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Abstract. Delegating the computation of a polynomial to a server in a
verifiable way is challenging. An even more challenging problem is ensur-
ing that this polynomial remains hidden to clients who are able to query
such a server. In this paper, we formally define the notion of Private Poly-
nomial Evaluation (PPE). Our main contribution is to design a rigorous
security model along with relations between the different security prop-
erties. We define polynomial protection (PP), proof unforgeability (UNF),
and indistinguishability against chosen function attack (IND-CFA), which
formalizes the resistance of a PPE against attackers trying to guess which
polynomial is used among two polynomials of their choice. As a second
contribution, we give a cryptanalysis of two PPE schemes of the liter-
ature. Finally, we design a PPE scheme called PIPE and we prove that
it is PP-, UNF- and IND-CFA-secure under the decisional Diffie-Hellman
assumption in the random oracle model.

1 Introduction

Mathematical models are powerful tools that are used to make predictions about
a system’s behaviour. The idea is to collect a large set of data for a period of
time and use it to build a function predicting the evolution of the system in the
future. This topic has many applications, for instance, meteorology or economics.
It can be used to predict the weather or the behaviour of stock exchange.

Consider a company that collects and stores a very large set of data, for
example about the state of the soil, such as humidity, acidity, temperature and
mineral content. Using it, it computes some function that predicts the state of the
soil for next years. The clients are farmers who want to anticipate the state of the
soil during the sowing periods to determine how much seeds to buy and when
to plant them. The company gives its client access to the prediction function
through a cloud server. A paying client can then interact with the server to
evaluate the function on his own data. For economic reasons, the company does
not want the clients to be able to recover the prediction function. Moreover, the
clients do not trust the server: it might be corrupted to produce incorrect results.
Hence, the server should provide a proof that its output is correct with regards
to the secret prediction function. A similar scenario was studied in [GFLL15],
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where a server receives medical data collected by sensors worn by the users, and
provides the users with an evaluation of their health status. More precisely, the
company defines a polynomial f which returns meaningful information, such as
potential diseases. Then, it uploads this polynomial to the server, and sells to
the end users the ability to query that function with their own medical data.

The underlying problem is how to delegate computations on a secret poly-
nomial function to a server in a verifiable way. By secret we mean that no user
should be able to retrieve the polynomial used by the server. By verifiable we
mean that the server must be able to prove the correctness of its computation. To
solve this problem, we propose the Private Polynomial Evaluation (PPE) prim-
itive, which ensures that: (i) the polynomial f is protected as much as possible,
and (ii) the user is able to verify the result given by the server.

Figure 1 illustrates a PPE scheme where x is the user data and f(x) is the
evaluation of the data by the function f of the company. Moreover, the proof
π sent by the server and the verification key vk sent by the company allow the
user to verify the correctness of the delegated computation.

Alice

Server

Company

x

(f(x), π)
f(·)

vk

Fig. 1. Illustration of a PPE scheme.

Consider a company using a PPE
scheme for prediction functions. An attacker
wants to guess which prediction function
is used by the company. Assume this
attacker gains access to some of the data
used to build the prediction function, for
instance by corrupting a technician. Thus,
the attacker can build several prediction
functions by using different mathematical
models and the collected data, and try to
distinguish which of these functions is used
by the company. Intuitively, in a secure
PPE scheme, this task should be as hard
as if the server only returned f(x), and no additional information for verifica-
tion. We formalise this notion and design a PPE scheme having this security
property.

Contributions

– We give a cryptanalysis of two PPE schemes, the first one presented by Guo
et al. [GFLL15] and the second one presented by Gajera et al. [GND16]. Our
attack allows an adversary to recover the secret polynomial in a single query.

– Our main contribution is to provide a formal definition and security frame-
work for PPE schemes. We define two one-way notions, Weak Polynomial
Protection (WPP) and Polynomial Protection (PP), stating that a user lim-
ited to k queries cannot recover the polynomial, where k is the degree of
the polynomial. Additionally, we define IND-CFA which formalises the idea
that no adversary can guess which of two polynomials of his choice is used. In
essence, the proof of a correct computation should not reveal any information
about the polynomial. We finally study the relations between these notions.
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– We design PIPE (for Private IND-CFA Polynomial Evaluation), an efficient
IND-CFA-secure PPE scheme. This scheme combines the Verifiable Secret
Sharing introduced by Feldman [Fel87] and the ElGamal encryption scheme
in order to achieve verifiability and IND-CFA security. We also formally prove
its security under the DDH assumption in the random oracle model.

Related Works: Verifiable Computation (VC) refers to the cryptographic prim-
itives where an untrusted server can prove the correctness of its output. It
was introduced in [GGP10]. The aim of a such primitive is to allow a client
with limited computational power to delegate difficult computations. Primi-
tives where everyone can check the correctness of the computation are said
to be publicly verifiable [PRV12]. This subject has led to a dense litera-
ture [PST13,CRR12,FG12,CKKC13,PHGR13]. In 2012, Canetti et al. [CRR12]
proposed formal security models for VC. Fiore and Gennaro [FG12] propose a
scheme for polynomial evaluations and matrix computations. Unlike our paper,
these works consider that the polynomial used by the server is public.

