
Tatsuaki Okamoto · Yong Yu
Man Ho Au · Yannan Li (Eds.)

 123

LN
CS

 1
05

92

11th International Conference, ProvSec 2017
Xi'an, China, October 23–25, 2017
Proceedings

Provable Security



Lecture Notes in Computer Science 10592

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Tatsuaki Okamoto • Yong Yu
Man Ho Au • Yannan Li (Eds.)

Provable Security
11th International Conference, ProvSec 2017
Xi’an, China, October 23–25, 2017
Proceedings

123



Editors
Tatsuaki Okamoto
NTT Laboratories
Tokyo
Japan

Yong Yu
Shaanxi Normal University
Xi’an
China

Man Ho Au
Hong Kong Polytechnic University
Hong Kong
China

Yannan Li
University of Wollongong
Wollongong, NSW
Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-68636-3 ISBN 978-3-319-68637-0 (eBook)
https://doi.org/10.1007/978-3-319-68637-0

Library of Congress Control Number: 2017956072

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-8145-5474
http://orcid.org/0000-0003-0667-077X
http://orcid.org/0000-0003-2068-9530
http://orcid.org/0000-0002-4407-9027


Preface

The 11th International Conference on Provable Security (ProvSec 2017) was held in
Xi’an, China, October 23–25, 2017. The conference was organized by Shaanxi Normal
University, Xidian University, and Xi’an University of Posts and Telecommunications.

The conference program consisted of two keynote speeches, four invited talks, and
29 contributed papers. We would like to express our special thanks to the distinguished
speakers, David Pointcheval from Ecole normale supérieure, Giuseppe Ateniese from
Stevens Institute of Technology, Mauro Barni from the University of Siena, Willy
Susilo from the University of Wollongong, Joseph Liu from Monash University, and
Man Ho Au from Hong Kong Polytechnic University, who gave very enlightening
talks.

Out of 76 submissions from 18 countries, 29 papers were selected, presented at the
conference, and are included in the proceedings. The accepted papers cover a range of
topics in the field of provable security research, including attribute-based cryptography,
cloud security, encryption, digital signatures, homomorphic encryption, and
blockchain-based cryptography.

The success of this event depended critically on the help and hard work of many
people, whose help we gratefully acknowledge. First, we heartily thank the Program
Committee and the additional reviewers, listed on the following pages, for their careful
and thorough reviews. Most of the papers were reviewed by at least three people, and
many by four or five. Significant time was spent discussing the papers. Thanks must
also go to the hard-working shepherds for their guidance and helpful advice on
improving a number of papers. We also thank the general co-chairs, Bo Yang, Hui Li,
and Dong Zheng, for the excellent organization of the conference.

We sincerely thank the authors of all submitted papers. We further thank the authors
of accepted papers for revising papers according to the various reviewer suggestions
and for returning the source files in good time. The revised versions were not checked
by the Program Committee, and thus the authors bear final responsibility for their
contents. We would also like to thank the Steering Committee and local Organizing
Committee.

We gratefully acknowledge the support of K.C.Wong Education Foundation, Hong
Kong. We also want to express our gratitude to our generous sponsors: Springer,
Shanghai HeFu Holding(Group) Company Limited, Shaanxi Normal University,
Xidian University, Xi’an University of Posts and Telecommunications, National 111
Project for Mobile Internet Security, and State Key Laboratory of Integrated Services
Networks. Finally, we would like to express our thanks to Springer again for contin-
uing to support the ProvSec conference and for help in the production of the conference
proceedings.

October 2017 Tatsuaki Okamoto
Yong Yu



Organization
ProvSec 2017

The 11th International Conference on Provable Security

Jointly organized by

Shaanxi Normal University
Xidian University

Xi’an University of Posts and Telecommunications

Honorary Co-chairs

Jianfeng Ma Xidian University, China
Xiaoming Wang Shaanxi Normal University, China

General Co-chairs

Bo Yang Shaanxi Normal University, China
Hui Li Xidian University, China
Dong Zheng Xi’an University of Posts and Telecommunications, China and

Westone Cryptologic Research Center/Morse Laboratory,
China

Program Co-chairs

Tatsuaki Okamoto NTT, Japan
Yong Yu Shaanxi Normal University, China

Organizing Co-chairs

Zhenqiang Wu Shaanxi Normal University, China
Qiqi Lai Shaanxi Normal University, China
Yanwei Zhou Shaanxi Normal University, China

Publication Co-chairs

Man Ho Au Hong Kong Polytechnic University, Hong Kong, China
Yannan Li University of Wollongong, Australia



Publicity Co-chairs

Jianfeng Wang Xidian University, China
Kaitai Liang Manchester Metropolitan University, UK
Jianbing Ni University of Waterloo, Canada

Website Co-chairs

Yanqi Zhao Shaanxi Normal University, China
Ru Meng Shaanxi Normal University, China

Registration Co-chairs

Yujie Ding Shaanxi Normal University, China
Yuanxiao Li Shaanxi Normal University, China

Program Committee

Janaka Alawatugoda University of Peradeniya, Sri Lanka
Elena Andreeva KU Leuven, Belgium
Man Ho Au Hong Kong Polytechnic University, Hong Kong, China
Colin Boyd Norwegian University of Science and Technology, Norway
Aniello Castiglione University of Salerno, Italy
Kefei Chen Hangzhou Normal University, China
Liqun Chen University of Surrey, UK
Rongmao Chen National University of Defense Technology, China
Xiaofeng Chen Xidian University, China
Céline Chevalier École normale supérieure, France
Kim-Kwang

Raymond Choo
The University of Texas at San Antonio, USA

Bernardo David Aarhus University, Denmark
Hongzhen Du Baoji University of Arts and Sciences, China
Christian Esposito University of Salerno, Italy
Jinguang Han Nanjing University of Finance and Economics, China
Debiao He Wuhan University, China
Qiong Huang South China Agricultural University, China
Xinyi Huang Fujian Normal University, China
Vincenzo Iovino University of Luxembourg, Luxembourg
Ryo Kikuchi NTT, Japan
Junzuo Lai Jinan University, China
Fagen Li University of Electronic Science and Technology of China,

China
Jin Li Guangzhou University, China
Shundong Li Shaanxi Normal University, China
Yannan Li University of Wollongong, Australia
Xiaodong Lin University of Ontario Institute of Technology, Canada

VIII Organization



Feng Liu The State Key Laboratory of Information Security, China
Jiqiang Liu Beijing Jiaotong University, China
Joseph Liu Monash University, Australia
Zhe Liu University of Waterloo, Canada
Mark Manulis University of Surrey, UK
Barbara Masucci University of Salerno, Italy
Mitsuru Matsui Mitsubishi Electric, Japan
Bart Mennink Radboud University Nijmegen, The Netherlands
Yi Mu University of Wollongong, Australia
Pratyay Mukherjee University of California, Berkley, USA
Jianbing Ni University of Waterloo, Canada
Tatsuaki Okamoto NTT, Japan
Josef Pieprzyk Queensland University of Technology, Australia
Jae Hong Seo Myongji University, Republic of Korea
Jun Shao Zhejiang Gongshang University, China
Chunhua Su Osaka University, Japan
Willy Susilo University of Wollongong, Australia
Qiang Tang New Jersey Institute of Technology, USA
Mehdi Tibouchi NTT, Japan
Baocang Wang Xidian University, China
Ding Wang Peking University, China
Huaxiong Wang Nanyang Technological University, Singapore
Qian Wang Wuhan University, China
Qianhong Wu Beihang University, China
Shota Yamada AIST, Japan
Bo Yang Shaanxi Normal University, China
Chung-Huang Yang National Kaohsiung Normal University, Taiwan
Guomin Yang University of Wollongong, Australia
Xun Yi RMIT University, Australia
Siu Ming Yiu The University of Hong Kong, Hong Kong, SAR China
Yong Yu Shaanxi Normal University, China
Yu Yu Shanghai Jiao Tong University, China
Fangguo Zhang Sun Yat-sen University, China
Lei Zhang East China Normal University, China
Mingwu Zhang Hubei University of Technology, China
Rui Zhang Chinese Academy of Sciences, China
Wenzheng Zhang National Laboratory for Modern Communications, China
Fucai Zhou Northeastern University, China

Organization IX



Additional Reviewers

Anada, Hiroaki
Aono, Yoshinori
Arita, Seiko
Becerra, Jose
Biwen, Chen
Castiglione, Arcangelo
Chakraborty, Suvradip
Chillotti, Ilaria
Chuah, Chai Wen
Cui, Hui
Cui, Yuzhao
Dai, Feifei
Datta, Pratish
Dowling, Benjamin
Espitau, Thomas
Ferradi, Houda
Flores, Manuela
Galdi, Clemente
Ganesh, Chaya
Genc, Ziya A.
Guo, Hua
Guo, Qingwen
Hu, Zhi

Huang, Jianye
Huang, Yan
Jiang, Yan
Kelarev, Andrei
Lai, Jianchang
Lai, Qiqi
Larangeira, Mario
Li, Hongbo
Li, Huige
Li, Na
Li, Qinyi
Li, Xingxin
Lin, Chengjun
Liu, Dongxi
Liu, Jianghua
Naito, Yusuke
Nguyen, Khoa
Sun, Yang
Takashima, Katsuyuki
Tan, Benjamin Hong

Meng
Thillard, Adrian
Wang, Fuqun

Wang, Hao
Wang, Huige
Wang, Zheng
Wu, Ge
Xu, Dongqing
Xu, Zhiyan
Xuan Phuong, Tran Viet
Yan, Dingyu
Yang, Xu
Yang, Xuechao
Yoneyama, Kazuki
Zhang, Huang
Zhang, Juanyang
Zhang, Kai
Zhang, Wentao
Zhang, Yaqin
Zhang, Yudi
Zhang, Yuexin
Zhang, Zheng
Zhao, Ling
Zhou, Yanwei
Zhu, Youwen

X Organization



Contents

Secure Cloud Storage and Computing

Provably Secure Self-Extractable Encryption . . . . . . . . . . . . . . . . . . . . . . . 3
Zhi Liang, Qianhong Wu, Weiran Liu, Jianwei Liu, and Fu Xiao

Towards Multi-user Searchable Encryption Supporting Boolean Query
and Fast Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Yunling Wang, Jianfeng Wang, Shi-Feng Sun, Joseph K. Liu,
Willy Susilo, and Xiaofeng Chen

An Efficient Key-Policy Attribute-Based Searchable Encryption
in Prime-Order Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Ru Meng, Yanwei Zhou, Jianting Ning, Kaitai Liang, Jinguang Han,
and Willy Susilo

Secure Multi-label Classification over Encrypted Data in Cloud . . . . . . . . . . 57
Yang Liu, Xingxin Li, Youwen Zhu, Jian Wang, and Zhe Liu

A Secure Cloud Backup System with Deduplication and Assured Deletion. . . 74
Junzuo Lai, Jie Xiong, Chuansheng Wang, Guangzheng Wu,
and Yanling Li

Digital Signature and Authentication

Practical and Robust Secure Logging from Fault-Tolerant Sequential
Aggregate Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Gunnar Hartung, Björn Kaidel, Alexander Koch, Jessica Koch,
and Dominik Hartmann

Verifiably Encrypted Group Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Zhen Wang, Xiling Luo, and Qianhong Wu

Deniable Ring Authentication Based on Projective Hash Functions . . . . . . . . 127
Shengke Zeng, Yi Mu, Guomin Yang, and Mingxing He

Authenticated Encryption and Key Exchange

INT-RUP Security of Checksum-Based Authenticated Encryption . . . . . . . . . 147
Ping Zhang, Peng Wang, Honggang Hu, Changsong Cheng,
and Wenke Kuai

http://dx.doi.org/10.1007/978-3-319-68637-0_1
http://dx.doi.org/10.1007/978-3-319-68637-0_2
http://dx.doi.org/10.1007/978-3-319-68637-0_2
http://dx.doi.org/10.1007/978-3-319-68637-0_3
http://dx.doi.org/10.1007/978-3-319-68637-0_3
http://dx.doi.org/10.1007/978-3-319-68637-0_4
http://dx.doi.org/10.1007/978-3-319-68637-0_5
http://dx.doi.org/10.1007/978-3-319-68637-0_6
http://dx.doi.org/10.1007/978-3-319-68637-0_6
http://dx.doi.org/10.1007/978-3-319-68637-0_7
http://dx.doi.org/10.1007/978-3-319-68637-0_8
http://dx.doi.org/10.1007/978-3-319-68637-0_9


Leakage-Resilient Non-interactive Key Exchange
in the Continuous-Memory Leakage Setting . . . . . . . . . . . . . . . . . . . . . . . . 167

Suvradip Chakraborty, Janaka Alawatugoda, and C. Pandu Rangan

New Framework of Password-Based Authenticated Key Exchange
from Only-One Lossy Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Haiyang Xue, Bao Li, and Jingnan He

Security Models

Impossibility of the Provable Security of the Schnorr Signature
from the One-More DL Assumption in the Non-programmable
Random Oracle Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Masayuki Fukumitsu and Shingo Hasegawa

Bit Security of the Hyperelliptic Curves Diffie-Hellman Problem . . . . . . . . . 219
Fangguo Zhang

Natural sd-RCCA Secure Public-Key Encryptions . . . . . . . . . . . . . . . . . . . . 236
Yuan Chen, Qingkuan Dong, and Qiqi Lai

Long-Term Secure Time-Stamping Using Preimage-Aware Hash
Functions: (Short Version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Ahto Buldas, Matthias Geihs, and Johannes Buchmann

On the Hardness of Sparsely Learning Parity with Noise . . . . . . . . . . . . . . . 261
Hanlin Liu, Di Yan, Yu Yu, and Shuoyao Zhao

Lattice and Post-quantum Cryptography

Provable Secure Post-Quantum Signature Scheme Based on Isomorphism
of Polynomials in Quantum Random Oracle Model . . . . . . . . . . . . . . . . . . . 271

Bagus Santoso and Chunhua Su

Bootstrapping Fully Homomorphic Encryption with Ring Plaintexts
Within Polynomial Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Long Chen and Zhenfeng Zhang

Revocable Predicate Encryption from Lattices. . . . . . . . . . . . . . . . . . . . . . . 305
San Ling, Khoa Nguyen, Huaxiong Wang, and Juanyang Zhang

Public Key Encryption and Signcryption

Provable Secure Constructions for Broadcast Encryption
with Personalized Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Kamalesh Acharya and Ratna Dutta

XII Contents

http://dx.doi.org/10.1007/978-3-319-68637-0_10
http://dx.doi.org/10.1007/978-3-319-68637-0_10
http://dx.doi.org/10.1007/978-3-319-68637-0_11
http://dx.doi.org/10.1007/978-3-319-68637-0_11
http://dx.doi.org/10.1007/978-3-319-68637-0_12
http://dx.doi.org/10.1007/978-3-319-68637-0_12
http://dx.doi.org/10.1007/978-3-319-68637-0_12
http://dx.doi.org/10.1007/978-3-319-68637-0_13
http://dx.doi.org/10.1007/978-3-319-68637-0_14
http://dx.doi.org/10.1007/978-3-319-68637-0_15
http://dx.doi.org/10.1007/978-3-319-68637-0_15
http://dx.doi.org/10.1007/978-3-319-68637-0_16
http://dx.doi.org/10.1007/978-3-319-68637-0_17
http://dx.doi.org/10.1007/978-3-319-68637-0_17
http://dx.doi.org/10.1007/978-3-319-68637-0_18
http://dx.doi.org/10.1007/978-3-319-68637-0_18
http://dx.doi.org/10.1007/978-3-319-68637-0_19
http://dx.doi.org/10.1007/978-3-319-68637-0_20
http://dx.doi.org/10.1007/978-3-319-68637-0_20


Provably Secure Homomorphic Signcryption . . . . . . . . . . . . . . . . . . . . . . . 349
Fatemeh Rezaeibagha, Yi Mu, Shiwei Zhang, and Xiaofen Wang

Public-Key Encryption with Simulation-Based Sender
Selective-Opening Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Dali Zhu, Renjun Zhang, and Dingding Jia

Homomorphic Secret Sharing from Paillier Encryption . . . . . . . . . . . . . . . . 381
Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah,
and William E. Skeith III

Fuzzy Public-Key Encryption Based on Biometric Data . . . . . . . . . . . . . . . . 400
Hui Cui, Man Ho Au, Baodong Qin, Robert H. Deng, and Xun Yi

Proxy Re-encryption and Functional Encryption

An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing . . . 413
S. Sharmila Deva Selvi, Arinjita Paul,
and Chandrasekaran Pandu Rangan

Mergeable Functional Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Vincenzo Iovino and Karol Żebrowski

Protocols

Private Subgraph Matching Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Zifeng Xu, Fucai Zhou, Yuxi Li, Jian Xu, and Qiang Wang

A New Blockchain-Based Value-Added Tax System . . . . . . . . . . . . . . . . . . 471
Dimaz Ankaa Wijaya, Joseph K. Liu, Dony Ariadi Suwarsono,
and Peng Zhang

Verifiable Private Polynomial Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 487
Xavier Bultel, Manik Lal Das, Hardik Gajera, David Gérault,
Matthieu Giraud, and Pascal Lafourcade

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

Contents XIII

http://dx.doi.org/10.1007/978-3-319-68637-0_21
http://dx.doi.org/10.1007/978-3-319-68637-0_22
http://dx.doi.org/10.1007/978-3-319-68637-0_22
http://dx.doi.org/10.1007/978-3-319-68637-0_23
http://dx.doi.org/10.1007/978-3-319-68637-0_24
http://dx.doi.org/10.1007/978-3-319-68637-0_25
http://dx.doi.org/10.1007/978-3-319-68637-0_26
http://dx.doi.org/10.1007/978-3-319-68637-0_27
http://dx.doi.org/10.1007/978-3-319-68637-0_28
http://dx.doi.org/10.1007/978-3-319-68637-0_29


Secure Cloud Storage and Computing



Provably Secure Self-Extractable Encryption

Zhi Liang1,2, Qianhong Wu1,2(B), Weiran Liu1, Jianwei Liu1,2, and Fu Xiao3(B)

1 School of Electronic and Information Engineering,
Beihang University, Beijing, China

seaeory@126.com, qianhong.wu@buaa.edu.cn, liuweiran900217@gmail.com,
liujianwei@buaa.edu.cn

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 School of Computer, Nanjing University of Posts and Telecommunications,

Nanjing, China
xiaof@njupt.edu.cn

Abstract. There is an increasing demand of data sharing via cloud.
Data privacy and secrecy protections are arguably the major challenges
in such applications. It is widely suggested to encrypt outsourced data
using advanced encryption primitives for flexible sensitive data sharing
in cloud. In all existing asymmetric based systems, a subtle issue is that
the data owner itself cannot read the encrypted and outsourced data.
This raises a problem for the data owner when she needs to access the
outsourced data but locally there is no copy in the clear text form.
To cope with this problem, we formalize a new framework, referred
to as Self-EXtractable Encryption (SEXE). In addition to the normal
functionalities of an advanced encryption primitive, SEXE is equipped
with a useful self-extractability. With this property, the data owner can
always access her encrypted data. We propose a generic SEXE con-
struction from any advanced encryption primitives. Following the pro-
posed generic construction, we instantiate several typical SEXE systems,
including Self-EXtractable Identity-Based Encryption (SEXIBE), Self-
Extractable Attribute-Based Encryption (SXABE) in Key-Policy setting
and in Ciphertext-Policy setting.

Keywords: Cloud storage · Data sharing · Data secrecy · Self-
Extractable Encryption

1 Introduction

With the development of communication techniques and the popularity of
portable computing devices, people are shifting away from traditional desktops
and laptops to cloud storage. Through networks and mobile devices, users are
able to seamlessly interact with cloud service providers to enjoy new types of
services that were not available before. Cloud storage systems enable users to
share their data with peers so that the latter can access their data stored in
clouds anywhere and anytime. For instance, users can store their private photos,

c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 3–23, 2017.
https://doi.org/10.1007/978-3-319-68637-0_1



4 Z. Liang et al.

videos, or other documents on cloud storage providers such as Dropbox, iCloud,
so that they can be remotely accessed and shared when necessary.

Most challenging obstacles for the wide usage of cloud storage systems may
be the concerns about data privacy and secrecy. Users often hesitate to use cloud
storage systems because of the worries of losing control on the outsourced data.
Typical method to protect data security is to encrypt them before outsourcing.
Encryption is a standard approach to protect the data outsourced to clouds.
However, traditional encryption systems cannot enforce fine-grained access con-
trol, which brings difficulties for flexible data sharing. To address this problem,
advanced encryption primitives, e.g., Identity-Based Encryption [8], Attribute-
Based Encryption [35] have been proposed and extensively employed in many
cloud storage systems. In these systems, a data owner can specify data attributes
for the outsourced data. Each data owner has its own secret key that is associ-
ated with key attributes. Access can be done only if the key attributes match
the data attributes.

A subtle problem arises when such advanced encryption primitive is used
to secure data in cloud. In all existing schemes, there exists a Trusted Keying
Authority (TKA) responsible for secret key distribution. The schemes require
all data users to be authorized by TKA to get their secret keys. Data owners
are not required to be authorized by TKA. They can directly encrypt the data
using the public keys. However, after encrypting the data, the data owner herself
cannot extract the data hidden in the ciphertext since she does not have any
secret keys. In a cloud storage setting, the encrypted files will be outsourced to
some cloud server and there is no local copy of the files in the clear, except some
meta-data of the file or file identifiers. These meta-data or file identifiers can
only used to check the integrity of the files or as clues to retrieve the outsourced
files, instead of recovering the encrypted files. Consequently, the outsourced files
are no longer accessible to their owners, although the data owners authorized
peers can access the files. Clearly, this is undesirable in practice.

At the first glance, this problem may be trivially addressed. One trivial solu-
tion is asking the data owner to simultaneously encrypt to herself a copy of the
file. However, this would incur significant computation and storage cost if the
file is large. Another trivial solution is to let the data owner also specify herself
as a data user of the encrypted file. This is difficult in practice. First, advanced
encryption primitive is a closed encryption system, i.e., before the data users
hold a secret key they must first register to TKA. This implies that each pos-
sible data owner has to first register to TKA as an authorized data user, which
badly makes the maximal number of data users in such system unnecessarily
large. Note that the complexity of most existing systems rely on the scale of
the data users. Second, some advanced encryption instantiations, e.g., Identity-
Based Encryption (IBE), only allow one receiver in an encryption, which makes
it impossible to allow the data owner as an extra receiver.

We investigate how to enable a data owner to access his/her own encrypted
data with a cost as low as possible. To achieve this goal, we formalize a new
framework, referred to as Self-EXtractable Encryption (SEXE). In addition to



Provably Secure Self-Extractable Encryption 5

the normal functionalities of a regular advanced encryption primitive, SEXE is
equipped with a useful self-extractability. Roughly speaking, the data owner can
always access her encrypted data in SEXE. We propose a generic SEXE construc-
tion from any advanced encryption scheme. The construction only additionally
requires a pseudo random function, a symmetric encryption cipher, and some
hash functions, all of which are efficient in terms of computation. The desirable
self-extractability only incurs a marginal cost, while posing little extra cost on
regular receivers. Following the generic construction, we instantiate several typi-
cal SEXE schemes, including Self-Extractable Identity-Based Encryption (SEX-
IBE), Self-Extractable Attribute-Based Encryption (SXABE) in Key-Policy set-
ting and in Ciphertext-Policy setting.

2 Related Work

Cloud storage follows the area of “database-as-a-service” paradigm, which is
a classic data storage topic that has been studied since 2000s. The intended
purpose of cloud storage is to enable data owners to outsource their data on the
Internet to service providers [20,21]. The basic idea to protect data privacy and
secrecy in cloud storage is to enforce data access control by encrypting the data
before outsourcing. Only the authorized data users can have access [2]. Classic
schemes employ traditional symmetric key/asymmetric cryptosystems to realize
access control [16,27]. As the number of data users increases, especially for cloud-
based data storage systems that potentially allow a vast number of data users,
the systems suffer from complicated entity and key managements.

Researches have been devoted to entity and key management problems.
In 2001, Boneh and Franklin [8] proposed a new encryption primitive, named
Identity-Based Encryption (IBE), the concept of which was first introduced by
Shamir [36]. Compared with the traditional asymmetric encryption system, the
public keys in IBE can be arbitrary strings, such as social security numbers, email
addresses, and phone numbers. Instead of generating the secret key by the data
owner itself, a Trusted Key Authority (TKA) is employed in IBE for user authen-
tication and key distribution. Since IBE brings flexibilities for user authentica-
tion and entity management, many advanced data access control schemes started
to leverage IBE as the basic encryption primitive [12,19]. Schemes exploiting IBE
and various other cryptographic primitives have been proposed to achieve more
flexible data sharing functionalities, including cross-domain [38] and emergency
sharing [39] for specific data outsourcing applications.

The IBE primitive only allows to assign one receiver in an encryption, which
brings difficulties for multi-entity data sharing application scenarios. Briefly
speaking, the access policy in IBE is “exact string match”, which is a limited data
access control mechanism. Although several encryption primitives and schemes,
e.g., Hierarchical IBE [15,24], (Identity-Based) Broadcast Encryption [9,14],
Proxy Re-Encryption [4], were proposed and/or applied to partially support one-
to-many data sharing mechanism in cloud storage applications [3], access policies
in all of which are somewhat restricted. How to support expressive access pol-
icy in encryption primitives remained as an open problem. In 2005, Sahai and



6 Z. Liang et al.

Waters introduced the concept of Attribute-Based Encryption (ABE) [35], in
which the access policy can be expressed as a monotonic boolean formula. For
example, the access policy for an outsourced data from an university can be “CS
AND (Ph.D OR Masters)”. The Ph.D or masters in the department of Computer
Science can have access to the data. Later, the concept of ABE was extended to
be Key-Policy ABE (KP-ABE) [18] (in which the boolean formula is assigned to
the secret key) and Ciphertext-Policy ABE (CP-ABE) [6] (in which the boolean
formula is assigned to the encrypted data).

With the capability to provide fine-grained access control over encrypted
data, ABE is suitable for cloud storage applications. In 2010, Yu et al. proposed
a KP-ABE based access control scheme for cloud storage [43]. Works [25,42] have
also been done to enforce data access control with multi-authority cloud storage
systems. To further support search mechanism over encrypted data, Zheng et al.
[45] and Sun et al. [40] respectively proposed two ABE schemes that allow key-
word search. Most recently, Zhang et al. [44] leverages multiple cryptographic
primitives, including CP-ABE [6], Homomorphic Encryption [32], and Oblivious
Transfer [11] to construct an outsourced photo sharing and searching scheme.

All above schemes neglect the situation where the data owners, very likely,
need to access his/her own encrypted data. We are interested in practical solu-
tions for achieving the desirable self-extractability property.

3 Techniques Preliminaries

3.1 Syntax

We denote [a, b] as the set {a, a + 1, · · · , b} containing consecutive integers, and
[a] as shorthand for [1, a]. The cardinality of a set S is denoted by |S|. We write
s

R← S to denote the action of choosing s from a uniform random distribution
over the set S, and s1, s2, · · · , sn

R← S with n ∈ N as shorthand for s1
R←

S, · · · , sn
R← S. We use Z

m×n
p to denote the m × n matrices with entries in Zp.

For a vector v (row vector or column vector), we denote by vi the i-th element
of the vector v.

3.2 Pseudo Random Functions

Our construction exploits a classical cryptographic primitive named pseudo ran-
dom function (PRF), which was introduced by Goldreich, Goldwasser and Micali
[17]. A PRF system consists of a keyed function PRF and a key space KPRF such
that for a randomly chosen key κ ∈ KPRF , the outputs of the function PRF(κ, χ)
for any given input χ ∈ {0, 1}∗ look like random numbers [22].

In practice, such PRF is efficient and easy to be implemented. A general
approach is to treat the key κ as the password, the given input χ as the salt, and
runs classical key derivation technique to produce the output. We recommend
following PKCS #5 Version 2.0 Scheme 1, PKCS #5 Version 2.0 Scheme 2, or
PKCS #12 Version 1.0 specifications (all of which are standardized in RFC 2898)
to implement such PRF.



Provably Secure Self-Extractable Encryption 7

3.3 Bilinear Groups

Our instantiation demonstrations for self-extractable encryption are based on
bilinear groups. Here we review its definition and requirements following the
notation of [13]. The bilinear groups can be defined by a group generator G
that takes the security parameter λ ∈ N as input and outputs a quad-tuple
(p,G,GT , e), in which G,GT are two cyclic groups of prime order p, and e is an
efficient map e : G × G → GT satisfying the following properties.

– Bilinearity : for all g, h ∈ G and a, b ∈ Zp, we have that e(ga, hb) = e(g, h)ab.
– Non-degeneracy : there exists at least an element g ∈ G such that e(g, g) is a

generator for the group GT .

3.4 Access Structures and Linear Secret Sharing Schemes

We next review the formal definitions of access structures and linear secret shar-
ing schemes (LSSS), which will be used in our self-extractable ABE instantia-
tions. Here we follow the definition given by Beimel [5].

Definition 1 (Access Structure [5]). Consider a set of parties U . A collection
A ⊆ 2U is monotone if for all B,C, we have that if B ∈ A and B ⊆ C, then
C ∈ A. An access structure (monotone access structure) on U is a collection
(monotone collection) A ⊆ 2U \{∅}. The sets in A are called the authorized sets,
and the sets not in A are called the unauthorized sets.

In most of previous works [6,18,25], the access structure is described with
a tree called access tree. Each non-leaf node of the access tree is a threshold
gate, while each leaf node is described by an attribute. One data user’s access
capability matches the access structure if there is a sub-tree containing the root
node such that all threshold gates in the sub-tree are satisfied. In recent ABE
schemes, the access structure is represented by linear secret sharing schemes
(LSSS) [33,37] that can be defined as follows.

Definition 2 (Linear Secret Sharing Schemes (LSSS) [5,33]). Let p be a prime
number and let U be a set of parties. Let M ∈ Z

l×n
p be an l × n matrix with

entries in Zp. Let ρ : [l] → U be a function that labels the row of M with parties
in U . A secret sharing scheme Π for access structure A over a set of parties U
is a linear secret sharing scheme (LSSS) in Zp if:

– The shares of a secret s ∈ Zp for each party comprise of a vector over Zp.
– For each access structure A, there exists an corresponding matrix M ∈ Z

l×n
p

and a function ρ : [l] → U to represent the access structure. One can compute
the shares of s by first constructing a column vector v = (s, r2, · · · , rn), where
r2, · · · , rn

R← Zp, and then outputting M · v ∈ Z
l×1
p as the vector of l shares.

The share λi = (Mv)i belongs to the party ρ(i), where (Mv)i denotes the i-th
column element in Mv.



8 Z. Liang et al.

Lewko and Waters [29] showed that any access structures represented as
boolean formulas can be efficiently converted to be an LSSS policy (M,ρ). Later,
Liu et al. [31] proposed an efficient LSSS matrix generation algorithm from
any threshold access trees. Therefore, access tree and LSSS are identical access
structure representations both in theory and in practice. In our self-extractable
ABE instantiations, we describe the access policy using LSSS.

4 System Overview

4.1 System Model for Cryptography-Based Cloud Storage

We follow the generic cryptography-based cloud storage system model [37,43].
The typical cloud storage system architecture is shown in Fig. 1. There mainly
exist four kinds of parties: Trusted Key Authority (TKA), Data Owner, Cloud
Storage Server, and Data User.

TKA is responsible for initializing the system and issuing/managing secret
keys for data users according to their access capabilities. Data owners share
their data to data users via the cloud storage server. To achieve privacy and
secrecy of the shared data, data owners encrypt the data with on-demand access
policies before uploading. Cloud storage server maintains well-encrypted data
and responses to retrieval requests from data users. Each data user requests the
secret key associated with its access capability from TKA, retrieves encrypted
data from the cloud storage server, and accesses the data that its access capa-
bility matches the access policies assigned to.

The basic cloud storage systems can be described using four procedures,
namely:

– Setup: performed by TKA to initialize the system.
– KeyGen: performed by TKA to generate secret keys with specified access

capabilities for data users.
– Encrypt: performed by data owners to encrypt data with on-demand access

policy.
– Access: performed by data users to access data with their secret keys.

The above system model captures basic functionalities for cryptography-
based cloud storage systems [37,43]. Such model can be further extended to
meet additional mechanisms and security requirements for specific application
scenarios, e.g., multi-authority, data user revocation, encrypted search.

Multi-authority [25,34,42]: The basic system architecture has only one single
TKA to distribute secret keys. This brings security and efficiency challenges.
On one hand, the single TKA has root access capability thus it is easily to be
the main target for malicious adversaries. On the other hand, the single TKA
would be difficult to maintain since there may be a large number of data users to
request their secret keys. It is recommended that the cloud should employ multi-
authorities to distribute secret keys [34]. The basic system architecture can cover
the multi-authority extension by replacing the single TKA with multiple TKAs.



Provably Secure Self-Extractable Encryption 9

Fig. 1. Typical cloud storage system architecture.

Data User Revocation [26,30]: The importance of user revocation have been
taken noticed in specific application scenarios, because data users’ access capa-
bilities may be changed frequently, or data users themselves may be active-
ly/passively leave the system. One can support user revocation mechanism by
introducing revocation-related procedures in the basic system architecture.

Encrypted Search [40,44,45]: Data encryption can provide data privacy and
secrecy protection, but hinder some useful functions such as searching over the
outsourced encrypted data. Researches have been devoted to enable cloud-based
data sharing and search as well as preserve data privacy and secrecy. The basic
system architecture can be improved to support encrypted search by employing
a search server in the cloud, while introducing search-related procedures.

In this paper, we focus on basic functionalities for cryptography-based cloud
storage systems. We only consider typical Setup, KeyGen, Encrypt, Decrypt pro-
cedures.

4.2 Abstract Access Policy Representation: Predicate

We introduce the notion “Predicate” to better describe access control mecha-
nisms in cryptography-based cloud storage systems. This notion is firstly intro-
duced in data encryption systems by Boneh and Waters [10] and formally defined
by Katz, Sahai and Waters [28]. Briefly speaking, a predicate is a function that
takes an access policy and an access capability as input, and output {0, 1}. We
say that data user’s access capability matches the access policy assigned to the
encrypted data if the predicate outputs 1, while access is rejected if the predi-
cate outputs 0. Clearly, predicate can describe access control satisfactions and
dissatisfactions in a general way.

We follow the definition described by Yamada et al. [41] to abstract such
access control mechanism as Predicate Encryption (PE). Let P : Σk × Σe →
{0, 1} be a predicate family, where Σk denote the “key attribute” space and Σe

denote the “data attribute” space. A cryptography-based cloud storage system
that represents data user’s access capability as Σk and access policy as Σe can
be formally defined with four algorithms Setup, KeyGen, Encrypt, Decrypt:



10 Z. Liang et al.

(pk,msk) ← Setup(λ). The setup algorithm represents the system setup proce-
dure performed by TKA. It takes the security parameter λ ∈ N as input, and
outputs a public key pk and a master secret key msk. The public key pk is
treated as the system parameter that is publicly known, while the master secret
key msk is kept secretly by TKA.

skx ← KeyGen(msk, x). The key generation algorithm represents the secret key
generation procedure performed by TKA. The algorithm takes the master secret
key msk and a key attribute x ∈ Σk as inputs, where the key attribute x
describes the access capability for the data user. The algorithm outputs a secret
key skx associated with the key attribute x if the data user is authorized by
TKA.

(hdry, k) ← Encrypt(pk, y). The encryption algorithm represents the data
encryption procedure run by data owners. It takes as inputs the public key
pk and a data attribute y ∈ Σe, where the data attribute y describes the access
policy assigned to the data. The algorithm outputs an encryption header hdry

associated with the data attribute y, and a symmetric session key k related to
the header hdry. The symmetric session key k will be used as the key for a
symmetric encryption scheme to encrypt data of arbitrary length, or be used to
enforce other data service mechanisms, e.g., encrypted search under searchable
symmetric encryption.

k ← Decrypt(pk, skx, hdry). The decryption algorithm represents the data access
procedure run by data users. It takes as inputs the public key pk, the data user’s
secret key skx for the key attribute x, and a header hdry associated with the
data attribute y. It recovers the session key k encapsulated in the header hdry

if P (x, y) = 1, i.e., the access capability matches the access policy. It returns ⊥
if P (x, y) = 0, representing the access failure.

The correctness property requires that for a fixed predicate P , all λ ∈ N, all
(pk,msk) ← Setup(λ), all x ∈ Σk, all skx ← KeyGen(msk, x), all y ∈ Σe, all
(hdry, k) ← Encrypt(pk, y), the following two conditions should be satisfied at
the same time:

– If P (x, y) = 1, then k = Decrypt(pk, skx, hdry).
– If P (x, y) = 0, then ⊥ = Decrypt(pk, skx, hdry).

4.3 Refined System Model for Self-Extractable Encryption

Our design goal is to help data owners securely share their data with data users
under the existing model. In addition, we allow data owners to retrieve and
extract its own encrypted data from the cloud storage servers without requesting
any secret keys from TKA. To achieve this goal, we explicitly introduce the data
retrieve procedure that is performed by data owners in the original system model.
The refined typical system architecture is shown in Fig. 2.



Provably Secure Self-Extractable Encryption 11

Fig. 2. Self-Extractable Encryption Overview.

Formally, the self-extractable encryption (SEXE) that represents data user’s
access capability as Σk and access policy as Σe can be defined with six algo-
rithms: Setup, KeyGen, SelfKeyGen, Encrypt, Decrypt, SelfDecrypt. The system
setup algorithm Setup, the secret key generation algorithm KeyGen, and the data
decryption algorithm Decrypt are identical with that of in the original system,
while the other three algorithms are as follows.

ek ← SelfKeyGen(pk). The self key generation algorithm is run by each data
owner. The algorithm only takes the public key pk as input and outputs an
encryptor key ek, which must kept secret by that data owner.

(hdry, k) ← Encrypt(pk, ek, y). The data encryption algorithm is similar with
that of in the original system. The difference is that it additionally takes the
encryptor key ek as input. The algorithm also outputs a header hdry associated
with the ciphertext attribute y, and a symmetric session key k.

k ← SelfDecrypt(pk, ek, hdry). The self decryption algorithm is run by each data
owner. It takes as inputs the public key pk, the encryptor key ek, and a header
hdry that was previously generated by itself when outsourcing the data. It recov-
ers the session key k encapsulated in the header hdry, or ⊥ representing the
access failure.

SEXE should satisfy the correctness property of the original system. Mean-
while, it should ensure that the data owner can correctly access its own encrypted
data. Formally, for all λ ∈ N, all (pk,msk) ← Setup(λ), all ek ← SelfKeyGen(pk),
and all (hdry, k) ← Encrypt(pk, ek′, y),

– If ek = ek′, then k = SelfDecrypt(pk, ek, hdry).
– If ek �= ek′, then ⊥ = SelfDecrypt(pk, ek′, hdry).

4.4 Threat Model

As most existing literatures dealing with the privacy and secrecy in cloud stor-
ages [37,43], we assume that TKA is fully trusted. It honestly sets up the system
and securely issues secret keys to legal data users. It never reveals any private



12 Z. Liang et al.

information to non-entitled parties. All other parties, including data owner, data
user, and the cloud storage server, are honest but untrusted. They correctly exe-
cute the procedure they need, but may collude to get information that they
are not authorized to access. SEXE is said to be secure if no attacker without
suitable secret keys can obtain useful information from the encrypted data.

4.5 Design Goal

Our system is designed to achieve self-extractability, compatibility, and efficiency
goals.

– Self-Extractability. The data owners must correctly access their own
encrypted data that were previously uploaded to the cloud storage servers.
No local copy of the outsourced files in the clear is required for them, except
some meta-data of the file or file identifiers.

– Compatibility. Our self-extractable encryption should be compatible with
existing schemes. In the functionality aspect, all existing mechanisms sup-
ported by the underlying schemes should remain unchange. In the security
aspect, SEXE must be secure under the same threat model. In the imple-
mentation aspect, the self-extract mechanism can be invoked in a block-box
manner, thus easy for the system developers to deploy such functionality.

– Efficiency. In some specific application scenarios, some data owners, e.g.,
mobile clients, may only have limited computation and storage resources.
To make SEXE suitable for even such data owners, operations at the data
owner’s side should be light-weight.

5 Generic SEXE Construction

5.1 Basic Idea

We present a generic SEXE construction that can convert any cryptography-
based cloud storage system to have self-extractable property. We first give an
overview of our construction. Our basic idea is to parse the header of the underly-
ing encrypted data into two parts, i.e., plaintext-independent part and plaintext-
dependent part. In the encryption procedure, a data owner first generates the
plaintext-independent part in the original encryption procedure. Then the data
owner applies a pseudo random number generator to this part with a long-term
key to produce a session key. Finally, the data owner uses the session key to
encrypt the digital content. For decryption, data users can access the encrypted
data in a regular way, as in the original scheme. However, if necessary, the data
owner can also access its own encrypted data as follows. The data owner first
extracts the plaintext-independent part of the header. Then it applies the pseudo
random number generator to it and obtains the session key with its long-term
key. With the recovered session key, the data owner is able to correctly recover
the encrypted digital content.



Provably Secure Self-Extractable Encryption 13

5.2 Our Construction

Let Π be a secure encryption scheme applied in the cryptography-based cloud
storage system with algorithms Setup, KeyGen, Encrypt, Decrypt. The access
control mechanism of Π is described using a fixed predicate P : Σk×Σe → {0, 1}.
Assume that the session key space is K. Let PRF : KPRF ×{0, 1}∗ → YPRF be a
secure pseudo random function with the key space KPRF and the output space
YPRF . We can construct an SEXE Π for the same predicate P with the session
key space K = YPRF as follows.

(pk,msk) ← Setup(λ). TKA first runs (pk,msk) ← Setup(λ). Then, it employs
a secure symmetric encryption scheme SymE with the encryption algorithm
SymEnc and the decryption algorithm SymDec. TKA outputs the public key
pk = (pk,PRF,SymE). It secretly keeps the master secret key msk = msk.

skx ← KeyGen(msk, x). TKA simply calls skx ← KeyGen(msk, x) and returns
the secret key skx = skx for the authorized data user who requests its secret key
with a key attribute x ∈ Σk.

ek ← SelfKeyGen(pk). Each data owner simply picks a random PRF key ek
R←

KPRF from the PRF key space KPRF as the encryptor key. Note that this
procedure only involves picking random elements, thus efficient even for resource-
limited data owners.

(hdry, k) ← Encrypt(pk, ek, y). When a data owner wants to share its data
via cloud, it encapsulates a session key k in the header under the required
data attribute y, and encrypts the data using a secure encryption scheme
with k. To generate the header and the session key, the data owner first calls
(hdry, k) ← Encrypt(pk, y). Then, it computes the session key by invoking
k ← PRF(ek, hdry). Next, the data owner symmetrically encrypts the session
key k using k, i.e., hdrk ← SymEnc(k, k). The header associated with the data
attribute y and the encryptor key ek is hdry = (hdry, hdrk).

k ← Decrypt(pk, skx, hdry). If P (x, y) = 0, the key attribute x does not satisfy
the predicate P for the data attribute y. In this case, the decryption algorithm
outputs ⊥. Otherwise, the secret key skx = skx can be used to recover the
session key from the header hdry = (hdry, hdrk). To do this, the data user runs
k ← Decrypt(pk, skx, hdry) and gets the key k. Then, it recovers the session key
by running k ← SymDec(k, hdrk).

k ← SelfDecrypt(pk, ek, hdry). If the encrypted data is not generated by the
data owner with the encryptor key ek, the self decryption algorithm outputs ⊥.
Otherwise, the data owner can use its encryptor key ek to recover the session
key k from hdry = (hdry, hdrk) by calling k ← PRF(ek, hdry).

Our generic SEXE construction satisfies self-extractability, compatibility, and
efficiency design goals.

Self-Extractability. If the data is correctly encrypted, the data owner can also
use its encryptor key ek to run k ← PRF(ek, hdry) and correctly recovers the



14 Z. Liang et al.

session key. With the session key k, the data owner can further symmetrically
decrypt the data content, or enforce other data service mechanisms by its own.
In this way, we achieve self-extractability property in the SEXE construction.

Compatibility. Our generic SEXE construction is based on the existing
schemes. Original algorithms involved in the existing schemes, i.e., Setup, Key-
Gen, Encrypt, Decrypt, are essentially the same, except some additional minor
operations for generating/recovering session keys. All existing mechanisms sup-
ported by the underlying schemes remain unchange. Specifically, if the key
attribute x for the secret key skx and the data attribute y for the header hdry =
(hdry, hdrk) satisfy P (x, y) = 1, then the original encryption system ensures
that the key k can be correctly recovered by running k ← Decrypt(pk, skx, hdry).
Therefore, the data user can recover the session key k = SymDec(k, hdrk), where
hdrk ← SymEnc(k, k).

The security of the original encryption system ensures that data users without
necessary access capabilities cannot reveal any useful information from hdry. The
security of the symmetric encryption scheme also ensures that hdrk does not leak
useful information about the session key k if k cannot be correctly recovered from
hdry. Formally, we have the following theorem.

Theorem 1. Suppose advanced encryption scheme Π used in the cryptography-
based cloud storage system with access control mechanism described by the pred-
icate P is secure, the pseudo random function PRF is secure, and the employed
symmetric encryption scheme SymE is secure. Then following our generic con-
struction, the resulting SEXE scheme for the same predicate P is also secure.

The detailed security analysis is shown in Sect. 7.

Performance. Our generic SEXE construction is efficient since only operations
for calling pseudo random function PRF and symmetric encryption scheme SymE
are additionally required in our proposal. Precisely, operations for algorithms
Setup and KeyGen are identical with the underlying encryption system. Encrypt
invokes operations for running PRF and SymEnc(k, k), while Decrypt invokes one
more operation SymDec(k, hdrk). The newly required algorithms SelfKeyGen and
SelfDecrypt also only involve operations related to PRF. All the added operations
are rather efficient.

6 SEXE Instantiations

We now give several instantiations to explicitly show how our generic SEXE
construction applies in existing systems. We begin by leveraging our construction
into the Boneh-Franklin IBE [8], which is the basic encryption primitive for many
cloud-aided communication and storage systems [12,19]. Then, we turn into Key-
Policy and Ciphertext-Policy ABE proposed by Rouselakis-Waters [33] that have
been deployed in recent cloud storage systems [37,44]. The instantiations imply
that our generic transformation is easy to be applied into existing systems for
obtaining the corresponding SEXE variations.



Provably Secure Self-Extractable Encryption 15

6.1 Self-Extractable IBE

We first apply our SEXE transformation into IBE settings to obtain self-
extractable IBE (SEXIBE). In IBE, encrypted data and secret keys are asso-
ciated with arbitrary strings and the secret key can be used to decrypt if and
only if the associated strings are equal. To achieve this functionality, we set the
key attribute space and the data attribute space to be Σk = Σe = {0, 1}∗. The
predicate is defined as P (x, y) = 1 if x = y.

The underlying IBE scheme we choose is the Boneh-Franklin IBE [8], which
is the first practical and fully secure IBE scheme that has been widely used in
advanced cloud-aided communication and storage systems [12,19]. The SEXIBE
construction is described as follows.

(pk,msk) ← Setup(λ). The setup algorithm generates bilinear groups by running
(p,G,GT , e) ← G(λ). Then, it picks a random generator g

R← G, a random
exponent s

R← Zp, and sets gs = gs. Next, the algorithm employs a cryptographic
hash function H : {0, 1}∗ → G, a secure pseudo random function PRF : KPRF ×
{0, 1}∗ → YPRF , and a secure symmetric encryption scheme SymE with the
encryption algorithm SymEnc and the decryption algorithm SymDec. The public
key pk and the master secret key are

pk = (g, gs,H,PRF,SymEnc) msk = (s)

skI ← KeyGen(msk, I). The secret key skI for an identity I ∈ Zp is H(ID)s.

ek ← SelfKeyGen(pk). The algorithm simply returns a random element ek
R←

KPRF as the encryptor key.

(hdrI , k) ← Encrypt(pk, ek, I). To encapsulate a session key using an identity
I ∈ Zp and an encryptor key ek, the encryption algorithm generates a random

exponent r
R← Zp and outputs the header

hdrI = (U, hdrk) = (gr, hdrk)
= (gr,SymEnc(e(H(ID), gs)r, k)))

where k ← PRF(ek, U).

k ← Decrypt(pk, skI , hdrI). To recover the session key from hdrI = (U, hdrk)
using the secret key skI , the decryption algorithm outputs

k ← SymDec (e(skI , U), hdrk)

k ← SelfDecrypt(pk, ek, hdrI). To recover the session key from hdrI = (U, hdrk)
generated by the data owner with the encryptor key ek, the self decryption
algorithm outputs

k ← PRF(ek, U)



16 Z. Liang et al.

Correctness. It is easy to verify that the data owner can correctly recover the
session key by running SelfDecrypt since k ← PRF(ek, U) is exactly the algorithm
for generating k. Also, the data user who has the secret key skI can correctly
recover the session key encapsulated in hdrI since

e(skI , U) = e(H(ID)s, gr) = e(H(ID), gs)r

Therefore,

SymDec (e(skI , U), hdrk)
= SymDec (e(H(ID)s, gr), hdrk)
= SymDec (e(H(ID), gs)r

,SymEnc(e(H(ID), gs)r
, k))

= k

Security. Boneh and Franklin proved that their IBE scheme is fully secure [8].
Abdalla et al. further showed that the the encrypted data in the Boneh-Franklin
IBE even does not leak identity information for the potential data receiver [1].
Due to this favorable property (formally called anonymity property), the Boneh-
Franklin IBE can be transformed as asymmetric searchable encryption scheme
to offer encrypted data keyword search mechanism [7]. Following Theorem 1, we
claim that our SEXIBE construction based on the Boneh-Franklin IBE is also
fully secure and anonymous.

6.2 Self-Extractable ABE

We next demonstrate how to obtain self-extractable ABE (SEXABE) from exist-
ing ABE. ABE allows to share data according to fine-grained access policies.
ABE is classified into Key-Policy ABE (KP-ABE) [18] and Ciphertext-Policy
ABE (CP-ABE) [6]. Here we roughly describe how we define the predicate P to
capture these two kinds of ABE settings.

In KP-ABE, the data owner encrypts the data for a set of attributes S so that
users with secret keys for access structure A such that S ∈ A can decrypt. To
capture this functionality, we set U as an attribute universe. The key attribute
space Σk is the collection of access structures over U that can be described by
LSSS matrix with bounded polynomial size. The data attribute space is Σe = 2U .
We define the predicate as P (A, S) = 1 if and only if A ∈ Σk accepts S ∈ Σe.

In contrast, the CP-ABE encrypted data is associated with a set of attributes
S and the secret key is assigned to an access structure A. The secret key can be
used to decrypt the data if and only if S ∈ A. Similar to KP-ABE, to achieve
this functionality we set U be an attribute universe. The key attribute space is
Σk = 2U and the data attribute space Σk is the collection of access structures
over U described by LSSS matrix with bounded polynomial size. The predicate
is defined as P (S,A) = 1 if and only if A ∈ Σe accepts S ∈ Σk.

Our underlying schemes are the Rouselakis-Waters KP-ABE and CP-ABE
[33]. Both schemes support exponential number of attributes, achieve selective



Provably Secure Self-Extractable Encryption 17

security, and are equipped with desired properties, e.g., efficient pre-computation
[23], proxy re-encryption [37]. Here we show the detailed self-extractable CP-
ABE (SEX-CP-ABE) construction based on the Rouselakis-Waters CP-ABE.
The self-extractable KP-ABE (SEX-KP-ABE) can be obtained in a similar
way [33].

(pk,msk) ← Setup(λ). The setup algorithm calls the group generator G(λ) and
gets the descriptions of the bilinear groups (p,G,GT , e). Then, a secure pseudo
random function PRG : KPRF ×{0, 1}∗ → YPRF and a secure symmetric encryp-
tion scheme SymE with algorithms SymEnc and SymDec are employed in the sys-
tem. The setup algorithm picks random elements g, u, h, w, v

R← G and a random
exponent α

R← Zp. It outputs the public key pk and the master secret key msk
as

pk = (g, u, h, w, v, e(g, g)α,PRF,SymEnc) msk = (α)

skS ← KeyGen(msk, S). Given a set of attributes S = {A1, A2, · · · , Aτ} where
Ai ∈ Zp for i ∈ [τ ], the key generation algorithms picks τ + 1 random exponents

r, r1, r2, · · · , rτ
R← Zp. Then, it computes K0 = gαwr, K1 = gr, and for every

i ∈ [τ ],
Ki,2 = gri ,Ki,3 =

(
uAih

)ri · v−r

The secret key associated with the set of attributes S is skS =
(K0,K1, {Ki,2,Ki,3}i∈τ ).

ek ← SelfKeyGen(pp). The self key generation algorithm simply returns a random
ek

R← KPRF .

(hdrA, k) ← Encrypt(pk, ek,A). The encryption algorithm encapsulates a session
key for the given access structure A encoded by the LSSS policy (M,ρ) as follows.
It picks random exponents s, y2, · · · , yn

R← Zp and constructs the vector y =
(s, y2, · · · , yn). The vector of the shares is computed as λ = (λ1, · · · , λl)T = My.
It then picks l random exponents t1, · · · , tl

R← Zp and calculates C0 = gs, and
for every j ∈ [l],

Cj,1 = wλjvtj , Cj,2 =
(
uρ(j)h

)−tj
, Cj,3 = gtj

The algorithm next generates the session key k ← PRF(ek, C0‖C1,1‖C1,2‖
C1,3‖ · · · ‖Cl,1‖Cl,2‖Cl,3), and calculates hdrk = SymEnc(e(g, g)αs, k). The
header output is

hdrA = (C0, {Cj,1, Cj,2, Cj,3}j∈[l], hdrk)

k ← Decrypt(pk, skS , hdrA). The decryption algorithm first calculates the set
of row in M that provides a valid share to attributes in S, i.e., it collects the
set I = {i : ρ(i) ∈ S}. Then, it computes the constants {ωi}i∈I such that



18 Z. Liang et al.

∑

i∈I

ωiM i = (1, 0, · · · , 0), where M i is the i-th row of the matrix M . Next it

computes

B =
e (C0,K0)∏

i∈I

(e (Ci,1,K1) e (Ci,2,Kj,2) e (Ci,3,Kj,3))
ωi

where j is the index of the attribute ρ(i) in S. The algorithm finally outputs
k ← SymDec(B, hdrk).

k ← SelfDecrypt(pp, ek, hdrA). The self decryption algorithm simply outputs

k ← PRF(ek, C0‖C1,1‖C1,2‖C1,3‖ · · · ‖Cl,1‖Cl,2‖Cl,3)

Correctness. Since the way of generating and self decapsulating the ses-
sion key are exactly the same, i.e., by computing k ← PRF(ek, C0‖C1,1‖C1,2‖
C1,3‖ · · · ‖Cl,1‖Cl,2‖Cl,3), SelfDecrypt can correctly recover the session key k. If
the attribute set S of the secret key is authorized by the access structure A

encoded by the LSSS policy (M,ρ) assigned in the header hdrA, we have that∑

i∈I

ωiλi = s. Therefore,

B =
e (C0,K0)∏

i∈I

(e (Ci,1,K1) e (Ci,2,Kj,2) e (Ci,3,Kj,3))
ωi

=
e(g, g)αs

e(g, w)rs

∏

i∈I

(e (wλi , gr))ωi = e(g, g)αs
e(g, w)rs

/e(g, w)
r
∑

i∈I

ωiλi

= e(g, g)αs · e(g, w)rs

e(g, w)rs = e(g, g)αs

Since hdrk = SymEnc(e(g, g)αs, k), we finally have that SymDec(B, hdrk) =
SymDec(e(g, g)αs, Ck) = k so that the session key k can be correctly obtained.

Security. The security of our self-extractable CP-ABE is directly followed by
the security of the Rouselakis-Waters CP-ABE and Theorem 1.

7 Formal Security Analysis

7.1 Formal Security Model

We use the following security model to formalize the security notions of SEXE.
In the security model, we assume there exists an adversary who wishes to extract
useful information from a target encrypted data with the header hdr∗

y associated
with a target data attributes x∗ of its choice. The adversary assumes to be
powerful. Specifically, the adversary can collude with authorized data users, all
of which do not have access capabilities to directly access the target data. The
adversary can also collude with other data owners with distinct encryptor keys,



Provably Secure Self-Extractable Encryption 19

except the target data owner. We require that even such an adversary cannot
obtain any useful information from the target encrypted data with header hdr∗

y.
We note that this security notion captures the data privacy and data secrecy, as
well as anonymity property.

Formally, the security model of SEXE is defined through a security game
played between an adversary A and a challenger C, both of which take the
security parameter λ ∈ N as inputs.

Setup. The challenger C runs the setup algorithm to obtain the public key pk
and gives it to adversary A.

Phase 1. Adversary A can adaptively issue the following two kinds of queries
to C:

– Secret Key Query: Adversary A submits the key attributes x ∈ Σk of its
choice to C. If x has not been queried before, challenger C generates a secret
key for x by running skx ← KeyGen(msk, x) and gives it to A. Otherwise,
the previously generated secret key skx is given to A.

– Encryptor Key Query: Adversary A asks C for a encryptor key. Challenger
C runs ek ← SelfKeyGen(pk) and gives the resulting ek to A.

Challenge. When A decides that Phase 1 is over, it outputs two challenge data
attributes y∗

0 , y
∗
1 ∈ Σe, which must satisfy that P (x, y∗

0) = 0 and P (x, y∗
1) =

0 for all the key attributes such that A queried for the secret key skx. The
challenger C first generates its own encryptor key ek∗ ← SelfKeyGen(pp). Then,
it flips a random coin b

R← {0, 1} and computes the challenge header/session key
by running (hdr∗

b , k∗
b ) ← Encrypt(pk, ek∗, y∗

b ). Finally, the challenger C returns
(hdr∗

b , k∗
b ) to A.

Phase 2. Adversary A further adaptively issues secret key queries and encryptor
key queries. The submitted key attributes x ∈ Σk for the secret key queries
should satisfy that P (x, y∗

0) = 0 and P (x, y∗
1) = 0. The challenger responds the

same as in Phase 1.

Guess. Finally, adversary A outputs a guess b′ ∈ {0, 1} and wins in the game if
b = b′.

The probability of such an adversary A winning the above game in attacking
the SEXE with the security parameter λ is defined as

AdvSEXE
A (λ) =

∣
∣
∣
∣Pr[b′ = b] − 1

2

∣
∣
∣
∣

We say that the SEXE is secure if AdvSEXE
A (λ) is negligible.

7.2 Proof of Theorem 1

Suppose that there is a polynomial time adversary A that can break the security
of our SEXE with non-negligible winning probability. We construct an algorithm



20 Z. Liang et al.

B that has non-negligible winning probability to break the security of the under-
lying advanced encryption scheme with the help of algorithm A. Algorithm B
acts as the adversary for the original encryption scheme adversary, and as the
challenger for the SEXE. The simulation is run as follows.

Setup. Algorithm B receives the public key pk from the original encryption
scheme challenger. It employs a secure symmetric encryption scheme SymE
with algorithms SymEnc and SymDec. Algorithm S gives the public key pk =
(pk,PRF,SymE) to A.

Phase 1. Adversary A adaptively submits key attributes x ∈ Σk to algorithm B.
Algorithm B also submits the key attributes to the original encryption scheme,
and forwards the secret keys skx to adversary A. Note that secret keys are the
same in both schemes, the secret keys skx generated by the original encryption
scheme challenger can be also used to return the secret key queries issued by
adversary A.

When A issues an encryptor key ek, algorithm B simply picks a random key
ek

R← KPRF and returns it to A.

Challenge. When adversary A decides that Phase 1 is over, it outputs two
data attributes y∗

0 , y
∗
1 ∈ Σe on which it wishes to be challenged. Algorithm B

submits y∗
0 , y

∗
1 as the challenge data attributes to the original encryption scheme

challenger, which returns a challenge session key k
∗
b and a challenge header hdr

∗
b

to algorithm B. Algorithm B randomly picks a challenge encryptor key ek∗ R←
KPRF , and runs k∗

b ← PRF(ek∗, k
∗
b) to generate the challenge session key k∗

b .
Then, it encrypts k∗

b using k
∗
b by calling hdr∗

k ← SymEnc(k
∗
b , k

∗
b ). The challenge

header is hdr∗
b = (hdr

∗
b , hdr∗

k), and the challenge session key is k∗
b , both of which

are returned to adversary A.

Phase 2. Algorithm B runs as the same in Phase 1 to respond the secret key
queries and encryptor key queries issued by A.

Guess. Eventually, adversary A outputs a guess b′ ∈ {0, 1}. Algorithm B also
returns b′ as its own guess to the original encryption scheme challenger.

Since the pseudo random function PRF is secure, adversary A cannot distin-
guish k∗

b from an actual random number without knowing the challenge encryp-
tor key ek∗ chosen randomly by algorithm B, except with negligible probability.
Meanwhile, the header component hdr∗

k output by the secure symmetric encryp-
tion scheme leaks no information for the value of b, except with negligible prob-
ability. Therefore, if adversary A has non-negligible advantage ε to break the
security of the SEXE, then algorithm B can break the security of the underlying
encryption scheme with non-negligible probability.

8 Conclusions

We investigated how to enable a data owner to access his/her own encrypted
data. We formalized the new SEXE concept which equips advanced encryp-
tion scheme with self-extractability property so that the data owner can always



Provably Secure Self-Extractable Encryption 21

access her encrypted data. We proposed a generic SEXE construction from any
existing schemes. Following the proposed generic construction, we instantiated
self-extractable Identity-Based Encryption and self-extractable Attribute-Based
Encryption schemes both in Key-Policy setting and in Ciphertext-Policy setting.
These works make it more convenient to securely share sensitive files via clouds.

Acknowledgment. This paper is supported by the National Key Research and
Development Program of China through project 2017YFB0802505, the Natural
Science Foundation of China through projects 61672083, 61370190, 61532021,
61472429, and 61402029, by the National Cryptography 700 Development Fund
through project MMJJ20170106, by the Beijing Natural Science Foundation through
project 4132056.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: consis-
tency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005). doi:10.
1007/11535218 13

2. Anderson, R.: Technical perspective: a chilly sense of security. Commun. ACM
52(5), 90–90 (2009)

3. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key
management for access hierarchies. ACM Trans. Inf. Syst. Secur. (TISSEC) 12(3),
18 (2009)

4. Ateniese, G., Kevin, F., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

5. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Technion Israel Institute of technology, Faculty of computer science, January 1996

6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: S&P 2007, pp. 321–334. IEEE (2007)

7. Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 30

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

9. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005). doi:10.1007/11535218 16

10. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-70936-7 29

11. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-72540-4 33

http://dx.doi.org/10.1007/11535218_13
http://dx.doi.org/10.1007/11535218_13
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/11535218_16
http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://dx.doi.org/10.1007/978-3-540-72540-4_33


22 Z. Liang et al.

12. Chan, A.C.-F., Blake, I.F.: Scalable, server-passive, user-anonymous timed release
cryptography. In: ICDCS 2005, pp. 504–513. IEEE (2005)

13. Dan, B., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, pp. 514–532 (2001)

14. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76900-2 12

15. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
doi:10.1007/3-540-36178-2 34

16. Goh, E.J., Shacham, H., Modadugu, N., Boneh, D.: Sirius: securing remote
untrusted storage. In: NDSS 2003, pp. 131–145. Internet Society (2003)

17. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

18. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS 2006, pp. 89–98. ACM (2006)

19. Guan, Z., Cao, Z., Zhao, X., Chen, R., Chen, Z., Nan, X.: Webibc: identity based
cryptography for client side security in web applications. In: ICDCS 2008, pp.
689–696. IEEE (2008)

20. Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over encrypted data
in the database-service-provider model. In: SIGMOD 2002, pp. 216–227. ACM
(2002)

21. Hacigümüş, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: VLDB
2002, pp. 29–38. IEEE (2002)

22. Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudo-
random functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48797-6 4

23. Hohenberger, S., Waters, B.: Online/Offline attribute-based encryption. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 293–310. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 17

24. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002). doi:10.1007/3-540-46035-7 31

25. Hung, T., Li, X., Wan, Z., Wan, M.: Privacy preserving cloud data access with
multi-authorities. In: INFOCOM 2013, pp. 2625–2633. IEEE (2013)

26. Hur, J., Noh, D.K.: Attribute-based access control with efficient revocation in data
outsourcing systems. IEEE Trans. Parallel Distrib. Syst. 22(7), 1214–1221 (2011)

27. Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., Fu, K.: Plutus: scalable
secure file sharing on untrusted storage. In: FAST 2003. USENIX Association
(2003)

28. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 9

29. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-20465-4 31

http://dx.doi.org/10.1007/978-3-540-76900-2_12
http://dx.doi.org/10.1007/3-540-36178-2_34
http://dx.doi.org/10.1007/978-3-662-48797-6_4
http://dx.doi.org/10.1007/978-3-662-48797-6_4
http://dx.doi.org/10.1007/978-3-642-54631-0_17
http://dx.doi.org/10.1007/3-540-46035-7_31
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-642-20465-4_31


Provably Secure Self-Extractable Encryption 23

30. Li, M., Shucheng, Y., Zheng, Y., Ren, K., Lou, W.: Scalable and secure sharing
of personal health records in cloud computing using attribute-based encryption.
IEEE Trans. Parallel Distrib. Syst. 24(1), 131–143 (2013)

31. Liu, Z., Cao, Z., Wong, D.S.: Efficient generation of linear secret sharing scheme
matrices from threshold access trees. Cryptology ePrint Archive, Report 2010/374
(2010). http://eprint.iacr.org/2010/374

32. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

33. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large
universe attribute-based encryption. In: CCS 2013, pp. 463–474. ACM (2013)

34. Ruj, S., Stojmenovic, M., Nayak, A.: Decentralized access control with anonymous
authentication of data stored in clouds. IEEE Trans. Parallel Distrib. Syst. 25(2),
384–394 (2014)

35. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

36. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). doi:10.1007/3-540-39568-7 5

37. Shao, J., Lu, R., Lin, X.: Fine-grained data sharing in cloud computing for mobile
devices. In: INFOCOM 2015, pp. 2677–2685. IEEE (2015)

38. Sun, J., Fang, Y.: Cross-domain data sharing in distributed electronic health record
systems. IEEE Trans. Parallel Distrib. Syst. 21(6), 754–764 (2010)

39. Sun, J., Zhu, X., Zhang, C., Fang, Y.: HCPP: cryptography based secure EHR
system for patient privacy and emergency healthcare. In: ICDCS 2011, pp. 373–
382. IEEE (2011)

40. Sun, W., Yu, S., Lou, W., Hou, Y.T., Li, H.: Protecting your right: attribute-based
keyword search with fine-grained owner-enforced search authorization in the cloud.
In: INFOCOM 2014, pp. 226–234. IEEE (2014)

41. Yamada, S., Attrapadung, N., Santoso, B., Schuldt, J.C.N., Hanaoka, G., Kunihiro,
N.: Verifiable predicate encryption and applications to CCA security and anony-
mous predicate authentication. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 243–261. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-30057-8 15

42. Yang, K., Jia, X., Ren, K., Zhang, B.: Dac-macs: effective data access control for
multi-authority cloud storage systems. In: INFOCOM 2010, pp. 2895–2903. IEEE
(2013)

43. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: INFOCOM 2010, pp. 1–9. IEEE (2010)

44. Zhang, L., Jung, T., Liu, C., Ding, X., Li, X.-Y., Liu, Y.: Pop: privacy-preserving
outsourced photo sharing and searching for mobile devices. In: 2015 IEEE 35th
International Conference on Distributed Computing Systems (ICDCS), pp. 308–
317. IEEE (2015)

45. Zheng, Q., Xu, S., Ateniese, G.: Vabks: verifiable attribute-based keyword search
over outsourced encrypted data. In: INFOCOM 2014, pp. 522–530. IEEE (2014)

http://eprint.iacr.org/2010/374
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/3-540-39568-7_5
http://dx.doi.org/10.1007/978-3-642-30057-8_15
http://dx.doi.org/10.1007/978-3-642-30057-8_15


Towards Multi-user Searchable Encryption
Supporting Boolean Query and Fast Decryption

Yunling Wang1, Jianfeng Wang1,4, Shi-Feng Sun2, Joseph K. Liu2,
Willy Susilo3, and Xiaofeng Chen1(B)

1 State Key Laboratory of Integrated Service Networks (ISN),
Xidian University, Xi’an, People’s Republic of China

{ylwang0304@163.com, jfwang,xfchen}@xidian.edu.cn
2 Faculty of Information Technology, Monash University, Clayton, Australia

{Shifeng.Sun,joseph.liu}@monash.edu
3 School of Computing and Information Technology,

Institute of Cybersecurity and Cryptology,
University of Wollongong, Wollongong, Australia

wsusilo@uow.edu.au
4 State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, People’s Republic of China

Abstract. The single-writer/multi-reader searchable encryption
(SMSE) allows an arbitrary authorized user to submit a valid search
token and get the corresponding encrypted identifiers. In order to achieve
fine-grained access control, the identifiers are encrypted by the attribute-
based encryption. In this case, the user can decrypt a ciphertext only
when the access policy in it matches the user’s attribute set. However,
the server unable to determine whether the user can decrypt a certain
ciphertext without the knowledge of the user’s attribute set. As a result,
all the ciphertexts based on a search token have to be returned to the
user, which causes unnecessary communication and decryption costs. In
this paper, we propose a new SMSE scheme, in which the server just
needs to return the ones which can be decrypted by the user rather
than the whole search results. In order to achieve this goal, we present a
server-side match technique with which the server can test whether the
user can decrypt a ciphertext without knowing the user’s attribute set.
Furthermore, the decryption computation is very efficient, irrespective
of the structure of access policy. Therefore, both the communication and
decryption overheads are dramatically reduced in our scheme.

Keywords: Cloud computing · Searchable encryption · Multi-client ·
Fast decryption

1 Introduction

Cloud computing [6,7,14] possesses unlimited resources and provides flexible
service. A plenty of users prefer to outsource their data to the server as a result
of relieving the burden of storing data locally. In this case, the physical access
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 24–38, 2017.
https://doi.org/10.1007/978-3-319-68637-0_2



Towards Multi-user SE Supporting Boolean Query and Fast Decryption 25

and the administration of the data are also delegated to the server. Thus, the
security of the users’ data has became a growing concern. Encrypting the data
before outsourcing is a positive way to provide data confidentiality. However, it
also brings difficulties for the server to search over the ciphertexts. Searchable
encryption (SE) [1,8,10,11,17,19,21,24] is proposed to protect the security of
data while preserving the search ability over the encrypted data.

In searchable encryption schemes, a data owner encrypts the documents and
outsources them to the server, then the server is allowed to search over the
ciphertexts based on the user’s search token and eventually returns the search
results to the user. In single keyword search setting [4,8–10,12,17,18,20], the
user is just allowed to submit a search token for a single queried keyword. How-
ever, just querying a single keyword is not enough in practice. Then conjunctive
keyword search is proposed [1,3,5,11,16,22,26], which enables a user to sub-
mit a number of queried keywords and eventually get the corresponding docu-
ments which contain all the queried keywords. These conjunctive keyword search
schemes are in the single-writer/single-reader setting, where the data owner and
the user is the same person. That is, the data owner outsources encrypted doc-
uments and then she/he performs search operation. Recently, Sun et al. [19]
extended conjunctive keyword search from single-writer/single-reader setting to
single-writer/multi-reader (SM) setting, where any authorized user can generate
a valid search token and get the corresponding search results. Kermanshahi et al.
[13] provided another SM approach by using a threshold secret sharing setting.

In Sun et al.’s SMSE scheme, the authorized users are allocated with different
searching and decrypting privileges. On one hand, an authorized user can only
generate valid search tokens for the keywords in the authorized keyword set. On
the other hand, an authorized user can only decrypt the search results which are
delegated to her/him. Specifically, a user submits a search token to the server
and then gets all the corresponding search results. Because the search results
are encrypted based on the attribute-based encryption (ABE) [2,23], the user
can just decrypt the ones in which the access policy is satisfied with the user’s
attribute set. In this case, the user has to try to decrypt all the search results
and obtains the plaintexts or finds out that some ciphertexts don’t belong to
her/him. As a result, this scheme suffers a waste of both communication and
decryption overheads. If we enables the server to have an ability to test whether
a ciphertext can be decrypted by a user, the user’s attribute set must be leaked
to the server. In this way, the access policy as well as the user’s attribute set is
leaked to the server.

In order to protect the access policy, anonymous ABE [15] is proposed. How-
ever, it is very complex for the user to decrypt the ciphertexts. Recently, Zhang
et al. [25] proposed a match-then-decrypt anonymous ABE scheme. In their
scheme, the user first performs match operation to test whether a ciphertext can
be decrypted. If a ciphertext can be decrypted, then the user performs decryption
operation to decrypt the ciphertext. However, the match operation is performed
on the user side. That is, all the related ciphertexts are also needed to be trans-
mitted and tested by the user. For the sake of unnecessary cost, we propose a



26 Y. Wang et al.

server-side match technique for the anonymous ABE scheme, in which the match
operation is performed on the server side. During the match operation, both the
access policy and the user’s attribute set are protected. Then we apply this
technique to construct a new SMSE scheme. In our scheme, instead of directly
returning all the corresponding search results based on the search token, the
server performs match operation and then just returns the search results which
can be decrypted by the user. In addition, it is efficient for the user to decrypt the
ciphertexts, which is not related to the structure of access policy. Therefore, our
scheme is more practical for the communication and computation constrained
user.

1.1 Our Contribution

In this paper, we first propose a server-side match technique for the anonymous
ABE scheme. With this technique, we then construct a SMSE scheme with fast
decryption. Our contributions are two folds:

• We propose a server-side match technique for anonymous ABE scheme. With
this technique, the server has an ability to perform a match operation to test
whether the access policy in a ciphertext matches a user’s attribute set. This
match operation neither leakages the knowledge of the access policy nor the
user’s attribute set to the server. Besides, the match operation for a certain
user’s attribute set just works over specific ciphertexts rather than the whole
ones.

• We propose a new SMSE scheme based on the server-side match technique.
In our scheme, the server performs search over the ciphertexts and then finds
out the corresponding search results based on the search token. Instead of
immediately returning all of the search results, the server tests whether the
search results can be decrypted by the user and eventually it just returns
the ones which can be decrypted. Furthermore, the decryption for the user
is efficient. As a result, both the communication and decryption overheads in
our scheme are reduced and thus it can be suitable for lightweight devices.

1.2 Organization

The rest of this paper is organized as follows. Some necessary preliminaries
are given in Sect. 2. The proposed server-side match technique and the new
SMSE scheme are described detailedly in Sect. 3. Next, we analyze the security
of our scheme and compare it with the existing scheme in Sect. 4. Finally, the
conclusions will be made in Sect. 5.

2 Preliminaries

2.1 Bilinear Pairings

Suppose G and GT are two cyclic multiplicative groups with prime order p. Let
g be a generator of G. A bilinear pairing is a mapping e : G × G → GT with the
following properties:



Towards Multi-user SE Supporting Boolean Query and Fast Decryption 27

1. Bilinear: e(ga
1 , gb

2) = e(g1, g2)ab for all g1, g2 ∈ G and a, b ∈ Zp.
2. Non-degenerate: e(g, g) �= 1.
3. Computable: It is efficient to compute e(g1, g2) for all g1, g2 ∈ G.

2.2 Intractable Assumption

In this section, we first define some intractable assumptions in the cyclic multi-
plicative group G and then we define the strong RSA assumption.

Definition 1. The Decisional Diffie-Hellman (DDH) assumption holds in G if
for any probabilistic polynomial-time (PPT) algorithm A there exists a negligible
function negl(·) such that

|Pr[A(g, ga, gb, gab) = 1] − Pr[A(g, ga, gb, gc) = 1]| = negl(n),

where g is randomly selected from G, a, b, c are randomly selected from Zp and
n is the security parameter.

Definition 2. The Decisional Bilinear Diffie-Hellman (DBDH) assumption
holds in G if for any PPT algorithm A there exists a negligible function negl(·)
such that

|Pr[A(g, ga, gb, gc, e(g, g)abc) = 1] − Pr[A(g, ga, gb, gc, gz) = 1]| = negl(n),

where g is randomly selected from G, a, b, c, z are randomly selected from Zp and
n is the security parameter.

Definition 3. The Decision Linear (D-Linear) assumption holds in G if for any
PPT algorithm A there exists a negligible function negl(·) such that

|Pr[A(g, gz1 , gz2 , gz1z3 , gz2z4 , gz3+z4 = 1]− Pr[A(g, gz1 , gz2 , gz1z3 , gz2z4 , gz) = 1]| = negl(n),

where g is randomly selected from G, z1, z2, z3, z4, z are randomly selected from
Zp and n is the security parameter.

Definition 4 (Strong RSA assumption). Let p′ and q′ are primes and p
and q are strong primes satisfied p = 2p′ + 1 and q = 2q′ + 1. The strong
RSA assumption holds if any PPT algorithm A there exists a negligible function
negl(·) such that

|Pr[A(n, g) = (z, e)]| = negl(·),
which satisfies ze = g mod n, where n = pq and g is a random element in Z

∗
n.

2.3 Access Policy

In our anonymous CP-ABE scheme, we assume the system attribute set is U =
{τ1, τ2, · · · , τn} and each attribute has some values τi = {νi,1, νi,2, · · · , νi,ni

}.
Besides every user owns its attributes L = {L1, L2, · · · , Ln}. In order to achieve
fine-grained control, an access policy set P = {P1, P2, · · · , Pn} is embedded



28 Y. Wang et al.

in the ciphertext. A user can decrypt the ciphertext only if her/his attributes
L satisfy the access policy P in the ciphertext, which is denoted as L � P .
Otherwise the user cannot decrypt the ciphertext if her/his attributes L don’t
satisfy the access policy P , which is denoted as L � P . Specifically, we assume
the user’s attribute set is L = {L1, L2, · · · , Ln} = {ν1,k1 , · · · , νn,kn

} and the
access policy is P = {P1, · · · , Pn} = {{ν1,i1 , · · · , ν1,in}, · · · , {νn,i1 , · · · , νn,in}}.
The user can decrypt the ciphertext with P when νi,ki

∈ Pi for all 1 ≤ i ≤ n.
Otherwise, the user cannot decrypt the ciphertext.

3 SMSE Scheme with Fast Decryption

In this section, we describe our new SMSE scheme with fast decryption. In our
scheme, the server first performs search over the ciphertexts based on the search
token and then finds out the corresponding search results. Instead of immediately
returning the search results to the user, the server tests whether the user can
decrypt them and eventually just returns the ones which can be decrypted. This
is accomplished based on the server-side match technique, which can be used by
the server to test whether the access policy in a ciphertext matches the user’s
attribute set. It means that the ciphertext can be decrypted by the user if it
passes the test.

3.1 Server-Side Match Technique for Anonymous CP-ABE

In this section, we present our server-side match technique for anonymous CP-
ABE (smABE). In the traditional anonymous CP-ABE schemes, the server has
to return all the corresponding cihertexts to the user. Then the user performs
the decryption operation on the whole ciphertexts and gets the corresponding
plaintexts or gets the knowledge that she/he cannot decrypt some of them.
Our smABE scheme enables the server to test whether the access policy in a
ciphertext matches the user’s attribute set. If matches, the ciphertext can be
decrypted by the user.

• smABE.Setup(κ): We denote two cyclic multiplicative groups of prime order
p as G and GT , and a bilinear map e as G × G → GT . We also assume the
system attribute set is U = {τ1, τ2, ..., τn} and each attribute has multiple
values, where τi = {νi,1, νi,2, ..., νi,ni

}. The data owner randomly chooses

g1, g2
R←− G and y

R←− Zp, then computes Y ← e(g1, g2)y. The system public
key is pk = 〈g1, g2, Y 〉 and the system master key is mk = 〈y〉.

• smABE.KeyGen(L, pk,mk): This algorithm generates the attribute secrete
key skL for a certain user whose attribute set is L = {L1, L2, ..., Ln}. H is
a hash function: {0, 1}∗ → G. First, the data owner randomly chooses r, λ, λ̂

from Zp and computes DΔ,0 ← gr
1, Dx ← gr

2, D0 ← gλ
2 , D̂0 ← gλ̂

1 . Assume
Li = νi,ki

, the data owner also computes D̂Δ,0 ← gy
2

∏n
i=1 H(i||νi,ki

)r, D1 ←
gy
1

∏n
i=1 H(0||i||νi,ki

)λ and D̂1 ← gy
2

∏n
i=1 H(1||i||νi,ki

)λ̂. Then the attribute
secrete key is skL = 〈skmat, skdec〉, where skmat = 〈DΔ,0, D̂Δ,0,Dx〉 and
skdec = {D0, D̂0,D1, D̂1}.



Towards Multi-user SE Supporting Boolean Query and Fast Decryption 29

• smABE.Enc(M,m,P ): The data owner encrypts a message M ∈ GT under
the policy of P = {P1, P2, ..., Pn}. In our scheme, every massage M is related
to an auxiliary information m ∈ Zp. The data owner first generates s, s′, s′′ R←−
Zp, and then computes C̃ ← MY s; CΔ ← Y s′

; Ĉ0 ← gs′
1 ; C1 ← gs′′

2 ; Ĉ1 ←
gs−s′′
1 ; Cx ← gs′m

2 . Then the data owner chooses {σi,Δ, σi,0, σi,1
R←− G|1 ≤

i ≤ n} such that
∏n

i=1 σi,Δ =
∏n

i=1 σi,0 =
∏n

i=1 σi,1 = 1G and computes
[Ci,t,Δ, Ci,t,0, Ĉi,t,0] as follows:

1. If vi,t /∈ Pi, [Ci,t,Δ, Ci,t,0, Ĉi,t,0]
R←− G.

2. If vi,t ∈ Pi,

[Ci,t,Δ, Ci,t,0, Ĉi,t,0] ← [σi,ΔH(i||νi,t)
s′

, σi,0H(0||i||νi,t)
s′′

, σi,1H(1||i||νi,t)
s−s′′

].

Finally, the ciphertext of M is

e = 〈CΔ, Cx, Ĉ0, C̃, C1, Ĉ1, {{Ci,t,Δ, Ci,t,0, Ĉi,t,0}1≤t≤ni
}1≤i≤n〉.

• smABE.Match(e,mt,DΔ,0): The server performs this algorithm to test
whether a certain user can decrypt the ciphertext e. Here mt and DΔ,0 are
given by the user, where mt = D̂Δ,0 · Dm

x . This algorithm outputs “yes” if

e(Cx

n∏

i=1

Ci,t,Δ,DΔ,0)CΔ = e(Ĉ0,mt).

According to Ci,t,Δ, the server finds all the corresponding Ci,t,0 and Ĉi,t,0,
then computes C ← ∏n

i=1 Ci,t,0, Ĉ ← ∏n
i=1 Ĉi,t,0. Finally, the server sends

edec = 〈C̃, C1, Ĉ1, C, Ĉ〉 to the user.
• smABE.Dec(edec, skdec): The user performs this algorithm to decrypt the

ciphertext and gets the M .

M ← C̃e(C,D0)e(Ĉ, D̂0)
e(C1,D1)e(Ĉ1, D̂1)

.

3.2 Our Construction

In this section, we present our SMSE scheme with fast decryption. Our
scheme just returns the search results which can be decrypted by the user.
There are five algorithms Π = (SMSE.Setup,SMSE.KGen,SMSE.TGen,
SMSE.Search,SMSE.Retrieve) in our scheme. We denote the whole keyword
set as W =

⋃d
i=1 Widi

, where Widi
represents the keyword set for document di;

the data owner’s database as DB = (idi,Widi
)d
i=1; the identifiers set containing

keyword w as DB[w] = {id : w ∈ Wid}; the decryption key set as K which is
used to decrypt the original documents. And we let λ be the security parameter.
The details of the proposed scheme are given as follows.



30 Y. Wang et al.

Algorithm 1. Search Index (TSet,XSet) Generated Algorithm
Input: MK, PK, DB, K
Output: TSet, XSet

1: TSet, XSet ← φ
2: for w ∈ W do
3: stagw ← F (KS , g̃

1/w
1 mod N); m ← H(g̃

1/w
1 mod N); c ← 1

4: for id ∈ DB[w] do

5: xind ← Fp(KI , id); z ← Fp(KZ , g̃
1/w
2 mod N ||c); l ← F (stagw, c)

6: y ← xind · z−1;

7: e ← smABE.Enc((id||kid), m, P )

8: TSet[l] = (e, y)

9: xtagw ← gFp(KX ,g̃
1/w
3 mod N)·xind; XSet ← XSet ∪ {xtagw}

10: c ← c + 1
11: end for
12: end for
13: return TSet, XSet

• SMSE.Setup(λ,DB,K,U): This algorithm is run by the data owner. On
input the security parameter λ, the database DB, the decryption key set
K and the system attribute set U , it outputs the system master key MK,
system public key PK and the search index (TSet,XSet). Firstly, it chooses
two big primes p, q, and computes N = pq. It denotes two pseudo-random
functions F : {0, 1}λ × {0, 1}λ → {0, 1}λ, Fp : {0, 1}λ × {0, 1}λ → Z

∗
p

and selects random keys KI , KZ , KX for the Fp and KS for the F . Let
H: {0, 1}∗ → Zp be a hash function. The data owner randomly chooses

g
R←− G and g̃1, g̃2, g̃3

R←− Z
∗
N . Then it outputs the system master key

MK = 〈p, q,KS ,KI ,KZ ,KX , g̃1, g̃2, g̃3〉 and system public key PK = 〈N, g〉.
The search index TSet and XSet are generated as in Algorithm 1 and finally
they are sent to the server.

• SMSE.KGen(MK, L,w): This algorithm is run by the data owner. Suppose
that an authorized user with attribute set L can search over keyword set w =
{w1, w2, ..., wn}, where the appearance frequency of the keywords satisfies
|w1| < |w2| < · · · < |wn|. The attribute private key is computed as skL =
smABE.KeyGen(L, pk,mk) = 〈skmat, skdec〉 for a user whose attribute set
is L = {L1, L2, ..., Ln}. For search keyword set w, the search private key
skw = {sk

(1)
w , sk

(2)
w , sk

(3)
w } is computed as:

ski
w = (g̃

1/
∏n

j=1 wj

i mod N), i = {1, 2, 3}.

Finally, the user’s private key sk = {KS ,KZ ,KX , skw, skL} and w are all
sent to the user.

• SMSE.TGen(sk,Q): This algorithm is run by the authorized user. Suppose
that an authorized user wants to perform conjunctive keyword search for
w̄ = {w′

1, w
′
2, · · · , w′

m}, where m ≤ n and w′
1 is the least frequency keyword



Towards Multi-user SE Supporting Boolean Query and Fast Decryption 31

among the queried keywords. Then the search token st is generated as follows
and finally it is sent to the server.

− stag ← F (KS , (sk(1)
w )

∏
w∈w\w′

1
w mod N) = F (KS , g̃

1/w′
1

1 mod N)
− For c = 1, 2, · · · until the server say stop

For i = 2, ...,m

xt[c, i] ← gFp(KZ ,(sk
(2)
w )

∏

w∈w\w′
1

w
mod N||c)·Fp(KX ,(sk

(3)
w )

∏

w∈w\w′
i
w

mod N)

= gFp(KZ ,g̃
1/w′

1
2 mod N||c)·Fp(KX ,g̃

1/w′
i

3 mod N);

set xt[c] = xt[c, 2], · · · , xt[c,m];

− mt ← D̂Δ,0 · D
H(g̃

1/w′
1

1 mod N)
x ;

− set st = (mt,DΔ,0, stag, xt[1], xt[2], · · · ).
• SMSE.Search(st,TSet,XSet). This algorithm is run by the server. On input

the search token st and (TSet,XSet), this algorithm outputs the search result
S. In our scheme, the encrypted identifiers in the search result are not only
satisfied with the search token, but also can be decrypted by the user. This
search operation consists of two steps: Search Step and Match Step. The
details are shown in Algorithm 2.
− Search Step: The server first finds out all the encrypted identifiers which

are satisfied with the search token. Specifically, The server uses stag to
find out the encrypted identifiers containing w′

1, and then justifies whether
they contain the other queried keywords (w′

2, · · · , w′
m). Finally, this step

outputs the encrypted identifiers which contain all the queried keywords.
− Match Step: The server then uses mt and DΔ,0 to test whether the user can

decrypt the encrypted identifiers generated in the Search Step. Finally,
this Match Step outputs the ultimate encrypted identifiers which can be
decrypted by the user.

• SMSE.Retrieve(sk,R). This algorithm is run by the user. On input the pri-
vate key sk and the search result R, this algorithm outputs the identifiers and
the corresponding document keys. Finally the user retrieves the documents
and decrypts them.
− For each ê ∈ R, parse ê = 〈edec〉 and the user directly decrypts the

ciphertext

(id ‖ kid) ← smABE.Dec(edec, skdec).

− For each id, the user sends it to the server and then gets the corresponding
encrypted document. Finally the encrypted document can be decrypted
by kid.



32 Y. Wang et al.

Algorithm 2. SMSE.Search(st,TSet,XSet)
Input: st, TSet, XSet
Output: R
1: S, R ← φ
2: Parse st = (mt, DΔ,0, stag, xt[1], xt[2], · · · )
3: c = 1; l ← F (stag, c)
4: while TSet[l] exist do

5: (e, y) ← TSet[l]

6: if xt[c, i]y ∈ XSet for all i then
7: S ← S ∪ {e}
8: end if
9: c ← c + 1; l ← F (stag, c)

10: end while
11: for e ∈ S do

12: if smABE.Match(e, mt, DΔ,0) = “yes” then

13: set ê ← 〈edec〉; R ← R ∪ {ê}
14: end if
15: end for
16: return R

Remark 1. Based on the RAS assumption, the keywords in our scheme should be
mapped to a prime number. This requirement can be achieved by the ‘keyword
to prime’ hash function proposed in [19].

Remark 2. Our scheme can also support the queries in the form of w1 ∧
φ(w2, ..., wm), where φ is an arbitrary boolean formula. The efficiency of such
query is the same as that of conjunctive query. Specifically, if a user intends to
search a query such as w′

1 ∧ φ(w′
2, ..., w

′
m), she/he should generate the search

token st as in conjunctive query setting, then sends the st together with boolean
formula φ to the server. Upon receiving the search query, the server first finds
out the results for w′

1, then match each result with other query keywords (for
example: xt[c, i]y) to determine whether they are in the XSet. For 1 ≤ i ≤ m,
if xt[c, i]y ∈ XSet, set vi = 1. Otherwise, set vi = 0. Next the server evaluates
the query formula. If the result of expression φ(v2, v3, ..., vm) is equal to 1, the
server finally sends the corresponding edec to the user. In this case, the search
complexity and the security level is the same as conjunctive query.

4 Analysis of Our Proposed Scheme

4.1 Security Analysis

We first describe the security model for our smABE scheme using the following
game. A scheme is defined as IND-sCP-CPA security if no PPT adversary can
break this game with a non-negligible advantage (Fig. 1).



Towards Multi-user SE Supporting Boolean Query and Fast Decryption 33

Init: The adversary A submits two challenge access policies P0 and P1.
Setup: The challenger C runs the smABE.Setup algorithm and gives the public
key PK to the A.
Phase 1: A submits an attribute list L to the C. C runs smABE.KeyGen and
returns the secret key skL, if (L |= P0 ∧L |= P1) or (L � P0 ∧L � P1). A can repeat
this quary polynomial times.
Challenge: A submits two messages M0 and M1 to the C. If any attribute list
satisfies both P0 and P1, it is required that M0 = M1. C randomly chooses a bit
v ∈ 0, 1, computes ePv = smABE.Enc(Mv,m, Pv) and sends ePv to A.
Phase 2: Repeat the Phase 1. A cannot submit L which satisfies
L |= P0 ∧ L |= P1, if M0 �= M1.
Guess: A outs a guess v′ of v. The advantage of A in this game is defined as

AdvIND−sCP−ABE
smABE = |Pr[v′ = v] − 1

2
|

Fig. 1. The IND-sCP-CPA game

Theorem 1. Our smABE scheme is IND-sCP-CPA secure under the DBDH
assumption and D-linear assumption. The advantage εCPA for a PPT adversary
to attack the IND-sCP-CPA game in the random oracle model is negligible.

Proof. A sequence of hybrid games are used to prove that A cannot win the orig-
inal game G with non-negligible probability. It is supposed that the two challenge
access policies P0 = [P0,1, P0,2, · · · , P0,n] and P1 = [P1,1, P1,2, · · · , P1,n] are sub-
mitted at the beginning of the game. We first modify game G to game G0. In
game G0, if A obtains the secret attribute key skL when (L � P0 ∧ L � P1),
the ciphertext component C̃ is randomly chosen in GT and the rest com-
ponents are generated as usual. If A obtains the secret attribute key skL

when (L |= P0 ∧ L |= P1), all components for the ciphertext are gener-
ated like in game G. In this case, G0 = G1. Then we change the compo-
nents {{Ci,t,Δ, Ci,t,0, Ĉi,t,0}1≤t≤ni

}1≤i≤n and define a sequence of other games as
follows.

For every attribute value νi,t in the universe attribute set, if (νi,t ∈ P0,i ∧
νi,t ∈ P1,i) or (νi,t /∈ P0,i ∧ νi,t /∈ P1,i), the components {Ci,t,Δ, Ci,t,0, Ĉi,t,0} in
all games are generated in normal way like in game G. If there exists a νi,t such
that (νi,t ∈ P0,i ∧ νi,t /∈ P1,i) or (νi,t /∈ P0,i ∧ νi,t ∈ P1,i), the ciphertext com-
ponents {Ci,t,Δ, Ci,t,0, Ĉi,t,0} generated normally in game Gl−1 will be replaced
in game Gl by a random element in group G. We stop this replace process when
there is no such νi,t satisfies (νi,t ∈ P0,i ∧ νi,t /∈ P1,i) or (νi,t /∈ P0,i ∧ νi,t ∈ P1,i).
In the last game, the advantage of A is zero because the distribution of the cipher-
text components are the same no matter what the random bit ν is. The above
games are denoted as {G,G0, G1, · · · , Glmax

}. Then we denote the probability
for A to win the original game G as Pr[ε] and the probability to win the game
Gl is denoted as Pr[εl]. Then the advantage in game G0 can be represented as
εCPA, where εCPA = |Pr[ε] − 1

2 | = |Pr[ε] − Pr[εlmax
]|, which has the following

property.



34 Y. Wang et al.

εCPA ≤ |Pr[ε] − Pr[ε0] | +
lmax∑

l=1

|Pr[εl−1] − Pr[εl] |.

We can prove that εCPA is negligible under the assumption of DBDH and
D-linear. From the Lemmas 1 and 2, the inequalities |Pr[ε] − Pr[ε0] | ≤ εDBDH

and |Pr[εl−1] − Pr[εl] | ≤ εDL are hold. Here the εDBDH and εDL represent the
advantage for a distinguisher to win the DBDH challenge and D-linear challenge.
Thus the inequality εCPA ≤ εDBDH + |U|εDL holds, where |U| represents the
number of attributes in the system. Under the DBDH and D-linear assumptions,
εDBDH and εDL are negligible and thus εCPA is negligible. So we conclude that our
proposed scheme smABE is IND-sCP-CPA secure under the DBDH assumption
and D-linear assumption.

Lemma 1. The probability difference for a PPT adversary A to win the game G
and game G0 is negligible under the DBDH assumption, that is |Pr[ε]−Pr[ε0] | ≤
εDBDH.

Lemma 2. The probability difference for a PPT adversary A to win the
game Gl−1 and game Gl is negligible under the D-Linear assumption, that is
|Pr[εl−1] − Pr[εl] | ≤ εDL for 1 ≤ l ≤ lmax.

Theorem 2. Our Multi-user searchable encryption scheme is secure against
malicious client who intents to generate a legal search token under the assump-
tion of strong RSA.

Proof. Suppose that an adversary A can generate a valid search token for a non-
authorized keyword w′. Then there exists an algorithm B to solve the strong
RSA problem based on A with a non-negligible probability. First, the algorithm
B is given a strong RSA instance (n, hj), where hj

R←− Z
∗
n. Then A submits a set

of authorized keywords w = (w1, · · · , wn) to the B. B computes gj = h
∏n

i=1 wi

j

mod n and sends hj to A. A guesses the search token v for a keyword w′ /∈ w and
sends v to the B. If v is a valid search token, v = g

1/w′

j mod n. In this case, v will
pass the check by B, that is vw′

= gj . Then B can solve the strong RSA problem
as follows. From the construction of our scheme, gcd(

∏n
i=1 wi, w

′) = 1 and B
can find integers a and b such that a(

∏n
i=1 wi) + bw′ = 1 and then computes

h
1/w′

j = vahb
j . Eventually, B outputs (w′, h1/w′

j ) which solves the RSA problem.
So under the RSA assumption, an adversary cannot generate a valid search token
for a non-authorized keyword with a non-negligible probability.

Theorem 3. Our Multi-user searchable encryption scheme is L-semantically
secure against the adaptive attacks under the assumptions that DDH assumption
holds in G, F and Fp are secure PRFs and smABE is a CPA secure encryption.

Proof. This proof is similar as [19]. L is a leakage function which contains the
information captured by the interaction between the user and the server. And a



Towards Multi-user SE Supporting Boolean Query and Fast Decryption 35

real experiment and an ideal experiment are defined. In the real experiment, A
can see some information generated in our real scheme. While in the ideal exper-
iment, A can see some information generated in a scheme which is simulated by
the leakage function L. In our scheme, there exists two extra components mt
and DΔ,0 in search token. However, A cannot distinguish them from a random
element in G. Besides, our leakage function L contains the information that
whether a user can decrypt a certain result. But this is the same in both exper-
iments. Then other information in L is the same as [19]. So we conclude that
there is no simulator can distinguish whether it is in the real experiment or in
the ideal experiment.

4.2 Comparison

In this section, we compare our proposed scheme with Sun et al.’s scheme. The
ciphertext for a document identifier in our scheme includes special components,
which are used to test by the server whether the user’s attribute set satisfies
the access policy in the ciphertext. In this way, after finding out the search
results based on the search token, the server tests and eventually just returns
the ones which can be decrypted by the user. As a result, the communication
and decryption costs are all reduced.

Specifically, in Sun et al.’s scheme, the document identifiers are encrypted
based on ABE. The access policy in a ciphertext is not protected and the user can
learn which attribute secret key satisfies the access policy. However, the access
policy is also sensitive information and needs to be protected. So in our scheme,
the document identifiers are encrypted based on anonymous ABE, in which the
user can not learn anything about the access policy. In this way, the ciphertext
size for a document identifier is related to the size of the whole attribute set value
η =

∑n
i=1 ni. In Sun et al.’s scheme, the ciphertext size is related to the size

of access policy |T | and the number of attributes k in the access policy. In our
scheme, the match precess performed in the server side is related to the size of the
whole attribute set value μ =

∏n
i=1 ni (at most). However, the communication

cost between the server and the user to transmit the search results is reduced.
The cost is dramatically saved when a large number of ciphertexts are found out
and only a small number can be decrypted. Furthermore, the decryption in our
scheme is also very efficient. It just needs 4 paring for every ciphertext which
does not depend on the size of access policy.

Table 1 presents the comparison between these two schemes. We denote E as
an exponentiation operation in GT , P as a computation operation of a paring,
|T | as the size of the access policy tree T , k as the number of attributes in the
T , h as the number of non-leaf node in T , |DB(w̄)| as the search results for the
queried keywords w̄, |G| as the bit-length of an element in group G, l as the
ratio of the number of search results for the queried keywords to the number of
ones which can be decrypted by the user.



36 Y. Wang et al.

Table 1. Comparison between two schemes

Schemes Sun et al.’s scheme Our proposed scheme

Access policy protection No Yes

Encryption cost |T |+ |GT |+ (2k + 1)|G| 2|GT |+ (3η + 4)|G|
Match cost - 2μP

Communication cost |DB(w̄)| · [ |T |+ |GT |+ (2k + 1)|G| ] l |DB(w̄)| · [ |GT |+ 4|G| ]
Decryption cost l |DB(w̄)| · [ (2k + 1)P + hE ] l |DB(w̄)| · 4P

5 Conclusion

Searchable encryption is a cryptographic primitive which enables the server to
search over ciphertexts and to return the corresponding search results to a user.
In S/M setting, a data owner outsources the encrypted data and allows any
authorized user to perform search and obtain the corresponding search results.
In the existing schemes, the search results are ciphertexts which are usually
encrypted by ABE and the server sends all the search results to the user. In this
case, an authorized user has to try to decrypt all the search results and eventually
obtains the plaintexts or finds out that some ciphertexts cannot be decrypted.
As a result, this wastes both the communication and decryption overheads. In
our scheme, we propose a server-side match technique which can be used by
the server to test whether a user can decrypt a ciphertext without knowing the
user’s attribute set. Based on this technique, we construct a new SMSE scheme
with fast decryption, in which the server just needs to return the search results
which can be decrypted by a user. Besides, it is very efficient to perform the
decryption. Therefore, both the communication and decryption overheads are
dramatically reduced in our scheme.

Acknowledgement. This work was supported by the National Natural Science Foun-
dation of China (No. 61572382), China 111 Project (No. B16037), Natural Science Basic
Research Plan in Shaanxi Province of China (No. 2016JZ021), China Postdoctoral Sci-
ence Foundation (No. 2017M613083), and National Key Research and Development
Program of China (2017YFB0802202).

References

1. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword
searches over encrypted data. In: Qing, S., Mao, W., López, J., Wang, G. (eds.)
ICICS 2005. LNCS, vol. 3783, pp. 414–426. Springer, Heidelberg (2005). doi:10.
1007/11602897 35

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (S&P 2007), Oakland,
California, USA, 20–23 May 2007, pp. 321–334 (2007)

3. Byun, J.W., Lee, D.H., Lim, J.: Efficient conjunctive keyword search on encrypted
data storage system. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol.
4043, pp. 184–196. Springer, Heidelberg (2006). doi:10.1007/11774716 15

http://dx.doi.org/10.1007/11602897_35
http://dx.doi.org/10.1007/11602897_35
http://dx.doi.org/10.1007/11774716_15


Towards Multi-user SE Supporting Boolean Query and Fast Decryption 37

4. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.:
Dynamic searchable encryption in very-large databases: data structures and imple-
mentation. In: 21st Annual Network and Distributed System Security Symposium,
NDSS 2014, San Diego, California, USA, 23–26 February 2014 (2014)

5. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 20

6. Chen, X., Li, J., Huang, X., Ma, J., Lou, W.: New publicly verifiable databases with
efficient updates. IEEE Trans. Dependable Sec. Comput. 12(5), 546–556 (2015)

7. Chen, X., Li, J., Weng, J., Ma, J., Lou, W.: Verifiable computation over large data-
base with incremental updates. IEEE Trans. Comput. 65(10), 3184–3195 (2016)

8. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Proceedings of
the 13th ACM Conference on Computer and Communications Security, CCS 2006,
Alexandria, VA, USA, 30 October–3 November 2006, pp. 79–88 (2006)

9. Gajek, S.: Dynamic symmetric searchable encryption from constrained functional
encryption. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 75–89. Springer,
Cham (2016). doi:10.1007/978-3-319-29485-8 5

10. Goh, E.: Secure indexes. IACR Cryptology ePrint Archive 2003:216 (2003)
11. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over

encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24852-1 3

12. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: The ACM Conference on Computer and Communications Security, CCS
2012, Raleigh, NC, USA, 16–18 October 2012, pp. 965–976 (2012)

13. Kermanshahi, S.K., Liu, J.K., Steinfeld, R.: Multi-user cloud-based secure keyword
search. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 227–
247. Springer, Cham (2017). doi:10.1007/978-3-319-60055-0 12

14. Liu, J.K., Liang, K., Susilo, W., Liu, J., Xiang, Y.: Two-factor data security protec-
tion mechanism for cloud storage system. IEEE Trans. Comput. 65(6), 1992–2004
(2016)

15. Nishide, T., Yoneyama, K., Ohta, K.: Attribute-based encryption with partially
hidden encryptor-specified access structures. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 111–129.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-68914-0 7

16. Ryu, E., Takagi, T.: Efficcient conjunctive keyword-searchable encryption. In: 21st
International Conference on Advanced Information Networking and Applications
(AINA 2007), Workshops Proceedings, 21–23 May 2007, Niagara Falls, Canada,
vol. 1, pp. 409–414 (2007)

17. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE S & P 2000, Berkeley, California, USA, 14–17 May 2000, pp. 44–55
(2000)

18. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, 23–26 February 2014 (2014)

19. Sun, S.-F., Liu, J.K., Sakzad, A., Steinfeld, R., Yuen, T.H.: An efficient non-
interactive multi-client searchable encryption with support for boolean queries.
In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS
2016. LNCS, vol. 9878, pp. 154–172. Springer, Cham (2016). doi:10.1007/
978-3-319-45744-4 8

http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://dx.doi.org/10.1007/978-3-319-29485-8_5
http://dx.doi.org/10.1007/978-3-540-24852-1_3
http://dx.doi.org/10.1007/978-3-319-60055-0_12
http://dx.doi.org/10.1007/978-3-540-68914-0_7
http://dx.doi.org/10.1007/978-3-319-45744-4_8
http://dx.doi.org/10.1007/978-3-319-45744-4_8


38 Y. Wang et al.

20. Wang, J., Chen, X., Huang, X., You, I., Xiang, Y.: Verifiable auditing for out-
sourced database in cloud computing. IEEE Trans. Comput. 64(11), 3293–3303
(2015)

21. Wang, J., Ma, H., Tang, Q., Li, J., Zhu, H., Ma, S., Chen, X.: Efficient verifiable
fuzzy keyword search over encrypted data in cloud computing. Comput. Sci. Inf.
Syst. 10(2), 667–684 (2013)

22. Wang, P., Wang, H., Pieprzyk, J.: Keyword field-free conjunctive keyword searches
on encrypted data and extension for dynamic groups. In: Franklin, M.K., Hui,
L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 178–195. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-89641-8 13

23. Wang, S., Liang, K., Liu, J.K., Chen, J., Yu, J., Xie, W.: Attribute-based data
sharing scheme revisited in cloud computing. IEEE Trans. Inf. Forensics Secur.
11(8), 1661–1673 (2016)

24. Wang, Y., Wang, J., Chen, X.: Secure searchable encryption: a survey. J. Commun.
Inf. Netw. 1(4), 52–65 (2016)

25. Zhang, Y., Chen, X., Li, J., Wong, D.S., Li, H., You, I.: Ensuring attribute pri-
vacy protection and fast decryption for outsourced data security in mobile cloud
computing. Inf. Sci. 379, 42–61 (2017)

26. Zuo, C., Macindoe, J., Yang, S., Steinfeld, R., Liu, J.K.: Trusted boolean search
on cloud using searchable symmetric encryption. In: IEEE Trustcom 2016, pp.
113–120. IEEE (2016)

http://dx.doi.org/10.1007/978-3-540-89641-8_13


An Efficient Key-Policy Attribute-Based
Searchable Encryption in Prime-Order Groups

Ru Meng1(B), Yanwei Zhou1, Jianting Ning2, Kaitai Liang3, Jinguang Han3,
and Willy Susilo4

1 School of Computer Science, Shaanxi Normal University, Xi’an, China
{mengru,zyw}@snnu.edu.cn

2 Department of Computer Science,
National University of Singapore, Singapore, Singapore

ningjt@comp.nus.edu.sg
3 Department of Computer Science, University of Surrey, Guildford, UK

ktliang88@gmail.com, jghan22@gmail.com
4 School of Computing and Information Technology,

Institute of Cybersecurity and Cryptology, University of Wollongong,
Wollongong, Australia
wsusilo@uow.edu.au

Abstract. Public key encryption with keyword search (PEKS) is
a promising cryptographic mechanism to enable secure search over
encrypted data in cloud. The mechanism allows a semi-trusted cloud
server to return related encrypted contents without knowing what the
query is and what the corresponding contents are. It has been combined
with attribute based encryption (ABE) to support more expressiveness
in search. Most of the existing searchable ABE schemes, however, are
restricted to heavy complexity. In particular, the size of ciphertext and
pairing cost in the test phase are both linear in the size of the key-
word set, say O(n), where n is the number of keyword. This limita-
tion hinders the scalability of searchable ABE in practice. To address
this long-lasting open problem, this paper proposes a new key-policy
attribute-based search encryption (KP-ABSE) scheme. Our construction
can be regarded as a novel combination of fast decryption, anonymous-
like encryption, and KP-ABE technologies. As of independent interest,
the scheme is built in asymmetric bilinear groups. The scheme is fur-
ther proved secure under the asymmetric decisional DBDH, decisional
q-BDHE and decisional linear assumptions in the standard model. Com-
pared with existing KP-ABSE schemes, our new scheme achieves the fol-
lowing properties: (1) flexible access structure for search - any monotonic
access structure, (2) constant ciphertext size, (3) constant pairing oper-
ations in the test phase.

Keywords: Key-policy attribute-based encryption · Searchable encryp-
tion · Prime-order groups · Efficiency

c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 39–56, 2017.
https://doi.org/10.1007/978-3-319-68637-0_3



40 R. Meng et al.

1 Introduction

The proliferation of cloud computing has attracted many attentions from aca-
demic and industrial communities since it provides powerful computing capa-
bility and considerable storage space. It can reduce Internet users’ local data
management and maintenance cost significantly. Users can access cloud services
whenever and wherever once they are authorized by service providers. Due to
its merits, companies and individuals are willing to store their data in a remote
cloud. Since users will lose their control on data after outsourcing their data to
the cloud, they concern that the data may be illegally accessed by the cloud
server administrator and network attackers. Considering the confidentiality of
the outsourced data, users often encrypt it first, and then store the ciphertext to
cloud servers. However, it is difficult to search an “exact” file among encrypted
data stored in cloud.

In 2000, Song et al. [45] first proposed the definition of searchable encryption
(SE). In [45], a data owner is allowed to encrypt both files and the corresponding
keywords, and store the ciphertexts to cloud. When searching for a file with
keywords W, the data user generates a trapdoor using his/her secret key and
further sends the trapdoor to the server. After receiving the trapdoor, the server
searches out the encrypted file where the keywords W matches, and returns the
search result to the user. Finally, the user can use the secret key to decrypt the
ciphertext and obtain the file. In 2004, Boneh et al. [8] introduced the concept of
public-key encryption with keyword search (PEKS), and constructed a concrete
PEKS scheme based on bilinear groups with prime order. In 2006, Khader [25]
proposed an identity-based PEKS derived from identity-based encryption (IBE).
In 2007, Abdalla et al. [1] presented a generic construction of PEKS by using
anonymous IBE, and discussed the consistency in PEKS schemes.

Previous PEKS schemes can only support simple query and the size of cipher-
texts and trapdoor (search token) is super-polynomial in the number of key-
words. In practice, fine-grained access control is required. In 2013, Lai et al. [28]
proposed an expressive searchable encryption scheme based on KP-ABE scheme.
This scheme supports any monotonic formula, for example, (“sender : Bob AND
priority : urgent OR subject : recruitment”). However, the trapdoor can leak
the information of keywords, namely the test algorithm can detect whether the
encrypted data contains some keywords in trapdoor. In 2014, Lv et al. [38]
proposed an expressive and secure asymmetric searchable encryption (ESASE)
scheme, which was based on an asymmetric bilinear group with composite order
and supports non-monotonic query. Nevertheless, the scheme only disclosed
whether the keywords in the trapdoor are primed or not. In 2016, Cui et al.
[14] proposed an efficient and expressive keyword searchable encryption scheme
constructed in a bilinear group with prime order. The scheme is selectively secure
in the standard model. It supports keyword search policies in terms of conjunc-
tive, disjunctive and any monotonic Boolean formula. However, it brings some
critical issue to search efficiency. In most existing expressive searchable encryp-
tion schemes derived from ABE, both the size of ciphertext and the search cost
are linear in the number of keywords. Specifically, in the test (search) algorithm,



An Efficient Key-Policy Attribute-Based Searchable Encryption 41

it usually requires one pairing operation for a single keyword (embedded in a
given ciphertext). Hence, the existing expressive searchable encryption schemes
built on top of ABE are not efficient and scalable.

Attrapadung et al. [2] and Hohenberger et al. [24] presented KP-ABE schemes
with constant-size ciphertext and fast decryption, respectively. In 2014, Lai
et al. [27] proposed a new KP-ABE with constant-size ciphertext and fast decryp-
tion, which is adaptability secure in the standard model. KP-ABE schemes do
not consider the privacy issue of attributes associated with ciphertext. However,
searchable encryption requests that ciphertext should not reveal any informa-
tion about keywords except that a valid trapdoor is provided.In this paper, we
propose a new efficient key-policy attribute-based searchable encryption (KP-
ABSE) scheme which is derived from an asymmetric bilinear group with prime
order. In this scheme, the privacy of keyword in both ciphertext and trapdoor
are addressed. Moreover, both the size of ciphertext and the computation cost of
the test algorithm are constant. Compared with expressive searchable encryption
based on bilinear groups with prime order, our work is more efficient.

1.1 Technical Roadmap

Protecting Privacy of Keywords in Ciphertext. (1) We use anonymity from the
asymmetric technique [15] to encrypt keywords in group G; while trapdoors are
generated in group Ĝ to prevent cloud servers, and adversaries from raising key-
word guess attacks using pairing operations [5]. As claimed in [15], asymmetric
bilinear groups provide good properties, including compact representation of
group elements, a flexible choice of elliptic curve implementation [18] and strong
security [20]. (2) We use the linear splitting technique [9] to split the random
exponent used to hide keywords into two parts. As a result, adversaries cannot
obtain any information about keywords even if they acquire the ciphertext and
public parameters. Secret keys are randomized in the test algorithm.

Protecting Privacy of Keywords in Access Structure. We divide each keyword
into two parts: the keyword name and the keyword value [26]. In practice, key-
word values are more sensitive than keyword names. If the set of attributes
associated with a users private key does not satisfy the access structure associ-
ated with a ciphertext, attribute values in the access structure are hidden, while
other information, such as attribute names, about the access structure is public.
Suppose that the access structure in personal health database is (illness = dia-
betes) OR (gender = male) OR (department = medical) OR (affiliation= city
hospital) where illness, gender, department and affiliation are keyword names
and diabetes, male, medical and city hospital are keyword values. The keyword
names contains less sensitive information and can be released, while keyword
values are very sensitive and should be kept secret. Hence, in our scheme, we
mainly consider to protect the privacy of keyword values. PKES is subject to the
offline keywords dictionary guessing attacks since anyone who knows the trap-
door and public parameters can conclude the value embedded in the trapdoor
by executing exhaustive search. To prevent the above attacks, the designated



42 R. Meng et al.

technique [43] is used. The idea is that trapdoors are encrypted under the public
key of the cloud server such that adversaries cannot acquire any information
about keywords without knowing the secret key. Therefore, trapdoors can be
transferred in public channels.

1.2 Contributions

We propose a new key-policy attribute-based search encryption scheme (KP-
ABSE) which is derived from KP-ABE in asymmetric bilinear group with prime
order. The proposed scheme has the following good properties: (1) It is expressive
and supports any monotonic access structure; (2) It has constant-size ciphertext
and supports fast decryption; (3) The number of pairing operations needed in
the test algorithm is constant. Therefore, it reduces the computation cost on
cloud server side as well as communication cost between the data users and
cloud. One disadvantage of our scheme is that the size of trapdoors is O(n · �),
where n is the number of attributes in the system and � is the number of leaf
nodes in the access structure. Note that we will regard this as an open problem
of our research work. However, depending on applications, one should take into
consideration if the increase of trapdoor size is worthy.

1.3 Related Work

Attribute-Based Encryption. To implement fine-grained access control on sen-
sitive data, Sahai and Water [44] introduced the definition of attribute-based
encryption (ABE). ABE schemes can be classified into two types: key-policy
ABE (KP-ABE) [21] and ciphertext-policy ABE (CP-ABE) [4]. In a KP-ABE
scheme [21], secret keys are associated with access structures; while ciphertexts
are labeled with sets of attributes. A user can decrypt a ciphertext if and only
if the access structure associated with his secret key can be satisfied by the
attributes labeled in ciphertexts. On the contrary, in a CP-ABE scheme [4],
secret keys are labeled with sets of attributes; while ciphertexts are associated
with access structures.

Goyal et al. [21] proposed a KP-ABE scheme which supports any monotonic
access structure. Later, Ostrovsky et al. [41] presented a KP-ABE system which
supports non-monotonic access structures. Lewko et al. [29] proposed the first
fully secure KP-ABE scheme supporting any monotonic access structure. Chase
et al. [10,11] considered multi-authority KP-ABE schemes. The first CP-ABE
was proposed by Bethencourt et al. [4] and was proven to be secure in the generic
group model. Later, Cheung and Newport [12] presented a CP-ABE scheme
which is secure in the standard model; while, it can only support restricted
access structures, for example AND gate. Lewko et al. [30] considered multi-
authority CP-ABE schemes to reduce the trust on central authority. Some ABE
variants and applications can be seen in [32,33,39,40,46].

Attribute-Based Encryption with Fast Decryption. In KP-ABE schemes, both
the size of the ciphertext and the decryption cost are linear with the number of



An Efficient Key-Policy Attribute-Based Searchable Encryption 43

required attributes. To reduce the size of ciphertext and decryption cost, some
new KP-ABE were presented [2,27,44]. Meanwhile, in CP-ABE scenario, the size
of ciphertext and decryption cost were also considered. Emura et al. [16] pro-
posed a CP-ABE scheme with constant-size ciphertext which can only supports
restricted access structures, such as AND gate. Herranz et al. [23] described a
CP-ABE scheme with constant-size ciphertext which supports threshold access
structures. Hohenberger [24] proposed a KP-ABE with fast decryption. In [24],
the decryption cost is constant, instead of linear with the number of required
attributes. In 2014, Lai et al. [27] proposed a KP-ABE with constant-size cipher-
text and fast decryption.

Keyword search over Encrypted Data. Boneh et al. [8] initiated the research on
PEKS and gave a specific construction which only supports equality queries.
Abdalla et al. [1] addressed the consistency in PEKS schemes, and analyzed the
relationship between PEKS and anonymous IBE. To guarantee the correctness
of the searching results, verifiable keyword search schemes have been proposed
[3,17,42]. In these schemes, each keyword is represented as the root of one poly-
nomial. It is easy to check whether a keyword is included by evaluating the
polynomial on the keyword and verify whether the output is zero or not. Zheng
et al. [48] proposed a novel PEKS called verifiable attribute-based keyword search
(VABKS). This allows legitimate data users to outsource the (often costly) search
operations to cloud servers and verify whether cloud servers have faithfully exe-
cuted the search operations. Some variants of ABE searchable encryption have
been proposed in [34–37].

1.4 Organization

The rest of this paper is organized as follows. In Sect. 2, we briefly review defin-
itions and models used in this paper. Section 3 describes the preliminaries used
throughout this paper and notions of KP-ABSE. In Sect. 4, a concrete KP-ABSE
scheme is presented. We compare our work with other related works in Sect. 5.
Section 6 concludes the paper.

2 System Definitions

2.1 System Algorithms

A key-policy attribute-based search encryption (KP-ABSE) system includes four
parties, namely, data owner, cloud server, Trusted Key Generator (TKG), and
data user.

Definition 1. A KP-ABSE system consists of the following algorithms [14]:

1. Setup(1λ) → (pars,msk): intaking a security parameter λ, the TKG runs
the setup algorithm to construct the public parameters pars, and the master
secret key msk. The pars is published, while the msk is kept secret.



44 R. Meng et al.

2. sKeyGen(pars) → (pks, sks): intaking pars, the TKG runs the server key
generation algorithm to construct the public key pks and the private key sks

for the cloud server.
3. Encrypt(pars,W) → CT : intaking pars, and a set of keywords W, a data

owner runs the encryption algorithm to output a ciphertext CT .
4. Trapdoor(pars,msk, pks,A) → TM: intaking pars, msk, pks and an access

structure A (corresponding to some keyword set), the TKG runs the trapdoor
generation algorithm to construct a trapdoor TM, and further sends TM to the
cloud server.

5. Test(pars, sks, CT, TM) → 0/1: Intaking pars, sks, CT and TM, the cloud
server runs the test algorithm. It outputs 1 if the keyword set embedded in
CT matches the access structure in TM, and 0 otherwise.

Correctness: A key-policy attribute-based search encryption is correct if

Pr

⎡
⎢⎢⎣

Setup(1λ) → (pars,msk);
Test(pars, sks, CT, TM) → 1 Encrypt(pars,W) → CT ;

sKeyGen(pars) → (pks, sks);
Trapdoor(pars,msk, pks,A) → TM

⎤
⎥⎥⎦ = 1.

2.2 System Workflow

The architecture of our system workflow is shown in Fig. 1, which is composed
of four entities: a trusted key generator (TKG) who publishes the system
parameter and holds a master private key and is responsible for trapdoor gener-
ation for the system. We may regard the TKG as trusted device(s), like TPM.
A user may make use of this device in some untrusted computers (like those in
library or public area) to generate a token for further search. But the device may
not have sufficient knowledge about positive or negative cases (on access con-
trol rules). Because it may not be allowed to access, say the access control list.

Fig. 1. System workflow



An Efficient Key-Policy Attribute-Based Searchable Encryption 45

data owners who outsource encrypted data to a public cloud, data users who
are privileged to search and access encrypted data, and a cloud server who
executes the keyword search operations for data users. To enable the cloud server
to search over ciphertexts, the data owners append every encrypted document
with encrypted keywords. A data user issues a trapdoor request by sending a
keyword access structure to the TKG which generates and returns a trapdoor
corresponding to the access structure. After obtaining a trapdoor, the data user
sends the trapdoor and the corresponding partial hidden access structure (i.e.,
the access structure without keyword values) to the designated cloud server. The
latter performs the testing operations between each ciphertext and the trapdoor
using its private key, and forwards the matching ciphertexts to the data user.

2.3 Adversary Models

In this paper, we assume that data owner, data user and the cloud server are
semi-trusted, while the TKG is fully trusted. However, for a data user, he/she
may choose to guess the keyword set embedded into a given ciphertext without
the help of the server. For a “curious” server, it may curiously guess the keyword
set in the ciphertext of which the corresponding search trapdoor is not given; it
may also guess the keyword information from a given search trapdoor. Therefore,
we define the following three security models.

Indistinguishability Against Chosen Keyword-Set Attacks (IND-
CKA). This security model focuses on the privacy of the keyword set associated
with a given ciphertext. There are two kinds of adversaries in this model, one
is outside-attacker, and the other is the cloud server itself. Below, we define
two security games by constructing interactions between a challenger B and an
adversary A.

IND-CKA Security for Outsider. This security game between A1 and B is
used to show that a system outsider, without the help of the cloud server, cannot
tell if a given ciphertext contains some specified keyword set (here the outsider
is allowed to commit to two known keyword sets at the outset of the game).

Definition 2. A KP-ABSE scheme is IND-CKAA1 secure if no PPT adver-
sary A1 can win the game below with non-negligible advantage [14].

1. Init. A1 commits to two equal length challenge keyword sets W∗
0, W

∗
1.

2. Setup. B runs Setup(1λ), and further sends pars to A1. It runs
sKeyGen(pars) and next returns pks to A1.

3. Phase 1. A1 issues search trapdoor queries to B by submitting (M1, ρ1,
{Wρ1(i)}), ..., (Mq1 , ρq1 , {Wρq1 (i)

}). B returns the corresponding trapdoors
to A1 by running the algorithm Trapdoor.

4. Challenge. B returns the challenge ciphertext CT ∗ = Encrypt(pars, W∗
β)

to A1, where β ∈R {0, 1}. Note that the challenge ciphertext cannot match
any trapdoor constructed in Phase 1 (namely, both of the challenge keyword
sets cannot match the given trapdoors).



46 R. Meng et al.

5. Phase 2. A1 continues making queries as in Phase 1, by issuing (Mq1+1,
ρq1+1, {Wρq1+1(i)}), ..., (Mq, ρq, {Wρq(i)}), with a restriction that the queries
cannot match the given challenge keyword sets.

6. Guess. A1 outputs a guess bit β′ ∈ {0, 1}. If β = β′, A1 wins.

The advantage of A1 is defined as AdvA1(1
λ) = |Pr[β′ = β] − 1

2 |.

IND-CKA Security for the Cloud Server. This security game between A2

and B is used to show that the cloud server, without a valid search trapdoor,
cannot tell if a given ciphertext contains some specified keyword set (here the
cloud server is allowed to commit to two “known” keyword sets in advance).

Definition 3. A KP-ABSE scheme is IND-CKAA2 secure if no PPT adver-
sary A2 can win the game below with non-negligible advantage [14].

1. Init. A2 commits to two equal length challenge keyword sets W∗
0, W

∗
1.

2. Setup. B runs Setup(1λ) to send pars to A2. It further runs sKeyGen(pars)
to return pks, sks to A2.

3. Phase 1. A2 issues search trapdoor queries to B by submitting (M1, ρ1,
{Wρ1(i)}), ..., (Mq1 , ρq1 , {Wρq1 (i)

}). For each query (Mj , ρj , {Wρj(i)}), j ∈
[1, q1], B returns the corresponding trapdoor TMj

to A2 by running the algo-
rithm Trapdoor.

4. Challenge. B randomly chooses β ∈ {0, 1} and returns the challenge cipher-
text CT ∗ = Encrypt(pars, W∗

β) to A2 with a restriction that the challenge
ciphertext cannot match any trapdoor given in Phase 1.

5. Phase 2. A2 continues making queries by issuing (Mq1+1, ρq1+1,
{Wρq1+1(i)}), ..., (Mq, ρq, {Wρq(i)}), with a restriction that the queries cannot
match the given challenge keyword sets.

6. Guess. A2 outputs a guess bit β′ ∈ {0, 1}. If β = β′, A2 wins.

The advantage of A2 is defined as AdvA2(1
λ) = |Pr[β′ = β] − 1

2 |.
For A ∈ {A1,A2}, an KP-ABSE system is selectively IND-CKA secure if the

advantage function referring to the security Game
(IND)
Π,A , Adv

(IND)
Π,A (λ) = Pr[β �=

β′] − 1
2 is negligible in the security parameter λ for any probabilistic polynomial

time adversary algorithm A.

3 Preliminaries

3.1 Bilinear Maps

Let G, Ĝ and GT be all multiplicative groups of prime order p ∈ Θ(2λ), respec-
tively generated by g,ĝ and e : G× Ĝ → GT is an efficient bilinear map with the
following properties: (1) Bilinearity : for all a, b ∈R Zp, e(ga, ĝb) = e(g, ĝ)ab; (2)
Non-degeneracy : e(g, ĝ) �= 1GT

, where 1GT
is the unit of GT ; (3) Computability :

for all g ∈ G and ĝ ∈ Ĝ, e(g, ĝ) can be computed efficiently.



An Efficient Key-Policy Attribute-Based Searchable Encryption 47

3.2 Complexity Assumptions

Definition 4. Asymmetric Decisional Bilinear Diffie-Hellman (DBDH)
Assumption [47] is that all Probabilistic Polynomial Time (PPT) algorithm A
have an advantage negligible in λ of distinguishing e(g, ĝ)abc ∈ GT from a random
element in GT by given the vector y = (g, ga, gc, ĝ, ĝa, ĝb). The advantage of A
is defined as |Pr[A(y, e(g, ĝ)abc) = 1]−Pr[A(y, Z) = 1]|, where the probability is
over the randomly chosen g ← G,ĝ ← Ĝ, a, b, c, and the random bits consumed
by A.

Definition 5. Asymmetric Decisional q-Bilinear Diffie-Hellman Expo-
nent (q-BDHE) Assumption [6] is that all PPT algorithms A have an advan-
tage negligible in λ of distinguishing e(g, ĝ)aq+1b ∈ GT from a random element
in GT by given the vector

y = g, gb, ga, ga2
, ..., gaq

, gaq+2
, ĝ, ĝa, ĝa2

, ..., ĝaq

, ĝaq+2
..., ĝa2q

, T

The advantage of A is defined as |Pr[A(y, e(g, ĝ)aq+1b) = 1] − Pr[A(y, T ) = 1]|,
where the probability is over the randomly chosen a, b, and the generator g,ĝ,
and the random bits consumed by A.

Definition 6. Asymmetric Decisional Linear Assumption [7] is that all
PPT algorithms A have an advantage negligible in λ of distinguishing Z =
gx3+x4 ∈ G from a random element in G by given the vector y = {g, gx1 , gx2 ,
gx1x3 , gx2x4 , ĝ, ˆgx1 , ˆgx2}. The advantage of A is defined as |Pr[A(y, gx3+x4 = 1]−
Pr[A(y, Z) = 1]|, where the probability is over the randomly chosen x1, x2, x3,
x4 ∈ Zp, and the random bits consumed by A. We remark that the elements
ĝ, ˆgx1 , ˆgx2 were not explicitly included in Boenh’s et al. original formulation.

3.3 Building Blocks

Definition 7. Access Structure [31]. Let {P1, ..., Pn} be a set of parties. A
collection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C: B ∈ A and B ⊆ C, then C ∈
A. An access structure (respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets of {P1, ..., Pn}, i.e.,
A ⊆ 2{P1,...,Pn} \ {}. The set in A are called the authorized sets, and the sets not
in A are called the unauthorized sets.

Note in our setting keywords will play the role of parties and we only consider
the monotone access structures, and the negation of a keyword is regarded as a
separate keyword.

Definition 8. Linear Secret-Sharing Schemes (LSSS) [31]. A secret shar-
ing scheme Π over a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.



48 R. Meng et al.

2. There exists a matrix M called the share-generating matrix for Π. The matrix
M has l rows and n columns. For all i = 1, ...., l, the ith row of M is labeled
by a party ρ(i) (ρ is a function from {1, ..., l} to P ). When we consider the
column vector v = (α, r2, ..., rn), where α ∈ Zp is the secret to be shared and
r2, ..., rn ∈ Zp are randomly chosen, then Mv is the vector of l shares of the
secret α according to Π. The share (Mv)i belongs to party ρ(i).

The linear reconstruction property: let Π be an LSSS for access structure A,
W denote an authorized set, and define I ⊆ {1, ..., l} as I = {i|ρ(i) ∈ W }.
The vector (1, 0, ..., 0) is in the span of rows of M indexed by I, and there
exist constants {ωi ∈ Zp}i∈I such that, for any valid shares {λi} of a secret α
according to Π, we have

∑
i∈I ωiλi = α. These constants {ωi} can be found in

time polynomial in the size of share-generating matrix M. But for unauthorized
sets of rows I, the target vector is not in the span of the rows of the set I.
Moreover, there will exists a vector ω, such that ω·(1, 0, ..., 0) = −1 and ω·Mi = 0
for all i ∈ I.

