the studies of
Chiappori and Salani (2000) that examined adverse selection using German data,
while Geil et al. (1997) and Cameron et al. (1988) investigate moral hazard using
Australian data.

In their theoretical model, Wolfe and Goddeeris (1991) delineate that wealth can
ambiguously affect health-care demand. Their empirical results, however, indicate
that both “bequeathable” and “non-bequeathable” wealth substantially increase the
demand for both supplementary health care and health expenditure. Data reveals
that those who enrolled for supplementary insurance, on average, had 50% higher
wealth. They estimate the effect of moral hazard in a health expenditure model and
use its estimated error term as a proxy for unexplained expenditure in their health
care demand model. Its significant coefficient indicate the existence of selection
effect.

For U.S. data, Marvasti (2014) finds that the demand for services of doctors
is neither income elastic nor price elastic. As Marvasti discusses, however, Bago
d’Uva and Jones’ (2009) latent hurdle model confirms a positive income effect on
the number of visiting doctors for European data. Amponsah (2013) confirms moral
hazard and adverse selection for Ghanaian health care, and finds that an individual
in a higher income group to be more likely to buy health insurance (income effect).
His study confirms the income effect found in Asante and Aikins (2008) and Kirigia
et al. (2005).

Keane and Stavrunova (2016) use a simultaneous equation model to jointly
investigate adverse selection and moral hazard for the U.S. supplemental health-
insurance market, namely Medigap. They extend previous studies by employing a
smooth mixture of the Tobit model to control for heterogeneity, and by capturing the
correlation between unobservable factors that affect both health insurance demand
and health expenditure. Although they find a negligible adverse selection into
Medigap, the insurance coverage leads to a significant rise in health care utilization
and its related costs (moral hazard). Conditional on the supplemental insurance
and health status, income has a small effect on health expenditure (See Cardon
and Handel (2001) and Bajari et al. (2011, 2014) for other health market structural
models).
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To deal with inflated zeros in health care demand variables, researchers rely on
different approaches. Powell and Goldman (2016) control for zero medical care
expenditure and its heavily-skewed distribution by employing a quantile treatment
effect framework (see Powell (2014)). The framework estimates an unconditional
distribution for health care expenditures by assuming no adverse selection. They
compare this distribution with the observed health expenditure distribution to esti-
mate adverse selection effects. After separating moral hazard and adverse selection,
each factor almost explains half of the reason for higher medical expenditure of a
most generous plan compared to a least one.

With around 90% and 35% zeros for the number of doctor visits and hospital
visits, the results of Riphahn et al. (2003) can also suffer from over-dispersion by
not taking them into account. To mitigate the random effects, they mix a Poisson
distribution with log-normal distribution; however, the approach may not account
for the over-dispersion. In this paper, we estimate different versions of generalized
standard distributions and zero-inflated models discussed by Harris et al. (2014) and
Hilbe (2011).

We investigate how accounting for inflated zeros impacts the effects of moral
hazard effects and adverse selection, which affects how individuals allocate
their income to health care. We examine the importance of over-dispersion in
the data, and select the model that results in more accurate predictions for
the data from Riphahn et al. (2003). Comparing with Riphahn et al. (2003),
the selected Zero-Inflated Negative Binomial2 (ZINB2) model estimates the
impact of the adverse selection and moral hazard on health-care demand in a
consistent way.

A number of papers have extended the application of zero-inflated models.
Greene (1994) considers the zero-inflated negative binomial (ZINB). As Ainsworth
(2007) argues, ZINB model is used by Neal and Gaher (2006) to study drug
use issues among college students; Gupta et al. (1996) and Famoye and Singh
(2006) apply a zero-inflated Generalize Poisson model to study frequentist setting.
Ainsworth (2007) points out that Zero-inflated models have been further developed,
in Ecology, by Ridout et al. (1998), Martin et al. (2005) and Kuhnert et al. (2005) to
explain different kinds of zeros: those that are structural as well as those that depend
on the study. Other papers, for example, Cohen (1960), Johnson et al. (2005) are
focussing on underscore zeros, while Melkersson and Rooth (2000), Li et al. (2003)
are focussing on situations where data have inflated zero.1

The outline of the paper is as follows. Section 2 discusses the different method-
ologies that are employed in this paper. Section 3 describes the data used in the

1As will be discussed in following sections, recently various extensions of zero-inflated models
have been emphasised by Harris et al. (2014) and are incorporated in STATA. More details about
some of these models are discussed in Hilbe (2011). While, STATA is not able to provide panel
data estimates for zero-inflated models, LIMDEP is able to estimate fixed effect and random effect
models in this context.
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analysis, and Sect. 4 provides the results of different model specifications. Section
5 evaluates the predictions of the employed models, and Sect. 6 reviews robustness
checks. Section 7 concludes.

2 Methodology

2.1 Discussion of Over Dispersion

In what follows we discuss the importance of properly accounting for over
dispersion when it is present in count data models such as the ones used to model
doctor and hospital visits. As Hilbe (2011) discusses, omitted variable, the existence
of outliers, or clustering that results in correlation between responses can cause over-
dispersion. Its presence in count data models raises the Pearson statistics adjusted
with degree of freedom above one.2 The uncontrolled over-dispersion may results
in unreliable hypothesis test. In what follows we present how over-dispersion can
be taken into account for count data models through mixing the Poisson distribution
with other distributions.

2.2 Count Data Models

A Poisson model with equal mean and variance, E(Yi) D V(Yi) D�i, has no power
in dealing with over-dispersion. To make it more flexible, the model can be
augmented with other distributions. This is done by relating its mean to an individual
unobserved effect (ui). We can obtain different extensions of the Poisson model
depending on how we specify the distribution for ui. Appendix B, Table 21, provides
an extensive discussion about these extensions. A Generalized Poisson (GP) model
can also accommodate both over-dispersion and under-dispersion. We use these
distributions to discuss the robustness of the results in the analysed data.

2.3 Zero-Inflated Count Models

Data with more zeros than what we expect from a particular distribution may be
a suspect of over-dispersion. Zero-inflated Poisson (ZIP) model and zero-inflated
negative binomial (ZINB) models adjust for excessive zeros in the response. Hilbe

2See Hilbe 2011, chapter “The Contribution of Productivity and Price Change to Farm-level
Profitability: A Dual Approach Analysis of Crop Production in Norway”.

http://dx.doi.org/10.1007/978-3-319-68678-3_12
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(2014) discuss different versions of zero-inflated models. The mixture framework
of these distributions can explain more of over-dispersion in the data.

Appendix B, Table 22, presents different zero-inflated distributions that are used
as robustness checks for our analysis. Following Hilbe (2011), a Vuong (1989)
test3 for non-nested models is used to compare the suitability of a zero-inflated
distribution against its standard distribution as in Table 21. If Vuong test is positive
and significant, the zero-inflated model is preferred to its corresponding standard
one. With negative and significant value, the standard model is the selected one.
With a non-significant Vuong test, none of them is preferred to the other one. As an
additional check, we look at the predictability of different model specifications.

3 Data Description

We use the same data as in Riphahn et al. (2003) that is “the first twelve annual
waves (1984 through 1995) of the German Socioeconomic Panel (GSOEP) which
surveys a representative sample of East and West German households”. The data set
is downloadable from the web site of Journal of Applied Econometrics.4 The data is
restricted to individuals aged between 25 and 65. Table 11 presents the descriptive
statistics of the dependent variable by gender.5 Following Riphahn et al. (2003), the
dependent variables are defined as “the number of visits to a doctor within the last
quarter prior to the survey, and the number of inpatient hospital visits with at least
one night spent in the hospital within a given calendar year”.

Table 1 shows the presence of inflated-zeros in both hospital visits and doctor
visits for both genders. Around 92% and 44% of males did not visit a hospital and a
doctor. For females, the shares of zero hospital and doctor visit are around 90% and
30%, respectively. The abundance of zeros in both kinds of visits suggests that zero-
inflated distributions might be better options rather than their standard versions for
the purpose of examining doctor and hospital demands. Since the frequency of zeros
for doctor visits is less than for hospital visits, this paper focuses on the demand
equation for doctor visits. If the results for this equation confirm the superiority of
zero-inflated distributions over their standard versions, the results can be extended
to demand for hospital visits as well. Among the explanatory variables, Riphahn
et al. (2003) consider two different dummy variables for two types of insurance:
whether an individual has public insurance or not, and, if yes whether he or she has
an add-on insurance policy, which is an optional policy to cover some other costs.
They argue that 90% of German people have mandatory insurance policy with only
1% without any insurance.

3Vuong test is a likelihood ratio based test for selecting a specific model among non-nested models.
4See: http://qed.econ.queensu.ca/jae/
5For more detail about the data see Table 11 in the appendix as well as Riphahn et al. 2003.

http://qed.econ.queensu.ca/jae
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Table 1 Dependent variables: Descriptive statistics

(Share of total observation, %)
Hospital visit Doctor visit

Value Males Females Males Females

0 92.21 90.18 44.05 29.51
1 6.18 7.88 13.82 13.17
2 1.09 1.28 11.63 13.42
3 0.15 0.27 8.48 11.49
04-Sep 0.21 0.25 15.29 21.83
10 and more 0.16 0.14 6.73 10.58
Mean 0.128 0.15 2.63 3.79
Std dev. 0.93 0.83 5.21 6.11
Median 0 0 1 2
N 14,243 13,083 14,243 13,083

Source, German Socioeconomic Panel (1984–1995)

All the explanatory variables are the same as Riphahn et al. (2003); see Table 11
in the appendix.

4 Discussion of the Results

4.1 Panel Data Models

On the demand side, Riphahn et al. (2003) assume a bivariate model for the demands
of doctor and hospital visits. These demands follow a Poisson distribution, and the
unobservable heterogeneity and error terms follow lognormal and bivariate normal
distributions, respectively:

yitg � Po(�itg) g D 1, 2 (with 1 for doctor visits and 2 for hospital visits).
ln(�it1) Dˇ

0

xit1 C ui1 C "it1; ui1 � N
�
0; �2u1

�
; ."it1; "it2/ � N2

�
0; 0; �2"1; �

2
"2; �

�
;

E[uigujh) D 0 if i ¤ j _ g ¤ h.
ln(�it2) Dˇ

0

xit2 C ui2 C "it2; ui2 � N
�
0; �2u2

�
; E["itgujh) D 0 8 i, t, g, j, h;

E["itg"jsh) D 0 if t ¤ s i ¤ j _ g ¤ h

To integrate out the unobserved heterogeneity uig, a Gauss- Hermite approxima-
tion was used, while to integrate the distribution of cross-equation errors ("itg) a
modified Gauss-Legendre approach was applied.

Riphahn et al. (2003) use the public insurance dummy to check for moral hazard
and the add-on insurance dummy to check for adverse selection. The results indicate
no evidence of moral hazard for demands for doctor visits and hospital visits: the
coefficient of public insurance dummy are statistically insignificant and negative for
male’s hospital demand. Their model estimates positive coefficients for add-ons for
both demands, though it is statistically significant only for males’ hospital demand
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and confirming adverse selection for it. Also they found that self-employed females
and males have fewer visits to doctors than other employees.

4.2 Random Effects Model

As mentioned above, Riphahn Overall (2003) do control for unobserved effects by
mixing Poisson distributions, however, their model lacks accounting for the inflated
zeros in the data. Consequently, by taking into account this issue one can provide
more reliable estimated parameters for add-on and public insurance variables.

To reconcile our analysis with Riphahn et al. (2003), we first estimate random
effects models for doctor visits using a Gaussian distribution and a Gamma distribu-
tion to account for the unobserved heterogeneity. For the purpose of comparing our
model with their model, we focus on the estimated coefficients for public insurance
and add-on insurance dummies.

