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Abstract Condition assessment and prediction of existing infrastructure systems is

a major objective in civil engineering. Structural health monitoring (SHM) achieves

this goal by continuous data acquisition from an array of sensors deployed on the

structure of interest. SHM constructs ubiquitous damage features from the acquired

data, ensuring maximum sensitivity to the onset of damage and robustness to noise

and variability in environmental and operational conditions. Traditionally, SHM has

used a model-based approach, wherein a high-fidelity model of a structure is con-

structed and studied in detail to aid engineers in detecting the onset of damage based

on deviations from an undamaged model of the system. However, given the com-

plexity of structures and the inability to perfectly model all aspects of a system, a

data-driven approach becomes an attractive alternative. In data-driven approaches,

a surrogate model, constructed using acquired data from a system, is substituted for

a real model. Although such models do not necessarily capture all the physics of

a system, they are efficient for damage detection purposes. Statistical learning al-

gorithms aid in the construction of such surrogate models, and their use has now

been extensively documented in the literature. This chapter provides a brief review

of applications of statistical learning algorithms, both supervised and unsupervised,

in SHM for real-time condition assessment of civil infrastructure systems.

Introduction

Structural health monitoring (SHM) is an essential component in both the main-

tenance of existing civil infrastructure systems and the planning of new systems.

It entails condition assessment by data acquisition from an array of sensors de-

ployed on the system of interest [1]. Condition assessment is typically followed by
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damage prediction that involves estimation of the remaining useful life [2]. The fo-

cus of this chapter is on SHM only. Condition assessment typically employs damage

detection that requires quantitative and qualitative appraisal of changes in system

properties with respect to a known undamaged state of the system. The comparison

can be performed using either an undamaged high-fidelity model of the system or a

pseudo-model constructed solely with acquired data from the system. This gives rise

to two classes of SHM techniques: model-based [3] and data-driven approaches [4].

Barthorpe [5] compares these approaches and discusses the advantages and limita-

tions of both.

A model-based approach involves the construction of a high-fidelity model of the

system, typically a finite element (FE) model. Data acquired from an undamaged

state of the system may be used to verify or update such a model. One then performs

damage detection by comparing responses from the model and the actual system,

and observing discrepancies. The major drawback of such an approach is that eval-

uation of responses from these models is generally computationally prohibitive. For

example, when simulating guided ultrasonic waves for damage detection, a finite el-

ement model with a high number of elements is necessary for reliable simulation,

which increases the computational effort dramatically [6].

In a data-driven approach, however, a surrogate model constructed from acquired

data replaces the high-fidelity model. This derives from the idea that capturing the

physics involved in a system becomes more challenging as the complexity of the sys-

tem increases. The aim of a surrogate model, on the other hand, is not necessarily to

replicate system behavior, but only to achieve efficient damage detection by accentu-

ating and quantifying the change in a system due to the onset of damage. Moreover,

because of the vast improvements in sensor technology, the volume of acquired data

is on the rise as well [7]. In light of this, the surrogate model is typically a statistical

model equipped for any of the first three levels of SHM (Rytter [8] defines the four

levels of SHM).

Statistical learning algorithms are equipped for construction of such models nec-

essary for data-driven approaches, with the help of data acquired from sensors de-

ployed on systems. Typically, these algorithms are classified as either supervised

or unsupervised [9]. Supervised statistical learning algorithms require labels for the

data used for surrogate model construction. Unsupervised algorithms, however, do

not require data labels, and are used primarily for pattern recognition in the data.

In addition, unsupervised algorithms can be used in conjunction with supervised

learning algorithms.

