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Abstract. We study public key encryptions (PKE) of simulation-based
security against sender selective-opening (SIM-SSO) attacks, where the
attacker can corrupt a subset of senders, learning the plaintexts together
with the corresponding randomness. Concretely:

– We present a generic construction of SIM-SSO security under chosen
plaintext attacks (SIM-SSO-CPA) by combining a lossy encryption
given by Hemenway et al. (Asiacrypt 2011), along with a tailored
compression algorithm. Our construction gives a simple and modular
security analysis. We then present an instantiation based on the
Matrix Diffie-Hellman Assumption.

– We show that the PKE construction from Boneh-Gentry-Hamburg
scheme (FOCS 2007), and construction from a (public-key based)
variant of Cocks’ scheme (Peikert, Vaikuntanathan and Waters,
Crypto 2008) are SIM-SSO-CPA secure. Even if these results may
seem natural, not surprising at all, their SIM-SSO-CPA security have
not been explicitly reported so far.

– We further show that two PKE constructions from homomorphic
trapdoor commitments (Groth, Ostrovsky and Sahai, Crypto 2006,
Eurocrypt 2006) are SIM-SSO-CPA secure.

Keywords: Sender Selective-Opening Security · Lossy encryption ·
Hash proof system

1 Introduction

Sender selective-opening (SSO) attacks consider scenarios that adversary may
corrupt a part of senders. More formally, suppose a receiver receives a n tuple of
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ciphertexts c = (c[1], . . . , c[n]), each ciphertext c[i] = Encpk(mi; ri) is created by
sender i with a fresh randomness ri under pk. Now, given c, the adversary can
adaptively chooses a subset I ⊆ {1, . . . , n} of ciphertexts to open, learning the
messages {mi}i∈I and corresponding randomness {ri}i∈I . The security requires
privacy of the unopened messages preserved.

The study of sender-selective opening in PKE scenarios was initiated by
Bellare, Hofheinz and Yilek [2]. They formulated the notions in two styles:
indistinguishability-based selective-opening (IND-SSO) security and simulation-
based selective-opening (SIM-SSO) security. Compared with the standard IND-
CPA/CCA security, IND/SIM-SSO security is more complicated, for the reason
that the opening of the randomness allows the adversary to check the correspon-
dence between ciphertext and message. Relations among IND-SSO, SIM-SSO
and standard security attract much attention such as in [1,3,14,20,24,25].

IND-SSO security is restricted to efficiently re-samplable plaintext distri-
butions. SIM-SSO security does not suffer from such restrictions, but is the
preferable notion of SSO security. In a nutshell, SIM-SSO security requires that
the output of any adversary can be simulated by a simulator that sees only
the opened messages. Unfortunately, SIM-SSO security is nonessential hard to
achieve [1], because for many natural encryption schemes, there does not exist
such simulator that satisfies the definition given in [2,11].

Known constructions of SIM-SSO secure encryption schemes either from lossy
encryption [2,15,21–23] or from deniable encryption (as well as non-committing
encryption) [7,13,30]. Lossy encryption has been shown to be a very useful tool
in achieving SIM-SSO security. In [2], Bellare et al. proved that lossy encryption
with efficient opening implies SIM-SSO-CPA security. However, it seems that the
property of efficient openability is limited to the decisional composite residuosity
(DCR) settings [32]. Hemenway et al. [21] proposed a general construction of
lossy encryption from hash proof system, but it is not clear whether it supports
efficient opening or not. This line of research continued in [35], Wee presented a
new framework of Dual-mode cryptosystems via smooth projective hashing, but
it also ignores the efficient opening property. The results in [21,35] are inspired
by the work in [29]. Recently, Hofheinz et al. [23] proposed a SIM-SSO-CPA
secure PKE scheme in the discrete-log setting, and further showed that lossy
encryption scheme with efficient weak opening implies SIM-SSO-CPA security.
In their construction, the key component is a hash function that is used to
compress the space of ciphertexts.

Related Work. Several IND-SO-CCA secure schemes have been constructed by
using lossy trapdoor functions [34], All-But-N lossy trapdoor functions [21], and
All-But-Many lossy trapdoor functions [22]. Furthermore, known constructions
of SIM-SSO-CCA secure schemes follow dedicated approaches [13,22,26,30].
Heuer et al. proved that the practical schemes RSA-OAEP and DHIES are SIM-
SSO-CCA secure in the random oracle model. Selective opening security under
receiver corruption were considered in [20,27,28].
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1.1 Our Contribution

In this paper, firstly we present a generic construction for building SIM-SSO-
CPA secure scheme from hash proof system, and then give an instantiation based
on the Matrix Diffie-Hellman Assumption. Our construction is a combination
of lossy encryption in [21] (note that the related schemes appeared in [29,35],
namely, the two-message oblivious transfer protocol in [29], and the Dual-mode
encryption scheme in [35]), and a tailored compression algorithm that compresses
the space of ciphertexts. Then we prove that the PKE construction from Boneh-
Gentry-Hamburg (BGH) scheme in [5], and the PKE construction from a (public-
key based) variant of Cocks’ scheme (short: Cocks’ scheme) in [33] are SIM-SSO-
CPA secure. We further prove that two PKE constructions from homomorphic
trapdoor commitment in [16–18] are SIM-SSO-CPA secure. In the following there
are some technique overviews.

The generic lossy encryption scheme in [21] is IND-SSO-CPA secure. To mod-
ify it to be SIM-SSO-CPA secure, one should seek an efficient algorithm Opener
that will find correctly distributed random coins to open a lossy ciphertext to an
arbitrary plaintext. But the property of efficient openability suffers from specific
algebraic structure, but the lossy encryption in [21] does not have this struc-
ture (Note that in [21] secret keys play the role of random coins). Inspired by
the ideas in [10,19,23], we observe that if the space of ciphertexts shrinks to a
smaller one, then the number of random coins will increase. Then Opener can
randomly guesses them one after another in a confined space, and checks whether
these random coins meet the requirements. To do so, we tailor a compression
algorithm that compresses the ciphertexts space to a logarithmic space of size L
(L is at most O(log l) where l is the security parameter). We also require that
the output of tailored compression algorithm statistically indistinguishable from
random bits over {0, 1}L. These approaches assure that Opener algorithm runs
in expected polynomial time, but the accurate running time depends on concrete
settings. On the downside, our approach suffers from a small message space.