Table 2 reports the doctor visits’ results for both females and males. Based
on AIC and BIC criteria, we see that Gamma distribution is a better choice for
the data. Also, with Gamma distribution the coefficient of public insurance is
positive and statistically significant for both females and males while in the case of
Gaussian distribution both of them are positive but insignificant. For both models,
the coefficient of add-on is negative but not significant. The results show that,

Table 2 Random effect model with Gaussian and Gamma distributions for the unobserved
heterogeneity term

Males Females
RE Normal RE Gamma RE Normal RE Gamma

Doctor visit equation
Public Insurance 0.106 0.103*** 0.0638 0.0690*

(0.0844) (0.0388) (0.0733) (0.0360)
Add-on Insurance �0.0334 �0.0340 �0.0260 �0.0317

(0.103) (0.0535) (0.0897) (0.0456)
Lnsig2u 0.0138 �0.248***

(0.0393) (0.0391)
Lnalpha �0.00860 �0.277***

(0.0293) (0.0286)
Observations 14,243 14,243 13,083 13,083
AIC 65802.1774 65713.7349 70856.0950 70728.1257
BIC 65976.1498 65887.7074 71028.1136 70900.1443
Log lik. �32878.1 �32833.9 �35405.0 �35341.1

Source, German Socioeconomic Panel (1984–1995)
Standard errors in parentheses
*p < 0.10, **p < 0.05, ***p < 0.01
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although it seems that Gaussian distribution is more flexible than Gamma, NB2
(a mixture of Poisson and Gamma) is a better option for this data.

4.3 Standard Count Models

Following Greene (2008), we use pooled data to select the best model between
standard models. Table 3 presents the results for males’ visits to doctors when
employing the models in Table 21: Poisson, Negative Binomial 1 (NB1), Negative

Table 3 Standard distributions for doctor visit for males

Poisson NB1 NB2 Gen_Possion NBFamoy GNBWaring

Doctor visit
equation
visiequation
Public
insurance

0.100 0.0607 0.0934 0.0595 0.0934 0.0578

(0.0702) (0.0539) (0.0635) (0.0549) (0.0635) (0.0577)
Add-on
insurance

0.0666 0.139* 0.0551 0.144* 0.0551 0.154*

(0.102) (0.0777) (0.0948) (0.0791) (0.0948) (0.0844)
Constant 2.771*** 2.776*** 3.149*** 2.780*** 3.710*** 2.929***

(0.336) (0.254) (0.329) (0.258) (0.330) (0.273)
Lndelta 1.581***

(0.0365)
Lnalpha 0.561***

(0.0270)
Atanhdelta 0.726***

(0.0115)
Lnphim1 �17.76***

(3.253)
Lntheta �0.561***

(0.0270)
Lnrhom2 0.783***

(0.0981)
Lnk 2.303***

(0.130)
Observations 14,243 14,243 14,243 14,243 14,243 14,243
AIC 85593.4779 54865.9120 55006.8616 54700.9022 55008.8616 54528.6162
BIC 85759.8863 55039.8845 55180.8341 54874.8747 55190.3981 54710.1527
Log lik. �42774.7 �27410.0 �27480.4 �27327.5 �27480.4 �27240.3
Dispersion 6.67597 constant 1.998817

Source, German Socioeconomic Panel (1984–1995)
*p < 0.10, **p < 0.05, ***p < 0.01
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Binomial 2 (NB2), Generalized Poisson (GPoisson), Negative Binomial Famoye
(NB Famoye), and Negative Binomial Waring (NB Waring).

The results for Poisson, NB1 and NB2 are the same as in Greene (2008).
Based on the dispersion criteria which has a high dispersion value of 6.67, Poisson
distribution is not suitable. NB2 defeats Poisson by reducing considerably the value
of dispersion to 1.99. This can also be confirmed by ln(˛) D 0.561 which measures
the logarithm of the dispersion parameter (˛) and based on the likelihood ratio test
is statistically significant. The same conclusion is obtained for other distribution:
NB1, Generalized Poisson, NB Famoye and NB. Using AIC and BIC criteria, the
NB Waring model is the best model for these data. It is followed by the Generalized
Poisson, NB1, NB2, and NB Famoye.

NB Waring model estimates a positive and significant coefficient for the add-on
insurance. In addition this parameter is positive in all models but only significant in
NB1 and Generalized Poisson and NB Waring models. The estimated parameter for
public insurance is positive in all the models but statistically insignificant. Table 12
in the appendix A reports all parameter estimates.

Table 13 in the appendix A, shows the same results for females. The results
for dispersion and the ranking of the best models are the same as for males.
Still, NB Waring is the best one and NB2 is in the second rank. The only
difference is observed in add-on’s estimated parameter. This parameter is positive,
and, as for males, statistically significant for NB1 and generalized Poisson but
not for NB Waring. For public insurance, all the models provide positive values
except for the Poisson model, which is a completely unreliable model, where it is
statistically significant. This can be viewed as evidence of over-dispersion, leading
to underestimation of standard errors, making the coefficient statistically significant.

To conclude this analysis, we can state that even if we ignore the zero-inflated
nature of the data, we can designate NB family and Generalized Poisson as better
choices than the simple Poisson model.

Finally, Table 4 provides results for heterogeneous NB2. For this model, all the
explanatory variables are used to explain its dispersion parameter. In comparison,
AIC and BIC criteria indicates that this model is better than the simple Poisson
for both males and females. Also, based on AIC criteria, this model has the lowest
value compared to other specifications. In this model only the coefficient of public
insurance for females is statistically significant.

4.4 Zero-Inflated Models (Pooled Data)

Following Greene (2008) again, we use pooled data to select the best model among
zero-inflated models introduced in Table 22. Since for the zero inflated models
it is necessary to specify the inflation function, all the explanatory variables are
covariates in this function.

Table 5 provides estimation results related to zero-inflated models for males.
Based on the positive and statistically significant values of Vuong statistics (the
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Table 4 Heterogeneous NB2 for doctor visit for males and females

Hete_NB2_Male Hete_NB2_Female

Doctor visit equation
Public insurance 0.0940 0.105*

(0.0652) (0.0599)
Add-on insurance 0.0427 0.0347

(0.0927) (0.0754)
Constant 2.977*** 2.874***

(0.318) (0.272)
Lnalpha
Public insurance 0.0188 0.0190

(0.0985) (0.102)
Add-on insurance �0.397*** �0.495***

(0.153) (0.142)
Constant �0.839* �1.217***

(0.452) (0.453)
Observations 14,243 13,083
AIC 54493.3321 60278.6270
BIC 54826.1490 60607.7061
Log lik. �27202.7 �30095.3

Source, German Socioeconomic Panel (1984–1995)
*p < 0.10, **p < 0.05, ***p < 0.01

test for non-nested models), there is a strong evidence to prefer the zero-inflated
models to their corresponding standard models. Also, add-on contributes to the
over-dispersion in the data as it is significant in the zero-inflated function. The
Zero-Inflated Negative Binomial (ZINB) Waring model has the lowest AIC and
BIC values followed by ZINB2 ZINB-Famoye and zero-Inflated Poisson (ZIP). The
statistically significant estimated parameters related to dispersion in ZINB Waring
and ZINB2 indicate that zero-inflated Poisson is not a good choice for these data
and its significant coefficient for add-on is not reliable.

The estimated parameters for add-on are negative for all of the models but
statistically insignificant except for ZIP. Moreover, the public insurance coefficient
is positive and statistically significant ZIP and ZINB2.

Table 6 provides the results of zero-inflated models for females. The results for
females are similar to those for males. In the case of females, the coefficient for
public insurance is statistically positive for ZINB2 model.
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Table 5 Zero-Inflated models for males

ZIP ZINB2 ZINBFamoye ZINBWaring

Doctor visit equation
Public insurance 0.0794*** 0.0971* 0.0899 0.0565

(0.0247) (0.0571) (0.0560) (0.0623)
Add-on insurance �0.0839* �0.0388 �0.0694 �0.00574

(0.0430) (0.0962) (0.0933) (0.101)
Constant 2.502*** 2.567*** �5.078 2.598***

(0.108) (0.263) (154.3) (0.291)
Inflate equation
Public insurance �0.0226 0.0342 0.00727 �0.00330

(0.0755) (0.162) (0.124) (0.148)
Add-on insurance �0.423*** �0.651 �0.590* �0.637*

(0.157) (0.446) (0.316) (0.387)
Constant �3.718*** �6.989*** �5.710*** �4.933***

(0.371) (0.935) (0.670) (0.772)
Lnalpha 0.154***

(0.0303)
Lnphim1 6.560

(154.4)
Lntheta 7.652

(154.3)
Lnrhom2 0.866***

(0.0550)
Constant 0.897***

(0.103)
Observations 14,243 14,243 14,243 14,243
AIC 70905.8533 54536.9885 54383.8199 54168.3164
BIC 71238.6702 54877.3694 54731.7649 54516.2613
Log lik. �35408.9 �27223.5 �27145.9 �27038.2
Vuong_statistic 31.546871*** 11.554577*** 14.015931*** 21.082627***

Source, German Socioeconomic Panel (1984–1995)
Standard errors in parentheses
*p < 0.10, **p < 0.05, ***p < 0.01

5 Model Evaluation

5.1 Distribution Comparisons

In this section, we compare the predictions of Poisson, zero-inflated Poisson (ZIP),
NB2, and ZINB2 for doctor‘s visit with the corresponding actual distribution.6

6Since the predicted values might not be integers, we convert them to the closest integer.
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Table 6 Zero-inflated models for females

ZIP ZINB2 ZINBFamoy ZINBWaring

Doctor visit equation
Public insurance 0.112*** 0.0788* 0.0674 0.0595

(0.0217) (0.0466) (0.0459) (0.0495)
Add-on insurance �0.0652* �0.0146 �0.0333 0.0649

(0.0337) (0.0768) (0.0758) (0.0753)
Constant 2.307*** 2.586*** �5.259 2.663***

(0.0922) (0.222) (134.6) (0.228)
Inflate equation
Public insurance �0.0857 �0.207 �0.149 �0.122

(0.0855) (0.194) (0.145) (0.165)
Add-on insurance �0.427** �0.913 �0.733 �0.459

(0.176) (0.887) (0.476) (0.416)
Constant �4.329*** �8.360*** �6.726*** �5.556***

(0.417) (1.218) (0.829) (0.883)
Lnalpha �0.0723***

(0.0258)
Lnphim1 6.579

(134.7)
Lntheta 7.879

(134.6)
Lnrhom2 1.091***

(0.0464)
Lnk 1.142***

(0.0868)
Observations 13,083 13,083 13,083 13,083
AIC 79784.3595 60296.0349 60130.3157 59863.0979
BIC 80113.4386 60632.5930 60474.3529 60207.1351
Log lik. �39848.2 �30103.0 �30019.2 �29885.5
Vuong_statistic 31.52*** 8.80*** 12.18 *** 12.67***

Source, German Socioeconomic Panel (1984–1995)
Standard errors in parentheses
*p < 0.10, **p < 0.05, ***p < 0.01

Figure 1a and b compare the predicted frequency of the number of doctor visits by
Poisson and ZIP with their actual frequencies. Both figures show that Poisson and
zero-inflated Poisson models underestimate the zeros and overestimate the ones.
Figure 1c compares the distributions results from the Poisson and zero-inflated
Poisson models. We see that zero-inflated Poisson increases the estimated frequency
of zeros by almost 40%, which is a substantial improvement in terms of prediction.
We observe also some improvements in the reduction of the estimated one and two
visits. Regarding four and more visits, both models are nearly the same.
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Fig. 1 Doctor visits (DV) and predicted DV by model specification (a) Doctor visits (DV) and
predicted DV (by Poisson) (b) DV and predicted DV (by ZIPoisson) (c) Predicted DV by Poisson
and ZIPoisson (d) DV and predicted DV (by NB2) (e) DV and predicted DV (by ZNB2) (f)
Predicted DV by NB2 and ZNB2

Figure 1c, d and e compare the results for NB2 and zero-inflated NB2. The
improvement in the number of zeros using zero-inflated NB2 is almost 20%
compared with the standard NB2. This improvement is less than what we men-
tioned above comparing Poisson and zero-inflated Poisson. We can justify it since
comparing with Poisson model the standard NB2 has more power in accounting
for over-dispersion, as we discussed before. This can also be seen in Tables 14, 15,
16 and 17 of the appendix A. For example, standard Poisson distribution predicts
correctly 838 zeros while standard NB2 predicts correctly 1170 zeros. With zero-
inflated Poisson and zero-inflated NB2 these values increase to 1441 and 1446,
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respectively. In addition, the zero-inflated models provide some improvements on
the estimation of other numbers of doctor visits.