Definition 9. Target Collision Resistant Hash Function [13]. A TCR
hash function H guarantees that given a random element x which is from the
valid domain of H, a PPT adversary A cannot find y �= x such that H(x) =
H(y). We let AdvTCR

H,A = Pr[(x, y) ← A(1k) : H(x) = H(y), x �= y, x, y ∈ DH]
be the advantage of A in successfully finding collisions from a TCR hash function
H, where DH is the valid input domain of H, k is the security parameter. If a
hash function is chosen from a TCR hash function family, AdvTCR

H,A is negligible.

4 A New KP-ABSE

4.1 Construction

• Setup(1λ) → (pars,msk). The setup algorithm takes as input a security
parameter 1λ. It chooses bilinear groups G, Ĝ of prime order p with generators
g, ĝ, respectively. It symmetrically random chooses u, h, δ ∈ G, û, ĥ, δ̂ ∈ Ĝ and
α, d1, d2, d3, d4 ∈ Z

∗
p. It then sets g1 = gd1 , g2 = gd2 , g3 = gd3 , g4 = gd4 . It

also chooses a collision-resistant hash function H that maps group elements
in GT to group elements in G. The public parameters pars and the master
secret key msk are given by

pars = (H, g, u, h, δ, û, g1, g2, g3, g4, e(g, ĝ)α),

msk = (α, ĝ, ĥ, δ̂, d1, d2, d3, d4).

• sKeyGen(pars) → (pks, sks). The algorithm takes as input the public para-
meter pars. It randomly chooses κ ∈ Z

∗
p and outputs the public and private

key pair (pks, sks) = (gκ, κ) for the cloud server.
• Trapdoor(pars, pks, msk, A = (M, ρ,T )) → TM,ρ. The algorithm takes

as input the public parameter pars, the server public key pks, the master
private key msk and an LSSS access structure (M, ρ, T ), where M is l × n



An Efficient Key-Policy Attribute-Based Searchable Encryption 49

share-generating matrix, ρ is a map from each row of M to an attribute name,
T = (zρ(1), ..., zρ(l)) and zρ(i) is the value of keyword name ρ(i) specified by
the access formula. It randomly chooses a vector v = (α, y2, ..., yn) ∈ Z

n
p , and

computes λi = v ·Mi for each i = [l]. Let Qi denote the set [n]\{ρ(i)} for each
i ∈ [l]. For each row Mi of M, it chooses random r, r′, t1,1, t1,2, ..., tl,1, tl,2 ∈ Zp,
computes D = gr, D̂ = ĝr′

, and outputs the trapdoor as TM,ρ = ((M,ρ), D,
D̂,{Di, Ri, Ti,1, Ti,2, Ti,3, Ti,4, {Qi,j , Q

′
i,j , Q

′′
i,j , Q

′′′
i,j}j∈Qi

}i∈[l])

Di = ĝλi δ̂d1d2ti,1+d3d4ti,2 , Ri = H(e(pks, D̂)r) · ĝd1d2ti,1+d3d4ti,2 ,

Ti,1 = (ûzρ(i) ĥ)−d2ti,1 , Qi,j = (ûzj )−d2ti,1 ;

Ti,2 = (ûzρ(i) ĥ)−d1ti,1 , Q′
i,j = (ûzj )−d1ti,1 ;

Ti,3 = (ûzρ(i) ĥ)−d4ti,2 , Q′′
i,j = (ûzj )−d4ti,2 ;

Ti,4 = (ûzρ(i) ĥ)−d3ti,2 , Q′′′
i,j = (ûzj )−d3ti,2 .

• Encrypt(pars,W = (w1, ...,wn)) → CT . The algorithm takes as input the
public parameter pars and a keyword set W (each keyword is denoted as
keyword name and keyword value, i is the generic keyword name and wi

is the corresponding keyword value), where w1, ...,wn ∈ Zp are the values
of W . It chooses random μ, s, s1, s2 ∈ Zp, and outputs a ciphertext CT =
(C,C ′, C ′′, E1, E2, E3, E4) as

C = e(g, ĝ)αμ, C ′ = gμ, C ′′ = δ−μ(h
n∏

i=1

uwi)s

E1 = gs−s1
1 , E2 = gs1

2 , E3 = gs−s2
3 , E4 = gs2

4 .

• Test(pars, sks, CT, TM,ρ). The algorithm takes as input the public parameter
pars, the server private key sks, a ciphertext CT = (C,C ′, C ′′, E1, E2, E3, E4)
on a keyword set W and a trapdoor TM,ρ associated with an access structure
A = (M, ρ, T ). If the keyword set W does not satisfy A, output ⊥. Otherwise,
if the keyword set W satisfies A, the test algorithm first finds I ⊆ [1, l] and
constants {ωi}i∈I ∈ Zp such that

∑
i∈I ωiMi = (1, 0, ..., 0) and wρ(i) = zρ(i)

for ∀i ∈ I. The algorithm then does as follows:
(1) Pre-processing step on the private key

Let Qi denote the set [n] \ {ρ(i)} for each i ∈ I. Note that if j ∈ Qi, then
j �= ρ(i). Since for each i ∈ I, wρ(i) = zρ(i), then we have

T̂i,1 = Ti,1

∏
j∈Qi

Q
wj
i,j = (ĥ

n∏
j=1

ûwj)−d2ti,1 ,

T̂i,2 = Ti,2

∏
j∈Qi

(Q′
i,j)

wj = (ĥ
n∏

j=1

ûwj)−d1ti,1 ,



50 R. Meng et al.

T̂i,3 = Ti,3

∏
j∈Qi

(Q′′
i,j)

wj = (ĥ
n∏

j=1

ûwj)−d4ti,2 ,

T̂i,4 = Ti,4

∏
j∈Qi

(Q′′′
i,j)

wj = (ĥ
n∏

j=1

ûwj)−d3ti,2 ,

(2) IM,ρ is a set of minimum subsets satisfied (M, ρ), it then checks whether
there is an I ∈ IM,ρ statisfying

e(C
′
,
∏

i∈I
D

ωi
i )e(C

′′
,
∏

i∈I
(

Ri

H2(e(D, D̂)κ)
)
ωi )e(E1,

∏

i∈I
(T̂i,1)

ωi )e(E2,
∏

i∈I
(T̂i,2)

ωi )

· e(E3,
∏

i∈I
(T̂i,3)

ωi )e(E4,
∏

i∈I
(T̂i,4)

ωi )

= e(g
μ

,
∏

i∈I
(ĝ

λi δ̂
d1d2ti,1+d3d4ti,2 )

ωi ) · e(δ
−μ

(h
n∏

i=1

u
wi )s

,
∏

i∈I
(ĝ

d1d2ti,1+d3d4ti,2 )
ωi )

e(g
s−s1
1 , (ĥ

n∏

j=1

û
wj )

−d2ti,1wi )e(g
s1
2 , (ĥ

n∏

j=1

û
wj )

−d1ti,1wi )

· e(g
s−s2
3 , (ĥ

n∏

j=1

û
wj )

−d4ti,2wi )e(g
s2
4 , (ĥ

n∏

j=1

û
wj )

−d3ti,2wi )

= e(g
μ

,
∏

i∈I
ĝ

λiωi )e(g
μ

,
∏

i∈I
(δ̂

d1d2ti,1+d3d4ti,2 )
ωi )

· e(δ
−μ

,
∏

i∈I
(ĝ

d1d2ti,1+d3d4ti,2 )
ωi )e((h

n∏

i=1

u
wi )s

,
∏

i∈I
ĝ
(d1d2ti,1+d3d4ti,2)ωi )

e(g
sd1 , (ĥ

n∏

j=1

û
wj )

−d2ti,1wi )e(g
−d1s1 , (ĥ

n∏

j=1

û
wj )

−d2ti,1wi )e(g
d2s1 , (ĥ

n∏

j=1

û
wj )

−d1ti,1wi )

e(g
sd3 , (ĥ

n∏

j=1

û
wj )

−d4ti,2wi )e(g
−d3s2 , (ĥ

n∏

j=1

û
wj )

−d4ti,2wi )e(g
d4s2 , (ĥ

n∏

j=1

û
wj )

−d3ti,2wi )

= e(g, ĝ)
αμ

= C

4.2 Security Proof

Theorem 1. Under the asymmetric decisional DBDH assumption, the asym-
metric decisional q-BDHE assumption and the asymmetric decisional linear
assumption, our scheme is selectively indistinguishable against chosen keyword-
set attacks (selectively IND-CKA).

Proof. The proof is divided into two parts, depending on the role of the adver-
sary. In the first part, the adversary is assumed to be an outside attacker, and
in the second part, the adversary is assumed to be the cloud sever who performs
search operations. The proof details will be given in the full version of the paper
due to space limit.

5 Comparison

To specifically highlight the contributions of our research work, we compare our
scheme with three related works, namely [14,28,48]. Lai et al. [28] is an expressive
searchable encryption protocol built in composite order group, while [14,48] are



An Efficient Key-Policy Attribute-Based Searchable Encryption 51

expressive searchable encryption schemes with prime order group. Below, we
compare the above schemes in terms of communication cost, computation cost,
features and security. In [48], S is the number of the data user’s attributes,
and N is the number of attributes that are involved in the data owner’s access
control policy. Let |par|, |msk|, |TM,ρ|, |M | be the size of the public parameter,
the master private key, the trapdoor and the access structure, respectively. We
let |G|, |Ĝ|, and |GT | denote the size of the element in G, Ĝ,GT , respectively. Let
l be the number of keywords in an access structure, n be the maximum number
of keywords in the system, and m be the size of a keyword set associated with a
ciphertext. Denote E as an exponentiation operation, P as a pairing operation,
x1 as the number of elements in IM,ρ = {I1, ..., Ix1}, x2 as |I1| + · · · + |Ix1 |.

Table 1. Storage and communication overhead comparison

Public
parameter

Master private
key

Trapdoor Ciphertext Bilinear group

[28] n + 5 n + 4 2l + |M | m + 2 Composite

[48] 5 3 N + 3 S + 3 Prime

[14] 9 5 6l + |M | 5m + 2 Prime

Ours 10 8 (4n + 2)l + |M | 7 Asymmetric prime

From Table 1, it can be seen that only [28] is built on composite order group,
suffering from the heaviest communication cost (with linear cost in all metrics),
while others are in prime order group. According to [22], prime order group
have clear advantage in the parameter size over composite order group pairing-
friendly elliptic curves. Although being constructed in prime order group, [14,48]
come at O(S) and O(m) price in ciphertext storage/communication. However,
ours only requires constant value in the same metric. The reason behind the
constant cost (in our construction) relies on the “aggregation” of ciphertext
components, aggregating keyword set as a whole (much like some technique used
in hierarchical IBE). We note that the size of trapdoor in our scheme is bound
at O(nl). This seems as a trade-off between reducing the cost in ciphertext
and (meanwhile) enlarging the size of trapdoor. However, we here state that
increasing the size of trapdoor does bring efficiency in test phase. We will discuss
this in the next paragraph.

Table 2 shows that our scheme only requires constant pairing cost (7P ) in
test phase, while others are restricted to linear pairing cost. In the same metric,
the exponentiation cost of our scheme maintains the same magnitude as that
of others. Except [48], pairing computation exists in the encryption phase of
all other schemes. Compared to [28] (with composite order group), our scheme
may enjoy around 50 times faster in pairings (if [28] equips a 1024-bit composite
order elliptic curve) [19]. The decryption techniques used in [14,48] drag down
the efficiency of decryption. This is so because the pairings mainly depend on the
size of attribute set, in particular, an attribute needs one pairing computation.



52 R. Meng et al.

Table 2. Computation cost comparison

Trapdoor Enc Test

[28] 4lE 2(m + 1)E + P ≤ 2x2P + x2E

[48] (2N + 2)E (S + 4)E (2S + 2)P + SET

[14] (16l + 1)E (7m + 2)E + P ≤ (6x2 + 1)P + (x2 + 1)E

Ours (15l + 1)E (n + 6)E + P ≤ 7P + (x2 + 1)E

However, we employ “fast decryption” technology and auxiliary components Qi,j

into our construction, so that the test algorithm are free of linear cost, namely,
the efficiency of the test algorithm is not restricted to the size of attribute set.

We show the feature and security comparison in Table 3. We use KGA to
denote keyword guessing attacks. It is clear to see that our scheme supports
any monotonic assess structure while others only provide AND and OR level of
expressiveness. Enjoying more expressiveness, our scheme maintains the same
security level with Cui et al.’s scheme [14]. Zheng et al. [48] opted to use an
authenticated private channel to eliminate the keyword guessing attacks. How-
ever, it may not be scalable in practice. To enable publicly trapdoor delivery, [14]
and our schemes slightly degrade the keyword privacy level to only allow a des-
ignated server to launch KGA. We state that our scheme is the first of its type,
in the literature, to provide security and expressiveness simultaneously without
significantly jeopardizing the efficiency. It is worthy of mentioning that the gen-
eration/computation cost of trapdoor (in our scheme) can be further off-loaded
to the a trusted party holding the master private key (because of our sophisti-
cated construction technique), so that system user can enjoy lighter computation
complexity.

Table 3. Property and security comparison

Expressiveness Security Trapdoor delivery

[28] AND, OR Adaptive chosen keyword
attacks in standard model

Public channel

[48] AND, OR Selective security against
chosen-keyword attack in
ROM

Authenticated private channel

[14] Any
monotonic
access
structure

Selective indistinguishability
against chosen keyword set
attack in standard model

Public channel

Ours Any
monotonic
access
structure

Selective indistinguishability
against chosen keyword set
attack in standard model

Public channel



An Efficient Key-Policy Attribute-Based Searchable Encryption 53

6 Conclusions

Attribute-based keyword search has attracted many attentions since it can sup-
port secure search over encrypted data with expressive access structure. Nev-
ertheless, the size of ciphertexts but also the pairing cost (incurred in the test
phase) are linear in the number of keyword. That is the main drawback of the
most of the existing searchable encryption systems with ABE. To tackle the
above opened problem, we propose a new KP-ABES scheme with outstanding
features, namely expressive access structures, constant size ciphertext, and con-
stant pairing cost (in search). There are some interesting open problems brought
by this research work as well, for example, how to reduce the size of search trap-
door, and how to renew/provoke attribute.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions to improve the quality of the paper. This work
is supported by the National Natural Science Foundation of China (61572303), the
Summit of the Six Top Talents Program of Jiangsu Province (Grant No. 2015-DZXX-
020). The National Research Foundation, Prime Minister Office, Singapore under its
Corporate Laboratory@University Scheme, National University of Singapore, and Sin-
gapore Telecommunications Ltd.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: consistency
properties, relation to anonymous IBE, and extensions. J. Cryptol. 21(3), 350–391
(2008)

2. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19379-8 6

3. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 7

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: S&P 2007, pp. 321–334. IEEE Computer Society (2007)

5. Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random
oracles. J. Cryptol. 24(4), 659–693 (2011)

6. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005). doi:10.1007/11426639 26

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

8. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryp-
tion with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 30

http://dx.doi.org/10.1007/978-3-642-19379-8_6
http://dx.doi.org/10.1007/978-3-642-22792-9_7
http://dx.doi.org/10.1007/11426639_26
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30


54 R. Meng et al.

9. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006). doi:10.1007/11818175 17

10. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-70936-7 28

11. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority
attribute-based encryption. In: CCS 2009, pp. 121–130. ACM (2009)

12. Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: CCS 2007,
pp. 456–465. ACM (2007)

13. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2004)

14. Cui, H., Wan, Z., Deng, R., Wang, G., Li, Y.: Efficient and expressive keyword
search over encrypted data in the cloud. IEEE Trans. Dependable Secure Comput.
PP(99), 1 (2016)

15. Ducas, L.: Anonymity from asymmetry: new constructions for anonymous HIBE.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 148–164. Springer, Hei-
delberg (2010). doi:10.1007/978-3-642-11925-5 11

16. Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A ciphertext-policy
attribute-based encryption scheme with constant ciphertext length. In: Bao, F., Li,
H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00843-6 2

17. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: CCS 2012, pp. 501–512. ACM (2012)

18. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptol. 23(2), 224–280 (2010)

19. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol.
6110, pp. 44–61. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 3

20. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

21. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS 2006, pp. 89–98. ACM (2006)

22. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38980-1 22

23. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant size ciphertexts in thresh-
old attribute-based encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13013-7 2

24. Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryption.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 11

25. Khader, D.: Public key encryption with keyword search based on K-resilient IBE.
In: Gavrilova, M., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A.,
Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3982, pp. 298–308. Springer,
Heidelberg (2006). doi:10.1007/11751595 33

26. Lai, J., Deng, R.H., Li, Y.: Expressive CP-ABE with partially hidden access struc-
tures. In: ASIACCS 2012, pp. 18–19. ACM (2012)

http://dx.doi.org/10.1007/11818175_17
http://dx.doi.org/10.1007/978-3-540-70936-7_28
http://dx.doi.org/10.1007/978-3-540-70936-7_28
http://dx.doi.org/10.1007/978-3-642-11925-5_11
http://dx.doi.org/10.1007/978-3-642-00843-6_2
http://dx.doi.org/10.1007/978-3-642-13190-5_3
http://dx.doi.org/10.1007/978-3-642-38980-1_22
http://dx.doi.org/10.1007/978-3-642-13013-7_2
http://dx.doi.org/10.1007/978-3-642-13013-7_2
http://dx.doi.org/10.1007/978-3-642-36362-7_11
http://dx.doi.org/10.1007/11751595_33


An Efficient Key-Policy Attribute-Based Searchable Encryption 55

27. Lai, J., Deng, R.H., Li, Y., Weng, J.: Fully secure key-policy attribute-based
encryption with constant-size ciphertexts and fast decryption. In: ASIACCS 2014,
pp. 239–248. ACM (2014)

28. Lai, J., Zhou, X., Deng, R.H., Li, Y., Chen, K.: Expressive search on encrypted
data. In: ASIACCS 2013, pp. 243–252. ACM (2013)

29. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 4

30. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-20465-4 31

31. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 12

32. Li, X., Liang, K., Liu, Z., Wong, D.S.: Attribute-based encryption: traitor tracing,
revocation and fully security on prime order groups. In: CLOSER 2017, pp. 281–
292. SciTePress (2017)

33. Li, Y., Liang, K., Su, C., Wu, W.: DABEHR: decentralized attribute-based elec-
tronic health record system with constant-size storage complexity. In: Au, M.H.A.,
Castiglione, A., Choo, K.-K.R., Palmieri, F., Li, K.-C. (eds.) GPC 2017. LNCS,
vol. 10232, pp. 611–626. Springer, Cham (2017). doi:10.1007/978-3-319-57186-7 44

34. Liang, K., Huang, X., Guo, F., Liu, J.K.: Privacy-preserving and regular language
search over encrypted cloud data. IEEE Trans. Inf. Forensics Secur. 11(10), 2365–
2376 (2016)

35. Liang, K., Su, C., Chen, J., Liu, J.K.: Efficient multi-function data sharing and
searching mechanism for cloud-based encrypted data. In: ASIACCS 2016, pp. 83–
94. ACM (2016)

36. Liang, K., Susilo, W.: Searchable attribute-based mechanism with efficient data
sharing for secure cloud storage. IEEE Trans. Inf. Forensics Secur. 10(9), 1981–
1992 (2015)

37. Liu, J.K., Au, M.H., Susilo, W., Liang, K., Lu, R., Srinivasan, B.: Secure sharing
and searching for real-time video data in mobile cloud. IEEE Netw. 29(2), 46–50
(2015)

38. Lv, Z., Hong, C., Zhang, M., Feng, D.: Expressive and secure searchable encryption
in the public key setting. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M.
(eds.) ISC 2014. LNCS, vol. 8783, pp. 364–376. Springer, Cham (2014). doi:10.
1007/978-3-319-13257-0 21

39. Ning, J., Cao, Z., Dong, X., Wei, L.: Traceable and revocable CP-ABE with shorter
ciphertexts. Sci. China Inf. Sci. 59(11), 119102:1–119102:3 (2016)

40. Ning, J., Dong, X., Cao, Z., Wei, L., Lin, X.: White-box traceable ciphertext-
policy attribute-based encryption supporting flexible attributes. IEEE Trans. Inf.
Forensics Secur. 10(6), 1274–1288 (2015)

41. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: CCS 2007, pp. 195–203. ACM (2007)

42. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-36594-2 13

43. Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Improved searchable public key
encryption with designated tester. In: ASIACCS 2009, pp. 376–379. ACM (2009)

http://dx.doi.org/10.1007/978-3-642-13190-5_4
http://dx.doi.org/10.1007/978-3-642-20465-4_31
http://dx.doi.org/10.1007/978-3-642-32009-5_12
http://dx.doi.org/10.1007/978-3-642-32009-5_12
http://dx.doi.org/10.1007/978-3-319-57186-7_44
http://dx.doi.org/10.1007/978-3-319-13257-0_21
http://dx.doi.org/10.1007/978-3-319-13257-0_21
http://dx.doi.org/10.1007/978-3-642-36594-2_13


56 R. Meng et al.

44. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

45. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: S&P 2000, pp. 44–55. IEEE Computer Society (2000)

46. Wang, S., Liang, K., Liu, J.K., Chen, J., Jianping, Y., Xie, W.: Attribute-based
data sharing scheme revisited in cloud computing. IEEE Trans. Inf. Forensics
Secur. 11(8), 1661–1673 (2016)

47. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). doi:10.1007/11426639 7

48. Zheng, Q., Shouhuai, X., Giuseppe Ateniese, V.: VABKS: verifiable attribute-based
keyword search over outsourced encrypted data. In: INFOCOM 2014, pp. 522–530.
IEEE (2014)

http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_7


Secure Multi-label Classification over Encrypted
Data in Cloud

Yang Liu1, Xingxin Li1, Youwen Zhu1,2(B), Jian Wang1, and Zhe Liu1

1 College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

{liuyang005,lixingxin,zhuyw}@nuaa.edu.cn
2 Guangxi Key Laboratory of Trusted Software,

Guilin University of Electronic Technology, Guilin 541004, China

Abstract. In multi-label (ML) learning, each training instance is associ-
ated with a set of labels to present its multiple semantic information, and
the task is to predict the associated labels for each unclassified instance.
Nowadays, many multi-label learning approaches have been proposed,
unfortunately, all of the existing approaches did not consider the issue of
protecting the privacy information. In this paper, we propose a scheme
for secure multi-label classification over encrypted data in cloud. Our
scheme can outsource the multi-label classification task to the cloud
servers which dramatically reduce the storage and computation burden
of data owner and data users. Based on the theoretical proof, our scheme
can protect the privacy information of data owner and data users, the
cloud servers can not learn anything useful about the input data and
output multi-label classification results. Additionally, we evaluate our
computation complexity and communication overheads in detail.

Keywords: Multi-label learning · Cloud security · Privacy ·
Classification

1 Introduction

In traditional supervised learning, each instance is only associated with one
label in a set of candidate labels. However, in many real-world applications, one
instance is usually associated with multiple labels simultaneously. For example,
in text categorization, a document may belong to multiple topics like economy
and environment ; in gene function prediction, a gene may belong to several
functional classes like energy and transcription. Thus, multi-label learning has
been developed fast for these kinds of applications. In the multi-label learning,
each instance is associated with a set of labels, and the task is to predict the
associated label set for unclassified instances.

Nowadays, many approaches have been proposed for multi-label classification
problems, such as multi-label text categorization algorithms [13,18,20], multi-
label decision trees algorithms [3], multi-label kernel methods [1,4], multi-label
lazy learning algorithm [24], multi-label neural networks [25]. In these traditional
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 57–73, 2017.
https://doi.org/10.1007/978-3-319-68637-0_4



58 Y. Liu et al.

multi-label learning, the training instances and test instances is owned by just
one party. That is, the training instances owner uses his own data to learn out
a multi-label classification model, and then classify his own test instances. With
the flourishing development of cloud computing, now the data owner can pro-
vide his multi-label classification model as a service to any consumers who want
to classify their unclassified instances. Then for the data owner, the training
dataset and classification task can be outsourced to the cloud servers which can
ease his burden of storage and computation; for the consumers, they don’t need
to build a multi-label classification model by themselves, which will be very dif-
ficult and expensive for the individuals and small organizations who just have a
small number of training instances and limited computing power. However, this
will bring the risk of privacy leaking for both data owner and consumers. On the
one hand, the data owner’s multi-label training instances dataset and classifica-
tion model are his precious treasure, he would be reluctant to release to them
the cloud servers and consumers; on the other hand, the consumers’ unclassified
instances and the classification results may contain sensitive information, such
as personal gene sequence and physical condition, they do not want any infor-
mation about these to be known to the data owner and cloud servers. Several
secure schemes [10,17,22] have been proposed for the privacy-preserving classi-
fication problem. Nonetheless, these existing approaches just consider one-label
classification, and are not suitable for multi-label classification.

In this paper, we investigate the secure multi-label classification over
encrypted data in cloud and propose a secure scheme for the privacy leaking
problem. Our scheme is based on the famous multi-label lazy learning approach
ML-kNN [24]. We use Paillier cryptosystem to encrypt the training instances
dataset of data owner and the unclassified instances of consumers. The data
owner outsources his encrypted data and the multi-label classification task to
the cloud servers. The consumers submit their encrypted unclassified instances to
the cloud servers for classifying. The cloud servers perform computation on the
ciphertext in the classification process, they can not learn anything useful about
the dataset of the data owner and unclassified instances of the consumers. Addi-
tionally, only the consumers can obtain their multi-label classification results.

Our main contributions in this paper can be summarized as follows.

• For the first time, we formalize the problem of secure multi-label classifica-
tion, and propose a secure k-nearest neighbor based multi-label classification
scheme, which can correctly complete multi-label classification and preserve
the privacy of both data owner and consumers with practical efficiency.

• We formally prove the security of our scheme, which shows our proposed
approaches can securely preserve the input instance and output classification
results of each consumer, and guarantee the security of the data owner’s
training dataset and classification model.

The remainder of the paper is organized as follows. In Sect. 2 introduce pre-
liminaries and definitions. In Sect. 3, we introduce the models and design goal.
In Sect. 4, we present our secure scheme in details. Then, we theoretically prove
the security of our scheme, and evaluate the computation and communication



Secure Multi-label Classification over Encrypted Data in Cloud 59

cost in Sect. 5. In Sect. 6, we review the related work. At last, we conclude the
paper in Sect. 7.

2 Preliminaries and Problem Definition

2.1 Multi-label Learning

Let X = R
d denote the d-dimensional feature domain of instances and Y =

{y1, y2, ..., yq} be the label domain which is composed of q possible labels. The
multi-label classification problem can be formulated as follows. Given a multi-
label classification training set T = {(x1,Y1), (x2,Y2), ..., (xm,Ym)} which
includes m training instances, where xi = (xi1, xi2, ..., xid) ∈ X is the i-th
instance, Yi ⊆ Y is a subset of labels which is associated with the instance
xi. The goal of multi-label learning system is to build a multi-label classifier
h : X → 2Y , which optimizes some pre-defined criterion or specific evaluation
metric, and can assign label set h(x) ⊆ Y to unclassified instances.

As for classical classification problems, most algorithms associate the multi-
label classifier h with a real-valued function f : X × Y → R, where f(x, y)
corresponds to the probability that instance x is associated with label y. Given
a instance x and its associated label set Y , a successful learning system is
assumed to produce the function f(., .) that tends to assign larger values to
labels in Y than those labels not in Y . i.e., f(x, y1) > f(x, y2) for any y1 ∈ Y
and y2 /∈ Y . Generally, the multi-label classifier h(·) can be derived from the
function f(·, ·) as:

h(x) = {y | f(x, y) > t(x), y ∈ Y } (1)

where t(x) is a threshold function which is usually set to be the zero constant
function.

2.2 Paillier Cryptosystem

The Paillier cryptosystem is an additive homomorphic and probabilistic asym-
metric encryption scheme [14]. The encryption function Epk(., .) of Paillier cryp-
tosystem is defined as:

Epk(m, r) = gm × rNmodN2 (2)

where m ∈ ZN is the plaintext message for encryption, N is a product of two
large primes p and q, g generates a subgroup of order N , r is a random number
in ZN . The public key pk for encryption is (N, g), and the secret key sk for
decryption is (p, q). Given a, b ∈ ZN , the Paillier encryption scheme exhibits the
following properties:

• Homomorphic Addition:

Epk(a + b) = Epk(a) ∗ Epk(b) mod N2;



60 Y. Liu et al.

• Homomorphic Multiplication:

Epk(a ∗ b) = Epk(a)b mod N2;

• Semantic Security: The Paillier cryptosystem is semantically secure [8],
i.e., given a set of ciphertexts, an adversary cannot deduce any information
about the plaintext.

We will use Paillier cryptosystem to encrypt data in our scheme. As a
probabilistic encryption, Paillier cryptosystem also has the self-blinding prop-
erty, that is, Epk(m, r1) ∗ rN

2 = Epk(m, r1r2) and m = Dsk(Epk

(
m, r1)

)
=

Dsk

(
Epk(m, r1) ∗ rN

2

)
for any r1, r2 ∈ ZN .

For simplicity, we also use Epk(m) to denote the encrypted result of m while
it is no need to emphasize the random parameter r.

2.3 Secure Computing Protocol

In our scheme we need to perform secure computation on encrypted data, sup-
pose that there are two semi-honest parties P1 and P2, and the secret key sk of
Paillier cryptosystem is known only to P2, and pk is public, we will use several
secure computing protocols as following.

• Secure Multiplication (SM) Protocol: As shown in Protocol 1, this pro-
tocol considers that P1 has the

(
Epk(a), Epk(b)

)
and P2 has sk. By three

steps of the protocol, it can output Epk(a ∗ b) to P1, where a and b are not
known to P1 and P2. During this process, no information about a and b will
be revealed to P1 and P2, and the output Epk(a ∗ b) is known only to P1.

Protocol 1. SM
(
Epk(a), Epk(b)

) → Epk(a ∗ b)

Input: P1 has the
(
Epk(a), Epk(b)

)
, P2 has sk

Output: Epk(a ∗ b) known only to P1

1: P1:
(a). Pick two random numbers ra, rb ∈ ZN

(b). a′ ← Epk(a) ∗ Epk(ra)
(c). b′ ← Epk(b) ∗ Epk(rb); send a′, b′ to P2

2: P2:
(a). Receive a′, b′ from P1

(b). ha ← Dsk(a′); hb ← Dsk(b
′)

(c). h ← ha ∗ hb mod N
(d). h′ ← Epk(h); send h′ to P1

3: P1:
(a). Receive h′ from P2

(b). s ← h′ ∗ Epk(a)N − rb

(c). s′ ← s′ ∗ Epk(b)N − ra

(d). Epk(a ∗ b) ← s′ ∗ Epk(ra ∗ rb)
N−1



Secure Multi-label Classification over Encrypted Data in Cloud 61

• Secure k-Nearest Neighbors Protocol (SkNN): This protocol is pro-
posed in literature [5]. P1 has a encrypted training instances dataset
T = {Epk(x1), ..., Epk(xm)} and a encrypted test instance t′ = Epk(t),
this protocol outputs a k-nearest neighbors vector Nt′ = (n1, ..., nm), where
ni = Epk(1) if xi belongs to kNN of instance t′ in T , otherwise ni = Epk(0).
P1 and P2 can not learn any useful information about T , t′ and Nt′ .

• Secure Minimum Protocol (SMIN): This protocol is proposed in lit-
erature [5]. It supposes that P1 has two encrypted values Epk(X) and
Epk(Y ), then P1 obtains the output Γ = Epk(1) if X � Y , otherwise Γ =
Epk(0). Neither P1 nor P2 know the comparison result hidden in the output
ciphertext Γ .

2.4 ML-kNN

ML-kNN [24] is adapted from the famous k-nearest neighbors algo-
rithm. It assigns unclassified instance’s associated label set according to
the associated label sets of its k-nearest neighbors. Suppose that T =
{(x1,Y1), (x2,Y2), ..., (xm,Ym)} is the multi-label training dataset, where xi ∈
R

d, each instance xi is associated with a set of labels Yi ⊆ Y, where Y =
{y1, y2, ..., yq} is the label set. Let yi = (yi1, yi2, ..., yiq)T be the label vector of
instance xi, and yij = 1 if xi is associated with label yj , otherwise yij = 0.

Let Nxi
= (Ni1, Ni2, ..., Nim)T denote the kNN vector of xi, and Nij = 1 if

instance xj belongs to the k-nearest neighbors of xi, otherwise Nij = 0. Let H l
1

denote the event that instance x is associated with label l, H l
0 denote the event

that instance x is not associated with label l, El
j(j ∈ {0, 1, .., k}) denote the

event that there are j neighbors are associated with label l among the k nearest
neighbors Nx, ML-kNN computes the prior probabilities as:

P (H l
1) =

(
s +

∑m
i=1 yil

)
/(s ∗ 2 + m)

P (H l
0) = 1 − P (H l

1) =
(
s + m − ∑m

i=1 yil

)
/(s ∗ 2 + m)

(3)

where s is the smooth parameter.
Based on the label vector of each instance in Nxi

, ML-kNN defines a
membership counting vector as:

Cxi
(l) =

∑

a∈Nxi

ya(l), l ∈ Y (4)

where Cxi
(l) counts how many neighbors of instance xi are associated with

label l.
Then ML-kNN computes the posterior probabilities as:

P (El
j |H l

1) =
(
s + c(j)

)
/
(
s ∗ (k + 1) +

∑k
p=0 c(p)

)

P (El
j |H l

0) =
(
s + c′(j)

)
/
(
s ∗ (k + 1) +

∑k
p=0 c′(p)

) (5)

where c(j) counts the number of instances xi in the training dataset T which are
associated with label l and Cxi

(l) = j, c′(j) counts the number of instances xi

in the training dataset T which are not associated with label l and Cxi
(l) = j.



62 Y. Liu et al.

Let t denote a test instance, the goal of ML-kNN is to output its label vector
yt. Firstly, ML-kNN will find instance t’s kNN vector Nt . Then for each label
l ∈ Y, ML-kNN obtain Ct(l) based on Eq. (4). Then the label vector yt will be
determined by the following maximum a posteriori principle:

yt(l) = argmax
b∈{0,1}

P (H l
b)P (El

Ct(l)
|H l

b) (6)

3 Models and Design Goal

3.1 System Model

There are four parties in our system: a data owner(denoted as DO), a data
user(denoted as DU) and two cloud servers(denoted as CS1 and CS2). DO owns
the multi-label training instance dataset T = {(x1,Y1), (x2,Y2), ..., (xm,Ym)}
which consist of m instances. DO produces a pair of key (pk,sk) using
Paillier cryptosystem, where pk is the public key and sk is the secret
key. Then DO encrypts the training instance dataset T into T ′ as: T ′ =
{(

x′
1,Y

′
1

)
,
(
x′
2,Y

′
2

)
, ...,

(
x′

m,Y ′
m

)}, where x′
i =

(
Epk(xi1), ..., Epk(xid)

)
,Y ′

i =(
Epk(yi1), ..., Epk(yiq)

)
(i ∈ {1, ...,m}). Then DO submits the T ′ to CS1, sub-

mits the sk to CS2, and outsources the computation over the encrypted data to
these two cloud servers. After that, DO does not need to do any further com-
putation task. All the future computation will be completed by CS1 and CS2.
Therefore our scheme does not require DO to be online for the classification.

Suppose DU wants to classify his unclassified instance t, he encrypts the
instance t into t′ = Epk(t) =

(
Epk(t1), ..., Epk(td)

)
using the pk of DO, then

submits t′ to CS1. Then CS1 and CS2 will work together to obtain the multi-
label classification results of instance t and return them to DU.

It should be noted that the employed PaillierPaillier cryptosystem can
encrypt only the non-negative integers in its plaintext space. However, in real
world applications, most multi-label instances are in real number field. In our
scheme, before DO and DU encrypting their data, they should convert the multi-
label instances into integer field through multiplying the instances by a multiple
of ten. Then they encrypt their instances and submit the encrypted data to the
cloud servers (Fig. 1).

3.2 Design Goal

To enable secure ML-kNN classification based on above system model, our pro-
posed scheme should simultaneously achieve the following security and perfor-
mance guarantees:

• Dataset Privacy: The contents of DO’s dataset should not be revealed to
cloud servers and DU during execution of the protocols.

• User Privacy: DO and cloud servers should not learn any useful information
about each dimension of DU’s unclassified instance t.



Secure Multi-label Classification over Encrypted Data in Cloud 63

Fig. 1. System model

• Result Privacy: DO and cloud servers cannot obtain the content of final
multi-label classification result. The output should be revealed only to DU.

• Low computation overhead on DU and DO: After outsourcing the
encrypted dataset to cloud servers, DO does not need to do any further com-
putation task. Besides, our protocols should incur low computation overhead
on DU.

3.3 Threat Model

In this work, we assume all parties (DO, DU, cloud servers CS1 and CS2) are
semi-honest (or honest-but-curious) [7], that is, each participant in our model will
strictly follow the designed protocol, but try to infer more additional information
about others input during the execution of the protocol. Besides, following previ-
ous works [5], we assume the two cloud servers CS1 and CS2 are non-colluding.
This non-colluding assumption is practical and reasonable because the cloud
servers need to maintain their reputation and take their own financial interests
into account.

4 Our Proposed Scheme

As we mentioned in the Sect. 1, although a lot of multi-label learning algorithms
have been proposed, all these algorithms didn’t consider privacy-preserving prob-
lem. Additionally, the existing privacy-preserving classification approaches just
consider one-label classification, and are not suitable for multi-label classifica-
tion. In this section, we will introduce a privacy-preserving multi-label learning
algorithm which is based on ML-kNN [24].

Specifically, our scheme consists of two stages:

• Secure Training Stage: Build the multi-label classification model
In this stage, CS1 and CS2 will work together to build a multi-label classifi-
cation model based on the encrypted dataset T ′, this stage will be performed
just once, and the model can be used to classify any unclassified multi-label
instance.



64 Y. Liu et al.

• Secure Classifying Stage: Classify the Unclassified Instance
In this stage, CS1 and CS2 will use the multi-label classification model to
classify the unclassified instance which is submitted by DU. The classification
results will be known only to DU.

We will present the details of our secure training stage and secure classifying
stage in Sects. 4.1 and 4.2, respectively.

4.1 Secure Training Stage: Build the Multi-label Classification
Model

In the secure training stage, CS1 and CS2 will work together to build a multi-
label classification model. The whole stage consists of four steps as shown in
Protocol 3.

Protocol 2. Computing the prior probabilities P (H l
b)

Input: CS1 inputs the T ′

Output: CS1 obtains the prior probabilities
1: for l ∈ Y do
2: CS1 computes:

P (Hl
1)a = Epk

(
s+
∑m

i=1 yil
)
= Epk(s) ∗∏m

i=1 Epk(yil) mod N2

P (Hl
1)b = P (Hl

0)b = Epk(s ∗ 2 + m) = Epk(s)
2 ∗ Epk(m) mod N2

P (Hl
0)a = Epk

(
s + m −∑m

i=1 yil
)
= Epk(s) ∗ Epk(m) ∗∏m

i=1 Epk(yil)
N − 1 mod N2

where s is the smoothing parameter
3: end for

In the first step, as shown in Protocol 2, CS1 has the encrypted dataset T ′,
he will compute the prior probabilities P (H l

b)(b ∈ {0, 1}) for each label l ∈ Y
as Eq. (3). Since the Paillier cryptosystem can encrypt only the non-negative
integers and there will be float-point numbers in these prior probabilities, CS1

encrypts the P (H l
1) and P (H l

0)(l ∈ Y) into two parts, respectively:

P (Hl
1)a = Epk

(
s +
∑m

i=1 yil

)
= Epk(s) ∗∏m

i=1 Epk(yil) mod N2

P (Hl
1)b = P (Hl

0)b = Epk(s ∗ 2 + m) = Epk(s)
2 ∗ Epk(m) mod N2

P (Hl
0)a = Epk

(
s + m −∑m

i=1 yil

)
= Epk(s) ∗ Epk(m) ∗∏m

i=1 Epk(yil)
N − 1 mod N2

(7)

In the second step, CS1 and CS2 will use the SkNN protocol to find the kNN
of each instance x′ in dataset T ′ and obtain the kNN vector Nx′ .

In the third step, CS1 and CS2 work together to compute the posterior prob-
abilities P (El

j |H l
b)(l ∈ Y, j ∈ {0, 1, ..., k}) as Eq. (5). For each label l ∈ Y, CS1

defines D(j) = Epk(0),D′(j) = Epk(0)(j ∈ {0, 1, ..., k}). Then for each instance
x′

i in T ′, CS1 and CS2 compute the Cx′
i
(l) using the Protocol 1 as:

Cx′
i
(l) =

∏m
p=1 SM

(
Nx′

i
(p),y′

p(l)
)

mod N2(l ∈ Y) (8)



Secure Multi-label Classification over Encrypted Data in Cloud 65

Protocol 3. Secure Training Stage: Build the multi-label classification model
Input: CS1 has the T ′, CS2 has sk
Output: CS1 obtains the multi-label classification model
1: Step 1: Computing the prior probabilities
2: CS1 computes the prior probabilities as shown in Protocol 2.
3: Step 2: Computing the kNN
4: for i ∈ {1, 2, ..., m} do
5: CS1 and CS2 use the SkNN protocol to find kNN of instance x′

i in T ′, obtain
the kNN vector Nx′

i

6: end for
7: Step 3: Computing the posterior probabilities P (El

j |Hl
b)

8: for l ∈ Y do
9: for j ∈ {0, 1, ..., k} do

10: CS1 defines: D(j) = Epk(0), D′(j) = Epk(0)
11: end for
12: for i ∈ {1, 2, ..., m} do
13: CS1 and CS2 compute Cx′

i
(l) =

∏m
p=1 SM

(
Nx′

i
(p), y′

p(l)
)

mod N2

14: for j ∈ {0, 1, ..., k} do

15: CS1 defines: A(j) = Y ′
il, A′(j) = Epk(1) ∗ Y ′

il
N−1

mod N2

16: CS1 constructs a (k + 1)-dimension vector Q = (q0, ..., qk) as:

Q = π
(
(Cx′

i
(l) ∗ Epk(0)N−1 mod N2), ..., (Cx′

i
(l) ∗ Epk(k)N−1 mod N2)

)
,

where π is a permutation function.
17: CS1 sends vector Q to CS2

18: CS2 receives vector Q from CS1 and decrypts it, then constructs a (k + 1)-
dimension vector Q′ = (q′

0, ..., q
′
k), where q′

i = Epk(1) if q(i) = Epk(0),
otherwise q′

i = Epk(0)(i ∈ {0, ..., k})
19: CS2 sends vector Q′ to CS1

20: CS1 obtains Q = π−1(Q′)
21: CS1 computes: D(j) = D(j) ∗ SM

(
A(j), q(j)

)
mod N2

D′(j) = D′(j) ∗ SM
(
A(j), q(j)

)
mod N2

22: end for
23: end for
24: for j ∈ {0, 1, ..., k} do
25: CS1 computes:

P (E
l
j |Hl

1)a = Epk(s) ∗ D(j) mod N
2
, P (E

l
j |Hl

1)b = Epk(s)
k +1 ∗∏k

p=0 D(p) mod N
2

P (E
l
j |Hl

0)a = Epk(s) ∗ D
′
(j) mod N

2
, P (E

l
j |Hl

0)b = Epk(s)
k +1 ∗∏k

p=0 D′(p) mod N
2

P
l
k(a) = P (H

l
1)a ∗ P (E

l
j |Hl

1)a ∗ P (H
l
0)b ∗ P (E

l
j |Hl

0)b mod N
2

P
l
k(b) = P (H

l
1)b ∗ P (E

l
j |Hl

1)b ∗ P (H
l
0)a ∗ P (E

l
j |Hl

0)a mod N
2

26: end for
27: end for
28: Step 4: Building the classification model
29: for l ∈ Y do
30: CS1 defines a (k + 1)-dimension vector Wl = (wl0, ..., wlk),

where wlj = SMIN
(
P l
j (a), P l

j (b)
)
(j ∈ {0, 1, ..., k})

31: end for



66 Y. Liu et al.

After that, CS1 defines A(j) = Y ′
il, A′(j) = Epk(1) ∗ Y ′

il
N − 1 mod N2. Since

the Y ′
il just has two possible values: Y ′

il = Epk(0) or Y ′
il = Epk(1), then when

A(j) = Epk(0), A′(j) = Epk(1), otherwise, A(j) = Epk(1), A′(j) = Epk(0). Now
CS1 and CS2 need to add the A(j) to D(j), add A′(j) to D′(j) according to
Cx′

i
(l), respectively. Since neither CS1 nor CS2 know the true value of Cx′

i
(l),

CS1 constructs a (k + 1)-dimension vector Q = (q0, ..., qk) as:

Q = π
(
(Cx′

i
(l) ∗ Epk(0)N − 1 mod N2), ..., (Cx′

i
(l) ∗ Epk(k)N − 1 mod N2)

)
(9)

where π is a permutation function.
Since 0 ≤ Dsk

(
Cx′

i
(l)

) ≤ k, there will be one and only one qi = Epk(0)(i ∈
{0, ..., k}). Then CS1 sends vector Q to CS2. CS2 receives vector Q and decrypts
it, then constructs a (k+1)-dimension vector Q′ = (q′

0, ..., q
′
k), where q′

i = Epk(1)
if q(i) = Epk(0), otherwise q′

i = Epk(0)(i ∈ {0, ..., k}). Obviously that there will
be one and only one q′

i = Epk(1), all the other q′
i = Epk(0)(i ∈ {0, ..., k}). Then

CS2 sends vector Q′ back to CS1, and CS1 obtains Q = π−1(Q′). Then CS1

computes:

D(j) = D(j) ∗ SM
(
A(j), q(j)

)
mod N2

D′(j) = D′(j) ∗ SM
(
A(j), q(j)

)
mod N2

(10)

Now CS1 computes the posterior probabilities P (El
j |H l

b)(l ∈ Y, j ∈
{0, 1, ..., k}) as Eq. (5). Obviously, there will be float-point numbers as same
as the prior probabilities. Then CS1 also encrypts the posterior probabilities
into two parts like the prior probabilities as flowing:

P (El
j |H l

1)a = Epk(s) ∗ D(j) mod N2

P (El
j |H l

1)b = Epk(s)k +1 ∗ ∏k
p=0 D(p) mod N2

P (El
j |H l

0)a = Epk(s) ∗ D′(j) mod N2

P (El
j |H l

0)b = Epk(s)k +1 ∗ ∏k
p=0 D′(p) mod N2

(11)

Since in ML-kNN [24], the final multi-label classification results of instance
t are decided based on Eq. (6), then for j ∈ {0, 1, ..., k}, CS1 can compute:

P l
j(a) = P (H l

1)a ∗ P (El
j |H l

1)a ∗ P (H l
0)b ∗ P (El

j |H l
0)b mod N2

P l
j(b) = P (H l

1)b ∗ P (El
j |H l

1)b ∗ P (H l
0)a ∗ P (El

j |H l
0)a mod N2

(12)

In the forth step, CS1 will compare the P l
j(a) and P l

j(b) to build the final
multi-label classification model. Specifically, CS1 constructs a (k +1)-dimension
vector as: Wl = (wl0, ..., wlk), where wlj = SMIN

(
P l

j(a), P l
j(b)

)
(l ∈ Y, j ∈

{0, 1, ..., k}). Then the Wl is the encrypted classification result of label l for
different Ct(l) ∈ {0, ..., k}.

4.2 Secure Classifying Stage: Classify the Unclassified Instance

Suppose that DU has encrypted the instance t into t′ using the pk of DO and
submitted t′ to CS1.



Secure Multi-label Classification over Encrypted Data in Cloud 67

Protocol 4. Secure Classifying Stage: Classify the Unclassified Instance
Input: CS1 has the encrypted dataset T ′, vector Wl(l ∈ Y) and encrypted unclassified

instance t′ which is submitted by DU , CS2 has sk
Output: DU obtains the multi-label classification result of instance t′

1: CS1 and CS2 find the kNN of instance t′ in dataset T ′ using the SkNN protocol,
obtain kNN vector Nt′

2: for l ∈ Y do
3: CS1 and CS2 computes:

Ct′(l) =
∏m

p=1 SM
(
Nt′(p), y′

p(l)
)

mod N2

4: CS1 constructs a (k + 1)-dimension vector Q = (q0, ..., qk) as:
Q = π

(
(Ct′(l) ∗ Epk(0)N − 1 mod N2), ..., (Ct′(l) ∗ Epk(k)N − 1 mod N2)

)
,

where π is a permutation function.
5: CS1 sends vector Q to CS2

6: CS2 receives vector Q from CS1 and decrypts it
7: CS2 constructs a (k + 1)-dimension vector Q′ = (q′

0, ..., q
′
k), where q′

i = Epk(1) if
q(i) = Epk(0), otherwise q′

i = Epk(0)(i ∈ {0, ..., k})
8: CS2 sends vector Q′ to CS1

9: CS1 obtains Q = π−1(Q′)
10: CS1 computes:

Rt′(l) =
∏k

j =0 SM
(
qj , Wl(j)

)
mod N2

11: CS1 generates a non-zero random integer α, computes:

R′
t′(l) = Epk(α) ∗ Rt′(l) mod N2

12: CS1 sends R′
t′(l) to CS2, sends α to DU

13: CS2 receives R′
t′(l) from CS1 and decrypts it, sends the Dsk

(
R′

t′(l)
)

to DU
14: DU computes Φ = Dsk

(
R′

t′(l)
)− α:

if Φ = 1: instance t is associated with label l
if Φ = 0: instance t is not associated with label l

15: end for

Firstly, CS1 and CS2 will find the kNN of instance t′ in dataset T ′ using the
SkNN protocol, obtain kNN vector Nt′ . Then for each label l ∈ Y, CS1 and CS2

compute:
Ct′(l) =

∏m
p=1 SM

(
Nt′(p),y′

p(l)
)

mod N2 (13)

After that, CS1 and CS2 need to find the corresponding classified result for
label l according to the Ct′(l). Since neither CS1 nor CS2 know the true value
of Ct′(l), CS1 constructs a (k + 1)-dimension vector Q = (q0, ..., qk) as:

Q = π
(
(Ct′(l) ∗ Epk(0)N − 1 mod N2), ..., (Ct′(l) ∗ Epk(k)N − 1 mod N2)

)
(14)

where π is a permutation function.
Then CS1 sends vector Q to CS2. CS2 receives vector Q from CS1 and

decrypts it, constructs a (k + 1)-dimension vector Q′ = (q′
0, ..., q

′
k), where

q′
i = Epk(1) if q(i) = Epk(0), otherwise q′

i = Epk(0)(i ∈ {0, ..., k}). Then CS2



68 Y. Liu et al.

sends vector Q′ back to CS1. CS1 obtains Q = π−1(Q′), computes:

Rt′(l) =
∏k

j =0 SM
(
qj ,Wl(j)

)
mod N2 (15)

Rt′(l) is the encrypted classified result for label l of instance t′.
For protecting the real classified result from CS2, CS1 generates a non-zero

random integer α and computes R′
t′(l) = Epk(α) ∗ Rt′(l) mod N2. Then CS1

sends R′
t′(l) to CS2, sends α to DU. CS2 receives R′

t′(l) from CS1 and decrypts
it, sends the Dsk

(
R′

t′(l)
)

to DU.
Finally, DU computes Φ = Dsk

(
R′

t′(l)
) − α, then if Φ = 1, instance t is

associated with label l; if Φ = 0, instance t is not associated with label l.

5 Evaluation

In this section, we prove the security of our scheme, and then analyze our cost
in computation and communication.

5.1 Security Analysis

A formal security definition under semi-honest model can be described as
follows [7]:

Definition 1. Let f(x, y) be a functionality, and f1(x, y) (resp. f2(x, y)) denote
the first (resp. second) element of f(x, y). Let Π be a two-party protocol for
computing f(x, y). The view of the first (resp. second) party during an execution
of Π on (x, y), denoted V IEW1(x, y) (resp. V IEW2(x, y)), is (x, r,m1, · · · ,mt)
(resp. (y, r,m1, · · · ,mt)), where x (resp. y) represents the input of the first (resp.
second) party, r represents the randomness and mi represents the i−th message
it has received. We say that protocol Π privately computes function f , i.e. Π is
secure against semi-honest adversaries, if there exists probabilistic polynomial-
time algorithms S1 and S2, such that

(S1(x, f1(x, y))
c≡ (V IEW1(x, y)) (16)

(S2(y, f2(x, y))
c≡ (V IEW2(x, y)) (17)

where
c≡ represents computational indistinguishability.

With the above security definition, we now prove the security of proposed
ML-kNN classification scheme. Note that the secure computing protocols (SM,
SkNN, SMIN) have been proved secure in previous works, thus the proof of
those protocols is omitted. We skip details and give sketches of the proof of the
following theorems due to space limitation.

Theorem 1. Our secure training stage, namely Protocol 3, is provably secure
under semi-honest model. Cloud servers cannot learn any useful information
about the dataset T and ML-kNN classification model.



Secure Multi-label Classification over Encrypted Data in Cloud 69

Proof (Sketch). In our secure training stage, CS1 can access the encrypted dataset
T ′ and the messages received from are all encrypted values. Thus the view of CS1

is V IEW1 = (e1, e2, · · · , eα), where ei are all ciphertexts and α is the number of
encrypted values that CS1 can access. We use a simulator S1 to simulate client’s
view and then we can obtain S1 = (r1, r2, · · · , rα), where ri are all random
numbers. Since Paillier cryptosystem is a semantically secure encryption scheme,
S1 is computationally indistinguishable from V IEW1.

Besides, the view of CS2 is V IEW2 = (Dsk(Q)) where Dsk(Q) is a binary
vector. Similarly, we can construct a simulator S2, each element of which is ran-
domly chosen from {0, 1}. It is clearly that V IEW2 and S2 are computationally
indistinguishable because of π is a permutation function.

Based on the above analysis, we can claim that our training stage is secure
under semi-honest model. Cloud servers cannot learn any useful information
about the dataset T and ML-kNN classification model.

Theorem 2. Our secure classifying stage, namely Protocol 4, is secure. No
information about ML-kNN classification model, DU’s query and the classifi-
cation results are disclosed to cloud servers.

Proof (Sketch). In classifying stage, CS1’s view is V IEW1 = (t′, Ct′(l),
Q,Q′, Rt′(l)) and CS2’s view is V IEW2 = (Dsk(Q), R′

t′(l)). Note that the mes-
sages CS1 obtains are all encrypted values and all values CS1 receives are random
numbers, we can easily construct the simulators S1 and S2 which is computa-
tionally indistinguishable from V IEW1 and V IEW2, respectively. Thus, Our
Classifying Stage is secure under semi-honest model. No information about ML-
kNN classification model, DU’s query and the classification results are disclosed
to cloud servers.

5.2 Computation and Communication Complexity

In this section, we will analyze our computation cost and communication over-
heads, respectively.

Computation Complexity. There are four steps in secure training stage. In
step 1, as shown in Protocol 2, the computation complexity is bounded by
O(qm) exponentiations, where q is the number of label in label set and m is
the number of instance in training dataset. There are O(m) instantiations of
SkNN protocol in Step 2. Note that the computation complexity of the SkNN
protocol proposed in [5] is bounded by O(md + k) encryptions, decryptions and
exponentiations. Thus the total computation complexity of Step 2 is bounded
by O(m2d + km) encryptions, decryptions and exponentiations. In step 3, it
needs O(qmk) instantiations of SM protocol, complexity of which is bounded
by O(1) encryptions, decryptions and exponentiations. The total computation
complexity of Step 3 is bounded by O(qmk(m+k)) encryptions, decryptions and
exponentiations. Besides, the computation complexity of Step 4 is bounded by
O(qk) instantiations of SMIN protocol. Considering the SMIN protocol proposed



70 Y. Liu et al.

in [5], the computation complexity of Step 4 is bounded by O(qkσ), where σ is
the bit length of each attribute in training dataset.

The computation complexity of secure classifying stage is bounded by O(1)
instantiations of SkNN protocol and O(q(m+ k)) instantiations of SM protocol.
Considering the computation complexity of the SkNN protocol and SM protocol
is bounded by O(md+k) and O(1) encryptions, decryptions and exponentiations,
the total computation complexity is bounded by O(md+ q(m+k)) encryptions,
decryptions and exponentiations.

Communication Complexity. Suppose the size of ciphertext of employed
Paillier cryptosystem is K. In secure classifying stage, firstly, the SkNN protocol
needs to be done 1 time to find the kNN of instance t′ which communication
complexity is bounded by O(mkK) bits. While computing Ct′(l), SM protocol
needs to be done qm times which communication complexity is bounded by O(K)
bits. After that, CS1 sends q (k+1)-dimensional vectors to CS2, then CS2 returns
q (k+1)-dimensional vectors back to CS1, since all the data transferred between
two clouds are in encrypted form, the communication complexity is bounded
by O(qkK) bits. Therefore, the communication complexity for classifying one
unclassified instance is bounded by O(K(mk + qm + qk)) bits.

6 Related Work

We simple review the related work as follows.

Multi-label classification. Multi-label classification methods can be divided
into two main categories: problem transformation and algorithm adaptation.
Problem transformation methods tackle multi-label learning problem by trans-
forming it into other well-established learning scenarios. Representative algo-
rithms include first-order approaches Binary Relevance [1], high-order approach
Classifier Chains [15] which transform the task of multi-label learning into the
task of binary classification, second-order approach Calibrated Label Rank-
ing [16] which transforms the task of multi-label learning into the task of label
ranking, and high-order approach Random k-labelsets [19] which transforms the
task of multi-label learning into the task of multi-class classification. Algorithm
adaptation methods tackle multi-label learning problem by adapting popular
learning techniques to deal with multi-label data directly. Representative algo-
rithms include AdaBoost.MH and AdaBoost.MR [18] are two multi-label exten-
sions of the AdaBoost algorithm [6], ML-C4.5 [3] is an adaptation of the popular
C4.5 algorithm, BP-MLL [25] is derived from the back-propagation algorithm
of neural networks, Multi-label k-nearest neighbor (ML-kNN) [24] which our
scheme is based on is adapted from the famous k-nearest neighbors algorithm.

Data mining over encrypted data in cloud. With the prosperous devel-
opment of cloud computing, many works have been done for privacy-preserving
data mining (PPDM) in clouds. Zhang et al. [23] explored how to enable secure
image search in the data outsourcing environment. Wang et al. [21] considered



Secure Multi-label Classification over Encrypted Data in Cloud 71

the problem of secure and private outsourcing of shape-based feature extraction
and proposed two approaches with different levels of security by using homomor-
phic encryption and the garbled circuit protocol. Li et al. [11] proposed a secure
scheme for näıve Bayesian classification over encrypted data which can outsource
the entire computation task of näıve Bayesian classification to cloud. Hu et al. [9]
proposed an privacy-preserving computation outsourcing protocol for the pre-
vailing scale-invariant feature transform (SIFT) over massive encrypted image
data. In [26,27], Zhu et al. considered secure k-NN query over encrypted data in
cloud. Li et al. [12] put forward an efficient hybrid method to compare encrypted
numbers in cloud. Cheng et al. [2] gave a survey for securely analyzing large-scale
data from Internet of Things in a quantum world. Although many works about
PPDM have been developed, the domain of secure multi-label classification is
still blank.

7 Conclusions

In this paper, we proposed a scheme for secure multi-label classification over
encrypted data in cloud. Our scheme can handle the multi-label classification
task by the cloud servers, then can dramatically reduce the storage and compu-
tation burden of data owner and data users. Besides, Our scheme can protect
the privacy information of data owner and data users, the cloud servers can not
learn anything useful about the input data and output multi-label classification
results. At last, we proved the security and evaluated the complexity of our
scheme.

Acknowledgments. This work is partly supported by the National Key Research and
Development Program of China (No. 2017YFB0802300), the Natural Science Founda-
tion of China (No. 61602240), the Natural Science Foundation of Jiangsu Province of
China (No. BK20150760), the Research Fund of Guangxi Key Laboratory of Trusted
Software (No. kx201611), and the Foundation of Graduate Innovation Center in NUAA
(No. kfjj20161605).

References

1. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classifi-
cation. Pattern Recognit. 37(9), 1757–1771 (2004)

2. Cheng, C., Lu, R., Petzoldt, A., Takagi, T.: Securing the internet of things in a
quantum world. IEEE Commun. Mag. 55(2), 116–120 (2017)

3. Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: De
Raedt, L., Siebes, A. (eds.) PKDD 2001. LNCS, vol. 2168, pp. 42–53. Springer,
Heidelberg (2001). doi:10.1007/3-540-44794-6 4

4. Elisseeff, A.E., Weston, J.: A kernel method for multi-labelled classification. Adv.
Neural Inf. Process. Syst. 14, 681–687 (2002)

5. Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over
encrypted data in outsourced environments. In: 2014 IEEE 30th International Con-
ference on Data Engineering (ICDE), pp. 664–675. IEEE (2014)

http://dx.doi.org/10.1007/3-540-44794-6_4


72 Y. Liu et al.

6. Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J. Jpn. Soc.
Artif. Intell. 14, 771–780 (1999)

7. Goldreich, O.: Foundations of Cryptography II: Basic Applications. Cambridge
University Press, New York (2004)

8. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. SIAM J. Comput. 18(1), 186–208 (1989)

9. Hu, S., Qian, W., Wang, J., Zhan, Q., Ren, K.: Securing SIFT: privacy-preserving
outsourcing computation of feature extractions over encrypted image data. IEEE
Trans. Image Process. 25(7), 3411–3425 (2016)

10. Kantarcoglu, M., Vaidya, J.: Privacy preserving naive bayes classifier for horizon-
tally partitioned data. In: IEEE ICDM Workshop on Privacy Preserving Data
Mining, pp. 3–9 (2003)

11. Li, X., Zhu, Y., Wang, J.: Secure näıve bayesian classification over encrypted data
in cloud. In: Chen, L., Han, J. (eds.) ProvSec 2016. LNCS, vol. 10005, pp. 130–150.
Springer, Cham (2016). doi:10.1007/978-3-319-47422-9 8

12. Li, X., Zhu, Y., Wang, J.: Efficient encrypted data comparison through a hybrid
method. J. Inf. Sci. Eng. 33(4), 953–964 (2017)

13. Mccallum, A.K.: Multi-label text classication with a mixture model trained by EM.
In: AAAI Workshop on Text Learning, pp. 1–7 (1999)

14. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

15. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Mach. Learn. 85(3), 333–359 (2011)

16. Rnkranz, J., Llermeier, E., Menc, L., Eneldo, A., Brinker, K.: Multilabel classifi-
cation via calibrated label ranking. Mach. Learn. 73(2), 133–153 (2008)

17. Samanthula, B.K., Elmehdwi, Y., Jiang, W.: k-Nearest neighbor classification over
semantically secure encrypted relational data. IEEE Trans. Knowl. Data Eng.
27(5), 1261–1273 (2015)

18. Schapire, R.E., Singer, Y.: Boostexter: a boosting-based system for text catego-
rization. Mach. Learn. 39(2), 135–168 (2000)

19. Tsoumakas, G., Vlahavas, I.: Random k -labelsets: an ensemble method for mul-
tilabel classification. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S.,
Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS, vol. 4701, pp. 406–417.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74958-5 38

20. Ueda, N.: Parametric mixture models for multi-labeled text. In: Advances in Neural
Information Processing Systems, pp. 721–728 (2002)

21. Wang, S., Nassar, M., Atallah, M., Malluhi, Q.: Secure and private outsourc-
ing of shape-based feature extraction. In: Qing, S., Zhou, J., Liu, D. (eds.)
ICICS 2013. LNCS, vol. 8233, pp. 90–99. Springer, Cham (2013). doi:10.1007/
978-3-319-02726-5 7

22. Yi, X., Zhang, Y.: Privacy-preserving naive bayes classification on distributed data
via semi-trusted mixers. Inf. Syst. 34(3), 371–380 (2009)

23. Zhang, L., Jung, T., Liu, C., Ding, X., Li, X.Y., Liu, Y.: POP: privacy-preserving
outsourced photo sharing and searching for mobile devices. In: IEEE International
Conference on Distributed Computing Systems, pp. 308–317 (2015)

24. Zhang, M.-L., Zhou, Z.-H.: A k-nearest neighbor based algorithm for multi-label
classification. In: IEEE International Conference on Granular Computing, vol. 2,
pp. 718–721 (2005)

http://dx.doi.org/10.1007/978-3-319-47422-9_8
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-540-74958-5_38
http://dx.doi.org/10.1007/978-3-319-02726-5_7
http://dx.doi.org/10.1007/978-3-319-02726-5_7


Secure Multi-label Classification over Encrypted Data in Cloud 73

25. Zhang, M.-L., Zhou, Z.-H.: Multilabel neural networks with applications to func-
tional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10),
1338–1351 (2006)

26. Zhou, L., Zhu, Y., Castiglione, A.: Efficient k-NN query over encrypted data in
cloud with limited key-disclosure and offline data owner. Comput. Secur. 69, 84–
96 (2017)

27. Zhu, Y., Huang, Z., Takagi, T.: Secure and controllable k-NN query over encrypted
cloud data with key confidentiality. J. Parallel Distrib. Comput. 89, 1–12 (2016)



A Secure Cloud Backup System
with Deduplication and Assured Deletion

Junzuo Lai1,2, Jie Xiong1, Chuansheng Wang1(B), Guangzheng Wu1,
and Yanling Li1

1 Department of Computer Science, Jinan University, Guangzhou, China
laijunzuo@gmail.com, chueng0828@126.com

2 State Key Laboratory of Cryptology, Beijing, China

Abstract. Cloud backup has been widely used in recent years. Over
time, if the stored content is not under control, there will be a lot of
redundant data stored in the cloud. When a user issues a delete instruc-
tion, the cloud service provider may not actually destroy the data, so that
the user’s data is exposed to the risk of being compromised. In order to
avoid storing duplicate data and prevent deleted data from being recov-
ered, we design a cloud backup system that can solve the two problems.
No matter how large the files, each client only keeps one key. Through
the experimental evaluation, we verify that our scheme is valid and our
local overhead is greatly saved.

Keywords: Cloud storage · Shared data · Assured deletion · Data
deduplication

1 Introduction

Cloud storage is a new concept that extends and develops from cloud computing.
Many individuals and enterprises willing to outsource their data backup services
to the cloud service provider (CSP). Although it’s attractive, how to provide
secure backup has become a concern. When the user deleted the cloud data, can
we ensure that the data in the future will not be recovered? And the data on
the cloud is not directly managed by users, can they ensure that data can not
be accessed by unauthorized persons?

A direct way is to encrypt the data before uploading it. If the client deletes
the data, he only deletes the corresponding key. However, when the stored data
is large, a lot of problem have arisen. Client needs to manage a large number
of keys, when the key size is comparable to the data item size, the outsourcing
become meaningless. In order to get rid of the large local storage, we introduce
a third-party server to manage keys. However, if the third-party collides with
an adversary, the user’s privacy will be exposed. So we consider reducing the
number of keys, let each key to encrypt multiple files, but it can not support
fine-grained assured deletion. Because cloud can’t assuredly delete particular
backup version or files, while other versions that share the common deleted data
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 74–83, 2017.
https://doi.org/10.1007/978-3-319-68637-0_5



A Secure Cloud Backup System with Deduplication and Assured Deletion 75

should remain unaffected. In cloud backup, if the same file appears in multiple
versions, then it’s natural to store only one copy of the file and have the other
versions refer to the file copy.

We present a secure cloud backup system that supports both deduplication
and assured deletion. The client can only keep one key compared to the previous
solution. Our highlight is that we have greatly saved our local expenses, decrease
the users overhead and delete the specific files on the cloud without affecting
shared data. The rest of the paper is organized as follows: Sect. 2 provides the
necessary background. Section 3 gives some preliminaries such as system model,
problem statement, and security definition, and Sect. 4 gives a concrete function
design of our scheme. Section 5 presents the experimental results and analysis.
Section 6 concludes and presents future work.

2 Background and Related Work

Deduplication. Douceur et al. [3] proposed the concept of convergent encryp-
tion (CE), which calculate the hash value of the data as a key to encrypt it. It
achieves the same data file can generate the same ciphertext. After that, Bellare
et al. [2] gave a general description of convergence encryption, and proposed
message-locked encryption (MLE). However, these schemes can’t resist the vio-
lent attack on keys. Thus, Bellare et al. [1] proposed a server-assisted MLE
scheme (DupLESS), it introduces a trusted key server and uses its private key
to generate a convergence key. It solves the problem that the plain space is vul-
nerable under the critical violent attack. Li et al. [5] proposed a key outsourcing
storage scheme (DeKey) that supports block level deduplication. Li et al. [6]
proposed two secure systems, namely SecCloud and SecCloud plus, aiming at
achieving both data integrity and deduplication.

As an important means of protect data security, the ciphertext deduplication
technique mainly focuses on the research of convergent encryption method, that
is, using the same key to encrypt the same data.

Assured Deletion. Data stored in the cloud can’t be directly controlled by
the user. Assured deletion is to ensure that data can’t be recover after being
deleted. Perlman et al. [9] proposed a time-based file assured deletion method
that deleted data permanently accessible after a scheduled time of arrival. The
solution outsources the burden of key management to a minimum trusted third
party. However the scheme can’t achieve fine-grained deletion. Tangs [13] policy-
based system (FADE) was designed for assured deletion in a cloud storage system
that each file associates a DK with a file access policy, and each access policy
associates a CK. The DK encrypts the file, and the CK encrypts the DK. When a
policy is revoked, the policy’s corresponding CK is destroyed by the key manager.
But keys are managed by a third party easy to cause single-point failure.

Tang et al. [14] made improvements to FADE, they increases the number of
the key manager which operation is based on the Shamir (k, n) threshold secret
sharing scheme [12]. Rahumed et al. design a system called FadeVersion [10],



76 J. Lai et al.

which combines policy-based deletion with version control. Unfortunately, the
above scheme require third party to manage the key. So, Mo et al. [8] proposed
a fine-grained assured deletion involving only the client and the cloud. In this
scheme, users only keep a small number of keys no matter how much data to
store. Even if the adversary compromised the client or cloud in the future, the
deleted data can’t be recovered. Recently, Habib et al. [4] proposed Simplified
File Assured Deletion (SFADE), it removed completely the dependency on key
escrow system. Reardon et al. [11] focused on secure data deletion. Luo et al. [7]
proposed a novel method to surely delete data in the cloud by overwriting.

3 Preliminaries

3.1 Assumptions and Problem Statement

Our assumption model shows in Fig. 1. The client divides the file into fix-size
data block at first and encrypts file objects for uploading the cloud. After the
backup, the client can download the data from the cloud, and calculates the
key corresponding to the file object based on the key tree. In the end, it should
decrypt the ciphertext data and assemble the decrypted data into original files.

Fig. 1. Outline of proposed model.

In our model, the information manager stores the index table which records
the file object related informations, include the file ID, tag t, file name, storage
time, etc. Also, it responsible for the client requests to add, delete or update
the file information, it also feeds back the relevant query results to the client.
Besides, it’ll compare the index table in the information manager according to
the tag t of the file object. The result of the comparison is returned by the
information manager to the client. For the CSP, when the user store files in the
cloud, we assume that the cloud will store the key tree and encrypted files data.
In order to construct the key tree, the cloud generates each node key modulators
randomly to prepare for data encryption. The cloud also performs the insertion,
deletion and update internal nodes or leaf modulators in the key tree and returns
the relevant modulation information or ciphertext data to the client if necessary.

Based on the above assumption, file should be deleted after a specified reten-
tion period has passed. However, cloud storage does not provide the option



A Secure Cloud Backup System with Deduplication and Assured Deletion 77

of assured deletion. We focus on the problem which guarantees that the data
deleted from a cloud system will be permanently inaccessible. Before uploading
the data, our goal is to implement the removal of redundant data. Also, we want
to require client only keep one key also can achieve the functions described above.
The security goal is the adversary in the polynomial time, can not compromise
the key we want to protected and the deleted files can not be recovered.

3.2 Security Definition

Client security. Our scheme encrypts the data first before storing in the cloud.
After cryptographic operations, client is also perfectly deleted the secret key,
This is the first one we should guarantee. Because if client becomes malicious and
retains the key after upload operation, that the user wants to save their privacy
better become meaningless. Moreover, if the client at this time is compromised
by attacker, the key is leaked, security can not be guaranteed.

Adversary ability. We assume that an attacker can obtain a copy of any encrypted
data. First, we suppose the encryption operation is secure, that means it is
computationally infeasible to decrypt the data without the decryption key. For
the hash function used by the key modulation function F in our scheme, it must
be an collision-resistant hash function. That is polynomially infeasible to find
two hash inputs could produce the same output or find a hash input to produce
a special output. That is, suppose an arbitrary leaf node k, after the master key
change and the modulator adjustment algorithm are executed after the MT (k),
even if the new master key is leaked in the future, the data key k is irreversible in
the polynomial time. So, the attacker will not be able to recover the deleted file.
At the same time, we agree that even an adversary obtains information about
key and files in any physical medium or other media, data objects should be
irrecoverable to an adversary who has unlimited use of the provided interface.

CSP security. We support anonymity against honest-but-curious CSP, because it
needs to ensure the normal execution of the commands, and it may be observes
and collects some of the relevant information, but it still does not know the mas-
ter key. Note though, If the cloud and information manager collude with each
other, a very small amount of privacy is revealed. When the attacker accesses to
ciphertext from the CSP and gets less information from the information manager,
the attacker can only guess the relationship between ciphertext and documents.
Because the attacker has no decryption key, it is impossible to restore the plain-
text content, but some privacy is revealed. So in our scheme, we assume that
they will not collude with each other.

4 System Function Construction

In Fig. 1, we explain in detail the three functions: deduplication, data uploading
and data deleting. We explain the the main idea of “key modulation”. Each data
key k is determined by a master key K and a unique modulator subset Mk, it’s



78 J. Lai et al.

calculated by a one-way function k = F (K,Mk). The Mk is an ordered list of
modulators, represented as <x1, x2, ..., xl>. The key hash chain is defined:

F (K,Mk) = H(...H(H(K ⊕ x1) ⊕ x2)... ⊕ xl), (1)

Where ⊕ is the XOR operator, and H is a one-way hash function with
collision-resistant. The master key is stored on the client, and modulators are
stored in the cloud. To remove k, the client permanently removes K and selects
a new master key K ′. For all other data keys k′, k′ = F (K ′,M ′

k′) = F (K,Mk′).
Where Mk′ is a subset of modulators for k′ before k is deleted, M

′
k′ is a subset of

modulators for k′ after k is deleted. After removing the key k, we don’t change
any modulator in Mk, even if the adversary gains the new master key K ′ in the
future, the key k can not be recovered after K is permanently deleted.

4.1 Deduplication

Before backing up, we divide the backup data file F into many file objects Oi, and
set a maximum size threshold for each file object. If the size of the file is below
this threshold, it can be treated as a single file object, otherwise we divide it.
Let H(·) be an collision-resistant hash function, fk∗(·) denotes a pseudo-random
function (PRF). We first do hash operations for each file object Oi, H(O) → h,
then calculate tag t of each hash value fk∗(h) → t, then compare t. If the tag t
of two data objects is equal, one is deleted, the other will be recorded into the
information manager index table.

4.2 Uploading

We use {m}k as the notation for symmetric-key encrypting m with k. When
the data is uploaded for the first time, the cloud randomly generates a key tree.
As shown in Fig. 2(a). It’s a complete binary tree, each internal node has two
sub-nodes, each leaf node representing a data key. The client assigns a randomly
generated leaf modulation for each leaf node, and assigns link modulator for each
link. Note that each modulator is randomly generated and different from each
other. Each leaf node encodes a data key. Let P (k) represents the path from the
root node to the node k. The cloud will send Mk to the client if the client need
a certain key k. Then the client compute the data key by k = F (K,Mk). Client
uses the key ki to encrypt the file object Oi and upload to the cloud. Each file
object carries an ID identifier for the query, which is stored in the index table.

In Fig. 2(a), each leaf node is assigned a leaf modulator, such as x4, where
each link is assigned a link modulator, such as x1, x2, x3. We represent Mk as
<x1, x2, x3, x4>. When uploading a new backup file F ′ next time, the first thing
is to remove the duplicate data. If there exits same data, the file object will be
not uploaded, if it differ from the previous, the new ID′ will be stored in the
information manager and the relationship between F ′ and ID′ will be recorded.
At last the client will send a request to the cloud to insert a new leaf node in the
key tree. Suppose that we want insert a new node at the position g, as shown in



A Secure Cloud Backup System with Deduplication and Assured Deletion 79

Fig. 2. (a) A modulation tree. (b) Add a new key e to the tree.

Fig. 2(b). The cloud sends the path P (g) from the root to node g to the client.
Let M−

g be Mg without the last modulator xg. The client replaces node g with
a new internal node h, then sets g and a new leaf e serve as the children of
h. Assigning the randomly generated modulator to the new leaf e and the link
(h, g), link (h, e). Assigning a new leaf modulator to node g as follow:

x′
g = F (K,M−

g ) ⊕ F (K,M−
g + <xh,g>) ⊕ xg. (2)

The xh,g is the link modulator on (h, g), and xg is the node modulator with
g. Next, the client computes the new data key encoded by the new leaf e, i.e.,
k′ = F (K,M−

g + <xh,e, xe>). This key is used to encrypt the new file object
O′. The client sends the encrypted new file object {O′}k′ and the modulator for
(h, g), (h, e), g, e to the cloud. The cloud updates the modulation tree, stores
the ciphertext After the above adjustment, we can guarantee that the data key
encoded by the g node will not change before or after the insertion of the node.

4.3 Deleting

The main idea of the deletion is to build an index table that maintains the file
storage location and data sharing informations. Before deleting, we access the
index table first, and check whether the data to be deleted are shared. We delete
the data on the cloud based on the location information. When the data to be
deleted is not shared by other files, the corresponding information in the index
table and the backup in the cloud should be deleted. In another case, it only
deletes the data in the index table, so it will not affect other shared files. Next
we explain how the system removes a file and can’t recover it in the future.

Fig. 3. (a) Illustration of deduplication and assured deletion. (b) Balancing the tree
after k1 is deleted.



80 J. Lai et al.

Suppose the client wants to delete F1. Figure 3(a) shows O1 in file F1 are not
shared in other files. The cloud finds the encrypted item in its storage and the
associated leaf node k1 in the modulation tree. It searches the information about
k1 that consisting of nodes on the path from the root to leaf k1 and the siblings
nodes. The collection of sibling nodes is denoted B, as illustrated by Fig. 2(a).
The MT (k1) is composed of nodes with cross inside and B is composed of shaded
nodes. The cloud sends MT (k1) to the client to updates the master key K to
K ′, but doesn’t change any link modulator in the MT (k). Let P (b) be the path
from root to node b, where and Mb be the list of link modulator along P (b). In
Fig. 3(a), Mb = <x5>. First, the client calculates:

δ(b) = F (K,Mb) ⊕ F (K ′,Mb). (3)

The client send {δ(b)|b ∈ B} to the cloud, for each internal node b belonging
to the set B, the cloud adjusts the modulators on its child links, (b, d) and (b, d′):

xb,d := xb,d ⊕ δ(b)
xb,d′ := xb,d′ ⊕ δ(b), (4)

where “:=” is the assignment operator, xb,d is the link modulator on (b, d), and
xb,d′ is the link modulator on (b, d′). When b as a leaf node, the server adjusts
the leaf modulator: where xb is the leaf modulator of node b.

xb := xb ⊕ δ(b), (5)

Balanced Adjustment Algorithm. In order to keep the worst case perfor-
mance at O(logn), we should complete the key tree back to a complete binary
tree after we delete a certain key. See Fig. 3(b), we let r be the last leaf node of
the last layer of the key tree. After we delete node k1, we move r to the position
of node k1. The cloud sends the path P (r) which from root node to the r node,
with the sibling node s to the client. Let p be the parent of s and r. The bal-
anced algorithm is divided into two steps: First, the client calculates a new leaf
modulator for node s, as follows:

x′
s = F (K ′,Mp) ⊕ H(F (K,Mp) ⊕ xp,s ⊕ xs) (6)

where xs is the leaf modulator of node s before adjustment, xp,s is a modulator
on the link (p, s). The client sends x′

s to the cloud, cloud removes r and replaces
the p node with s, and assigns the new leaf modulator x′

s to s node.
Second, inserting node r at the position of node k1. Let p′ be the parent of

the node k1 in MT (k1), and M ′
p be the list of modulators of P (p). The client

selects a link modulator randomly for the link (p′, r). The client computes a new
leaf modulator for node r as follows:

x′
r = F (K,Mp + <xp,r>) ⊕ F (K ′,Mp′ + <xp′,r>) ⊕ xr, (7)

where xp,r is the link modulator on (p, r). Then the client will send xp′,r and x′
r

to the cloud server. After adjusting the balance algorithm, we can ensure that
the reconstructed tree becomes a complete binary tree.



A Secure Cloud Backup System with Deduplication and Assured Deletion 81

5 Experiments and Analysis

In this chapter, we have carried out a simulation experiment on our system, and
realized the four functions. Finally, we have compared the system with other
similar systems and analyzed the results.

Due to the limitations of the experimental equipment, we have only com-
pleted the simulation experiment at local host. We implement cloud storage
servers and client both on local computer. Both client and cloud have the fol-
lowing parameters: 4 GB RAM, Microsoft Windows 7 system, the system type is
64 bit. We use the Java as the programming tool, and the development platform
is eclipse.

Performance Comparison. In this paper, we compare our cloud backup sys-
tem with the literature [10,15] taking into account local storage overhead, com-
munication/computing overhead, deduplication, as shown in Table 1.

Table 1. Comparison of three schemes

Scheme Deduplication Assured deletion Loc.overhead Com.overhead

ADEC [15] Encki
(Ci);Encsi(Vi) overwrite sk O(n) O(1)

FadeVersion [10] H(O) → h delete sk O(n) O(1)

Our scheme fk∗ (h) → t delete ki, K → K′ O(1) O(log n)

From the Table 1, the ADEC [15] uses the ki to encrypt the data block Ci,
and the si to encrypt the Vi that the Vi is composed of data block. It’s safe,
but it adds to the burden of computation. In FadeVersion [10], they use the
hash which input is a certain file object. The scheme compare the output of
hash value to achieve deduplication. In our scheme, we first generate the hash
value of data object, then generate tag t through a PRF. It can better guarantee
the unpredictability of t, and the security is also stronger. In terms of assured
deletion, the ADEC [15] overwrite sk, it can only perform deletion from the
beginning of the version history, it has some limitations. However, our scheme
perform deletion to delete ki, and change the master key K to K ′, all data keys
remain unchanged except for the delete key ki. Our scheme can greatly reduce
the user’s local storage cost, which have more advantageous than the literature
[10,15]. and our scheme can save local storage space without the use of third-
party key managers and achieve fine-grained assured deletions. For different sizes
of documents we do the file test analysis when we create a file, download a file
and delete a file.

We also tests the performance of assured deletion, and calculates the time
taken to delete a block under different data volumes. For three operations, we
have done experiments respectively. The relationship between the size of the file
and the time they spend is shown in Fig. 4. In Fig. 4(a), where the x-axis shows



82 J. Lai et al.

Fig. 4. The time spent on file operations

the file size scale, and the y-axis shows the average client computational time in
three cases. Figure 4(b) shows the delete operation average computational time
in total number of data items, we can see the computation overheads increase
logarithmically with respect to the number of data items.

6 Conclusion and Future Work

In this paper, we presents a scheme has the ability to remove duplicate data
and fine-grained assured deletion with the client only keeps one key. The scheme
introduces the information manager to store and maintain the storage informa-
tion. It reduces the network transmission costs and save storage space effectively.
At the same time, the program also uses the collision-resistant hash function and
the key modulation algorithm. Without using a third-party management keys,
the user can delete a specific file in the cloud, and the deleted data can never be
recovered. How to improve the performance of the cloud backup system while
ensuring the security, it’s our further study in the future. Due to the limited
experimental conditions, we only realizes the simulation experiment, and can
not accurately reflect the use of the system in the real network environment. In
the near future, we’ll complete experiments in a real network environment.

Acknowledgment. We are grateful to the anonymous reviewers for their helpful com-
ments. The work of Junzuo Lai was supported by National Natural Science Foundation
of China (No. 61572235), Guangdong Natural Science Funds for Distinguished Young
Scholar (No. 2015A030306045), and Pearl River S&T Nova Program of Guangzhou.

References

1. Bellare, M., Keelveedhi, S., Ristenpart, T.: Dupless: server-aided encryption for
deduplicated storage. IACR Cryptology ePrint Archive 2013, 429 (2013)

2. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and
secure deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 296–312. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 18

http://dx.doi.org/10.1007/978-3-642-38348-9_18
http://dx.doi.org/10.1007/978-3-642-38348-9_18


A Secure Cloud Backup System with Deduplication and Assured Deletion 83

3. Douceur, J.R., Adya, A., Bolosky, W.J., Simon, P., Theimer, M.: Reclaiming space
from duplicate files in a serverless distributed file system. In: Proceedings of the
22nd International Conference on Distributed Computing Systems, pp. 617–624.
IEEE (2002)

4. Habib, A.B., Khanam, T., Palit, R.: Simplified file assured deletion (sfade) - a user
friendly overlay approach for data security in cloud storage system. In: Interna-
tional Conference on Advances in Computing, Communications and Informatics,
pp. 1640–1644 (2013)

5. Li, J., Chen, X., Li, M., Li, J., Lee, P.P., Lou, W.: Secure deduplication with
efficient and reliable convergent key management. IEEE Trans. Parallel Distrib.
Syst. 25(6), 1615–1625 (2014)

6. Li, J., Li, J., Xie, D., Cai, Z.: Secure auditing and deduplicating data in cloud.
IEEE Trans. Comput. 65(8), 2386–2396 (2016)

7. Luo, Y., Xu, M., Fu, S., Wang, D.: Enabling assured deletion in the cloud storage by
overwriting. In: Proceedings of the 4th ACM International Workshop on Security
in Cloud Computing. pp. 17–23. ACM (2016)

8. Mo, Z., Qiao, Y., Chen, S.: Two-party fine-grained assured deletion of outsourced
data in cloud systems. In: 2014 IEEE 34th International Conference on Distributed
Computing Systems (ICDCS), pp. 308–317. IEEE (2014)

9. Perlman, R.: File system design with assured delete. In: Third IEEE International
Security in Storage Workshop, SISW 2005, p. 6. IEEE (2005)

10. Rahumed, A., Chen, H.C., Tang, Y., Lee, P.P., Lui, J.C.: A secure cloud backup
system with assured deletion and version control. In: 2011 40th International Con-
ference on Parallel Processing Workshops (ICPPW), pp. 160–167. IEEE (2011)

11. Reardon, J., Basin, D., Capkun, S.: On secure data deletion. IEEE Secur. Priv.
12(3), 37–44 (2014)

12. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
13. Tang, Y., Lee, P.P.C., Lui, J.C.S., Perlman, R.: FADE: secure overlay cloud

storage with file assured deletion. In: Jajodia, S., Zhou, J. (eds.) SecureComm
2010. LNICST, vol. 50, pp. 380–397. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16161-2 22

14. Tang, Y., Lee, P.P., Lui, J.C., Perlman, R.: Secure overlay cloud storage with access
control and assured deletion. IEEE Trans. Dependable Secure Comput. 9(6), 903–
916 (2012)

15. Tezuka, S., Uda, R., Okada, K.: Adec: assured deletion and verifiable version con-
trol for cloud storage. In: 2012 IEEE 26th International Conference on Advanced
Information Networking and Applications (AINA), pp. 23–30. IEEE (2012)

http://dx.doi.org/10.1007/978-3-642-16161-2_22
http://dx.doi.org/10.1007/978-3-642-16161-2_22


Digital Signature and Authentication



Practical and Robust Secure Logging
from Fault-Tolerant Sequential

Aggregate Signatures

Gunnar Hartung(B), Björn Kaidel(B), Alexander Koch(B), Jessica Koch(B),
and Dominik Hartmann

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{gunnar.hartung,bjoern.kaidel,alexander.koch,jessica.koch}@kit.edu,

dominik.hartman@student.kit.edu

Abstract. Keeping correct and informative log files is crucial for sys-
tem maintenance, security and forensics. Cryptographic logging schemes
offer integrity checks that protect a log file even in the case where an
attacker has broken into the system.

A relatively recent feature of these schemes is resistance against trun-
cations, i.e. the deletion and/or replacement of the end of the log file.
This is especially relevant as system intruders are typically interested in
manipulating the later log entries that point towards their attack. How-
ever, there are not many schemes that are resistant against truncating
the log file. Those that are have at least one of the following disadvan-
tages: They are memory intensive (they store at least one signature per
log entry), or fragile (i.e. a single error in the log renders the signature
invalid and useless in determining where the error occurred).

We obtain a publicly-verifiable secure logging scheme that is simulta-
neously robust, space-efficient and truncation secure with provable secu-
rity under simple assumptions. Our generic construction uses forward-
secure signatures, in a plain and a sequential aggregate variant, where the
latter is additionally fault-tolerant, as recently formalized by Hartung
et al. [9]. Fault-tolerant schemes can cope with a number of manipu-
lated log entries (bounded a priori) and offer strong robustness guar-
antees while still retaining space efficiency. Our implementation and the
accompanying performance measurements confirm the practicality of our
scheme.

Keywords: Sequential Aggregate Signatures · Fault-Tolerance · Secure
Logging · Truncation-Security · Forward-Security

G. Hartung—The project underlying this report was supported by the German Fed-
eral Ministry of Education and Research under Grant No. 01|S15035A. The respon-
sibility for the contents of this publication lies with the author.
A. Koch, J. Koch and D. Hartmann—This work was supported by the German
Federal Ministry of Education and Research within the framework of the project
KASTEL IoE in the Competence Center for Applied Security Technology (KAS-
TEL).

c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 87–106, 2017.
https://doi.org/10.1007/978-3-319-68637-0_6



88 G. Hartung et al.

1 Introduction

Log files are an indispensable source of information for administrators investi-
gating incidents in a computer system. They provide fine-grained information on
actions and events that happened within the system, such as business transac-
tions, errors, or security violations. Attackers frequently modify log files to cover
their traces, so being able to distinguish real and faked information is crucial.

Therefore, the need to detect modifications to log files is widely recognized
among computer security professionals, and much effort has been devoted to
finding solutions that unveil such modifications (see below). Cryptographic solu-
tions must be resilient to attackers that gain full control of the log server which
holds the secret key. Thus, a secure logging scheme must stay secure even if
the attacker obtains the secret key at some point in time, and must continue
to enable the discovery of illicit log changes which occurred before the secret
key was stolen by the attacker. This protects old log entries from unnoticed
modification.

As this is impossible with standard authentication schemes, Anderson [1]
(later formalized in [2], as remarked in [6]) proposed forward-secure schemes.
These schemes assume that time is divided into intervals, called epochs, and use
distinct secret keys for all epochs. For efficiency, we require that the secret key
for an epoch t is computed from the secret key of the previous epoch t − 1, and
that there is a single verification key. By securely erasing secret keys when they
expire, one ensures that an attacker cannot forge signatures for previous epochs.

Detecting log truncations is a surprisingly hard problem, because any authen-
tication information computed by the log server can only authenticate past
entries, and so there is nothing that authenticates the end of such a chain. Ma
and Tsudik [22] were the first to present a mechanism to detect truncations of log
files. Their solution is based on forward-secure sequential aggregate signatures.
These signature schemes allow to “integrate” a signature for a new message into
an already existing signature, which still has the size of a single signature, but
authenticates all aggregated messages simultaneously.

The core property of their solution lies in the fact that for specific (sequential)
aggregate signature schemes (such as [4]), removing a message from a given
aggregate signature is intractable under standard assumptions. Ma and Tsudik
[22] use this property by keeping only a single signature for the entire log file,
which is an aggregate of the signatures for each individual message. The hardness
of removing an individual signature then guarantees that no attacker can remove
any message from the log file without notice, as in truncation attacks.

Problems with Existing Solutions. The approach by [22] is fragile, i.e. a
single erroneous log entry renders the signature invalid, without any information
on where the error is located. In a following investigation, distinguishing between
real and faked information is no longer possible.

Only two solutions proposed so far are robust and truncation-secure at the
same time, namely the second immutable scheme in [22], and the scheme of



Practical and Robust Secure Logging 89

Hartung [8]. However, this robustness property is “bought” by falling back to
single signatures for each log entry, resulting in a very large log signature that
is linear in the log size. Moreover, the truncation security of the former scheme
is only argued informally, lacking a rigorous proof.

Our Solution. We propose a solution that overcomes these problems. The
theoretical part of this paper formalizes a well-motivated security notion for
secure logging and provides a provably-secure generic construction combining
the fault-tolerance approach of [9] with the non-robust construction of [22], and
add a single forward-secure signature on the log length for truncation security.
This results in a scheme that is publicly-verifiable (as defined in [10]), and simul-
taneously features short signatures, robustness and truncation resistance.

We employ a recent technique from [9] to construct so-called fault-tolerant
aggregate signatures, port this technique to the world of sequential aggregate
signatures, and wed it with forward-security required for securing log files, which
might be of independent interest. This is because sequential aggregate signatures
are easier to obtain, often more efficient than ordinary aggregate signatures, and
fully sufficient to realize secure log files with short signatures.

The technique from [9] also features so-called selective verification: To verify
a single log entry, one can use the signature’s redundancy to call the verification
routine on a smaller set, instead of the whole log file, see [9, Sect. 4.2]. (Space-
inefficient logs using single signatures have this feature trivially.)

Our approach is provably secure and uses a tight security reduction. For
this, we define a security model for the logging scenario that captures truncation
attacks as well as a wide range of other manipulations. This distinguishes our
work from previous publications [20,23] where truncation security is only argued
for informally and it is not part of the security model.

We provide a secure logging scheme that can run on a stand-alone server
without any interaction with another party. Our system does not require public
ledgers (e.g. blockchains) or any other third party that needs to vouch for the
integrity of the log file. However, our scheme can easily be combined with such
techniques, and thus can be re-used as a building block for future schemes.

Contribution. In our work, we

– discuss why the notion of fault-tolerance from [9] is not applicable to the case
of sequential aggregate signatures, give an alternative definition that also
captures addition or removal of messages, adapt the generic construction of
fault-tolerant aggregate signatures from [9] to the sequential aggregate case,
prove its security, and prove its fault-tolerance w.r.t. our new definition,

– give a realistic and strong security notion for secure logging (similar to [8])
that also captures truncation attacks,

– give a generic construction of a publicly-verifiable robust secure logging
scheme, which is space efficient and has a tight security reduction,

– present benchmark results based on a prototypical implementation of our
scheme for multiple sets of parameters.



90 G. Hartung et al.

Related Work. Forward-secure signatures were first introduced by Bellare
and Miner [2]. Many subsequent works followed, for example by Krawczyk [15]
and Itkis and Reyzin [13]. Based on these works, Ma and Tsudik [20,21] first
considered forward security for sequential aggregate signatures.

Schneier and Kelsey [24] presented a logging scheme based on forward-secure
MACs. Their scheme includes encryption of log entries to preserve confiden-
tiality. Crosby and Wallach [7] presented a log scheme which allows for secure
deletion of log entries without sacrificing the verifiability of the whole log. Their
scheme relies on frequent interactions between a log server and several audi-
tors. PillarBox [5] is a logging system focusing on additional properties such
as confidentiality of log entries and logging rules. They assume forward-secure
MACs as a tool, and use interaction to obtain truncation security. The only
works that consider truncation security in a non-interactive setting are [10,22]
and [8], where only the latter takes a formal approach. The SALVE scheme in
[8] additionally supports the secure generation of log excerpts which can be ver-
ified w.r.t. completeness for the excerpt criterion and w.r.t. correctness, without
revealing log entries not in the excerpt. This scheme, [10] and the robust variants
in [22] achieve robustness by recording one signature per message. In this paper,
we obtain robustness without storing a signature for each log entry (saving stor-
age space and potentially transmission bandwidth), while treating truncation
security in a rigorous and formal manner.

2 Preliminaries

We define [n] := {1, . . . , n}. For vectors/tuples v, v[i] denotes its i-th entry. If
M is a matrix, rows(M) and cols(M) denote its number of rows and columns.
M [i, j] is the entry in the i-th row and j-th column of M .

The security parameter is denoted by κ ∈ N. A probabilistic algorithm A is
probabilistic polynomial time (PPT) if its running time is polynomial in κ. All
algorithms are implicitly given 1κ as input, even when not stated explicitly.

For m1,m2 ∈ {0, 1}∗, m1 ‖ m2 denotes the concatenation of m1 and m2. For
technical reasons, we assume that m1 and m2 can be uniquely derived from
m1 ‖ m2. We use the same symbol for the concatenation of sequences, i.e. let
n, n′ ∈ N and C = (c1, . . . , cn) and C ′ = (c′

1, . . . , c
′
n′) be two sequences, then

C ‖ C ′ := (c1, . . . , cn, c′
1, . . . , c

′
n′). If C ′ is a sequence with only one element c′, we

abbreviate this as C ‖ c′. If C = (c1, . . . , cn), then |C| = n.

2.1 Aggregate Signatures

Aggregate signature schemes were introduced by Boneh et al. [4]. Aggregate
signatures can “combine” signatures from different signers on different messages
into one single signature of equal size, authenticating all messages at once.

In their scheme, a signature is a single element of a group with a bilinear
map. The aggregate of several signatures is their product in the group. There-
fore, aggregation is very flexible: signatures can be aggregated in any order, and
aggregated signatures can be aggregated further.



Practical and Robust Secure Logging 91

Sequential aggregate signatures [19] do not support this fully flexible aggre-
gation: Messages are added to an aggregate one-by-one, each message by its
signer. Signing and aggregation may be a single, inseparable process, i.e. once
created, signatures cannot in general be combined further. While not as flexible,
they are still useful in a wide range of applications, such as certificate chains,
secure routing, version control systems, and securing log files [22].

Claims and Claim Sequences. A claim c = (pk, i,m) is a triple of a public
key pk, an epoch number i ∈ N0, and a message m. It conveys the meaning that
the owner of pk has signed the message m during epoch i.1

A claim sequence is a finite sequence of claims. The empty signature λ is
a signature valid for only the empty claim sequence (). Let C = (c1, . . . , cn)
be a claim sequence and b ∈ {0, 1}∗ with |b| ≥ n a bit sequence specifying a
selection of indices. Then C[b] is the subsequence of C containing the elements
cj (1 ≤ j ≤ n) where b[j] = 1. If M is a matrix with only 1 and 0 entries, then
C[Mi] is the subsequence containing all cj , where M[i, j] = 1, for i ∈ [rows(M)].

2.2 Forward-Secure Signatures

A forward-secure signature scheme [2] uses a distinct secret keys for signing in
each time interval (epoch). Throughout this paper we assume w.l.o.g. that the
current epoch number can be efficiently derived from the current secret key.

Definition 1. A forward-secure signature (FSS) scheme is a tuple of PPT
algorithms FS = (KeyGen,Update,Sign,Verify), where

– KeyGen(1κ, 1T ) takes as input the security parameter κ and an a priori upper
bound T on the number of epochs. It outputs a key pair (pk, sk0), where sk0
is the secret key for the first epoch.

– Update(skt) takes as input the secret key skt of period t. If t ≥ T −1 its output
is not defined. If t < T − 1 it computes the secret key skt+1 for the following
period t + 1. It then securely erases the old secret key skt.

– Sign(skt,m) takes as input a secret key skt and a message m ∈ {0, 1}∗ and
outputs a signature σ for claim (pk, t,m), where t is the epoch of skt.

– Verify((pk, t,m), σ) outputs 1 if σ is a valid signature for the message m in
epoch t under public key pk, and 0 otherwise.

A FSS scheme is correct if any regularly signed message is valid, i.e. if for
all epoch bounds T = poly(κ), all indices t ∈ {0, . . . , T − 1} and all messages
m ∈ {0, 1}∗, it holds that Verify((pk, t,m),Sign(skt,m)) = 1, where (pk, sk0) ←
KeyGen(1κ, 1T ) and skt+1 = Update(skt) for t = {0, . . . , T − 2}.

1 The terms “claim” and “claim sequence” are borrowed from [9]. However, we have
added an epoch index i to each claim, because we are considering forward security
in this work.



92 G. Hartung et al.

Security Notion for Forward-Secure Signatures. The security experiment
for forward-secure signatures consists of four phases and is based on [2]. The
general idea is that an adversary should not be able to forge a signature for any
earlier epoch, even if he knows the secret key of the current epoch.

– Setup Phase. The challenger C generates a key pair (pk∗, sk∗
0) ←

KeyGen(1κ, 1T ) (where T is the maximal number of epochs) and gives the
public key pk∗ and T to the adversary. It sets t := 0.

– Query Phase. The adversary A has access to an Update and a Sign ora-
cle. When A calls the Update oracle, C computes sk∗

t+1 := Update(sk∗
t ), sets

t := t + 1, and returns “ok”. A may only make T − 1 Update queries.
A may (adaptively) issue signature queries to the Sign oracle for messages
m ∈ {0, 1}∗. For these queries, the challenger responds with a signature
σ ← Sign(sk∗

t ,m).
– Break In Phase. A may send a break in request to obtain the current secret

key. C sets tBreakIn := t and sends skt to A. Afterwards, A is denied any further
access to his oracles. We set tBreakIn := ∞ if A does not break in.

– Forgery Phase. Finally, A outputs a claim (pk∗, t∗,m∗) and a corresponding
signature σ∗.

The adversary wins the experiment iff σ∗ is a valid signature for claim
(pk∗, t∗,m∗), and it is non-trivial, which means that m∗ was not queried to
the Sign oracle during period t∗, and t∗ < tBreakIn.

A FSS scheme is forward-secure existentially unforgeable under chosen mes-
sage attacks (FS-EUF-CMA-secure) if for each T = poly(κ) any PPT adversary
A wins the above experiment with a probability that is at most negligible in κ.

2.3 Forward-Secure Sequential Aggregate Signatures

The following definition is the forward-secure sequential aggregate signature def-
inition in [20], which is based on [2,19].

Definition 2. A forward-secure sequential aggregate signature (FS-SAS)
scheme is a tuple of four PPT algorithms AS = (KeyGen,Update,AggSign,
Verify), where

– KeyGen(1κ, 1T ) takes as input the security parameter κ and an a priori upper
bound T on the number of epochs. It generates and outputs a key pair (pk, sk0),
where sk0 is the initial secret key for the first epoch.

– Update(skt) takes as input the secret key skt of period t. If t ≥ T − 1 the
output of Update is not defined. If t < T − 1 it computes the secret key skt+1

for the following period t + 1. It then securely erases the old secret key skt.
– AggSign(skt, Ci−1, σi−1,mi) takes as input a secret key skt for an epoch t,

a claim sequence Ci−1, a corresponding signature σi−1 and a message mi. It
outputs a signature σi for the new claim sequence Ci := Ci−1 ‖(pk, t,mi).

– Verify(C, σ) takes as input a claim sequence C and a signature σ and outputs
1 if σ is valid for C, and 0 otherwise.



Practical and Robust Secure Logging 93

Informally, a signature is regular if it was generated with the correct use of the
algorithms of a FS-SAS scheme. Formally, let Ci be a claim sequence and σi

a signature. We say that σi is regular for Ci iff either Ci = () and σi = λ,
or Ci = Ci−1 ‖(pk, t,mi) and σi ← AggSign(skt, Ci−1, σi−1,mi) where σi−1 is a
regular signature for Ci−1, mi is an arbitrary message, (pk, sk0) is a key pair
output by KeyGen(1κ, 1T ), and skt+1 = Update(skt), for t ∈ {0, . . . , T − 1}.

A FS-SAS scheme is correct if for all bounds on the number of epochs T =
poly(κ), any signature σ which is regular for C is also valid for C.

Security Notion for FS-SAS Schemes. The security experiment for forward-
secure sequential aggregate signatures in [20] consists of four phases and
combines the experiments of forward-security [2] and sequential aggregate
signatures [19].

– Setup Phase. The challenger generates a key pair (pk∗, sk∗
0) ← KeyGen(1κ, 1T ),

where T is the maximal number of time periods and gives the public key pk∗

and T to the adversary. It sets t := 0.
– Query Phase. Here, the adversary A has access to an Update and an AggSign

oracle. When A calls the Update oracle, the challenger computes sk∗
t+1 :=

Update(sk∗
t ), sets t := t+1, and returns “ok”. A is not allowed to make more

than T − 1 queries to this oracle. The AggSign oracle takes as input a claim
sequence Ci−1, a corresponding signature σi−1 and a message mi. It responds
with σi ← AggSign(sk∗

t , Ci−1, σi−1,mi), where sk∗
t is the secret key for the

current period t.
– Break In Phase. The adversary may send a break in request to obtain the

current secret key. In this case, the experiment sets tBreakIn := t and sends the
current secret key skt for period t to A. After A has broken in, he is denied
any further access to his oracles. We set tBreakIn := ∞ if A does not break in.

– Forgery Phase. Finally, A outputs a claim sequence C∗ and a corresponding
signature σ∗.

The adversary wins the experiment iff σ∗ is a valid signature for C∗, and C∗

is non-trivial, i.e., C∗ contains a claim (pk∗, t∗,m∗) for which t∗ < tBreakIn and
A did not query m∗ at its AggSign oracle during epoch t∗. A FS-SAS scheme
is forward-secure sequential aggregate signature existentially unforgeable under
chosen message attacks (FS-SAS-EUF-CMA-secure) if for each T = T (κ) ∈
poly(κ) all PPT adversaries A win the above experiment only with a probability
that is negligible in κ.2

2.4 Cover-Free Families

Cover-free families [14] are a combinatorial structure that allows us to achieve
fault-tolerance in our constructions, as in [9]. Let S be a finite set, B be a set of
2 This security notion is slightly weaker with respect to the non-triviality of forgeries

than the one for sequential aggregate signatures by Lysyanskaya et al. [19]. There,
they allow for all messages in C∗ to be already queried before, but in different order.
However, our notion additionally considers forward security.



94 G. Hartung et al.

subsets (or blocks) of S and d ∈ N. The pair F = (S,B) is a d-cover-free family
if for any d blocks B1, . . . , Bd ∈ B and any distinct B ∈ B \ {B1, . . . , Bd}, we
have that B � B1 ∪ · · · ∪ Bd, i.e. no block is covered by the union of any other
d blocks of B. F is a cover-free family (CFF) if it is d-cover-free for a d ≥ 1.

A CFF with a linear order ≤ on B is called ordered. To simplify the presen-
tation, we also assume an order on S and usually identify S with [r], for r = |S|
in this case. The incidence matrix M of an ordered CFF is defined via

M[i, j] =

{
1, if i ∈ Bj ,

0, otherwise,

for i ∈ [r] = S, B = {B1 ≤ · · · ≤ Bm} and j ∈ [m].
We denote the i-th row of M by Mi ∈ {0, 1}m. In this way, the rows of the

matrix represent the elements of S and the columns represent the elements of B.

3 Fault-Tolerant Forward-Secure Sequential Aggregate
Signatures

In this section we define the syntax of forward-secure (multi-key) sequential
aggregate signatures (SAS) with fault tolerance, discuss why the definition of
fault-tolerance from [9] is not applicable in our case, and give an alternative
definition. We then present a security notion that captures the forward-security
property and is compatible with fault-tolerant sequential aggregate signatures,
give a construction of such a scheme, and prove its fault-tolerance and its security.

Definition 3. A key-evolving SAS scheme with list-verification Σ is a tuple of
four PPT algorithms Σ = (KeyGen, Update, AggSign, Verify), where:

– KeyGen(1κ, 1T ) takes as input the security parameter κ and an upper bound T
on the number of epochs. It outputs a key pair (pk, sk0), where sk0 is the secret
key for the first epoch.

– Update(skt) takes as input the secret key skt of period t. If t ≥ T − 1 the
output of Update is not defined. If t < T − 1 it computes the secret key skt+1

for period t + 1 and securely erases the old key skt irrecoverably.
– AggSign(skt, Ci−1, σi−1,mi) takes as input a secret key skt for an epoch t,

a claim sequence Ci−1, a corresponding signature σi−1 and a message mi. It
outputs a signature σi for the new claim sequence Ci := Ci−1 ‖(pk, t,mi).

– Verify(C, σ) takes as input a claim sequence C of length n ∈ N0 and a signa-
ture σ for C and outputs a sequence V (also of length n) of claims and error
symbols ⊥. We require that for each i ∈ [n], either V [i] = C[i] or V [i] = ⊥. (In
other words, V can be obtained from C by replacing claims with ⊥.) Claims
output by Verify are taken to be valid.

Let Ci be a claim sequence and τi be a signature. We say that τi is reg-
ular for Ci iff either Ci = () and τi = λ, or Ci = Ci−1 ‖(pk, t,mi) and
τi ← AggSign(skt, Ci−1, τi−1,mi) where τi−1 is a regular signature for Ci−1,



Practical and Robust Secure Logging 95

mi is an arbitrary bit string, t ∈ {0, . . . , T − 1}, T = T (κ) ∈ poly(κ), and skt is
the t-times updated version of some secret key sk0 such that (pk, sk0) is a key-
pair output by KeyGen(1κ, 1T ). We say that a SAS scheme with list verification
is correct, if it is 0-fault-tolerant, as defined in the next section.

3.1 Fault Tolerance of FS-SAS Schemes

Let C = (c1, . . . , cn), C ′ = (c′
1, . . . , c

′
n′) be claim sequences. We say that C and

C ′ differ on � positions (0 ≤ � ≤ min(n, n′)) iff ci 
= c′
i for � indices 1 ≤ i ≤

min(n, n′) and ci = c′
i for the rest. Moreover, we say that C ′ contains d errors

with respect to C iff they differ on � positions and d = |n − n′| + �.
A key-evolving SAS scheme Σ with list verification is tolerant against

d errors, if for all claim sequences C,C ′, such that C ′ contains at most d errors
with respect to C and for all signatures τ that are regular for C, we have

V [i] = ci for all 1 ≤ i ≤ min(n, n′) where ci = c′
i,

where V ← Σ.Verify(C ′, τ). In other words, Verify outputs at least all claims ci

from C that C ′ did not modify. (It may also output claims where C[i] 
= C ′[i],
but our security proof will show that such events are extremely rare or trivial.)

A d-fault-tolerant key-evolving SAS scheme is an SAS scheme with list ver-
ification that is tolerant against d errors. A scheme is fault-tolerant, if it is d-
fault-tolerant for some d > 0.

On the Definition of Fault-Tolerance. In [9] a multiset of claim–signature
pairs (ci, τi) is said to contain d errors if d signatures τi are not regular for
their respective claim ci. This definition is not applicable to sequential aggre-
gate signatures due to the lack of individual signatures τi. A natural approach
that comes to mind is to define the number of errors via “intermediate” claim
sequences Ci = (c1, . . . , ci) and their respective signatures τi. (This might not
even be well-defined, but let us ignore this problem for the moment.) Following
this approach, one might say that a claim sequence C contains d errors iff d of
the signatures τi are not regular outputs of AggSign(skt, Ci−1, τi−1,mi).

This approach fails, however, as it does not distinguish between signatures τi,
which are partially damaged but sufficiently intact to authenticate some of the
claims, and signatures that are completely destroyed. For example, consider the
claim sequence C = (c1, . . . , cn) and the signatures τ1, . . . , τn, where all τi for
1 ≤ i < n are regular for the respective intermediate claim sequence Ci, but τn

is completely random. Then there was only one irregular step, and hence only
one error with regard to this definition, but Verify(C, τn) will output (⊥, . . . ,⊥).

An alternative way to look at this is to observe that [9] implicitly assumes
that the aggregation is correct, while errors only occur during signing. In the
sequential aggregate case these two operations are inseparable in general, and
we cannot assume that the aggregation did not introduce additional errors.

We therefore restrict our attention to specific changes to the claim
sequence C: replacements of individual claims as well as addition or removal



96 G. Hartung et al.

of claims at the end of the sequence. These changes closely model our secure-
logging scenario, as they capture events where an attacker edits log entries after
breaking in, or removes tail-end log messages. (Note that addition or removal of
claims is not considered in [9].)

3.2 Security Notion

Let AS = (KeyGen,Update,AggSign,Verify) be a key-evolving SAS scheme with
list verification, A be a PPT algorithm, κ ∈ N a security parameter, and T be
the number of epochs. The security experiment for a forward-secure SAS scheme
with list verification is identical to that of forward-secure SAS schemes described
in Sect. 2.3. The adversary A wins the experiment iff Verify(C∗, τ∗) contains a
claim c∗ such that c∗ = (pk∗, t∗,m∗) for some m∗ ∈ {0, 1}∗ and t∗ < tBreakIn, and
c∗ is non-trivial in the sense that m∗ was not given as an input to the AggSign
oracle during epoch t∗.

A key-evolving SAS scheme with list verification is called forward-secure
sequential aggregate signature existentially unforgeable under chosen message
attacks (FS-SAS-EUF-CMA-secure) if for all T = T (κ) ∈ poly(κ), the prob-
ability of each PPT adversary A to win the above experiment is negligible in κ.

We say that a key-evolving SAS scheme with list verification is single-key
FS-SAS-EUF-CMA-secure, if the above holds for all PPT adversaries A that
never output claim sequences (to the signature oracle or as the forgery C∗)
that contain a claim c = (pk, t,m) for a public key pk 
= pk∗. Clearly, a
FS-SAS-EUF-CMA-secure scheme is also single-key FS-SAS-EUF-CMA-secure.

3.3 Generic Construction

We claim that the generic construction of [9] preserves the forward-security prop-
erty of the underlying signature scheme. We use it to convert a forward-secure
SAS scheme FSSAS to a fault-tolerant forward-secure SAS scheme.

Let FSSAS be a forward-secure SAS scheme, F a d-cover-free family
(d ∈ N0), and M its incidence matrix. A signature in the new scheme is a
vector of signatures of FSSAS. The algorithms of our scheme are as follows:

– KeyGen and Update are identical to the respective algorithms of FSSAS.
– AggSign(skt, Cj−1, τj−1,mj) takes as input a secret key skt, a claim sequence

Cj−1 = (c1, . . . , cj−1), its corresponding signature τj−1 and a message mj to
sign. The sequential aggregate signature is updated component-wise, accord-
ing to the entries of M. More precisely, we set

τj [i] ← FSSAS.AggSign(skt, Cj−1[Mi], τj−1[i],mj),

where M[i, j] = 1, and let τj [i] := τj−1[i] otherwise (i ∈ [rows(M)]). Here,
C0 := () and τ0[i] := λ for each i. The output is τj .



Practical and Robust Secure Logging 97

– Verify(C, τ) takes as input a claim sequence C of length n ∈ N0 and an
aggregate signature τ for C. We compute a bit vector b ∈ {0, 1}n that specifies
for each claim if it can safely be considered valid. For this, let v|� denote the
vector v, truncated to the first � elements. We initialize b to 0n, and iterate
over all entries τ [i] of τ , letting b ← b∨Mi|n if FSSAS.Verify(C[Mi], τ [i]) = 1
in each iteration. (Here, ∨ denotes the bitwise logical OR of two bitstrings.)
Finally, we build the output sequence V component-wise, by letting

V [j] =

{
C[j], if b[j] = 1,

⊥, otherwise,
for all j ∈ [n].

Theorem 1. Let Σ be the key-evolving SAS scheme with list verification defined
above. If Σ is based on a d-CFF F = (S,B), then it is tolerant against d errors.

Theorem 2. Let FSSAS be a key-evolving SAS scheme, F be a cover-free family
with incidence matrix M, and Σ be the scheme from Sect. 3.3. If there exists a
PPT algorithm A that breaks the security of Σ with success probability εA, then
there exists an attacker B that breaks the FS-SAS-EUF-CMA-security of FSSAS
with success probability εB ≥ εA.

Due to space constraints, we only give proof sketches here. The complete proofs
can be found in the full version. For fault-tolerance, observe that each message
mj is redundantly aggregated into several of the signatures τ [i], namely those
where M[i, j] = 1. If errors occur on at most d positions, verification of a certain
subset of all rows will fail. However, this subset cannot cover the rows for any
correct message due to the cover-freeness of F . Thus, each correct message can
be verified from at least one row, and will therefore be output by our scheme.

For the security, note that our scheme essentially outputs the union of all mes-
sages that are contained in valid rows. Thus, to break the security, the attacker
must create a signature where the target claim c∗ is contained in at least one
valid row, which constitutes a successful attack on the underlying scheme FSSAS.

4 Robust Secure Logging

In this section we introduce the notion of robust logging schemes and give a
generic construction based on a plain forward-secure signature scheme, and a
fault-tolerant forward-secure SAS scheme.

The syntax is as in FT-FS-SAS schemes, except that the key update algo-
rithm may write to the log, and an additional error detection algorithm VerifyLog
allows for fine-grained feedback on problems a log signature may have. This gives
precise and reliable information on which parts of the log file are still trustworthy.

Definition 4. A logging scheme with list verification Λ = (KeyGen, Append,
Update, ValidEntries, VerifyLog) is a tuple of five PPT algorithms, where

– KeyGen(1κ, 1T ) takes as input the security parameter κ and an a priori upper
bound T on the number of epochs. It outputs a key pair (pk, sk0), where sk0
is the secret key for the first epoch.



98 G. Hartung et al.

– Append(skt, Ci−1, σi−1,mi) takes as input a secret key skt for epoch t, a claim
sequence Ci−1, a corresponding signature σi−1 and a message mi. It outputs
a signature σi for the new claim sequence Ci := Ci−1 ‖(pk, t,mi), thereby
adding mi to the log. (For efficiency, the public key is written just once into
the log file in the single-key setting, instead of adding it to each log entry.)

– Update(skt, C, σ) takes as input the secret key skt of period t. If t ≥ T − 1 the
output is undefined. If t < T − 1 it computes the secret key skt+1 for period
t+1 and securely erases the old key skt. The arguments C (a claim sequence)
and σ (a signature) may be modified, e.g. to add epoch markers [3].

– ValidEntries(C, σ) takes as input a claim sequence C of length n ∈ N0 and
a signature σ for C and outputs a sequence V (also of length n) of claims
and error symbols ⊥. We require that for each i ∈ [n], either V [i] = C[i]
or V [i] = ⊥. (I.e., V can be obtained from C by replacing claims with ⊥.)
Claims output by Verify are taken to be valid.

– VerifyLog(C, σ) outputs either ∅, if the signature is without errors, or a subset
of a set of error symbols E, otherwise. We set E := {⊥sig,⊥len,⊥em}, with the
interpretation that ⊥sig ∈ VerifyLog(C, σ) iff the signature is not valid, i.e.
ValidEntries(C, τ) 
= C. Moreover, if ⊥len ∈ VerifyLog(C, σ), the signature
may have been truncated. Finally, ⊥em ∈ VerifyLog(C, σ) if some problem
with epoch markers has been detected.

Fault-tolerance is defined analogously to Sect. 3.1, substituting Append for
AggSign, and ValidEntries for Verify. A logging scheme with list verification is
robust if it is fault-tolerant and we have that regular log files are error-free (i.e.
VerifyLog(C, σ) = ∅) and error-free log files are valid (i.e. ValidEntries(C, τ) = C).
Note that, if the signature is valid in the sense that all claims are returned by
ValidEntries, it is still possible that an attacker might have truncated the log. In
this case an error symbol returned by VerifyLog points towards this possibility.

The security notion for logging schemes is similar to the FS-EUF-CMA notion
for FT-FS-SAS schemes, but models the real world setting of secure logging
more closely: The log server maintains a state which the adversary influences
only through his oracles. In more detail, a log append oracle appends an entry
to the internal log file, and an adversary can never again add messages to any
earlier state of the log file. Moreover, the internal signatures remain hidden from
him by default, as these usually stay on the server.

To strengthen the notion, we introduce an additional oracle returning the
current signature, which models a public verification of the log file by a third
party. To exclude trivial attacks, we explicitly disallow an adversary to truncate
the log file to a state he has gotten a signature for. However, he may try to use
these signatures to, e.g., truncate the log file to a different previous state.

At the end of the experiment, the attacker outputs a forgery. We require
error-freeness (VerifyLog(C∗, σ∗) = ∅), as otherwise the adversary might use a
combination of introducing faults and truncating the claim sequence to obtain a
valid signature (verification of the forged signature and claim sequence outputs
the full forged claim sequence) that violates other anti-truncation mechanisms.



Practical and Robust Secure Logging 99

Definition 5. For a log scheme with list verification Λ = (KeyGen,Append,
Update,ValidEntries,VerifyLog), a PPT adversary A, the number of epochs T
and the security parameter κ ∈ N0, the security experiment FS-EUF-CLMA3-
ExpΛ,A,T (κ) is defined as follows:

Setup Phase. The experiment generates a key pair (pk, sk0) ← KeyGen(1κ, 1T ),
the log file C0 := () and signature σ0 := λ. It initializes the epoch counter
t := 0, and starts A with inputs pk, T .

Query Phase. A may adaptively issue queries to the following oracles:
LogAppend Oracle. The experiment appends the specified message m to

the log and updates the signature via σi ← Append(skt, Ci−1, σi−1,m),
where σi−1 denotes the previous signature, and returns “ok”.

NextEpoch Oracle. The oracle updates the secret key, the log and its sig-
nature via Update(skt, Ci−1, σi−1), increments the epoch counter t := t+1
and returns “ok”. It may be queried at most T − 1 times.

GetSignature Oracle. Whenever A calls the GetSignature oracle, the chal-
lenger responds with the current signature σi of the log.

Break In Phase. The adversary may break in to obtain the current secret key
skt. If A does, the experiment sets tBreakIn := t. Otherwise, let tBreakIn := ∞.

Forgery Phase. A outputs a log file C∗, and a forged signature σ∗ for C∗.

We say that A wins the experiment, iff the following conditions hold.

– The signature σ∗ is error-free, i.e. VerifyLog(C∗, σ∗) = ∅. (This implies that
the signature is valid.)

– The signature is non-trivial as defined next. Let C ′ be the subsequence of
C∗ that is obtained by deleting all claims c = (pk, t,m) from C∗, where t ≥
tBreakIn. A’s forgery is non-trivial, iff |C ′| 
= 0 and C ′ does not equal the
content of the log file during any GetSignature query.

A logging scheme with list verification Λ is said to be FS-EUF-CLMA-secure,
iff for all T = T (κ) ∈ poly(κ) and all probabilistic polynomial time attackers A
the probability for A winning the above experiment is negligible in κ.

4.1 Generic Construction

We give a generic construction of a simultaneously secure and robust log scheme
Λ = (KeyGen,Append,Update,ValidEntries,VerifyLog). Let AS be a key-evolving
SAS scheme with list verification and FS a key-evolving signature scheme.

– KeyGen(1κ, 1T ) creates key pairs of the underlying schemes AS and FS as
(pkAS, skAS) ← AS.KeyGen(1κ, 1T ), (pkFS, skFS) ← FS.KeyGen(1κ, 1T ) and
returns pk = (pkAS, pkFS) and sk0 = (skAS, skFS).

3 forward-secure existentially unforgeable under chosen log message attacks.



100 G. Hartung et al.

– Append(skt, Ci−1, τi−1,mi) takes as input a secret key skt = (skAS, skFS) for
period t, a claim sequence Ci−1 = (c1, . . . , ci−1), its corresponding signature
τi−1 = (σi−1, si−1) and a message mi to sign. Both signature components are
obtained from the signature algorithms of AS and FS via

σi ← AS.AggSign(skAS, Ci−1, σi−1,mi ‖ i), and
si ← FS.Sign(skFS, i).

Append securely erases the old length signature si−1 so that it cannot be used
in case of a later break in. The resulting signature τi = (σi, si) is returned.

– Update(skt, Ci−1, τi−1) takes as input the secret key skt = (skAS, skFS), a claim
sequence Ci−1 and a corresponding signature τi−1, and appends an epoch
marker to the log file that is valid for the current epoch t, via

τi ← Append(skt, Ci−1, τi−1,mi),

where mi = "End of epoch:" ‖ t. It then updates the components of skt via
sk′

AS ← AS.Update(skAS) and sk′
FS ← FS.Update(skFS). (These algorithms

erase the old keys securely.) The new secret key is skt+1 = (sk′
AS, sk

′
FS), the

new claim sequence is Ci = Ci−1 ‖(pk, t,mi), and the new signature is τi.
– ValidEntries(C, τ) takes as input a claim sequence C and a signature τ = (σ, s)

for C. It outputs AS.Verify(C ′, σ), where C ′ is the claim sequence generated
from C by appending the message number i to mi for all claims in C.

– VerifyLog(C, τ) takes as input a claim sequence C and a signature τ = (σ, s)
for C. It maintains an error set E initialized to ∅. Firstly, it verifies the FS sig-
nature s using b = FS.Verify((pkFS, t, |C|), s). If b = 0, it adds ⊥len to E. Then
it proceeds with checking the epoch markers: For all claims ci = (pk, ti,mi)
and ci+1 = (pk, ti+1,mi+1) in C, where ti+1 
= ti, consider two cases. If
ti+1 
= ti + 1 then output ⊥em, else check if mi = "End of epoch:" ‖ ti,
otherwise output ⊥em. Finally, it checks whether the signature is valid, i.e.
ValidEntries(C, τ) = C, and adds ⊥sig to E, if this is not the case. It outputs
the set of errors E.

The log scheme Λ described above is d-fault-tolerant, if the underlying FT-FS-
SAS scheme AS is d-fault-tolerant. We omit the proof due to space restrictions.

Theorem 3. Our log scheme with list verification Λ is FS-EUF-CLMA-secure,
if AS is FS-SAS-EUF-CMA-secure and FS is FS-EUF-CMA-secure. More pre-
cisely, for any PPT adversary A who breaks the FS-EUF-CLMA-security with
success probability εA, there exists a PPT adversary B who either breaks the
FS-SAS-EUF-CMA-security of AS or the FS-EUF-CMA-security of FS with suc-
cess probability at least εASB ≥ εA

2 and εFSB ≥ εA
2 , respectively.

Let us first give some overview and intuition about the proof. To win the security
experiment, an attacker A must either truncate the log file to a state he has not
seen the signature for, or create a valid signature for a log file modified w.r.t. an
epoch before his break-in. If A truncates the log file without detection, he must



Practical and Robust Secure Logging 101

create a new signature s for the length of the log file, which violates the security
of FS. If A forges a signature for log file modified w.r.t. a previous epoch, then
A has broken the security of AS. Since we assume that both base schemes are
secure, our resulting construction must be secure, too.

Proof. A FS-EUF-CLMA-adversary A can adaptively query the three oracles
LogAppend, GetSignature and NextEpoch before he may break in, and then out-
puts a forgery (C∗, τ∗), where τ∗ = (σ∗, s∗). As any signatures appended after
the break in are trivial to produce, let C ′∗ be the claim sequence after deleting
all claims (pk, t,m) of C∗, where t ≥ tBreakIn. Let Cexp be the internal claim
sequence of the experiment, after A did his last GetSignature query in a period
t < tBreakIn. We consider two different events:

– E1 occurs, if (C∗, τ∗) is error-free, non-trivial and C ′∗ is not a prefix of Cexp.
– E2 occurs, if (C∗, τ∗) is error-free, non-trivial and C ′∗ is a prefix of Cexp.

We have εA ≤ Pr[E1] + Pr[E2] and thus Pr[E1] ≥ εA
2 or Pr[E2] ≥ εA

2 . Please
note that in the following paragraphs ski

AS, sk
i
FS denote the secret keys of period

i for the respective schemes.

Attack on the FS-SAS-EUF-CMA-security of AS. First we construct a
FS-SAS-EUF-CMA-adversary B on AS, who uses a successful FS-EUF-CLMA-
adversary A and has to simulate the FS-EUF-CLMA-security experiment for A.
The challenger in the FS-SAS-EUF-CMA-security experiment generates a key
pair (pkAS, sk

0
AS) ← AS.KeyGen(1κ, 1T ) and sends pkAS and the maximal num-

ber of epochs T to B. B uses FS to generate a key pair (pkFS, sk
0
FS) ←

FS.KeyGen(1κ, 1T ), s.t. pk := (pkAS, pkFS) and sk0 := (sk0AS, sk
0
FS) for the current

period 0. B forwards pk and T to A. B initializes the log and signature it main-
tains towards A as C0 := (), σ0 := λ and sets i := 0, t := 0 and LFS := {sk0FS}.

We describe how B simulates the three oracles and the break in phase for A:

LogAppend Oracle. A sends B a query mi. B sets Ci :=Ci−1 ‖ (pkAS, t,mi ‖ i)
for the current period t. B sends an AggSign query mi ‖ i with claim sequence
Ci−1 and signature σi−1 to his challenger who responds with a signature σi.
Finally, it sets i := i + 1 and sends A the string “ok”.

NextEpoch Oracle. When A sends a NextEpoch query, B stops if t ≥
T − 1 and outputs ⊥, otherwise B sets mi := "End of epoch:" ‖ t and
Ci := Ci−1 ‖ (pkAS, t,mi ‖ i). B obtains the signature σi for Ci from his
AS.AggSign oracle the same way as before. B sends an Update query to the
challenger, who computes skt+1

AS := AS.Update(skt
AS). B computes skt+1

FS :=
FS.Update(skt

FS) by its own. B sets i := i+1, t := t+1 and LFS := LFS∪{skt+1
FS }

and returns “ok”.
GetSignature Oracle. When A calls the GetSignature oracle, B determines

the length i of the current claim sequence Ci and the period tlast of the last
claim in Ci, which is either the current period t or t−1 (since an epoch switch
always adds an end-of-epoch claim). B gets sktlast

FS from LFS and computes
si ← FS.Sign(sktlast

FS , i). The new signature for Ci is now τi = (σi, si) and B
sends τi to A.



102 G. Hartung et al.

Break In Phase. When A breaks in, B sets tBreakIn := t and sends his chal-
lenger also a break in request. B gets the current secret key skt

AS and sends
A the current secret key skt = (skt

AS, sk
t
FS).

If event E1 occurs, then A sends B an error-free and non-trivial signature τ∗ =
(σ∗, s∗) for a claim sequence C∗, where C ′∗ is not a prefix of Cexp. Since τ∗

is non-trivial, i′ := |C ′∗| 
= 0. In this case, there exists an index j′ ∈ [i′], s.t.
the claim c∗

j′ = (pk, t∗j′ ,m∗
j′) 
= cexpj′ and tj′ < tBreakIn. Let C ′ be the claim

sequence that is generated by appending the message index i to mi in each of
the claims from C∗. Since A’s forgery is valid, (C ′, σ∗) is also a valid forgery for
B’s challenger and it is non-trivial, because the claim (pk, t∗j′ ,m∗

j′ ‖ j′) is fresh4.
So B can forward this and therefore has success probability εASB ≥ Pr[E1].

Attack on the FS-EUF-CMA-security of FS. Next, we construct a
FS-EUF-CMA-adversary B on FS, who uses a successful FS-EUF-CLMA-
adversary A and has to simulate the FS-EUF-CLMA-security experiment for
A. The challenger in the FS-EUF-CMA-security experiment generates a key
pair (pkFS, sk

0
FS) ← FS.KeyGen(1κ, 1T ) and sends pkFS and the maximal number

of epochs T to B. B uses the AS-scheme and generates a key pair (pkAS, sk
0
AS) ←

AS.KeyGen(1κ, 1T ) and forwards pk = (pkAS, pkFS) and T to A. B initializes
the log and signature it maintains towards A as C0 := (), σ0 :=λ and sets
i := 0, t := 0, t′ := 0. We describe how B simulates the three oracles and the
break in phase for A:

LogAppend Oracle. A sends B a query mi. B sets Ci :=Ci−1 ‖ (pkAS, t,mi ‖ i)
for the current period t and σi ← AS.AggSign(skAS, Ci−1, σi−1,mi ‖ i). Then
B sets i := i + 1 and sends A the string “ok”.