Besides, we prove that two PKE constructions from BGH scheme and Cocks’
scheme are SIM-SSO-CPA secure. Both schemes have natural lossiness proper-
ties, and these properties have contained implicitly in the security proof. How-
ever, it is not our purpose to make them explicit. We concern about whether
BGH scheme and Cocks’ scheme support efficient opening or not. Since two
schemes are based on factoring-related assumptions, with the knowledge of fac-
torization of N such that N = pq, it is true that the efficient opening algorithms
exists. Hence, we can convert BGH scheme and Cocks’ scheme to lossy encryp-
tion with efficient opening (and thus SIM-SSO security) by setting p or q as the
lossy secret key.

In [18], Groth et al. concluded that “parameter-switching” methodology [16,
17] in encryptions keys leads to lossy encryption. In fact, their (non-interactive)
homomorphic trapdoor commitments can be converted into lossy encryption
schemes. We show that the converted schemes support efficient weak opening.
That is, when Opener opens a lossy ciphertext to an arbitrary plaintext, it needs
an additional random coins.
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One may notice that schemes in this paper can only achieve SIM-SSO-CPA
security. An interesting open problem is to extend them to the chosen-ciphertext
(CCA) setting to obtain SIM-SSO-CCA secure schemes. Besides, both of BGH
scheme and Cocks’ scheme are based on quadratic residuosity assumption, and
the lossy encryption with efficient opening can be seen as a general framework
that unifies two specific constructions. But how to extend their security to SIM-
SSO-CCA security is also an open interesting problem.

Organization. The rest of our paper is organized as follows: in Sect. 2 we present
some basic notions as well as several tools that are used in our paper; in Sect. 3 we
describe our generic construction of SIM-SSO-CPA secure scheme, and provide
an instantiation based on Matrix Diffie-Hellman Assumption; in Sect. 4 we prove
that two PKE constructions from BGH scheme and Cocks’ scheme are SIM-SSO-
CPA secure; in Sect. 5 we prove that two PKE constructions from homomorphic
trapdoor commitments are SIM-SSO-CPA secure.

2 Preliminaries

2.1 Notation

In this paper, we use N to represent the set of natural numbers, and Z represents
the set of integers. We also use PPT to denote probability polynomial time for
short. Let [k] be the set of {1, . . . , k}, x ← S is used to denote picking an element
x uniformly at random from S when S is a finite set, and to denote sampling
an element according to S when S is a distribution. The statistical distance
of two probability ensembles X , Y is defined as SD(X ,Y) := 1

2Σx|Pr[X =
x] − Pr[Y = x]|. If SD(X ,Y) is negligible, we say that X and Y are statistical
indistinguishability (abbr. X ≈s Y ). The length of a string x is denoted by |x|.

2.2 Public Key Encryption

A public key encryption (PKE) scheme consists of the following three PPT
algorithms:

Keygen: the key generation algorithm that takes as input a security parameter
1λ, and outputs a public/secret key pair (pk, sk) ← Keygen(1λ).

Enc: the encryption algorithm that takes as input the public key pk, a plaintext
m ∈ M, and outputs a ciphertext c ← Enc(pk,m).

Dec: the decryption algorithm that takes the secret key sk, a ciphertext c as
input, and outputs either a message m ← Dec(sk, c) ∈ M or a special ⊥ to
indicate that c is not a valid ciphertext.

Correctness. The PKE scheme satisfies correctness if Dec(sk, c) = m with all
but negligible probability whenever pk, sk is produced by Keygen(1λ) and c is
produced by Enc(pk,m).
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2.3 Sender Selective-Opening Security

Following [2,3,13], we recall the definition of simulation-based sender selective-
opening security against chosen plaintext attacks (SIM-SSO-CPA).

Definition 1 (SIM-SSO-CPA Security). A PKE scheme PKE = (Gen,Enc,
Dec) is SIM-SSO-CPA secure iff for every polynomially bound n = n(1λ) > 0,
every PPT relation R, and every stateful PPT adversary A, there exists a stateful
PPT simulator S such that

Advsim− sso− cpa
PKE,A,S,R (1λ) = |Pr[Expreal

PKE,A,R(1λ) = 1] − Pr[Expideal
S,R (1λ) = 1]|

is negligible. The experiments Expreal
PKE,A,R and Expideal

S,R are defined as follows
(Fig. 1):

Experiment. Expreal
PKE,A(1λ):

(pk, sk) ← Gen(1λ)
dist ← A(pk)
(Mi)i∈[n] ← dist
(Ri)i∈[n] ← (REnc)n

(Ci)i∈[n] = Enc(pk,Mi;Ri)i∈[n]

I ← A(select, (Ci)i∈[n])
outA ← A(output, (Mi, Ri)i∈I)
return R(dist, (Mi)i∈[n], I, outA)

Experiment. Expideal
S (1λ):

dist ← S(1λ)
(Mi)i∈[n] ← dist

I ← S(select, (1|Mi|)i∈[n])
outS ← S(output, (Mi)i∈I)
return R(dist, (Mi)i∈[n], I, outS)

Fig. 1. The REAL-SIM-SSO-CPA and IDEAL-SIM-SSO-CPA experiment

2.4 Sender Selective-Opening Security from Lossy Encryption

Lossy Encryption with Efficient Opening. In [2], Bellare et al. defined lossy
encryption, and proved that any lossy encryption scheme with efficient opening
(short: LPKE, thus ciphertexts can be efficiently opened to arbitrary messages)
is SIM-SSO-CPA secure. A LPKE consists of four algorithms (Gen, LGen, Enc,
Dec) such that:

Gen(1λ): The key generation algorithm that takes as input the security parame-
ter 1λ, and outputs a key pair (pk, sk) where pk is a real public key.

