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Abstract Distance constraints are an emerging formulation that offers intuitive geo-

metrical interpretation of otherwise complex problems. The formulation can be

applied in problems such as position and singularity analysis and path planning

of mechanisms and structures. This paper reviews the recent advances in distance

geometry, providing a unified view of these apparently disparate problems. This sur-

vey reviews algebraic and numerical techniques, and is, to the best of our knowledge,

the first attempt to summarize the different approaches relating to distance-based for-

mulations.

Introduction

A structure can be seen as a complex multibody system (see Fig. 1). While rigid

structures have been widely used in construction, passive mobile structures are com-

monly used, for instance, as shock absorbers. The advent of automation, however,

opened the possibility for building active structures [1], i.e., structures which can

actively vary their geometry as needed. Such structures are mechanisms, since their

motions are typically achieved by means of actuated elements such as revolute joints

or variable-length bars. Due to their shape versatility, variable geometry structures

have myriad potential applications including robot arms [2], hyper-redundant manip-

ulators [3], flight simulators [4], payload vibration reduction systems [5], the manip-
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Fig. 1 Structures are typically composed by interconnected rigid bodies and they can have different

types of mobility. a A fixed bridge is an example of rigid structure. b The shock absorbers of a bike

are passive mobile structures. c Retractable roofs are active structures

ulation of large payloads [6], morphing wings [7], space applications [8], and civil

engineering structures [9].

The design of novel variable geometry structures rely on having a complete char-

acterization of their valid configurations. Such configurations are defined by a system

of equations encoding the assembly, task, or contact constraints intervening in the

problem, and the goal is to analyze the motion capabilities by studying the solutions

and properties of such system. The equations can be encoded with different formu-

lations, and the analysis can be significantly simplified if the right formulation is

chosen.

The dominant formulation is based on homogeneous transforms using the para-

meters proposed by Denavit and Hartenberg [10]. This formulation encodes the

relative relation between the reference frames associated with the bodies connected

by a given joint. Althouth the motion simulation using such parameters is straightfor-

ward, the motion analysis using them is challenging, because the resulting equations

typically involve complex trigonometric expressions.

Over the past few years, several works have shown that deviating from this clas-

sical approach and formalizing the motion analysis problems using distance con-

straints can be very advantageous. Distance constraints provide intuitive geometric

insights on aspects of the motion analysis problem which are difficult to discern oth-

erwise. Moreover, these geometric insights allow the derivation of solutions com-

mon to a group of problems that must otherwise be treated on a case-by-case basis

[11–13].

In some mechanisms, the configuration space is composed of isolated points. This

is what happens, for example, when solving the position analysis problem of serial or

parallel manipulators. In other situations, the valid configurations form a variety, and

the problem is to analyze relevant subsets of this variety. This is the case when ana-

lyzing the singularity loci. In systems in which the dimension of the variety is very

high, global analysis of the configuration space is unfeasible, and the main problem

is to find collision and/or singularity free paths connecting any two given configu-

rations. Next, we review the existing distance geometry approaches to these three

fundamental problems.
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Position Analysis

The position analysis problem consists in computing all the valid configurations of

a constrained multibody system. This problem appears, for instance, in the inverse

kinematic of serial manipulators [14], as illustrated in Fig. 2. It also appears when

solving the forward kinematics of parallel structures [15], when planning the motion

of deployable structures [16], in robot grasping [17], in constraint-based object posi-

tioning [18], or in simultaneous localization and map-building [19]. The problem

appears in other domains as well, such as in the dynamical simulation of multibody

systems [20], in parametric computer-aided design (CAD) [21], or in the conforma-

tional analysis of biomolecules [22].

Traditional approaches translate the original geometric problem into a system of

kinematic equations derived from the independent kinematic loops in the problem.

Existing techniques for solving such systems of equations can be classified into alge-

braic and numerical methods. The use of independent loop equations has seldom

been questioned, yet the resulting expressions are not particularly well suited for

either the algebraic or numerical methods: first, because arbitrary reference frames

Fig. 2 The inverse kinematic problem of a serial robot consists in finding the robot configurations

that position the end effector in a given pose. For the manipulator in the figure, this problem has

eight different solutions. Four of them are shown here
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have to be included, and second, because all formulas involve translations and rota-

tions simultaneously, thus leading to complex trigonometric equations. The distance-

based formulation offers an alternative that avoids these two problems and has been

shown to provide novel insights in both algebraic and numerical methods.

