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Abstract. Predicate encryption, formalized by Katz, Sahai, and Waters
(EUROCRYPT 2008), is an attractive branch of public-key encryption,
which provides fine-grained and role-based access to encrypted data. As
for many multi-user cryptosystems, an efficient revocation mechanism
is necessary and imperative in the context of predicate encryption, in
order to address scenarios when users misbehave or their private keys
are compromised. The formal model of revocable predicate encryption
was introduced by Nieto, Manulis and Sun (ACISP 2012), who suggest
the strong, full-hiding security notion, demanding that the ciphertexts
do not leak any information about the encrypted data, the attribute and
the revocation information associated with it.

In this work, we introduce the first construction of lattice-based revo-
cable predicate encryption. Our scheme satisfies the full-hiding security
notion (in a selective manner) in the standard model, based on the hard-
ness of the Learning With Errors (LWE) problem. In terms of asymp-
totic efficiency, the scheme is somewhat comparable to the pairing-based
instantiation put forward by Nieto, Manulis and Sun. Furthermore, bet-
ter efficiency could be easily achieved in the random oracle model.

1 Introduction

The notion of predicate encryption (PE), formalized by Katz et al. [19], is an
emerging paradigm of public-key encryption, which provides fine-grained and
role-based access to encrypted data. In a PE scheme, the user’s private key, issued
by an authority, is associated with a predicate f , while a ciphertext is bound to
an attribute a. The system then ensures that the user can decrypt the ciphertext
if and only if f(a) = 1. PE can be viewed as a generalization of attribute-based
encryption (ABE) [17,40]. Whereas the latter reveals the attribute bound to
each ciphertext, the former preserves the privacy of not only the encrypted data
but also the attribute. These powerful properties of PE yield numerous potential
applications (see, e.g., [10,19,46]).

As for many multi-user cryptosystems, an efficient revocation mechanism is
necessary and imperative in the PE setting. When some users misbehave or when
their private keys are compromised, the users should be revoked from the system
and should no longer be able to decrypt the ciphertext. In the ABE setting,
Boldyreval et al. [8] suggested a revocation mechanism based on a time-based key
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update procedure. In their model, a ciphertext is not only bound to an attribute
but also to a time period. The key authority, who possesses the up-to-date list
of revoked users, have to publish an update key at each time period so that only
non-revoked users can update their private keys to decrypt ciphertexts bound
to the same time slot. This mechanism is known as indirect revocation, since
the revocation information is not controlled by the message sender, but by the
authority. A näıve solution for indirect revocation, first mentioned by Boneh and
Franklin [9], consists of broadcasting user-specific update keys to all non-revoked
users. However, this simple solution is inefficient, because the periodic workload
of the authority is O(N − r), where N is the number of users in the system and
r is the number of revoked users at the given time period. Boldyreval et al. [8]
adopted the classic subset-cover framework due to Naor et al. [28], which employs
binary trees to handle user revocation, and reduced the size of update keys to
O

(
r log N

r

)
. Concrete pairing-based instantiations of revocable ABE following

Boldyreval et al.’s approach were proposed in [5,39]. This approach, however,
admits several limitations, since it requires the key authority to stay online
regularly, and the non-revoked users to download updated system information
periodically.

To eliminate the burden caused by the key update phase, Attrapadung and
Imai [5] suggested the direct revocation mechanism for ABE, in which the revo-
cation information can be controlled by the message sender. Each ciphertext is
now bound to an attribute a as well as the current revocation list RL. Mean-
while, each private key associated with a predicate f is assigned a unique index
I. The decryption procedure is successful if and only if f(a) = 1 and I �∈ RL.
In this direct revocation model, the authority only can stay off-line after issu-
ing private keys for users, and non-revoked users do not have to update their
keys. Despite of the clear efficiency advantages for both the key authority and
users, this approach requires that senders possess the current revocation list and
perform encryptions based on it. The setting that the message sender should
possess the revocation information might be inconvenient in certain scenarios,
but it is well-suited in cases such information is naturally known to the sender.
For instance, in Pay-TV systems [17], the TV program distributor should own
the list of revoked users.

In [30,31], Nieto, Manulis and Sun (NMS) adapted the Attrapadung-Imai
direct revocation mechanism into the context of PE, and formalized the notion of
revocable predicated encryption (RPE). As discussed in [30,31], involved privacy
challenges may rise when one plugs the revocation problem into the PE setting.
In particular, Nieto, Manulis and Sun consider two security notions: attribute-
hiding and full-hiding. The former means that the ciphertext only preserves
privacy of attribute (and of the encrypted data) as in ordinary PE. The latter is a
very strong notion which additionally guarantees that the revocation information
is not leaked by the ciphertext. This requirement is suitable for applications
where it is necessary for the sender to hide the list of revoked users. Nieto,
Manulis and Sun pointed out that a generic construction of full-hiding RPE can
be obtained by a combination of a PE scheme and an anonymous broadcasting



Revocable Predicate Encryption from Lattices 307

scheme, but it is inefficient since the size of the ciphertexts is linearly dependent
on the maximal number of users N . Then they proposed a more efficient paring-
based instantiation of full-hiding RPE for inner-product predicates, which relies
on the PE schemes by Okamoto and Takashima [33] and Lewko et al. [21], as
well as the subset-cover framework [28].

In this work, inspired by the potentials of PE and the advantages of the
direct revocation mechanism, we consider full-hiding RPE in the context of
lattice-based cryptography, and aim to design the first such scheme from lat-
tice assumptions. Lattice-based cryptography, pioneered by the seminal works by
Regev [38] and Gentry et al. [15], has been one of the most exciting research areas
in the last decade. Lattices provide several advantages over conventional number-
theoretic cryptography, such as conjectured resistance against quantum adver-
saries and faster arithmetic operations. In the scope of lattice-based revocation
schemes, there have been several proposals [11,12,29,47], but they only consider
the setting of identity-based encryption (IBE). To the best of our knowledge,
the problem of constructing lattice-based RPE schemes has not been addressed
so far.

Our results and techniques. We introduce the first construction of RPE
from lattices. Our scheme satisfies the full-hiding security notion [30,31] (in a
selective manner) in the standard model, based on the hardness of the Learning
With Errors (LWE) problem [38]. The scheme inherits the main advantage of the
direct revocation mechanism: the authority does not have to be online after the
key generation phase, and key updating is not needed. Let N be the maximum
expected number of private keys in the system and let r be the number of
revoked keys. Then, the efficiency of our scheme is comparable to that of the
pairing-based RPE scheme from [30,31], in the following sense: the size of public
parameters is O(N); the size of the private key is O(log N), and the ciphertext
has size O

(
r log N

r

)
which is ranged between O(1) (when no key is revoked) and

O
(

N
2

)
(in the worst case when every second key is revoked).

