
Verifiably Encrypted Group Signatures

Zhen Wang1,2, Xiling Luo1,2, and Qianhong Wu1(B)

1 School of Electronic and Information Engineering,
Beihang University, Beijing, China

qianhong.wu@buaa.edu.cn
2 Beijing Key Laboratory for Network-Based Cooperative Air Traffic Management,

Beijing, China

Abstract. Recently, verifiably encrypted signatures (VESs) have been
widely used in fair exchange, however most of them do not provide
a method to protect the anonymity of the signer, leading to privacy
leakage in fair exchange. Verifiably Encrypted Group Signature (VEGS)
overcomes drawbacks of VES, which allows a verifier to check its valid-
ity without decryption. And VEGS does not reveal the identity of the
signer, thus protecting the privacy of the signer. In VEGS systems, a
signer generates a group signature with his private key, then encrypts it
with the adjudicator’s public key and outputs a VEGS. A verifier can
check whether a VEGS is valid. The group manager reveals the identity
of the VEGS if necessary. The adjudicator can extract the original group
signature from the VEGS with his private key. In this paper, we pro-
pose the first concrete VEGS scheme according to our model. We define
several security properties which are essential to VEGS schemes and we
prove that our scheme is secure in the standard model. Additionally, we
discuss some relevant issues about our scheme.

Keywords: Verifiably Encrypted Group Signature · Verifiably
Encrypted Signature · Group signature · Security properties

1 Introduction

With the development of the Internet, fair exchange has been applied to online
transaction. In fair exchange, two involved parties exchange goods with each
other fairly. However, most existing protocols can not protect the privacy of the
exchange parties. Suppose one person wants to exchange a file with company B
on behalf of company A, however, he may not want to expose his identity. This
leads to a big challenge to achieve fair exchange protocols since most of them
use verifiably encrypted signature (VES), which exposes the identities of the two
parties in the transaction.

VES is an encrypted signature and its validity can be checked without decryp-
tion. As stated in [17,20], a VES scheme consists of a signature scheme and an
encryption scheme. Boneh et al. first proposed a VES scheme [6], which is con-
structed by aggregate signatures. Lu et al. [17], Nishimaki and Xagawa [18] inde-
pendently proposed their VES schemes, which are both secure in the standard
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 107–126, 2017.
https://doi.org/10.1007/978-3-319-68637-0_7



108 Z. Wang et al.

model. However, the private key size is rather large. Besides, the scheme of Nishi-
maki and Xagawa is based on Waters’ dual signature scheme, leading to a large
size of the signature. Rückert and Schröder [20] proposed a VES scheme based on
a short signature scheme [4], which is efficient due to the short verification key.
However, most existing VES schemes are based on Public Key Infrastructure
(PKI), leading to high cost in the authentication and management of the public
keys. Using identity-based cryptosystems, the above problem can be solved. Gu
et al. [16] proposed an identity-based VES scheme with random oracles. However,
their scheme was proved to be insecure [21]. Then Zhang et al. [22] proposed an
identity-based VES scheme in the standard model. However, their scheme is a
weak version of identity-based VES [15]. Besides, all above schemes can not pro-
tect the anonymity of the signer, thus we have to use another technique called
group signature.

Group signature was first introduced by Chaum and Heyst [11], which allows
an authentic user generates a signature on behave of a group and hides his iden-
tity from others. In their paper, they gave the basic ideas about group signature
and presented four group signature schemes. However, they did not give spe-
cific security definitions. Then several related works were presented [2,3,5,13].
However, all of them are too inefficient or provably secure with random ora-
cles. Then Bellare et al. [9] first formalized the security definitions of the group
signature and presented a group signature scheme which is secure in the stan-
dard model. Ateniese et al. [1] also proposed a group signature which is secure
without random oracles. However, all above schemes use Zero-Knowledge (ZK)
proof technique which is inefficient. Later, Boyen and Waters [10] constructed a
group signature scheme without ZK proof technique and their scheme is provably
secure in the standard model.

Motivated by above works, we first formalized a new concept called verifiably
encrypted group signature (VEGS), which is derived from verifiably encrypted
signature (VES) and group signature. As a consequence, VEGS has similar prop-
erties with both VES and group signature. VEGS can be checked without decryp-
tion and protect the signer’s anonymity. Besides, if there exists dispute, a trusted
parties can trace the identity of the signer. Thus VEGS can be used to construct
fair exchange protocols which hide the identity of the parties in the transaction.

For example, if Alice wishes to exchange signature on a file with company B
on behalf of company A and she does not want to expose her identity, she can
use a VEGS to complete the exchange instead of an original signature. Alice first
sends a VEGS to company B. Then a staff of company B (known as Bob) checks
whether the VEGS is valid. If the VEGS is valid, Bob generates a group signature
and sends it to company A. Then Alice checks whether the group signature is
valid. If it is valid, Alice sends her group signature to company B. If Alice does
not sends her group signature to B, B sends the VEGS together with Bob’s group
signature to the adjudicator. If both of them are valid, the adjudicator recovers
the original group signature of Alice and returns it to company B. The exchange
reveals nothing about identities of Alice and Bob due to the anonymity of the
group signature and VEGS. If someone denies that he generates the VEGS or



Verifiably Encrypted Group Signatures 109

group signature, the group manager can trace the identity of the signer. Besides,
VEGS has useful applications such as online data exchange and online contact
signing. And the special properties make it appealing to explore the potential in
VEGS.

1.1 Our Contributions

We formalize a new concept of verifiably encrypted group signature (VEGS),
which combines verifiably encrypted signature (VES) and group signature.
VEGSs are encrypted group signatures which can be used to protect the
anonymity of the signers. And VEGSs allow us to check their validity without
decryption. In VEGS, the group master key and group tracing key are gener-
ated by the group master and the group manager keeps the group tracing key.
A user generates a group signature with his private key, then encrypts it with
the adjudicator’s public key, and obtains a VEGS. A verifier checks whether the
VEGS is valid. The group manager can open the VEGS and trace the identity of
the signer if necessary. The adjudicator can extract the original group signature
from the VEGS with his private key.