NextEpoch Oracle. When A sends a NextEpoch query, B stops if t ≥
T − 1 and outputs ⊥, otherwise B sets mi := "End of epoch:" ‖ t and
Ci :=Ci−1 ‖ (pkAS, t,mi), and computes σi in the same way as before. B com-
putes skt+1

AS := AS.Update(skt
AS) by its own, sets i := i + 1, t := t + 1 and

returns “ok”.
GetSignature Oracle. When A calls the GetSignature oracle B determines

the length i of the current claim sequence Ci and the period tlast of the last
claim in Ci (tlast is either t or t−1). If tlast−t′ := d 
= 0, then B sends d Update
queries to his challenger, who computes sktlast

FS via updating the current skt′
FS

d times. Then B sends a query m = i to his challenger, who responds with
si ← FS.Sign(sktlast

FS , i). The new signature for Ci is now τi = (σi, si) and B
sends τi to A. B sets t′ := t and if t− tlast = 1, sends one more Update query.

Break In Phase. When A sends his break in request, B sets tBreakIn := t. If
t − t′ := d 
= 0, then B sends d Update queries to his challenger and then
sends also a break in request. B gets the current secret key skt

FS and sends A
the current secret key skt = (skt

AS, sk
t
FS).

4 Remember that we assume that m and i can be uniquely derived from m ‖ i, which
implies that the claims c∗

j′ and cexpj′ also differ after concatenating j′ to their mes-

sages. Since j′ is also only used once, the claim c∗
j′ cannot become equal to any other

claim of Cexp after this concatenation, either.



Practical and Robust Secure Logging 103

If event E2 occurs, then A sends B an error-free and non-trivial signature
τ∗ = (σ∗, s∗) for a claim sequence C∗, where C ′∗ is a prefix of Cexp. Let |C∗| =:
i∗, |C ′∗| =: i′, |Cexp| =: iexp. Thus, s∗ is a valid signature for i∗. We show that
i∗ < iexp and i∗ was not queried to B′s challenger during the experiment before.

If i∗ ≥ iexp, then i′ > iexp is not possible, since C ′∗ is a prefix of Cexp.
i′ < iexp is possible neither, since the claim c∗

i′ must then be (pk, ti′ ,mi′ =
"End of epoch:" ‖ ti′) (since all claims where t ≥ tBreakIn were deleted, the last
claim of C ′∗ must be a claim for an epoch marker – this follows from the error-
freeness of τ∗) for ti′ = tBreakIn − 1. Because C ′∗ is a prefix of Cexp this is also
a claim in Cexp. Since Cexp also contains no claims for any t ≥ tBreakIn, this also
has to be the last claim in Cexp. Therefore |C ′∗| must be equal to |Cexp|. Thus,
i′ = iexp and C ′∗ = Cexp, but in this case, τ∗ is not a non-trivial signature,
because A queried his GetSignature oracle for C ′∗ = Cexp per definition.

So, we have i∗ < iexp and therefore C∗ = C ′∗ since C∗ contains no claims
with t ≥ tBreakIn in this case. So, C∗ is also a prefix of Cexp. Because τ∗ is an
error-free and non-trivial signature, A has never queried the GetSignature oracle
when the internal state of the log was equal to C∗. Thus, B has never queried
his FS.Sign oracle for i∗, so s∗ is a fresh and valid signature of i∗ under skti∗ ,
with ti∗ < tBreakIn. Thus, B forwards a valid forgery (i∗, s∗) to his challenger with
success probability εFSB ≥ Pr[E2]. In total, we have εASB ≥ εA

2 or εFSB ≥ εA
2 . �

5 Implementation and Performance Results

We implemented our generic construction from Sect. 4.1 and conducted various
benchmarks. Our scheme uses the BGLS-FS-SAS scheme [20,23] and the BM-
FSS scheme [2]. Our results are shown in Table 1. Details of our implementation
and benchmarks are provided in AppendixA.

Methodology. For our experiments, we defined several sets of processes. Each
process was repeated three times. The averages and standard deviations shown
in Table 1 have therefore been computed from a sample of size 3.

For the first set of processes, we called the KeyGen algorithm with the given
parameter T and measured its total run-time. In the second set, we created a
random key for T epochs, and then measured the run-time of updating the key
T times, without computing any signatures. Table 1 shows the average run-time
per invocation of Update.

The third process consisted of creating a key-pair valid for n epochs, and
then calling the AggSign algorithm n times, switching epochs every � messages.
For each epoch switch, we created and signed an epoch marker first, and then
updated the secret key. The process also included signing the current counter
value with a forward-secure digital signature scheme and updating that scheme.
The time shown in Table 1 is the total time of all signing and updating oper-
ations, divided by the number of messages, so it represents the average time
needed for adding a single log entry to the log file. The standard deviation was
computed over the average signing time in each run.



104 G. Hartung et al.

Table 1. Runtimes of our robust secure logging schemes based on the BGLS-FS-SAS
from [20]. See the methodology section for an explanation of this table and the full
version for more data.

The measurements in the last set of processes were obtained by calling Verify
after a completion of a process from the third set. The time given in Table 1
is an average of the run-time of three executions divided by the number of
messages that were verified. Hence, it represents the average verification time
per message. The standard deviation was computed over the run-times of an
individual execution divided by n. We did not consider invalid signatures in our
experiments.

6 Conclusion

We give a simple solution to the problem of space-efficient logging, while still
retaining robustness and truncation security for a properly formalized security
notion of secure logging and achieve provable security. Combining a fault-tolerant
forward-secure sequential aggregate signature with a forward-secure signature on
the current log length elegantly solved these problems in combination. For this
we modified the notion of fault-tolerance from [9] (which is based on cover-free
families to introduce redundancy), to fit the more restricted setting of sequential
aggregate signatures, allowing for more efficient implementations due to less
requirements than in the case of general aggregation. Finally, we evaluated the
performance of a prototype implementation of our space-efficient and truncation-
resistant robust secure logging scheme.

A Implementation Details

This section gives details about our implementation of the scheme from Sect. 4.1.
Our implementation is written in C++11, and will be made available under a
free software license. For the BM-FSS scheme, we chose a modulus size of 1024
bits, roughly equivalent to a security level of 80 bit. The BGLS scheme was
instantiated using elliptic curve groups 160 bits, and the base field had 1024 bits.



Practical and Robust Secure Logging 105

We used an instantiation of the cover-free family based on polynomials, described
in [16]. For a CFF supporting n = 100, 1000, and 10000 messages, we chose the
field size q = 5, 11, and 23, respectively, and fixed the polynomial degree at
k = 2. This led to d = 2, 5 and 11, respectively. (The resulting CFFs were
slightly larger than required: They supported 125, 1331, and 12167 messages,
respectively.) Whenever a hash function was needed, we used SHA-256. We used
a constant string of 200 bytes for all messages.

Our experiments were conducted on a laptop computer with an Intel Core
i5-2430M CPU [12] with a clock rate of 2.4 GHz. (Our implementation is not
parallelized and therefore did not make use of the additional processor cores.)
The processor has private (per-core) caches of 128 KB (Level 1) and 512 KB
(Level 2), and a shared Level 3 Cache of 3072 KB [11, Sect. 1.1] The system was
equipped with 5.7 GiB of RAM and running a 64-bit version desktop version of
the Fedora 23 GNU/Linux operating system, equipped with Linux Kernel version
4.4.9-300. All code was compiled with the GNU C Compiler (version 5.3.1) and
optimization level set to -O2. We used Shoups NTL library [25] (version 9.4.0)
for the implementation of the BM-FSS scheme and the PBC library [18] (version
0.5.14) for the implementation of the BGLS-FS-SAS scheme.

References

1. Anderson, R.: Invited lecture. In: 4th ACM Computer and Communications Secu-
rity (1997)

2. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
doi:10.1007/3-540-48405-1 28

3. Bellare, M., Yee, B.: Forward integrity for secure audit logs. Technical report,
Computer Science and Engineering Department, University of California at
San Diego (1997)

4. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 26

5. Bowers, K.D., Hart, C., Juels, A., Triandopoulos, N.: PillarBox: combating next-
generation malware with fast forward-secure logging. In: Stavrou, A., Bos, H.,
Portokalidis, G. (eds.) RAID 2014. LNCS, vol. 8688, pp. 46–67. Springer, Cham
(2014). doi:10.1007/978-3-319-11379-1 3

6. Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward-secure signatures with
untrusted update. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) CCS
2006, pp. 191–200. ACM (2006). doi:10.1145/1180405.1180430

7. Crosby, S.A., Wallach, D.S.: Efficient data structures for tamper- evident logging.
In: Monrose, F. (ed.) USENIX 2009, pp. 317–334. USENIX Association (2009).
http://www.usenix.org/events/sec09/tech/full papers/crosby.pdf

8. Hartung, G.: Secure audit logs with verifiable excerpts. In: Sako, K. (ed.) CT-
RSA 2016. LNCS, vol. 9610, pp. 183–199. Springer, Cham (2016). doi:10.1007/
978-3-319-29485-8 11

9. Hartung, G., Kaidel, B., Koch, A., Koch, J., Rupp, A.: Fault-tolerant aggregate
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 331–356. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49384-7 13

http://dx.doi.org/10.1007/3-540-48405-1_28
http://dx.doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/978-3-319-11379-1_3
http://dx.doi.org/10.1145/1180405.1180430
http://www.usenix.org/events/sec09/tech/full_papers/crosby.pdf
http://dx.doi.org/10.1007/978-3-319-29485-8_11
http://dx.doi.org/10.1007/978-3-319-29485-8_11
http://dx.doi.org/10.1007/978-3-662-49384-7_13
http://dx.doi.org/10.1007/978-3-662-49384-7_13


106 G. Hartung et al.

10. Holt, J.E.: Logcrypt: forward security and public verification for secure audit logs
In: Buyya, R., Ma, T., Safavi-Naini, R., Steketee, C., Susilo, W. (eds.) AusGrid
2006 and AISW 2006. CRPIT, vol. 54, pp. 203–211. Australian Computer Society
(2006). doi:10.1145/1151828.1151852

11. Intel Corporation: 2nd Generation Intel Core Mobile Processor Datasheet, vol. 1,
September 2012. https://www-ssl.intel.com/content/www/us/en/processors/
core/2nd-gen-core-family-mobile-vol-1-datasheet.html. Accessed 29 May 2017

12. Intel Corporation: Intel Core i5–2430M Processor Specification. https://ark.intel.
com/products/53450/Intel-Core-i5-2430M-Processor-3M-Cache-up-to-3 00-GHz.
Accessed 29 May 2017

13. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verify-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer,
Heidelberg (2001). doi:10.1007/3-540-44647-8 20

14. Kautz, W.H., Singleton, R.C.: Nonrandom binary superimposed codes. IEEE
Trans. Inf. Theor. 10(4), 363–377 (1964). doi:10.1109/TIT.1964.1053689

15. Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In:
Gritzalis, D., Jajodia, S., Samarati, P. (eds.) CCS 2000, pp. 108–115. ACM (2000).
doi:10.1145/352600.352617

16. Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting
problems without computational assumptions. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999). doi:10.1007/
3-540-48405-1 38

17. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures, multisignatures, and verifiably encrypted signatures without random
oracles. J. Crypt. 26(2), 340–373 (2013). doi:10.1007/s00145-012-9126-5

18. Lynn, B.: The pairing-based crypto library. https://crypto.stanford.edu/pbc/.
Accessed 29 May 2017

19. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-24676-3 5

20. Ma, D.: Practical forward secure sequential aggregate signatures. In: Abe, M.,
Gligor, V.D. (eds.) ASIACCS 2008, pp. 341–352. ACM (2008). doi:10.1145/
1368310.1368361

21. Ma, D., Tsudik, G.: A new approach to secure logging. In: Atluri, V. (ed.)
DBSec 2008. LNCS, vol. 5094, pp. 48–63. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-70567-3 4

22. Ma, D., Tsudik, G.: A new approach to secure logging. ACM Trans. Storage (TOS)
5(1) (2009). doi:10.1145/1502777.1502779

23. Ma, D., Tsudik. G.: Extended abstract: forward-secure sequential aggregate
authentication. In: S&P 2007, pp. 86–91. IEEE Computer Society (2007). doi:10.
1109/SP.2007.18

24. Schneier, B., Kelsey, J.: Cryptographic support for secure logs on untrusted
machines. In: Rubin, A.D. (ed.) Proceedings of USENIX. USENIX Associa-
tion (1998). https://www.usenix.org/conference/7th-usenix-security-symposium/
cryptographic-support-securelogs-untrusted-machines

25. Shoup, V.: NTL: a library for doing number theory. http://shoup.net/ntl/.
Accessed 29 May 2017

http://dx.doi.org/10.1145/1151828.1151852
https://www-ssl.intel.com/content/www/us/en/processors/core/2nd-gen-core-family-mobile-vol-1-datasheet.html
https://www-ssl.intel.com/content/www/us/en/processors/core/2nd-gen-core-family-mobile-vol-1-datasheet.html
https://ark.intel.com/products/53450/Intel-Core-i5-2430M-Processor-3M-Cache-up-to-3_00-GHz
https://ark.intel.com/products/53450/Intel-Core-i5-2430M-Processor-3M-Cache-up-to-3_00-GHz
http://dx.doi.org/10.1007/3-540-44647-8_20
http://dx.doi.org/10.1109/TIT.1964.1053689
http://dx.doi.org/10.1145/352600.352617
http://dx.doi.org/10.1007/3-540-48405-1_38
http://dx.doi.org/10.1007/3-540-48405-1_38
http://dx.doi.org/10.1007/s00145-012-9126-5
https://crypto.stanford.edu/pbc/
http://dx.doi.org/10.1007/978-3-540-24676-3_5
http://dx.doi.org/10.1007/978-3-540-24676-3_5
http://dx.doi.org/10.1145/1368310.1368361
http://dx.doi.org/10.1145/1368310.1368361
http://dx.doi.org/10.1007/978-3-540-70567-3_4
http://dx.doi.org/10.1007/978-3-540-70567-3_4
http://dx.doi.org/10.1145/1502777.1502779
http://dx.doi.org/10.1109/SP.2007.18
http://dx.doi.org/10.1109/SP.2007.18
https://www.usenix.org/conference/7th-usenix-security-symposium/cryptographic-support-securelogs-untrusted-machines
https://www.usenix.org/conference/7th-usenix-security-symposium/cryptographic-support-securelogs-untrusted-machines
http://shoup.net/ntl/


Verifiably Encrypted Group Signatures

Zhen Wang1,2, Xiling Luo1,2, and Qianhong Wu1(B)

1 School of Electronic and Information Engineering,
Beihang University, Beijing, China

qianhong.wu@buaa.edu.cn
2 Beijing Key Laboratory for Network-Based Cooperative Air Traffic Management,

Beijing, China

Abstract. Recently, verifiably encrypted signatures (VESs) have been
widely used in fair exchange, however most of them do not provide
a method to protect the anonymity of the signer, leading to privacy
leakage in fair exchange. Verifiably Encrypted Group Signature (VEGS)
overcomes drawbacks of VES, which allows a verifier to check its valid-
ity without decryption. And VEGS does not reveal the identity of the
signer, thus protecting the privacy of the signer. In VEGS systems, a
signer generates a group signature with his private key, then encrypts it
with the adjudicator’s public key and outputs a VEGS. A verifier can
check whether a VEGS is valid. The group manager reveals the identity
of the VEGS if necessary. The adjudicator can extract the original group
signature from the VEGS with his private key. In this paper, we pro-
pose the first concrete VEGS scheme according to our model. We define
several security properties which are essential to VEGS schemes and we
prove that our scheme is secure in the standard model. Additionally, we
discuss some relevant issues about our scheme.

Keywords: Verifiably Encrypted Group Signature · Verifiably
Encrypted Signature · Group signature · Security properties

1 Introduction

With the development of the Internet, fair exchange has been applied to online
transaction. In fair exchange, two involved parties exchange goods with each
other fairly. However, most existing protocols can not protect the privacy of the
exchange parties. Suppose one person wants to exchange a file with company B
on behalf of company A, however, he may not want to expose his identity. This
leads to a big challenge to achieve fair exchange protocols since most of them
use verifiably encrypted signature (VES), which exposes the identities of the two
parties in the transaction.

VES is an encrypted signature and its validity can be checked without decryp-
tion. As stated in [17,20], a VES scheme consists of a signature scheme and an
encryption scheme. Boneh et al. first proposed a VES scheme [6], which is con-
structed by aggregate signatures. Lu et al. [17], Nishimaki and Xagawa [18] inde-
pendently proposed their VES schemes, which are both secure in the standard
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 107–126, 2017.
https://doi.org/10.1007/978-3-319-68637-0_7



108 Z. Wang et al.

model. However, the private key size is rather large. Besides, the scheme of Nishi-
maki and Xagawa is based on Waters’ dual signature scheme, leading to a large
size of the signature. Rückert and Schröder [20] proposed a VES scheme based on
a short signature scheme [4], which is efficient due to the short verification key.
However, most existing VES schemes are based on Public Key Infrastructure
(PKI), leading to high cost in the authentication and management of the public
keys. Using identity-based cryptosystems, the above problem can be solved. Gu
et al. [16] proposed an identity-based VES scheme with random oracles. However,
their scheme was proved to be insecure [21]. Then Zhang et al. [22] proposed an
identity-based VES scheme in the standard model. However, their scheme is a
weak version of identity-based VES [15]. Besides, all above schemes can not pro-
tect the anonymity of the signer, thus we have to use another technique called
group signature.

Group signature was first introduced by Chaum and Heyst [11], which allows
an authentic user generates a signature on behave of a group and hides his iden-
tity from others. In their paper, they gave the basic ideas about group signature
and presented four group signature schemes. However, they did not give spe-
cific security definitions. Then several related works were presented [2,3,5,13].
However, all of them are too inefficient or provably secure with random ora-
cles. Then Bellare et al. [9] first formalized the security definitions of the group
signature and presented a group signature scheme which is secure in the stan-
dard model. Ateniese et al. [1] also proposed a group signature which is secure
without random oracles. However, all above schemes use Zero-Knowledge (ZK)
proof technique which is inefficient. Later, Boyen and Waters [10] constructed a
group signature scheme without ZK proof technique and their scheme is provably
secure in the standard model.

Motivated by above works, we first formalized a new concept called verifiably
encrypted group signature (VEGS), which is derived from verifiably encrypted
signature (VES) and group signature. As a consequence, VEGS has similar prop-
erties with both VES and group signature. VEGS can be checked without decryp-
tion and protect the signer’s anonymity. Besides, if there exists dispute, a trusted
parties can trace the identity of the signer. Thus VEGS can be used to construct
fair exchange protocols which hide the identity of the parties in the transaction.

For example, if Alice wishes to exchange signature on a file with company B
on behalf of company A and she does not want to expose her identity, she can
use a VEGS to complete the exchange instead of an original signature. Alice first
sends a VEGS to company B. Then a staff of company B (known as Bob) checks
whether the VEGS is valid. If the VEGS is valid, Bob generates a group signature
and sends it to company A. Then Alice checks whether the group signature is
valid. If it is valid, Alice sends her group signature to company B. If Alice does
not sends her group signature to B, B sends the VEGS together with Bob’s group
signature to the adjudicator. If both of them are valid, the adjudicator recovers
the original group signature of Alice and returns it to company B. The exchange
reveals nothing about identities of Alice and Bob due to the anonymity of the
group signature and VEGS. If someone denies that he generates the VEGS or



Verifiably Encrypted Group Signatures 109

group signature, the group manager can trace the identity of the signer. Besides,
VEGS has useful applications such as online data exchange and online contact
signing. And the special properties make it appealing to explore the potential in
VEGS.

1.1 Our Contributions

We formalize a new concept of verifiably encrypted group signature (VEGS),
which combines verifiably encrypted signature (VES) and group signature.
VEGSs are encrypted group signatures which can be used to protect the
anonymity of the signers. And VEGSs allow us to check their validity without
decryption. In VEGS, the group master key and group tracing key are gener-
ated by the group master and the group manager keeps the group tracing key.
A user generates a group signature with his private key, then encrypts it with
the adjudicator’s public key, and obtains a VEGS. A verifier checks whether the
VEGS is valid. The group manager can open the VEGS and trace the identity of
the signer if necessary. The adjudicator can extract the original group signature
from the VEGS with his private key.

We define the security properties required in VEGS schemes, i.e., full-
anonymity, full-traceability, unforgeability, opacity and extractability. Full-
anonymity describes that no one can reveal the identity of the signer except
the group manager. Full-traceability means that any valid VEGS can be traced
to a valid identity by the group manager. Unforgeability guarantees that no
one can forge a VEGS without a signing key. Opacity means that no one can
extract a valid group signature from a VEGS without the adjudicator’s private
key. Extractability guarantees that if a VEGS is valid, then the original group
signature can be extracted by the adjudicator.

We propose the first concrete VEGS scheme by employing Boyen-Waters
group signature scheme [10] and the ElGamal encryption scheme [14]. Then we
prove our VEGS scheme is secure in the standard model. Finally, we discuss the
extensions of our VEGS scheme.

1.2 Outline

We organize the rest of the paper as follows. In Sect. 2 we give the relevant
notions. In Sect. 3 we present definition of VEGS scheme and security definitions.
In Sect. 4 we propose our concrete VEGS scheme, then we prove our scheme is
secure in the standard model. In Sect. 5 we discuss the extensions of our VEGS
scheme. Finally, we conclude in Sect. 6.

2 Preliminaries

In this section, we briefly review the bilinear maps and complexity assumptions
that are essential in our construction.



110 Z. Wang et al.

2.1 Bilinear Maps

In our paper, we use composite order bilinear groups as stated in [7]. Let G and
GT be finite cyclic groups of order n, g be a generator of G, and n = pq has two
large prime factors (p and q). A map e : G × G → GT can be called an efficient
bilinear map if it satisfies the following properties:

– Bilinear: For ∀a, b ∈ Zn, we have e(ga, gb) = e(g, g)ab. Clearly, the bilinearity
implies that for ∀g1, g2, g3 ∈ G, we have e(g1, g3)e(g2, g3) = e(g1g2, g3).

– Non-degeneracy: e(g, g) �= 1. In other words, the element e(g, g) is a generator
of GT .

– e is efficiently computable.

2.2 Complexity Assumptions

The security of our VEGS scheme is based on subgroup decision assumption,
CDH assumption and aggregate extraction assumption. The subgroup decision
assumption is based on the hardness of factoring [7], and aggregate extraction
assumption is a variant of CDH assumption, thus all assumptions employed in
our scheme are basic assumptions. We briefly review them below.

Subgroup Decision problem: Let G and GT be finite cyclic groups of order
n = pq, Gp and Gq be subgroups of G of order p and q, e be a bilinear map
e : G × G → GT . Choose w ∈ G randomly, decide whether w ∈ Gq.

The subgroup decision assumption is as follows.

Definition 1. The (t, ε)-subgroup decision assumption holds if no adversary
runs at most t time and has at least ε advantage in solving the subgroup decision
problem.

CDH problem: Given g, ga, gb, compute gab.
If the probability that adversary B solves the CDH problem is at least ε, then

we have
Pr[B(g, ga, gb) = gab] ≥ ε,

Then CDH assumption is as follows.

Definition 2. The (t, ε)-CDH assumption holds if no adversary runs at most t
time and has at least ε advantage in solving the CDH problem on G.

The aggregate extraction problem: Given G, Gp, Gq, n = pq, p, q, g, ga, gb,
gδ, gζ and gab+δζ , compute gab.

If the probability that adversary B solves the aggregate extraction problem
is at least ε, then we have

Pr[B(g, ga, gb, gδ, gζ , gab+δζ) = gab] ≥ ε,

Then aggregate extraction assumption is as follows.

Definition 3. The (t, ε)-aggregate extraction assumption holds if no adversary
runs at most t time and has at least ε advantage in solving the aggregate extrac-
tion problem on G.



Verifiably Encrypted Group Signatures 111

3 Modelling VEGS

3.1 Definition of VEGS Scheme

VEGS works as follows. A group master sets up the system and distributes the
keys of users. A group manager keeps the group tracing key, which can be used
to reveal a user’s identity from the VEGS. Group members first register in the
system with their identities and obtain their signing keys. Then they generate
group signatures with the signing keys, encrypt them with the adjudicator’s
public key and finally obtain VEGSs. A verifier can check whether the VEGS
is valid without decrypting it. The adjudicator can reveal the original group
signature from the VEGS with his private key.

A VEGS scheme consists of following algorithms: Setup, AKG, Enroll, Sign,
Verify, VESign, VEVerify, Open, Adj.

Setup: Setup takes as input security parameter 1λ, and outputs public para-
meters param for verification, a master key MK for enrollment of users, and a
tracing key TK for revealing the identity from the VEGS.

AKG: AKG takes as input security parameter 1λ, and outputs a pair of keys
(SKT , PKT ) for the adjudicator.

Enroll: Enroll takes as input a user’s identity u, and the master key MK,
outputs signing key sku for a group member.

Sign: Sign takes as input a message m, the signing key sku, and outputs a
group signature σ.

Verify: Verify takes as input a message m, a group signature σ and the public
parameters param, outputs a bit b ∈ {0, 1}. If b = 0, the group signature is
invalid. Otherwise, it is valid.

VESign: VESign takes as input a message m, a signing key sku and the adju-
dicator’s public key PKT , outputs a VEGS ω.

VEVerify: VEVerify takes as input a message m, a VEGS ω, and public para-
meters param, outputs a bit b ∈ {0, 1}. If b = 0, the VEGS is invalid. Otherwise,
it is valid.

Open: Open takes as input the tracing key TK, a VEGS ω, and outputs the
identity u of the signer.

Adj: Adj takes as input a VEGS ω, the adjudicator’s private key SKT , output
the original group signature σ.

A VEGS scheme VEGS = (Setup,AKG,Enroll,Sign,Verify,VESign,VEVerify,
Open,Adj) is correct if for all (param,MK,TK) ← Setup(1λ), (SK,PK) ←
AKG(1λ), u, sku ← Enroll(MK, u), m, and ω ← VESign(m, sku, PKT ), it
always holds that VEVerify(m,VESign(m, sku, PKT ), PKT , param) = 1 and
Verify(m,Adj(VESign(m, sku, PKT ), SKT ), param, u) = 1.

3.2 Security Definitions

Security is significant for VEGS schemes. Informally, a VEGS scheme is secure if
it satisfies the following properties, i.e., anonymity, traceability, unforgeability,
opacity and extractability. Briefly, anonymity means that given a valid VEGS,



112 Z. Wang et al.

no one can extract the identity of the signer except the group manager who keeps
the group tracing key. And traceability describes the property that the group
manager can open any valid VEGS and reveal the identity of the signer. In our
paper, we give stronger notions about anonymity and traceability called full-
anonymity and full-traceability [9]. We define the new properties under stronger
attack, which means that the adversary has the access to the private key oracle,
the group signing oracle and VESign oracle. And for the attack of the full-
traceability, we can even give the tracing key to the adversary. Unforgeability
describes the property that no one can forge a VEGS without a signing key. And
opacity means that no one can extract a valid group signature from a VEGS
without the adjudicator’s private key. Finally, extractability is also a necessary
property and it guarantees that the valid group signature can be extracted from
the valid VEGS. Formally, we define these properties by the following games.

Definition 4. Full-anonymity is defined by the game GameAnoy(λ). The
involved parties in the game are a challenger and an adversary A.

– Setup. The challenger sets up the system, generates the system parameters
and sends the public parameters to A.

– Query. A submits an identity u to the challenger and asks for a private
key, the challenger runs Enroll and returns the signing key sku to A. A can
query at most q1 times for signing keys. A submits an identity u, a message
m to the challenger and asks for a group signature or VEGS, the challenger
runs Sign or VESign and returns a group signature σ or a VEGS ω. A can
query at most q2 times for group signatures and q3 times for VEGSs. If A
submits a message m, a VEGS ω to the challenger, and asks for arbitration,
the challenger first checks whether ω is valid, if it is not, then the challenger
returns ⊥. Otherwise, the challenger runs Adj and returns a group signature
σ. A can query at most q4 times for adjudication.

– Challenge. A randomly chooses two identities u1, u2 which have the same
length, a message m∗ and sends them to the challenger. The challenger ran-
dom picks a bit b ∈ {0, 1}, generates a private key of ub, and returns a VEGS
ωb ← VESign(m∗, skub

, PKT ) to A.
– Guess. Finally, A outputs a bit b′ ∈ {0, 1} as a guess of b.

Define the probability that A wins in the above game as

AdvAnon
A = |Pr[b′ = b] − 1

2
|.

A VEGS scheme is fully-anonymous if for every probability polynomial time
(PPT) adversary A, the probability that A wins in the above game is negligible.
In fact, since we use the “selective-identity,adaptive-message” attack [10] in the
above game, we call it CPA (chosen-plaintext attack)-ID model.

Definition 5. Full-traceability is defined by the game GameTrac(λ) which is
played by a challenger and an adversary A.



Verifiably Encrypted Group Signatures 113

– Setup. The challenger sets up the system, generates the system parameters
and sends the public parameters to A. In this step, A can also get the group
tracing key.

– Query. In this step, A does the same thing as he does in GameAnoy(λ).
– Forge. Finally, A outputs a pair (m∗, ω∗). The challenger first checks whether

the VEGS is valid. If it is invalid, the challenger returns ⊥. Otherwise, the
challenger runs Open and obtains an identity u∗. If u∗ ∈ U (we assume U is a
set of all queried identities), then the challenger returns ⊥. If u∗ /∈ U and A
has not queried a private key of identity u∗, a group signature or VEGS on
(u∗,m∗), then A wins in the game.

A VEGS scheme is said to be fully-traceable if for every PPT adversary A,
the probability that A wins in the above game is negligible.

One may find that our definition of full-traceability simply implies unforge-
ability, thus we do not give more details about unforgeability. And we deduce
that a fully-traceable VEGS scheme must be unforgetable.

Definition 6. Opacity is defined by the game GameOpac(λ) which is played by
a challenger and an adversary A.

– Setup. The challenger sets up the system, generates the system parameters
and sends the public parameters to A.

– Query. In this step, A does the same thing as he does in GameAnoy(λ).
– Forge. Finally, A outputs a pair (m∗, σ∗). The challenger first checks whether

the group signature σ∗ is valid. If it is invalid, then the challenger returns
⊥. If σ∗ is valid and A has not queried a private key of identity u∗, a group
signature on (u∗,m∗), then A wins in the game.

A VEGS scheme is said to be opaque if for every PPT adversary A, the proba-
bility that A wins in the above game is negligible.

Definition 7. Extractability is defined by the game GameExtr(λ) which is played
by a challenger and an adversary A.

– Setup. The challenger sets up the system, generates the system parameters
and sends the public parameters to A.

– Query. In this step, A does the same thing as he does in GameAnoy(λ).
– Forge. Finally, A submits a tuple (m∗, ω∗, param∗) to the challenger.
– Extract. The challenger runs Adj and gets a group signature σ∗. If

VEVerify(m∗, ω∗, PKT , param∗) = 1 and Verify(m∗, σ∗, param∗) = 0, then A
wins in the game.

A VEGS scheme is extractable if for every PPT adversary A, the probability
that A wins in the above game is negligible.

4 VEGS Scheme

In this section, we present our VEGS scheme, which is based on Boyen-Waters
group signature scheme [10] and ElGamal encryption scheme [14]. The VEGS
scheme consists of following algorithms, Setup, Enroll, Sign, Verify, VESign,
VEVerify, Open, Adj.



114 Z. Wang et al.

4.1 Construction of VEGS Scheme

Setup: Take as input a security parameter 1λ, and setup the system as follows.
Let G and GT be finite cyclic groups of order n = pq, Gp and Gq be subgroups
of G of order p and q, e be a bilinear map e : G × G → GT . Choose generators
g ∈ G and h ∈ Gq, a secret value α1 ∈ Zn at random. Besides, choose random
g2, u

′, u1, ..., unu
,m′,m1, ...,mnm

∈ G, and set g1 = gα1 , the master key MK =
gα1
2 , the group tracing key TK = q. And the public parameters are param =

(g, h, g1, g2, u
′, u1, ...unu

,m′,m1, ...,mnm
).

AKG: Choose a secret value αT ∈ Zn, and set the adjudicator’s keys as
(SKT , PKT ) = (αT , gαT ).

Enroll: Let u = (ku
1 · · · ku

nu
) (ku

i ∈ {0, 1}) be an identity of a group member, then
his signing key is generated as follows. Choose ru ∈ Zn randomly, and compute,

sku = du = (d1, d2, d3) =

(
gα1
2

(
u′

nu∏
i=1

u
ku

i
i

)ru

, gru , hru

)
.

Sign: Suppose a user of identity u = (ku
1 · · · ku

nu
) wishes to generate a group

signature on message m = (km
1 · · · km

nm
), then he does as follows. First, choose

r′
u, rm, t1, ..., tnu

∈ Zn, and set t =
∑nu

i=1 ti. Then compute,

σ1 = gα1
2

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

rm

h(ru+r′
u)t,

σ2 = gru+r′
u ,

σ3 = grm ,

σ4 = ht,

σ5 = σt
2 = g(ru+r′

u)t,

ci = u
ku

i
i · hti ,

πi = (u2ku
i −1

i · hti)ti ,

σ = (σ1, σ2, σ3, σ4, σ5, c1, ..., cnu
, π1, ..., πnu

).

For simplicity, let c = u′ ∏nu

i=1 ci and M = m′ ∏nm

j=1 m
km

j

j , then we have
σ1 = gα1

2 cru+r′
uMrm .

Verify: If a verifier wishes to check whether a group signature σ is valid, he first
computes c = u′ ∏nu

i=1 ci, then checks whether the following equations hold.

∀i = 1, ..., k : e(ci, u
−1
i ci)

?= e(h, πi).

If all of them hold, then check whether the following equations hold.

e(σ1, g) ?= e(g2, g1)e(c, σ2)e(M,σ3).



Verifiably Encrypted Group Signatures 115

e(σ2, σ4)
?= e(σ5, h).

If the equations hold, then the group signature σ = (σ1, σ2, σ3, σ4, σ5, c1, ...,
cnu

, π1, ..., πnu
) is valid.

VESign: To create a VEGS of identity u = (ku
1 ···ku

nu
) on message m = (km

1 ···km
nm

),
the signer first generates a group signature σ, then chooses a random s ∈ Zn,
and computes,

ω1 = (PKT )s · σ1 = (PKT )sgα1
2

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

rm

h(ru+r′
u)t,

ω2 = gs,

ω3 = σ2 = gru+r′
u ,

ω4 = σ3 = grm ,

ω5 = σ4 = ht,

ω6 = σ5 = g(ru+r′
u)t,

ω = (ω1, ω2, ω3, ω4, ω5, ω6, c1, ..., cnu
, π1, ..., πnu

).

In fact, we only encrypt σ1, because the other part of the group signature is
independent with the message m and identity u.

VEVerify: To verify if a VEGS is valid, a verifier checks whether the following
equations hold.

∀i = 1, ..., k : e(ci, u
−1
i ci)

?= e(h, πi),

e(ω1, g) ?= e(PKT , ω2)e(g2, g1)e(c, ω3)e(M,ω4),

e(ω3, ω5)
?= e(ω6, h).

where c = u′ ∏nu

i=1 ci and M = m′ ∏nm

j=1 m
km

j

j . If all equations hold, then the
VEGS is valid. Otherwise, it is invalid.

Open: The group manager recovers the signer’s identity from the VEGS as follows
if necessary. For each i = 1, ..., nu, if (ci)q = g0, the group manager sets ku

i = 0.
Otherwise, he sets ku

i = 1. Finally, the group manager outputs the signer’s
identity, u = (ku

1 · · · ku
nu

).



116 Z. Wang et al.

Adj: Take as input a VEGS ω, the adjudicator’s private key SKT , output the
original group signature as follows.

σ1 =
ω1

ωαT
2

= gα1
2

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

rm

h(ru+r′
u)t,

σ2 = ω3 = gru+r′
u ,

σ3 = ω4 = grm ,

σ4 = ω5 = ht,

σ5 = ω6 = g(ru+r′
u)t,

σ = (σ1, σ2, σ3, σ4, σ5, c1, ..., cnu
, π1, ..., πnu

).

The correctness of our scheme is quite explicit and we will not prove it.

4.2 Security

Our VEGS scheme is secure in the standard model, which means that our scheme
satisfies all properties described in Subsect. 3.2, we now prove it.

Theorem 1. Our VEGS scheme is fully-anonymous (under CPA-ID attack) if
the subgroup decision assumption holds.

We do not prove it because the similar proof is given in [10].

Theorem 2. Our VEGS scheme is fully-traceable if the underlying signature
scheme is unforgeable.

Proof. Suppose an adversary A breaks full-traceability of our VEGS scheme
with advantage at least ε, then there exists an adversary B which can break
the unforgeability of the underlying identity-based signature scheme [10] (also
called two-level signature scheme) with the same advantage. B and A play the
game GameTrac(λ), B interacts with A and acts as a simulator. At the same
time, B also plays a signature game called unforgeable game and tries to break
the unforgeability of the underlying signature scheme. To complete the simula-
tion, we assume that B plays the unforgeable game in Gp, while he plays game
GameTrac(λ) in G. We show how to construct B.

– Setup. B gets the parameters of the signature scheme from his challenger,
param

Gp
= (g̃, g̃1 = g̃α, g̃2, ũ

′, ũ1, ..., ũnu
, m̃′, m̃1, ..., m̃nm

) ∈ G
nu+nm+3
p . Then

B chooses (ĝ, ĝ1 = ĝβ , ĝ2, h, û′, û1, ..., ûnu
, m̂′, m̂1, ..., m̂nm

) ∈ G
nu+nm+4
q ran-

domly, and sets the public parameters as,

param
G

= (g = g̃ĝ, g1 = g̃1ĝ1, g2 = g̃2ĝ2, h, u′ = ũ′û′, u1 = ũ1û1, ..., unu = ũnu ûnu ,

m′ = m̃′m̂′, m1 = m̃1m̂1, ..., mnm = m̃nmm̂nm).

Besides, B chooses a random value αT ∈ Zn and sets the adjudicator’s private
key as (SKT , PKT ) = (αT , gαT ). Then B sends param

G
, PKT and the tracing

key TK = q to A. The parameters are distributed identically to what A
expects.



Verifiably Encrypted Group Signatures 117

– Query. In this step, A can make queries for private keys, group signatures
and VEGSs. When A asks for a signing key of identity u = (ku

1 · · · ku
nu

), B
also asks his challenger for the user’s (with the identity u) signing key. Then
B receives the signing key of the underlying signature scheme, s̃ku = d̃u =
(d̃1, d̃2) = (g̃α

2 (ũ′ ∏nu

i=1 ũ
ku

i
i )r̃u , g̃r̃u). Then B chooses r̂u ∈ Zq and computes,

sku = du = (d1, d2, d3) =

⎛
⎝d̃1ĝ2

β

(
û′

nu∏
i=1

û
ku

i
i

)r̂u

, d̃2ĝ
r̂u , hr̂u

⎞
⎠ .

It is obvious that the private keys generated by B have the same distribution
with the real ones. If A asks for a group signature of identity u = (ku

1 · · · ku
nu

)
on message m = (km

1 · · · km
nm

), B also submits the same identity u, the same
message m to his challenger and asks for an identity-based signature. Then B
will obtain a signature,

σ̃ = (σ̃1, σ̃2, σ̃3) =

⎛
⎜⎝g̃α

2

(
ũ′

nu∏
i=1

ũ
ku

i
i

)r̃u+r̃′
u

⎛
⎝m̃′

nm∏
j=1

m̃
km

j

j

⎞
⎠

r̃m

, g̃r̃u+r̃′
u , g̃r̃m

⎞
⎟⎠ .

Next B chooses t1, ..., tnu
∈ Zn, ru, rm ∈ Zq at random and computes,

t =
nu∑
i=1

ti, ci = u
ku

i
i hti , πi = (u2ku

i −1
i hti)ti ,

σ1 = σ̃1ĝ2
β

(
û′

nu∏
i=1

û
ku

i
i

)ru
⎛
⎝m̂′

nm∏
j=1

m̂
km

j

j

⎞
⎠

rm

hrut,

σ2 = σ̃2ĝ
ru , σ3 = σ̃3ĝ

rm , σ4 = ht, σ5 = (σ̃2ĝ
ru)t

σ = (σ1, σ2, σ3, σ4, σ5, c1, ..., cnu
, π1, ..., πnu

).

The distribution of the group signature is the same as the real one. If A
submits an identity u = (ku

1 · · · ku
nu

), a message m = (km
1 · · · km

nm
) and asks

for a VEGS. B first generates a group signature according to the above steps.
Then B chooses s ∈ Zn and computes,

ω = (ω1, ω2, ω3, ω4, ω5, ω6, c1, ..., cnu
, π1, ..., πnu

)
= ((PKT )sσ1, g

s, σ2, σ3, σ4, σ5, c1, ..., cnu
, π1, ..., πnu

) .

The distribution of the VEGS is the same as the real one. Besides, A can
also submit a VEGS ω, and a message m to B for adjudication. B first checks
whether the VEGS is valid. If it is invalid, then B responses with an empty
symbol ⊥. Otherwise, B runs Adj and returns the valid group signature σ
to A.

– Forge. Finally, A outputs a pair (m∗, ω∗). B first checks whether the VEGS
is valid. If it is invalid, then the challenger returns 0. Otherwise, B runs Open



118 Z. Wang et al.

and obtains an identity u∗. If A has not queried a private key of identity u∗,
a group signature or VEGS on (u∗,m∗), then A successfully forges a valid
VEGS.

And B can also forge a valid identity-based signature. B first decrypts the
VEGS, and obtains a valid group signature,

σ∗
1 =

ω∗
1

ω∗αT
2

= gα1
2

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

rm

h(ru+r′
u)t,

σ∗
2 = ω∗

3 = gru+r′
u ,

σ∗
3 = ω∗

4 = grm ,

σ∗
4 = ω∗

5 = ht,

σ∗
5 = ω∗

6 = g(ru+r′
u)t,

σ∗ = (σ∗
1 , σ

∗
2 , σ

∗
3 , σ

∗
4 , σ

∗
5 , c1, ..., cnu

, π1, ..., πnu
).

Let γ ∈ Zn be an integer and γ ≡ 0 (mod q), γ ≡ 1 (mod p) hold, then we have

e(σ∗γ
1 , g̃) = e(g̃2, g̃1)e

⎛
⎝ũ′

nu∏
j=1

ũ
ku

i
j , σ∗γ

2

⎞
⎠ e

⎛
⎝m̃′

nm∏
j=1

m̃
km

j

j , σ∗γ
3

⎞
⎠ .

Thus B submits a tuple (u∗,m∗, (σ∗γ
1 , σ∗γ

2 , σ∗γ
3 )) to his challenger. Since the

signature has not been queried, B forges a valid identity-based signature σ =
(σ∗γ

1 , σ∗γ
2 , σ∗γ

3 ). Therefore, if A breaks full-traceability of our VEGS scheme, then
B also breaks the underlying identity-based signature scheme with the same
advantage. Since the underlying identity-based signature scheme is unforgeable
[10], our VEGS scheme satisfies full-traceability.

Theorem 3. Our VEGS scheme is opaque if the aggregate extraction assump-
tion holds on G.

Proof. Suppose an adversary A breaks opacity of our VEGS scheme with
advantage at least ε, then there exists an adversary B that solves the
aggregate extraction problem with a non-negligible probability. B and A
play the game GameOpac(λ), B simulates a challenger for A and tries to
solve the given aggregate extraction problem on G (Given G,Gp,Gq, n =
pq, p, q, g, ga, gb, gδ, gζ , gab+δζ , compute gab). We show how to construct B.

– Setup. Let G and GT be finite cyclic groups of order n = pq, Gp and
Gq be subgroups of G of order p and q, g be a generator of G, e be a
bilinear map e : G × G → GT . B generates the system parameters as
follows. B chooses u′, u1, ..., unu

,m′,m1, ...,mnm
∈ G at random, and sets

g1 = ga, g2 = gb, PKT = gδ. Besides, choose a generator h ∈ Gq. We
assume h = gη and η is known to B. Then B sends the public parameters
param = (g, h, g1, g2, u

′, u1, ...unu
,m′,m1, ...,mnm

) and the adjudicator’s pub-
lic key PKT = gδ to A. The distribution of the parameters are the same as



Verifiably Encrypted Group Signatures 119

the real ones. Although B does not know MK = ga
2 and SKT = δ, we can still

complete the simulation by playing some tricks. B first sets lu = 2(q1+q2+q3)
and lm = 2(q2 + q3) (A can query at most q1 times for private keys, q2 times
for group signatures and q3 times for VEGSs), and chooses x′, z′, nu-length
vector X = (xi) and nm-length vector Z = (zj) at random, where x′ and xi

are random values in {0, ..., lu}, z′ and zj are random values in {0, ..., lm}.
Besides, B picks y′, w′, nu-length vector Y = (yi) and nm-length vector
W = (wj), where y′, yi, w′ and wj are random elements in Zn. Next B sets
u′ = g−luk1+x′

2 gy′
, ui = gxi

2 gyi , m′ = g−lmk2+z′
2 gw′

, mj = g
zj

2 gwj , where
0 ≤ k1 ≤ nu and 0 ≤ k2 ≤ nm. Then define the following functions,

F1(u) = −luk1 + x′ +
∑nu

i=1 xik
u
i , K1(u) = y′ +

∑nu

i=1 yik
u
i

F2(m) = −lmk2 + z′ +
∑nm

j=1 zjk
m
j , K2(m) = w′ +

∑nm

j=1 wjk
m
j

And we have

u′
nu∏
i=1

u
ku

i
i = g

F1(u)
2 gK1(u)

m′
nm∏
j=1

m
km

j

j = g
F2(m)
2 gK2(m)

– Query. Private key queries: If A submits an identity u = (ku
1 · · · ku

nu
) to B

and asks for a signing key, B randomly chooses ru ∈ Zn, and computes,

du = (d1, d2) =

(
g

−K1(u)
F1(u)

1

(
u′

nu∏
i=1

u
ku

i
i

)ru

, g
−1

F1(u)

1 gru

)
.

Writing r̄u = ru − a
F1(u)

, then we have

d1 = g
−K1(u)

F1(u)

1

(
u′

nu∏
i=1

u
ku

i
i

)ru

= g
−K1(u)

F1(u)

1

(
g

F1(u
2 gK1(u)

)ru

= ga
2 (gF1(u)

2 gK1(u))− a
F1(u) (gF1(u)

2 gK1(u))ru

= ga
2

(
u′

nu∏
i=1

u
ku

i
i

)ru− a
F1(u)

= ga
2

(
u′

nu∏
i=1

u
ku

i
i

)r̄u

,

d2 = g
− 1

F1(u)

1 gru = g
ru− a

F1(u)

= gr̄u

d3 = g
− η

F1(u)

1 hru

= hr̄u



120 Z. Wang et al.

Therefore the private keys generated by B are indistinguishable from the real
ones. Then B sends du = (d1, d2, d3) to A.
Group signature queries: If A submits an identity u = (ku

1 · · · ku
nu

), a message
m = (km

1 · · · km
nm

) to B and requests a group signature, B answers as follows.
B chooses ru, r′

u, rm, t1, ..., tnu
∈ Zn at random, sets t =

∑nu

i=1 ti, ci = u
ku

i
i hti ,

πi = (u2ku
i −1

i hti)ti , and computes,

σ1 = g
−K2(m�)

F2(m�)

1

(
u′

nu∏
i=1

u
ku

i
i

)ru
(

u′
nu∏
i=1

u
ku

i
i

)r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

rm

h(ru+r′
u)t

= ga
2

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

r̄m

h(ru+r′
u)t,

σ2 = grugr′
u = gru+r′

u ,

σ3 = g
−1

F2(m)

1 grm = gr̄m ,

σ4 = ht,

σ5 = g(ru+r′
u)t,

σ = (σ1, σ2, σ3, σ4, σ5, c1, ...cnu
, π1, ..., πnu

),

where r̄m = rm − a
F2(m�)

. The distribution of the group signature is the same
as the real one.
VEGS queries: When A submits an identity u = (ku

1 · · · ku
nu

), a mes-
sage m = (km

1 · · · km
nm

) to B and requests a VEGS, B can use a list
QueryList to response. B initializes list QueryList := ∅ and chooses ran-
dom index �∗ ∈ {1, ..., q3} to guess from which VEGS A selects and out-
puts the extraction. And A has not queried for a signing key at u	∗ or
group signature at (u	∗ ,m	∗). If � �= �∗, B first generates a group signa-
ture σ	 = (σ1,	, σ2,	, σ3,	, σ4,	, σ5,	, c1, ...cnu

, π1, ..., πnu
) as he does in group

signature queries. Next B chooses s ∈ Zn at random and computes,

ω1,� = (PKT )sσ1,� = (PKT )sga
2

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u
(

m′
nm∏
j=1

m
km

j

j

)r̃m

h(ru+r′
u)t,

ω2,� = gs, ω3,� = σ2,� = gru+r′
u , ω4,� = σ3,� = gr̄m

ω5,� = σ4,� = ht, ω6,� = σ5,� = g(ru+r′
u)t

ω� = (ω1,�, ω2,�, ω3,�, ω4,�, c1, ...cnu , π1, ..., πnu)

B sends ω	 to A and stores the tuple (u	,m	, σ	, ω	) in QueryList. If � = �∗,
then B will embed the instance. B randomly chooses ru, r′

u, rm, t1, ..., tnu
∈ Zn

and sets,



Verifiably Encrypted Group Signatures 121

ω1,	∗ = gab+δζ

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

rm

h(ru+r′
u)t

= (gδ)ζga
2

(
u′

nu∏
i=1

u
ku

i
i

)ru+r′
u

⎛
⎝m′

nm∏
j=1

m
km

j

j

⎞
⎠

rm

h(ru+r′
u)t

ω2,	∗ = gζ , ω3,	∗ = gru+r′
u , ω4,	∗ = grm , ω5,	∗ = ht, ω6,	∗ = g(ru+r′

u)t

ci = u
ku

i
i hti , πi = (u2ku

i −1
i hti)ti

ω	∗ = (ω1,	∗ , ω2,	∗ , ω3,	∗ , ω4,	∗ , ω5,	∗ , ω6,	∗ , c1, ...cnu
, π1, ..., πnu

).

B sends ω	∗ to A and stores the tuple (u	∗ ,m	∗ , σ	∗ , ω	∗) in QueryList. If one
of F1(u	) = 0, F2(m	) = 0, F1(u	∗) �= 0, F2(m	∗) �= 0 holds, B stops the game
(If one of them holds, B can not solve his problem). We denote this event
by S1. Otherwise, the distribution of the VEGSs are the same with the real
ones.
Adjudication queries: In this phase, A is not allowed to make a query on
(m	∗ , ω	∗). When A submits a message m	′ = (km

1 · · · km
nm

), a VEGS ω	′ to B
and requests a group signature, B does as follows. B first checks whether the
VEGS is valid. If it is invalid, B returns ⊥. Otherwise, B checks whether the
pair (m	′ , ω	′) exists in the list QueryList, if it is not in QueryList, then the
VEGS is invalid and B returns ⊥ (If the VEGS is valid, then A forges a valid
VEGS, and this contradicts the unforgeability of our VEGS scheme).
If the tuple is in the list QueryList, and �′ = �, then B finds out the tuple
(u	,m	, σ	, ω	), and returns σ	 to A. The above simulation is perfect if B has
not aborted.

– Forge. Finally, A outputs a valid signature σ	∗ = (σ1,	∗ , σ2,	∗ , σ3,	∗ ,
σ4,	∗ , σ5,	∗ , c1, ..., cnu

, π1, ..., πnu
) (on message m	∗) of identity u	∗ with a non-

negligible probability ε. That means B correctly guesses from which VEGS A
extracts the group signature, and we denote this event by S2.

Then B solves his problem by computing,

gab =
σ1,	∗

(σ2,	∗)K1(u�∗ )(σ3,	∗)K2(m�∗ )ση
5,	∗

The probability that B wins in the above game is as follows.

Pr[S1 ∧ S2] = Pr[S1]Pr[S2].

The probability that B correctly guesses the index �∗ is 1/q3. Since we use the
proof techniques in [19], we deduce that Pr[S1] ≥ 1/(16(q1 + q2 + q3)(q2 + q3)
(nu + 1)(nm + 1)). Thus we have

Pr[S1 ∧ S2] ≥ 1
16(q1 + q2 + q3)(q2 + q3)(nu + 1)(nm + 1)

· 1
q3

=
1

16q3(q1 + q2 + q3)(q2 + q3)(nu + 1)(nm + 1)



122 Z. Wang et al.

and the probability that B solves the aggregate extraction problem is at least
ε/(16q3(q1 + q2 + q3)(q2 + q3)(nu + 1)(nm + 1)), which is non-negligible.

Theorem 4. Our VEGS scheme is extractable.

Proof. The challenger plays the game GameExtr(λ) with an adversary A as fol-
lows.

– Setup. B runs Setup and AKG and generates system parameters of VEGS
scheme, and sends the public parameters (param, PKT ) to A.

– Query. In this phase, the challenger runs algorithms Enroll, Sign, VESign and
Adj to response A.

– Forge. Finally, A submits a tuple (m∗, ω∗, param∗) to the challenger.
– Extract. If the given VEGS ω∗ = (ω∗

1 , ω
∗
2 , ω

∗
3 , ω

∗
4 , ω

∗
5 , ω

∗
6 , c1, ...cnu

, π1, ..., πnu
)

passes the check, then we can obtain a valid identity u = (ku
1 · · ·ku

nu
). Besides,

we have
e(ω∗

1 , g) = e(PKT , ω∗
2)e(g2, g1)e (c, ω∗

3) e (M,ω∗
4) ,

e(ω∗
3 , ω

∗
5) = e(ω∗

6 , h).

Then a group signature can be extracted by computing,

σ∗
1 =

ω∗
1

ω∗αT
2

, σ∗
2 = ω∗

3 , σ
∗
3 = ω∗

4 , σ
∗
4 = ω∗

5 , σ
∗
5 = ω∗

6

σ∗ = (σ∗
1 , σ

∗
2 , σ

∗
3 , σ

∗
4 , σ

∗
5 , c1, ...cnu

, π1, ..., πnu
).

and we have

e(σ∗
0 , g) = e

(
ω∗
1

ω∗αT
2

, g

)
= e(ω∗

1 , g)e(ω∗αT
2 , g)−1

= e(PKT , ω∗
2)e(g2, g1)e (c, ω∗

3) e (M,ω∗
4) e(ω∗

2 , g
αT )−1

= e(g2, g1)e (c, σ∗
2) e (M,σ∗

3) .

e(ω∗
3 , ω

∗
5) = e(σ∗

2 , σ
∗
4) = e(σ∗

5 , h) = e(ω∗
6 , h).

It implies that if VEVerify(m∗, ω∗, PKT , param∗) = 1 holds, then Verify
(m∗, σ∗, param∗) = 1 always holds as well. Thus our VEGS scheme is
extractable.

5 Extensions

In this section, we will discuss some extensions about our scheme.



Verifiably Encrypted Group Signatures 123

5.1 Other Properties

In above paper, we discussed main properties of VEGS according to the secu-
rity requirements of VES and group signature. In fact, there are other crucial
properties for VEGS, we will give more details in this subsection.

Exculpability, first proposed by Chaum and Heystis [11], is also significant to
group signature schemes. And we extend it to VEGS schemes. A VEGS scheme
satisfies exculpability if on one can create VEGSs on behalf of other honest group
members. Consider a malicious user who wishes to forge a VEGS on behalf other
users. If he is not the group master, then he will not succeed to generate a valid
VEGS if the VEGS scheme satisfies unforgeability. Then we consider the case
that the malicious user is the group master. Ateniese et al. [1] pointed that
Boyen-Waters group signature scheme does not satisfy (strong) exculpability
because the group master generates and distributes users’ secret keys, however
their scheme can achieve exculpability by changing some settings to the group
master. In their scheme, the group master is an ephemeral entity and the master
key is destroyed once the group is set up. To achieve the exculpability of our
VEGS scheme, we can construct the group master in the same way. Therefore,
no one can create a valid VEGS on behalf of other users.

Coalition resistance means that if a group of signers collude together to gener-
ate a valid VEGS, then it must be traceable. Coalition resistance emphasizes the
fact that it allows attacks by a coalition of group members. However, coalition
resistance can still be obtained from full-traceability [9]. Therefore, we deduce
that fully-traceable VEGS schemes are also coalition resistant.

Unlinkability requires that on one can determine whether two different VEGS
are generated by the same group member except the group manager. Given two
different VEGSs, if one (except the group manager) wishes to check whether
they are created by the same user, he has to recover the identity of the signer.
Then he breaks the anonymity of the VEGS if he succeeds with a non-negligible
probability. It implies the anonymity immediately. Thus we can deduce that
fully-anonymous VEGS schemes also satisfy unlinkability.

5.2 Batch Verification

To improve efficiency of our VEGS scheme, some measures can be taken. One
method is to perform fast batch verification [10,12]. The generic definition of
batch verification was given by Bellare et al. [8], then Camenisch et al. [12]
instantiates it to the case of signatures from many signers and aggregate signa-
tures. We can also use their method to simplify the verification of our VEGS
scheme. Suppose a verifier wish to check if a VEGS is valid, and the different
things he need to do is that he chooses θ1, ..., θnu

∈ Zn, then tests,
nu∏
i=1

e(cθi
i , u−1

i ci)e(h−θi , πi)
?= 1.

Since we batch the pairs into a multi-pairing, which is similar to multi-
exponentiation algorithm, we can reduce the cost of the pairing computations.



124 Z. Wang et al.

As stated in [10], to get better efficiency, some pre-computations and extra stor-
age are also required.

5.3 Dynamic Groups

The above VEGS scheme is called a static VEGS scheme since we do not consider
the case where users join and leave after the group is set up. To achieve dynamic
groups where users can both join and leave the group, we need to add some
modifications to the VEGS scheme. When a user is allowed to join the group,
the group master distributes the user’s private key with the group master key.
When a user leaves the group, it is very different for the discussion of leave
operation. The group master needs to publish the recovered signing keys, then
he generates a new group master key and distributes each user’s private key.
And what calls for attention is that the revocation information is published on
public channel while the signing keys are transferred in secret channel. The above
method can also be used in the cases where multiple users are revoked.

Besides, someone may find that the group master in the dynamic VEGS is
not an ephemeral entity, it involves in the scheme when users join or leave the
group. Therefore the weakness of our VEGS scheme is that it can not achieve
dynamic groups and exculpability simultaneously. However we believe it will be
solved in the future works.

6 Conclusion

In this paper, we formalized the concept of VEGS which is derived from VES
and group signature. Then we presented the first VEGS scheme based on Boyen-
Waters group signature scheme and ElGamal encryption scheme. We defined the
security properties which are necessary for VEGS schemes, i.e., anonymity, trace-
ability, unforgeability, opacity and extractability. Then we proved our VEGS
scheme is secure in the standard model according to the definitions. Addition-
ally, we discussed the extentions of our VEGS scheme. The results showed that
our VEGS scheme has many applications. However, there still exists a few open
problems (e.g., achieving dynamic groups and exculpability simultaneously, using
prime order groups), which will motivate more works on VEGS.

Acknowledgment. This paper is supported by Collaborative Innovation Center Of
Geospatial Technology (No. ZF102T1701), by Beijing Municipal Science and Technol-
ogy Project (No. D161100005816001), and by the Natural Science Foundation of China
through projects 61672083.



Verifiably Encrypted Group Signatures 125

References

1. Ateniese, G., Camenisch, J., Hohenberger, S., Medeiros, B.D.: Practical group sig-
natures without random oracles. In: Theory and Application of Cryptographic
Techniques (2005)

2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably
secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000). doi:10.1007/
3-540-44598-6 16

3. Ateniese, G., Song, D., Tsudik, G.: Quasi-efficient revocation of group signatures.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg
(2003). doi:10.1007/3-540-36504-4 14

4. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

6. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 26

7. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). doi:10.1007/978-3-540-30576-7 18

8. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponenti-
ation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol.
1403, pp. 236–250. Springer, Heidelberg (1998). doi:10.1007/BFb0054130

9. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 38

10. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006). doi:10.1007/11761679 26

11. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EURO-
CRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). doi:10.
1007/3-540-46416-6 22

12. Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short sig-
natures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4 14

13. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 5

14. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7 2

15. Galindo, D., Herranz, J., Kiltz, E.: On the generic construction of identity-based
signatures with additional properties. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 178–193. Springer, Heidelberg (2006). doi:10.1007/
11935230 12

http://dx.doi.org/10.1007/3-540-44598-6_16
http://dx.doi.org/10.1007/3-540-44598-6_16
http://dx.doi.org/10.1007/3-540-36504-4_14
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/978-3-540-30576-7_18
http://dx.doi.org/10.1007/BFb0054130
http://dx.doi.org/10.1007/3-540-39200-9_38
http://dx.doi.org/10.1007/11761679_26
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/3-540-46416-6_22
http://dx.doi.org/10.1007/978-3-540-72540-4_14
http://dx.doi.org/10.1007/3-540-45708-9_5
http://dx.doi.org/10.1007/3-540-39568-7_2
http://dx.doi.org/10.1007/11935230_12
http://dx.doi.org/10.1007/11935230_12


126 Z. Wang et al.

16. Gu, C., Zhu, Y.F.: An ID-based verifiable encrypted signature scheme based on
Hess’s scheme. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822,
pp. 42–52. Springer, Heidelberg (2005). doi:10.1007/11599548 4

17. Lu, S., Lynn, B., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential
aggregate signatures, multisignatures, and verifiably encrypted signatures without
random oracles. J. Cryptol. 26(2), 340–373 (2013)

18. Nishimaki, R., Xagawa, K.: Verifiably encrypted signatures with short keys based
on the decisional linear problem and obfuscation for encrypted VES. Des. Codes
Crypt. 77(1), 61–98 (2015)

19. Paterson, K.G., Schuldt, J.C.N.: Efficient identity-based signatures secure in the
standard model. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol.
4058, pp. 207–222. Springer, Heidelberg (2006). doi:10.1007/11780656 18

20. Rückert, M., Schröder, D.: Security of verifiably encrypted signatures and a
construction without random oracles. In: Shacham, H., Waters, B. (eds.) Pair-
ing 2009. LNCS, vol. 5671, pp. 17–34. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03298-1 2

21. Zhang, Z.F.: Cryptanalysis of an identity-based verifiably encrypted signature
scheme. Chin. J. Comput. 29(9), 1688–1693 (2006)

22. Zhang, L., Wu, Q.H., Qin, B.: Identity-based verifiably encrypted signatures with-
out random oracles. In: Pieprzyk, J., Zhang, F. (eds.) ProvSec 2009. LNCS, vol.
5848, pp. 76–89. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04642-1 8

http://dx.doi.org/10.1007/11599548_4
http://dx.doi.org/10.1007/11780656_18
http://dx.doi.org/10.1007/978-3-642-03298-1_2
http://dx.doi.org/10.1007/978-3-642-03298-1_2
http://dx.doi.org/10.1007/978-3-642-04642-1_8


Deniable Ring Authentication
Based on Projective Hash Functions

Shengke Zeng1,2(B), Yi Mu2, Guomin Yang2, and Mingxing He1

1 School of Computer and Software Engineering, Xihua University,
Chengdu 610039, China
zengshengke@gmail.com

2 School of Computing and Information Technology,

Institute of Cybersecurity and Cryptology, University of Wollongong,

Wollongong, NSW 2522, Australia

Abstract. Deniable authentication allows the participants to deny an
authentication process as there is no any evidence that it ever took place.
It is quite suitable for the privacy-preserving scenario. Combining with
the ring signature property, the deniable authentication can reach the
source hiding. In other words, the receiver is only convinced that a mem-
ber in a group is authenticating a message without knowing which one. It
is also deniable, that is the receiver cannot convince anyone else that this
message was indeed authenticated. We present a deniable ring authen-
tication based on the projective hash function. With this building block
the underlying (encryption) scheme is not required to be CCA secure,
which results in a more realistic deniable authentication protocol.

Keywords: Deniable ring authentication · Privacy-preserving commu-
nication · Projective hash function · NIWI proof

1 Introduction

Authentication is the most important security primitive in the communication.
When communicating with others in the Internet-based service, it is necessary
for us to make sure the legitimate of our counterpart with authentication pro-
tocol. The trivial way to authenticate the communication partner is to share
a common secret. If the party A shows the right secret to the party B, then
B is convinced that A is the right person he will communicate with as this
secret is only known to them. Obviously, the main task for this scenario is to
share this secret. Therefore, the pre-step of authentication is to run a key agree-
ment protocol [8]. An alternative method for message authentication is by a
digital signature. The sender authentication to message m is the sender’s sig-
nature. The unforgeability of this signature algorithm ensures the soundness of
authentication. In such a public key scenario, it is not necessary for anyone to
share secrets. The corresponding public key can be utilized for signature veri-
fication. In a digital signature scheme, the non-repudiation property holds. In
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 127–143, 2017.
https://doi.org/10.1007/978-3-319-68637-0_8



128 S. Zeng et al.

other words, the output signature is bound to a party upon the unforgeability of
the signature scheme. Although this property is useful for the contract signing
or non-repudiated transactions, it is not suitable for the privacy protection.

Privacy-preserving authentication is necessary if the participants want to
protect their privacy during the authentication. Suppose Alice wants to obtain
a kind of service from server S. The server S should make sure that Alice is the
legitimate user, thus the authentication with S is required. On the other hand,
Alice does not want to leak this authentication transcript as it may expose her
privacy, i.e., her identity, her position, or the service. In this situation, Alice
may want to speak privately to S. Therefore, the public verification of digital
signature schemes is not suitable for the authentication, which is required to
protect user privacy.

How to keep the authentication transcript private? Server S may show it
to anyone else since S has the transcript. The intuitive method is to make the
authentication transcript to be simulatable. In other words, the communication
transcript is not bound to some party if it can be generated by anybody without
the secret. Obviously, the digital signatures with non-repudiation is not sim-
ulatable without the secret; otherwise it violates the unforgeability. Let us go
back to the first scenario. Since party A and B share a common secret, the tran-
script of the sender A also can be produced by the receiver B. Therefore, this
communication transcript is not bound to A and A can deny it.

Following the simulation paradigm, the notion of deniable authentication
was formalized by Dwork, Naor and Sahai [11]. The authentication flows occur
between the sender A and the receiver B. Upon the common input message m, A
and B perform the authentication protocol interactively. Finally, the receiver B
is convinced that the sender A authenticates the message m; however, B cannot
convince anyone else that the authentication process occurred. This is termed
as the denaible authentication.

1.1 Related Work

Deniable authentication was proposed by Dolev et al. [9] and then formalized
by Dwork et al. [11]. In their work, the solution for deniable authentication
is based on CCA-secure encryption. The receiver B uses the public key of the
sender A to encrypt a message m and a random value t. m is also known to
A. If A can extract the right t from the ciphertext, B is convinced that A is
indeed authenticating m as only A can decrypt the ciphertext correctly. Their
deniability can be proven via a black-box simulation. In order to make sure the
simulation is smooth, a challenge-response is required. Their method is that,
instead of returning t directly, A just gives the commitment/encryption of t.
Upon the receipt of C(t), B reveals t. This is the key step for the simulation. In
this way, the simulator can extract the right t without A’s secret key. Thus, the
deniability is achieved. It can be viewed as full deniability. That means anyone
can run this simulator to produce the “fake” transcript and it is indistinguishable
from the real one. The simulation in [11] requires a rewinding step which prevents
the perfect simulation in the current environment. Dwork et al. handled this



Deniable Ring Authentication Based on Projective Hash Functions 129

problem by using the timing assumption [11]. It limits the number of executions
which would be performed by the adversary.

The unforgeability of Dwork et al.’s deniable authentication relies on the
CCA2 of the underlying encryption scheme. Most of proposed deniable authen-
tications follow such CCA-based paradigm. For example, Naor [16] followed
the CCA-paradigm to achieve the black-box simulation deniability in the ring
authentication by rewinding steps. Dowsley [10] reduced the communication
rounds of Naor’s by using the broadcast encryption. Di Raimondo et al. [19]
showed that if the underlying encryption scheme is plaintext-awareness, the deni-
ability of the authentication can be reached without rewinding steps. Zeng et al.
[22] followed Raimondo’s idea to present a deniable ring authentication based
on PA-secure multi-receiver encryption.

For the full (even concurrent) deniability, there are some other approaches
with stronger assumptions. Jiang et al. [15] resorted to the public random ora-
cles [17] to propose a deniable key exchange. The simulation depends on the
witness extraction by pRO, the rewinding steps are not necessary. Yao et al.
[20,21] proposed deniable Internet Key exchanges based on the knowledge of
exponent assumption [7]. By the KEA assumption, the witness can be extracted
and then the transcripts can be perfectly simulated. Another way to simulate the
transcript is to apply the timed commitment/encryption [4]. The idea is that the
receiver uses moderate commitment/encryption to commit the challenge value r.
If the sender can send back the correct r within time T , the receiver accepts this
authentication. The simulator can obtain the value r after T as this timed com-
mitment/encryption can be forced decommitted/decrypt beyond time T . Jiang
[14] presented a timed encryption scheme and applied it to build a concurrently
deniable key exchange.

These approaches either are based on CCA-paradigm (even PA) encryptions
or rely on stronger assumptions. Di Raimondo et al. [18] pointed out that deni-
able authentications can be constructed out of different primitives. In order to
reduce the secure requirements of the underlying building blocks, Di Raimondo
et al. presented two constructions without using CCA encryptions. One is based
on multi-trapdoor commitment [12], the another one builds on projective hash
functions [6].

1.2 Contribution

We focus on the fully deniable authentication with source hiding. That is the
sender is even anonymous to the receiver during the deniable authentication. It is
suitable for the privacy-enhanced environment. With the challenge-response sub-
protocol, our protocol satisfies the black-box simulation. The simulator without
any secrets produces an indistinguishable transcript such that our protocol sat-
isfies the full deniability. Our motivation is to construct secure communication
protocol with looser security requirements for the underlying schemes, which is
more realistic. We do not adopt encryptions to a MAC key to construct authen-
tication, where soundness requires the underlying schemes must be CCA such
as [10,16,22].



130 S. Zeng et al.

We observe that the specific properties of the projective hash function [6] can
be used to build authentication. Thus, our construction is based on projection
and smoothness of projective hash function to realize authentication other than
CCA encryptions to a secret MAC key. Factually, the construction of underly-
ing projective hash function is not necessary to be CCA secure. Differing with
the encryption-paradigm based deniable ring authentications, our construction
has shorter transcripts. Indeed, in the encryption-paradigm based deniable ring
authentications [16,22], the receiver should encrypt the MAC key for N times
and sends N ciphertexts in each round to reach the sender anonymity. However,
our protocol just needs to send constant-size transcripts in the first three rounds.

1.3 Organization

This paper is organized as follows. In Sect. 2 we introduce the building blocks
of our protocols. In Sect. 3 we formalize the security model for deniable ring
authentication. We present the generic construction of deniable ring authentica-
tion protocol based on projective hash function and NIWI proof in Sect. 4. Then
we analyze the security and the performance of our protocol in Sects. 5 and 6
respectively. We conclude this paper in Sect. 7. Finally, we give an instantiation
of our construction in the AppendixA.

2 Tools

In this section, we introduce the underlying tools which are used to build the
deniable ring authentication. Traditional deniable authentication protocols are
built on the encryption to a MAC key. Dwork et al. proved that the soundness
of such authentication is based on CCA2 secure encryption. Di Raimondo et al.
showed that the deniable authentication can be constructed by other primitives
other than encryption, such as the non-malleable commitment scheme and the
projective hash function. Such constructions can improve the efficiency and the
requirement of CCA property is not necessary. Following Di Raimondo’s idea, we
make use of the properties of projective hash function to present our deniable ring
authentication in addition to using a commitment scheme and non-interactive
witness indistinguishable proof (NIWI) to obtain the source hiding. Therefore,
we introduce these building blocks in this section.

2.1 Projective Hash Functions

Projective hash functions were introduced by Cramer and Shoup [6] and later
formalized by Benhamouda et al. [3]. The properties of projective hash functions
can be used to design the authenticated key exchange protocols [2,3], public key
encryption with keyword search [5], and non-interactive commitments [1]. We
first review the original definition of projective hash functions.



Deniable Ring Authentication Based on Projective Hash Functions 131

Definition. Define a domain X and an NP language L with L ⊂ X . The pro-
jective hash function is over L. For a word c ∈ L, the value of this function can
be calculated by either a secret hashing key hk or a public projection key hp
with a witness ω of the fact that c ∈ L. Specifically, a projective hash function
over L ⊂ X is defined as follows.

– HashKG(L): generates a secret hashing key hk for the NP language L;
– ProjKG(hk,L): generates a projection key hp from the hashing key hk;
– Hash(hk,L, c): outputs the value of this hash function from the hashing key
hk, for the word c;

– ProjHash(hp,L, c, ω): outputs the value of this hash function from the pro-
jection key hp, the witness ω, for the word c ∈ L.

Projection. We say this hash function family is projective if Hash (hk,
L, c) = ProjHash (hp,L, c, ω). That means the value of the hash function can
be computed even without knowing the secret hashing key hk.

Smoothness. This projective hash function is smooth if c /∈ L, then
Hash(hk,L, c) is statistically indistinguishable from a random value. That means
it gives no information about the hash value of any point out of L.

In order to apply the projective hash function to the secure authentication,
we have to embed the message to projective hash function in case of forgeability.
Therefore, we make a slight change of it. We let Y be an arbitrary set and the
projective hash function maps X × Y to another set. In our scenario, the set Y
can be viewed as the message space M.

2.2 Commitment Scheme

In this paper, we use a commitment scheme to hide the sensitive value such
that the sender is anonymous to the receiver during the authentication. We
require the commitment scheme has two properties: perfect hiding and binding.
The perfect hiding states that even an unbounded adversary cannot obtain the
committed value from the commitment. In other words, the committed value
can be switched to another values by using a trapdoor. In contrast, the binding
states that the committed value is fixed and cannot be modified without the
trapdoor. In order to give an NIWI proof for the commitment, the hiding key
and the commitment key are required to be indistinguishable.

2.3 Non-interactive Witness Indistinguishable Proofs

Informally, the NIWI proof system states that given two different witnesses for
the statement, the generated proof reveals no information about which witness is
used to construct this proof. This non-interactive proof system enables the prover
P to convince the verifier V the truth of a statement. Let R be a computable
relation, if (x,w) ∈ R, where x is the statement and w is the witness. We let L
be an NP language consisting of statements in R. An NIWI proof system (P, V )
for L should be complete, sound and witness indistinguishable.



132 S. Zeng et al.

– Completeness. If one knows the witness for a statement, the proof
can be constructed certainly. For any common reference string crs,
Vcrs(x, Pcrs(x,w)) = 1 holds always.

– Soundness. If one does not have this witness, it is impossible for him to
construct a valid proof. For any adversary A, it holds that Pr[Vcrs(x, π) = 1 :
(x, π) ← A(crs)] = 0

– Witness Indistinguishability. It means that the proof does not reveal
which witness is used. Formally:

Pr[(x,w0, w1) ← A;π ← Pcrs(x,w0) : Acrs(π) = 1 ∧ (x,w0), (x,w1) ∈ R]
≈ Pr[(x,w0, w1) ← A;π ← Pcrs(x,w1) : Acrs(π) = 1 ∧ (x,w0), (x,w1) ∈ R]

3 Deniable Ring Authentication

3.1 Syntax

In this section, we formalize the notion of deniable ring authentication, which
is a deniable authentication with sender anonymity to the receiver. In order
to understand it well, we first introduce the syntax of deniable authentication.
Then, we extend this notion to deniable ring authentication.

Deniable Authentication. We assume the sender has published its public
key and it is not necessary for the receiver to publish the public key. The sender
engages with the receiver to authenticate a message m in an interactive protocol.
In the end of the protocol execution, the receiver accepts or rejects the sender’s
authentication to m. On the other hand, both the sender and the receiver can
deny the involvement of this conservation.

Extension for Deniable Ring Authentication. Although the sender can
deny its authentication as the conversation transcript does not leave any evidence
in the deniable authentication, the receiver knows the sender. If the sender wants
to seek privacy-enhanced protection, namely, it wishes even to be anonymous to
the receiver, the deniable ring authentication is necessary. The same to the ring
signature, deniable ring authentication includes a group of participants to meet
the sender’s anonymity. The goal for the actual sender S is to be anonymous
to the receiver R although each one in this group reveals its secret. The sender
S can randomly choose some participants, say P1, P2, . . . to form a set R. We
assume all the public keys in R can be accessed by R. S executes the deniable
ring authentication protocol with R interactively by using R. Finally, R accepts
or rejects this authentication to m. Since this authentication transcript leaves
no information, all the participants in R can deny that this authentication has
ever occurred. Besides that, the probability that receiver’s decision on the actual
sender is no more the 1/N , where N is the size of R.

3.2 Security Model

We formalize the security model for the deniable ring authentication. The
security model consists of following four properties: completeness, sound-
ness(unforgeability), deniability and anonymity.



Deniable Ring Authentication Based on Projective Hash Functions 133

Completeness. If the sender S with a group of participants engages the receiver
R to execute the deniable ring authentication protocol λDRA for a given mes-
sage m and a random chosen ring R (this is a collection of the public keys of
all the participants other than the receiver R) honestly, then R accepts this
authentication to m with overwhelming probability.

Remark 1. After the execution of λDRA, the receiver R is convinced that one
member (cannot decide which one) in R authenticates m if S and R follow this
protocol λDRA.

Soundness (Unforgeability). Consider an adversary A trying to forge an
authentication. It may corrupt the participants and have access to the authenti-
cation oracle which returns the authentication transcript. The soundness means
that A without the corresponding secret cannot forge a new authentication
transcript which would be accepted by the receiver. Formally, the soundness of
λDRA can be described in the following game Ω between a challenger C and an
adversary A.

Setup. C runs Setup to generate ν key pairs (PKi, SKi)ν
i=1. A is given the

public keys PK = {PK1, . . . , PKν}. After that, A outputs a corrupted set
D ⊆ {1, . . . , ν}, for which A is given {SKi|i ∈ D}.

Authentication Query. A can issue authentication queries as she wishes. She
chooses a message m, a ring R = {PKj1, . . . , PKjN} for each authentication
query, where N > 1 and PKi ∈ R. Consequently, C returns the corresponding
authentication transcript tr for A by using SKi.

Finally, A generates a forgery (m∗, tr∗,R∗) where R∗ ∩ D = ∅. A is said
success if the R accepts tr∗ w.r.t. (m∗,R∗) and (m∗,R∗) was not queried to
authentication oracle. We use Succsd

DRA(A, Ω) to denote the success event of A.

Definition 1. Let λDRA be a deniable authentication protocol. λDRA is sound
(unforgeable) if for any polynomial time adversary A, Pr[Succsd

DRA(A, Ω)] is neg-
ligible.

Deniability. We use the simulation paradigm to formalize this notion in λDRA.
We first consider the simulation game Ωsim between A and a simulator S.

Setup. A trusted party runs Setup to generate ν key pairs (PKi, SKi)ν
i=1.

A is given the public keys PK = {PK1, . . . , PKν}. After that, A outputs a
corrupted set D ⊆ {1, . . . , ν}, for which A is given {SKi|i ∈ D}. Finally, PK
and {SKi|i ∈ D} are also given to S.

Authentication Query. A can issue authentication queries as she wishes. She
chooses a message m, a ring R = {PKj1, . . . , PKjN} for each authentication
query, where N > 1. Upon this query, S returns the corresponding authentication
transcript tr for A using PK and the corrupted keys {SKi|i ∈ D}.

In the end, A outputs his view viewDRA(A, Ωsim).



134 S. Zeng et al.

We then consider the real game Ωrea where S is provided with
{PKi, SKi}ν

i=1 and follows the real deniable ring authentication protocol to
execute the authentication oracle. At the end of the game Ωrea, A outputs its
view viewDRA(A, Ωrea). The deniability requires that A’s view in Ωsim and Ωrea

is indistinguishable.

Definition 2. Let λDRA be a deniable authentication protocol. λDRA is deniable
if for any polynomial time adversary A, there exists a polynomial time simulator
S, such that viewDRA(A, Ωsim) ≈ viewDRA(A, Ωrea).

Anonymity. This property means that the identity of the sender S is anony-
mous to the receiver R, which is incomparable with deniability. The fact that the
primitive is deniable does not imply that it enjoys anonymity. Indeed, both S
and R can deny their participation to the conservation. However, they know each
other in the execution of this protocol. Obviously, the property of anonymity is
w.r.t. the relationship between the sender S and the receiver R. We formalize
the anonymity property below between a challenger C and an adversary A.

Setup. C runs Setup to generate ν key pairs (PKi, SKi)ν
i=1. A is given the

public keys PK = {PK1, . . . , PKν}. After that, A outputs a corrupted set
D ⊆ {1, . . . , ν}, for which A is given {SKi|i ∈ D}.

Authentication Query. A can issue authentication queries as it wishes. A
chooses a message m, a ring R = {PKj1, . . . , PKjN} for each authentication
query, where N > 1, PKi ∈ R and R ⊆ PK. Upon this query, C returns the
corresponding authentication transcript tr w.r.t. (m,R) for A using SKi.

Anonymity Test. A can issue this query once with a message m, a ring R =
{PKi|i ∈ D} and any two public keys PKi0, PKi1 ∈ R. Consequently, C takes
b ← {0, 1}, executes λDRA to produce the transcript tr with SKib and returns
tr to A.

Finally, A guesses a bit b′ for b. A is said success if b′ = b. We use
Succanon

DRA(A, Ω) to denote the success event of A.

Definition 3. Let λDRA be a deniable ring authentication protocol. λDRA is
anonymous if for any polynomial time adversary A, Pr[Succanon

DRA(A, Ω)] = 1
2 +

negl(κ) (where κ is the security parameter) is negligible.

4 Generic Construction

In this section, we give a generic construction of authentication protocol with
deniability based on projective hash function. In order to realize the source hid-
ing, we employ the NIWI proof to convince the receiver that the committed value
is indeed the output of one Hash(hki,L, c) calculated by hki without revealing
which one. The instantiation of this construction is given in the AppendixA.



Deniable Ring Authentication Based on Projective Hash Functions 135

4.1 Deniable Ring Authentication Protocol λDRA

The main technical tools are projective hash function and NIWI proof. The
formal description is as follows.

For each participant Pi in the system, it obtains the key pair (SKi, PKi) by
invoking the hashing key generation algorithm HashKG(L) and the projection
key generation algorithm ProjKG(hk,L) respectively. Specially, the public key
of Pi is PKi = hpi and the private key of Pi is SKi = hki. All the public keys
can be accessed by anyone.

The sender S authenticates a message m ∈ M to the receiver R. S wishes
to deny its involvement after executing the authentication. In addition, S also
hopes to be anonymous to R during this conversation. S chooses a number
of public keys from PK including its public key PKS to form set R. That is
R = {PK1, · · · , PKS , · · · , PKN}, where N is the size of the set R. Upon the
receipts of R from S, R begins to interact with S to execute the authentication.

Setup. This algorithm is done by the system. Take crs ← {0, 1}l(κ) as the
common reference string, where l(κ) is polynomial in the security parameter κ.

Key Generation. This algorithm is done by each participant Pi itself. Upon the
input of common reference string crs, the hashing key hk and the projection
key hp are generated. The private/public keypair of each Pi is (SKi, PKi) =
(hki, hpi).

Deniable Ring Authentication Protocol λDRA.

1. With crs, the set R = {PK1, · · · , PKN}, message m ← M and NP language
L. R picks a word c ∈ L with the witness ω, sends flow1 = (m, c) to the set R.

2. Upon the receipt of (m, c) from R, S first computes the hash value by using
the private hashing key hk and the word c, then hides this hash value by a
secure commitment scheme COM regarding to Sect. 2.2. Suppose the sender
S is the participant PI , S does as follow:

– compute σI = Hash(hkI ,L, c;m) with the word c, the message m and its
private key SKI = hkI ;

– choose rI randomly, compute CI = COM(σI ; rI);
– send flow2 = CI to the receiver R.

3. Upon the receipt of the commitment CI , R reveals ω and sends flow3 = ω
to the set R.

4. Upon the receipt of ω, S first checks that the value ω is indeed the witness
for c ∈ L:

– check ProjHash(hpi,L, c, ω;m) ?= σI for i = I;
If this equation holds, S is sure that it can deny successfully later. The
following work for S is to convince R that σI in the commitment CI is
indeed consistent with one σi calculated by R without revealing which
σi. Thus, S does as follows:

– compute σi = ProjHash(hpi,L, c, ω;m) for 1 ≤ i ≤ N ;



136 S. Zeng et al.

– let L′ be an NP language:

L′ � {({σi}N
i=1, CI) | ∃σI ∈ {σi}N

i=1, s.t. CI = COM(σI ; rI)}

let Scrs(x; (σI , rI)) be an NIWI proof for x ∈ L′ with witness
(σI , rI) under the common reference string crs. Compute π =
Scrs(({σi}N

i=1, CI); (σI , rI));
– send flow4 = π to the receiver R.

Finally, R computes σi = ProjHash(hpi,L, c, ω;m) for 1 ≤ i ≤ N and accepts
this authentication if Rcrs({σi}N

i=1, CI , π) = 1, where Rcrs(·) is the verification
algorithm for Scrs(·).
Remark 2. The receiver R uses each public key hpi in R to calculate the hash
values {σi}N

i=1. Someone returns one σi, which implies he knows the correspond-
ing private key hki due to the smoothness of projective hash function, otherwise
there exists a distinguisher who can decide the word c belongs to an NP lan-
guage L or not. The authentication completes. However, the returned σi leaks
S’s identity, i.e., R can check this σi using the corresponding public key hpi and
the witness ω. For S’s privacy (source hiding), the returned σi must be hidden in
the commitment. However, R cannot check the committed σi if he cannot open
this commitment. Our strategy is to use the NIWI proof for S to convince R
that the committed value in CI indeed equals to exactly one σi without opening
the commitment. The anonymity follows the perfect hiding of the commitment
and the witness indistinguishability of NIWI proof.

5 Security

We analyze the security of protocol λDRA with the properties of soundness,
deniability and anonymity according to the security model in Sect. 3.2.

5.1 Soundness (Unforgeability)

Our deniable ring authentication λDRA is sound (against forgeability), which
means that for (m,R, c ∈ L), a member who does not belong to the set R, can
not forge an authentication transcript w.r.t. (m,R, c ∈ L). Indeed, the adversary
has two sides to trick the receiver. The one is to forge an accepted σI such that
σI is exactly one σi. However it is impossible due to the smoothness of projective
hash function. The another one is to commit a fake value then trick the receiver
to accept the NIWI proof π for a forged CI . However, it does not happen if the
commitment scheme is perfect binding and the NIWI proof system is sound.

Theorem 1. Assume that L is a hard NP language and the projective hash
function over L is smooth, the commitment scheme COM is with perfect bind-
ing and the NIWI proof system is sound, then the deniable ring authentication
protocol λDRA achieves the soundness (unforgeability).



Deniable Ring Authentication Based on Projective Hash Functions 137

Proof. Let A be a probabilistic polynomial time adversary against the sound-
ness of λDRA and Ω be the soundness game as the definitions in Sect. 3.2. We
construct an adversary A′ that, given a word c∗, is able to decide if c∗ ∈ L or
not.

A′ maintains the Setup algorithm of λDRA to generate ν key pairs
(PKi, SKi)ν

i=1. A′ gives A the public keys PK = {PK1, · · · , PKν} and the
corrupted keys {SKi|i ∈ D} where D is a corrupted set as A asks.

When A queries an authentication transcript on message m and a set
R = {PKj1, · · · , PKjN} ⊆ PK, A′ chooses a word c for an language L and
prepares flow1 = (m, c). Since the private keys {SKi}ν

i=1 are known to A′, it
uses SKI (where PKI ∈ R) to generate flow2 = COM(σI ; rI) with randomly
chosen rI . Then A′ queries to its challenger on the witness for c ∈ L. Upon the
receipt of witness ω from challenger, A′ shows flow3 = ω. Finally, A′ uses the
NIWI witness (σI , rI) to produce the NIWI proof π normally. A′’s authentication
simulation for A is perfect.

Finally, A challenges a forgery on (m∗,R∗). A cannot corrupt set R∗ and
(m∗,R∗) was not queried to authentication oracle. A actives A′ with incoming
(m∗,R∗). A′ uses the given word c∗ as the flow1. A′ chooses a random value ω̂ as
flow3. This a gap with the real execution. However, A cannot find the difference
unless it can get a correct σI such that σI = Hash(hkI ,L, c∗;m) for I ∈ R∗ and
check σI �= ProjHash(hpI ,L, c∗, ω̂;m). We claim if A gets such σI and aborts it
then A′ makes a successful decision that c∗ ∈ L with non-negligible probability.
Since if c∗ /∈ L, the output of hash value Hash(hkI ,L, c∗;m) is totally random
due to the smoothness of the projective hash function. A can only guess the
correct value in this case, which is negligible for A. If this challenge for forgery
proceeds, it implies that A cannot obtain a correct σI to find that ω̂ is not
consistent with the real witness. Thus A has to commit a fake hash value in CI

and tries to produces an NIWI proof π for language L′ = {({σi}N
i=1, CI) | ∃σI ∈

{σi}N
i=1, s.t. CI = COM(σ̂; rI)}. A′ computes σi by using the given word c∗

and the private keys SKi = hki for 1 ≤ i ≤ N where N = |R∗|. A′ verifies the
validity of π by the common input ({σi}N

i=1, CI). Due to the perfect binding of
COM(·), this verification would fail as it conflicts the soundness of the NIWI
proof system. Thus, Pr[Succsd

DRA(A, Ω)] is negligible. �

5.2 Deniability

We follow the simulation paradigm to show the protocol λDRA satisfies the
deniability. The deniability states that an adversary A interacts with a simulator
S in the real game Ωrea and the simulation game Ωsim, respectively, however
the two views viewDRA(A, Ωrea) and viewDRA(A, Ωsim) are indistinguishable.

In the real game Ωrea, the simulator S is provided with {PKi, SKi}ν
i=1.

With these secrets, S follows the real deniable ring authentication protocol λDRA
perfectly to interact with A.

In the simulation game Ωsim, the simulator S is provided with {PKi}ν
i=1

and the corrupted set D. When (m,R) is queried to Authentication Query,
if PKi ∈ R ∧ i ∈ D for some i, the simulation proceeds normally and A’s



138 S. Zeng et al.

view equals the real one. Otherwise, S simulates the authentication transcript
without any secrets. S’s simulation works by the rewinding. That is, after getting
flow1 = (m, c) from the receiver, S commits to a random value to calculate CI .
Once receiving ω which is revealed by the receiver, S rewinds the receiver and
replaces the correct commitment to ω. The following simulation by S is normal
as it does not need the secret anymore. With the witness ω for the language
L, the simulated transcript is statistically indistinguishable from the real one.
Therefore, viewDRA(A, Ωrea) = viewDRA(A, Ωsim) and the deniability follows.

5.3 Anonymity

The deniability just ensures both the sender S and the receiver R to deny the
involvement of the conversation. However, R knows the identity of S during the
authentication. The property of anonymity can make sure that S is even anony-
mous to R during the execution of the authentication protocol. Our anonymity
follows that the receiver cannot obtain σI from the sender, otherwise the receiver
can decide who is taking participate in this conversation by checking that σI

?=
ProjHash(hpi,L, c, ω;m) for i = 1, 2, · · · , I.

Theorem 2. Assume that the commitment scheme COM is with perfect hiding
and NIWI proof system is witness indistinguishable, then deniable ring authen-
tication protocol λDRA achieves the anonymity.

Proof. Let A be a probabilistic polynomial time adversary against the anonymity
of λDRA and Ω be the anonymity game as the definitions in Sect. 3.2. Let C
be the challenger of A. C maintains the Setup algorithm to generate key pairs
(PKi, SKi)ν

i=1. A is given the public key set PK and a corrupted set D as it
asks.

When A makes authentication queries, the oracle run by C returns the cor-
responding transcripts normally.

When A challenges the anonymity, it outputs a message m∗, a word c∗,
R∗ = {PKi|i ∈ D} and any two public keys PKi0, PKi1 from R∗. C takes
b ← {0, 1} and generates σib = Hash(hkib,L, c∗;m∗). C randomly chooses rb

to compute C∗ = COM(σib; rb). Finally, C produces an NIWI proof π∗ =
Ccrs({σi}N

i=1, C
∗; (σib, rb)). However, for the challenge transcript (C∗, π∗), A has

no obvious advantage to guess the right b. The reason is that COM is a com-
mitment scheme with perfect hiding. The commitment C∗ can be rewritten as
C∗ = COM(σi(1−b); r1−b) with the trapdoor. π∗ is an NIWI proof with witness
indistinguishability such that π∗ = Ccrs({σi}N

i=1, C
∗; (σi(b−1), rb−1)) is also an

accepted proof. Therefore, Pr[Succanon
DRA(A, Ω)] = 1

2 + negl(κ). �

6 Performance

6.1 Comparison in Performance

We compare the protocol λDRA to those related deniable ring authentications
such as Naor’s scheme [16], Dowsley’s scheme [10] and Zeng’s scheme [22].



Deniable Ring Authentication Based on Projective Hash Functions 139

Note that there are also some non-interactive deniable ring authentication pro-
tocols which are efficient. However, the deniability of these schemes does not
follow the zero-knowledge, hence only achieve the weak deniability. They are
beyond the scope of this comparison. We compare these schemes according to
the sides of computation and communication.

Computation. Review Naor’s scheme first. In this proposal, the receiver R
encrypts the message m concatenated with a random value r with N public keys
respectively. It contains N encryptions in this step. If the encryption is imple-
mented with Diffie-Hellman based scheme, O(N) exponentiations are required.
Then the sender S decrypts one ciphertext to get r and executes N encryptions
again. In the final step, S and R should verify N encryptions, respectively.

Dowsley’s scheme uses the broadcast encryption as the building block to
present the deniable ring authentication. The symmetric key K is encrypted
under the broadcast encryption first, then an one-time symmetric key encryption
is used to encrypt the message under K. Due to the property of broadcast
encryption, it just requires O(1) exponentiation to perform in this step. Then
S should execute 2 pairings to check the consistency of the encrypted messages,
2 pairings to decrypt, 1 symmetric decryption, O(1) exponentiation broadcast
encryption and 1 symmetric encryption. Finally, both S and R perform O(1)
exponentiation broadcast re-encryption.

Zeng’s scheme was built on the multi-receiver encryption. R uses it to encrypt
the authentication key k. In this step, it requires O(N) exponentiations and 1
pairing. Then S performs O(N) pairings to check the consistency of the N
ciphertexts and to get k to complete the authentication.

Our protocol λDRA can be implemented by employing a smooth projective
hash function under the DDH assumption, see the AppendixA. In this case, the
receiver R needs O(1) computation cost to choose the word c ∈ L in the first
round. Then O(1) computation cost is required for S to compute the hash value
and the commitment in the next round. In the third round, R just needs to
show the witness and hence no computation is required in this round. Finally,
S and R perform a non-interactive witness indistinguishable proof. This can
be instantiated by the Groth-Sahai NIWI proof system [13] with asymmetric
bilinear map, see the AppendixA. In this case, it requires O(N) computation
for S and R respectively to execute an NIWI proof. Note that, σi can be pre-
computed by R in advance.

Communication. Naor’s scheme needs to send N ciphertexts or random bits in
each round. This is the major burden. Moreover, it requires 6 rounds to realize
deniable ring authentication in the presence of big brother, which means all the
private keys are revealed, inefficient.

Due to the broadcast encryption, the communication cost of Dowsley’s
scheme is ideal as it is just the constant communication size. Moreover, the
broadcast encryption is verifiable, it does not need 2 more rounds (compared
to Naor’s scheme) to realize anonymity in the presence of big brother. However,
broadcast encryption requires to generate the members’ private keys by the third



140 S. Zeng et al.

party. Therefore, sending out the private keys to the members is the extra cost.
It requires the high-level secure channel, which is the underlying expense.

Zeng’s scheme is only 2 rounds as it does not need the receiver to reveal the
witness which is used to simulate. However, it is based on the Diffie-Hellman
Knowledge assumption to reach the deniability, which is a strong assumption.

Our protocol λDRA follows the black-box simulation, thus it has 4 commu-
nication rounds. Unlike Naor’s scheme, the communication size in the first three
rounds is just constant. Only in the last round, it needs to send O(N) size
message to complete the NIWI proof. The anonymity holds even each member
reveals its private key due to the witness-indistinguishability of NIWI proof,
hence it also remains anonymity in the presence of big brother with 4 rounds.

6.2 Security Requirement

For the construction of the deniable ring authentication protocol λDRA, we hope
the security requirement of the building block is minimum. Therefore, it is sig-
nificant to seek a weaker form for the underlying building blocks for the practical
reason. As we know, most deniable ring authentications are built on the encryp-
tion paradigm, which encrypts a MAC key to authenticate messages. The sound-
ness of such constructions requires the underlying encryptions are CCA secure
at least. For example, Naor’s scheme [16] and Dowsley’s scheme [10] require the
underlying encryption schemes are CCA2 secure, and in Zeng’s scheme [22] the
underlying multi-receiver encryption is even plaintext-aware.

Our deniable ring authentication protocol λDRA is built on the specific prop-
erties (projection and smoothness) of projective hash function other than encryp-
tion paradigm. In other words, the soundness of protocol λDRA just depends on
the smoothness of projective hash function, the perfect binding of commitment
and soundness of NIWI proofs. Factually, the underlying building block is not
necessarily CCA secure.

7 Conclusion

We present a new construction of deniable authentication with source hiding
based on the projective hash function. Differing from the encryption paradigm
schemes, our protocol does not require the underlying scheme to satisfy CCA
secure. Our source-hiding property is achieved through a ring scheme. However,
it does not require sending O(N) size message in each round. The instantiation of
our scheme (in the Appendix A) can be realized under the standard assumptions.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (61402376, U1433130), the Open Research Subject of Key Laboratory
of Digital Space Security (szjj2014-078) and the Ministry of Education “chunhui plan”
(Z2016150).



Deniable Ring Authentication Based on Projective Hash Functions 141

A Instantiation of Protocol λDRA

Setup. Choose two safe primes p, q and compute n = pq. Let G,H,GH be three
multiplicative cyclic groups of order n that are associated to a non-degenerate
bilinear pairing ê : G × H → GH. Let g1 and h1 be the generators of G and
H, respectively. Choose μ1, μ2, μ3 ← Zn and set η = gμ1

1 , g2 = gμ2
1 , h2 = hμ3

1 .
Choose a collision-free hash function H : {0, 1}∗ → Zn. The common reference
string crs = (n,G,H,GH, ê, g1, η, g2, h1, h2,H) is the output of the algorithm
Setup.

Key Generation. Choose xi, yi ← Zn, set SKi = hki = (xi, yi), PKi = hpi =
gxi
1 ηyi . All the public keys PK1, PK2, · · · , PKν are accessible by anyone.

Deniable Ring Authentication Protocol λDRA.

1. With the set R = {PK1, · · · , PKN} and message m ← M, R picks a word
c ∈ L with the witness ω ← Zn, such that the language L = {c|∃ω, c =
(c1, c2) = (gω

1 , ηω)}. R sends flow1 = (m, c) to the set R.
2. Upon the receipt of (m, c) from R, S computes as follows. Suppose the sender

S is the participant PI .
– compute σI = Hash(hkI ,L, c;m) = (gωH(m)

1 )xI (ηωH(m))yI ;
– choose rI ← Zn randomly, compute CI = COM(σI ; rI) = σI · grI

2 ;
– send flow2 = CI to the receiver R.

3. Upon the receipt of the commitment CI , R reveals the witness ω and sends
flow3 = ω to the set R.

4. Upon the receipt of ω, S first checks that the value ω is indeed the witness
for c ∈ L:

– check ProjHash(hpi,L, c, ω;m) ?= σI for i = I.
If this equation holds, the following work for S is to prove for R that σI

in the commitment CI is indeed consistent with one σi calculated by R
without revealing which σi. Thus, S does as follow:

– for i �= I, choose ti ← Zn, compute Gi = gti
2 , Hi = hti

2 , πG
i = (g−1

1 gti
2 )ti

and θH
i = (h−1

1 hti
2 )ti ;

– for i = I, compute tI = −∑
i�=I ti, GI = g1g

tI
2 , HI = h1h

tI
2 , πG

I =
(g1gtI

2 )tI , θH
I = (h1h

tI
2 )tI ;

– for 1 ≤ i ≤ N , compute σi = ProjHash(hpi,L, c, ω;m) = (gxi
1 ηyi)H(m)ω

and π = gtI
1 · ∏N

i=1(σig
ti
2 )ti , θ = htI−rI

1 ;
– send flow4 = ({Gi,Hi, π

G
i , θH

i }N
i=1, π, θ) to the receiver R.

Finally, R computes σi =ProjHash(hpi,L, c, ω;m) = (gxi
1 ηyi)H(m)ω for 1 ≤

i ≤ N and accepts this authentication to m if

– ê(Gi,Hih
−1
1 ) · ê(Gig

−1
1 ,Hi) = ê(πG

i , h2) · ê(g2, θH
i ) for 1 ≤ i ≤ N ;

–
∏N

i=1 Gi = g1;
–

∏N
i=1 Hi = h1;

–
∏N

i=1 ê(σiGi,Hi) = ê(CIg1, h1) · ê(π, h2) · ê(g2, θ).

Due to the space limitation, the details on the security arguments of this
instantiation will be given in the full version of this paper.



142 S. Zeng et al.

References

1. Abdalla, M., Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D.: SPHF-
friendly non-interactive commitments. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8269, pp. 214–234. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-42033-7 12

2. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistin-
guishable under plaintext-checkable attacks. IET Inf. Secur. 10(6), 288–303 (2016)

3. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New tech-
niques for SPHFs and efficient one-round pake protocols. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40041-4 25

4. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). doi:10.1007/
3-540-44598-6 15

5. Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: Dual-server public-key encryption
with keyword search for secure cloud storage. IEEE Trans. Inf. Forensics Secur.
11(4), 789–798 (2016)

6. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

7. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 36

8. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

9. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput.
30(2), 391–437 (2000)

10. Dowsley, R., Hanaoka, G., Imai, H., Nascimento, A.C.A.: Round-optimal deniable
ring authentication in the presence of big brother. In: Chung, Y., Yung, M. (eds.)
WISA 2010. LNCS, vol. 6513, pp. 307–321. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-17955-6 23

11. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6), 851–
898 (2004)

12. Gennaro, R.: Multi-trapdoor commitments and their applications to proofs of
knowledge secure under concurrent man-in-the-middle attacks. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 220–236. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-28628-8 14

13. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78967-3 24

14. Jiang, S.: Timed encryption with application to deniable key exchange. Theor.
Comput. Sci. 560, 172–189 (2014)

15. Jiang, S., Safavi-Naini, R.: An efficient deniable key exchange protocol (Extended
Abstract). In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 47–52. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85230-8 4

16. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 481–498. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 31

http://dx.doi.org/10.1007/978-3-642-42033-7_12
http://dx.doi.org/10.1007/978-3-642-42033-7_12
http://dx.doi.org/10.1007/978-3-642-40041-4_25
http://dx.doi.org/10.1007/3-540-44598-6_15
http://dx.doi.org/10.1007/3-540-44598-6_15
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46766-1_36
http://dx.doi.org/10.1007/978-3-642-17955-6_23
http://dx.doi.org/10.1007/978-3-642-17955-6_23
http://dx.doi.org/10.1007/978-3-540-28628-8_14
http://dx.doi.org/10.1007/978-3-540-78967-3_24
http://dx.doi.org/10.1007/978-3-540-85230-8_4
http://dx.doi.org/10.1007/3-540-45708-9_31


Deniable Ring Authentication Based on Projective Hash Functions 143

17. Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45146-4 19

18. Raimondo, M.D., Gennaro, R.: New approaches for deniable authentication. J.
Cryptology 22(4), 572–615 (2009)

19. Raimondo, M.D., Gennaro, R., Krawczyk, H.: Deniable authentication and key
exchange. In: Proceedings of the 13th ACM Conference on Computer and Com-
munications Security, CCS 2006, Alexandria, VA, USA, October 30–3 November
2006, pp. 400–409. ACM (2006)

20. Yao, A.C., Zhao, Y.: OAKE: a new family of implicitly authenticated diffie-hellman
protocols. In: 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2013, Berlin, Germany, 4–8 November 2013, pp. 1113–1128. ACM
(2013)

21. Yao, A.C., Zhao, Y.: Privacy-preserving authenticated key-exchange over internet.
IEEE Trans. Inf. Forensics Secur. 9(1), 125–140 (2014)

22. Zeng, S., Chen, Y., Tan, S., He, M.: Concurrently deniable ring authentication and
its application to LBS in vanets. Peer-to-Peer Netw. Appl. 10(4), 844–856 (2017)

http://dx.doi.org/10.1007/978-3-540-45146-4_19


Authenticated Encryption and Key
Exchange



INT-RUP Security of Checksum-Based
Authenticated Encryption

Ping Zhang1(B), Peng Wang2, Honggang Hu1(B), Changsong Cheng3,
and Wenke Kuai4

1 Key Laboratory of Electromagnetic Space Information, CAS,
University of Science and Technology of China, Hefei 230027, China

zgp@mail.ustc.edu.cn, hghu2005@ustc.edu.cn
2 State Key Laboratory of Information Security,

Institute of Information Engineering, CAS, Beijing 100049, China
wp@is.ac.cn

3 Network Security Research and Development Center,
The Third Research Institute of Ministry of Public Security,

Shanghai 200031, China
4 Information and Communication Branch,

State Grid Anhui Electric Power Company, Hefei 230061, China
1037789458@qq.com

Abstract. Offset codebook mode (OCB) provides neither integrity
under releasing unverified plaintext (INT-RUP) nor nonce-misuse resis-
tance. The tag of OCB is generated by encrypting a plaintext checksum,
which is vulnerable in the INT-RUP security model. This paper focuses
on the weakness of the checksum processing in OCB. We describe a new
type of structure, called plaintext and ciphertext checksum (PCC), which
is a generalization of the plaintext checksum, and prove that all authen-
ticated encryption schemes with PCC are insecure in the INT-RUP secu-
rity model. Then, we fix the weakness of PCC and present another new
type of structure, called intermediate checksum (IC), to generate the
authentication tag. To settle the INT-RUP security of OCB in the nonce-
misuse setting, we provide a modified OCB scheme based on IC, called
OCB-IC. OCB-IC is proven INT-RUP secure up to the birthday bound
in the nonce-misuse setting if the underlying tweakable blockcipher is a
secure mixed tweakable pseudorandom permutation (MTPRP). Finally,
we present some discussions about OCB-IC.

Keywords: Authenticated Encryption · INT-RUP · Nonce-misuse ·
Checksum · Tweakable Blockcipher

1 Introduction

Authenticated encryption (AE) is a cryptographic scheme, which provides pri-
vacy and authenticity concurrently. In classical security models, a conventional
AE scheme consists of an encryption algorithm and a decryption algorithm. The
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 147–166, 2017.
https://doi.org/10.1007/978-3-319-68637-0_9



148 P. Zhang et al.

decryption algorithm includes two phases: plaintext computing and integrity ver-
ification. The plaintext corresponding to the ciphertext is released only if the tag
is successfully verified. However, in some special settings, it is desirable to release
unverified plaintext before verification. This case occurs when lightweight envi-
ronments and low-end devices, such as smart cards, have not enough memory to
store the entire plaintext, or when the decrypted plaintext needs to be processed
in real time. What’s more, releasing unverified plaintext improves the efficiency
of certain applications. For example, the decryption algorithm of Encrypt-then-
MAC composition [6] has two stages: the first stage verifies the MAC, and the
second stage decrypts the ciphertext and obtains the corresponding plaintext.
If this AE scheme is secure against the release of unverified plaintext, then a
single stage (the second stage) would be sufficient for the decryption algorithm.
Moreover, even if the attacker can not observe the unverified plaintext directly,
it could find some certain properties of the plaintext by side channel attacks,
such as [8,26]. As shown by Paterson and AlFardan [2,21] for TLS and DTLS,
it is very difficult to prevent an attacker from learning the cause of decryption
failures.

The issue of releasing unverified plaintext has lead to in-depth discussions
in the CAESAR competition. For several AE schemes, such as IACBC [16],
IAPM [16], OCB1 [25], OCB2 [23], OCB3 [17], vOCB [22], TAE [18,19], COPA
[3], AEGIS [27], and ALE [7], the unverified plaintext obtained in the plaintext
computing stage cannot be released. Note that releasing unverified plaintext
does not imply omitting verification. Verification is essential to prevent incor-
rect plaintexts from being accepted. In this paper, we consider the security in this
scenario where the attacker can observe the unverified plaintext, or any informa-
tion relating to it, before the verification algorithm is completed. Andreeva et
al. addressed the issue of releasing unverified plaintext, and formalized it as the
RUP setting. In their paper [4], they provided two new notions called PA (Plain-
text Awareness) and INT-RUP (Integrity under Releasing Unverified Plaintext).
In the RUP setting, an adversary can obtain the unverified plaintexts resulting
from decryption queries. On the one hand, for privacy, they proposed using both
IND-CPA and PA. At the heart of PA notion is a plaintext extractor. The plain-
text extractor is a stateful algorithm with the goal of mimicking the decryption
oracle in order to fool the adversary. It cannot make encryption nor decryption
queries, and does not know the secret key. An AE scheme achieves PA if it is
infeasible to distinguish the decryption oracle from the plaintext extractor. On
the other hand, an AE scheme is INT-RUP secure if an adversary can not gen-
erate a fresh valid ciphertext-tag pair given the additional power of access to
an unverified decryption oracle, after the encryption oracle. There exist some
related works about the security of AE schemes in the RUP setting, such as
[9,10,28].

Problem Statement. The nonce-respecting AE schemes (such as OCB [17,23,
25], GCM [11], CCM [12], mCCM [14], OKH [1]) require that all nonces used in
the encryption queries are distinct, while the nonce-misuse resistant AE schemes
(such as COPA [3], McOE-G [13]) do not. The privacy and integrity of OCB are



INT-RUP Security of Checksum-Based Authenticated Encryption 149

insecure in the nonce-misuse and RUP settings. For OCB, Andreeva et al. [4]
also showed how to construct a forgery in the INT-RUP security model. The tag
of OCB is generated by encrypting a XOR-sum of the plaintext blocks (plaintext
checksum), which results in attacks in the RUP setting. As the plaintext and
ciphertext blocks can be obtained by the adversary in the RUP setting, the
adversary can forge the same checksum by changing some plaintext or ciphertext
blocks. In their paper [4], they left fixing OCB to be INT-RUP in an efficient
way as an open problem.

Our Contributions. This paper mainly considers the INT-RUP security of
OCB in the nonce-misuse setting. We focus on the weakness of the checksum
processing in OCB. The checksum of OCB is generated by the XOR-sum of
the plaintext blocks, which is vulnerable in the INT-RUP security model. Then
we describe a new type of structure, called plaintext and ciphertext checksum
(PCC), which is a generalization of the plaintext checksum. It is very easy for an
adversary to forge the same checksum by changing some plaintext or ciphertext
blocks. Therefore, all authenticated encryption schemes, if their tag is generated
by encrypting the XOR-sum of the plaintext and ciphertext blocks, are insecure
in the INT-RUP security model. If an adversary A makes one encryption query,
p decryption queries, and one forgery attempt, each consisting of l blocks of n
bits, then the adversary makes a successful forgery with high probability (at least
1 − 2n−ld) by solving a system of linear equations in GF (2) with n equations
and ld ≥ n unknowns, where d = �log2 p�.

To fix the weakness of PCC, we provide another new type of structure,
called intermediate checksum (IC), to generate the authentication tag. In the
AE schemes with IC, the internal states in the encryption algorithm are hid-
den from adversaries, and the intermediate checksum obtained by the XOR-sum
of internal states is again encrypted once or many times before being output,
which guarantees no information leakage, except the collisions of the last block
encryptions for authentication. Based on the IC structure, we propose a modified
OCB scheme with IC, called OCB-IC, to settle the INT-RUP security of OCB
in the nonce-misuse setting. OCB-IC inherits the advantages of OCB. We prove
that OCB-IC is INT-RUP secure up to the birthday bound of n/2-bit security
in the nonce-misuse setting if the underlying tweakable blockcipher (TBC) is a
secure mixed tweakable pseudorandom permutation (MTPRP), where n is the
block-size of the underlying TBC. In this paper, we do not settle the problem of
privacy in the RUP setting. OCB-IC is PA insecure.

For each plaintext block of OCB-IC, the underlying TBC is invoked twice.
Therefore, the rate of OCB-IC is 1/2. Compared with OCB (rate = 1), the effi-
ciency of OCB-IC is about half of it, but OCB-IC provides INT-RUP security. In
other words, OCB-IC compromises the efficiency of the software and hardware
implementations to achieve INT-RUP security. Compared with CCM [12], the
efficiency of OCB-IC is better as CCM is a two-pass AE scheme. The related
results are shown in Table 1. OCB-IC is a TBC-based one-pass parallelizable
AE scheme. If this underlying TBC is instantiated by an AES and the XEX*
construction, we will obtain a blockcipher-based provably secure instance, which
is presented in Appendix.



150 P. Zhang et al.

Table 1. Comparison of properties among CCM [12], OCB [17,23,25], and OCB-IC.

Scheme Rate Structure type INT-RUP References

CCM 1/2 Two-pass
√

[4,12]

OCB 1 PCC (One-pass) × [4,17,23,25]

OCB-IC 1/2 IC (One-pass)
√

This Paper

In [9], Chakraborti et al. left it as an interesting open problem to find a
property that makes “rate-1/2” AE schemes INT-RUP secure. Our works find
a new structure IC, which will provide a new direction for settling the security
of “rate < 1” AE schemes in the RUP setting. We believe that one can further
extend it for any “rate < 1”.

Organizations of This Paper. Notations and some preliminaries are presented
in Sect. 2. In Sect. 3, we describe the INT-RUP security model of AE. In Sect. 4,
we provide our main works. Finally, this paper ends up with a conclusion in
Sect. 5.

2 Preliminaries

Notations. Let ε denote the empty string, and {0, 1}∗ denote the set containing
all finite bit strings (including ε). Let n be an integer, and ({0, 1}n)+ be the set
of all strings whose lengths are positive multiples of n bits. For a finite string x,
|x| stands for its length. For two finite strings x and y, let x‖y or xy denote the

concatenation of them. If X is a set, then x
$← X is a value randomly chosen

from X, and |X| stands for the number of elements in X. Let ∅ be the empty
set whose cardinality is 0. Let �·� be the operation that rounds up to an integer.
Denote Pr[A|B] as the conditional probability of event A given event B.

Finite Field. Given a basis, the finite field GF (2n) can be viewed as the set
{0, 1}n. For an n-bit string a = an−1 · · · a1a0 ∈ {0, 1}n, we can define a polyno-
mial a(x) ∈ Z[x] by a(x) = an − 1x

n − 1 + · · · + a1x + a0 ∈ GF (2n). Hence, any
integer between 0 and 2n − 1 can also be viewed as a polynomial with binary
coefficients of degree at most n−1. The addition in the field GF (2n) is the addi-
tion of polynomials over GF (2). We denote this operation by bitwise XOR, such
as a ⊕ b, where a, b ∈ GF (2n). To define multiplication in the field GF (2n), we
need an irreducible polynomial f(x) of degree n over GF (2). The multiplication
of two elements A,B ∈ GF (2n) is defined as the polynomial multiplication over
GF (2) reduced modulo f(x), that is A(x)B(x) mod f(x). We use point doubling
(multiply a ∈ {0, 1}n by 2) and XOR operations to compute the multiplication
in actual operation, such as 3a = 2a ⊕ a.

Block Ciphers and Tweakable Blockciphers. A block cipher E : K ×
{0, 1}n → {0, 1}n is a function that inputs a key K ∈ K and a plaintext



INT-RUP Security of Checksum-Based Authenticated Encryption 151

P ∈ {0, 1}n, and produces a ciphertext C = E(K,P ), where K is a finite
nonempty set and n ≥ 1 is a number. For any K ∈ K, EK(·) = E(K, ·) is a
permutation over {0, 1}n and its inverse is DK = E−1

K . A tweakable blockcipher
(TBC) ˜E : K × T × {0, 1}n → {0, 1}n is a function that takes a key K ∈ K, a
tweak T ∈ T , and a plaintext P ∈ {0, 1}n as inputs, and produces a ciphertext
C = E(K,T, P ), where K and n are defined as above, and T is a finite nonempty
set. For any K ∈ K, T ∈ T , ˜ET

K(·) = ˜EK(T, ·) = ˜E(K,T, ·) is a permutation
over {0, 1}n and its inverse is ˜DK = ˜E−1

K . Here n is called the blocksize, K is
called the key space, T is called the tweak space.

Let Perm(n) be the set of all permutations on n bits. Let Perm(T , n) be

the set of all mappings from T to permutations on n bits. Then π
$← Perm(n)

stands for a permutation randomly chosen from Perm(n), and π̃
$← Perm(T , n)

stands for a random permutation π̃(T, ·) = π̃T (·) on {0, 1}n for each T ∈ T .
An adversary is a probabilistic algorithm with access to certain oracles. Let

AO ⇒ 1 be the event that an adversary A outputs 1 after interacting with
the oracle O. Suppose that E : K × {0, 1}n → {0, 1}n is a block cipher, and
˜E : K × T × {0, 1}n → {0, 1}n is a TBC.

(1) Let A be an adversary with access to an encryption oracle, K
$← K, π

$←
Perm(n), and π̃

$← Perm(T , n), then the advantages of A against E and ˜E
are respectively defined as

Advprp
E (A) = Pr[AEK(·) ⇒ 1] − Pr[Aπ(·) ⇒ 1],

Advp̃rp
˜E

(A) = Pr[A ˜EK(·,·) ⇒ 1] − Pr[Aπ̃(·,·) ⇒ 1],

where the probabilities are taken over the random coins used by the oracles
and also over internal coins of A, if any.

(2) Let A be an adversary with access to both encryption and decryption oracles,

K
$← K, π

$← Perm(n), and π̃
$← Perm(T , n), then the advantages of A

against E and ˜E are respectively defined as

Advsprp
E (A) = Pr[AE±

K(·) ⇒ 1] − Pr[Aπ±(·) ⇒ 1],

Advs̃prp
˜E

(A) = Pr[A ˜E
±
K(·,·) ⇒ 1] − Pr[Aπ̃±(·,·) ⇒ 1],

where the probabilities are taken over the random coins used by the oracles
and also over internal coins of A, if any.

If Advprp
E (A) or Advsprp

E (A) is negligible, the underlying block cipher EK is a
secure pseudorandom permutation (PRP) or strong PRP (SPRP). If Advp̃rp

˜E
(A)

or Advs̃prp
˜E

(A) is negligible, the underlying TBC ˜EK is a secure tweakable PRP
(TPRP) or strong TPRP (STPRP). If the resources used by adversaries are
at most R, we define the maximum advantage as Adv(R) = maxAAdv(A),
where the resources include the running time t, the total of oracle queries q,



152 P. Zhang et al.

the maximum block-length l, and the totally number of invoking the underlying
primitive in all queries (the query complexity) σ.

Constructions of Blockcipher-based TBCs. Given a block cipher E : K ×
{0, 1}n → {0, 1}n and a secret mask Δ, let T = {0, 1}n×I×J be a tweak space,
I be a set of tuples of large integers, and J be a set of tuples of small integers,
we obtain a TBC ˜E : K × T × {0, 1}n → {0, 1}n by the XEX* construction:

˜EN,i,j
K (x) = EK(x ⊕ Δ) and ˜EN,i′,j′

K (x) = EK(x ⊕ Δ′) ⊕ Δ′

where (N, i, j) ∈ T0, (N, i′, j′) ∈ T1, T0 ∩ T1 = ∅, T0 ∪ T1 = T , and Δ =
2i3jL,Δ′ = 2i′

3j′
L,L = EK(N).

Let A be an adversary which makes an encryption query for tweaks from T0

and makes encryption and decryption queries for tweaks from T1. Let K
$← K,

π̃
$← Perm(T0, n), and π̃±1 $← Perm(T1, n). Then the advantage of A against

˜E = XEX∗[E, 2I3J ] is defined as

Advm̃prp
˜E

(A) = Pr[A ˜EK(·), ˜E±1
K (·,·) ⇒ 1] − Pr[Aπ̃(·),π̃±1(·,·) ⇒ 1],

where the probabilities are taken over the random coins used by the oracles and
also over internal coins of A, if any. If the advantage Advm̃prp

˜E
(A) is negligible,

the underlying TBC ˜EK is a secure mixed tweakable pseudorandom permuta-
tion (MTPRP). The definition of MTPRP matches TPRP if (T0, T1) = (T , ∅)
and STPRP if (T0, T1) = (∅, T ). We rewrite Theorem 3 in [23], rename some
notations, and obtain the following lemma.

Lemma 1 (Security of XEX*). Fix a block cipher E : K × {0, 1}n → {0, 1}n

and a tweakable blockcipher ˜E : K × T × {0, 1}n → {0, 1}n, where T = {0, 1}n ×
I × J is a tweak space, I is a set of tuples of large integers, and J is a set
of tuples of small integers. Assume 2i3j = 1 for all (i, j) ∈ I × J . Let ˜E =
XEX∗[E, 2I3J ], one has

Advm̃prp
˜E

(t, q) ≤ Advsprp
E (t′, 2q) + 9.5q2/2n,

where t′ = t + 2cn(q + 1) for some absolute constant c.

Authenticated Encryption (AE). A conventional AE with associated data
scheme Π consists of an encryption algorithm and a decryption algorithm [24].
In order to consider the security of Π in the RUP setting, we must separate
the decryption algorithm from the verification algorithm so that the decryption
algorithm always releases plaintext [4]. A separated AE scheme is a triplet Π =
(E ,D,V) — an encryption algorithm E : K × N × H × P → C × T , a decryption
algorithm D: K×N ×H×C ×T → P, and a verification algorithm V : K×N ×
H × C × T → �/⊥, where we write

(C, T ) ← EK(N,A, P ),
P ← DK(N,A,C, T ),
�/⊥ ← VK(N,A,C, T ),



INT-RUP Security of Checksum-Based Authenticated Encryption 153

where K ∈ K is a key, K = {0, 1}k, k ≥ 1, N ∈ N is a nonce, N ⊆ {0, 1}n, n ≥ 1,
A ∈ H is an associated data, H ⊆ {0, 1}∗, P ∈ P is a plaintext, P ⊆ {0, 1}∗,
C ∈ C is a ciphertext, C ⊆ {0, 1}∗, and T ∈ T is a tag, T ⊆ {0, 1}∗. The
symbols � and ⊥ indicate the success and failure of the verification oracle,
respectively. EK(N,A, P ) = (C, T ) if and only if (iff) DK(N,A,C, T ) = P and
VK(N,A,C, T ) = �. If there is no associated data A, we may omit it. A secure
AE scheme returns ⊥ if it receives an error (C, T ) pair.

3 INT-RUP Security Model of Authenticated Encryption

Let Π = (EK ,DK ,VK) be an AE scheme. Let A be an adversary which makes at
most qe queries to the encryption oracle EK(·), at most qd queries to the decryp-
tion oracle DK(·), and at most qv queries to the verification oracle VK(·). Firstly,
A queries (N i, Ai, P i) to the encryption oracle EK(·) and receives (Ci, T i) =
EK(N i, Ai, P i), where 1 ≤ i ≤ qe. Then, A has access to the decryption oracle
DK(·) and obtains unverified plaintexts P ∗j = DK(N∗j , A∗j , C∗j , T ∗j), where
1 ≤ j ≤ qd. Without loss of generality, we assume that the adversary doesn’t
make redundant queries1. Note that (N∗j , A∗j , C∗j , T ∗j) = (N i, Ai, Ci, T i),
where 1 ≤ i ≤ qe and 1 ≤ j ≤ qd. Finally, A forges a challenge ciphertext
(N ′, A′, C ′, T ′) = (N i, Ai, Ci, T i), where 1 ≤ i ≤ qe, to the verification oracle
VK(·).

The forgery attempt succeeds if VK(N ′, A′, C ′, T ′) = �, failure otherwise.
Then the INT-RUP-advantage of A against Π = (EK ,DK ,VK) is defined as

Advint − rup
Π (A) = Pr[AEK ,DK ,VK forges].

4 INT-RUP Security of Checksum-Based Authenticated
Encryption Schemes

4.1 INT-RUP Analysis of Authenticated Encryption with PCC

For all AE schemes, if their checksum is generated by the XOR-sum of the
plaintext blocks, they are insecure in the RUP setting, such as IAPM [16], OCB
[25], COPA [3], and OPP [15].

We describe a new type of structure, called plaintext and ciphertext checksum
(PCC), which is a generalization of the plaintext checksum, and prove that all
AE schemes with PCC are insecure in the INT-RUP security model. PCC is
the XOR-sum of the plaintext and ciphertext blocks, including the XOR-sum of
the whole plaintext or ciphertext blocks, the XOR-sum of the whole plaintext
and ciphertext blocks, and the XOR-sum of the parts of plaintext and ciphertext
1 It includes the following cases: (i) it doesn’t repeat prior queries for each oracle, (ii)

the adversary does not ask the decryption oracle DK(Y ) or the verification oracle
VK(Y ) after receiving Y in response to an encryption query EK(X), and (iii) the
adversary does not ask the encryption oracle EK(X) after receiving X in response
to a decryption query DK(Y ).



154 P. Zhang et al.

blocks. INT-RUP is a strong security notion, which gives the adversary the ability
to make decryption queries and observe the unverified plaintexts. The adversary
can forge the same checksum by changing some plaintext or ciphertext blocks.
Therefore the tag generated by plaintext and ciphertext checksum is vulnerable
against integrity security in the RUP setting. The strategy of the attack comes
from [4]. We present an improved version in Theorem 1.

Let Π = (EK ,DK ,VK) be an AE mode with PCC. Assume that the
authentication tag T ← f(checksum), where f is a deterministic function,
checksum =

∑l
i=1(Piz

1
i ⊕ Ciz

2
i ), z1i , z2i ∈ {0, 1}, and l is the block-length of

the plaintext or the ciphertext. There are three cases for PCC as follows: (1) If
z1i = 0, z2i = 1 for all 1 ≤ i ≤ l, then the tag is generated from the XOR-sum of
the whole ciphertext blocks; (2) if z1i = 1, z2i = 0 for all 1 ≤ i ≤ l, then the tag
is generated from the XOR-sum of the whole plaintext blocks; (3) if z1i = 1 for
i ∈ I and z2j = 1 for j ∈ J , where the sets I and J are subsets of a set {1, · · · , l},
and I ∪ J = ∅, then the tag is generated from the XOR-sum of the plaintext
and ciphertext blocks. For example, I and J may be a partial of a set {1, · · · , l},
such as odd/even partial. If I or J is an empty set, this case is reduced to case
(1) or case (2). Note that I and J are empty sets, which is not allowed.

Theorem 1. For the above scheme Π = (EK ,DK ,VK), for all ld ≥ n, there
exists an adversary A such that

Advint−rup
Π (A) ≥ 1 − 2n−ld,

where A makes one encryption query, 2 ≤ p ≤ 2d decryption queries, and one
forgery attempt, each consisting of l blocks of n bits. Then, the adversary solves
a system of linear equations in GF (2) with n equations and ld unknowns.

Proof. In the INT-RUP security model, we assume that the adversary A firstly
makes one encryption query and receives (C, T ) = EK(N,A, P ), where P =
P1P2 · · · Pl. Then A makes at most p decryption queries with the same nonce-
associated data pair and obtains the corresponding unverified plaintexts P j =
DK(N,A,Cj , T j) where 0 ≤ j ≤ p − 1, Cj = Cj

1C
j
2 · · · Cj

l . Finally, A forges
a new ciphertext C ′ = Cx1

1 Cx2
2 · · · Cxl

l such that the new tag is equal to T ,
where x1, x2, · · · , xl ∈ GF (p). If the forgery succeeds, the adversary needs to
find x1, x2, · · · , xl ∈ GF (p) such that

checksum =
l

∑

i=1

(Piz
1
i ⊕ Ciz

2
i ) =

l
∑

i=1

(P xi
i z1i ⊕ Cxi

i z2i ), (1)

where z1i , z2i ∈ {0, 1} for all i.
Equation (1) can be converted into a system of linear equations in GF (p)

with n equations and l unknowns, one for every bit j:

checksum[j] =
l

∑

i=1

(P xi
i [j]z1i ⊕ Cxi

i [j]z2i ), 0 ≤ j ≤ n − 1, (2)



INT-RUP Security of Checksum-Based Authenticated Encryption 155

where X[j] selects j-th bit of X, with j = 0 corresponding to the least significant
bit, and z1i , z2i ∈ {0, 1} for all i.

The system of linear equations in GF (p) with n equations and l unknowns
is equivalent to a system of linear equations in GF (2) with n equations and ld
unknowns, where d = �log2 p�. The operation of this process is as follows.

Let [xi]d = xi1xi2 · · · xid be the d-bit binary representation of xi, [p − 1]d =
p1p2 · · · pd be the d-bit binary representation of p − 1, then Cxi

i = C0
i (xi1 ⊕

1)(xi2 ⊕ 1) · · · (xid ⊕ 1) ⊕ C1
i (xi1 ⊕ 1)(xi2 ⊕ 1) · · · xid ⊕ · · · ⊕ Cp − 1

i (xi1 ⊕ p1 ⊕
1)(xi2 ⊕ p2 ⊕ 1) · · · (xid ⊕ pd ⊕ 1), where xi1xi2 · · · xid = [s]d corresponds to
selecting Cs

i , 0 ≤ s ≤ p − 1.
It follows that, Eq. (2) can be converted into the following equation:

checksum[j] =
l∑

i=1

{[P 0
i [j](xi1 ⊕ 1)(xi2 ⊕ 1) · · · (xid ⊕ 1) ⊕ · · ·

⊕ P p − 1
i [j](xi1 ⊕ p1 ⊕ 1)(xi2 ⊕ p2 ⊕ 1) · · · (xid ⊕ pd ⊕ 1)]z1i ⊕

[C0
i [j](xi1 ⊕ 1)(xi2 ⊕ 1) · · · (xid ⊕ 1) ⊕ · · ·

⊕ Cp − 1
i [j](xi1 ⊕ p1 ⊕ 1)(xi2 ⊕ p2 ⊕ 1) · · · (xid ⊕ pd ⊕ 1)]z2i },

where 0 ≤ j ≤ n − 1, p1p2 · · · pd = [p − 1]d, z1i , z2i ∈ {0, 1} for all i.
The adversary needs to find x11, x12, · · · , xld ∈ GF (2) such that the above

n equations are established. For a system of linear equations in GF (2) with
n equations and ld ≥ n unknowns, we can find a solution by using Gaussian
elimination and the probability that this system of equations has a solution is
1 − 2n − ld [5]. That is to say, the adversary can forge an output (N,A,C ′, T )
with C ′ = C.