At a high level, we adopt the approach suggested by Nieto, Manulis and
Sun in their pairing-based instantiation [30,31], for which we introduce several
modifications. Recall that, in [30,31], to obtain a full-hiding RPE, the authors
apply the tree-based revocation technique from [28] to two layers of PE [21,
33], in the following manner: the main PE layer deals with predicate vector −→x
and attribute vector −→y , while an additional layer is introduced to handle the
index I of the private key (encoded as a “predicate”) and the revocation list
RL (encoded as an “attribute”). Thanks to the attribute-hiding property of the
second PE layer, RL is kept hidden. It is worth noting that Nieto, Manulis and
Sun managed to prove the full-hiding security by exploiting the dual system
encryption techniques [49] underlying the PE blocks. Their security proof fairly
relies on the fact that the simulator is able to compute at least one private key
for all predicates, including those for which the challenge attributes satisfy.

To adapt the approach from [30,31] into the lattice setting, we employ as the
main PE layer the scheme for inner-product predicates put forward by Agrawal,
Freeman and Vaikuntanathan [2] and subsequently improved by Xagawa [50].



308 S. Ling et al.

However, we were not able to find a suitable lattice-based ingredient to be used
as the second PE layer, so that it interacts smoothly and securely with the main
layer (which might due to the fact that there has not been a lattice analogue
of the dual system encryption techniques). Instead, we use a variant of Agrawal
et al.’s anonymous IBE [1] to realize the second layer as follows. We first consider
a binary tree with N leaves, where N is the maximum expected number of private
keys. We then associate each node θ in the binary tree with an “identifier” Dθ.
Then, for each I ∈ [N ], we equip the private key indexed by I with “decryption
keys” corresponding to all identifiers in the tree path from I to the root. When
generating a ciphertext with respect to revocation list RL, the sender aims to the
identifiers Dθ′ ’s, for all θ′ belonging to the cover set determined by RL. Thanks
to the anonymity of the scheme, RL is kept hidden. Furthermore, the correctness
of the tree-based revocation technique from [28] ensures that the ciphertext is
decryptable using the private key indexed by I if and only if I �∈ RL.

To combine the AFV PE layer with the above anonymous IBE layer, we rely
on a splitting technique that can be seen as a secret sharing mechanism and
that was used in previous lattice-based revocation schemes [11,29,47]. To this
end, for each I ∈ [N ], we split a public matrix U into two random parts: (i) UI

which is associated with the main PE layer; (ii) U − UI that is linked with the
second layer.

The efficiency of our RPE can be improved in the random oracle model,
where instead of storing all the matrices Dθ’s in the public parameters, we
simply obtain them as outputs of a random oracle.

Other related works. The subset-cover framework, proposed by Naor et
al. [28] in the context of broadcast encryption, is arguably the most well-known
revocation technique for multi-user systems. It uses a binary tree, each leaf of
which is designated to each user. Non-revoked users are partitioned into disjoint
subsets, and are assigned keys according to the Complete Subtree (CS) method
or the Subset Difference (SD) method. This framework was first considered in the
IBE setting by Boldyreva et al. [8]. Subsequently, several identity-based instan-
tiations from pairings [8,24] and from lattices [11,12,29,47] were proposed, pro-
viding various improvements. Seo and Emura [42] suggested a strong security
notion for revocable IBE, that takes into account the threat of decryption key
exposure attacks. There have been several constructions satisfying this strong
notion, which operate in the subset-cover framework, e.g., [41–45,48]. The frame-
work also found applications in the context of revocable group signatures [22,23],
revocable ABE [5,8,39] and revocable PE [20,30,31].

Predicate encryption for inner-product predicates was introduced by Katz et
al. [19]. In such a scheme, attribute a and predicate f are expressed as vectors−→x and −→y respectively, and we say f(a) = 1 if and only if 〈−→x ,−→y 〉 = 0 (hereafter,
〈−→x ,−→y 〉 denotes the inner product of vector −→x and vector −→y ). Katz, Sahai, and
Waters also demonstrated the expressiveness of inner-product predicates: they
can be used to encode several other predicates, such as equalities, hidden vector
predicate, polynomial evaluation and CNF/DNF formulae. Following the work
of [19], a number of pairing-based predicate encryption schemes [6,21,32–35] for
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inner products have been proposed. In the lattice-based world, Agrawal et al. [2]
proposed the first such scheme, and Xagawa [50] suggested an improved variant.
Organization. The rest of this paper is organized as follows. In Sect. 2, we recall
some background on lattice-based cryptography, revocable predicate encryption
and the Complete Subtree method. Our main construction is described and
analyzed in Sect. 3. Finally, we discuss possible extensions of our scheme and
some open questions in Sect. 4.

2 Preliminaries

Notations. The acronym PPT stands for “probabilistic polynomial-time”. We
often write x ←↩ χ to indicate that we sample x from probability distribution
χ. If Ω is a finite set, the notation x

$← Ω means that x is chosen uniformly
at random from Ω. Meanwhile, if x is an output of PPT algorithm A, then we
write x ← A.

We use bold upper-case letters (e.g., A,B) to denote matrices and use bold
lower-case letters (e.g., x,y) to denote column vectors. In addition, we user over-
arrows to denote predicate and attribute vectors as −→x ,−→y . For two matrices
A ∈ R

n×m and B ∈ R
n×k, we denote by [A | B] ∈ R

n×(m+k) the column-
concatenation of A and B. For a vector x ∈ Z

n, ||x|| denotes the Euclidean
norm of x. We use Ã to denote the Gram-Schmidt orthogonalization of matrix
A, and ||A|| to denote the Euclidean norm of the longest column in A. If n is
a positive integer, [n] denotes the set {1, .., n}. For c ∈ R, let �c	 = 
c − 1/2	
denote the integer closest to c.

2.1 Background on Lattices

Integer lattices. An m-dimensional lattice Λ is a discrete subgroup of Rm. A
full-rank matrix B ∈ R

m×m is a basis of Λ if Λ = {y ∈ R
m : ∃s ∈ Z

m,y = B ·s}.
We are interested in integer lattices, i.e., when Λ ⊆ Z

m. For any integer q ≥ 2
and any A ∈ Z

n×m
q , define the q-ary lattice: Λ⊥

q (A) =
{
r ∈ Z

m : A · r =
0 mod q

} ⊆ Z
m. For any u in the image of A, define the coset Λu

q (A) =
{
r ∈

Z
m : A · r = u mod q

}
.

A fundamental tool in lattice-based cryptography is an algorithm that gen-
erates a matrix A statistically close to uniform over Zn×m

q together with a short
basis TA of Λ⊥

q (A).

Lemma 1 [3,4,26]. Let n ≥ 1, q ≥ 2 and m ≥ 2n log q be integers. There exists
a PPT algorithm TrapGen(n, q,m) that outputs a pair (A,TA) such that A is
statistically close to uniform over Z

n×m
q and TA ∈ Z

m×m is a basis for Λ⊥
q (A),

satisfying ‖T̃A‖ ≤ O(
√

n log q) and ‖TA‖ ≤ O(n log q). with all but negligible
probability in n.