We define the security properties required in VEGS schemes, i.e., full-
anonymity, full-traceability, unforgeability, opacity and extractability. Full-
anonymity describes that no one can reveal the identity of the signer except
the group manager. Full-traceability means that any valid VEGS can be traced
to a valid identity by the group manager. Unforgeability guarantees that no
one can forge a VEGS without a signing key. Opacity means that no one can
extract a valid group signature from a VEGS without the adjudicator’s private
key. Extractability guarantees that if a VEGS is valid, then the original group
signature can be extracted by the adjudicator.

We propose the first concrete VEGS scheme by employing Boyen-Waters
group signature scheme [10] and the ElGamal encryption scheme [14]. Then we
prove our VEGS scheme is secure in the standard model. Finally, we discuss the
extensions of our VEGS scheme.

1.2 Outline

We organize the rest of the paper as follows. In Sect. 2 we give the relevant
notions. In Sect. 3 we present definition of VEGS scheme and security definitions.
In Sect. 4 we propose our concrete VEGS scheme, then we prove our scheme is
secure in the standard model. In Sect. 5 we discuss the extensions of our VEGS
scheme. Finally, we conclude in Sect. 6.

2 Preliminaries

In this section, we briefly review the bilinear maps and complexity assumptions
that are essential in our construction.



110 Z. Wang et al.

2.1 Bilinear Maps

In our paper, we use composite order bilinear groups as stated in [7]. Let G and
GT be finite cyclic groups of order n, g be a generator of G, and n = pq has two
large prime factors (p and q). A map e : G × G → GT can be called an efficient
bilinear map if it satisfies the following properties:

– Bilinear: For ∀a, b ∈ Zn, we have e(ga, gb) = e(g, g)ab. Clearly, the bilinearity
implies that for ∀g1, g2, g3 ∈ G, we have e(g1, g3)e(g2, g3) = e(g1g2, g3).

– Non-degeneracy: e(g, g) �= 1. In other words, the element e(g, g) is a generator
of GT .

– e is efficiently computable.

2.2 Complexity Assumptions

The security of our VEGS scheme is based on subgroup decision assumption,
CDH assumption and aggregate extraction assumption. The subgroup decision
assumption is based on the hardness of factoring [7], and aggregate extraction
assumption is a variant of CDH assumption, thus all assumptions employed in
our scheme are basic assumptions. We briefly review them below.

Subgroup Decision problem: Let G and GT be finite cyclic groups of order
n = pq, Gp and Gq be subgroups of G of order p and q, e be a bilinear map
e : G × G → GT . Choose w ∈ G randomly, decide whether w ∈ Gq.

The subgroup decision assumption is as follows.

Definition 1. The (t, ε)-subgroup decision assumption holds if no adversary
runs at most t time and has at least ε advantage in solving the subgroup decision
problem.

CDH problem: Given g, ga, gb, compute gab.
If the probability that adversary B solves the CDH problem is at least ε, then

we have
Pr[B(g, ga, gb) = gab] ≥ ε,

Then CDH assumption is as follows.

Definition 2. The (t, ε)-CDH assumption holds if no adversary runs at most t
time and has at least ε advantage in solving the CDH problem on G.

The aggregate extraction problem: Given G, Gp, Gq, n = pq, p, q, g, ga, gb,
gδ, gζ and gab+δζ , compute gab.

If the probability that adversary B solves the aggregate extraction problem
is at least ε, then we have

Pr[B(g, ga, gb, gδ, gζ , gab+δζ) = gab] ≥ ε,

Then aggregate extraction assumption is as follows.

Definition 3. The (t, ε)-aggregate extraction assumption holds if no adversary
runs at most t time and has at least ε advantage in solving the aggregate extrac-
tion problem on G.



Verifiably Encrypted Group Signatures 111

3 Modelling VEGS

3.1 Definition of VEGS Scheme

VEGS works as follows. A group master sets up the system and distributes the
keys of users. A group manager keeps the group tracing key, which can be used
to reveal a user’s identity from the VEGS. Group members first register in the
system with their identities and obtain their signing keys. Then they generate
group signatures with the signing keys, encrypt them with the adjudicator’s
public key and finally obtain VEGSs. A verifier can check whether the VEGS
is valid without decrypting it. The adjudicator can reveal the original group
signature from the VEGS with his private key.

A VEGS scheme consists of following algorithms: Setup, AKG, Enroll, Sign,
Verify, VESign, VEVerify, Open, Adj.

Setup: Setup takes as input security parameter 1λ, and outputs public para-
meters param for verification, a master key MK for enrollment of users, and a
tracing key TK for revealing the identity from the VEGS.

AKG: AKG takes as input security parameter 1λ, and outputs a pair of keys
(SKT , PKT ) for the adjudicator.

Enroll: Enroll takes as input a user’s identity u, and the master key MK,
outputs signing key sku for a group member.

Sign: Sign takes as input a message m, the signing key sku, and outputs a
group signature σ.

Verify: Verify takes as input a message m, a group signature σ and the public
parameters param, outputs a bit b ∈ {0, 1}. If b = 0, the group signature is
invalid. Otherwise, it is valid.

VESign: VESign takes as input a message m, a signing key sku and the adju-
dicator’s public key PKT , outputs a VEGS ω.

VEVerify: VEVerify takes as input a message m, a VEGS ω, and public para-
meters param, outputs a bit b ∈ {0, 1}. If b = 0, the VEGS is invalid. Otherwise,
it is valid.

Open: Open takes as input the tracing key TK, a VEGS ω, and outputs the
identity u of the signer.

Adj: Adj takes as input a VEGS ω, the adjudicator’s private key SKT , output
the original group signature σ.

A VEGS scheme VEGS = (Setup,AKG,Enroll,Sign,Verify,VESign,VEVerify,
Open,Adj) is correct if for all (param,MK,TK) ← Setup(1λ), (SK,PK) ←
AKG(1λ), u, sku ← Enroll(MK, u), m, and ω ← VESign(m, sku, PKT ), it
always holds that VEVerify(m,VESign(m, sku, PKT ), PKT , param) = 1 and
Verify(m,Adj(VESign(m, sku, PKT ), SKT ), param, u) = 1.