LGen(1λ): The lossy key generation algorithm that takes as input the security
parameter 1λ, and outputs a key pair (pk, sk) where pk is a lossy public key.

Enc(pk,m): The encryption algorithm that takes as input a public key pk and
a message m, where pk is either generated by Gen(1λ) or by LGen(1λ), and
outputs a ciphertext c.

Dec(sk, c): The decryption algorithm that takes as input a ciphertext c and a
secret sk, outputs either a message m if c ← Enc(pk,m), or a special symbol
⊥ to indicate that c is not a valid ciphertext.
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LPKE should satisfy properties of correctness, indistinguishability, lossiness
and efficient openability.

Correctness. For all (pk, sk) ← Gen(1λ), c ← Enc(pk,m), it must be the case
that Dec(sk, c) = m.

Indistinguishability. The first outputs of Gen(1λ) and LGen(1λ) can not be
distinguished for any PPT adversary.

Lossiness. For any (pk, sk) ← LGen(1λ) and two distinct messages m0,m1, it
holds that Enc(pk, m0) ≈s Enc(pk,m1). Thus, two distributions statistically
close.

Efficient Openability. There exists an efficient algorithm Opener that, takes
as input lossy keys sk and pk, message m, ciphertext c ← Enc(pk, m; r),
outputs random coins r′ such that Enc(pk,m; r′) = c.

Hofheinz, Jager and Rupp [23] defined lossy encryption with efficient weak
opening (short: wLPKE) and proved that wLPKE is indeed SIM-SSO-CPA
secure. The only difference between LPKE and wLPKE is that the Opener algo-
rithm for wLPKE may receive an additional random coins that have been used
to generate the ciphertext. More generally, the property of efficient weak open-
ability is described as follows.

Efficient weak openability. There exists an efficient algorithm Opener that,
takes as input lossy keys sk and pk, message m0, the random coins r, cipher-
text c ← Enc(pk,m0; r), and a message m1, outputs random coins r′ such
that Enc(pk,m1; r′) = c.

3 SIM-SSO-CPA Secure PKE from Hash Proof System

In this section, we present a generic construction of SIM-SSO-CPA secure by
combining a lossy encryption in [21](as well as the schemes in [29,35]), and a
tailored compression algorithm that compresses the space of ciphertexts. We
further give an instantiation based on the Matrix Diffie-Hellman Assumption.
Before turning to the generic construction, we first recall the notions of hash
proof system as introduced by Cramer and Shoup [9].

3.1 Hash Proof System

Smooth Projective Hashing. A smooth projective hash family consists of
(Λ,SK, X ,L,W,Y,PK, μ), where X ,Y,L,W,SK,PK are finite, non-empty
sets, and L ⊂ X is a language. Let Λ : X → Y be a collection of hash functions
indexed by keys sk ∈ SK mapping from X to Y. Also there exists an efficiently
computable projection μ from SK to PK. A hash family H = (Λ,SK,X ,L,W,
Y,PK, μ) is projective if for all sk ∈ SK, the action of Λsk on L is determined
by μ(sk). A hash family H = (Λ,SK,X ,L,W, Y,PK, μ) is smoothness if for
randomly chosen sk ∈ SK, given μ(sk) and x ∈ X \ L, Λsk(x) is statistically
close to uniform distributions over Y.
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We also require that for sk ∈ SK, it can be efficiently sampled sk′ such that
μ(sk) = μ(sk′), which will be used not in the actual scheme but in the security
proof. In fact, all known hash proof systems have this property.

Subset Membership Assumption. We will consider two related subset mem-
bership assumptions pertaining to the non-empty set X . The first assumption
states that the uniform distributions over L and X are computationally indistin-
guishable, even given the public parameter. The second assumption requires that
the uniform distributions over L and X \ L are computationally indistinguish-
able, even knowing the public parameter. The two assumptions are equivalent
when L is sparse in X , i.e., |L|/|X | = negl(1λ), since the distributions over X
and X \ L are then statistically indistinguishable.

Hash Proof System. Let H = (Λ,SK,X ,L,W, Y,PK, μ) be a projective hash
family, and let Λ[X ,L,W,R] be any instance of a subset membership assump-
tion, where W is the set of witness, and R ⊂ X ×W is a binary relation such that
x ∈ L iff there exists a w satisfying (x,w) ∈ R. A hash proof system provides
efficient algorithm to randomly choose sk ∈ SK and x ∈ X , efficient algorithm
to compute μ(sk), and efficient algorithm (Priv, Pub) to compute Λsk(x) for
x ∈ L with witness w:

Λsk(x) = Priv(sk, x) = Pub(μ(sk), x, w)

3.2 Generic Construction

Tailored Compression Algorithm. The study of instance compression was
initiated by Harnik and Naor [19]. Inspired by the ideas in [10,19,31], we tailor
a compression algorithm for the hash proof system. Roughly speaking, the tai-
lored compression algorithm Z can shrink Λsk(x) to a smaller bit string, and the
output of Z statistically indistinguishable from random bits. Note that our defi-
nition is the generalization of the universal hash function that compress elements
to bits in [23].

Definition 2 (Tailored Compression Algorithm for HPS). Let H =
(Λ,SK, X , L, W, Y, PK, μ) be a smooth projective hash proof system. A tai-
lored compression algorithm for HPS is a PPT algorithm Z such that for large
enough l

– For any π ∈ Y, the length L of Z(π) is at most O(log l).
– Z outputs bits that uniformly distributed over {0, 1}L.