5.2 Predicted Versus Realizations Comparisons

Table 7 compares four models based on the maximum differences and mean absolute
differences between predicted and actual counts. The results show that Poisson
performs worst at predicting the 0 s, and NB2 and ZIP perform worst at predicting
the 1 s, while ZINB2 is worst at predicting the 2 s. However, the maximum
difference and mean of absolute differences are much lower for ZINB2 which means
this model is the best one in terms of overall prediction. The Pearson statistic equals
193.429 for this model (the lowest of all models), which confirms it is the best model
in terms of prediction (see Table 18 in the appendix A for more details).

Figure 2 presents the density comparison between actual and predicted probabil-
ities. Again, we see that ZINB2 is superior to ZIP in predicting actual probabilities.
Further, Fig. 3 plots the residuals from the tested models. Small residuals indicate
a good fit, so the models with lines closest to zero should be considered as the
suitable ones. We can see that the residuals line for ZINB2 is very close to zero
when compared with the line of residuals for all the other models, confirming the
results of all previous findings.

Finally, Table 8 provides tests for choosing the best model in terms of fit statistics
such as AIC and BIC as well as Vuong statistic. The results also indicate that ZINB2
is the best model among the models under consideration.

6 Robustness Checks

6.1 Robustness Results on Pooled Sample

The results of previous sections show that zero-inflated NB2 could be considered
a suitable model in terms of prediction for both female and male subsamples.
The model predicts that public insurance has a positive and statistically significant

Table 7 Comparing the mean of observed and predicted count

Model Maximum difference At value Mean jDiffj

Poisson 0.273 0 0.054
NB2 �0.042 1 0.009
ZIP 0.082 1 0.023
ZINB2 0.017 2 0.006
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Table 8 Tests of fit statistics

Poisson BIC D 85759.8 AIC D 85593.5 Prefer Over Evidence
Vs NB2 BIC D 55180.8 Diff D 30579.1 NB2 Poisson Very strong

AIC D 55006.8 Diff D 30586.6 NB2 Poisson
LRX2 D 30588.6 Prob D 0.000 NB2 Poisson P D 0.000

Vs ZIP BIC D 71238.7 Diff D 14521.2 ZIP Poisson Very strong
AIC D 70905.8 Diff D 14687.6 ZIP Poisson
Vuong D 31.54 Prob D 0.000 ZIP Poisson P D 0.000

Vs ZINB2 BIC D 54877.4 Diff D 30882.5 ZINB Poisson Very strong
AIC D 54536.9 Diff D 31056.5 ZINB Poisson

NB2 BIC D 55180.8 AIC D 55006.8 Prefer Over Evidence
Vs ZIP BIC D 71238.7 Diff D � 16057.8 NB2 ZIP Very strong

AIC D 70905.8 Diff D � 15898.9 NB2 ZIP
Vs ZINB2 BIC D 54877.4 Diff D 303.4 ZINB2 NB2 Very strong

AIC D 54536.9 Diff D 469.8 ZINB2 NB2
Vuong D 11.55 Prob D 0.000 ZINB2 NB2 P D 0.000

ZIP BIC D 71238.7 AIC D 70905.8 Prefer Over Evidence
Vs ZINB2 BIC D 54877.4 Diff D 16361.3 ZINB2 ZIP Very strong

AIC D 54536.9 Diff D 16368.8 ZINB2 ZIP
LRX2 D 16370.8 Prob D 0.000 ZINB2 ZIP P D 0.000

coefficient for both subsamples, which has implications on the income effects of
individuals.

Now, we check if we can get the same results as before by pooling males and
females data. We add a dummy variable with value of 1 for females and value of
0 for males to the explanatory variables. Consequently, six different models for the
whole sample are estimated: Poisson with Gaussian random effect, Poisson with
Gamma random effect, NB2, NB Waring, zero-inflated NB2 as well as zero-inflated
NB Waring.

Table 9 reports the estimation results for the six models. In all of them the
estimated coefficients for females are positive and statistically different from zero
which confirms our focusing on two separate samples for males and females in
the previous sections. It also means that on average, ceteris paribus; females will
demand more visits for doctors than males. Between the random effect models,
the one with Gamma distribution for the unobserved heterogeneity performs best
(both AIC and BIC are predicting the same result). However, all the pooled data
models are preferred to random-effect models. Further, the Voung statistic used
to compare non-nested models is positive and statistically significant for the zero-
inflated models, meaning that zero-inflated models provide better predictions than
their standard counterparts. Furthermore, based on AIC and BIC, the zero-inflated
Waring model, though less accurate in convergence, is preferred to the zero-inflated
NB2. Finally, all the models estimate a positive coefficient for public insurance and
are statistically significant except for the Gaussian random effect model. The results
confirms the existence of moral hazard.
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Table 9 Full sample results

Gaussian
RE

Gamma RE NB2 NBW ZINB2 ZINB
waring

Doctor visit
equation
Female 0.377*** 0.304*** 0.354*** 0.364*** 0.183*** 0.215***

(0.0291) (0.0244) (0.0279) (0.0234) (0.0194) (0.0207)
Public
insurance

0.0886 0.0896*** 0.1000** 0.0746* 0.0930** 0.0654*

(0.0557) (0.0264) (0.0458) (0.0393) (0.0361) (0.0389)
Add-on
insurance

�0.0299 �0.0327 0.0497 0.148*** �0.0193 0.0340

(0.0665) (0.0347) (0.0613) (0.0553) (0.0597) (0.0606)
Lnsig2u �0.111***

(0.0277)
Lnalpha �0.136*** 0.370*** 0.0243

(0.0205) (0.0189) (0.0195)
Lnrhom2 0.842*** 0.984***

(0.0652) (0.0349)
Lnk 2.280*** 1.043***

(0.0923) (0.0665)
Inflate
equation
Female �1.216*** �0.830***

Public
insurance

�0.0469 �0.0477

(0.120) (0.107)
Add-on
insurance

�0.682** �0.562**

(0.341) (0.269)
Observations 27,326 27,326 27,326 27,326 27,326 27,326
AIC 136878.2159 136666.2365 115861.5909 114914.2459 114881.7180 114051.5364
BIC 137075.3902 136863.4108 116058.7651 115119.6357 115267.8509 114445.8849
Log lik. �68415.1 �68309.1 �57906.8 �57432.1 �57393.9 �56977.8
Vuong_statistic 15.94*** 39.64***

Source, German Socioeconomic Panel (1984–1995)
Standard errors in parentheses
*p < 0.10, **p < 0.05, ***p < 0.01
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6.2 Accounting for Correlation Between Doctor Visits
and Hospital Visits Using the Bivariate Negative Binomial
Model7

We also jointly estimate both doctor visits and hospital visits using a bivariate NB
model to account for potential correlation between the two events. As Riphahn et al.
(2003) explain, doctor visits and hospital visits are positively correlated. However,
this correlation should be identified and tested.

In the males sample we find a correlation between doctor visits and hospital visits
of 0.1477. Using only non-zero values, this correlation reduces to 0.1138. Cameron
and Trivedi (2013) show how to construct a statistic for testing the independency
between two counts specific regressions (for doctor visits and hospital visits). The
calculated test statistic for our sample are 9.47, 1.05, 0.05, 0.94, respectively for
(j, k) D (1, 1), (1, 2), (2, 1), (2, 2). Only the first value is statistically different from
zero (with p-vale equal to 0.002). This shows that independency can only be rejected
for the first statistics suggesting some evidence of weak dependency between the
two count variables. This is in contrast to what Riphahn et al. (2003) expected.
Motivated by the first test value, however, a bivariate NB2 model is estimated for
males using pooled panel data (see Table 10). Here the parameter ˛ can capture both
overdispersion as well as correlation between unobserved heterogeneity8.

For females, the correlation between doctor visits and hospital visits for all data
realizations (including the zeros) is 0.125 and when we look at only the positive
values we get a correlation of 0.079. The independency test statistic for females

Table 10 Bivariate negative binomial 2 for doctor visits and hospital visits

Males Females
Doctor visit Hospital visit Doctor visit Hospital visit

Public Insurance 0.0958* �0.173 0.105* �0.144
(0.0551) (0.235) (0.0545) (0.312)

Add-on Insurance 0.0605 0.550 0.0311 0.0501
(0.0863) (0.351) (0.0648) (0.164)

Alpha 1.698*** 1.169***

(0.0367) (0.0242)
Observations 14,243 13,083
Log Like �33090.1 �36174.5

Source, German Socioeconomic Panel (1984–1995)
Standard errors in parentheses

7Codes for Bivariate NB2 model are found in Cameron, C., and Trivedi, P. (2013) (see page 336).
8For the estimating Bivariate NB2 by ML, initial values we find by estimating non-linear seemingly
unrelated regression (NLSUR) and assuming initial value for ˛ equal to 2. For first stage,
correlation between doctor visits and hospital visits for males and females are estimated as 0.125
and 0.078, respectively.
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are 38.56, 0.087, 4.81, 0.225 corresponding to (j, k) D (1, 1), (1, 2), (2, 1), (2, 2),
respectively. Based on the results, the first and second values of the test statistic
are significant at 0.05 level. Motivated by the first two test values, a bivariate NB2
is estimated for female. The results are presented in Table 10.

We see that the ˛ parameters are significant in both male and female bivariate
models. This result might confirm the previous results that NB2 based models are
a better distribution for explaining real data, rather than Poisson distribution. Here
we find that the estimated public insurance parameters for doctor visits are positive
and statistically significant for both males and females while for hospital visits are
negative and insignificant. Although estimated add-on parameters are positive for
all males and females in two equations, they are statistically insignificant.

7 Conclusion

The high share of zeros for a dependent variable in a count data regression model
can severely increase the over-dispersion issue and lead to unreliable estimators.
We show that the German Socioeconomic Panel (1984–1995) used by Riphahn et
al. (2003) for the demand of doctor visits suffers severely from over-dispersion issue
and their estimation based on standard distributions might not be reliable. Results
based on standard distributions are close to Riphahn et al. (2003) and, overall,
there is not enough evidence for moral hazard and adverse selection except for
Waring NB2, which presents a positive effect from adverse selection on the number
of doctor visits. However, this result might also not be reliable due to the over-
dispersion that resulted in the high share of zeros in the data. Overall we show that
within the class of random effect models, the model with a Gamma distribution
for unobserved heterogeneity is more suitable than the one assuming Gaussian
distribution for unobserved heterogeneity.

Vuong test (1989) rejects the standard distributions in the favour of their
corresponding zero-inflated distributions. This means that over-dispersion due to the
high share of zeros in the data cannot be explained by any complex and/or flexible
mixture of Poisson distributions such as Negative Binomial 2, Generalized Poisson,
Negative Binomial Famoy, Generalized Negative Binomial Waring models. All of
these are inferior to the zero-inflated distributions models. Between zero-inflated
distributions, ZINB Waring model has the lowest AIC and BIC values followed
by ZINB2 Famoye and ZINB2. However, when ranking the predicted probabilities,
ZINB2 model produces the closest probabilities to the actual probabilities. A pooled
(male-female) sample estimation provides the same results as those obtained from
subsample estimations.