Algebraic Methods

Algebraic methods use variable elimination to reduce the initial system to a uni-

variate polynomial whose roots, once back-substituted into other equations, yield all

solutions of the original system [23].

To apply the variable elimination methods to equations resulting from the kine-

matic loops, the trigonometric expressions must be replaced to obtain a system of

polynomial equations. Typically the tangent half-angle substitution is used, but it

misses possible roots at ±𝜋. Moreover, the resulting expressions are complicated,

limiting the scalability of this approach. Some of the successful results obtained

with this approach can be attributed to clever manual manipulation of the expres-

sions, which are difficult to generalize [24]. Using a distance-based approach, the

original geometric problem is translated into a graph where the nodes are points on

the structure and the edges are distance, area, or volume constraints involving these

points. Relying on this formulation, Rojas and Thomas [27] proposed a procedure

for solving the position analysis of complex planar mechanisms (see Fig. 3). The

procedure analyzes the two possible assemblies of a triangle, given the distances

between its vertices. This basic problem is elegantly formulated using the so-called

bilateration matrices. More complex mechanisms are then analyzed, decomposing

them in strips of triangles and chaining bilateration matrices for triangles sharing

one edge. This directly produces a scalar algebraic resultant in most cases, which

can be transformed into a polynomial by clearing radicals.

Fig. 3 An excavator (left) can be modeled as a planar mechanism (right) with a global rotation

about a vertical axis. White and black dots represent movable and fixed revolute joints, respectively
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Fig. 4 The bilateration problem (left) and the associated notation (right)

Let us review this procedure in more detail. According to the notation in Fig. 4,

the objective of the bilateration operation is to determine the location of point Pk
given known locations for points Pi and Pj. The position vector of the orthogonal

projection of Pk onto PiPj can be expressed as

𝐩 = 𝐩i

√
D(i, k)
D(i, j)

cos 𝜃 𝐩i,j = 𝐩i +
D(i, j; i, k)
D(i, j)

𝐩i,j (1)

where

D(i1,… , in; j1,… , jn) =

|||||||||

0 1 … 1
1 si1,j1 … si1,jn
1 ⋮ ⋱ ⋮
1 sin,j1 … sin,jn

|||||||||
(2)

is the Cayley-Menger determinant of n points, with si,j the square of di,j, the distance

between Pi and Pj, and D(i1,… , in) = D(i1,… , in; i1,… , in) is the Cayley-Menger

determinant.

Using 𝐩, the position of Pk can be expressed as

𝐩k = 𝐩 ±
√
D(i, j, k)
D(i, j)

𝐒 𝐩i,j, (3)

where 𝐒 =
(
0 −1
1 0

)
, and the ± sign accounts for the two mirror-symmetric locations

of Pk with respect to the line defined by PiPj. Substituting (1) in (3), we get

𝐩i,k =
D(i, j; i, k)
D(i, j)

𝐩i.j +
D(i, j, k)
D(i, j)

𝐒 𝐩i,j, (4)
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Fig. 5 Two triangles

sharing one edge

which can be expressed in a more compact form as

𝐩i,k = 𝐙i, j,k 𝐩i, j (5)

where

𝐙i,j,k =
1

D(i, j)

(
D(i, j; i, k) ±

√
D(i, j, k)

±
√
D(i, j, k) D(i, j; i, k).

)
(6)

Note that (5) expresses 𝐩i,k as a function of 𝐩i,j. When we have a strip of trian-

gles, i.e., a sequence of triangles each sharing one edge with the previous one in the

sequence, we can chain the bilateration process, i.e., multiply bilateration matrices,

and express a vector in the final triangle as a function of a vector in the initial one. In

the same way, we can derive expressions for vectors between points whose relative

distance is initially unknown. For instance, in the situation in Fig. 5, we have that

𝐩j,l = 𝐩i,l − 𝐩i,j = (𝐙j,k,l 𝐙i,j,k − 𝐈) 𝐩i,j. (7)

It can then be shown that the squared distance between Pj and Pl is given by

sj,l = det(𝐙j,k,l 𝐙i,j,k − 𝐈) si,j, (8)

which expresses sj,l as a function of known edge lengths.