3.2 Security Definitions

Security is significant for VEGS schemes. Informally, a VEGS scheme is secure if
it satisfies the following properties, i.e., anonymity, traceability, unforgeability,
opacity and extractability. Briefly, anonymity means that given a valid VEGS,



112 Z. Wang et al.

no one can extract the identity of the signer except the group manager who keeps
the group tracing key. And traceability describes the property that the group
manager can open any valid VEGS and reveal the identity of the signer. In our
paper, we give stronger notions about anonymity and traceability called full-
anonymity and full-traceability [9]. We define the new properties under stronger
attack, which means that the adversary has the access to the private key oracle,
the group signing oracle and VESign oracle. And for the attack of the full-
traceability, we can even give the tracing key to the adversary. Unforgeability
describes the property that no one can forge a VEGS without a signing key. And
opacity means that no one can extract a valid group signature from a VEGS
without the adjudicator’s private key. Finally, extractability is also a necessary
property and it guarantees that the valid group signature can be extracted from
the valid VEGS. Formally, we define these properties by the following games.

Definition 4. Full-anonymity is defined by the game GameAnoy(λ). The
involved parties in the game are a challenger and an adversary A.

– Setup. The challenger sets up the system, generates the system parameters
and sends the public parameters to A.

– Query. A submits an identity u to the challenger and asks for a private
key, the challenger runs Enroll and returns the signing key sku to A. A can
query at most q1 times for signing keys. A submits an identity u, a message
m to the challenger and asks for a group signature or VEGS, the challenger
runs Sign or VESign and returns a group signature σ or a VEGS ω. A can
query at most q2 times for group signatures and q3 times for VEGSs. If A
submits a message m, a VEGS ω to the challenger, and asks for arbitration,
the challenger first checks whether ω is valid, if it is not, then the challenger
returns ⊥. Otherwise, the challenger runs Adj and returns a group signature
σ. A can query at most q4 times for adjudication.

– Challenge. A randomly chooses two identities u1, u2 which have the same
length, a message m∗ and sends them to the challenger. The challenger ran-
dom picks a bit b ∈ {0, 1}, generates a private key of ub, and returns a VEGS
ωb ← VESign(m∗, skub

, PKT ) to A.
– Guess. Finally, A outputs a bit b′ ∈ {0, 1} as a guess of b.

Define the probability that A wins in the above game as

AdvAnon
A = |Pr[b′ = b] − 1

2
|.

A VEGS scheme is fully-anonymous if for every probability polynomial time
(PPT) adversary A, the probability that A wins in the above game is negligible.
In fact, since we use the “selective-identity,adaptive-message” attack [10] in the
above game, we call it CPA (chosen-plaintext attack)-ID model.

Definition 5. Full-traceability is defined by the game GameTrac(λ) which is
played by a challenger and an adversary A.



Verifiably Encrypted Group Signatures 113

– Setup. The challenger sets up the system, generates the system parameters
and sends the public parameters to A. In this step, A can also get the group
tracing key.

– Query. In this step, A does the same thing as he does in GameAnoy(λ).
– Forge. Finally, A outputs a pair (m∗, ω∗). The challenger first checks whether

the VEGS is valid. If it is invalid, the challenger returns ⊥. Otherwise, the
challenger runs Open and obtains an identity u∗. If u∗ ∈ U (we assume U is a
set of all queried identities), then the challenger returns ⊥. If u∗ /∈ U and A
has not queried a private key of identity u∗, a group signature or VEGS on
(u∗,m∗), then A wins in the game.

A VEGS scheme is said to be fully-traceable if for every PPT adversary A,
the probability that A wins in the above game is negligible.

One may find that our definition of full-traceability simply implies unforge-
ability, thus we do not give more details about unforgeability. And we deduce
that a fully-traceable VEGS scheme must be unforgetable.

Definition 6. Opacity is defined by the game GameOpac(λ) which is played by
a challenger and an adversary A.

– Setup. The challenger sets up the system, generates the system parameters
and sends the public parameters to A.

– Query. In this step, A does the same thing as he does in GameAnoy(λ).
– Forge. Finally, A outputs a pair (m∗, σ∗). The challenger first checks whether

the group signature σ∗ is valid. If it is invalid, then the challenger returns
⊥. If σ∗ is valid and A has not queried a private key of identity u∗, a group
signature on (u∗,m∗), then A wins in the game.

A VEGS scheme is said to be opaque if for every PPT adversary A, the proba-
bility that A wins in the above game is negligible.

Definition 7. Extractability is defined by the game GameExtr(λ) which is played
by a challenger and an adversary A.

– Setup. The challenger sets up the system, generates the system parameters
and sends the public parameters to A.

– Query. In this step, A does the same thing as he does in GameAnoy(λ).
– Forge. Finally, A submits a tuple (m∗, ω∗, param∗) to the challenger.
– Extract. The challenger runs Adj and gets a group signature σ∗. If

VEVerify(m∗, ω∗, PKT , param∗) = 1 and Verify(m∗, σ∗, param∗) = 0, then A
wins in the game.

A VEGS scheme is extractable if for every PPT adversary A, the probability
that A wins in the above game is negligible.

4 VEGS Scheme

In this section, we present our VEGS scheme, which is based on Boyen-Waters
group signature scheme [10] and ElGamal encryption scheme [14]. The VEGS
scheme consists of following algorithms, Setup, Enroll, Sign, Verify, VESign,
VEVerify, Open, Adj.



114 Z. Wang et al.

4.1 Construction of VEGS Scheme

Setup: Take as input a security parameter 1λ, and setup the system as follows.
Let G and GT be finite cyclic groups of order n = pq, Gp and Gq be subgroups
of G of order p and q, e be a bilinear map e : G × G → GT . Choose generators
g ∈ G and h ∈ Gq, a secret value α1 ∈ Zn at random. Besides, choose random
g2, u

′, u1, ..., unu
,m′,m1, ...,mnm

∈ G, and set g1 = gα1 , the master key MK =
gα1
2 , the group tracing key TK = q. And the public parameters are param =

(g, h, g1, g2, u
′, u1, ...unu

,m′,m1, ...,mnm
).

AKG: Choose a secret value αT ∈ Zn, and set the adjudicator’s keys as
(SKT , PKT ) = (αT , gαT ).

Enroll: Let u = (ku
1 · · · ku

nu
) (ku

i ∈ {0, 1}) be an identity of a group member, then
his signing key is generated as follows. Choose ru ∈ Zn randomly, and compute,

sku = du = (d1, d2, d3) =

(
gα1
2

(
u′

nu∏
i=1

u
ku

i
i

)ru

, gru , hru

)
.