4.2 OCB with Intermediate Checksum: OCB-IC

In this section, we fix the weakness of PCC and provide another new type
of structure, called IC, to generate the checksum. The internal states in the
encryption algorithm are hidden from adversaries and the intermediate check-
sum obtained by the XOR-sum of internal states is again encrypted once or many
times, which guarantees no information leakage, except the collision before the
last block encryptions for authentication in the same nonce. The tag is generated
by the PMAC1 algorithm [23] of either the plaintext or the ciphertext. Moreover,
the decryption algorithm and the verification algorithm share parts of comput-
ing resources. Based on the IC structure, we propose a modified scheme called
OCB-IC to settle the INT-RUP security of OCB in the nonce-misuse setting.

OCB-IC[ ˜E] is parameterized by a tweakable blockcipher ˜E : K×T ×{0, 1}n →
{0, 1}n, where T = {0, 1}n × I × J is a tweak space, I is a set of tuples of large
integers, and J is a set of tuples of small integers. We require tweaks to increase
monotonically and perform the “special” operation (j ∈ J gets incremented
and i ∈ I keeps the same) from the penultimate block to the final block, which
makes tweaks’ update highly efficient. For OCB-IC, the cost of the generating
tag is minimal (as OCB-IC only invokes the underlying TBC twice). We assume



156 P. Zhang et al.

that the plaintext length is a positive multiple of block-size n. The length of
associated data is arbitrary.

The overview of OCB-IC[ ˜E] is depicted in Fig. 1. OCB-IC[ ˜E] is made up
of three algorithms — an encryption algorithm EK , a decryption algorithm DK ,
and a verification algorithm VK . The detailed description of OCB-IC[ ˜E] is shown
in Fig. 2.

We analyze and obtain the following theorems for the information theoretic
security of OCB-IC[ ˜E]. If the underlying tweakable blockcipher ˜E is a secure
MTPRP, OCB-IC[ ˜E] is proven INT-RUP secure in the nonce-misuse setting.

Theorem 2 (INT-RUP Security of OCB-IC with an Ideal TBC). For
OCB-IC[ ˜E], we replace tweakable blockciphers ˜EK with tweakable random per-

mutations π̃
$← Perm(T , n) to obtain OCB-IC[π̃], where T = {0, 1}n × I × J

is a tweak space, I is a set of tuples of large integers, and J is a set of tuples
of small integers. Let A be a nonce-misusing adversary. Let qv be the number of
forgery queries. Then we have

Advint−rup
OCB−IC[π̃](A) ≤ (σ + q)2/2n + qvq/2n.

Proof. We assume that A is an adversary with access to the encryption ora-
cle E [π̃](·), the decryption oracle D[π̃](·), and the verification oracle V[π̃](·).
Firstly, the adversary A makes q encryption queries (N i, Ai, P i) and receives
(Ci, T i) = E [π̃](N i, Ai, P i), where 1 ≤ i ≤ q. Then, the adversary A has access
to the decryption oracle D[π̃](·) and obtains the unverified plaintext P ∗j =
D[π̃](N∗j , A∗j , C∗j , T ∗j), where 1 ≤ j ≤ qd. Note that (N∗j , A∗j , C∗j , T ∗j) =
(N i, Ai, Ci, T i), where 1 ≤ i ≤ q and 1 ≤ j ≤ qd.

Finally, A forges a challenge ciphertext (N ′, A′, C ′, T ′) = (N i, Ai, Ci, T i) to
the verification oracle V[π̃](·), where C ′ = C ′

1C
′
2 · · · C ′

l′ , C
i = Ci

1C
i
2 · · · Ci

li , and
1 ≤ i ≤ q.

Let Γ = {(N i, Ai, P i, Ci, T i)}q
i=1 ∪ {(N∗j , A∗j , P ∗j , C∗j , T ∗j)}qd

j =1 be the
transcript (input-output pairs of OCB-IC) obtained by the encryption queries
and decryption queries. Γ can be seen as a random variable, then the INT-RUP-
advantage of A is

Advint−rup
OCB−IC[π̃](A) = Pr[AE[π̃],D[π̃],V[π̃] forges]

≤ maxγ∈Γ PrA[(N ′, A′, C ′, T ′) is valid|Γ = γ].

Given an associated data A, we handle it by the PMAC1 algorithm and
denote Auth = PMAC1(A). Let A be an event that a collision of Auth
occurs for two different associated data. Let T be an event that a collision of
the tag T occurs for two different plaintexts in the encryption oracle. Denote
an event E as an union of events A and T, and E = A ∨ T. Let F be
an event that the verification oracle V[π̃](·) returns � other than ⊥. Then
PrA[(N ′, A′, C ′, T ′) is valid|Γ = γ] = Pr[AOCB−IC[π̃] sets F|Γ = γ] (Pr[F]
for short). By the total probability formula, we can obtain



INT-RUP Security of Checksum-Based Authenticated Encryption 157

Fig. 1. Illustrating OCB-IC[Ẽ] with a tweakable blockcipher Ẽ : K × T × {0, 1}n →
{0, 1}n, whereT = {0, 1}n×I×J is a tweak space,I is a set of tuples of large integers, and
J is a set of tuples of small integers, e.g., I = {0, 1, 2, · · · , 2n − 1},J = {0, 1, 2, · · · , 10}.
Top row: the authentication of associated data A: Auth = PMAC1(A). If the length of
associated data |A| is not a positive multiple of n bits, padding 10∗ to A such that |A10∗|
is a positive multiple of n bits. The authentication of associated data is achieved by a
PMAC1 algorithm [23]. If there is no associated data, then we set Auth = 0. Bottom
row: the encryption and authentication of the plaintext P . The length of the plaintext P
is a positive multiple of n bits. The plaintext P is encrypted twice to produce the cipher-
text C and the value of intermediate states is used to generate the checksum. If Auth is
simply xored with the encrypted Checksum to obtain the tag, we can get the difference of
Auth which can be easily used to obtain a forging attack. Therefore the tag is generated
by applying two encryptions for Checksum and Auth.



158 P. Zhang et al.

Fig. 2. OCB-IC[Ẽ] with a tweakable blockcipher Ẽ : K ×T ×{0, 1}n → {0, 1}n, where
T = {0, 1}n × I × J is a tweak space, I is a set of tuples of large integers, and J is a
set of tuples of small integers, e.g., I = {0, 1, 2, · · · , 2n − 1},J = {0, 1, 2, · · · , 10}. The
encryption algorithm EK includes the encryption of the plaintext blocks, the authen-
tications of associated data and the plaintext. The authentications of associated data
and the plaintext are achieved by PMAC1 algorithm. If there is no associated data,
then we set Auth = 0. The decryption algorithm DK is straightforward similar to the
encryption algorithm except no authentication of the tag at the end of the decryp-
tion process. The verification algorithm VK outputs � if the new tag generated by the
associated data-ciphertext pair is equal to the original tag, ⊥ otherwise.

Pr[F] = Pr[F|¬E]Pr[¬E] + Pr[F|E]Pr[E]
≤ Pr[F|¬E] + Pr[E].

Claim 1. Pr[E] ≤ σ2/2n + q2/2n ≤ (σ + q)2/2n.

Proof. The authentications of associated data and the plaintext are achieved by
the PMAC1 algorithm. The function PMAC1[π̃] : {0, 1}∗ → {0, 1}n is indistin-
guishable from a random function R : {0, 1}∗ → {0, 1}n and their distinguishing
advantage is at most σ2/2n, where σ is the query complexity. We replace the
PMAC1 algorithm with the random function R, then, in this case, the probability



INT-RUP Security of Checksum-Based Authenticated Encryption 159

of the event A is just equal to a collision probability of R plus the probability
of R hitting 0, which is at most q(q − 1)/2n+1 + q/2n, and the probability
of the event T is just equal to a collision probability of R, which is at most
q(q − 1)/2n+1. Therefore, the probability of the event E is

Pr[E] = Pr[A ∨ T]
≤ Pr[A] + Pr[T]

≤ σ2/2n + q(q − 1)/2n+1 + q/2n + q(q − 1)/2n+1

≤ σ2/2n + q2/2n.

Claim 2. Pr[F|¬E] ≤ qvq/2n.

Proof. To derive the probability that AOCB−IC[π̃] sets F under the condition
¬E: Pr[F|¬E], we analyze some cases as follows.

Case 1: T ′ is new, i.e., T ′ /∈ {T 1, · · · , T q}. In this case, A already knows all
the tags after the encryption oracle and with this knowledge it is trying to guess
the image of another point. The probability of guessing this correctly is at most
1/(2n − q), which is its success probability of A.

Case 2: T ′ is old, i.e.,T ′ ∈ {T 1, · · · , T q}. As all nonces can be repeated in all
queries (nonce-misusing), we divide the set of nonce N used in the encryption
oracle into two sets N1 and N2. The set N1 only contains a repeatable element
N0. i.e. N = N1

⋃

N2, N1 = {N0}, N2 = N\N1. Similarity, we divide the set of
block-length L used in the encryption oracle into two sets L1 and L2. The set L1

only contains a repeatable element l0. i.e. L = L1

⋃

L2, L1 = {l0}, L2 = L\L1.
We divide the set of associated data H used in the encryption oracle into two sets
H1 and H2. The set H1 only contains a repeatable element A0. i.e. H = H1

⋃

H2,
H1 = {A0}, H2 = H\H1. We do a further case analysis as follows.

Case 2-1: If N ′ /∈ N , the finalization tweak (N ′, l′, 3) is new. The adversary
tries to forge using a new nonce. The image of a single point under a random
permutation is uniform, so the generated tag is an independent and uniform
random value. Thus, the probability that the adversary can guess the correct
value is 1/2n.

Case 2-2: If N ′ ∈ N1, l′ /∈ L, the finalization tweak (N ′, l′, 3) is new. The
adversary tries to forge using a new block-size. The image of a single point
under a random permutation is uniform, so the generated tag is an independent
and uniform random value. Thus, the probability that the adversary can guess
the correct value is 1/2n.

Case 2-3: If N ′ ∈ N1, l′ ∈ L1, the finalization tweak (N ′, l′, 3) in this case is
the same with the forgery attempt.

1. If A′ /∈ H, then it means that it yields a fresh random value by PMAC1(A′).
Let T be the event that a collision of the tag T occurs for the forgery and
encryption oracles. Let A be the event that a collision of Auth occurs for



160 P. Zhang et al.

the forgery and encryption oracles. If C ′ is old, the probability of successful
forgery is at most q/2n. If C ′ is new, let S be the event that a collision of
∑

i Si occurs for the forgery and encryption oracles. A and S are independent
events, and Pr[A] = Pr[S] = 1/2n.
By the formula of total probability, we can obtain

Pr[T] = Pr[T ∧ A ∧ S] + Pr[T ∧ (A ∨ S)]

= Pr[T|A ∧ S]Pr[A ∧ S] + Pr[T|A ∨ S]Pr[A ∨ S]

≤ q/2n − q/22n+1

≤ q/2n+1.

2. If A′ ∈ H1, the authentication of associated data A′ is the same with A0

from many nonce-associated data-ciphertext-tag pairs in the encryption ora-
cle, where only the ciphertexts are distinct. The rest is similar to the PMAC1
processing of the ciphertext blocks. The probability of successful forgery is at
most q/2n.

Summarizing all cases, we have

Pr[F|¬E] ≤ max{1/(2n − q), q/2n, q/2n+1, q/2n} ≤ q/2n

for a single forgery query, where q ≥ 2.
If the adversary A makes qv forgery queries, then it is easy to obtain the

probability Pr[F|¬E] ≤ qv · q/2n.
By Claims 1 and 2, the INT-advantage of A, after q ≥ 2 encryption queries,

qd decryption queries, and qv forgery queries, is

Advint − rup
OCB−IC[π̃](A) ≤ (σ + q)2/2n + qvq/2n.

Theorem 3 (INT-RUP Security of OCB-IC with a TBC). Let ˜E : K ×
T ×{0, 1}n → {0, 1}n be a tweakable blockcipher. Fix n ≥ 1, T = {0, 1}n ×I ×J
is a tweak space, I is a set of tuples of large integers, and J is a set of tuples
of small integers, let A be a nonce-misusing adversary. Then we have

Advint − rup

OCB−IC[ ˜E]
(t, σ) ≤ Advm̃prp

˜E
(t′, 2σ) + (σ + q)2/2n + qvq/2n,

where t′ = t + cnσ for some absolute constant c.

4.3 Discussions

Properties of OCB-IC. OCB-IC is a “rate- 12” one-pass parallelizable AE
scheme. It is proven INT-RUP secure up to birthday bound in the nonce-misuse
setting if the underlying TBC is a secure MTPRP. OCB-IC just settles the prob-
lems of integrity in the RUP and nonce-misuse settings, while the problems of
privacy in the RUP and nonce-misuse settings still exist. It cannot achieve PA
security. OCB-IC balances the security and the efficiency. The number of the



INT-RUP Security of Checksum-Based Authenticated Encryption 161

underlying primitive invocations of OCB-IC is about twice than that of OCB
[17,23,25]. Therefore, the efficiency of OCB-IC is about half of OCB. Compared
with CCM [12], the efficiency of OCB-IC is better because CCM is a two-pass
AE scheme. Comparisons among CCM, OCB, and OCB-IC are shown in Table 1.
OCB-IC can be seen as a special instantiation of the generic B1 scheme of [20]
in which one applies a PRF to the message as well as encrypting it with a secure
nonce-based encryption scheme. OCB-IC is designed in terms of a TBC. If this
TBC can be instantiated by using AES and the XEX* construction, we can
obtain a provably secure instance, which is presented in Appendix.

Processing of Arbitrary Length Messages. When the length of the message
is not a positive multiple of the blocksize n, our scheme requires to be extended.
We can utilize an encryption of stream ciphers for the last incomplete block,
which retains the mainly structure of OCB [17,23,25]. For simplicity, here we
utilize a padding function pad such that the length of the message is a positive
multiple of the blocksize n. Given an arbitrary length message M ∈ {0, 1}∗, it
needs to be padded to the plaintext P = pad(M) = M10n−1−(|M | mod n) before
the encryption algorithm. Meanwhile, after the decryption algorithm, we use a
corresponding un-padding function unpad, which removes the 10∗ in P , to obtain
the original message M = unpad(P ).

5 Conclusion

OCB [17,23,25] is insecure in the nonce-misuse and RUP settings. This paper
mainly considers the INT-RUP security of OCB in the nonce-misuse setting.
We focus on the weakness of the checksum processing in OCB. The tag of OCB
is generated by encrypting a plaintext checksum, which is vulnerable against
integrity security in the RUP setting. We describe a new type of structure
PCC, which is a generalization of the plaintext checksum, and prove that all
AE schemes with PCC are insecure in the INT-RUP security model. To fix the
weakness of PCC, we provide another new type of structure IC to generate
the checksum and propose a modified scheme called OCB-IC to settle the INT-
RUP security of OCB in the nonce-misuse setting. OCB-IC is a TBC-based AE
scheme. It retains the mainly structure of OCB and inherits its advantages. We
prove that OCB-IC is INT-RUP secure up to the birthday bound in the nonce-
misuse setting if the underlying tweakable blockcipher is a secure MTPRP. In
this paper, we do not settle the problem of privacy in the RUP setting. OCB-IC
is not PA secure. We leave it as an open problem to settle the PA security of
OCB-IC in an efficient way.

Compared with OCB, OCB-IC invokes the underlying TBC twice for each
plaintext block and provides INT-RUP security, i.e., OCB-IC compromises the
efficiency of the software and hardware implementations to achieve INT-RUP
security. Our works support works of Chakraborti et al. [9] and find a new
structure IC, which will provide a new direction for settling the security of “rate
< 1” AE schemes in the RUP setting.



162 P. Zhang et al.

Acknowledgments. We would like to express our sincere thanks to the editors and
the anonymous reviewers for the valuable comments and suggestions. This work was
supported by National Natural Science Foundation of China (Grant Nos. 61522210,
61632013, and 61271271), 100 Talents Program of Chinese Academy of Sciences,
and Fundamental Research Funds for the Central Universities in China (Grant No.
WK2101020005).

Appendix: Blockcipher-based OCB-IC

To realize OCB-IC with a tweakable blockcipher ˜E : K × T × {0, 1}n → {0, 1}n,
where T = {0, 1}n ×I ×J is a tweak space, I is a set of tuples of large integers,
and J is a set of tuples of small integers, we use a conventional block cipher
E : K × {0, 1}n → {0, 1}n to instantiate OCB-IC[ ˜E] by the XEX* construction
˜E = XEX∗[E, 2I3J ]. Overloading the notation, we rewrite this scheme as OCB-
IC[E].

The overview of OCB-IC[E] is depicted in Fig. 3. OCB-IC[E] is made up of
three algorithms, an encryption algorithm EK , a decryption algorithm DK , and
a verification algorithm VK . The detailed description of OCB-IC[E] is shown
in Fig. 4. If the underlying block cipher E is a secure strong pseudorandom
permutation (SPRP), OCB-IC[E] is proven INT-RUP security up to the birthday
bound in the nonce-misuse setting.

Theorem 4 (INT-RUP Security of OCB-IC with a Block Cipher). Fix
a block cipher E : K × {0, 1}n → {0, 1}n and a tweakable blockcipher ˜E : K ×
T × {0, 1}n → {0, 1}n, where T = {0, 1}n × I × J is a tweak space, I is a set
of tuples of large integers, and J is a set of tuples of small integers. Assume
2i3j = 1 for all (i, j) ∈ I ×J . Let ˜E = XEX∗[E, 2I3J ], A be a nonce-misusing
adversary, then we have

Advint − rup
OCB−IC[E](A) ≤ Advsprp

E (B) + 39(σ + q)2/2n + qvq/2n,

where a new adversary B has an additional running time equal to the time needed
to process the queries from A.

Proof Sketch: We introduce dummy masks {2L, 22L, · · · , 2l ·L, 2l ·3L} to rewrite
OCB-IC[E] in terms of the XEX* construction, where L = EK(N). By Lemma 1,
OCB-IC[E] can be replaced with OCB-IC[ ˜E]. Such a replacement costs us

9.5(2σ + 2q)2

2n
+ Advsprp

E (t′, 2 · 2(σ + q)) =
38(σ + q)2

2n
+ Advsprp

E (t′, 4(σ + q)).

Therefore, combining with Theorem3, we can easily obtain the bound of
INT-RUP on OCB-IC[E].



INT-RUP Security of Checksum-Based Authenticated Encryption 163

Fig. 3. OCB-IC[E] with a block cipher E : K × {0, 1}n → {0, 1}n. This coincides

with OCB-IC[Ẽ], where Ẽ = XEX∗[E, 2I3J ], I is a set of tuples of large integers,
and J is a set of tuples of small integers, e.g., I = {0, 1, 2, · · · , 2n − 1}, and J =
{0, 1, · · · , 10}. Top row: the authentication of associated data A: Auth = PMAC1(A).
If the length of associated data |A| is not a positive multiple of n bits, padding 10∗

to A so as to |A10∗| is a positive multiple of n bits. The authentication of associated
data is achieved by PMAC1 algorithm (XE construction). If there is no associated
data, then we set Auth = 0. Bottom row: the encryption and authentication of
the plaintext P (XEX construction). The plaintext is encrypted twice to produce the
ciphertext and the XOR-sum of intermediate states is used to generate the tag. We
require that the length of the plaintext P is a positive multiple of n bits in OCB-IC[E].
Given an arbitrary-length message M ∈ {0, 1}∗, it needs to be padded to the plaintext
P = pad(M) = M10n−1−(|M| mod n) before the encryption algorithm in OCB-IC[E].
Meanwhile, we obtain the message after the decryption algorithm by the unpadding
function unpad(P ) = M .



164 P. Zhang et al.

Fig. 4. OCB-IC[E] with a block cipher E : K × {0, 1}n → {0, 1}n. This coincides with

OCB-IC[Ẽ], where Ẽ = XEX∗[E, 2I3J ], I is a set of tuples of large integers, and J is a
set of tuples of small integers, e.g., I = {0, 1, 2, · · · , 2n−1}, and J = {0, 1, · · · , 10}. The
encryption algorithm EK includes the encryption of the plaintext blocks, the authenti-
cations of associated data and the plaintext. The decryption algorithm DK is straight-
forward similar to the encryption algorithm except no authentication of the tag at the
end of the decryption process. The verification algorithm VK outputs � if the new tag
generated by the nonce-associated data-ciphertext pair is equal to the original tag, ⊥
otherwise.

References

1. Alomair, B.: Authenticated encryption: how reordering can impact performance.
In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 84–99.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31284-7 6

2. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: IEEE Symposium on Security and Privacy, pp. 526–540. IEEE
Computer Society (2013)

http://dx.doi.org/10.1007/978-3-642-31284-7_6


INT-RUP Security of Checksum-Based Authenticated Encryption 165

3. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-42033-7 22

4. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45611-8 6

5. Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: incremen-
tality at reduced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 163–192. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 13

6. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 41

7. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE:
AES-based lightweight authenticated encryption. In: Moriai, S. (ed.) FSE
2013. LNCS, vol. 8424, pp. 447–466. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43933-3 23

8. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password interception in
a SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
583–599. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 34

9. Chakraborti, A., Datta, N., Nandi, M.: INT-RUP analysis of block-cipher based
authenticated encryption schemes. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol.
9610, pp. 39–54. Springer, Cham (2016). doi:10.1007/978-3-319-29485-8 3

10. Datta, N., Luykx, A., Mennink, B., et al.: Understanding RUP integrity of COLM.
IACR Trans. Symmetric Cryptol. 2017(2), 143–161 (2017)

11. Dworkin, M.J.: Recommendation for block cipher modes of operation:
Galois/Counter mode (GCM) and GMAC. NIST SP 800–38D (2007)

12. Dworkin, M.J.: Recommendation for block cipher modes of operation: The CCM
mode for authentication and confidentiality. NIST SP 800–38C (2004)

13. Fleischmann, E., Forler, C., Lucks, S.: McOE: a family of almost foolproof on-line
authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 196–215. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34047-5 12

14. Fouque, P.-A., Martinet, G., Valette, F., Zimmer, S.: On the security of the CCM
encryption mode and of a slight variant. In: Bellovin, S.M., Gennaro, R., Keromytis,
A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 411–428. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-68914-0 25

15. Granger, R., Jovanovic, P., Mennink, B., Neves, S.: Improved masking for tweak-
able blockciphers with applications to authenticated encryption. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 263–293. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49890-3 11

16. Jutla, C.S.: Encryption modes with almost free message integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001). doi:10.1007/3-540-44987-6 32

17. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21702-9 18

18. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). doi:10.
1007/3-540-45708-9 3

http://dx.doi.org/10.1007/978-3-642-42033-7_22
http://dx.doi.org/10.1007/978-3-662-45611-8_6
http://dx.doi.org/10.1007/3-540-69053-0_13
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/978-3-662-43933-3_23
http://dx.doi.org/10.1007/978-3-662-43933-3_23
http://dx.doi.org/10.1007/978-3-540-45146-4_34
http://dx.doi.org/10.1007/978-3-319-29485-8_3
http://dx.doi.org/10.1007/978-3-642-34047-5_12
http://dx.doi.org/10.1007/978-3-540-68914-0_25
http://dx.doi.org/10.1007/978-3-662-49890-3_11
http://dx.doi.org/10.1007/3-540-44987-6_32
http://dx.doi.org/10.1007/978-3-642-21702-9_18
http://dx.doi.org/10.1007/3-540-45708-9_3
http://dx.doi.org/10.1007/3-540-45708-9_3


166 P. Zhang et al.

19. Liskov, M., Rivest, R., Wagner, D.: Tweakable block ciphers. J. Cryptol. 24(3),
588–613 (2011)

20. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp.
257–274. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 15

21. Paterson, K.G., AlFardan, N.J.: Plaintext-recovery attacks against datagram TLS.
In: NDSS 2012. The Internet Society (2012)

22. Reyhanitabar, R., Vaudenay, S., Vizár, D.: Authenticated encryption with variable
stretch. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031,
pp. 396–425. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53887-6 15

23. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30539-2 2

24. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM-CCS 2002, pp. 98–107. ACM (2002)

25. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM-CCS 2001, pp. 196–205. ACM (2001)

26. Vaudenay, S.: Security flaws induced by CBC padding — applications to SSL,
IPSEC, WTLS. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
534–545. Springer, Heidelberg (2002). doi:10.1007/3-540-46035-7 35

27. Wu, H., Preneel, B.: AEGIS: a fast authenticated encryption algorithm. In: Lange,
T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 185–201.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43414-7 10

28. Zhang, J., Wu, W.: Security of online AE schemes in RUP setting. In: Foresti, S.,
Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 319–334. Springer, Cham
(2016). doi:10.1007/978-3-319-48965-0 19

http://dx.doi.org/10.1007/978-3-642-55220-5_15
http://dx.doi.org/10.1007/978-3-662-53887-6_15
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://dx.doi.org/10.1007/3-540-46035-7_35
http://dx.doi.org/10.1007/978-3-662-43414-7_10
http://dx.doi.org/10.1007/978-3-319-48965-0_19


Leakage-Resilient Non-interactive Key Exchange
in the Continuous-Memory Leakage Setting

Suvradip Chakraborty1(B), Janaka Alawatugoda2, and C. Pandu Rangan1

1 Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India

{suvradip,rangan}@cse.iitm.ac.in
2 Department of Computer Engineering, University of Peradeniya,

Peradeniya 20400, Sri Lanka
janaka@ce.pdn.ac.lk

Abstract. Recently, Chakraborty et al. (Cryptoeprint:2017:441)
showed a novel approach of constructing several leakage-resilient cryp-
tographic primitives by introducing a new primitive called leakage-
resilient non-interactive key exchange (LR-NIKE). Their construction
of LR-NIKE was only in the bounded-memory leakage model, and they
left open the construction of LR-NIKE in continuous-memory leak-
age model. In this paper we address that open problem. Moreover,
we extend the continuous-memory leakage model by addressing more
realistic after-the-fact leakage. The main ingredients of our construc-
tion are a leakage-resilient storage scheme and a refreshing protocol
(Dziembowski and Faust, Asiacrypt 2011) and a (standard) chameleon
hash function (CHF), equipped with an additional property of oblivious
sampling, which we introduce. We observe that the present constructions
of CHF already satisfies our new notion. Further, our protocol can be
used as a building block to construct leakage-resilient public-key encryp-
tion schemes, interactive key exchange and low-latency key exchange
protocols in the continuous-memory leakage model, following the app-
roach of Chakraborty et al. (Cryptoeprint:2017:441).

Keywords: Leakage-resilient · Key exchange protocols · After-the-fact
leakage · Continuous-memory leakage

1 Introduction and Related Work

Leakage-resilient cryptography has emerged as a main research area in the field
of cryptography during the last decade. The main goal of leakage-resilient cryp-
tography is to analyze the consequences of side-channels (like power traces [28],
EM emission [24], timing differences [7] etc.) on the security of the existing cryp-
tosystems and providing secure and robust constructions of them that provably
resist side-channel attacks. In order to realistically model side-channel attacks,
many leakage models have been proposed like the only computation leaks infor-
mation (OCLI) model [29], bounded-memory leakage model [1], continuous-
memory leakage model [6,13], auxiliary input model [14] etc. All these models
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 167–187, 2017.
https://doi.org/10.1007/978-3-319-68637-0_10



168 S. Chakraborty et al.

have been extensively studied in the literature and many constructions of cryp-
tographic primitives like stream ciphers [19,32], pseudo-random generators and
functions (PRG/PRF) [16,31,32], public-key encryption (PKE) [6,13,26,30], sig-
nature schemes [20,25], authenticated key exchange (AKE) protocols [4,10,11],
identity-based encryption (IBE) schemes [6,12,35] have been presented.

In this paper, we study the leakage resiliency of a rather unexplored yet
fundamentally interesting primitive of Non-interactive Key Exchange (NIKE) in
the continuous-memory leakage (CML) model [6,13]. In the CML model there
is no bound on the amount of leakage an adversary may obtain throughout the
lifetime of the cryptosystem (as opposed to bounded-memory leakage model). In
particular, in the CML model the entire memory can leak (as opposed to OCL
model where only parts of memory is allowed to leak at a time) and the total
amount of leakage can even be unbounded. Clearly, without any other additional
mechanism/assumption it is not possible to guarantee security for any primi-
tive in the CML model, as otherwise the adversary may leak the entire secret
key from memory. To deal with this, there is a provision of secret key update
or refreshing. In particular, the time is partitioned into discrete epochs, and at
the end of each time epoch the secret key is refreshed, keeping the public key
unchanged. The only restriction is that the adversary is allowed to obtain a
bounded information (leakage) from the memory/secret state in each epoch, but
overall he can obtain unbounded leakage. Information leakage may happen dur-
ing the secret key update process as well, and such leakage potentially depends
on the randomness used for the update procedure.

Non-interactive Key Exchange (NIKE) is an important yet largely unexplored
primitive until recently [9,21]. NIKE allows two (or more) parties to establish
a shared key among themselves without any interaction, provided the public
keys are pre-distributed. NIKE is very useful in any band-width-critical, power-
critical, resource-critical systems, such as embedded devices, wireless and sensor
networks, where the communication complexity should be minimum. The first
rigorous study of NIKE was formulated by Freire et al. [21], who gave formal
security models for NIKE and provably secure constructions of NIKE schemes
in those models. However, as shown by Chakraborty et al. [9], this construction
is completely insecure, even if the adversary obtains a single bit of leakage from
the secret key of a party. Chakraborty et al. [9] then formulated appropriate
leakage security model for NIKE and gave secure constructions of NIKE in the
bounded-memory leakage (BML) setting. They demonstrated the fundamental
importance of leakage-resilient NIKE (LR-NIKE) by constructing efficient PKE,
AKE and low-latency key exchange (LLKE) protocols in the BML model, thus
providing an unified umbrella for constructing these primitives generically from
LR-NIKE. However, in the BML model, the total amount of leakage obtained by
the adversary from the secret key of a party is bounded up to some fraction of the
secret key size, which may not be a realistic assumption always. In particular, it
does not capture side-channel attacks like power analysis or EM emission analysis
attacks, where the adversary may obtain huge amount of power traces or EM
radiation. However, they can be appropriately captured by the CML model,



Leakage-Resilient Non-interactive Key Exchange 169

where the total leakage amount is unbounded. In fact, Chakraborty et al. [9] left
open the construction of NIKE in the CML model.

Our Contribution. We solve the open problem posed by Chakraborty et al.
[9] of constructing LR-NIKE in the continuous-memory leakage (CML) model.
Further, we enhance their security model by addressing after-the-fact leakage.

Extending to after-the-fact leakage: We strengthen the security model of
Chakraborty et al. [9] by considering after-the-fact leakage. In key exchange
security models the adversary issues a test query to a chosen session and asks
for the challenge. The challenge to the adversary is to distinguish the session
key of the chosen session, usually called the test session, from a random session
key [5,8,27]. After-the-fact leakage in the context of authenticated (interactive)
key exchange is the leakage which happens after the test session is established
[3], whereas after-the-fact leakage in the context of non-interactive key exchange
is the leakage which happens after the test query is issued [9] (since there is no
concept of a session in NIKE). It has been discussed in previous works [4,23]
that achieving security against after-the-fact leakage in its most general form is
impossible. This problem was alleviated in the context of PKE [23] and AKE
[4] by considering the split-state leakage model. In the split-state model, the
secret key is split into several disjoint parts and each of them is stored in sep-
arate memory locations. The adversary may obtain arbitrary leakage from each
of parts, except that the leakage from all of these parts happens independently.
Under this additional restriction it is possible to circumvent the impossibility
result for after-the-fact leakage in case of PKE and AKE protocols [4,23].

Leakage-resilient NIKE construction: We consider a 2-split-state model (the
secret key is split into two parts) and show that it is possible to construct after-
the-fact leakage-resilient NIKE in the CML model. Our construction is inspired
by the approach of Chakraborty et al. [9]. The construction of Chakraborty et al.
[9] tolerates (bounded) leakage by using a (bounded) leakage-resilient chameleon
hash function (CHF) and introducing a new technique, what they call leakage-
resilient twisted PRF (LRT) trick. However, their construction is not secure
against continuous-memory leakage, unless there is some way to update the
PRF keys. We overcome this problem by using a new approach, i.e., by using the
leakage-resilient storage (LRS) and its refreshing protocol [18], and a standard
CHF, equipped with an additional property of oblivious sampling of the hash-
ing key, which we introduce. We observe that the CHF construction of Döttling
and Garg [17] already satisfies this notion. The LRS and refreshing protocols
were also used in previous constructions of (interactive) leakage-resilient AKE
protocols [4] to tolerate continuous leakage from the secret key. A direct con-
sequence of our work is the construction of PKE, AKE and LLKE schemes in
the CML model from our LR-NIKE in the CML model, following the generic
transformation of Chakraborty et al. [9]. However, the leakage rate1 tolerated
by our LR-NIKE protocol in the CML model is not optimal (i.e., not 1 − o(1)).
1 Leakage rate is defined as the ratio of the amount of leakage to the size of the secret.



170 S. Chakraborty et al.

2 Preliminaries

2.1 Notations

We denote the security parameter by κ, which is implicitly taken as input by all
the algorithms. For an integer n ∈ N, where N denotes the set of natural numbers,
we use the notation [n] to denote the set [n] def= {1, . . . , n}. For a randomized
function f , we write f(x; r) to denote the unique output of f on input x with
random coins r. We write f(x) to denote a random variable for the output of
f(x; r), over the random coins r. For a set S, we let US denote the uniform
distribution over S. For an integer r ∈ N, let Ur denote the uniform distribution
over {0, 1}r, the bit strings of length r. For a distribution or random variable
X, we denote by x ← X the action of sampling an element x according to X.
For a set S, we write s

$←− S to denote sampling s uniformly at random from
the S. For two ensembles X = {Xκ}κ∈N and Y = {Yκ}κ∈N, we write X ≈ε Y
(statistical indistinguishability), meaning that every unbounded distinguisher
has ε(κ) advantage in distinguishing X and Y. Let G be a group of prime order
p such that log2(p) ≥ κ. Let g be a generator of G, then for a (column/row)
vector A = (A1, · · · , An) ∈ Z

n
p , we denote by gA the vector C = (gA1 , · · · , gAn).

Furthermore, for a vector B = (B1, · · · , Bn) ∈ Z
n
p , we denote by CB the group

element X =
∏n

i=1 gAiBi = g
∑n

i=1 AiBi .

2.2 Basics of Information Theory

Definition 1 (Min-entropy). The min-entropy of a random variable X,
denoted as H∞(X) is defined as H∞(X) def= −log(maxx Pr[X = x]).

This is a standard notion of entropy used in cryptography, since it measures
the worst-case predictability of X.

Definition 2 (Average conditional min-entropy). The average-conditional
min-entropy of a random variable X conditioned on a (possibly) correlated vari-
able Z, denoted as H∞(X|Z) is defined as

H∞(X|Z) = −log
(
Ez←Z [maxx Pr[X = x|Z = z]

)
= −log

(
Ez←Z [2H∞(X|Z=z)]

)
.

This measures the worst-case predictability of X emphby an adversary that may
observe a correlated variable Z.

The following bound on average min-entropy was proved in Dodis et al. [15].

Lemma 1 [15]. For any random variable X, Y and Z, if Y takes on values in
{0, 1}�, then

H̃∞(X|Y,Z) ≥ H̃∞(X|Z) − � and H̃∞(X|Y ) ≥ H̃∞(X) − �.



Leakage-Resilient Non-interactive Key Exchange 171

2.3 Leakage-Resilient Storage (LRS)

We review the definitions of leakage-resilient storage according to Dziembowski
and Faust [18]. The idea is to split the storage of elements into two parts using
a randomized encoding function. As long as leakages from each of its two parts
are bounded and independent of each other, no adversary can learn any useful
information about the encoded element.

Definition 3 (Dziembowski-Faust leakage-resilient storage scheme).
For any m,n ∈ N, the storage scheme Λn,m

Z∗
q

= (Encoden,m
Z∗
q

,Decoden,m
Z∗
q

) effi-
ciently stores elements s ∈ (Z∗

q)
m where:

• Encoden,m
Z∗
q

(s) : sL
$←− (Z∗

q)
n\{(0n)}, then sR ← (Z∗

q)
n×m such that sL ·sR = s

and outputs (sL, sR).
• Decoden,m

Z∗
q

(sL, sR) : outputs sL · sR.

In the model we expect an adversary to see the results of a leakage function
applied to sL and sR. This may happen each time computation occurs.

Definition 4 (λ-limited adversary). If the amount of leakage obtained by
the adversary from each of sL and sR is limited to λ = (λ1, λ2) bits in total
respectively, the adversary is known as a λ-limited adversary.

Definition 5 ((λΛ, ε1)-secure leakage-resilient storage scheme). We say

Λ = (Encode,Decode) is (λΛ, ε1)-secure leakage-resilient, if for any s0, s1
$←−

(Z∗
q)

m and any λΛ-limited adversary C, the leakage from Encode(s0) = (s0L, s0R)
and Encode(s1) = (s1L, s1R) are statistically ε1-close. For an adversary-chosen
leakage function f = (f1, f2), and a secret s such that Encode(s) = (sL, sR), the
leakage is denoted as

(
f1(sL), f2(sR)

)
.

Lemma 2 [18]. Suppose that m < n/20. Then Λn,m
Z∗
q

= (Encoden,m
Z∗
q

,Decoden,m
Z∗
q

)
is (λ, ε)-secure for some ε and λ = (0.3 · n log q, 0.3 · n log q).

The encoding function can be used to design different leakage resilient schemes
with bounded leakage. The next step is to define how to refresh the encoding so
that a continuous leakage is also possible to defend against.

Definition 6 (Refreshing of leakage-resilient storage). Let (L′, R′) ←
Refreshn,m

Z∗
q

(L,R) be a refreshing protocol that works as follows:

• Input : (L,R) such that L ∈ (Z∗
q)

n and R ∈ (Z∗
q)

n×m.
• Refreshing R :

1. A
$←− (Z∗

q)
n\{(0n)} and B ← non-singular (Z∗

q)
n×m s.t. A · B = (0m).

2. M ← non-singular (Z∗
q)

n×n such that L · M = A.
3. X ← M · B and R′ ← R + X.

• Refreshing L :
1. Ã

$←− (Z∗
q)

n\{(0n)} and B̃ ← non-singular (Z∗
q)

n×m s.t. Ã · B̃ = (0m).



172 S. Chakraborty et al.

2. M̃ ← non-singular (Z∗
q)

n×n s.t. M̃ · R′ = B̃.
3. Y ← Ã · M̃ and L′ ← L + Y .

• Output : (L′, R′)

Let Λ = (Encode,Decode) be a (λΛ, ε1)-secure leakage-resilient storage
scheme and Refresh be a refreshing protocol. We consider the following experi-
ment Exp, which runs Refresh for � rounds and lets the adversary obtain leakage in
each round. For refreshing protocol Refresh, a λRefresh-limited adversary B, � ∈ N

and s
$←− (Z∗

q)
m, we denote the following experiment by Exp(Refresh,Λ)(B, s, �):

1. For a secret s, the initial encoding is generated as (s0L, s0R) ← Encode(s).
2. For j = 1 to � run B against the jth round of the refreshing protocol.
3. Return whatever B outputs.

We require that the adversary B outputs a single bit b ∈ {0, 1} upon performing

the experiment Exp using s
$←− {s0, s1} ∈ (Z∗

q)
m. Now we define leakage-resilient

security of a refreshing protocol.

Definition 7 ((�,λRefresh, ε2)-secure leakage-resilient refreshing Proto-
col). For a (λΛ, ε1)-secure leakage-resilient storage scheme Λ = (Encode,
Decode) with message space (Z∗

q)
m, Refresh is (�,λRefresh, ε2)-secure leakage-

resilient, if for every λRefresh-limited adversary B and any two secrets
s0, s1 ∈ (Z∗

q)
m, the statistical distance between Exp(Refresh,Λ)(B, s0, �) and

Exp(Refresh,Λ)(B, s1, �) is bounded by ε2.

Theorem 1 [18]. Let m/3 ≤ n, n ≥ 16 and � ∈ N. Let n,m and Z
∗
q be

such that Λn,m
Z∗
q

is (λ, ε)-secure leakage-resilient storage scheme (Definitions 3
and 5). Then the refreshing protocol Refreshn,m

Z∗
q

(Definition 6) is a (�,λ/2, ε′)-
secure leakage-resilient refreshing protocol for Λn,m

Z∗
q

(Definition 7) with ε′ =
2�q(3qmε + mq−n−1).

2.4 Decisional Bilinear Diffie-Hellman Assumption over Type-2
Pairing Groups (DBDH-2 Problem)

We recall the DBDH-2 problem according to Galindo [22]. Let G2 be a type
2 pairing parameter generation algorithm. It takes as input the security para-
meter 1κ and outputs gk = (G1,G2,GT , g1, g2, p, e, ψ) such that p is a prime,
(G1,G2,GT ) are description of multiplicative cyclic groups of same order p, g1, g2
are generators of G1 and G2 respectively, e : G1 ×G2 → GT is a non-degenerate
efficiently computable bilinear map, and ψ is an efficiently computable isomor-
phism ψ : G2 → G1, and that g1 = ψ(g2). We say that the DBDH-2 assumption
holds for type-2 pairings if the advantage of the adversary ADBDH-2 denoted by
Advdbdh-2ADBDH-2,G2

(κ) is negligible, where

Advdbdh-2ADBDH-2,G2
(κ) = |Pr[A(g2, ga

2 , gb
2, g

c
1, e(g1, g2)

abc) = 1]

− Pr[A(g2, ga
2 , gb

2, g
c
1, e(g1, g2)

z) = 1]|.
where the probability is taken over the random choices of the algorithm G2 and
the internal coin tosses of the algorithm A.



Leakage-Resilient Non-interactive Key Exchange 173

3 Chameleon Hash Functions with Oblivious Sampling

Informally, a chameleon hash function (CHF) is a (keyed) collision-resistant hash
function for which the knowledge of a trapdoor (corresponding to the hashing
key) enables efficient collision finding. Without knowing the trapdoor it is hard
to find any collision. For our case, we require the property that the hashing
key can be sampled obliviously, without the knowledge of the trapdoor. The
security guarantee is that the both these modes of generating the hashing key
are computationally indistinguishable. More formally, CHF consists of four PPT
algorithms (Cham.KeyGen0, Cham.KeyGen1, Cham.Eval, Cham.TCF).

1. Cham.KeyGen0(1κ): The key generation algorithm takes as input 1κ and out-
put the hashing key along with a trapdoor (hk, ck) respectively. The public
key hk defines a chameleon hash function, denoted ChamHhk(., .).

2. Cham.KeyGen1(1κ): The oblivious key generation algorithm takes as input 1κ,
and outputs the hashing key hk only.

3. Cham.Eval(hk,m, r): The hash function evaluation algorithm that takes as
input hk, a message m ∈ D, and a randomizer r ∈ Rcham and outputs a hash
value h = ChamHhk(m, r).

4. Cham.TCF(ck, (m, r),m′): The trapdoor collision finder algorithm takes as the
trapdoor ck, a message-randomizer pair (m, r), an additional message m′, and
outputs a value r′ ∈ Rcham such that ChamHhk(m, r) = ChamHhk(m′, r′).

Our chameleon hash functions must satisfy the usual properties like correctness,
reversibility, random trapdoor collision, and additionally indistinguishability of
hashing key generation.

• Reversibility: The reversibility property is satisfied if r′ = Cham.TCF
(ck, (m, r),m′) is equivalent to r = Cham.TCF(ck, (m′, r′),m).

• Correctness: The correctness property is satisfied if for message pair
(m,m′), and a randomizer r, if we compute (hk, ck) ← Cham.KeyGen0(1κ),
and r′ = Cham.TCF(ck, (m, r),m′), we have that ChamHhk(m, r) =
ChamHhk(m′, r′).

• Random Trapdoor Collisions: The random trapdoor collision property is
satisfied if for a trapdoor ck, an arbitrary message pair (m,m′), and a ran-
domizer r, r′ = Cham.TCF(ck, (m, r),m′) has uniform probability distribution
on the randomness space Rcham.

• Indistinguishability of hashing key generation: The two ensembles {hk :
(hk, ck) ← Cham.KeyGen0(1κ)}k∈N and {hk : hk ← Cham.KeyGen1(1κ)}k∈N

are computationally indistinguishable.

A wins if it outputs (m, r) and (m′, r′) such that (m, r) �= (m′, r′) and
ChamHhk(m, r) = ChamHhk(m′, r′).

We observe that the chameleon hash construction of Döttling and Garg [17]
supports oblivious sampling.



174 S. Chakraborty et al.

Construction of CHF with Oblivious Sampling. In this section, we show
that the chameleon hash function construction of Döttling and Garg [17] already
admits the property of oblivious sampling that we want for our construction of
CLR-NIKE. The construction is as follows:

1. Cham.KeyGen0(1κ): Let G be a cyclic group of prime order p,, with g as a
generator. The key generation algorithm does the following:

• Sample 2n random elements {(z1,0, z1,1), · · · , (zn,0, zn,1)} $←− Z
2n
p .

• Compute gj,0 = gzj,0 , gj,1 = gzj,1 ∀j ∈ [n]
Set hk = (g, {gj,0, gj,1}j∈[n]), and ck = {zj,0, zj,1}j∈[n].

2. Cham.KeyGen1(1κ): Sample 2n random group elements

{(g1,0, g1,1), · · · , gn,0, gn,1)} $←− G
2n. Set hk = (g, {gj,0, gj,1}j∈[n]), and ck ←⊥.

3. Cham.Eval(hk,m, r): Here, m ∈ {0, 1}n and r
$←− Zp. Compute the hash value

as: ChamHhk(m, r) = gr
∏

j∈[n] gj,mj
, mj denotes the jth bit of m.

4. Cham.TCF(ck, (m, r),m′): Parse ck as ck = {zj,0, zj,1}j∈[n]. Let m′ =
(m′

1, · · · ,m′
n). Output r′ = r + (z1,m1 + · · · + zn,mn

) − (z1,m′
1

+ · · · +
zn,m′

n
). Observe that, ChamHhk(m, r) = gr

∏
j∈[n] gj,mj

= gr′ ∏
j∈[n] gj,m′

j
=

ChamHhk(m′, r′).

As pointed out in Döttling and Garg [17], it is easy to show that the above
chameleon hash function is collision resistant based on the hardness of the
discrete-log problem.

The correctness, reversibility properties are straightforward to see. The value
r′ is also random over Zp, since the values r, {zj,0, zj,1}j∈[n] are also sampled
randomly from Zp, hence satisfying the random trapdoor collision property as
well. The indistinguishability of hashing key generation also follows in a straight-
forward manner by observing that the way the hashing key hk is sampled does
not matter. The output of both Cham.KeyGen0 and Cham.KeyGen1 are actually
identically distributed—a tuple of (2n + 1) random group elements.

4 Leakage-Resilient NIKE in Continuous-Memory
Leakage Model

In this section, we give the definition of continuous leakage-resilient non-
interactive key exchange (CLR-NIKE) adapted from [9], with the addition of
a key refreshing algorithm NIKErefresh. The adversary is not allowed to register
the same public key more than once. When we write pkU , we mean that pkU is
associated with the user with identifier U ∈ IDS, where IDS denotes the iden-
tity space. In the leakage-free scenario, this setting was also considered in the
work of Freire et al. [21], which they called the Simplified(S)-NIKE. We denote
by PK, SK and SHK the space of public keys, secret keys and shared keys
respectively. A CLR-NIKE scheme CLR-NIKE, consists of a tuple of algorithms
(NIKEcommon setup, NIKEgen, NIKEkey, NIKErefresh).



Leakage-Resilient Non-interactive Key Exchange 175

1. NIKEcommon setup(1κ, λ): The Setup algorithm takes as input the security
parameter κ and the overall leakage bound λ that can be tolerated by the
NIKE scheme, and outputs a set of global parameters of the system denoted
by params.

2. NIKEgen(1κ, params): The key generation algorithm is probabilistic and can
be executed independently by all the users. It takes as input the security
parameter κ and params and outputs a public/secret key pair (pk, sk) ∈
PK × SK.

3. NIKEkey(pkU , skV ): The shared key generation algorithm takes the public key
of user U , namely pkU and the secret key of user V , namely skV , and outputs
a shared key shkUV ∈ SHK for the two keys or a failure symbol ⊥ if U = V .

4. NIKErefresh(sk): The key-refresh algorithm takes the secret key sk of a user,
and produces a fresh secret key sk′ corresponding to pk. Each new signing
key sk′ produced by the key-refresh algorithm is functionally equivalent to
the original key.

The correctness requirement states that for any two pairs (pkU , skU ) and
(pkV , skV ), the shared keys computed by them should be identical.

4.1 CLR-CKS-heavy Security Model

The CLR-CKS-heavy model of Chakraborty et al. [9] can be viewed as a contin-
uous leakage-resilient version of the CKS-heavy security model for NIKE given
by Friere et al. [21]. The CLR-CKS-heavy model [9] addresses before-the-fact
leakage setting.

Adversarial Powers. The CLR-CKS-heavy security model is stated in terms of
a security game between a challenger C and an adversary A. The adversary A is
modeled as a probabilistic polynomial time (PPT) algorithm. We denote by ΠU,V

the protocol run between principal U , with intended principal V . Initially, the
challenger C runs the NIKEcommon setup algorithm to output the set of public
parameters params, and gives params to A. The challenger C also chooses a
random bit b in the beginning of the security game and answers all the legitimate
queries of A until A outputs a bit b′. A is allowed to ask the following queries:

1. RegisterHonest queries(1κ, params): This query allows the adversary to regis-
ter honest parties in the system. The challenger runs the NIKEgen algorithm
to generate a key pair (pkU , skU ) and records the tuple (honest, pkU , skU ). It
then returns the public key pkU to A. We refer to the parties registered via
this query as honest parties.

2. RegisterCorrupt queries(pkU ): This query allows the adversary to register arbi-
trary corrupt parties in the system. Here, A supplies a public key pkU . The
challenger records the tuple (corrupt, pkU ,⊥). We demand that all the public
keys involved in this query are distinct from one another and from the hon-
estly generated public keys from above. The parties registered via this query
are referred to as corrupt.



176 S. Chakraborty et al.

3. Extract queries(pkU ): In this query the adversary A supplies the public key
pkU of a honest party. The challenger looks up the corresponding tuple
(honest, pkU , skU ) and returns the secret key skU to A.

4. Reveal queries(pkU , pkV ): This query can be categorized in to two types –
HonestReveal queries and CorruptReveal queries. Here the adversary supplies
a pair of public keys pkU and pkV . In the HonestReveal query, both pkU

and pkV are honestly registered; whereas in CorruptReveal query, one of the
public key is registered as honest while the other is registered as corrupt.
The challenger runs the NIKEkey algorithm using the secret key of the honest
party (in case of HonestReveal query using the secret key of any one of the
parties) and the public key of the other party, and returns the result to A.

5. Leakage queries: The adversary can ask continuous-memory leakage queries.
The adversary A runs for arbitrarily many leakage rounds j = 1, 2, · · · . For
each round the challenger C initializes a list L := 0. In each round j the
adversary chooses a leakage-function fj : {0, 1}∗ → {0, 1}∗. The challenger
checks if |L| + |fj(sk)| ≤ λ. If so, it returns fj(sk), and updates |L| = |L| +
|fj(sk)|. Else, the next-round secret key is sampled as sk′ ← NIKErefresh(sk),
and the challenger sets |L| := 0.

6. Test(pkU , pkV ): Here A supplies two distinct public keys pkU and pkV , that
were both registered as honest. If pkU = pkV , the challenger aborts and
returns ⊥. Otherwise, it uses the bit b to answer the query. If b = 0, the
challenger runs the NIKEkey algorithm using the public key of one party say
pkU , and the private key of the other party skV and sends the result to A. If
b = 1, a random shared key is sampled from SHK, and sends to A.

Definition 8 (λ-CLR-CKS-heavy validity). The Test query is said to be
valid in the CLR-CKS-heavy model if:

1. The adversary A should not be allowed to ask Extract(pkU ) or Extract(pkV )
queries.

2. The adversary A should not be allowed to ask HonestReveal(pkU , pkV ) or
HonestReveal(pkV , pkU ) queries.

3. The output length of the leakage queries queried by A to each party involved
in the Test queries is at most λ per occurrence.

4. After the Test query ΠU,V is activated, the leakage functions fj(skU ) and
fj(skV ) may not be asked by the adversary.

Security Game and Security Definition. The security game and security
definition of the CLR-CKS-heavy model is defined as below:

Definition 9 (λ-CLR-CKS-heavy security game). Security of a NIKE pro-
tocol in the generic (CLR-CKS-heavy model is defined the following security
game, which is played by a PPT adversary A against the protocol challenger C.

• Stage 1: The challenger C runs LR − NIKEcommon setup algorithm to output
the global parameters params and return it to A.



Leakage-Resilient Non-interactive Key Exchange 177

• Stage 2: A may ask any number of RegisterHonest, RegisterCorrupt, Extract,
HonestReveal, CorruptReveal, and Leakage queries.

• Stage 3: At any point of the game A may ask a Test query that is λ-CLR-
CKS-heavy valid. The challenger chooses a random bit b to respond to this
queries. If b = 0, the actual shared key between the respective pairs of parties
involved in the corresponding test query is returned to A. If b = 1, the
challenger samples a random shared key from SHK, records it for later and
returns that to A.

• Stage 4: A may continue asking RegisterHonest, RegisterCorrupt, Extract,
HonestReveal, CorruptReveal, and Leakage queries provided the Test query is
still valid.

• Stage 5: At some point A outputs the bit b′ ← {0, 1} which is its guess of
the value b. A wins if b′ = b.

Let SuccA denote the event that A wins the above security game (Definition 9).

Definition 10 (λ-CLR-CKS-heavy-security). Let qH , qC , qE, qHR, and
qCR denote the number of RegisterHonest,RegisterCorrupt,Extract,HonestReveal
queries, and CorruptReveal query respectively. A NIKE protocol π is said to be
λ-CLR-CKS-heavy-secure if there is no PPT algorithm A that can win the λ-
CLR-CKS-heavy security game with non-negligible advantage. The advantage of
an adversary A is defined as:

AdvCLR-CKS-heavy
π,A (κ, qH , qC , qE , qHR, qCR) = |2Pr(SuccA) − 1|.

Extending CLR-CKS-heavy Model Addressing After-the-Fact Leak-
age. The validity condition (Definition 8) of the CLR-CKS-heavy security model
[9] does not allow the adversary to query leakage functions to either of the par-
ties involved in the Test query after the Test query is issued. However, achieving
after-the-fact leakage for NIKE in its most general form is impossible, since
the adversary can ask challenge-dependent leakage queries and trivially win
the game. So, for after-the-fact leakage to make sense, we must enforce some
restriction on the leakage functions. This was done in the context of public-key
encryption [23] and for (interactive) key exchange protocols [2–4] by requiring
the secret key to be split into parts and allowing independent leakage from each
of these parts; the so called split-state model. We can formulate similar security
model for NIKE, by requiring that the secret key of the parties are split into
parts and the adversary can obtain independent but arbitrary leakage from each
of these parts.

A tuple of t adaptively chosen efficiently computable leakage functions f =
(f1j , f2j , . . . , fij , . . . , ftj) are introduced; j indicates the jth leakage occurrence
and the size t denotes that the secret key is split into t parts, which is protocol-
specific. A tuple leakage parameter is defined as λ = (λ1, λ2, . . . , λi, . . . , λt) for
each of the leakage function fij . The adversary is restricted to obtain at most λi

amount of leakage from each ith key part independently: the adversary cannot
use the output of f1j as an input parameter to the f2j and so on. This prevents
the adversary from observing a connection between parts.



178 S. Chakraborty et al.

4.2 After-the-Fact CLR-CKS-Heavy-Secure NIKE Protocol:
CLR-NIKE

Let G2 be a type 2 pairing parameter generation algorithm, which outputs
gk = (G1,G2,GT , g1, g2, p, e, ψ), ChamH : {0, 1}∗ ×Rcham → Zp be a chameleon
hash function supporting oblivious sampling of hashing keys. Let Λn,1

Z∗
q

=

(Encoden,1
Z∗
q

,Decoden,1
Z∗
q

) be the LRS scheme which is used to encode secret keys

and Refreshn,1
Z∗
q

be the (�,λ, ε)-secure leakage-resilient refreshing protocol of Λn,1
Z∗
q

.

1. NIKEcommon setup(1κ): The set up algorithm comprises of the following:

• Run gk ← G2(1κ), where gk = (G1,G2,GT , g1, g2, p, e, ψ).
• Sample α, β, γ, δ ← G1.
• Run hk ← Cham.KeyGen1(1κ, λ) (Corresponds to oblivious sampling)

Set params := (gk, α, β, γ, δ, hk).
2. NIKEgen(1κ, params): A party with identifier IDA (say) sets up its public-

secret key pair as follows:
• Sample xAL

$←− (Z∗
p)

n \ {(0n)}, xAR

$←− (Z∗
p)

n×1 \ {(0n×1)} and r′
A

$←−
Rcham.

• Compute Z ′
A = g

xAL
2 , ZA = (Z ′

A)xAR and tA ← ChamHhk(ZA||IDA; r′
A).

• Compute YA ← αβtAγtA
2
, X ′

A = Y
xAL

A , and XA = (X ′
A)xAR

Set pkA := (XA, ZA, r′
A); skA := (xAL

, xAR
).

3. NIKEkey(pkB , skA): Let us assume that party IDA and IDB with public-
secret key pairs (pkA, skA) and (pkB , skB) respectively want to establish a
shared key among them. We show the computation from the perspective of
party IDA. The computation at party IDB ’s end follows identically.

• Parse pkB as (XB , ZB , r′
B); if pkA = pkB , return ⊥.

• Compute tB ← ChamHhk(ZB ||IDB ; r′
B).

• Check if e(XB , g2)
?= e(αβtBγtB

2
, ZB); if not, set the shared key

shkA,B ←⊥.
• Compute T ′

A = δxAL , TA = (T ′
A)xAR .

• Finally compute the shared key as shkAB ← e(TA, ZB).
4. NIKErefresh(skA): The refreshing algorithm takes the secret key xA =

(xAL
, xAR

) of a particular round and generates the next round secret key,
(x′

AL
, x′

AR
) ← Refreshn,1

Z∗
q

(xAL
, xAR

). Details of the Refresh algorithm is in
Sect. 2.3.

Correctness: We now show the correctness of the above NIKEkey algorithm,
i.e., the shared key computed by both IDA and IDB are identical. We denote
xAL

= (x(1)
AL

, · · · , x
(n)
AL

) and xAR
= (x(1)

AR
, · · · , x

(n)
AR

), and similarly, for xBL
and

xBR
respectively.

e(TA, ZB) = e
(
(T ′

A)xAR , (Z ′
B)xBR

)
= e

( n∏

k=1

δ
x
(k)
AL

x
(k)
AR ,

n∏

k′=1

g
x
(k′)
BL

x
(k′)
BR

)

= e
( n∏

k=1

δ
x
(k)
BL

x
(k)
BR ,

n∏

k′=1

g
x
(k′)
AL

x
(k′)
AR

)
= e(TB , ZA).



Leakage-Resilient Non-interactive Key Exchange 179

Remark 1. In our leakage-resilient NIKE protocol, CLR-NIKE, the secret key of
a party is x and it is encoded using the LRS scheme. After getting the encoded
values xL and xR of x, the value x must be securely erased from memory. In
practice, such a secure erasure may not be possible always and some traces of the
secret key may be leaked to the adversary. In order to avoid such a vulnerability,
we pick xL and xR at random and then use them as the encodings of x. In this
way we refrain from using the secret key x directly. Note that, this approach
is identical to first picking a random element x ∈ Z

∗
p and then encoding it to

obtain xL and xR. Since the value x is not available to the adversary, it can get
only bounded and independent leakage (under split-state assumption) from xL

and xR respectively. We can then use the security of the LRS scheme from to
argue security of our NIKE protocol.

Theorem 2. Let ChamH be a family of chameleon hash function with oblivious
sampling, Refreshn,1

Z∗
q

be a (�,λ, ε)-secure leakage-resilient refreshing protocol of the

leakage-resilient storage scheme Λn,1
Z∗
q
. Then the above NIKE protocol CLR-NIKE

is λ-CLR-CKS-heavy-secure in the split-state model assuming the intractability
of the DBDH-2 assumption with respect to the parameter generator G2. In partic-
ular, let A be an adversary against CLR-NIKE in the CLR-CKS-heavy security
model making qH number of RegisterHonest user queries. Then, using A as a
black box we can construct an adversary ADBDH-2 against the DBDH-2 problem
such that:

AdvCLR-CKS-heavy
CLR-NIKE,A (κ) ≤ q2H

(
2ε + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2,G2

(κ)
)

.

Proof. The proof of this theorem will proceed via the game hopping technique
[34]: define a sequence of games and relate the adversary’s advantage of dis-
tinguishing each game from the previous game to the advantage of breaking
the security of one of the underlying cryptographic primitive. Let AdvGamei

(A)
denote the advantage of the adversary A in Game i.

Game 0: This is the original security game with adversary ADBDH-2. When the
Test query is asked, the Game 0 challenger chooses a random bit b

$←− {0, 1}. If
b = 0, the real shared key is given to A, otherwise a random value chosen from
the shared key space is given. So, we have:

AdvGame0(A) = AdvCLR-CKS-heavy
CLR-NIKE,A (κ).

Game 1: Initially ADBDH-2 chooses two identities IDA, IDB ∈ [qH ], where qH

denotes the number of RegisterHonest queries made by A. Effectively ADBDH-2

is guessing that IDA and IDB to be honestly registered by A will be involved
in the Test query later. When A makes its Test query on a pair of identities
{IDI , IDJ}, ADBDH-2 checks if {IDI , IDJ} = {IDA, IDB}. If so, it continues
with the simulation and gives the result to A; else it aborts the simulation.

AdvGame1(A) ≥ AdvGame0(A)/q2H .



180 S. Chakraborty et al.

Game 2: We construct an algorithm B against a leakage-resilient refreshing
protocol challenger of Refreshn,1

Z∗
q

, using the adversary A as a subroutine. Hence,
the goal of B is to properly simulate the view of A, and at the same time break
the security of the Refresh algorithm.

The (�,λ, ε)-Refreshn,1
Z∗
q

refreshing protocol challenger chooses (s0, s1) ← Z
∗
q

and (s′
0, s

′
1) ← Z

∗
q and sends them to the algorithm B. Further, the refreshing

protocol challenger randomly chooses s ← {s0, s1} and s′ ← {s′
0, s

′
1} and uses

s and s′ as the secrets to compute the leakage from encodings of s and s′.
Let λ = (λ1, λ2) be the leakage bound and the refreshing protocol challenger
continuously refresh the two encodings of the secrets s and s′.

When the algorithm B gets the challenge of (s0, s1) and (s′
0, s

′
1) from the

refreshing protocol challenger, B uses s0 and s′
0 as the secret keys of the parties

IDA and IDB respectively and computes their corresponding public keys. For
all other parties B sets secret/public key pairs by itself. Using the setup keys, B
answers all the queries from A and simulates the view of challenger of protocol
CLR-NIKE. B computes the leakage of secret keys by computing the adversarial
leakage function f = (f1j , f2j) on the corresponding secret key (encodings of
secret key), except the secret key of the protocol principals IDA and IDB . In
order to obtain the leakage of the secret keys of IDA and IDB , algorithm B
queries the refreshing protocol challenger with the adversarial leakage function
f , and passes that leakage to A.

If the secrets s and s′ chosen by the refreshing protocol challenger are s0
and s′

0 respectively, the leakage of the secret key of IDA and IDB simulated
by B (with the aid of the refreshing protocol challenger) is the real leakage.
Then the simulation is identical to Game 1. Otherwise, the leakage of the secret
keys of IDA and IDB simulated by B are leakages of random values. Then the
simulation is identical to Game 2. Hence, by the (�,λ, ε)-Refreshn,1

Z∗
q

security we
get:

|AdvGame2(A) − AdvGame1(A)| ≤ 2ε.

Game 3: In this game the challenger changes the way in which it answers
RegisterCorrupt queries. In particular let, IDA and IDB be identities of two
honest parties involved in the Test query with public keys (XA, ZA, r′

A) and
(XB , ZB , r′

B) respectively. Let IDD be the identity of the party with pub-
lic key (XD, ZD, r′

D) that is subject to a RegisterCorrupt query. If tD =
ChamHhk(ZA||IDA; r′

A) or tD = ChamHhk(ZB ||IDB ; r′
B), the challenger aborts.

Note that if the above happens, then the challenger has successfully found a
collision of the chameleon hash function. By the difference lemma [33] we have:

|AdvGame3(A) − AdvGame2(A)| ≤ AdvcollA,ChamH(κ).

Game 4: In this game the challenger samples the hashing key differently. In
particular the challenger runs (hk, ck) ← Cham.KeyGen0(1κ), instead of running
Cham.KeyGen1. It follows from the indistinguishability of hashing key generation
property that Game 3 and Game 4 are computationally indistinguishable. Hence,

|AdvGame4(A) − AdvGame3(A)| ≤ negl(κ).



Leakage-Resilient Non-interactive Key Exchange 181

Game 5: In this game we construct an adversary ADBDH-2 for the DBDH-
2 problem using the adversary A. The adversary ADBDH-2 receives as input
(g2, ga

2 , gb
2, g

c
1, T ), and its goal is to determine if T = e(g1, g2)sbc or a random

element from GT , where g1 and g2 are generators of the group G1 and G2 respec-
tively and a, b, c are random elements from Zp. We now describe how ADBDH-2

sets up the environment for A and simulates all its queries properly.
ADBDH-2 runs Cham.KeyGen(1κ, λ) to obtain a key pair for a chameleon

hash function, (hk, ck). It then chooses two messages m1,m2 ← {0, 1}∗ and
r1, r2 ← Rcham, where Rcham is the randomness space of the chameleon
hash function. ADBDH-2 then computes the values tA = Cham.Eval(m1; r1) and
tB = Cham.Eval(m2; r2).

Let us define a polynomial of degree 2 p(t) = p0 + p1t + p2t
2 over Zp such

that tA and tB are the roots of p(t), i.e., p(tA) = 0 and p(tB) = 0. Also, let
q(t) = q0 + q1t+ q2t

2 be a random polynomial of degree 2 over Zp. ADBDH-2 then
sets α = (gc

1)
p0 ·gq0

1 , β = (gc
1)

p1 ·gq1
1 , γ = (gc

1)
p2 ·gq2

1 and δ = gc
1 (gc

1 was obtained as

instance of the hard problem). Note that, since pi, qi
$←− Zp are randomly chosen,

the values of α, β and γ are also random. Also note that αβtγt2 = (g1)p1(t)g
q(t)
1 .

In particular YA = g
q(tA)
1 and YB = g

q(tB)
1 (since p(tA) = p(tB) = 0). ADBDH-2

then simulates all the queries of A as follows:

• RegisterHonest: When ADBDH-2 receives as input a RegisterHonest user query
from ACLR-NIKE for a party with identity ID, it fist checks whether ID ∈
{IDA, IDB}. Depending upon the result it does the following:
– If ID /∈ {IDA, IDB}, ADBDH-2 runs NIKE.gen to generate a pair of keys

(pk, sk), and makes returns pk to ACLR-NIKE.
– If ID ∈ {IDA, IDB}, ADBDH-2 does the following. Without loss of general-

ity let ID = IDA. Now, ADBDH-2 uses the trapdoor ck of the chameleon
hash to produce r′

A ∈ Rcham such that Cham.Eval(ga
2 ||IDA; r′

A) =
Cham.Eval(m1; r1). Note that, by the random trapdoor collision property
of the chameleon hash function, r′

A is uniformly distributed over Rcham

and also independent of r1. Similarly when ID = IDB , ADBDH-2 uses the
trapdoor ck to produce r′

B ∈ Rcham such that Cham.Eval(gb
2||IDB ; r′

B) =
Cham.Eval(m2; r2). The value r′

B is also uniformly distributed over Rcham

and also independent of r2. ADBDH-2 then sets:

pkA = (ψ(ga
2 )q(tA), ga

2 , r′
A) and pkB = (ψ(gb

2)
q(tB), gB

2 , r′
B).

Note that these are correct public keys since p(tA) = p(tB) = 0.
• RegisterCorrupt: Here ADBDH-2 receives as input a public key pk and an identity

string ID from A. If ID ∈ {IDA, IDB}, ADBDH-2 aborts as in the original
attack game.

• HonestReveal: When A supplies identities of two honest parties, ID and ID′

say, ADBDH-2 checks if {ID, ID′} = {IDA, IDB}. If this happens, ADBDH-2

aborts. Else, if {ID, ID′} ∩ {IDA, IDB} ≤ 1, there are three cases:



182 S. Chakraborty et al.

– ID ∩ {IDA, IDB} �= φ and ID′ ∩ {IDA, IDB} = φ. In this case, the
challenger ADBDH-2 runs NIKE.key(pkID, skID′) to produce the shared key
shkID,ID′ . Note that ADBDH-2 can do this since it knows the secret key
skID′ of the party ID′. ADBDH-2 then gives shkID,ID′ to A.

– ID ∩ {IDA, IDB} = φ and ID′ ∩ {IDA, IDB} �= φ. In this case, the
challenger ADBDH-2 runs NIKE.key(pkID′ , skID) to produce the shared key
shkID,ID′ . Note that ADBDH-2 can do this since it knows the secret key
skID′ of the party ID′. ADBDH-2 then gives shkID,ID′ to A.

– {ID, ID′} ∩ {IDA, IDB} = φ. In this case, the challenger ADBDH-2 runs
NIKE.key(pkID′ , skID) (it can use skID′ also) to produce the shared key
shkID,ID′ . ADBDH-2 then gives shkID,ID′ to A.

• CorruptReveal: When ANIKE supplies two identities ID and ID′ where
ID was registered as corrupt and ID′ was registered as honest, ADBDH-2

checks if ID′ ∈ {IDA, IDB}. If ID′ /∈ {IDA, IDB}, ADBDH-2 runs
NIKE.key(pkID, skID′) to obtain shkID,ID′ and returns it to ANIKE. How-
ever, if ID′ ∈ {IDA, IDB}, ADBDH-2 checks whether the public key pkID =
(XID, ZID, r′

ID, rID) by checking the pairing. This makes sure that pkID is
of the form (Y d

ID, gd
2 , r

′
D) for some d ∈ Zp, where YD = (gc

1)
p(tID)g

q(tID)
1 , and

r′
D ← Rcham. This means that XID = (gcd

1 )p(tID)g
dq(tID)
1 . From this the value

gcd
1 can be computed as:

gcd
1 = (XID/ψ(ZID)q(tID))1/p(tID) mod p.

Note that the value 1/p(tID) is well defined since p(tID) �= 0 mod p. Also
note that tID �= tA, tB , since we have already eliminated the hash collisions.
Assume w.l.o.g. that ID′ = IDA. So writing the public key of IDA as
(YA, ZA, r′

A, rA), the shared key between IDA and ID is given by:

shkIDA,ID = e(gcd
1 , ZA).

Leakage queries: The adversary may ask for leakage from the secret key of the
parties IDA and IDB . Initially, the challenger initializes two lists L1 := 0
and L2 := 0. Let us suppose that the adversary specifies a tuple leakage
function f = (f1j , f2j) to a party (say IDA) in the jth leakage occurrence. The
challenger checks if |L1|+ |f1j(xAL

)| ≤ λ1 and |L2|+ |f2j(xAR
)| ≤ λ2. If so, it

returns f1j(xAL
) and f2j(xAR

) respectively, updates |L1| = |L1|+ |f1j(xAL
)|,

and |L2| = |L2| + |f2j(xAR
)|. Else, refresh the secret key as (x′

AL
, x′

AR
) ←

Refreshn,1
Z∗
q

(xAL
, xAR

), and the challenger resets L1 := 0 and L2 := 0.
• Test query: Here, ADBDH-2 returns T .

This completes the description of simulation by ADBDH-2. If A can distinguish
between real and random key in Game 5, then it is equivalent to solving the
DBDH-2 problem. To see this, note that for user IDA we have ZA = ga

2 and
XA = ψ(ZA)q(tA), and for user IDB we have ZB = gb

2 and XB = ψ(ZB)q(tB).
Hence, shkIDA,IDB

= e((gc
1)

b, ZA) = e((gc
1)

a, ZB) = e(g1, g2)abc.



Leakage-Resilient Non-interactive Key Exchange 183

Since the simulation done by ADBDH-2 is perfect, we have:

AdvGame5(A) = AdvGame4(A).

Game 6. In this game the challenger ADBDH-2 chooses T randomly from the
target group GT . Since T is now completely independent of the challenge bit,
we have AdvGame5(ACLR-NIKE) = 0. Game 5 and Game 6 are identical unless
adversary ADBDH-2 can distinguish e(g1, g2)abc from a random element. Hence,

|AdvGame6(A) − AdvGame5(A)| ≤ Advdbdh-2ADBDH-2,G2
(κ).

By combining all the above expression from Game 0- Game 6 we have:

AdvCLR-CKS-heavy
CLR-NIKE,A (κ) ≤ q2H

(
2ε + AdvcollA,ChamH(κ) + Advdbdh-2ADBDH-2,G2

(κ)
)

. �

Leakage Tolerance of Our CLR-NIKE Protocol. The order of the groups G1,
G2 and GT are p. Let m = 1 in the LRS scheme Λn,1

Z∗
q

. It is shown in Dziembowski
and Faust [18] that, if m < n/20, then the leakage parameter for the LRS scheme
is λΛ = (0.3n log p, 0.3n log p), where λΛ denotes the leakage tolerated by the
LRS scheme. Let n = 21, then λΛ = (6.3 log p, 6.3 log p) bits. According to [18], if
m/3 ≤ n and n ≥ 16, the refreshing protocol Refreshn,1

Z∗
p

of the LRS scheme Λn,1
Z∗
p

is tolerant to (continuous) leakage up to λRefresh = λΛ/2 = (3.15 log p, 3.15 log p)
bits, per occurrence. When a secret key s (of size log p bits) of our protocol is
encoded into two parts, the left part sL will be n · log p = 21 log p bits and the
right part sR will be n · 1 · log p = 21 log p bits. For a tuple leakage function
f = (f1j , f2j) (each leakage function f(·) for each of the two parts sL and sR),
there exists a tuple leakage bound λ = (λ1, λ2) for each leakage function f(·), such
that λ1 = λ2 = 3.15 log p bits, per occurrence, which is 3.15 log p

21 log p × 100% = 15%
of the size of a part. The overall leakage amount is unbounded since continuous
leakage is allowed. So the leakage bound for our protocol is upper bounded by the
leakage tolerated by the refreshing protocol Refreshn,1

Z∗
p

. Using the aforementioned
primitives the leakage bound of our protocol is 3.15 log p bits per occurrence.

5 Construction of Other Leakage-Resilient Primitives
from CLR-NIKE

In this section, we briefly mention how to construct other continuous leakage-
resilient (CLR) primitives from CLR-NIKE. Chakraborty et al. [9] showed
generic constructions of leakage-resilient CCA-secure PKE, AKE, and low-
latency key exchange (LLKE) protocols in the bounded memory leakage model,
starting from a (bounded) leakage-resilient NIKE. We observe that their generic
transformation goes through in a straightforward manner, if we replace the
underlying bounded leakage-resilient primitives with their CLR counterparts.
In particular, in the construction of leakage-resilient CCA-secure PKE of



184 S. Chakraborty et al.

Chakraborty et al. [9], if we replace the bounded leakage-resilient (BLR) NIKE
with our CLR-CKS-secure-NIKE, we obtain CLR-CCA-secure PKE scheme tol-
erating after-the-fact leakage. The leakage rate of the PKE scheme will be same
as the leakage rate of the underlying CLR-NIKE scheme. For our construction
of CLR-AKE protocol, we need a CLR-CKS-heavy-secure NIKE and a CLR sig-
nature scheme. Informally, a CLR signature scheme achieves existential unforge-
ability against adaptive chosen message attacks, even when the adversary is
given continuous leakage from the signing key. The CLR signature scheme can be
instantiated with the constructions of Brakerski et al. [6] or Dodis et al. [13]. By
instantiation with our CLR-NIKE protocol from Sect. 4.2 and the CLR signature
scheme of Brakerski et al. [6] or Dodis et al. [13], we obtain CLR-AKE protocol
secure against after-the-fact leakage. We point out that the AKE constructions
of Alawatugoda et al. [3,4] are also secure against continuous after-the-fact leak-
age; however in the Only Computation Leaks (OCL) model, which is strictly
weaker than the continuous memory leakage model we consider in this paper.
The AKE construction of Chen et al. [11] is secure against after-the-fact mem-
ory leakage in non-split state model, however; in the bounded leakage model.
Whereas, our AKE construction is secure in continuous after-the-fact memory
leakage model, although in split-state model. Chakraborty et al. [9] also intro-
duced leakage-resilient LLKE protocols and gave an appropriate security model
in the bounded memory leakage model. Their model can be naturally extended to
consider continuous after-the-fact memory leakage in split-state. The construc-
tion of CLR-LLKE can also be obtained by suitably replacing the underlying
NIKE of Chakraborty et al. [9] with a CLR-CKS-heavy-secure NIKE and a CLR
signature scheme. All of these can be instantiated similarly as mentioned above.
We note that, that the CLR signature schemes of both Brakerski et al. [6] and
Dodis et al. [13] achieve the optimal leakage rate of 1 − o(1). Hence, the leak-
age tolerated by our CLR-AKE and CLR-LLKE protocols per invocation are
min(λCLR-NIKE, λsig), where λCLR-NIKE and λsig are the leakage bounds tolerated
by the CLR-NIKE and the CLR signature schemes respectively between any two
successive secret key (signing key) refreshes.

6 Conclusion and Future Works

In this paper we address the open problem of constructing a NIKE protocol in
the continuous memory leakage (CML) model. Further, we also address after-
the-fact leakage and show a secure construction of NIKE in split-state model.
Our protocol cannot achieve the optimum leakage rate 1−o(1) as the underlying
storage scheme and its refreshing protocol do not support that. One interesting
open problem will be constructing a leakage-resilient NIKE in the 1 − o(1)-
continuous-memory leakage model.

Acknowledgments. The work was initiated when the first and second authors were
visiting IACR-SEAMS workshop on “Cryptography: Foundations and New Directions”
at VAISM, Vietnam in the winter of 2016. The work is partially supported by Project
No. CCE/CEP/22/VK&CP/CSE/14-15 on Information Security & Awareness (ISEA)



Leakage-Resilient Non-interactive Key Exchange 185

Phase-II by Ministry of Electronics & Information Technology, Government of India.
Janaka Alawatugoda acknowledges the grant NRC 16-020 of National Research Coun-
cil, Sri Lanka.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol.
5444, pp. 474–495. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5 28

2. Alawatugoda, J., Boyd, C., Stebila, D.: Continuous after-the-fact leakage-resilient
key exchange. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp.
258–273. Springer, Cham (2014). doi:10.1007/978-3-319-08344-5 17

3. Alawatugoda, J., Stebila, D., Boyd, C.: Modelling after-the-fact leakage for key
exchange. In: Proceedings of the 9th ACM Symposium on Information, Computer
and Communications Security, pp. 207–216. ACM (2014)

4. Alawatugoda, J., Stebila, D., Boyd, C.: Continuous after-the-fact leakage-resilient
eCK-secure key exchange. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp.
277–294. Springer, Cham (2015). doi:10.1007/978-3-319-27239-9 17

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). doi:10.1007/3-540-48329-2 21

6. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in
the bucket: public-key cryptography resilient to continual memory leakage. IACR
Cryptology ePrint Archive, Report 2010/278 (2010)

7. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: USENIX Security
Symposium, pp. 1–14 (2003)

8. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6 28

9. Chakraborty, S., Janaka Alawatugoda, C., Rangan, P.: New approach to practi-
cal leakage-resilient public-key cryptography. Cryptology ePrint Archive, Report
2017/441 (2017). http://eprint.iacr.org/2017/441

10. Chakraborty, S., Paul, G., Rangan, C.P.: Efficient compilers for after-the-fact leak-
age: from CPA to CCA-2 secure PKE to AKE. In: Pieprzyk, J., Suriadi, S. (eds.)
ACISP 2017. LNCS, vol. 10342, pp. 343–362. Springer, Cham (2017). doi:10.1007/
978-3-319-60055-0 18

11. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F.: Strongly leakage-resilient authen-
ticated key exchange. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 19–36.
Springer, Cham (2016). doi:10.1007/978-3-319-29485-8 2

12. Chow, S.S.M., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient
identity-based encryption from simple assumptions. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security, pp. 152–161. ACM
(2010)

13. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: 2010 51st Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 511–520. IEEE (2010)

14. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC,
pp. 621–630 (2009)

http://dx.doi.org/10.1007/978-3-642-00457-5_28
http://dx.doi.org/10.1007/978-3-319-08344-5_17
http://dx.doi.org/10.1007/978-3-319-27239-9_17
http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/3-540-44987-6_28
http://eprint.iacr.org/2017/441
http://dx.doi.org/10.1007/978-3-319-60055-0_18
http://dx.doi.org/10.1007/978-3-319-60055-0_18
http://dx.doi.org/10.1007/978-3-319-29485-8_2


186 S. Chakraborty et al.

15. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

16. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel
attacks on feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 21–40. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 2

17. Döttling, N., Garg, S.: Identity-based encryption from the diffie-hellman assump-
tion. Cryptology ePrint Archive, Report 2017/543 (2017). http://eprint.iacr.org/
2017/543

18. Dziembowski, S., Faust, S.: Leakage-resilient cryptography from the inner-product
extractor. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
702–721. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 38

19. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: IEEE 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, pp.
293–302. IEEE (2008)

20. Faonio, A., Nielsen, J.B., Venturi, D.: Mind your coins: fully leakage-resilient sig-
natures with graceful degradation. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 456–468. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47672-7 37

21. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254–271. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 17

22. Galindo, D.: Boneh-Franklin identity based encryption revisited. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 791–802. Springer, Heidelberg (2005). doi:10.1007/11523468 64

23. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Ishai, Y.
(ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19571-6 8

24. Hutter, M., Mangard, S., Feldhofer, M.: Power and EM attacks on passive
13.56MHz RFID devices. In: CHES, pp. 320–333 (2007)

25. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10366-7 41

26. Kiltz, E., Pietrzak, K.: Leakage resilient elgamal encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-17373-8 34

27. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75670-5 1

28. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining smart-card security under
the threat of power analysis attacks. IEEE Trans. Comput. 51(5), 541–552 (2002)

29. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In:
Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-24638-1 16

30. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 2

31. Petit, C., Standaert, F.-X., Pereira, O., Malkin, T.G., Yung, M.: A block cipher
based pseudo random number generator secure against side-channel key recov-
ery. In: Proceedings of the 2008 ACM Symposium on Information, Computer and
Communications Security, pp. 56–65. ACM (2008)

http://dx.doi.org/10.1007/978-3-642-14623-7_2
http://eprint.iacr.org/2017/543
http://eprint.iacr.org/2017/543
http://dx.doi.org/10.1007/978-3-642-25385-0_38
http://dx.doi.org/10.1007/978-3-662-47672-7_37
http://dx.doi.org/10.1007/978-3-642-36362-7_17
http://dx.doi.org/10.1007/11523468_64
http://dx.doi.org/10.1007/978-3-642-19571-6_8
http://dx.doi.org/10.1007/978-3-642-19571-6_8
http://dx.doi.org/10.1007/978-3-642-10366-7_41
http://dx.doi.org/10.1007/978-3-642-17373-8_34
http://dx.doi.org/10.1007/978-3-540-75670-5_1
http://dx.doi.org/10.1007/978-3-540-24638-1_16
http://dx.doi.org/10.1007/978-3-642-03356-8_2


Leakage-Resilient Non-interactive Key Exchange 187

32. Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-01001-9 27

33. Shoup, V.: Oaep reconsidered. J. Cryptol. 15(4), 223–249 (2002)
34. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.

IACR Cryptology EPrint Archive, 2004:332 (2004)
35. Yuen, T.H., Chow, S.S.M., Zhang, Y., Yiu, S.M.: Identity-based encryption resilient

to continual auxiliary leakage. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 117–134. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29011-4 9

http://dx.doi.org/10.1007/978-3-642-01001-9_27
http://dx.doi.org/10.1007/978-3-642-01001-9_27
http://dx.doi.org/10.1007/978-3-642-29011-4_9
http://dx.doi.org/10.1007/978-3-642-29011-4_9


New Framework of Password-Based
Authenticated Key Exchange

from Only-One Lossy Encryption

Haiyang Xue1,2(B), Bao Li1,2,3, and Jingnan He1,2

1 Data Assurance and Communication Security Research Center,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2 Science and Technology on Communication Security Laboratory, Chengdu, China

3 University of Chinese Academy of Sciences, Beijing, China

Abstract. In this paper, we introduce a new framework of password-
based key exchange (PAKE). Until now, most PAKEs are based on
smooth projective hash function on secure encryption. Our PAKE does
not rely on smooth projective hash function, and consists of a variate
lossy encryption, called only-one lossy encryption, and indistinguishable
plaintext checkable secure encryption. We also give construction of only-
one lossy encryption based decisional Diffie Hellman (DDH) and learn-
ing with errors (LWE) assumptions. Although the instantiation based
on DDH assumption does not improve efficiency of precious works, our
framework provides more easier and elegant way to construct PAKE from
LWE assumption.

Keywords: Password-based key exchange · Lossy encryption · DDH
assumption · LWE assumption

1 Introduction

Password-based authenticated key exchange (PAKE) allows two users to mutu-
ally authenticate each other and agree on a high-entropy session key based on
a shared low-entropy password. The challenge in designing such protocols is
to prevent off-line dictionary attacks where an adversary exhaustively enumer-
ates potential passwords, attempting to match the correct password. The secure
goal of PAKE is to restrict the adversary’s advantage to that of online dictio-
nary attack. The seminal work in the area of PAKE was given by Bellovin and
Merritt [4]. After that, Bellare et al. [6], and Boyko et al. [5] proposed formal
security models for PAKE. Since then, a large number of constructions were
presented in the random oracle model [1,5,6]. But the random oracle model is
known to be not sound [8], we only consider standard model in this paper.

The first PAKE protocol to achieve security in standard model was given
by Goldreich and Lindel [10]. There are several works to improve and simplify
Goldreich and Lindel’s scheme. Unfortunately, they are inefficient in terms of
communication, computation and round complexity. Katz, Ostrovsky and Yung
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 188–198, 2017.
https://doi.org/10.1007/978-3-319-68637-0_11



New Framework of Password-Based Authenticated Key Exchange 189

[16] demonstrated the first efficient PAKE (KOY) under DDH assumption with
common reference string(CRS). On the ground of concrete construction of KOY
protocol, a framework of PAKE (GL-PAKE) was abstracted by Gennaro and
Lindell [11]. GL-PAKE consists of two smooth projective hash functions [7]
(SPHF) on chosen ciphertext secure(IND-CCA) encryption. Following the work
of KOY, Jiang and Gong [14] improved and gave a PAKE with mutual authen-
tication under DDH assumption. Groce and Katz [12] abstracted the prototol
of Jiang and Gong’s protocol and give a framework of PAKE (GK-PAKE) by
using of SPHF on IND-CPA secure encryption and IND-CCA secure encryp-
tion. Recently, Abdalla, Benhamouda and Pointcheval [2] pointed out that the
underlying IND-CCA secure encryption in GL-PAKE and GK-PAKE once can
be replaced by indistinguishable plaintext checkable secure (IND-PCA) scheme.

Both the GL-PAKE and GK-PAKE frameworks are based on SPHF over
secure encryption. It seems that SPHF over encryption scheme is inevitable.
Although SPHF supports efficient constructions based on DDH, QR and DCR
[19] assumptions. The reliance on SPHF leads to limitations on resulting pro-
tocols: firstly, all SPHF are based on decisional assumptions which are gener-
ally weaker than computational assumptions. Secondly, When based on lattice
assumptions, SPHF is unnatural and it is also an open problem to construct con-
crete SPHF based on lattice assumptions [17], making the SPHF based PAKE
unsuitable in a possible upcoming post quantum world. We also note Katz and
Vaikuntanathan [17] proposed an approximate SPHF over LWE-based IND-CCA
secure encryption, and gave a LWE based PAKE by modifying GL-PAKE. But
the protocol is inefficient and is more like a existence result.

One exception (that does not rely on SPHF) is the framework given by
Canetti et al. [9] (CDVW-PAKE) based on oblivious transfer protocol and IND-
CCA secure encryption. The CDVW-PAKE has the advantage of basing on
computational assumption. But, the oblivious transfer protocol needs more com-
munications (it needs 1 out of |D| oblivious transfer, and |D| commitments from
the sender, where |D| is the size of password space and the size of real-world
password space |D| is generally large [23]), the instantiations of CDVW-PAKE
generally needs more communications (the commitments contains at least |D|
random string). Precisely, the communications is a linear function of password
space.1

Thus, a new framework of PAKE, that does not rely on SPHF, has less
communication independent with password space, and is more fitable to lattice
assumption, is needed. We give such framework in this paper and propose its
instantiations based on DDH and LWE assumptions.

1.1 Our Contributions

We propose a new framework of PAKE based on a variant of lossy encryption
and IND-PCA secure encryption in this paper. This framework has the following

1 Even optimizing the protocol by parse the password into bits, the communications
still depends on the password space.



190 H. Xue et al.

benefits: it does not rely on SPHF, making it possible to instantiate the frame-
work on lattice assumptions; the communications is independent of the password
space, and generally less then that based on oblivious transfer.

The basic tool is a strong variant of tag-based lossy encryption. Lossy encryp-
tion was proposed by Bellare et al. [3] by extending meaningful/meaningless
encryption in [15]. The public key has two indistinguishable modes: in the normal
mode, the cryptosystem behaves normally, and in the lossy mode, the ciphertext
statistically loses information of the message.

We extend the lossy encryption to tag-based one to fits the application of
PAKE. The tag-based encryption, called only-one lossy encryption, has the fol-
lowing properties: (1) The lossy encryption has a hidden branch in public key.
Given public key it is difficult to find this branch; (2) only when tag is equal
to this branch the encryption is normal and decryptable, in the other case the
encryption of any two messages is statistically indistinguishable; (3) With a
trapdoor, there is an algorithm to decide whether a tag is equal to the hidden
branch in public key. At a first look, the tag-based encryption looks like All-
But-One technique but it has essential difference. Take the general All-But-One
lossy trapdoor function in [21] as example, in the All-But-One technique, the
“one” is lossy and secure to prove the security, the others is invertible to pro-
vide inversion functionality. But the Only-one lossy encryption is that the one is
decryptable to provide the functionality and the others is lossy and statistically
secure to provide security.

Based on only-one lossy encryption and IND-PCA secure encryption, we
propose a framework of PAKE, and prove its security in standard model. After
that, we also give two instantiations based on DDH assumption and learning
with errors (LWE) assumption.

1.2 Related Works

Peikert et al. proposed the notion of dual mode cryptosystem [20] aimming at
universal composable secure oblivious transfer. In the dual mode cryptosystem,
it requires two setup algorithms, and in one mode, there should be a algorithm
to generate decryption key for ciphertext on all tag. We do not require this in
only-one lossy encryption.

Canetti et al. [9] propose a framework of based on oblivious transfer pro-
tocol and IND-CCA secure encryption. The CDVW-PAKE has the advantage
of basing on computational assumption. But, the oblivious transfer needs more
communications (it needs |D| commitment, where |D| is the size of password
space), the instantiations of CDVW-PAKE generally needs more communica-
tions (at least needs commitments of |D| randomness).

2 Preliminaries

In this section, we give some notions and recall the definition of lossy encryption
and the BPR secure mode of PAKE.



New Framework of Password-Based Authenticated Key Exchange 191

2.1 Notations

If S is a set, we denote by |S| the cardinality of S, and denote by x ← S the
process of sampling x uniformly from S. A function is negligible (negl) if for
every c > 0 there exists a λc such that f(λ) < 1/λc for all λ > λc. If A and B
are distributions, A =s B means that the statistical distance between A and B
is negligible.

For any s > 0, and c ∈ R
n define the Gaussian function: ∀x ∈ R

n, ρs,c =
exp(−π‖x − c‖2/s2). For any c ∈ R, real s > 0, and n-dimensional lattice Λ,
define the discrete Guassian distribution over Λ as ∀x ∈ Λ,DΛ,s,c(x) = ρs,c(x)

ρs,c(Λ) ,
where ρs,c(Λ) =

∑
y∈Λ ρs,c(y). we omit the parameter c when it is 0. For α ∈ R

+,
Ψα is defined to be the distribution on R/Z of a mormal variable with mean 0 and
standard deviation α/

√
2π, reduced modulo 1. Let Ψ̄α be the discrete distribution

of the random variable |q · X| mod q where X has distribution Ψα.

2.2 Encryption

For formal definition of lossy encryption please refer citeBellare2009a. We first
recall the definition of IND-PCA security given by Abdalla et al. [2], then give the
definition of witness extractable encryption. Any (labeled) public-key encryption
scheme is defined by three algorithms:

– KeyGen(1λ) generates a key pair: a public key pk and a secret key sk;
– Enc(pk, label,m, r) encrypts the message m under the key pk with label label,

using the random coins r;
– Dec(sk, label, C) decrypts the ciphertext C, using the secret key sk, label label.

For any key pairs (pk, sk), any label label, any random coin r and any message
m, it holds that Dec(sk, label,Enc(pk, label,m, r)) = m with overwhelming
probability.

Definition 1 (IND-PCA Security [2]). A (labeled) public-key encryption
scheme (KeyGen, Enc, Dec) is said to be indistinguishable plaintext checkable
(IND-PCA) secure if the advantage of any PPT adversary A in the following
interaction is negligible in the security parameter:

1. KeyGen(1λ) outputs (pk, sk), A is given pk by the challenger.
2. A may adaptively query the decryption check oracle DCheck(label, C,m),

which answers whether the decryption of C under the label l is m.
3. At some point, A outputs a label label∗ and two messages m0 and m1, and

receives a challenge ciphertext c∗ = Enc(pk, label∗,mb, r) for a uniformly cho-
sen bit b.

4. A may continue to adaptively query the decryption check oracle
DCheck(label, C,m) with (label, C,m) such that (label, C) �= (label∗, C∗).

5. Finally, A outputs a bit b′. The advantage of A is denoted as |Pr[b′ = 1|b =
0] − Pr[b′ = 1|b = 1]|.



192 H. Xue et al.

2.3 Password-Based Authenticated Key Exchange

As the space limits, we omit the secure definition of BPR model [6] with mutual
authentication which is added by [12]. For more details, please refer [12].

3 Only-One Lossy Encryption

As a basic tool of PAKE, we first propose the definition of only-one lossy encryp-
tion. And as a preparation of PAKE, we also give the instantiations based on
DDH and LWE assumptions.

Informally, in the only-one lossy encryption, there is a branch hided in public
key; With a trapdoor, there is a algorithm to decide which tag is equal to this
branch; But without the trapdoor the branch is secure; If tag is equal to this
branch the encryption works as normal and can decrypted with security key; If
tag is not equal to this branch, the ciphertext of any two message is statistically
indistinguishable. The following is the formal definition.

Definition 2 (Only-one lossy encryption). The only-one lossy encryption
consists a tuple of probability polynomial time (PPT) algorithms (NormSamp,
KeyGen, Enc, Dec, Decide).

– NormSamp(λ), given security parameters λ, outputs the public parameters pp,
corresponding trapdoor td together with a normal branch b in tag space D.

– KeyGen(b), given the normal branch b, outputs (pk, sk) where pk is a public
encryption key and sk is the corresponding decryption key on tag b.

– Enc(pk, tag,m, r), given public key, and tag tag∈ D, message m ∈ {0, 1}l and
randomness r, outputs a ciphertext c of m on tag tag.

– Dec(sk, c), given a decryption key, ciphertext c on tag b, outputs a message
m in {0, 1}l.

– Decide(td, pk, tag), given the trapdoor td generated by NormSamp, public key
with branch b and a tag tag, outputs 1 if tag = b, 0 otherwise.

Those algorithms satisfy the following secure requirements:

Correctness. For all m ∈ {0, 1}l and pk with normal branch b,

Dec(sk,Enc(pk, b,m)) = m.

Lossiness. For any pk with normal branch b, any tag tag �= b, and any pair of
message m0,m1 ∈ {0, 1}l,there is

{Enc(pk, tag,m0, r)|r ← R} =s {Enc(pk, tag,m1, r)|r ∈ R}

Normal Branch Hidding. For any the two distinct branches (b, b∗) in tag
space, the two ensembles {pk|(pk, sk) ← KeyGen(b)} and {pk|(pk, sk) ←
KeyGen(b∗)} are computational indistinguishable.



New Framework of Password-Based Authenticated Key Exchange 193

Note that the only-one lossy encryptions has some property similar with
dual mode cryptosystem given by [20], but has main differences. As their aim is
universal composable secure oblivious transfer, in the dual mode cryptosystem,
it requires two setup algorithms, and in one mode, there should be a algorithm
to generate decryption key for ciphertext on all tag. We do not require this in
only-one lossy encryption. There is another difference, the branch space in dual
mode cryptosystem is {0, 1}, while in only-one lossy encryption the tag space
is D.

In the following, we give the constructions based on DDH and LWE assump-
tions.

3.1 Only-One Lossy Encryption from DDH Assumption

Let G be a cyclic group of prime order p with a generator g. The DDH assumption
is the following: for random generator g, h ∈ G, and for independent a, b, c ∈ Zp

the tuples (g, ga, gb, gab) abd (g, ga, gb, gc) are computational indistinguishable.
We now construct a only one lossy encryption scheme based on DDH assumption.

– NormSamp(λ), given security parameters λ, chooses a ← Zp and b ← Zp, com-
putes h = ga. It outputs the public parameters pp = (G, g, h), corresponding
trapdoor td = a together with a normal branch b.

– KeyGen(b), given the normal branch b, chooses r ← Zp, computes g1 =
gs, h1 = hsgb. It outputs pk = (g1, h1) and sk = s.

– Enc, given public key (g1, h1), and tag tag∈ Zp and message m ∈ Zp, chooses
r1, r2 ← Zp. It computes c1 = gr1hr2 , c2 = gr1

1 (h1/gtag)r2 · m , outputs a
ciphertext c = (c1, c2).

– Dec, given a decryption key s, ciphertext c = (c1, c2) on tag b, outputs a
message m by computing c2/cs

1.
– Decide(td, pk, tag), given the trapdoor td = a, public key with branch b and

a tag tag, outputs 1 if h1/ga
1 = gtag, 0 otherwise.

Theorem 1. The above scheme is a only one lossy encryption under the DDH
assumption on G.

As the space limit, we omit the formal proof.

3.2 Only-One Lossy Encryption from LWE Assumption

We recall the definition of LWE assumption.

Definition 3 (Learning With Errors (LWE)). Let m = m(n), q = q(n) be
integers, and χ be a distribution on Zq. Let A ← Zm×n

q , s ← Zn
q , e ← χm, then

LWE(m,n, a, χ) problem is to find s, given (A,As+e).

This is the search version of the LWE problem. Regev [22] proved the security
of LWE(m,n, q,DZ,αq) when m = poly(n) and αq ≥ 2

√
n.



194 H. Xue et al.

Definition 4 (Decisional Learning With Errors (DLWE)). Let m =
m(n), q = q(n) be integers, and χ be a distribution on Zq. Let A ← Zm×n

q ,
s ← Zn

q , e ← χm, then DLWE(m,n, a, χ) problem is that given (A, b), decide
whether b is distributed by As+e or chosen uniformly at random from Znq.

The hardness of DLWE can be reduced to the hardness of the search version of
LWE [22].

We now present the constructions of a only-one lossy encryption. This only-
one lossy encryption is a modified and weaker version of dual-mode encryption
based on LWE assumption proposed by Peikert et al. [20], which is also a Regev-
like scheme [22]. The scheme uses Islossy algorithm in [13] to decide the normal
branch.

– NormSamp(λ): chooses a random matrix A ← Zn×m
q uniformly random

together with a trapdoor t = S as described by Gentry et al. [13]. It
chooses k random vectors v1,v2, · · · ,vk ← Zm

q . It generates a normal branch
b ∈ {1, · · · , k} and outputs (A,v1, · · · ,vk) as CRS, S as trapdoor, and b as
normal branch.

– KeyGen(b): given the normal branch b ∈ {1, · · · , k}, it chooses a random s ∈
Zn

q and errors vector x ← χm. It computes and outputs pk = sTA + x + vb.
– Enc(pk, tag,m): given public key, and tag tag∈ {1, · · · , k} and message m ∈

{0, 1}, it chooses a vector e ∈ Zm according to DZm,r, where r is given in
security analysis. It computes u = Ae and c = (pk − vtag)Te+ m · 	2/q
 and
outputs ciphertext u, c.

– Dec(sk,u, c): given ciphertext u, c, it computes c − sTu and outputs 0 if it is
close to 0 than to 	q/2
, otherwise outputs 1.

– Decide(S, pk, tag): It computes d = pk − vtag. Run Islossy algorithm in [13]
with input (S,A,d), if Islossy outputs “lossy”, tag is not the normal branch
of pk, else it is.

The proof of the above only-one lossy encryption is implied by Lemmas
6.2, 6.3 and 6.6 in [13], and we just give sketch proof. The correctness of the
decryption algorithm is guaranteed by Lemma 1. The correctness of the Decide
algorithm is implied by Lemma 3. For any tag �= b, pk−vtag = sTA+x+vb−vtag.
As both vb and vtag are independent and randomly chosen, vb −vtag is randomly
chosen, thus sTA+ x+ vb − vtag is randomly chosen. Take sTA+ x+ vb − vtag

to be p in Lemma 2, we have the lossy property. At last, the normal branch
hidding is implied by replacing sTA + x with a random element.

4 New Framework of PAKE

We now present the new framework for PAKE from only-one lossy encryption
and IND-PCA secure encryption scheme. In this construction, the following
primitives are required: Let (NormSamp, KeyGen, Enc, Dec, Decide) be the only-
one lossy encryption and CENC = (CKeyGen, CEnc, CDec) be a lable-based
IND-PCA secure encryption. (For more information of label-based IND-PCA



New Framework of Password-Based Authenticated Key Exchange 195

CRS: pp, cpk

Client U(π) Server U′(π)

r ← {0, 1}∗, R ← M
(pk, sk) = KeyGen(π) U ||pk C = Enc(pk, R, r)

rj ||τj ||skj = R

label = U ||pk||U ′||C
label = U ||pk||U ′||C U ′||C||C′ C′ ← CEnc(cpk, label, π, rj)

ri||τi||ski = Dec(sk, C)

C′ ?
= CEnc(cpk, label, π, ri)

if NO, abort, τi if τi �= τj , abort,

otherwise, output ski otherwise, output skj

Fig. 1. New framework of PAKE

secure encryption, please refer [2]) Let the branch space of lossy encryption be
equal to the password space and they both do not include 0. The protocol is
displayed in Fig. 1.

Initialization: The CRS consists of public parameters pp generated by
NormSamp, and the public keys cpk of IND-CPA secure encryption generated
by CKeyGen.

Protocol execution. Figure 1 demonstrates the execution of the protocol.

Stage 1: When a client U (holds π) wants to authenticate to the server U ′ (holds
π), it generate the public key pk of only-one lossy encryption from (pk, sk) ←
KeyGen(π), and sends U ||pk to U ′.

Stage 2: On receiving the message U ||pk, U ′ randomly chooses randomness r
and a random message R in plaintext space M, and computes ciphertext C =
Enc(pk,R, r) with randomness r. It parse R into three bit strings rj , τj , skj .
It sets label = U ||pk||U ′||C, encrypts π as C ′ ← CEnc(cpk, label, π, rj) with
randomness rj . Then U ′ sends U ′||C||C ′ to U .

Stage 3: On receiving the message U ′||C||C ′, user U decrypt C using sk and
decomposes massage as ri||τi||ski ← Dec[sk, C]. It sets label = (U ||pk||U ′||C)
and checks C ′ ?= CEnc(cpk, label, π, ri). If no, aborts else sends τi to U ′ and
outputs ski which means that U ′ has successfully authenticated to U .

Stage 4: On receiving the message τi, U ′ checks that if τi = τj or not. If τi �= τj ,
U ′ aborts, otherwise U has successfully authenticated to U ′ and U ′ outputs skj .

If both parties are honest and there is no adversarial interference, then it
guarantees that ri||τi||ski = rj ||τj ||skj . Both parties will accept and output the
same session key.



196 H. Xue et al.

Theorem 2. If the underling encryption scheme are only-one lossy encryption
and IND-PCA secure encryption scheme, the PAKE in Fig. 1 is secure in the
BPR model.

As the space limit, we omit the proof. Please refre the full paper for the
formal proof.

Instantiations. We instantiate the framework in Sect. 3 based on DDH assump-
tion and LWE assumption. Although, in case of DDH, we get a scheme with
communication complexity of 8 group elements which has one more groups than
the scheme in [12]. Our framework can be instantiated based on LWE assump-
tion, which the GK-PAKE can not be instantiated based on lattice assumptions.
Based on LWE assumption, the only-one lossy encryption is the one give in
Sect. 3.2, and the IND-PCA secure encryption can be that is IND-CCA secure
given by Gentry et al. [13] or that given by Micciancio and Peikert [18].

5 Conclusion

We give a framework of PAKE, which consists of only-one lossy encryption and
IND-PCA secure encryption. Our framework can be instantiated from lattice
assumptions. Only-one lossy encryption can be constructed based DDH and
LWE assumptions. Although the instantiation of our framework based on DDH
assumption does not improve efficiency of precious works, our framework pro-
vides more easier and elegant way to construct PAKE from lattice assumptions.

Acaknowledgement. Haiyang Xue is supported by the Foundation of Science
and Technology on Communication Security Laboratory (9140C110206150C11049),
National Natural Science Foundation of China (No. 61602473, 61502480, 61672019)
and National Cryptography Development Fund MMJJ20170116. Bao Li is supported
by the Foundation of Science and Technology on Communication Security Laboratory
(9140C110206150C11049) and the National Natural Science Foundation of China (No.
61379137).

References

1. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30574-3 14

2. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indis-
tinguishable under plaintext-checkable attacks. In: Katz, J. (ed.) PKC 2015.
LNCS, vol. 9020, pp. 332–352. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46447-2 15

3. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 1

http://dx.doi.org/10.1007/978-3-540-30574-3_14
http://dx.doi.org/10.1007/978-3-662-46447-2_15
http://dx.doi.org/10.1007/978-3-662-46447-2_15
http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/978-3-642-01001-9_1


New Framework of Password-Based Authenticated Key Exchange 197

4. Bellovin, M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Pri-
vacy, pp. 72–84 (1992)

5. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 12

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 11

7. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

8. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

9. Canetti, R., Dachman-Soled, D., Vaikuntanathan, V., Wee, H.: Efficient password
authenticated key exchange via oblivious transfer. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 449–466. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-30057-8 27

10. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 408–432. Springer, Heidelberg
(2001). doi:10.1007/3-540-44647-8 24

11. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key
exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 33

12. Groce, A., Katz, J.: A new framework for efficient password-based authenticated
key exchange. In: ACM Conference on Computer and Communications Security,
pp. 516–525 (2010)

13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattice and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

14. Jiang, S., Gong, G.: Password based key exchange with mutual authentication.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30564-4 19

15. Kol, G., Naor, M.: Cryptography and game theory: designing protocols for exchang-
ing information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-78524-8 18

16. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001). doi:10.1007/
3-540-44987-6 29

17. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-10366-7 37

18. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 41

19. Paillier, P., Pointcheval, D.: Efficient public-key cryptosystems provably secure
against active adversaries. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASI-
ACRYPT 1999. LNCS, vol. 1716, pp. 165–179. Springer, Heidelberg (1999). doi:10.
1007/978-3-540-48000-6 14

http://dx.doi.org/10.1007/3-540-45539-6_12
http://dx.doi.org/10.1007/3-540-45539-6_11
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/978-3-642-30057-8_27
http://dx.doi.org/10.1007/3-540-44647-8_24
http://dx.doi.org/10.1007/3-540-39200-9_33
http://dx.doi.org/10.1007/978-3-540-30564-4_19
http://dx.doi.org/10.1007/978-3-540-78524-8_18
http://dx.doi.org/10.1007/3-540-44987-6_29
http://dx.doi.org/10.1007/3-540-44987-6_29
http://dx.doi.org/10.1007/978-3-642-10366-7_37
http://dx.doi.org/10.1007/978-3-642-10366-7_37
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-540-48000-6_14
http://dx.doi.org/10.1007/978-3-540-48000-6_14


198 H. Xue et al.

20. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 31

21. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds) STOC 2008, pp. 187-196 (2008)

22. Rege, O.: On lattices, learning with errors, random linear codes, and cryptography.
J. ACM 56(6), 1–40 (2009)

23. Wang, D., Jian, G., Huang, X., Wang, P.: Zipfs law in passwords. ACM Trans.
Info. Syst. Sec. 1(1), 33 pages (2015). Article 1

http://dx.doi.org/10.1007/978-3-540-85174-5_31


Security Models



Impossibility of the Provable Security
of the Schnorr Signature from the One-More
DL Assumption in the Non-programmable

Random Oracle Model

Masayuki Fukumitsu1(B) and Shingo Hasegawa2

1 Faculty of Information Media, Hokkaido Information University,
Nishi-Nopporo 59-2, Ebetsu, Hokkaido 069-8585, Japan

fukumitsu@do-johodai.ac.jp
2 Graduate School of Information Sciences, Tohoku University,

41 Kawauchi, Aoba-ku, Sendai, Miyagi 980-8576, Japan
hasegawa@cite.tohoku.ac.jp

Abstract. The security of the Schnorr signature was widely discussed.
In the random oracle model (ROM), it is provable from the DL assump-
tion, whereas there is a negative circumstantial evidence in the standard
model. Fleischhacker, Jager and Schröder showed that the tight secu-
rity of the Schnorr signature is unprovable from a strong cryptographic
assumption, such as the One-more DL (OM-DL) assumption and the
computational and decisional Diffie-Hellman assumption, in the ROM
via a generic reduction as long as the underlying cryptographic assump-
tion holds. However, it remains open whether or not the impossibility
of the provable security of the Schnorr signature from a strong assump-
tion via a non-tight and reasonable reduction. In this paper, we show
that the security of the Schnorr signature is unprovable from the OM-
DL assumption in the non-programmable ROM as long as the OM-DL
assumption holds. Our impossibility result is proven via a non-tight and
non-restricted Turing reduction.

Keywords: Schnorr signature · Non-programmable random oracle
model · Impossibility result · One-more DL assumption

1 Introduction

The Schnorr signature is one of the representative signature schemes. This sig-
nature scheme has a simple and efficient construction. Its security was discussed
in several literatures. Pointcheval and Stern [20] showed that it is provable to
be strongly existentially unforgeable against the chosen message attack (seuf-
cma) in the random oracle model (ROM) from the discrete logarithm (DL)
assumption. Subsequently, Abdalla et al. [1] expands their result to cover more
signatures which can be obtained via the Fiat-Shamir transformation [9].

c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 201–218, 2017.
https://doi.org/10.1007/978-3-319-68637-0_12



202 M. Fukumitsu and S. Hasegawa

On the other hand, there is a negative circumstantial evidence for the prov-
able security of the Schnorr signature in the standard model. More specifically,
the Schnorr signature is unprovable to be secure from the DL assumption in the
standard model via an algebraic reduction as long as the One-more DL (OM-
DL) assumption holds [18]. The OM-DL assumption [3] is parameterized by a
polynomial T and it intuitively states that any probabilistic polynomial-time
(PPT) adversary A cannot find the DLs (x1, x2, . . . , xT ) of given T elements
(y1, y2, . . . , yT ) in a group G, even when A adaptively obtains at most T − 1
DLs of arbitrary elements. We occasionally call such an OM-DL assumption
T -OM-DL assumption explicitly.

For the provable security of the Schnorr signature, the affirmative results
were given in the ROM, whereas the impossibility result was given in the stan-
dard model. The ROM is different from the standard model in the two features.
The one is that the hash value is a truly random string in the ROM, whereas
it is a pseudorandom string in the standard model. The other is that the pro-
gramming technique [20] is utilizable in the ROM, although it cannot be used
in the standard model. The programming technique is a proof technique where
a reduction R, which is constructed in the security proof, simulates the ran-
dom oracle by setting hash values itself. By this technique, the security of many
cryptographic schemes e.g. [8,16] was proven in the ROM. In fact, the forking
lemma [20] can be realized by this technique for security proofs of several cryp-
tographic schemes including the Schnorr signature. However, it is known that
such a programming property is strong [23]. On the theoretical cryptography,
one of the interests is how one can relax the property of the ROM to prove
the security of cryptographic schemes. For this purpose, intermediate security
models between the ROM and the standard model were proposed. One of these
is a non-programmable ROM (NPROM). The concept of the NPROM was intro-
duced by Nielson [17] in order to give an impossibility result on the existence of
a non-interactive non-committing encryption. Their definition was given in the
simulation-based security model. Subsequently, Fischlin et al. [11] formalized
the NPROM for the game-based security proof, and discussed the security of
a trapdoor-permutation-based key-encapsulation and a full-domain hash in the
NPROM. In the NPROM, any parties of the security proof such as a reduction
R and an adversary obtain hash values from the random oracle as well as the
ROM, but R is prohibited to simulate it, namely it cannot set the hash values
and we cannot use the programming technique.

The security of the Schnorr signature was also discussed in the NPROM.
Fischlin and Fleischhacker [10] first gave a negative circumstantial evidence.
They showed that the Schnorr signature is unprovable to be euf-cma from the
DL assumption in the NPROM via a single-instance (SI) reduction as long as the
OM-DL assumption holds. Subsequently, their impossibility result was extended
in the several literatures [13,14,23]. In particular, Fukumitsu and Hasegawa [14]
proved that the DL assumption is incompatible with the euf-cma security of
the Schnorr signature in the NPROM via a sequentially multi-instance (SMI)
reduction. In other words, the Schnorr signature may be unprovable to be



Impossibility of the Provable Security of the Schnorr Signature 203

euf-cma from the DL assumption in the NPROM as long as the DL assump-
tion holds. The SMI reduction is a reduction such that it can invoke an adver-
sary of the target cryptographic scheme polynomially many times, although it
is prohibited to invoke the clones of the adversary concurrently.

However, it remains the possibility that it is provable from a cryptographic
assumption which is stronger than the DL assumption, such as the OM-DL
assumption and the computational and decisional Diffie-Hellman assumption [5].
This question was also discussed. As the affirmative result which is depicted in
Table 1, Paillier and Vergnaud [18] showed that the Schnorr signature is provable
to be unkeybreakable against the chosen-message attack (ukb-cma) from the
OM-DL assumption in the standard model. Although it was proven via a tight
reduction, the ukb-cma security is considered to be weak.

Table 1. The affirmative results on proving the security of the Schnorr signature

Model Security Tightness Underlying assumption

[1,20] ROM seuf-cma DL

[18] Standard ukb-cma
√

OM-DL

On the other hand, the negative circumstantial evidences were given in sev-
eral literatures. Fleischhacker et al. [12] showed that the Schnorr signature is
unprovable to be universally unforgeable against the key only attack (uuf-koa)
from some cryptographic assumption, such as not only the DL assumption,
but also the OM-DL assumption, in the ROM via a tight and generic reduc-
tion as long as the underlying cryptographic assumption holds. Recall that
Paillier and Vergnaud [18] had also given such an impossibility result from the
DL assumption via a tight and algebraic reduction. It should be noted that their
impossibility result does not contradict to the affirmative results by [1,20]. This
is because the results by [1,20] considered a non-tight reduction for the secu-
rity proofs, whereas these impossibility results are only for tight reductions. In
this sense, the result by [12] does not exclude the possibility that such a secu-
rity can be proven via a non-tight reduction. Moreover, they only considered
the strong constrained reduction, namely a generic reduction. The impossibil-
ity results mentioned above are collected in Table 2. Note that “only” in the
Tightness column means that its impossibility excludes only a tight reduction.
Eventually, it remains open whether or not the impossibility of the provable
security of the Schnorr signature from a strong assumption in the NPROM via
a non-tight and reasonable reduction.

1.1 Our Contributions

In this paper, we give an impossibility result on the provable security of the
Schnorr signature from the OM-DL assumption in the NPROM via a Turing
reduction. It is given by the following theorem.



204 M. Fukumitsu and S. Hasegawa

Table 2. The impossibility results on proving the security of the Schnorr signature

Model Security Tightness of
reduction

Underlying
assumption

Type of
reduction

Assumptions on
impossibility

[18] ROM uuf-cma only DL algebraic OM-DL
assumption

[12] ROM uuf-koa only DL generic DL assumption

[12] ROM uuf-koa only OM-DL generic OM-DL
assumption

[10] NPROM euf-cma DL SI OM-DL
assumption

[14] NPROM SMA [2] DL SMI DL assumption

[ours] NPROM suf-cma OM-DL Turing OM-DL
assumption

[18] Standard uuf-cma DL algebraic OM-DL
assumption

Theorem 6 (Informal). The Schnorr signature is unprovable to be selectively
unforgeable against the chosen-message attack (suf-cma) from the OM-DL
assumption in the NPROM via a Turing reduction as long as the OM-DL
assumption holds.

The intuition of the proof of the theorem is the following. Assume that a PPT
Turing reduction algorithm R which solves the OM-DL problem by invoking any
sf-cma forger F of the Schnorr signature exists. We shall construct a PPT meta-
reduction algorithm [6] M which solves the OM-DL problem by running R. This
means that the OM-DL assumption is broken if there exists such a reduction
R. The theorem follows from the contraposition. In the construction of M, we
employ the technique introduced by Pass [19] and used by Zhang et al. [22].

In our theorem, we consider the suf-cma security [15]. The suf-cma secu-
rity informally states that any PPT forger F cannot forge one mi∗ of given N
messages (m1, . . . ,mN ) even if F obtains polynomially many signatures from
the signing oracle on messages other than the target message mi∗ . It is known
that suf-cma is weaker than euf-cma [15]. Putting together with Theorem6, the
impossibility of the ordinary euf-cma security also follows. Thus, our result states
that the euf-cma security of the Schnorr signature is unprovable without the pro-
gramming technique even from the OM-DL assumption as long as the OM-DL
assumption holds. This means that the programming technique is required for us
to prove the security of the Schnorr signature even from a strong cryptographic
assumption. In other words, one should put forward a new technique or mod-
ify the Schnorr signature to prove its security in the NPROM or the standard
model.



Impossibility of the Provable Security of the Schnorr Signature 205

1.2 Related Works

Pass [19] gave an impossibility of the provable security on the Schnorr ID
scheme [21] by which the Schnorr signature is derived via the Fiat-Shamir trans-
formation. They showed that the Schnorr ID is unprovable to be secure against
the impersonation under the active attack (imp-aa secure) from several interac-
tive assumptions such as the OM-DL assumption. Note that the imp-aa security
of the Schnorr ID was proven from the OM-DL assumption in [4]. This difference
is induced by the parameter T of the OM-DL assumption. Bellare and Palacio [4]
in fact considered the case where the parameter T is equivalent to the number of
the access to the oracle in the imp-aa game, whereas Pass considered that T is
asymptotically smaller than the number of the oracle access. It is known that the
T1-OM-DL assumption may be strictly weaker than the T2-OM-DL assumption
when T2 > T1 [7]. These imply that the Schnorr ID may be unprovable to be
secure from the T -OM-DL assumption where the parameter T is strictly smaller
than the number of the oracle access.

Although they focused on the provable security of the Schnorr ID, their
result seems not to directly elucidate the question on the provable security of the
Schnorr signature from the OM-DL assumption in the NPROM. This is because
the relationship between the security of the Schnorr signature in the NPROM
and the security of the Schnorr ID has not been known so far. Therefore, we
address this question by directly observing the relationship between the security
of the Schnorr signature and the OM-DL assumption.

2 Preliminaries

For any natural number n, let Zn denote the residue ring Z/nZ. The notation
x ∈U X means that an element x is sampled uniformly at random from the
finite set X. We denote by x := y that x is defined or substituted as y. For any
algorithm A, we define by y ← A(x) that A takes x as input and then outputs
y. When A is probabilistic, we write y ← A(x; r) to denote that A takes x as
input with a randomness r and then outputs y, and A(x) is the random variable
on input x, where the probability is taken over the internal coin flips of A. A
function ε is negligible if for any polynomial ν, there exists a natural number λ0

such that for any λ > λ0, ε(λ) < 1/ν(λ).

2.1 Signature Scheme

A signature scheme Sig consists of a tuple (KGen,Sign,Ver) of three polynomial-
time algorithms. KGen is a probabilistic polynomial-time (PPT) key generator
which takes a security parameter 1λ as input, and then outputs a key pair (sk, pk)
of a secret key and a public key. Sign is a PPT signing algorithm which takes a
key pair (sk, pk) and a message m as input, and then outputs a signature σ. Ver
is a deterministic verification algorithm which takes a public key pk, a message
m and a signature σ as input, and then outputs 1 if σ is a valid signature on
the message m under the public key pk.



206 M. Fukumitsu and S. Hasegawa

We now introduce the notions of the existential unforgeability against the
chosen message attack (euf-cma) and the selective unforgeability against the
chosen message attack (suf-cma). Let Sig := (KGen,Sign,Ver) be a signature
scheme. The ef-cma game is defined in the following way: on a security parame-
ter λ,

EF Init F is given a public key pk such that a challenger C generates (sk, pk) ←
KGen(1λ).

Signing Oracle When F hands an i-th message mi to C, C replies its signature
σi ← Sign(sk, pk,mi).

EF Challenge When F finally returns a pair (m∗, σ∗), C outputs 1 if m∗ /∈
{mi}i and Ver(pk,m∗, σ∗) = 1.

Then F is said to win the ef-cma game if C outputs 1 in this game. In a sim-
ilar manner, the N -sf-cma game is defined in the following way, where N is a
polynomial in a security parameter λ: on a security parameter λ,

SF Init F is given a public key pk and a sequence (m1,m2, . . . ,mN ) of N
distinct messages such that a challenger C generates (sk, pk) ← KGen(1λ)
and samples m1,m2, . . . ,mN at random.

Signing Oracle It coincides with the one of the ef-cma game.
SF Challenge When F finally returns a pair (mi∗ , σi∗), C outputs 1 if mi∗ /∈

{mi}i and Ver(pk,mi∗ , σi∗) = 1.

Then F is said to win the N -sf-cma game if C outputs 1 in this game. Let
goal ∈ {euf, N -suf}. The signature scheme Sig is said to be goal-cma if for any
PPT forger F , F wins the corresponding game with negligible probability. The
probability is taken over the internal coin flips of KGen and F , and the choices
of m1,m2, . . . ,mN only for the N -suf-cma. On the relationship between euf-cma
and N -suf-cma, the following proposition holds.

Proposition 1 ([15]). Let Sig be a signature scheme, and let N be a polynomial
in a security parameter λ. If Sig is euf-cma, then Sig is also N -suf-cma.

2.2 Cryptographic Assumption

We now introduce the One-more DL (OM-DL) assumption. We write GGen to
denote a PPT group parameter generator which takes a security parameter λ
as input, and then outputs a group parameter (G, p, g) of a group description G

which is of prime order p with a generator g. For any group parameter (G, p, g) ←
GGen(1λ) and any element y ∈ G, an element x ∈ Zp is said to be the discrete
logarithm (DL) of y if it holds that y = gx in G.

Let T be a polynomial in a security parameter λ. An algorithm A is said to
solve the T -OM-DL problem if a challenger C outputs 1 in the T -OM-DL game
that is defined in the following way: on a security parameter λ,

OM Init A is given a tuple (G, p, g, y1, y2, . . . , yT ) such that C generates a
group parameter (G, p, g) ← GGen(1λ), and then samples T distinct instances
y1, . . . , yT ∈U Zp.



Impossibility of the Provable Security of the Schnorr Signature 207

OM Oracle A is allowed to access the DL oracle. Namely, when A sends a t-th
query yt ∈ G, A receives the DL xt ∈ Zp of yt.

OM Challenge When A eventually outputs a tuple (x1, x2, . . . , xT ), C outputs
1 if A made at most T −1 queries to the DL oracle in the OM Oracle phase,
and for any 1 ≤ t ≤ T , xt is the DL of yt.

The T -OM-DL assumption holds if for any PPT algorithm A, A solves the T -
OM-DL problem with negligible probability. The probability is taken over the
internal coin flips of GGen and A, and the choices of y1, . . . , yT . Contrarily, the
T -OM-DL assumption is said to be tractable if it does not hold.

3 Impossibility of Provable Security of Schnorr Signature
from OM-DL Assumption in NPROM

In this section, we show the impossibility of proving that the Schnorr signature
is N -suf-cma from the T -OM-DL assumption in the NPROM.

We now introduce the Schnorr signature [21].

KGen(1λ) outputs a key pair (sk, pk) where (G, p, g) ← GGen(1λ), sk ∈U Zp,
y := gsk, and then pk := (G, p, g, y).

Sign(sk, pk,m) outputs a signature σ := (cmt, res) on the message m under the
public key pk which is issued in the following way:
(1) set cmt := gst by sampling st ∈U Zp;
(2) set cha := Hpk(cmt,m), where Hpk : {0, 1}∗ → Zp is a hash function

parametrized by pk; and
(3) set res := st + sk · cha mod p.

Ver(pk,m, σ) outputs 1 if it holds that cmt = gresy−Hpk(cmt,m).

Let N and T be polynomials in a security parameter λ. We now explain
the situation where the Schnorr signature is provable to be N -suf-cma from the
T -OM-DL assumption. This is defined by the black-box reduction in a similar
manner to e.g. [10,20]. This situation holds if there exist a non-negligible function
ε and a PPT reduction algorithm R such that R solves the T -OM-DL problem
with probability ε by invoking a forger F which wins the N -sf-cma game with
non-negligible probability. Here, we restrict a reduction R to accessing the DL
oracle at most T − 1 times, since R aims to win the T -OM-DL game.

3.1 Case: Vanilla Reduction

For ease of the explanation, we first consider only the situation where R is
vanilla, in a sense that the vanilla reduction R invokes a forger F only once and
it is not allowed to rewind F . In more detail, R can solve the T -OM-DL problem
with non-negligible probability ε once R invokes an winning N -sf-cma forger F .
Here, R would play a role of a challenger in the N -sf-cma game.

The overview of R is depicted in Fig. 1. Let (G, p, g, y1, y2, . . . , yT ) be a
T -OM-DL instance given from a T -OM-DL challenger C to the reduction R.



208 M. Fukumitsu and S. Hasegawa

Fig. 1. Vanilla reduction R

R aims to find a solution (x1, x2, . . . , xT ) of the instance (G, p, g, y1, y2, . . . , yT )
in the following way. According to the SF Init phase of the N -sf-cma game, R
would generate a tuple (pk,m1,m2, . . . ,mN ) of a public key pk of the Schnorr
signature and N distinct messages m1,m2, . . . ,mN , and then invoke an winning
N -sf-cma forger F on the tuple (pk,m1,m2, . . . ,mN ). When F hands an i-th
message mi to R in the Signing Oracle phase, R should reply its signature σi

under the public key pk. Note that R may fail to issue a valid signature of some
mi, since it is a PPT algorithm. In this case, F is allowed to return ⊥ as a final
output. On the other hand, F returns a valid signature σi∗ of the i∗-th message
mi∗ with non-negligible probability for some index 1 ≤ i∗ ≤ N if F receives all
valid signatures in this phase. Finally, R finds a solution (x1, x2, . . . , xT ) of the
instance (G, p, g, y1, y2, . . . , yT ) with probability ε.

Here, the T -OM-DL adversary R can access the DL oracle at most T − 1
times. Namely, R would send a t-th instance yt ∈ G to receive its DL xt ∈ Zp.

In the non-programmable random oracle model (NPROM) [10], R and F
should obtain hash values from the random oracle in a similar manner to the
ordinary ROM. Then, R can observe all random oracle queries by F , but it is
not allowed to program these values.

Theorem 2. Let T < N . Assume that the Schnorr signature is provable to be
N -suf-cma from the T -OM-DL assumption in the NPROM via a vanilla reduc-
tion. Then, the T -OM-DL assumption is tractable.

Proof (Sketch). Let T < N . Assume that the Schnorr signature is provable to be
N -suf-cma from the T -OM-DL assumption in the NPROM via a vanilla reduc-
tion. Namely, there exist a non-negligible function ε and a PPT vanilla reduction
R such that R solves the T -OM-DL problem with probability ε by invoking a
forger F which wins the N -sf-cma game with non-negligible probability.

By invoking an winning N -sf-cma forger F once and accessing the DL oracle
at most T − 1 times in the OM Oracle phase, R finds the solution (x1, . . . , xT )



Impossibility of the Provable Security of the Schnorr Signature 209

Algorithm: N -sf-cma forger F̃j(pk, m1, m2, . . . , mN )

(F-1) for each 1 ≤ i < j, hand the i-th message mi,
and then obtain its signature σi. Once F̃j finds
σi such that Ver(pk, mi, σi) �= 1, then return ⊥;

(F-2) find a valid signature σj of the j-th message mj ,
and then return (mj , σj).

Fig. 2. N -sf-cma forger F̃j

of a given instance (G, p, g, y1, . . . , yT ) with probability ε. It suffices for finding
the solution (x1, . . . , xT ) that a simulator of F is provided to R. Hereafter, we
describe hypothetical N -sf-cma forgers F̃j for 1 ≤ j ≤ N . It should be noted that
R can solve the T -OM-DL problem if the hypothetical forger F̃j for any index
1 ≤ j ≤ N is provided for R. We shall construct a meta-reduction algorithm M
which solves the T -OM-DL problem with non-negligible probability by utilizing
R and simulating several forgers F̃j .

Hypothetical Forgers F̃j . We fix an index 1 ≤ j ≤ N . A hypothetical forger
F̃j is depicted in Fig. 2. On a tuple (pk,m1, . . . ,mN ), the hypothetical forger
F̃j obtains a signature σi := (cmti, resi) of the i-th message mi for each index
1 ≤ i < j in (F-1). As mentioned in the definition of R, F̃j is allowed to return
⊥ if it receives a non-valid signature of some handed message in the Signing
Oracle phase. Otherwise, F̃j finds a signature σj := (cmtj , resj) of the j-th
message mj in (F-2). Note that F̃j queries a pair (cmti,mi) to the random
oracle for all 1 ≤ i ≤ j, due to the verification in (F-1) and the finding the
challenge signature σj in (F-2). Since the N -sf-cma challenger C gives distinct
messages m1, . . . ,mN to F̃j , we have mj /∈ {mi}1≤i<j . On the other hand, it
holds that Ver(pk,mj , σj) = 1. Thus F̃j always wins the N -sf-cma game if it
receives a valid signature σi of mi for all 1 ≤ i < j. It should be noted that
the process (F-2) is not required to be done in PPT here. We will construct a
meta-reduction M which simulates several forgers F̃j for R in PPT.