For larger problems, the same procedure can be applied, identifying strips of tri-

angles with known edge lengths fully covering the mechanism. In most mechanisms

with mobility zero, this process typically requires the introduction of unknown dis-

tances. Actually, the number of unknown distances to introduce coincides with the

coupling number of the mechanism. Thus, the method can be applied to linkages

with a coupling number higher than one. In the final expression, one of the distances

in the triangle at the end of the strip is expressed as a function of an unknown distance

in the first triangle. This expression, therefore, is directly a scalar algebraic equation

which can be converted into a polynomial by clearing radicals. This direct proce-

dure for deriving resultant polynomials is much simpler than those in the literature,

and makes it possible to solve problems such as that in Fig. 6, which contains six

independent kinematic loops, a number that has not been attained with elimination

methods [26].
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Fig. 6 Some of the valid configurations of a 13-link Watt-Baranov truss. The position analysis

of this mechanism using algebraic methods has been shown to be feasible when formulating the

problem in terms of distance constraints [25]

For systems with mobility one, we obtain a polynomial depending on two

unknown distances which can be used for path tracking: one of the unknowns is

fixed, and the system is solved for the remaining variable. The advantage in using a

distance formulation in this case is that path-crossing conditions can be readily iden-

tified, since they correspond to alignments of particular points in the problem. Thus,

the distance-based formulations simplify the path-tracking procedures, as compared

with previous approaches [27].

This distance-based algebraic approach can be generalized to 3D using fans of

tetrahedra instead of strips of triangles. This enables solving in closed form the posi-

tion analysis of variable geometry trusses much more complex than those solvable

with traditional formulations [28].
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Numerical Methods

Although the distance-based algebraic methods have proved quite efficient in fairly

non-trivial position analysis problems, this technique explodes in complexity with

the size of the problem. Thus, to address larger problems, one must resort to numer-

ical techniques. Several distance-based alternatives are available in the literature.

Trilateration Methods

The position analysis problem can be seen as that of determining all the possible

values for the unknown distances in the graph of distance constraints encoding the

problem. If the graph is represented in the form of an adjacency matrix, the prob-

lem boils down to completing the matrix from the distances initially fixed. Once the

matrix is completed, standard linear algebraic methods can be used to give coordi-

nates to the points in the problem [29].

In some problems, the matrix completion process can be performed in an incre-

mental constructive way. In 𝔼3
, if all but one of the relative distances between five

points are known, the unknown distance can be readily determined by trilateration.

Using the notation in Fig. 7, we have that

s4,5 =
2

D(1, 2, 3)

(
D(1, 2, 3, 4; 1, 2, 3, 5)|||s4,5=0 ±

√
D(1, 2, 3, 4) D(1, 2, 3, 5)

)
, (9)

whereD(1, 2, 3, 4; 1, 2, 3, 5)|||s4,5=0 denotes the corresponding Cayley-Menger bideter-

minant with s4,5 set to 0. Observe that no point coordinates appear in the result, only

inter-point distances, and that two solutions are possible, corresponding to the two

possible signs for the square root in the expression.

A problem is trilaterable if it is possible to determine a trilateration sequence

to compute the initially unknown distances in the problem. This sequence can be

P1P1

P2
P2

P3P3

P4 P4

P5

P5

d4 ,5

d4 ,5

Fig. 7 Trilateration can be used to compute the distance between P4 and P5 from their distances to

P1, P2, and P3, which form a fixed triangle. Two solutions are possible, depending on the location

of P4 and P5 with respect to the plane defined from points P1, P2, and P3
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readily determined by subgraph matching, i.e., finding parts of the original graph

which match with the trilateration subgraph shown in Fig. 7. Porta et al. [11] showed

that the inverse/direct kinematics of the most usual serial/parallel robots are trilat-

erable problems, which greatly simplifies their resolution. Moreover, [30] showed

that if the searched subgraph includes six points with only one unknown distance

between them, this unknown distance is linear with respect to the rest of the dis-

tances, and thus it has only one possible solution. This avoids the generation of dis-

tance completions that have to be discarded in a post-processing stage, since they

would include tetrahedra with orientations incompatible with the original problem.

For greater detail on the role of orientations in distance geometry, see Sect. Bound

Smoothing with Orientation Constraints.