Sign: Suppose a user of identity u = (ku
1 · · · ku

nu
) wishes to generate a group

signature on message m = (km
1 · · · km

nm
), then he does as follows. First, choose

r′
u, rm, t1, ..., tnu

∈ Zn, and set t =
∑nu

i=1 ti. Then compute,

σ1 = gα1
2

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

rm

h(ru+r′
u)t,

σ2 = gru+r′
u ,

σ3 = grm ,

σ4 = ht,

σ5 = σt
2 = g(ru+r′

u)t,

ci = u
ku

i
i · hti ,

πi = (u2ku
i −1

i · hti)ti ,

σ = (σ1, σ2, σ3, σ4, σ5, c1, ..., cnu
, π1, ..., πnu

).

For simplicity, let c = u′ ∏nu

i=1 ci and M = m′ ∏nm

j=1 m
km

j

j , then we have
σ1 = gα1

2 cru+r′
uMrm .

Verify: If a verifier wishes to check whether a group signature σ is valid, he first
computes c = u′ ∏nu

i=1 ci, then checks whether the following equations hold.

∀i = 1, ..., k : e(ci, u
−1
i ci)

?= e(h, πi).

If all of them hold, then check whether the following equations hold.

e(σ1, g) ?= e(g2, g1)e(c, σ2)e(M,σ3).



Verifiably Encrypted Group Signatures 115

e(σ2, σ4)
?= e(σ5, h).

If the equations hold, then the group signature σ = (σ1, σ2, σ3, σ4, σ5, c1, ...,
cnu

, π1, ..., πnu
) is valid.

VESign: To create a VEGS of identity u = (ku
1 ···ku

nu
) on message m = (km

1 ···km
nm

),
the signer first generates a group signature σ, then chooses a random s ∈ Zn,
and computes,

ω1 = (PKT )s · σ1 = (PKT )sgα1
2

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

rm

h(ru+r′
u)t,

ω2 = gs,

ω3 = σ2 = gru+r′
u ,

ω4 = σ3 = grm ,

ω5 = σ4 = ht,

ω6 = σ5 = g(ru+r′
u)t,

ω = (ω1, ω2, ω3, ω4, ω5, ω6, c1, ..., cnu
, π1, ..., πnu

).

In fact, we only encrypt σ1, because the other part of the group signature is
independent with the message m and identity u.

VEVerify: To verify if a VEGS is valid, a verifier checks whether the following
equations hold.

∀i = 1, ..., k : e(ci, u
−1
i ci)

?= e(h, πi),

e(ω1, g) ?= e(PKT , ω2)e(g2, g1)e(c, ω3)e(M,ω4),

e(ω3, ω5)
?= e(ω6, h).

where c = u′ ∏nu

i=1 ci and M = m′ ∏nm

j=1 m
km

j

j . If all equations hold, then the
VEGS is valid. Otherwise, it is invalid.

Open: The group manager recovers the signer’s identity from the VEGS as follows
if necessary. For each i = 1, ..., nu, if (ci)q = g0, the group manager sets ku

i = 0.
Otherwise, he sets ku

i = 1. Finally, the group manager outputs the signer’s
identity, u = (ku

1 · · · ku
nu

).



116 Z. Wang et al.

Adj: Take as input a VEGS ω, the adjudicator’s private key SKT , output the
original group signature as follows.

σ1 =
ω1

ωαT
2

= gα1
2

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

rm

h(ru+r′
u)t,

σ2 = ω3 = gru+r′
u ,

σ3 = ω4 = grm ,

σ4 = ω5 = ht,

σ5 = ω6 = g(ru+r′
u)t,

σ = (σ1, σ2, σ3, σ4, σ5, c1, ..., cnu
, π1, ..., πnu

).

The correctness of our scheme is quite explicit and we will not prove it.

4.2 Security

Our VEGS scheme is secure in the standard model, which means that our scheme
satisfies all properties described in Subsect. 3.2, we now prove it.

Theorem 1. Our VEGS scheme is fully-anonymous (under CPA-ID attack) if
the subgroup decision assumption holds.

We do not prove it because the similar proof is given in [10].

Theorem 2. Our VEGS scheme is fully-traceable if the underlying signature
scheme is unforgeable.

Proof. Suppose an adversary A breaks full-traceability of our VEGS scheme
with advantage at least ε, then there exists an adversary B which can break
the unforgeability of the underlying identity-based signature scheme [10] (also
called two-level signature scheme) with the same advantage. B and A play the
game GameTrac(λ), B interacts with A and acts as a simulator. At the same
time, B also plays a signature game called unforgeable game and tries to break
the unforgeability of the underlying signature scheme. To complete the simula-
tion, we assume that B plays the unforgeable game in Gp, while he plays game
GameTrac(λ) in G. We show how to construct B.

– Setup. B gets the parameters of the signature scheme from his challenger,
param

Gp
= (g̃, g̃1 = g̃α, g̃2, ũ

′, ũ1, ..., ũnu
, m̃′, m̃1, ..., m̃nm

) ∈ G
nu+nm+3
p . Then

B chooses (ĝ, ĝ1 = ĝβ , ĝ2, h, û′, û1, ..., ûnu
, m̂′, m̂1, ..., m̂nm

) ∈ G
nu+nm+4
q ran-

domly, and sets the public parameters as,

param
G

= (g = g̃ĝ, g1 = g̃1ĝ1, g2 = g̃2ĝ2, h, u′ = ũ′û′, u1 = ũ1û1, ..., unu = ũnu ûnu ,

m′ = m̃′m̂′, m1 = m̃1m̂1, ..., mnm = m̃nmm̂nm).

Besides, B chooses a random value αT ∈ Zn and sets the adjudicator’s private
key as (SKT , PKT ) = (αT , gαT ). Then B sends param

G
, PKT and the tracing

key TK = q to A. The parameters are distributed identically to what A
expects.



Verifiably Encrypted Group Signatures 117

– Query. In this step, A can make queries for private keys, group signatures
and VEGSs. When A asks for a signing key of identity u = (ku

1 · · · ku
nu

), B
also asks his challenger for the user’s (with the identity u) signing key. Then
B receives the signing key of the underlying signature scheme, s̃ku = d̃u =
(d̃1, d̃2) = (g̃α

2 (ũ′ ∏nu

i=1 ũ
ku

i
i )r̃u , g̃r̃u). Then B chooses r̂u ∈ Zq and computes,

sku = du = (d1, d2, d3) =

⎛
⎝d̃1ĝ2

β

(
û′

nu∏
i=1

û
ku

i
i

)r̂u

, d̃2ĝ
r̂u , hr̂u

⎞
⎠ .