To the best of our knowledge, four papers study how to hide the function used
by the server [GFLL15,GND16,KZG10,NP99].Kate et al.define a primitive called
commitment to polynomials (CTP) [KZG10]. In this primitive, a user commits to
a hidden polynomial f and reveals some points (x, y) together with a proof that
f(x) = y. The user can open the commitment a posteriori to reveal the polyno-
mial. CTP is close to PPE: the verification key in a PPE scheme can be viewed
as a commitment in a CTP scheme, the main difference is that this verification
key is computed by a trusted party (the company) and the points are evaluated
by an untrusted party (the server). The authors formalise the hardness of guessing
the polynomial knowing less than k points. In this model, the polynomial is ran-
domly chosen, then they does not consider the case where the adversary tries to
distinguish the committed polynomial between two chosen polynomials as in our
IND-CFA model. Moreover, Kate et al. design two CTP schemes in [KZG10]. The
first one is not IND-CFA since the commitment algorithm is deterministic.Weprove
that the second scheme is IND-CFA-secure in the extended version [BDG+17].
Moreover, we show that our scheme PIPE can be used as a CTP scheme, and we
compare it to the scheme of Kate et al.. We show that our scheme solves an open
problem described by Kate et al.: designing a scheme that is secure under a weaker
assumption than t-SDDH.

Independently of Kate et al. [KZG10], Guo et al. [GFLL15] propose a scheme
with similar security properties to delegate the computation of a secret health
related function on the users’ health record. The polynomials are explicitly
assumed to have low coefficients and degree, which greatly reduces their random-
ness. However, the authors give neither security models nor proof. Later, Gajera
et al. [GND16] show that any user can guess the polynomial using the Lagrange’s
interpolation on several points.Theypropose a schemewhere the degreek is hidden
and claim that it does not suffer from this kind of attack. We show that hiding the
degree k is useless and that no scheme can be secure when user query more than k
points to the server.Moreover, we give a cryptanalysis on these both schemes which
requires only one query to the server. To the best of our knowledge, we present
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the first security model for Indistinguishability Against Chosen Function Attack
(IND-CFA).

Finally, there has been lots of work done on a similar but slightly different topic,
Oblivious Polynomial Evaluation (OPE), introduced by Naor and Pinkas [NP99].
In OPE, there are two parties. One party A holds a polynomial f and another
party B holds an element x. The aim of OPE is that the party B receives f(x)
in such a way that A learns nothing about x and B learns nothing about f ,
except f(x). Researchers have studied OPE extensively and shown that it can be
used to solve various cryptographic problems, such as set membership, oblivious
keyword search, data entanglement, set-intersection and more [FIPR05,FNP04,
LP02]. Despite the similarities between OPE and PPE, they are different in nature.
In particular, OPE does not consider the verifiability of f(x), whereas it is a cru-
cial point in PPE. Additionally, in a PPE, the requirement that the server does not
learn anything about x is relaxed. In our scheme, the major contribution to com-
putational cost is due to computation of the proof on server side and verification
of computation on user side. Since OPE doesn’t consider verifying computation,
we feel that it would not be fair to compare the performances.

Outline: In the next section we recall the cryptographic notions used in this
paper. In Sect. 3, we show how to break schemes proposed by Guo et al. [GFLL15]
and by Gajera et al. [GND16]. In Sect. 4, we propose security models for PPE
schemes. Finally, in Sect. 5, we present our PPE scheme PIPE and we prove that it
is IND-CFA-secure before concluding.

2 Cryptographic Tools

We start by recalling the basic cryptographic assumptions used in this paper. In
the following, we denote by poly(λ) the set of probabilistic polynomial time algo-
rithms with respect to the security parameter λ.

Definition 1 (Discrete Logarithm assumption [DH76]). Let p be a prime
number generated according to a security parameter λ ∈ N. LetG be amultiplicative
group of order p, and g ∈ G be a generator.The discrete logarithmassumption (DL)
in (G, p, g) states that there exists a negligible function ε such that for all x $← Z

∗
p

and A ∈ poly(λ): Pr [x′ ← A(gx) : x = x′] ≤ ε(λ)

Definition 2 (Decisional Diffie-Hellman assumption [Bon98]). Let p be a
prime number generated according to a security parameter λ ∈ N. Let G be a multi-
plicative group of order p, and g ∈ G be a generator. The Decisional Diffie-Hellman
assumption (DDH) in (G, p, g) states that there exists a negligible function ε such
that for all (x, y, z) ← (Z∗

p)
3 and A ∈ poly(λ):

|Pr [b ← A(gx, gy, gz) : b = 1] − Pr [b ← A(gx, gy, gx·y) : b = 1]| ≤ ε(λ)
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In the following, we recall definition and security requirements of public key
cryptosystems.

Definition 3 (Public Key Encryption). A Public Key Encryption (PKE)
scheme is defined by three algorithms (Gen,Enc,Dec) as follows:

Gen(λ): It returns a public/private key pair (pk, sk).
Encpk(m): It returns the ciphertext c of the message m.
Decsk(c): It returns the plaintext m from the ciphertext c.

ExpIND-CPA
Π,A (λ):

b
$← {0, 1}

(pk, sk) ← Gen(λ);
b′ ← AEncpk(LRb(·,·))(λ, pk)
return (b = b′)

Fig. 2. IND-CPA experi-
ment [BBM00].

A PKE scheme Π = (Gen,Enc, Dec) is
indistinguishable under chosen-plaintext attack
(IND-CPA) if for any probabilistic polynomial-
time (PPT) adversary A, the difference between
1
2 and the probability that A wins the IND-CPA
experiment presented in Fig. 2 is negligible in
λ. The oracle Encpk(LRb(·, ·)) takes (m0,m1) as
input and returns Encpk(mb). The standard def-
inition of CPA experiment allows the adversary to
call this oracle only one time. However, Bellare
et al. [BBM00] prove that the two definitions of
CPA security are equivalent using a hybrid argument. For instance, the ElGamal
encryption is IND-CPA.

Definition 4 (ElGamal Encryption [ElG85]). The ElGamal PKE scheme is
defined as follows:

Gen(λ): It returns pk = (G, p, g, h) and sk = x where G is a multiplicative group of
prime order p, g is a generator of G, h = gx and x is uniform in Z

∗
p.

Encpk(m): It returns (c, d) = (gr, hr · m) where r is randomly chosen in Z
∗
p.