Note that the trilateration process is closely related to the algebraic approach

described in Sect. Algebraic Methods. The main difference is that in the trilatera-

tion, only one new unknown distance appears at each step, whereas in the algebraic

method, the first step involves two unknown distances. This is why the former method

is purely numerical while the latter generates a symbolic expression in one variable

distance.

To the best of our knowledge, the combination of the trilateration step and the pro-

cedure to determine a trilateration sequence was first introduced by Porta et al. [11,

30], and was later independently proposed by Lavor et al. [31] in the context of struc-

tural biology, but in Cartesian space, i.e., relying on the coordinates of the points and

assigning coordinates to the trilaterated point at each step. More recently, the same

authors proposed an equivalent algorithm in distance space [32].

Branch-and-Prune Methods

Unfortunately, not all problems admit a trilateration sequence, and thus general

solvers must be devised to determine the valid distance matrices from the initially

known distances. Porta et al. present alternative general solvers relying on a branch-

and-prune technique [33–35]. These solvers iteratively eliminate regions of the space

of distances where the distance constraints are not satisfied. When the distance space

cannot be further reduced, it is split, and the reduction and split procedure is recur-

sively applied to the two resulting sub-spaces. This process can be seen as an exten-

sion of the classic bound-smoothing techniques [36], and isolates the valid solutions

for the input problem in the form of interval matrices at the desired resolution. Since

splitting the search space is trivial, the key operation of the branch-and-prune meth-

ods is the procedure used to shrink the boxes in distance space.

The method presented in [34, 35] introduces variable substitutions to convert the

quadratic expression resulting from the Cayley-Menger determinants into multilin-

ear equations. The graph of a multilinear function defined on an axis-aligned box is

included in the convex hull of the evaluation of the function in the corners of the

domain [37]. The solution of f (𝐱) = 0 can then be bounded to the intersection of this

hull with the plane f (𝐱) = 0. Since the computation of this intersection can be dif-

ficult, the method projects the hull onto each coordinate plane, as depicted in Fig. 8
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Fig. 8 Segment-trapezoid clipping. Left: in this two-variable case, the graph of the multilinear

function f (x1, x2) in the domain box  necessarily lies inside the shown tetrahedron . The vertices

of  are obtained by evaluating f in the corners of . The projection of  to a given coordinate

planes defines a trapezoid. Right: from the initial range for a variable, we can prune all points for

which its trapezoid does not intersect the f (x1, x2) = 0 line

(left), and intersects each of the resulting trapezoids with the line, as shown in Fig. 8

(right). Typically, these segment-trapezoid clippings reduce the ranges of some vari-

ables, giving a smaller box (the black rectangle in Fig. 8) that still bounds the root

locations. Although this strategy produces less pruning than the convex hull-plane

clipping, it is advantageous in practice due to its lower cost of operation.

A Gough-Stewart platform is a six-degrees-of-freedom structure composed of a

moving platform connected to a base by six legs. The pose of the platform is con-

trolled by the leg lengths. Parallel structures are used in many applications, including

positioning tools [38], flight simulators [39], or radiotelescopes [40]. After some leg

rearrangements (see Sect. Singularity Analysis), the forward kinematic problem of

the Gough-Stewart in Fig. 9 can be formulated using two Cayley-Menger determi-

nants [41]

D(1, 3, 4, 5, 6) = 0,
D(1, 2, 4, 5, 6) = 0,

where P1, P2, and P3 are the points defining the triangle at the base of the structure

and P4, P5, and P6 the vertices in the triangle at the moving platform. The branch-

and-prune algorithm proposed by Porta et al. [35] determines the two solutions of

this problem typically in less than 0.01 s on a standard desktop computer.

A variation of the above algorithm, where the box reduction is based on the prop-

erties of the Bernstein polynomials, has been used to elucidate the valid conforma-

tions of several molecular structures [42]. This method was parallelized and run on
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P1

P1

P2
P2

P3

P3

P4P4 P5 P5

P6
P6

Fig. 9 Left: a hexapod structure. Right: associated distance graph where nodes are points and

edges are distance constraints. Solid lines denote distances that are constant independently of the

configuration

the MareNostrum supercomputer
1

to obtain the first complete description of the con-

formational space of the cyclooctane, which is a two-dimensional variety. To the best

of our knowledge, this was the first distance geometry method able to characterize

such complex solution spaces.