Meta-Reduction M. We depict in Fig. 3 a meta-reduction M which solves the
T -OM-DL problem with non-negligible probability by utilizing R with the sim-
ulation of several forgers F̃j . Note that the i-th slot means the period from
sending the i-th message mi by F̃N in (a) of (T-1) to receiving the hash value
of (cmti,mi) in (b) of (T-1).

We now explain the idea of the meta-reduction M. M aims to make R
to solve the T -OM-DL problem. Recall that R can solve the T -OM-DL prob-
lem with non-negligible probability ε if some forger F̃i∗ is provided, where
1 ≤ i∗ ≤ N . Therefore, M simulates the forger F̃i∗ for R. In the simulation of
F̃i∗ , M is required to find a signature σi∗ of the challenge message mi∗ in PPT.



210 M. Fukumitsu and S. Hasegawa

Algorithm: Meta-reduction M(G, p, g, y1, y2, . . . , yT )

(M-1) sample random coins r, and then run R(G, p, g, y1, y2, . . . , yT ; r). Hereafter, M
records to List all inputs and outputs of R, such as queries and responses in the
OM Oracle phase, and interactions between R and F .

(M-2) proceed in the following way according to an R’s output:
Access to DL oracle When R sends yt ∈ G, forward it to the DL oracle, and

reply its solution xt to R.
Invocation of F Given (pk, m1, . . . , mN ) by R, simulate F̃N as follows:

(T-1) for each 1 ≤ i < N ,
(a) hand the i-th message mi to R, and then receive its signature

σi := (cmti, resi).
(b) if Ver(pk, mi, σi) �= 1, then return ⊥, and then go to (M-4). During

the verification, M queries (cmti, mi) to the random oracle.
(c) if R does not access the DL oracle during the i-th slot, set i∗ := i,

and then go to (M-3).
(T-2) abort.

(M-3) rewind R(G, p, g, y1, y2, . . . , yT ; r) in the following way. Here, M simulates F̃i∗

instead of F̃N .
– Until just after obtaining the hash value of (cmti∗−1, mi∗−1), M runs in

the same way as (M-1) and (M-2) except that it replies all of instances yt

sent from R by using List instead of the DL oracle.
– For the i∗-th message mi∗ , M queries (cmti∗ , mi∗) to the random oracle,

and then returns the pair (mi∗ , σi∗) as an F̃i∗ ’s final output, where the
signature σi∗ has been obtained in (T-1).

(M-4) When R outputs a tuple (x1, x2, . . . , xT ), output it and then halt.

Fig. 3. Meta-reduction M

For the purpose of overcoming the difficulty, M utilizes the ability of R. R
should reply a valid signature σi for each message mi queried by an N -sf-cma
forger. In order to obtain the target signature σi∗ , M first runs R with the sim-
ulation of F̃N in (M-1) and (M-2). Then, M rewinds R in (M-3) when it has
obtained a signature σi0 of some message mi0 at some desirable point, namely



Impossibility of the Provable Security of the Schnorr Signature 211

R does not queries to the DL oracle during the i0-th slot. After the rewind, it
simulates F̃i∗ for i∗ = i0. In this case, M merely returns the signature σi∗ as
the F̃i∗ ’s final output.

It should be noted that R has a possibility that it fails to reply a valid
signature of some message handed by the forger. As mentioned in the situation
of R, an N -sf-cma forger is allowed to return ⊥ in such a case. In (T-1), M
behaves as the same as F̃N . Therefore, M correctly simulates F̃N to R in this
case. Hereafter, we consider the opposite case.

By the above observation, the following conditions are required for M to
solve the T -OM-DL problem:

(Con-1) M does not abort in (T-2);
(Con-2) The number of the access to the DL oracle of M is at most T − 1;
and
(Con-3) M correctly simulates F̃i∗ in (M-3) in the R’s viewpoint.

Lemma 3. The condition (Con-1) holds.

Proof. This abortion occurs when for any index 1 ≤ i < N , R accesses the DL
oracle during the i-th slot. In this case, the number of the access to the DL oracle
of R is to be at least N − 1. However, this does not occur. This is because it
holds that T < N by the assumption and R is supposed to access the DL oracle
at most T − 1 times. Namely, the access number to the DL oracle cannot exceed
T − 1 < N − 1. Thus, M does not reach (T-2), and hence M does not abort. ��

Lemma 3 implies that M does not abort in (M-2). It follows that either R
fails to reply some signature, or there exists an index 1 ≤ i0 < N such that M
obtains the valid signature σi0 without the DL oracle during the i0-th slot. We
now consider the case where M does not return ⊥ in (M-2). Then the latter
always holds. Therefore, the index i0 is set as the challenge index i∗ in (c) of
(T-1), and hence M rewinds R with the simulation of F̃i∗ . As in (M-3), M runs
R in the same way as (M-1) and (M-2) until the point where M obtains the
hash value of (cmti∗−1,mi∗−1) from the random oracle. This point is called the
forking point.

Lemma 4. The condition (Con-2) holds.

Proof. As mentioned above, there exists an index 1 ≤ i∗ < N such that M
obtains the valid signature σi∗ without the DL oracle during the i∗-th slot. As
in Fig. 3, M runs R in (M-1)–(M-2) and (M-3)–(M-4), respectively. Let T1,before

and T1,after be the numbers of the access to the DL oracle by R before and after
the forking point in (M-1)–(M-2), and let T2,before and T2,after be the numbers
of the access to the DL oracle by R before and after the forking point in (M-3)–
(M-4), respectively.

We now observe the number of the access to the DL oracle of M. In (M-1)–
(M-2), M forwards all DL oracle queries by R. Since R does not query in the
i∗-th slot, it holds that T1,after = 0. Hence M makes T1,before queries to the DL
oracle here. On the other hand, M makes no query before the forking point in



212 M. Fukumitsu and S. Hasegawa

(M-3)–(M-4). This is because M replies all queries by using List without the DL
oracle. After that, M forwards all DL oracle queries by R. These imply that
M makes T2,after queries to the DL oracle in (M-3)–(M-4). Totally, the number
of the DL oracle accesses by M is T1,before + T2,after. It should be noted that
the behaviors of R and M before the forking point in (M-1)–(M-2) and (M-
3)–(M-4) are identical as described in (M-3). It follows that T1,before = T2,before.
Therefore, the number of the DL oracle accesses by M is T2,before+T2,after. By the
assumption of R, that by R is at most T −1. Thus, the number T2,before+T2,after

can be also bounded by T − 1. ��
Lemma 5. The condition (Con-3) holds.

Proof. We now show that M simulates the hypothetical forger F̃i∗ in (M-3).
Again, running R in (M-3) is the same way as in (M-1) and (M-2) before the
forking point. It follows that for each 1 ≤ i < i∗, M hands the i-th message
mi to R, and then obtains its signature σi as in (T-1). Here, M makes query
(cmti,mi) to the random oracle. Thus, M behaves as in (F-1) of F̃i∗ . Moreover,
M queries (cmti∗ ,mi∗) to the random oracle, and then returns the pair (mi∗ , σi∗)
of the i∗-th message mi∗ and its signature σi∗ . Since σi∗ is a valid signature of
the i∗-th message mi∗ as mentioned above, M also behaves as in (F-2) in the
R’s viewpoint. Thus, M simulates F̃i∗ correctly. ��

We now evaluate the running time of M. M runs R twice. In (M-2) and
(M-3), M just accesses the DL oracle at most T −1 times by Lemma 4, hands at
most N − 1 messages to R, verifies the obtained signatures σi, and then queries
to the random oracle polynomially many times. Therefore, it runs in polynomial
time. Thus, M solves the T -OM-DL problem with non-negligible probability ε
in PPT. Thus the T -OM-DL assumption is tractable. ��

3.2 Case: Turing Reduction

We next consider the situation where R is Turing reduction. In this situation, R
is allowed to concurrently and adaptively invoke F at most Ii times and rewind
it at most Ir times for some polynomials Ii and Ir, whereas a vanilla reduction
R can invoke F only once and is prohibited to rewind it.

On a T -OM-DL instance (G, p, g, y1, y2, . . . , yT ) to R, R would execute the
following processes:

Access to DL oracle When R sends a t-th instance yt to the DL oracle, it
receives its DL xt.

Invoke F When R invokes a k-th forger F (k) on (pkk,mk,1,mk,2, . . . ,mk,N ), R
behaves as follows:

– If the k-th invocation F (k) of F hands an ik-th message mk,ik to R,
R should reply its valid signature σk,ik . As in the situation of a vanilla
reduction, F (k) can return ⊥ once R fails to reply a valid signature of
some message.



Impossibility of the Provable Security of the Schnorr Signature 213

– If R has correctly replies all of signatures, R obtains a pair
(
mk,i∗

k
, σk,i∗

k

)

of the i∗k-th message mk,i∗
k

and its valid signature σk,i∗
k

from F (k).
Query to random oracle R queries some string to the random oracle to obtain

its hash value.

Finally, R outputs the solution (x1, x2, . . . , xT ) of (G, p, g, y1, y2, . . . , yT ).
The Turing reduction R may rewind F (k) just after the following processes:

– F (k) hands some message mk,i to R; and
– F (k) queries to the random oracle. This is because R can observe the queries

and the responses of F (k) in the NPROM setting.

Theorem 6. Let T < N . Assume that the Schnorr signature is provable to be
N -suf-cma from the T -OM-DL assumption in the NPROM via a Turing reduc-
tion. Then, the T -OM-DL assumption is tractable.

Proof (Sketch). This can be proven in the similar manner to Theorem2. Let T <
N . Assume that the Schnorr signature is provable to be N -suf-cma from the T -
OM-DL assumption in the NPROM via a Turing reduction. Namely, there exist
polynomials Ii and Ir, a non-negligible function ε and a PPT Turing reduction
R such that R solves the T -OM-DL problem with probability ε by invoking a
forger F which wins the N -sf-cma game with non-negligible probability. In the
setting of the Turing reduction, R can concurrently invoke the N -sf-cma forger
F at most Ii times. Moreover, R would rewind F during some k-th invocation
F (k) of F , and the total number of the rewind by R is bonded by Ir. As well as
Theorem 2, we aim to construct a PPT meta-reduction M which solves T -OM-
DL problem with non-negligible probability by utilizing R with the simulation
of the several hypothetical forgers F̃j .

The Turing reduction R Invokes Hypothetical Forgers F̃j We consider the same
hypothetical forgers F̃j as Theorem 2, namely Fig. 2. For any 1 ≤ k ≤ Ii and
any 1 ≤ j ≤ N , we explicitly denote by F̃ (k)

j the hypothetical forger F̃j which

is invoked at k-th time, by (pkk,mk,1, . . . ,mk,N ) the tuple given to F̃ (k)
j , and

by σk,ik = (cmtk,ik , resk,ik) the ik-th signature of the message mk,ik under the
public key pkk, respectively.

R would rewind F̃ (k)
j at some points. It should be noted that the reduction R

which invokes such forgers Ii times and rewinds these Ir times can be converted
into the Turing reduction R′ so that it invokes the forger I := Ii + Ir without
any rewind in the following way: Given an instance (G, p, g, y1, y2, . . . , yT ), R′

runs R(G, p, g, y1, y2, . . . , yT ). R′ forwards any interactions among R, the DL
oracle, the random oracle and forgers. When R requests to rewind a k-th invo-
cation F̃ (k)

j with some query at some point, R′ starts a new invocation of F̃j

on (pkk,mk,1, . . . ,mk,N ) which is the same input to F̃ (k)
j , and runs the new

invocation in the same way as the k-th invocation just before the point where
R rewinds F̃ (k)

j . After that, R′ forwards the R’s query to the new invocation.



214 M. Fukumitsu and S. Hasegawa

Since F̃j is deterministic, the behaviors of the k-th invocation and the new invo-
cation before the rewind are identical. Hence, R′ perfectly emulates the rewind
in the R’s viewpoint. Therefore, we hereafter suppose that R invokes the forger
I times without any rewind.

We also note that R can win the T -OM-DL game with probability ε even
when different hypothetical forgers F̃j are given for each invocation. This
is because any forger F̃j wins the N -sf-cma game, and R would appropri-
ately behave if no matter what winning N -sf-cma forger is provided for each
invocation.

Meta-Reduction M. We depict in Fig. 4 the meta-reduction M in this case. In an
analogous fashion to Theorem2, the ik-th slot of F̃ (k)

N is the period from handing
the ik-th message mk,ik by F̃ (k)

N to receiving the hash value of (cmtk,ik ,mk,ik)
from the random oracle in (M-2). Any F (k)

N is allowed to output ⊥ if R fails to
reply a valid signature of some message handed by F (k)

N . We only consider the
case where R replies a valid signature for any message handed by the forger.

As well as the proof of Theorem 2, M can solve the T -OM-DL problem with
non-negligible probability if the following conditions hold:

(Con-1) For any k-th invocation F̃ (k)
N , M does not abort in (M-2);

(Con-2) The number of the access to the DL oracle of M is at most T − 1;
and
(Con-3) For any k, M correctly simulates F̃ (k)

i∗
k

in (M-3) in the R’s viewpoint.

One can show that these conditions hold in a similar manner to Lemmas 3, 4
and 5.

Lemma 7. The condition (Con-1) holds.

Proof. We fix a k-th invocation F̃ (k)
N of F̃N . This abortion occurs when for any

index 1 ≤ ik < N , R accesses the DL oracle during the ik-th slot of F̃ (k)
N . In

this case, the number of the access to the DL oracle of R is to be at least N − 1.
However, this does not occurs due to the same reason as Lemma 3. ��

We fix an index 1 ≤ k ≤ I. Lemma 7 implies that M does not abort in
(M-2) on the k-th invocation F̃ (k)

N . It follows that either R fails to reply some
signature to F̃ (k)

N , or there exists an index 1 ≤ i′k < N such that M obtains
the valid signature σi′

k
without the DL oracle during the i′k-th slot of F̃ (k)

N .
We now consider the case where M does not return ⊥ in (M-2). Then the
latter always holds. Therefore, the index i′k is set as the challenge index i∗k,
and hence M rewinds R with the simulation of F̃ (k)

i∗
k

in (M-3). As in Fig. 4, M
runs R in the same way as (M-1) and (M-2) until M obtains the hash value of(
cmtk,i∗

k−1,mk,i∗
k−1

)
. In the analogical manner to Theorem2, this point is called

the forking point of the k-th invocation.

Lemma 8. The condition (Con-2) holds.



Impossibility of the Provable Security of the Schnorr Signature 215

Algorithm: Meta-reduction M(G, p, g, y1, y2, . . . , yT )

(M-1) sample random coins r, and then run R(G, p, g, y1, y2, . . . , yT ; r). Hereafter, M
records to List all inputs and outputs of R, such as queries and responses in the
OM Oracle phase, and interactions between R and F .

(M-2) proceed in the following way according to an R’s output:
Access to DL oracle with yt ∈ G: forward it to the DL oracle, and reply its

solution xt to R.
Invoking a k-th forger F (k) on (pkk, mk,1, mk,2, . . . , mk,N ): start to simu-

late F̃N , and then hand the 1st message mk,1 of F̃ (k)
N to R.

Receiving a signature σk,ik of the ik-th message mk,ik handed by F̃ (k)
N :

query the ik-th pair (cmtk,ik , mk,ik ) to the random oracle.
Obtaining a hash value chak,ik of the pair (cmtk,ik , mk,ik ): check the fol-

lowing items sequentially:
– if Ver(pkk, mk,ik , σk,ik ) �= 1, then return ⊥ as an F (k)’s final output.

– if R does not access the DL oracle during the ik-th slot of F̃ (k)
N , set

i∗k := ik, and then go to (M-3).
– if ik + 1 = N , then abort.
– Otherwise, hand the (ik + 1)-th message mk,ik+1 of F̃ (k)

N to R.

(M-3) rewind R(G, p, g, y1, y2, . . . , yT ; r) in the following way. Here, M simulates F̃ (k)
i∗
k

instead of F̃ (k)
N .

– Until just after obtaining the hash value of
(
cmtk,i∗

k
−1, mk,i∗

k
−1

)
, M runs

in the same way as (M-1) and (M-2) except that it replies all of instances
yt sent from R by using List instead of the DL oracle.

– For the i∗k-th message mk,i∗
k
, query

(
cmtk,i∗

k
, mk,i∗

k

)
to the random oracle,

and proceed to the following according to an R’s output:

Obtaining a hash value chak,i∗
k
of the challenge pair

(
cmtk,i∗

k
, mk,i∗

k

)
:

returns the pair
(
mk,i∗

k
, σk,i∗

k

)
as an F̃ (k)

i∗
k

’s final output, where the

signature σk,i∗
k

has been obtained in (M-2).
(M-4) When R outputs a tuple (x1, x2, . . . , xT ), output it and then halt.

Fig. 4. Meta-reduction M



216 M. Fukumitsu and S. Hasegawa

Proof. We say that R accesses the DL oracle on the k-th turn if R accesses
the DL oracle after the k-th invocation F (k) makes a signing oracle query or
a random oracle query. For each 1 ≤ k ≤ I, let Tk,1,before and Tk,1,after be the
numbers of the access to the DL oracle by R on the k-th turn before and after
the forking point of F̃ (k)

N in (M-2), and let Tk,2,before and Tk,2,after be the numbers
of the access to the DL oracle by R on the k-th turn before and after the forking
point of F̃ (k)

i∗
k

in (M-3), respectively. Let Tothers be the number of the access to
the DL oracle of R at the other points.

We now fix a k-th invocation, and focus on the number of the access to
the DL oracle of M on the k-th turn. In (M-2), M forwards all DL queries
by R. Since R does not query to the DL oracle on any turn during the i∗k-
th slot of F̃ (k)

N , it holds that Tk,1,after = 0. These imply that the number of
the access to the DL oracle of M on the k-th turn in (M-2) is Tk,1,before. On
the other hand, M makes no query to the DL oracle on any turn before the
forking point of the k-th invocation in (M-3). This is because M responses any
query by R with using List without the DL oracle. It follows that the number
of the access to the DL oracle of M on the k-th turn in (M-3) is Tk,2,after.
Therefore, the number of the access to the DL oracle of M on the k-th turn
is Tk,1,before + Tk,2,after. In a similar manner to Lemma 4, the behaviors of R
and M before the forking point of the k-th invocation in (M-2) and (M-3) are
identical, and hence Tk,1,before = Tk,2,before. Thus the number of the access to
the DL oracle of M on the k-th turn is Tk,2,before + Tk,2,after. This means that
the number of the access of M in any k-th turn can be evaluated by that of R
just in (M-3).

Totally, the number of the access to the DL oracle of M can be evaluated by∑I
k =1 (Tk,2,before + Tk,2,after)+Tothers. By the above observation, the number of

the access to the DL oracle of M is the same as that of the single running of R,
although M runs R sometimes. Thus the number

∑I
k =1 (Tk,2,before + Tk,2,after)+

Tothers of accessing the DL oracle by M is bounded by T −1 since R is supposed
to access the DL oracle at most T − 1. ��
Lemma 9. The condition (Con-3) holds.

Proof. This lemma can be proven in the same way as Lemma 5. We fix an index
1 ≤ k ≤ I. As mentioned above, M obtains the valid signature σi∗

k
of the i∗k-th

message mi∗
k
. We now show that M simulates the hypothetical forger F̃ (k)

i∗
k

in (M-
3). Recall that running R in (M-3) is the same way as in (M-1) and (M-2) before
the forking point of the k-th invocation. It follows that for each 1 ≤ ik < i∗k, M
hands the ik-th message mk,ik to R, and then obtains its signature σk,ik . Here,
M makes the query (cmtk,ik ,mk,ik) to the random oracle. Thus, M behaves as
in (F-1) of F̃ (k)

i∗
k

. Moreover, M queries
(
cmtk,i∗

k
,mk,i∗

k

)
to the random oracle.

After M has been received the hash value of
(
cmtk,i∗

k
,mk,i∗

k

)
, it returns the pair(

mk,i∗
k
, σk,i∗

k

)
of the i∗k-th message mk,i∗

k
and its signature σk,i∗

k
. Since σk,i∗

k
is a

valid signature of the i∗k-th message mk,i∗
k
, M also behaves as in (F-2) in the

R’s viewpoint. Thus, M simulates F̃ (k)
i∗
k

correctly. ��



Impossibility of the Provable Security of the Schnorr Signature 217

We now evaluate the running time of M. M runs R at most I + 1 times
in (M-1) and (M-3). In (M-2) and (M-3), M just accesses the DL oracle at
most T − 1 times by Lemma 8, hands at most I(N − 1) messages to R, verify
the obtained signatures σi, and then queries to the random oracle polynomially
many times. Therefore, it runs in polynomial time. Thus, M solves the T -OM-
DL problem with non-negligible probability ε in PPT, and hence the T -OM-DL
assumption is tractable. ��

By Theorem 6 and Proposition 1, the following corollary holds.

Corollary 10. Let T < N . Assume that the Schnorr signature is provable to be
euf-cma in the NPROM from the T -OM-DL assumption via a Turing reduction.
Then, the T -OM-DL assumption is tractable.

Acknowledgment. We would like to thank anonymous reviewers for their valuable
comments and suggestions. A part of this work is supported by JSPS KAKENHI Grant
Number 15K16001.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to signa-
tures via the fiat-shamir transform: necessary and sufficient conditions for security
and forward-security. IEEE Trans. Inf. Theor. 54(8), 3631–3646 (2008)

2. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 273–304. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 10

3. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

4. Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: proofs of security
against impersonation under active and concurrent attacks. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002). doi:10.
1007/3-540-45708-9 11

5. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). doi:10.1007/BFb0054851

6. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998). doi:10.1007/BFb0054117

7. Bresson, E., Monnerat, J., Vergnaud, D.: Separation results on the “one-more”
computational problems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp.
71–87. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79263-5 5

8. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002). doi:10.1007/3-540-46035-7 18

9. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

10. Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: the
case of Schnorr signatures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 444–460. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 27

http://dx.doi.org/10.1007/978-3-662-49896-5_10
http://dx.doi.org/10.1007/3-540-45708-9_11
http://dx.doi.org/10.1007/3-540-45708-9_11
http://dx.doi.org/10.1007/BFb0054851
http://dx.doi.org/10.1007/BFb0054117
http://dx.doi.org/10.1007/978-3-540-79263-5_5
http://dx.doi.org/10.1007/3-540-46035-7_18
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/978-3-642-38348-9_27
http://dx.doi.org/10.1007/978-3-642-38348-9_27


218 M. Fukumitsu and S. Hasegawa

11. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro,
S.: Random oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT
2010. LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17373-8 18

12. Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for Schnorr
signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873,
pp. 512–531. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8 27

13. Fukumitsu, M., Hasegawa, S.: Black-Box separations on Fiat-Shamir-type signa-
tures in the non-programmable random oracle model. In: Lopez, J., Mitchell, C.J.
(eds.) ISC 2015. LNCS, vol. 9290, pp. 3–20. Springer, Cham (2015). doi:10.1007/
978-3-319-23318-5 1

14. Fukumitsu, M., Hasegawa, S.: Impossibility on the provable security of the Fiat-
Shamir-type signatures in the non-programmable random oracle model. In: Bishop,
M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 389–407. Springer,
Cham (2016). doi:10.1007/978-3-319-45871-7 23

15. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

16. Kakvi, S.A., Kiltz, E.: Optimal security proofs for full domain hash, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
537–553. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 32

17. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 8

18. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equiva-
lent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005). doi:10.1007/11593447 1

19. Pass, R.: Limits of provable security from standard assumptions. In: STOC 2011,
pp. 109–118 (2011)

20. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

21. Schnorr, C.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

22. Zhang, J., Zhang, Z., Chen, Y., Guo, Y., Zhang, Z.: Black-box separations for
one-more (static) CDH and its generalization. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8874, pp. 366–385. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-45608-8 20

23. Zhang, Z., Chen, Y., Chow, S.S.M., Hanaoka, G., Cao, Z., Zhao, Y.: Black-box
separations of hash-and-sign signatures in the non-programmable random oracle
model. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 435–
454. Springer, Cham (2015). doi:10.1007/978-3-319-26059-4 24

http://dx.doi.org/10.1007/978-3-642-17373-8_18
http://dx.doi.org/10.1007/978-3-642-17373-8_18
http://dx.doi.org/10.1007/978-3-662-45611-8_27
http://dx.doi.org/10.1007/978-3-319-23318-5_1
http://dx.doi.org/10.1007/978-3-319-23318-5_1
http://dx.doi.org/10.1007/978-3-319-45871-7_23
http://dx.doi.org/10.1007/978-3-642-29011-4_32
http://dx.doi.org/10.1007/3-540-45708-9_8
http://dx.doi.org/10.1007/11593447_1
http://dx.doi.org/10.1007/978-3-662-45608-8_20
http://dx.doi.org/10.1007/978-3-662-45608-8_20
http://dx.doi.org/10.1007/978-3-319-26059-4_24


Bit Security of the Hyperelliptic Curves
Diffie-Hellman Problem

Fangguo Zhang1,2(B)

1 School of Data and Computer Science,
Sun Yat-sen University, Guangzhou 510006, China

isszhfg@mail.sysu.edu.cn
2 Guangdong Provincial Key Laboratory of Information Security,

Sun Yat-sen University, Guangzhou 510006, China

Abstract. The Diffie-Hellman problem as a cryptographic primitive
plays an important role in modern cryptology. The Bit Security or Hard-
Core Bits of Diffie-Hellman problem in arbitrary finite cyclic group is a
long-standing open problem in cryptography. Until now, only few groups
have been studied. Hyperelliptic curve cryptography is an alternative to
elliptic curve cryptography. Due to the recent cryptanalytic results that
the best known algorithms to attack hyperelliptic curve cryptosystems
of genus g < 3 are the generic methods and the recent implementation
results that hyperelliptic curve cryptography in genus 2 has the poten-
tial to be competitive with its elliptic curve cryptography counterpart.
In this paper, we generalize Boneh and Shparlinksi’s method and result
about elliptic curve to the case of Jacobians of hyperelliptic curves. We
prove that the least significant bit of each coordinate of hyperelliptic
curves Diffie-Hellman secret value in genus 2 is hard as the entire Diffie-
Hellman value, and then we also show that any bit is hard as the entire
Diffie-Hellman value. Finally, we extend our techniques and results to
hyperelliptic curves of any genus.

Keywords: Hyperelliptic curves · Bit security · Diffie-Hellman problem

1 Introduction

The discrete logarithm problem (DLP) and Diffie-Hellman problem (DHP) are
basic cryptographic primitives, they play an important role in modern cryptol-
ogy. For example the Diffie-Hellman key exchange [14], the ElGamal encryption
[16], the official U.S. Digital Signature Algorithm (DSA) [17], and the BLS short
signature scheme [9], etc. Due to Pohlig and Hellman attack [37], it is restricted
to groups of prime order p in this paper, where the DLP is the problem to
compute x ∈ Z

∗
p given (g, gx), and the DHP or computational Diffie-Hellman

problem (CDHP) is the problem to compute gab given (g, ga, gb), here g ∈ G
is a generator of group G. Maurer and Wolf [34,35] have proved that, for every
cyclic group G with prime order p, there exists polynomial time algorithm that

c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 219–235, 2017.
https://doi.org/10.1007/978-3-319-68637-0_13



220 F. Zhang

reduces the computation of DLP in G to the computation of CDHP in G if we
are able to find an elliptic curve, called auxiliary elliptic curve, over Fp with
smooth order.

From many cryptographic applications, we know it is very important that
partial information of the secret key is not computable or predictable with any
significant advantage over a random guess. This is related to Bit Security or
Hard-Core Bits problem. Informally speaking, the Bit Security or Hard-Core
Bits for DLP can be described as follows: given (g, gx), if an adversary can
compute certain bits (or more generally, certain predicates) of x? Blum and
Micali [6] introduced the concept of hard-core bits for one-way functions and
showed the existence of a hard-core predicate for the discrete logarithm function
in any group G.

However, for the case of the DHP no such result has been proven. Infor-
mally speaking, the Bit Security or Hard-Core Bits for DHP or CDHP can be
described as follows: given (g, ga, gb), if an adversary can compute certain bits
(or more generally, certain predicates) of K = gab? In another word, if the
hardness of CDH bits and the entire CDH is same? This is a long-standing
open problem in cryptography. Until now, only few groups have been studied:
Boneh and Venkatesan [8] formulated the hidden number problem (HNP) and
showed that in the multiplicative group of finite field Fp computing approxi-
mately (log p)1/2 of the bits of the Diffie-Hellman secret is as hard as computing
the entire secret. This result is improved in [23]. Boneh and Shparlinksi in [7]
achieved a breakthrough for the elliptic curve Diffie-Hellman problem. By using
certain twists of the given curve they showed that predicting the least significant
bit of the elliptic curve Diffie-Hellman secret in a family of curves is as hard as
computing the entire secret. Alternatively, if one looks for a polynomial time
reduction of the DHP to the problem of predicting partial information on the
same short Weierstrass model, some results have been established using Gröbner
bases [27]. Very recently, Shani [38] also studied the bit security of elliptic curve
Diffie-Hellman problem defined over prime fields and extension fields. Fazio et al.
modified Boneh and Shparlinski’s idea and applied it to the case of finite fields
Fp2 , they proved the unpredictability of every single bit of one of the coordinates
of the secret Diffie-Hellman value over finite fields Fp2 . Wang et al. [39] gener-
alised this work to extension fields Fpm , where m is polynomial in log p. Li et al.
[32] have studied the bit security of CDHP in LUC and XTR. Galbraith et al.
[20] have studied the bit security of bilinear Diffie-Hellman problem in bilinear
pairing group. About the DHP and its bit security, the Chap. 21 in Galbraith’s
book [19] is a good reference.

Hyperelliptic curves are a natural generalisation of elliptic curves, and
Jacobians of hyperelliptic curves was suggested by Koblitz [30] that they also
been considered for cryptographic applications. The main advantage of genus
g over elliptic curve (genus 1) is that a much smaller base field (about g
times fewer bits) with same security level. However, for large genus there are
subexponential time attacks on the DLP [1]. For genus 2 curves, just as with
their elliptic curve counterpart, the best known algorithms to solve the discrete



Bit Security of the Hyperelliptic Curves Diffie-Hellman Problem 221

logarithm in such groups are the generic attacks such as Pollard rho method [22].
The practical potential of genus 2 curves in public-key cryptography has recently
been highlighted by the fast performance numbers presented. Especially, Gaudry
[21] showed that scalar multiplication on the Kummer surface associated with
the Jacobian of a genus 2 curve can be more efficient than scalar multiplication
on the Jacobian itself. After that, many papers [5,10] showed that hyperelliptic
curve cryptography in genus 2 has the potential to be competitive with its genus
1 elliptic curve cryptography counterpart.

Our Contributions. In this paper, we study the bit security of CDHP in
Jacobian group of hyperelliptic curves. The contribution of the paper is as the
following.

1. We firstly generalize Boneh and Shparlinksi’s method to the case of Jacobians
for genus 2 hyperelliptic curves. We prove that the least significant bit of any
coordinate of hyperelliptic Diffie-Hellman value with genus 2 over finite fields
is unpredictable.

2. We extend the least significant bit to every bit case, show that for genus 2
hyperelliptic curves, to compute any bit of any coordinate of Diffie-Hellman
value is hard as for computing the entire Diffie-Hellman value.

3. We also generalize these results from genus 2 hyperelliptic curves to any genus
hyperelliptic curves.

Organization. The rest of this paper is organized as follows. Section 2 intro-
duces some mathematical preliminaries, including hyperelliptic curves and
hyperelliptic curve Diffie-Hellman problem, twisting hyperelliptic curves and hid-
den number problem with chosen multiplier. Section 3 gives the main results and
proofs about the unpredictability of least significant bit of hyperelliptic Diffie-
Hellman value with genus 2. Section 4 extends the least significant bit to every
bit case. Section 5 generalizes the results of hyperelliptic Diffie-Hellman value
with genus 2 to the case of any genus hyperelliptic curves. Section 6 gives the
conclusions.

2 Mathematical Preliminaries

2.1 Hyperelliptic Curves and Hyperelliptic Curve Diffie-Hellman
Problem

We first introduce the definition and operations of hyperelliptic curves over finite
field, more details can be found in references [4,19]. Let K be the algebraic closure
of the field K. A hyperelliptic curve C of genus g ≥ 1 over K is given by

C : y2 + h(x)y = f(x) (1)

where f(x) is a monic polynomial of degree 2g+1, h(x) is a polynomial of degree
at most g, and there are no solutions (x, y) ∈ K×K simultaneously satisfying the
Eq. (1) and the partial derivative equations 2y+h(x) = 0 and h′(x)y−f ′(x) = 0.



222 F. Zhang

Let P = (x, y) be a finite point on hyperelliptic curve C, the opposite of P is
defined as −P = (x,−y − h(x)).

A divisor on C is a finite formal sum D = ΣP mP P , where mP are integers
that are 0 for almost all P . The degree of D is defined by deg D = ΣP mP . The
set of all the divisors defined over K forms an abelian group with the set of
divisors of degree 0 as its subgroup, that is Div0C ⊂ DivC . The function field of
C over K, denoted K(C), is the field of fraction of the polynomial ring K[C] =
K[x, y]/(y2+h(x)y−f(x)). To every rational function F ∈ K(C), it can associate
a divisor via the valuations at all points of the curve: div(F ) = ΣP∈C(K)vP (F )P .
These so called principal divisors are of degree zero and form a subgroup of Div0C .
We denote the group of principal divisors as PrincC . The Jacobian or the divisor
class group of the curve C is given by JC = Div0

C/PrincC .
From the work of Cantor [11] and Koblitz [30], the element D = ΣmiPi −

(Σmi)P∞ (here Σmi ≤ g, Pi = (xi, yi), P∞ is the point at infinity) of JC

has a Mumford representation, D can be only determined by two polynomials
u and v in K[x], where u(x) = Π(x − xi)mi , and u, v satisfy: 1) deg v <
deg u ≤ g; 2) v(xi) = yi, for all the i that made mi �= 0; 3) v2 + vh − f ≡ 0
(mod u). In general we write D = (u(x), v(x)), it can be represented by 2g-tuple
(ug−1, ..., u1, u0, vg−1, ..., v1, v0).

We will focus on the most cryptographically common case of genus 2 curves,
where C is an imaginary hyperelliptic curve over a large prime field Fp. A hyper-
elliptic curve C over Fp with genus 2 is defined by

C : y2 = x5 + f3x
3 + f2x

2 + f1x + f0 (2)

In this case, any element D = (u(x), v(x)) of the Jacobian group JC(Fp) will
satisfy: u(x) is monic, deg v < deg u ≤ 2 and u|v2−f . When deg u = 0, this is the
zero element O; When deg u = 1, this is the element of (x − u0, v0), it is related
to the degenerate divisor D = P − P∞ for some point P , we call the element
with this form a degenerate element; The general case is D = (u(x), v(x)) =
(x2 + u1x + u0, v1x + v0), we call the element with this form a general element.
When we randomly choose an element D from JC(Fp), D is a general element
with the probability about 1− 1

p . We also use (u1, u0, v1, v0) to represent a general
element D = (u(x), v(x)).

Cantor’s algorithm can perform addition and doubling operations in Jacobian
group. In this paper, we will need the explicit formulas for the group operations.
Harley [24] optimized Cantor’s algorithm and obtained the first practical explicit
formulas in genus 2, and then Lange [31] extended it and got significant improve-
ments. The formulas were subsequently improved by Costello and Lauter [12]
through a more direct geometric interpretation of the group law. Diao and Joye
[13] presented an efficient unified addition formulae for hyperelliptic curve cryp-
tography. Very recently, Hisil and Costello [26] combines several techniques to
arrive at explicit formulas in Jacobian coordinates that are significantly faster
than those in previous works. For the genus 2 curves over large prime field Fp,
let D1 = (u11, u10, v11, v10) and D2 = (u21, u20, v21, v20) be two general elements



Bit Security of the Hyperelliptic Curves Diffie-Hellman Problem 223

of the Jacobian group. Table 1 in AppendixA is the explicit affine formula for
general point addition which derived from the results in [12,26].

Let D ∈ JC(Fp) be an element of prime order q. The DLP in JC(Fp) is: given
another element D′ ∈< D >, to determine the integer m such that D′ = mD.
We define the hyperelliptic curve Diffie-Hellman function as

DHJ,D(aD, bD) = abD

where a, b are in Zq. The hyperelliptic curve DHP is to compute DHJ,D(D1,D2)
given (C, JC(Fp),D,D1,D2).

2.2 Twisting Hyperelliptic Curves

Let C be a curve with genus g defined over a field K. A curve C ′ defined over K
that is isomorphic to C over K, is called a twist of C.

For a hyperelliptic curve C of genus 2 over Fp given by the equation

C : y2 = x5 + f3x
3 + f2x

2 + f1x + f0

For any λ ∈ F
∗
p, we define φλ(C) to be a twist of C:

φλ(C) : y2 = x5 + λ4f3x
3 + λ6f2x

2 + λ8f1x + λ10f0

For any point P = (x, y) ∈ C, φλ(P ) = (λ2x, λ5y) ∈ φλ(C). This curve isomor-
phism can reduce an isomorphism between JC(Fp) and Jφλ(C)(Fp), we denote
this group isomorphism as φ∗

λ : JC(Fp) → Jφλ(C)(Fp).
The explicit formulas for φ∗

λ is:

φ∗
λ : JC(Fp) → Jφλ(C)(Fp)

O(= P∞ − P∞) → O′(= P ′
∞ − P ′

∞)

(x1, y1) → (λ2x1, λ
5y1)

(u1, u0, v1, v0) → (λ2u1, λ
4u0, λ

3v1, λ
5v0)

Therefore, we have

DHφ∗
λ(J),φ∗

λ(D)(φ∗
λ(D1), φ∗

λ(D2)) = φ∗
λ(DHJ,D(D1,D2)).

In this paper, we are working with the family of curves {φλ(C)}λ∈F∗
p

and their
Jacobians {Jφλ(C)(Fp)}λ∈F∗

p
associated with a given curve C and its Jacobians

JC(Fp). Hence, if the hyperelliptic DHP is hard to compute in JC(Fp), then it
is also hard to compute for all {Jφλ(C)(Fp)}λ∈F∗

p
.



224 F. Zhang

2.3 HNP-CM Problem and HNP-CMd Problems

The Hidden Number Problem with Chosen Multiplier (HNP-CM) is a variant
of the Hidden Number Problem (HNP). It is firstly proposed by Boneh and
Shparlinski [7].

We denote by LSB(z) the least significant bit of an integer z > 0.

Definition 1 (HNP-CM [7]). Fix an ε > 0. Let p be a prime. For an α ∈ Fp

let L : Fp∗ → {0, 1} be a function satisfying

Prt∈Fp∗[L(t) = LSB(α · t mod p)] ≥ 1
2

+ ε

The HNP-CM problem is: given an oracle for L(t), find α in polynomial time.
For small ε there might be multiple α satisfying the above condition. In this case
the list-HNP-CM problem is to find the list of all such α ∈ F ∗

p . Due to Alexi
et al. [3], there is an algorithm to solve the list-HNP-CM for any ε > 0.

Theorem 1 [7]. Let p be a n− bit prime and let ε > 0. Then, given ε, the list
HNP-CM problem can be solved in expected polynomial time in n and 1/ε.

Informally speaking, suppose one has an oracle A such that A(t) = LSB(α · t
mod p), then one can compute α using O(log2(p)) oracle queries.

The HNP-CMd problem is a variant of HNP-CM problem, it is defined as
follows:

Definition 2 (HNP-CMd [7]). Fix an ε > 0. Let p be a prime. For an α ∈ Fp

let L : Fp∗ → {0, 1} be a function satisfying

Prt∈Fp∗[Ld(t) = LSB(αd · t mod p)] ≥ 1
2

+ ε

The HNP-CMd problem is: given an oracle for Ld(t), find α in polynomial time.
For small ε there might be multiple α satisfying the condition. In this case the
list-HNP-CMd problem is to find all such α ∈ F ∗

p . We will use it for d = 2,
d = 3, d = 4 and d = 5 in this paper. About the HNP-CMd problem, Boneh and
Shparlinski gave the following theorem:

Theorem 2 [7]. Fix an integer d > 1. Let p be a n− bit prime and let ε > 0.
Then, given ε, the HNP-CMd problem can be solved in expected polynomial time
in log p and d/ε.

3 Our Results for Least Significant Bit

For the degenerate element (x − u0, v0), it can be represented by (0, u0, 0, v0),
therefore, it is a special case of general element. So we will only consider the
general element case. For any general element D = (u1, u0, v1, v0) of JC(Fp), we
use u1(D) to denote the u1− coordinate of D, similarly for u0(D), v1(D) and
v0(D). The main result for the least significant bit of hyperelliptic curve DHP
is the following theorem.



Bit Security of the Hyperelliptic Curves Diffie-Hellman Problem 225

Theorem 3. Let p be a prime, and let C be a hyperelliptic curve with
genus 2 over Fp. Let D ∈ JC(Fp) be an element of prime order. Given
(C, JC(Fp),D, aD, bD), if there is an efficient algorithm for predicting the least
significant bit of any coordinate of abD, then there is an efficient algorithm for
computing the DHP on JC(Fp).

Let Au1(C, JC(Fp),D, aD, bD) be an oracle that returns LSB(u1(abD)) where
D ∈ JC(Fp). Similarly, let Au0(C, JC(Fp),D, aD, bD) be an oracle that
returns LSB(u0(abD)), Av1(C, JC(Fp), D, aD, bD) returns LSB(v1(abD)) and
Av0(C, JC(Fp), D, aD, bD) returns LSB(v0(abD)), respectively. To prove the
above theorem, we need the following lemmas.

Lemma 1. Given (C, JC(Fp),D, aD, bD), to compute any one coordinate of
abD is hard as the entire abD.

Proof. Let aD = (ua,1, ua,0, va,1, va,0) and bD = (ub,1, ub,0, vb,1, vb,0). Assume
that abD = (uab,1, uab,0, vab,1, vab,0).

Now, we prove that computing u1−coordinate of abD is hard as the entire
abD. Similar method can be used to prove other coordinate cases.

Assume that there is an oracle B that given (C, JC(Fp),D, aD, bD) and
returns u1(abD), that is

B(C, JC(Fp),D, aD, bD) = u1(abD) = uab,1.

We rewrite abD = (uab,1,uab,0,vab,1,vab,0), and by the oracle B, uab,1 is already
known. Now we show how to find out uab,0,vab,1 and vab,0, therefore the entire
abD.

From the Mumford representation of the element in Jacobian group of hyper-
elliptic curve with genus 2, for abD = (uab,1, uab,0, vab,1, vab,0) = (x2 + uab,1x +
uab,0, vab,1x + vab,0), we have

(vab,1x + vab,0)2 − (x5 + f3x
3 + f2x

2 + f1x + f0) ≡ 0 mod (x2 + uab,1x + uab,0).

Replacing x2 with −(uab,1x + uab,0) on the left side, we have

(vab,1x + vab,0)2 − (uab,1x + uab,0)2x + f3(uab,1x + uab,0)x + f2(uab,1x + uab,0)
− f1x − f0 = 0.

Comparing the coefficients of xi for i = 1 and 0, we get the following equations
about uab,0,vab,1,vab,0.

vab,0
2 − v2

ab,1uab,0 + 2uab,1u2
ab,0 + (f2 − uab,1f3 − u3

ab,1)uab,0 − f0 = 0 (3)

2vab,0vab,1−u2
ab,0−uab,1v

2
ab,1 +(f3 +3u2

ab,1)uab,0 +f2uab,1−f3u
2
ab,1−u4

ab,1−f1 = 0
(4)

We now call B one more time as follows:

B(C, JC(Fp),D, aD, bD + D) = u1(abD + aD) = uab+a,1



226 F. Zhang

From the explicit formula of general point addition in Jacobian group of
hyperelliptic curve with genus 2, we know that uab+a,1 is also a function about
uab,0,vab,1,vab,0:

uab+a,1 = uab,1 − ua,1

+ 2
(vab,0 − va,0)(ua,1(uab,1 − ua,1)− (uab,0 − ua,0))− ua,0(uab,1 − ua,1)(vab,1 − va,1)

(uab,1 − ua,1)(vab,0 − va,0)− (uab,0 − ua,0)(vab,1 − va,1)

− ((uab,0 − ua,0)(ua,1(uab,1 − ua,1)− (uab,0 − ua,0))− ua,0(uab,1 − ua,1)2)2

((uab,1 − ua,1)(vab,0 − va,0)− (uab,0 − ua,0)(vab,1 − va,1))2

This is:

((uab,1 − ua,1)(vab,0 − va,0)− (uab,0 − ua,0)(vab,1 − va,1))
2(uab+a,1

− uab,1 + ua,1 − 2((vab,0 − va,0)(ua,1(uab,1 − ua,1)− (uab,0 − ua,0))− ua,0(uab,1

− ua,1)(vab,1 − va,1))((uab,1 − ua,1)(vab,0 − va,0)− (uab,0 − ua,0)(vab,1 − va,1))

+ ((uab,0 − ua,0)(ua,1(uab,1 − ua,1)− (uab,0 − ua,0))− ua,0(uab,1 − ua,1)
2)2 = 0 (5)

The Eqs. (3)–(5) form a 3-variates polynomial system. This multivariate polyno-
mial system has total degree 3 × 2 × 4 = 24. So, due to the Bézou Theorem, the
number of the solution does not exceed 24. We solve this 3-variates polynomial
system and obtain uab,0, vab,1, vab,0 of abD, so the entire abD.

A detailed Magma [33] implementation for such 3-variates polynomial system
according to a genus 2 curve over GF (2127 − 1) which used in [10] is provided in
AppendixB.

According to our experiments, most cases we can obtain one solution, there-
fore the entire abD is obtained. However, sometimes, this 3-variates polynomial
system will output more than one solutions. In this case, we can find the correct
solution for abD up to at most 24 times testings. 
�

When one of λ2, λ3, λ4and λ5 is a permutation of F∗
p, it is very easy to get

vi from LSB(vi) or ui from LSB(ui) using HNP-CM directly. Therefore, we can
have a very simple proof for Theorem 3. For example, when p = 2 mod 3, we can
show that “Predicting LSB(v1(abD)) is hard as v1(abD)”: Assume that there is
an efficient algorithm Av1 for predicting the least significant bit of v1−coordinate
of abD, i.e., given (C, JC(Fp),D, aD, bD),

Av1(C, JC(Fp),D, aD, bD) = LSB(v1(abD)).

Now, we choose a random number λ ∈ F
∗
p and call the oracle

Av1(φλ(C), φ∗
λ(JC(Fp)), φ∗

λ(D), φ∗
λ(aD), φ∗

λ(bD))

to get LSB(v1(φ∗
λ(abD))) = LSB(λ3v1(abD)). Since gcd(3, p − 1) = 1, it follows

that cubing is a permutation of F∗
p. This is an HNP-CM problem (here t = λ3

and α = v1(abD)). So, in this case, we can get v1 from LSB(v1) using the solving
algorithm of HNP-CM. Then combining this with Lemma1, we can get the entire
abD.



Bit Security of the Hyperelliptic Curves Diffie-Hellman Problem 227

To prove the Theorem 3 in general case, similar to Boneh and Shparlinski’s
[7] approach on elliptic curve case, we will use the method of Alexi et al. [3] to
deal with it. When λ2, λ3, λ4and λ5 are all not permutation of F∗

p, we can not
get vi from LSB(vi) or ui from LSB(ui) using HNP-CM directly. We may only
use some δ−fraction of the λ ∈ F

∗
p. To simplify notation we henceforth denote

(φλ(C), Jφλ(C)(Fp), φλ(D), φλ(aD), φλ(bD)) by φλaDbD.

Lemma 2. Let ε, δ ∈ {0, 1}. Let p be a prime, and let C be a hyperelliptic curve
with genus 2 over Fp. Let D ∈ JC(Fp) be an element of prime order n. Suppose
there is a t−time algorithm Au1 such that

|Prλ[Au1(φλaDbD) = LSB(λ2u1(abD))] − 1
2
| > ε

for at least a δ−fraction of the λ ∈ F
∗
p.

Then there is an algorithm B for all λ ∈ F
∗
p satisfying

Prλ[B(φλaDbD) = LSB(λ2u1(abD))] >
1
2

+
εδ

8

is true with probability at least εδ
8 over the choice of a, b in [1, n − 1].

Proof. This lemma is the hyperelliptic curve with genus 2 case of Lemmas 1 and
2 in Boneh and Shparlinski’s [7] paper. Here we will give a sketch of the proof
which mostly same as Boneh and Shparlinski’s proof. For more details to see
Boneh and Shparlinski’s [7] original proof.

According to Boneh and Shparlinski’s proof, the algorithm B can be con-
structed as follows:

Input: C, JC(Fp),D,D1,D2.
Output: Au1(C, JC(Fp),D,D1,D2).

1. Pick u = (4/εδ)3, choose a, b pairs from [1, n − 1] randomly and run Au1 on
all tuples < C, JC(Fp),D, aD, bD >;

2. Let v be the number of rums in which Au1 correctly outputs LSB(u1(abD));
3. If v > u/2 then B outputs Au1(C, JC(Fp),D,D1,D2);
4. Otherwise outputs the complement of Au1(C, JC(Fp),D,D1,D2).

As same as Boneh and Shparlinski’s [7] discussion, for at least δ−fraction of
the λ ∈ F ∗

p , we have

Pra,b[B(φλaDbD) = LSB(λ2u1(abD))] >
1
2

+
ε

2

and for the remaining λ ∈ F ∗
p , we have:

Pra,b[B(φλaDbD) = LSB(λ2u1(abD))] >
1
2

− εδ

4



228 F. Zhang

Then using a standard counting argument, we have

Prλ[B(φλaDbD) = LSB(λ2u1(abD))] >
1
2

+
εδ

8

is true with probability at least εδ
8 over the choice of a, b in [1, n − 1] for all

λ ∈ F
∗
p. 
�

Now, we give the proof of Theorem 3.

The proof of Theorem3: Let p be a prime, and let C be a hyperelliptic curve
with genus 2 over Fp. Let D ∈ JC(Fp) be an element of prime order. Suppose
there is an efficient algorithm A for predicting the LSB of any coordinate of
abD given (C, JC(Fp),D, aD, bD), formally, we assume that there is an expected
t−time algorithm A such that

|Prλ[Au1(φλaDbD) = LSB(λ2u1(abD))] − 1
2
| > ε

for at least a δ−fraction of the λ ∈ F
∗
p.

To use the above Lemma 2, we first randomize the hyperelliptic curve DHP
(C, JC(Fp),D, aD, bD) by computing D′ = a0aD and D′′ = b0bD for random
a0, b0 ∈ [1, n−1]. Then applying Lemma2, there is an algorithm B for all λ ∈ F

∗
p

satisfying

Prλ[B(φλ(C), Jφλ(C)(Fp), φλ(D), φλ(D′), φλ(D′′)) = LSB(λ2u1(a0b0abD))]

>
1
2

+
εδ

8

is true with probability at least εδ
8 over the choice of a0, b0 in [1, n − 1].

Define

L2(λ) = B(φλ(C), Jφλ(C)(Fp), φλ(D), φλ(D′), φλ(D′′).

From the knowledge of probability theory, when we repeat choosing a0, b0 in
[1, n − 1] randomly � 8

εδ  times, then there is at least one time we have

Prλ[L2(λ) = LSB(λ2u1(a0b0abD))] >
1
2

+
εδ

8

with probability 1 − (1 − εδ
8 )� 8

εδ �. This is an HNP − CM2 problem where
u1(a0b0abD) is the hidden number. Therefore, we can use the solving algorithm
of Theorem 2 for all � 8

εδ  cases to find a list of candidates {(ai, bi), u1(aibiabD)}
for i from 1 to � 8

εδ .
For any candidates, applying Lemma1, we can get a candidate value aibiabD.

There is at least one correct aibiabD with probability 1 − (1 − εδ
8 )� 8

εδ �, and then
using ((aibi)−1 mod n)aibiabD, we obtain the entire abD. 
�



Bit Security of the Hyperelliptic Curves Diffie-Hellman Problem 229

4 Extention to Any Bit

For any z =
∑n

i=0 zi2i, biti(z) denotes the i−th bit of the binary representation
of z, so LSB(z) = bit0(z). In this section, we will show that if the hyperelliptic
curve Diffie-hellman problem is hard, then not only the least significant bit,
but also every bit (i.e., biti(z)) of the hyperelliptic curve Diffie-hellman value is
unpredictable.

We have two approaches to achieve this goal.
One approach is from LSB-HNP-CM to biti-NHP-CM. As generalized by

Hȧstad and Näslund [25] and Kiltz [29], HNP-CM can also be defined for every
bit of z, and the related theorems also hold, i.e., Fix an ε > 0. Let p be a prime.
For an α ∈ Fp let L : Fp∗ → {0, 1} be a function satisfying

Prt∈Fp∗[L(t) = biti(α · t mod p)] ≥ 1
2

+ ε

The biti-NH problem is: given an oracle for L(t), find α in polynomial time. As
claimed in Theorem 5 of [29], for all odd primes p, the biti-NHP-CM is efficiently
solvable for all bits. Therefore, similar to the discussion for LSB case, it is not
hard to extend the results of LSB to the case of any i−th bit.

Another approach is AGS-list decoding method. The list decoding app-
roach for hard-core predicates is developed by Akavia et al. [2] and extended
by Morillo and Rafols [36]. A predicate will correspond to some error correcting
code, predicting a predicate will correspond to access to a corrupted codeword,
and the task of inverting one-way functions will correspond to the task of list
decoding a corrupted codeword. The framework of AGS-list decoding method is
as the following: Firstly, for given the one way function f , construct a codeword
Cf , and such that the following properties hold for Cf : Accessibility, Concen-
tration and Recoverability, then using Lemma 1 and Theorem 6 of [2], it can
be proved that the predicate is hard-core. For the definitions of these properties,
please refer to [2].

Following Akavia et al.’s framework, we can generalize the result of Fazio
et al. in [18] for every bit of the elliptic curve DHP is hard-core to hyperelliptic
curve DHP as follows:

Let p be a prime, and let C be a hyperelliptic curve with genus 2 over Fp. Let
D ∈ JC(Fp) be an element of prime order. The Q = abD is the Diffie-Hellman
secret value of (C, JC(Fp),D, aD, bD). For any λ ∈ F

∗
p, φλ(C) is the twist of C,

Jφλ(C)(Fp) = φ∗
λ(JC(Fp)). Let biti : Fp → {0, 1} denote the i − th bit predicate

(In [18], they use {±1}, it is just the convention that a 0 bit is encoded as −1).
Consider the codeword:

CQ : Fp → {0, 1} defined as CQ(λ) = biti(λu1(Q)).

Similar to the proof in [18] for elliptic curve case, it can be proven that
the codeword CQ satisfies the properties of Accessibility, Concentration and
Recoverability. Here we omitted the proofs of these properties for the limited



230 F. Zhang

space. Using Theorem 6 and the learning algorithm of [2], it can be proved that
this predicate is hard-core. For more detail, refer to [2,18].

From above discussion, we give the following claim without proof:

Claim 1. Let p be a prime, and let C be a hyperelliptic curve with genus
2 over Fp. Let D ∈ JC(Fp) be an element of prime order. If there is an
efficient algorithm for predicting the any bit of any coordinate of abD given
(C, JC(Fp),D, aD, bD), then there is an efficient algorithm for computing the
DHP on JC(Fp).

5 Generalization to General Hyperelliptic Curves

Let C : y2 + h(x)y = f(x) be a hyperelliptic curve of genus g ≥ 1 over
Fq, J(C;Fq) be the Jacobian of C defined over Fq. Let D = (ug−1, ..., u1, u0,
vg−1, ..., v1, v0) be an element of J(C;Fq) with order n. Costello and Lauter [12]
gave an explicit formulas for addition and doubling for any genus hyperelliptic
Jacobian group. So, we can define the hyperelliptic DHP on any genus hyper-
elliptic Jacobian group as same as genus 2 case: given C, JC(Fp),D, aD, bD, to
compute abD.

For a hyperelliptic curve with genus g over Fp(Similar discussion can be
applied to non-prime fields),

C : y2 = x2g+1 + f2g−1x
2g−1 + f2g−2x

2g−2 + · · · + f1x + f0

Let C ′ be another hyperelliptic curves with genus g over Fp with equation:

C ′ : y2 = x2g+1 + f ′
2g−1x

2g−1 + f ′
2g−2x

2g−2 + · · · + f ′
1x + f ′

0

We say that C is isomorphic to C ′ if there exists λ ∈ Fp such that f ′
i = λ4g+2−2ifi

mod p. The isomorphisms that preserve hyperelliptic curves given by above equa-
tions are all of the form (x, y) → (λ2x, λ2g+1y) for some λ ∈ F

∗
p.

We define φλ : (x, y) → (λ2x, λ2g+1y), then C ′ = φλ(C) is a twist of C. This
curves isomorphism can reduce an isomorphism between JC(Fp) and JC′(Fp), we
denote this group isomorphism as φ∗

λ : JC(Fp) → Jφλ(C)(Fp). Now, we can define
the explicit formulas for φ∗

λ as follows: φ∗
λ(O) = O′, φ∗

λ(x1, y1) = (λ2x1, λ
2g+1y1),

φ∗
λ(u(x), v(x))

= φ∗
λ(ug−1, ..., u1, u0, vg−1, ..., v1, v0)

= φ∗
λ(P1 + P2 + ... + Pg − gP∞)

(here Pi = (xi, yi), v(xi) = yi)
= φ∗

λ((x1, y1) + (x2, y2) + ... + (xg, yg) − gP∞)
= (λ2x1, λ

2g+1y1) + (λ2x2, λ
2g+1y2) + ... + (λ2xg, λ

2g+1yg) − gP ′
∞)

= (
g∏

i=1

(x − λ2xi), v′
g−1x

g−1 + ... + v′
1x + v′

0)

(here v′(λ2xi) = λ2g+1yi)
= (λ2ug−1, ..., λ

2(g−1)u1, λ
2gu0, λ

3vg−1, ..., λ
2g−1v1, λ

2g+1v0)



Bit Security of the Hyperelliptic Curves Diffie-Hellman Problem 231

Therefore, we have DHφ∗
λ(J),φ∗

λ(D)(φ∗
λ(D1), φ∗

λ(D2)) = φ∗
λ(DHJ,D(D1,D2)).

So if the hyperelliptic DHP is hard to compute in JC(Fp), then it is also hard
to compute for all {Jφλ(C)(Fp)}λ∈F∗

p
. Similar to the case of g = 2, we can use

HNP-CMd to study the bit security of hyperelliptic curve DHP with any genus.
Using Costello and Lauters explicit formulas for addition and doubling for

any genus hyperelliptic Jacobian group, Lemma1 can extend to hyperelliptic
curve with any genus, and using twisted hyperelliptic curves with any genus,
Lemma 2 is also true for any genus hyperelliptic curves. Therefore, we have the
following claim:

Claim 2. Let p be a prime, and let C be a hyperelliptic curve with genus g over
Fp. Let D ∈ JC(Fp) be an element of prime order. Given (C, JC(Fp),D, aD, bD),
if there is an efficient algorithm for predicting any one bit of any coordinate of
abD, then there is an efficient algorithm for computing the DHP on JC(Fp).

6 Conclusions and Further Works

Hyperelliptic curve cryptography is an alternative to elliptic curve cryptography.
Due to the recent many research work on genus 2 hyperelliptic curve cryptog-
raphy, especially for their cryptanalysis and fast implementation, that hyperel-
liptic curve cryptography in genus 2 has the potential to be competitive with
its elliptic curve cryptography counterpart. In this paper, we studied the bit
security of hyperelliptic Curves DHP, we show that the least significant bit of
each coordinate of hyperelliptic Curves Diffie-Hellman secret value K in genus
2 is hard-core, and then we show that any bit is hard-core. Finally, we extend
our techniques and results to any genus hyperelliptic curves.

There are some further works at this topic. Similar to elliptic curve case, we
can also define a function whose domain is a subgroup of JC(Fp), such as hyperel-
liptic pairing. When we consider the one-way function defined over the Jacobian
of hyperelliptic curve, we call such function “hyperelliptic curve based one-way
function”, following the approach of Duc and Jetchev [15] for elliptic curve case,
it seems that all the bits of hyperelliptic curve based one way functions are hard
to compute too.

Jetchev and Venkatesan [28] studied the bits security of elliptic curve Diffie-
Hellman secret keys using elliptic curves isogeny theory. The hyperelliptic
Jacobians also have explicit isogenies, there are some research work on them.
An natural question is if we can study the bits security of hyperelliptic curve
Diffie-Hellman secret keys using hyperelliptic curves isogeny theory. It seems this
can also be done.

Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China (No. 61379154 and 61672550). Part of this work was done during the
author was visiting the UbiSeC lab at University at Buffalo, State University of New
York.



232 F. Zhang

A Appendix: Explicit Formula for Addition in Genus 2

B Appendix: Magma Program

p:=2^127-1; K := GF(p);

P<x> := PolynomialRing(GF(p));

f3:= 34744234758245218589390329770704207149;

f2:= 132713617209345335075125059444256188021;

f1:= 90907655901711006083734360528442376758;

f0:= 6667986622173728337823560857179992816;

C := HyperellipticCurve(x^5+f3*x^3+f2*x^2+f1*x+f0);

J := Jacobian(C); D:=Random(J);

n:=28948022309329048848169239995659025138451177973091551374

101475732892580332259;

a:=Random(1,n); b:=Random(1,n);

A:=a*D; B:=b*D;

C:=a*B; M:=(b+1)*A;

ua1:=Coefficient(A[1], 1); ua0:=Coefficient(A[1], 0);

va1:=Coefficient(A[2], 1); va0:=Coefficient(A[2], 0);

uab1:=Coefficient(C[1], 1);

uaba1:=Coefficient(M[1], 1);

P3<x,y,z> := PolynomialRing(K, 3);

g1:=z^2-y^2*x+2*uab1*x^2+(f2-uab1*f3-uab1^3)*x-f0;

g2:=2*z*y-x^2-uab1*y^2+(f3 +3*uab1^2)*x+f2*uab1-f3*uab1^2-uab1^4-f1;

g3:=((uab1-ua1) *(z-va0) - (x- ua0)* (y-va1))^2*(uaba1- uab1+ua1)

-2*((z-va0)*(ua1*(uab1-ua1)- (x- ua0)) - ua0*(uab1-ua1)*(y-va1))

*((uab1-ua1)*(z-va0) - (x- ua0)* (y-va1))+((x- ua0)* (ua1*(uab1-ua1)

- (x- ua0))- ua0*(uab1-ua1)^2 )^2;

I := ideal<P3 | g1, g2, g3>;

v := Variety(I, K);

v;

Table 1. Addition in genus 2

Input:D1 = (u11, u10, v11, v10), D2 = (u21, u20, v21, v20))

Output:D3 = D1 + D2 = (u31, u30, v31, v30)

Step Expression

1 A = (v10 − v20)(u21(u11 − u21) − (u10 − u20)) − u20(u11 − u21)(v11 − v21)
B = (u10 − u20)(u21(u11 − u21) − (u10 − u20)) − u20(u11 − u21)

2

C = (u11 − u21)(v10 − v20) − (u10 − u20)(v11 − v21)

2 u31 = (u11 − u21) + 2A
C
− B2

C2

u30 = (u11 − u21)
A
C

+ A2

C2 + (u11 + u21)
B2

C2 − (v11 + v21)
B
C

v31 = (u10 − u30)
C
B

− u31(u11 − u31)
C
B

+ (u11 − u31)
A
B

− v11
v30 = (u10 − u30)

A
B

− u30(u11 − u31)
C
B

− v10

3 Output : (u31, u30, v31, v30)



Bit Security of the Hyperelliptic Curves Diffie-Hellman Problem 233

References

1. Adleman, L.M., DeMarrais, J., Huang, M.-D.: A subexponential algorithm for
discrete logarithms over the rational subgroup of the Jacobians of large genus
hyperelliptic curves over finite fields. In: Adleman, L.M., Huang, M.-D. (eds.)
ANTS 1994. LNCS, vol. 877, pp. 28–40. Springer, Heidelberg (1994). doi:10.1007/
3-540-58691-1 39

2. Akavia, A., Goldwasser, S., Safra, S.: Proving hard-core predicates using list decod-
ing. In: FOCS 2003, pp. 146–157. IEEE Computer Society (2003)

3. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.: RSA and Rabin functions: certain
parts are as hard as the whole. SIAM J. Comput. 17, 194–209 (1988)

4. Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.:
Handbook of Elliptic and Hyperelliptic Cryptography. Chapman and Hall/CRC,
Boca Raton (2006)

5. Bernstein, D.J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer strikes
back: new DH speed records. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8873, pp. 317–337. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45611-8 17

6. Blum, M., Micali, S.: How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput. 13(4), 850–864 (1984)

7. Boneh, D., Shparlinski, I.E.: On the unpredictability of bits of the elliptic curve
Diffie-Hellman scheme. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
201–212. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8 12

8. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of
secret keys in diffie-hellman and related schemes. In: Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996). doi:10.1007/
3-540-68697-5 11

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). doi:10.1007/3-540-45682-1 30

10. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Fast cryptography in genus 2. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
194–210. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 12

11. Cantor, D.G.: Computing in the Jacobian of a hyperelliptic curve. Math. Comput.
48, 95–101 (1987)

12. Costello, C., Lauter, K.: Group law computations on Jacobians of hyperelliptic
curves. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 92–117.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-28496-0 6

13. Diao, O., Joye, M.: Unified addition formulæ for hyperelliptic curve cryptosystems.
In: The 3rd International Conference on Symbolic Computation and Cryptography
(SCC 2012), pp. 45–50 (2012)

14. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22, 644–654 (1976)

15. Duc, A., Jetchev, D.: Hardness of computing individual bits for one-way func-
tions on elliptic curves. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 832–849. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32009-5 48

16. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31, 469–472 (1985)

http://dx.doi.org/10.1007/3-540-58691-1_39
http://dx.doi.org/10.1007/3-540-58691-1_39
http://dx.doi.org/10.1007/978-3-662-45611-8_17
http://dx.doi.org/10.1007/978-3-662-45611-8_17
http://dx.doi.org/10.1007/3-540-44647-8_12
http://dx.doi.org/10.1007/3-540-68697-5_11
http://dx.doi.org/10.1007/3-540-68697-5_11
http://dx.doi.org/10.1007/3-540-45682-1_30
http://dx.doi.org/10.1007/978-3-642-38348-9_12
http://dx.doi.org/10.1007/978-3-642-28496-0_6
http://dx.doi.org/10.1007/978-3-642-32009-5_48
http://dx.doi.org/10.1007/978-3-642-32009-5_48


234 F. Zhang

17. FIPS 186–2, Digital signature standard, Federal Information Processing Standards
Publication 186–2, February 2000

18. Fazio, N., Gennaro, R., Perera, I.M., Skeith III, W.E.: Hard-core predicates for
a Diffie-Hellman problem over finite fields. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 148–165. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40084-1 9

19. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, Cambridge (2012)

20. Galbraith, S.D., Hopkins, H.J., Shparlinski, I.E.: Secure bilinear Diffie-Hellman
bits. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol.
3108, pp. 370–378. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27800-9 32

21. Gaudry, P.: Fast genus 2 arithmetic based on theta functions. J. Math. Crypt.
JMC 1(3), 243–265 (2007)

22. Gaudry, P., Thomé, E., Thériault, N., Diem, C.: A double large prime variation for
small genus hyperelliptic index calculus. Math. Comput. 76(257), 475–492 (2007)

23. González Vasco, M.I., Näslund, M., Shparlinski, I.E.: New results on the hardness
of Diffie-Hellman bits. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol.
2947, pp. 159–172. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24632-9 12

24. Harley, R.: Fast arithmetic on genus 2 curves. For C source code and further
explanations. http://cristal.inria.fr/∼harley/hyper

25. Hȧstad, J., Näslund, M.: The security of all RSA and discrete log bits. J. ACM
51(2), 187–230 (2004)

26. Hisil, H., Costello, C.: Jacobian coordinates on genus 2 curves. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 338–357. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-45611-8 18

27. Jao, D., Jetchev, D., Venkatesan, R.: On the bits of elliptic curve Diffie-Hellman
keys. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS,
vol. 4859, pp. 33–47. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77026-8 4

28. Jetchev, D., Venkatesan, R.: Bits security of the elliptic curve Diffie–Hellman secret
keys. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 75–92. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85174-5 5

29. Kiltz, E.: A primitive for proving the security of every bit and about universal hash
functions and hard core bits. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138,
pp. 388–391. Springer, Heidelberg (2001). doi:10.1007/3-540-44669-9 39

30. Koblitz, N.: Hyperelliptic cryptography. J. Crypt. 1, 139–150 (1989)
31. Lange, T.: Formulae for arithmetic on genus 2 hyperelliptic curves. Appl. Algebra

Eng. Commun. Comput. 15(5), 295–328 (2005)
32. Li, W.-C.W., Näslund, M., Shparlinski, I.E.: Hidden number problem with the

trace and bit security of XTR and LUC. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 433–448. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 28

33. MAGMA Computational Algebra System. http://magma.maths.usyd.edu.au/
magma/

34. Maurer, U.M.: Towards the equivalence of breaking the Diffie-Hellman protocol and
computing discrete logarithms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol.
839, pp. 271–281. Springer, Heidelberg (1994). doi:10.1007/3-540-48658-5 26

35. Maurer, U.M., Wolf, S.: The relationship between breaking the Diffie-Hellman
protocol and computing discrete logarithms. SIAM J. Comput. 28(5), 1689–1721
(1999)

36. Morillo, P., Ràfols, C.: The security of all bits using list decoding. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 15–33. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00468-1 2

http://dx.doi.org/10.1007/978-3-642-40084-1_9
http://dx.doi.org/10.1007/978-3-642-40084-1_9
http://dx.doi.org/10.1007/978-3-540-27800-9_32
http://dx.doi.org/10.1007/978-3-540-24632-9_12
http://cristal.inria.fr/~harley/hyper
http://dx.doi.org/10.1007/978-3-662-45611-8_18
http://dx.doi.org/10.1007/978-3-540-77026-8_4
http://dx.doi.org/10.1007/978-3-540-85174-5_5
http://dx.doi.org/10.1007/3-540-44669-9_39
http://dx.doi.org/10.1007/3-540-45708-9_28
http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/
http://dx.doi.org/10.1007/3-540-48658-5_26
http://dx.doi.org/10.1007/978-3-642-00468-1_2


Bit Security of the Hyperelliptic Curves Diffie-Hellman Problem 235

37. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Trans. Inf. Theor. 24, 106–
110 (1978)

38. Shani, B.: On the bit security of elliptic curve Diffie–Hellman. In: Fehr, S. (ed.)
PKC 2017. LNCS, vol. 10174, pp. 361–387. Springer, Heidelberg (2017). doi:10.
1007/978-3-662-54365-8 15

39. Wang, M., Zhan, T., Zhang, H.: Bit security of the CDH problems over finite fields.
In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 441–461.
Springer, Cham (2016). doi:10.1007/978-3-319-31301-6 25

http://dx.doi.org/10.1007/978-3-662-54365-8_15
http://dx.doi.org/10.1007/978-3-662-54365-8_15
http://dx.doi.org/10.1007/978-3-319-31301-6_25


Natural sd-RCCA Secure
Public-Key Encryptions

Yuan Chen1(B), Qingkuan Dong1, and Qiqi Lai2(B)

1 State Key Laboratory of Integrated Services Networks,
Xidian University, Xi’an 710071, People’s Republic of China
yuanchen@xidian.edu.cn, qkdong@mail.xidian.edu.cn

2 School of Computer Science, Shaanxi Normal University,
Xi’an 710119, People’s Republic of China

laiqq@snnu.edu.cn

Abstract. Replayable CCA (RCCA) security is a reasonable relaxation
of CCA security for public-key encryptions. Pd-RCCA and sd-RCCA
security are two variants of it according to a “replaying” can be detected
publicly or secretly. Existing “natural” RCCA schemes satisfy pd-RCCA
security, while those satisfying only sd-RCCA security are left as open.
We present such schemes via KEM+DEM hybrid paradigm. Sd-RCCA
secure DEMs are sufficient for this purpose. It is known that an RCCA
secure DEM can be achieved by combining a passive secure DEM with
a regular (but not a strong) secure message authentication code (MAC),
where forgeries for old messages might be possible. Unfortunately, most
practical MACs are deterministic, which makes the two notions equiva-
lent. However, the recently proposed probabilistic MACs activate this
paradigm. We formalize the related notions and the paradigm, then
show natural examples of regular secure probabilistic MACs under the
DDH assumption, based on which natural instances of sd-RCCA secure
schemes are given.

Keywords: sd-RCCA security · Probabilistic MAC · Hybrid encryp-
tion · Public-key encryption

1 Introduction

Replayable CCA (RCCA) security is a relaxed variant of CCA security for
Public-Key Encryptions (PKE). It is proved to be sufficient for several cryp-
tographic tasks [1–3], and is believed to be sufficient for almost all the uses of
CCA-secure encryptions [4,5]. In addition, it makes it possible to consider secure
rerandomizable encryptions [6,7].

In the definition of RCCA security, the decryption oracle answers ‘test’ when-
ever a queried ciphertext decrypts to one of the questioned messages m0 or m1.
This allows an adversary to modify a challenge ciphertext to another if the
underlying plaintext is unchanged. Then by requiring such modification can be
detected, RCCA security is strengthened. According to such detection can be
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 236–250, 2017.
https://doi.org/10.1007/978-3-319-68637-0_14



Natural sd-RCCA Secure Public-Key Encryptions 237

done given only the public key or even the secret key, two stronger variants of
RCCA security are introduced in [1], i.e., publicly detectable RCCA (pd-RCCA)
and secretly detectable RCCA (sd-RCCA) security.

It is known that CCA ⇒ pd-RCCA ⇒ sd-RCCA ⇒ RCCA and all the
implications are strict. The two leftmost are shown in [1], and the rightmost
is shown in [7]. Nevertheless, almost all existing RCCA secure schemes satisfy
the stronger pd-RCCA security, such as the schemes adding arbitrary padding
to ciphertexts in the encryption while discarding it in the decryption, those
allowing for more than one representation of ciphertexts, and even a recently
proposed very natural LWE based schemes [8]. “Natural” RCCA secure schemes
only satisfying the weaker sd-RCCA security are left as open in [1]. We will
show such schemes in this paper. We simply denote sd-RCCA but not pd-RCCA
security as sd-RCCA security later.

There is already a line to construct sd-RCCA secure schemes, which is related
to rerandomizability. In fact, a publicly rerandomizable RCCA scheme could be
sd-RCCA secure but never be pd-RCCA [1]. One of the two somewhat artificial
counterexamples showing the gap between pd-RCCA and sd-RCCA security are
given in this way. However, it seems difficult to build a natural such scheme. We
follow another line in this paper, which simply follows the popular KEM+DEM
hybrid paradigm [9].

In the paradigm, KEM uses asymmetric techniques to encrypt a key, which
is then used as the key by a symmetric cipher DEM to encrypt the message. It
is well known that the combination of a CCA secure KEM with a (one-time)
CCA secure DEM yield a CCA secure PKE. For RCCA security, similar result
holds. For our purpose, we can relax one of the KEM and DEM to be sd-RCCA
secure. In fact, sd-RCCA secure KEMs seem as difficult to be built as PKEs, so
we seek for sd-RCCA secure DEMs.

We note that it has already been pointed out in [1] that an RCCA secure
DEM can be achieved by combining a passive secure DEM with a regular (but
not strong) secure message authentication code (MAC), since for a regular MAC
it is possible to forge a new MAC value for an old message. Now, if for such
MACs the validity of the forgery can be verified only secretly, then we obtain the
desired DEMs. However, almost all practical MACs are deterministic, for which
regular and strong security are equivalent, then we should find such natural MAC
schemes from multi-value or probabilistic ones. Existing multi-value MACs are
just conceptual or unnatural [10], so we turn to probabilistic MACs.

Probabilistic MACs have been recently proven to be useful and can be con-
structed efficiently from some standard hardness assumptions [11,12]. Some
schemes in [11] appear to meet our requirements. One may think that prob-
abilistic MACs are overkilled since only one-time security for MACs is required,
and information-theoretically secure ones exist. However, we are focus on such a
stage that if the MAC in a CCA secure scheme is slightly weakened, then it might
be naturally degenerated to a sd-RCCA secure one. This is the main reason why
we deem our paradigm as “natural”. Another reason is that when instantiating
some hybrid encryptions with proper probabilistic MACs, we obtain sd-RCCA



238 Y. Chen et al.

secure PKEs with very “natural” number theoretic operations as those in CCA
secure ones.

In Sects. 2 and 3, we formalize the related notions and results mentioned
above. In Sect. 4, we show two natural examples of MAC schemes as desired.
The first one follows the construction from hash proof systems (HPS) in [11],
which is instantiated directly with a universal2 HPS by Cramer and Shoup [13],
without the variant used in [11]. The second one comes directly from [11], which
is the (so-called) full secure variant of the key-homomorphic weak PRF based
construction when instantiated by a DDH-based example. From these MAC
schemes, we further instantiate two natural PKE schemes as desired.

1.1 Further Discussions and Related Notions

Building RCCA secure schemes more efficient than CCA secure ones is another
open problem left in [1]. Although a MAC scheme satisfying our requirement
and more efficient than existing strong secure MAC schemes seems helpful, our
schemes fail for that purpose. The reason is informally given in Sect. 5.2.

Detectability is studied in isolation in [14], where a notion called DCCA
security is defined when danger can be detected publicly. Pd-RCCA is a natural
case for DCCA security, but generally sd-RCCA is not. However, our schemes
are obviously DCCA secure, thus show an overlap between sd-RCCA and DCCA
security.

2 Preliminaries

2.1 RCCA Security for PKE

Definition 1 (PKE). A public-key encryption scheme consists of three algo-
rithms. Probabilistic PKE.Gen that on input the security parameter k, generates
public and private-keys (pk, sk), pk defines the message space M. Probabilistic
PKE.Enc encrypts a message m ∈ M into a ciphertext c by using pk. PKE.Dec
decrypts cf by using sk, outputs either m ∈ M or a special symbol ⊥/∈ M. Cor-
rectness is required, i.e., for all (pk, sk) generated by PKE.Gen, and m ∈ M,
PKE.Decsk(PKE.Encpk(m)) = m.

Definition 2 (RCCA security for PKEs). We say a PKE scheme
PKE = (PKE.Gen,PKE.Enc,PKE.Dec) is RCCA secure if for every probabilis-
tic polynomial-time oracle machine (PPT) AE that plays the following game, its
advantage Advrcca

Π,AE
(k) = |Pr[b̃ = b] − 1

2 | is negligible in k.
[RGAME.PKE]
Step 1. (pk, sk) ← PKE.Gen(1k)
Step 2. (m0,m1, v) ← AO

E (pk)
Step 3. b ← {0, 1}, c ← PKE.Encpk(mb).
Step 4. b̃ ← AO

E (v, c)
By O, we denote PKE.Decsk(·), except that in step 4 O returns ‘test’ for any

ciphertext decrypts to m0 or m1.



Natural sd-RCCA Secure Public-Key Encryptions 239

In RCCA secure schemes, a “replay” of plaintexts by modifying the ciphertext
is allowed. Publicly-detectable (pd) and secretly-detectable (sd) RCCA security
are defined according to whether the “replay” can be detected given pk or sk.
The definitions are related to a notion of compatible relations. We now give the
definitions in [1].

Definition 3 (Compatible relations for PKEs). Let PKE = (PKE.Gen,
PKE.Enc,PKE.Dec) be a PKE. Then for PKE, we say a family of binary relations
≡ on ciphertext pairs is compatible, if for any (pk, sk) of PKE, we have:

1. For any ciphertexts c, c′, if c ≡ c′, then PKE.Decsk(c) = PKE.Decsk(c′).
2. For any m ∈ M, if c and c′ are two independent encryptions of m, then

Pr[c ≡ c′] is negligible in k.

Given c and c′, if ≡ can be computed efficiently with the sole knowledge of pk,
then we say ≡ is publicly computable, and rewrite it as ≡pk, if the computation
needs also the knowledge of sk, then we say ≡ is secretly computable, and rewrite
it as ≡sk.

Definition 4 (pd-RCCA/sd-RCCA security for PKEs). We say PKE is
pd-RCCA secure if there exists a publicly computable compatible relation ≡pk,
such that PKE is secure according to the above definition of RCCA security with
the modification that O returns test for any c′ with c′ ≡pk c. Denote the game
as pd-RGAME.PKE. We say PKE is sd-RCCA secure if the above holds for a
secretly computable ≡sk. Denote the game as sd-RGAME.PKE.

For any pd/sd-RCCA secure scheme, c ≡ c, otherwise the scheme cannot be
pd/sd-RCCA secure. It is shown in [1] that “CCA ⇒ pd-RCCA ⇒ sd-RCCA ⇒
RCCA”.

Remark: Since we are interested in RCCA secure schemes which are not
CCA secure, the compatible relation ≡ showing the pd- or sd-RCCA security
must not be the equality relation: c′ ≡ c if c′ = c. Therefore, we address that
for such ≡, publicly or secretly computable, it must be satisfied that it is easy
to find a c′ �= c, such that c′ ≡ c. That is, there exists a PPT machine, when
given pk, c as inputs, it outputs a c′ �= c, such that c′ ≡ c with non-negligible
probability. Otherwise, pd-RCCA or sd-RCCA secure schemes are trivially CCA
secure.

2.2 KEM+DEM and Related Security Notions

Definition 5 (KEM). A key encapsulation mechanism (KEM) consists of three
algorithms. Probabilistic KEM.Gen that on input 1k outputs a public/private key
pair (pk, sk), pk defines the key space KK . Probabilistic encapsulation algorithm
KEM.Enc that on input 1k and a public key pk, outputs a pair (dk, ψ), where
dk ∈ KK is a key and ψ is its ciphertext. Decapsulation algorithm KEM.Dec,
on input sk and ψ, outputs either a key dk ∈ KK or the special symbol ⊥.
Correctness is required, i.e., for all (pk, sk) generated by KEM.Gen, and all
(dk, ψ) ← KEM.Encpk(1k), KEM.Decsk(ψ) = dk.



240 Y. Chen et al.

Definition 6 (CCA for KEMs). We say a KEM KEM = (KEM.Gen,
KEM.Enc,KEM.Dec) is CCA secure if for every PPT AE that plays the following
game, its advantage Advcca

Π,AK
(k) = |Pr[δ̃ = δ] − 1

2 | is negligible in k.
[GAME.KEM]
Step 1. (pk, sk) ← KEM.Gen(1k)
Step 2. (dk1, ψ) ← KEM.Encpk(1k), dk0 ← KK , δ ← {0, 1}.
Step 3. δ̃ ← AO

K(pk, ψ, dkδ)
O denotes KEM.Decsk(·). In Step 3, AK is restricted not to ask ψ to O.

Definition 7 (DEM). A data encapsulation mechanism (DEM) is a one-time
symmetric-key encryption, consists of two algorithms. DEM.Enc that takes as
input 1k, a key dk and a message m ∈ M (M is usually assumed to be
{0, 1}∗), outputs a ciphertext χ. DEM.Dec that takes as input a dk and a cipher-
text χ, outputs a message m or the special symbol ⊥. For our purpose, we
allow DEM.Enc to be probabilistic. Correctness is required, i.e., for all m ∈ M,
DEM.Decdk(DEM.Encdk(m)) = m.

Definition 8 (OT/CCA/RCCA security for DEMs). We say a DEM
DEM = (DEM.Enc,DEM.Dec) is OT/CCA/RCCA secure if for every PPT AD

that plays the following game, its advantage Adv
ot/cca/rcca
Π,AD

(k) = |Pr[b̃ = b] − 1
2 |

is negligible in k.
[GAME.DEM]
Step 1. (m0,m1, v) ← AD(1k)
Step 2. dk ← KD, b ← {0, 1}, χ ← DEM.Encdk(mb).
Step 3. b̃ ← AO

D(v, χ)
For the OT security, O is null. For the CCA security, O is DEM.Decdk(·),

and in Step 3 AD is restricted not to ask χ to O. For the RCCA security, all is
the same except that in step 3 O returns ‘test’ for any ciphertext that decrypts
to m0 or m1.

To define pd-RCCA and sd-RCCA security for DEMs, we should first define
compatible relations for them. We note that the second requirement in the def-
initions of compatible relations for PKEs is not necessary now. Although our
DEMs are randomized, it seems impossible for an adversary to generate random
encryptions for both m0 and m1 since we only require one-time security, thus
the attack mentioned for PKEs doesn’t work for DEMs. Due to this, we define
compatible relations for DEMs without this requirement, which are simpler but
sufficient for our purpose.

Definition 9 (compatible relations for DEMs). Let DEM = (DEM.Enc,
DEM.Dec) be a DEM scheme. For DEM, we say a family of binary relations
≡ on ciphertext pairs is compatible, if for any dk of DEM and any ciphertexts
c, c′, if c ≡ c′, then DEM.Decdk(c) = DEM.Decdk(c′).

Given c and c′, if ≡ can be computed efficiently without the knowledge of dk,
then we say ≡ is publicly computable, if the computation needs the knowledge of
dk, then we say ≡ is secretly computable, and rewrite it as ≡dk.



Natural sd-RCCA Secure Public-Key Encryptions 241

Definition 10 (pd-RCCA/sd-RCCA for DEMs). We say DEM is pd-
RCCA secure if there exists a publicly computable compatible relation ≡, such
that DEM is secure according to the definition of RCCA security with the mod-
ification that O returns test for any c′ with c ≡ c′. Denote the game as pd-
RGAME.DEM. We say DEM is sd-RCCA secure if the above holds for a secretly
computable ≡dk. Denote the game as sd-RGAME.DEM.

KEM+DEM hybrid paradigm works as follows, and it is well known that if
KEM and DEM are IND-CCA secure then the following HPKE is IND-CCA
secure (as a public-key encryption) [9].

HPKE.Encpk(m) HPKE.Decsk(c)
(dk, ψ) ← KEM.Encpk() (ψ, χ) ← c
χ ← DEM.Encdk(m) dk ← KEM.Decsk(ψ)
Output c = (ψ, χ) m ← DEM.Decdk(χ)

Output m

3 Sd-RCCA Secure Hybrid Public-Key Encryptions
from Sd-RCCA Secure DEMs

It’s easy to see that sd-RCCA secure KEMs lead to sd-RCCA secure hybrid
encryptions, but such KEMs are almost as hard to be achieved as for PKEs. So,
we seek for the other way. It can be proved that sd-RCCA security for DEMs is
also sufficient.

Theorem 1. If KEM is CCA-secure and DEM is sd-RCCA secure (but not
pd-RCCA secure), then the hybrid scheme HPKE (as a PKE) by following
KEM+DEM paradigm is sd-RCCA secure (but not pd-RCCA secure). In par-
ticular, for every H, there exist AK and AD with

Advsd−rcca
HPKE,H(k) ≤ 2Advcca

KEM,AK
(k) + Advsd−rcca

DEM,AD
(k). (1)

Proof (Proof). We first prove the sd-RCCA security of HPKE from the secu-
rity of KEM and DEM.

Let ≡dk be a compatible relation for DEM, we define a compatible rela-
tion for HPKE as follows: (ψ, χ) ≡pk,sk (ψ′, χ′) if ψ = ψ′ and χ ≡dk χ where
dk = KEM.Decsk(ψ) = KEM.Decsk(ψ′). It is straightforward to verify ≡pk,sk is
compatible for HPKE as long as ≡dk is compatible for DEM.

Now, let H be an adversary playing sd-RGAME.PKE. Let (ψ∗, χ∗) be the
challenge ciphertext, dk∗ is the encapsulated key in ψ∗. We modify the game
by using a random key dk+ in place of dk∗ in both the encryption and decryp-
tion oracle, i.e., dk+ is used to form the challenge ciphertext, and a decryption
oracle query is replied by using dk+ whenever dk∗ should be used. Call this
game sd-RGAME.PKE′. Let F and F ′ be events that b̃ = b in sd-RGAME.PKE
and sd-RGAME.PKE′, respectively. Then we claim that |Pr[F ] − Pr[F ′]| =
2Advcca

KEM(k), which is shown by constructing AK that attacks the underlying
KEM scheme by using H.



242 Y. Chen et al.

AK asks to obtain the challenge (pk, dkδ, ψ
∗) in GAME.KEM, then sends pk

to H. After H chooses its m0 and m1, AK randomly chooses b ∈ {0, 1}, computes
χ∗ = DEM.Encdkδ

(mb), and sends (ψ∗, χ∗) to H.
AK answers H’s decryption query (ψ, χ) as follows:

– If ψ = ψ∗ and so that χ �= χ∗, then
• If χ ≡dkδ

χ∗ then AK returns ‘test’ (note that AK knows dkδ).
• Else AK uses dkδ to decrypt χ, and returns the result to H.

– If ψ �= ψ∗, then AK just forwards ψ to its own decryption oracle
KEM.Decsk(·).

• If ⊥ is returned, then AK returns ⊥ to H.
• If dk is returned, then AK uses this dk to decrypt χ, and returns the

result to H.

This perfectly simulates the decryption oracle for H. When H outputs b̃, AK

checks whether or not b̃ = b, if so it outputs δ̃ = 1, else outputs δ̃ = 0. Now, we
have Pr[b̃ = b|δ = 1] = Pr[F ]|, and Pr[b̃ = b|δ = 0] = Pr[F ′]. Then it is easy to
see |Pr[F ] − Pr[F ′]| = 2Advcca

KEM,AK
(k).

Next we argue that H in sd-RGAME.PKE′ in fact conducts an attack against
the sd-RCCA security of DEM, i.e. |Pr[F ′] − 1

2 | = Advsd−rcca
DEM,AD

(k), where AD is
constructed as follows. AD first runs PKE.Gen to generate (pk, sk), then sends
pk to H. After H chooses its (m0,m1), AD gives them to its own encryption
oracle and gets χ∗. Then AD runs KEM.Enc to generate (dk∗, ψ∗), and gives
(ψ∗, χ∗) to H. It should be noticed that now the key dk+ used in encryption
oracle of GAME.DEM is chosen randomly from KD, so is independent of dk∗.

AD answers H’s decryption query (ψ, χ) as follows:

– If ψ = ψ∗ and so that χ �= χ∗, then AD forwards χ to its own decryption
oracle, and returns the result to H.

– If ψ �= ψ∗, then AD uses sk to decrypt ψ.
• If the result is ⊥, then AD returns ⊥ to H.
• If dk is returned, then AD uses this dk to decrypt χ, and returns the

result to H.

When H outputs b̃, AD outputs b̃, too. AD perfectly simulates
sd-RGAME.PKE′, and AD wins if H does. So, |Pr[F ′] − 1

2 | = Advsd−rcca
DEM,AD

(k).
Finally, we have:

Advsd−rcca
HPKE,H(k) − Advsd−rcca

DEM,AD
(k) = |Pr[F ] − 1

2
| − |Pr[F ′] − 1

2
|

≤ |Pr[F ] − Pr[F ′]|
= 2Advcca

KEM,AK
(k).

Then (1) follows immediately.
It remains to show HPKE is not pd-RCCA secure.
Since DEM is sd–RCCA secure but not pd-RCCA secure, there exists a

compatible relation showing the sd-RCCA security, which is secretly but not



Natural sd-RCCA Secure Public-Key Encryptions 243

publicly computable, let ≡dk be the compatible relation. We claim that if χ
satisfies χ ≡dk χ∗, then for any publicly computable compatible relation ≡pk,
we must have (ψ∗, χ) �≡pk (ψ∗, χ∗). If this is admitted, then the decryption of
(ψ∗, χ) is mb and the decryption oracle will not return ‘test’, so HPKE is not
pd-RCCA secure.

We now prove our claim. Intuitively, χ ≡dk χ∗ cannot be publicly computed,
but when given ψ∗ this ≡dk can be publicly computed, then ψ∗ must reveal the
information of dk∗, which contradicts with the CCA security of KEM.

More formally, if there exist some publicly computable ≡pk, such that
(ψ∗, χ) ≡pk (ψ∗, χ∗), then we construct a CCA adversary A against KEM as
follows: given (pk, ψ, dkδ), A uses dkδ to generate two DEM ciphertexts χ and
χ′ with χ ≡dk χ′, then checks whether or not (ψ, χ) ≡pk (ψ, χ′), if so output 1,
else output 0.

Since χ ≡dk χ∗ cannot be publicly computed, if ψ∗ encapsulates a dk indepen-
dent of dkδ, then except for a negligible probability, we have (ψ, χ) �≡pk (ψ, χ∗).
Then it is easy to see Pr[A = δ] is almost 1.

4 Sd-RCCA Secure DEMs from Regular Secure
and Secretly Detectable MACs

It has already been pointed out that RCCA secure SKEs can be given by the
“encrypt-then-authenticate” paradigm by using a regular but not necessarily
strong secure MAC. For sd-RCCA secure DEMs, we follow the same paradigm.
However, the underlying MAC needs to be regular secure (but not strong one-
time secure), and the validity of a successful forge can be verified only secretly
(but not publicly). We now formalize these notions for MACs.

4.1 MAC and Related Security Notions

Definition 11 (MAC). MAC is a pair of algorithms (MAC.Sign, MAC.Ver). A
key space KM is defined by security parameter k. MAC.Sign takes a key mk ∈ KM

and a message m ∈ 0, 1∗ as inputs, and outputs a string σ. MAC.Ver takes a triple
(mk,m, σ) as input and outputs a decision of whether or not (m,σ) is valid with
respect to mk.

Since we will use randomized MACs to achieve sd-RCCA secure DEMs,
MAC.Sign is allowed to be probabilistic, but MAC.Ver is still deterministic. For
probabilistic MACs, a proper security notion should allow an adversary to make
MAC.Sign(mk, ·) and MAC.Ver(mk, ·) queries [15]. However, for our setting we
need only one-time security, i.e., only once access to MAC sign is permitted. In
fact, the weaker notion without access to MAC.Ver(mk, ·) is sufficient.

Definition 12 (regular/strong security for MACs). We say a MAC
MAC = (MAC.Sign,MAC.Ver) is secure against one-time chosen message attack,
or shorten as regular one-time secure, if for every PPT oracle machine F that



244 Y. Chen et al.

plays the following game, the probability that the game output 1 (i.e., the advan-
tage of F , denoted as Advforge

MAC,F (k)) is negligible in k.

[GAME.MAC].
Step1. m ← F(1k)
Step2. mk ← KM , σ ← MAC.Signmk(m)
Step3. (m′, σ′) ← F(σ)
Step4. If m′ �= m and MAC.Vermk(m′, σ′) = 1 then output 1 else output 0
Strong one time security is defined all the same except that m′ �= m is replaced

with (m′, σ′) �= (m,σ) in step 4.

For deterministic MACs, the two definitions are equivalent. However, for a
regular randomized MACs, it might be possible to efficiently generate another
valid MAC value σ′ for m, which is not allowed for a strong secure one. For such
forgery, we distinguish two cases:

Definition 13. (Publicly/secretly detectable forgery). Let MAC be a reg-
ular secure (but not strong one-time secure) MAC and (m′, σ′) be a forgery output
by an adversary when given (m,σ) with m′ = m. Then we say MAC is publicly-
detectable if given (m,σ, σ′), the validity of σ′ can be verified efficiently without
the knowledge of mk, else we say MAC is secretly-detectable.

4.2 Sd-RCCA Secure DEMs from the “encrypt-then-authenticate”
Paradigm

One can obtain an sd-RCCA secure DEM easily by following the “encrypt-then-
authenticate” paradigm from a regular MAC and a one-time secure DEM, and
it is well known that the latter can be just a one-time pad. We now formalize
the paradigm.

Theorem 2. Let DEMot be a one-time secure (deterministic) DEM, MAC be
a MAC which is regular secure (but not strong one-time secure), and is secretly-
detectable (but not publicly-detectable), then the following DEM DEMsd−rcca

is sd-RCCA secure (but not pd-RCCA secure). In particular, the sd-detectable
compatible relation ≡e should be χ = (c, σ) ≡e χ′ = (c′, σ′) if and only if c = c′,
σ �= σ′ and both MAC.Vermk(c, σ) = 1 and MAC.Vermk(c′, σ′) = 1.

DEM.Encdk,mk(m) DEM.Decdk,mk(χ)
c ← DEM.Encdk(m) parse χ as c‖σ
σ ← MAC.Signmk(c) If MAC.Vermk(c, σ) = 1 then
Output χ = (c‖σ) m ← DEM.Decdk(c)

Else output ⊥ EndIf
Output m.

Proof. The compatibility of ≡e is obvious. We first prove the sd-RCCA security.
Let AD be an adversary playing sd-RGAME.DEM, we construct a passive

adversary B against DEMot by using AD as follows:



Natural sd-RCCA Secure Public-Key Encryptions 245

B forwards 1k to AD. Given (m0,m1) from AD, B requests (m0,m1) to the
encryption oracle of GAME.DEM to obtain c∗. Then B randomly chooses mk
from KM , computes σ∗ = MAC.Signmk(c∗), sends χ∗ = (c∗, σ∗) to AD.

For a decryption query χ = (c, σ) from AD, if c = c∗, then B checks if
MAC.Vermk(c∗, σ) = 1 by using mk, if so, it returns ‘test’, for all other cases B
just returns ⊥.

Finally, when AD outputs b̃, B outputs b̃, too.
The simulation is correct unless MAC.Ver(c, σ) = 1 for some c �= c∗. Let Forge

denote this event, we have Pr[Forge] ≤ qD · Advforge
MAC,AD

.
It remains to show DEMsd−rcca is not pd-RCCA secure. Assume that there

exist a publicly computable relation such that DEM is pd-RCCA secure, let ≡ be
the relation. Since the underlying MAC is secretly but not publicly detectable,
it is possible to forge a new and valid σ′ efficiently for c, but the validity of
(c, σ′) cannot be verified publicly. However, we note that it must be the case
that (c, σ′) ≡ (c, σ), else the decryption of (c, σ′) is m, thus DEMsd−rcca cannot
be pd-RCCA secure for this ≡. Since ≡ is a publicly computable relation, this
means that the validity of σ′ can be verified publicly, which leads to a contradict.

4.3 Achieving Sd-RCCA Security from Regular MACs by Other
Paradigms

There are also some other methods using MACs to achieve CCA secure hybrid
encryptions, such as a CCCA secure KEM plus an authenticated encryption
(which is shortened as AE and can be built from a passively secure DEM and
a MAC) [16], a CCA secure Tag-KEM (which can be constructed by a LCCA
secure KEM and a MAC) plus a passively secure DEM [17], an RCCA secure
KEM plus a CCA secure Tag-DEM (which can be constructed by an OT secure
DEM and a MAC) [18], and so on. Instantiating the MAC underlying these
constructions with a regular one-time secure (but not strongone-time secure),
secretly-detectable (but not publicly-detectable) one will also yield sd-RCCA
secure hybrid encryptions.

In Sect. 5, we also instantiate a scheme for the CCCA secure KEM plus AE
paradigm, so we formalized the paradigm here without the formal definition for
the CCCA security for KEMs, which follows directly from [16].

Definition 14 (AE). An authenticated encryption scheme is a one-time
symmetric-key encryption, consists of two algorithms. AE.Enc that takes as input
1k, a key dk and a message m ∈ M, outputs a ciphertext χ. AE.Dec that takes
as input a dk and a ciphertext χ, outputs a message m or the special symbol
⊥. For our purpose, we allow AE.Enc to be probabilistic. Correctness is required,
i.e., for all m ∈ M, AE.Decdk(AE.Encdk(m)) = m.

Definition 15 (OT/ROT security for AE). The one-time(OT) security of
AE captures privacy and authenticity simultaneously, which is defined by the
following game, where O is a decrypt-or-reject oracle, which returns AE.Decdk(ψ)



246 Y. Chen et al.

if b = 1, else always returns ⊥. In Step 3, AA is allowed only one query to O,
which is restricted not to be χ.

[GAME.AE]
Step 1. (m0,m1, v) ← AA(1k)
Step 2. dk ← KD, b ← {0, 1}, χ ← AE.Encdk(mb).
Step 3. b̃ ← AO

A(v, χ)
Replayable one-time security (ROT) of AEs is defined similarly except that

in step 3 O returns ‘test’ for any ciphertext that decrypts to m0 or m1.

The compatible relations for AEs are defined almost the same as for DEMs,
then pd-ROT and sd-ROT security for AEs follow immediately.

Theorem 3. If KEM is CCCA-secure and AE is sd- but not pd-ROT secure,
then the hybrid scheme HPKE by following KEM+DEM paradigm with the DEM
substituted by an AE is sd- but not pd-RCCA secure (as a PKE).

The proof for sd-RCCA security is rather similar as in [16], and the proof for
not pd-RCCA security is almost the same as for Theorem 1, so we do not show
anymore.

For sd- but not pd-ROT secure AEs, we can still follow the “encrypt-then-
authenticate” paradigm.

Theorem 4. Let DEMot be a one-time secure (deterministic) DEM, MAC be a
MAC which is regular (but not strong) one-time secure, and is secretly-detectable
(but not publicly-detectable), then the AE defined the same as in Theorem2 is
sd-RCCA secure (but not pd-RCCA secure).

The proof is also almost the same as for Theorem 2.

5 Instantiations

5.1 Instantiations of Regular but Not Strong, Secretly but Not
Publicly Detectable MACs

There are some motivations for probabilistic MACs as pointed in [11]. And such
MACs give rise to natural regular but not strong MACs. For example, the con-
structions from labeled hash proof systems (HPS) when instantiate it directly
with the universal2 HPS by Cramer and Shoup [13], the DDH-based construc-
tions achieving full security from key-homomorphic weak-PRFs, and the second
LPN-based construction. We only briefly sketch the two DDH-based ones here
without the tedious descriptions of HPS and key-homomorphic weak-PRFs.

Firstly, consider the probabilistic MAC constructions from labeled hash proof
systems (HPS) in [11]. When instantiating it directly with the universal2 HPS
by Cramer and Shoup [13] without the modification done in [11], we obtain a
regular but not strong MAC.

Let G be a group of prime-order p and let g1, g2 be two independent genera-
tors of G. Define M = Zp, then



Natural sd-RCCA Secure Public-Key Encryptions 247

– Gen(1k): Pick mk = (x1, x2, y1, y2) randomly in Z
4
p.

– MAC.Signmk(m): Pick r randomly in Zp, let C = (u, v) = (gr
1, g

r
2) and K =

ux1m+y1vx2m+y2 , then output σ = (C,K).
– MAC.Vermk(m,σ): Parse σ as ((u, v),K) and output accept iff K =

ux1m+y1vx2m+y2 .

Theorem 5. The above MAC scheme is regular but not strong one-time secure
and secretly-detectable but not publicly-detectable under the DDH assumption
on G.

Proof. The regular security is directly from [11]. Since given a mac value σ =
(C,K) = ((u, v),K) of m, one can generate another valid mac value σ′ of m
by randomly chooses a r′ ∈ Zp then let σ′ = ((ur′

, vr′
),Kr′

). The validity is
obvious, in fact, σ′ is the mac value of m under the randomness rr′. Thus, the
scheme is not strongly secure.

The validity of σ′ cannot be verified publicly given (m,σ, σ′). In fact, since a
valid (m,σ′) pair has the same distribution as (m,σ), if there is an algorithm A
which can publicly verify the validity of σ′ given (m,σ, σ′), then it can distinguish
whether or not (m,σ′) has the same distribution as (m,σ). Thus, we can con-
struct an efficient DDH and random tuple distinguisher D: given (g1, g2, g3, g4),
let g = g1, then randomly choose (x1, x2, y1, y2) ∈ Z

4
p and m ∈ Zp, let

u = gr
1, v = gr

2,K = ux1m+y1vx2m+y2 , u′ = gr
3, v

′ = gr
4,K

′ = u′x1m+y1v′x2m+y2 ,
and σ = ((u, v),K), σ′ = ((u′, v′),K ′), run A on (m,σ, σ′). If σ′ is valid, then
output 1 to indicate DDH tuple, else output 0. It is obvious that if A wins then
D wins, too.

It is interesting to note that a HPS is naturally a KEM, but the malleability
of the HPS cannot yield RCCA security for the KEM, for example, in σ′, the
encapsulate key is not K anymore. However, when the HPS is used as a MAC,
σ′ is still a valid mac value of m.

Secondly, consider the DDH-based constructions achieving full security from
key-homomorphic weak-PRFs. Let G be a group of prime-order p and let g be
a generator of G. Define M = {0, 1}k, then

– Gen(1k): Pick mk = (x, x′
1, x

′
2, ..., x

′
k) randomly in Z

k+1
p .

– MAC.Signmk(m): Pick r randomly in Zp, let u = gr and w = ux+
∑

x′
imi , then

output σ = (u,w).
– MAC.Vermk(m,σ): Parse σ as (u,w) and output accept iff w = ux+

∑
x′

imi .

Theorem 6. The above MAC scheme is regular but not strong one-time secure
and secretly-detectable but not publicly-detectable under the DDH assumption
on G.

Proof. The regular security is directly from [11]. Since given a mac value σ =
(u,w) of m, one can generate another valid mac value σ′ of m by randomly
chooses a r′ ∈ Zp then let σ′ = ((ur′

, wr′
)). The validity is obvious, in fact, σ′ is



248 Y. Chen et al.

the mac value of m under the randomness rr′. Thus, the scheme is not strongly
secure.

The validity of σ′ cannot be verified publicly given (m,σ, σ′). In fact, since
a valid (m,σ′) pair has the same distribution as (m,σ), if there is an algo-
rithm A which can publicly verify the validity of σ′ given (m,σ, σ′), then it
can distinguish whether or not (m,σ′) has the same distribution as (m,σ).
Thus, we can construct an efficient DDH and random tuple distinguisher: given
(g1, g2 = gx

1 , g3 = gr
1, g4), randomly choose (x′

1, x
′
2, ..., x

′
k) ∈ Z

k
p and m ∈ {0, 1}k,

then it should be noted that σ = (g1, g2g
∑

x′
imi

1 ) is a valid mac value of m under
the key mk = (x, x′

1, x
′
2, ..., x

′
k). Let σ′ = (g3, g4g

∑
x′

imi

3 ), run A on (m,σ, σ′). If
σ′ is valid, then output 1 to indicate DDH tuple, else output 0.

5.2 Instantiations of sd-RCCA Secure Hybrid Encryptions

Firstly, we instantiate the refined Cramer-Shoup hybrid scheme in [19] with the
first MAC scheme in the last section to obtain our first sd-RCCA secure scheme.
Let G be a group of prime-order p and let g1, g2 be two independent generators
of G, TCR be a target collision resistant hash functions, and KDF be a key
derivation function with proper domain and range. Define M = Zp, then

– Gen(1k): Pick x1, x2, y1, y2, z1, z2 randomly in Z
6
p, let pk = (c, d, h) =

(gx1
1 gx2

2 , gy1
1 gy2

2 , gz1
1 gz2

2 ), sk = (x1, x2, y1, y2, z1, z2), output (pk, sk).
– HPKE.Encpk(m): Pick r, r′ randomly in Zp, let u = gr

1, v = gr
2 and α =

TCR(u, v), then let w = (cαd)r, K = hr and (dk,mk) = KDF (K), where
mk = (x′

1, x
′
2, y

′
1, y

′
2), then let e = dk + m, u′ = gr′

1 , v′ = gr′
2 , and w′ =

(u′x′
1e+y′

1v′x′
2e+y′

2)r′
, output C = (u, v, w, e, u′, v′, w′).

– HPKE.Decsk(C): Parse C as (u, v, w, e, u′, v′, w′), let α = TCR(u, v), K = hr

and (dk,mk) = KDF (K), parse mk as (x′
1, x

′
2, y

′
1, y

′
2), output m′ = e − dk if

and only if w = ux1α+y1vx2α+y2 and w′ = u′x′
1e+y′

1v′x′
2e+y′

2 .

For the naturalness, we note that HPSs are natural components for PKEs. In
addition, if mk = (x′

1, x
′
2, y

′
1, y

′
2) is not derived from K, but added in the sk, thus

(c′, d′) = (gx′
1

1 g
x′
2

2 , g
y′
1

1 g
y′
2

2 ) must be added in pk, then the resulting scheme might
be more natural as a PKE. However, the scheme is not secure any more, since the
knowledge of r′ allows one to generate the MAC value for any messages publicly.
Our scheme provides a natural way to solve this problem, and can reduce the
size of the public-key. Another way to solve this is letting r′ = r. However, this
will directly results in CCA security, and is not suitable for our purpose. The
original CCA secure Cramer-Shoup can be seen as such an scheme, and which
further integrates w and w′ by letting α = TCR(u, v, e). This also somewhat
explains the difficulty to build an RCCA secure PKE more efficient than existing
CCA secure ones. The similar thing also happens to our second scheme.

Secondly, we instantiate a hybrid scheme by using the CCCA-secure KEM
in [16] with an authenticated encryption, where the second DDH-based MAC
presented above is used. Let G be a group of prime-order p and let g be a
generator of G, TCR be a target collision resistant hash functions, and KDF be



Natural sd-RCCA Secure Public-Key Encryptions 249

a key derivation function with proper domain and range. Define M = {0, 1}k,
then

– Gen(1k): Pick x, y, z randomly in Z
3
p, let pk = (c, d, h) = (gx, gy, gz), sk =

(x, y, z), output (pk, sk).
– HPKE.Encpk(m): Pick r, r′ randomly in Zp, let u = gr, w = (cαd)r where

α = TCR(u), then let K = hr and (dk,mk) = KDF (K), where mk =
(x′, x′

1, x
′
2, ..., x

′
k), then let e = dk ⊕ m, u′ = gr′

, and w′ = u′x+∑ x′
iei , output

C = (u,w, e, u′, w′). (what if w = (cαd)ru′x+∑ x′
iei)

– HPKE.Decsk(C): Parse C as (u,w, e, u′, w′) and let α = TCR(u), K = hr and
(dk,mk) = KDF (K), parse mk as (x′, x′

1, x
′
2, ..., x

′
k), output m′ = e ⊕ dk if

and only if w = uxα+y and w′ = u′x′+
∑

x′
iei .

Our sd-RCCA secure schemes are less efficient than existing CCA secure ones.
In fact, in an efficient CCA secure hybrid encryption scheme, it is often the case
that the KEM ciphertext is deterministically related to the encapsulation key,
which makes it impossible to achieve RCCA security. However, regular MACs
more efficient than strong ones still bring us a light.

6 Conclusion

We introduce regular (but not strong) probabilistic MACs into KEM+DEM style
hybrid paradigm to construct sd-RCCA secure public-key encryptions. We show
two examples of such MACs under the DDH assumption based on the work in
[11]. Instantiating proper DDH-based hybrid encryptions with these MACs, we
obtain “natural” instances of sd-RCCA secure ones. This solves an open problem
left in [1].

Acknowledgment. This work is supported by the National Natural Science Foun-
dations of China (Nos. 61402353, 61373172) and the Fundamental Research Funds for
the Central Universities (No. GK201603084).

References

1. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45146-4 33

2. Maurer, U., Rüedlinger, A., Tackmann, B.: Confidentiality and integrity: a con-
structive perspective. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 209–
229. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9 12

3. Coretti, S., Maurer, U., Tackmann, B.: Constructing confidential channels from
authenticated channels—public-key encryption revisited. In: Sako, K., Sarkar, P.
(eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 134–153. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-42033-7 8

4. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002). doi:10.1007/3-540-46035-7 6

http://dx.doi.org/10.1007/978-3-540-45146-4_33
http://dx.doi.org/10.1007/978-3-642-28914-9_12
http://dx.doi.org/10.1007/978-3-642-42033-7_8
http://dx.doi.org/10.1007/3-540-46035-7_6


250 Y. Chen et al.

5. Shoup, V.: ISO 18033-2: an emerging standard for public-key encryption. Final
Committee Draft, December 2004

6. Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack secure
cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152–170.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1 9

7. Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517–534. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-74143-5 29

8. El Bansarkhani, R., Dagdelen, Ö., Buchmann, J.: Augmented learning with errors:
the untapped potential of the error term. Cryptology ePrint Archive, Report
2014/733

9. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

10. Krawczyk, H.: The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, pp. 310–331. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8 19

11. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
355–374. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 22

12. Alwen, J., Hirt, M., Maurer, U., Patra, A., Raykov, P.: Key-indistinguishable mes-
sage authentication codes. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 476–493. Springer, Cham (2014). doi:10.1007/978-3-319-10879-7 27

13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

14. Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: a new app-
roach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29011-4 39

15. Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in
message authentication and authenticated encryption. IACR Cryptology ePrint
Archive, 2004, 309

16. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74143-5 31

17. Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: a new framework for hybrid
encryption. J. Cryptology 21(1), 97–130 (2008)

18. Chen, Y., Dong, Q.: RCCA security for KEM+DEM style hybrid encryptions and
a general hybrid paradigm from RCCA-secure KEMs to CCA-secure encryptions.
Secur. Commun. Netw. 7(8), 1219–1231 (2014)

19. Shoup, V.: Using hash functions as a hedge against chosen ciphertext attack. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer,
Heidelberg (2000). doi:10.1007/3-540-45539-6 19

http://dx.doi.org/10.1007/978-3-540-24638-1_9
http://dx.doi.org/10.1007/978-3-540-74143-5_29
http://dx.doi.org/10.1007/3-540-44647-8_19
http://dx.doi.org/10.1007/978-3-642-29011-4_22
http://dx.doi.org/10.1007/978-3-319-10879-7_27
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/978-3-642-29011-4_39
http://dx.doi.org/10.1007/978-3-540-74143-5_31
http://dx.doi.org/10.1007/3-540-45539-6_19


Long-Term Secure Time-Stamping
Using Preimage-Aware Hash Functions

(Short Version)

Ahto Buldas1,2, Matthias Geihs3(B), and Johannes Buchmann3

1 Tallinn University of Technology, Tallinn, Estonia
2 Cybernetica AS, Tallinn, Estonia

3 Darmstadt University of Technology, Darmstadt, Germany
mgeihs@cdc.informatik.tu-darmstadt.de

Abstract. The lifetime of commonly used digital signature schemes is
limited because their security is based on computational assumptions
that potentially break in the future. In 1993, Bayer et al. suggested that
the lifetime of a digital signature can be prolonged by time-stamping the
signature together with the signed document. Based on this idea, vari-
ous long-term timestamp schemes have been proposed and standardized
that repeatedly renew the protection with new timestamps. In order
to minimize the risk of a design failure affecting the security of these
schemes, it is indispensable to formally analyze their security. However,
many of the proposed schemes have not been subject to a formal security
analysis yet. In this paper, we address this issue by formally describing
and analyzing a long-term timestamp scheme that uses hash trees for
timestamp renewal. Our analysis shows that the security level of the
described scheme degrades cubic over time, which suggests that in prac-
tice the scheme should be instantiated with a certain security margin.

Keywords: Long-term security · Timestamps · Preimage aware hash
functions

1 Introduction

1.1 Motivation

More and more information is generated and stored in digital form. In many cases
it is important to ensure the integrity of this information. For example, in the
case of electronic health records, it is indispensable that unintentional changes
to the health records can be detected. Most commonly, integrity of such sensitive
information is protected using digital signature schemes. However, most digital
signature schemes used today provide security only for a limited time period.

This work has been co-funded by the DFG as part of project S6 within the CRC
1119 CROSSING. The full version can be found on the IACR ePrint Archive [2].

c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 251–260, 2017.
https://doi.org/10.1007/978-3-319-68637-0_15



252 A. Buldas et al.

Their security is based on computational assumptions, i.e., security holds only
as long as the computational resources of an attacker are insufficient to solve a
certain computational problem. The widely used RSA digital signature scheme
[10], for example, is broken if prime factors of large integers can be computed.
Using current computer technology, this seems to be infeasible, however, it has
been shown that quantum computers can factor large integers efficiently.

To mitigate the security risk, Bayer et al. [1] in 1993 proposed a method
for prolonging the validity of a digital signature beyond the validity of the
corresponding digital signature scheme. Their idea was to timestamp the sig-
nature together with the signed document. This proves that the signature for
the document was known when the corresponding signature scheme was con-
sidered secure, and hence, the signature must be genuine. Because the security
of timestamps also relies on computational assumptions, timestamps must be
renewed, as well, by obtaining new timestamps.

To understand the security of long-term integrity protection using timestamp
renewal, a security model must be provided for such a scheme. However, formal
security analysis of long-term timestamp schemes has not received much atten-
tion until recently. In [7], Geihs et al. analyze the security of long-term timestamp
schemes that use signature-based timestamp services. Their analysis is done in
the random oracle model and shows that the security level of the analyzed long-
term timestamp scheme degrades gradually over time. An alternative method
for time-stamping uses Merkle Hash Trees [1,9] instead of digital signatures and
relies on the availability of a trusted public repository. The security of long-term
timestamp schemes based on this time-stamping method, however, has not been
studied yet.

1.2 Contribution

In this work we analyze the security of a long-term timestamp scheme based
on the ideas of Bayer et al. [1] in a setting where timestamps are gen-
erated using Merkle Hash Trees. We present a new security notion called
extractable time-stamping for such timestamp schemes in the ideal primitive
model [6]. Extractable time-stamping engages important aspects of existing secu-
rity notions for short-term timestamp schemes [4] and is naturally suitable for
analyzing the security of long-term timestamp schemes. We prove a bound on
the security level of the hash-based long-term timestamp scheme and reveal that
security degrades cubic over time. We also provide a framework for estimating
the security loss over time in a practical scenario. Such a framework is valu-
able for engineers who design systems that for long-term integrity protection of
digital information.

2 Extractable Time-Stamping

In the following we formally define extractable time-stamping for short-term
timestamp schemes (i.e., timestamp schemes without renewal). We first start



Long-Term Secure Time-Stamping Using Preimage-Aware Hash Functions 253

with a description of a typical hash-based timestamp scheme based on the ideas
of Bayer, Haber, and Stornetta [1,8]. Then, we propose an extraction-based
security definition for this scheme. The security definition engages important
aspects of existing security notions for timestamp schemes [4] and will be useful
for analyzing the security of long-term timestamp schemes later in Sect. 3. We
also prove a bound on the security of the described timestamp scheme in terms
of the security of the used hash function.

2.1 Scheme Description

We describe a hash-based timestamp scheme based on the ideas of Bayer, Haber,
and Stornetta [1,8]. The scheme is instantiated with a hash function H and a set
of allowed hash chain shapes S. It uses a trusted repository Rep with the following
functionality. If Rep receives a hash value r at time t, it stores r associated with
t so that later everybody can verify that r was received at time t.

The time-stamping procedure is divided into rounds. During each round, a
timestamp server receives a set of bitstrings {x1, . . . , xn} from clients C1, . . . , Cn.
At the end of each round it runs algorithm Stamp to generate timestamps for
these bitstrings and returns the timestamps to the clients. Algorithm Verify is
used to verify timestamps.

Stamp: On input of bitstrings x1, . . . , xn (n ≤ |S|), a hash tree [9] is computed
from leafs x1, . . . , xn with shape described by S. Let r be the root of that
hash tree and ci be the hash chain corresponding to the path from leaf xi to
the root r. The timestamp server publishes the root hash r at the repository
Rep and for i ∈ {1, . . . , n}, sends ci as the response to request xi. Hash chain
ci is also called a timestamp for bitstring xi.

Verify: On input x, hash chain c, and hash value r published at the repository, it
is checked that c has allowed shape (i.e., shape(c) ∈ S), and c is a hash chain
from x to r (i.e., x

c� r). The algorithm outputs 1 if these conditions hold,
otherwise the algorithm outputs 0.

2.2 Security Definition

We present an extraction-based security notion for the timestamp scheme
described above. Informally, extractability of a timestamp scheme TS means
that if a root hash r is published at the repository at time t and later someone
comes up with a bitstring x and a hash chain c such that TS.Verify(x, c, r) = 1,
then x must have been known at time t (i.e., x is extracted when r is published).
Our notion of extractable time-stamping is reminiscent of PrA hash functions [6]
and knowledge-binding commitments [4]. Formally, we define extractable time-
stamping in Definition 1 in the ideal primitive model [6], where there exists an
ideal primitive P (e.g., a random oracle) for which all calls are recorded in an
advice string adv.



254 A. Buldas et al.

Algorithm 1. The extractable time-stamping experiment ExpExTs
P,TS (A, E).

(x, c, r) ← AP,Rep;
if TS.Verify(x, c, r) = 1, r ∈ R, and
x �∈ L[r] then

return 1;
else

return 0;

oracle P(m):
z ← P (m);
adv ← adv||(m, z);
return z;

oracle Rep(r):
X ← E(adv, r);
R ← R ∪ {r};
L[r] ← X;
return X;

Definition 1 (Extractable Time-Stamping). Let ε : N
3 → [0, 1]. A

timestamp scheme TSP using ideal primitive P is ε-secure extractable (ExTs)
if for all integers pE , pA, and qE , there is a pE -step extractor E, such that for
every pA-step adversary A that makes at most q calls to Rep,

AdvExTs
P,TS (A, E) = Pr

[
ExpExTs

P,TS (A, E) = 1
]

≤ ε(pE , pA, q) .

2.3 Security Analysis

We analyze the security of the timestamp described in Sect. 2.1. For this, we first
recall some useful properties of hash chain shapes from [3].

Definition 2. We say that a timestamp scheme associated with allowed shapes
S is N -bounded if |S| ≤ N .

Definition 3. An N -bounded timestamp scheme is said to be shape-compact,
if the length of allowed hash chains does not exceed 2 log2 N .

We now proof a bound on the security of the hash-based timestamp scheme from
Sect. 2.1 when instantiated as N -bounded and shape compact.

Theorem 1. The timestamp scheme from Sect. 2.1 instantiated as N -bounded
and shape compact and with an ε-secure PrA hash function HP is ε′-secure
extractable with

ε′(pE , pA, q) = ε
(α · pE

2N
,β · (pA + 2Nq), 2Nq

)
,

for some small constants α and β.

A proof of Theorem 1 can be found in the full paper [2].

3 Extractable Long-Term Time-Stamping

We now turn to formally analyzing the security of long-term timestamp schemes.
These schemes allow to renew protection so that cryptographic primitives that
are about to break can be replaced. Again, we start with a description of a
typical long-term timestamp scheme construction following the ideas of Bayer,
Haber, and Stornetta [1]. Then, we describe our extraction-based security model
for long-term time-stamping. Finally, we use this model to obtain a bound on
the security level of the described scheme.



Long-Term Secure Time-Stamping Using Preimage-Aware Hash Functions 255

3.1 Scheme Description

We describe a long-term timestamp scheme based on the ideas of Bayer, Haber,
and Stornetta [1]. The scheme uses several short-term timestamp schemes for
protection renewal. We use TS = {TSi}i to denote the set of short-term
timestamp schemes available for usage over time. We denote for each timestamp
scheme TSi ∈ TS by tsi the associated start time, which defines when the scheme
becomes available for usage, and by tbi the associated breakage time, which
defines when timestamps for this scheme are not considered valid anymore. We
also assume the existence of a repository Rep that is used for publishing root
hash values.

The long-term timestamp scheme is defined by algorithm Stamp for creating
an initial timestamp, algorithm Renew for renewing a timestamp, and algorithm
Verify for verifying a timestamp.

Stamp: This algorithm gets as input a timestamp scheme identifier i and a
sequence of bitstrings x1, . . . , xn. It creates timestamps for the bitstrings using
scheme TSi by computing (r, c1, . . . , cn) ← TSi.Stamp(x1, . . . , xn). After-
wards, the root hash r is published together with identifier i at the repository
Rep. Let t be the time when (r, i) is published. For j ∈ {1, . . . , n}, the algo-
rithm responds to request xj with long-term timestamp Tj = [(i, cj , r, t)].

Renew: This algorithm gets as input a timestamp scheme identifier i′ and a
sequence of bitstrings with timestamps (x1, T1), . . . , (xn, Tn). The algorithm
renews the timestamps using scheme TSi′ as follows. First, it computes
new timestamps (r′, c′

1, . . . , c
′
n) ← TSi′ .Stamp(x1‖T1, . . . , xn‖Tn) for the bit-

strings and their long-term timestamps. Then, it publishes the root hash r′

together with the timestamp scheme identifier i′ at the repository Rep. Let
t′ be the time when (r′, i′) is published. For j ∈ {1, . . . , n}, the algorithm
sends (i′, c′

j , r
′, t′) as the response to request (xj , Tj). The client receiving

(i′, c′
j , r

′, t′) updates its long-term timestamp Tj by appending (i′, c′
j , r

′, t′).
Verify: This algorithm takes as input a bitstring x, a long-term timestamp T =

(C1‖ . . . ‖Cn), where Cj = (ij , cj , rj , tj), a time t, a reference R to the trusted
repository Rep, and a set of admissible timestamp schemes TS = {TSi}i. For
j ∈ {1, . . . , n}, it is verified that TSij .Verify((x‖C1‖ . . . ‖Cj−1), cj , rj) = 1,
(ij , rj) ∈ R[tj ], and tbij > tj+1 (i.e., it is checked that each timestamp has
been renewed correctly and when the previous timestamp was still valid).
The algorithm outputs 1 if these conditions hold, otherwise it outputs 0.

3.2 Adversary Model

We now describe fundamentals for analyzing the security of long-lived systems.
Commonly used security models for short-lived systems consider a fixed adver-
sary that is allowed to perform a certain amount of computation before it halts.
However, this model is not adequate for long-lived systems, where the computa-
tional power of an adversary may change over time.



256 A. Buldas et al.

Model of Real Time. To realize a suitable adversary model for long-lived systems
we must be able to set in relation real time with other events happening in the
system (e.g., the arise of a new computational technology). Therefore, we must
specify a formalism the captures the notion of real time.

In recent literature, various approaches to modeling real time have been con-
sidered. Schwenk [11] and Geihs et al. [7] model real time by defining a global
clock that advances whenever the adversary performs work. Another model of
real time has been proposed by Canetti et al. [5] working in a computational
framework that supports concurrency. They define a global clock as a distin-
guished process running concurrently to all other processes and ticking at a
defined rate.

For our work we consider a sequential model of computation and follow the
time formalism used by Schwenk [11] and Geihs et al. [7]. That is, we use a global
clock Clock that holds a state time, initialized to 0. We allow the adversary to
advance time by calling Clock(t) as an oracle and if t > time, the clock is set to
time = t (Algorithm 2). We remark that by advancing time the adversary will
burn computation power and trigger events in its environment.

Model of Computation. We consider adversaries AClock associated with a global
clock Clock. We bound the computational power of adversary A with respect to
the time defined by Clock. For ρ : N → N, we say A is ρ-step-bounded if at any
time t, it performed less than ρ(t) computation steps. We say A is ρ-call-bounded
if at any time t, it performed less than ρ(t) oracle calls.

We model progression in computational technology by defining an adversary
AClock as a sequence (AClock

0 ,AClock
1 ,AClock

2 , . . .) of machines such that At ∈ Mt,
where Mt represents the class of computing machines available at time t (i.e.,
Mt reflects the computational technology available at time t). Executing AClock

at time = t means executing the component AClock
t . The adversary AClock

t then
runs until it calls Clock(t′) after which the control is given to AClock

t′ . Here,
AClock

t′ gets access to the internal state of AClock
t . An extractors E is also defined

as a sequence (E0, E1, E2, . . .) such that Et ∈ Mt, but the components do not have
access to the clock-oracle. Calling an extractor E at time = t means calling Et.

3.3 Security Definition

We define the security of extractable long-term time-stamping using an experi-
ment ExpExLTs (Algorithm 2). Similar to the definition of extractable (shor-
term) time-stamping, the security definition for extractable long-term time-
stamping is given in the ideal primitive model [6]. Additionally, a global clock
Clock as described in Sect. 3.2.

The experiment ExpExLTs considers an adversary A and an extractor E . The
adversary A may publish root hash values r at the repository Rep at any time
by calling Rep(r). When Rep is called with root hash r at time t, it records r
associated with t in a global table R and also calls the extractor E with input adv
and r. The extractor E extracts a set of bitstrings X and stores them associated
with time t in a table L. A long-term timestamp scheme is considered secure



Long-Term Secure Time-Stamping Using Preimage-Aware Hash Functions 257

if there exists an extractor such that for any possible adversary, whenever the
adversary outputs a long-term timestamp T valid for bitstring x and time t (i.e.,
Verify(x, c, t, R) = 1), the extractor extracts x at time t (i.e., x ∈ L[t]).

Definition 4 (Extractable Long-Term Time-Stamping). Let M describe
the available machines classes and TS describe the available timestamp schemes.
Let ε : N4 → [0, 1]. A long-term timestamp scheme LTSP , which uses an ideal
primitive P , is ε-secure extractable (for M and TS) if for all bounds ρE , ρA, and
q, there is a ρE -bounded extractor E ∈ M, such that for every ρA-step-bounded
and q-call-bounded adversary A ∈ M, and for every time t:

AdvExLTs
P,LTS,TS(A, E , t) = Pr

[
ExpExLTs

P,LTS,TS(A, E , t) = 1
]

≤ ε(ρE , ρA, q, t) .

Algorithm 2. The extractable long-term time-stamping experiment
ExpExLTs

P,LTS,TS(A, E , t∗).

(x, T, t) ← AClock,P,Rep;
if LTS.Verify(x, T, t, R,TS) = 1, x �∈ L[t], time ≤ t∗ then

return 1;
else

return 0;

oracle Clock(t):

if t > time then
time ← t;

oracle P(m):
z ← P (m);
adv ← adv||(m, z);
return z;

oracle Rep(r):
X ← E(adv, r);
t ← time;
R[t] ← R[t]‖r;
L[t] ← L[t]‖X;
return X;

3.4 Security Analysis

Before we analyze the security of the long-term timestamp scheme described in
Sect. 3.1, we adapt the notion of (short-term) extractable time-stamping from
Sect. 2 to the setting where different classes of computing machines are consid-
ered.

Definition 5 (Extractable Time-Stamping (for Machine Classes)). Let
ME and MA be classes of machines and ε : N3 → [0, 1]. We say a non-renewable
timestamp scheme TS is ε-secure extractable for adversaries of MA and extrac-
tors of ME if for all integers pE , pA, and qE , there exists a pE -step extractor
E ∈ ME , such that for every pA-step adversary A ∈ MA that makes at most q
calls to Rep:

AdvExTs
P,TS (A, E) ≤ ε(pE , pA, q) .



258 A. Buldas et al.

We now prove a bound on the security level of the long-term timestamp
scheme described in Sect. 3.1 in terms of the security level of the available (short-
term) timestamp schemes.