Decsk((c, d)): It returns m = d · c−x.

A zero-knowledge proof (ZKP) allows a prover knowing a witness to convince
a verifier that a statement s is in a given language without leaking any information
except s. We recall the definition of a non-interactive ZKP.

Definition 5 (NIZKP [FS87]).A non-interactive ZKP (NIZKP) for a language
L is a couple of algorithms (Prove,Verify) such that:

Prove(s, w): It outputs a proof π that s ∈ L using the witness w.
Verify(s, π): It checks whether π is a valid proof that s ∈ L and outputs a bit.

A NIZKP proof verifies the following properties:

Completeness: For any statement s ∈ L and the corresponding witness w, we
have that Verify(s,Prove(s, w)) = 1.

Soundness: There is no polynomial time adversary A such that A(L) outputs
(s, π) such that Verify(s, π) = 1 and s �∈ L with non-negligible probability.
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Zero-knowledge: A proof π leaks no information, i.e. there exists a PPT algo-
rithm Sim (called the simulator) such that outputs ofProve(s, w) and the outputs
of Sim(s) follow the same probability distribution.

We use the NIZKP given by Chaum and Pedersen [CP93] to prove the equality
of two discrete logarithms. Let G be a multiplicative group, the language is the set
of all statements (g1, h1, g2, h2) ∈ G4 such that logg1

(h1) = logg2
(h2) = x.

Definition 6 (LogEq [CP93]). Let G be a multiplicative group of prime order p
and H be a hash function, L be the set of all (g1, h1, g2, h2) ∈ G4 where logg1

(h1) =
logg2

(h2). We define the NIZKP LogEq = (Prove,Verify) for L as follow:

Prove((g1, h1, g2, h2), w): Using the witness w = logg1
(h1), it picks r

$← Z
∗
p, com-

putes A = gr
1,B = gr

2, z = H(A,B) and ω = r+w ·z. It outputs π = (A,B, ω).
Verify((g1, h1, g2, h2), π): Using π = (A,B, ω), it computes z = H(A,B). If gω

1 =
A · hz

1 and gω
2 = B · hz

2 then it outputs 1, else it outputs 0.

LogEq is unconditionally complete, sound and zero-knowledge in the ROM.

We recall Lagrange’s interpolation formula to find the single polynomial f of
degree at most k from k + 1 points (xi, yi) such that f(xi) = yi.

Definition 7 (Lagrange’s interpolation). Let k be an integer and F be a field.
For all i ∈ {0, . . . , k}, let (xi, yi) ∈ F 2 such that for all i1, i2 ∈ {0, . . . , k},xi1 �= xi2 .
There exists one and only one polynomial f of degree at most k such that for all
i ∈ {0, . . . , n}, f(xi) = yi. This polynomial is given by Lagrange’s interpolation
formula:

f(x) =
k∑

i=0

⎛

⎝yi ·
k∏

j=0,j �=i

x − xj

xi − xj

⎞

⎠ .

In the following, we denote the set of polynomials with coefficients in the field
F by F [X] and we denote the set of all f ∈ F [X] of degree k by F [X]k.

3 Cryptanalysis of [GFLL15] and [GND16]

We start by presenting the inherent limitation of PPE schemes, then we explain
how to break those presented by Guo et al. [GFLL15] and by Gajera et al. [GND16].

3.1 Inherent Limitation

In the scheme [GFLL15], the degree k of the polynomial f is public. Gajera
et al. [GND16] use it to mount an attack: a user queries k + 1 points to guess the
polynomial using Lagrange’s interpolation. To fix this weakness, they propose a
scheme where k is secret. However, any user can guess k and f after k + 1 interac-
tions with the server. To do so, the attacker chooses an input x0 and sends it to the
server. He receives y0 and computes the polynomial f0 of degree 0 using Lagrange’s
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interpolation on (x0, y0). Next, the attacker chooses a second and a different input
x1 and asks y1 = f(x1) to the server. He computes the polynomial f1 of degree
1 using Lagrange’s interpolation on {(x0, y0), (x1, y1)}. By repeating this process
until the interpolation gives the same polynomial fi = fi+1 for two consecutive
iterations, he recovers the degree and the polynomial. This problem is an inher-
ent limitation of PPE schemes and was already considered in the security model of
Kate et al. [KZG10]. Thus, to preserve the protection of the polynomial, the server
must refuse to evaluate more than k points for each client and we must assume that
clients do not collude to collect more than k points.

3.2 Cryptanalysis of [GFLL15] and [GND16]

In addition to the protection of f , the scheme [GFLL15] requires that the user’s
data is encrypted for the server. More formally, the user uses an encryption
algorithm to compute x′ = Enck(x) and sends this cipher to the server which
returns y′. Then, the user computes y = Deck(y′) such that y = f(x) where f
is the secret polynomial. The encryption scheme is based on the discrete logarithm
assumption. The decryption algorithm works in two steps: first the user computes
a value h such that h = gf(x) where g is a generator of a multiplicative group of
large prime order n, next he computes the discrete logarithm of h in base g using
Pollard’s lambda method [Pol78]. The authors assume that the size of f(x) is rea-
sonable: more formally, they define a set of possible inputs X and M ∈ N such that
∀x ∈ X , 0 ≤ f(x) < M . The authors assume that the users can efficiently perform
Pollard’s lambda algorithm on any h = gy where y < M . Actually, for practical
reasons, since h = gf(x) mod n and logg(h) = f(x), we assume that 0 ≤ f(x) < n
for any input x of reasonable size, i.e. x � n. Hence, the authors of [GFLL15]
consider f as a positive polynomial in Z with sufficiently small coefficients.