Distance geometry provides yet another alternative to crop the distance ranges

based on the reduction and expansion of the dimension of the problem [43]. This

approach is purely geometric, avoiding the algebraization of the problem. Taking

the vector from P1 to Pn as a reference, a vector 𝐪 = (d1,n,… , dn,n) can be defined

where

di,n =
1

2 d1,n
(d2i,n + d21,n − d2i,1) (10)

is the orthogonal projection of the vector from Pn to Pi onto the reference vector. We

can also define the orthogonal complement of this projection, which is a matrix 𝐐⟂

with

𝐐⟂
i,j = d2i,j −

1
4 d21,n

(d2i,n − d2j,n + d2j,1 − d2i,1)
2
. (11)

It can be shown that matrix 𝐐, with Qi,j = si,j, is a proper Euclidean distance matrix

in ℝd
if and only if 𝐐⟂

i,j with i, j = 1… n − 1 is a correct Euclidean distance matrix in

ℝd−1
. Thus, the method projects the input distance matrix with interval ranges until

the problem becomes one-dimensional, and hence consistency can be enforced using

the triangular equality. The eventually reduced ranges are back-projected using the

1
http://www.bsc.es.

http://www.bsc.es
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intermediate vectors 𝐪 and matrices 𝐐⟂
to find tighter ranges for the distances in the

original problem. The direct evaluation of (10) and (11) using interval arithmetics

would be inaccurate due to the well-known overestimations effect of this approach

[44]. However, if a function z = g(𝐱) is monotone in an axis-aligned domain 𝐱 =
(x1,… , xn), with xi ∈ [xli, x

u
i ], and the derivatives of g are available, its upper bound

is zu = g(�̂�), where �̂� = (x̂1,… , x̂n) is the vertex of the domain given by

x̂i =

{
xli if 𝜕g∕𝜕xi < 0,
xui otherwise.

The lower bound, zl, is in a vertex defined with the opposite criterion. Thus, tight

bounds for di,n and 𝐐⟂
i,j can be obtained by analyzing their respective derivatives.

This method has been applied to solve the position analysis of planar and spatial

mechanisms with mobility 0 and 1 [43, 45].

Bound Smoothing with Orientation Constraints

One of the major shortcomings of the approaches described in the previous section

is their limited capability for encoding orientation constraints. Let us consider the

regional part of the wrist-partitioned 6R robot shown in Fig. 10 (left), that is, the first

three links and joints that permit locating the wrist center anywhere in the robot’s

workspace. Figure 10 (right) shows the formalization of this problem as a graph of

distance constraints. In this example, any standard distance constraint solver would

generally obtain eight different sets of compatible distances. Nevertheless, it is well

known that the inverse kinematics of a 3R robot can only have up to four solu-

tions [46]. This apparent contradiction has a simple explanation: a distance-based

technique would not take into account the relative orientations of the tetrahedra

defined by the sets of points {P1,P2,P3,P4} and {P3,P4,P5,P6}. The same situ-

ation occurs in many other structures.

To address this issue, Rull et al. present a distance-bound smoothing approach

that permits the incorporation of orientation constraints in the process of reducing

the valid ranges of distances [47]. This approach focuses on planar problems that are

formalized with the following constraints:

∙ For all sets of three points:

D(i1, i2, i3) ≤ 0. (12)

∙ For all sets of four points:

D(i1, i2, i3, i4) = 0, (13)

and

D(i1, i2, i3; i1, i2, i4) =
{

< 0 if 𝜎i1,i2,i3𝜎i1,i2,i4 > 0
≥ 0, otherwise

(14)
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Fig. 10 Left: the configuration of the regional part of a wrist-partitioned 6R robot is determined by

the location of seven points. Right: associated distance graph where nodes stand for points and edges

for known distances between the corresponding points. Solid lines represent constant distances,

regardless of the location of the end-effector

Fig. 11 Taking triangle P1,

P2, and P3 as a reference, the

plane is divided into seven

regions. If P4 is bound to be

in one of these regions, s3,4 is

monotone with respect to the

rest of the squared distances.

The boundaries separating

the monotonic regions

correspond to configurations

where there is an alignment

of three points

where 𝜎i,j,k is defined as negative if points Pi, Pj, and Pk have to be arranged clock-

wise, and as positive otherwise.