Construction. Based on these building blocks, we can construct a generic
lossy encryption with efficient weak opening with message space {0, 1}O(log l)

(For simplicity, we stipulate that the length of Z(π) is O(log l). Thus, only small
message spaces are allowed.) The SIM-SSO-CPA secure scheme is described as
follows.
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Injective key generation: Samples an x ∈ L, together with a corresponding
witness w. Sets pk = x, sk = w.

Lossy key generation: Samples an x ∈ X . Sets pk = x, sk = ⊥.
Encryption: To encrypt a message m ∈ {0, 1}O(log l), chooses sk ← SK, and

returns the ciphertext c = (c1, c2) as:

c1 = μ(sk), c2 = Z(Λsk(x)) ⊕ m.

Decryption: Given a ciphertext (c1, c2) and secret key sk = w, the algorithm
first computes Λsk(x), then returns m = Z(Λsk(x)) ⊕ c2.

3.3 Security Proof

The following theorem will be used in the security proof of the generic construc-
tion. The writing style of the proof in the rest of our paper refers to [2,23,35].

Theorem 1 ([2,23]). The lossy encryption scheme with efficient opening (or
efficient weak opening) is SIM-SSO-CPA secure.

We prove that the construction in Sect. 3.2 satisfies the four properties of lossy
encryption with efficient weak opening.

Theorem 2. If H is a smooth projective HPS with the corresponding subset
membership assumption hard, and the output of tailored compression algorithm Z
statistically indistinguishable from uniform, then the generic construction yields
a SIM-SSO-CPA secure scheme.

Proof. Correctness. This is guaranteed by the projective property of the
smooth projective hashing.

Indistinguishability. This follows immediately from the subset membership
assumption.

Lossiness. In lossy mode, the lossy public key x ← X , according to the smooth-
ness property of HPS, Λsk(x) is uniformly distributed over Y even given μ(sk)
and x. Since the output of Z are statistically close to uniform, Z(Λsk(x))⊕m
will also be statistically close to uniform over {0, 1}O(log l) for any message
m. Hence, lossiness follows readily.

Efficient weak openability. We note that in the generic setting, secret keys
play the role of random coins. Consider the algorithm Opener, takes as
input a lossy public key x ← X , lossy secret key sk ∈ SK, message m′ ∈
{0, 1}O(log l), and ciphertext c = (c1, c2) = (μ(sk), Z(Λsk(x)) ⊕ m) for some
m ∈ {0, 1}O(log l), outputs sk′ such that μ(sk′) = c1 and Z(Λsk′(x))⊕m′ = c2.
To do so, Opener samples sk′ randomly and creates a set

{sk′ ∈ SK : μ(sk′) = c1 ∧ Z(Λsk′(x)) = m′ ⊕ c2}

We now analyze the behavior of the algorithm Opener. First, Opener can
efficiently determine μ(sk′) = c1. Second, Opener randomly guesses sk′ one
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after another and check to see whether Z(Λsk′(x)) = m′⊕c2. As the output of
Z is close to uniform, and the size of Z(Λsk′(x)) is at most 2O(log l), this will
require about O(l) steps. Also note that Opener algorithm runs in expected
polynomial time, and has small probability of running for a long time.

3.4 Instantiation Based on Matrix Diffie-Hellman Assumption

Here, we describe one instantiation of the generic construction in Sect. 3.2. We
then compare the efficency of this instantiation with the scheme in [23]. To
instantiate our construction, we need to utilize a Dl,k-Matrix Diffie-Hellman
(short: Dl,k-MDDH) Assumption, a Dl,k-MDDH-based hash proof system in
[12], and a universal hash function in [23] that maps group elements to bits.

Representing Elements in Groups. Let Gen be a PPT algorithm that takes
as input 1λ and outputs a description G = (G, q, g), where G is a cyclic group with
prime-order q, and g is the generator of G. Following [12], we define [a] = ga ∈ G

as the implicit representation of a in G. More generally, we also define such
representations for matrix A = (aij) ∈ Z

n×m
q by:

[A] =

⎛
⎜⎝

ga11 . . . ga1m

...
. . .

...
gan1 . . . ganm

⎞
⎟⎠ ∈ G

n×m

Matrix Diffie-Hellman Assumption. We recall the definition of the Matrix
Diffie-Hellman Assumption as introduced in [12].

Definition 3 (Matrix Distribution). Let l, k ∈ N such that l > k. The dis-
tribution Dl,k is called a matrix distribution if it outputs matrices in Z

l×k
q of full

rank k in probability polynomial time with all but negligible probability.

Definition 4 (Dl,k-Matrix Diffie-Hellman Assumption). Let Dl,k be a
matrix distribution. We say that the Dl,k-Matrix Diffie-Hellman Assumption
holds in G and relative to Gen if for all non-uniform polynomial time adver-
sary A, we have

AdvDl,k,Gen(A) = |Pr[A(G, [A], [Aw]) = 1] − Pr[A(G, [A], [u]) = 1]|
is negligible, where the probability is taken over the output G = (G, q, g) ←
Gen(1λ), A ← Dl,k, w ← Z

k
q , u ← Z

l
q and the coin tosses of adversary A.

Instantiation. For instantiation, we need a hash function H : G → {0, 1}
to replace the tailored compression algorithm Z. The hash function H should
satisfies the following property in [23]: for randomly choose a ∈ G, H(a) is
statistically indistinguishable from the uniform distribution over {0, 1}; if a is a
vector of group elements from G, then H(a) is the component-wise application
of the hash function, which outputs a bit vector of the same length as a . The
details of the instantiation are given below.
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Setup: Runs (G, q, g) ← Gen(1λ) and picks A ← Dl,k. Define the language

L = {[Aw ] ∈ G
l : w ∈ Z

k
q} ⊂ X

The value w ∈ Z
k
q is a witness.

Injective key generation: Picks w ← Z
k
q , and computes [x ] = [Aw ]. Let

pk = [x ], sk = w .
Lossy key generation: Picks u ← Z

l
q, and computes [x ] = [u ]. Let pk = [x ],

sk = A.
Encryption: On inputs a message m ∈ {0, 1}, picks k ← Z

l
q, then computes

c1 = [kTA], c2 = H([kTx ]) ⊕ m, and outputs ciphertext c = (c1, c2).
Decryption: Given a ciphertext c = (c1, c2), and sk = w , returns m =

H([c1w ]) ⊕ c2.