In contrast to Riphahn et al. (2003), most of the zero-inflated distribution models
predict a negative but insignificant coefficient for add-on insurance for both male
and female subsamples. This results indicate a weak sign of adverse selection. We
find a positive coefficient for public insurance in all the estimated models, but only
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statistically significant for ZINB2, the best model, for both genders. This result
confirms the existence of moral hazard in the insurance market.

Although we show that the correlation between the demand for doctor and
hospital is weak in the data, our bivariate NB model finds a positive and significant
coefficient for public insurance and a positive and significant for add-on insurance
for doctor‘s visit. This is also in contrast with the results by Riphahn et al. (2003),
who do not find any significant coefficient for the public insurance for doctor‘s
visit in their bivariate model. Overall, our results find a strong evidence for moral
hazard for visiting more doctors. The results provide significant evidence of how
considering the over-dispersion nature of the data in the estimation process can
provide more precise estimations and reveal a better understanding about health
demand components.

Additional Tables

Table 11 Summary Statistics

Variables Description Malesa Femalesa

Docvis Number of doctor visits
in last three months

2.626 (5.21) 3.791 (6.11)

Hos Number of hospital
visit last year

0.128 (0.93) 0.150 (0.83)

Age Age 42.653 (11.27) 44.467 (11.32)
Hsat Health satisfaction code

0 (low)-10 (high)
6.924 (2.25) 6.634 (2.33)

Handdum Person is handicapped
(0/1)

0.227 (0.42) 0.200 (0.40)

Handper Percentage degree of
handicap

8.134 (20.33) 5.791 (17.96)

Married Person is married (0/1) 0.765 (0.42) 0.752 (0.43)
Educ Years of schooling 11.729 (2.44) 10.876 (2.11)
Hhninc Monthly household net

income (	10�3)
3.591 (1.74) 3.445 (1.80)

Hhkids Children below age 16
in household (0/1)

0.413 (0.49) (0.392) (0.49)

Self Person is self-employed
(0/1)

0.086 (0.28) 0.037 (0.19)

(continued)
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Table 11 (continued)

Variables Description Malesa Femalesa

Self Person is
self-employed (0/1)

0.086 (0.28) 0.037 (0.19)

Beamt Person is civil
servant (0/1)

0.118 (0.32) 0.028 (0.16)

Bluec Person is blue collar
worker (0/1)

0.340 (0.47) 0.139 (0.35)

Working Person is employed
(0/1)

0.850 (0.36) 0.488 (0.50)

Public
Insurance

Person is insured in
public health
insurance (0/1)

0.861 (0.35) 0.913 (0.28)

Add-on
Insurance

Person is insured in
add-on insurance
(0/1)

0.018 (0.13) 0.020 (0.14)

d85 Year D 1985 (0/1)
d86 Year D 1986 (0/1)
d87 Year D 1987 (0/1)
d88 Year D 1988 (0/1)
d91 Year D 1991 (0/1)
d94 Year D 1994 (0/1)
N Number of

observations
14,243 13,083

Source: German Socioeconomic Panel (1984–1995)
amean, standard deviation in parentheses

Table 12 Standard distributions for doctor visit for males (complete table)

Poisson NB1 NB2 Gen_Possion NBFamoy GNBWaring

Doctor visit

Age �0.0239 �0.0477*** �0.0398*** �0.0496*** �0.0398*** �0.0533***

(0.0164) (0.0114) (0.0153) (0.0114) (0.0153) (0.0120)

Age2 0.369** 0.634*** 0.547*** 0.659*** 0.547*** 0.706***

(0.184) (0.129) (0.176) (0.130) (0.176) (0.137)

Hsat �0.225*** �0.189*** �0.239*** �0.188*** �0.239*** �0.203***

(0.00767) (0.00585) (0.00745) (0.00587) (0.00745) (0.00657)

Handdum 0.0690 0.0229 �0.0209 0.0183 �0.0209 0.0111

(0.0537) (0.0378) (0.0503) (0.0373) (0.0503) (0.0397)

Handper 0.00286** 0.00414*** 0.00661*** 0.00430*** 0.00661*** 0.00505***

(0.00121) (0.000848) (0.00116) (0.000835) (0.00116) (0.000917)

Married 0.0583 0.130*** 0.0658 0.135*** 0.0658 0.139***

(0.0606) (0.0408) (0.0535) (0.0409) (0.0535) (0.0432)

Educ �0.0235*** �0.00955 �0.0262*** �0.00833 �0.0262*** �0.00971

(0.00873) (0.00672) (0.00910) (0.00688) (0.00910) (0.00725)

(continued)
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Table 12 (continued)

Poisson NB1 NB2 Gen_Possion NBFamoy GNBWaring

Bhninc �0.0000222* �0.00000788 �0.0000192* �0.00000746 �0.0000192* �0.00000835

(0.0000121) (0.00000853) (0.0000105) (0.00000868) (0.0000105) (0.00000911)

Bhkids �0.0760 �0.0743** �0.0844* �0.0766** �0.0844* �0.0792**

(0.0518) (0.0341) (0.0470) (0.0343) (0.0470) (0.0362)

Self �0.211** �0.244*** �0.218*** �0.253*** �0.218*** �0.265***

(0.0847) (0.0616) (0.0784) (0.0628) (0.0784) (0.0656)

Beamt 0.0914 0.0278 0.0841 0.0273 0.0841 0.0254

(0.0809) (0.0623) (0.0766) (0.0630) (0.0766) (0.0664)

Bluec 0.0178 �0.00948 0.0371 �0.0116 0.0371 �0.00956

(0.0486) (0.0374) (0.0458) (0.0379) (0.0458) (0.0398)

Working �0.0554 0.0126 �0.0155 0.0175 �0.0155 0.0172

(0.0668) (0.0465) (0.0596) (0.0465) (0.0596) (0.0490)

Public
Insurance

0.100 0.0607 0.0934 0.0595 0.0934 0.0578

(0.0702) (0.0539) (0.0635) (0.0549) (0.0635) (0.0577)

Add-on
Insurance

0.0666 0.139* 0.0551 0.144* 0.0551 0.154*

(0.102) (0.0777) (0.0948) (0.0791) (0.0948) (0.0844)

d85 0.0769 0.0615* 0.106* 0.0611* 0.106* 0.0669*

(0.0563) (0.0359) (0.0546) (0.0358) (0.0546) (0.0378)

d86 0.215*** 0.156*** 0.226*** 0.155*** 0.226*** 0.163***

(0.0597) (0.0365) (0.0581) (0.0365) (0.0581) (0.0386)

d87 0.113 0.0967** 0.123** 0.0983** 0.123** 0.104**

(0.0690) (0.0439) (0.0613) (0.0433) (0.0613) (0.0458)

d88 0.0530 0.111*** 0.0670 0.110*** 0.0670 0.115***

(0.0558) (0.0360) (0.0544) (0.0361) (0.0544) (0.0379)

d91 �0.00397 0.145*** �0.00366 0.152*** �0.00366 0.151***

(0.0609) (0.0373) (0.0531) (0.0374) (0.0531) (0.0393)

d94 0.247*** 0.268*** 0.244*** 0.278*** 0.244*** 0.289***

(0.0613) (0.0407) (0.0548) (0.0409) (0.0548) (0.0430)

Constant 2.771*** 2.776*** 3.149*** 2.780*** 3.710*** 2.929***

(0.336) (0.254) (0.329) (0.258) (0.330) (0.273)

Lndelta, 1.581***

(0.0365)

Lnalpha 0.561***

(0.0270)

Atanhdelta 0.726***

(0.0115)

Lnphim1 �17.76***

(3.253)

Lntheta �0.561***

(0.0270)

(continued)
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Table 12 (continued)

Poisson NB1 NB2 Gen_Possion NBFamoy GNBWaring

Lnrhom2 0.783***

(0.0981)

Lnk 2.303***

(0.130)

Observations 14,243 14,243 14,243 14,243 14,243 14,243

AIC 85593.4779 54865.9120 55006.8616 54700.9022 55008.8616 54528.6162

BIC 85759.8863 55039.8845 55180.8341 54874.8747 55190.3981 54710.1527

Dispersion 6.67597 constant 1.998817

Log lik. �42774.7 �27410.0 �27480.4 �27327.5 �27480.4 �27240.3

Source, German Socioeconomic Panel (1984–1995)
Standard errors in parentheses
*p < 0.10, **p < 0.05, ***p < 0.01

Table 13 Standard distributions for doctor visit for females (complete)

Poisson NB1 NB2 Gen_Possion NBFamoy GNBWaring

Doctor
visit

Age �0.0132 �0.0322*** �0.0312*** �0.0347*** �0.0321*** �0.0400***

(0.0121) (0.00943) (0.0115) (0.00947) (0.0116) (0.0112)

Age2 0.179 0.396*** 0.373*** 0.425*** 0.382*** 0.479***

(0.138) (0.107) (0.131) (0.107) (0.132) (0.127)

Hsat �0.203*** �0.171*** �0.208*** �0.170*** �0.208*** �0.218***

(0.00641) (0.00507) (0.00631) (0.00506) (0.00636) (0.00609)

Handdum 0.138** 0.106** 0.113** 0.102** 0.111** 0.119**

(0.0565) (0.0450) (0.0485) (0.0434) (0.0487) (0.0480)

Handper 0.00241** 0.00254*** 0.00436*** 0.00254*** 0.00457*** 0.00418***

(0.00108) (0.000867) (0.00106) (0.000846) (0.00110) (0.000998)

Married 0.0272 0.0440 0.0282 0.0455 0.0284 0.0366

(0.0408) (0.0322) (0.0385) (0.0323) (0.0386) (0.0377)

Educ 0.0147 0.0138* 0.00773 0.0136* 0.00740 0.0121

(0.00933) (0.00724) (0.00894) (0.00728) (0.00898) (0.00873)

Bhninc �0.0000206**�0.0000111 �0.0000162* �0.0000103 �0.0000161* �0.0000128

(0.00000948) (0.00000740) (0.00000951) (0.00000746) (0.00000955) (0.00000916)

Bhkids �0.134*** �0.108*** �0.124*** �0.108*** �0.124*** �0.122***

(0.0416) (0.0311) (0.0376) (0.0311) (0.0375) (0.0367)

Self �0.218** �0.223*** �0.242*** �0.229*** �0.244*** �0.280***

(0.0978) (0.0705) (0.0875) (0.0707) (0.0872) (0.0849)

Beamt �0.0711 �0.00922 �0.0198 �0.00859 �0.0183 �0.0499

(0.117) (0.0848) (0.128) (0.0859) (0.129) (0.107)

Bluec �0.0354 �0.0718* �0.0401 �0.0772** �0.0406 �0.0730

(0.0555) (0.0392) (0.0497) (0.0392) (0.0495) (0.0471)

(continued)



298 H. Kavand and M. Voia

Table 13 (continued)

Poisson NB1 NB2 Gen_Possion NBFamoy GNBWaring

Working 0.0149 0.0247 0.0305 0.0264 0.0313 0.0363

(0.0392) (0.0294) (0.0354) (0.0295) (0.0354) (0.0347)

Public
Insurance

0.131** 0.0790 0.0953 0.0715 0.0935 0.0787

(0.0599) (0.0489) (0.0639) (0.0499) (0.0643) (0.0598)