It is obvious that the private keys generated by B have the same distribution
with the real ones. If A asks for a group signature of identity u = (ku

1 · · · ku
nu

)
on message m = (km

1 · · · km
nm

), B also submits the same identity u, the same
message m to his challenger and asks for an identity-based signature. Then B
will obtain a signature,

σ̃ = (σ̃1, σ̃2, σ̃3) =

⎛
⎜⎝g̃α

2

(
ũ′

nu∏
i=1

ũ
ku

i
i

)r̃u+r̃′
u

⎛
⎝m̃′

nm∏
j=1

m̃
km

j

j

⎞
⎠

r̃m

, g̃r̃u+r̃′
u , g̃r̃m

⎞
⎟⎠ .

Next B chooses t1, ..., tnu
∈ Zn, ru, rm ∈ Zq at random and computes,

t =
nu∑
i=1

ti, ci = u
ku

i
i hti , πi = (u2ku

i −1
i hti)ti ,

σ1 = σ̃1ĝ2
β

(
û′

nu∏
i=1

û
ku

i
i

)ru
⎛
⎝m̂′

nm∏
j=1

m̂
km

j

j

⎞
⎠

rm

hrut,

σ2 = σ̃2ĝ
ru , σ3 = σ̃3ĝ

rm , σ4 = ht, σ5 = (σ̃2ĝ
ru)t

σ = (σ1, σ2, σ3, σ4, σ5, c1, ..., cnu
, π1, ..., πnu

).

The distribution of the group signature is the same as the real one. If A
submits an identity u = (ku

1 · · · ku
nu

), a message m = (km
1 · · · km

nm
) and asks

for a VEGS. B first generates a group signature according to the above steps.
Then B chooses s ∈ Zn and computes,

ω = (ω1, ω2, ω3, ω4, ω5, ω6, c1, ..., cnu
, π1, ..., πnu

)
= ((PKT )sσ1, g

s, σ2, σ3, σ4, σ5, c1, ..., cnu
, π1, ..., πnu

) .

The distribution of the VEGS is the same as the real one. Besides, A can
also submit a VEGS ω, and a message m to B for adjudication. B first checks
whether the VEGS is valid. If it is invalid, then B responses with an empty
symbol ⊥. Otherwise, B runs Adj and returns the valid group signature σ
to A.

– Forge. Finally, A outputs a pair (m∗, ω∗). B first checks whether the VEGS
is valid. If it is invalid, then the challenger returns 0. Otherwise, B runs Open



118 Z. Wang et al.

and obtains an identity u∗. If A has not queried a private key of identity u∗,
a group signature or VEGS on (u∗,m∗), then A successfully forges a valid
VEGS.

And B can also forge a valid identity-based signature. B first decrypts the
VEGS, and obtains a valid group signature,

σ∗
1 =

ω∗
1

ω∗αT
2

= gα1
2

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

rm

h(ru+r′
u)t,

σ∗
2 = ω∗

3 = gru+r′
u ,

σ∗
3 = ω∗

4 = grm ,

σ∗
4 = ω∗

5 = ht,

σ∗
5 = ω∗

6 = g(ru+r′
u)t,

σ∗ = (σ∗
1 , σ

∗
2 , σ

∗
3 , σ

∗
4 , σ

∗
5 , c1, ..., cnu

, π1, ..., πnu
).

Let γ ∈ Zn be an integer and γ ≡ 0 (mod q), γ ≡ 1 (mod p) hold, then we have

e(σ∗γ
1 , g̃) = e(g̃2, g̃1)e

⎛
⎝ũ′

nu∏
j=1

ũ
ku

i
j , σ∗γ

2

⎞
⎠ e

⎛
⎝m̃′

nm∏
j=1

m̃
km

j

j , σ∗γ
3

⎞
⎠ .

Thus B submits a tuple (u∗,m∗, (σ∗γ
1 , σ∗γ

2 , σ∗γ
3 )) to his challenger. Since the

signature has not been queried, B forges a valid identity-based signature σ =
(σ∗γ

1 , σ∗γ
2 , σ∗γ

3 ). Therefore, if A breaks full-traceability of our VEGS scheme, then
B also breaks the underlying identity-based signature scheme with the same
advantage. Since the underlying identity-based signature scheme is unforgeable
[10], our VEGS scheme satisfies full-traceability.

Theorem 3. Our VEGS scheme is opaque if the aggregate extraction assump-
tion holds on G.

Proof. Suppose an adversary A breaks opacity of our VEGS scheme with
advantage at least ε, then there exists an adversary B that solves the
aggregate extraction problem with a non-negligible probability. B and A
play the game GameOpac(λ), B simulates a challenger for A and tries to
solve the given aggregate extraction problem on G (Given G,Gp,Gq, n =
pq, p, q, g, ga, gb, gδ, gζ , gab+δζ , compute gab). We show how to construct B.

– Setup. Let G and GT be finite cyclic groups of order n = pq, Gp and
Gq be subgroups of G of order p and q, g be a generator of G, e be a
bilinear map e : G × G → GT . B generates the system parameters as
follows. B chooses u′, u1, ..., unu

,m′,m1, ...,mnm
∈ G at random, and sets

g1 = ga, g2 = gb, PKT = gδ. Besides, choose a generator h ∈ Gq. We
assume h = gη and η is known to B. Then B sends the public parameters
param = (g, h, g1, g2, u

′, u1, ...unu
,m′,m1, ...,mnm

) and the adjudicator’s pub-
lic key PKT = gδ to A. The distribution of the parameters are the same as



Verifiably Encrypted Group Signatures 119

the real ones. Although B does not know MK = ga
2 and SKT = δ, we can still

complete the simulation by playing some tricks. B first sets lu = 2(q1+q2+q3)
and lm = 2(q2 + q3) (A can query at most q1 times for private keys, q2 times
for group signatures and q3 times for VEGSs), and chooses x′, z′, nu-length
vector X = (xi) and nm-length vector Z = (zj) at random, where x′ and xi

are random values in {0, ..., lu}, z′ and zj are random values in {0, ..., lm}.
Besides, B picks y′, w′, nu-length vector Y = (yi) and nm-length vector
W = (wj), where y′, yi, w′ and wj are random elements in Zn. Next B sets
u′ = g−luk1+x′