Correctness follows readily from the projective property of Dl,k-MDDH-based
hash proof system in [12]. We put the concrete security proof in Appendix A,
and present the property of efficient weak openability in the following.

Consider the algorithm Opener that takes as input a lossy public key pk =
(G, [x ]) where [x ] = [u ], a lossy secret key A, the message m, random coins kT ∈
Z

l
q, and ciphertext c = (c1, c2) = ([kTA],H([kTx ])⊕m). The outputs of Opener

is random coins k’T which is just a random vector in Z
l
q. To this end, Opener

samples k’T ∈ Z
l
q randomly subject to k’TA = kTA until H([k’Tx ])⊕m′ = c2.

As Opener knows secret key A, this increases the dimension of the random
coins space, and introduce the redundancy into the first equation k’TA = kTA.
Thus, there are many different k’ satisfying k’TA = kTA. Opener can randomly
guesses k’ one after another and checks whether the second equation H([k’Tx ])⊕
m′ = c2 is true. On average, it takes 2 such samplings until k’ is found.

We emphasize that the opening algorithm needs to receive k as an additional
input, hence our instantiation meets the notion of lossy encryption with efficient
weak opening.

Comparison. In [23], Hofheinz et al. compared their scheme to other SSO-
secure PKE schemes such as [2,13,21]. We tabulate the efficiency of our scheme,
and only compare it to HJR16 scheme [23] (which we refer to as HJR scheme) in
Fig. 2. The HJR scheme is more efficient, and the plaintext space scales better
(indeed, only small message space are allowed). But HJR scheme has a large
public key size, and the encryption and decryption procedures are computation-
ally expensive (because it needs to define a matrix constructor). In our scheme,
the size of public key and secret key is linear, and the encryption and decryption
procedures are efficient, but the price is a rather small plaintext space. We con-
clude that both our scheme and HJR scheme is a feasibility result, and further
improvements would be desirable.
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Scheme Security Assumption |pk| |sk| |m| |c| − |m|
HJR16 [23] SIM-SSO-CPA Dl,k−MDDH (l × k)|G| (l − d) × k l − d d × |G|

Ours SIM-SSO-CPA Dl,k−MDDH l × |G| k 1 k × |G|

Fig. 2. Comparison of our scheme with HJR16 scheme in [23]. We use the same symbol
as introduced in [23]. For a group G, |G| denotes its size. For a matrix A, d denotes the
rank of A. |m| denotes the plaintext bitsize. |c| − |m| denotes the ciphertext overhead.

4 SIM-SSO-CPA Secure Construction from Quadratic
Residuosity

4.1 SIM-SSO-CPA Secure Construction from BGH Scheme

In this section, we show that the public-key scheme constructed from
Boneh-Gentry-Hamburg (BGH) scheme [5] is SIM-SSO-CPA secure. Theorem 1
described in Sect. 3.3 will also be used in the security proof.

Quadratic Residuosity Assumption. Let N = pq where p, q are two distinct
safe primes, let

(
x
N

)
denote the Jacobi symbol of x ∈ Z

∗
N , and let J(N) be the set

{x ∈ Z
∗
N :

(
x
N

)
= 1}. We denote by QR(N) the subgroup of quadratic residues in

J(N). The quadratic residuosity assumption states that when the factorization
of N is unknown, it is hard to distinguish random elements in J(N) \ QR(N)
from random elements in QR(N).

Definition 5 (Quadratic Residuosity Assumption). Let RSAGen be a
PPT algorithm which, given a security parameter 1λ, outputs two distinct primes
p and q with their product N = pq. We say that the quadratic residuosity assump-
tion holds for RSAGen if for all PPT distinguisher D, the function

|Pr[D(x,N) = 1|x ← QRN ] − Pr[D(x,N) = 1|x ← J(N) \ QR(N)|
is negligible; where the probabilities are taken over (N, p, q) ← RSAGen(1λ) and
sampling x ∈ QRN and x ∈ JN \ QRN uniformly at random.

IBE/PKE Compatible. Most of the concept of IBE/PKE compatible is
copied from [5]. Let Q be a deterministic algorithm that takes as input (N,R, S)
where N ∈ Z

+ and R,S ∈ Z
∗
N , outputs two polynomials f, g ∈ Z

∗
N [x]. We say

that Q is IBE/PKE compatible if Q satisfies the following two conditions:

– (Condition 1) If R and S are quadratic residues, then f(r)g(s) is also a
quadratic residue for all square roots r of R and s of S.

– (Condition 2) If R is a quadratic residue, then f(r)f(−r)S is also a quadratic
residue for all square roots r of R.

(Condition 1) will be used to decrypt ciphertexts, (Condition 2) is only used
to prove security, and satisfies the conditions of the following lemma in [5].
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Lemma 1. Let N = pq be an RSA modulus, X ∈ QR(N), and S ∈ J(N) \
QR(N). Let x be a value that is randomly chosen from the four square roots of
X, and let f be a polynomial with the property that f(x)f(−x)S is a quadratic
residue. Then the Jacobi symbol

(
f(x)
N

)
is uniformly distributed over {−1,+1}.

Construction. Next we prove that the PKE scheme constructed from BGH
satisfies the four properties of a lossy encryption scheme with efficient opening.

Let RSAgen(1λ) be an algorithm that generates two distinct primes p and
q, and outputs p, q along with their product N . The SIM-SSO-CPA secure
construction is described as follows.