Add-on
Insurance

0.0207 0.126* 0.0309 0.138** 0.0312 0.111

(0.0888) (0.0682) (0.0769) (0.0687) (0.0769) (0.0794)

d85 �0.0362 �0.0326 �0.0127 �0.0303 �0.0119 �0.0218

(0.0473) (0.0319) (0.0449) (0.0318) (0.0450) (0.0386)

d86 0.0941** 0.0837** 0.102** 0.0836** 0.102** 0.114***

(0.0449) (0.0329) (0.0430) (0.0328) (0.0433) (0.0383)

d87 �0.0843 �0.0750 �0.0531 �0.0690 �0.0515 �0.0701

(0.0642) (0.0485) (0.0566) (0.0471) (0.0569) (0.0529)

d88 �0.180*** �0.0677** �0.176*** �0.0670** �0.176*** �0.145***

(0.0448) (0.0315) (0.0439) (0.0315) (0.0441) (0.0384)

d91 �0.154*** 0.0108 �0.138*** 0.0202 �0.138*** �0.0688*

(0.0456) (0.0326) (0.0441) (0.0327) (0.0442) (0.0402)

d94 0.197*** 0.186*** 0.221*** 0.191*** 0.222*** 0.252***

(0.0481) (0.0370) (0.0464) (0.0371) (0.0466) (0.0433)

Constant 2.547*** 2.731*** 3.024*** 2.777*** 3.184*** 3.190***

(0.282) (0.224) (0.273) (0.227) (0.276) (0.267)

Lndelta 1.549***

(0.0349)

Lnalpha 0.188***

(0.0259)

Atanhdelta 0.711***

(0.0108)

Lnphim1 �4.580***

(0.762)

Lntheta �0.133***

(0.0443)

Lnrhom2 1.014***

(0.113)

Lnk 0.283***

(0.0764)

Observations 13,083 13,083 13,083 13,083 13,083 13,083

AIC 91844.4596 60731.5683 60570.6248 60521.2975 60569.0256 60307.5709

BIC 92008.9991 60903.5869 60742.6434 60693.3160 60748.5232 60487.0686

Log lik. �45900.2 �30342.8 �30262.3 �30237.6 �30260.5 �30129.8

Dispersion 6.689348 1.487322

Source, German Socioeconomic Panel (1984–1995)
Standard errors in parentheses
*p < 0.10, **p < 0.05, ***p < 0.01
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Table 14 Predicted and original numbers of doctor visits (Standard Poisson)

Doctor visit 0 1 2 3 4 5 6

0 838 3564 1089 437 165 77 35
1 183 976 424 205 85 36 19
2 104 721 421 789 87 63 22
3 56 441 289 158 103 74 25
4 19 225 162 111 60 38 23
5 12 135 124 72 56 42 18
6 7 109 92 64 57 26 23
7 3 60 49 36 22 15 5
8 3 52 64 30 26 14 13
9 1 22 15 16 16 7 5
Total 1226 6305 2729 1318 677 392 188

Table 15 Predicted and original numbers of doctor visits (ZI Poisson)

Doctor visit 0 1 2 3 4 5 6

0 1441 2931 981 502 205 96 44
1 294 845 378 239 100 48 24
2 167 643 380 211 103 62 39
3 94 390 256 175 114 79 39
4 34 206 143 112 65 46 29
5 21 122 112 68 66 43 29
6 17 92 75 79 54 29 29
7 10 50 38 46 23 14 9
8 8 44 54 39 25 18 12
9 3 18 18 18 16 9 8
Total 2089 5341 2427 1489 771 444 262

Table 16 Predicted and original numbers of doctor visits (Standard NB2)

Doctor visit 0 1 2 3 4 5 6

0 1170 3360 971 406 172 63 42
1 242 954 386 199 73 39 23
2 173 735 369 187 72 58 33
3 77 442 266 147 91 96 35
4 27 235 145 97 56 40 21
5 18 139 116 60 60 38 23
6 10 113 80 66 45 24 23
7 7 59 44 38 21 12 4
8 5 55 54 33 23 15 9
9 1 22 13 16 15 7 4
Total 1694 6114 2444 1249 628 365 217
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Table 17 Predicted and original numbers of doctor visits (ZINB2)

Doctor visit 0 1 2 3 4 5 6

0 1446 2932 1020 478 184 94 41
1 289 860 385 238 85 40 27
2 171 647 387 216 85 55 41
3 97 388 266 177 102 68 44
4 35 210 145 109 64 39 27
5 20 126 110 81 53 40 28
6 18 95 82 72 45 36 23
7 8 54 39 42 23 13 7
8 8 47 52 41 24 16 10
9 3 18 9 19 12 14 5
Total 2095 5377 2495 1473 677 415 253

Table 18 (NB2) Predicted and actual probabilities

Count Actual Predicted jDiffj Pearson

0 0.440 0.428 0.012 4.992
1 0.138 0.180 0.042 136.630
2 0.116 0.106 0.011 15.150
3 0.085 0.069 0.016 52.273
4 0.049 0.048 0.001 0.617
5 0.036 0.034 0.001 0.800
6 0.030 0.025 0.005 13.029
7 0.016 0.019 0.004 9.693
8 0.016 0.015 0.001 0.983
9 0.007 0.012 0.005 25.303
10 0.015 0.009 0.006 55.167
Sum 0.948 0.944 0.103 314.635

Table 19 (ZINB2) Predicted and actual probabilities

Count Actual Predicted jDiffj Pearson

0 0.440 0.446 0.006 1.139
1 0.138 0.145 0.007 5.034
2 0.116 0.099 0.017 40.468
3 0.085 0.071 0.014 40.148
4 0.049 0.052 0.003 1.765
5 0.036 0.038 0.003 2.878
6 0.030 0.029 0.001 0.591
7 0.016 0.022 0.007 28.703
8 0.016 0.017 0.001 1.759
9 0.007 0.014 0.006 44.089
10 0.015 0.011 0.005 26.856
Sum 0.948 0.945 0.070 193.429
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Table 20 (Poisson)Predicted and actual probabilities

Count Actual Predicted jDiffj Pearson

0 0.440 0.441 0.000 0.000
1 0.138 0.056 0.082 1724.211
2 0.116 0.085 0.032 169.678
3 0.085 0.093 0.008 10.143
4 0.049 0.084 0.035 211.840
5 0.036 0.068 0.033 222.485
6 0.030 0.051 0.021 124.089
7 0.016 0.037 0.021 175.386
8 0.016 0.026 0.010 55.840
10 0.015 0.012 0.003 9.078
Sum 0.948 0.971 0.256 2796.77

Model Specifications

To account for over-dispersion and deviations from E(Yi) D V(Yi) D�i in the Pois-
son distribution, a new distribution is obtained by adding an individual unobserved
effect (ui) to the log of the mean of the Poisson model, ln(meani) D ln(�i) C ln(ui).
Thus, by defining different distributions for ui, new versions of the Poisson
distribution are created. Table 21 presents a list of those distributions, known as
standard distributions in this paper, with their variances. A Gamma distribution
for ui, for example, gives a Negative Binomial 2 (NB2) distribution with mean
�i and conditional variance �i C˛�i

2, with the constant parameter ˛ controlling
for heterogeneity or dispersion among individuals. The additional parameter p in
the Power Negative Binomial (NB-P) distribution, introduced by Greene (2008),
provides NB1 or NB2 distributions when p D 1 or p D 2 , respectively. Also, the
Heterogeneous NB2 model allows the heterogeneity explained by ˛ in the NB2
distribution to be a function of the individual’s characteristics (zi), ˛D exp(zi� ).
Thus, ˛ can vary among individuals. In special case, where �! 1, the variance
of Famoye’s (1995) distribution approaches to that of the NB. The Waring Negative
Binomial distribution introduce by Irwin (1968) converges to NB if k ! 1

˛
; � ! 1.

Also, if ıD 0, the GP distribution reduces to the usual Poisson distribution with
parameter � i. (See Hilbe (2011, 2014) for more details)

Zero-inflated Count Models

As Hilbe (2011) discuss, the framework of zero-inflated models are based on
separating zero outcomes and positive ones. The probability of zero outcomes
results from the group of individuals who are not the subject of an event (Q(0)
for those who do not have physician to visit), and those who are the subject of the
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Table 21 The list of standard distributions

Distribution Variance

Poisson � (where ln�D Xˇ)
Negative Binomial 1 (NB1) �C˛� (where ˛ is the dispersion parameter)
Negative Binomial 2 (NB2) �C˛�2

Generalized Negative Binomial (NB-P) �C˛�p

Heterogeneous Negative Binomial (NB-H) �C˛i�
2 (where ˛i D zi�)

Generalized Negative Binomial (Famoy) ��(1 ���)(1 ���)�3

Waring Negative Binomial (NBW) �C �
�

kC1
��2

�
C �2


kC��1

k.��2/

�

Generalized Poisson (GP) 1

.1�ı/
2 �

Table 22 Zero-inflated
distributions

Zero-inflated Poisson (ZIP)
Zero-inflated Negative Binomial 1 (ZINB1)
Zero-inflated Negative Binomial 2 (ZINB2)
Zero-inflated Generalized NB (ZINB-P)
Zero-inflated Poisson Inverse Gaussian, (ZIPIG)
Zero-inflated Generalized Poisson, (ZIGP)
Zero-Inflated 3-parameter Waring NB (ZINBW)
Zero-inflated 3-parameter Famoye NB (ZINBF)

event but with zero outcome (P(0) for those who do not visit their physicians). The
two part of the model is written as:The probability of a zero outcome for the system
is given by9:

Pr .y D 0/ D Q.0/C f1 � B.0/g Pr.0/

And the probability of a nonzero count is10:

Pr .y D kI k > 0/ D f1 � B.0/g Pr.k/

A Probit or logit model estimates Q(0) while one of the standared models in
Table (1) estimates Pr(k), k D 0, 1, : : : n. The mixture model have more power in
explaining over-dispersion in the data (see also Hilbe and Greene (2008)).

Table 22 presents different zero-inflated distributions that are used in the next
sections for the purpose of estimation and comparison.

9Stata gives this probability using the command: predict f0, pr(0).
10Stata gives this probability using the command: predict fk, pr(k).
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Quantile DEA: Estimating qDEA-alpha
Efficiency Estimates with Conventional
Linear Programming

Joseph A. Atwood and Saleem Shaik

Abstract Conventional non-parametric linear programming (LP) based data envel-
opment analysis (DEA) models have the advantage of being able to estimate
multiple input-output efficiency metrics but suffer from sensitivity to outliers and
statistical observational noise. Previous observation-deleting approaches to the
outlier/noise problem have been somewhat ad hoc usually requiring iterative LP
and non-LP problem solving methods. We present the theory and methodology
of quantile-DEA (qDEA), similar in concept to quantile-regression, which enables
the analyst to directly use LP to obtain efficiency metrics while specifying that no
more than  -percent of data points can lie external to the efficiency hull. Estimated
qDEA-˛ frontiers encompassing proportion ˛D 1 � of the data observations are
contrasted to order-˛ frontier estimates. Quantile DEA is shown to be useful in
addressing outliers in a study examining changes in relative state level agricultural
efficiency measures over time.
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1 Introduction

Data Envelopment Analysis (DEA) models are based on the output, input and graph
distance functions developed by Malmquist (1953) and Moorsteen (1961) in the
consumer context and Shephard (1953) in the producer context. The DEA approach
to the study of efficiency has had a history in agriculture sector starting with M.J.
Farrell (1957) and Farrell and Fieldhouse (1962). An operational research (OR)
DEA model using linear programming (LP) was introduced by Charnes et al. (1978).
DEA was popularized in a more informative and easily applied way by Fare et al.
(1994). DEA gained popularity due to its ability to require little prior information
with respect to a functional form, handle multiple outputs-inputs with caveats (Shaik
et al. 2012; Shaik 2013) and strong/weak disposability assumptions (Shaik 1998).
Due in part to these attractive features, over the past decade there has been a surge in
the number of DEA empirical efficiency applications in numerous fields including
agriculture, banking, health, sports, industrial regulation, and others (Emrouznejad
et al. 2008; Liu et al. 2013). The Free Disposability Hull (FDH) was introduced by
Deprins et al. (1984) and maintains free disposability while relaxing convexity.