Micciancio and Peikert [26] consider a structured matrix G, called the prim-
itive matrix, which admits a publicly known short basis.
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Lemma 2 [26]. Let n ≥ 1, q ≥ 2 be integers and let m ≥ n
log q	. There exists a
full-rank matrix G ∈ Z

n×m
q such that the lattice Λ⊥

q (G) has a known basis TG ∈
Z

m×m with ||T̃G|| ≤ √
5. Furthermore, there exists a deterministic polynomial-

time algorithm G−1 which takes the input U ∈ Z
n×m
q and outputs X = G−1(U)

such that X ∈ {0, 1}m×m and GX = U.

Discrete Gaussians. Let Λ ⊆ Z
m be a lattice. For any vector c ∈ R

m and

parameter s > 0, define ρs,c(r) = exp(−π
‖r − c‖2

s2
) and ρs,c(Λ) =

∑
r∈Λ ρs,c(r)

The discrete Gaussian distribution over Λ with c and s is ∀r ∈ Λ, DΛ,s,c(r) =
ρs,c(r)
ρs,c(Λ)

. If c = 0, for simplicity, we often use the notations ρs and DΛ,s.

Gentry et al. [15] showed how to sample from discrete Gaussians over lattices
that have sufficiently short bases.

Lemma 3 [15]. There exists a PPT algorithm SampleGaussian(B, s, c) that,
given a basis B of an m-dimensional lattice Λ, a Gaussian parameter s ≥
||B̃|| · ω(

√
log m), and a center c ∈ R

m, outputs a sample from a distribution
that is statistically close to DΛ,s,c.

We also need the following lemma for proving the correctness and security
of the construction in Sect. 3. The lemma is obtained based on known facts
from [15, Lemma 5.2], [27] and [13, Lemma 5],

Lemma 4. Let n ≥ 1, q ≥ 2, m ≥ 2n log q and k ≥ 1 be integers. Let F be
a full-rank matrix in Z

n×m
q and TF be a basis of Λ⊥

q (F). Assume that s ≥
||T̃F|| · ω(

√
log n). Then, for Z ←↩ (DZm,s)

k, the distribution of FZ mod q is
statistically close to the uniform distribution over Z

n×k
q .

In particular, Lemma 4 holds when F is a uniformly random matrix in Z
n×m
q

(see [15, Lemma 5.1] or when F is the matrix G ∈ Z
n×m
q in Lemma 2.

Sampling algorithms. It was shown in [1,26] how to efficiently sample short
vectors from specific lattices. Looking ahead, we will use algorithm SampleLeft
to sample keys in the RPE scheme of Sect. 3, while algorithm SampleRight will
be employed to generate keys in the security proof.

SampleLeft(A,M,TA,u, s): On input a rank n matrix A ∈ Z
n×m
q , a matrix

M ∈ Z
n×m1
q , a trapdoor TA of Λ⊥

q (A), a vector u ∈ Z
n
q , and a Gaussian

parameter s ≥ ‖T̃A‖ · ω(
√

log(m + m1)), it outputs a vector z ∈ Z
(m+m1),

which is sampled from a distribution statistically close to DΛu
q (F),s. Here we

define F = [A|M] ∈ Z
n×(m+m1)
q .

SampleRight(A,R, t,G,TG,u, s): On input matrices A ∈ Z
n×m
q ,R ∈ Z

m×m, a
scalar t ∈ Zq\{0}, the primitive matrix G ∈ Z

n×m
q together with trapdoor

TG of Λ⊥
q (G), a vector u ∈ Z

n
q , and a Gaussian parameter s ≥ ‖T̃B‖ · ||R|| ·

ω(
√

log m), it outputs a vector z ∈ Z
2m, which is sampled from a distribution

statistically close to DΛu
q (F),s. Here we define F = [A|AR + tG] ∈ Z

n×2m
q .



Revocable Predicate Encryption from Lattices 311

The above sampling algorithms are easily extended to the case where instead
of taking a vector u ∈ Z

n
q as input, one takes a matrix U ∈ Z

n×k
q , for some

k ≥ 1. In this case, the output is a matrix Z ∈ Z
2m×k.

We will also need a variant of left over hash lemma from [1].

Lemma 5. Suppose that m > (n + 1) log q + ω(log n) and q > 2 is a prime.

Choose A $←− Z
n×m
q , B $←− Z

n×κ
q and R $←− {−1, 1}m×κ where κ = κ(n) is

polynomial in n. Then for any vector v ∈ Z
m
q , the distribution of (A,AR,R�v)

is statistically close to the distribution of (A,B,R�v).

Learning With Errors. We now recall the Learning With Errors (LWE) prob-
lem [38], as well as its hardness.

Definition 1 (LWE). Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution

on Z. For s ∈ Z
n
q , let As,χ be the distribution obtained by sampling a $← Z

n
q

and e ←↩ χ, and outputting the pair
(
a,a�s + e

) ∈ Z
n
q × Zq. The (n, q, χ)-LWE

problem asks to distinguish m samples chosen according to As,χ (for s $← Z
n
q )

and m samples chosen according to the uniform distribution over Z
n
q × Zq.

If q is a prime power and B ≥ √
n · ω (log n), then there exists an efficient

sampleable B-bounded distribution χ (i.e., χ outputs samples with norm at most
B with overwhelming probability) such that (n, q, χ)-LWE is as least as hard as
worst-case lattice problem SIVP with approximate factor O (nq/B) (see [25,26,
36,38]).

2.2 The Agrawal-Freeman-Vaikuntanathan Predicate Encryption
Scheme

Next, we recall the LWE-based predicate encryption, proposed by Agrawal,
Freeman and Vaikuntanathan (AFV) [2]. The scheme is for inner-product pred-
icates, where an attribute is expressed as a vector −→y ∈ Z

�
q (for some integers

q and �) and a predicate f−→x is associated with a vector −→x ∈ Z
�
q. We say that

f−→x (−→y ) = 1 if 〈−→x ,−→y 〉 = 0, and f−→x (−→y ) = 0 otherwise. The set A = Z
�
q is called

the attribute space, while the set P = {f−→x
∣
∣−→x ∈ Z

�
q} is called the predicate space.

In the AFV scheme, the key authority possesses a short basis TA for a public
lattice Λ⊥

q (A), outputted by the TrapGen algorithm. Each predicate f−→x ∈ P is
associated with a super-lattice of Λ⊥

q (A), a short vector of which can be effi-
ciently computed using the trapdoor TA. Such a short vector allows to decrypt
a Dual-Regev ciphertext [15] bound to an attribute vector −→y ∈ A satisfying
f−→x (−→y ) = 1. In order to improve efficiency, Xagawa [50] suggested an enhanced
variant that employs the primitive matrix G. In the below, we will describe the
AFV scheme with Xagawa’s improvement. The scheme works with appropriately
chosen parameters n, q,m, s and LWE error distribution χ.

Setup: Generate (A,TA) ← TrapGen(n, q,m). Pick u $←− Z
n
q and for each i ∈ [�],

sample Ai
$←− Z

n×m
q . Outputpp = (A, {Ai}i∈[�],u) and msk = TA.
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KeyGen: For vector −→x = (x1, . . . , x�) ∈ Z
�
q, set A−→x =

�∑

i=1

AiG−1(xi ·G) ∈ Z
n×m
q

and output the key sk−→x = r ∈ Z
2m using r ← SampleLeft (A,A−→x ,TA,u, s).