Gen(1λ): generates (N, p, q) ← RSAGen(1λ). Chooses v ∈ Z
∗
N uniformly at

random, and computes V = v2. Let pk = (N,V ), and sk = v.
LGen(1λ): generates (N, p, q) ← RSAGen(1λ). Chooses V ∈ J(N) \ QR(N)

uniformly at random. Let pk = (N,V ), and sk = (p, q).
Enc(N, pk,m): To encrypt a message m ∈ {−1,+1}, chooses r ∈ Z

∗
N uniformly

at random and sets R = r2. Then computes:

(f, g) = Q(N,R, V ) and c = m ·
(

f(r)
N

)

Outputs the ciphertext (R, c).
Dec(sk, c): Takes as input (R, c) and sk = v. Do:

(f, g) = Q(N,R, V ) and m = c ·
(

g(v)
N

)

Outputs m.

Theorem 3. If the quadratic residuosity assumption holds for RSAGen, then
the above construction is a lossy encryption scheme with efficient opening.

Proof. Correctness. Given a real public key pk = (N,V ) where V ∈ QR(N)
as well as a ciphertext (R, c). The deterministic algorithm Q(N,R, V ) out-
puts two polynomials f and g. Because both R and V is quadratic residues,
(Condition 1) implies that

(
f(r)
N

)
=

(
g(v)
N

)

Given the secret key sk = c, the plaintext is decrypted by computing

c ·
(

g(v)
N

)
= m ·

(
f(r)
N

)(
g(v)
N

)
= m.

Indistinguishability. It immediately follows from the quadratic residuosity
assumption.
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Lossiness. The lossiness property has been contained in the security proof of the
PKE scheme in [5], appendix B. In lossy mode, public keys are (N,V ) where
V ∈ J(N) \ QR(N). Consider the ciphertext (R, c), where c = m ·

(
f(r)
N

)
∈

{−1,+1}, and r2 = R modulo N . According to Condition (2), f(r)f(−r)V
is a quadratic residue for all square roots of R. Then Lemma 1 shows that(

f(r)
N

)
is uniformly distributed over {−1,+1}, hence m ·

(
f(r)
N

)
will also be

uniformly random over {−1,+1} for any plaintext m.
Efficient openability. To see this, consider the opening algorithm Opener

which, takes as input a lossy secret key sk = (p, q), lossy public key
pk = (N,V ) where V ∈ J(N)\QR(N), message m, and ciphertext (R, c), and
outputs an r′ such that m ·

(
f(r′)

N

)
= c. Because the factorization of N = pq

is known, Opener can use p and q to efficiently compute the four square roots
of R, and let r′ be a randomly chosen from the four squares roots. The output
of Opener is r′, which is just a random elements in Z

∗
N .

4.2 SIM-SSO-CPA Secure Construction from Cocks’ Scheme

Cocks [8] proposed an elegant IBE scheme based on the quadratic residuosity
assumption modulo an RSA composite N . In [33], Peikert et al. defined a (public-
key based) variant of Cocks’ scheme. In this section, we prove that the public
key scheme constructed from the version of Cocks’ cryptosystem in [33] is SIM-
SSO-CPA secure.

Construction. Let RSAGen(1λ) be an algorithm that generates two distinct
primes p and q, and outputs p, q along with their product N . The SIM-SSO-CPA
secure construction is described as follows.

Gen(1λ): Generates (N, p, q) ← RSAGen(1λ). Picks r ∈ Z
∗
N uniformly at ran-

dom, and let y = r2. Let pk = (N, y), sk = r. Outputs (pk, sk).
LGen(1λ): Generates (N, p, q) ← RSAGen(1λ). Picks y ∈ J(N) \ QR(N) uni-

formly at random. Let pk = (N, y), sk = (p, q). Outputs (pk, sk).
Enc(pk,m): To encrypt a message m ∈ {−1,+1}, picks s ← Z

∗
N such that(

s
N

)
= m, outputs c = s + y/s.

Dec(sk, c): Outputs the Jacobi symbol of (c + 2 · sk).

To prove the SIM-SSO-CPA security of the above construction, we recall a lemma
that presented in [33].

Lemma 2. Let N = pq be the product of two distinct primes, let y ∈ Z
∗
N and set

pk = (N, y). If y ∈ J(N)\QR(N), then the ciphertext is statistically independent
of the plaintext.

Theorem 4. If the quadratic residuosity assumption holds for RSAGen, then
the above construction is a lossy encryption scheme with efficient opening.
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Proof. Correctness. The correctness of the scheme under real keys is guaran-
teed by the completeness of Cocks’ cryptosystem.

Indistinguishability. This follows readily from the quadratic residuosity
assumption.

Lossiness. In lossy mode, y ∈ J(N) \ QR(N). Consider the ciphertext c =
s + y/s, and the plaintext m =

(
s
N

)
, according to Lemma 2, the ciphertext c

is statistically independent of the plaintext m.
Efficient openability. We say that the scheme is also efficiently openability,

and the property implicitly contained in the proof of Lemma 2 in [33]. To
see this, consider the algorithm Opener that on input a lossy secret key sk =
(p, q), lossy public key pk = (N, y), plaintext m, ciphertext c. To claim c to
any plaintext m′ ∈ {−1,+1}, Opener has to find s′ such that s′ + y/s′ = s +
y/s mod N and

(
s′
N

)
= m′. Since Opener knows the factorization of N , it can

efficiently compute four solutions of the equation c = s+y/s mod N . Suppose
s0 is one of the solutions, then the other solutions are (s0 mod p, y/s0 mod
q), (y/s0 mod p, s0 mod q), (y/s0 mod p, y/s0 mod q). Let s′ be a randomly
chosen one of the four solutions, and the output of Opener is s′, which is just
a random element in Z

∗
N .