It is easy to evaluate a small M ′ such that M ′ > M by choosing M ′ such that
Pollard’s lambda algorithm on gM ′

is computable by a powerful server but is too
slow for a practical application. For example, if Pollard’s lambda algorithm takes
less than one minute for the server but more than one hour for the user’s computer,
we can assume that M ′ > M and attacks that are polynomial in M ′ are practical.
To sum up, the user has the following tools:

– M ′ ∈ N such that ∀x ∈ X , 0 ≤ f(x) < M ′ and such that algorithms that
require p(M ′) operations (where p is a polynomial) are easily computable.

– A server which returns y = f(x) for any input x. This server can be used at
most k times where k is the degree of the polynomial.

Finally, note that the authors assume that 0 ≤ f(x) for any x and that X ⊂ N.
We show that any user can guess the secret polynomial during his first interaction
with the server. We first prove the following two properties.

Property 1. For any polynomial f ∈ Z[X] and any integers x and y, there exists
P ∈ Z such that

f(x + y) = f(x) + y · P.
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Proof. Seen as a polynomial in y, f(x + y) − f(x) has a root at y = 0. By the
Factor Theorem y divide f(x + y) − f(x). Hence, there exists P ∈ Z such that
f(x + y) − f(x) = y · P , i.e. f(x + y) = f(x) + y · P .

Note that for anypositive integersa and b such thata < b, wehavea mod b=a.
Then, we can deduce the following property from Property 1.

Property 2. For any polynomial f ∈ Z[X] and any integers x and y such that 0 ≤
f(x) < y and 0 ≤ f(x + y), it holds that

f(x + y) mod y = f(x).

Proof. From the previous property, we have f(x+y) = f(x)+y ·P , where P is an
integer. Assume P < 0, we define P ′ = −P > 0, then f(x+y) = f(x)−y ·P ′ ≥ 0.
Hence we have f(x) ≥ y · P ′ > f(x) · P ′.

– If 0 < f(x) then we deduce 1 = f(x)/f(x) > P ′ and 1 > P ′.
– If f(x) = 0 then 0 ≥ y · P ′ > 0.

In both cases, we obtain a contradiction. We conclude that 0 ≤ P . Finally, we
deduce f(x + y) mod y = f(x) + y · P mod y = f(x).

Our attack on [GFLL15] works as follows. The attacker chooses a vector of k

integers (x1, x2, . . . , xk) ∈ N
k such that, for all 0 < i ≤ k, x′

i =
∑i

j=1 xj where
x′

i ∈ X .
For the sake of clarity, we show to begin with the attack in the case where

{1, . . . , k} ⊂ X . Thus the attacker chooses the vector (x1, x2, . . . , xk) =
(1, 1, . . . , 1) and sends x = k + M ′ to the server that returns the encryption of
y = f(x). Pollard’s lambda algorithm complexity [Pol78] on M ′ is O(M ′1/2). We
consider that k � M ′ (for instance k ≈ 10 as in [GFLL15]), thus x < 2 · M ′, the
complexity of the decryption with Pollard’s lambda algorithm is O(f(2M ′)1/2) ≈
O(M ′k/2). For all 1 ≤ i ≤ k, the attacker computes M ′

i = k − i + M ′ and yi = y
mod M ′

i .
Since for all a ∈ X ,M ′ > f(a), we have for all 1 ≤ i ≤ k,M ′

i = k − i + M ′ ≥
M ′ > f(a). Using Property 2 and since i ∈ X , we deduce that

yi = f(x) mod M ′
i

= f(k + M ′) mod M ′
i

= f(k − i + i + M ′) mod M ′
i

= f (i + M ′
i) mod M ′

i = f(i).

Hence, the attacker obtains k +1 points from one single queried point and uses
Lagrange’s interpolation on ((1, y1), (2, y2), . . . , (k, yk), (x, y)) to guess f . Then,
the attacker can compute f with reasonable computation time.

Now, we show the generalized case for any set X where |X | ≥ k. To begin,
the attacker chooses a vector of k integers (x1, . . . , xk) such that, for all 1 ≤ j ≤
k, xj > 0 and: x′

i =
(∑i

j=1 xj

)
where x′

i ∈ X . Then the attacker sends the query
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x =
(∑k

i=1 xi

)
+M ′ to the server such thatM ′ ∈ N and for alla ∈ X wehaveM ′ >

f(a). After he sends the query to the server, the attacker receives the encryption
of y = f(x).

Pollard’s lambda algorithm complexity [Pol78] on M ′ is O(M ′1/2). We consider
that k � M ′, k ≈ 10 as in [GFLL15], thus x < 2 · M ′, the complexity of the
decryption with Pollard’s lambda algorithm is O(f(2M ′)1/2) ≈ O(M ′k/2).

With the y = f(x) returned by the server, the attacker computes for all 1 ≤
i ≤ k:

M ′
i =

k∑

j=i+1

xj + M ′.

Then we define yi for all 1 ≤ i ≤ k such that yi = y mod M ′
i . Since for all

a ∈ X ,M ′ > f(a), we have for all 1 ≤ i ≤ k and for all a ∈ X :

M ′
i =

k∑

j=i+1

xj + M ′ ≥ M ′ > f(a) .

Using Properties 1 and 2 of Sect. 3 and since x′
i ∈ X , we deduce:

yi = f(x) mod M ′
i = f

(
k∑

i=1

xi + M ′
)

mod M ′
i

= f

⎛

⎝
k∑

j=i+1

xj +
i∑

j=1

xj + M ′

⎞

⎠ mod M ′
i = f

⎛

⎝
i∑

j=1

xj + M ′
i

⎞

⎠ mod M ′
i

= f

⎛

⎝
i∑

j=1

xj

⎞

⎠ = f(x′
i).

Finally, the attacker knows the k points of f : (x′
i, f(x′

i)) for 1 ≤ i ≤ k, and also
(x, f(x)). Hence, using Lagrange’s interpolation, the attacker is able to retrieve the
polynomial f .