Enc: To encrypt message M ∈ {0, 1} under vector −→y = (−→y 1, . . . ,
−→y �) ∈ Z

�
q,

choose s $← Z
n
q , e←↩χm, e←↩χ, and Ri

$← {−1, 1}m×m for each i ∈ [�], then
output ct = (c′, c0, {ci}i∈[�]), where:

c′ = u�s + e + M · �q

2
� ∈ Zq,

c0 = A�s + e ∈ Z
m
q ,

∀i ∈ [�] : ci = (Ai + yi · G)� s + R�
i e ∈ Z

m
q .

Dec: Set c−→x =
�∑

i=1

(
G−1(xi · G)

)�
ci ∈ Z

m
q . Then compute z = c′ − r�[c0 |

c−→x ] ∈ Zq and output � 2
q · z	 ∈ {0, 1}.

Agrawal, Freeman and Vaikuntanathan showed that, under the (n, q, χ)-LWE
assumption, their PE scheme satisfies the weak attribute-hiding security notion
defined by Katz et al. [19], in a selective attribute setting. Xagawa [50] proved
that the same assertion holds for his improved scheme variant. In Sect. 3, the
scheme will be used as a building block for our lattice-based instantiation of
revocable predicate encryption.

2.3 Revocable Predicate Encryption

Now, we recall the definition of RPE from [5,30,31], and its full-hiding security
notion suggested by Nieto et al. [30,31].

Definition 2. A revocable predicate encryption scheme consists of four algo-
rithms (Setup,KeyGen,Enc,Dec) and has an associated predicate space P, an
attribute space A, an index space I and a message space M.

Setup
(
1λ

)
takes as input a security parameter λ. It outputs a state information

ST, a set of public parameters pp and a master secret key msk. We assume pp
to be an implicit input of all other algorithms.

KeyGen(msk,ST,−→x , I) takes as input the master secret key msk, the state ST, a
predicate vector −→x corresponding to a predicate f−→x ∈ P and an index I ∈ I.
It outputs an updated state ST and a private key sk−→x ,I .

Enc(−→y ,RL,M) takes as input an attribute vector −→y ∈ A, a revocation list RL ⊆
I, and a message M ∈ M. It outputs a ciphertext ct.

Dec(ct, sk−→x ,I) takes as input a ciphertext ct and a private key sk−→x ,I . It outputs
a message M or the distinguished symbol ⊥.

Correctness. The correctness requirement demands that, for all pp and msk
generated by Setup

(
1λ

)
, all f−→x ∈ P, −→y ∈ A, I ∈ I, all state information ST, all

sk−→x ,I ← KeyGen(msk,ST,−→x , I) and ct ← Enc(−→y ,RL,M), if I �∈ RL then:
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1. If f−→x (−→y ) = 1 then Dec
(
ct, sk−→x ,I

)
= M .

2. If f−→x (−→y ) = 0 then Dec
(
ct, sk−→x ,I

)
= ⊥ with all but negligible probability.

Full-Hiding Security. In [30,31], Nieto, Manulis and Sun introduced the notion
of full-hiding security against chosen plaintext attacks for RPE, which demands
that ciphertexts do not leak any information about the plaintexts, the attributes,
nor the revoked indexes. This notion can be defined in the strong, adaptive man-
ner, or in the relaxed, selective sense where the adversary is required to announce
the challenge attribute vectors −→y (0)

,−→y (1) and revocation lists RL(0),RL(1) before
seeing public parameters. In this work, we consider the latter.

Definition 3. An RPE scheme is selectively full hiding against chosen plaintext
attacks if any PPT adversary A has negligible advantage in the following game:

1. A announces the attribute vectors −→y (0)
,−→y (1), revocation lists RL(0),RL(1).

2. Setup
(
1λ

)
is run to generate a state information ST, a set of public parame-

ters pp and a master secret key msk. Then A is given pp.
3. A may make queries for private keys. For a query of a predicate vector and an

index in the form (−→x , I), A is given sk−→x ,I ← KeyGen(msk,ST,−→x , I), subject
to one of the following restrictions:
– f−→x (−→y (0)) = f−→x (−→y (1)) = 0;
– f−→x (−→y (0)) = f−→x (−→y (1)) = 1 and I ∈ RL(0) ∩ RL(1);
– f−→x (−→y (0)) = 1 ∧ f−→x (−→y (1)) = 0 and I ∈ RL(0);
– f−→x (−→y (0)) = 0 ∧ f−→x (−→y (1)) = 1 and I ∈ RL(1).

4. A outputs two challenge plaintexts M (0),M (1). A uniformly random bit b is
chosen, and A is given the ciphertext ct∗ ← Enc(−→y (b)

,RL(b),M (b)).
5. The adversary may continue to make additional queries for private keys, sub-

ject to the same restrictions as before.
6. A outputs a bit b′ and succeeds if b′ = b. The advantage of A in the game is

defined as: AdvsFHA (λ) =
∣
∣Pr [b′ = b] − 1

2

∣
∣ .

Remark 1. In the above game, the restrictions for private-key queries are to pre-
vent the adversary to trivially win the game by decrypting the challenge cipher-
text ct∗. For the same reason, it is necessary to assume that the two ciphertexts
Enc(−→y (0)

,RL(0),M (0)) and Enc(−→y (1)
,RL(1),M (1)) have the same size.

2.4 The Complete Subtree Method

The complete subtree (CS) method, introduced by Naor et al. [28], has been
widely used in revocation systems. It makes use of a node selection algorithm
(called KUNodes). In the algorithm, we build a complete binary tree BT and
use the following notation: If θ is a non-leaf node, then θ� and θr denote the
left and right child of θ, respectively. Whenever ν is a leaf node, the set Path(ν)
stands for the collection of nodes on the path from ν to the root (including ν
and the root). The KUNodes algorithm takes as input the binary tree BT and
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a revocation list RL, and outputs a set of nodes Y which is the smallest subset
of nodes that contains an ancestor of all the leaf nodes corresponding to non-
revoked indexes. It is known [28] that the set Y generated by KUNodes(BT,RL)
has a size at most r log N

r , where r is the number of indexes in RL. The detailed
description of algorithm KUNodes is given below.

KUNodes(BT,RL)
X,Y ← ∅;∀ν ∈ RL : add Path(ν) to X

∀θ ∈ X : if θ� �∈ X, then add θ� to Y ; if θr �∈ X, then add θr to Y

If Y = ∅, then add root to Y ; Return Y

In Sect. 3, we will employ the CS method to realize user revocation.

3 Our Lattice-Based RPE Scheme

This section presents our construction of lattice-based RPE scheme for inner-
product predicates. As we briefly discussed in Sect. 1, the scheme employs two
encryption layers: the AFV PE scheme [2,50] and a variant of Agrawal et al.’s
anonymous IBE scheme [1]. Revocation is realized using the CS method and a
splitting technique that can be seen as a secret sharing mechanism and that was
used in previous lattice-based revocation schemes [11,29,47].