While the expansion of (12) leads to the triangular inequality involving the dis-

tances between Pi1 , Pi2 , and Pi3 , (13) is nothing more than the tetrangular equality

involving the six pairwise distances between Pi1 , Pi2 , Pi3 , and Pi4 .

Note that the whole set of orientation constraints in (14) cannot be fixed arbitrar-

ily. Actually, it is possible to define a basis that determines all other orientations [48].

Since an efficient algorithm exists for tightening bounds using triangular con-

straints [49], it can be safely assumed that they are already satisfied by the initial

ranges. Thus, the approach focuses on the analysis of (13) under orientation con-
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straints. The expansion of this equality yields a quadratic expression in any of the

involved squared distances. For instance, for the set of points {P1,P2,P3,P4}, we

have

s3,4 =
D(1, 2, 4; 1, 2, 3)|s3,4=0 + 𝜎1,2,4 𝜎1,2,3

√
D(1, 2, 4) D(1, 2, 3)

D(1, 2)
(15)

or alternatively

s3,4 =
D(1, 2, 4; 1, 2, 3)|s3,4=0 + 16 A3 A4

D(1, 2)
, (16)

where Ai denotes the oriented area of the triangle defined by the ordered set

{P1,P2,P3,P4}∖Pi, since 4Ai = 𝜎j,k,l
√
−D(j, k, l).

The range of s3,4 can be tightly bounded using the monotonicity analysis presented

at the end of Sect. Branch-and-Prune Methods. To apply this method to the function

in (16), we need to compute the derivatives of s3,4 with respect to si,j. Instead of

computing these derivatives from (16), it is more convenient to obtain them from

the linearization of (13), which reads as:

A1A2 𝛿s1,2 − A1A3 𝛿s1,3 + A1A4 𝛿s1,4
+ A2A3 𝛿s2,3 − A2A4 𝛿s2,4 + A3A4 𝛿s3,4 = 0. (17)

Then, we have that

𝜕s3,4
𝜕si,j

= −1i+j
AiAj

A3A4
. (18)

As long as the sign of the oriented areas of the triangles defined by P1,P2,P3, and

P4 do not change, s34 is monotone. Therefore, in this case, we can readily identify

the vertices providing tight bounds for s3,4 by controlling the regions where there are

orientation sign changes.

Figure 11 shows a partition of the plane in regions where the orientations of the

triangles defined by P1, P2, and Pi with i > 3 are constant, taking the triangle defined

by P1, P2, and P3 as a reference. If P4 remains in one of these regions, the bounds

for s3,4 can be readily determined. For instance, if P4 is in the Rhombus region, the

patterns in Fig. 12 identify the vertices of the domain giving a tight range for s3,4.
We can identify 14 patterns, two for each region, which subsume the seven patterns

used by Crippen and Havel [36].

When three points can be aligned within the allowed distance ranges, the bound-

aries separating the monotonic areas must be recursively analyzed. At the end of the

process, tight bounds for the variable of interest are obtained.

As an alternative, a geometric approach based on projections and back-projections

introduced in [45] can also be extended to take into account orientation constraints.

Moreover, this method can operate in 3D problems, whereas the extension to 3D of

the method introduced in [47] is not trivial.
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Fig. 12 The two configurations giving the lower (left) and upper (right) bounds for s3,4 in the

Rhombus region. Solid and dashed lines indicate distances at their lower and upper limits, respec-

tively

Fig. 13 A robot formation. Each robot is equipped with an ultrasound sensor to measure the dis-

tances to nearby teammates. The lines in the figure represent the distances actually measured. The

orientation of the triangles is given by cameras mounted on the robots. The integration of the dis-

tance and orientation constraints permits the determination of tight bounds for the possible location

of each robot

The integration of the orientation constraints opens a new range of applications

for distance geometry methods, such as the coordination of robot teams, sensor data

fusion, and constraint-based robot programming, to name just a few. For instance,