5 SIM-SSO-CPA Secure Construction
from Homomorphic Trapdoor Commitment

The homomorphic trapdoor commitment in [16–18] consist of the following algo-
rithms: Perfectly binding key generation, Perfectly hiding key generation, Com-
mitment, Extraction, Trapdoor opening, Witness indistinguishability proof, Ver-
ification. The homomorphic trapdoor commitment can be converted into lossy
encryption. That is, Perfectly binding key generation in homomorphic trapdoor
commitment corresponds to Injective key generation in lossy encryption, Per-
fectly hiding key generation in homomorphic trapdoor commitment corresponds
to Lossy key generation in lossy encryption, Commitment in homomorphic trap-
door commitment corresponds to Encryption in lossy encryption, Extraction in
homomorphic trapdoor commitment corresponds to Decryption in lossy encryp-
tion, Trapdoor opening in homomorphic trapdoor commitment corresponds to
Opening algorithm in lossy mode of the lossy encryption. Note that Trapdoor
opening algorithm explicitly exists in homomorphic trapdoor commitment, but
Opening algorithm is implicit in the lossy mode of the lossy encryption.

In this section, we prove that PKE constructions from the homomorphic
trapdoor commitments only have the property of efficient weak openability, but
still achieve SIM-SSO-CPA security. Theorem 1 in Sect. 3.3 will also be used for
security proof.

5.1 SIM-SSO-CPA Secure Construction from Subgroup Decision
Assumption

Let G be a PPT algorithm that takes as input security parameter 1λ, outputs
a tuple (p, q,G,G1, e, g) where p, q are distinct safe primes, G and G1 are cyclic
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groups with order n = pq, e is a bilinear map e : G × G → G1, g and e(g, g)
are the generators of G and G1, respectively. The definition of subgroup decision
assumption is described as follows.
Definition 6. We say that the generator G satisfies the subgroup decision
assumption if for any PPT adversary A, we have

| Pr[(p, q,G,G1, e, g) ← G(1λ);n = pq;x ← Z
∗
n;h = gx : A(n,G,G1, e, g, h) = 1]

− Pr[(p, q,G,G1, e, g) ← G(1λ);n = pq;x ← Z
∗
q ;h = gpx : A(n,G,G1, e, g, h) = 1]|

is negligible.

Construction. Boneh-Goh-Nissim (BGN) scheme [6] is the main building block
of the homomorphic trapdoor commitment scheme in [17,18], which based on
the subgroup decision assumption. The SIM-SSO-CPA secure construction is
described as follows.

Gen(1λ) : Given a security parameter 1λ, runs G(1λ) to obtain a tuple
(p, q,G,G1, e, g), let n = pq. Picks x ← Z

∗
q , sets h = gpx. The public key

is pk = (n,G,G1, e, g, h), the secret key is sk = q.
LGen(1λ) : Given a security parameter 1λ, runs G(1λ) to obtain a tuple (p, q,G,

G1, e, g), let n = pq. Picks x ← Z
∗
n, sets h = gx. The public key is pk =

(n,G,G1, e, g, h), the secret key is sk = x.
Enc(pk,m) : To encrypt a message m ∈ {0, 1, 2, . . . , T} where T is a prime and

T < p, picks r ← Z
∗
n, computes c = gmhr. Outputs c as the ciphertext.

Dec(c, sk) : To decrypt a ciphertext c, takes as input the secret key sk = q,
computes cq = (gmhr)q = (gq)m, then uses Pollard’s ρ algorithm to recover m.

We turn to proving SIM-SSO-CPA security of the above construction under
subgroup decision assumption. The security has been embodied implicitly in the
construction of homomorphic trapdoor commitment in [17].

Theorem 5. The construction in Sect. 5.1 is a lossy encryption scheme with
efficient weak opening assuming G satisfies the subgroup decision assumption.

Proof. Correctness. Correctness of decryption follows from the completeness
of the BGN cryptosystem.

Indistinguishability. The subgroup decision assumption implies that two
kinds of keys are computational indistinguishability.

Lossiness. Given lossy public key pk = (n,G,G1, e, g, h) for h = gx, where
x is chosen uniformly from the set Z

∗
n. Because h has order n, so h = gx

is uniformly random over G. Now, for random r ∈ Z
∗
n, the ciphertext c =

gmhr = gm(gx)r will also be uniformly distributed over G.
Efficient weak openability. The scheme is efficiently weak openability. Con-

sider the algorithm Opener that takes as input a lossy secret key sk = x, lossy
public key pk = (n,G,G1, e, g, h) where h = gx, plaintext m and m′, random
coins r, and ciphertext c such that c = Enc(pk,m; r). To claim c to any plain-
text m′, Opener has to find r′ such that Enc(pk,m; r) = Enc(pk,m; r′). Since
Opener holds the secret key x, it can efficiently return r′ = r− (m′−m)

x mod n
which is just a random value in Z

∗
n.



376 D. Zhu et al.

Remarks. Note that the opening algorithm needs to receive an additional input,
the random coins r that have been used to generate the ciphertext. So the
construction meets the notion of weak opening. Also note that there is a gap in
our proof. That is, we only succeed in proving weak opening. But this does not
mean the above construction does not support a stronger opening algorithm.

5.2 SIM-SSO-CPA Secure Construction from Decisional Linear
Assumption

Boneh, Boyen, and Shacham first proposed the decisional linear assumption [4].
Let GDLIN be a PPT algorithm that takes as input security parameter 1λ and
outputs a tuple (p,G, g) where p is a prime, G is a cyclic group of order p, and
g is a random generator of G. The definition of decisional linear assumption is
described as follows.

Definition 7 (Decisional Linear Assumption). We say that the decisional
linear assumption holds for the generator GDLIN if for all PPT adversary A we
have

| Pr[(p,G, g) ← GDLIN(1λ);x, y ← Z
∗
p; r, s ← Zp : A(g, gx, gy, gxr, gys, gr + s) = 1]

− Pr[(p,G, g) ← GDLIN(1λ);x, y ← Z
∗
p; r, s, d ← Zp : A(g, gx, gy, gxr, gys, gd) = 1]|

is negligible.

Construction. Next we show that the PKE scheme constructed from homomor-
phic trapdoor commitment in [16,18] is a lossy encryption scheme with efficient
weak opening, and this property has been contained implicitly in the construc-
tion of the original commitment scheme. Now, we present the SIM-SSO-CPA
secure construction in the following.