It is possible to attack the scheme of Gajera et al. [GND16] in a similar way.
Indeed, as in [GFLL15], the user knows a value M such that ∀x ∈ X , f(x) < M . A
simple countermeasure could be to not allow the user to evaluate inputs that are
not in X . Unfortunately, this is not possible in these two schemes since the user
encrypts his data x. Hence, the server does not know whether x ∈ X or not.

4 SecurityModels

We revisit the formal security models for PPE schemes for two main reasons: (i)
Kate et al. [KZG10] propose some models where the secret polynomial is randomly
chosen. However, they present several practical applications where the polynomial
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is not actually random, and some information, such as bounds for f(x) or candi-
dates for f , can be inferred easily from the context. Their models are clearly not
sufficient for analysing the security of this kind of applications. (ii) The schemes
presented by Guo et al. [GFLL15] and Gajera et al. [GND16] consider polynomi-
als that are not randomly chosen. The authors give neither security models nor
security proofs. We show previously a practical attack on these two schemes where
a user exploits some public information. To avoid such attacks, we need a model
where public information does not give significant advantage.

Our goal is to design a model where the public parameters and the server’s
proofs of correctness give no advantage to an attacker. Ideally, we would like the
attacker to have no more chances of guessing the polynomial than if he only had
access to a server reliably returning polynomial evaluations with no proof of cor-
rectness. Our security model considers an attacker that tries to determine which
polynomial is used by a PPE among two polynomials of his choice. This model is
inspired by the IND-CPA model used in public key cryptography.

4.1 Formal Definition

In order to be able to define our security model, we first need to formally define a
Private Polynomial Evaluation scheme.

Definition 8. A Private Polynomial Evaluation (PPE) scheme is composed of
four algorithms (setup, init, compute, verif) such that:

setup(λ): It returns a ring F and a public setup pub.
init(pub, f): It returns a server key sk and a verification key vk according to the

polynomial f ∈ F [X].
compute(pub, vk, x, sk, f): It returns y and a proof π that y = f(x).
verif(pub, vk, x, y, π): It returns 1 if the proof π is “accepted” otherwise 0.

4.2 Security Models

We start be redefining the notion of weak security presented in the literature.
We then introduce the notion of chosen function attack and the natural notion of
unforgeability. Proofs for Theorems 2, 3 and 4 are given in [BDG+17].

PolynomialProtection. We introduce thePolynomialProtection (PP) security.
A PPE is PP-secure if no adversary can output a new point (not computed by the
server) of the secret polynomial f with a better probability than by guessing. In
this model, the polynomial is randomly chosen and the adversary cannot use the
server more than k times, where k is the degree of f . This security model is similar
to the Hiding Model [KZG10] except that the adversary chooses the points to be
evaluated. We define the Weak Polynomial Protection (WPP) as the same model
as PP except that the adversary has no access to the server.
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Expk-PP
Π,A (λ):

(pub, F ) ← setup(λ);

f
$← F [X]k;

Σ ← ∅;
c ← 0;
(sk, vk) ← init(pub, f);
(x∗, y∗) ← ACOPP(·)(pub, vk, F, k);
If (x∗, y∗) �∈ Σ and f(x∗) = y∗:
Then return 1;
Else return 0;

ExpUNF
Π,A(λ):

(pub, F ) ← setup(λ);
(f, st) ← A1(pub, F );
(sk, vk) ← init(pub, f);
(x∗, y∗, π∗) ← A2(pub, sk, vk, F, f, st);
If f(x∗) �= y∗ and verif(pub, vk, x∗, y∗, π∗):
Then return 1;
Else return 0;

Expk-IND-CFA
Π,A (λ):

b
$← {0, 1}∗;

(pub, F ) ← setup(λ);
(f0, f1, st) ← A1(pub, F, k);
(sk, vk) ← init(pub, fb);

b∗ ← ACOCFA(·)
2 (pub, vk, F, k, st);

If f0 �∈ F [X]k or f1 �∈ F [X]k:
Then return 0;
Else return (b = b∗);

COPP(x):
(y, π) ← compute(pub, vk, x, sk, f);
c ← c + 1;
Σ ← Σ ∪ {(x, y)};
If c = k + 1:
Then return ⊥;
Else return (y, π);

COCFA(x):
(y, π) ← compute(pub, vk, x, sk, fb);
If f0(x) �= f1(x):
Then return ⊥;
Else return (y, π);

Fig. 3. Security experiments and oracles definitions.

Definition 9 (PP and WPP). Let Π be a PPE, A be a probabilistic polynomial
time (PPT) adversary. ∀k ∈ N, the k-Polynomial Protection (k-PP) experiment
for A against Π denoted by Expk-PP

Π,A (λ) is defined in Fig. 3, where A has access to
the server oracle COPP(·). We define the advantage of the adversary A against the
k-PP experiment by:

ADVk-PP
Π,A (λ) = Pr

[
1 ← Expk-PP

Π,A (λ)
]
.

A scheme Π is k-PP-secure if this advantage is negligible for any A ∈ poly(λ).
We define the k-Weak Polynomial Protection (k-WPP) experiment as the k-PP

experiment except that A does not have access to the oracle COPP(·). In a similar
way, we define the WPP advantage and security.

The only difference between PP and WPP is that the adversary has no access
to the oracle in WPP, so PP security implies the WPP security.

Theorem 1. For any Π and k, if Π is k-PP-secure then Π is k-WPP-secure.