Fig. 13 illustrates the application of this method to the mutual localization of a robot

team.
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Singularity Analysis

The singularity locus of any given mechanism is the set of configurations where

mobility or control issues might arise. To prevent malfunctions or even structural

damage, singularities must be avoided. Thus, given its relevance, singularity analy-

sis is a major topic of research in mechanics. However, the characterization of sin-

gularities has only been achieved for particular mechanism instances or requires

the use of complex computational methods [50]. In general, modifications of the

mechanism parameters change the singularity locus in unpredictable ways, which

hinders the analysis of new structures. Borras and Thomas, however, proposed dis-

tance geometry tools to identify singularity-invariant leg rearrangements for parallel

structures, i.e., changes in the attachments of the legs to the base or the platform

that do not change the singularity locus [51]. This generalizes the singularity analy-

sis of a particular structure to all the other structures that can be defined from it

with singularity-invariant leg rearrangements. Moreover, these rearrangements can

be used to avoid multiple spherical joints, significantly simplifying the actual con-

struction of the structure [41].

In a parallel structure, the linear and angular velocity of the moving platform, 𝐯
and 𝛀, respectively, are related to the leg lengths by

𝐑l

⎛⎜⎜⎝
l̇1
⋮
l̇6

⎞⎟⎟⎠ = 𝐉
(

𝐯
𝛀

)
(19)

where 𝐑l is a diagonal matrix with leg lengths l1,… , l6, and 𝐉 is the matrix of non-

normalized Plücker coordinates of the six leg lines. The relevant singularities for

parallel structures occur when det(𝐉) = 0. Now assume that we rearrange the leg

attachments and that the squares of the new leg lengths, d1,… , d6, are related to the

previous ones by an affine relation of the form

⎛⎜⎜⎝
d21
⋮
d26

⎞⎟⎟⎠ = 𝐀
⎛⎜⎜⎝
l21
⋮
l26

⎞⎟⎟⎠ + 𝐛. (20)

Then, as shown by [52], the relation between the change in the leg lengths and

the velocity of the platform becomes

𝐑d

⎛⎜⎜⎝
ḋ1
⋮
ḋ6

⎞⎟⎟⎠ = 𝐀 𝐉
(

v
Ω

)
(21)

and the new singularity condition is det(𝐀 𝐉) = det(𝐀) det(𝐉). If det(𝐀) is a con-

stant non-null factor, the leg rearrangement has no effect on the singularity locus.
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If det(𝐀) is null, then the rearrangement introduces an architectural singularity, i.e.,

the resulting platform is in a singularity irrespective of its leg lengths.

A Cayley-Menger determinant can be used to derive the affine relation between

the leg lengths before and after the rearrangement. For instance, consider the situ-

ation in Fig. 14 (left), where the anchor point P1 is displaced to a new position P4
along the line supported by P1 and P2. Since in this rearrangement the four points

remain coplanar, then

D(1, 2, 3, 4) =

||||||||||

0 1 1 1 1
1 0 (d1,4 + d2,4)2 s1,3 s1,4
1 (d1,4 + d2,4)2 0 s2,3 s2,4
1 s1,3 s2,3 0 s3,4
1 s1,4 s2,4 s3,4 0

||||||||||
= 0. (22)

Expanding this determinant, we obtain

d2,4 s1,3 + d1,4 s2,3 − (d1,4 + d2,4) s3,4 − d1,4 d2,4 (d1,4 + d2,4) = 0 (23)

which defines an affine relationship between the leg lengths before and after the

rearrangement with

𝐀 =

⎛⎜⎜⎜⎜⎝

d2,4
d1,4+d2,4

d1,4
d1,4+d2,4

… 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

⎞⎟⎟⎟⎟⎠
. (24)

Since det(𝐀) = d2,4∕(d1,4 + d2,4), the proposed change in the anchor point location

is a singularity-invariant leg rearrangement.

Fig. 14 Singularity-invariant leg rearrangements. Left: rearrangement along a line connecting two

anchor points. Right: rearrangement in a plane defined by three anchor points
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Figure 14 (right) shows another possible leg rearrangement, where a leg attach-

ment is moved on the plane defined by the anchor points of three legs. In this case,

the conditions to be held is

D(1, 2, 3, 4, 5) = 0 (25)

which can be rewritten to

D(1, 2, 3; 2, 3, 5) s1,4 − D(1, 2, 3; 1, 3, 5) s2,4
+ D(1, 2, 3; 1, 2, 5) s3,4 − D(1, 2, 3) s4,5 + C = 0 (26)

where C is a constant that does not depend on the distances involving P4. This leads

to a singularity factor

det(𝐀) = D(1, 2, 3; 2, 3, 5)
D(1, 2, 3)

, (27)

which is independent of the structure configuration and, thus, defines a singularity-

invariant leg rearrangement.