Before describing our scheme in detail, let us discuss a small issue in existing
PE schemes [2,13,16,50] from lattices. Recall that the correctness of PE requires
in particular that if f−→x (−→y ) = 0 then the decryption algorithm with private key
sk−→x must fail with all but negligible probability when applying to a ciphertext
associated with −→y . However, in the LWE-based public-key encryption schemes
used in the above constructions, the decryption algorithm does not fail: it outputs
a random element in the plaintext space M. To overcome this issue and enforce
correctness, the following idea was suggested and implemented in [2,13,16,50],
assuming that the scheme can be modified to work with plaintext space M′,
such that |M|/|M′| = negl(λ), where λ is the security parameter. Then, to
encrypt an element of M, one encodes it to an element of M′ and proceeds with
the encoding. Since the probability that a random element in M′ is a proper
encoding is negligible, the correctness of the scheme is ensured.

Our scheme operates with plaintext space M = {0, 1}. Following the idea
discussed above, let us define the encoding function encode : M → {0, 1}k for k =
ω(log λ), such that for each b ∈ M, we have encode(b) = (b, 0, . . . , 0) ∈ {0, 1}k -
the binary vector that has b as the first coordinate and 0 elsewhere. This encoding
technique has the desirable property, as we have 2/2k = 2−ω(log λ) = negl(λ).

3.1 Description of the Scheme

Our scheme works with security parameter λ and global parameters N, �, n, q,m,
k, G, s, B, χ specified below.
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� N = poly(λ): the maximum expected number of users;
� � = poly(λ): the length of predicate and attribute vectors;
� Lattice parameter n = O(λ), prime modulus q = Õ(�2n4), dimensions m =


2n log q	 and k = ω(log λ);
� The primitive matrix G with public trapdoor TG (see Lemma 2);
� Gaussian parameter s = Õ(�

√
m); Norm bound B = Õ(

√
m) and B-bounded

distribution χ.

The attribute space is set as A = Z
�
q. Each −→x ∈ A is associated with predicate

f−→x : A → {0, 1}, where for all −→y ∈ A, we have: f−→x (−→y ) = 1 if and only if
〈−→x ,−→y 〉 = 0. The predicate space is then defined as P = {f−→x | −→x ∈ A}. The
scheme works with index space I = [N ].

We now provide the detailed description of the scheme.

Setup(1λ): On input security parameter λ, this algorithm works as following:
1. Run the algorithm TrapGen(n, q,m) to generate a matrix A ∈ Z

n×m
q

together with a basis TA for Λ⊥
q (A) such that ‖T̃A‖ ≤ O(

√
n log q).

2. Pick U $←− Z
n×k
q .

3. Sample Ai
$←− Z

n×m
q , for each i ∈ [�].

4. Build a binary tree BT with N leaf nodes. For each node θ ∈ BT, choose
Dθ

$←− Z
n×m
q , which will be viewed as the “identifier” of the node.

5. Initialize the state ST = ∅, which records the assigned indexes so far.
6. Output ST, pp = (A, {Ai}i∈[�],U,BT) and msk = TA.

KeyGen(msk,ST,−→x , I): On input the master key msk, state ST, a predicate vector−→x = (x1, . . . , x�) ∈ Z
�
q and an index I ∈ [N ], this algorithm performs the

following steps:
1. If I ∈ ST, then return ⊥. Else, update the state ST ← ST ∪ {I}.

2. Pick UI
$← Z

n×k
q .

3. Set A−→x =
�∑

i=1

AiG−1(xi·G) and get Z ← SampleLeft (A,A−→x ,TA,UI , s).

We note that Z is a matrix in Z
2m×k satisfying [A | A−→x ] · Z = UI .

4. For each θ ∈ Path(I), sample Zθ ← SampleLeft (A,Dθ,TA,U − UI , s) .
We remark that each Zθ is a matrix in Z

2m×k satisfying [A | Dθ] · Zθ =
U − UI .

5. Output the updated state ST and sk−→x ,I =
(
I,Z, {Zθ}θ∈Path(I)

)
.

Enc(−→y ,RL,M): On input an attribute vector −→y = (y1, . . . , y�) ∈ Z
�
q, a revocation

list RL ⊆ [N ] and a message M ∈ {0, 1}, this algorithm performs the following
steps:
1. Sample s $←− Z

n
q , e′ ←↩ χk and e ←↩ χm.

2. Pick Ri,Sθ
$←− {−1, 1}m×m for each i ∈ [�] and θ ∈ KUNodes(BT,RL).
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3. Output ct =
(
c′, c0, {ci}i∈[�], {ĉθ}θ∈KUNodes(BT,RL)

)
, where:

c′ = U�s + e′ + �q

2
� · encode(M) ∈ Z

k
q ,

c0 = A�s + e ∈ Z
m
q ,

∀i ∈ [�] : ci = (Ai + yi · G)�s + R�
i e ∈ Z

m
q ,

∀θ ∈ KUNodes(BT,RL) : ĉθ = D�
θ s + S�

θ e ∈ Z
m
q .

Dec
(
ct, sk−→x ,I

)
: On input a ciphertext ct =

(
c′, c0, {ci}i∈[�], {ĉθ′}θ′

)
, where

{ĉθ′}θ′ denotes a collection of vectors in Z
m
q , and a private key sk−→x ,I =(

I,Z, {Zθ}θ∈Path(I)

)
, this algorithm proceeds as follows:

1. Compute c−→x =
�∑

i=1

(
G−1(xi · G)

)�
ci ∈ Z

m
q .

2. For all pairs (θ, θ′), compute dθ,θ′ = c′ −Z� [c0 | c−→x ]−Z�
θ [c0 | ĉθ′ ] ∈ Z

k
q .

3. If there exists a pair (θ, θ′) such that � 2
q · dθ,θ′	 = encode(M ′), for some

M ′ ∈ {0, 1}, then output M ′. Otherwise, output ⊥.

3.2 Correctness, Efficiency and Potential Implementation

Correctness. We will demonstrate that the scheme satisfies the correctness
requirement with all but negligible probability. We proceed as in [2,13,50].

Suppose that ct =
(
c′, c0, {ci}i∈[�], {ĉθ}θ∈KUNodes(BT,RL)

)
is an honestly com-

puted ciphertext of message M ∈ {0, 1}, with respect to some −→y ∈ A
and some RL ⊆ [N ]. Let sk−→x ,I =

(
I,Z, {Zθ}θ∈Path(I)

)
be a correctly gener-

ated private key, where I �∈ RL. We first observe that the following holds:

c−→x =
�∑

i=1

(
G−1(xi · G)

)�
ci = (A−→x + 〈−→x ,−→y 〉 · G)� s+

�∑

i=1

(
RiG−1(xi · G)

)�
e.

By construction, since I �∈ RL, there exists (θ, θ′) corresponding to the same node
in BT with [A | A−→x ] · Z + [A | Dθ′ ] · Zθ = U. We now consider two cases:

1. Suppose that 〈−→x ,−→y 〉 = 0. Then c−→x = (A−→x )�s +
�∑

i=1

(
RiG−1(xi · G)

)�
e.