While FDH and DEA non-parametric hull fitting has its advantages, there are
also well known disadvantages. A key disadvantage of both FDH and DEA is
the sensitivity of the estimated hulls or frontiers to statistical noise and data
outliers. Several authors in the last decade have developed more robust quantile-like
approaches under FDH or similar assumptions to obtain efficiency estimators that
are less sensitive to outliers and statistical noise (Cazals et al. 2002; Aragon et al.
2005; Daouia and Ruiz-Gazen 2006; Daouia 2005; Daouia and Simar 2007; Daouia
et al. 2008; Simar 2003; Simar et al. 2012). Of these approaches, Aragon et al’s
and Daouia and Simar’s, FDH-related order-˛ estimator is similar to the concepts
presented below and will be discussed in more detail later in the paper.

While various decision making unit (dmu) or observation deleting procedures
have been used in DEA applications, quantile procedures have yet to be presented
for linear programming based (LP) DEA models that incorporate convexity and
constant (CRS), variable (VRS), decreasing (DRS) or increasing (IRS) returns to
scale. We present a quantile LP based procedure that we term quantile Data Envelop-
ment Analysis (qDEA)1 build on Atwood et al. (1988) implementation of Atwood’s
(1985) partial moment stochastic inequality in a portfolio optimization problem. The
qDEA approach presented is somewhat but not substantially more computationally
intensive than traditional dual DEA methods. We present procedures for identifying
dmu-specific quantile efficiency metrics as well as quantile-based DEA frontiers
(denoted qDEA-˛ frontiers) similar in concept to order-˛ frontiers in that the
projection points are identified by specifying that ˛ percent of the points remain
interior to the hull estimated relative to a given dmu. Given DEA’s additional

1The terminology qDEA denotes quantile DEA not to be confused with Kousmanen and Post
(2002) Quadratic DEA which they denote QDEA.
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assumptions with respect to returns to scale, qDEA-˛ frontiers will differ from and
tend to be smoother than order-˛ frontiers as we demonstrate below.

In the following discussion, we first review the mathematical theory that enables
the construction of LP models that can endogenously identify subsets of the
model’s constraint set that can be violated. We then incorporate these results into
DEA models that endogenously and simultaneously identify a set of firm specific
influential points allowed to become ‘super-efficient’ and lie outside a given firm’s
estimated qDEA hull. We illustrate this procedure and present results using a
modified example from Cooper et al. (2006). We then contrast estimated qDEA-
˛ frontiers to order-˛ frontiers using the examples discussed in Simar and Wilson
(2011a). Section 5 presents an empirical application of qDEA that examines changes
in Nebraska state level agricultural efficiency scores over time. We conclude with a
discussion of future research efforts and applications with respect to qDEA.

2 The qDEA Model

The qDEA process is implemented using two LP stages. The first stage (qDEA
Stage-I) identifies the subset of ‘quantile super-efficient’ or external data points.
The second stage (qDEA-stage-II) consists of a traditional DEA model where the
constraints identified in the qDEA Stage-I model are relaxed. The qDEA Stage-
I LP model is developed by modifying the LP model presented in Atwood et al.
(1988) implementation of Atwood’s (1985) partial moment stochastic inequality in a
portfolio optimization problem. We note that Atwood et al.’s procedures are broadly
applicable with linear programing problems where the modeler wishes to allow up
to a pre-specified percentage of endogenously identified constraints to be relaxed or
violated. In this section, we review the partial moment stochastic inequality and its
use in relaxed constraint LP problems.2 We then present a brief review of the tradi-
tional DEA model and the modifications required to implement the qDEA model.

2.1 Partial Moment Stochastic Inequalities

A lower partial moment (LPM) can be defined as:

� .�; t/ D

tZ

�1

.t � x/�dF.x/ for any � > 0: (1)

2We wish to emphasize that while the qDEA process utilizes the results from a partial moment
stochastic inequality to endogenously identify a set of external or “superefficient” DMUs, the set
of external points are not randomly selected. This issue is discussed in more depth later in the
paper.
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Mean-LPM frontiers and tradeoffs have long been discussed in the finance
literature as possibly attractive alternatives to Markowitz’s mean-variance model.
Fishburn (1972) presented several properties of LPMs including the relationship
between mean-LPM efficient solutions and differing degrees of stochastic domi-
nance. Semi-variance is a special case of an LPM (�(2,�)). In 1982, Berck and
Hihn (BH) presented a stochastic inequality using semi-variance and demonstrated
that their semi-variance based inequality often gave less conservative probability
bounds than the one sided Chebychev inequality.

Atwood (1985) generalized Berck and Hihn’s semi-variance stochastic inequality
to the more general case using the LPM. The LPM stochastic inequality is
derived as:

� .�; t/ D
tR

�1

.t � x/�dF.x/

D
gR

�1

.t � x/�dF.x/C
tR
g
.t � x/�dF.x/

�
gR

�1

.t � x/�dF.x/

�
gR

�1

.t � g/�dF.x/ D .t � g/�F.g/

) � .�; t/ � .t � g/�F.g/

) F.g/ �
� .�; t/

.t � g/�
for all t > g; � > 0

(2)

The preceding results use Fishburn’s lower partial moment but can easily
be extended to the use of upper partial moments and computing limits on the
probability of upside events.

The LPM-inequality is an interesting result that (with an appropriate choice
of � and t) will usually generate less conservative upper bounds than the one-

sided Chebychev inequality P .� � g � k�/ �
�

1
1Ck2

�
or the BH semi-variance

inequality.
The linear partial moment (� D 1) inequality can often generate less conservative

bounds than using higher order moments and we limit our discussion to the set of
linear partial moments as linear partial moments can be computed in an LP model
modeled with a finitely discrete set of outcomes. Atwood (1985) and Atwood et al.
(1988) demonstrated that a linear partial moment’s least restrictive level for t can
be endogenously determined in a continuous linear programming model. Denoting
the linear lower partial moment as �(1, t) D �(t), Atwood showed that enforcing the
constraints t � 1

 
�.t/ � g and � � 0 in a linear programming model is sufficient

to guarantee that F(g) � for any positive  . To see this note that if t D g,
�(t D g) D 0 ) F(g) D 0 < . If t > g rearranging the constraint gives �.t/

.t�g/ �  

which combined with (2) implies that F(g) � .
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Atwood et al. constructed a model that maximized the expected income of
a portfolio of assets subject to a set of technical constraints and the additional
requirement that the proportion of discrete aggregate income outcomes falling
below a target level g not exceed  . Modifying their notation slightly, Atwood
et al.’s portfolio optimization model can be written as:

Max
x;t;d;�

�Yx

st:

Ax � b

Yx � 1t C Id � 0
�
1
.

N

�
d � � � 0

t � 1
 
� � g

x � 0; t � 0; d � 0 and � � 0

(3)

where � is a vector of mean revenues, x is a vector of activity or portfolio weights,
matrix A and vector b are technical portfolio constraint coefficients, Y is an (N by k)
matrix of potential per unit income amounts, 1 is a vector of “ones”, t is an
endogenously determined upper limit on the linear LPM, d is a vector of deviations

with di > 0 when yix < t,
�
1
.

N

�
is an vector of length N with elements equal to

1/N, � is the linear LPM, and g is a target level of income. System (3) selects a
set of portfolio weights x that maximize the portfolio’s expected income subject
to technical portfolio constraints and the requirement that the number of aggregate
income observations in the vector Yx falling below level g is less than  N. The
model effectively searches for a portfolio vector x that maximizes expected income
subject to technical constraints while guaranteeing that no more than  N of the N
Yx � g constraints are violated.

We conclude this discussion by noting that the portfolio chosen in system (3)
will tend to be conservative in that the actual number of income observations falling
below level g will often be less than the specified limit  N due to the conservative
nature of the LPM inequality.3 In the following we utilize a two-stage process where
a partial moment system similar to system (3) is utilized to identify constraints
to be relaxed or eliminated. The second stage of the qDEA process consists of a
conventional DEA model with the constraints identified in the first qDEA stage
either being relaxed or deleted.

3The resulting portfolios were found in many cases to be conservative due to the use of the LPM
inequality but the resulting solutions did satisfy the requirement that no more than  N of the
income constraints were violated. Subsequent unpublished research suggested that a two stage
process similar to the two-stage qDEA process discussed below would generate less conservative
outcomes while still satisfying the desired limit on the number of income observations falling
below g.
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2.2 Conventional DEA and Implementing Quantile DEA

Assuming there are KX inputs, KY outputs and constant returns to scale (CRS), the
conventional input orientation primal and dual LP’s with outputs k D 1, : : : , KY ;
inputs i D 1, : : : , KX; and DMU’s j D 1, .. , N can be written as:

PRIMAL

Min
�
0 1

	 �
z �

	0

st:



Y 0 0

� X0 xj

� 

z
�

�
�

�



yj

0

�

z; � � 0

DUAL

Max
�

yj 0
	 �

p w
	0

st

"
Y �X
00 x0

j

#

p
w

�
�

�



0

1

�

p;w � 0

(4)

where Y[j, k] is an N x KY matrix of observed outputs; X[j, i] is an N x KX matrix
containing observed inputs, yj is a vector containing the observed outputs for given
DMU j, xj is a vector containing the observed inputs for a given DMUj, z is a vector
of weights, � is the efficiency measures of DMUj, p is a vector of output “prices”
and w is the corresponding vector of input “prices”.

The primal model searches for z (a set of projection weights) and estimate �
(the efficiency measure) of the given DMU. The dual model searches for vectors of
prices (p, w) that maximize the efficiency score of the given DMU while requiring
that the corresponding efficiency scores of all DMU

0

s be less than or equal to one.
The effect of the DEA model can be viewed as fitting a hull around the data points,
requiring all points to lie within the hull, and then constructing a distance metric
measuring the proportional distance from a given DMU

0

s input-output combination
to a point on the hull. With DEA, if the coefficients of input matrix X or output
matrix Y contain statistical or outlier noise, the resulting hull and efficiency metric
can be influenced by noise in the given DMU

0

s observations as well as noise in
points near the efficiency frontier.

In the following, we present procedures for more robust qDEA efficiency
estimates that allow the estimation of efficiency metrics while allowing no more
than a given proportion of the data points to lie external to the hull (or equivalently
requiring at least proportion ˛D 1 � of the points remain inside the fitted hull). We
initially focus on the dual model as the dual’s constraints more closely match the
structure of the constraints in system (3).

2.3 Continuous Linear Programming qDEA Using Partial
Moments

The traditional dual DEA model with N DMU’s can be modified to implement the
qDEA LP model. The input oriented DUAL qDEA model constructed by modifying
expressions (3) and (4) can be written as:
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qDEA DUAL STAGE I

Max
�

yj 0 0 0 0
	 �

p w t d �
	0

st

2
6664

Y �X 1 �I 0

0 xj 0 0 0

0 0 0 1
N �1

0 0 �1 0 1
 

3
7775

2
666664

p
w
t
d
�

3
777775

�

�

�

�

2
664

0

1

0

0

3
775

p;w;T; d;  � 0

(5)

where4 p is a vector of output prices, w is a vector of input prices, 1 is a vector
of ones, t is the endogenously determined Partial Moment (PM) “integral” limit, I
is an identity matrix, d is a vector of deviations above t, 1/N is an n-vector with
each value equal to 1/N, � is the endogenously calculated linear PM, and 0 < < 1
is the maximal proportion of data points that are allowed to lie outside the DEA
hull.5

System (5) may sometimes be conservative in that fewer than 100 percent of the
points may lie outside the DEA hull but the solution will never have more than 100 
percent of the points outside DEA hull. The objective value from expression (5) is
not our final efficiency estimate as system (5)‘s objective value is an endogenously
determined compromise between the desired objective function and a PM weighted
distance metric and will be a biased estimate of the desired objective value.
Below we demonstrate that the “extrapolated point” (and the resulting efficiency
metric) from system (5) will consist of an extrapolation using information from all
“external” points plus the new quantile DEA “support points.”6 As a result, we use
system (5) in a first stage that endogenously and simultaneously identifies a set of
points allowed to lie external to DMU’s qDEA reference set. System (4) is then re-
estimated in a second stage II where the constraints associated with the “external”
points identified in stage I are relaxed or eliminated.