Theorem 2. Let M describe the available computing machine classes and TS =
{TSP

i }i describe the available timestamp schemes, which use an ideal primi-
tive P . If for every i, TSP

i is εi-secure extractable for adversaries of Mtbi
and

extractors of Mtsi
, then the long-term timestamp scheme described in Sect. 3.1 is

ε-secure extractable with

ε(ρE , ρA, q, t) =
∑

i ∈ {i:tbi≤t}
εi

(
α · ρE(tbi ), β · (

ρA(tbi ) + q(tbi )ρE(tbi )
)
, q(tbi )

)
,

for some small constants α and β.

We refer the reader to the full paper [2] for a proof of Theorem 2.

4 Evaluation

We evaluate which protection level the long-term timestamp scheme described
in Sect. 3.1 provides in a practical scenario. For our evaluation we consider a
scenario where data is protected over a time period of Y years. The security
level of the long-term timestamp scheme is evaluated in terms of the security
level of the hash functions that are used to instantiate the available (short-term)
timestamp schemes. Here, we assume that all used hash functions have the same
security level during their validity period.

4.1 Scenario

We assume that TS = {TSi}i is the set of available (short-term) timestamp
schemes, and for each i we denote by Hi the hash function used by TSi. We
assume that the PrA-security of a hash function derives from the ratio of the
adversary power pA and the extractor power pE , and is influenced by the number
of repository calls q and a base security level δ. Concretely, we assume that each
hash function Hi is ε-secure PrA until its breakage time tbi with ε(pE , pA, q) =
pA

pE
qδ. Furthermore, we assume that each (short-term) timestamp scheme TSi is

N -bounded and shape compact, which means that each timestamp round up to
N timestamps are generated. For our practical security analysis we neglect the
constants α and β derived in Theorems 1 and 2 as we expect them to be close
to 1 in most cases.

By Theorem 1 we obtain that each short-term timestamp scheme TSi is
ε′-secure extractable until time tbi with

ε′(pE , pA, q) ≤ ε
( pE

2N
, pA + 2Nq, 2Nq

)
=

pA + 2Nq

pE
(2N)2qδ .



Long-Term Secure Time-Stamping Using Preimage-Aware Hash Functions 259

Furthermore, using Theorem 2 we obtain that the long-term timestamp scheme
is ε′′-secure long-term extractable with

ε′′(ρE , ρA, q, t) ≤
∑
i∈It

(
ρA(tbi )
ρE(tbi )

+
(

2N

ρE(tbi )
+ 1

)
q(tbi )

)
(2N)2q(tbi )δ .

Now we assume that the adversary and the extractor have the same compu-
tation power and observe that any reasonable extractor E should extract at least
2N bitstrings before the breakage time of a scheme (i.e., ρA(t)

ρE(t)
= 1, ρE(tbi ) ≥ 2N).

Let time t denote the number of years that the experiment is running and assume
that each year a maximum of L new timestamp schemes become available, and at
most R root hashes are published at the repository, i.e., |It| = |{i : tbi ≤ t}| ≤ tL
and q(t) ≤ tR. We obtain the following bound on the security level of the long-
term timestamp scheme:

ε′′(ρE , ρB , q, t) ≤ 12t3(NR)2Lδ .

4.2 Results

Assuming L = 10, N = 232, R = 365, and − log2(δ) = 192, we show in Fig. 1 the
degradation of the security level − log2(ε′′) of the analyzed long-term timestamp
scheme over time. The graph shows that the security level degrades from 104 to
84 over a time period of 100 years. We stress that this degradation takes place
even though the security level for all the used hash functions is at least 192 in
the corresponding validity period.

2020 2040 2060 2080 2100 2120

90

100

Time

S
ec

u
ri

ty
L
ev

el

Fig. 1. The degradation of the security level of long-term time-stamping over time.

5 Conclusions and Future Work

We have formally analyzed the security of a long-term timestamp scheme based
on the ideas of Bayer et al. [1] and shown that the security level of that scheme
degrades cubic over time, even if the security level of the used cryptographic
primitives is held constant. This shows that long-lived systems need to be



260 A. Buldas et al.

designed using a certain security margin. The techniques provided in our security
analysis can be used to analyze other long-lived cryptographic systems.

For future work it would be interesting to see whether the security bound
proved by us can be improved, thereby reducing the security loss over time.
It would also be interesting to establish a security model for long-term time-
stamping in the standard model (i.e., without using ideal primitives).

References

1. Bayer, D., Haber, S., Stornetta, W.S.: Improving the efficiency and reliability of
digital time-stamping. In: Capocelli, R., De Santis, A., Vaccaro, U. (eds.) Sequences
II: Methods in Communication, Security, and Computer Science, pp. 329–334.
Springer, New York (1993). doi:10.1007/978-1-4613-9323-8 24

2. Buldas, A., Geihs, M., Buchmann, J.: Long-term secure time-stamping using
preimage-aware hash functions. Cryptology ePrint Archive, Report 2017/754
(2017). http://eprint.iacr.org/2017/754

3. Buldas, A., Laanoja, R.: Security proofs for hash tree time-stamping using
hash functions with small output size. In: Boyd, C., Simpson, L. (eds.) ACISP
2013. LNCS, vol. 7959, pp. 235–250. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39059-3 16

4. Buldas, A., Laur, S.: Knowledge-binding commitments with applications in time-
stamping. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
150–165. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71677-8 11

5. Canetti, R., Cheung, L., Kaynar, D., Lynch, N., Pereira, O.: Modeling computa-
tional security in long-lived systems. In: van Breugal, F., Chechik, M. (eds.) CON-
CUR 2008. LNCS, vol. 5201, pp. 114–130. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-85361-9 12

6. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging merkle-damg̊ard for practical
applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 22

7. Geihs, M., Demirel, D., Buchmann, J.A.: A security analysis of techniques for
long-term integrity protection. In: 14th Annual Conference on Privacy, Security
and Trust, PST 2016, Auckland, New Zealand, 12–14 December 2016, pp. 449–456
(2016)

8. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Menezes,
A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 437–455. Springer,
Heidelberg (1991). doi:10.1007/3-540-38424-3 32

9. Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). doi:10.1007/
0-387-34805-0 21

10. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

11. Schwenk, J.: Modelling time for authenticated key exchange protocols. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 277–294.
Springer, Cham (2014). doi:10.1007/978-3-319-11212-1 16

http://dx.doi.org/10.1007/978-1-4613-9323-8_24
http://eprint.iacr.org/2017/754
http://dx.doi.org/10.1007/978-3-642-39059-3_16
http://dx.doi.org/10.1007/978-3-642-39059-3_16
http://dx.doi.org/10.1007/978-3-540-71677-8_11
http://dx.doi.org/10.1007/978-3-540-85361-9_12
http://dx.doi.org/10.1007/978-3-540-85361-9_12
http://dx.doi.org/10.1007/978-3-642-01001-9_22
http://dx.doi.org/10.1007/3-540-38424-3_32
http://dx.doi.org/10.1007/0-387-34805-0_21
http://dx.doi.org/10.1007/0-387-34805-0_21
http://dx.doi.org/10.1007/978-3-319-11212-1_16


On the Hardness of Sparsely Learning Parity
with Noise

Hanlin Liu, Di Yan, Yu Yu(B), and Shuoyao Zhao

Shanghai JiaoTong University, Shanghai, China
{hans1024,yandi821,Zhao sy2016}@sjtu.edu.cn, yuyu@yuyu.hk

Abstract. Learning Parity with Noise (LPN) represents the average-
case analogue of the NP-Complete problem “decoding random linear
codes”, and it has been extensively studied in learning theory and cryp-
tography with applications to quantum-resistant cryptographic schemes.
In this paper, we study a sparse variant of the LPN whose public matrix
consists of sparse vectors (or alternatively each element of the matrix
follows the Bernoulli distribution), of which the variant considered by
Benny, Boaz and Avi (STOC 2010) falls into a (extreme) special case.
We show a win-win argument that at least one of the following is true: (1)
either the hardness of sparse LPN is implied by that of the standard LPN
under the same noise rate; (2) there exist new black-box constructions of
public-key encryption (PKE) schemes and oblivious transfer (OT) pro-
tocols from the standard LPN.

1 Introduction

Learning Parity with Noise. The Learning Parity with Noise (LPN) prob-
lem is a well-known problem in cryptography and learning theory. The com-
putational version of LPN problem with parameters n ∈ N (length of binary
secret vector), 0 < μ < 1/2 (noise rate), q = poly(n) (the number of query) pos-
tulates that it is computationally infeasible to recover the binary secret vector
x ← {0, 1}n given (A,A·x+e), where A is a random q×n binary matrix, e ← Bq

μ,
Bμ denotes the Bernoulli distribution with parameter μ (i.e., Pr[Bμ = 1] = μ
and Pr[Bμ = 0] = 1 − μ), ‘·’ denotes matrix vector multiplication over GF(2)
and ‘+’ denotes bitwise addition over GF(2). The decisional version of LPN
simply assumes that (A,A · x + e) is pseudorandom (i.e., computationally indis-
tinguishable from uniform randomness) given A. While seemingly stronger, the
decisional version is known to be polynomially equivalent to its computational
counterpart [3,8,14].

Hardness of LPN. The computational LPN problem is an average-case ana-
logue of “decoding random linear codes” [6], which is a well-known NP-complete
problem. Feldman et al. [11] show that any efficient algorithm for LPN would
imply efficient learners for important function classes such as 2-DNF formulas,
juntas, and any function with a sparse Fourier spectrum. When μ = O(1) is a
constant (less than 1/2 and independent of the secret size n), the best known
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 261–267, 2017.
https://doi.org/10.1007/978-3-319-68637-0_16



262 H. Liu et al.

LPN solvers [9,16] require the time complexity and the number of training sam-
ples both 2O(n/ log n). If the number of training samples q = poly(n), the time
complexity (of the best known algorithm) goes up to 2O(n/ log n) [17]. The time
complexity goes up to 2O(n) given only q = O(n) queries [18]. Under low noise
rate μ = n−c (0 < c < 1), the security of LPN is less well understood: on the
one hand, for q = n + O(1) we can already do an efficient distinguishing attacks
using time complexity 2O(n1−c); on the other hand, for (even super-)polynomial
q the best known attacks [5,7,10,15,21] are not asymptotically better, i.e., still
at the order of 2Θ(n1−c). LPN can be used to build public-key encryption (PKE)
schemes and oblivious transfer (OT) protocols under low noise rate μ = O(1

√
n)

[1] or assuming subexponential hardness [22]. We mention that LPN does not
succumb to known quantum algorithms, which makes it a promising candidate
for “post-quantum cryptography”. Furthermore, LPN also enjoys simplicity and
is more suitable for weak-power devices (e.g., RFID tags) than other quantum-
secure candidates such as LWE [20].

Sparse Learning Parity with Noise. We study the hardness of the Sparse
Learning Parity with Noise (SLPN) problem, which is a variant of LPN by
letting the public matrix A follow the Bernoulli distribution Bq×n

μ , or equivalently
(not exactly the same though), the rows of A be independently sampled from
uniform distribution of length n and Hamming weight μn. Note that the variant
considered in [2], referred to as the 3LIN problem, falls into a special case for μ =
3/n, and it is conjectured that the 3LIN resist sub-exponential time algorithms
who are restricted to O(n1.4) samples. Compared with standard LPN, sparse
LPN significantly reduces the amount of public randomness needed.

Our contributions. In this paper, we show that under the standard LPN
assumption, at least one of the following is true:

1. either sparse LPN is hard;
2. or CPA secure public-key encryption schemes and oblivious transfer (OT)

protocols are implied.

Note that we impose no noise rate or additional sub-exponential hardness about
the LPN, and thus the second result is unlikely to be true (otherwise it will be
a breakthrough). Therefore, we prove the hardness of the sparse LPN problem
via an unconventional reduction from standard LPN. The main proof technique
is borrowed from the work of Barak et al. [4], i.e., any efficient algorithm that
falsifies the first statement (sparse LPN is hard) can be used to construct CPA
secure PKE and OT in a black-box manner.

2 Preliminaries

We denote the binary logarithm by log(·). For a binary string x we use |x| to

denote its Hamming weight, i.e., the number of 1’s in x. x $←− X refers to drawing
an element x from set X uniformly at random, and x $←− X denotes drawing an



On the Hardness of Sparsely Learning Parity with Noise 263

element x according to distribution X. Bμ refers to the Bernoulli distribution
with parameter μ, i.e., Pr[x = 1] = μ and Pr[x = 0] = 1 − μ, and Bq

μ denotes its
q-fold repetition. Un refers to a uniform random distribution over Zn

2 . A function
f(·) is negligible if for any positive constant c f(n) < n−c holds for all sufficiently
large n’s, and f(·) is noticeable if there exists positive constant c such that that
f(n) ≥ n−c for all sufficiently large n’s.

We give below the definitions for decisional versions of the LPN and its vari-
ants. Decisional versions are more handy for cryptographic applications and they
imply (and are equivalent to in case of the standard LPN) their computational
counterparts.

Definition 1 (Standard LPN). The (decisional) LPNn,μ,q problem is hard
if for every probabilistic polynomial-time (PPT) distinguisher D, we have

| Pr
A,s,e

[D(A,A · s ⊕ e) = 1] − Pr
A,Uq

[D(A,Uq) = 1]| = negl(n),

where A $←− Z
q×n
2 , s $←− Z

n
2 , e ← Bq

μ and Uq is a uniform distribution over Z
q
2.

Definition 2 (Knapsack LPN). The (decisional) knapsack LPN problem,
denoted by Knapsack-LPNn,μ,q, is hard if for every PPT distinguisher D,
we have

| Pr
C,b

[D(C,bT · C) = 1] − Pr
C,Uq

[D(C,Uq) = 1]| = negl(n),

where C $←− Z
(n+q)×q
2 , b ← Bn+q

μ and Uq is a uniform distribution over Z
q
2.

Definition 3 (Sparse LPN). The (decisional) sparse LPN problem, denoted
by S-LPNn,μ,q, is hard if for every PPT distinguisher D, we have

| Pr
A,s,e

[D(A,A · s ⊕ e) = 1] − Pr
A,Uq

[D(A,Uq) = 1]| = negl(n),

where A ← Bq×n
μ , s $←− Z

n
2 , e ← Bq

μ and Uq is a uniform distribution over Z
q
2.

Theorem 1 (LPN implies knapsack LPN [19]). The LPNn,μ,n+q problem
is hard implies that the Knapsack-LPNn,μ,q problem is hard.

3 Hardness of the Sparse LPN Problem

In this section, we show that the sparse LPN problem is most likely hard. Oth-
erwise (if the sparse LPN can be refuted by an efficient algorithm), then it
leads to more surprising results that PKE and OT can be constructed in a
black-box manner from standard LPN, which is unlikely especially for noise rate
μ = ω(1)/

√
n.



264 H. Liu et al.

We aim to prove the main result, which we stated as Hypothesis 1 below.

Hypothesis 1 (Hardness of (decisional) Sparse LPN). The decisional
LPN problem for secret size 2n, noise rate μ and sample complexity q, i.e.,
S-LPN2n,μ,q is hard.

Theorem 2. Assume that for q ≥ 2n the LPNn,μ,q problem is hard, then at
least one of the following is true:

1. either Hypothesis 1 is true, namely, S-LPN2n,μ,q is hard;
2. or CPA secure public-key encryption schemes and oblivious transfer (OT)

protocols are implied.

Proof. Assume for contradiction that Hypothesis 1 does not hold, then there
exists a polynomial-time D that distinguishes the following distributions with
non-negligible probability, i.e., there exists a polynomial p(·) such that the fol-
lowing holds for infinitely many n’s

Pr
B,x,e

[D(B,B · x ⊕ e) = 1] − Pr
B,Uq

[D(B,Uq) = 1] ≥ 1/p(n) ,

where B ← Bq×2n
μ , x $←− Z

2n
2 and e ← Bq

μ. Then, it implies a two-pass (single-
bit) key agreement protocol (which is equivalent to public-key encryption), as
depicted in Fig. 1. We have by Theorem 1 that LPNn,μ,q (q ≥ 2n) implies
Knapsack-LPNn,μ,n, namely, a q-fold hybrid argument of knapsack LPN states
that (C,B · C) is computationally indistinguishable to (C,Uq×n). Informally,
this means that A = B · C looks like a uniform q × n matrix to any PPT
adversary. It follows that the security of the protocol can be guaranteed due to
the LPNn,μ,q assumption, i.e., (A,As+ e) is computationally indistinguishable

Alice

B ← Bq×2n
µ

C
$←− Z

2n×n
2

m′ ← D(B, r)

Bob

s
$←− Z

n
2

e ← Bq
µ

m
$←− {0, 1}

if m = 1 then r := BCs ⊕ e

else if m = 0 then r
$←− Z

q
2

A = B · C

r

Fig. 1. A two-pass bit agreement protocol that enables Bob to send a single bit to
Alice securely (against passive adversaries) with noticeable correctness, which is based
on any efficient distinguisher D that constitutes a counterexample to Hypothesis 1.



On the Hardness of Sparsely Learning Parity with Noise 265

to (A,Uq). Meanwhile, Alice is able to decrypt m with at least noticeable
probability.

Pr[m′ = m] = Pr[m = 1]
︸ ︷︷ ︸

1/2

·Pr[m′ = 1|m = 1] + Pr[m = 0]
︸ ︷︷ ︸

1/2

·Pr[m′ = 0|m = 0]
︸ ︷︷ ︸

1−Pr[m′=1|m=0]

= 1/2 + (Pr[m′ = 1|m = 1] − Pr[m′ = 1|m = 0])/2

= 1/2 +
PrB,s,e[D(B,B · s ⊕ e) = 1] − PrB,Uq [D(B,Uq) = 1]

2

≥ 1/2 +
1

2p(n)
,

where x = Cs is a uniform distribution over Z
n
2 . Using parallel repetition and

privacy amplification, it is known [12,13] that any protocol which achieves bit-
agreement with noticeable correlation can be turned into a full-fledged key-
agreement protocol (without increasing the number of rounds), which further
implies a CPA secure public-key encryption. Furthermore, note that the two-
round key agreement protocol can be easily adapted to an OT protocol. That
is, if Alice replaces A = BC with a uniformly random A $←− Z

q×n
2 , then the

information about m is statistically hidden (and not decryptable by Alice). This
yields a 2-round oblivious transfer protocol secure against honest-but-curious
receiver: imagine Alice has a choice bit b ∈ {0, 1}, she then sets pkb := BC and

pk1−b
$←− Z

q×n
2 and sends pk0 and pk1 to Bob. Bob, who holds two bits σ0 and

σ1, uses the bit agreement protocol to encrypt σ0 and σ1 under pk0 and pk1,
respectively. Alice can then recover σb but gets no information about σ1−b.

4 Conclusion

We present non-trivial evidence that the sparse LPN should be hard as long as
the standard LPN under the same noise rate is hard, and otherwise it leads to
more surprising (and perhaps breakthrough for certain parameters) results that
public-key encryptions and oblivious transfer protocols can be based on stan-
dard LPN at any noise rate and without resorting to subexponential hardness
assumptions.

References

1. Alekhnovich, M.: More on average case vs approximation complexity. Comput.
Complex. 20, 755–786 (2011)

2. Applebaum, B., Barak, B., Wigderson, A.: Public-key cryptography from different
assumptions. In: Proceedings of the 42nd ACM Symposium on Theory of Com-
puting, STOC 2010, Cambridge, Massachusetts, USA, 5–8 June 2010, pp. 171–180
(2010)

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input local-
ity. J. Cryptol. 22(4), 429–469 (2009)



266 H. Liu et al.

4. Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert, F.-X., Yu,
Y.: Leftover hash lemma, revisited. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 1–20. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 1

5. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: how 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4 31

6. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractabil-
ity of certain coding problems (corresp.). IEEE Trans. Inf. Theor. 24(3), 384–386
(1978)

7. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision
decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 42

8. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on
hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994). doi:10.1007/3-540-48329-2 24

9. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

10. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: Application to mceliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Trans. Inf. Theor. 44(1), 367–378 (1998)

11. Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.K.: New results for learning
noisy parities and halfspaces. In: 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2006), 21–24 October 2006, Berkeley, California, USA,
Proceedings, pp. 563–574 (2006)

12. Holenstein, T.: Key agreement from weak bit agreement. In: STOC, pp. 664–673
(2005)

13. Holenstein, T.: Strengthening Key Agreement using Hard-Core Sets. PhD thesis,
ETH Zurich, Zurich, Switzerland (2006)

14. Katz, J., Shin, J.S., Smith, A.D.: Parallel and concurrent security of the HB and
hb+ protocols. J. Cryptol. 23(3), 402–421 (2010)

15. Kirchner, P.: Improved generalized birthday attack. IACR Cryptology ePrint
Archive 2011:377 (2011)

16. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006).
doi:10.1007/11832072 24

17. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX/RANDOM -2005. LNCS, vol. 3624, pp. 378–
389. Springer, Heidelberg (2005). doi:10.1007/11538462 32

18. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n). In:
Advances in Cryptology - ASIACRYPT 2011–17th International Conference on
the Theory and Application of Cryptology and Information Security, Seoul, South
Korea, December 4–8, 2011, Proceedings, pp. 107–124 (2011)

19. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complex-
ity of LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 26

20. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

http://dx.doi.org/10.1007/978-3-642-22792-9_1
http://dx.doi.org/10.1007/978-3-642-29011-4_31
http://dx.doi.org/10.1007/978-3-642-22792-9_42
http://dx.doi.org/10.1007/3-540-48329-2_24
http://dx.doi.org/10.1007/11832072_24
http://dx.doi.org/10.1007/11538462_32
http://dx.doi.org/10.1007/978-3-642-22792-9_26
http://dx.doi.org/10.1007/978-3-642-22792-9_26


On the Hardness of Sparsely Learning Parity with Noise 267

21. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolf-
mann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer,
Heidelberg (1989). doi:10.1007/BFb0019850

22. Yu, Y., Zhang, J.: Cryptography with auxiliary input and trapdoor from constant-
noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
214–243. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 9

http://dx.doi.org/10.1007/BFb0019850
http://dx.doi.org/10.1007/978-3-662-53018-4_9


Lattice and Post-quantum
Cryptography



Provable Secure Post-Quantum Signature
Scheme Based on Isomorphism of Polynomials

in Quantum Random Oracle Model

Bagus Santoso1(B) and Chunhua Su2

1 Department of Computer and Network Engineering,
University of Electro-Communications, Chofu, Japan

santoso.bagus@uec.ac.jp
2 Division of Computer Science, University of Aizu, Aizuwakamatsu, Japan

chsu@u-aizu.ac.jp

Abstract. Since a quantum adversary is supposed to be able to per-
form hash computation with superposition of the quantum bits, it is
natural that in random oracle model, the reduction algorithm for secu-
rity proof should allow the quantum adversary to query random oracle
in superposition of quantum bits. However, due to physical nature of
quantum states, any observation on a superposition of quantum bits will
be noticed by quantum adversaries. Hence, to simulate the true ran-
dom oracle, the reduction algorithm has to answer the queries without
observing their content. This makes the classical reduction algorithms fail
to properly perform rewinding and random oracle programming against
quantum adversaries and it has been shown recently that several signa-
ture schemes generated by Fiat-Shamir transformation might be insecure
against quantum adversaries although they have been proven secure in
classical setting against classical adversaries.

In this paper, we propose a method to construct reduction algorithm
without rewinding of quantum adversary and such that the random ora-
cle programming is unnoticeable by the quantum adversary except with
negligible probability. We show the feasibility of our method by applying
it on signature scheme generated via Fiat-Shamir transformation of an
identification scheme whose security is based on the decisional problem
of isomorphism of polynomials with two secrets.

Keywords: Isomorphism of polynomials · Quantum random oracle
model · Fiat-Shamir transformation

1 Introduction

It has been known that quantum computers can break all current standard pub-
lic key cryptographic schemes which are relying their security on the hardness of
factoring integers and discrete logarithm problem. Due to the recent advance in
quantum computing, there are immediate demands to find new alternative cryp-
tographic schemes which can resist attackers who may use quantum computers.
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 271–284, 2017.
https://doi.org/10.1007/978-3-319-68637-0_17



272 B. Santoso and C. Su

Such schemes are widely called as post-quantum cryptographic schemes. A num-
ber of post-quantum identification schemes and their corresponding signature
schemes from Fiat-Shamir transformation have been proposed [6,10,13]. How-
ever, the security of these schemes are proven against only classical adversaries,
not quantum adversaries.

Meanwhile, recently, there have been several works point out that several
security proofs which are assuming classical adversaries might not work if we
replace the classical adversaries with quantum adversaries [2,7]. The main cause
of this is the capability of a quantum computer to store an exponential number of
values in a polynomial number of qubits, which is an analogue of bits in classical
computers, and the fact that one single computational operation on a polynomial
number of qubits applies to all exponential number of values represented by those
qubits.

Evaluation of hash values by quantum adversary. We give an illustration as
follows. A polynomial time classical adversary may only be able to evaluate a
polynomial number of hash values by computing the hash function on each vari-
able one by one, but a quantum adversary is capable to evaluate an exponential
number of hash values by applying hash function on one variable consisting of
polynomial number of qubits. For a security proof with random oracle, a single
execution or evaluation of hash value via a hash function is represented by a
single query to random oracle. Thus, in order to represent evaluation of expo-
nential numbers of evaluation of hash values by a quantum adversary, we require
that the random oracle is able to receive the query in the form of a quantum
state which is a superposition of exponential number of values, and returns the
query also in a quantum state representing the superposition of the evaluation
of hash function applied to each values. A quantum adversary thus may “hide”
which hash value that it actually uses to perform the “attack” among expo-
nential number of hash values which are superpositioned in a single quantum
state.

Difficulties and the impossible result on constructing security proof against quan-
tum adversary. This becomes a big problem when we are trying to prove security
of a signature scheme which is obtained by Fiat-Shamir transformation. It is a
common knowledge that the ordinary way to prove the security of such signa-
ture scheme is by applying the rewinding technique which requires the reduction
algorithm to rewind the adversary at least twice to obtain two distinct forged
signatures which are corresponding to different hash values returned by random
oracle which are actually the answer of the same query. As described in [2,7],
the classical rewinding is difficult to apply in the quantum setting. The classical
rewinding technique requires us to know which hash value is used for the forgery
so that we can rewind the adversary back to the point when it sent the query
so that the reduction algorithm can answer the query with a value different
from the first one. However, a quantum adversary may “hide” which hash value
that it actually uses to perform the forgery among exponential number of hash



Provable Secure Post-Quantum Signature Scheme 273

values which are superpositioned in a single quantum state, and thus it is hard
to determine which stage we need to rewind to.

Another problem with quantum adversary is the measurement of a quantum
state. The only way to determine which value which is will be used among
exponential number of values superpositioned in a quantum state, we need to
perform a measurement. And once we did a measurement of a quantum state,
the quantum state can not restored to its original state and it has been shown
that quantum state cloning is not possible [15]. Thus, though we might think to
try to avoid rewinding using the technique of “online extraction” from Fischlin
[8], we can not use this technique in direct manner, since Fischlin’s technique
requires us to observe (measure) the queries and the corresponding answers
to the random oracle. Without measurement, we only see the superposition of
exponential number of queries and answers, but if we measure any query to
random oracle which is in the form of a quantum state, then we might end up
in disturbing the quantum state to an extent that the quantum adversary will
notice it.

Finally, [7] Dagdelen et al. even proved that it is impossible to construct
a security proof for a signature schemes which is generated from an identifi-
cation scheme via Fiat-Shamir transformation if the commitment phase of the
identification scheme is independent from the witness of the public keys.

Main idea. Our basic idea is to utilize the technique to prove the security of
signature schemes generated from a special kind of identification scheme which is
invented by Goh et al. [9] and generalized in [1]. In brief, the scope of applicability
of this technique is signature schemes which are generated from identification
schemes (three passes identification scheme with commitment, challenge, and
response) via Fiat-Shamir transformation where we can use a certain kind of
decisional hard problem as the base to prove the security (soundness).

We apply our basic idea by using the decisional version of the isomorphism
of polynomials as the basic hard problem. This decisional problem generally
says that distinguishing between problem instances with solution (legitimate
instance) and problem instances without solution (non-legitimate instance) is
hard. We construct the identification scheme such that (1) the instance of deci-
sional isomorphism of polynomials can be embedded on the public key and (2)
only legitimate instances allow multiple accepting transcripts with multiple chal-
lenges for each commitment, while any non-legitimate instance only allow one
accepting transcript per commitment. An adversary is expected to succeed when
the instance used in public key is legitimate and is expected to fail when the
instance used in public key is non-legitimate. Thus, without extracting any wit-
ness of the problem, we can use adversary as distinguisher. By this, we can bypass
the issue of rewinding. The only left problem is how to do the “programming”
of random oracle (for keeping consistency with the simulated signing oracle) in
the presence of quantum adversary. Fortunately, this issue has been resolved by
Dagdelen et al. [7] by estimating the probability of quantum adversary noticing
the programming of random oracle.



274 B. Santoso and C. Su

Isomorphism of Polynomials in Brief. The problem of Isomorphism of Polyno-
mials (IP) is a member of the family of computational problems in multivariate
cryptography. It is described informally as follows. Let F = (f1, . . . , fm) and
G = (g1, . . . , gm) be two sets of m � 1 non-linear polynomials in K[x1, . . . xn],
where K is a field. Precisely, the IP problem is a computational problem of find-
ing any invertible mappings S and T such that G = T ◦F ◦ S holds. When T is
restricted to be an identical mapping, the IP problem is called as Isomorphism of
Polynomials with one secret (IP1S) and the general IP problem is often called as
Isomorphism of Polynomials with two secrets (IP2S). Based on the most recent
result in [5], it is estimated that a wide class of instances of IP2S problem for
m > 2 is still hard in average case with complexity of O(n5qn/2) with m = n.
Since IP2S problem does not posses periodic structure like Factoring or Discrete
Logarithm Problem which can be exploited by quantum algorithm for solving
Factoring and Discrete Logarithm Problem, it is believed that IP2S still retain
its hardness even against quantum computers. In this paper, we use the deci-
sional version of IP2S problem, where given sets of non-linear polynomials F
and G, we are only required to output one bit indicating whether F and G is
isomorphic or not.

Why our idea does not contradict the impossibility result of [7]. It is should be
noted that our technique can be applied even to signature schemes generated
from identification schemes via Fiat-Shamir transformation, where the commit-
ment is independent from the witness. At first glance, this seems contradict to
the impossibility result of Dagdelen et al. [7] which says that it is impossible
to construct security proof (in the form of reduction algorithm) for such signa-
ture schemes. However, a more detailed look into the result of Dagdelen et al.
[7] reveals that their work is implicitly assume that the reduction algorithm
must extract the witness from the adversary. Our technique does not contradict
their result since our reduction algorithm does not extract the witness from the
adversary.

2 Preliminaries

Complexity related Notations. A non-negative function μ is called negligible if
there exists a positive λ ∈ N such that for any c > 0, λ′ > λ, μ(λ′) < λ−c holds.
A non-negative function μ is called non-negligible if it is not negligible. Let λ ∈ N

denote the general security parameter for the rest of this paper. Unless noted
otherwise, in this paper, all polynomials are positive integer polynomials in λ. We
say that a value x is polynomial if x is related to λ such that x can be represented
by some polynomial in λ. A classical algorithm is an algorithm which proceeds
just like the classical Turing Machine, and a quantum algorithm is an algorithm
which proceeds just like the quantum Turing Machine. An algorithm (whether
classical or quantum) is said to compute a task efficiently if it completes the task
within polynomial time with non-negligible probability. A random selection of
element x from a set S according to uniform distribution is denoted by x ←$ S.



Provable Secure Post-Quantum Signature Scheme 275

Algebraic Notations. We denote by Fq, a finite field with q elements. Throughout
this paper, we assume that we are always able to efficiently pick random element
of Fq. The general linear group consisting all non-singular square matrices of
dimension n over finite field Fq is denoted by GLn(Fq) and the group of all
square matrices of dimension n over finite field Fq is denoted by Mn(Fq).1

Definition 1 (Identification (ID) Scheme). An identification scheme ID
is a tuple of algorithms (Setupid,KGenid,P,V) defined as follows. Setupid is a
setup parameter generator, which takes input security parameter λ and outputs
setup parameter param. KGenid is a key-generation algorithm which takes input
setup parameter param, and outputs a public key and a secret key (pk, sk). A
pair of algorithms (P,V) denotes an interactive protocol consisting of a prover
P and a verifier V, where a common input is (param, pk) and an auxiliary input
of P is sk. After interactions, V outputs a bit as a verification result to indicate
whether it accepts P or not. A tuple of strings tr′ is said to be an accepting
transcript if there exist a communication transcript tr such that tr = tr′ from
(P,V) where V accepts P.

Definition 2 (Signature Scheme). A signature scheme is a tuple of
algorithms (Setupsig,KGensig, Sign,SVer) defined as follows. Setupsig is a setup
parameter generator, which takes input security parameter λ and input setup
parameter param. Setupsig is a key-generation algorithm which takes input setup
parameter param, and outputs a public key and a secret key (pk, sk). The signing
algorithm Sign takes input the secret key sk and message m, and generates the
signature σ. The verification algorithm SVer takes input the public key pk, the
message m, and the signature σ and returns a bit b ∈ {0, 1} such that b = 1 if
and only if σ is a valid signature of the message m. The basic requirement for
a well-defined signature scheme is that for all message m and (pk, sk) generated
by Setupsig, SVer(pk,m,Sign(sk,m)) = 1.

The following game is representing an attack scenario towards a signature
scheme. The game is between an adversary A and a challenger Csig. First, Csig

runs the Setupsig and KGensig to obtain (pk, sk). Upon receiving pk as input from
Csig, A is allowed to make queries to Csig, i.e., signature queries to obtain signature
of some message and hash queries to obtain the hash value (in random oracle
model). At the end, A outputs a message-signature pair of forgery candidate
(m,σ). The challenger Csig outputs b ∈ {0, 1} such that b = 1 if and only if A
never asked for a signature of m and SVer(pk,m, σ) = 1 holds. The adversary
A is said to win the game if A outputs (m,σ) such that Csig outputs b = 1.
We said that the signature scheme is existentially unforgeable under chosen
message attacks (EUF-CMA) against classical (resp. quantum) adversaries if
the probability of any classical (resp. quantum) adversary A to win the above
game is negligible. In the case of A being a quantum adversary, A is allowed to
send hash query in the form of superposition of quantum states.2

1 We will describe more detail about the quantum algorithm in the following sections.
2 As same as in [3,7], regardless whether A is classical or quantum adversary, it is only

allowed to send the signature queries in classical form (not superposition of quantum
states).



276 B. Santoso and C. Su

Definition 3 (Multivariate Quadratic (MQ) Family). A Multivariate
Quadratic (MQ) family, denoted by the notation MQ(n,m,Fq), is a family of
functions F(x), which is defined as follows.

F(x) =
{

(f1(x), . . . , fm(x)
∣∣∣∣fk(x) =

∑
i,j ak,i,jxixj +

∑
i bk.ixi,

ak,i,j .bk,i ∈ Fq for k ∈ [1,m]

}
, (1)

where x = (x1, . . . , xn). For the simplicity, constant terms are omitted without
any security loss. Any F ∈ MQ(n,m,Fq) is called an MQ function.

Definition 4 (Isomorphism of Polynomials with Two Secrets (IP2S)
Problem). An isomorphism of polynomials with two secrets (IP2S) problem
related to MQ(n,m,Fq) is defined as follows.

Given: F,G ←$ MQ(n,m,Fq).
Output: S ∈ GLn(Fq) and T ∈ GLm(Fq) such that G = T ◦ F ◦ S holds, or

output ⊥ if there are no such matrices S and T .

An algorithm is said to solve IP2S problem related to MQ(n,m,Fq) if it effi-
ciently solves the above problem. An IP2S problem related to MQ(n,m,Fq) is
classical-hard (resp. quantum-hard) if there is no classical (resp. quantum) algo-
rithm solves it efficiently.

Remark 1. IP2S problem was initially described with S and T being invertible
affine transforms [11,12]. Note that an invertible affine transform A can be rep-
resented by a pair of matrices (A0, A1) where A0 is an invertible matrix, and
A(x) = A0x + A1. Faugère and Perret introduce IP2S in the form as described
in Definition 4 as Polynomial Linear Equivalence (PLE ) problem. In [4], it has
been shown that PLE and IP2S are equivalent when IP2S is homogeneous, i.e.,
F ∈ MQ(n,m,Fq) such that for any k ∈ [1,m], i ∈ [1, n]: bk,i = 0. Unless noted
otherwise, in order to simplify the argument on the security, for the rest of the
paper, we assume that any F ∈ MQ(n,m,Fq) which is used to define IP2S and
its variants is always homogeneous. We also assume that n, m, q are polynomial.

Remark 2. The IP2S is actually a special case of a more general problem called
Morphism of Polynomials (with two secrets) (MP). MP problem is similar to
IP2S, with differences on the domain of S and T , i.e., S and T can be taken
from any affine mappings (including non-invertible maps, not only invertible
ones). In [12], Patarin et al. have proven that MP is NP-hard by showing that
one can polynomially reduce an NP-hard problem, the Tensor Rank problem,
into MP. Although IP2S has been shown to be not NP-hard, the hardness of
specific instances of IP2S3 in average cases seems to be exponential, since the
current best algorithm to solve it is with complexity of O(n52n/2) [5].

Definition 5. (Decisional Isomorphism of Polynomials with Two
Secrets (DIP2S) Problem). A decisional isomorphism of polynomials with
two secrets (DIP2S) problem related to MQ(n,m,Fq) is the decisional version
of IP2S problem, which only requires one bit value for output.
3 When limited F to a certain class called homogeneous polynomials.



Provable Secure Post-Quantum Signature Scheme 277

Given: F,G ←$ MQ(n,m,Fq),
Output: b ∈ {0, 1}, where b = 1 if there exist S ∈ GLn(Fq) and T ∈ GLm(Fq)

such that G = T ◦ F ◦ S holds, and b = 0 if there are no such matrices.

An algorithm is said to solve DIP2S problem related to MQ(n,m,Fq) if it
solves the above problem efficiently. A DIP2S problem related to MQ(n,m,Fq)
is classical-hard (resp. quantum-hard) if there is no classical (resp. quantum)
algorithm efficiently solves it.

In this paper, we will use the model of quantum computation developed in
[3,7] with the same notations. Readers are advised to look into [3,7] for a more
detailed explanation on description and notations related to the quantum com-
putation and quantum random oracle. Here we only describe several notations
and concepts which we use directly in this paper.

Quantum Computation. A single quantum system Q is associated with a Hilbert
space H, where a quantum state in the system is represented as vector |ϕ〉 ∈ H
with Euclidean norm ‖|ϕ〉‖ =

√〈ϕ|ϕ〉 = 1, where 〈·|·〉 denotes the inner product.
The joint or composite quantum state of two quantum systems Q1 and Q2 over
Hilbert spaces H1 and H2, respectively, is represented through the tensor product
H1 ⊗ H2. The product quantum state of |ϕ1〉 ∈ H1 and |ϕ2〉 ∈ H2 is denoted
by |ϕ1〉|ϕ2〉 = |ϕ1〉 ⊗ |ϕ2〉 or simply |ϕ1, ϕ2〉. An n-qubit system is associated in
the joint quantum system of n two-dimensional Hilbert spaces. W.l.o.g., unless
noted otherwise, we always assume that any quantum state |ϕ〉 is pure and
represented in orthonormal standard computational basis |x〉 = |x1, . . . , xn〉 for
x = x1 · · · xn ∈ {0, 1}n, such that |ϕ〉 =

∑
x∈{0,1}n αx|x〉, where αx are complex

amplitudes satisfying
∑

x∈{0,1}n |αx|2 = 1.
We assume that a quantum algorithm is actually a sequence of transforma-

tion sequences, where each transformation sequence is composed out of a quan-
tum operation on quantum systems for input, output, oracle calls, and work
space (of sufficiently many qubits). A quantum operations on a quantum system
is described by a unitary transformation. And to measure polynomial running
time, we assume that each unitary transformation is approximated (to suffi-
cient precision) by members of a set of universal quantum gates, where at most
polynomially many gates are used. To simplify the discussion in this paper, we
assume that a quantum algorithm will always use projective measurement when
extracting information from the quantum states, although main results in this
paper will still hold without this assumption. We recall the following lemma.

Lemma 1. Let |ϕ〉 =
∑

x∈{0,1}n αx|x〉 be a quantum state. The probability that
one obtains x ∈ {0, 1}n from the projective measurement of |ϕ〉 is |αx|2.

Quantum Random Oracle Model (QROM). The quantum random oracle O is
associated with a random function H with a given domain and range. A quantum
random oracle O can evaluate H on the input in superposition. Thus, one can
evaluate the hash function in parallel for many inputs simultaneously by sending



278 B. Santoso and C. Su

query to the quantum random oracle O in the form
∑

αx|x〉, and then obtaining∑
αx|H(x)〉 as the answer. Here we state the following lemma which is the result

of combining several lemmas in [7].

Lemma 2. Let A be a quantum algorithm with oracle access to O and let
|ϕ〉 =

∑
x∈{0,1}n αx|x〉 be a query to O such that there exists x ∈ {0, 1}n with

|αx|2 � ε. If we modify O into oracle O′ such that the answer to the query |ϕ〉
is modified the quantum state which corresponds to the oracle answer to |x〉 is
sampled independently, then the statistical distance between the measurement of
the answer from O and O′ is at most 4

√
ε.

3 Signature Scheme Based on IP2S

In this section we show the construction of our proposed signature scheme. Basi-
cally our signature scheme is based on the parallel version of identification scheme
proposed by Santoso [14] which is transformed into signature scheme via Fiat-
Shamir transform.

3.1 Basic Identification Scheme

Setup Parameter Generator and Key Generator. The setup parameter gen-
erator Setupid takes input security parameter λ and generate a setup para-
meter param = (n,m, q), where n,m, q are polynomials. The key generator
KGenid selects randomly an MQ function F ∈ MQ(n,m,Fq), and two matri-
ces S ∈ GLn(Fq), T ∈ GLm(Fq). Then, KGenid computes another MQ function
G = T ◦ F ◦ S. Finally, Kgen sets the public key pk = (G,F) and secret key
sk = (T, S).

Interactive Protocol. Next we describe the interactive protocol (P,V) that
enables any prover P to identify himself to a verifier V. A complete round of
the interactive protocol of the proposed ID scheme is performed as follows.

Step 1 (Commitment). P picks randomly matrices L1, . . . ,L� ∈ GLm(Fq)
and R1, . . . ,R� ∈ GLn(Fq), and sends the commitment Y = (Y1, . . . ,Y�) to
verifier V, where for i = [1, �], Yi = Li ◦ G ◦ Ri holds.

Step 2 (Challenge). Upon receiving the commitment Y from prover P, verifier
V picks randomly the challenge string b = b1 · · · b� ∈ {0, 1}�.

Step 3 (Response). Receiving the challenge string b = b1 · · · b� from verifier
V, prover P performs the followings for each i ∈ [1, �].

− if bi = 0, P sets Zi,0 = Li and Zi,1 = Ri,
− if bi = 1, P sets Zi,0 = LiT and Zi,1 = SRi.
− P sets Zi = (Zi,0,Zi,1)
− P sends the response Z = (Z1, . . . ,Z�) to verifier V .

Step 4 (Verification). Receiving the response Z = (Z1, . . . ,Z�), where Zi =
(Zi,0,Zi,1) ∈ Mm(Fq) × Mn(Fq) from prover P, the verifier V performs the
followings for each i ∈ [1, �].



Provable Secure Post-Quantum Signature Scheme 279

− Check whether Zi,0 ∈ GLm(Fq), Zi,1 ∈ GLn(Fq) holds,
− if bi = 0, check whether Yi = Zi,0 ◦ G ◦ Zi,1 holds,
− if bi = 1, check whether Yi = Zi,0 ◦ F ◦ Zi,1 holds.

Verifier V accepts P by outputting single bit ‘1’ if the result of all checking
described above give positive results. Otherwise, V rejects P by outputting
single bit ‘0’.

The following theorem states that if we know the challenge chosen by the
verifier before hand, we can simulate the responses of true prover and also the
commitments of the prover. This property is well-known as special honest verifier
zero-knowledge in literatures.

Theorem 1 (Special Honest Verifier Zero Knowledge). There exists a
polynomial time algorithm M such that on inputs F,G ∈ MQ(n,m,Fq) where
G = T ◦ F ◦ S for some (T, S) ∈ GLm(Fq) × GLn(Fq), the algorithm M , given
b = b1 · · · b� ∈ {0, 1}�, outputs an accepting transcript (Y, b,Z ) which is indis-
tinguishable from the accepting transcript produced by a true interaction between
an honest prover P and an honest verifier V with the same inputs F,G.

Proof. We show the construction of the algorithm M . On inputs F,G ∈
MQ(n,m,Fq), given b = b1 · · · b� ∈ {0, 1}�, M proceeds follows.

Step 1. Choose randomly Z = (Z1, . . . ,Z�) from (GLm(Fq)×GLn(Fq))�, where
Zi = (Zi,0,Zi,1) ∈ GLm(Fq) × GLn(Fq) for i ∈ [1, �].

Step 2. Compute Y = (Y1, . . . ,Y�) such that for i ∈ [1, �], Yi = Zi,0 ◦G ◦ Zi,1

if bi = 0 and Yi = Zi,0 ◦ F ◦ Zi,1 if bi = 1.
Steo 3. Output (Y, b,Z ).

Note that in a true interaction between a real prover P and a real honest verifier
V, for i ∈ [1, �], (Li,Ri) is randomly chosen from GLm(Fq) × GLn(Fq) in the
commitment step. Thus, for i ∈ [1, �], (LiT, SRi) is also randomly distributed
over GLm(Fq) × GLn(Fq), where (T, S) satisfies G = T ◦ F ◦ S. On the other
hand, notice that in the procedure of M described above that (Zi,0,Zi,1) are
randomly picked from GLm(Fq)×GLn(Fq). As a result, we can conclude that the
distribution of (Zi,0,Zi,1) is the same as the distribution of (Li,Ri) when bi = 0
and (LiT, SRi) when bi = 1, where (Li,Ri) and/or (LiT, SRi) are produced by
true interaction between P and V. By this, it is easy to see that the distribution
of Y computed by M and Y produced by a real prover P in commitment step.
This completes the proof of Theorem 1. ��
Theorem 2. If the interactive protocol (P,V) is executed with pk = (F,G) such
that there is no pair (T, S) ∈ GLm(Fq)×GLn(Fq) satisfying G = T ◦F◦S, then
for each commitment Y ∈ (MQ(n,m,Fq))�, there only one possible b ∈ {0, 1}�,
such that there exists Z ∈ (GLm(Fq)×GLn(Fq))� where (Y, b,Z ) is an accepting
transcript.

Proof. We prove the above theorem by contradiction. Suppose that we have two
possible challenges, b, b′ ∈ {0, 1}�, where b = b′, such that both (Y, b,Z ) and



280 B. Santoso and C. Su

(Y, b′,Z ′) are accepting transcripts. However it easy to see that from accept-
ing transcripts (Y, b,Z ) and (Y, b′,Z ′), we can compute (T, S) ∈ GLm(Fq) ×
GLn(Fq) such that G = T ◦ F ◦ S holds. This contradicts the assumption and
thus completes the proof of above theorem. ��

From the above theorem, we can easily derive the following corollary.

Corollary 1. If the interactive protocol (P,V) is executed with pk = (F,G) such
that there is no pair (T, S) ∈ GLm(Fq)×GLn(Fq) satisfying G = T ◦F◦S, then
there is no one is accepted by an honest verifier except with probability 1/2�.

3.2 Construction of Signature Scheme

The construction of the signature scheme from the above identification scheme
(Sect. 3.1) follows the standard Fiat-Shamir transform.

Parameter Setup and Key Generation: The setup parameter generator
Setupsig and key generator KGensig of signature scheme are the same as setup
parameter generator Setupid and key generator KGenid from identification
scheme respectively, i.e., Setupsig = Setupid, KGensig = KGenid. Thus, here
we have the public key pk = (G,F) and secret key sk = (T, S) such that
G = T ◦ F ◦ S.

Signing: Given input a message m, the signing algorithm computes Y1, . . . ,Y�

with the same method as the prover in the commitment step of identifi-
cation scheme. Then it computes b = b1 · · · b� = H(m,Y1, . . . ,Y�) where
H : {0, 1}∗ → {0, 1}� is a hash-function. Then it computes (Z1, . . . ,Z�) in the
same way the prover in the identification scheme does in the response step.
It finally outputs σ = (b,Z1, . . . ,Z�) as the signature of m.

Verification: Given input a message-signature pair (m,σ), where σ =
(b,Z1, . . . ,Z�), Zi = (Zi,0,Zi,1) for i ∈ [1, �], the verification algorithm com-
putes Yi = Zi,0 ◦ G ◦ Zi,1 if bi = 0 and Yi = Zi,0 ◦ F ◦ Zi,1 if bi = 1
for i ∈ [1, �]. It outputs 1 (valid) if b = H(m,Y1, . . . ,Y�) holds and
(Zi,0, Zi,1) ∈ GLm(Fq) × GLn(Fq) holds for i ∈ [1, �], and outputs 0 (invalid)
otherwise.

3.3 Security of Signature Scheme

First, we will state the following theorem which represents the security of our
signature scheme.

Theorem 3. If DIP2S is quantum-hard then the signature scheme described
in Sect. 3.2 is existential unforgeability under chosen message attacks against
quantum adversaries.

We will prove the Theorem 3 using contradiction. We show that a quantum
adversary A who wins the game associated to existential unforgeability under
chosen message attacks with non-negligible probability can be used to solve the
Decisional IP2S problem with non-negligible probability.



Provable Secure Post-Quantum Signature Scheme 281

Proof (Outline). Here we describe the outline of the proof. At the heart of the
proof is an algorithm B which is given access to the quantum adversary A. The
procedure of B is described as follows.

– Given F,G ∈ MQ(n,m,Fq) as inputs, B simulates the key generation algo-
rithm of the signature scheme (Setupsig) by forwarding F,G as public keys to
the adversary A.

– In order to answer a signature query on a message m, B randomly chooses
b ∈ {0, 1}�, and then uses the simulator in the special honest verifier zero-
knowledge proof to construct (Y,Z ) which satisfies the condition to pass the
verification at identification scheme. B returns σ = (b,Y) as the signature
of m. Also, B modifies (programs) the random oracle at point (m,Y) with
b such that any query to random oracle afterwards will always be consistent
with this value.

– Assuming that A can not: (1) distinguish between the signatures constructed
by B and those from true signer, and (2) detect the programming of random
oracle done by B, A will output the forgery: with non-negligible probability
if F and G are isomorphic, and with probability 1/2� if F and G are not
isomorphic.4

– Algorithm B outputs 1 if A outputs forgery, and outputs 0 if A does not
output forgery,

Since the distribution of the outputs of B depends on whether F and G are
isomorphic, it is easy to see that we can directly use B to distinguish between
the case when there exists (T, S) ∈ GLm(Fq)×GLn(Fq) such that G = T ◦F◦S
and the case when there no such (T, S) ∈ GLm(Fq) × GLn(Fq) exists, and then
to solve the Decisional IP2S problem.

A quick look in to the above construction reveals that the critical issue which
determines whether B will work as expected is the probability that A notices the
simulation of signer and the programming of random oracle. If we can guarantee
that this probability is negligible, then B is guaranteed to work as expected, and
we can use B to solve Decisional IP2S problem. By borrowing the special hon-
est verifier zero-knowledge property of the underlying identification scheme and
the lemmas about the maximum statistical distance between two programmed
random oracle model, we prove that the probability that A is able to notice
simulation of signer and the programming of random oracle is negligible. This
completes the outline of the proof. ��
Remark 3. One can see a similarity between the line of our security proof and the
security proof of signature schemes from lossy identification schemes shown in [1].
However, in this paper, the success probability of the adversary A constructing
a forgery when F and G are not isomorphic can not be derived by the same
method as in [1]. The technique used in [1] requires the rewinding of A, but we
can not rewind A here since we assume that A is a quantum adversary. Hence,

4 By adapting Theorem 2 and Corollary 1, we can see that this clearly holds. See
Remark 3 for a more detailed explanation.



282 B. Santoso and C. Su

actually here we adapt Theorem 2 into the signature scheme, and use the fact
that for each valid Y in the signing process, there is only one valid sequence
b ∈ {0, 1}� which can lead to a valid signature, where b = H(m,Y), in the case
when F and G is not isomorphic. And since the output H is supposed to be
completely random in random oracle model, it is easy to see that the probability
that the valid sequence matches with the output of random oracle is no more
than 1/2�.

Next, we show that the probability that A is able to notice simulation of
signer and the programming of random oracle is negligible.

Claim 1. Assume that A does not notice the programming of random oracle by
B. If the identification scheme associated with the signature scheme described
in Sect. 3.2 satisfies special honest verifier zero-knowledge, then the probability
that A can distinguish between the signatures from B and ones from true signer
is negligible.

Proof. Since the signature produced by B is created by the simulator of the spe-
cial honest verifier zero-knowledge, then the statement that A can distinguish
those signatures with the ones from true signer with non-negligible probabil-
ity will automatically contradict the existence of simulator which proves that
underlying identification scheme satisfies special honest verifier zero-knowledge.

What remains now is to show that the probability that A can notice the
programming of the random oracle is negligible. Now let us look into the inter-
action between A and random oracle in more detail. Let assume that adversary
A sends a signing query m and B proceeds to modify one basis (or state) which
represents the answer to random oracle query (m,Y) within the quantum state
|ϕ〉, where |ϕ〉 is the answer from the random oracle, and Y is the randomness
in the signature of m, as describe in Sect. 3.2.

This modification will be noticed by A if A has ever evaluated H(m,Y)
before hand. According to the definition of quantum random oracle in Sect.
2, the probability of evaluating H(m,Y) is the same as the probability to get
x′ = (m,Y) from the measurement of a quantum query |ϕ〉. Thus, the probability
that A has ever evaluated H(m,Y) before hand depends on the magnitude of
|αx′ | in each query to random oracle. Let qH be the maximum number of queries
to random oracle and qS be the maximum number of queries to signing oracle.
The probability that |αx′ |2 > 2−γn in any of qH queries to random oracle is at
most qH2−(1−γ)n.

We still need to find the upper bound that A notice the programming from
the distribution difference of measurements of the answers from the random
oracle and signing oracle when |αx′ |2 � 2−γn in any queries. From Lemma 2,
we can see that the statistical distance between the measurement of an answer
from unmodified and an answer modified oracles corresponding to the same x′ is
upper bounded by 4

√
2−(1−γ)n. Since we have a total (qH +qS) queries, the total

probability that A notices the modification is upper bounded by qH2−(1−γ)n +
4(qH + qS)

√
2−(1−γ)n. Taking γ = 1/2, this value becomes negligible, and thus

completes our argument that the probability that A is able to notice simulation



Provable Secure Post-Quantum Signature Scheme 283

of signer and the programming of random oracle is negligible. This completes
the proof of the above claim. ��

4 Conclusion

We have shown the first concrete construction of a signature scheme via Fiat-
Shamir transform based on Isomorphism of Polynomials and proven its secu-
rity under existential forgery attack by quantum adversaries. Inside the security
proof, we used programmable random oracle and allowed quantum adversaries
to send queries to and receive answers from random oracle in superposition of
quantum bits in order to capture the ability of quantum adversaries to perform
hash calculation with superpositioned quantum bits. We provided the upper
bound of the probability that a quantum adversary notices the programming of
the random oracle and the simulation of the signature oracle. We successfully
avoided the rewinding of the quantum adversary and the extraction of witness by
using the decisional version of the underlying hard problem, i.e., Isomorphism of
Polynomials with Two Secrets (IP2S) in the same manner as Abdalla et al. [1].

We believed that our security proof technique can be extended to other post-
quantum signature schemes which are constructed via Fiat-Shamir transform.
We plan to investigate the applicability of our technique to other schemes and
then construct an abstraction of our security proof technique in the similar
manner to Abdalla et al. [1].

References

1. Abdalla, M., Fouque, P.A., Lyubashevsky, V., Tibouchi, M.: Tightly secure signa-
tures from lossy identification schemes. J. Cryptol. 29(3), 597–631 (2016)

2. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: The hardness of quantum rewinding. In: FOCS, pp. 474–483. IEEE Computer
Society (2014)

3. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25385-0 3

4. Bouillaguet, C., Faugre, J.C., Fouque, P.A., Perret, L.: Isomorphism of polyno-
mials: New results (2010–2012). http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.156.9570

5. Bouillaguet, C., Fouque, P.-A., Véber, A.: Graph-theoretic algorithms for the “Iso-
morphism of Polynomials” problem. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 211–227. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38348-9 13

6. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge identification
scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19574-7 12

http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.156.9570
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.156.9570
http://dx.doi.org/10.1007/978-3-642-38348-9_13
http://dx.doi.org/10.1007/978-3-642-38348-9_13
http://dx.doi.org/10.1007/978-3-642-19574-7_12


284 B. Santoso and C. Su

7. Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The fiat–shamir transformation in a
quantum world. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol.
8270, pp. 62–81. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 4

8. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with
online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–
168. Springer, Heidelberg (2005). doi:10.1007/11535218 10

9. Goh, E.J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight
reductions to the diffie-hellman problems. J. Cryptol. 20(4), 493–514 (2007)

10. Lyubashevsky, V.: Fiat-shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7 35

11. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EURO-
CRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). doi:10.
1007/3-540-68339-9 4

12. Patarin, J., Goubin, L., Courtois, N.: Improved algorithms for isomorphisms of
polynomials. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 184–
200. Springer, Heidelberg (1998). doi:10.1007/BFb0054126

13. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes
based on multivariate quadratic polynomials. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 706–723. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 40

14. Santoso, B.: Refining identification scheme based on isomorphism of polynomials
with two secrets: A new theoretical and practical analysis. In: Proceedings of the
3rd ACM International Workshop on ASIA Public-Key Cryptography, AsiaPKC
2016, New York, NY, USA, pp. 31–38. ACM (2016)

15. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299,
802 (1982)

http://dx.doi.org/10.1007/978-3-642-42045-0_4
http://dx.doi.org/10.1007/11535218_10
http://dx.doi.org/10.1007/978-3-642-10366-7_35
http://dx.doi.org/10.1007/3-540-68339-9_4
http://dx.doi.org/10.1007/3-540-68339-9_4
http://dx.doi.org/10.1007/BFb0054126
http://dx.doi.org/10.1007/978-3-642-22792-9_40
http://dx.doi.org/10.1007/978-3-642-22792-9_40


Bootstrapping Fully Homomorphic Encryption
with Ring Plaintexts Within Polynomial Noise

Long Chen1,2 and Zhenfeng Zhang1,2(B)

1 Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{chenlong,zfzhang}@tca.iscas.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Despite a great deal of progress in resent years, efficiency
of fully homomorphic encryption (FHE) is still a major concern. Specif-
ically, the bootstrapping procedure is the most costly part of a FHE
scheme. FHE schemes with ring element plaintexts, such as the ring-LWE
based BGV scheme, are the most efficient ones, since they can not only
encrypt a ring element instead of a single bit in one ciphertext, but also
support CRT-based ciphertext packing techniques. Thanks to homomor-
phic operations in a SIMD fashion (Single Instruction Multiple Data),
the ring-LWE BGV scheme can achieve a nearly optimal homomorphic
evaluation. However, the BGV scheme, as implemented in HElib, can
only bootstrap within super-polynomial noise so far. Note that such a
noise rate for a ring-LWE based scheme is less safe and more costly,
because one has to choose larger dimensions to ensure security. On the
other hand, existing polynomial noise bootstrapping techniques can only
be applied to FHE schemes with bit plaintexts. In this paper, we provide
a polynomial noise bootstrapping method for the BGV scheme with ring
plaintexts. Specifically, our bootstrapping method allows users to choose
any plaintext modulus p > 1 and any modulus polynomial Φ(X) for
the BGV scheme. Our bootstrapping method incurs only polynomial
error O(n3) · B for lattice dimension n and noise bound B comparing to

(B · poly(n))Õ(log(n)) for previous best methods. Concretely, to achieve
70 bit security, the dimension of the lattice that we use is no more than
212, while previous methods in HElib need about 214 to 216.

Keywords: Fully homomorphic encryption · Bootstrap · Ring plaintext

1 Introduction

Fully homomorphic encryption (FHE) is a holy grail of cryptography. FHE [25]
supports arbitrarily computation on encrypted data, even by parties that do
not have the secret decryption key. In recent years, many FHE schemes have
been proposed based on various assumptions such as ideal lattice (or ring-LWE)
[9,25,28,40], GACD [14,17,18,42], and standard-LWE [5,7,8,30]. Most of homo-
morphic encryption schemes introduce “noise” in the ciphertexts, and the “noise”
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 285–304, 2017.
https://doi.org/10.1007/978-3-319-68637-0_18



286 L. Chen and Z. Zhang

accumulates during the homomorphic operations. To address this problem,
Gentry [25] proposed a bootstrapping technique to convert a somewhat homo-
morphic encryption (SWHE) scheme to a FHE scheme. Generally, a bootstrap-
ping technique is using an encrypted secret key to decrypt ciphertexts homomor-
phically. The bootstrapping procedure is computationally very expensive, and
influences both of the efficiency and security of a FHE scheme.

Currently, the ring-LWE based BGV scheme, proposed by Brakerski, Gentry
and Vaikuntanathan [7], is one of the most efficient SWHE schemes. Since it can
encrypt a ring element instead of a single bit in one ciphertext, the ring-LWE based
BGV scheme has advantages in aspects of the ciphertext/plaintext ratio and the
complexity of homomorphic operations comparing with another widely studied
standard assumptions based SWHE scheme named the GSW scheme [30]. More
importantly, the ring-LWE based BGV scheme naturally supports a ciphertext-
packing technique based on polynomial-CRT (Chinese Remainder Theorem) [41],
which allows packing a number of plaintext elements into independent “slots” in
the plaintext space and performing SIMD style (Single Instruction Multiple Data)
operations. By this technique, Gentry et al. [28] showed the batched BGV scheme1

can achieve a nearly optimal homomorphic evaluation (up to poly-logarithmic
factors). Due to its efficiency, the batched BGV scheme has been reported to be
open source implemented by [19,29,31,32]. Other FHE schemes which support
the ciphertext-packing technique based on CRT include [14,21], but the hard-
ness assumptions of these schemes, unlike the commonly used learning with errors
(LWE) assumption [39] or its ring-based analogue [35], are not currently supported
by a worst-case hardness theorem. Besides, two other packed ciphertexts tech-
niques have been proposed [6,33] so far, both of which are based on kinds of matrix
operation skills rather than the algebra structure for the rings. However, these two
batched SWHE schemes [6,33] can not compare with the batched BGV scheme in
aspects of the ciphertext expansion rate, the complexity for homomorphic opera-
tions and the overhead. In short, the ring-LWE based BGV scheme is one of the
most practical candidates for SWHE considering security and efficiency.

Several bootstrapping techniques have been proposed for the ring-LWE based
BGV scheme, such as [3,27,32,37], but none of them can incur polynomial noise
in the security parameter λ. Specifically, in [27], Gentry et al. provide a better
bootstrapping technique for special choice q = pt ± a for some t and a small
value of a. Following their work, Alperin-Sheriff and Peikert [3] uses the ring/field
switching technique [26] to improve the above bootstrapping procedure to be per-
formed in quasilinear time. This method is implemented in [32], with efficient
runtime, for the case of characteristic-p plaintext spaces with p > 2. Generally,
the bootstrap procedure of [27] need homomorphically extract certain bits(digits)
of the plaintexts. The homomorphic (non-linear) bit(digit)-extraction procedure
is recursively computed by each bit(digit), so the calculation circuit at least has

1 We notice that in the original paper of the BGV FHE scheme (also, the GSW FHE
scheme later on), the authors did provide methods for bootstrapping their SWHE
scheme. For convenience, in this paper we call the BGV scheme (GSW scheme) when
we refer to the SWHE scheme in their original paper.



Bootstrapping Fully Homomorphic Encryption with Ring Plaintexts 287

O(log q) levels. Then the noise/modulus rate grows at least nO(log n) times for the
whole bootstrapping procedure, where n is the dimension of the lattice. These
bootstrapping methods can reduce the required approximation factor of under-
lying hard problem to nO(log n). Very recently, Albrecht [1] shows the actual con-
ceret security of LWE instances used in HElib is far more less than what they are
originally promised. Another work for bootstrapping BGV ciphertexts belongs to
Orsini, van de Pol and Smart [37]. Their technique takes advantage of a represen-
tation of the groupZ

+
q over the finite field Fp, followed by polynomial interpolation

of the reduction mod p map over the coefficients of the algebraic group. The depth
of the circuit that they need is O(log n). Asymmetrically, the required approxima-
tion factor of underlying hard problem is also nO(log n). Generally, since the noises
for the BGV ciphertexts grow quadratically (B → B2 ·poly(n)) with every multi-
plication (before “refreshing”), the noise accumulation for bootstrapping can not
be polynomial when the decryption circuits have polynomial multiplication levels.

Different with the above bootstrapping methods for the batched BGV
scheme, [4,10] present bootstrapping techniques for the GSW scheme [30] pro-
posed by Gentry, Sahai and Waters, whose runtime and associated approxima-
tion factor are both small polynomials. Following their ideas, Ducas and Miccian-
cio [22] provides a bootstrapping method and associated implementation that
allow to perform the entire computation in less than a second, which is optimized
by [15,16] recently. The main technique of their approaches [4,10,15,22] is that
the decryption circuit is evaluated by the GSW scheme, the noise growth in
the homomorphic multiplication operation of which is asymmetric and “quasi-
additive” [30]. However, different with packed ciphertexts FHE schemes, the
above schemes [4,15,22,30] only encrypt bits as plaintexts, so the overhead of
evaluating bounded circuits is at least O(λ). Based on this reason, the batched
BGV scheme [32] still has much better amortized per-bit timing.

Why Bootstrapping with Polynomial Noise is Important? The primarily concern
is the security. It is widely believed [38] that the hardness of the LWE prob-
lem (and the ring LWE problem as well) depends on the largest-ratio between
the modulus and the noise bound. The less noise accumulates during the boot-
strapping, the smaller the largest-ratio could be. According to the experimental
results given by Chen and Nguyen [13], the underlying lattice problems with such
approximation factors need very large dimensions to make sure enough security,
even if they are still hard. Secondarily, the polynomial noise accumulation makes
it possible to use a much smaller dimension lattice to achieve the same security
level. Therefore, the efficiency of the whole scheme can be improved.

1.1 Our Contributions

In this paper, we provide an efficient bootstrapping method for the ring LWE
based batched BGV scheme in [28] with polynomial noise accumulation. Specifi-
cally, we bootstrap the packed BGV ciphertexts within only Õ(n2 ·q0) times noise
in the refresh key, in dimension n and the level-0 modulus q0 = Θ(n), orders



288 L. Chen and Z. Zhang

better than the existing best result for the BGV scheme in HElib [32]. As a con-
sequence, the approximation factor of the underlying lattice problems is Õ(n6.5)
respectively, if we allow one homomorphic multiplication before bootstrapping
and choose reasonable parameters. Concretely, to achieve 70 bit security, the
dimension of the lattices that we use are no more than 212, while previous meth-
ods in HElib need about 214 to 216.

Furthermore, our recryption procedure cost Õ(n2) homomorphic operations
for Θ(n) bits. So the computation complexity for bootstrapping is Õ(n3). Addi-
tionally, our SWHE scheme can evaluate a O(log n) levels circuit before boot-
strapping for proper parameters. Therefore, the SWHE scheme can evaluate at
most O(n3) gates without bootstrapping. We show that for particular parame-
ters, our FHE scheme can achieve polylog overhead for per gate in some optimal
cases.

Our bootstrapping method allow users to choose any integer p > 1 as the
plaintext modulus. Moreover, one is allowed to choose any cyclotomic polynomial
Φ(X) (with large enough degree) as the modulus polynomial, and not restricted
to the popular power-of-two cyclotomic polynomials X2k + 1. There are several
reasons to consider arbitrary cyclotomic rings besides power-of-two ones. The
most obvious, practical reason is that powers of two are sparsely distributed,
and the desired concrete security level for an application may call for a ring
dimension much smaller than the next-largest power of two. So restricting to
powers of two could lead to key sizes and runtimes that are at least twice as
large as necessary. A more fundamental reason is to implement SIMD opera-
tions on “packed” ciphertexts, the cyclotomics should have requisite algebraic
properties. For example, in homomorphic evaluation of AES [29], plaintext slots
need to hold elements of F28 . A final important reason is diversification of secu-
rity assumptions, since a series of works [11,12,23,24] show that certain choices
of rings lead to weak instances of the ring-LWE problem.

1.2 Main Techniques

Our main idea is to evaluate the decryption circuit of the ring LWE based
BGV scheme with GSW scheme, since the GSW scheme has a quasi-additive
noise accumulation. But unfortunately, the ring-LWE based GSW scheme in
[30] can only encrypts a single bit as plaintext. The reason is that the noise
term in the multiplication of GSW ciphertexts Cmult := C1 � C2 is emult :=
C̄1e2 +μ2e1, where μ1, μ2 are the corresponding plaintexts, C̄1 is a matrix with
small coefficients and Φ[X] is a cyclotomic polynomial. The canonical embedding
norm ‖μ2e1‖can

∞ can be as large as ‖μ2‖1 · ‖e1‖can
∞ .

Obviously, directly applying existing bootstrapping methods will not work,
since the GSW scheme can not support the general homomorphic multiplication
gate for ring elements. Fortunately, we observe that the GSW scheme with ring
plaintexts can homomorphically evaluate the quasi-boolean AND gate. The two
inputs of a quasi-boolean AND gate are restricted to a, b ∈ {0, 1} ⊆ Rp and the
output is a · b ∈ {0, 1} ⊆ Rp, where · is just the multiplication in Rp. In fact, if



Bootstrapping Fully Homomorphic Encryption with Ring Plaintexts 289

the plaintext belongs to {0, 1} ⊆ Rp, the “quasi-additive” noise growth property
for ring GSW can still apply.

A greater obstacle is to efficiently express the decryption function of the BGV
scheme as a circuit with Rp-addition gates, Rp-scale multiplication gates and
quasi-boolean AND gates. This task is more difficult than that in [4], since the
decryption function for the ring LWE based BGV scheme need to compute poly-
nomial arithmetic modulo Φm(X). Unlike the special case where the order m of
the cyclotomic is a power of two, in general the cyclotomic polynomial Φm(X) can
be quite “irregular” and dense, with large coefficients. For example, Φ3·5·7·11·13[X]
has coefficients up to ±552. Therefore, the generic algorithms for modular oper-
ation are rather complex and hard to implement. To deal with this problem, we
invent a subroutine named degree decomposition. Using this subroutine and bit
decomposition, we convert the decryption function of BGV scheme to Dec (c, s) =∑

i s.t. c̄i=1 s̄i mod q mod p, where c̄i ∈ {0, 1} are bits derived from the cipher-
text c, and s̄i ∈ Rq = Zq/Φm(X) are ring elements derived from the secret key s.
Then for decryption, we just need to compute addition of polynomials s̄i. For boot-
strapping, the evaluation key is encryptions of each coefficient of s̄i. Consequently,
we just have to compute the homomorphic modular−q addition and successfully
avoid to evaluate polynomial modulo Φm(X).

Note that the bootstrapping methods in [15,22] need to use power-of-two
cyclotomic polynomials and do not fit the batched BGV scheme. So our boot-
strapping method is inspired by [4]. The detailed analysis of the homomorphic
evaluation of these three type gates by the ring GSW scheme with ring ele-
ments is provided in Sect. 3. The description of our decryption circuit and the
bootstrapping procedure is in Sect. 4.

1.3 Related Works

Despite the previously introduced related works, we also notice that [33] provides
a packed ciphertexts variant of LWE based GSW scheme and an optimized
bootstrapping prodecue. In fact, the noise/modulus rate grows O(

√
nλ) times

for their bootstrapping procedure, where n is the dimension of the lattice and
the security parameter is λ. So the approximate factor for the underlying lattice
problem is O(n1.5λ).

However, the LWE based batched GSW SWHE scheme can not match the
ring-LWE based batched BGV SWHE scheme in efficiency, because the cipher-
text expansion of the batched GSW scheme is Õ(n2 log q) and the computation
cost for one homomorphic multiplication is larger than Õ(n2.3). Furthermore,
the security of the public key SWHE scheme in [33] requires the circular secu-
rity with respect to some particular functions, which is different with all previous
SWHE constructions.

2 Preliminaries

In this paper, we use bold lower case letters to denote vectors and bold upper
case letters to denote matrices. φ(·) denote the Euler’s function. For matrix



290 L. Chen and Z. Zhang

A, we use A(i) to denote the ith column vector of A, and A(i,j) to denote
the ith column jth row entry of A. For vector a, a(i) denotes the ith entry
of a. All vectors are expressed as columns. For a n-degree polynomial a, we
write a = a(0) + a(1)X + a(2)X2 + . . . + a(n−1)Xn−1, where a(j) denote the each
coefficient. ‖·‖∞ denotes l∞ norm and ‖·‖1 denotes l1 norm. Define the canonical
embedding norm ‖a‖can

∞ = ‖σ(a)‖∞, a ∈ R, where σ is the canonical embedding.
Particularly,

‖a‖∞ ≤ cm · ‖a‖can∞ , (1)

where cm is the ring constant. For canonical embedding norm, see [20] for details.

2.1 Ring-LWE

We now recall the ring-LWE probability distribution and (decisional) compu-
tational problem. Let K be the mth cyclotomic number field having dimension
n = φ(m) and R = OK be its ring of integers which embeds as a lattice. R∨ ⊂ K
is the dual fractional ideal of R. See [35,36] for a more general form.

Definition 1 (ring-LWE)[35,36]. For an s ∈ R∨
q and a distribution χ over the

field tensor product KR = K ⊗Q R, a sample from the ring-LWE distribution
As,χ over Rq × KR/qR∨ is generated by choosing a ← Rq uniformly at random,
choosing e ← χ, and outputting (a, b = a · s + e).

The decision version of the ring-LWE problem, denoted R-DLWEq,χ, is to dis-
tinguish with non-negligible advantage between independent samples from As,χ,
where s is uniformly chosen from R∨

q once and for all, and the same number of
uniformly random and independent samples from Rq × KR/qR∨.

On the computational complexity, the theorem below capture reductions from
ideal lattice GapSVP (GapSIVP) to ring-LWE for certain parameters. We state
the result in terms of (l∞ norm) B-bounded distributions.

Definition 2 (B-bounded distribution). A distribution ensemble {χn}n∈N
,

supported over KR, is called (l∞ norm) B-bounded if

Pr
e←χn

[‖e‖∞ > B] = negl (n) .

Theorem 1 [35,36]. Let R be the mth cyclotomic ring, having dimension
n = φ(m). Let q = q(n), q = 1 mod m be a poly(n)− bounded integer, and
B = ω(

√
n log n). There is a poly(n)−time quantum reduction from nω(1)q/B-

approximate SIVP (or SVP) on ideal lattices in R to solving R-DLWEq,χ where
χ is a distribution bounded by B with overwhelming probability.

2.2 Useful Subroutines

Let R = Z[X]/f(X), where f(X) is a t-degree polynomial, and Rq = R/qR.
We define two subroutines called DegDecomp and PowerofDeg as follows. For
u = (u1, u2, . . . , ud) ∈ Rd

q and v = (v1, v2, . . . , vd) ∈ Rd
q ,

DegDecomp(u) =
(
u
(0)
1 , u

(1)
1 , . . . , u

(t−1)
1 , . . . , u

(0)
d , u

(1)
d , . . . , u

(t−1)
d

)
∈ Z

dt
q



Bootstrapping Fully Homomorphic Encryption with Ring Plaintexts 291

PowerofDeg(v) = (v1, v1X mod f(X), . . . , v1Xt−1 mod f(X),

. . . , vd, vdX mod f(X), . . . , vdX
t−1 mod f(X)) ∈ Rdt

q

.

Obviously, 〈DegDecomp(u),PowerofDeg(v)〉 mod q = 〈u,v〉 mod f(X) mod q.
Interestingly, to compute the left inner product, one do not need modulo poly-
nomial f(X) operation.

The bit decomposition technique is first introduced in [8] and widely used in
most of FHE schemes. We describe these subroutines as follows.

– BitDecomp(v ∈ Rd
q): Decompose each coefficient of v into its bit represen-

tation. Namely, write v =
∑�log q�

j=0 2j · uj with all uj ∈ Rd
2, and output

(
u0,u1, . . . ,u	log q
−1

) ∈ R
d·	log q

2 .

– Powersof2(v ∈ Rd
q): Let

wj = 2jv (modq, f(x)) ∈ Rd
q , j = 0, . . . , �log q�

and output (w0,w1, . . . ,w�log q�−1) ∈ R
d·	log q

q .

Obviously, 〈BitDecomp(u),Powerof2(v)〉 = 〈u,v〉.

2.3 Symmetric Group and Zq-Embedding

Let Sr denote the symmetric group of order r, which can be represented by the
multiplicative group r-by-r permutation matrices Pπ = [eπ(1)eπ(2) · · · eπ(r)] for
π ∈ Sr, where ei ∈ {0, 1}r is the ith standard basis vector. The additive cyclic
group (Zr,+) embeds into the symmetric group Sr via the injective homomor-
phism that sends the generator 1 ∈ Zr to the “cyclic shift” permutation π ∈ Sr,
defined as π(i) = i + 1 for 1 ≤ i < r and π(r) = 1. Notice such permutation
matrices can be simplified as its first column vector in {0, 1}r, and multiplied
in only O(r2) operations, since we only need to multiply one matrix by the first
column of the other.

Suppose that q = r1r2 · · · rt, where the ri are pairwise coprime. By the
Chinese Remainder Theorem, the ring Zq is isomorphic to the direct product
of rings Zr1 × Zr2 × · · ·Zrt

as well. Combining this with the group embeddings
of (Zri

,+) into Sri
, we have an (efficient) group embedding from (Zq,+) into

Sr1 × Sr2 × · · · × Srt
, where we denote as Ψ . Furthermore, let ϕi : Zq → {0, 1}ri

be one of the homomorphisms which is from an element in Zq to the cyclic per-
mutation that corresponds to an element in Zri

, i.e., ϕi restricts the image of Ψ
on one of the symmetric group Sri

.

2.4 The Batched BGV SWHE Scheme

The ring-LWE based batched BGV SWHE scheme [7,28] is defined over ring
R := Z[X]/Φm[X], where Φm(X) is the mth cyclotomic polynomial [34]. Rp

the localisation of R at p. The aggregated plaintext space of the batched BGV
cryptosystem is Rp for a prime integer p coprime to m. Specifically, the BGV



292 L. Chen and Z. Zhang

scheme is parameterized by a sequence of decreasing moduli qL � qL−1 �
· · · � q0, and an “lth level ciphertext” in the scheme is c = (c0, c1) ∈ R2

ql
.

Secret keys are elements z ∈ R with “small” coefficients. A level-l ciphertext
c encrypts a plaintext element μ ∈ Rp with respect to s = (1,−z) if we have
[〈s, c〉]ql = [c0−z ·c1]ql = μ+p ·e (in R) for some “small” noise term p ·‖e‖ � ql.
After each homomorphic operation, modulus ql at level l is switched to ql−1 at
level l − 1 by an algorithm ModulusSwitch. Also, the respective key is switched
by an algorithm KeySwitch. When it comes to level 0, no more homomorphic
operation can be performed unless the bootstrapping procedure is proceeded.

The most important optimization for the ring-LWE based BGV scheme is
batching. The polynomial Φm(X) modulo p factors into k(R) irreducible poly-

nomials, i.e., Φm(X) ≡ ∏k(R)

i=1 Fi(X)(modp). Each Fi(X) has degree d(R) =
φ(m)/k(R), where d(R) is the multiplicative order of p in Z

∗
m. In the batched

BGV scheme, each of these k(R) factors corresponds to a “plaintext slot”. By the
Chinese Remainder Theorem, addition and multiplication correspond to SIMD
operations on the slots, which allows us to process k(R) input values at once.

In [28], Gentry et al. proved that we can use the batched BGV SWHE scheme
to implement shallow arithmetic circuit with low overhead, on the condition that
bootstrapping is not needed. Specifically, we have the following lemma.

Lemma 1 ([28]). For security parameter λ, any t-gate, depth-L arithmetic
circuit of average width Ω(λ) over underlying plaintext space Fp can be evaluated
homomorphically by the batched BGV scheme in time t · Õ(L) · polylog(λ).

3 GSW Scheme with Ring Plaintexts

In this section we provide a variant of symmetric GSW scheme which encrypts
a ring element μ ∈ Zp[X]/Φm(X) as plaintext, different with the original ring-
LWE based GSW scheme in [30] which can only encrypt a single bit. A ciphertext
of our scheme can be easily transformed back to a BGV ciphertext with same μ
as the aggregated plaintext. This scheme can support three type homomorphic
gates: the homomorphic Rp-addition, the homomorphic Rp-multiplication and
the homomorphic quasi-boolean AND operation. Also, for convenience to trans-
form back to BGV ciphertexts, we put the plaintexts at low bits, different with
that in the original GSW scheme in [30].

3.1 The Scheme Description

Our scheme is parameterized by an integer m (that defines the cyclotomic poly-
nomial Φm and φ(m) = n), the integer p (that defines the plaintext space
Zp[X]/Φm) and a modulus Q(= poly(n) � p). For simplicity of the analysis,
we will assume that Q = 2τ for some integer τ .2 We use ring R = Z[X]/Φm and
RQ = R/QR.
2 Actually, we can set Q = κτ for some integer τ and small integer κ which is coprime

with p. The choice of κ causes a compromise between noise accumulation and effi-
ciency.



Bootstrapping Fully Homomorphic Encryption with Ring Plaintexts 293

RGSW.Keygen(1n): Randomly sample z ∈ RQ, then we define the secret key as
a vector s = (1,−z)T ∈ R2

Q.
RGSW.Enc(μ, s): For inputs μ ∈ Zp[X]/Φm and z ∈ RQ, pick a ∈ R2τ

Q uniformly
at random, and e ∈ R2τ � Z

2τφ(m) with a distribution χ2τφ(m), where χ is a
B-bounded discrete subgaussian distribution, and output

RGSW.Enc(μ)s = C = [az + pe,a] + μG ∈ R2τ×2
Q ,

where G = (I, 2I, . . . , 2τ−1I)T ∈ R2τ×2
Q . Notice that C · s = pe + μGs ∈ R2τ

Q .

RGSW.Dec(C, s): Let c be the first row of C, and output μ = 〈c, s〉Q mod p.

RGSW.HomAdd(C1,C2): Addition of two ciphertext matrices is just standard
addition in ZQ[X]/Φm(X).

RGSW.ScalMult(u,C): Homomorphic multiplying the ciphertext C with ring ele-
ment u ∈ ZQ[X]/Φm for each coefficient less than p can performed as u · C.

RGSW.QBAND(C1,C2): On input two ciphertexts C1,C2 ∈ R2τ×2
Q which the

plaintexts corresponding to belongs to {0, 1} ⊆ Rp, first computes the bit decom-
position of C1 =

∑τ
i=1 2i−1Di (where each Di ∈ R2τ×2

Q has entries with coeffi-
cients in {0, 1}), and then the result can be represented as

C1 � C2 := [D1,D2, . . .Dτ ] · C2. (2)

The computation in Eq. (2) can be accelerated using FFT/NTT as [22]. Also we
let C1�C2�C3 denote the homomorphic quasi-boolean AND between C1�C2

and C3, and so on.

3.2 Analysis

Security of the above scheme follows the fact that a fresh ciphertext is just μG
plus a matrix of 2τ independent ring-LWEq,χ samples under secret key z, which
is pseudorandom and hence hides the μG term. So the IND-CPA security follows
immediately from the assumed hardness of ring-DLWEq,χ problem.

Definition 3. We say that a ciphertext C encrypts a plaintext μ with noise
matrix e if C is an encryption of μ ∈ Zp[X]/Φm and pe = Cs − μGs (mod Q).
For convenience, we say μG is the ciphertext that encrypts μ with noise zero.

Correctness of the decryption algorithm of our scheme directly follows the fol-
lowing lemma.

Lemma 2. If a ciphertext C encrypts a plaintext μ ∈ Zp[X]/Φm with noise e
such that ‖ e ‖∞< �Q/2p�, then Decsk(C) = μ.

Proof. Remember that s = (1,−z)T ∈ R2
Q, and we have

Cs = [az + pe,a] s + μGs = pe + μGs.

Then the first entry of Cs is u = pe(1) + μ mod Q. Since ‖ e ‖∞< �Q/2p�, we
have |pe(1)| < �Q/2�, then u mod p = μ. ��



294 L. Chen and Z. Zhang

Noise growth by the evaluation of the homomorphic operation can be analysed
by the following lemma.

Lemma 3. Let s ∈ R2
Q be a secret key. Let C1,C2 ∈ R2τ×2

Q be ciphertexts
that encrypt μ1, μ2 ∈ Zp[X]/Φm with noise vectors e1, e2 ∈ R2τ � Z

2τφ(m),
respectively. Let Cadd := C1 + C2, Cscal := μ1 · C2 and CQBAND := C1 � C2.
Then, we have Cadds = peadd + (μ1 + μ2)Gs, Cscals = pescal + (μ1μ2)Gs and
CQBANDs = peQBAND +(μ1μ2)Gs, where eadd := e1 +e2, eQBAND := C1e2 +
μ2e1 and escal := μ1e2 for C1 := [D1,D2, . . .Dτ ]. In particular, ‖escal‖can

∞ ≤
‖μ1‖1 · ‖e2‖can

∞ and ‖eQBAND‖can
∞ ≤ Õ(φ(m))‖e2‖can

∞ + ‖e1‖can
∞ .

Proof. We can immediately prove the statements for Cadd.
For Cscal, we have

Cscals = μ1 · C2s = μ1 · (pe2 + μ2Gs) = pμ1e2 + μ1μ2Gs.

So the bound of canonical norm for emult is obvious.
Remind that C1 =

∑τ
i=1 2i−1Di, so C1 · G = C1. For CQBAND, we have

CQBANDs = C1 · C2s

= C1 · (pe2 + μ2Gs)

= pC1 · e2 + μ2C1s

= p(C1 · e2 + μ2e1) + (μ1μ2)Gs.

Each Di ∈ R2τ×2
Q consists of entries in RQ with coefficients in {0, 1}. So the

canonical norms of these entries are bounded by φ(m). Then we have

‖eQBAND‖can
∞ ≤ φ(m) ·2τ‖e2‖can

∞ +‖μ2‖1‖e1‖can
∞ ≤ Õ(φ(m))‖e2‖can

∞ +‖e1‖can
∞ .

��
From the above lemma we can see that the noise accumulation for homo-

morphic quasi-boolean AND gate is quasi-additive. Since � is defined to be left
associative, we can analyze the behavior of the noise terms under a series of
homomorphic quasi-boolean AND operations as follows.

Corollary 1. Suppose Ci for i ∈ [h] are ciphertexts with noise vectors ei, which
the plaintexts corresponding to belongs to {0, 1} ⊆ Rp. The canonical norm of
each entry in the fresh noise vectors is bounded by B. Then the canonical norm
of each entry of the noise vector in

C ← G � �
i∈[h]

Ci = (((G � C1) � C2) · · ·) � Ch

is bounded by Õ(φ(m)) · h · B.



Bootstrapping Fully Homomorphic Encryption with Ring Plaintexts 295

Computation Complexity of the three homomorphic gates is analysed by the
following lemma.

Lemma 4. The three types homomorphic gates, i.e., RGSW.HomAdd, RGSW.
QBAND, and RGSW.ScalMult, can be computed in time Õ(n).

Proof. Each ciphertext in RGSW scheme belongs to R2τ×2
Q , so there are 4 · τ

ring elements for one ciphertext, for τ = log Q = O(log n). In addition, the
computation complexity of addition and the scalar multiplication for elements
in RQ is O(φ(m)) = O(n). The complexity of multiplication for ring elements by
FFT is O(n log n). Generally, the complexity for the homomorphic quasi-boolean
AND gate is no more than Õ(n). ��

3.3 Ciphertexts Transformation from GSW to BGV

Note that our Ring-GSW ciphertext is C = [az + pe,a] + μG ∈ R2τ×2
Q , so the

first row vector c = [a1z + pe1 + μ, a1] ∈ R2
Q is a BGV ciphertext under the

secret key s = (1,−z).3 Then by applying key-switching and modulus-switching
we get a logical BGV ciphertexts encrypted the same aggregated plaintext μ.

Trans(C ∈ R2τ×2
Q ): Output the first row vector of C as c = CT

(1) ∈ R2
Q.

4 Our Bootstrapping Method

In this section, we present our bootstrapping technique in detail. There are differ-
ent kinds of circuits to evaluate the decryption function of the BGV scheme, but
it seems that few of them can be constructed by only three types of gates above.
The finally chosen decryption circuit is similar to the one in [4]. At high level
our ciphertexts refreshing algorithm consists of three steps. Firstly, we homomor-
phically evaluate the decryption circuit of the BGV scheme and output a GSW
refreshed ciphertext that encrypts the same plaintext. Secondly, we transform it
back to a BGV ciphertext. Thirdly, we switch the secret key back to the original
one. In the following, we denote the BGV scheme (the GSW scheme) encryption
of aggregated plaintext μ under secrete key s as BGV.Encs(μ) (RGSW.Encs(μ),
respectively). Also, we denote the ciphertext space of the GSW scheme as C.

4.1 The Blueprint for Bootstrapping

As the discussion in [4], the decryption function for LWE based FHE schemes can
be written as the “rounded inner product” though bit decomposition. Similarly,
we observe that, for the batched BGV scheme, the ciphertext is c = (c0, c1) ∈ R2

q ,

3 Actually, the distribution of z is different with that in BGV scheme, but this do not
influence the key switching algorithm.



296 L. Chen and Z. Zhang

the secret key is s = (1,−z) ∈ R2
q , the plaintext is μ ∈ Rp, and the decryption

function4 is

Dec(c, s) = (c0 − c1 · z) mod q, Φ(X) mod p = μ. (3)

Using the two subroutines described in Sect. 2.2, we can express the above func-
tion as

Dec (c, s) = 〈ĉ, ŝ〉 mod q mod p =

(
∑

i s.t. c̄i=1

s̄i mod q

)

mod p = μ , (4)

for ĉ = DegDecomp(c), ŝ = PowerofDeg(s), c̄ = BitDecomp(ĉ) ∈ {0, 1}2nβ , s̄ =
Powerof2(ŝ) ∈ R2nβ

q , β = �log q� + 1 and μ ∈ Rp. To explain our bootstrapping
procedure, we adopt the notion from [37], i.e., the decryption procedure can be
performed using two maps: rep and red.

– The representation map rep describes a representation of an element in Rq

by elements in the symmetric groups, which we will detail later on. Let ⊕
denote the computation between the images of rep, i.e.,

rep(a) ⊕ rep(b) = rep(a + b) for a, b ∈ Rq. (5)

– The reduction map red takes an image rep(a) for a ∈ Rq and maps it to Rp,
which satisfies that

red(rep(a)) = a mod p (6)

So (4) can be write as

Dec(c, s) = red

(
⊕

i s.t. c̄i=1

rep(s̄i)

)

= μ. (7)

To fulfill homomorphic decryption, an image rep(a) for a ∈ Rq can be
encrypted by the described GSW scheme with ring plaintexts. Moreover, the
operation ⊕ can be homomorphically evaluated over GSW ciphertexts, i.e., we
have

RGSW.Enc(rep(a)) ⊕ RGSW.Enc(rep(b)) = RGSW.Enc(rep(a) ⊕ rep(b)) (8)

for a, b ∈ Rq. Also, the red map can be homomorphically evaluated on GSW
encryptions. Namely, we homomorphically compute

red(RGSW.Enc(rep(a))) = RGSW.Enc (red(rep(a))) for a ∈ Rp. (9)

4 Without loss of generality, one can always use modulus switching to gain level-0
BGV ciphertexts before bootstrapping. So for simplicity, we write ql as q and omit
all the level tag l.



Bootstrapping Fully Homomorphic Encryption with Ring Plaintexts 297

Generally, the decryption function (7) can be homomorphically evaluated as

Eval
(
Dec, c, {RGSW.Enc(rep(s̄i))}i=0,...,2φ(m)	log q


)

= red

(
⊕

i s.t. c̄i=1

RGSW.Enc (rep(s̄i))

)

= red

(

RGSW.Enc

(
⊕

i s.t. c̄i=1

rep(s̄i)

))

= RGSW.Enc

(

red

(
⊕

i s.t. c̄i=1

rep(s̄i)

))

= RGSW.Enc

((
∑

i s.t. c̄i=1

s̄i mod q

)

mod p

)

= RGSW.Enc(μ).

After that, scheme transformation from GSW ciphertexts to BGV ciphertexts
and key-switching will complete the bootstrapping procedure. The blueprint of
our bootstrapping algorithm can be formalized by the Algorithm 1.

Algorithm 1. The Efficient Bootstrap Algorithm
Input:

The level-0 batched BGV scheme ciphertext c = BGV.Encs0(μ) under secret key
s0, where s̄ = Powerof2(PowerofDeg(s0)) and c̄ = BitDecomp(DegDecomp(c));
The refresh key K = {Ki = RGSW.Encs′(rep(s̄i)), i = 1, . . . , 2φ(m)�log q�};
The key-switching information τs′→sL .

Output:
A level-L batched BGV scheme ciphertext c∗ encrypted μ under key sL.

1: Compute the function

D =
⊕

i s.t. c̄i=1

Ki,

// Here c̄i denote the ith entry of c̄.
2: C = HomRed(D)

// Homomorphically evaluate the map red under GSW scheme with ring plaintexts
with input D,

3: c̃ = Trans(C)
//Using scheme transformation algorithm we transform Ring-GSW ciphertext C
under secret key s′ back to BGV ciphertext c̃ under secret key s′.

4: c∗ =SwitchKey(c̃, τs′→sL)
//Using key-switching information τs′→sL to transform ciphertext c̃ back to level-L
BGV ciphertext c∗ under key sL



298 L. Chen and Z. Zhang

4.2 The Representation Map rep

For simplicity, we always assume that q0 = q = r1r2 · · · rt and all ri are pairwise
coprime before bootstrapping. This always can be satisfied by modulus switch-
ing. Note that the secret key consists of elements in Rq = Zq[X]/Φm[X] and
each ring element a ∈ Rq has φ(m) coefficients in Zq. As described in Sect. 2.3,
by Chinese Remainder Theorem, there is a group embedding Ψ from Zq into the
direct product of symmetric groups Sr1 × Sr2 × . . . Srt

. rep consists of n such
group embeddings for each coefficient of a ring element, and r̂epj denote the one
from jth coefficient. That is

rep(a) =
(
r̂ep1(a), r̂ep2(a), . . . , r̂epφ(m)(a)

)
.

Hence, each r̂epj(a) is represented as t binary vectors ϕi(a(j)) ∈ {0, 1}ri , i =
1, . . . , t. The operation ⊕ is corresponding to the permutation matrix multipli-
cations in each symmetric group Sri

in parallel.
Since rep(a) finally consists of t · φ(m) binary vectors, we can encrypt it by

encrypting each entry of the vectors. Moreover, since the operation ⊕ is corre-
sponding to binary matrix multiplications, it can be always homomorphically
computed by quasi-boolean AND gates and addition gates.

Lemma 5. Let a, a1, a2 to be arbitrary elements in Rq and the representation
map rep is defined as above. Let r = max1≤i≤t ri. Then rep(a) can be encrypted
as less than t · φ(m) · r GSW ciphertexts. The encryption of rep(a1) ⊕ rep(a2)
can be homomorphically computed from the encryption of rep(a1) and rep(a2)
within O(t ·r3 ·φ(m)) homomorphic operations, and the noise growth is less than
O(φ(m) · r) ·Bcan where Bcan is the bound of the canonical norm of noise in the
input ciphertexts.

4.3 The Reduction Map red

Our reduction map red is constructed similarly to [4] except that we work on
the ring elements instead of integers and the modulus of our plaintext space is
p ≥ 2.

Specifically, we first define the map r̂edj from a direct product of symmetric
groups Sr1 × Sr2 × . . . Srt

to Zp as testing whether the input equals to r̂epj (v)
for all v such that v mod p = κ, multiplying each test results by corresponding
κ and then summing them up. The r̂edj can be expressed as

r̂edj(g) =
p−1∑

κ=1

κ
∑

v∈Zqs.t.v mod p=κ

[
g = r̂epj (v)

]
,

where each equality test
[
g = r̂epj (v)

]
return 0 for false and 1 for true. Since

each g is expressed by t indicator vectors, the test of whether g equals r̂epj can be
performed by selecting the appropriate entries of each indicator vector and then



Bootstrapping Fully Homomorphic Encryption with Ring Plaintexts 299

Algorithm 2. The red Map Algorithm
Input: A element rep(x) which is represented as t·φ(m) vectors ϕi(x(j)) ∈ {0, 1}ri , i =

1, . . . , t; j = 1, . . . , φ(m) corresponding to x in Rq,
Output: y ∈ Rp which y = x mod p.
1: for j = 1 to φ(m)
2: for v = −�q/2� + 1 to �q/2�
3: for i = 1 to t
4: select the vi(= v mod ri)th element in ϕi

(
x(j)

)
as ai ∈ {0, 1}

5: a ← a · ai ∈ {0, 1}
6: end for
7: y(j) ← y(j) + κ ∗ a ∈ Zp where κ = v mod p
8: end for
9: end for

10: Output y ∈ Rp of which the jth coefficient is y(j) ∈ Zp

multiplying them together. So composing all the maps r̂edj for j = 1, . . . φ(m)
together, the red map can be computed by Algorithm 2.

Define Ci,j ∈ Cri as the ith ciphertext vector corresponding to the jth coef-
ficient of the polynomial rep(x). To evaluate Algorithm 2 homomorphically, we
propose Algorithm 3.

Algorithm 3. The HomRed Algorithm
Input: Ring GSW ciphertext vectors Ci,j ∈ Cri , i = 1, . . . , t; j = 1, . . . , φ(m) that

encrypt t · φ(m) vectors ϕi(x(j)) ∈ {0, 1}ri , i = 1, . . . , t; j = 1, . . . , φ(m) which
represent rep(x)

Output: d encrypts y ∈ Rp as the original plaintext, where y = x mod p.
1: for j = 1 to φ(m)
2: Put dj as the ciphertext that encrypts all zero vector with noise noise
3: for integer v = −�q/2� + 1 to �q/2�
4: c ← G
5: for i = 1 to t
6: select the vi (= v mod ri)th element of Ci,j as ci

7: c ← c 	 ci

8: end for
9: dj ← dj + κ · c ∈ Zp where integer κ = v mod p

10: end for
11: d ← xj · dj

12: end for
13: Output ciphertext d

Lemma 6. Let a be a ring element in Rq. Given the encryption of rep(a) as
above, the HomRed algorithm can successfully output a GSW ciphertext which
plaintext is just a mod p. Moreover, the number of the homomorphic operations
is no more than O(φ(m) · q · t) and the noise growth is less than O(φ(m) ·p · q · t).



300 L. Chen and Z. Zhang

4.4 Bootstrapping Within Polynomial Noise

To bootstrap, the evaluation key is the encryption of the rep image of each ele-
ment of secret key vector s̄ ∈ Rd

q0 under the GSW scheme with secret key s′

and modulus Q. Particularly, to apply the symmetric embedding, we set the
level-0 modulus q0 to be a product of different small prime integers, the size
of which are O(1). Since the operation ⊕ of red image and red map can both
be produced homomorphically, the Algorithm 1 can correctly output the boot-
strapped ciphertext. Importantly, the output of the BGV scheme ciphertext is
with modulus Q, and Q = qL � q0 is the level-L modulus. Generally, we have
the following theorem.

Theorem 2 (Main Theorem). Given the evaluation key which is defined as
above, we can bootstrap batched BGV HE scheme within Õ(n2 ·q0) times of noise
in the evaluation key.

Proof. Since the permutation matrices are always binary, the step 1 of the
Algorithm 1 is always evaluated by homomorphic quasi-boolean AND gates and
addition gates. If the canonical norm of noise in ciphertexts of the refresh key are
bounded by Bcan, according to Lemma 5, the noise in the result of step 1 of the
Algorithm 1 is bounded by Õ(n)·Bcan. Similarly, according to Lemma 6, we com-
pute ciphertexts encrypting elements in {0, 1} ⊂ Rp in Algorithm 3 until we get
dj ’s and we then only perform scalar multiplication and homomorphic addition
on dj . Moreover, the canonical norm of xj is 1. If the canonical norms of noises
in input ciphertexts in Algorithm 3 are bounded by B̃can, the canonical norms of
noises in the result ciphertexts in step 2 are bounded by Õ(nq log q) · B̃can. Also
we notice that scheme transformation and key switching procedure only increase
noise by a constant factor. So totally we bootstrap in Õ(n2 · q) times noise.
According to the relations of l∞ and canonical norm as Eq. (1), the l∞ norm of
noise in refreshed ciphertexts Brefresh satisfies Brefresh = Õ

(
n2 · q

)
Bcan. ��

Asymptotic Parameters. For the worst case, to make decryption algorithm at
0-Level function well, we need to make sure that

Õ
(
BL+1

refresh

)
≤ Q

2p
. (10)

Therefore Q = Õ(n2 · q · Bcan)L+1 satisfies the above inequality. Here L can
be any positive constant integer that be chosen at first and independent on
dimension n and security parameter λ. For instance, we can set q = Θ(n) and
Bcan = ω

(√
n log n

)
. For L = 1, Q = Õ(n7) suffices. Since the l∞ bound B on

fresh noise satisfies B ≤ cm · Bcan, we can estimate B as the same asymptotic
level as Bcan. According to Theorem 1, the security of our scheme can be relied
on the hardness of GapSV PÕ(n6.5) for idea lattice.

4.5 Computation Complexity

Computation complexity for the above bootstrapping method is analysed by the
following theorem.



Bootstrapping Fully Homomorphic Encryption with Ring Plaintexts 301

Theorem 3. The computation complexity of bootstrapping procedure described
in Algorithm 1 is no more than Õ(n3).

Proof. The step 1 in the Algorithm 1 uses at most φ(m)·�log q� operations ⊕. As
it is explained in Lemma 5, each ⊕ operations cost O(t · r3 · φ(m)) basic homo-
morphic operations. Next, the step 2 in the Algorithm 1 uses O(φ(m) · p · q · t)
operations. r and t have sizes of O(1) and O(log n). Totally, the number of
homomorphic operations for ring GSW scheme is no more than Õ(n2). More-
over, according to Lemma 4, the complexity of each GSW scheme homomorphic
gate is Õ(n). The complexity of scheme transformation and key switching for
batched BGV scheme are both Õ(n). In the end, the computation complexity of
bootstrapping procedure described in Algorithm 1 is no more than Õ(n3). ��

Overhead. In [28], Gentry et al. proved that one can use the batched BGV SWHE
scheme to implement any (wide enough) bounded level arithmetic circuit within
polylog overhead. When the depth of the circuit is beyond what we can handle,
the bootstrapping is inevitable. In optimal cases, we can evaluate O(n3) gates
in 3 log n levels with the batched BGV SWHE scheme in time Õ(n3) according
to Lemma 1, and then, bootstrap using our method within time Õ(n3). So the
per-gate overhead is polylog in these cases, which is asymmetrically optimal as
same as the scheme in [28].

5 Parameter Calculation

The literature [35] gives us a straightforward reduction from the worst-case
lattice problems to the security of our FHE scheme. However, the worst-case
connection can not provide hints on definite security for any concrete choice of
parameters. Therefore, one has to take into account experiments on the hardness
of lattice problems.

Our parameter estimation approach directly follows [1,2] and uses the LWE
estimator https://bitbucket.org/malb/lwe-estimator/src. Specifically, we pro-
vide example parameters as follows. We set the canonical norm bound for fresh
noise vector as B = 6·σ = 19.2. Then, we set p = 3, q0 = 5·7·11·13 = 5005 ≈ 212.
Also, we set Q = 2τ , L = 1. The Eq. (10) can be formalized as

(4 · n2 · q · log q · p · τ · B)L+1 ≤ Q

2p
.

Table 1. Example Parameters. k denotes the number of slots.

Security m n qL p k

70 2323 2200 2109 3 3

80 2867 2760 2110 3 12

100 4325 3440 2111 3 4

https://bitbucket.org/malb/lwe-estimator/src


302 L. Chen and Z. Zhang

We obtain a concrete set of example parameters in Table 1. Remind that k
denotes the number of slots in the plaintext, and Q = qL is the modulus of the
GSW scheme, as well as the level L modulus of the BGV scheme.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able comments. The work is supported by the National Natural Science Foundation of
China (No.U1536205), the National Key Research and Development Program of China
(No.2017YFB0802005,2017YFB0802504) and the National Basic Research Program of
China (No.2013CB338003).

References

1. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parame-
ter choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). doi:10.
1007/978-3-319-56614-6 4

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015). http://www.degruyter.com/view/
j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml

3. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 1–20. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40041-4 1

4. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 17

5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 50

6. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomor-
phic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778,
pp. 1–13. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 1

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference, pp. 309–325. ACM (2012)

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Annual Symposium on Foundations of Computer Science,
2011(2), pp. 97–106 (2011)

9. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 29

10. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Pro-
ceedings of the 5th Conference on Innovations in Theoretical Computer Science,
pp. 1–12. ACM (2014)

11. Chen, H., Lauter, K.E., Stange, K.E.: Attacks on search RLWE. IACR Cryptology
ePrint Archive 2015, 971 (2015). http://eprint.iacr.org/2015/971

12. Chen, H., Lauter, K.E., Stange, K.E.: Vulnerable galois RLWE families and
improved attacks. IACR Cryptology ePrint Archive 2016, 193 (2016). http://
eprint.iacr.org/2016/193

http://dx.doi.org/10.1007/978-3-319-56614-6_4
http://dx.doi.org/10.1007/978-3-319-56614-6_4
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://dx.doi.org/10.1007/978-3-642-40041-4_1
http://dx.doi.org/10.1007/978-3-662-44371-2_17
http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1007/978-3-642-36362-7_1
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://eprint.iacr.org/2015/971
http://eprint.iacr.org/2016/193
http://eprint.iacr.org/2016/193


Bootstrapping Fully Homomorphic Encryption with Ring Plaintexts 303

13. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25385-0 1

14. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun,
A.: Batch fully homomorphic encryption over the integers. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38348-9 20

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: Advances in Cryptology -
ASIACRYPT 2016–22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December 4–8, 2016, Pro-
ceedings, Part I, pp. 3–33 (2016). https://doi.org/10.1007/978-3-662-53887-6 1

16. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Improving TFHE: faster
packed homomorphic operations and efficient circuit bootstrapping. IACR Cryp-
tology ePrint Archive 2017, 430 (2017). http://eprint.iacr.org/2017/430

17. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryp-
tion over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 28

18. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4 27

19. Crockett, E., Peikert, C.: Λoλ: Functional lattice cryptography. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
2016, pp. 993–1005 (2016). http://doi.acm.org/10.1145/2976749.2978402

20. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 38

21. Doröz, Y., Hu, Y., Sunar, B.: Homomorphic AES evaluation using the modi-
fied scheme. Des. Codes Crypt. 80(2), 333–358 (2016). http://dx.doi.org/10.1007/
s10623-015-0095-1

22. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 617–640. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 24

23. Eisenträger, K., Hallgren, S., Lauter, K.: Weak instances of PLWE. In: Joux, A.,
Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 183–194. Springer, Cham (2014).
doi:10.1007/978-3-319-13051-4 11

24. Elias, Y., Lauter, K.E., Ozman, E., Stange, K.E.: Provably weak instances of Ring-
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
63–92. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 4

25. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, vol. 9,
pp. 169–178 (2009)

26. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Field switching in BGV-style homo-
morphic encryption. J. Comput. Secur. 21(5), 663–684 (2013)

27. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8 1

http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://dx.doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/978-3-662-53887-6_1
http://eprint.iacr.org/2017/430
http://dx.doi.org/10.1007/978-3-642-22792-9_28
http://dx.doi.org/10.1007/978-3-642-22792-9_28
http://dx.doi.org/10.1007/978-3-642-29011-4_27
http://doi.acm.org/10.1145/2976749.2978402
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/s10623-015-0095-1
http://dx.doi.org/10.1007/s10623-015-0095-1
http://dx.doi.org/10.1007/978-3-662-46800-5_24
http://dx.doi.org/10.1007/978-3-319-13051-4_11
http://dx.doi.org/10.1007/978-3-662-47989-6_4
http://dx.doi.org/10.1007/978-3-642-30057-8_1


304 L. Chen and Z. Zhang

28. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 465–482. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 28

29. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 49

30. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

31. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44371-2 31

32. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46800-5 25

33. Hiromasa, R., Abe, M., Okamoto, T.: Packing messages and optimizing bootstrap-
ping in GSW-FHE. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 699–715.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 31

34. Lin, D.: Introduction to Algebra and Finite Fields. Higher Education Press, Beijing
(2006)

35. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM (JACM) 60(6), 43 (2013)

36. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 3

37. Orsini, E., van de Pol, J., Smart, N.P.: Bootstrapping BGV Ciphertexts with a
Wider Choice of p and q. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 673–
698. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 30

38. van de Pol, J., Smart, N.P.: Estimating key sizes for high dimensional lattice-based
systems. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 290–303. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-45239-0 17

39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 34 (2009)

40. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively
small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13013-7 25

41. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71(1), 57–81 (2014)

42. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol.
6110, pp. 24–43. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 2

http://dx.doi.org/10.1007/978-3-642-29011-4_28
http://dx.doi.org/10.1007/978-3-642-32009-5_49
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-662-44371-2_31
http://dx.doi.org/10.1007/978-3-662-44371-2_31
http://dx.doi.org/10.1007/978-3-662-46800-5_25
http://dx.doi.org/10.1007/978-3-662-46447-2_31
http://dx.doi.org/10.1007/978-3-642-38348-9_3
http://dx.doi.org/10.1007/978-3-662-46447-2_30
http://dx.doi.org/10.1007/978-3-642-45239-0_17
http://dx.doi.org/10.1007/978-3-642-13013-7_25
http://dx.doi.org/10.1007/978-3-642-13013-7_25
http://dx.doi.org/10.1007/978-3-642-13190-5_2


Revocable Predicate Encryption from Lattices

San Ling, Khoa Nguyen, Huaxiong Wang, and Juanyang Zhang(B)

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

{lingsan,khoantt,hxwang,zh0078ng}@ntu.edu.sg

Abstract. Predicate encryption, formalized by Katz, Sahai, and Waters
(EUROCRYPT 2008), is an attractive branch of public-key encryption,
which provides fine-grained and role-based access to encrypted data. As
for many multi-user cryptosystems, an efficient revocation mechanism
is necessary and imperative in the context of predicate encryption, in
order to address scenarios when users misbehave or their private keys
are compromised. The formal model of revocable predicate encryption
was introduced by Nieto, Manulis and Sun (ACISP 2012), who suggest
the strong, full-hiding security notion, demanding that the ciphertexts
do not leak any information about the encrypted data, the attribute and
the revocation information associated with it.

In this work, we introduce the first construction of lattice-based revo-
cable predicate encryption. Our scheme satisfies the full-hiding security
notion (in a selective manner) in the standard model, based on the hard-
ness of the Learning With Errors (LWE) problem. In terms of asymp-
totic efficiency, the scheme is somewhat comparable to the pairing-based
instantiation put forward by Nieto, Manulis and Sun. Furthermore, bet-
ter efficiency could be easily achieved in the random oracle model.

1 Introduction

The notion of predicate encryption (PE), formalized by Katz et al. [19], is an
emerging paradigm of public-key encryption, which provides fine-grained and
role-based access to encrypted data. In a PE scheme, the user’s private key, issued
by an authority, is associated with a predicate f , while a ciphertext is bound to
an attribute a. The system then ensures that the user can decrypt the ciphertext
if and only if f(a) = 1. PE can be viewed as a generalization of attribute-based
encryption (ABE) [17,40]. Whereas the latter reveals the attribute bound to
each ciphertext, the former preserves the privacy of not only the encrypted data
but also the attribute. These powerful properties of PE yield numerous potential
applications (see, e.g., [10,19,46]).

As for many multi-user cryptosystems, an efficient revocation mechanism is
necessary and imperative in the PE setting. When some users misbehave or when
their private keys are compromised, the users should be revoked from the system
and should no longer be able to decrypt the ciphertext. In the ABE setting,
Boldyreval et al. [8] suggested a revocation mechanism based on a time-based key
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 305–326, 2017.
https://doi.org/10.1007/978-3-319-68637-0_19



306 S. Ling et al.

update procedure. In their model, a ciphertext is not only bound to an attribute
but also to a time period. The key authority, who possesses the up-to-date list
of revoked users, have to publish an update key at each time period so that only
non-revoked users can update their private keys to decrypt ciphertexts bound
to the same time slot. This mechanism is known as indirect revocation, since
the revocation information is not controlled by the message sender, but by the
authority. A näıve solution for indirect revocation, first mentioned by Boneh and
Franklin [9], consists of broadcasting user-specific update keys to all non-revoked
users. However, this simple solution is inefficient, because the periodic workload
of the authority is O(N − r), where N is the number of users in the system and
r is the number of revoked users at the given time period. Boldyreval et al. [8]
adopted the classic subset-cover framework due to Naor et al. [28], which employs
binary trees to handle user revocation, and reduced the size of update keys to
O

(
r log N

r

)
. Concrete pairing-based instantiations of revocable ABE following

Boldyreval et al.’s approach were proposed in [5,39]. This approach, however,
admits several limitations, since it requires the key authority to stay online
regularly, and the non-revoked users to download updated system information
periodically.

To eliminate the burden caused by the key update phase, Attrapadung and
Imai [5] suggested the direct revocation mechanism for ABE, in which the revo-
cation information can be controlled by the message sender. Each ciphertext is
now bound to an attribute a as well as the current revocation list RL. Mean-
while, each private key associated with a predicate f is assigned a unique index
I. The decryption procedure is successful if and only if f(a) = 1 and I �∈ RL.
In this direct revocation model, the authority only can stay off-line after issu-
ing private keys for users, and non-revoked users do not have to update their
keys. Despite of the clear efficiency advantages for both the key authority and
users, this approach requires that senders possess the current revocation list and
perform encryptions based on it. The setting that the message sender should
possess the revocation information might be inconvenient in certain scenarios,
but it is well-suited in cases such information is naturally known to the sender.
For instance, in Pay-TV systems [17], the TV program distributor should own
the list of revoked users.

In [30,31], Nieto, Manulis and Sun (NMS) adapted the Attrapadung-Imai
direct revocation mechanism into the context of PE, and formalized the notion of
revocable predicated encryption (RPE). As discussed in [30,31], involved privacy
challenges may rise when one plugs the revocation problem into the PE setting.
In particular, Nieto, Manulis and Sun consider two security notions: attribute-
hiding and full-hiding. The former means that the ciphertext only preserves
privacy of attribute (and of the encrypted data) as in ordinary PE. The latter is a
very strong notion which additionally guarantees that the revocation information
is not leaked by the ciphertext. This requirement is suitable for applications
where it is necessary for the sender to hide the list of revoked users. Nieto,
Manulis and Sun pointed out that a generic construction of full-hiding RPE can
be obtained by a combination of a PE scheme and an anonymous broadcasting



Revocable Predicate Encryption from Lattices 307

scheme, but it is inefficient since the size of the ciphertexts is linearly dependent
on the maximal number of users N . Then they proposed a more efficient paring-
based instantiation of full-hiding RPE for inner-product predicates, which relies
on the PE schemes by Okamoto and Takashima [33] and Lewko et al. [21], as
well as the subset-cover framework [28].

In this work, inspired by the potentials of PE and the advantages of the
direct revocation mechanism, we consider full-hiding RPE in the context of
lattice-based cryptography, and aim to design the first such scheme from lat-
tice assumptions. Lattice-based cryptography, pioneered by the seminal works by
Regev [38] and Gentry et al. [15], has been one of the most exciting research areas
in the last decade. Lattices provide several advantages over conventional number-
theoretic cryptography, such as conjectured resistance against quantum adver-
saries and faster arithmetic operations. In the scope of lattice-based revocation
schemes, there have been several proposals [11,12,29,47], but they only consider
the setting of identity-based encryption (IBE). To the best of our knowledge,
the problem of constructing lattice-based RPE schemes has not been addressed
so far.

Our results and techniques. We introduce the first construction of RPE
from lattices. Our scheme satisfies the full-hiding security notion [30,31] (in a
selective manner) in the standard model, based on the hardness of the Learning
With Errors (LWE) problem [38]. The scheme inherits the main advantage of the
direct revocation mechanism: the authority does not have to be online after the
key generation phase, and key updating is not needed. Let N be the maximum
expected number of private keys in the system and let r be the number of
revoked keys. Then, the efficiency of our scheme is comparable to that of the
pairing-based RPE scheme from [30,31], in the following sense: the size of public
parameters is O(N); the size of the private key is O(log N), and the ciphertext
has size O

(
r log N

r

)
which is ranged between O(1) (when no key is revoked) and

O
(

N
2

)
(in the worst case when every second key is revoked).

At a high level, we adopt the approach suggested by Nieto, Manulis and
Sun in their pairing-based instantiation [30,31], for which we introduce several
modifications. Recall that, in [30,31], to obtain a full-hiding RPE, the authors
apply the tree-based revocation technique from [28] to two layers of PE [21,
33], in the following manner: the main PE layer deals with predicate vector −→x
and attribute vector −→y , while an additional layer is introduced to handle the
index I of the private key (encoded as a “predicate”) and the revocation list
RL (encoded as an “attribute”). Thanks to the attribute-hiding property of the
second PE layer, RL is kept hidden. It is worth noting that Nieto, Manulis and
Sun managed to prove the full-hiding security by exploiting the dual system
encryption techniques [49] underlying the PE blocks. Their security proof fairly
relies on the fact that the simulator is able to compute at least one private key
for all predicates, including those for which the challenge attributes satisfy.

To adapt the approach from [30,31] into the lattice setting, we employ as the
main PE layer the scheme for inner-product predicates put forward by Agrawal,
Freeman and Vaikuntanathan [2] and subsequently improved by Xagawa [50].



308 S. Ling et al.

However, we were not able to find a suitable lattice-based ingredient to be used
as the second PE layer, so that it interacts smoothly and securely with the main
layer (which might due to the fact that there has not been a lattice analogue
of the dual system encryption techniques). Instead, we use a variant of Agrawal
et al.’s anonymous IBE [1] to realize the second layer as follows. We first consider
a binary tree with N leaves, where N is the maximum expected number of private
keys. We then associate each node θ in the binary tree with an “identifier” Dθ.
Then, for each I ∈ [N ], we equip the private key indexed by I with “decryption
keys” corresponding to all identifiers in the tree path from I to the root. When
generating a ciphertext with respect to revocation list RL, the sender aims to the
identifiers Dθ′ ’s, for all θ′ belonging to the cover set determined by RL. Thanks
to the anonymity of the scheme, RL is kept hidden. Furthermore, the correctness
of the tree-based revocation technique from [28] ensures that the ciphertext is
decryptable using the private key indexed by I if and only if I �∈ RL.

To combine the AFV PE layer with the above anonymous IBE layer, we rely
on a splitting technique that can be seen as a secret sharing mechanism and
that was used in previous lattice-based revocation schemes [11,29,47]. To this
end, for each I ∈ [N ], we split a public matrix U into two random parts: (i) UI

which is associated with the main PE layer; (ii) U − UI that is linked with the
second layer.

The efficiency of our RPE can be improved in the random oracle model,
where instead of storing all the matrices Dθ’s in the public parameters, we
simply obtain them as outputs of a random oracle.

Other related works. The subset-cover framework, proposed by Naor et
al. [28] in the context of broadcast encryption, is arguably the most well-known
revocation technique for multi-user systems. It uses a binary tree, each leaf of
which is designated to each user. Non-revoked users are partitioned into disjoint
subsets, and are assigned keys according to the Complete Subtree (CS) method
or the Subset Difference (SD) method. This framework was first considered in the
IBE setting by Boldyreva et al. [8]. Subsequently, several identity-based instan-
tiations from pairings [8,24] and from lattices [11,12,29,47] were proposed, pro-
viding various improvements. Seo and Emura [42] suggested a strong security
notion for revocable IBE, that takes into account the threat of decryption key
exposure attacks. There have been several constructions satisfying this strong
notion, which operate in the subset-cover framework, e.g., [41–45,48]. The frame-
work also found applications in the context of revocable group signatures [22,23],
revocable ABE [5,8,39] and revocable PE [20,30,31].

Predicate encryption for inner-product predicates was introduced by Katz et
al. [19]. In such a scheme, attribute a and predicate f are expressed as vectors−→x and −→y respectively, and we say f(a) = 1 if and only if 〈−→x ,−→y 〉 = 0 (hereafter,
〈−→x ,−→y 〉 denotes the inner product of vector −→x and vector −→y ). Katz, Sahai, and
Waters also demonstrated the expressiveness of inner-product predicates: they
can be used to encode several other predicates, such as equalities, hidden vector
predicate, polynomial evaluation and CNF/DNF formulae. Following the work
of [19], a number of pairing-based predicate encryption schemes [6,21,32–35] for



Revocable Predicate Encryption from Lattices 309

inner products have been proposed. In the lattice-based world, Agrawal et al. [2]
proposed the first such scheme, and Xagawa [50] suggested an improved variant.
Organization. The rest of this paper is organized as follows. In Sect. 2, we recall
some background on lattice-based cryptography, revocable predicate encryption
and the Complete Subtree method. Our main construction is described and
analyzed in Sect. 3. Finally, we discuss possible extensions of our scheme and
some open questions in Sect. 4.

2 Preliminaries

Notations. The acronym PPT stands for “probabilistic polynomial-time”. We
often write x ←↩ χ to indicate that we sample x from probability distribution
χ. If Ω is a finite set, the notation x

$← Ω means that x is chosen uniformly
at random from Ω. Meanwhile, if x is an output of PPT algorithm A, then we
write x ← A.

We use bold upper-case letters (e.g., A,B) to denote matrices and use bold
lower-case letters (e.g., x,y) to denote column vectors. In addition, we user over-
arrows to denote predicate and attribute vectors as −→x ,−→y . For two matrices
A ∈ R

n×m and B ∈ R
n×k, we denote by [A | B] ∈ R

n×(m+k) the column-
concatenation of A and B. For a vector x ∈ Z

n, ||x|| denotes the Euclidean
norm of x. We use Ã to denote the Gram-Schmidt orthogonalization of matrix
A, and ||A|| to denote the Euclidean norm of the longest column in A. If n is
a positive integer, [n] denotes the set {1, .., n}. For c ∈ R, let �c	 = 
c − 1/2	
denote the integer closest to c.

2.1 Background on Lattices

Integer lattices. An m-dimensional lattice Λ is a discrete subgroup of Rm. A
full-rank matrix B ∈ R

m×m is a basis of Λ if Λ = {y ∈ R
m : ∃s ∈ Z

m,y = B ·s}.
We are interested in integer lattices, i.e., when Λ ⊆ Z

m. For any integer q ≥ 2
and any A ∈ Z

n×m
q , define the q-ary lattice: Λ⊥

q (A) =
{
r ∈ Z

m : A · r =
0 mod q

} ⊆ Z
m. For any u in the image of A, define the coset Λu

q (A) =
{
r ∈

Z
m : A · r = u mod q

}
.

A fundamental tool in lattice-based cryptography is an algorithm that gen-
erates a matrix A statistically close to uniform over Zn×m

q together with a short
basis TA of Λ⊥

q (A).

Lemma 1 [3,4,26]. Let n ≥ 1, q ≥ 2 and m ≥ 2n log q be integers. There exists
a PPT algorithm TrapGen(n, q,m) that outputs a pair (A,TA) such that A is
statistically close to uniform over Z

n×m
q and TA ∈ Z

m×m is a basis for Λ⊥
q (A),

satisfying ‖T̃A‖ ≤ O(
√

n log q) and ‖TA‖ ≤ O(n log q). with all but negligible
probability in n.

Micciancio and Peikert [26] consider a structured matrix G, called the prim-
itive matrix, which admits a publicly known short basis.



310 S. Ling et al.

Lemma 2 [26]. Let n ≥ 1, q ≥ 2 be integers and let m ≥ n
log q	. There exists a
full-rank matrix G ∈ Z

n×m
q such that the lattice Λ⊥

q (G) has a known basis TG ∈
Z

m×m with ||T̃G|| ≤ √
5. Furthermore, there exists a deterministic polynomial-

time algorithm G−1 which takes the input U ∈ Z
n×m
q and outputs X = G−1(U)

such that X ∈ {0, 1}m×m and GX = U.

Discrete Gaussians. Let Λ ⊆ Z
m be a lattice. For any vector c ∈ R

m and

parameter s > 0, define ρs,c(r) = exp(−π
‖r − c‖2

s2
) and ρs,c(Λ) =

∑
r∈Λ ρs,c(r)

The discrete Gaussian distribution over Λ with c and s is ∀r ∈ Λ, DΛ,s,c(r) =
ρs,c(r)
ρs,c(Λ)

. If c = 0, for simplicity, we often use the notations ρs and DΛ,s.

Gentry et al. [15] showed how to sample from discrete Gaussians over lattices
that have sufficiently short bases.

Lemma 3 [15]. There exists a PPT algorithm SampleGaussian(B, s, c) that,
given a basis B of an m-dimensional lattice Λ, a Gaussian parameter s ≥
||B̃|| · ω(

√
log m), and a center c ∈ R

m, outputs a sample from a distribution
that is statistically close to DΛ,s,c.

We also need the following lemma for proving the correctness and security
of the construction in Sect. 3. The lemma is obtained based on known facts
from [15, Lemma 5.2], [27] and [13, Lemma 5],

Lemma 4. Let n ≥ 1, q ≥ 2, m ≥ 2n log q and k ≥ 1 be integers. Let F be
a full-rank matrix in Z

n×m
q and TF be a basis of Λ⊥

q (F). Assume that s ≥
||T̃F|| · ω(

√
log n). Then, for Z ←↩ (DZm,s)

k, the distribution of FZ mod q is
statistically close to the uniform distribution over Z

n×k
q .

In particular, Lemma 4 holds when F is a uniformly random matrix in Z
n×m
q

(see [15, Lemma 5.1] or when F is the matrix G ∈ Z
n×m
q in Lemma 2.

Sampling algorithms. It was shown in [1,26] how to efficiently sample short
vectors from specific lattices. Looking ahead, we will use algorithm SampleLeft
to sample keys in the RPE scheme of Sect. 3, while algorithm SampleRight will
be employed to generate keys in the security proof.

SampleLeft(A,M,TA,u, s): On input a rank n matrix A ∈ Z
n×m
q , a matrix

M ∈ Z
n×m1
q , a trapdoor TA of Λ⊥

q (A), a vector u ∈ Z
n
q , and a Gaussian

parameter s ≥ ‖T̃A‖ · ω(
√

log(m + m1)), it outputs a vector z ∈ Z
(m+m1),

which is sampled from a distribution statistically close to DΛu
q (F),s. Here we

define F = [A|M] ∈ Z
n×(m+m1)
q .

SampleRight(A,R, t,G,TG,u, s): On input matrices A ∈ Z
n×m
q ,R ∈ Z

m×m, a
scalar t ∈ Zq\{0}, the primitive matrix G ∈ Z

n×m
q together with trapdoor

TG of Λ⊥
q (G), a vector u ∈ Z

n
q , and a Gaussian parameter s ≥ ‖T̃B‖ · ||R|| ·

ω(
√

log m), it outputs a vector z ∈ Z
2m, which is sampled from a distribution

statistically close to DΛu
q (F),s. Here we define F = [A|AR + tG] ∈ Z

n×2m
q .



Revocable Predicate Encryption from Lattices 311

The above sampling algorithms are easily extended to the case where instead
of taking a vector u ∈ Z

n
q as input, one takes a matrix U ∈ Z

n×k
q , for some

k ≥ 1. In this case, the output is a matrix Z ∈ Z
2m×k.

We will also need a variant of left over hash lemma from [1].

Lemma 5. Suppose that m > (n + 1) log q + ω(log n) and q > 2 is a prime.

Choose A $←− Z
n×m
q , B $←− Z

n×κ
q and R $←− {−1, 1}m×κ where κ = κ(n) is

polynomial in n. Then for any vector v ∈ Z
m
q , the distribution of (A,AR,R�v)

is statistically close to the distribution of (A,B,R�v).

Learning With Errors. We now recall the Learning With Errors (LWE) prob-
lem [38], as well as its hardness.

Definition 1 (LWE). Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution

on Z. For s ∈ Z
n
q , let As,χ be the distribution obtained by sampling a $← Z

n
q

and e ←↩ χ, and outputting the pair
(
a,a�s + e

) ∈ Z
n
q × Zq. The (n, q, χ)-LWE

problem asks to distinguish m samples chosen according to As,χ (for s $← Z
n
q )

and m samples chosen according to the uniform distribution over Z
n
q × Zq.

If q is a prime power and B ≥ √
n · ω (log n), then there exists an efficient

sampleable B-bounded distribution χ (i.e., χ outputs samples with norm at most
B with overwhelming probability) such that (n, q, χ)-LWE is as least as hard as
worst-case lattice problem SIVP with approximate factor O (nq/B) (see [25,26,
36,38]).

2.2 The Agrawal-Freeman-Vaikuntanathan Predicate Encryption
Scheme

Next, we recall the LWE-based predicate encryption, proposed by Agrawal,
Freeman and Vaikuntanathan (AFV) [2]. The scheme is for inner-product pred-
icates, where an attribute is expressed as a vector −→y ∈ Z

�
q (for some integers

q and �) and a predicate f−→x is associated with a vector −→x ∈ Z
�
q. We say that

f−→x (−→y ) = 1 if 〈−→x ,−→y 〉 = 0, and f−→x (−→y ) = 0 otherwise. The set A = Z
�
q is called

the attribute space, while the set P = {f−→x
∣
∣−→x ∈ Z

�
q} is called the predicate space.

In the AFV scheme, the key authority possesses a short basis TA for a public
lattice Λ⊥

q (A), outputted by the TrapGen algorithm. Each predicate f−→x ∈ P is
associated with a super-lattice of Λ⊥

q (A), a short vector of which can be effi-
ciently computed using the trapdoor TA. Such a short vector allows to decrypt
a Dual-Regev ciphertext [15] bound to an attribute vector −→y ∈ A satisfying
f−→x (−→y ) = 1. In order to improve efficiency, Xagawa [50] suggested an enhanced
variant that employs the primitive matrix G. In the below, we will describe the
AFV scheme with Xagawa’s improvement. The scheme works with appropriately
chosen parameters n, q,m, s and LWE error distribution χ.

Setup: Generate (A,TA) ← TrapGen(n, q,m). Pick u $←− Z
n
q and for each i ∈ [�],

sample Ai
$←− Z

n×m
q . Outputpp = (A, {Ai}i∈[�],u) and msk = TA.