For the pair (θ, θ′) specified above, the following holds:

dθ,θ′ = c′ − Z� [c0 | c−→x ] − Z�
θ [c0 | ĉθ′ ]

= U�s + e′ + �q

2
� · encode(M) − Z�

(
[A | A−→x ]� s +

[
e

(R−→x )�e

])

− Z�
θ

(
[A | Dθ′ ]� s +

[
e

S�
θ′e

])

= �q

2
� · encode(M) + e′ − Z�

[
e

(R−→x )�e

]
− Z�

θ

[
e

S�
θ′e

]

︸ ︷︷ ︸
error

,
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where R−→x =
�∑

i=1

(
RiG−1(xi · G)

)
. As in [1,2,13,50], the above error term

can be showed to be bounded by s�m2B · ω(log n) = Õ(�2n3), with all
but negligible probability. In order for the decryption algorithm to recover
encode(M), and subsequently the plaintext M , it is required that the error
term is bounded by q/5, i.e., ||error||∞ < q/5. This is guaranteed by our
setting of modulus q, i.e., q = Õ

(
�2n4

)
.

2. Suppose that 〈−→x ,−→y 〉 �= 0. In this case, we have: c−→x =
(
A−→x +〈−→x ,−→y 〉·G)�

s+
�∑

i=1

(
RiG−1(xi · G)

)�
e. Then for each pair (θ, θ′), the following holds:

dθ,θ′ = U�s + e′ + �q

2
� · encode(M) − Z�

(
[A | A−→x + 〈−→x ,−→y 〉 · G]� s

+
[

e
(R−→x )�e

])
− Z�

θ

(
[A | Dθ′ ]� s +

[
e

S�
θ′e

])

Observe that the above contains the term Z�[0 | 〈−→x ,−→y 〉 · G]�s which can
be written as 〈−→x ,−→y 〉 · (GZ2)�s ∈ Z

k
q , where Z2 ∈ Z

m×k is the bottom part
of matrix Z. By Lemma 4, we have that the distribution of GZ2 ∈ Z

n×k
q

is statistically close to uniform. This implies that, vector dθ,θ′ ∈ Z
k
q , for

each pair (θ, θ′), is indistinguishable from uniform. As a result, the probabil-
ity that the last k − 1 coordinates of vector � 2

q · dθ,θ′	 are all 0 is at most
2−(k−1) = 2−ω(log λ), which is negligible in λ. In other words, except for negli-
gible probability, the decryption algorithm outputs ⊥ since it does not obtain
a proper encoding encode(M) ∈ {0, 1}k, for M ∈ {0, 1}.

Efficiency. The efficiency aspect of our RPE scheme is as follows:

– The bit-size of public parameters pp is ((� + 2N)nm + nk) log q =
(
Õ(�) +

O(N)
) · Õ

(
λ2

)
.

– The private key sk−→x ,I has bit-size O(log N) · Õ (λ).
– The bit-size of ciphertext ct is

(
Õ(�) + O(r log N

r )
) · Õ (λ).

The efficiency of our scheme is comparable to that of the pairing-based RPE
scheme from [30,31], in the following sense: the size of public parameters is O(N);
the size of the private key is O(log N), and the ciphertext has size O

(
r log N

r

)

which is ranged between O(1) (when no key is revoked) and O
(

N
2

)
(in the worst

case when every second key is revoked).
In Sect. 4, we will discuss a variant of our scheme in the random oracle model,

which has shorter public parameters.

Potential Implementation. While the focus of this work is to provide the
first provably secure construction of RPE from lattice assumptions, it would
be desirable to back it up with practical implementations and to compare the
implementation details with those of pairing-based counterparts. However, this
would be a highly challenging task, due to two main reasons:
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1. We are not aware of any concrete implementation of the two building blocks
of our scheme, i.e., the AFV PE [2,50] and Agrawal et al.’s IBE [1].

2. In [30,31], Nieto, Manulis and Sun did not provide implementation details of
their pairing-based RPE scheme.

Given these circumstances, we leave the implementation aspect of our scheme
as a future investigation. Nevertheless, in the following, we will discuss the
potential of such implementation, by analyzing the main cryptographic oper-
ations needed for implementing the scheme. Apart from simple operations such
as samplings of uniformly random matrices and vectors whose entries are in
Zq or {−1, 1}, as well as multiplication and addition operations over Zq, the
algorithms of the scheme requires the following time-consuming tasks:

� Generation of a lattice trapdoor;
� Samplings of discrete Gaussian vectors over lattices;
� Samplings of LWE noise vectors.

We note that it is feasible to implement the listed above cryptographic tasks
using the algorithms provided in [15,26], which were recently improved in [14,27].
Some implementation results of those cryptographic tasks were reported in [18],
which may serve as a stepping stone of potential implementation of our scheme.

3.3 Security

In the following theorem, we prove that our scheme in Sect. 3 is selectively full
hiding in the standard model, under the LWE assumption.

Theorem 1. Our RPE scheme satisfies the selective full-hiding security defined
in Definition 3, assuming hardness of the (n, q, χ)-LWE problem.

Proof. We proceed via a series of games, similar to those in [2,13,16]. First,
we define the auxiliary algorithms for generating simulated public parameters,
private keys and ciphertexts, and then, we describe the games.

Auxiliary algorithms. We consider the following auxiliary algorithms.

Sim.Setup
(
1λ,A,U,−→y ∗

,RL∗): On input a security parameter λ, a matrix A ∈
Z

n×m
q , U ∈ Z

n×k
q , the challenge attribute vector −→y ∗ = (y∗

1 , . . . , y
∗
� ) ∈ Z

�
q and

revocation list RL∗ ⊆ [N ], this algorithm performs the following steps:

1. For each i ∈ [�], choose Ri
$←− {−1, 1}m×m and set Ai = ARi − y∗

i · G.

2. Build a binary tree BT and choose Sθ
$←− {−1, 1}m×m for each θ ∈ BT.

Set the identifier: Dθ =
{

ASθ, if θ ∈ KUNodes(BT,RL∗),
ASθ + G, otherwise.

3. Initialize the state ST.
4. Output ST, pp =

(
A, {Ai}i∈[�],U,BT

)
and msk∗ = ({Ri}i∈[�], {Sθ}θ∈BT).
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Sim.KeyGen
(
msk∗,ST,−→x , I,−→y ∗

,RL∗): This algorithm takes as input msk∗, state
ST, a predicate vector −→x ∈ Z

�
q, an index I ∈ [N ], the challenge attribute

vector −→y ∗ ∈ Z
�
q and revocation list RL∗ ⊆ [N ], such that the following condi-

tion holds: If 〈−→x ,−→y ∗〉 = 0 then I ∈ RL∗. The algorithm returns ⊥ if I ∈ ST.
Otherwise, it outputs the updated state ST ← ST ∪ {I} and private key
sk−→x ,I =

(
I,Z, {Zθ}θ∈Path(I)

)
computed based on 〈−→x ,−→y ∗〉 as follows.