2 gy′
, ui = gxi

2 gyi , m′ = g−lmk2+z′
2 gw′

, mj = g
zj

2 gwj , where
0 ≤ k1 ≤ nu and 0 ≤ k2 ≤ nm. Then define the following functions,

F1(u) = −luk1 + x′ +
∑nu

i=1 xik
u
i , K1(u) = y′ +

∑nu

i=1 yik
u
i

F2(m) = −lmk2 + z′ +
∑nm

j=1 zjk
m
j , K2(m) = w′ +

∑nm

j=1 wjk
m
j

And we have

u′
nu∏
i=1

u
ku

i
i = g

F1(u)
2 gK1(u)

m′
nm∏
j=1

m
km

j

j = g
F2(m)
2 gK2(m)

– Query. Private key queries: If A submits an identity u = (ku
1 · · · ku

nu
) to B

and asks for a signing key, B randomly chooses ru ∈ Zn, and computes,

du = (d1, d2) =

(
g

−K1(u)
F1(u)

1

(
u′

nu∏
i=1

u
ku

i
i

)ru

, g
−1

F1(u)

1 gru

)
.

Writing r̄u = ru − a
F1(u)

, then we have

d1 = g
−K1(u)

F1(u)

1

(
u′

nu∏
i=1

u
ku

i
i

)ru

= g
−K1(u)

F1(u)

1

(
g

F1(u
2 gK1(u)

)ru

= ga
2 (gF1(u)

2 gK1(u))− a
F1(u) (gF1(u)

2 gK1(u))ru

= ga
2

(
u′

nu∏
i=1

u
ku

i
i

)ru− a
F1(u)

= ga
2

(
u′

nu∏
i=1

u
ku

i
i

)r̄u

,

d2 = g
− 1

F1(u)

1 gru = g
ru− a

F1(u)

= gr̄u

d3 = g
− η

F1(u)

1 hru

= hr̄u



120 Z. Wang et al.

Therefore the private keys generated by B are indistinguishable from the real
ones. Then B sends du = (d1, d2, d3) to A.
Group signature queries: If A submits an identity u = (ku

1 · · · ku
nu

), a message
m = (km

1 · · · km
nm

) to B and requests a group signature, B answers as follows.
B chooses ru, r′

u, rm, t1, ..., tnu
∈ Zn at random, sets t =

∑nu

i=1 ti, ci = u
ku

i
i hti ,

πi = (u2ku
i −1

i hti)ti , and computes,

σ1 = g
−K2(m�)

F2(m�)

1

(
u′

nu∏
i=1

u
ku

i
i

)ru
(

u′
nu∏
i=1

u
ku

i
i

)r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

rm

h(ru+r′
u)t

= ga
2

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

r̄m

h(ru+r′
u)t,

σ2 = grugr′
u = gru+r′

u ,

σ3 = g
−1

F2(m)

1 grm = gr̄m ,

σ4 = ht,

σ5 = g(ru+r′
u)t,

σ = (σ1, σ2, σ3, σ4, σ5, c1, ...cnu
, π1, ..., πnu

),

where r̄m = rm − a
F2(m�)

. The distribution of the group signature is the same
as the real one.
VEGS queries: When A submits an identity u = (ku

1 · · · ku
nu

), a mes-
sage m = (km

1 · · · km
nm

) to B and requests a VEGS, B can use a list
QueryList to response. B initializes list QueryList := ∅ and chooses ran-
dom index �∗ ∈ {1, ..., q3} to guess from which VEGS A selects and out-
puts the extraction. And A has not queried for a signing key at u	∗ or
group signature at (u	∗ ,m	∗). If � �= �∗, B first generates a group signa-
ture σ	 = (σ1,	, σ2,	, σ3,	, σ4,	, σ5,	, c1, ...cnu

, π1, ..., πnu
) as he does in group

signature queries. Next B chooses s ∈ Zn at random and computes,

ω1,� = (PKT )sσ1,� = (PKT )sga
2

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u
(

m′
nm∏
j=1

m
km

j

j

)r̃m

h(ru+r′
u)t,

ω2,� = gs, ω3,� = σ2,� = gru+r′
u , ω4,� = σ3,� = gr̄m

ω5,� = σ4,� = ht, ω6,� = σ5,� = g(ru+r′
u)t

ω� = (ω1,�, ω2,�, ω3,�, ω4,�, c1, ...cnu , π1, ..., πnu)

B sends ω	 to A and stores the tuple (u	,m	, σ	, ω	) in QueryList. If � = �∗,
then B will embed the instance. B randomly chooses ru, r′

u, rm, t1, ..., tnu
∈ Zn

and sets,



Verifiably Encrypted Group Signatures 121

ω1,	∗ = gab+δζ

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

rm

h(ru+r′
u)t

= (gδ)ζga
2

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

rm

h(ru+r′
u)t

ω2,	∗ = gζ , ω3,	∗ = gru+r′
u , ω4,	∗ = grm , ω5,	∗ = ht, ω6,	∗ = g(ru+r′

u)t

ci = u
ku

i
i hti , πi = (u2ku

i −1
i hti)ti

ω	∗ = (ω1,	∗ , ω2,	∗ , ω3,	∗ , ω4,	∗ , ω5,	∗ , ω6,	∗ , c1, ...cnu
, π1, ..., πnu

).

B sends ω	∗ to A and stores the tuple (u	∗ ,m	∗ , σ	∗ , ω	∗) in QueryList. If one
of F1(u	) = 0, F2(m	) = 0, F1(u	∗) �= 0, F2(m	∗) �= 0 holds, B stops the game
(If one of them holds, B can not solve his problem). We denote this event
by S1. Otherwise, the distribution of the VEGSs are the same with the real
ones.
Adjudication queries: In this phase, A is not allowed to make a query on
(m	∗ , ω	∗). When A submits a message m	′ = (km

1 · · · km
nm

), a VEGS ω	′ to B
and requests a group signature, B does as follows. B first checks whether the
VEGS is valid. If it is invalid, B returns ⊥. Otherwise, B checks whether the
pair (m	′ , ω	′) exists in the list QueryList, if it is not in QueryList, then the
VEGS is invalid and B returns ⊥ (If the VEGS is valid, then A forges a valid
VEGS, and this contradicts the unforgeability of our VEGS scheme).
If the tuple is in the list QueryList, and �′ = �, then B finds out the tuple
(u	,m	, σ	, ω	), and returns σ	 to A. The above simulation is perfect if B has
not aborted.