4Figures 2, 3 and 4 present a numerical example of the dual model in expression (4), and the qDEA
model in expression (5).
5Setting  < 1/N will guaranty that no points will lie outside the hull i.e., obtain the conventional
DEA results.
6We use the terminology “support points” to denote the points that define the hyperplane onto
which the given DMU’s input-output points are projected with the distance from the initial point
to the hyperplane being the estimated efficiency score. By a given DMU’s “reference set” we refer
to the set of points remaining on the same side of the projection hyperplane as the given DMU.
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3 Example qDEA Model

3.1 A One Input: One Output Example

We demonstrate the implementation of the partial moment qDEA procedure by
using a modification of Cooper, Seiford, and Tone’s (CST) constant returns to scale
single input (employees) – single output (sales) eight DMU example (page 26).
Figure 1 reproduces CST’s figure 2.1 where the input-output mix for point B has
been changed to a more extremal value of (X, Y) D (3,4).7 The following example
demonstrates the use of qDEA while allowing one or two points to lie external to
the efficiency hull.

With the traditional DEA analysis and CRS, the red ray through point B denotes
the efficient frontier. The efficiency of all other points are measured relative to the
red ray which lies at a substantial distance from all points except B. When one point
is allowed to lie outside the hull, the model endogenously leaves point B external
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Fig. 1 Cooper, Seiford, and Tones single-input single output example with constant returns to
scale

7Table 1 lists the input and out values used in this example.
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CST EXAMPLE DATA SELECTED

DUAL PROBLEM DMU = H

DMU OUTPUT INPUT LHS SIGN RHS

A 1 -2 -0.1563 <= 0

B 4 -3 0.0000 <= 0

C 2 -3 -0.1875 <= 0

D 3 -4 -0.2188 <= 0

E 4 -5 -0.2500 <= 0

F 2 -5 -0.4375 <= 0

G 3 -6 -0.4688 <= 0

H 5 -8 -0.5313 <= 0

XRESTRICT 0 8 1 <= 1

OBJ 5 0 0.4688 <--OBJ

P W

VARS 0.09375 0.125

Fig. 2 CST conventional dual DEA tableau DMU-H

to the hull with the resulting efficiency frontier changing to the black line through
point E in Fig. 2. When two points are allowed to lie outside the hull, the model
endogenously decides to leave points B and E outside the hull with the resulting
efficiency hull changing to the blue line through point D.

The practical implementation of qDEA is illustrated in Figs. 2, 3 and 4 where we
present screen shots from MS-Excel. Figure 2 presents an MS Solver screen shot of
the conventional CRS DEA dual linear programming model and solution for DMU
H. As expected, the solution indicates that point B is the restricting point on the
DEA frontier giving a conventional DEA efficiency score of 0.4688 for point H.

The qDEA solution to this problem is obtained in two stages. Figure 3 presents
an MS Solver tableau for first stage expression (5) of the qDEA procedure for a
model allowing no more than two points to lie external to the hull. The first stage
qDEA solution in Fig. 3 indicates that the model has determined to allow points B
and E to lie external to the hull. From our experience with the conservative partial
moment models, if we want no more than NP points to lie external to the hull,
the solutions are somewhat less conservative if  is set just below (NP C 1)/N.
For this problem with NP D2,  was set equal to (2 C 1)/8–0.0001 D 3/8–
0.0001 D 0.3749 which will guarantee that the “probability” of the violating the
constraints is 0.3749< 0.375 guaranteeing that that no more than two of the original
constraints will be violated. The value 1/ in the constraint matrix is thus 1/0.3749
�2.6674. DMU H’s objective value from qDEA Stage I is a conservative 0.6818
which we will discuss in more detail below.
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Fig. 3 qDEA stage I tableau for model identifying two external points

CST EXAMPLE DATA SELECTED qDEA STAGE II

DUAL PROBLEM DMU = H

DMU OUTPUT INPUT LHS SIGN RHS

A 1 -2 -0.08333 <= 0

B 4 -3 0.29167 <= 1000

C 2 -3 -0.04167 <= 0

D 3 -4 0.00000 <= 0

E 4 -5 0.04167 <= 1000

F 2 -5 -0.29167 <= 0

G 3 -6 -0.25000 <= 0

H 5 -8 -0.16667 <= 0

XRESTRICT 0 8 1 <= 1

OBJ 5 0 0.833333 <--OBJ

P W

VARS 0.166667 0.125

Fig. 4 qDEA stage II tableau identifying qDEA efficiency scores

The second stage of the qDEA model is a conventional DEA model with
relaxed constraints. Figure 4 presents the second stage tableau where the constraints
associated with points B and E have been relaxed. The resulting efficiency metric
is 0.8333 for point H. Note from Fig. 4 that we that relax the constraints associated
with DMU’s B and E by adding large positive values in the corresponding right
hand side locations. From the primal perspective, this is equivalent to a “Big_M”
method where we penalize the primal variables associated with DMU’s B and E
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Table 1 CST input orientation example – input-output combinations, CRS and VRS DEA and
qDEA efficiency scores for one and two external points

CRS
One External Point Two External Points

DMU X Y DEA qDEA-I(7) qDEA-II(7) qDEA-I(6) qDEA-II(6)
A 2 1 0.375 0.500 0.625 0.545 0.667
B 3 4 1.000 1.333 1.667 1.455 1.778
C 3 2 0.500 0.667 0.833 0.727 0.889
D 4 3 0.563 0.750 0.938 0.818 1.000
E 5 4 0.600 0.800 1.000 0.873 1.067
F 5 2 0.300 0.400 0.500 0.436 0.533
G 6 3 0.375 0.500 0.625 0.545 0.667
H 8 5 0.469 0.625 0.781 0.682 0.833

VRS
One External Point Two External Points

DMU X Y DEA qDEA-I(7) qDEA-II(7) qDEA-I(6) qDEA-II(6)
A 2 1 1.000 1.250 1.500 1.333 1.500
B 3 4 1.000 1.333 1.667 1.556 2.000
C 3 2 0.778 0.833 1.000 0.889 1.000
D 4 3 0.667 0.750 1.000 0.833 1.000
E 5 4 0.600 0.800 1.000 0.933 1.200
F 5 2 0.467 0.500 0.600 0.533 0.600
G 6 3 0.444 0.500 0.667 0.556 0.667
H 8 5 1.000 NA NA NA NA

severely enough that the LP model attempts to remove them from the basis. While
the illustration in Fig. 4 is a dual model, qDEA Stage-II could be implemented in a
more numerically efficient primal model with the appropriate variables removed or
penalized via the Big M method.

3.2 qDEA Efficiency Scores for the CST Example

Table 1 presents the conventional DEA and the qDEA efficiency scores for all eight
CST DMU’s under both constant returns to scale (CRS) and variable returns to scale
(VRS).

In Table 1 and following discussion, the notation qDEA-I(j) and qDEA-II(j)
denotes the efficiency scores in the qDEA stage I or II model. Values of j less than
one indicate quantiles or ˛D1- while j values exceeding 1 will denote the minimal
number of points required to lie internal to the hull. Table 1 presents the output and
input levels along with each DMU’s estimated DEA, qDEA-I(j) and qDEA-II(j)
efficiency scores with j D 7 and j D 6 points required to remain internal to the
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data envelopment hull. We will also use the notation qDEA-˛ to denote the qDEA
frontier when ˛ percent of the points are internal or on the qDEA frontier (implying
proportion  D 1 �˛ are allowed to be external to the qDEA frontier).

The Table 1 “DEA” values are the conventional input efficiency scores indicating
that only DMU B is on the CRS efficient boundary (the red ray in Fig. 2) and DMU’s
A, B, and H are on the VRS efficient boundary (see Fig. 7 below). When one point
is allowed to lie outside the hull, the CRS qDEA-II (7) efficiency scores indicate
that the original point B is now “super-efficient” with a score greater than one
(1.667) while point E becomes qDEA-II (7) efficient (1.00). The CRS qDEA-II (7)
scores of all other points have increased by a substantial amount when contrasted
to the original DEA efficiency estimates. The super-efficient score of 1.667 and
the substantial increase of the other DMU’s qDEA-II (7) efficiency scores provide
evidence that point B is potentially an influential outlying point.

When two points are allowed external to the hull, the CRS qDEA-II (6) scores of
all DMU’s increase but by a smaller amount than when the first point was excluded.
With two external points, DMUs B and E become qDEA super-efficient while DMU
D is now on the efficient frontier.

Under variable returns to scale, DMU’s A, B, and H are VRS DEA efficient
with efficiency scores of 1. When 1 point is allowed to lie external to the hull,
points A and B are super-efficient or lie external to the qDEA-(7/8) hull while
DMU’s C, D, and E lie on the qDEA-(7/8) hull. The NA’s for DMU H indicate that
the DMU H is super-efficient relative to the qDEA-(7/8) hull but the VRS qDEA
LP problem is dual unbounded, primal infeasible for DMU H. The input-oriented
primal infeasibility results because no movement the “input” direction from point H
can reach the qDEA-(7/8) hull. As discussed below, with the VRS model when up
to two points are allowed to lie external to the qDEA hull, the efficiency scores for
DMU’s A, C, D, F, and G do not change as it is not possible to find two points that
can feasibly lie external to the hull given the DMU’s in this example. The efficiency
scores for DMU’s B, and E can be increased by allowing points B and E to become
simultaneously supper efficient.

3.3 Conservativeness of qDEA-I Efficiency Scores

As previously discussed, the qDEA-I efficiency scores are conservative relative to
the qDEA-II efficiency scores. Figure 5 provides insights into the nature of the
conservative solutions and why the two-stage process is used. Figure 5 plots the
original points and the CRS DEA (red) and qDEA-II(6) (blue) efficient hulls from
Fig. 1. The red and blue stars respectively plot the extrapolated efficient output-input
combinations for DMU H for the DEA and qDEA-II(6) models. As expected, the
red starred combination is extrapolated from point B while the blue starred efficient
combination is extrapolated from point D. The green starred point is the output-
input combination extrapolated by the first stage qDEA-I (6) model. The green
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Fig. 5 CRS CST example DEA, qDEA-I, and qDEA-II extrapolated and excluded points

circled points (B, D, and E) are the points used in the qDEA-I (6) extrapolation with
the red circled points denoting the qDEA-I (6) external points (positive di values
in system (5)).8 The efficiency score obtained using the green starred extrapolated
point is clearly more conservative that the value associated with the blue starred
extrapolation point.

We have presented the qDEA model and demonstrated its ability to obtain
quantile efficiency metrics as well as qDEA’s ability to identify sets of potentially
outlying data points. We now discuss procedures for identifying qDEA-˛ frontiers
and contrast the results to the conceptually similar order-˛ frontiers obtained using
FDH related procdures.

8The fact that the green point is projected using each of the green circled points is readily derived
by examining the dual solution to system (5) where the resulting dual or zj values are projection
weights. The dual values for all constraining equations in system (5) will be non-zero valued. The
constraints associated with all external points as well the new qDEA support points will be binding
in system (5).
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4 Contrasting qDEA-˛ and Order-˛ Frontier Estimates

A qDEA-˛ “frontier” with respect to a given orientation may be defined as the set of
all possible projection points that could be obtained by applying the qDEA process
to points generated with a given data generating process while requiring that no
more than  D 1 �˛ % of the points be allowed to lie external to any given DMU’s
qDEA reference set. This can be illustrated by examine the previous CST example
under the assumption of variable returns to scale (VRS). Figure 6 plots the convex
hulls for the sets of qDEA-1, qDEA-7/8, and the qDEA-6/8 projection points. The
sets of projection points were obtained by solving the VRS qDEA model for each
of the eight DMU’s and computing the resulting projection points.