Chosen Function Attack. We define a model for indistinguishability against
chosen function attack. In this model, the adversary chooses two polynomials
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(f0, f1) and tries to guess the polynomial fb used by the server, where b ∈ {0, 1}.
The adversary has access to a server that evaluates and proves the correctness of
y = fb(x) only if f0(x) = f1(x). This is an inherent limitation: if the adversary can
evaluate another point (x, y) such that f0(x) �= f1(x), then he can compare y with
f0(x) and f1(x) and recover b. In practice, an adversary chooses (f0, f1) such that
f0 �= f1, but with k points (xi, yi) such that f0(xi) = f1(xi). It allows the adversary
to maximize his oracle calls in order to increase his chances of success. We remark
that schemes [GFLL15,GND16] are not IND-CFA-secure: users know a value M
and the set of inputs X such that ∀x ∈ X , f(x) < M . An attacker may choose two
polynomials f0 and f1 such that for a chosen a, f0(a) < M and f1(a) > M . Since
X is public, the attacker returns f0 if and only if a ∈ X .

Definition 10 (IND-CFA). Let Π be a PPE, A = (A1,A2) be a two-party PPT
adversary and k be an integer. The k-Indistinguishability against Chosen Function
Attack (k-IND-CFA) experiment for A against Π is defined in Fig. 3, where A has
access to the server oracle COCFA(·). The advantage of the adversary A against the
k-IND-CFA experiment is given by:

Advk-IND-CFA
Π,A (λ) =

∣∣∣∣
1
2

− Pr
[
1 ← Expk-IND-CFA

Π,A (λ)
]∣∣∣∣ .

A scheme Π is k-IND-CFA-secure if this advantage is negligible for any A ∈
poly(λ)2.

k-IND-CFA k-WPP

andZK k-PP

Fig. 4. Security relations.

InTheorem 2,weprove that IND-CFA
security implies WPP security: if there
exists an adversary A against the WPP
experiment who is able to decrypt a ran-
dom polynomial from the public val-
ues, then we can use it to guess fb in
an IND-CFA experiment for any chosen
polynomials (f0, f1). However, surpris-
ingly, it is not true for the PP security
(Theorem 3). The reason is that the oracle of the IND-CFA experiment has restric-
tion, so it cannot be used to simulate the oracle of the PP experiment in a security
reduction.

Theorem 2. If Π is a k-IND-CFA-secure PPE, then it is k-WPP-secure.

Theorem 3. Let Π be a k-IND-CFA-secure PPE, it does not imply that Π is k-PP.

However, we would like to have a simple and sufficient condition under which
the IND-CFA security implies the PP security. For this, we define the proof induced
by a PPE which is the proof algorithm used by the algorithm compute. We show
that if this proof system is zero-knowledge, then the IND-CFA security implies the
PP security.

Definition 11. LetΠ = (setup, init, compute, verif) be a PPE, the non-interactive
proof inducted by Π, denoted PΠ = (proofΠ , verΠ) is defined as follows. For any
λ, k ∈ N, (pub, F ) ← setup(λ), f ∈ F [X]k and (vk, sk) ← init(pub, f):
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proofΠ((pub, vk, x, y), (f, sk)): returns π, where (y′, π) ← compute(pub, vk, x,
sk, f). verΠ((pub, vk, x, y), π): runs b ← verif(pub, vk, x, y, π) and returns it.

We say that Π is Zero-Knowledge (ZK) if PΠ is Zero-Knowledge.

Theorem 4. Let Π be a ZK and k-IND-CFA-secure PPE, then Π is k-PP-secure.

In Fig. 4, we recall all relations between our security properties.

Unforgeability. Finally, we define the unforgeability property for a PPE. A PPE
is unforgeable when a dishonest server cannot produce a valid proof on the point
(x, y) when f(x) �= y. The secret polynomial f is chosen by the server.

Definition 12. LetΠ be a PPE,A = (A1,A2) be a two-party PPT adversary. The
Unforgeability (UNF) experiment for A against Π is defined in Fig. 3. We define
the advantage of the adversary A against the UNF experiment by:

AdvUNFΠ,A(λ) = Pr
[
1 ← ExpUNFΠ,A(λ)

]
.

A scheme Π is UNF-secure if this advantage is negligible for any A ∈ poly(λ)2.

4.3 Security Against Collusion Attacks

To conclude, our security model implicitly prevents all non-inherent collusion
attacks, because in our context the clients have no secret information. There are
two kinds of collusion scenarios:

A client colludes with the server: If a client colludes with the server, then the
server can obviously give him the secret polynomial. This limitation is inherent
and cannot be prevented. On the other hand, all keys known by the clients are
public and known to the server, the server has no advantage in colluding with a
client. In particular, the collusion does not allow the server to forge fake validity
proofs for others clients.

Several clients collude together: All clients have the same verification keys.
Thus, a client gains no advantage by colluding with other clients, as long as
the total number of known points is less than k after collusion. Obviously the
inherent limitation of PPE still holds: if the collusion of clients learn more than
k points, then they can guess the polynomial.

5 PIPEDescription

We recall Feldman’s Verifiable Secret Sharing (VSS) scheme and build a simple
k-PP PPE that is not k-IND-CFA. We then propose some modifications based on
theFeldman’sVSSand theElGamal scheme in order design our securePPEscheme
PIPE that is k-IND-CFA. We analyse its security and compare it with the scheme
of Kate et al. [KZG10].
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5.1 Feldman’s Verifiable Secret Sharing

Feldman’s VSS [Fel87] is based on Shamir’s Secret Sharing [Sha79], where each
share is a point (x, y) of a secret polynomial f of degree k. Knowing more than k
shares, one can guess the polynomial f and can compute the secret s = f(0). In
Feldman’s VSS, there is a public value that allows anybody to check the validity
of a share. For any point (x, y), anybody can check if y is f(x) or not. This scheme
works as follows. Let G be a multiplicative group of prime order p where DL is hard.
Let f ∈ Z

∗
p[X] be the secret polynomial and ai ∈ F be a coefficient for all 0 ≤ i ≤ k

such that

f(x) =
k∑

i=0

ai · xi.