This chapter is a brief review of the applications of statistical learning algorithms

in data-driven SHM. We discuss the utility of using these algorithms for the pur-

pose of damage detection. We also present a few examples of applications of these

algorithms. However, algorithmic details of specific learning algorithms have been

avoided.
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Statistical Learning

In this section, we briefly discuss statistical learning and illustrate the applicability of

such algorithms for damage detection. As Bousquet et al. [10] state, The main goal
of statistical learning theory is to provide a framework for studying the problem
of inference, that is of gaining knowledge, making predictions, making decisions or
constructing models from a set of data. This resonates with the concepts of SHM and

damage detection. As discussed earlier, for data-driven approaches to SHM, we use

acquired data for model construction, and decisions are made based on predictions

from these models.

Data are generally one of two types: one with labels and the other unlabeled. Data

labels are typically used to signify the origin of the data from a specific source or

source condition. When a statistical learning algorithm uses labeled data for model

construction and label predictions for future data, it is called a supervised learning

approach. The alternative is an unsupervised learning scheme, where data labels are

either unavailable or simply not used. These algorithms, although they do not make

direct predictions about data labels, are capable of revealing inherent structures and

patterns in the data that may be crucial. We will later show how this class of learning

algorithms can be efficiently implemented for damage detection.

Supervised learning can also be divided into two types, namely regression and

classification. The key distinction between the two approaches is in the output vari-

ables obtained, which are continuous for the former and discrete for the latter. All

supervised learning algorithms require two stages. The first is training. This involves

the use of part of the data, referred to as the training data, for model construction.

Predictions are made using the model for the test data. These data are used as an

input to the constructed model for obtaining the desired predictions or outputs. For

the selection of algorithmic parameters, a process known as cross validation is per-

formed to optimize the parameters to the given data, using the training data set. For

further details, the reader is referred to the books by Hastie et al. [9] and Witten et al.

[11].

Based on the above discussion, it is clear that statistical learning algorithms are

best suited for data-driven SHM. A primer on the applicability of the various ap-

proaches discussed above can be found in Worden and Manson [12]. The following

sections will provide a few examples where statistical learning algorithms have been

applied for SHM. While these examples are by no means exhaustive, we try to cover

a range of applications of a variety of learning algorithms.
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Applications of Statistical Learning Algorithms

Supervised Learning

Classification Techniques

In this section, we discuss a few applications of supervised learning algorithms. As

explained earlier, supervised learning algorithms can be either regression or clas-

sification problems. We will discuss some examples of classifiers first, followed by

illustrations of applications of various regression algorithms in damage detection.

The Naïve-Bayes (NB) classifier is one of the most elemental base learners avail-

able in a data scientist’s arsenal. Once trained, it classifies data based on conditional

probability density functions constructed from the training data. The idea is to define

class probabilities. If X is the data set, Y is the class variable, and there are K possi-

ble classes, then the classification rule for an NB classifier (probability that variable

Y = k), based on the Bayes theorem, is defined as:

P(Y = k|X) = P(X|Y = k)P(Y = k)
∑K

i=1 P(Xi|Y = k)P(Y = k)
(1)

Addin et al. [13] used an NB classifier for damage detection in composite materi-

als using Lamb waves. The authors used underlying distinction in Lamb wave signals

generated by different kinds of damage. Muralidharan and Sugumaran [14] also used

an NB classifier for fault detection in centrifugal pumps; however, they demonstrated

that a Bayes net classifier produced higher accuracy for their experiments. An exten-

sion of the NB classifier is linear discriminant analysis (LDA) with Fisher’s discrim-

inant. The key idea is to evaluate optimum discriminant functions that maximize the

difference between various classes of data. For this, LDA assumes a Gaussian dis-

tribution for the random variable X|Y = k, with the same covariance for all classes.

Farrar et al. [15] used LDA on acceleration data acquired from a concrete column

for damage detection. Guadenzi et al. [16] also used LDA for low- velocity impact

damage detection in laminated composite plates.

Support vector machines (SVM) are another classifier that constructs linear or

nonlinear functions that separate various classes of data in the sample space. It is

based on maximizing the distance of data points, belonging to distinct classes, to

these separating hyperplanes. SVM solves the following optimization problem in a

sample space:

min
𝛽0,𝛽

‖𝛽‖22

subject to yi
(
xTi 𝛽 + 𝛽0

)
≥ 1 ∀i = 1,… , n.