Figure 6 presents the qDEA-1, qDEA-7/8 and qDEA-6/8 frontiers respectively
with black, red, and blue lines. Figure 6 also plots the projected points extrapolated
from each DMU’s original position. With the base DEA or qDEA-1 case, the VRS
hull is the convex hull defined by points A-B-H. The frontier defined by these
points is plotted in black. The “stars” on the black line denote points projected from
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the DMU points with DMU’s A, B, and H being VRS-efficient, points C and F
projecting to point J, points D and G projecting to point K, and point E projecting
to point B.

With up to one external point, the efficiency scores of all DMU’s (with the
exception of DMU H) improves as each of DMU’s A-G’s input-output points are
now projected onto the red qDEA-7/8 frontier. Point A now projects to point L, point
B now projects onto point E, points C, D, and E are on the qDEA-7/8 frontier, point
F projects to point C and point G now projects to point D. As indicated previously,
point H’s dual solution is unbounded indicating an infeasible primal solution as no
horizontal shift from point H can reach the qDEA-7/8 red frontier. In this case, we
note that DMU H is qDEA-7/8 “super-efficient” but cannot recover a qDEA-7/8
distance for DMU H. DMU’s A and B are identified as qDEA-7/8 “supper-efficient
in that their efficiency scores exceed 1 and in each case the bounded solution
indicates that each DMU’s input-output values can be projected back onto the
qDEA-7/8 frontier.

With VRS and up to two external points, we find that only DMU B and E’s
efficiency scores increase beyond the values realized with one external point. The
qDEA-6/8 efficiency scores for the remaining DMU’s remain unchanged as it is
not possible to find only two points that can lie external to each point’s reference
set. Consider DMU A’s possibilities. In the qDEA-7/8 model, DMU A’s efficiency
score was improved by allowing point A to lie external to the set and projecting
point A to point L on the qDEA-7/8 frontier. With up to two external points and
VRS, we find that point A could only be projected further to the right of point L
if point A and both points B and C were allowed to lie external to the qDEA-6/8
frontier. This would require allowing up to three external points rather than two. As
a result, point L remains on both the qDEA-7/8 and the qDEA-6/8 frontiers. Similar
arguments apply to points C and D. However, for DMU’s B and E, we find that
their qDEA-6/8 efficiency scores can be improved by allowing both points B and
E to be super-efficient with their resulting local qDEA-6/8 frontier projected point
M being constructed as a convex combination of support points D and H. The net
result of this exercise is that points A, B, and H define the VRS DEA and qDEA-1
frontier, points L, C, D, and E define the VRS qDEA-7/8 frontier, and points L, C,
D, and M define the qDEA-6/8 frontier. Using this methodology, we can construct
qDEA-˛ frontiers that can be contrasted to order-˛ frontiers illustrating some of the
differences between the two types of frontiers.

4.1 qDEA-˛ and Order-˛ Frontiers

To facilitate our comparison of qDEA-˛ and order-˛ frontiers we utilize the example
presented in Simar and Wilson (2011a). Simar and Wilson’s example involves one
input and one output with inputs distributed over the [0,1] interval and realized
production in the domain 0 � y �

p
.2x � x2/. Joint realizations of x and y

are assumed to be uniformly distributed over the resulting x-y space with density
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function f (x, y) D 4/� for x 2 [0, 1] and 0 � y �
p
.2x � x2/ . In the following

comparisons, random joint realizations of x and y were generated using this process
and the resulting qDEA-˛ and order-˛ frontiers calculated using the “frontiles” R
package (Daouia and Laurent (2013)) and qDEA R code that is available from the
authors upon request.9 Both the “frontiles” package and the author’s R code can
generate input and output orientation frontiers. Fig. 7 presents a combined set of
VRS input and output qDEA-0.95 and order-0.95 estimated frontiers using data
from 300 simulated DMU observations generated with the above process.

In Fig. 7 the dashed black line represents the upper boundary of 0 � y �p
.2x � x2/, the black line is the estimated input-oriented order-0.95 frontier, the

green line is the estimated output-oriented order-0.95 frontier, the red line is the
estimated input-oriented qDEA-0.95 frontier, and the blue line is the estimated
output-oriented qDEA-0.95 frontier. The reader will note that the order-˛ frontiers

9R code available from the authors can be used to obtain qDEA solutions with input, output, or the
more general ddea DEA models.
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are consistent with the examples presented by Simar and Wilson with the upper
right end of the black input order-0.95 and the lower left ends of green output order-
0.95 frontiers approaching the dashed upper production boundary. As discussed
by Simar and Wilson the order-˛ boundaries tend to be somewhat jagged with a
sample size of 300 DMU’s. The reader will note that the qDEA-0.95 frontiers input
and output oriented frontiers coincide closely with their order-0.95 input and output
counterparts respectively in the lower left and upper right sections of the frontiers.
However, the qDEA-0.95 frontiers are substantially smoother than their order-0.95
counterparts over most of the frontiers’ range and the input and output qDEA-0.95
frontiers align much more closely with each other over most of the frontiers’ ranges
as well. The smoother VRS DEA based qDEA-0.95 frontiers are to be expected
given the structure imposed by the VRS assumptions in comparison to the more
general FDH-related methodologies used in estimating the order-˛ frontiers.

5 An Application of qDEA in a Study Examining Changes
in State Level Agricultural Efficiencies Over Time

The potential usefulness of qDEA is illustrated in a study examining changes in U.S
state level agricultural efficiencies over time. As space precludes a discussion of the
results for all states, we focus upon estimated changes in the state of Nebraska’s
estimated efficiencies over the period 1964 to 2014.

State level aggregate agricultural input-output data for the period 1960 to 2004
were obtained from ERS (2016). The data consists of several variables including
standardized values (1996$) of total agricultural output, livestock output, crop
output, capital input services (excluding land), land input service flows, labor
input services, and intermediate inputs including items such as energy, chemicals,
and fertilizer. For the purposes of this example, we utilize aggregate agricultural
output as our single output variable. Two inputs, “fixed” and “variable” inputs were
constructed. “Fixed” inputs were constructed as the sum of the non-land capital and
land service values. “Variable” inputs were constructed as the sum of the labor and
total intermediate input values.

Agricultural input and output data is inherently volatile due to the effects of
weather. To reduce the effects of weather-induced variability, we computed a
moving 5-year Olympic average for each of the output and two input variables
leaving a data set with observations from 1964–2004. Due to heterogeneity in the
scale of agriculture across states, we then divided each state’s input and output levels
by the year’s state level output for each year in the 1964–2004 period. Each state’s
output is thus 1 and the two inputs are standardized to a per-unit-of-output basis for
each year in the 1964–2004 series.

Figure 8 presents standardized Fixed-Variable input plots for the years 1974,
1984, 1994, and 2004 with Nebraska’s observations plotted in red. Several obser-
vations can be made from a visual examination of the plots. We first note that
most states’ observed absolute efficiencies have improved over time with fewer of
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Fig. 8 Fixed – variable inputs per unit of output 1974–2004

both variable and fixed inputs being required to produce a unit level of output. We
also note that the data has persistent outliers possibly generated by differences in
the structure and types of agriculture across states. In all 4 years, a group of two
or more isolated observations (including California and Florida) are observed in
the lower left portion of the plots with other isolated points located in the right
and upper portions of the plots. Assuming constant returns to scale (CRS), the
points in the lower left portion of the plot will likely be “influential” outliers that
may substantially affect the estimated efficiency scores of the remaining states’
observations. While the isolated points in the right and top portions of the plot
are “outlier’s” with respect to most of the other states, they will likely be “non-
influential” outliers that have no effect upon the other states’ estimated efficiency
scores.

Given differences in the types of agriculture, it is questionable whether California
and Florida should be included in the group of peer states to which Nebraska is
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compared. While California and Florida could have been excluded from the data
set, there appear to be additional “lower left” states in the later years and we did
not want to exogenously exclude one or more states from the analysis in an ad.
hoc. Manner. The qDEA procedure allow us to systematically examine the effects
of using alternative “quantile-based” peer groups by endogenously identifying sets
of external points and computing efficiency scores relative to the remaining peer
groups. To examine changes in a state’s efficiency scores over time, a time series
of input-orientation efficiency scores were estimated for each state by looping
through the years 1964–2004, subsetting the data for each year, and estimating both
traditional and quantile efficiency scores. For each state, the estimated efficiency
scores were then plotted against time.

Figure 9 plots the time varying efficiency scores for the state of Nebraska
with from one to four external or quantile super-efficient points. The traditional

Fig. 9 Nebraska’s estimated relative agricultural efficiencies over time and by number of external
qDEA observations
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DEA results (the black lines), would imply that Nebraska’s estimated efficiencies
initially rose sharply, dropped sharply in the mid 70’s and rose steadily from the
late seventies through 2004. To examine the sensitivity of these results to the
possible presence of influential outliers, we estimated a series of qDEA efficiency
scores. Nebraska’s intertemporal qDEA efficiency are plotted in red in Fig. 9. With
one external point Nebraska’s estimated qDEA efficiency scores increase but the
exhibited pattern is similar to the original DEA results with an initial increase and
decline in efficiency scores and then a steady increase from the late 1970s through
2004.

However, with two or more external points, Nebraska’s intertemporal efficiency
score patterns stabilize to a pattern with fluctuations but little or no trend in
efficiency scores over time. Further increasing the number of external points from
4 to 10 increased the absolute levels of the efficiency scores but resulted in no
substantive change in the intertemporal pattern i.e. Nebraska’s relative efficiency
scores exhibited little or no change over the period 1964–2004.

6 Summary and Conclusions

This paper has presented procedures that allow the analyst to implement Quantile
Data Envelopment Analysis where efficiency metrics are developed while allowing
no more than a specified proportion of the data observations to lie outside the
estimated efficiency hull. The procedures are straight forward and can be easily
implemented with conventional linear programming algorithms. An additional
potential use of qDEA is in more easily identifying potential comparative peer
or benchmarking groups within a set of possibly technically heterogeneous firms.
Benchmarking studies often involve contrasting a firm’s characteristics and perfor-
mance against metrics from a group of industry firms such as the top 10 percent or
top quartile of firms. The ability to identify quantile DEA efficiency metrics allows
the analyst to now “efficiently” perform similar comparisons using DEA efficiency
estimates and distance metrics.

The qDEA approach is not without its limitations. The researcher will need
to experiment with the effects of using differing quantiles upon the estimated
efficiency metrics in specific applications. The added complications of appropriate
quantile selection are similar to selecting the appropriate quantile level in quantile
regressions. The qDEA procedure is still in its infancy and will benefit from further
development. Additional research is needed with respect to the statistical properties
of the qDEA efficiency estimates,10 the selection of appropriate quantile levels, the

10The authors, to date, have not been able to derive closed form expressions for the asymptotic
properties of the qDEA estimates. Numerical procedures described by Geyer (2013), suggest
that qDEA estimates appear to have many of the desirable features of the FDH related order-m
and order-˛ estimators including root-n convergence and asymptotic normality. The authors have
experimented extensively with the use of nCm bootstrapping as discussed by Politis et al. (1999,
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use of qDEA to identify groups of potentially outlying points, and its usefulness in
identifying quantile based peer groups. However, as clearly demonstrated with the
application discussed above, the ability to systematically and endogenously examine
the effects of allowing proportions of points to lie external to the efficiency hull
should prove useful to the researcher when faced with statistical noise and potential
outliers.
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