Let g ∈ G be a generator of G. For all i ∈ {0, . . . , k}, we set hi = gai . Val-
ues g and {hi}0≤i≤k are public, however, the coefficients ai are hidden under DL
hypothesis. We remark that f(x) = y if and only if gy =

∏k
i=0 hxi

i since

k∏

i=0

hxi

i =
k∏

i=0

gai·xi

= g
∑k

i=0 ai·xi

= gf(x).

Then, we can use it to check that (x, y) is a valid share.

5.2 Our Scheme: PIPE

Feldman’s VSS can be used to design a PPE that is k-PP-secure: using the pub-
lic values g and {hi}0≤i≤k, any user can check that the point (x, y) computed by
the server is a point of f . However, in a practical use, the polynomial f is not ran-
domly chosen in a large set. An IND-CFA attacker knows that f = f0 or f = f1
for two known polynomials (f0, f1), since he knows the coefficients {a0,i}0≤i≤k and
{a1,i}0≤i≤k of these two polynomials, he can compute the values {ga0,i}0≤i≤k and
{ga1,i}0≤i≤k and he can compare it with the public set {hi}0≤i≤k.

In order to construct our k-IND-CFA PPE, called PIPE, we give an ElGamal
key pair (pk, sk) to the server where pk = (G, p, g, h) and h = gsk and we encrypt
all the hi. Then for all i ∈ {0, . . . , k}, the users do not know hi = gai but know
the ElGamal ciphertext (ci, di) such that ci = gri and di = hri · hi where ri is
randomly chosen. Since ElGamal is IND-CPA-secure, an attacker that chooses two
polynomials (f0, f1) cannot distinguish, for 0 ≤ i ≤ k, if the ciphertext (ci, di)
encrypts a coefficient of f0 or of f1. Thus, the attacks on the previous scheme are
no longer possible.

Moreover, the user can check that f(x) = y for a point (x, y) using the values
{(ci, di)}0≤i≤k. We set r(x) =

∑k
i=0 ri · xi. The user computes:

c =
k∏

i=0

cxi

i =
k∏

i=0

gri·xi

= g

k∑

i=0
ri·xi

= gr(x).
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On the other hand, he computes:

d′ =
k∏

i=0

dxi

i =

(
k∏

i=0

hri·xi

)
·
(

k∏

i=0

gai·xi

)
= h

k∑

i=0
ri·xi

· g

k∑

i=0
ai·xi

= hr(x) · gf(x).

Finally, (c, d′) = (gr(x), hr(x) · gf(x)) is an ElGamal ciphertext of gf(x). Then,
to convince the user that (x, y) is a valid point of f , the server proves that (c, d′) is
a ciphertext of gy using a NIZKP of logg(c) = logh(d′/gy).

This leads us to the following formal definition of our scheme PIPE.

Definition 13. Let PIPE = (setup, init, compute, verif) be a PPE defined by:

setup(λ): Using the security parameter λ, it generates G a group of prime order p
and a generator g ∈ G. It chooses a hash function H : {0, 1}∗ → Z

∗
p and it sets

F = Z
∗
p. It sets pub = (G, p, g,H) and returns (pub, F ).

init(pub, f): We set f(x) =
∑k

i=0 ai · xi. This algorithm picks sk $← Z
∗
p and com-

putes pk = gsk. For all i ∈ {0, . . . , k}, it picks ri
$← Z

∗
p and computes ci = gri

and di = pkri ·gai . Finally, it sets vk = ({(ci, di)}0≤i≤k, pk) and returns (vk, sk).
compute(pub, vk, x, sk, f): Using vk which is equal to ({(ci, di)}0≤i≤k, pk), this

algorithm picks θ
$← Z

∗
p and computes

c =
k∏

i=0

cxi

i , π = (gθ, cθ, θ + H(gθ, cθ) · sk).

Finally, it returns (f(x), π).
verif(pub, vk, x, y, π): Using vk = ({(ci, di)}0≤i≤k, pk) and π = (A,B, ω), this

algorithm computes

c =
k∏

i=0

cxi

i , d =

(∏k
i=0 dxi

i

)

gy
.

If gω = A · pkH(A,B) and cω = B · dH(A,B), then the algorithm returns 1, else it
returns 0.

5.3 Security

We prove the security of PIPE in our security model:

Lemma 1. For any k ∈ N, PIPE is k-IND-CFA-secure under the DDH assumption
in the ROM.

Lemma 2. PIPE is unconditionally ZK-secure in the ROM.

Lemma 3. PIPE is unconditionally UNF-secure in the ROM.



502 X. Bultel et al.

Proofs of Lemmas 1, 2 and 3 are presented in [BDG+17]. Using Lemmas 2 and
4 and Theorem 4, we have that PIPE is k-PP-secure. Hence, using Lemma 1 and
Theorem 2, we deduce that PIPE is k-WPP-secure. Finally, we have the following
theorem.

Theorem 5. For any k ∈ N, PIPE is is ZK, k-IND-CFA, k-PP, k-WPP and UNF-
secure under the DDH assumption in the ROM.

5.4 Comparison with PolyCommitPed

Kate et al. [KZG10] propose two CTP schemes that can be used as PPE schemes.
Even if Kate et al. security model does not take into account IND-CFA security,
we prove in [BDG+17] that one of these two schemes, called PolyCommitPed, is
IND-CFA-secure. We recall the PolyCommitPed scheme in AppendixA and we com-
pare PIPE with this scheme in this section. Table 1 resumes this comparison.

The PIPE verification algorithm is in O(k) and the PolyCommitPed one is in
constant time. However, the PolyCommitPed verification algorithm requires sev-
eral pairing computations which are significantly costly in terms of computation
time whereas PIPE only requires exponentiations and multiplication in a prime
order group. Consequently, PIPEwill be more efficient than PolyCommitPed for suf-
ficiently small polynomial degree k.