(2)

where xi is a data point in the sample space, 𝛽 is the slope of a normal to optimal

separating hyperplane, 𝛽0 is an intercept, and yi is a class variable that can take values
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of either +1 or −1. This variable essentially aids in the binary classification of the

data.

Typically, SVMs are designed for solving two-class classification problems. How-

ever, they can be extended to solve multi-class problems as well. He and Yan [17]

used an SVM-based damage detection scheme for a spherical lattice dome, where

feature extraction was performed using wavelet transform of the ambient vibration

data of the structure. Shimada et al. [18] employed SVM for damage detection in

power distribution poles. Bulut et al. [19] proposed an SHM system for the Humboldt

Bay Bridge using SVM, in which data acquired from a numerical impact test on the

bridge were used for damage detection. Chattopadhyay et al. [20] used a nonlinear

version of SVM for damage detection in composite laminates. A nonlinear version

implies that the optimal separating hyperplane is a nonlinear function. Bornn et al.

[21] employed SVM in conjunction with an autoregressive (AR) model for damage

detection as well as localization by signal reconstruction and residual estimation.

They reconstructed the signal using an AR model and used SVM for damage clas-

sification. For nonlinear SVM, they used a Gaussian kernel. Worden and Lane [22]

demonstrated the general efficacy of SVM as a statistical learning algorithm for clas-

sification problems in engineering.

Trees are another type of popular base learner for classification. They are top-

down recursive partitions of the feature or data space via binary splits. Although

they are poor predictors, they are adept at making interpretations from data sets that

eventually aid in decision making. Kilundu et al. [23] employed decision trees to

develop an early detection system for bearing damage, in which they used features

extracted from vibration data of bearings to train the trees. Vitola et al. [24] also

demonstrated the use of trees for damage detection in aluminum plates using high-

frequency waves, and showed the efficacy of bagging and boosting trees. Bagging,

which stands for bootstrap aggregation, as the name suggests, involves bootstrapping

(re-sampling) of training data and application of multiple trees to the enlarged data

set. The key idea is to reduce the variance in estimates based on the law of large num-

bers. Boosting, on the other hand, does not involve data duplication. It is a weighted

congregation of results from weak base learners trained using a randomly allocated

portion of the training data.

Regression Techniques

Regression algorithms is also used for the purpose of damage detection. As discussed

earlier, regression algorithms are generally used to build models consisting of con-

tinuous variables using only available data. The output of such regression models is

hence not discrete. The most classical form of regression is linear regression or least

squares, which attempts to solve the following:

Ytr = Xtr𝛽 (3)
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where Ytr ∈ ℝn×1
is the vector of training labels, Xtr ∈ ℝn×p

is the training data ma-

trix, and 𝛽 ∈ ℝp×1
are the coefficients to be estimated by the following optimization

problem:

min
𝛽

‖Ytr − Xtr𝛽‖
2
2 (4)

where ‖.‖2 is the 𝓁2-norm. The optimal 𝛽 obtained from the above equation is:

𝛽 = (XT
trXtr)−1XT

trYtr (5)

The 𝛽 obtained above is then used for making label predictions for a test data set:

Ytst = Xtst𝛽 (6)

where the subscript tst stands for test data sets. Pan [25] and Shahidi et al. [26] used

linear regression for damage detection in structures. They formulated the modal ex-

pansion of a dynamic response as a linear regression problem, and used the deviation

in slope between the damaged and undamaged models as a damage feature. They

demonstrated the use of both single- and multi-variable linear regression.

However, least squares regression suffers drawbacks related to collinearity (re-

sults in a singular XT
trXtr), high dimensionality of data, and computational issues

associated with matrix inversion. To overcome these problems, regularization terms

are added to the optimization problem. Two popular regression techniques that can

overcome these issues can be found in the literature: Tikhonov regularization or ridge

regression, and Sparse Regression.