Note that other leg rearrangements are possible. The advantage in using distance

geometry in their derivation is that, in general, the singularity factors have a direct

geometric interpretation.

Path Planning

For structures with high mobility, the comprehensive description of both their con-

figuration spaces and their singularity loci is unfeasible. Fortunately, in these cases,

research efforts usually focus on path planning problems, i.e., problems consisting

in determining how to move the structure from an initial to a goal configuration,

while avoiding collisions or singularities [53, 54], although this second aspect is

less commonly treated in the literature [55].

For tree-like structures, the configuration space is parametric, which greatly sim-

plifies the problem. However, when kinematic loops appear in the problem (see

Fig. 15), the configuration space becomes a manifold embedded in the ambient space

formed by the joint variables [56]. Actually, kinematic loops appears in many rel-

evant problems, such as complex manipulation problems [57], parallel robot path

generation [15], grasp planning [58], and surgery planning [59].

Under the presence of kinematic constraints, standard formulations produce

involved configuration spaces. For some families of structures, though, distance con-

straints produce much simpler representations of the configuration spaces, in which

the path planning problem can be easily solved.

Trinkle and Milgram analyze the configuration space of planar chains with rev-

olute joints formalized with joint angle parameters, but also use concepts from dis-

tance geometry [60]. Using the notion of long link, they prove that the configura-
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Fig. 15 A two-armed service robot holding a plate. The arms must be in contact with the plate,

and the plate must remain horizontal to avoid tilting the coffee mug on it. A loop of kinematic

constraints is thus generated

tion spaces of such mechanisms are connected if and only if they do not have three

long links. Otherwise, their configuration space has two components, and each is

toroidal. They then propose a path planning algorithm differentiating between these

two cases. When the configuration space has two components, the first task is to

discern whether the two configurations to be connected are in the same component.

If not, the path planning problem cannot be solved. For configurations in the same

component, one link is used to drive the mechanism, while the remaining links com-

ply in a series of accordion moves that can be proven to connect the configurations of

interest. The final path is not optimal, but the algorithm is shown to be very efficient

for significantly long loops.

Han et al. [61] propose a distance-based formulation for planar closed chains with

revolute joints, where a configuration is represented by the set of distances from a

point on the base link to the end-points of the rest of links, complemented with a set

of triangle orientations. In this parameter space, the loop closure constraints become

linear inequalities, and the configuration space becomes practically piecewise con-

vex. The boundaries between the different convex regions of this space are given by

particular alignments of points, i.e., changes in the orientation of the triangles. Thus,

to connect any two given configurations, one need only identify the boundaries to be

crossed and define a piecewise linear path between them.

The approaches by Trinkle and Milgram [60] and by Han et al. [61] can both

be generalized to spatial mechanisms with spherical joints. However, no general

joints or joint limits can be encoded in these approaches, which hinders their general

applicability.
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Summary

Distance-based formulations provide new insights into fundamental problems. In

the context of algebraic methods, the number of variable eliminations is reduced

to the point that, in many cases of practical interest, they are no longer required.

Numerical methods also benefit from the use of distance formulations, since trilat-

eration approaches naturally follow from them, and they provide a rich set of tools

to reduce the search space in the context of branch-and-prune approaches. More-

over, distance formulations allow one to define singularity-invariant leg rearrange-

ments, which significantly expand the utility of previous singularity characteriza-

tions in Gough-Stewart platforms. This enables the construction of active structures

with well-characterized singularity loci and without complex mechanical pieces such

as double spherical joints. Finally, in many cases, the analysis of the configuration

spaces and the associated path planning problems can be certainly simplified when

adopting a distance-based formulation.

Despite the extensive history of distance geometry, it has only recently been intro-

duced for the position and motion analysis of structures. Given the success of the

cases presented in this survey, we expect that distance-based formulations and their

associated tools will soon be recognized as a powerful alternative for addressing the

complex geometric problems arising in this discipline. Finally, the distance geometry

methods described in this survey are able to solve a wide variety of problems, includ-

ing trilaterable and non-trilaterable cases, linkages with a coupling number higher

than 1, and even flexible graphs. We expect that these methods will find application

in domains other than those presented here.
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