– Forge. Finally, A outputs a valid signature σ	∗ = (σ1,	∗ , σ2,	∗ , σ3,	∗ ,
σ4,	∗ , σ5,	∗ , c1, ..., cnu

, π1, ..., πnu
) (on message m	∗) of identity u	∗ with a non-

negligible probability ε. That means B correctly guesses from which VEGS A
extracts the group signature, and we denote this event by S2.

Then B solves his problem by computing,

gab =
σ1,	∗

(σ2,	∗)K1(u�∗ )(σ3,	∗)K2(m�∗ )ση
5,	∗

The probability that B wins in the above game is as follows.

Pr[S1 ∧ S2] = Pr[S1]Pr[S2].

The probability that B correctly guesses the index �∗ is 1/q3. Since we use the
proof techniques in [19], we deduce that Pr[S1] ≥ 1/(16(q1 + q2 + q3)(q2 + q3)
(nu + 1)(nm + 1)). Thus we have

Pr[S1 ∧ S2] ≥ 1
16(q1 + q2 + q3)(q2 + q3)(nu + 1)(nm + 1)

· 1
q3

=
1

16q3(q1 + q2 + q3)(q2 + q3)(nu + 1)(nm + 1)



122 Z. Wang et al.

and the probability that B solves the aggregate extraction problem is at least
ε/(16q3(q1 + q2 + q3)(q2 + q3)(nu + 1)(nm + 1)), which is non-negligible.

Theorem 4. Our VEGS scheme is extractable.

Proof. The challenger plays the game GameExtr(λ) with an adversary A as fol-
lows.

– Setup. B runs Setup and AKG and generates system parameters of VEGS
scheme, and sends the public parameters (param, PKT ) to A.

– Query. In this phase, the challenger runs algorithms Enroll, Sign, VESign and
Adj to response A.

– Forge. Finally, A submits a tuple (m∗, ω∗, param∗) to the challenger.
– Extract. If the given VEGS ω∗ = (ω∗

1 , ω
∗
2 , ω

∗
3 , ω

∗
4 , ω

∗
5 , ω

∗
6 , c1, ...cnu

, π1, ..., πnu
)

passes the check, then we can obtain a valid identity u = (ku
1 · · ·ku

nu
). Besides,

we have
e(ω∗

1 , g) = e(PKT , ω∗
2)e(g2, g1)e (c, ω∗

3) e (M,ω∗
4) ,

e(ω∗
3 , ω

∗
5) = e(ω∗

6 , h).

Then a group signature can be extracted by computing,

σ∗
1 =

ω∗
1

ω∗αT
2

, σ∗
2 = ω∗

3 , σ
∗
3 = ω∗

4 , σ
∗
4 = ω∗

5 , σ
∗
5 = ω∗

6

σ∗ = (σ∗
1 , σ

∗
2 , σ

∗
3 , σ

∗
4 , σ

∗
5 , c1, ...cnu

, π1, ..., πnu
).

and we have

e(σ∗
0 , g) = e

(
ω∗
1

ω∗αT
2

, g

)
= e(ω∗

1 , g)e(ω∗αT
2 , g)−1

= e(PKT , ω∗
2)e(g2, g1)e (c, ω∗

3) e (M,ω∗
4) e(ω∗

2 , g
αT )−1

= e(g2, g1)e (c, σ∗
2) e (M,σ∗

3) .

e(ω∗
3 , ω

∗
5) = e(σ∗

2 , σ
∗
4) = e(σ∗

5 , h) = e(ω∗
6 , h).

It implies that if VEVerify(m∗, ω∗, PKT , param∗) = 1 holds, then Verify
(m∗, σ∗, param∗) = 1 always holds as well. Thus our VEGS scheme is
extractable.

5 Extensions

In this section, we will discuss some extensions about our scheme.



Verifiably Encrypted Group Signatures 123

5.1 Other Properties

In above paper, we discussed main properties of VEGS according to the secu-
rity requirements of VES and group signature. In fact, there are other crucial
properties for VEGS, we will give more details in this subsection.

Exculpability, first proposed by Chaum and Heystis [11], is also significant to
group signature schemes. And we extend it to VEGS schemes. A VEGS scheme
satisfies exculpability if on one can create VEGSs on behalf of other honest group
members. Consider a malicious user who wishes to forge a VEGS on behalf other
users. If he is not the group master, then he will not succeed to generate a valid
VEGS if the VEGS scheme satisfies unforgeability. Then we consider the case
that the malicious user is the group master. Ateniese et al. [1] pointed that
Boyen-Waters group signature scheme does not satisfy (strong) exculpability
because the group master generates and distributes users’ secret keys, however
their scheme can achieve exculpability by changing some settings to the group
master. In their scheme, the group master is an ephemeral entity and the master
key is destroyed once the group is set up. To achieve the exculpability of our
VEGS scheme, we can construct the group master in the same way. Therefore,
no one can create a valid VEGS on behalf of other users.

Coalition resistance means that if a group of signers collude together to gener-
ate a valid VEGS, then it must be traceable. Coalition resistance emphasizes the
fact that it allows attacks by a coalition of group members. However, coalition
resistance can still be obtained from full-traceability [9]. Therefore, we deduce
that fully-traceable VEGS schemes are also coalition resistant.

Unlinkability requires that on one can determine whether two different VEGS
are generated by the same group member except the group manager. Given two
different VEGSs, if one (except the group manager) wishes to check whether
they are created by the same user, he has to recover the identity of the signer.
Then he breaks the anonymity of the VEGS if he succeeds with a non-negligible
probability. It implies the anonymity immediately. Thus we can deduce that
fully-anonymous VEGS schemes also satisfy unlinkability.

5.2 Batch Verification

To improve efficiency of our VEGS scheme, some measures can be taken. One
method is to perform fast batch verification [10,12]. The generic definition of
batch verification was given by Bellare et al. [8], then Camenisch et al. [12]
instantiates it to the case of signatures from many signers and aggregate signa-
tures. We can also use their method to simplify the verification of our VEGS
scheme. Suppose a verifier wish to check if a VEGS is valid, and the different
things he need to do is that he chooses θ1, ..., θnu

∈ Zn, then tests,
nu∏
i=1

e(cθi
i , u−1

i ci)e(h−θi , πi)
?= 1.