Table 1. Comparison of PIPE and PolyCommitPed.

Setup size Key size Verif. cost Pairing Assumption Security

PIPE O(1) O(k) O(k) Paring free DDH IND-CFA

PolyCommitPed [KZG10] O(k) O(1) O(1) Pairing based t-SDH IND-CFA

The main advantage of PolyCommitPed is that the verification key size is con-
stant whereas the verification key size ofPIPE is in O(k). However, the public setup
size ofPolyCommitPed is inO(k)whereas thePIPE one is in constant. Since the client
knows both the verification key and the public setup, PolyCommitPed is advanta-
geous only if each client has access to several polynomials simultaneously.

PIPE is secure under the DDH assumption whereas PolyCommitPed is secure
under the t-SDH assumption. Note that finding a scheme that is secure under
a weaker assumption than t-SDH was an open problem mentioned by Kate
et al. [KZG10]. Finally, note that the security PolyCommitPed is proven in the
standard model. A simple way to obtain a version of PIPE that is secure in the
standard model is to use the interactive version of LogEq [CP93] instead of the
non-interactive one in the algorithm. In return, it requires an interaction between
the client and the server during the evaluation algorithm.
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6 CFA Security for Commitments to Polynomials

Our scheme can be used as a commitment to polynomials scheme [KZG10] that is
CFA-secure.Wegive an overviewof a such scheme inFig. 5.To commit apolynomial
f , the committer computes (vk, sk) ← init(pub, f) and returns the commitment
vk to the user corresponding to the encryption of coefficients of the polynomial f .
Then, the user sends his data to the committer (xi in Fig. 5) and receives the results
with correctness proof ((f(xi), proof) in Fig. 5). To open the commitment, the com-
mitter reveals to the user the key vk together with f (open(vk, f) in Fig. 5), then
the user can open all the ElGamal ciphertexts of vk and check that they encrypt
gai where ai are the coefficients of f .

Alice Committer

vk = commit(f)

xi

(f(xi), proof)

. . .
open(vk, f)

Fig. 5. PIPE scheme used as a commitment to polynomials scheme [KZG10].

7 Anonymous Private Polynomial Evaluation

In a practical scenario, the company does not allow anybody to interact freely
with the computation server. The company distributes authentication keys to the
clients, and the server uses a protocol to authenticate the client at the beginning
of each interaction. It allows the server to verify that a client does not request to
evaluate more than k points, where k is the degree of the polynomial. However,
for a lot of applications, preserving the privacy of the clients is important. Guo
et al. [GFLL15] propose an anonymous authenticationmechanism for their scheme,
which is broken and fixed by Gajera et al. [GND16].

We remark that anonymous authentication for PPE prevents the server from
knowing how much points of the polynomial it gives to each client, leading to
security issues. To solve this problem, we suggest that the server uses k-times
anonymous authentication [TFS04]: this primitive allows a client to anonymously
authenticate k times. If a client exceeds this limit, the server can identify him.Using
such a scheme, the server can refuse to respond if the user requires more point eval-
uations than allowed, and the privacy of honest users is preserved.

8 Conclusion

In this paper, we gave a formal definition for a primitive called PPE. This primitive
allows a company to delegate computations on a secret polynomial for users in a
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verifiable way. In essence, the user sends x and receives y from the server along with
a proof of y = f(x); even though he does not know the polynomial f . We proposed
a security model of indistinguishability against chosen function attack (IND-CFA)
and we built a PPE scheme called PIPE which is secure in this model. We proved
that another scheme called PolyCommitPed [KZG10] is IND-CFA-secure, and we
compared it with PIPE. Moreover, we exhibited a critical flaw in two papers which
proposed schemes tackling the same problem. In the future, we aim at designing a
scheme that is pairing free and that uses constant size verification keys. Another
possible extension is to add practical privacy mechanism to protect the data sent
by the users.
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A PolyCommitPed Scheme [KZG10]

We recall the PolyCommitPed construction presented by Kate et al. [KZG10].

Definition 14. PolyCommitPed = (setup, init, compute, verif) is a PPE scheme
defined as follows:

setup(λ): Using the security parameter λ, it generates two groups G and GT of
prime order p (providing λ-bit security) such that there exists a symmetric bilin-
ear pairing e : G × G → GT . Moreover, it chooses two generators g and h of
G and picks α ← Z

∗
p. It sets F = Z

∗
p, pub = (G,GT , p, e, g, h, (gα, . . . , gαk

),
(hα, . . . , hαk

)) and returns (pub, F ).
init(pub, f): Using f(x) =

∑k
i=0 ai·xi, this algorithmchooses a randompolynomial

of degree k, r(x) =
∑k

i=0 ri · xi ∈ Zp[x] and sets sk = r(x). It computes C =∏k
i=0(g

αi

)ai(hαi

)ri = gf(α)hr(α) and sets vk = C. Finally, it returns (sk, vk).
compute(pub, vk, xi, sk, f): This algorithm computes ψi(x) = (f(x) − f(xi))/(x −

xi) and ψ̂i(x) = (r(x) − r(xi))/(x − xi). Let (γ0, . . . , γk) and (γ̂0, . . . , γ̂k)
be such that ψi(x) =

∑k
j=0 γj · xj and ψ̂i(x) =

∑k
j=0 γ̂j · xj. It computes

wi =
∏k

j=0(g
αj

)γj (hαj

)γ̂j = gψi(α)hψ̂i(α). It sets π = (xi, r(xi), wi) and returns
(f(xi), π).

verif(pub, vk, xi, f(xi), π): If e(C, g) equals to e(wi, (gα)−xi)e(gf(xi)hr(xi), g), the
algorithm outputs 1, else it outputs 0.
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