Ridge regression is based on constraining the elements of vector 𝛽 evaluated using

least squares. The updated optimization problem is as follows:

min
𝛽

‖Ytr − Xtr𝛽‖
2
2

subject to ‖𝛽‖22 ≤ t
(7)

The more popular Lagrange equivalent form of ridge regression is:

min
𝛽

‖Ytr − Xtr𝛽‖
2
2 + 𝜆‖𝛽‖22, 𝜆 ≥ 0 (8)

where 𝜆 is the regularization parameter. The solution to the ridge regression opti-

mization problem is:

𝛽ridge =
(
XT

trXtr + 2𝜆𝕀
)−1XT

trYtr (9)

Sparse regression is another approach for overcoming the drawbacks of least

squares regression. A vector of length n is k-sparse, if and only if k ≪ n. If the need

of a problem statement is a sparse 𝛽, the above optimization problem can be further

modified by replacing the 𝓁2-norm by an 𝓁1-norm. Although the 𝓁1-norm is a weak
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definition of sparsity relative to the 𝓁0-norm, it allows for the optimization problem

to remain convex, guaranteeing a global optimum. The use of 𝓁1-norm instead of

𝓁0-norm for sparse regression is referred to as a convex relaxation. The optimization

problem associated with sparse regression is:

min
𝛽

‖Ytr − Xtr𝛽‖
2
2 + 𝜆‖𝛽‖1, 𝜆 ≥ 0 (10)

where 𝜆 again is the regularization parameter. The choice of the parameter 𝜆 for

both ridge and sparse regression is made by performing cross-validation studies on

the training data set.

Zhang and Xu [27] compared both regularized algorithms for application to

vibration-based damage detection and showed that sparse regularization performed

better. Yang and Nagarajaiah [28] used sparse regression to solve the damage detec-

tion problem in a sparse representation framework. The key idea was to construct

a dictionary of features for a variety of possible damage scenarios. A sparse vector

was then used to point to a specific element (a specific damage scenario) of the dic-

tionary which best defined a given test signal. Yang and Nagarajaiah [29] also use

sparse regression in a novel sparse component analysis technique that performs blind

identification using limited sensor data.

Unsupervised Learning

In this section, we discuss the various applications of unsupervised learning in dam-

age detection. As mentioned earlier, unsupervised learning does not use data labels;

rather, they exhibit inherent patterns and structures useful for damage detection in the

data. The most common unsupervised algorithms are principal component analysis

(PCA), independent component analysis (ICA), and clustering algorithms. Cluster-

ing algorithms can range from k-means clustering to hierarchical clustering.

PCA is well equipped for performing two tasks, namely, data compression and

data visualization. The notion of principal components is mathematically defined as

the eigenvectors of the covariance matrix of a data set. Physically, they represent the

directions of maximum variances. The data, when projected onto these eigenvectors,

help to observe patterns in the data that aid in damage detection. For a data matrix

X ∈ ℝn×p
, the covariance matrix is defined as XTX. It can be shown that the eigen-

vectors of the covariance matrix are equivalent to the right singular vectors V of X,

defined as X = UDVT
. The projection of the data in the eigenvector space is then

defined by X̂ = XV = UD.

As discussed earlier, PCA is used in most damage detection studies for reducing

the dimensions of the data. This helps increase the numerical efficiency of most algo-

rithms. The idea is to reconstruct the data matrix using eigenvectors with significant

singular values only. Zang and Imregun [30] used PCA for frequency response func-

tion (FRF) data reduction for application to an artificial neural network (ANN)-based
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damage detection scheme. Yan et al. [31, 32] employed PCA for damage detection in

bridges under varying environmental conditions. They used a portion of the undam-

aged data for obtaining the principal component directions, which were subsequently

used for estimating changes between damaged and undamaged data from projections

along these directions. Tibaduiza et al. [33] included a brief review of applications

of PCA for SHM.