1. Case 1: 〈−→x ,−→y ∗〉 �= 0.
(a) If I �∈ RL∗, then there is exactly one node θ∗ in the intersection

Path(I) ∩ KUNodes(BT,RL∗).
Using Lemma 3, sample Zθ∗ ←↩

(DZ2m,s

)k and set UI = U −
[A | Dθ∗ ] · Zθ∗ . For each node θ ∈ Path(I)\{θ∗}, sample
Zθ ← SampleRight(A,Sθ, 1,G,TG,U−UI , s). (See Sect. 2.1 for the
description of algorithm SampleRight.)

(b) If I ∈ RL∗, choose UI
$←− Z

n×k
q . Then for each θ ∈ Path(I), sample

Zθ ← SampleRight(A,Sθ, 1,G,TG,U − UI , s).

As A−→x =
�∑

i=1

AiG−1(xi · G) = A
( �∑

i=1

RiG−1(xi · G)
) − 〈−→x ,−→y ∗〉

︸ ︷︷ ︸

=0

·G,

sample Z ← SampleRight(A,
�∑

i=1

RiG−1(xi ·G),−〈−→x ,−→y ∗〉,G,TG,UI , s)

satisfying [A | A−→x ] · Z = UI .
2. Case 2: 〈−→x ,−→y ∗〉 = 0. In this case, the condition I ∈ RL∗ implies

that Path(I) ∩ KUNodes(BT,RL∗) = ∅. Note that, here we do not
have a trapdoor for the matrix [A | A−→x ], but we can instead com-
pute Z and {Zθ}θ∈Path(I) as follows. First, we sample Z ←↩

(DZ2m,s

)k

and set UI = [A | A−→x ] · Z. Then, for each θ ∈ Path(I), we sample
Zθ ← SampleRight(A,Sθ, 1,G,TG,U − UI , s).

Sim.Enc(msk∗,M,d0,d′): On input msk∗, a message M ∈ {0, 1}, and d0 ∈ Z
m
q ,

d′ ∈ Z
k
q , it outputs ct =

(
c′, c0, {ci}i∈[�], {cθ}θ∈KUNodes(BT,RL)

)
, where:

c′ = d′ + �q

2
� · encode(M) ∈ Z

k
q ,

c0 = d0 ∈ Z
m
q ,

∀i ∈ [�] : ci = R�
i d0 ∈ Z

m
q ,

∀θ ∈ KUNodes(BT,RL∗) : ĉθ = S�
θ d0 ∈ Z

m
q .

The series of games. Let A be the adversary in the selective full-hiding game
of Definition 3. We consider the following series of games.

– Game(b)0 : This game is the real security game in Definition 3, where the chosen
bit is b ∈ {0, 1}.

– Game(b)1 : This game is the same as Game(b)0 , except that algorithms Setup(1λ)
and Enc(−→y (b)

,RL(b),M (b)) are replaced by Sim.Setup
(
1λ,A,U,−→y (b)

,RL(b)
)

and Sim.Enc
(
msk∗,M (b),A�s+e,U�s+e′), respectively, where A $←− Z

n×m
q ,

U $←− Z
n
q , s $←− Z

n
q , e ←↩ χm, and e′ ←↩ χk.
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– Game(b)2 : It is the same as Game(b)1 , except that KeyGen (msk,ST,−→x , I) is
replaced by algorithm Sim.KeyGen

(
msk∗,ST,−→x , I,−→y (b)

,RL(b)
)
.

– Game(b)3 : It is the same as Game(b)2 , except that Sim.Enc
(
msk∗,M (b),d0,d′)

takes as inputs d0
$←− Z

m
q and d′ $←− Z

k
q .

– Game4: In this final game, we make the following changes:
Sim.Setup

(
1λ,A,U,−→y (b)

,RL(b)
)

is replaced by Setup(1λ).

Sim.KeyGen(msk∗,ST,−→x , I,−→y (b)
,RL(b)) is replaced by

KeyGen
(
msk,ST,−→x , I

)
.

Instead of computing c′ = d′ + � q
2� · encode(M (b)) ∈ Z

k
q , we sample c′ $←− Z

k
q .

To prove Theorem 1, we will first demonstrate in the following lemmas that any
two consecutive games in the above series are either statistically indistinguishable
or computationally indistinguishable under the LWE assumption.

Lemma 6. A’s view in Game(b)0 is statistically close to the view in Game(b)1 .

Proof. We will show that the public parameters pp =
(
A, {Ai}i∈[�],U,BT

)
and

ciphertext ct =
(
c′, c0, {ci}i∈[�], {ĉθ}θ∈KUNodes(BT,RL)

)
produced by algorithms

Sim.Setup
(
1λ,A,U,−→y (b)

,RL(b)
)

and Sim.Enc(msk∗,M (b),A�s+ e,U�s+ e′) in
Game(b)1 are statistically close to those by Setup and Enc respectively, in Game(b)0 .

Firstly, we observe that matrix A is truly uniform in Game(b)1 . In Game(b)0 ,
it is generated via algorithm TrapGen, and is statistically close to uniform over
Z

n×m
q by Lemma 1. Furthermore, U ∈ Z

n×k
q is truly uniform in both games.

Let −→y (b) = (y(b)
1 , . . . , y

(b)
� ). For each i ∈ [�] and each θ ∈ BT, the matrices

Ai,Dθ ∈ Z
n×m
q are truly uniform in Game(b)0 , while in Game(b)1 , they are set as

Ai = ARi − y
(b)
i ·G,Dθ = ASθ + ρθ ·G, where Ri,Sθ

$←− {−1, 1}m×m and ρθ ∈
{0, 1}. Then, the ciphertext components c′, c0, {ci}i∈[�] and {ĉθ}θ∈KUNodes(BT,RL)

in both games can be expressed as:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c′ = U�s + e′ + � q
2� · encode(M (b)) ∈ Z

k
q ,

c0 = A�s + e ∈ Z
m
q ,

ci = (Ai + y
(b)
i · G)�s + R�

i e = R�
i (A�s + e) ∈ Z

m
q , ∀i ∈ [�],

ĉθ = D�
θ s + S�

θ e = S�
θ (A�s + e) ∈ Z

m
q , ∀θ ∈ KUNodes(BT,RL(b)),

where s $←− Z
n
q , e′ ←↩ χk and e ←↩ χm. By Lemma 5, the joint distributions

of
(
A,ARi − −→y (b)

i · G,R�
i e

)
and

(
A,Ai,R�

i e
)
,
(
A,ASθ + ρθ · G,S�

θ e
)

and
(
A,Dθ,S�

θ e
)

as statistically indistinguishable. It implies that the distributions
of

(
A, {Ai}i∈[�],U, {Dθ}θ∈BT, c′, c0, {ci}i∈[�], {ĉθ}θ∈KUNodes(BT,RL)