312 S. Ling et al.

KeyGen: For vector −→x = (x1, . . . , x�) ∈ Z
�
q, set A−→x =

�∑

i=1

AiG−1(xi ·G) ∈ Z
n×m
q

and output the key sk−→x = r ∈ Z
2m using r ← SampleLeft (A,A−→x ,TA,u, s).

Enc: To encrypt message M ∈ {0, 1} under vector −→y = (−→y 1, . . . ,
−→y �) ∈ Z

�
q,

choose s $← Z
n
q , e←↩χm, e←↩χ, and Ri

$← {−1, 1}m×m for each i ∈ [�], then
output ct = (c′, c0, {ci}i∈[�]), where:

c′ = u�s + e + M · �q

2
� ∈ Zq,

c0 = A�s + e ∈ Z
m
q ,

∀i ∈ [�] : ci = (Ai + yi · G)� s + R�
i e ∈ Z

m
q .

Dec: Set c−→x =
�∑

i=1

(
G−1(xi · G)

)�
ci ∈ Z

m
q . Then compute z = c′ − r�[c0 |

c−→x ] ∈ Zq and output � 2
q · z	 ∈ {0, 1}.

Agrawal, Freeman and Vaikuntanathan showed that, under the (n, q, χ)-LWE
assumption, their PE scheme satisfies the weak attribute-hiding security notion
defined by Katz et al. [19], in a selective attribute setting. Xagawa [50] proved
that the same assertion holds for his improved scheme variant. In Sect. 3, the
scheme will be used as a building block for our lattice-based instantiation of
revocable predicate encryption.

2.3 Revocable Predicate Encryption

Now, we recall the definition of RPE from [5,30,31], and its full-hiding security
notion suggested by Nieto et al. [30,31].

Definition 2. A revocable predicate encryption scheme consists of four algo-
rithms (Setup,KeyGen,Enc,Dec) and has an associated predicate space P, an
attribute space A, an index space I and a message space M.

Setup
(
1λ

)
takes as input a security parameter λ. It outputs a state information

ST, a set of public parameters pp and a master secret key msk. We assume pp
to be an implicit input of all other algorithms.

KeyGen(msk,ST,−→x , I) takes as input the master secret key msk, the state ST, a
predicate vector −→x corresponding to a predicate f−→x ∈ P and an index I ∈ I.
It outputs an updated state ST and a private key sk−→x ,I .

Enc(−→y ,RL,M) takes as input an attribute vector −→y ∈ A, a revocation list RL ⊆
I, and a message M ∈ M. It outputs a ciphertext ct.

Dec(ct, sk−→x ,I) takes as input a ciphertext ct and a private key sk−→x ,I . It outputs
a message M or the distinguished symbol ⊥.

Correctness. The correctness requirement demands that, for all pp and msk
generated by Setup

(
1λ

)
, all f−→x ∈ P, −→y ∈ A, I ∈ I, all state information ST, all

sk−→x ,I ← KeyGen(msk,ST,−→x , I) and ct ← Enc(−→y ,RL,M), if I �∈ RL then:



Revocable Predicate Encryption from Lattices 313

1. If f−→x (−→y ) = 1 then Dec
(
ct, sk−→x ,I

)
= M .

2. If f−→x (−→y ) = 0 then Dec
(
ct, sk−→x ,I

)
= ⊥ with all but negligible probability.

Full-Hiding Security. In [30,31], Nieto, Manulis and Sun introduced the notion
of full-hiding security against chosen plaintext attacks for RPE, which demands
that ciphertexts do not leak any information about the plaintexts, the attributes,
nor the revoked indexes. This notion can be defined in the strong, adaptive man-
ner, or in the relaxed, selective sense where the adversary is required to announce
the challenge attribute vectors −→y (0)

,−→y (1) and revocation lists RL(0),RL(1) before
seeing public parameters. In this work, we consider the latter.

Definition 3. An RPE scheme is selectively full hiding against chosen plaintext
attacks if any PPT adversary A has negligible advantage in the following game:

1. A announces the attribute vectors −→y (0)
,−→y (1), revocation lists RL(0),RL(1).

2. Setup
(
1λ

)
is run to generate a state information ST, a set of public parame-

ters pp and a master secret key msk. Then A is given pp.
3. A may make queries for private keys. For a query of a predicate vector and an

index in the form (−→x , I), A is given sk−→x ,I ← KeyGen(msk,ST,−→x , I), subject
to one of the following restrictions:
– f−→x (−→y (0)) = f−→x (−→y (1)) = 0;
– f−→x (−→y (0)) = f−→x (−→y (1)) = 1 and I ∈ RL(0) ∩ RL(1);
– f−→x (−→y (0)) = 1 ∧ f−→x (−→y (1)) = 0 and I ∈ RL(0);
– f−→x (−→y (0)) = 0 ∧ f−→x (−→y (1)) = 1 and I ∈ RL(1).

4. A outputs two challenge plaintexts M (0),M (1). A uniformly random bit b is
chosen, and A is given the ciphertext ct∗ ← Enc(−→y (b)

,RL(b),M (b)).
5. The adversary may continue to make additional queries for private keys, sub-

ject to the same restrictions as before.
6. A outputs a bit b′ and succeeds if b′ = b. The advantage of A in the game is

defined as: AdvsFHA (λ) =
∣
∣Pr [b′ = b] − 1

2

∣
∣ .

Remark 1. In the above game, the restrictions for private-key queries are to pre-
vent the adversary to trivially win the game by decrypting the challenge cipher-
text ct∗. For the same reason, it is necessary to assume that the two ciphertexts
Enc(−→y (0)

,RL(0),M (0)) and Enc(−→y (1)
,RL(1),M (1)) have the same size.

2.4 The Complete Subtree Method

The complete subtree (CS) method, introduced by Naor et al. [28], has been
widely used in revocation systems. It makes use of a node selection algorithm
(called KUNodes). In the algorithm, we build a complete binary tree BT and
use the following notation: If θ is a non-leaf node, then θ� and θr denote the
left and right child of θ, respectively. Whenever ν is a leaf node, the set Path(ν)
stands for the collection of nodes on the path from ν to the root (including ν
and the root). The KUNodes algorithm takes as input the binary tree BT and



314 S. Ling et al.

a revocation list RL, and outputs a set of nodes Y which is the smallest subset
of nodes that contains an ancestor of all the leaf nodes corresponding to non-
revoked indexes. It is known [28] that the set Y generated by KUNodes(BT,RL)
has a size at most r log N

r , where r is the number of indexes in RL. The detailed
description of algorithm KUNodes is given below.

KUNodes(BT,RL)
X,Y ← ∅;∀ν ∈ RL : add Path(ν) to X

∀θ ∈ X : if θ� �∈ X, then add θ� to Y ; if θr �∈ X, then add θr to Y

If Y = ∅, then add root to Y ; Return Y

In Sect. 3, we will employ the CS method to realize user revocation.

3 Our Lattice-Based RPE Scheme

This section presents our construction of lattice-based RPE scheme for inner-
product predicates. As we briefly discussed in Sect. 1, the scheme employs two
encryption layers: the AFV PE scheme [2,50] and a variant of Agrawal et al.’s
anonymous IBE scheme [1]. Revocation is realized using the CS method and a
splitting technique that can be seen as a secret sharing mechanism and that was
used in previous lattice-based revocation schemes [11,29,47].

Before describing our scheme in detail, let us discuss a small issue in existing
PE schemes [2,13,16,50] from lattices. Recall that the correctness of PE requires
in particular that if f−→x (−→y ) = 0 then the decryption algorithm with private key
sk−→x must fail with all but negligible probability when applying to a ciphertext
associated with −→y . However, in the LWE-based public-key encryption schemes
used in the above constructions, the decryption algorithm does not fail: it outputs
a random element in the plaintext space M. To overcome this issue and enforce
correctness, the following idea was suggested and implemented in [2,13,16,50],
assuming that the scheme can be modified to work with plaintext space M′,
such that |M|/|M′| = negl(λ), where λ is the security parameter. Then, to
encrypt an element of M, one encodes it to an element of M′ and proceeds with
the encoding. Since the probability that a random element in M′ is a proper
encoding is negligible, the correctness of the scheme is ensured.

Our scheme operates with plaintext space M = {0, 1}. Following the idea
discussed above, let us define the encoding function encode : M → {0, 1}k for k =
ω(log λ), such that for each b ∈ M, we have encode(b) = (b, 0, . . . , 0) ∈ {0, 1}k -
the binary vector that has b as the first coordinate and 0 elsewhere. This encoding
technique has the desirable property, as we have 2/2k = 2−ω(log λ) = negl(λ).

3.1 Description of the Scheme

Our scheme works with security parameter λ and global parameters N, �, n, q,m,
k, G, s, B, χ specified below.



Revocable Predicate Encryption from Lattices 315

� N = poly(λ): the maximum expected number of users;
� � = poly(λ): the length of predicate and attribute vectors;
� Lattice parameter n = O(λ), prime modulus q = Õ(�2n4), dimensions m =


2n log q	 and k = ω(log λ);
� The primitive matrix G with public trapdoor TG (see Lemma 2);
� Gaussian parameter s = Õ(�

√
m); Norm bound B = Õ(

√
m) and B-bounded

distribution χ.

The attribute space is set as A = Z
�
q. Each −→x ∈ A is associated with predicate

f−→x : A → {0, 1}, where for all −→y ∈ A, we have: f−→x (−→y ) = 1 if and only if
〈−→x ,−→y 〉 = 0. The predicate space is then defined as P = {f−→x | −→x ∈ A}. The
scheme works with index space I = [N ].

We now provide the detailed description of the scheme.

Setup(1λ): On input security parameter λ, this algorithm works as following:
1. Run the algorithm TrapGen(n, q,m) to generate a matrix A ∈ Z

n×m
q

together with a basis TA for Λ⊥
q (A) such that ‖T̃A‖ ≤ O(

√
n log q).

2. Pick U $←− Z
n×k
q .

3. Sample Ai
$←− Z

n×m
q , for each i ∈ [�].

4. Build a binary tree BT with N leaf nodes. For each node θ ∈ BT, choose
Dθ

$←− Z
n×m
q , which will be viewed as the “identifier” of the node.

5. Initialize the state ST = ∅, which records the assigned indexes so far.
6. Output ST, pp = (A, {Ai}i∈[�],U,BT) and msk = TA.

KeyGen(msk,ST,−→x , I): On input the master key msk, state ST, a predicate vector−→x = (x1, . . . , x�) ∈ Z
�
q and an index I ∈ [N ], this algorithm performs the

following steps:
1. If I ∈ ST, then return ⊥. Else, update the state ST ← ST ∪ {I}.

2. Pick UI
$← Z

n×k
q .

3. Set A−→x =
�∑

i=1

AiG−1(xi·G) and get Z ← SampleLeft (A,A−→x ,TA,UI , s).

We note that Z is a matrix in Z
2m×k satisfying [A | A−→x ] · Z = UI .

4. For each θ ∈ Path(I), sample Zθ ← SampleLeft (A,Dθ,TA,U − UI , s) .
We remark that each Zθ is a matrix in Z

2m×k satisfying [A | Dθ] · Zθ =
U − UI .

5. Output the updated state ST and sk−→x ,I =
(
I,Z, {Zθ}θ∈Path(I)

)
.

Enc(−→y ,RL,M): On input an attribute vector −→y = (y1, . . . , y�) ∈ Z
�
q, a revocation

list RL ⊆ [N ] and a message M ∈ {0, 1}, this algorithm performs the following
steps:
1. Sample s $←− Z

n
q , e′ ←↩ χk and e ←↩ χm.

2. Pick Ri,Sθ
$←− {−1, 1}m×m for each i ∈ [�] and θ ∈ KUNodes(BT,RL).



316 S. Ling et al.

3. Output ct =
(
c′, c0, {ci}i∈[�], {ĉθ}θ∈KUNodes(BT,RL)

)
, where:

c′ = U�s + e′ + �q

2
� · encode(M) ∈ Z

k
q ,

c0 = A�s + e ∈ Z
m
q ,

∀i ∈ [�] : ci = (Ai + yi · G)�s + R�
i e ∈ Z

m
q ,

∀θ ∈ KUNodes(BT,RL) : ĉθ = D�
θ s + S�

θ e ∈ Z
m
q .

Dec
(
ct, sk−→x ,I

)
: On input a ciphertext ct =

(
c′, c0, {ci}i∈[�], {ĉθ′}θ′

)
, where

{ĉθ′}θ′ denotes a collection of vectors in Z
m
q , and a private key sk−→x ,I =(

I,Z, {Zθ}θ∈Path(I)

)
, this algorithm proceeds as follows:

1. Compute c−→x =
�∑

i=1

(
G−1(xi · G)

)�
ci ∈ Z

m
q .

2. For all pairs (θ, θ′), compute dθ,θ′ = c′ −Z� [c0 | c−→x ]−Z�
θ [c0 | ĉθ′ ] ∈ Z

k
q .

3. If there exists a pair (θ, θ′) such that � 2
q · dθ,θ′	 = encode(M ′), for some

M ′ ∈ {0, 1}, then output M ′. Otherwise, output ⊥.

3.2 Correctness, Efficiency and Potential Implementation

Correctness. We will demonstrate that the scheme satisfies the correctness
requirement with all but negligible probability. We proceed as in [2,13,50].

Suppose that ct =
(
c′, c0, {ci}i∈[�], {ĉθ}θ∈KUNodes(BT,RL)

)
is an honestly com-

puted ciphertext of message M ∈ {0, 1}, with respect to some −→y ∈ A
and some RL ⊆ [N ]. Let sk−→x ,I =

(
I,Z, {Zθ}θ∈Path(I)

)
be a correctly gener-

ated private key, where I �∈ RL. We first observe that the following holds:

c−→x =
�∑

i=1

(
G−1(xi · G)

)�
ci = (A−→x + 〈−→x ,−→y 〉 · G)� s+

�∑

i=1

(
RiG−1(xi · G)

)�
e.

By construction, since I �∈ RL, there exists (θ, θ′) corresponding to the same node
in BT with [A | A−→x ] · Z + [A | Dθ′ ] · Zθ = U. We now consider two cases:

1. Suppose that 〈−→x ,−→y 〉 = 0. Then c−→x = (A−→x )�s +
�∑

i=1

(
RiG−1(xi · G)

)�
e.

For the pair (θ, θ′) specified above, the following holds:

dθ,θ′ = c′ − Z� [c0 | c−→x ] − Z�
θ [c0 | ĉθ′ ]

= U�s + e′ + �q

2
� · encode(M) − Z�

(
[A | A−→x ]� s +

[
e

(R−→x )�e

])

− Z�
θ

(
[A | Dθ′ ]� s +

[
e

S�
θ′e

])

= �q

2
� · encode(M) + e′ − Z�

[
e

(R−→x )�e

]
− Z�

θ

[
e

S�
θ′e

]

︸ ︷︷ ︸
error

,



Revocable Predicate Encryption from Lattices 317

where R−→x =
�∑

i=1

(
RiG−1(xi · G)

)
. As in [1,2,13,50], the above error term

can be showed to be bounded by s�m2B · ω(log n) = Õ(�2n3), with all
but negligible probability. In order for the decryption algorithm to recover
encode(M), and subsequently the plaintext M , it is required that the error
term is bounded by q/5, i.e., ||error||∞ < q/5. This is guaranteed by our
setting of modulus q, i.e., q = Õ

(
�2n4

)
.

2. Suppose that 〈−→x ,−→y 〉 �= 0. In this case, we have: c−→x =
(
A−→x +〈−→x ,−→y 〉·G)�

s+
�∑

i=1

(
RiG−1(xi · G)

)�
e. Then for each pair (θ, θ′), the following holds:

dθ,θ′ = U�s + e′ + �q

2
� · encode(M) − Z�

(
[A | A−→x + 〈−→x ,−→y 〉 · G]� s

+
[

e
(R−→x )�e

])
− Z�

θ

(
[A | Dθ′ ]� s +

[
e

S�
θ′e

])

Observe that the above contains the term Z�[0 | 〈−→x ,−→y 〉 · G]�s which can
be written as 〈−→x ,−→y 〉 · (GZ2)�s ∈ Z

k
q , where Z2 ∈ Z

m×k is the bottom part
of matrix Z. By Lemma 4, we have that the distribution of GZ2 ∈ Z

n×k
q

is statistically close to uniform. This implies that, vector dθ,θ′ ∈ Z
k
q , for

each pair (θ, θ′), is indistinguishable from uniform. As a result, the probabil-
ity that the last k − 1 coordinates of vector � 2

q · dθ,θ′	 are all 0 is at most
2−(k−1) = 2−ω(log λ), which is negligible in λ. In other words, except for negli-
gible probability, the decryption algorithm outputs ⊥ since it does not obtain
a proper encoding encode(M) ∈ {0, 1}k, for M ∈ {0, 1}.

Efficiency. The efficiency aspect of our RPE scheme is as follows:

– The bit-size of public parameters pp is ((� + 2N)nm + nk) log q =
(
Õ(�) +

O(N)
) · Õ

(
λ2

)
.

– The private key sk−→x ,I has bit-size O(log N) · Õ (λ).
– The bit-size of ciphertext ct is

(
Õ(�) + O(r log N

r )
) · Õ (λ).

The efficiency of our scheme is comparable to that of the pairing-based RPE
scheme from [30,31], in the following sense: the size of public parameters is O(N);
the size of the private key is O(log N), and the ciphertext has size O

(
r log N

r

)

which is ranged between O(1) (when no key is revoked) and O
(

N
2

)
(in the worst

case when every second key is revoked).
In Sect. 4, we will discuss a variant of our scheme in the random oracle model,

which has shorter public parameters.

Potential Implementation. While the focus of this work is to provide the
first provably secure construction of RPE from lattice assumptions, it would
be desirable to back it up with practical implementations and to compare the
implementation details with those of pairing-based counterparts. However, this
would be a highly challenging task, due to two main reasons:



318 S. Ling et al.

1. We are not aware of any concrete implementation of the two building blocks
of our scheme, i.e., the AFV PE [2,50] and Agrawal et al.’s IBE [1].

2. In [30,31], Nieto, Manulis and Sun did not provide implementation details of
their pairing-based RPE scheme.

Given these circumstances, we leave the implementation aspect of our scheme
as a future investigation. Nevertheless, in the following, we will discuss the
potential of such implementation, by analyzing the main cryptographic oper-
ations needed for implementing the scheme. Apart from simple operations such
as samplings of uniformly random matrices and vectors whose entries are in
Zq or {−1, 1}, as well as multiplication and addition operations over Zq, the
algorithms of the scheme requires the following time-consuming tasks:

� Generation of a lattice trapdoor;
� Samplings of discrete Gaussian vectors over lattices;
� Samplings of LWE noise vectors.

We note that it is feasible to implement the listed above cryptographic tasks
using the algorithms provided in [15,26], which were recently improved in [14,27].
Some implementation results of those cryptographic tasks were reported in [18],
which may serve as a stepping stone of potential implementation of our scheme.

3.3 Security

In the following theorem, we prove that our scheme in Sect. 3 is selectively full
hiding in the standard model, under the LWE assumption.

Theorem 1. Our RPE scheme satisfies the selective full-hiding security defined
in Definition 3, assuming hardness of the (n, q, χ)-LWE problem.

Proof. We proceed via a series of games, similar to those in [2,13,16]. First,
we define the auxiliary algorithms for generating simulated public parameters,
private keys and ciphertexts, and then, we describe the games.

Auxiliary algorithms. We consider the following auxiliary algorithms.

Sim.Setup
(
1λ,A,U,−→y ∗

,RL∗): On input a security parameter λ, a matrix A ∈
Z

n×m
q , U ∈ Z

n×k
q , the challenge attribute vector −→y ∗ = (y∗

1 , . . . , y
∗
� ) ∈ Z

�
q and

revocation list RL∗ ⊆ [N ], this algorithm performs the following steps:

1. For each i ∈ [�], choose Ri
$←− {−1, 1}m×m and set Ai = ARi − y∗

i · G.

2. Build a binary tree BT and choose Sθ
$←− {−1, 1}m×m for each θ ∈ BT.

Set the identifier: Dθ =
{

ASθ, if θ ∈ KUNodes(BT,RL∗),
ASθ + G, otherwise.

3. Initialize the state ST.
4. Output ST, pp =

(
A, {Ai}i∈[�],U,BT

)
and msk∗ = ({Ri}i∈[�], {Sθ}θ∈BT).



Revocable Predicate Encryption from Lattices 319

Sim.KeyGen
(
msk∗,ST,−→x , I,−→y ∗

,RL∗): This algorithm takes as input msk∗, state
ST, a predicate vector −→x ∈ Z

�
q, an index I ∈ [N ], the challenge attribute

vector −→y ∗ ∈ Z
�
q and revocation list RL∗ ⊆ [N ], such that the following condi-

tion holds: If 〈−→x ,−→y ∗〉 = 0 then I ∈ RL∗. The algorithm returns ⊥ if I ∈ ST.
Otherwise, it outputs the updated state ST ← ST ∪ {I} and private key
sk−→x ,I =

(
I,Z, {Zθ}θ∈Path(I)

)
computed based on 〈−→x ,−→y ∗〉 as follows.

1. Case 1: 〈−→x ,−→y ∗〉 �= 0.
(a) If I �∈ RL∗, then there is exactly one node θ∗ in the intersection

Path(I) ∩ KUNodes(BT,RL∗).
Using Lemma 3, sample Zθ∗ ←↩

(DZ2m,s

)k and set UI = U −
[A | Dθ∗ ] · Zθ∗ . For each node θ ∈ Path(I)\{θ∗}, sample
Zθ ← SampleRight(A,Sθ, 1,G,TG,U−UI , s). (See Sect. 2.1 for the
description of algorithm SampleRight.)

(b) If I ∈ RL∗, choose UI
$←− Z

n×k
q . Then for each θ ∈ Path(I), sample

Zθ ← SampleRight(A,Sθ, 1,G,TG,U − UI , s).

As A−→x =
�∑

i=1

AiG−1(xi · G) = A
( �∑

i=1

RiG−1(xi · G)
) − 〈−→x ,−→y ∗〉

︸ ︷︷ ︸

=0

·G,

sample Z ← SampleRight(A,
�∑

i=1

RiG−1(xi ·G),−〈−→x ,−→y ∗〉,G,TG,UI , s)

satisfying [A | A−→x ] · Z = UI .
2. Case 2: 〈−→x ,−→y ∗〉 = 0. In this case, the condition I ∈ RL∗ implies

that Path(I) ∩ KUNodes(BT,RL∗) = ∅. Note that, here we do not
have a trapdoor for the matrix [A | A−→x ], but we can instead com-
pute Z and {Zθ}θ∈Path(I) as follows. First, we sample Z ←↩

(DZ2m,s

)k

and set UI = [A | A−→x ] · Z. Then, for each θ ∈ Path(I), we sample
Zθ ← SampleRight(A,Sθ, 1,G,TG,U − UI , s).

Sim.Enc(msk∗,M,d0,d′): On input msk∗, a message M ∈ {0, 1}, and d0 ∈ Z
m
q ,

d′ ∈ Z
k
q , it outputs ct =

(
c′, c0, {ci}i∈[�], {cθ}θ∈KUNodes(BT,RL)

)
, where:

c′ = d′ + �q

2
� · encode(M) ∈ Z

k
q ,

c0 = d0 ∈ Z
m
q ,

∀i ∈ [�] : ci = R�
i d0 ∈ Z

m
q ,

∀θ ∈ KUNodes(BT,RL∗) : ĉθ = S�
θ d0 ∈ Z

m
q .

The series of games. Let A be the adversary in the selective full-hiding game
of Definition 3. We consider the following series of games.

– Game(b)0 : This game is the real security game in Definition 3, where the chosen
bit is b ∈ {0, 1}.

– Game(b)1 : This game is the same as Game(b)0 , except that algorithms Setup(1λ)
and Enc(−→y (b)

,RL(b),M (b)) are replaced by Sim.Setup
(
1λ,A,U,−→y (b)

,RL(b)
)

and Sim.Enc
(
msk∗,M (b),A�s+e,U�s+e′), respectively, where A $←− Z

n×m
q ,

U $←− Z
n
q , s $←− Z

n
q , e ←↩ χm, and e′ ←↩ χk.



320 S. Ling et al.

– Game(b)2 : It is the same as Game(b)1 , except that KeyGen (msk,ST,−→x , I) is
replaced by algorithm Sim.KeyGen

(
msk∗,ST,−→x , I,−→y (b)

,RL(b)
)
.

– Game(b)3 : It is the same as Game(b)2 , except that Sim.Enc
(
msk∗,M (b),d0,d′)

takes as inputs d0
$←− Z

m
q and d′ $←− Z

k
q .

– Game4: In this final game, we make the following changes:
Sim.Setup

(
1λ,A,U,−→y (b)

,RL(b)
)

is replaced by Setup(1λ).

Sim.KeyGen(msk∗,ST,−→x , I,−→y (b)
,RL(b)) is replaced by

KeyGen
(
msk,ST,−→x , I

)
.

Instead of computing c′ = d′ + � q
2� · encode(M (b)) ∈ Z

k
q , we sample c′ $←− Z

k
q .

To prove Theorem 1, we will first demonstrate in the following lemmas that any
two consecutive games in the above series are either statistically indistinguishable
or computationally indistinguishable under the LWE assumption.

Lemma 6. A’s view in Game(b)0 is statistically close to the view in Game(b)1 .

Proof. We will show that the public parameters pp =
(
A, {Ai}i∈[�],U,BT

)
and

ciphertext ct =
(
c′, c0, {ci}i∈[�], {ĉθ}θ∈KUNodes(BT,RL)

)
produced by algorithms

Sim.Setup
(
1λ,A,U,−→y (b)

,RL(b)
)

and Sim.Enc(msk∗,M (b),A�s+ e,U�s+ e′) in
Game(b)1 are statistically close to those by Setup and Enc respectively, in Game(b)0 .

Firstly, we observe that matrix A is truly uniform in Game(b)1 . In Game(b)0 ,
it is generated via algorithm TrapGen, and is statistically close to uniform over
Z

n×m
q by Lemma 1. Furthermore, U ∈ Z

n×k
q is truly uniform in both games.

Let −→y (b) = (y(b)
1 , . . . , y

(b)
� ). For each i ∈ [�] and each θ ∈ BT, the matrices

Ai,Dθ ∈ Z
n×m
q are truly uniform in Game(b)0 , while in Game(b)1 , they are set as

Ai = ARi − y
(b)
i ·G,Dθ = ASθ + ρθ ·G, where Ri,Sθ

$←− {−1, 1}m×m and ρθ ∈
{0, 1}. Then, the ciphertext components c′, c0, {ci}i∈[�] and {ĉθ}θ∈KUNodes(BT,RL)

in both games can be expressed as:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c′ = U�s + e′ + � q
2� · encode(M (b)) ∈ Z

k
q ,

c0 = A�s + e ∈ Z
m
q ,

ci = (Ai + y
(b)
i · G)�s + R�

i e = R�
i (A�s + e) ∈ Z

m
q , ∀i ∈ [�],

ĉθ = D�
θ s + S�

θ e = S�
θ (A�s + e) ∈ Z

m
q , ∀θ ∈ KUNodes(BT,RL(b)),

where s $←− Z
n
q , e′ ←↩ χk and e ←↩ χm. By Lemma 5, the joint distributions

of
(
A,ARi − −→y (b)

i · G,R�
i e

)
and

(
A,Ai,R�

i e
)
,
(
A,ASθ + ρθ · G,S�

θ e
)

and
(
A,Dθ,S�

θ e
)

as statistically indistinguishable. It implies that the distributions
of

(
A, {Ai}i∈[�],U, {Dθ}θ∈BT, c′, c0, {ci}i∈[�], {ĉθ}θ∈KUNodes(BT,RL)

)
in Game(b)0

and Game(b)1 are statistically indistinguishable. This concludes the lemma. ��

Lemma 7. A’s view in Game(b)1 is statistically close to the view in Game(b)2 .



Revocable Predicate Encryption from Lattices 321

Proof. Recall that, from Game(b)1 to Game(b)2 , we replace the real key generation
algorithm KeyGen by Sim.KeyGen. Thus, we need to show that for all queries of
the form (−→x , I) from A, the private keys sk−→x ,I =

(
I,Z, {Zθ}θ∈Path(I)

)
outputted

by Sim.KeyGen and KeyGen are statistically indistinguishable.
We first note that, in both cases, matrices Z ∈ Z

2m×k, {Zθ ∈ Z
2m×k}θ∈Path(I)

satisfy [A | A−→x ] · Z + [A | Dθ] · Zθ = U,∀θ ∈ Path(I). Next, we observe that,
in KeyGen, the columns of these matrices are sampled via algorithm SampleLeft,
while in Sim.KeyGen, they are either sampled via algorithm SampleRight or sam-
pled from DZm,s. The properties of these sampling algorithms (see Sect. 2) then
guarantee that the two distributions are statistically indistinguishable. ��

Lemma 8. Under the (n, q, χ)-LWE assumption, A’s view in Game(b)2 is com-
putationally indistinguishable from the view in Game(b)3 .

Proof. From Game(b)2 to Game(b)3 , we change the inputs d0,d′ to algorithm
Sim.Enc from LWE instances to uniformly random vectors in Z

m
q and Z

k
q , respec-

tively. Suppose that A has non-negligible advantage in distinguishing Game(b)2

from Game(b)3 . We use A to construct an LWE solver B as follows:

– B requests for m + k LWE instances {(aj , vj) ∈ Z
n
q × Zq}j∈[m+k].

– B forms the following matrices and vectors: A = [a1, . . . ,am] ∈ Z
n×m
q , U =

[am+1, . . . ,am+k] ∈ Z
n×k
q , d0 = [v1, · · · , vm]� ∈ Z

m
q , d′ = [vm+1, · · · , vm+k]�

∈ Z
k
q , and runs Sim.Setup

(
1λ,A,U,−→y (b)

,RL(b)
)

as in Game(b)2 .

– B answers the private key queries of the form (−→x , I), as in Game(b)2 , by running
algorithm Sim.KeyGen

(
msk∗,ST,−→x , I,−→y (b)

,RL(b)
)
.

– When receiving from A two messages M (0),M (1) ∈ {0, 1}, B prepares a chal-
lenge ciphertext ct∗ by running Sim.Enc

(
msk∗,M (b),d0,d′).

– Finally, after being allowed to make additional queries, A guesses whether
it is interacting with Game(b)2 or Game(b)3 . Then, B outputs A’s guess as the
answer to the LWE challenger.

Recall that by Definition 1, for each j ∈ [m + k], either vj = 〈aj , s〉 + ej

for secret s $←− Z
n
q and noise ej ←↩ χ; or vj is uniformly random in Zq. On the

one hand, if vj = 〈aj , s〉 + ej , then the adversary A’s view is as in Game(b)2 .
On the other hand, if vj is uniformly random in Zq, then A’s view is as in
Game(b)2 . Hence, algorithm B can solve the (n, q, χ)-LWE problem with non-
negligible probability, assuming that the adversary A can distinguish Game(b)2

from Game(b)3 with non-negligible advantage. This concludes the lemma. ��

Lemma 9. A’s view in Game(b)3 is statistically close to the view in Game4.

Proof. Firstly, based on the same argument as in Lemma 6, we can deduce that
the output of algorithm Sim.Setup

(
1λ,A,U,−→y (b)

,RL(b)
)

in Game(b)3 is statisti-
cally close that of Setup(1λ) in Game4.



322 S. Ling et al.

Secondly, based on the same argument as in Lemma 7, we can deduce that
the output of algorithm Sim.KeyGen

(
msk∗,ST,−→x , I,−→y (b)

,RL(b)
)

in Game(b)3 is
statistically close to that of KeyGen

(
msk,ST,−→x , I

)
in Game4.

Finally, the shift from c′ = d′ + � q
2� · encode(M (b)) ∈ Z

k
q to a uniformly

random c′ ∈ Z
k
q is only a conceptual change, because vector d′ in Game(b)3 is

uniformly random over Z
k
q . ��

The theorem now follows from the fact that the advantage of A in Game4
is 0, since Game4 no longer depends on the bit b. ��

4 Extensions and Open Questions

In this section, we discuss several possible extensions of our lattice-based RPE
scheme, as well as some questions that we left open.

4.1 Extensions

Multi-bit version. The scheme presented in Sect. 3 only allows to encrypt 1-bit
messages. Using standard techniques for multi-bit LWE-based encryption, e.g.,
[1,15,37], we can achieve a τ -bit variant with small overhead, for any τ = poly(λ).
A notable change in this case is that we will employ a revised encoding function
encode′ : {0, 1}τ → {0, 1}τ+k, where for any μ ∈ {0, 1}τ , vector encode′(μ) is
obtained by appending k = ω(log λ) entries 0 to vector μ.
Better efficiency in the random oracle model. The RPE scheme from
Sect. 3 has relatively large public parameters pp, i.e., of bit-size

(
Õ(�) + O(N)

) ·
Õ(λ2), for which the dependence on N is due to the fact that we have to associate
each node θ in the binary tree with a uniformly random matrix in Dθ ∈ Z

n×m
q ,

in order to obtain full-hiding security in the standard model. Fortunately, the
size of pp can be reduced to Õ(�) · Õ(λ2) (which is comparable to that of the
underlying PE scheme [2,50]), if we work in the random oracle model [7]. The
idea is as follows.

Let H : {0, 1}∗ → Z
n×m
q be a random oracle. Then, in the scheme, for each

node θ, we obtain uniformly random matrix Dθ as Dθ := H(A, {Ai}i∈[�],U, θ).
The rest of the scheme remains the same. In the security proof, we first simulate
the generation of Dθ as in the proof of Theorem 1. Then, it remains to program
the random oracle such that H(A, {Ai}i∈[�],U, θ) := Dθ. This modification
allows us to make the size of pp independent of N .

4.2 Open Questions

We introduced the first revocable predicate encryption scheme based on the LWE
assumption. While the pairing-based scheme from [30,31] achieved adaptive full-
hiding security, our construction is only proven secure in the selective setting.
Achieving the stronger notion of [30,31] seems to require that the underlying PE



Revocable Predicate Encryption from Lattices 323

be adaptively secure. However, to the best of our knowledge, existing lattice-
based PE schemes [2,13,16,50] only achieved selective security. We therefore
view the problem of constructing adaptively secure lattice-based RPE as an
interesting open question.

Finally, as shown in [19,50], some applications of PE for inner-product pred-
icate over R� (in our scheme, R = Zq) require that R has exponentially large
cardinality. Those include implementations of PE for CNF formulae [19] and
hidden vector encryption [10]. However, for our scheme, this requires to set the
modulus q to be exponential in λ. Hence, it would be desirable to achieve a
lattice-based PE scheme supporting both revocation and exponentially large R,
that demands only polynomial moduli. One possible approach towards tackling
this question is to adapt the techniques introduced by Xagawa [50], where one
works with R = GF(qn) instead of Zq.

Acknowledgements. We thank the reviewers for helpful discussions and comments.
The research was supported by the “Singapore Ministry of Education under Research
Grant MOE2016-T2-2-014(S)”. Huaxiong Wang was also supported by NTU under
Tier 1 grant RG143/14.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13190-5 28

2. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner
product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25385-0 2

3. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). doi:10.1007/3-540-48523-6 1

4. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory
Comput. Syst. 48(3), 535–553 (2011)

5. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 278–
300. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10868-6 17

6. Attrapadung, N., Libert, B.: Functional encryption for inner product: achiev-
ing constant-size ciphertexts with adaptive security or support for negation. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7 23

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS 1993, pp. 62–73. ACM (1993)

8. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revo-
cation. In: CCS 2008, pp. 417–426. ACM (2008)

9. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

http://dx.doi.org/10.1007/978-3-642-13190-5_28
http://dx.doi.org/10.1007/978-3-642-25385-0_2
http://dx.doi.org/10.1007/978-3-642-25385-0_2
http://dx.doi.org/10.1007/3-540-48523-6_1
http://dx.doi.org/10.1007/978-3-642-10868-6_17
http://dx.doi.org/10.1007/978-3-642-13013-7_23
http://dx.doi.org/10.1007/3-540-44647-8_13


324 S. Ling et al.

10. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-70936-7 29

11. Chen, J., Lim, H.W., Ling, S., Wang, H., Nguyen, K.: Revocable identity-
based encryption from lattices. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP
2012. LNCS, vol. 7372, pp. 390–403. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31448-3 29

12. Cheng, S., Zhang, J.: Adaptive-ID secure revocable identity-based encryption
from lattices via subset difference method. In: Lopez, J., Wu, Y. (eds.) ISPEC
2015. LNCS, vol. 9065, pp. 283–297. Springer, Cham (2015). doi:10.1007/
978-3-319-17533-1 20

13. Gay, R., Méaux, P., Wee, H.: Predicate encryption for multi-dimensional range
queries from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 752–776.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 34

14. Genise, N., Micciancio, D.: Faster gaussian sampling for trapdoor lattices with
arbitrary modulus. IACR Cryptology ePrint Archive 2017:308 (2017)

15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206. ACM (2008)

16. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 25

17. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS 2006, pp. 89–98. ACM (2006)

18. Gur, K.D., Polyakov, Y., Rohloff, K., Ryan, G.W., Savas, E.: Implementation and
evaluation of improved Gaussian sampling for lattice trapdoors. IACR Cryptology
ePrint Archive, 2017:285 (2017)

19. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 9

20. Lee, K., Kim, I., Hwang, S.O.: Privacy preserving revocable predicate encryption
revisited. Secur. Commun. Netw. 8(3), 471–485 (2015)

21. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 4

22. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–
589. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 34

23. Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
609–627. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 36

24. Libert, B., Vergnaud, D.: Adaptive-ID secure revocable identity-based encryp-
tion. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 1–15. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00862-7 1

25. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of
lwe search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 465–484. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 26

26. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 41

http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://dx.doi.org/10.1007/978-3-642-31448-3_29
http://dx.doi.org/10.1007/978-3-642-31448-3_29
http://dx.doi.org/10.1007/978-3-319-17533-1_20
http://dx.doi.org/10.1007/978-3-319-17533-1_20
http://dx.doi.org/10.1007/978-3-662-46447-2_34
http://dx.doi.org/10.1007/978-3-662-48000-7_25
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-642-13190-5_4
http://dx.doi.org/10.1007/978-3-642-32009-5_34
http://dx.doi.org/10.1007/978-3-642-29011-4_36
http://dx.doi.org/10.1007/978-3-642-00862-7_1
http://dx.doi.org/10.1007/978-3-642-22792-9_26
http://dx.doi.org/10.1007/978-3-642-29011-4_41


Revocable Predicate Encryption from Lattices 325

27. Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient, generic,
constant-time. IACR Cryptology ePrint Archive 2017:259 (2017)

28. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). doi:10.1007/3-540-44647-8 3

29. Nguyen, K., Wang, H., Zhang, J.: Server-aided revocable identity-based encryption
from lattices. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052,
pp. 107–123. Springer, Cham (2016). doi:10.1007/978-3-319-48965-0 7

30. González-Nieto, J.M., Manulis, M., Sun, D.: Fully private revocable predicate
encryption. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol.
7372, pp. 350–363. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31448-3 26

31. Gonźalez-Nieto, J.M., Manulis, M., Sun, D.: Fully private revocable predicate
encryption. IACR Cryptology ePrint Archive 2012:403 (2012)

32. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10366-7 13

33. Okamoto, T., Takashima, K.: Fully secure functional encryption with general
relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 11

34. Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-keys for
adaptively secure general inner-product encryption. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 138–159. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-25513-7 11

35. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 35

36. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: STOC 2009, pp. 333–342. ACM (2009)

37. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 31

38. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93. ACM (2005)

39. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 13

40. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

41. Seo, J.H., Emura, K.: Efficient delegation of key generation and revocation
functionalities in identity-based encryption. In: Dawson, E. (ed.) CT-RSA
2013. LNCS, vol. 7779, pp. 343–358. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36095-4 22

42. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: security model
and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol.
7778, pp. 216–234. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 14

43. Seo, J.H., Emura, K.: Revocable hierarchical identity-based encryption. Theor.
Comput. Sci. 542, 44–62 (2014)

http://dx.doi.org/10.1007/3-540-44647-8_3
http://dx.doi.org/10.1007/978-3-319-48965-0_7
http://dx.doi.org/10.1007/978-3-642-31448-3_26
http://dx.doi.org/10.1007/978-3-642-10366-7_13
http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-25513-7_11
http://dx.doi.org/10.1007/978-3-642-29011-4_35
http://dx.doi.org/10.1007/978-3-642-29011-4_35
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://dx.doi.org/10.1007/978-3-642-32009-5_13
http://dx.doi.org/10.1007/978-3-642-32009-5_13
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-642-36095-4_22
http://dx.doi.org/10.1007/978-3-642-36095-4_22
http://dx.doi.org/10.1007/978-3-642-36362-7_14


326 S. Ling et al.

44. Seo, J.H., Emura, K.: Revocable identity-based cryptosystem revisited: security
sodels and constructions. IEEE Trans. Inf. Forensics Secur. 9(7), 1193–1205 (2014)

45. Seo, J.H., Emura, K.: Adaptive-ID secure revocable hierarchical identity-based
encryption. In: Tanaka, K., Suga, Y. (eds.) IWSEC 2015. LNCS, vol. 9241, pp.
21–38. Springer, Cham (2015). doi:10.1007/978-3-319-22425-1 2

46. Shi, E., Bethencourt, J., Chan, H.T.-H., Song, D.X., Perrig, A.: Multi-dimensional
range query over encrypted data. In: IEEE Symposium on Security and Privacy
(S&P 2007), pp. 350–364. IEEE Computer Society (2007)

47. Takayasu, A., Watanabe, Y.: Lattice-based revocable identity-based encryption
with bounded decryption key exposure resistance. In: Pieprzyk, J., Suriadi, S.
(eds.) ACISP 2017. LNCS, vol. 10342, pp. 184–204. Springer, Cham (2017). doi:10.
1007/978-3-319-60055-0 10

48. Watanabe, Y., Emura, K., Seo, J.H.: New revocable IBE in prime-order groups:
adaptively secure, decryption key exposure resistant, and with short public para-
meters. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 432–449.
Springer, Cham (2017). doi:10.1007/978-3-319-52153-4 25

49. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 36

50. Xagawa, K.: Improved (hierarchical) inner-product encryption from lattices. In:
Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 235–252.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 15

http://dx.doi.org/10.1007/978-3-319-22425-1_2
http://dx.doi.org/10.1007/978-3-319-60055-0_10
http://dx.doi.org/10.1007/978-3-319-60055-0_10
http://dx.doi.org/10.1007/978-3-319-52153-4_25
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-36362-7_15


Public Key Encryption and Signcryption



Provable Secure Constructions for Broadcast
Encryption with Personalized Messages

Kamalesh Acharya(B) and Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

kamaleshiitkgp@gmail.com, ratna@maths.iitkgp.ernet.in

Abstract. Broadcast encryption is an efficient way to send the broad-
cast messages, but, it does not yield a productive way to send the person-
alized messages to individuals. A broadcast encryption with personalized
messages (BEPM) skillfully sends the broadcast message to a group of
users together with the personalized messages to individual users. This
article identifies constructional flaws in the BEPM scheme of Xu et al.
and designs three BEPM constructions, namely, BEPM-I, BEPM-II and
BEPM-III. BEPM-I, BEPM-III are selectively secure. Unlike the exist-
ing similar works, these schemes eliminate the need of storing public
key and secret key for transmitting personalized messages. We empha-
size that BEPM-III employs multilinear maps and achieves logarithmic
size public parameter with increasing computation cost. More positively,
BEPM-II achieves adaptive security with the parameter size and compu-
tation cost as in the existing BEPM. All our constructions have constant
communication cost and proven to be secure in the standard security
model under reasonable assumptions in generic group model. Further-
more, our schemes are fully collision resistant and flexible for adding and
removing of users from the broadcast system.

Keywords: Broadcast encryption · Personalized messages · Chosen
plaintext attack · Adaptive security

1 Introduction

BEPM. Broadcast encryption with personalized messages (BEPM) is an inter-
esting cryptographic primitive that aims to transmit not only the encrypted
broadcast message to a set of recipients, but also the personalized messages
to individual users. More precisely, BEPM enables a broadcaster to generate a
public header for a group of users. The broadcaster also sets a session key and
personalized keys to encrypt respectively a common message and personalized
messages using symmetric key encryption. A subscriber uses its secret key issued
by a trusted third party to recover both the session key and its personalized key.

BEPM overcomes the potential limitation of traditional broadcast encryp-
tion (BE) schemes in protecting user’s privacy. Typically, a BE is one of the
multi-recipient public key encryption that enables a broadcaster to broadcast an
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 329–348, 2017.
https://doi.org/10.1007/978-3-319-68637-0_20



330 K. Acharya and R. Dutta

encrypted message to a group of users in such a way that only the subscribed
users are capable of recovering the message. The concept of broadcast encryption
was formalised by Fiat and Noar [6] and followed by several works [1–5,7,10,12]
due to its numerous applications, particularly in pay TV, radio broadcast, digital
rights management and many more.

However, to ensure the user’s privacy, one requires to encrypt personal-
ized message and transmit them to each individual users. BE and other multi-
recipient public key encryption schemes such as attribute-based encryption, func-
tional encryption etc., where same encrypted messages is broadcasted for all the
recipients are expensive in this regard. On the contrary, BEPM is a cost-efficient
primitive that provides an efficient way to transmit encrypted personalized mes-
sages individually together with transmitting the encrypted common message.

Applications. BEPM has emerged as an object of fundamental interest for
many real life applications where confidentiality must be assured not only for
the encrypted common content, but also for the encrypted personalized messages
for individual users. For instance, consider the following scenarios where BEPM
is an appropriate choice.

– A manager of a software company wants to send business strategy, rules and
regulations of the company as common message together with login id and
password of the systems allocated for the employees. He can use a BEPM to
transmit common message as broadcast message while login id, password of
individual employees as personalized messages.

– Let an institute take the interview to select students. After the interview, the
institute is willing to send the common selection notification to the selected
participants as broadcast message and provides login id, password to indi-
vidual candidates as personalized messages for their temporary registration
through institute website using a BEPM.

– To inform the guardians about the governing body decision regarding the
qualifying mark and performance analysis of the students in the annual exam-
ination, the head of the institute can use BEPM whereby the qualifying mark
is broadcasted as common message and the performance of individual students
is sent to the corresponding guardian as a personalized message.

– Suppose that a sports channel provides a subscription to users on monthly,
half-yearly and yearly basis agreement. It may employ a BEPM to send the
sports content as broadcast message to the subscribers and a reminder show-
ing the expiry date of the current agreement and individual offer for next
subscription as personalized message.

Designing efficient BEPM is not a trivial task. The efficiency of a BEPM is
measured by its computation and communication overhead together with low
storage for the public parameter and private key. Computation cost is measured
by encryption and decryption overhead, while communication cost is measured
by the number of bits in the ciphertext beyond what is needed for the description
of recipient set (or revocation set) and payload for the symmetric key encryption
of the message. Security is another crucial factor. Security of a BEPM scheme is



Provable Secure Constructions for BEPM 331

analysed in selective, semi-static or adaptive security model. In selective security
model, the adversary declares the challenge recipient set at the beginning of
the game. The challenger sets the public key, secret key accordingly using this
challenge recipient set. In semi-static security model, the adversary declares a
recipient set G at the beginning of the security game similar to selective security.
However, it declares a subset of G as the challenge set in the challenge phase.
On the other hand, the challenge set in adaptive security model is chosen by the
adversary in challenge generation phase only. Adaptive security is the strongest
security model in broadcast encryption framework as introduced by Gentry et al.
[7] in 2008.

Related Work. Kurosawa [9] proposed a multi-recipient scheme based on ElGa-
mal scheme. Security of the scheme depends on the Decisional Diffie-Hellman
(DDH) assumption. Hiwatari et al. [8] proposed schemes secure under the
hardness of Hashed Decisional Diffie-Hellman (HDDH) problem. Each recipi-
ent receives a different encrypted message in these multi-recipient schemes and
ciphertext size grows linearly to the maximum number of users supported by
the system. These schemes are not efficient for sending the common broadcast
message together with the personalized messages as it will additionally requires
to transmit the encrypted common message. Consequently, the ciphertext size
gets double. Yang [14] proposed a public key encryption using Chameleone hash
in a multi-recipient set up where all the recipients receives the same encrypted
message. This scheme is secure under a variant of the square Bilinear Decisional
Diffie-Hellman (sqBDDH) assumption. It has ciphertext size linear to the num-
ber of subscribed users. Sending different personalized messages to different users
using [14] is costly.

Ohtake et al. [11] addressed these issues and proposed the first BEPM using
the BE scheme of Boneh et al. [4]. They additionally used a set of public key,
secret key pairs for the personalized encryption. Security is proven in a weaker
security model, namely the selective semantic security under the Decisional Bilin-
ear Diffie-Hellman Exponent (DBDHE) assumption. The public parameter size
of the scheme can be reduced further using the same security model and secu-
rity assumption (see our first construction in Sect. 3). Xu et al. [13] attempted to
reduce the public parameter size using multilinear maps which is unfortunately
flawed (see Remark 4 in Sect. 5).

Our Contribution. In this paper, we present three constructions with concrete
security analysis in the standard security model under reasonable assumptions.
The first and third constructions are selectively secure and reduce the storage
size while the second construction achieves adaptive security with the similar
parameter size and computation cost as the existing BEPM scheme [11]. The
communication costs are similar to that of [11] for all our designs. More precisely,
we summarise below our contribution in this work:

• Our first construction is based on the BE scheme of Boneh et al. [4] and selec-
tively secure under DBDHE assumption. In contrast to the previous BEPM
construction [11], we have reduced the storage size by eliminating the need



332 K. Acharya and R. Dutta

of public key, secret key for transmitting personalized messages. Reduction
of parameter size does not increase the computation cost.

• We propose another BEPM scheme with adaptive security employing the
broadcast encryption of [4] under the hardness of the modified Decisional
Bilinear Diffie-Hellman Exponent (mDBDHE) assumption which is a vari-
ant of the Oracle Decisional Bilinear Diffie-Hellman Exponent (ODBDHE)
assumption secure in the generic group model. Achieving adaptive security
does not blow up the parameter sizes and computation costs of the existing
scheme [11].

• Our third construction is multilinear map based following Boneh et al. [5].
Use of multilinear maps reduces the public parameter size to logarithmic
with the maximum number of users supported by the system at the expense
of increases the computation cost. The scheme is selectively secure under the
hardness of Decisional Hybrid Diffie-Hellman Exponent (DHDHE) assump-
tion.

All of our constructions require constant communication cost.
Our first and third constructions are suitable for applications that require

to minimize the total length of the header and public key such as DVD content
protection where the public key needs to be embedded in the header to decrypt
the header.

Like [11], all of our constructions are fully collision resistant. If the users
outside the group of selected users collide, they will be unable to recover the
broadcast message and the personalized messages. The broadcaster can effi-
ciently add new users in the system as long as the number of selected users
does not exceed the maximum number of users permissible in the system. In
addition the broadcaster can efficiently revoke users from the system.

2 Preliminaries

Notation: Let [m] denote integers from 1 to m and [a, b] denote integers from
a to b. We use the notation x ∈R S to denote x is a random element of S and
λ to represent bit size of prime integer p. Let ε : N → R be a function, where
N and R are the sets of natural and real number respectively. The function ε(λ)
is said to be a negligible function if for every positive integer c, ∃ an integer Nc

such that for every λ > Nc, ε(λ) ≤ 1
λc .

2.1 Broadcast Encryption with Personalized Messages

The concept of broadcast encryption with personalized messages (BEPM) was
proposed by Ohtake et al. [11] in 2010.

Syntax of BEPM: We formally describe below BEPM = (BEPM.Setup, BEPM.
KeyGen, BEPM.Encrypt, BEPM.Decrypt) following the definition of Gentry
et al. [7]. It consists of three probabilistic polynomial time (PPT) algorithms
BEPM.Setup, BEPM.KeyGen, BEPM.Encrypt and a deterministic polynomial time
algorithm BEPM.Decrypt:



Provable Secure Constructions for BEPM 333

(PP,MK) ← BEPM.Setup(N,λ): The PKGC takes as input the total number
of users N that the system can accommodate and security parameter λ and
constructs the public parameter PP and a master key MK. It makes PP public
and keeps MK.

(ski) ← BEPM.KeyGen(PP,MK, i): Taking as input PP, MK and a subscribed
user i ∈ [N ], the PKGC generates a secret key ski for user i and sends ski to
i through a secure communication channel between them.

(Hdr,K, {Ki}i∈G) ← BEPM.Encrypt(G,PP): The broadcaster selects a group of
users G ⊆ [N ] and produces a header Hdr, a session key K and personalized
keys Ki for each subscribed users i ∈ G using PP. It makes the header Hdr
containing the subscribed user set G public and keeps secret the session key
K and personalized keys Ki, i ∈ G.

(K,Ki) ← BEPM.Decrypt(PP, ski,Hdr, i): A subscribed user i with its secret key
ski uses PP, Hdr for the subscribed user set G and outputs the session key K
and its personalized key Ki.

Correctness: The scheme BEPM is said to be correct if the session key K
can be retrieved from the header Hdr by any subscribed user i in G. Suppose
(PP,MK) ← BEPM.Setup(N,λ), (Hdr,K, {Ki}i∈G) ← BEPM.Encrypt(G,PP).
Then for every subscribed user i ∈ G,

BEPM.Decrypt
(
PP,BEPM.KeyGen

(
PP,MK, i

)
,Hdr, i

)
= (K,Ki).

Remark 1. The BEPM described above is a key encapsulation mechanism. We
can convert this into message encryption setting by exploiting a symmetric key
encryption scheme as follows: Use the session key K generated in BEPM.Encrypt
to create a symmetric key encryption of a message; the personalized keys Ki, i ∈
G generated in BEPM.Encrypt to construct symmetric key encryption of the
personalized messages and broadcast these encrypted messages along with the
header Hdr. Decryption process recover K and Ki, i ∈ G, as in BEPM.Decrypt
and uses these to get back the message and respective personalized message.
This requires an additional computation and communication cost of computing
and broadcasting of |G|+1 symmetric key encryption during BEPM.Encrypt and
|G|+1 symmetric key decryption during BEPM.Decrypt.

2.2 Security Framework

• Key Indistinguishability under Chosen Plaintext Attack (IND-
CPA)

Selective security of BEPM is defined as the following key indistinguishability
game played between a challenger C and an adversary A. We will define the
security game following Gentry et al. [7].

Initialization: The adversary A selects a recipient set G and provides it to C.



334 K. Acharya and R. Dutta

Setup: The challenger C generates (PP,MK) ← BEPM.Setup(N,λ). It keeps the
master key MK secret and makes the public parameter PP public.

Query 1: The adversary A sends key generation queries for i1, . . . , im /∈ G
to C and receives the secret key ski ← BEPM.KeyGen(PP,MK, i) for i /∈
{i1, . . . , im}.

Challenge: The challenger C generates (Hdr∗,K, {Ki}i∈G) ← BEPM.Encrypt
(G,PP). It picks b ∈R {0, 1}. If b = 0, C sends (Hdr∗,K, {Ki}i∈G) to A; else
if b = 1, C provides (Hdr∗, R, {Ri}i∈G) to A, where R,Ri, i ∈ G are random
keys.

Query 2: This is similar to Query 1 phase.
Guess: The adversary A outputs a guess b′ ∈ {0, 1} of b and wins if b′= b.

Adversary’s advantage in the above security game for a BEPM scheme X is
defined as AdvIND-CPA

A,X = |Pr(b′ = b) − 1
2 |. The probability is taken over random

bits used by C and A.

Definition 1. The BEPM scheme X is (t, q, ε)-secure if AdvIND-CPA
A,X ≤ ε for

every PPT adversary A with running time at most t and making at most q key
generation queries.

For adaptive security there is no initialization phase and G is selected in the
challenge phase. Query 1 phase does not have any restriction.

2.3 Complexity Assumptions

Definition 2 (Bilinear Map). Let G and G1 be two multiplicative groups of
prime order p. Let g be a generator of G. A bilinear map e : G × G −→ G1 is a
function having the following properties:

1. e(ua, vb) = e(u, v)ab, ∀ u, v ∈ G and ∀ a, b ∈ Zp.
2. The map is non-degenerate, i.e., e(g, g) is a generator of G1.

The tuple S = (p,G,G1, e) is called a prime order bilinear group system.

• l-Decisional Bilinear Diffie-Hellman Exponent (l-DBDHE) Assumption [4]

Input:
〈
Z = (S, h, g, gα, . . . , gαl

, gαl+2
, . . . , gα2l

),K
〉
, where h ∈R G, α ∈R Zp,K

is either e(g, h)αl+1
or a random element X ∈ G1.

Output: 0 if K = e(g, h)αl+1
; 1 otherwise.

Definition 3. The (t, ε) l-DBDHE assumption holds if for every PPT adversary
A with running time at most t, the advantage of solving the above problem is
at most ε, i.e., Advl−DBDHE

A = |Pr[A(Z,K = e(g, h)αl+1
) = 0] − Pr[A(Z,K =

X) = 0]| ≤ ε.

Definition 4 (Asymmetric v̄-linear map [5]). It considers group index
as vector instead of integer and consists of the following two algorithms
Asmul.Setup,Asmul.ev̄1,v̄2(, )



Provable Secure Constructions for BEPM 335

1. S
′ = (p, {Gēi

}l
i=0, {gēi

}l
i=0, e) ←Asmul.Setup(v̄): It takes as input v̄, where

v̄ ∈ (Zp)l+1. Let ēi ∈ (Zp)l+1 for i ∈ [0, l] be i-th standard basis with 1 at
position i and 0 elsewhere. Let Gēi

be the i-th source group, Gv̄ be the target
group and Gv̄i

, v̄i < v̄ (comparison holds componentwise) be the intermediate
groups. Description of the source groups {Gēi

}l
i=0 together with the generators

{gēi
}l

i=0 are published. It also outputs the multilinear map e.
2. gab

v̄1+v̄2
← Asmul.e(ga

v̄1
, gb

v̄2
): On input two elements g = ga

v̄1
∈ Gv̄1 and h =

gb
v̄2

∈ Gv̄2 with v̄1 + v̄2 ≤ v̄, it outputs element of Gv̄1+v̄2 as e(ga
v̄1

, gb
v̄2

) =
gab

v̄1+v̄2
.

For multiple input, we write e(g(1), g(2), . . . , g(m)) = e
(
g(1), e(g(2), . . . ,

g(m))
)
,where g(i) ∈ Gv̄i

. The tuple S
′ = (p, {Gēi

}l
i=0, {gēi

}l
i=0, e) is called a

prime order multilinear group system.

• Decisional Hybrid Diffie-Hellman Exponent (DHDHE) Assumption [5]

Input:
〈
Z = (S′, {Xi}n

i=0, V ), K
〉
, where Xn = (gēn

)α2n+1
, Xi = (gēi

)α2i

for

i ∈ [0, n − 1], V = (gn̄)s, K is either (g2n̄)sα2n

or a random X ∈ G2n̄, n̄ is
vector of size n+1 with all 1, and α, s ∈ Zp.

Output: 0 if K = (g2n̄)sα2n

; 1 otherwise.

Definition 5. The (t, ε)-DHDHE assumption holds if for every PPT adversary
A with running time at most t, the advantage of solving the above described
problem is at most ε, i.e.,

AdvDHDHE
A = |Pr[A(Z,K = (g2n̄)sα2n

) = 0] − Pr[A(Z,K = X) = 0]| ≤ ε.

• Oracle Bilinear Diffie-Hellman Exponent (OBDHE) Problem [12]

This is an extension of General Decisional Diffie-Hellman Exponent problem
(GDDHE) [12], assuming that an extra resource Ox,y

g,e takes restricted input
(x, y) and output w such that e(x, y) = e(g, w).

Let us consider a set of n variate polynomials P = (p1, . . . , ps), Q =
(q1, . . . , qs) with p1 = 1, q1 = 1 and a polynomial f where ∀i, k; f, pi, qk ∈
Fp[X1, . . . , Xn]. Let gP = (gp1 , . . . , gps). The polynomial f depends on P,Q
if there exists ai,j , bi(1 ≤ i, j ≤ s) ∈ Zp such that f =

∑
1≤i,j≤s ai,jpipj +∑

1≤i,j≤s biqi. Otherwise, f is independent of P,Q.
The (P,Q, f)-Oracle Bilinear Diffie-Hellman Exponent ((P,Q, f)-OBDHE)

problem is defined as follows:

Definition 6. ((P,Q, f)-OBDHE): Given H(x1, . . . , xn) = (gP (x1,...,xn),

g
Q(x1,...,xn)
1 ), for random choices of x1, · · · , xn ∈ Fp, T ∈ G1, and access to
the oracle Ox,y

g,e , decide whether T = g
f(x1,...,xn)
1 .

Note that GDDHE problem is also of similar type, except that oracle access is
not provided. Phan et al. [12] have proved that (P,Q, f)-OBDHE is intractable



336 K. Acharya and R. Dutta

in generic group model, if f does not depend on P ||P ′, Q, where || denotes
concatenation. If x = gx1 , y = gy1 , then w = gx1y1 . Thus by providing access to
the oracle, we are providing free multiplication in exponent. Let q′ oracle queries
be provided. Then P ′ = (p′

1, p
′
2, . . . , p

′
q′).

• Modified Decisional Bilinear Diffie-Hellman Exponent (mDBDHE) Assumption

Input:
〈
Z = (S, h, g, {gαu}u∈[1,2l]\{l+1}, v, {gβu}u∈[l], O

x,y
g,e ),K

〉
, where h, v ∈R

G, α, {βu}u∈[l] ∈R Zp,K is either e(g, h)αl+1
or a random element X ∈ G1,

Ox,y
g,e takes restricted input (x, y) and output w such that e(x, y) = e(g, w). Let

C,S ⊆ [l] and C ∩ S = φ. Here x, y are restricted on the following inputs:

1. x = gαi

or gβi for i ∈ C and y = v.
2. x = v

∏
j∈S

gN+1−j or gβj for j ∈ S and y = h.

Output: 0 if K = e(g, h)αl+1
; 1 otherwise.

Definition 7. The (t, ε) mDBDHE assumption holds if for every PPT adversary
A with running time at most t, the advantage of solving the above problem is at
most ε, i.e., AdvmDBDHE

A = |Pr[A(Z,K = e(g, h)αl+1
) = 0]−Pr[A(Z,K = X) =

0]| ≤ ε.

Following [12], it is easy to verify that mDBDHE is an instance of (P,Q, f)-Oracle
Bilinear Diffie-Hellman Exponent ((P,Q, f)-OBDHE) problem. If we formulate
mDBDHE problem as the (P,Q, f)-ODDHE problem then

P = (s, {αu}u∈[2l]\{l+1}, γ, {βu}u∈[l]),

P ′ = ({γαu}u∈C , {γβu}u∈C , {sβu}u∈S , (γ +
∑
j∈S

αl+1−j)s),

Q = 1, f = sαl+1.

To compute f = sαl+1, one of our multiplicands needs to be either s, {sβu}u∈S

or (γ +
∑

j∈S αl+1−j)s as there is factor s. Choosing s will not help because we
do not have an αl+1, similarly we can not choose {sβu}u∈S . To make f , one
of our multiplicands is definitely (γ +

∑
u∈S αl+1−j)s. The second multiplicand

that can give us f is one from {αu}u∈[2l]\{l+1}. Multiplying these terms gives
us terms of the form αu(γ +

∑
j∈S αl+1−j)s, which includes sαl+1 if u ∈ S, but

then we have to be able to produce the term sγαu for some u ∈ S to be able to
cancel it out.
To generate sγαu, using only two multiplicands, we discuss the following possi-
bilities:

– Again choose {αu} and (γ +
∑

j∈S αl+1−j)s, but this cancels out our desired
term sαl+1 as well since we have to use the same u.

– Select s and γαu to get sγαu for some u ∈ C, but since C ∩ S = φ, we can
not get sγαu for any u ∈ S.



Provable Secure Constructions for BEPM 337

– Take γ and (γ +
∑

u∈S αl+1−j)s to get γ(γ +
∑

u∈S αl+1−j)s, which includes
sγαu if l + 1 − j ∈ S, but then, we need to cancel γ2s and the only way to
get γ2s is to use the same terms again which cancels our desired term sγαu

as well.
– Select {γαu}u∈C and (γ +

∑
j∈S αl+1−j)s to produce (γ2sαu + sγ∑

u∈S αl+1−j+u), which contains sγαu if l + 1 − j + u ∈ S but then, we
need to cancel sγ2αu and the only way to get sγ2αu is to use the same terms
again with the same u which cancels our desired term sγαu as well.

Hence f can not be expressed as a linear combination of P ||P ′, Q. Therefore
mDBDHE is cryptographically hard.

3 BEPM-I: BEPM with Selective Security

Our first construction BEPM-I is selectively secure and works as follows:

(PP,MK) ← BEPM.Setup(N,λ): Given the security parameter λ and the max-
imum number of users N supported by the system, the PKGC executes the
following steps to generate the public parameter PP and a master key MK.
1. The PKGC chooses a prime order bilinear group system S = (p,G,G1, e),

where G,G1 are groups of prime order p, g is generator of G and e :
G × G → G1 is a bilinear mapping.

2. It selects α, γ ∈R Zp and sets MK = (α, γ), PP = (S, g, g1, . . . ,

gN , gN+2, . . . , g2N , v = gγ),where gi = gαi

for i ∈ [1, N ] ∪ [N + 2, 2N ].
3. Finally, the PKGC keeps MK secret to itself and makes PP public.

(sku) ← BEPM.KeyGen(PP,MK, u): For each user u ∈ [N ], the PKGC extracts
γ from MK and gu from PP and generates a secret key as sku = (gu)γ . It
sends sku to user u through a secure communication channel between them.

(Hdr,K, {Ku}u∈G) ← BEPM.Encrypt(G,PP): Using PP and a group of users
G ⊆ [N ], the broadcaster does the following:
1. It chooses an integer s ∈R Zp.
2. It extracts g, v, {gN+1−j}j∈G from PP, and computes C1, C2 as

C1 = (v
∏
j∈G

gN+1−j)s = g
s(γ+

∑

j∈G

αN+1−j)

, C2 = gs.

3. Using gN , g1, v, {gu}u∈G available from PP , it sets a session key K and
personalized keys {Ku}u∈G as

K = e(gN , g1)s = e(gN+1, g)s,Ku = e(gu, v)s.

4. Finally, it publishes the header Hdr= (G,C1, C2) and keeps K, {Ku}u∈G

secret to itself.



338 K. Acharya and R. Dutta

(K,Ku) ← BEPM.Decrypt(PP, sku,Hdr, u): A subscribed user u with secret key
sku = gγ

u uses the public parameter PP, the header Hdr = (G,C1, C2), and
recovers the session key K and its personalized key Ku by computing

K =
e(gu, C1)

e(sku.
∏

j∈G,j �=u

gN+1−j+u, C2)
= e(gN+1, g)s

Ku = e(sku, C2) = e(gu, v)s.

Correctness: The correctness of BEPM.Decrypt algorithm follows from the
argument below:

K =
e(gu, C1)

e
(
sku.

∏
j∈G,j �=u

gN+1−j+u, C2

) =
e
(
gαu

, g
s(γ+

∑

j∈G

αN+1−j))

e
(
g

{αuγ+
∑

j∈G,j �=u

αN+1−j+u}
, gs

)

=
e
(
g, g

)sαu(γ+
∑

j∈G

αN+1−j)

e
(
g, g

)sαu(γ+
∑

j∈G,j �=u

αN+1−j)
e(g, g)sαN+1

= e(gN+1, g)s

Ku = e(sku, C2) = e(gu
γ , gs) = e(gu, gγ)s = e(gu, v)s.

Performance Analysis

1. Storage: PP size is (2N + 1)|G|, SK size is 1|G|, where |G| = bit size of an
element in G.

2. Communication: Header size = 2|G|.
3. Computation: Set up phase requires 2N exponentiations in G, key generation

needs 1 exponentiation in G. Encryption phase requires 2 exponentiations in
G and |G|+ 1 exponentiation in G1. Here |G| = number of users in the set G.
Decryption phase requires 3 pairing and 1 inversion in G1.

A subset of a set of N users can be identified by N bits where i-th bit 1
indicates that i-th user is included and i-th bit 0 indicates it is not included. This
information of subscribed user set is independent to any broadcast encryption.
Thereby, we don’t include indices of users in G in case of |Hdr| computation as
in other broadcast encryption schemes.

Remark 2. If a broadcaster wants involve a set of users S′ with G, he needs
to compute C∗

1 = (v
∏

j∈S′∪G gn+1−j)s and sets the additional personal-
ized key accordingly. Now the broadcaster can do it efficiently by modify-
ing C1 as- C∗

1 = C1(
∏

j∈S′ gn+1−j)s = (v
∏

j∈G gn+1−j)s(
∏

j∈S′ gn+1−j)s =
(v

∏
j∈S′∪G gn+1−j)s. Similar technique is applicable to revoke a set of users

S′ ⊆ G from G, only need to divide instead of multiply. Note that the broad-
caster does not create personalized messages for revoked users, thereby corre-
sponding personalized keys become inactive. This method is applicable for next
two constructions BEPM-II, III also.



Provable Secure Constructions for BEPM 339

Remark 3. Using secret key of users outside G, PP, Hdr, it is not possible to
recover session key K. If we formulate these values as an instance of (P,Q, f)-
GDDHE problem then

P = (s, {αu}u∈[2N ]\{N+1}, γ, {γαu}u∈C , (γ +
∑
j∈S

αN+1−j)s),

Q = 1, f = sαN+1.

A polynomial f depends on P,Q if there exists ai,j , bi ∈ Zp such that
f =

∑
1≤i,j≤s ai,jpipj +

∑
1≤i,j≤s biqi. It is easy to follow that f can not

be expressed as a linear combination of P,Q. (The explanation is similar to
Sect. 2.3 which explain the hardness of modified Decisional Bilinear Diffie-
Hellman Exponent problem). Therefore by (P,Q, f)-GDDHE assumption K =
e(g, g)f = e(gN+1, g)s is not computable. Similarly, f1 = αuγs, (u ∈ S) can
not be expressed as a linear combination of P,Q, therefore personalized key
Ku = e(g, g)f1 = e(gu, v)s is not computable. Therefore our scheme is fully
collision resistance. Similar arguments are applicable for BEPM-II, BEPM-III.

Theorem 1 (Key indistinguishability under CPA). Our proposed scheme
BEPM-I described in Sect. 3 achieves selective IND-CPA security as per the key
indistinguishability security model of Sect. 2.2 under N -DBDHE assumption.

Proof. Assume that there is a PPT adversary A that breaks the selective IND-
CPA security of our scheme BEPM-I with a non-negligible advantage. We con-
struct a distinguisher C that attempts to solve the N -DBDHE problem using
A as a subroutine. The distinguisher C takes as input an N -DBDHE instance〈
Z,K

〉
, where Z = (S, h, g, g1, . . . , gN , gN+2, . . . , g2N ), S is prime order bilinear

group system, g is a generator of the group G, gi = gαi

for i ∈ [1, N ]∪[N+2, 2N ],
h ∈R G, α ∈ Zp, K is either e(g, h)αN+1

or a random element of the target group
G1. The distinguisher C attempts to output 0 if K = e(g, h)αN+1

; and 1 oth-
erwise. Now C plays the role of a challenger in the security game and interacts
with A as follows:

Initialization: The adversary A selects a target recipient set G ⊆ [N ] and
declares it to C.

Setup: The challenger C selects r ∈R Zp, computes v = gr
∏

j∈G

gN+1−j
and sets

the public parameter as PP = (S, g, g1, . . . , gN , gN+2, . . . , g2N , v). This corre-
sponds to setting implicitly the master key MK as

MK = (α, γ = r −
∑
j∈G

αN+1−j).

The challenger C hands over the public parameter PP to A.

As v = gr
∏

j∈G

gN+1−j
= gr

∏

j∈G

gαN+1−j = g
(r− ∑

j∈G

αN+1−j)

= gγ , and γ =

r − ∑
j∈G

αN+1−j , the distribution of v is the same as in the real scheme.



340 K. Acharya and R. Dutta

Query 1: The adversary A issues a series of key generation queries for users in
[N ]\G to C. For a user u ∈ [N ]\G, the challenger C generates the secret key
sku as sku = gr

u∏

j∈G

gN+1−j+u
and returns sku to A. We note that the value of

sku simulated by C is identical to that in the real scheme as

sku =
gr

u∏
j∈G

gN+1−j+u
=

grαu

∏
j∈G

gαN+1−j+u = g
(rαu− ∑

j∈G

αN+1−j+u)

= g
αu(r− ∑

j∈G

αN+1−j)

= gγαu

= (gu)γ .

Challenge: The challenger C runs the following steps:
1. It sets Hdr = (G,hr, h) where h is extracted from the given N -DBDHE

instance
〈
Z,K

〉
and r is as selected by C in Setup phase. Let h = gs for

some unknown integer s ∈ Zp.
2. For each u ∈ G, the challenger C sets Ku, Ru ∈ G1 as

Ku = e(gr
u, h)e

( ∏
j∈G,j �=u

gN+1−j+u, h
)−1

K−1,

Ru = e(gr
u, h)e

( ∏
j∈G,j �=u

gN+1−j+u, h
)−1

R−1,

where R is randomly selected by C from the target group G1 and K is
extracted from the given N -DBDHE instance

〈
Z,K

〉
.

3. The challenger C chooses a random b ∈ {0, 1}. If b = 0, C gives
(Hdr,K, {Ku}u∈G) to A; else if b = 1, C hands (Hdr, R, {Ru}u∈G) over
to A.

Observe that Hdr = (G,hr, h) = (G, grs, gs) =
(
G, g

(γ+
∑

j∈G

αN+1−j)s

, gs
)

has
the same distribution as in the real construction from A’s view.
Also see that if K = e(gN+1, h) then Ku has the distribution similar to the
original protocol as

Ku = e(gr
u, h)e

( ∏
j∈G,j �=u

gN+1−j+u, h
)−1

K−1

= e(gαur, h)e
(
g

∑

j∈G,j �=u

αN+1−j+u

, h
)−1

e(gN+1, h)−1

= e
(
gαurg

− ∑

j∈G,j �=u

αN+1−j+u

, h
)
e(g−αN+1

, h) = e
(
gαurg

− ∑

j∈G

αN+1−j+u

, h
)

= e
(
g

αu(r− ∑
j∈G

αN+1−j)

, h
)

= e(gu
γ , gs) = e(gu, gγ)s = e(gu, v)s.

Query 2: This is similar to Query 1. The adversary A sends key generation
queries for users u ∈ [N ]\G and receives back the corresponding secret key
sku simulated in the same manner by C as in Phase 1.



Provable Secure Constructions for BEPM 341

Guess: Finally, A outputs a guess b′ ∈ {0, 1} of b to C. If b′ = b, C outputs 0,
indicating that K = e(g, h)αN+1

; otherwise, it outputs 1, indicating that K
is random.

Therefore, if A has non-negligible advantage ε in correctly guessing b′, then C
solves N -DBDHE problem given to C with the same non-negligible advantage ε
i.e., AdvIND-CPA

A,BEPM−I = AdvN-DBDHE
C . Hence the theorem follows.

4 BEPM-II: BEPM with Adaptive Security

Our adaptively secure broadcast encryption with personalized messages scheme
BEPM-II works as follows:

(PP,MK) ← BEPM.Setup(N,λ): Given the security parameter λ and the maxi-
mum number of users N permissible in the system, the PKGC executes the
following steps to generates the public parameter PP and a master key MK.
1. The PKGC chooses a prime order bilinear group system S = (p,G,G1, e),

where G,G1 are groups of prime order p, g is a generator of G and e :
G × G → G1 is a bilinear mapping.

2. It selects α, γ, {βi}i∈[N ] ∈R Zp and sets MK = (α, γ),PP = (S, g, v =
gγ , {gi}i∈[1,2N ]\{N+1}, {gβu}u∈[N ]), where gi = gαi

.
3. Finally, the PKGC keeps MK secret to itself and makes PP public.

(sku) ← BEPM.KeyGen(PP,MK, u): For each user u ∈ [N ], the PKGC extracts γ
from MK and gu, gβu from PP and generates a secret key sku = (sku1 , sku2) =
((gu)γ , (gβu)γ). It sends sku to user u through a secure communication chan-
nel between them.

(Hdr,K, {Ku}u∈G) ← BEPM.Encrypt(G,PP): The broadcaster selects a group of
users G ⊆ [N ] and does the following using PP:
1. It chooses an integer s ∈R Zp.
2. It extracts g, v, {gN+1−j}j∈G from PP, and computes C1, C2 as

C1 = (v
∏
j∈G

gN+1−j)s = g
s
(
γ+
∑

j∈G

αN+1−j
)
, C2 = gs.

3. Using gN , g1, v, {gβu}u∈G available from PP, it sets a session key K and
personalized keys {Ku}u∈G as

K = e(gN , g1)s = e(gN+1, g)s,Ku = e(gβu , v)sK.

4. Finally, the broadcaster publishes Hdr= (G,C1, C2) and keeps K,
{Ku}u∈G secret to itself.

(K,Ku) ← BEPM.Decrypt(PP, sku,Hdr, u): A subscribed user u uses the public
parameter PP, secret key sku = (sku1 , sku2) where sku1 = gγ

u, sku2 = gγβu ,



342 K. Acharya and R. Dutta

the header Hdr = (G,C1, C2), and recovers the session key K and its person-
alized key Ku by computing

K =
e(gu, C1)

e(sku1 .
∏

j∈G,j �=u

gN+1−j+u, C2)
= e(gN+1, g)s,

Ku = e(sku2 , C2)K = e(gβuγ , gs)K = e(gβu , gs)K = e(gβu , v)sK.

Performance Analysis

1. Storage: PP size is (3N + 1)|G|, SK size is 2|G|, where |G| = bit size of an
element in G.

2. Communication: Header size = 2|G|.
3. Computation: Set up phase requires 3N exponentiations in G, key generation

needs 2 exponentiations in G. Encryption phase requires 2 exponentiation in
G and |G|+ 1 exponentiation in G1. Here |G| = number of users in the set G.
Decryption phase require 3 pairing and 1 inversion in G1.

Theorem 2 (Key indistinguishability under CPA). Our proposed scheme
BEPM-II described in Sect. 4 achieves adaptive IND-CPA security as per the key
indistinguishability security model of Sect. 2.3 assuming the hardness of mDB-
DHE assumption.

Proof. Assume that there is a PPT adversary A that breaks the adaptive IND-
CPA security of our proposed BEPM-II scheme with a non-negligible advantage.
We construct a distinguisher C that attempts to solve the mDBDHE problem
using A as a subroutine. The distinguisher C takes as input an mDBDHE instance〈
Z,K

〉
, where Z = (S, h, g, g1, . . . , gN , gN+2, . . . , g2N , v, {gβu}u∈[N ], O

x,y
g,e ), S is

prime order bilinear group system, v, h ∈R G, g is a generator of the group G,
α, {βu}u∈[N ] ∈ Zp, gi = gαi

for i ∈ [1, N ] ∪ [N + 2, 2N ], Ox,y
g,e takes restricted

input (x, y) and outputs w such that e(x, y) = e(g, w). Let C̄, S̄ ⊆ [N ] and
C̄ ∩ S̄ = φ. Here x, y are restricted on the following inputs:

1. x = gαk

or gβk for k ∈ C̄ and y = v.
2. x = v

∏
j∈S̄

gN+1−j or gβk for k ∈ S̄ and y = h.

K is either e(g, h)αN+1
or a random element of the target group G1. In the

security game, C̄ will be used as the set of users corrupted by the adversary A
i.e., the set of users for which key has been generated and S̄ will be treated as
the set of users G for which the challenge ciphertext has been generated. The
distinguisher C attempts to output 0 if K = e(g, h)αN+1

; and 1 otherwise. Now
C plays the role of a challenger in the security game and interacts with A as
follows:

Setup: The challenger C uses
〈
Z,K

〉
, and sets the public parameter PP as

PP = (S, g, g1, . . . , gN , gN+2, . . . , g2N , v, {gβu}u∈[N ]). This corresponds to set-
ting implicitly the master key MK = (α, γ), considering v = gγ for some
unknown γ ∈ Zp. The challenger C hands over the public parameter PP to A.



Provable Secure Constructions for BEPM 343

Query 1: Receiving the key generation query from user u, the challenger C
store u in a list of corrupted users C̄, generates sku1 = w1, sku2 = w2 by
running the oracles Ogu,v

g,e , Ogβu ,v
g,e and returns sku = (sku1 , sku2) to A. As

e(gu, v = gγ) = e(g, w1) ⇒ w1 = gγ
u, e(gβu , v = gγ) = e(g, w2) ⇒ w2 = gγβu ,

the value of sku1 , sku2 simulated by C are identical to that in the real scheme.
Challenge: The adversary A select a set of uncorrupted users G ⊆ [N ] with

G ∩ C̄ = φ on which it wants to be challenged. It sets S̄ = G and sends G to
C. The challenger C executes the following steps:
1. It sets C2 = h where h is extracted from the given mDBDHE instance〈

Z,K
〉
. Let h = gs for some unknown integer s ∈ Zp.

2. It calculates x = v
∏
j∈G

gN+1−j , runs Ox,C2
g,e and sets the output as C1.

Notice that the value of C1 simulated by C is identical to that in the real
scheme as

e
(
w = (v

∏
j∈G

gN+1−j), C2

)
= e(g, C1) ⇒ C1 = (v

∏
j∈G

gN+1−j)s.

3. For each u ∈ G, the challenger C does the following:
(a) C runs Ogβu ,h

g,e , to get x = gsβu .
Observe that e(gβu , h = gs) = e(g, x) ⇒ x = gsβu .

(b) It computes Ku, Ru ∈ G1 as Ku = e(gsβu , v)K,Ru = e(gsβu , v)R
where R is randomly selected by C from the target group G1 and K
is extracted from the given mDBDHE instance

〈
Z,K

〉
.

4. It sets Hdr = (G,C1, C2).
5. The challenger C chooses a random b ∈ {0, 1}. If b = 0, C gives

(Hdr,K, {Ku}u∈G) to A; else if b = 1, C returns (Hdr, R, {Ru}u∈G) to
A.

Observe that if K = e(gN+1, h) then Ku has the same distribution as in the
original protocol since

Ku = e(gsβu , v)K = e(gsβu , gγ)K = e(gγβu , gs)K = e(sku2 , C2)K.

Query 2: Receiving the key generation query from user u /∈ G, the challenger
C replies as in Query 1.

Guess: Finally, A outputs a guess b′ ∈ {0, 1} of b to C. If b′ = b, C outputs 0,
indicating that K = e(g, h)αN+1

; otherwise, it outputs 1, indicating that K
is random.

Therefore, if A has a non-negligible advantage in correctly guessing b′, then C
solves the mDBDHE problem given to C with the same non-negligible advantage
i.e., AdvIND-CPA

A,BEPM−II = AdvmDBDHE
C . Hence the theorem follows.



344 K. Acharya and R. Dutta

5 BEPM-III: BEPM from Multilinear Maps

We now describe our third construction which is a multilinear map based BEPM.

(PP,MK) ← BEPM.Setup(N,λ): Given the security parameter λ and maximum
number of users N = 2n − 1 supported by the system, the PKGC does the
following:
1. It generates S

′ = (p, {Gēi
}n

i=0, {gēi
}n

i=0, e) ←− Asmul.Setup(2n̄), where n̄
is a vector of length n + 1 having all 1, Gēi

(0 ≤ i ≤ n) is the i-th source
group, G2n̄ is the target group, Gv̄ (v̄ < 2n̄) are intermediate groups and
gēi

is a generator of Gēi
.

2. The PKGC selects α, γ ∈R Zp and sets the master key MK = (α, γ).

3. It computes v = (gn̄)γ , Xn = (gēn
)α2n+1

, and Xi = (gēi
)α2i

, where i ∈
[0, n − 1] and sets public parameter PP = (S′, {Xi}n

i=0, v).
4. It keeps MK secret to itself and makes PP public.

Let us define (Xi)
0 = gēi

, (Xi)
1 = gēi

α2i

. Then

(Xi)
ui = (gēi

)αui2
i

=

{
(gēi

)α2i

if ui = 1
gēi

if ui = 0
.

If u = (u0, u1, . . . , un−1, 0), ui ∈ {0, 1} is the binary representation of u ∈ [N ]
i.e., u =

∑n−1
i=0 ui2i, then using u, PP, one can compute Zu = gαu

n̄ as

e
(
(X0)u0 , (X1)u1 , . . . , (Xn−1)un−1 , gēn

)

= e
(
(gē0)

αu020

, (gē1)
αu121

, (gē2)
αu222

, . . . , (gēn−1)
αun−12n−1

, gēn

)

= e(gē0 , gē1 , gē2 , . . . , gēn
)α
∑n−1

i=o
ui2

i

= e(gē0 , gē1 , gē2 , . . . , gēn
)αu

= gαu

n̄ = Zu. (1)

Again, if u′ = u − (2n + 1) = (u′
0, u

′
1, u

′
2, . . . , u

′
n−1, 0), u′

i ∈ {0, 1} is binary
representation of u′ ≥ 0, then using u′, PP one can compute Zu = gαu

n̄ =

gαu′
+α2n+1

n̄ , u ≥ N + 2 as

e
(
(X0)u′

0 , (X1)u′
1 , . . . , (Xn−1)u′

n−1 , gēn

α2n+1
)

= e((gē0)
αu′

020

, (gē1)
αu′

121

, (gē2)
αu′

222

, . . . , (gēn−1)
α

u′
n−12n−1

, gēn

α2n+1
)

= e(gē0 , gē1 , gē2 , . . . , (gēn
)α2n+1

)α
∑n−1

i=o
u′

i2
i

= e(gē0 , gē1 , gē2 , . . . , gēn
)αu

= (gn̄)αu

= Zu. (2)

(sku) ← BEPM.KeyGen(PP,MK, u): For each user u ∈ [N ], the PKGC extracts
γ from MK and computes Zu using PP as in Eq. 1. It generates a secret key
for user u ∈ [N ] as sku = (Zu)γ and sends sku to user u through a secure
communication channel between them.



Provable Secure Constructions for BEPM 345

(Hdr,K) ← BEPM.Encrypt(G,PP): The broadcaster selects a group of users G,
random integer s ∈ Zp and does the following:
1. Using PP, the broadcaster computes

W ′ = e(gē0 , gē1 , . . . , gēn−2 ,Xn−1, gēn
)

= e(gē0 , gē1 , . . . , gēn−2 , (gēn−1)
α2n−1

, gēn
) = (gn̄)α2n−1

,

W = e(W ′,W ′) = (g2n̄)α2n

.

2. It sets a session key K and personalized keys Ku as
K = W s = (g2n̄)sα2n

= (g2n̄)sαN+1
,Ku = e(Zu, v)s.

3. It generates C1, C2 as C1 = (v
∏

j∈G ZN+1−j)s, C2 = gs
n̄.

4. Finally, it publishes the header Hdr = (G,C1, C2) and keeps K, {Ku}u∈G

secret to itself.
(K) ← BEPM.Decrypt(PP, sku,Hdr): A subscribed user u with secret key sku

uses the public parameter PP, the header Hdr and recovers the session key K
and its personalized key Ku as

K =
e(Zu, C1)

e(sku · ∏
j∈G,j �=u

ZN+1−j+u, C2)
= (g2n̄)sαN+1

,

Ku = e(sku, C2) = e(Zu, v)s.

Here C1, C2 are extracted from the header Hdr, Zj ’s are computed using PP
as in Eqs. 1 and 2.

Performance Analysis

1. Storage: PP size is
(
log2 (N + 1)+2

)|G|, SK size is 2|G|, where |G| = bit size
of an element in G.

2. Communication: Header size = 2|G|.
3. Computation: Set up phase requires log2 (N + 1)+2 exponentiation in G, key

generation needs 1 exponentiations in G and 1 multilinear map. Encryption
phase requires 2 exponentiation in G, |G|+2 multilinear mapping and |G|+1
exponentiation in G1. Here |G| = number of users in the set G. Decryption
phase require |G| + 2 multilinear mapping and 1 inversion in G1.

Remark 4. In the scheme of Xu et al. [13] PP = (S′, {Xi}n
i=0, v, {gβi

n̄ }n
i=1) where

βi ∈ Zp and other components are as in Setup phase of BEPM-III. Broadcaster
sets personalized key as Ki = e(gβi

n̄ , v)s, where s ∈ Zp. Therefore it can not gen-
erate the personalized key for more than n users. Authors can generate {gβi

n̄ }N
i=0

to fit the scheme for N = 2n −1 users, but then public parameter size will be lin-
ear to maximum number of users supported by the system and does not satisfy
their claim that public parameter size is logarithmic to the maximum number
of users supported by the system.



346 K. Acharya and R. Dutta

Theorem 3 (Key indistinguishability under CPA). Our BEPM-III scheme
described in Sect. 5 is selective IND-CPA secure under key indistinguishability
security model of Sect. 2.2 under DHDHE assumption.

Proof of Theorem3 is similar to that of Theorem 1.

6 Efficiency

We compare our constructions with the existing BEPM scheme of Ohtake et al.
[11] in Tables 1 and 2. We emphasize the following facts:

– Pubic parameter (PP) size for BEPM-I, II, III are (2N + 1)|G|, (3N +
1)|G|, (log(N + 1) + 2)|G| respectively, whereas [11] has PP size (3N + 2)|G|.
Secret key size for BEPM-I, III is 1|G| where as the secret key size of [11] is
2|G|. Here |G| = bit size of an element of G.

– Similar to [11], header size is constant for all our constructions.
– Exponentiation in the setup phase (PP, MK generation) for BEPM-I, II, III

are 2N + 1, 3N + 2, log(N + 1) + 3 in contrast to 3N + 1 for [11]. BEPM-III
additionally requires 1 multilinear map computation. All these computations
are done once in offline.

– As for online computation, all the schemes require 2 exponentiations for
encryption and 1 inversion in decryption, which are same as in [11]. BEPM-
III is based on multilinear map and uses a total 2(|G| + 2) multilinear map
for encryption and decryption.

– Our first and third constructions BEPM-I, BEPM-III achieve selective seman-
tic security under N -DBDHE and DHDHE assumption respectively, while
our second scheme BEPM-II is adaptively CPA secure under the hardness
of mDBDHE problem. We achieve the adaptive security without blowing the
parameter sizes, communication and computation cost.

Table 1. Comparative summaries of storage, communication bandwidth and security
of BEPM schemes.

Scheme |PP| |SK| |Hdr| SM Assumption

[11] (3N+2)|G| 2|G| 2|G| Selective N-DBDHE

BEPM-I (2N+1)|G| 1|G| 2|G| Selective N-DBDHE

BEPM-II (3N+1)|G| 2|G| 2|G| Adaptive mDBDHE

BEPM-III (log(N + 1)+2)|G| 1|G| 2|G| Selective DHDHE

|PP|= public parameter size, |SK|= secret key size, |Hdr|= header size,
SM= security model, N = total number of users, |G|= bit size of an ele-
ment of G, IND-CP(C)A=indistinguishability of ciphertext under cho-
sen plaintext (ciphertext) attack, N-DBDHE = N-decisional bilinear diffie-
hellman exponent, mDBDHE = modified decisional bilinear diffie-hellman
exponent, DHDHE = decisional hybrid diffie-hellman exponent.



Provable Secure Constructions for BEPM 347

Table 2. Comparison of computation cost of parameter generation, encryption and
decryption algorithm for BEPM schemes.

Scheme PP SK Enc Dec

#exp #exp #mlm #exp #mlm #pr #mlm # inv

[11] 3N+1 in G 2in G 0 2 in G,|G|+1 in G1 0 3 0 1 in G1

BEPM-I 2N in G 1 in G 0 2 in G,|G|+1 in G1 0 3 0 1 in G1

BEPM-II 3N in G 2 in G 0 2 in G,|G|+1 in G1 0 3 0 1 in G1

BEPM-III log(N + 1)+2 in G 1 in G 1 2 in G,|G|+1 in G1 |G|+2 0 |G|+2 1 in G1
PP=public parameter, SK=secret key, Enc=encryption, Dec=decryption, N =total number of users,

#exp=number of exponentiations, #pr=number of pairings, #mlm=number of multilinear map,

#inv=number of inversions, |G|=number of users in the set G.

7 Conclusion

To send both broadcast and personalized messages efficiently, we have proposed
three BEPM schemes. Our first and third constructions significantly reduce para-
meter sizes compared to BEPM of Ohtake al. [11] and achieve selective semantic
security under N-DBDHE and DHDHE assumption respectively. The second
scheme achieves adaptive security under mDBDHE assumption which is a vari-
ant of OBDHE assumption. We achieve constant communication cost for all of
our constructions. Moreover, our schemes are fully collision resistant and able to
include and exclude users efficiently.

References

1. Acharya, K., Dutta, R.: Secure and efficient construction of broadcast encryption
with dealership. In: Chen, L., Han, J. (eds.) ProvSec 2016. LNCS, vol. 10005, pp.
277–295. Springer, Cham (2016). doi:10.1007/978-3-319-47422-9 16

2. Acharya, K., Dutta, R.: Adaptively secure broadcast encryption with dealership.
In: Hong, S., Park, J.H. (eds.) ICISC 2016. LNCS, vol. 10157, pp. 161–177.
Springer, Cham (2017). doi:10.1007/978-3-319-53177-9 8

3. Acharya, K., Dutta, R.: Adaptively secure recipient revocable broadcast encryption
with constant size ciphertext. IACR Cryptology ePrint Archive, 2017:59 (2017)

4. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005). doi:10.1007/11535218 16

5. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from
multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 206–223. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 12

6. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). doi:10.1007/
3-540-48329-2 40

7. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with
short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
171–188. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 10

8. Hiwatari, H., Tanaka, K., Asano, T., Sakumoto, K.: Multi-recipient public-key
encryption from simulators in security proofs. In: Boyd, C., González Nieto, J.
(eds.) ACISP 2009. LNCS, vol. 5594, pp. 293–308. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-02620-1 21

http://dx.doi.org/10.1007/978-3-319-47422-9_16
http://dx.doi.org/10.1007/978-3-319-53177-9_8
http://dx.doi.org/10.1007/11535218_16
http://dx.doi.org/10.1007/978-3-662-44371-2_12
http://dx.doi.org/10.1007/3-540-48329-2_40
http://dx.doi.org/10.1007/3-540-48329-2_40
http://dx.doi.org/10.1007/978-3-642-01001-9_10
http://dx.doi.org/10.1007/978-3-642-02620-1_21


348 K. Acharya and R. Dutta

9. Kurosawa, K.: Multi-recipient public-key encryption with shortened ciphertext. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer,
Heidelberg (2002). doi:10.1007/3-540-45664-3 4

10. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys.
In: IEEE Symposium on Security and Privacy (SP), pp. 273–285 (2010)

11. Ohtake, G., Hanaoka, G., Ogawa, K.: Efficient broadcast encryption with person-
alized messages. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol.
6402, pp. 214–228. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16280-0 15

12. Phan, D.H., Pointcheval, D., Shahandashti, S., Strefler, M.: Adaptive CCA broad-
cast encryption with constant-size secret keys and ciphertexts. Int. J. Inf. Secur.
12(4), 251–265 (2013)

13. Xu, K., Liao, Y., Qiao, L., Liu, Z., Yang, X.: An identity-based (IDB) broad-
cast encryption scheme with personalized messages (BEPM). PloS One 10(12),
e0143975 (2015)

14. Yang, Z.: On constructing practical multi-recipient keyencapsulation with short
ciphertext and public key. Secur. Commun. Netw. 8(18), 4191–4202 (2015)

http://dx.doi.org/10.1007/3-540-45664-3_4
http://dx.doi.org/10.1007/978-3-642-16280-0_15


Provably Secure Homomorphic Signcryption

Fatemeh Rezaeibagha1(B), Yi Mu1, Shiwei Zhang1, and Xiaofen Wang2,3(B)

1 School of Computing and Information Technology,
Institute of Cybersecurity and Cryptology, University of Wollongong,

Wollongong, Australia
{fr683,ymu,sz653}@uow.edu.au

2 Department of Computer Science and Engineering, Center for Cyber Security,
University of Electronic Science and Technology of China,

Chengdu 611731, Sichuan, China
xfwang@uestc.edu.cn

3 Guangxi Colleges and Universities Key Laboratory of Cloud Computing
and Complex Systems and Guangxi Key Laboratory of Trusted Software,

Guilin University of Electronic Technology, Guilin 541004, Gunagxi, China

Abstract. Signcryption has shown many useful applications, in par-
ticular for the environment where the computation and communication
resources are constrained, for instance, for applications on lightweight
devices. However, we notice that traditional signcryption schemes do not
support homomorphic properties, which are very useful in many appli-
cation scenarios. We also notice that the previous attempt of capturing
the homomorphism in signcryption is not provably secure. In this paper,
we propose a provably secure additive homomorphic signcryption. Our
scheme offers the following two features: (1) Signing and encrypting are
carried out in one go, unlike the traditional encryption and signature
schemes which are computed separately. (2) We allow the collected sign-
crypted data items to be aggregated without requiring decryption. The
second feature confirms the significance of the first feature in that the
traditional signcryption cannot be applied due to lacking of the homo-
morphic property. Our scheme is the first provably secure signcryption
that supports homomorphic property.

Keywords: Homomorphic signcryption · Data security · Provable
security

1 Introduction

Encryption schemes have been commonly adopted to assure data confidential-
ity, which can protect the data against disclosure to unauthorized parties. To
achieve data authentication, a signature scheme is usually required in addition
to encryption. Usually, the data is digitally signed and then encrypted. There-
fore, the additional computational resource is needed to handle both encryption
and signature schemes. This has been seen to be an issue for lightweight devices
such as wearable devices. Signcryption [19] provides a solution to the problem,
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 349–360, 2017.
https://doi.org/10.1007/978-3-319-68637-0_21



350 F. Rezaeibagha et al.

as it integrates signing and encrypting processes into one; therefore improves the
computational efficiency.

In practice, the information could be obtained from multiple measurements,
which might also be required to be transmitted from one site to another. These
data items could be required to be aggregated in order to obtain the final result.
The challenge is due to encrypted data, when we want to compute the encrypted
data elements for addition or/and multiplication without decrypting them. This
functionality is referred to as a homomorphic encryption. With homomorphic
encryption, encrypted data elements can be aggregated for either additive oper-
ations or/and multiplicative operations. If a homomorphic encryption captures
both additive and multiplicative operations, we call it fully homomorphic encryp-
tion. Homomorphic encryption has attracted a lot of attention (e.g., [2,4,8,9]).
Although some progress has been made [6,13], fully homomorphic encryption [8]
is still not computationally efficient for a practical use. Fortunately, it is suffi-
cient for many applications to use homomorphic encryption (either fully additive
or fully multiplicative), which can be efficiently constructed.

The homomorphic property will become infeasible if a signature is added to
the encryption. This implies a challenge to construct a homomorphic signcryp-
tion. There is no any proper homomorphic signcryption scheme in the literature.
Notice that Zhang et al. [18] introduced a homomorphic signcryption scheme,
but its security was not properly proved, since the simulator cannot simulate
the entire homomorphic signcryption; instead, the simulation for the encryption
part was carried out separately without considering the signature verification.
Actually, if the verification is considered, the adversary can differentiate which
challenge message is encrypted by the challenger; therefore, it will not be seman-
tically secure as claimed in their paper. In fact, it is indeed a challenge to achieve
a provably secure homomorphic signcryption scheme mathematically.

The original signcryption scheme by Zheng [19] utilizes the symmetric-like
encryption approach, which cannot adopt homomorphism in encryption with
provable security. We move slightly away from original signcryption, by introduc-
ing a useful variant. The contribution of our work can be summarized as follows.
We propose the first secure additive homomorphic signcryption scheme with
provable security. The security analysis demonstrates that our scheme achieves
the security against Chosen Plaintext Attack (IND-CPA) and Weak Unforge-
ability (WUF), under the Decisional Diffie-Hellman assumption and the Com-
putational Diffie-Helman assumption, respectively.

The remaining of the paper is organized as follows. We describe the related
work in Sect. 2. In Sect. 3, we present our system model and give the definitions
of our scheme and security model. In Sect. 4, we present our scheme followed by
the security proof of our scheme in Sect. 5. We conclude the paper in Sect. 6.

2 Related Work

In homomorphic encryption, the encryptions of different messages can be com-
bined to conduct additive or/and multiplicative computations without revealing



Provably Secure Homomorphic Signcryption 351

their original messages. In a fully homomorphic encryption, both additive and
multiplicative operations can be carried out without decryption. The homomor-
phic encryption has been a useful method for designing secure computation pro-
tocols. In the work by Boneh et al. [3], the homomorphic properties of the current
homomorphic public key systems are improved, in which given two ciphertexts,
anyone can compute both addition and multiplication. Their scheme is com-
monly called the BGN homomorphic encryption. Although it is not yet a fully
homomorphic encryption, it has many useful applications [1,16]. The underlying
security of the BGN homomorphic encryption is based on a hardness assump-
tion named Subgroup Decision Problem. Unfortunately, there is no any practical
fully homomorphic encryption scheme yet. Therefore, the existing applications
of fully homomorphic encryption in the literature are not practical.

With a natural thinking of homomorphism in digital signatures, Johnson
et al. [11] proposed a homomorphic signature scheme, which unfortunately can-
not work with any form of homomorphic encryption. Chan and Li [5] also pro-
posed a BGN authentication scheme to convey the commitments on a message
in order to provide statistically hiding and computationally binding properties
under the subgroup decision problem. Notice that it is infeasible to construct
a homomorphic signcryption scheme by combining a homomorphic encryption
scheme and a homomorphic signature scheme.

There are many works in the literature which explored the applications of
partial homomorphic encryption schemes such as Paillier’s additive homomor-
phic encryption [14] and ElGamal encryption [7]. For example, Yi et al. [17]
proposed a scheme that applied multi data servers with employing the Pail-
lier and ElGamal cryptosystems in order to offer statistical analysis and also
preserve patient privacy for wireless medical sensor devices. Han et al. [10] in
another study illustrated a privacy-preserving aggregation scheme to support
fault tolerance in order to aggregate health data in the cloud server. They also
used the BGN cryptosystem by Boneh et al. [3], and proposed an aggregation
protocol to compute the average.

The signcryption scheme by Zheng [19] is able to reduce the computational
overhead of signature and encryption computation by combining them into a
single algorithm. There are enormous applications of signcryption schemes which
have been found in the literature. For example, in the studies proposed by Rao
[15] and Liu et al. [12], attribute based signcryption schemes for secure sharing of
health records and ensuring confidentiality and authenticity have been presented.

Despite of the usefulness of homomorphism in signcryption, it has not been
explored thoroughly in research. As pointed out earlier, the homomorphic sign-
cryption scheme due to Zhang et al. [18] can not be properly proved, as explained
earlier. In this paper, we will investigate and explore this field of research. For-
tunately, we are able to construct a provably secure scheme.



352 F. Rezaeibagha et al.

3 Definitions and Models

3.1 System Model

We define a general application scenario, where our scheme can be applied and
its security model is defined. Our system consists of an honest-but-curious data
server, a group of receivers and a group of users who signcrypt the messages. On
top of these parties, there is a trusted server who sets up the entire system and
is responsible for the management of cryptographic keys and user registration.

– Users: A user has the capacity of computing signcrytion with our proposed
cryptographic method and sent the signcrypted data to the data server, who
in turn aggregates these data without decryption and forwards it to the cor-
responding receiver.

– Receivers: In the case we considered in this work, a receiver can de-signcrypt
the aggregated signcryption.

– Data Server: The data server is honest-but-curious, which means that the
data server follows the correct procedure to aggregate the data items col-
lected from users and is interested in the information, while it does not launch
any active attack. We consider only one data server in the system; however,
our method can be naturally applied to a distributed environment for mul-
tiple data servers. The data server can be located in different geographical
locations.

We give an intuitive explanation of our scheme as follows. User data elements
(m0, · · · ,mn) are homomorphic-signcrypted as (HSC(m0), · · · ,HSC(mn)) and
sent to the data server, who in turn computes the aggregated data items at a
specific time. The integrated data HSC(m) is then sent to the receiver, who then
decrypts and verifies the received message.

3.2 Complexity Assumptions

Definition 1 (Computational Diffie-Hellman (CDH) Assumption). Let
G = 〈g〉 be a cyclic group of prime order p generated by a generator g. Given
g, ga, gb ∈ G for randomly selected a, b ∈R Zp, there exists an algorithm A that
computes gab with the advantage

AdvCDH
A = Pr

[
gab ← A(G, p, g, ga, gb) | a, b,∈R Zp,G = 〈g〉] . (1)

The CDH assumption assumes that the advantage AdvCDH
A is negligible for any

probabilistic polynomial time (PPT) algorithm A under the security parame-
ter 1λ.

Definition 2 (Decisional Diffie-Hellman (DDH) Assumption). Let G =
〈g〉 and a, b ∈R Zp as described in the CDH assumption. Given g, ga, gb, there
exists an algorithm A that distinguishes gab with a random element Z ∈R G with
the advantage

AdvDDH
A =

∣
∣
∣Pr
[

1 ← A(G, p, g, ga, gb, gab)
]

− Pr
[

1 ← A(G, p, g, ga, gb, Z) |Z ∈R G

]∣
∣
∣

(2)



Provably Secure Homomorphic Signcryption 353

The DDH assumption assumes that the advantage AdvDDH
A is negligible for any

PPT algorithm A under the security parameter 1λ.

3.3 The Definition of Homomorphic Signcryption Scheme

Definition 3 (Homomorphic Signcryption). A homomorphic signcryption
(HSC) scheme consists of the following five algorithms:

– params ← Setup(1λ). Taking as input a security parameter 1λ, it outputs the
system public parameters params.

– (pks, sks) ← KeyGens(params). Taking as input the system public parameters
params, it outputs a pair of public key pks and secret key sks of a sender
(patient).

– (pkr, skr) ← KeyGenr(params). Taking as input the system public parameters
params, it outputs a pair of public key pkr and secret key skr of a receiver
(doctor).

– HSC(m) ← Signcrypt(params, pkr, sks,m). Taking as input public parameters
params, public key pkr of doctor, private key sks of the patient, and a plaintext
message m in the message space M , it outputs a homomorphic signcryption
HSC(m).

– m ← De-Signcrypt(params, pks, skr,HSC(m)). Taking as input public parame-
ters params, a public key pks of the patient, a private key skr of doctor, and
a ciphertext HSC(m), it outputs plaintext message m.

– 0/1 ← Verify(params, pks, skr,HSC(m),m′). Taking as input public parame-
ters params, a public key pks of the patient, a private key skr of doctor, a
ciphertext HSC(m), and a message m′, it outputs 1, if m = m′; otherwise, it
outputs 0.

Remark that the system public parameters params is omitted if it is clear in the
context. An HSC scheme is required to have ciphertext homomorphism as the
following algorithm.

– HSC(m) ← IntSigncrypt(HSC(m1), . . . ,HSC(mn)). Taking as input HSC(m1),
· · · ,HSC(mn), it outputs the integrated homomorphic sign-encryption
HSC(m), where m = m1 + · · · + mn.

Definition 4 (Completeness). An HSC scheme is complete if the following
statement is always true.

∀m ∈ M, params ← Setup(1λ), (pks, sks) ← KeyGens(params),
(pkr, skr) ← KeyGenr(params), HSC(m) ← Signcrypt(params, pkr, sks,m),
1 ← Verify(params, pks, skr,HSC(m),De-Signcrypt(params, pks, skr,HSC(m))).

3.4 Security Model

Definition 5 (Confidentiality). An HSC scheme is semantically secure
against chosen plaintext attacks (IND-CPA) if no PPT adversary A wins the
following game with non-negligible advantage with the security parameter λ.



354 F. Rezaeibagha et al.

1. Setup Phase. The simulator S runs Setup to obtain system public parame-
ters params. Then the simulator S runs the key generation algorithm KeyGenr

to obtain a public key and private key pair (pkr, skr) for the receiver, it gives
(pkr, params) to the adversary A.

2. Challenge Phase. A generates two plaintexts m0,m1 ∈ M and a pri-
vate key sks of the sender, and sends to S. Then, S sets HSC(mb) ←
Signcrypt(params, pkr, sks,mb) for a random bit b ← {0, 1}. It sends HSC(mb)
to A.

3. Guess Phase. At the end of the game, A outputs a bit b′ ∈ {0, 1} to S and
wins the game if b′ = b.

The adversary A’s advantage in the above game is defined as

AdvIND-CPA
A =

∣
∣
∣
∣Pr [b′ = b] − 1

2

∣
∣
∣
∣ .

Definition 6 (Weak Unforgeability). An HSC scheme is weakly unforgeable
if no PPT forger F has a non-negligible advantage in the following game:

1. Setup Phase. The simulator B runs Setup, KeyGens and KeyGenr to obtain
two pairs of public key and private key (pks, sks) and (pkr, skr). B gives
(pks, pkr, params) to forger F .

2. Forgery Phase. Finally, F returns a valid signature HSC(m∗)

The forger F ’s advantage in the above game is defined as

AdvWUF
F = Pr

[
1 ← Verify

(
params, pks, skr,HSC(m∗),

De-Signcrypt(params, pks, skr,HSC(m∗))

)]
.

Note that the forger F is not allowed to perform Signcrypt queries to simulator
B. The reason is that with the message, the forger F can forge a signcryption.
However, it will not be a problem, provided the receiver is honest.

4 Our Proposed Scheme

In this section, we propose our homomorphic signcryption scheme. An HSC
scheme consists of the following algorithms.

– params ← Setup(1λ). Taking as input the security parameter 1λ, it outputs
system parameters params = (p, g) where G = 〈g〉 is a group of prime order
p, generated by a generator g.

– (pks, sks) ← KeyGens(params). Taking as input params, the algorithm ran-
domly selects a private key sks = w ∈R Zp, and computes the corresponding
public key pks = h = gw for the sender (user).

– (pkr, skr) ← KeyGenr(params). Taking as input params, the algorithm ran-
domly selects a private key skr = (x0, x1, x2) ∈R Z

3
p, and computes the

correspond public key pkr = (y0, y1, y2) = (gx0 , gx1 , gx2) for the receiver.



Provably Secure Homomorphic Signcryption 355

– HSC(m) ← Signcrypt(pkr, sks,m). Taking as input public key pkr of the
receiver, secret key sks of the sender, and a plaintext message m ∈ M =
{0, 1}l for l ≤ n where n = 32, it computes

C0 = gt, C1 = gmyt
0, C2 = ywm

1 yt
2,

where t ∈R Zp. It outputs HSC(m) = (C0, C1, C2) as the homomorphic sign-
encryption.

– m ← De-Signcrypt(params, pks, skr,HSC(m)). Given a homomorphic sign-
encrypted message HSC(m), the public key pks = h of the sender, the private
key skr = (x0, x1, x2) of the receiver, the message is computed by

m′ = logg

C1

Cx0
0

.

Then the algorithm runs the below Verify algorithm to verify the message
m′. If it outputs 1, the message m′ is accepted, and the algorithm outputs
m = m′. Otherwise, the algorithm outputs ⊥, which is an abort symbol.
The correctness can be verified as

m = logg

C1

Cx0
0

= logg

gmyt
0

gtx0
= logg

gmgtx0

gtx0
= logg gm = m.

– 0/1 ← Verify(params, pks, skr,HSC(m),m′). The verification algorithm out-
puts 1 if

C2 = hx1m′
Cx2

0 .

Otherwise, the sign-encryption is rejected and it outputs 0.
The correctness can be verified as

C2 = hx1mCx2
0 = gwx1mgtx2 = ywm

1 yt
2.

– HSC(m) ← IntSigncrypt(HSC(m1), . . . ,HSC(mn)). The algorithm parses the
sign-encryption HSC(mi) as (Ci,0, Ci,1, Ci,2) with randomness ti. The algo-
rithm integrates the sign-encryption by calculating

C0 =
n∏

i=1

Ci,0 =
n∏

i=1

gti = g
∑n

i=1 ti ,

C1 =
n∏

i=1

Ci,1 =
n∏

i=1

gmiyti
0 = g

∑n
i=1 miy

∑n
i=1 ti

0 ,

C2 =
n∏

i=1

Ci,2 =
n∏

i=1

ywmi
1 yti

2 = y
w
∑n

i=1 mi

1 y
∑n

i=1 ti
2 .

Taking m =
∑n

i=1 mi and t =
∑n

i=1 ti, the integrated sign-encryption HSC(m)
= (C0, C1, C2) has the same form of the original sign-encryption. Finally, the
algorithm outputs HSC(m).



356 F. Rezaeibagha et al.

5 Security Analysis

Theorem 1. If there exists a PPT algorithm A that can break the IND-CPA
security of the HSC scheme with advantage AdvIND-CPA

A , then there exists a PPT
algorithm B that can solve the Decisional Diffie-Hellman (DDH) problem with
advantage

AdvDDH
B ≥ AdvIND-CPA

A
2

.

Proof. Suppose a PPT algorithm S that acts as the simulator of the system. We
present a series of games (Game 0, Game 1, and Game 2) as follows.

– Game 0. This the original IND-CPA game for our HSC scheme.
1. The simulator S runs Setup to obtain system public parameters params =

(p, g). Then S runs KeyGenr to generate a receiver key pair (skr, pkr) =
((x0, x1, x2), (y0, y1, y2)), and passes (pkr, params) to the adversary A.

2. The adversary A generates two plaintexts m1,m2 ∈ M and a sender
private key sks = w. The simulator computes the sign-encryption
HSC(mb) = (C0, C1, C2) normally with a random bit b ← {0, 1} where

t ∈R Zp, C0 = gt, C1 = gmbyt
0, C2 = ywmb

1 yt
2.

The simulator S sends HSC(mb) to the adversary A.
3. Finally, A outputs a bit b′ ∈ {0, 1}. If b = b′, A wins the game and S

outputs 1. Otherwise S outputs 0.
– Game 1. This game is the same as Game 0 except that the simulator

replaces yt
0 with a random element R0 ∈ G in computing C1 in the step 2 as

t ∈R Zp, R0 ∈R G , C0 = gt, C1 = gmb R0 , C2 = ywmb
1 yt

2.

– Game 2. This game is the same as Game 1 except that the simulator
replaces yt

2 with a random element R1 ∈ G in computing C2 in the step 2 as

t ∈R Zp, R0, R1 ∈R G, C0 = gt, C1 = gmbR0, C2 = ywmb
1 R1 .

In the following, we analyse the three games presented above under the DDH
assumption. Then, we construct a distinguisher algorithm B and estimate its
probability in distinguishing differences among games. Let Ei be the event that
A wins the Game i (i.e. 1 ← S) for i = 1, 2, 3. By Definition 5, the advantage
of A winning the original game (Game 0) is

AdvIND-CPA
A =

∣
∣
∣
∣Pr[E0] − 1

2

∣
∣
∣
∣ . (3)

Lemma 1. If an adversary A can distinguish the difference between Game 0
and Game 1, an algorithm B can be constructed to solve a DDH problem with
the advantage

AdvDDH
B = |Pr[E0] − Pr[E1]| . (4)



Provably Secure Homomorphic Signcryption 357

Proof. The algorithm B obtains a DDH instance (p, g, ga, gb, Z) from its chal-
lenger. The algorithm B proceeds the following game with the adversary A for
our HSC scheme.

1. The algorithm B samples x1, x2 ∈R Zp, and computes

y0 = gb, y1 = gx1 , y2 = gx2 .

Then B packs pkr = (y0, y1, y2) and params = (p, g), and sends them to the
adversary A.

2. The adversary A generates two plaintexts m1,m2 ∈ M and a sender private
key sks = w. The algorithm B computes the sign-encryption HSC(mb) =
(C0, C1, C2) with a random bit b ← {0, 1} where

C0 = ga, C1 = gmbZ, C2 = ywmb
1 (ga)x2 .

Then B sends HSC(mb) to the adversary A.
3. Finally, A outputs a bit b′ ∈ {0, 1}. If b = b′, A wins the game and B outputs

1. Otherwise, B outputs 0.

If Z = gab, the above game is exactly the same as the Game 0. Thus, we have

Pr
[
1 ← B | Z = gab

]
= Pr[E0]. (5)

Otherwise, Z ∈R G is a random element in G, and the above game is exactly
the same as the Game 1. Thus, we have

Pr [1 ← B | Z ∈R G] = Pr[E1]. (6)

Therefore, by combining Eqs. (2), (5), and (6), we directly have Eq. (4) and
complete the proof of this lemma.

Lemma 2. If an adversary A can distinguish the difference between Game 1
and Game 2, an algorithm B can be constructed to solve a DDH problem with
the advantage

AdvDDH
B = |Pr[E1] − Pr[E2]| . (7)

Proof. The algorithm B obtains a DDH instance (p, g, ga, gb, Z) from its chal-
lenger. The algorithm B proceeds the following game with the adversary A for
our HSC scheme.

1. The algorithm B samples x0, x1 ∈R Zp, and computes

y0 = gx0 , y1 = gx1 , y2 = gb.

Then B packs pkr = (y0, y1, y2) and params = (p, g), and sends them to the
adversary A.



358 F. Rezaeibagha et al.

2. The adversary A generates two plaintexts m1,m2 ∈ M and a sender private
key sks = w. The algorithm B computes the sign-encryption HSC(mb) =
(C0, C1, C2) with a random bit b ← {0, 1} where

R0 ∈R G, C0 = ga, C1 = gmbR0, C2 = ywmb
1 Z.

Then B sends HSC(mb) to the adversary A.
3. Finally, A outputs a bit b′ ∈ {0, 1}. If b = b′, A wins the game and B outputs

1. Otherwise, B outputs 0.

If Z = gab, the above game is exactly the same as the Game 1. Thus, we have

Pr
[
1 ← B | Z = gab

]
= Pr[E1]. (8)

Otherwise, Z ∈R G is a random element in G, and the above game is exactly
the same as the Game 2. Thus, we have

Pr [1 ← B | Z ∈R G] = Pr[E2]. (9)

Therefore, by combining Eqs. (2), (8), and (9), we directly have Eq. (7) and
complete the proof of this lemma.

Lemma 3. In Game 2, the adversary A has no advantage, i.e.

Pr[E2] =
1
2
. (10)

Proof. In Game 2, the adversary is given the sign-encryption HSC(mb) =
(gt, gmbR0, y

wmb
1 R1) where R0 and R1 are independent random elements, which

work as one-time pads, rendering the bit b independent from adversary A’s view.
Therefore, the adversary A has no advantage of winning the game other than a
random guess.

By combining Eqs. (3), (4), (7), and (10), we obtain

AdvIND-CPA
A ≤ 2 · AdvDDH

B .

Thus it completes the proof.
Since the DDH assumption states that AdvDDH

B is negligible, we have
AdvIND-CPA

A is negligible for all PPT adversaries.

Theorem 2. If there exists a PPT algorithm A that can break the weak unforge-
ability of the HSC scheme with advantage AdvWUF

A , then there exists a PPT algo-
rithm B that can solve the Computational Diffie-Hellman (CDH) problem with
advantage

AdvCDH
B ≥ AdvWUF

A .

Proof. The algorithm B obtains a CDH instance (p, g, ga, gb) from its challenger.
The algorithm B simulates the weak unforgeability game (Definition 6) for the
adversary A.



Provably Secure Homomorphic Signcryption 359

1. The algorithm B samples x0, x2 ∈R Zp, and computes

y0 = gx0 , y1 = gb, y2 = gx2 .

Then B packs pks = ga, pkr = (y0, y1, y2), and params = (p, g). After that, B
sends them to the adversary A.

2. Ultimately, A outputs a valid homomorphic sign-encryption HSC(m∗) =
(C∗

0 , C∗
1 , C∗

2 ) on arbitrary m∗ ∈ M .

Finally, the algorithm B is able to compute gab by

gab =
(

C∗
2

C∗x2
0

)
(

logg

C∗
1

C∗x0
0

)−1

.

Therefore, we immediately obtain the theorem.

Since the CDH assumption states that AdvCDH
B is negligible, we have AdvWUF

A is
negligible for all PPT adversaries.

6 Conclusion

Homomorphic signcryption is useful in many applications. However, it is a
research challenge to accommodate the homomorphism feature in a traditional
signcryption scheme. In this work, we proposed a variant of signcryption, which
leads to a novel homomorphic signcryption scheme. We formally proved the secu-
rity of our proposed scheme. Our work can be regarded as the first step toward
provably secure homomorphic signcryption for broader applications.

Acknowledgement. We would like to thank the reviewers for constructive comments
and Willy Susilo for the valuable discussions. The forth author was supported by the
National Natural Science Foundation of China under Grants 61502086, the foundation
from Guangxi Colleges and Universities Key Laboratory of Cloud Computing and
Complex Systems (No. YF16202) and the foundation from Guangxi Key Laboratory
of Trusted Software (No. PF16116X).

References

1. Bilogrevic, I., Jadliwala, M., Joneja, V., Kalkan, K., Hubaux, J., Aad, I.: Privacy-
preserving optimal meeting location determination on mobile devices. IEEE Trans.
Inf. Forensics Secur. 9(7), 1141–1156 (2014)

2. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 30

3. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). doi:10.1007/978-3-540-30576-7 18

http://dx.doi.org/10.1007/978-3-642-55220-5_30
http://dx.doi.org/10.1007/978-3-540-30576-7_18


360 F. Rezaeibagha et al.

4. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomor-
phic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778,
pp. 1–13. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 1

5. Chan, Y.-Y., Li, J.: BGN authentication and its extension to convey message com-
mitments. In: Gavrilova, M., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D.,
Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3982, pp. 365–374.
Springer, Heidelberg (2006). doi:10.1007/11751595 40

6. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 513–
536. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 20

7. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7 2

8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, 31 May–2 June 2009, pp. 169–178. ACM (2009)

9. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

10. Han, S., Zhao, S., Li, Q., Ju, C., Zhou, W.: PPM-HDA: privacy-preserving and
multifunctional health data aggregation with fault tolerance. IEEE Trans. Inf.
Forensics Secur. 11(9), 1940–1955 (2016)

11. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer,
Heidelberg (2002). doi:10.1007/3-540-45760-7 17

12. Liu, J., Huang, X., Liu, J.K.: Secure sharing of personal health records in cloud
computing: Ciphertext-policy attribute-based signcryption. Future Gener. Comp.
Syst. 52, 67–76 (2015)

13. Nuida, K., Kurosawa, K.: (Batch) Fully homomorphic encryption over integers
for non-binary message spaces. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 537–555. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 21

14. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

15. Rao, Y.S.: A secure and efficient ciphertext-policy attribute-based signcryption for
personal health records sharing in cloud computing. Future Gener. Comp. Syst.
67, 133–151 (2017)

16. Wang, X.: One-round secure fair meeting location determination based on homo-
morphic encryption. Inf. Sci. 372, 758–772 (2016)

17. Yi, X., Bouguettaya, A., Georgakopoulos, D., Song, A., Willemson, J.: Privacy
protection for wireless medical sensor data. IEEE Trans. Dependable Sec. Comput.
13(3), 369–380 (2016)

18. Zhang, P., Yu, J., Liu, H.: A homomorphic signcryption scheme and its application
in electronic voting. J. Shenzhen Univ. Sci. Eng. 28, 489–494 (2011)

19. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) �
cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294, pp. 165–179. Springer, Heidelberg (1997). doi:10.1007/BFb0052234

http://dx.doi.org/10.1007/978-3-642-36362-7_1
http://dx.doi.org/10.1007/11751595_40
http://dx.doi.org/10.1007/978-3-662-46800-5_20
http://dx.doi.org/10.1007/3-540-39568-7_2
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/3-540-45760-7_17
http://dx.doi.org/10.1007/978-3-662-46800-5_21
http://dx.doi.org/10.1007/978-3-662-46800-5_21
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/BFb0052234


Public-Key Encryption with Simulation-Based
Sender Selective-Opening Security

Dali Zhu1,2, Renjun Zhang1,2, and Dingding Jia2,3,4(B)

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{zhudali,zhangrenjun}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

jiadingding@iie.ac.cn
4 Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing, China

Abstract. We study public key encryptions (PKE) of simulation-based
security against sender selective-opening (SIM-SSO) attacks, where the
attacker can corrupt a subset of senders, learning the plaintexts together
with the corresponding randomness. Concretely:

– We present a generic construction of SIM-SSO security under chosen
plaintext attacks (SIM-SSO-CPA) by combining a lossy encryption
given by Hemenway et al. (Asiacrypt 2011), along with a tailored
compression algorithm. Our construction gives a simple and modular
security analysis. We then present an instantiation based on the
Matrix Diffie-Hellman Assumption.

– We show that the PKE construction from Boneh-Gentry-Hamburg
scheme (FOCS 2007), and construction from a (public-key based)
variant of Cocks’ scheme (Peikert, Vaikuntanathan and Waters,
Crypto 2008) are SIM-SSO-CPA secure. Even if these results may
seem natural, not surprising at all, their SIM-SSO-CPA security have
not been explicitly reported so far.

– We further show that two PKE constructions from homomorphic
trapdoor commitments (Groth, Ostrovsky and Sahai, Crypto 2006,
Eurocrypt 2006) are SIM-SSO-CPA secure.

Keywords: Sender Selective-Opening Security · Lossy encryption ·
Hash proof system

1 Introduction

Sender selective-opening (SSO) attacks consider scenarios that adversary may
corrupt a part of senders. More formally, suppose a receiver receives a n tuple of

This work is Supported by the “Strategic Priority Program” of Chinese Academy of
Sciences, Grant No. Y2W0012306, and the National Nature Science Foundation of
China (No.61502484).

c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 361–380, 2017.
https://doi.org/10.1007/978-3-319-68637-0_22



362 D. Zhu et al.

ciphertexts c = (c[1], . . . , c[n]), each ciphertext c[i] = Encpk(mi; ri) is created by
sender i with a fresh randomness ri under pk. Now, given c, the adversary can
adaptively chooses a subset I ⊆ {1, . . . , n} of ciphertexts to open, learning the
messages {mi}i∈I and corresponding randomness {ri}i∈I . The security requires
privacy of the unopened messages preserved.

The study of sender-selective opening in PKE scenarios was initiated by
Bellare, Hofheinz and Yilek [2]. They formulated the notions in two styles:
indistinguishability-based selective-opening (IND-SSO) security and simulation-
based selective-opening (SIM-SSO) security. Compared with the standard IND-
CPA/CCA security, IND/SIM-SSO security is more complicated, for the reason
that the opening of the randomness allows the adversary to check the correspon-
dence between ciphertext and message. Relations among IND-SSO, SIM-SSO
and standard security attract much attention such as in [1,3,14,20,24,25].

IND-SSO security is restricted to efficiently re-samplable plaintext distri-
butions. SIM-SSO security does not suffer from such restrictions, but is the
preferable notion of SSO security. In a nutshell, SIM-SSO security requires that
the output of any adversary can be simulated by a simulator that sees only
the opened messages. Unfortunately, SIM-SSO security is nonessential hard to
achieve [1], because for many natural encryption schemes, there does not exist
such simulator that satisfies the definition given in [2,11].

Known constructions of SIM-SSO secure encryption schemes either from lossy
encryption [2,15,21–23] or from deniable encryption (as well as non-committing
encryption) [7,13,30]. Lossy encryption has been shown to be a very useful tool
in achieving SIM-SSO security. In [2], Bellare et al. proved that lossy encryption
with efficient opening implies SIM-SSO-CPA security. However, it seems that the
property of efficient openability is limited to the decisional composite residuosity
(DCR) settings [32]. Hemenway et al. [21] proposed a general construction of
lossy encryption from hash proof system, but it is not clear whether it supports
efficient opening or not. This line of research continued in [35], Wee presented a
new framework of Dual-mode cryptosystems via smooth projective hashing, but
it also ignores the efficient opening property. The results in [21,35] are inspired
by the work in [29]. Recently, Hofheinz et al. [23] proposed a SIM-SSO-CPA
secure PKE scheme in the discrete-log setting, and further showed that lossy
encryption scheme with efficient weak opening implies SIM-SSO-CPA security.
In their construction, the key component is a hash function that is used to
compress the space of ciphertexts.

Related Work. Several IND-SO-CCA secure schemes have been constructed by
using lossy trapdoor functions [34], All-But-N lossy trapdoor functions [21], and
All-But-Many lossy trapdoor functions [22]. Furthermore, known constructions
of SIM-SSO-CCA secure schemes follow dedicated approaches [13,22,26,30].
Heuer et al. proved that the practical schemes RSA-OAEP and DHIES are SIM-
SSO-CCA secure in the random oracle model. Selective opening security under
receiver corruption were considered in [20,27,28].



Public-Key Encryption with Simulation-Based Sender 363

1.1 Our Contribution

In this paper, firstly we present a generic construction for building SIM-SSO-
CPA secure scheme from hash proof system, and then give an instantiation based
on the Matrix Diffie-Hellman Assumption. Our construction is a combination
of lossy encryption in [21] (note that the related schemes appeared in [29,35],
namely, the two-message oblivious transfer protocol in [29], and the Dual-mode
encryption scheme in [35]), and a tailored compression algorithm that compresses
the space of ciphertexts. Then we prove that the PKE construction from Boneh-
Gentry-Hamburg (BGH) scheme in [5], and the PKE construction from a (public-
key based) variant of Cocks’ scheme (short: Cocks’ scheme) in [33] are SIM-SSO-
CPA secure. We further prove that two PKE constructions from homomorphic
trapdoor commitment in [16–18] are SIM-SSO-CPA secure. In the following there
are some technique overviews.

The generic lossy encryption scheme in [21] is IND-SSO-CPA secure. To mod-
ify it to be SIM-SSO-CPA secure, one should seek an efficient algorithm Opener
that will find correctly distributed random coins to open a lossy ciphertext to an
arbitrary plaintext. But the property of efficient openability suffers from specific
algebraic structure, but the lossy encryption in [21] does not have this struc-
ture (Note that in [21] secret keys play the role of random coins). Inspired by
the ideas in [10,19,23], we observe that if the space of ciphertexts shrinks to a
smaller one, then the number of random coins will increase. Then Opener can
randomly guesses them one after another in a confined space, and checks whether
these random coins meet the requirements. To do so, we tailor a compression
algorithm that compresses the ciphertexts space to a logarithmic space of size L
(L is at most O(log l) where l is the security parameter). We also require that
the output of tailored compression algorithm statistically indistinguishable from
random bits over {0, 1}L. These approaches assure that Opener algorithm runs
in expected polynomial time, but the accurate running time depends on concrete
settings. On the downside, our approach suffers from a small message space.

Besides, we prove that two PKE constructions from BGH scheme and Cocks’
scheme are SIM-SSO-CPA secure. Both schemes have natural lossiness proper-
ties, and these properties have contained implicitly in the security proof. How-
ever, it is not our purpose to make them explicit. We concern about whether
BGH scheme and Cocks’ scheme support efficient opening or not. Since two
schemes are based on factoring-related assumptions, with the knowledge of fac-
torization of N such that N = pq, it is true that the efficient opening algorithms
exists. Hence, we can convert BGH scheme and Cocks’ scheme to lossy encryp-
tion with efficient opening (and thus SIM-SSO security) by setting p or q as the
lossy secret key.