Similar to PCA, ICA too is a matrix factorization algorithm. The algorithm was

first developed for solving the blind source separation (BSS) problem. It is defined

as the retrieval of a set of k independent signals of length n, S ∈ ℝk×n
and a cor-

responding mixing matrix A ∈ ℝk×k
from a set of recorded signals X ∈ ℝk×n

that

are assumed to be a mixture of the independent signals. Mathematically, this can be

expressed as:

X = AS (11)

The key distinction between PCA and ICA is that PCA evaluates projection direc-

tions for maximum variance, whereas ICA evaluates most statistically independent

vectors that can construct the given data set. Tibaduiza et al. [34] compared the per-

formance of PCA with ICA for damage detection by active sensing in plates using

high-frequency waves. They reported that ICA did not necessarily hold an advantage

over PCA for their application. Similar to that with PCA, Zang et al. [35] employed

ICA for data reduction for use in FRF damage classification using an ANN. Yang and

Nagarajaiah [36] used ICA in conjunction with wavelet transform for blind damage

identification.

Another class of unsupervised learning algorithms is the clustering algorithms.

Although they cannot perform data reduction like PCA and ICA, they are effective

in recognizing different patterns in data that might be useful for damage detection.

Da Silva et al. [37] compared the performance of two fuzzy clustering algorithms

for damage classification from vibration-based data. Park et al. [38] used a k-means

clustering algorithm for damage detection using electromechanical impedance. The

clustering algorithm was used on principal component projections of the impedance

data acquired from an experimental beam. Santos et al. [39] employed a mean shift

clustering algorithm for damage detection on the data from the Z-24 bridge. They

also compared the performance of the proposed algorithm to that of k-means clus-

tering, fuzzy c-means clustering, and Gaussian mixture model (GMM)-based tech-

niques. Nair and Kiremidjian [40] demonstrated the use of GMMs for damage de-

tection using vibration data from a benchmark building. Sen and Nagarajaiah [41]

used hierarchical clustering for developing a semi-supervised learning approach to

damage detection in steel pipes using guided ultrasonic waves. The objective was to

detect the presence of damage using a minimum number of piezoelectric actuators

and sensors.

Figure 1 shows a typical result of the application of the semi-supervised learning

algorithm. The data are acquired from a single actuator and sensor pair. A narrow-

band pulse ensures minimal dispersion of Lamb waves propagating in the steel pipes.

The central frequency of the pulse used for actuation is appropriately selected to min-
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Fig. 1 Results from Sen and Nagarajaiah [41]. This figure shows the efficacy of hierarchical clus-

tering in detecting the presence of damage in a steel pipe

imize the number of propagating wave modes. In both figures, data are projected onto

a two-dimensional plane whose basis vectors are the first two principal components.

Figure 1b shows the actual labels of each data point, the damaged and the undam-

aged data acquired from a steel pipe. The damaged data points are of three types,

namely, regions 1, 2, and 3. These regions specify the location of the damage in re-

lation to the location of the actuator and sensor. Figure 1a shows the clusters obtained

from hierarchical clustering. Clearly, clusters 1 and 2 consist of all the undamaged

data and damaged data, respectively, thus demonstrating the efficacy of the proposed

approach.

Conclusions

In this chapter, we have reviewed some of the most popular techniques from statisti-

cal learning that have been used for damage detection, as well as SHM in general. We

discussed the application of both supervised and unsupervised learning algorithms

in this field. With the advent of a data deluge in the field of SHM, a move from

model-based algorithms to data-driven approaches is necessary. The use of statisti-

cal learning algorithms not only makes for robust and efficient SHM systems, but

also leads to a reduction in computational effort relative to model-based methods,

which typically involve high-fidelity modeling of systems. This lays the foundation

for developing online SHM systems aimed at performing damage detection in real

time, with minimal human interference.
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