)
in Game(b)0

and Game(b)1 are statistically indistinguishable. This concludes the lemma. ��

Lemma 7. A’s view in Game(b)1 is statistically close to the view in Game(b)2 .
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Proof. Recall that, from Game(b)1 to Game(b)2 , we replace the real key generation
algorithm KeyGen by Sim.KeyGen. Thus, we need to show that for all queries of
the form (−→x , I) from A, the private keys sk−→x ,I =

(
I,Z, {Zθ}θ∈Path(I)

)
outputted

by Sim.KeyGen and KeyGen are statistically indistinguishable.
We first note that, in both cases, matrices Z ∈ Z

2m×k, {Zθ ∈ Z
2m×k}θ∈Path(I)

satisfy [A | A−→x ] · Z + [A | Dθ] · Zθ = U,∀θ ∈ Path(I). Next, we observe that,
in KeyGen, the columns of these matrices are sampled via algorithm SampleLeft,
while in Sim.KeyGen, they are either sampled via algorithm SampleRight or sam-
pled from DZm,s. The properties of these sampling algorithms (see Sect. 2) then
guarantee that the two distributions are statistically indistinguishable. ��

Lemma 8. Under the (n, q, χ)-LWE assumption, A’s view in Game(b)2 is com-
putationally indistinguishable from the view in Game(b)3 .

Proof. From Game(b)2 to Game(b)3 , we change the inputs d0,d′ to algorithm
Sim.Enc from LWE instances to uniformly random vectors in Z

m
q and Z

k
q , respec-

tively. Suppose that A has non-negligible advantage in distinguishing Game(b)2

from Game(b)3 . We use A to construct an LWE solver B as follows:

– B requests for m + k LWE instances {(aj , vj) ∈ Z
n
q × Zq}j∈[m+k].

– B forms the following matrices and vectors: A = [a1, . . . ,am] ∈ Z
n×m
q , U =

[am+1, . . . ,am+k] ∈ Z
n×k
q , d0 = [v1, · · · , vm]� ∈ Z

m
q , d′ = [vm+1, · · · , vm+k]�

∈ Z
k
q , and runs Sim.Setup

(
1λ,A,U,−→y (b)

,RL(b)
)

as in Game(b)2 .

– B answers the private key queries of the form (−→x , I), as in Game(b)2 , by running
algorithm Sim.KeyGen

(
msk∗,ST,−→x , I,−→y (b)

,RL(b)
)
.

– When receiving from A two messages M (0),M (1) ∈ {0, 1}, B prepares a chal-
lenge ciphertext ct∗ by running Sim.Enc

(
msk∗,M (b),d0,d′).

– Finally, after being allowed to make additional queries, A guesses whether
it is interacting with Game(b)2 or Game(b)3 . Then, B outputs A’s guess as the
answer to the LWE challenger.

Recall that by Definition 1, for each j ∈ [m + k], either vj = 〈aj , s〉 + ej

for secret s $←− Z
n
q and noise ej ←↩ χ; or vj is uniformly random in Zq. On the

one hand, if vj = 〈aj , s〉 + ej , then the adversary A’s view is as in Game(b)2 .
On the other hand, if vj is uniformly random in Zq, then A’s view is as in
Game(b)2 . Hence, algorithm B can solve the (n, q, χ)-LWE problem with non-
negligible probability, assuming that the adversary A can distinguish Game(b)2

from Game(b)3 with non-negligible advantage. This concludes the lemma. ��

Lemma 9. A’s view in Game(b)3 is statistically close to the view in Game4.

Proof. Firstly, based on the same argument as in Lemma 6, we can deduce that
the output of algorithm Sim.Setup

(
1λ,A,U,−→y (b)

,RL(b)
)

in Game(b)3 is statisti-
cally close that of Setup(1λ) in Game4.
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Secondly, based on the same argument as in Lemma 7, we can deduce that
the output of algorithm Sim.KeyGen

(
msk∗,ST,−→x , I,−→y (b)

,RL(b)
)

in Game(b)3 is
statistically close to that of KeyGen

(
msk,ST,−→x , I

)
in Game4.

Finally, the shift from c′ = d′ + � q
2� · encode(M (b)) ∈ Z

k
q to a uniformly

random c′ ∈ Z
k
q is only a conceptual change, because vector d′ in Game(b)3 is

uniformly random over Z
k
q . ��

The theorem now follows from the fact that the advantage of A in Game4
is 0, since Game4 no longer depends on the bit b. ��

4 Extensions and Open Questions

In this section, we discuss several possible extensions of our lattice-based RPE
scheme, as well as some questions that we left open.

4.1 Extensions

Multi-bit version. The scheme presented in Sect. 3 only allows to encrypt 1-bit
messages. Using standard techniques for multi-bit LWE-based encryption, e.g.,
[1,15,37], we can achieve a τ -bit variant with small overhead, for any τ = poly(λ).
A notable change in this case is that we will employ a revised encoding function
encode′ : {0, 1}τ → {0, 1}τ+k, where for any μ ∈ {0, 1}τ , vector encode′(μ) is
obtained by appending k = ω(log λ) entries 0 to vector μ.
Better efficiency in the random oracle model. The RPE scheme from
Sect. 3 has relatively large public parameters pp, i.e., of bit-size

(
Õ(�) + O(N)

) ·
Õ(λ2), for which the dependence on N is due to the fact that we have to associate
each node θ in the binary tree with a uniformly random matrix in Dθ ∈ Z

n×m
q ,

in order to obtain full-hiding security in the standard model. Fortunately, the
size of pp can be reduced to Õ(�) · Õ(λ2) (which is comparable to that of the
underlying PE scheme [2,50]), if we work in the random oracle model [7]. The
idea is as follows.

Let H : {0, 1}∗ → Z
n×m
q be a random oracle. Then, in the scheme, for each

node θ, we obtain uniformly random matrix Dθ as Dθ := H(A, {Ai}i∈[�],U, θ).
The rest of the scheme remains the same. In the security proof, we first simulate
the generation of Dθ as in the proof of Theorem 1. Then, it remains to program
the random oracle such that H(A, {Ai}i∈[�],U, θ) := Dθ. This modification
allows us to make the size of pp independent of N .

4.2 Open Questions

We introduced the first revocable predicate encryption scheme based on the LWE
assumption. While the pairing-based scheme from [30,31] achieved adaptive full-
hiding security, our construction is only proven secure in the selective setting.
Achieving the stronger notion of [30,31] seems to require that the underlying PE
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be adaptively secure. However, to the best of our knowledge, existing lattice-
based PE schemes [2,13,16,50] only achieved selective security. We therefore
view the problem of constructing adaptively secure lattice-based RPE as an
interesting open question.

Finally, as shown in [19,50], some applications of PE for inner-product pred-
icate over R� (in our scheme, R = Zq) require that R has exponentially large
cardinality. Those include implementations of PE for CNF formulae [19] and
hidden vector encryption [10]. However, for our scheme, this requires to set the
modulus q to be exponential in λ. Hence, it would be desirable to achieve a
lattice-based PE scheme supporting both revocation and exponentially large R,
that demands only polynomial moduli. One possible approach towards tackling
this question is to adapt the techniques introduced by Xagawa [50], where one
works with R = GF(qn) instead of Zq.
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