Gen(1λ) : Runs (p,G, g) ← GDLIN(1λ), picks x, y ← Z
∗
p, sets f = gx, h = gy,

picks ru, sv ← Zp, z ← Z
∗
p, and computes (u, v, w) = (fru , hsv , gru + sv + z).

Let pk = (p,G, g, f, h, u, v, w), sk = (x, y, z).
LGen(1λ) : Runs (p,G, g) ← GDLIN(1λ), picks x, y ← Z

∗
p, let f = gx, h = gy,

picks ru, sv ← Zp, and computes (u, v, w) = (fru , hsv , gru + sv ). Let pk =
(p,G, g, f, h, u, v, w), sk = (ru, sv).

Enc(pk,m) : On inputs pk and a message m ∈ {0, 1, 2, . . . , T} where T is a prime
and T < p, picks (r, s) ← Zp × Zp, and computes

c = (c1, c2, c3) = (umfr, vmhs, wmgr+s)

Dec(c, sk) : On inputs the ciphertext c = (c1, c2, c3), and sk = (x, y, z), computes
(gz)m = c3c

−1/x
1 c

−1/y
2 , then recovers m by using Pollard’s ρ method in the

confined message space.

Theorem 6. The above construction is a lossy encryption scheme with efficient
weak opening assuming GDLIN satisfies the decisional linear assumption.
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Proof. Correctness. Correctness of decryption follows from the completeness
of Extraction algorithm from homomorphic trapdoor commitment.

Indistinguishability. Since real public keys (u, v, w) = (fru , hsv , gru + sv + z)
are not linear tuple, and lossy public key (u, v, w) = (fru , hsv , gru + sv ) are
random linear tuple. Under the decision linear assumption, real public keys
and lossy public keys are computational indistinguishability.

Lossiness. Given the lossy public key pk = (fru , hsv , gru + sv ), pk is a linear
tuple, and pk is also the perfect hiding commitment key. Following the statis-
tically hiding property of the homomorphic trapdoor commitment, the cipher-
text (umfr, vmhs, wmgr+s) hides m perfectly.

Efficient weak openability. To see this, consider the algorithm Opener that
takes as input a lossy secret key (ru, sv), lossy public key (fru , hsv , gru + sv ),
plaintexts m and m′, random coins (r, s), ciphertext c such that c =
Enc(pk,m; r, s). To claim c to any plaintext m′, Opener has to find (r′, s′)
such that satisfy Enc(pk,m; r, s) = Enc(pk,m; r′, s′). Since Opener holds
secret key sk = (ru, sv), it can efficiently outputs r′ = r − (m′ − m)ru mod p
and s′ = s − (m′ − m)sv mod p, where r′ and s′ are random elements in Zp.

Remarks. Note that in the input of the opening algorithm, the random coins
r and s are also necessary. Hence, the above construction meets the notion of
weak opening. Also note that there is a gap in our proof, please see the Remarks
in Sect. 5.1.

6 Conclusion

In this paper we study public key encryptions of simulation-based security
against sender selective-opening attacks. In concrete, we present a generic con-
struction that achieves SIM-SSO-CPA security from lossy encryption, and give
an instantiation based on the Matrix Diffie-Hellman Assumption. In fact, our
instantiation is inefficient, and a further improvement would be desirable.

We further prove that the PKE constructions from Boneh-Gentry-Hamburg
scheme, Cocks’ scheme and homomorphic trapdoor commitments are SIM-SSO-
CPA secure. These schemes have natural lossiness property, but it is not our
purpose to make them explicit. We focus on whether the efficient opening algo-
rithm exists or not, and succeed in building PKE schemes that support efficient
opening.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their invaluable comments and suggestions. The authors are also grateful to Xin Wang
and Haiyang Hu for helpful discussions and advice.

A: Security Proof of the Instantiation in Sect. 3.4

We show that the instantiation satisfies the four properties of a lossy encryption
scheme with efficient weak opening.
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Proof. Correctness. This follows readily from the correctness of Dl,k-MDDH-
based hash proof system.

Indistinguishability. It is obvious that (G, [Aw ]) and (G, [u ]) are computa-
tionally indistinguishable under the Dl,k-MDDH assumption.

Lossiness. Consider the lossy public key [x ] = [u ] where u ← Z
l
q. Accord-

ing to the smoothness property of the Dl,k-MDDH-based hash proof sys-
tem, [kTu ] is statistically indistinguishable from a random element in G.
Since H([kTu ]) is statistically close to uniform distribution over {0, 1}, hence
H([kTu ]) ⊕m will also be statistically close to uniform distribution over {0, 1}
for any message m.

Efficient weak openability. Please read Sect. 3.2.

Remarks. Note that if we do not require the property of efficient weak open-
ability, the compress function H is unnecessary. In this case, we need to make
some changes of the construction. The Injective key generation algorithm and
Lossy key generation algorithm will not change. It only needs to modify the
encryption and decryption algorithm.

– Encryption: On input a message m ∈ G, picks k ∈ Z
l
q, c1 = [kTA], c2 =

[kTx ] · m. Outputs ciphertext c = (c1, c2).
– Decryption: Given ciphertext c = (c1, c2), sk = w . Outputs m = (c2 ·

m)/[c1 · w ].

The modified construction is an instantiation of the generic lossy encryption in
[21] (as well as the dual Cramer-Shoup scheme in [35], Sect. 2.2), and correctness
can be easily verified. While [x ] ∈ X , smoothness property shows that [kTx ] is
completely undetermined. But without the compress function H, the space of
random coins is large, so algorithm Opener needs to compute the set of all k : ∈
Z

l
q such that [k’TA] = [kTA] until [k’Tx ] · m′ = [kTx ] · m. Hence, Opener may

not efficient. According to the result in [2], the modified scheme only achieves
IND-SSO-CPA security.
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