Since we batch the pairs into a multi-pairing, which is similar to multi-
exponentiation algorithm, we can reduce the cost of the pairing computations.



124 Z. Wang et al.

As stated in [10], to get better efficiency, some pre-computations and extra stor-
age are also required.

5.3 Dynamic Groups

The above VEGS scheme is called a static VEGS scheme since we do not consider
the case where users join and leave after the group is set up. To achieve dynamic
groups where users can both join and leave the group, we need to add some
modifications to the VEGS scheme. When a user is allowed to join the group,
the group master distributes the user’s private key with the group master key.
When a user leaves the group, it is very different for the discussion of leave
operation. The group master needs to publish the recovered signing keys, then
he generates a new group master key and distributes each user’s private key.
And what calls for attention is that the revocation information is published on
public channel while the signing keys are transferred in secret channel. The above
method can also be used in the cases where multiple users are revoked.

Besides, someone may find that the group master in the dynamic VEGS is
not an ephemeral entity, it involves in the scheme when users join or leave the
group. Therefore the weakness of our VEGS scheme is that it can not achieve
dynamic groups and exculpability simultaneously. However we believe it will be
solved in the future works.

6 Conclusion

In this paper, we formalized the concept of VEGS which is derived from VES
and group signature. Then we presented the first VEGS scheme based on Boyen-
Waters group signature scheme and ElGamal encryption scheme. We defined the
security properties which are necessary for VEGS schemes, i.e., anonymity, trace-
ability, unforgeability, opacity and extractability. Then we proved our VEGS
scheme is secure in the standard model according to the definitions. Addition-
ally, we discussed the extentions of our VEGS scheme. The results showed that
our VEGS scheme has many applications. However, there still exists a few open
problems (e.g., achieving dynamic groups and exculpability simultaneously, using
prime order groups), which will motivate more works on VEGS.

Acknowledgment. This paper is supported by Collaborative Innovation Center Of
Geospatial Technology (No. ZF102T1701), by Beijing Municipal Science and Technol-
ogy Project (No. D161100005816001), and by the Natural Science Foundation of China
through projects 61672083.



Verifiably Encrypted Group Signatures 125

References

1. Ateniese, G., Camenisch, J., Hohenberger, S., Medeiros, B.D.: Practical group sig-
natures without random oracles. In: Theory and Application of Cryptographic
Techniques (2005)

2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably
secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000). doi:10.1007/
3-540-44598-6 16

3. Ateniese, G., Song, D., Tsudik, G.: Quasi-efficient revocation of group signatures.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg
(2003). doi:10.1007/3-540-36504-4 14

4. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

6. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 26

7. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). doi:10.1007/978-3-540-30576-7 18

8. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponenti-
ation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol.
1403, pp. 236–250. Springer, Heidelberg (1998). doi:10.1007/BFb0054130

9. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 38

10. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006). doi:10.1007/11761679 26

11. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EURO-
CRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). doi:10.
1007/3-540-46416-6 22

12. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short sig-
natures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4 14

13. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 5

14. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7 2

15. Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-based
signatures with additional properties. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg (2006). doi:10.1007/
11935230 12

http://dx.doi.org/10.1007/3-540-44598-6_16
http://dx.doi.org/10.1007/3-540-44598-6_16
http://dx.doi.org/10.1007/3-540-36504-4_14
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/978-3-540-30576-7_18
http://dx.doi.org/10.1007/BFb0054130
http://dx.doi.org/10.1007/3-540-39200-9_38
http://dx.doi.org/10.1007/11761679_26
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/978-3-540-72540-4_14
http://dx.doi.org/10.1007/3-540-45708-9_5
http://dx.doi.org/10.1007/3-540-39568-7_2
http://dx.doi.org/10.1007/11935230_12
http://dx.doi.org/10.1007/11935230_12


126 Z. Wang et al.

16. Gu, C., Zhu, Y.F.: An ID-based verifiable encrypted signature scheme based on
Hess’s scheme. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822,
pp. 42–52. Springer, Heidelberg (2005). doi:10.1007/11599548 4

17. Lu, S., Lynn, B., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential
aggregate signatures, multisignatures, and verifiably encrypted signatures without
random oracles. J. Cryptol. 26(2), 340–373 (2013)

18. Nishimaki, R., Xagawa, K.: Verifiably encrypted signatures with short keys based
on the decisional linear problem and obfuscation for encrypted VES. Des. Codes
Crypt. 77(1), 61–98 (2015)

19. Paterson, K.G., Schuldt, J.C.N.: Efficient identity-based signatures secure in the
standard model. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol.
4058, pp. 207–222. Springer, Heidelberg (2006). doi:10.1007/11780656 18

20. Rückert, M., Schröder, D.: Security of verifiably encrypted signatures and a
construction without random oracles. In: Shacham, H., Waters, B. (eds.) Pair-
ing 2009. LNCS, vol. 5671, pp. 17–34. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03298-1 2

21. Zhang, Z.F.: Cryptanalysis of an identity-based verifiably encrypted signature
scheme. Chin. J. Comput. 29(9), 1688–1693 (2006)

22. Zhang, L., Wu, Q.H., Qin, B.: Identity-based verifiably encrypted signatures with-
out random oracles. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009. LNCS, vol.
5848, pp. 76–89. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04642-1 8

http://dx.doi.org/10.1007/11599548_4
http://dx.doi.org/10.1007/11780656_18
http://dx.doi.org/10.1007/978-3-642-03298-1_2
http://dx.doi.org/10.1007/978-3-642-03298-1_2
http://dx.doi.org/10.1007/978-3-642-04642-1_8

	Verifiably Encrypted Group Signatures
	1 Introduction
	1.1 Our Contributions
	1.2 Outline

	2 Preliminaries
	2.1 Bilinear Maps
	2.2 Complexity Assumptions

	3 Modelling VEGS
	3.1 Definition of VEGS Scheme
	3.2 Security Definitions

	4 VEGS Scheme
	4.1 Construction of VEGS Scheme
	4.2 Security

	5 Extensions
	5.1 Other Properties
	5.2 Batch Verification
	5.3 Dynamic Groups

	6 Conclusion
	References