In [18], Groth et al. concluded that “parameter-switching” methodology [16,
17] in encryptions keys leads to lossy encryption. In fact, their (non-interactive)
homomorphic trapdoor commitments can be converted into lossy encryption
schemes. We show that the converted schemes support efficient weak opening.
That is, when Opener opens a lossy ciphertext to an arbitrary plaintext, it needs
an additional random coins.



364 D. Zhu et al.

One may notice that schemes in this paper can only achieve SIM-SSO-CPA
security. An interesting open problem is to extend them to the chosen-ciphertext
(CCA) setting to obtain SIM-SSO-CCA secure schemes. Besides, both of BGH
scheme and Cocks’ scheme are based on quadratic residuosity assumption, and
the lossy encryption with efficient opening can be seen as a general framework
that unifies two specific constructions. But how to extend their security to SIM-
SSO-CCA security is also an open interesting problem.

Organization. The rest of our paper is organized as follows: in Sect. 2 we present
some basic notions as well as several tools that are used in our paper; in Sect. 3 we
describe our generic construction of SIM-SSO-CPA secure scheme, and provide
an instantiation based on Matrix Diffie-Hellman Assumption; in Sect. 4 we prove
that two PKE constructions from BGH scheme and Cocks’ scheme are SIM-SSO-
CPA secure; in Sect. 5 we prove that two PKE constructions from homomorphic
trapdoor commitments are SIM-SSO-CPA secure.

2 Preliminaries

2.1 Notation

In this paper, we use N to represent the set of natural numbers, and Z represents
the set of integers. We also use PPT to denote probability polynomial time for
short. Let [k] be the set of {1, . . . , k}, x ← S is used to denote picking an element
x uniformly at random from S when S is a finite set, and to denote sampling
an element according to S when S is a distribution. The statistical distance
of two probability ensembles X , Y is defined as SD(X ,Y) := 1

2Σx|Pr[X =
x] − Pr[Y = x]|. If SD(X ,Y) is negligible, we say that X and Y are statistical
indistinguishability (abbr. X ≈s Y ). The length of a string x is denoted by |x|.

2.2 Public Key Encryption

A public key encryption (PKE) scheme consists of the following three PPT
algorithms:

Keygen: the key generation algorithm that takes as input a security parameter
1λ, and outputs a public/secret key pair (pk, sk) ← Keygen(1λ).

Enc: the encryption algorithm that takes as input the public key pk, a plaintext
m ∈ M, and outputs a ciphertext c ← Enc(pk,m).

Dec: the decryption algorithm that takes the secret key sk, a ciphertext c as
input, and outputs either a message m ← Dec(sk, c) ∈ M or a special ⊥ to
indicate that c is not a valid ciphertext.

Correctness. The PKE scheme satisfies correctness if Dec(sk, c) = m with all
but negligible probability whenever pk, sk is produced by Keygen(1λ) and c is
produced by Enc(pk,m).



Public-Key Encryption with Simulation-Based Sender 365

2.3 Sender Selective-Opening Security

Following [2,3,13], we recall the definition of simulation-based sender selective-
opening security against chosen plaintext attacks (SIM-SSO-CPA).

Definition 1 (SIM-SSO-CPA Security). A PKE scheme PKE = (Gen,Enc,
Dec) is SIM-SSO-CPA secure iff for every polynomially bound n = n(1λ) > 0,
every PPT relation R, and every stateful PPT adversary A, there exists a stateful
PPT simulator S such that

Advsim− sso− cpa
PKE,A,S,R (1λ) = |Pr[Expreal

PKE,A,R(1λ) = 1] − Pr[Expideal
S,R (1λ) = 1]|

is negligible. The experiments Expreal
PKE,A,R and Expideal

S,R are defined as follows
(Fig. 1):

Experiment. Expreal
PKE,A(1λ):

(pk, sk) ← Gen(1λ)
dist ← A(pk)
(Mi)i∈[n] ← dist
(Ri)i∈[n] ← (REnc)n

(Ci)i∈[n] = Enc(pk,Mi;Ri)i∈[n]

I ← A(select, (Ci)i∈[n])
outA ← A(output, (Mi, Ri)i∈I)
return R(dist, (Mi)i∈[n], I, outA)

Experiment. Expideal
S (1λ):

dist ← S(1λ)
(Mi)i∈[n] ← dist

I ← S(select, (1|Mi|)i∈[n])
outS ← S(output, (Mi)i∈I)
return R(dist, (Mi)i∈[n], I, outS)

Fig. 1. The REAL-SIM-SSO-CPA and IDEAL-SIM-SSO-CPA experiment

2.4 Sender Selective-Opening Security from Lossy Encryption

Lossy Encryption with Efficient Opening. In [2], Bellare et al. defined lossy
encryption, and proved that any lossy encryption scheme with efficient opening
(short: LPKE, thus ciphertexts can be efficiently opened to arbitrary messages)
is SIM-SSO-CPA secure. A LPKE consists of four algorithms (Gen, LGen, Enc,
Dec) such that:

Gen(1λ): The key generation algorithm that takes as input the security parame-
ter 1λ, and outputs a key pair (pk, sk) where pk is a real public key.

LGen(1λ): The lossy key generation algorithm that takes as input the security
parameter 1λ, and outputs a key pair (pk, sk) where pk is a lossy public key.

Enc(pk,m): The encryption algorithm that takes as input a public key pk and
a message m, where pk is either generated by Gen(1λ) or by LGen(1λ), and
outputs a ciphertext c.

Dec(sk, c): The decryption algorithm that takes as input a ciphertext c and a
secret sk, outputs either a message m if c ← Enc(pk,m), or a special symbol
⊥ to indicate that c is not a valid ciphertext.



366 D. Zhu et al.

LPKE should satisfy properties of correctness, indistinguishability, lossiness
and efficient openability.

Correctness. For all (pk, sk) ← Gen(1λ), c ← Enc(pk,m), it must be the case
that Dec(sk, c) = m.

Indistinguishability. The first outputs of Gen(1λ) and LGen(1λ) can not be
distinguished for any PPT adversary.

Lossiness. For any (pk, sk) ← LGen(1λ) and two distinct messages m0,m1, it
holds that Enc(pk, m0) ≈s Enc(pk,m1). Thus, two distributions statistically
close.

Efficient Openability. There exists an efficient algorithm Opener that, takes
as input lossy keys sk and pk, message m, ciphertext c ← Enc(pk, m; r),
outputs random coins r′ such that Enc(pk,m; r′) = c.

Hofheinz, Jager and Rupp [23] defined lossy encryption with efficient weak
opening (short: wLPKE) and proved that wLPKE is indeed SIM-SSO-CPA
secure. The only difference between LPKE and wLPKE is that the Opener algo-
rithm for wLPKE may receive an additional random coins that have been used
to generate the ciphertext. More generally, the property of efficient weak open-
ability is described as follows.

Efficient weak openability. There exists an efficient algorithm Opener that,
takes as input lossy keys sk and pk, message m0, the random coins r, cipher-
text c ← Enc(pk,m0; r), and a message m1, outputs random coins r′ such
that Enc(pk,m1; r′) = c.

3 SIM-SSO-CPA Secure PKE from Hash Proof System

In this section, we present a generic construction of SIM-SSO-CPA secure by
combining a lossy encryption in [21](as well as the schemes in [29,35]), and a
tailored compression algorithm that compresses the space of ciphertexts. We
further give an instantiation based on the Matrix Diffie-Hellman Assumption.
Before turning to the generic construction, we first recall the notions of hash
proof system as introduced by Cramer and Shoup [9].

3.1 Hash Proof System

Smooth Projective Hashing. A smooth projective hash family consists of
(Λ,SK, X ,L,W,Y,PK, μ), where X ,Y,L,W,SK,PK are finite, non-empty
sets, and L ⊂ X is a language. Let Λ : X → Y be a collection of hash functions
indexed by keys sk ∈ SK mapping from X to Y. Also there exists an efficiently
computable projection μ from SK to PK. A hash family H = (Λ,SK,X ,L,W,
Y,PK, μ) is projective if for all sk ∈ SK, the action of Λsk on L is determined
by μ(sk). A hash family H = (Λ,SK,X ,L,W, Y,PK, μ) is smoothness if for
randomly chosen sk ∈ SK, given μ(sk) and x ∈ X \ L, Λsk(x) is statistically
close to uniform distributions over Y.



Public-Key Encryption with Simulation-Based Sender 367

We also require that for sk ∈ SK, it can be efficiently sampled sk′ such that
μ(sk) = μ(sk′), which will be used not in the actual scheme but in the security
proof. In fact, all known hash proof systems have this property.

Subset Membership Assumption. We will consider two related subset mem-
bership assumptions pertaining to the non-empty set X . The first assumption
states that the uniform distributions over L and X are computationally indistin-
guishable, even given the public parameter. The second assumption requires that
the uniform distributions over L and X \ L are computationally indistinguish-
able, even knowing the public parameter. The two assumptions are equivalent
when L is sparse in X , i.e., |L|/|X | = negl(1λ), since the distributions over X
and X \ L are then statistically indistinguishable.

Hash Proof System. Let H = (Λ,SK,X ,L,W, Y,PK, μ) be a projective hash
family, and let Λ[X ,L,W,R] be any instance of a subset membership assump-
tion, where W is the set of witness, and R ⊂ X ×W is a binary relation such that
x ∈ L iff there exists a w satisfying (x,w) ∈ R. A hash proof system provides
efficient algorithm to randomly choose sk ∈ SK and x ∈ X , efficient algorithm
to compute μ(sk), and efficient algorithm (Priv, Pub) to compute Λsk(x) for
x ∈ L with witness w:

Λsk(x) = Priv(sk, x) = Pub(μ(sk), x, w)

3.2 Generic Construction

Tailored Compression Algorithm. The study of instance compression was
initiated by Harnik and Naor [19]. Inspired by the ideas in [10,19,31], we tailor
a compression algorithm for the hash proof system. Roughly speaking, the tai-
lored compression algorithm Z can shrink Λsk(x) to a smaller bit string, and the
output of Z statistically indistinguishable from random bits. Note that our defi-
nition is the generalization of the universal hash function that compress elements
to bits in [23].

Definition 2 (Tailored Compression Algorithm for HPS). Let H =
(Λ,SK, X , L, W, Y, PK, μ) be a smooth projective hash proof system. A tai-
lored compression algorithm for HPS is a PPT algorithm Z such that for large
enough l

– For any π ∈ Y, the length L of Z(π) is at most O(log l).
– Z outputs bits that uniformly distributed over {0, 1}L.

Construction. Based on these building blocks, we can construct a generic
lossy encryption with efficient weak opening with message space {0, 1}O(log l)

(For simplicity, we stipulate that the length of Z(π) is O(log l). Thus, only small
message spaces are allowed.) The SIM-SSO-CPA secure scheme is described as
follows.



368 D. Zhu et al.

Injective key generation: Samples an x ∈ L, together with a corresponding
witness w. Sets pk = x, sk = w.

Lossy key generation: Samples an x ∈ X . Sets pk = x, sk = ⊥.
Encryption: To encrypt a message m ∈ {0, 1}O(log l), chooses sk ← SK, and

returns the ciphertext c = (c1, c2) as:

c1 = μ(sk), c2 = Z(Λsk(x)) ⊕ m.

Decryption: Given a ciphertext (c1, c2) and secret key sk = w, the algorithm
first computes Λsk(x), then returns m = Z(Λsk(x)) ⊕ c2.

3.3 Security Proof

The following theorem will be used in the security proof of the generic construc-
tion. The writing style of the proof in the rest of our paper refers to [2,23,35].

Theorem 1 ([2,23]). The lossy encryption scheme with efficient opening (or
efficient weak opening) is SIM-SSO-CPA secure.

We prove that the construction in Sect. 3.2 satisfies the four properties of lossy
encryption with efficient weak opening.

Theorem 2. If H is a smooth projective HPS with the corresponding subset
membership assumption hard, and the output of tailored compression algorithm Z
statistically indistinguishable from uniform, then the generic construction yields
a SIM-SSO-CPA secure scheme.

Proof. Correctness. This is guaranteed by the projective property of the
smooth projective hashing.

Indistinguishability. This follows immediately from the subset membership
assumption.

Lossiness. In lossy mode, the lossy public key x ← X , according to the smooth-
ness property of HPS, Λsk(x) is uniformly distributed over Y even given μ(sk)
and x. Since the output of Z are statistically close to uniform, Z(Λsk(x))⊕m
will also be statistically close to uniform over {0, 1}O(log l) for any message
m. Hence, lossiness follows readily.

Efficient weak openability. We note that in the generic setting, secret keys
play the role of random coins. Consider the algorithm Opener, takes as
input a lossy public key x ← X , lossy secret key sk ∈ SK, message m′ ∈
{0, 1}O(log l), and ciphertext c = (c1, c2) = (μ(sk), Z(Λsk(x)) ⊕ m) for some
m ∈ {0, 1}O(log l), outputs sk′ such that μ(sk′) = c1 and Z(Λsk′(x))⊕m′ = c2.
To do so, Opener samples sk′ randomly and creates a set

{sk′ ∈ SK : μ(sk′) = c1 ∧ Z(Λsk′(x)) = m′ ⊕ c2}

We now analyze the behavior of the algorithm Opener. First, Opener can
efficiently determine μ(sk′) = c1. Second, Opener randomly guesses sk′ one



Public-Key Encryption with Simulation-Based Sender 369

after another and check to see whether Z(Λsk′(x)) = m′⊕c2. As the output of
Z is close to uniform, and the size of Z(Λsk′(x)) is at most 2O(log l), this will
require about O(l) steps. Also note that Opener algorithm runs in expected
polynomial time, and has small probability of running for a long time.

3.4 Instantiation Based on Matrix Diffie-Hellman Assumption

Here, we describe one instantiation of the generic construction in Sect. 3.2. We
then compare the efficency of this instantiation with the scheme in [23]. To
instantiate our construction, we need to utilize a Dl,k-Matrix Diffie-Hellman
(short: Dl,k-MDDH) Assumption, a Dl,k-MDDH-based hash proof system in
[12], and a universal hash function in [23] that maps group elements to bits.

Representing Elements in Groups. Let Gen be a PPT algorithm that takes
as input 1λ and outputs a description G = (G, q, g), where G is a cyclic group with
prime-order q, and g is the generator of G. Following [12], we define [a] = ga ∈ G

as the implicit representation of a in G. More generally, we also define such
representations for matrix A = (aij) ∈ Z

n×m
q by:

[A] =

⎛
⎜⎝

ga11 . . . ga1m

...
. . .

...
gan1 . . . ganm

⎞
⎟⎠ ∈ G

n×m

Matrix Diffie-Hellman Assumption. We recall the definition of the Matrix
Diffie-Hellman Assumption as introduced in [12].

Definition 3 (Matrix Distribution). Let l, k ∈ N such that l > k. The dis-
tribution Dl,k is called a matrix distribution if it outputs matrices in Z

l×k
q of full

rank k in probability polynomial time with all but negligible probability.

Definition 4 (Dl,k-Matrix Diffie-Hellman Assumption). Let Dl,k be a
matrix distribution. We say that the Dl,k-Matrix Diffie-Hellman Assumption
holds in G and relative to Gen if for all non-uniform polynomial time adver-
sary A, we have

AdvDl,k,Gen(A) = |Pr[A(G, [A], [Aw]) = 1] − Pr[A(G, [A], [u]) = 1]|
is negligible, where the probability is taken over the output G = (G, q, g) ←
Gen(1λ), A ← Dl,k, w ← Z

k
q , u ← Z

l
q and the coin tosses of adversary A.

Instantiation. For instantiation, we need a hash function H : G → {0, 1}
to replace the tailored compression algorithm Z. The hash function H should
satisfies the following property in [23]: for randomly choose a ∈ G, H(a) is
statistically indistinguishable from the uniform distribution over {0, 1}; if a is a
vector of group elements from G, then H(a) is the component-wise application
of the hash function, which outputs a bit vector of the same length as a . The
details of the instantiation are given below.



370 D. Zhu et al.

Setup: Runs (G, q, g) ← Gen(1λ) and picks A ← Dl,k. Define the language

L = {[Aw ] ∈ G
l : w ∈ Z

k
q} ⊂ X

The value w ∈ Z
k
q is a witness.

Injective key generation: Picks w ← Z
k
q , and computes [x ] = [Aw ]. Let

pk = [x ], sk = w .
Lossy key generation: Picks u ← Z

l
q, and computes [x ] = [u ]. Let pk = [x ],

sk = A.
Encryption: On inputs a message m ∈ {0, 1}, picks k ← Z

l
q, then computes

c1 = [kTA], c2 = H([kTx ]) ⊕ m, and outputs ciphertext c = (c1, c2).
Decryption: Given a ciphertext c = (c1, c2), and sk = w , returns m =

H([c1w ]) ⊕ c2.

Correctness follows readily from the projective property of Dl,k-MDDH-based
hash proof system in [12]. We put the concrete security proof in Appendix A,
and present the property of efficient weak openability in the following.

Consider the algorithm Opener that takes as input a lossy public key pk =
(G, [x ]) where [x ] = [u ], a lossy secret key A, the message m, random coins kT ∈
Z

l
q, and ciphertext c = (c1, c2) = ([kTA],H([kTx ])⊕m). The outputs of Opener

is random coins k’T which is just a random vector in Z
l
q. To this end, Opener

samples k’T ∈ Z
l
q randomly subject to k’TA = kTA until H([k’Tx ])⊕m′ = c2.

As Opener knows secret key A, this increases the dimension of the random
coins space, and introduce the redundancy into the first equation k’TA = kTA.
Thus, there are many different k’ satisfying k’TA = kTA. Opener can randomly
guesses k’ one after another and checks whether the second equation H([k’Tx ])⊕
m′ = c2 is true. On average, it takes 2 such samplings until k’ is found.

We emphasize that the opening algorithm needs to receive k as an additional
input, hence our instantiation meets the notion of lossy encryption with efficient
weak opening.

Comparison. In [23], Hofheinz et al. compared their scheme to other SSO-
secure PKE schemes such as [2,13,21]. We tabulate the efficiency of our scheme,
and only compare it to HJR16 scheme [23] (which we refer to as HJR scheme) in
Fig. 2. The HJR scheme is more efficient, and the plaintext space scales better
(indeed, only small message space are allowed). But HJR scheme has a large
public key size, and the encryption and decryption procedures are computation-
ally expensive (because it needs to define a matrix constructor). In our scheme,
the size of public key and secret key is linear, and the encryption and decryption
procedures are efficient, but the price is a rather small plaintext space. We con-
clude that both our scheme and HJR scheme is a feasibility result, and further
improvements would be desirable.



Public-Key Encryption with Simulation-Based Sender 371

Scheme Security Assumption |pk| |sk| |m| |c| − |m|
HJR16 [23] SIM-SSO-CPA Dl,k−MDDH (l × k)|G| (l − d) × k l − d d × |G|

Ours SIM-SSO-CPA Dl,k−MDDH l × |G| k 1 k × |G|

Fig. 2. Comparison of our scheme with HJR16 scheme in [23]. We use the same symbol
as introduced in [23]. For a group G, |G| denotes its size. For a matrix A, d denotes the
rank of A. |m| denotes the plaintext bitsize. |c| − |m| denotes the ciphertext overhead.

4 SIM-SSO-CPA Secure Construction from Quadratic
Residuosity

4.1 SIM-SSO-CPA Secure Construction from BGH Scheme

In this section, we show that the public-key scheme constructed from
Boneh-Gentry-Hamburg (BGH) scheme [5] is SIM-SSO-CPA secure. Theorem 1
described in Sect. 3.3 will also be used in the security proof.

Quadratic Residuosity Assumption. Let N = pq where p, q are two distinct
safe primes, let

(
x
N

)
denote the Jacobi symbol of x ∈ Z

∗
N , and let J(N) be the set

{x ∈ Z
∗
N :

(
x
N

)
= 1}. We denote by QR(N) the subgroup of quadratic residues in

J(N). The quadratic residuosity assumption states that when the factorization
of N is unknown, it is hard to distinguish random elements in J(N) \ QR(N)
from random elements in QR(N).

Definition 5 (Quadratic Residuosity Assumption). Let RSAGen be a
PPT algorithm which, given a security parameter 1λ, outputs two distinct primes
p and q with their product N = pq. We say that the quadratic residuosity assump-
tion holds for RSAGen if for all PPT distinguisher D, the function

|Pr[D(x,N) = 1|x ← QRN ] − Pr[D(x,N) = 1|x ← J(N) \ QR(N)|
is negligible; where the probabilities are taken over (N, p, q) ← RSAGen(1λ) and
sampling x ∈ QRN and x ∈ JN \ QRN uniformly at random.

IBE/PKE Compatible. Most of the concept of IBE/PKE compatible is
copied from [5]. Let Q be a deterministic algorithm that takes as input (N,R, S)
where N ∈ Z

+ and R,S ∈ Z
∗
N , outputs two polynomials f, g ∈ Z

∗
N [x]. We say

that Q is IBE/PKE compatible if Q satisfies the following two conditions:

– (Condition 1) If R and S are quadratic residues, then f(r)g(s) is also a
quadratic residue for all square roots r of R and s of S.

– (Condition 2) If R is a quadratic residue, then f(r)f(−r)S is also a quadratic
residue for all square roots r of R.

(Condition 1) will be used to decrypt ciphertexts, (Condition 2) is only used
to prove security, and satisfies the conditions of the following lemma in [5].



372 D. Zhu et al.

Lemma 1. Let N = pq be an RSA modulus, X ∈ QR(N), and S ∈ J(N) \
QR(N). Let x be a value that is randomly chosen from the four square roots of
X, and let f be a polynomial with the property that f(x)f(−x)S is a quadratic
residue. Then the Jacobi symbol

(
f(x)
N

)
is uniformly distributed over {−1,+1}.

Construction. Next we prove that the PKE scheme constructed from BGH
satisfies the four properties of a lossy encryption scheme with efficient opening.

Let RSAgen(1λ) be an algorithm that generates two distinct primes p and
q, and outputs p, q along with their product N . The SIM-SSO-CPA secure
construction is described as follows.

Gen(1λ): generates (N, p, q) ← RSAGen(1λ). Chooses v ∈ Z
∗
N uniformly at

random, and computes V = v2. Let pk = (N,V ), and sk = v.
LGen(1λ): generates (N, p, q) ← RSAGen(1λ). Chooses V ∈ J(N) \ QR(N)

uniformly at random. Let pk = (N,V ), and sk = (p, q).
Enc(N, pk,m): To encrypt a message m ∈ {−1,+1}, chooses r ∈ Z

∗
N uniformly

at random and sets R = r2. Then computes:

(f, g) = Q(N,R, V ) and c = m ·
(

f(r)
N

)

Outputs the ciphertext (R, c).
Dec(sk, c): Takes as input (R, c) and sk = v. Do:

(f, g) = Q(N,R, V ) and m = c ·
(

g(v)
N

)

Outputs m.

Theorem 3. If the quadratic residuosity assumption holds for RSAGen, then
the above construction is a lossy encryption scheme with efficient opening.

Proof. Correctness. Given a real public key pk = (N,V ) where V ∈ QR(N)
as well as a ciphertext (R, c). The deterministic algorithm Q(N,R, V ) out-
puts two polynomials f and g. Because both R and V is quadratic residues,
(Condition 1) implies that

(
f(r)
N

)
=

(
g(v)
N

)

Given the secret key sk = c, the plaintext is decrypted by computing

c ·
(

g(v)
N

)
= m ·

(
f(r)
N

)(
g(v)
N

)
= m.

Indistinguishability. It immediately follows from the quadratic residuosity
assumption.



Public-Key Encryption with Simulation-Based Sender 373

Lossiness. The lossiness property has been contained in the security proof of the
PKE scheme in [5], appendix B. In lossy mode, public keys are (N,V ) where
V ∈ J(N) \ QR(N). Consider the ciphertext (R, c), where c = m ·

(
f(r)
N

)
∈

{−1,+1}, and r2 = R modulo N . According to Condition (2), f(r)f(−r)V
is a quadratic residue for all square roots of R. Then Lemma 1 shows that(

f(r)
N

)
is uniformly distributed over {−1,+1}, hence m ·

(
f(r)
N

)
will also be

uniformly random over {−1,+1} for any plaintext m.
Efficient openability. To see this, consider the opening algorithm Opener

which, takes as input a lossy secret key sk = (p, q), lossy public key
pk = (N,V ) where V ∈ J(N)\QR(N), message m, and ciphertext (R, c), and
outputs an r′ such that m ·

(
f(r′)

N

)
= c. Because the factorization of N = pq

is known, Opener can use p and q to efficiently compute the four square roots
of R, and let r′ be a randomly chosen from the four squares roots. The output
of Opener is r′, which is just a random elements in Z

∗
N .

4.2 SIM-SSO-CPA Secure Construction from Cocks’ Scheme

Cocks [8] proposed an elegant IBE scheme based on the quadratic residuosity
assumption modulo an RSA composite N . In [33], Peikert et al. defined a (public-
key based) variant of Cocks’ scheme. In this section, we prove that the public
key scheme constructed from the version of Cocks’ cryptosystem in [33] is SIM-
SSO-CPA secure.

Construction. Let RSAGen(1λ) be an algorithm that generates two distinct
primes p and q, and outputs p, q along with their product N . The SIM-SSO-CPA
secure construction is described as follows.

Gen(1λ): Generates (N, p, q) ← RSAGen(1λ). Picks r ∈ Z
∗
N uniformly at ran-

dom, and let y = r2. Let pk = (N, y), sk = r. Outputs (pk, sk).
LGen(1λ): Generates (N, p, q) ← RSAGen(1λ). Picks y ∈ J(N) \ QR(N) uni-

formly at random. Let pk = (N, y), sk = (p, q). Outputs (pk, sk).
Enc(pk,m): To encrypt a message m ∈ {−1,+1}, picks s ← Z

∗
N such that(

s
N

)
= m, outputs c = s + y/s.

Dec(sk, c): Outputs the Jacobi symbol of (c + 2 · sk).

To prove the SIM-SSO-CPA security of the above construction, we recall a lemma
that presented in [33].

Lemma 2. Let N = pq be the product of two distinct primes, let y ∈ Z
∗
N and set

pk = (N, y). If y ∈ J(N)\QR(N), then the ciphertext is statistically independent
of the plaintext.

Theorem 4. If the quadratic residuosity assumption holds for RSAGen, then
the above construction is a lossy encryption scheme with efficient opening.



374 D. Zhu et al.

Proof. Correctness. The correctness of the scheme under real keys is guaran-
teed by the completeness of Cocks’ cryptosystem.

Indistinguishability. This follows readily from the quadratic residuosity
assumption.

Lossiness. In lossy mode, y ∈ J(N) \ QR(N). Consider the ciphertext c =
s + y/s, and the plaintext m =

(
s
N

)
, according to Lemma 2, the ciphertext c

is statistically independent of the plaintext m.
Efficient openability. We say that the scheme is also efficiently openability,

and the property implicitly contained in the proof of Lemma 2 in [33]. To
see this, consider the algorithm Opener that on input a lossy secret key sk =
(p, q), lossy public key pk = (N, y), plaintext m, ciphertext c. To claim c to
any plaintext m′ ∈ {−1,+1}, Opener has to find s′ such that s′ + y/s′ = s +
y/s mod N and

(
s′
N

)
= m′. Since Opener knows the factorization of N , it can

efficiently compute four solutions of the equation c = s+y/s mod N . Suppose
s0 is one of the solutions, then the other solutions are (s0 mod p, y/s0 mod
q), (y/s0 mod p, s0 mod q), (y/s0 mod p, y/s0 mod q). Let s′ be a randomly
chosen one of the four solutions, and the output of Opener is s′, which is just
a random element in Z

∗
N .

5 SIM-SSO-CPA Secure Construction
from Homomorphic Trapdoor Commitment

The homomorphic trapdoor commitment in [16–18] consist of the following algo-
rithms: Perfectly binding key generation, Perfectly hiding key generation, Com-
mitment, Extraction, Trapdoor opening, Witness indistinguishability proof, Ver-
ification. The homomorphic trapdoor commitment can be converted into lossy
encryption. That is, Perfectly binding key generation in homomorphic trapdoor
commitment corresponds to Injective key generation in lossy encryption, Per-
fectly hiding key generation in homomorphic trapdoor commitment corresponds
to Lossy key generation in lossy encryption, Commitment in homomorphic trap-
door commitment corresponds to Encryption in lossy encryption, Extraction in
homomorphic trapdoor commitment corresponds to Decryption in lossy encryp-
tion, Trapdoor opening in homomorphic trapdoor commitment corresponds to
Opening algorithm in lossy mode of the lossy encryption. Note that Trapdoor
opening algorithm explicitly exists in homomorphic trapdoor commitment, but
Opening algorithm is implicit in the lossy mode of the lossy encryption.

In this section, we prove that PKE constructions from the homomorphic
trapdoor commitments only have the property of efficient weak openability, but
still achieve SIM-SSO-CPA security. Theorem 1 in Sect. 3.3 will also be used for
security proof.

5.1 SIM-SSO-CPA Secure Construction from Subgroup Decision
Assumption

Let G be a PPT algorithm that takes as input security parameter 1λ, outputs
a tuple (p, q,G,G1, e, g) where p, q are distinct safe primes, G and G1 are cyclic



Public-Key Encryption with Simulation-Based Sender 375

groups with order n = pq, e is a bilinear map e : G × G → G1, g and e(g, g)
are the generators of G and G1, respectively. The definition of subgroup decision
assumption is described as follows.
Definition 6. We say that the generator G satisfies the subgroup decision
assumption if for any PPT adversary A, we have

| Pr[(p, q,G,G1, e, g) ← G(1λ);n = pq;x ← Z
∗
n;h = gx : A(n,G,G1, e, g, h) = 1]

− Pr[(p, q,G,G1, e, g) ← G(1λ);n = pq;x ← Z
∗
q ;h = gpx : A(n,G,G1, e, g, h) = 1]|

is negligible.

Construction. Boneh-Goh-Nissim (BGN) scheme [6] is the main building block
of the homomorphic trapdoor commitment scheme in [17,18], which based on
the subgroup decision assumption. The SIM-SSO-CPA secure construction is
described as follows.

Gen(1λ) : Given a security parameter 1λ, runs G(1λ) to obtain a tuple
(p, q,G,G1, e, g), let n = pq. Picks x ← Z

∗
q , sets h = gpx. The public key

is pk = (n,G,G1, e, g, h), the secret key is sk = q.
LGen(1λ) : Given a security parameter 1λ, runs G(1λ) to obtain a tuple (p, q,G,

G1, e, g), let n = pq. Picks x ← Z
∗
n, sets h = gx. The public key is pk =

(n,G,G1, e, g, h), the secret key is sk = x.
Enc(pk,m) : To encrypt a message m ∈ {0, 1, 2, . . . , T} where T is a prime and

T < p, picks r ← Z
∗
n, computes c = gmhr. Outputs c as the ciphertext.

Dec(c, sk) : To decrypt a ciphertext c, takes as input the secret key sk = q,
computes cq = (gmhr)q = (gq)m, then uses Pollard’s ρ algorithm to recover m.

We turn to proving SIM-SSO-CPA security of the above construction under
subgroup decision assumption. The security has been embodied implicitly in the
construction of homomorphic trapdoor commitment in [17].

Theorem 5. The construction in Sect. 5.1 is a lossy encryption scheme with
efficient weak opening assuming G satisfies the subgroup decision assumption.

Proof. Correctness. Correctness of decryption follows from the completeness
of the BGN cryptosystem.

Indistinguishability. The subgroup decision assumption implies that two
kinds of keys are computational indistinguishability.

Lossiness. Given lossy public key pk = (n,G,G1, e, g, h) for h = gx, where
x is chosen uniformly from the set Z

∗
n. Because h has order n, so h = gx

is uniformly random over G. Now, for random r ∈ Z
∗
n, the ciphertext c =

gmhr = gm(gx)r will also be uniformly distributed over G.
Efficient weak openability. The scheme is efficiently weak openability. Con-

sider the algorithm Opener that takes as input a lossy secret key sk = x, lossy
public key pk = (n,G,G1, e, g, h) where h = gx, plaintext m and m′, random
coins r, and ciphertext c such that c = Enc(pk,m; r). To claim c to any plain-
text m′, Opener has to find r′ such that Enc(pk,m; r) = Enc(pk,m; r′). Since
Opener holds the secret key x, it can efficiently return r′ = r− (m′−m)

x mod n
which is just a random value in Z

∗
n.



376 D. Zhu et al.

Remarks. Note that the opening algorithm needs to receive an additional input,
the random coins r that have been used to generate the ciphertext. So the
construction meets the notion of weak opening. Also note that there is a gap in
our proof. That is, we only succeed in proving weak opening. But this does not
mean the above construction does not support a stronger opening algorithm.

5.2 SIM-SSO-CPA Secure Construction from Decisional Linear
Assumption

Boneh, Boyen, and Shacham first proposed the decisional linear assumption [4].
Let GDLIN be a PPT algorithm that takes as input security parameter 1λ and
outputs a tuple (p,G, g) where p is a prime, G is a cyclic group of order p, and
g is a random generator of G. The definition of decisional linear assumption is
described as follows.

Definition 7 (Decisional Linear Assumption). We say that the decisional
linear assumption holds for the generator GDLIN if for all PPT adversary A we
have

| Pr[(p,G, g) ← GDLIN(1λ);x, y ← Z
∗
p; r, s ← Zp : A(g, gx, gy, gxr, gys, gr + s) = 1]

− Pr[(p,G, g) ← GDLIN(1λ);x, y ← Z
∗
p; r, s, d ← Zp : A(g, gx, gy, gxr, gys, gd) = 1]|

is negligible.

Construction. Next we show that the PKE scheme constructed from homomor-
phic trapdoor commitment in [16,18] is a lossy encryption scheme with efficient
weak opening, and this property has been contained implicitly in the construc-
tion of the original commitment scheme. Now, we present the SIM-SSO-CPA
secure construction in the following.

Gen(1λ) : Runs (p,G, g) ← GDLIN(1λ), picks x, y ← Z
∗
p, sets f = gx, h = gy,

picks ru, sv ← Zp, z ← Z
∗
p, and computes (u, v, w) = (fru , hsv , gru + sv + z).

Let pk = (p,G, g, f, h, u, v, w), sk = (x, y, z).
LGen(1λ) : Runs (p,G, g) ← GDLIN(1λ), picks x, y ← Z

∗
p, let f = gx, h = gy,

picks ru, sv ← Zp, and computes (u, v, w) = (fru , hsv , gru + sv ). Let pk =
(p,G, g, f, h, u, v, w), sk = (ru, sv).

Enc(pk,m) : On inputs pk and a message m ∈ {0, 1, 2, . . . , T} where T is a prime
and T < p, picks (r, s) ← Zp × Zp, and computes

c = (c1, c2, c3) = (umfr, vmhs, wmgr+s)

Dec(c, sk) : On inputs the ciphertext c = (c1, c2, c3), and sk = (x, y, z), computes
(gz)m = c3c

−1/x
1 c

−1/y
2 , then recovers m by using Pollard’s ρ method in the

confined message space.

Theorem 6. The above construction is a lossy encryption scheme with efficient
weak opening assuming GDLIN satisfies the decisional linear assumption.



Public-Key Encryption with Simulation-Based Sender 377

Proof. Correctness. Correctness of decryption follows from the completeness
of Extraction algorithm from homomorphic trapdoor commitment.

Indistinguishability. Since real public keys (u, v, w) = (fru , hsv , gru + sv + z)
are not linear tuple, and lossy public key (u, v, w) = (fru , hsv , gru + sv ) are
random linear tuple. Under the decision linear assumption, real public keys
and lossy public keys are computational indistinguishability.

Lossiness. Given the lossy public key pk = (fru , hsv , gru + sv ), pk is a linear
tuple, and pk is also the perfect hiding commitment key. Following the statis-
tically hiding property of the homomorphic trapdoor commitment, the cipher-
text (umfr, vmhs, wmgr+s) hides m perfectly.

Efficient weak openability. To see this, consider the algorithm Opener that
takes as input a lossy secret key (ru, sv), lossy public key (fru , hsv , gru + sv ),
plaintexts m and m′, random coins (r, s), ciphertext c such that c =
Enc(pk,m; r, s). To claim c to any plaintext m′, Opener has to find (r′, s′)
such that satisfy Enc(pk,m; r, s) = Enc(pk,m; r′, s′). Since Opener holds
secret key sk = (ru, sv), it can efficiently outputs r′ = r − (m′ − m)ru mod p
and s′ = s − (m′ − m)sv mod p, where r′ and s′ are random elements in Zp.

Remarks. Note that in the input of the opening algorithm, the random coins
r and s are also necessary. Hence, the above construction meets the notion of
weak opening. Also note that there is a gap in our proof, please see the Remarks
in Sect. 5.1.

6 Conclusion

In this paper we study public key encryptions of simulation-based security
against sender selective-opening attacks. In concrete, we present a generic con-
struction that achieves SIM-SSO-CPA security from lossy encryption, and give
an instantiation based on the Matrix Diffie-Hellman Assumption. In fact, our
instantiation is inefficient, and a further improvement would be desirable.

We further prove that the PKE constructions from Boneh-Gentry-Hamburg
scheme, Cocks’ scheme and homomorphic trapdoor commitments are SIM-SSO-
CPA secure. These schemes have natural lossiness property, but it is not our
purpose to make them explicit. We focus on whether the efficient opening algo-
rithm exists or not, and succeed in building PKE schemes that support efficient
opening.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their invaluable comments and suggestions. The authors are also grateful to Xin Wang
and Haiyang Hu for helpful discussions and advice.

A: Security Proof of the Instantiation in Sect. 3.4

We show that the instantiation satisfies the four properties of a lossy encryption
scheme with efficient weak opening.



378 D. Zhu et al.

Proof. Correctness. This follows readily from the correctness of Dl,k-MDDH-
based hash proof system.

Indistinguishability. It is obvious that (G, [Aw ]) and (G, [u ]) are computa-
tionally indistinguishable under the Dl,k-MDDH assumption.

Lossiness. Consider the lossy public key [x ] = [u ] where u ← Z
l
q. Accord-

ing to the smoothness property of the Dl,k-MDDH-based hash proof sys-
tem, [kTu ] is statistically indistinguishable from a random element in G.
Since H([kTu ]) is statistically close to uniform distribution over {0, 1}, hence
H([kTu ]) ⊕m will also be statistically close to uniform distribution over {0, 1}
for any message m.

Efficient weak openability. Please read Sect. 3.2.

Remarks. Note that if we do not require the property of efficient weak open-
ability, the compress function H is unnecessary. In this case, we need to make
some changes of the construction. The Injective key generation algorithm and
Lossy key generation algorithm will not change. It only needs to modify the
encryption and decryption algorithm.

– Encryption: On input a message m ∈ G, picks k ∈ Z
l
q, c1 = [kTA], c2 =

[kTx ] · m. Outputs ciphertext c = (c1, c2).
– Decryption: Given ciphertext c = (c1, c2), sk = w . Outputs m = (c2 ·

m)/[c1 · w ].

The modified construction is an instantiation of the generic lossy encryption in
[21] (as well as the dual Cramer-Shoup scheme in [35], Sect. 2.2), and correctness
can be easily verified. While [x ] ∈ X , smoothness property shows that [kTx ] is
completely undetermined. But without the compress function H, the space of
random coins is large, so algorithm Opener needs to compute the set of all k : ∈
Z

l
q such that [k’TA] = [kTA] until [k’Tx ] · m′ = [kTx ] · m. Hence, Opener may

not efficient. According to the result in [2], the modified scheme only achieves
IND-SSO-CPA security.

References

1. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29011-4 38

2. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 1

3. Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening security.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 522–539. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8 31

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

http://dx.doi.org/10.1007/978-3-642-29011-4_38
http://dx.doi.org/10.1007/978-3-642-29011-4_38
http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/978-3-642-30057-8_31
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3


Public-Key Encryption with Simulation-Based Sender 379

5. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2007), pp. 647–657 (2007)

6. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). doi:10.1007/978-3-540-30576-7 18

7. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997). doi:10.1007/BFb0052229

8. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). doi:10.1007/3-540-45325-3 32

9. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

10. Deng, Y., Song, X., Yu, J., Chen, Y.: On instance compression, schnorr/guillou-
quisquater, and the security of classic protocols for unique witness relations. IACR
Cryptol. ePrint Archive 2017, 390 (2017)

11. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: 40th
Annual Symposium on Foundations of Computer Science, FOCS 1999, pp. 523–
534 (1999)

12. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 8

13. Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against
chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13190-5 20

14. Fuchsbauer, G., Heuer, F., Kiltz, E., Pietrzak, K.: Standard security does imply
security against selective opening for markov distributions. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 282–305. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49096-9 12

15. Fujisaki, E.: All-but-many encryption – a new framework for fully-equipped UC
commitments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874,
pp. 426–447. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 23

16. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006). doi:10.1007/11818175 6

17. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). doi:10.1007/11761679 21

18. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012)

19. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic
applications. SIAM J. Comput. 39(5), 1667–1713 (2010)

20. Hazay, C., Patra, A., Warinschi, B.: Selective opening security for receivers. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 443–469.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 19

http://dx.doi.org/10.1007/978-3-540-30576-7_18
http://dx.doi.org/10.1007/BFb0052229
http://dx.doi.org/10.1007/3-540-45325-3_32
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-13190-5_20
http://dx.doi.org/10.1007/978-3-642-13190-5_20
http://dx.doi.org/10.1007/978-3-662-49096-9_12
http://dx.doi.org/10.1007/978-3-662-45608-8_23
http://dx.doi.org/10.1007/11818175_6
http://dx.doi.org/10.1007/11761679_21
http://dx.doi.org/10.1007/978-3-662-48797-6_19


380 D. Zhu et al.

21. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 4

22. Hofheinz, D.: All-but-many lossy trapdoor functions. In: Pointcheval, D., Johans-
son, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 209–227. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4 14

23. Hofheinz, D., Jager, T., Rupp, A.: Public-key encryption with simulation-based
selective-opening security and compact ciphertexts. In: Hirt, M., Smith, A. (eds.)
TCC 2016. LNCS, vol. 9986, pp. 146–168. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53644-5 6

24. Hofheinz, D., Rao, V., Wichs, D.: Standard security does not imply indistinguisha-
bility under selective opening. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol.
9986, pp. 121–145. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53644-5 5

25. Hofheinz, D., Rupp, A.: Standard versus selective opening security: separation and
equivalence results. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 591–615.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8 25

26. Huang, Z., Liu, S., Qin, B.: Sender-equivocable encryption schemes secure against
chosen-ciphertext attacks revisited. In: Kurosawa, K., Hanaoka, G. (eds.) PKC
2013. LNCS, vol. 7778, pp. 369–385. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36362-7 23

27. Jia, D., Lu, X., Li, B.: Receiver selective opening security from indistinguishability
obfuscation. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS,
vol. 10095, pp. 393–410. Springer, Cham (2016). doi:10.1007/978-3-319-49890-4 22

28. Jia, D., Lu, X., Li, B.: Constructions secure against receiver selective opening
and chosen ciphertext attacks. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol.
10159, pp. 417–431. Springer, Cham (2017). doi:10.1007/978-3-319-52153-4 24

29. Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer,
Heidelberg (2005). doi:10.1007/11426639 5

30. Liu, S., Paterson, K.G.: Simulation-based selective opening CCA security for PKE
from key encapsulation mechanisms. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020,
pp. 3–26. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 1

31. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 2

32. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

33. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 31

34. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Pro-
ceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 187–
196 (2008)

35. Wee, H.: KDM-security via homomorphic smooth projective hashing. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615,
pp. 159–179. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49387-8 7

http://dx.doi.org/10.1007/978-3-642-25385-0_4
http://dx.doi.org/10.1007/978-3-642-29011-4_14
http://dx.doi.org/10.1007/978-3-662-53644-5_6
http://dx.doi.org/10.1007/978-3-662-53644-5_6
http://dx.doi.org/10.1007/978-3-662-53644-5_5
http://dx.doi.org/10.1007/978-3-642-54242-8_25
http://dx.doi.org/10.1007/978-3-642-36362-7_23
http://dx.doi.org/10.1007/978-3-642-36362-7_23
http://dx.doi.org/10.1007/978-3-319-49890-4_22
http://dx.doi.org/10.1007/978-3-319-52153-4_24
http://dx.doi.org/10.1007/11426639_5
http://dx.doi.org/10.1007/978-3-662-46447-2_1
http://dx.doi.org/10.1007/978-3-642-03356-8_2
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://dx.doi.org/10.1007/978-3-662-49387-8_7


Homomorphic Secret Sharing from Paillier
Encryption

Nelly Fazio1, Rosario Gennaro1, Tahereh Jafarikhah2,
and William E. Skeith III1(B)

1 Graduate Center, The City College, CUNY, New York, NY, USA
{fazio,rosario,wes}@cs.ccny.cuny.edu

2 The Graduate Center, CUNY, New York, NY, USA
jafarikhah@gmail.com

Abstract. A recent breakthrough by Boyle et al. [7] demonstrated
secure function evaluation protocols for branching programs, where the
communication complexity is sublinear in the size of the circuit (indeed
just linear in the size of the inputs, and polynomial in the security para-
meter). Their result is based on the Decisional Diffie-Hellman assumption
(DDH), using (variants of) the ElGamal cryptosystem. In this work, we
extend their result to show a construction based on the circular secu-
rity of the Paillier encryption scheme. We also offer a few optimizations
to the scheme, including an alternative to the “Las Vegas”-style share
conversion protocols of [7,9] which directly checks the correctness of the
computation. This allows us to reduce the number of required repetitions
to achieve a desired overall error bound by a constant fraction for typical
cases, and for large programs, reduces the total computation cost.

Keywords: Homomorphic secret sharing · Function secret sharing ·
Paillier encryption · Secure function evaluation · Private information
retrieval

1 Introduction

In this paper, following exciting recent results by Boyle et al. [7,9], we present
new protocols for low-communication MPC. We extend the results in [7] (proven
secure under the Decisional Diffie-Hellman Assumption) by showing that they
can be based on the circular security of the Paillier encryption scheme [31].
Additionally, we describe a verification technique to directly check correctness
of the actual computation, rather than the absence of a potential error as in [7].
This results in fewer repetitions of the overall computation for a given error
bound.

R. Gennaro—supported by NSF Grant 1565403.

c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 381–399, 2017.
https://doi.org/10.1007/978-3-319-68637-0_23



382 N. Fazio et al.

1.1 Background and Motivation

Secure MultiParty Computation (MPC) has been a vital research area in
Cryptography for the last 30 years. Since the early seminal works [4,11,20,35,36],
we know that it is possible for two or more parties to compute a joint function
of individual secret inputs. It is a very powerful tool, since most, if not all of
the security problems can be solved in principle using a multiparty computa-
tion protocol. Those initial results established the feasibility of the solutions,
and at the same time highlighted their complexity. The research of the last
30 years has been focused on inventing increasingly powerful MPC techniques
to get more efficient solutions. One of the bottleneck parameters that imme-
diately attracted researchers’ attention was communication complexity: all the
early results require communication between the parties which is at least as large
as the size of the circuit representing the function being computed. Ideally one
would like the parties to exchange just a few messages of limited size.

Most of the research on this issue focused on types of “homomorphic”
encryption (resp. secret sharing) schemes, which allow the computation of a
function to be carried out non-interactively directly on the encryption (resp.
shares) of the secret inputs. For example additively homomorphic encryp-
tion [14,16,21,28,30,31] allows the parties to publish encryptions of their inputs,
and to compute any linear function without interaction (except for a final decryp-
tion step). Similarly this can be achieved by using linear secret sharing such as
Shamir’s [33]. These techniques were applied to the concept of Private Infor-
mation Retrieval (PIR) [12,13,26] which allows the secure computation of a
“selection” function (Party 1 holds n values x1, . . . , xn, Party 2 holds an index
i, the output is xi) with communication which is sublinear in the size of the
circuit.

General solutions for any function had to wait for the discovery by Gentry
of Fully Homomorphic Encryption (FHE) [17] which enables the computation
of arbitrary functions over encrypted input, breaking the circuit barrier in gen-
eral. The drawback of FHE is that in spite of continuous progress, even the
best implementations of FHE remain quite slow [18,19,29]. Additionally, the set
of cryptographic assumptions underlying FHE remains limited to assumptions
related to the complexity of lattice based problems, and do not include more
classical assumptions such as factoring or discrete logarithm.

These observations motivated Boyle et al. to look for alternatives. In a very
exciting recent result [7] they present a Homomorphic Secret Sharing scheme
which allows the non-interactive computation of Branching Programs over the
shares of the secret inputs. Further optimizations (as well as transporting some
results to the generic group model for DDH-hard groups) are given by the same
authors in [9]. Their scheme is orders of magnitude more efficient than FHE and
its security is based on the DDH Assumption.



Homomorphic Secret Sharing from Paillier Encryption 383

1.2 Our Results

We extend the results in [7,9] by showing that Homomorphic Secret Sharing for
Branching Programs can be based on the (circular) security of the Paillier [31]
encryption schemes.

While our protocols follow the same blueprint of the Homomorphic Secret
Sharing in [7] our extensions were not immediate. Below we give an overview of
the main technical problems and challenges we encountered, and the techniques
used to overcome them.

1.3 Techniques

To begin, we give a very high-level review of the techniques used in [7]. We
then outline where new techniques are needed for our work. Informally, the
construction of [7] follows these steps:

1. The scheme uses the ElGamal encryption scheme modified to be additively
homomorphic by placing the plaintext in the exponent. That is, encryptions
of a message x look like �x� = (α = gr, β = hr · gx), where h = gc is the
public key. When messages are small, decryption is feasible by performing a
discrete logarithm after the usual ElGamal decryption.

2. The scheme also uses, simple 2-out-of-2 additive sharing. Given z ∈ Zq where
q is the order of the ElGamal group, we denote 〈z〉 = (z1, z2) such that
z1 + z2 = z mod q, where each party Pi holds zi.

3. Given �x� = (α, β), 〈y〉 = (y1, y2) and 〈cy〉 = (w1, w2) each party Pi can
now locally compute a share γi as γi = βyi · α−wi , such that γ1 · γ2 = gxy,
i.e. a multiplicative sharing of gxy. Note how this step effectively removes the
randomness from the encryption of x, using the secret key c.

4. Finally, a clever technique is used to compute a distributed discrete logarithm,
thus recovering an additive sharing of xy without the need for interaction.
We point out that their procedure requires the multiplicative sharing to be
in a cyclic group.

Abstracting out from the specifics, we can see that the scheme in [7] requires
the following ingredients:

– An encryption scheme which is both message and key homomorphic over Z

(or a finite quotient), i.e., a scheme that allows the transformation in step 3
above.

– A non-interactive method for transforming a multiplicative sharing of gz into
an additive sharing of z, where these two values “live” in the ciphertext and
message space (respectively) of the encryption scheme.

Our Construction. We now address the challenge of adapting these techniques
to make use of the Paillier cryptosystem [31]. Recall that Paillier is naturally
additively homomorphic over the integers, which works in our favor here. Addi-
tionally, we can use a version of Paillier threshold decryption [15,24] to obtain
the “key homomorphic” property which allows to perform Step 3.



384 N. Fazio et al.

Recall that a Paillier encryption of an integer x is of the form gxrn mod n2,
where n is an RSA modulus, ord(g) = n, and ord(rn) | ϕ(n). Since it is required
that (n, ϕ(n)) = 1, we can use the Chinese Remainder Theorem to find an integer
λ such that

λ ≡
{

1 mod n

0 mod ϕ(n)
.

Now if σ = gxrn is an encryption of x, then by raising to the λ power we get:
σλ = (gxrn)λ = gx mod n2. While there are efficient procedures for completing
the decryption (recovering x from gx), note that we have already made substan-
tial progress in obtaining the necessary ingredients for the [7] blueprint. Given
an additive sharing 〈λy〉 = (z1, z2) of λy (so that z1 + z2 = λy), then (σz1 , σz2)
is a multiplicative sharing of gxy, i.e.

σz1σz2 = σλy = gxy mod n2.

If xy is relatively small, we might hope to then perform the distributed discrete
log protocol from [7], however there are a few complications. To begin, it is not
entirely obvious that the distributed discrete log protocol would work in Z

×
n2

which is not a cyclic group. For example, while certainly gxy lives in 〈g〉, each
party’s shares do not – the shares sit in Z

×
n2 , and furthermore in different cosets

of 〈g〉. Fortunately, we can modify the protocol in [7] (as well as most of the
variants from [9], sans a few optimizations) to work for any finite group in a
fairly straightforward way (see Sect. 3 for details).

The other main issue concerns the representation of our additive shares. In
the original ElGamal-based scheme, additive shares of a value y satisfy

∑
yi ≡

y mod q, where q is the order of the group. Note that q is public in this case.
Thus, each party can perform addition modulo q without knowledge of any secret
values. In Paillier, however, we need to work with additive shares of values that
work modulo nϕ(n), a value that must be kept secret. Therefore we do this
sharing over the integers. Without a careful implementation this step can cause
the size of the shares to grow exponentially, but we are able to avoid this problem.
Details can be found in Sect. 4.

Verifying Computations. In [7,9], the authors describe “Las Vegas” style tech-
niques to check for the potential risk of having incurred an incorrect computation
during each step of the protocol. If the possibility of an error is never signaled,
then the overall computation is considered correct. This method was then shown
to provide efficiency improvements for several applications.

In this work, we describe a technique to directly check correctness which
verifies the actual computation, rather than the absence of a potentially “risky”
situation. This method of checking does not produce false negatives (erroneously
reporting that the protocol failed), and allows us to reduce even further the
number of required invocations for a desired overall error bound by a constant
fraction. The price we pay for this (in addition to a negligible probability of a false
positive), is some extra effort to compute the values used in the check. However,
this effort depends linearly on the program size, whilst each repetition takes



Homomorphic Secret Sharing from Paillier Encryption 385

quadratic time in the program size. Hence, we achieve a savings in computation
for large programs. Our verification method works both for the original ElGamal-
based construction of [7] and for our Paillier-based construction, although the
benefits are more pronounced for the latter. Details can be found in Sect. 5.

2 Preliminaries

2.1 Encryption

A public-key encryption system Π consists of three algorithms (KeyGen,Enc,
Dec), where KeyGen is a key generation (randomized) algorithm that takes a
security parameter k and outputs a public-secret key pair (PK,SK); Enc(PK,m)
is the encryption (randomized) algorithm that on input a message m and the
public key PK outputs a ciphertext c; and Dec(SK, c) decrypts ciphertext c with
secret key SK. Obviously if (PK,SK) ← KeyGen(1k) and c ← Enc(PK,m) then
m = Dec(SK, c).

Semantic Security. [21] says that no polynomial time adversary can distinguish
between the encryption of two messages of its choice. For all PPT A

Pr[b′ = b : (PK,SK) ← KeyGen(k), (m0,m1) ← A(PK),

b ← {0, 1}, b′ ← AOb(PK)] ≤ 1
2

+ ν(k)

where oracle Ob takes no input and outputs c ← Enc(PK,mb), and ν(k) is a
negligible function.

Circular Security. A public-key encryption Π is circular secure if it remains
secure even encrypting messages that depend on the secret keys in use. More
precisely, if c with length(c) = l(k) is the secret key of the public key encryp-
tion scheme Π which encrypts bits, there is a negligible function ν(k) that the
following holds for all PPT A:

Pr[b′ = b : (PK,SK) ← KeyGen(k), b ← {0, 1}, b′ ← AOb(PK)] ≤ 1
2

+ ν(k)

where oracle O takes no input and outputs (D1,D2, . . . , Dl) such that{
∀i ∈ [l],Di ← Enc(PK, 0) if b = 0
∀i ∈ [l],Di ← Enc(PK,SKi) if b = 1

in which SKi is the i-th bit of SK. Later we will see that circular security plays
an important role in the construction of our homomorphic secret sharing. We
remark that circular security implies semantic security.



386 N. Fazio et al.

2.2 The Paillier Encryption Scheme

Let n be an RSA modulus, i.e. n = pq where p, q are primes. A number z is said to
be an n-th residue modulo n2 if there exists a number y ∈ Z

×
n2 such that z = yn

mod n2. We assume that there exists no polynomial time distinguisher for n-th
residues mod n2. We will refer to this hypothesis as the Decisional Composite
Residuosity Assumption (DCRA).

More formally, we assume that there exists a randomized RSA key generation
algorithm RSAGen that on input a security parameter 1k selects two k-bit primes.
Then we say that the DCRA holds (with respect to RSAGen) if for all PPT A
there exists a negligible function ν(k), such that

Pr[b′ = b : (p, q) ← RSAGen(k), n = pq, b ← {0, 1}, b′ ← AOb(n)] ≤ 1
2

+ ν(k)

where oracle Ob takes no input, selects y uniformly at random in Z
×
n2 and outputs

z such that z = y if b = 0, and z = yn if b = 1.

The Paillier encryption scheme, whose security is based on DCRA is defined
as follows (where we use the modified definition of the secret key λ from [16,24]
used in their threshold variant of the scheme). The key generation algorithm
KeyGenPaillier(1k) picks two k-bit prime numbers p and q such that n = pq sat-
isfies (n, ϕ(n)) = 1 (which will hold with high probability for such n), computes

λ =

{
1 mod n

0 mod ϕ(n)
(1)

and outputs (PK,SK) for PK = n and SK = λ. Note that the existence of such
a λ, as well as an efficient means of computing it, are given by the Chinese
Remainder Theorem since (n, ϕ(n)) = 1. Note also that λ is unique in the range
[0, . . . , nϕ(n) − 1]. The encryption algorithm for a message x ∈ Zn is defined by

EncPaillier(PK, x) = (1 + n)x · rn mod n2

and the decryption algorithm for σ < n2 is defined by

DecPaillier(SK, σ) =
L(σλ mod n2)

L((1 + n)λ mod n2)
mod n where L(u) =

u − 1
n

Paillier is an additive homomorphic scheme; given only the public-key and σi =
EncPaillier(xi) then σ1 · σ2 mod n2 = EncPaillier(x1 + x2 mod n).

2.3 Homomorphic Secret Sharing

A 2-out-of-2 homomorphic secret sharing scheme (HSS) [7] deals with the sce-
nario that a client wants to split a secret input w ∈ {0, 1}n into shares (w0, w1),
and sends each wi to a different server. Each server holding a representation of
a function f , can locally compute additive shares of f(w).



Homomorphic Secret Sharing from Paillier Encryption 387

A representation for a function is a program P (a collection of bit strings).
For an input w ∈ {0, 1}n, the output of P is represented by P (w). The symbol ⊥
is used when the output of P (w) is undefined. For simplicity we can consider the
inputs and outputs of a function as binary strings. A HSS scheme consists of two
algorithms: Share that splits the secret into two shares and Eval that evaluates a
program P on two inputs such that the outputs are the additive shares of P (w).

Definition 1. A homomorphic secret sharing scheme with error bound δ for the
collection of programs P consists of algorithms (Share,Eval) with the following
properties:

– Share(1k, w): on the security parameter 1k and w ∈ {0, 1}n outputs (w0, w1).
– Eval(b ∈ {0, 1} , wb, P, δ) outputs yb.
– Correctness: For every polynomial p there exists a negligible function ν such

that for every k,w, P, δ in which |P |, 1/δ ≤ p(k)

Pr[y0 + y1 = P (w) : (w0, w1) ← Share(1k, w),
yb ← Eval(b, wb, P, δ), b ∈ {0, 1}] ≥ 1 − δ − ν(k)

– Security: Each share computationally hides the secret input.

We would like to apply a stronger version of HSS that allows homomorphic
computation on encrypted inputs.

Definition 2. A Distributed-Evaluation Homomorphic Encryption (DEHE)
with error bound δ for a class of programs P consists of three algorithms
(KeyGen,Enc,Eval) as follows:

– (PK, (e0, e1)) ← KeyGen(1k): It takes a security parameter 1k and outputs a
PK and a pair of evaluation keys (e0, e1).

– Ew := Enc(PK, w): It encrypts a secret input bit w and output c.
– Evalb := Eval(b ∈ {0, 1} , eb, c = (c1, c2, . . . , cn), P, δ): Outputs yb as party b’s

share of output y.
– Correctness: For every polynomial p there exists a negligible function ν such

that for every k,w = (w1, . . . , wn) ∈ {0, 1}n
, P, δ in which |P |, 1/δ ≤ p(k)

Pr[y0 + y1 = P (w) : (PK, (e0, e1)) ← KeyGen(1k),
C ← (Ew1 , . . . , Ewn), yb ← Evalb] ≥ 1 − δ − ν(k)

– Security: Let Db stand for the distribution obtained by applying the evalua-
tion key eb in this setting. The security of the DEHE scheme means that D0

and D1 are computationally indistinguishable.

2.4 Restricted Multiplication Straight-Line Programs (RMS)

Our construction will provide non-interactive evaluation of some specific col-
lection of programs called as restricted multiplication straight-line programs
(RMS). The class of RMS programs with bound 1M (where M is an upper bound
for the size of a memory location) is an arbitrary sequence of the instructions as
follow:



388 N. Fazio et al.

1. Load an input x = (x1, x2, . . . , xn) ∈ {0, 1}n into memory: yj ← xi.
2. Add memory locations: yk ← yi + yj .
3. Multiply a memory location by an input: yk ← xi · yj .
4. Output a memory location: Oj ← yj .

Whenever the size of a memory value exceeds M , the program aborts and outputs
⊥. We define the size of an RMS program as the number of its instructions. As
pointed out in [7] RMS programs can be used to evaluate branching programs
with constant overhead.

3 Share Conversion

Here we provide our first technical contribution: A generalization of the distrib-
uted discrete log and share conversion procedures from [7] which works in any
finite group G, not just a cyclic group.

Consider the setting of two party computation, where one party holds x and
the other party holds y such that xy = gb where g is an element of a group G
(i.e. (x, y) is a multiplicative sharing relative to g of a small value b. Suppose
that both parties have access to a random function φ : G −→ {0, . . . , k − 1} for
k ∈ N (appropriate values for k will be determined shortly).

We will prove that if each party locally runs the procedure DDLog below
(where the input a is set to the share held by each party and δ,M are parameters
we will determine later) then at the end, the parties output values i, j such
that i − j = b with sufficiently high probability. In other words the procedure
simultaneously computes the discrete log1 of gb and turns the multiplicative
sharing into an additive one.

Algorithm 1. DDLogG,g(a, δ,M, φ)
1: i = 0; h = a; T = 2M ln(2/δ)/δ
2: while φ(h) �= 0 and i < T do
3: h = gh
4: i = i + 1
5: end while
6: return i

Let G be a finite group, and g ∈ G. Note that if two elements x, y ∈ G have
a product in 〈g〉, this is of course equivalent to saying that x and the inverse of
y live in the same coset of 〈g〉, or put another way, x and y−1 differ by some
number of “g-steps”:

x = gby−1. (2)

1 There is no contradiction here with the hardness of discrete log, since this works
only for small values of b.



Homomorphic Secret Sharing from Paillier Encryption 389

〈g〉x

y
−1

x

sy−
1

sx

b{

Fig. 1. Illustration of DDLog procedure on xy = gb. Here, x, y are multiplicative shares
of a small value b, which are inputs to DDLog. Both x and y−1 sit in the same coset 〈g〉x
of 〈g〉. The dots represent the elements of a random δ-sparse subset S in 〈g〉x. Note that
(with good probability) the difference in the number of steps taken is b = sy−1 − sx,
so that (−sx, sy−1) is an additive sharing of b.

Define S = φ−1({0}). Then the parties will be able to “synchronize” by
counting g-steps to the next value in S, recovering an additive sharing of b. The
parameter k can be used to balance the running time of the process with its
success probability. The basic idea is depicted in Fig. 1. Note that the domain of
φ must be the entire group G not just the particular coset where x, y−1 reside.
Indeed, finding a useful representation of that coset (in order to instantiate φ)
might be difficult.2

Fortunately this is not much of a complication – Eq. (2) combined with the
fact that φ gives random labels to each element allows the same analysis to
proceed for the restriction of φ to any coset. Indeed, Algorithm 1 is a proper
generalization of the corresponding algorithm from [7] (where the group is cyclic
〈g〉 = G so there is only one coset), and a very similar argument suffices to show
its correctness in our application. We provide a few details for completeness.
Following the notation of [7], we set M to be an upper bound on the value being
shared and T will be a “timeout” value.

Proposition 1 ([7, Propostion 3.2]). Let G be any finite group, g ∈ G, δ > 0,
and M ∈ N. If M,T < ord(g), then for any x, y ∈ G such that xy = gb with
b < M , we have

Pr
φ

[
DDLog(y−1, δ,M, φ) − DDLog(x, δ,M, φ) = b

] ≥ 1 − δ

where φ is sampled uniformly from all functions from G −→ {0, . . . , �2M/δ}.
2 For example in our DCRA-based construction, this would be equivalent to decryption.



390 N. Fazio et al.

Proof sketch: Modeling φ as a random function from G −→ {0, . . . , �2M/δ},
note that for any a ∈ G we have Pr

φ
$←R [φ(a) = 0] ≈ δ

2M , and in particular
the same is true of φ restricted to the coset 〈g〉x. With this in hand, the rest
of the proof proceeds as that of [7, Propostion 3.2], using a few straightforward
applications of the well known inequality 1 + x ≤ ex. ��

Lastly, we remark that when the random function φ is replaced by a pseudo-
random function (PRF), an analogous proposition holds, stating that no efficient
adversary can find a sequence of instructions that would cause the probability
to deviate substantially below 1 − δ. The important observation (present in [7])
is that by modularizing DDLog (in particular, this procedure accesses φ as an
oracle, and does not need to know the seed), we can use any adversary that finds
an input which is “bad” for a PRF φ to construct an adversary that distinguishes
φ from random, thus breaking the security guarantee of the PRF.

4 Construction from DCRA

Using DDLog introduced in previous section as one of our sub-procedures, we will
present an HSS scheme based on the circular security of Paillier’s encryption
which evaluates RMS programs (see Sect. 2.4). We make use of the following
convenient notation, borrowed from [7]:

1. For input x ∈ Zn, �x�λ is a Paillier encryption of x with respect to the secret
key λ. That is, �x� := E(x) = σ = (1 + n)x · rn mod n2 where r

$← Z
×
n ,

and λ is the unique integer in [0, . . . , nϕ(n) − 1] satisfying Eq. (1). Note that
σλ = (1 + n)x ∈ Z

×
n2 in this case.

2. 〈y〉 refers to additive secret shares of y, i.e., two values y0, y1 such that y =
y0 + y1 over the integers.

3. Lastly, 〈〈y〉〉 refers to multiplicative secret shares of (1 + n)y i.e., two values
h0, h1 ∈ Zn2 such that h0 · h1 = (1 + n)y mod n2. These are intermediate
values that arise during multiplication instructions, and will be converted
back to 〈y〉 by the sub-routine DDLog.

Note that �x�λ is a global value meaning that both parties receive the same
value, in contrast to 〈y〉 and 〈〈y〉〉, where each party has a different share. In the
following we denote with λ(i) is the i-th bit of the binary representation of λ;
that is, λ =

∑�−1
i=0 2iλ(i).

When evaluating an RMS program a dealer will share each input x ∈ Zn, in
the following way �x�λ ,

{
(
�
xλ(i)

�
λ

}�−1

i=0
, 〈x〉, 〈λx〉. Note that this will typically

include encryptions of many bits of λ which is why we need the circular security
assumption for Paillier.

Values y in memory locations will instead be stored as 〈y〉, 〈λy〉. The original
shares of all additive sharing are chosen randomly in [−n3, n3] which result in a
distribution that is statistically close to uniform for any shared value.

We first notice that additions are easily computed due to the homomorphic
properties of Paillier’s encryption and the additive secret sharing. One thing to



Homomorphic Secret Sharing from Paillier Encryption 391

note is that the size of the additive sharing increases by at most one bit after
each addition since each player locally adds shares over the integers. This is not
a major problem (since the size of the shares will still be polynomial by the end
of the execution of the program). Furthermore, upon each multiplication step
we will again have small additive shares for the product, as these shares are
produced by DDLog (which outputs shares of logarithmic size in its polynomial
running time). We discuss this further in what follows.

We now turn our attention to the computation of multiplication between
an input x and a memory location value y. Since this value will be stored in a
memory location (and so that it may be used again in subsequent multiplications)
we need to compute 〈xy〉 and 〈λxy〉.

The computation of 〈xy〉 uses �x�λ and 〈λy〉 via the following steps3

(�x�λ , 〈λy〉) (a)� 〈〈xy〉〉 (b)� 〈xy〉. (3)

A description of steps (a) and (b) follows:

(a) Let z1+z2 = λy and σ = �x�λ. Then each player computes γi = σzi mod n2.
Note that γ1 ·γ2 = σλy = (1+n)xy mod n2. In other words (γ1, γ2) = 〈〈xy〉〉.
We denote with (γ1, γ2) = MultShares(�x�λ , 〈λy〉).

(b) Use the DDLog procedure on (γ1, γ2) with parameters δ,M (which will be
specified by the RMS program being run on the shares) and random function
φ. We denote with ConvertShares(〈〈xy〉〉, δ,M, φ) the pair

〈xy〉 = (−DDLog(γ1, δ,M, φ),DDLog(γ−1
2 , δ,M, φ)).

Note that the first party negates the result of DDLog to maintain the invari-
ant that the shares add to the shared value (DDLog output shares whose
difference is the shared value), and that the second party must invert her
share before invoking DDLog (see Fig. 1).
Then, to compute 〈λxy〉 we use

{
(
�
xλ(i)

�
λ

}�−1

i=0
and 〈λy〉 as follows

{
(
�
xλ(i)

�

λ
, 〈λy〉)

}�−1

i=0

(c)�
{

〈λ(i)xy〉
}�−1

i=0

(d)� 〈λxy〉. (4)

A description of steps (c) and (d) follows:

(c) � invocations of step (a, b) above to compute each 〈xyλ(i)〉.
(d) Each party will locally multiply the i-th share by the value 2i and sum these

shares together.

Note that if the shares in 〈λy〉 are of size t at the beginning of this step, at the
end they are of size at most 3t (2t + � to be precise4). However these shares do
3 Differently than in [7] we do not use 〈y〉 in the multiplication step – The additive

sharing of y however needs to be stored so that we can compute the output at the
end.

4 � ≤ t since additive shares start of size � and then they can grow as the result of
addition operations.



392 N. Fazio et al.

not grow further since at the next step they are used “in the exponent”, and the
result of additive shares coming out of the DDLog procedure is always �.

The following figures will present our homomorphic secret sharing scheme
(Share,Eval).

Theorem 1. Assuming that Paillier is circular secure, the scheme (Share,Eval)
as described in Figs. 2 and 3 is a secure homomorphic secret sharing with error
δ for the class of RMS programs.

Fig. 2. Share for secret sharing an input x via the HSS scheme

The proof follows the same structure of the proof in [7] and we refer the reader
to that proof. The only difference is that our additive sharings are statistically
secure rather than perfectly secure as in [7]. This comes into play only in the
proof of Lemma 3.11 in [7], specifically in the proof of the indistinguishability of
Hybrid 0 versus Hybrid 1. In our simulation the shares of each player in Hybrid
1 are chosen uniformly at random in [−n3, n3]. For player P1 this distribution
is identical to the distribution in the real protocol (Hybrid 0). For player P2

that’s not the case, indeed the distribution of the shares of this player in the
real protocol is uniform in [−n3 + x, n3 + x] where x is the value being shared.
It’s not hard to see that the statistical distance between the two distributions is
2x
2n3 which is O( 1

n ) i.e. negligible in the worst case when x = λ = O(n2).



Homomorphic Secret Sharing from Paillier Encryption 393

Fig. 3. Procedures for performing homomorphic operations on secret shares

From Private to Public-Key. In the construction above, secret shares of an input
x consisted of Paillier encryptions �x�λ , {�

λ(i)x
�

λ
}t∈[l] and additive secret shares

〈x〉, 〈λx〉. It is not immediately clear how one would generate those values with-
out knowing the secret λ. However, by leveraging the homomorphic property of
Paillier, we can generate these values for a secret sharing of x given only public
key information which is independent of the input x. We can set up an initia-
tive algorithm that samples a Paillier key pair (n, λ), encryptions of {�λi

�
λ
}t∈[l],

and evaluation key corresponding to additive secret shares of 〈λ〉. A user without
any knowledge of the secret key can then compute �x�λ and {�λix

�
λ
}t∈[l] using

the public parameters and homomorphic property of the underlying encryption
scheme. Values 〈x〉 and 〈λx〉 can be computed by running Eval.



394 N. Fazio et al.

Optimizing the Generator. For protocols based on DDH, considerable practical
performance improvements have been demonstrated in [9]. For example, by using
the quadratic reciprocity theorem to choose pseudo-Mersenne primes p for which
large prime order subgroups of Z

×
p are generated by the integer 2, impressive

speed-ups for DDLog are shown. Unfortunately, these techniques do not seem to
transfer well to Paillier, as the analogous subgroups (for which 2 is a generator)
would naturally be contained in the subgroup of n-th powers, rather than 〈1 + n〉.
While it might be the case that rejection sampling safe primes until 〈2〉 = 〈1 + n〉
is plausible,5 and moreover such that the modulus n is close to a power of
2, it is not clear how this would affect security. However, we note that the
“standard” generator (1 + n) of the subgroup of order n actually admits a
small optimization, which is as follows. Let h denote the share of one of the
parties, which will be input into DDLog. First, write h = an + b, where a, b < n.
Then notice that h(1 + n) ≡ (a + b)n + b mod n2. Also, note that since the
two inputs to corresponding DDLog invocations will be in the same coset of
〈1 + n〉, the values b will also be identical for each share. So not only can we
define the PRF φ to have domain Zn, more importantly we can substitute a
multiplication (by (1 + n) mod n2) with a simple addition of two values in Zn

(we only need to keep track of (a + b) mod n for each step). Since performing
the group multiplications was the most costly part of DDLog, this may yield
considerable savings in computation.

5 Verifying Computations

The work of [7] mentions a “Las Vegas” style version of HSS in which one of the
parties checks for the potential of the ConvertShares/DDLog procedure failing at
each step. If there was never a chance of failure, then a special flag is set by this
party to indicate that the results of the computation are guaranteed to be correct.
This method was then shown to provide efficiency improvements for several appli-
cations. In particular, for function secret sharing applications (denoted “FSS”
henceforth; see [6,8]) in which neither evaluator learns the output (e.g., PIR), this
method can be used to reduce the number of parallel invocations required to attain
a desired bound on the error probability of the protocol. In this section, we briefly
describe a technique to directly check correctness which verifies the actual com-
putation, rather than the absence of a potentially “risky” situation arising dur-
ing DDLog. Since this method of checking does not produce false negatives (erro-
neously reporting that the protocol failed), we can reduce even further the number
of required invocations for a desired overall error bound by a constant fraction.
The price we pay for this (in addition to a negligible probability of a false posi-
tive), is some extra effort to compute the values used in the check. However, this
effort depends linearly on the program size, whilst each repetition takes quadratic
time in the program size. Hence, we achieve a savings in computation for large pro-
grams. We suspect this technique will be most useful in the case of Paillier-based
5 At least the test is efficient if the factorization of the order of the group is known,

as is the case if n was a product of safe primes.



Homomorphic Secret Sharing from Paillier Encryption 395

constructions where some of the optimizations of [9] which reduce computation are
not readily available. We nevertheless describe the method for both cases, as the
ElGamal-based version has a simpler description.

The method works by constructing a sort of “hash” of the intermediate states
of the computation in two ways – the states prescribed by multiplicative shares,
and the states given by the additive shares after performing DDLog. We first
consider the original case of ElGamal-encrypted inputs. Let G be a group of
prime order q, and let 〈g〉 = G. Let m be the number of multiplication steps in
the program being evaluated. Then we denote by zi = z0i + z1i the exponents
of the multiplicative sharing of the i-th multiplication step. That is, the players
hold gz0

i , gz1
i . After running DDLog, the players will hold z0i , z

1
i , respectively.

If the DDLog protocol was successful, it should be the case that zi = zi for
i = 0, . . . , m − 1, where zi = z0i + z1i . We now define polynomials P, P ∈ Fq[X]
for each of the two potential transcripts:

P (X) =
m−1∑
i=0

ziX
i, P (X) =

m−1∑
i=0

ziX
i. (5)

Note that each player (j ∈ {0, 1}) can compute shares of these polynomials
P j(X) =

∑
zj
i X

i and P
j
(X) =

∑
zj

iX
i, so that P = P 0+P 1 and P = P

0
+P

1
.

Now consider the polynomial (P − P ) ∈ Fq[X]. If DDLog succeeded at each
multiplication step, then this polynomial is identically 0. On the other hand, if
at any point DDLog failed, this polynomial will be non-zero, and of course will
have degree at most m − 1. Since q is prime, (P − P ) can have at most m − 1
roots so that

Pr
α

$←Zq

[
(P − P )(α) = 0

] ≤ m − 1
q

= negl. (6)

Thus, with high probability, [(P − P )(α) = 0] ⇐⇒ [no errors occurred in
DDLog ]. For applications likePIR, this observationalonewill suffice:we canmodify
the protocol to send a random α along with the query, and the servers will compute
their shares of (Pj − P j)(α), which will be returned with the answers to the query.
Note that the shares of P (α) must be computed in the exponent (which can never-
theless be done using Horner’s rule), and the shares of P (α) are computed directly
in Zq. Hence the total additional cost is m exponentiations and m multiplications.
We also mention a few optimizations. First, since each exponentiation will be to the
same exponent α, we can pre-compute an addition chain for α and reuse this for all
the exponentiations. Second, we note that it is not necessary to choose α

$← Zq.
We could for example choose α

$← {
1, . . . , (m − 1)280

}
instead and still achieve

the same effect as Eq. (6), meanwhile reducing the number of multiplications for
exponentiations by a factor of two to four (for common choices of G, as of this
writing).

From Paillier Encryption. We can also adapt the above to work with Paillier.
In this case, (1 + n) will serve as our generator g, but since we now work in
the larger, composite order group Z

×
n2 (rather than 〈g〉), a few remarks are in



396 N. Fazio et al.

order. First note that if n = pq is an RSA modulus, then for f ∈ Zn[X] with
deg(f) = d, f has at most d2 roots. This follows at once from the Chinese
Remainder Theorem: the roots α ∈ Zn of f are in bijective correspondence
with the respective pairs of roots (αp, αq) of fp = (f mod p) ∈ Zp[X] and fq =
(f mod q) ∈ Zq[X]. Since deg(fp),deg(fq) ≤ d and since Zp, Zq are fields, it
follows that there can be at most d2 roots of f in Zn, and thus the main point
of (6) still holds (that is, Pr

[
(P − P )(α) = 0

]
= negl).

We also remark on the importance of using Horner’s rule in computing (1 +
n)Pj(α). Before, we were working in a cyclic group, and so the multiplicative
shares were of the form gPj(α) for j ∈ {0, 1}. In this case, each player has a
sequence of group elements γ0

i , γ1
i such that γ0

i γ1
i = (1+n)zi . Naturally we have[

m−1∏
i=0

(γ0
i )αi

][
m−1∏
i=0

(γ1
i )αi

]
= (1 + n)P (α)

but at first glance, it seems that it might be somewhat expensive to raise the
shares γj

i to the (large) exponents αi: since the order of the group (nϕ(n)) is not
public, it might seem that this would take work proportional to the length of αi,
which is proportional to the multiplicative depth of the program. Fortunately
using Horner’s rule prevents us from having to compute or store αi directly,
and instead we can simply exponentiate by α repeatedly.6 Lastly, since current
values of n may be 2048 bits in length, choosing α

$← {
1, . . . , (m − 1)2 · 280

}
will

provide substantial savings. At this point, the protocol follows identically to the
above version for ElGamal.

Applications. Applications of the above Las Vegas versions of ConvertShares
include situations where it is unimportant to keep the intermediate states of
the computation hidden from the receiver of the output. For example (as noted
by [7]), using the scheme as an FSS to perform two-server PIR protocols. The
benefit of this approach is that, for a target overall error bound, it further reduces
the number of parallel repetitions of the protocol that must be performed to
achieve it. Under the (generally wrong) assumption that the intermediate values
of the computation are uniform in their domain, it is not hard to show that the
probability of failure for a single round decreases by a factor of ≈1/2. However,
as noted this assumption is generally not true. What can be said, is that the
smaller the intermediate values are (relative to their domain), the more of an
advantage this method provides. For concreteness, an example: assuming half of
the intermediate values are 0 and half are 1 (as would hold in expectation for
the random case), then if the target error bound was 2−80 and the error for a
single invocation of the original protocol was set to be 1/4, then our protocol
(assuming random intermediate values) would reduce this failure rate to 1/8 and
thus the required number of invocations would decrease from 40 to 27. Again,

6 We note that naive polynomial evaluation could also be made reasonable by raising
to αi mod n, since in any abelian group, if

∏
hi ∈ H < G with |H| = n, then for

any k ∈ Z, (
∏

hi)
k = (

∏
hi)

k mod n =
∏

(hk mod n
i ).



Homomorphic Secret Sharing from Paillier Encryption 397

we note that while the computation cost increases, this increase is linear in the
multiplicative depth of the program (and polynomial in a security parameter)
which provides an advantage for large programs, especially for Paillier-based
constructions where many of the speed-ups for DDLog from [9] do not seem
available.

6 Conclusions and Future Work

We extend recent breakthrough results by Boyle et al. [7,9], which under the
DDH Assumption, present homomorphic secret sharing and secure function eval-
uation protocols for branching programs with low communication complexity.
We show how to construct similar protocols based on the circular security of
the Paillier encryption scheme. In the process we extended their “distributed
discrete log” procedures to work over any finite group, and in particular when
the discrete log is being sought in a subgroup of unknown order. This techni-
cal contribution could be of independent interest and may lead to techniques
for proving the security of such protocols under larger classes of computational
assumptions.

Our result leaves several interesting open problems:

1. Analyze the circular security assumption on the Paillier encryption scheme
and/or come up with alternative schemes with the same functionality that
can be proven to be circular secure. This seems a non-trivial question, and
as shown by [32], there is no chance for proving a “blanket” result for bit
encryption, as there is no black-box reduction of circular security to semantic
security. Indeed, there have been many results in the recent literature showing
separations between the two notions under various assumptions [1,2,5,10,22,
25,27,34].

2. Construct Homomorphic Secret Sharing based on other assumptions. One
interesting question here is if we can have HSS based directly on LWE which
results in more efficient protocols than those based on FHE.

3. Extend the class of functions for which we can break the “circuit barrier” for
communication complexity in secure MPC.

4. Explore further optimizations to the Paillier-based protocol. In particular, the
work of [9] makes use of PKI for the setup phase, in place of performing general
purposeMPC.Their technique seems to leverageheavily a sort of symmetry that
is present in ElGamal, which is not shared by the Paillier encryption scheme: in
particular, they make use of the fact that many different secret keys can exist for
a single set of common parameters (the group G and generator g). With Paillier,
the modulus n uniquely determines secret information, so it would seem new
ideas are required.

5. Empirical data regarding implementations may also be of interest to have a bet-
ter idea of at what point various trade-offs make sense (for example, making use
of the verification process from Sect. 5 to reduce the number of repetitions vs
trying to squash the degree using randomizing polynomials [3,23]).



398 N. Fazio et al.

References

1. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation
to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 403–422. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 21

2. Alamati, N., Peikert, C.: Three’s compromised too: circular insecurity for any
cycle length from (Ring-)LWE. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9815, pp. 659–680. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53008-5 23

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Comput. Complex. 15(2), 115–162 (2006)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10 (1988)

5. Bishop, A., Hohenberger, S., Waters, B.: New circular security counterexamples
from decision linear and learning with errors. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 776–800. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48800-3 32

6. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46803-6 12

7. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 509–539. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 19

8. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1292–1303. ACM (2016)

9. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing
rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017).
doi:10.1007/978-3-319-56614-6 6

10. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular
security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 540–557. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8 32

11. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure proto-
cols. In: Proceedings of the Twentieth Annual ACM symposium on Theory of
Computing, pp. 11–19. ACM (1988)

12. Chor, B., Gilboa, N.: Computationally private information retrieval. In: Proceed-
ings of the Twenty-Ninth Annual ACM symposium on Theory of Computing, pp.
304–313. ACM (1997)

13. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

14. Cohen, J.D., Fischer, M.J.: A robust and verifiable cryptographically secure elec-
tion scheme (extended abstract). In: 26th Annual Symposium on Foundations of
Computer Science, Portland, Oregon, USA, pp. 372–382, 21–23 October 1985

15. Damg̊ard, I., Jurik, M.: A length-flexible threshold cryptosystem with applications.
In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 350–364.
Springer, Heidelberg (2003). doi:10.1007/3-540-45067-X 30

16. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol.
1992, pp. 119–136. Springer, Heidelberg (2001). doi:10.1007/3-540-44586-2 9

http://dx.doi.org/10.1007/978-3-642-13190-5_21
http://dx.doi.org/10.1007/978-3-662-53008-5_23
http://dx.doi.org/10.1007/978-3-662-53008-5_23
http://dx.doi.org/10.1007/978-3-662-48800-3_32
http://dx.doi.org/10.1007/978-3-662-46803-6_12
http://dx.doi.org/10.1007/978-3-662-53018-4_19
http://dx.doi.org/10.1007/978-3-319-56614-6_6
http://dx.doi.org/10.1007/978-3-642-30057-8_32
http://dx.doi.org/10.1007/3-540-45067-X_30
http://dx.doi.org/10.1007/3-540-44586-2_9


Homomorphic Secret Sharing from Paillier Encryption 399

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp.
169–178. ACM, New York (2009)

18. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. Cryptology ePrint Archive, Report 2010/520 (2010)

19. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 465–482. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 28

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)

21. Goldwasser, S., Micali, S.: Probabilistic encryption. JCSS 28(2), 270–299 (1984)
22. Goyal, R., Koppula, V., Waters, B.: Separating IND-CPA and circular security for

unbounded length key cycles. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp.
232–246. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54365-8 10

23. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: Proceedings of the 41st
Annual Symposium on Foundations of Computer Science, pp. 294–304. IEEE
(2000)

24. Jurik, M.J.: Extensions to the Paillier cryptosystem with applications to crypto-
logical protocols. In: BRICS (2003)

25. Koppula, V., Waters, B.: Circular security separations for arbitrary length cycles
from LWE. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
681–700. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 24

26. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)

27. Marcedone, A., Orlandi, C.: Obfuscation ⇒ (IND-CPA security � circular secu-
rity). In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 77–90.
Springer, Cham (2014). doi:10.1007/978-3-319-10879-7 5

28. Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues.
In: Proceedings of the 5th ACM Conference on Computer and Communications
Security, pp. 59–66. ACM (1998)

29. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, pp. 113–124. ACM (2011)

30. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998). doi:10.1007/BFb0054135

31. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

32. Rothblum, R.D.: On the circular security of bit-encryption. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36594-2 32

33. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
34. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.

Technical report, Cryptology ePrint Archive, Report 2017/276 (2017). http://
eprint.iacr.org/2017/276

35. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS,
pp. 160–164 (1982)

36. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science, pp. 162–167. IEEE (1986)

http://dx.doi.org/10.1007/978-3-642-29011-4_28
http://dx.doi.org/10.1007/978-3-662-54365-8_10
http://dx.doi.org/10.1007/978-3-662-53008-5_24
http://dx.doi.org/10.1007/978-3-319-10879-7_5
http://dx.doi.org/10.1007/BFb0054135
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-642-36594-2_32
http://dx.doi.org/10.1007/978-3-642-36594-2_32
http://eprint.iacr.org/2017/276
http://eprint.iacr.org/2017/276


Fuzzy Public-Key Encryption
Based on Biometric Data

Hui Cui1(B), Man Ho Au2, Baodong Qin3, Robert H. Deng4, and Xun Yi1

1 School of Science, RMIT, Melbourne, Australia
hui.cui@rmit.edu.au

2 Department of Computing, Hong Kong Polytechnic University,
Hong Kong, China

3 National Engineering Laboratory for Wireless Security,
Xi’an University of Posts and Telecommunications, Xi’an, China

4 School of Information Systems, Singapore Management University,
Singapore, Singapore

Abstract. Biometric data is an inherent representation of a human user,
and it would be highly desirable to derive a private key of a public-
key cryptographic scheme from a user’s biometric input such that the
user does not need to remember any password or carry any device to
store the private key and is able to enjoy all benefits of the public-key
cryptographic scheme. In this paper, we introduce a notion called fuzzy
public-key encryption (FPKE), which is a public-key encryption (PKE)
scheme that accepts a piece of fuzzy data (i.e., a noisy version of the
original biometric data) as the private key to decrypt the ciphertext.
Compared to the traditional PKE scheme where a private key is usually
stored in a device (e.g., a USB token), an FPKE scheme does not need
to use any device for the storage of the private key. We first define a
formal security model for FPKE, and then give generic constructions of
FPKE based on the cryptographic primitives of linear sketch and PKE
with some special properties.

Keywords: Biometric input · Fuzzy data · Fuzzy public-key encryption

1 Introduction

In a traditional public-key encryption (PKE) scheme, each user has a pair of pub-
lic and private keys. If a user, say Alice, is a privileged recipient of a ciphertext,
i.e., the underlying message of this ciphertext is encrypted under the public key of
Alice, Alice can decrypt the ciphertext using her private key. Since the leakage of
the private key is fatal to any PKE scheme, it is crucial for all users to keep their
private keys in secure manners. A widely accepted method is to store the private
key in a physical device such as a smart card or a USB token, and ask the user to

B. Qin–State Key Laboratory of Cryptology, P.O.Box 5159, Beijing 100878, China.

c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 400–409, 2017.
https://doi.org/10.1007/978-3-319-68637-0_24



Fuzzy PKE Based on Biometric Data 401

memorize a password to activate the key [3]. However, it is inconvenient and chal-
lenging for users to always carry their hardware tokens (storing their private keys)
and remember their passwords (for the key activation).

An ideal approach is to use the biometric data (e.g., fingerprints and irises [1])
as the private key since a piece of biometric data is unique to an individual, and
thus it provides a convenient and secure way to link the private key and the user.
There are already off the shelf sensors that can collect multiple biometric inputs
from which enough entropy is able to be obtained at one time, and it is possible
that in the near future longer strings will be generated from biometric inputs [9].
Unfortunately, biometric data is fuzzy (or noisy) and varies each time it is col-
lected, and hence it cannot be directly used as a private key in a traditional PKE
scheme. Seemingly, a fuzzy extractor [2] addresses this issue as it extracts a nearly
uniform string from the biometric input and the extraction is error-tolerant as long
as the biometric input remains sufficiently close to the original one, but it needs a
piece of auxiliary data called a helper string in the extraction process, thereby still
requiring a user to carry a device or rely on a remote equipment [9] to store the
helper string1. To overcome the crux, Takahashi et al. [9] introduced the notion of
fuzzy signature, which is a signature scheme that generates a signature using the
biometric data as a signing key without requiring any helper string. In this paper,
motivated by the results in [9], we propose a cryptographic primitive called fuzzy
public-key encryption (FPKE) in which a user’s biometric input is directly used
as the private key to decrypt encrypted messages without any auxiliary informa-
tion. During the rest of the paper, we will use the terms fuzzy data, noisy data,
and biometric input (or data) interchangeably.

1.1 Challenges and Contributions

In a standard PKE scheme, the decryption algorithm takes the private key sk
and a ciphertext CT as the input and outputs either a message M or a failure
symbol ⊥. In an FPKE scheme, however, the decryption algorithm takes a piece
of fuzzy data x and a ciphertext CT as the input and outputs either a message
M or a failure symbol ⊥. It is worthy noting that FPKE is different from fuzzy
identity-based encryption (FIBE) [8] in that the former treats the fuzzy data as
the private key, while the latter uses the noisy data as the public key and the
private key is derived from the measurement of the biometric data.

In brevity, an FPKE scheme consists of a key generation algorithm KeyGen
that takes a piece of fuzzy data x as the input and outputs a public key pk, an
encryption algorithm Encrypt that takes the public key pk and a message M
as the input and outputs a ciphertext CT, and a decryption algorithm Decrypt
that takes another piece of fuzzy data x′ and a ciphertext CT as the input and
outputs either a message M or a failure symbol ⊥. Clearly, FPKE has an edge
over PKE in that it does not require a device to store a user’s private key.

With reference to [7,9], it is necessary for FPKE to be considered under a
fuzzy key setting which is equipped with a mechanism of linear encoding and

1 For details on the limitations of helper strings, please refer to [9].



402 H. Cui et al.

error correction on the noisy data called linear sketch [7]. A fuzzy key setting
formalizes the setting over the type of the fuzzy data to be considered, e.g.,
the metric space which fuzzy data belongs to, the threshold which two sampled
fuzzy data are considered close or far with, the distribution which each piece of
fuzzy data is assumed to be chosen from, the fluctuation model of the fuzzy data,
and so on. A linear sketch scheme is associated with a fuzzy key setting and an
abelian group (e.g., (K, +), where K is the space for the element and + denotes
the additive operation), and has two main algorithms, one called Sketch used to
generate a sketch c of an element s ∈ K using the fuzzy data item x and the
other named DiffRec used to output the difference �s = s − s′ with the input
of two sketches c and c′ (generated by the Sketch algorithm on inputs s ∈ K, x
and s′ ∈ K, x′, respectively). In this paper, the FPKE schemes are considered
under the fuzzy key setting and the linear sketch schemes defined in [7].

Another basic building block for an FPKE scheme is a traditional PKE
scheme but with two additional properties: key determinability and homomor-
phism. Key determinability means that the public key in the PKE scheme can be
derived from the private key via a deterministic algorithm, which can be satisfied
by many PKE schemes. Homomorphism is a bit more involved, which requires
that given a public key pk (corresponding to a private key sk), a shifted private
key �sk, it is easy to output a public key pk′ (corresponding to a private key
sk′ = sk + �sk). In addition, given a ciphertext CT on a message M targeted
for a public key pk, a shifted private key �sk, it is easy to output a ciphertext
CT′ targeted for a public key pk′ under the same message M .

Combining the linear sketch scheme and a PKE scheme with the additional
properties, we propose generic constructions for FPKE under the defined fuzzy
key setting. In summary, the contributions in this paper are twofold.

– We introduce a formal security definition for fuzzy public-key encryption
(FPKE) under a specific fuzzy key setting.

– We present generic constructions of FPKE under a fuzzy key setting based
on PKE schemes satisfying two additional properties and secure linear sketch
schemes.

1.2 Related Work

Fuzzy Signature. Takahashi et al. [9] first introduced the notion of fuzzy sig-
nature, which is different from the standard signature in that it uses a piece
of fuzzy data (e.g., biometric data) as a private key but does not require any
auxiliary information (which is also called a helper string in a fuzzy extractor)
to generate signatures. However, in their generic construction, the fuzzy data is
assumed to be distributed uniformly, the public parameter is very large (pro-
portional to the security parameter), and it requires bilinear groups, which adds
difficulties for the implementation in practice. Matsuda et al. [7] improved the
results in [9] by proposing another generic construction on fuzzy signature but
with relaxed requirements on the building blocks applied in [9], and gave a more
efficient fuzzy signature scheme.



Fuzzy PKE Based on Biometric Data 403

Fuzzy Identity-Based Encryption. Sahai and Waters [8] put forth a notion
called fuzzy identity-based encryption (FIBE), which is also known as attribute-
based encryption (ABE), to enable encryption using biometric inputs as identities.
Due to the error-tolerance property of the FIBE scheme, it allows the use of bio-
metric inputs, which inherently have some noises each time they are sampled, in
the encryption. Notice that FPKE is different from FIBE, because the former uses
the noisy data as the private key, while the latter uses the fuzzy data as the public
key and the private key is derived from the measurement of the biometric data.

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we briefly describe
the notations and definitions related to this work. In Sect. 3, we describe the
system framework and security model of FPKE. In Sect. 4, we present generic
constructions on FPKE, and analyze the security of them. Finally, we conclude
this paper in Sect. 5.

2 Preliminaries

In this section, we briefly review the notations and some basic definitions that
are to be used in this paper.

2.1 Basic Notations

Throughout this paper, all vectors are expressed in bold fonts such as x, and the
security parameter is denoted by λ.

Let N, Z and R denote the sets of all natural numbers, all integers and all
real numbers, respectively. If n ∈ N, then [n] := {1, ..., n}. If a ∈ R, then �a�
means the integer that is the closest to a. In addition, if a = (a1, a2, ...), then
�a� := (�a1�, �a2�, ...).

Denote x ← y as y is assigned to x. If S is a finite set, then |S| denotes its
size, and x ←R S denotes that x is uniformly chosen at random from S. If Φ
is a distribution over some set, then x ←R Φ denotes that x is chosen in terms
of the distribution Φ. Assuming that f : D → R is a function and y ∈ R is an
element, then f−1(y) represents the set of pre-images of y under f , i.e., f−1(y)
:= {x ∈ D|f(x) = y}. If x and y are bit-strings, then |x| denotes the bit-length
of x, and (x||y) denotes the concatenation of x and y.

A function f(·) : N → [0, 1] is said to be negligible if for all positive polyno-
mials p(·) and all sufficiently large λ, then f(λ) < 1

p(λ) holds.

2.2 Fuzzy Key Setting

We recall the formalization of the fuzzy key setting in [7,9] as follows. Formally,
a fuzzy key setting F consists of ((d, X), t, X , Φ, ε), of which (d, X) is the metric
space with X (we assume that it constitutes an abelian group) being the space



404 H. Cui et al.

to which a fuzzy data item x belongs to and d : X2 → R being the corresponding
distance function, t ∈ R is a threshold value determined by a security parameter
λ, X is a distribution of fuzzy data over X, Φ is an error distribution, and ε ∈
[0, 1] is an error parameter representing FRR. Notice that the false acceptance
rate (FAR) and the false rejection rate (FRR) are determined based on the
threshold value t. It is required that FAR := Pr[x, x′ ←R X : d(x, x′) < t] is
negligible in the security parameter λ. Also, for all pieces of fuzzy data x ∈ X,
FRR := Pr[e ←R Φ : d(x, x + e) ≥ t] ≤ ε.

3 Framework and Security Model

In this section, after presenting the framework of FPKE, we describe its security
model in detail.

3.1 Framework

An FPKE scheme for a fuzzy key setting F is composed of the following four
algorithms: a setup algorithm Setup, a key generation algorithm KeyGen, an
encryption algorithm Encrypt and a decryption algorithm Decrypt.

– Setup(1λ) → par. On input the security parameter λ, this algorithm outputs
the public parameter par, which includes the fuzzy key setting F = ((d, X),
t, X , Φ, ε).

– KeyGen(par, x) → pkf . On input the public parameter par and a fuzzy data
item x ∈ X, this algorithm outputs a public key pkf .

– Encrypt(par, pkf , M) → CT. On input the public parameter par, the public
key pkf and a message M (in the message space), this algorithm outputs a
ciphertext CT.

– Decrypt(par, pkf , x, CT) → M/⊥. On input the pubic parameter par, the
public key pkf , a fuzzy data item x′ ∈ X and a ciphertext CT, this algorithm
outputs a message M or a failure symbol ⊥.

We say that an FPKE scheme with a fuzzy key setting F is correct, meaning
that for all security parameters λ ∈ N, all fuzzy data x, x′ ∈ X such that
d(x, x′) < t, all messages M in the message space, if par ← Setup(1λ), pkf ←
KeyGen(par, x), CT ← Encrypt(par, pkf , M), we have that Decrypt(par, pkf ,
x′, CT) = M .

3.2 Security Model

Similar to the security definition of a PKE scheme, a secure FPKE scheme is
required to be indistinguishable under the universal error model of a fuzzy key



Fuzzy PKE Based on Biometric Data 405

setting. An FPKE scheme under a fuzzy key setting F is said to be indistinguish-
able under chosen ciphertext attacks (IND-CCA secure) if for any probabilistic
polynomial time (PPT) adversary A, the advantage function

Advind-cca
FPKE,A(λ) = Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

par ← Setup(1λ)
x∗ ←R X , b ← {0, 1}
pk∗

f ← KeyGen(par, x∗)
(M0, M1, state) ← AODec(·) (par, pk∗

f )

CT∗ ← Encrypt(par, pk∗
f , Mb)

b′ ← AODec(·) (par, pk∗
f , M0, M1, state,CT∗)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

− 1/2

is negligible in the security parameter λ, where |M0| = |M1|, and ODec(·) is the
decryption oracle which takes the public parameter par, the public key pk∗

f , a
piece of fuzzy data x∗ and a ciphertext CT as the input and outputs a message
M ← Decrypt(par, pk∗

f , x∗, CT) with the restriction that for any query on a
ciphertext CT to the ODec(·) oracle, CT should not be equal to CT∗.

4 Fuzzy Public-Key Encryption

In this section, we present generic constructions of FPKE, and analyze their
security.

4.1 Public-Key Encryption

For the PKE scheme (e.g., [4]) to be used in this paper for the construction of
an FPKE scheme, we define several additional properties as follows.

– Key Deterministic. It means that the key generation algorithm KeyGen first
randomly chooses a private key skpke (from the space of private keys), and
then computes the corresponding public key pkpke (deterministically from
skpke), which is known as Key Generation Process in [7]. Formally, a PKE
scheme is key deterministic if the public parameter parpke generated by the
Setup algorithm specifies the space of private keys Kpke, and there exists
a deterministic algorithm KeyGen′ such that the key generation algorithm
KeyGen can be defined as KeyGen(parpke) : [skpke ←R Kpke; pkpke ←
KeyGen′(parpke, skpke); Return (skpke, pkpke)].

– Homomorphic. A PKE scheme is homomorphic if it meets the following prop-
erties.

• For the public parameter parpke generated by the Setup algorithm, there
is an abelian group (Kpke, +) associated with the private key space Kpke.

• There exists a deterministic algorithm Mpkpke
which takes the public para-

meter parpke (output by the Setup algorithm), a public key pkpke (created
by the KeyGen algorithm) and a shift �sk ∈ Kpke as the input, and out-
puts a shifted public key pk′

pke. Formally, for all parpke output by the
Setup algorithm, all skpke, �sk ∈ Kpke, it holds that KeyGen′(parpke,
skpke + �sk) = Mpkpke

(parpke, KeyGen′(parpke, skpke), �sk).



406 H. Cui et al.

• There exists a deterministic algorithm Men which takes the public para-
meter parpke (output by the Setup algorithm), a public key pkpke (out-
put by the KeyGen algorithm), a ciphertext CT and a shifted pri-
vate key �sk ← Kpke as the input, and outputs a shifted ciphertext
CT′. Formally, for all skpke, �sk ∈ Kpke, the distributions {CT′ ←
PKE.Encrypt(parpke, KeyGen′(parpke, skpke + �sk), M) : CT′}, and
{CT ← PKE.Encrypt(parpke, pkpke, M); CT’ ← Men(parpke, �sk, CT) :
CT′} are identical. In addition, we require that for all public parameters
parpke (output by the PKE.Setup algorithm), all keys skpke, �sk ∈ Kpke,
all ciphertext CT such that PKE.Decrypt(parpke, CT, pkpke, skpke) = M ,
it holds that PKE.Decrypt(parpke, CT′, KeyGen′(parpke, skpke + �sk),
skpke + �sk) = M , where CT′ ← Men(parpke, �sk, CT).

There exists PKE schemes, such as the ElGamal encryption scheme [4] and
the tag-based encryption scheme [6], that meet the above requirements.

4.2 Generic Construction

Denote F = ((d, X), t, X , Φ, ε) as a fuzzy key setting. Let PKE = (PKE.Setup,
PKE.KeyGen, PKE.Encrypt, PKE.Decrypt) be a selective-tag IND-CCA secure
public-key encryption scheme with K being the space of private keys which is key
deterministic and homomorphic. Assume that S = (S.Setup, S.Sketch, S.DiffRec)
is a linear sketch scheme for the fuzzy key setting F (as defined in [7]), and Sig
= (Sig.KeyGen, Sig.Sign, Sig.Verify) is a strong one-time signature scheme (as
defined in [5]). A fuzzy public-key encryption scheme FPKE associated with the
fuzzy key setting F is composed of the following algorithms.

– Setup. This algorithm takes the security parameter λ as the input. It first
defines a fuzzy key setting F = ((d, X), t, X , Φ, ε). It then runs parpke

←R PKE.Setup(1λ), and parS ←R S.Setup(K, +). It outputs the public
parameter par = (parpke, parS , F).

– KeyGen. This algorithm takes the public parameter par and a piece of fuzzy
data x ∈ X as the input. It parses par = (parpke, parS), runs sk ←R K, pk
← PKE.KeyGen′(parpke, sk), c ←R S.Sketch(parS , sk, x), and outputs the
public key pkf = (pk, c).

– Encrypt. This algorithm takes the public parameter par, the public key pkf

and a message M as the input. It parses par = (parpke, parS), pkf = (pk, c).
Then it runs the Sign.KeyGen algorithm to generate a signing key ssk and
a verification key svk, CT ←R PKE.Encrypt(parpke, pk, svk, M), and the
Sig.Sign algorithm on CT to create a signature σ using the signing key ssk.
It outputs the ciphertext ˜CT = (svk, CT, σ).

– Decrypt. This algorithm takes the public parameter par, the public key pkf ,
the fuzzy data item x′ ∈ X and a ciphertext ˜CT as the input. It parses par =
(parpke, parS), pkf = (pk, c), ˜CT = (svk, CT, σ). If σ is a valid signature on
CT under svk, it runs sk′ ←R K, pk′ ← PKE.KeyGen′(parpke, sk′), c′ ←R

S.Sketch(parS , sk′, x′), �sk ← S.DiffRec(parS , c, c′), PKE.Decrypt(parpke,
Men(parpke, �sk, CT), pk′, sk′) = M , and outputs the message M .



Fuzzy PKE Based on Biometric Data 407

Theorem 1. Assuming that PKE with the key deterministic and homomorphic
properties is selective-tag IND-CCA secure, Sig is strongly unforgeable, and S is
a secure linear sketch scheme for a fuzzy key setting F , then the above FPKE
scheme for the fuzzy key setting F is IND-CCA secure.

Proof. Assuming that there exists an adversary algorithm A that breaks the
IND-CCA security of the FPKE scheme, then we can build an adversary algo-
rithm A′ that breaks the selective-tag IND-CCA security of the key deterministic
and homomorphic PKE scheme, the strong unforgeability of the Sig scheme, or
the security of the linear sketch scheme S. Let B′ be the challenger algorithm in
the underlying PKE scheme.

– Setup. Algorithm A′ creates a pair of signing and verification keys (ssk∗,
svk∗) by running the Sig.KeyGen algorithm, and outputs svk∗ as the target
tag t∗ to algorithm B′. Algorithm A′ is given the public parameter parpke

and a public key pkpke generated by algorithm B′. Algorithm A′ defines a
fuzzy key setting F , and generates the public parameter parS . In addition,
algorithm A′ randomly chooses a sketch c′ (note that due to the average-case
indistinguishability (defined in [7]) of the linear sketch scheme S, c′ is indis-
tinguishable to that generated following the original algorithm), computes c
← S.Mc(parS , c′, �sk, e) where e ∈ X (this is making use of the linearity of
the linear sketch scheme S), and outputs a public key pkf = (pk, c) where pk
= Mpkpke

(parpke, pkpke, �sk), �sk ∈ K (this is because of the homomorphic
property of the PKE scheme). Algorithm A′ sends the public parameter par
= (parpke, parS , F) and the pubic key pkf to algorithm A.

– Phase 1. Algorithm A adaptively issues queries on ciphertexts ˜CT to the
decryption oracle ODec(·). For each decryption query on a ciphertext ˜CT =
(svk, CT, σ), if σ is a valid signature on CT under the verification key svk,
algorithm A′ outputs a shifted CT′ under the public key pkpke but on the
same message of CT as CT′ = Men(parpke, �sk, CT). Notice that due to the
homomorphic property of the PKE scheme, algorithm A′ can easily output a
shifted CT′ for CT. Algorithm A′ forwards CT′ to algorithm B′, and returns
the result from algorithm B′ to algorithm A.

– Challenge. Algorithm A outputs two messages M∗
0 and M∗

1 of the same size.
Algorithm A′ forwards M∗

0 , M∗
1 to algorithm B′ to obtain CT∗ of the tag

svk∗. After receiving CT∗ on the message M∗
b for b ∈ {0, 1} and the tag svk∗

from algorithm B′, algorithm A′ runs the Sig.Sign algorithm to generate a
signature σ∗ on CT∗, and outputs ˜CT

∗
= (svk∗, CT∗, σ∗) as the challenge

ciphertext.
– Phase 2. Algorithm A continues issuing decryption queries on ciphertexts ˜CT

to algorithm A′ with the constraint that ˜CT does not equal the challenge
ciphertext ˜CT

∗
. Algorithm A′ responds as follows.

1. svk �= svk∗. In this case, algorithm A′ responds as that in Phase 1.
2. svk = svk∗, (CT, σ) �= (CT∗, σ∗). Due to the strong unforgeability of

the Sig scheme, such queries have negligible probability to happen.
3. ˜CT = (svk∗, CT∗, σ∗). According to the security definition, these queries

are not allowed.



408 H. Cui et al.

– Guess. Algorithm A outputs a guess b′ ∈ {0, 1} for b. Algorithm A′ forwards
b′ to algorithm B′ who will output b′ as the guess to the IND-CCA game of
the PKE scheme.

To conclude, if algorithm A wins the IND-CCA security game of the FPKE
scheme with non-negligible probability, then algorithm A′ wins the IND-CCA
security game of the key deterministic and homomorphic PKE scheme, or breaks
the strong unforgeability of the Sig scheme or the security of the linear sketch
scheme S with non-negligible probability.

Theorem 2. Assuming that PKE with the key deterministic and homomorphic
properties is IND-CCA secure, and S is a secure linear sketch scheme for a
fuzzy key setting F , then the above FPKE scheme removing the Sig scheme for
the fuzzy key setting F is IND-CCA secure.

Proof. The proof is similar to that of Theorem 1 except that (1) in the Challenge
phase, algorithm A′ directly forwards M∗

0 , M∗
1 to algorithm B′ to obtain the

challenge ciphertext ˜CT
∗
; and (2) in the Phase 2, the analysis of three cases will

be removed.

5 Conclusions

Traditionally, in the scenario where messages are encrypted using a public-key
encryption (PKE) scheme, to protect the privacy of a user’s private key, the
private key is stored in a physical device such as a USB token which is carried
by the user. Nevertheless, it is not easy for a user to always keep a device with
him/her. To address this issue, it has been suggested to use individually unique
biometric data as the private key, but biometric data is fuzzy and changes each
time it is collected, thereby becoming unsuitable for being directly used as a
private key. In this paper, we introduced a notion of fuzzy public-key encryp-
tion (FPKE), in which a piece of biometric data can be used as the private key
to decrypt ciphertexts while without requiring any auxiliary information. Com-
pared to PKE, a salient advantage of FPKE is that it does not require a user to
carry any device or memorize any password to use the private key. After describ-
ing the formal security definition of FPKE, we presented generic constructions
of FPKE based on the cryptographic primitives of linear sketch and PKE with
two additional properties, and formally analyzed the security of the proposed
generic constructions of FPKE.

References

1. Connaughton, R., Bowyer, K.W., Flynn, P.J.: Fusion of face and iris biometrics. In:
Handbook of Iris Recognition, pp. 219–237. Springer, Heidelberg (2007)

2. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)



Fuzzy PKE Based on Biometric Data 409

3. Ellison, C., Schneier, B.: Ten risks of PKI: what you’re not being told about public
key infrastructure. Comput. Secur. J. 16(1), 1–7 (2000)

4. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

5. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006). doi:10.1007/11681878 30

6. MacKenzie, P., Reiter, M.K., Yang, K.: Alternatives to non-malleability: definitions,
constructions, and applications. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp.
171–190. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24638-1 10

7. Matsuda, T., Takahashi, K., Murakami, T., Hanaoka, G.: Fuzzy signatures: relaxing
requirements and a new construction. In: Manulis, M., Sadeghi, A.-R., Schneider,
S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 97–116. Springer, Cham (2016). doi:10.
1007/978-3-319-39555-5 6

8. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

9. Takahashi, K., Matsuda, T., Murakami, T., Hanaoka, G., Nishigaki, M.: A signature
scheme with a fuzzy private key. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Poly-
chronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 105–126. Springer, Cham
(2015). doi:10.1007/978-3-319-28166-7 6

http://dx.doi.org/10.1007/11681878_30
http://dx.doi.org/10.1007/978-3-540-24638-1_10
http://dx.doi.org/10.1007/978-3-319-39555-5_6
http://dx.doi.org/10.1007/978-3-319-39555-5_6
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-319-28166-7_6


Proxy Re-encryption and Functional
Encryption



An Efficient Certificateless Proxy Re-Encryption
Scheme Without Pairing

S. Sharmila Deva Selvi, Arinjita Paul(B), and Chandrasekaran Pandu Rangan

Theoretical Computer Science Lab, Department of Computer Science
and Engineering, Indian Institute of Technology Madras, Chennai, India

{sharmila,arinjita,prangan}@cse.iitm.ac.in

Abstract. Proxy re-encryption (PRE) is a cryptographic primitive
introduced by Blaze, Bleumer and Strauss [4] to provide delegation of
decryption rights. PRE allows re-encryption of a ciphertext intended for
Alice (delegator) to a ciphertext for Bob (delegatee) via a semi-honest
proxy, who should not learn anything about the underlying message. In
2003, Al-Riyami and Patterson introduced the notion of certificateless
public key cryptography which offers the advantage of identity-based
cryptography without suffering from key escrow problem. The exist-
ing certificateless PRE (CLPRE) schemes rely on costly bilinear pairing
operations. In ACM ASIA-CCS SCC 2015, Srinivasan et al. proposed
the first construction of a certificateless PRE scheme without resorting
to pairing in the random oracle model. In this work, we demonstrate
a flaw in the CCA-security proof of their scheme. Also, we present the
first construction of a CLPRE scheme without pairing which meets CCA
security under the computational Diffie-Hellman hardness assumption in
the random oracle model.

Keywords: Proxy re-encryption · Pairing-less · Public key · Certifi-
cateless · Unidirectional

1 Introduction

Due to segregation of data ownership and storage, security remains as one of the
major concerns in public cloud scenario. In order to protect the stored data from
illegal access and usage, users encrypt their data with their public keys before
storing it in the cloud. To enable sharing of stored data, a naive approach would
be that a user Alice shares her secret key with a legitimate user Bob. However,
this would compromise the privacy of Alice. As a solution towards providing
delegation of decryption rights, Blaze et al. [4] in 1998 proposed the concept

S. Sharmila Deva Selvi—Postdoctoral researcher supported by Project No.
CCE/CEP/22/VK&CP/CSE/14-15 on Information Security & Awareness (ISEA)
Phase-II by Ministry of Electronics & Information Technology, Government of India.
A. Paul and C. Pandu Rangan—Work partially supported by Project No.
CCE/CEP/22/VK&CP/CSE/14-15 on ISEA-Phase II.

c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 413–433, 2017.
https://doi.org/10.1007/978-3-319-68637-0_25



414 S. Sharmila Deva Selvi et al.

of proxy re-encryption, which allows a proxy server with special information
(re-encryption key) to translate a ciphertext for Alice into another ciphertext
(with the same message) for Bob without learning any information about the
underlying plaintext. Besides, this approach offloads the costly burden of secure
data sharing from Alice to the resource-abundant proxy. As Alice delegates her
decryption rights to Bob, Alice is termed as delegator and Bob as delegatee. Ever
since, PRE has found a lot of applications such as encrypted email forwarding,
distributed file systems, digital rights management (DRM) of Apple’s iTunes,
outsourced filtering of encrypted spam and content distribution [2,3].

Based on the direction of delegation, PRE schemes are classified into uni-
directional and bidirectional schemes. In unidirectional schemes, a proxy can
re-encrypt ciphertexts from Alice to Bob but not vice-versa, while in the bidi-
rectional schemes, the proxy is allowed to re-encrypt ciphertexts in both direc-
tions. PRE schemes are also classified into single-hop and multihop schemes.
In a single-hop scheme, a proxy cannot re-encrypt ciphertexts that have been
re-encrypted once. In a multi-hop scheme, the proxy can further re-encrypt the
re-encrypted ciphertexts. In this paper, we focus on single-hop unidirectional
PRE schemes.

Several PRE constructions have been proposed in the literature, either in the
Public Key Infrastructure (PKI) or identity based (IBE) setting. The schemes in
the PKI setting entrusts a third party called the Certification Authority (CA) to
assure the authenticity of a user’s public key by digitally signing it and issuing
Digital Certificates. However, the overhead involved in the revocation, storage
and distribution of certificates has long been a concern, which makes public key
cryptography inefficient. As a solution to the authenticity problem, Identity-
based cryptography was introduced by Shamir in 1984 [9], which involves a
trusted third party called the Private Key Generator (PKG) to generate secret
keys of all users. Yet again, due to the unconditional trust placed on the PKG,
identity based cryptography suffers from key-escrow problem. To avoid both cer-
tificate management problem in the PKI setting and key-escrow problem in
the ID-based setting, certificateless cryptography was introduced in 2003 by
Al-Riyami and Patterson [1]. Certificateless cryptography splits the task of key-
generation of a user between a semi-trusted entity called Key Generation Center
(KGC) and the user himself. This approach no longer relies on the use of certifi-
cates for key authenticity and hence does not suffer from certificate management
problem. Also, the KGC does not have access to the secret keys of the users,
which addresses the key-escrow problem inherent in IBE setting.

In this paper, we study proxy re-encryption in the light of certificateless
public key cryptography. Consider the following scenario where Alice stores her
encrypted data in the cloud, which provides services to billions of users. The num-
ber of cloud users being large, certificate management for public key authenticity
is an overhead. This makes proxy re-encryption in PKI setting unfit for cloud ser-
vices. On the other hand, a malicious PKG, entrusted with the power to generate
user secret keys, can decrypt confidential data of the users due to which PRE in



An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 415

IBE setting is highly impractical. Certificateless PRE affirmatively solves both the
certificate management problem and key-escrow problem in the above scenario.

1.1 Related Work and Contribution

While several schemes achieving PRE have been proposed in the literature, a
majority of these schemes are either in the PKI or IBE setting. In 2010, Sur et al.
[11] introduced the notion of certificateless proxy re-encryption (CLPRE) and
proposed a CCA secure CLPRE scheme in the random oracle model. However,
in 2013, their scheme was shown to be vulnerable to chosen ciphertext attack
by Zheng et al. [13]. In 2013, Guo et al. [6] proposed a CLPRE scheme in the
random oracle model based on bilinear pairing which satisfies RCCA-security, a
weaker notion of security. In 2014, Yang, Xu and Zhang [12] proposed a pairing-
free CCA-secure CLPRE scheme in the random oracle model, which was shown
to be vulnerable to chain collusion attack in [10]. In 2015, Srinivasan et al. [10]
proposed the first CCA-secure unidirectional certificateless PRE scheme without
pairing under the computational Diffie-Hellman assumption in the random oracle
model. In this paper, we expose a critical weakness in the security proof of the
scheme and provide a potential fix to make the scheme provably secure.

Another major contribution of this work is we propose an efficient pairing-
free unidirectional single-hop certificateless proxy re-encryption scheme in the
random oracle model. As stated, all the existing CLPRE schemes are vulnerable
to attacks except for [6]. The CLPRE scheme due to Guo et al. [6] is based on
bilinear pairing which is an expensive operation as compared to modular expo-
nentiation operations in finite fields. Besides, their scheme [6] satisfies a weaker
notion of security, namely RCCA-security and is based on q-weak Decisional
Bilinear Assumption. Our scheme satisfies CCA security against both Type-I
and Type-II adversaries and is based on a much standard assumption called the
Computational Diffie Hellman (CDH) assumption.

2 Definition and Security Model

2.1 Definition

We describe the syntactical definition of unidirectional single-hop certificateless
proxy re-encryption and its security notion adopted from [10]. A PRE scheme
consists of the following algorithms:

– Setup(1λ): A PPT algorithm run by the Key Generation Center (KGC),
which takes the unary encoding of the security parameter λ as input and
outputs the public parameters params and master secret key msk.

– PartialKeyExtract(msk, IDi, params): A PPT algorithm run by KGC
which takes the master secret key msk, user identity IDi and public parame-
ters params as input, and outputs the partial public key and partial secret
key pair (PPKi, PSKi).



416 S. Sharmila Deva Selvi et al.

– UserKeyGen(IDi, params): A PPT algorithm run by the user, which takes
the identity IDi of the user and the public parameters params as input, and
outputs the user generated secret key and public key pair (USKi, UPKi).

– SetPrivateKey(IDi, PSKi, USKi, params): A PPT algorithm run by the
user, which takes as input the identity IDi of the user, partial secret key
PSKi, user generated secret key USKi and public parameters params, and
outputs the full secret key SKi of the user.

– SetPublicKey(IDi, PPKi, PSKi, UPKi, USKi, params): A PPT algo-
rithm run by the user, which takes as input the the identity IDi of the user,
partial public key PPKi, partial secret key PSKi, user generated public key
UPKi, user generated secret key USKi and public parameters params, and
outputs the full public key PKi of the user.

– Re-KeyGen(IDi, IDj , SKi, PKj , params): A PPT algorithm run by the
user (delegator) with identity IDi which takes as input the identity IDi of
the delegator, identity IDj of the delegatee, the full secret key SKi of IDi,
full public key PKj of IDj and public parameters params, and outputs a
re-encryption key RKi→j or an error symbol ⊥.

– Encrypt(IDi, PKi,m, params): A PPT algorithm run by the sender which
takes as input identity IDi of receiver, full public key PKi of IDi, message
m ∈ M and the public parameters params, and outputs the ciphertext C or
an error symbol ⊥. Note that C is termed as the first level ciphertext.

– Re-Encrypt(IDi, IDj , C,RKi→j , params): A PPT algorithm run by the
proxy which takes the identities IDi, IDj , a first level ciphertext C encrypted
under identity IDi, a re-encryption key RKi→j and public parameters
params as input, and outputs a ciphertext D or an error symbol ⊥. Note
that D is termed as the second-level ciphertext.

– Decrypt(IDi, SKi, C, params): A deterministic algorithm run by the
receiver (delegator) which takes the identity IDi, secret key SKi of iden-
tity IDi, first-level ciphertext C and public parameters params as input, and
outputs the message m ∈ M or an error symbol ⊥.

– Re-Decrypt (IDj , SKj ,D, params): A deterministic algorithm run by the
receiver (delegatee) which takes the identity IDj , secret key SKj of identity
IDj , a second-level ciphertext D and public parameters params as input,
and outputs the message m ∈ M or an error symbol.

The consistency of a CLPRE scheme for any given public parameters params
and full public-private key pairs {(PKi, SKi), (PKj , SKj)} is defined as follows:

1. Consistency between encryption and decryption; i.e.,

Decrypt(IDi, SKi, C, params) = m, ∀m ∈ M,

where C = Encrypt(IDi, PKi,m, params).
2. Consistency between encryption, proxy re-encryption and decryption; i.e.,

Re-Decrypt(IDj , SKj ,D, params) = m, ∀m ∈ M,

where D = Re-Encrypt(IDi, IDj , C,RKi→j , params) and C = Encrypt
(IDi, PKi,m, params).



An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 417

2.2 Security Model

Due to the existence of two types of ciphertexts in a PRE scheme namely first
level and second level ciphertexts, it is essential to prove the security for both
levels. Again, there exists two types of adversaries specific to CLPRE: Type-I
adversary and Type-II adversary. The Type I adversary models an attacker who
can replace the public keys of the users by fake keys of its choice because of the
absence of authenticating information for public keys [1]. However, the security
proof demonstrates that the adversary cannot learn anything useful from this
attack as it cannot derive the partial keys and in turn the full private keys
needed for decryption without the cooperation of the KGC (who possesses the
master secret key). The Type-II adversary models the semi-trusted KGC, who
possesses the master secret key and tries to break the security of the system by
eavesdropping or making decryption queries. Note that, the KGC is restrained
from replacing the public keys of the users.

The security of a CLPRE scheme is modelled in the form of a security game
between the two entities: the challenger C and the adversary A. A can adap-
tively query the oracles as listed below which C answers and simulates an envi-
ronment running CLPRE for A. C maintains a list Pcurrent of the public keys
to keep a track of the replaced public keys. Pcurrent consists of tuples of the
form 〈IDi, PKi, ˆPKi〉, where ˆPKi denotes the current value of the public key.
To begin with, ˆPKi is assigned the value of the initial public key ˆPKi = PKi.
A can make queries to the following oracles which are answered by C:

– Public Key Extract(Ope(IDi)): Given an IDi as input, compute the partial
public key and secret key pair: (PPKi, PSKi) = PartialKeyExtract(msk,
IDi, params), the user public key and secret key pair: (USKi, UPKi) = User
KeyGen(IDi, params), the full public key PKi = SetPublicKey(IDi, PPKi,
PSKi, UPKi, USKi, params). Return PKi.

– Partial Key Extract(Oppe(IDi)): Given an IDi as input, compute (PPKi,
PSKi) = PartialKeyExtract(msk, IDi, params) and return (PPKi, PSKi).

– User Key Extract(Oue(IDi)): Given an IDi as input, compute (UPKi,
USKi) = UserKeyGen(IDi, params) and return (USKi, UPKi).

– Re-Key Generation(Ork(IDi, IDj)): Compute RKi→j = Re-KeyGen(IDi,
IDj , SKi, PKj , params) and return RKi→j .

– Re-Encryption(Ore(IDi, IDj , C)): Given a first-level ciphertext C and
two identities IDi, IDj as inputs, compute RKi→j = Re-KeyGen(IDi,
IDj , SKi, PKj , params) and compute the second level ciphertext as D = Re-
Encrypt(IDi, IDj , C,RKi→j , params).

– Decryption(Odec(IDi, C)): Given a first level ciphertext C encrypted under
the public key of IDi as input, compute the decryption of the ciphertext to
obtain m ∈ M. Return m or return ⊥ if the ciphertext is invalid.

– Re-Decryption(Oredec(IDi, C)): Given a second level ciphertext D re-
encrypted under the public key IDj as input, compute the decryption of
the ciphertext to obtain m ∈ M. Return m or return ⊥ if the ciphertext is
invalid.



418 S. Sharmila Deva Selvi et al.

– Public Key Replacement(Orep(IDi, PKi)): Replace the value of the third
component ˆPKi in the PKcurrent list with the new value PKi, provided
PKi is a valid public key.

Security Against Type-I Adversary AI

The Type-I adversary models an outside attacker without access to the master
secret key, trying to learn some information about the underlying plaintext,
given the ciphertext. We consider separate security models for the first level and
second level ciphertexts against AI .
First Level Ciphertext Security: We consider the following security game
where AI interacts with the challenger C in following stages.

• Initialization: C runs Setup(λ) to generate the public parameters params and
master secret key msk. It sends params to AI while keeping msk secret.

• Phase 1: The challenger C sets up the list of corrupt and honest users, ini-
tialises ˆPKi to PKi for all users in the public key list Pcurrent. AI issues
several queries to the above oracles simulated by C, with the restriction that
AI cannot make partial key extract queries (Oppe) or user key extract queries
(Oue) of the users whose public keys have been replaced as it is unreasonable
to expect C to respond to such queries for public keys replaced by AI [1].

• Challenge: A outputs two equal length messages m0 and m1 in M and the
target identity IDch, with the following adversarial constraints:
− IDch should not be a corrupt user.
− AI must not query the partial key extract oracle (Oppe) or user key extract

oracle (Oue) of IDch at any point in time.
− AI must not query Ork(IDch, IDi), where IDi is a corrupt user.
− If AI replaces the public key of IDch, it should not query the partial key

extract oracle (Oppe) for IDch.
On receiving {m0,m1}, C picks δ ∈ {0, 1} at random and generates a challenge
ciphertext C∗ = Encrypt(IDch, ˆPKch,mδ, params) and gives to AI .

• Phase 2: AI issues the queries to the oracles similar to Phase 1, with the same
adversarial constraint as mentioned in Phase 1 and the added constraints on
the target identity IDch as mentioned in the Challenge phase. Additionally,
there are other constraints as below:
− AI cannot query Odec(IDch, C∗), for the same public key of IDch that

was used to initially encrypt mδ.
− AI cannot query the re-decryption oracle Oredec(IDi, C) if (IDi, C) is a

challenge derivative1.
1 The definition of challenge derivative (IDi, C) is adopted from [5] as stated below:

• Reflexitivity: (IDi, C) is a challenge derivative of itself.
• Derivative by re-encryption: (IDj , C

′) is a challenge derivative of (IDi, C) if
C′ ← Ore(IDi, IDj , C).
• Derivative by re-encryption key: (IDj , C

′) is a challenge derivative of (IDi, C) if
RKi→j ← Ork(IDi, IDj) and C′ = Re − Encrypt(IDi, IDj , C,RKi→j , params).

.



An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 419

− AI cannot query Ore(IDi, IDj , C), if (IDi, C) is a challenge derivative
and IDj is a corrupt user.

− AI cannot query Ork(IDch, IDj), if IDj is a corrupt user.
• Guess: AI outputs its guess δ′ ∈ {0, 1}.

We define the advantage of AI in winning the game as:

AdvIND−CLPRE−CCA
AI ,first = 2|Pr�δ′ = δ �− 1

2
|

where the probability is over the random coin tosses performed by C and AI .
The scheme is said to be (t, ε)IND − CLPRE − CCA secure for the first level
ciphertext against Type-I adversary AI if for all t-time adversary AI that makes
qpe queries to Ope, qppe queries to Oppe, que queries to Oue, qre queries to Ore,
qrk queries to Ork, qdec queries to Odec, qredec queries to Oredec and qrep queries
to Orep, the advantage of AI is AdvIND−CLPRE−CCA

AI ,first ≤ ε.

Second Level Ciphertext Security: We consider the following security game
for security of the second level ciphertext against Type-I adversary AI , where
AI interacts with the challenger C in following stages.

• Initialization: C runs Setup(λ) to generate the public parameters params and
master secret key msk. It sends params to AI while keeping msk secret.

• Phase 1: The challenger C sets up the list of corrupt and honest users, ini-
tialises ˆPKi to PKi for all users and updates the public key list Pcurrent. AI

issues several queries to the above oracles simulated by C with the restriction
that it cannot make partial key extract queries (Oppe) or user key extract
queries (Oue) of the users whose public keys have already been replaced.

• Challenge: AI outputs two messages m0, m1 in M where |m0| = |m1|, the
target identity IDch, and the delegator’s identity IDdel with the adversarial
constraints as follows:
− IDch should not be a corrupt user.
− AI must not query the partial key extract oracle (Oppe) or user key extract

oracle (Oue) of IDch at any point in time.
− If AI replaces the public key of IDch, it should not query the partial key

extract oracle (Oppe) for IDch.
− AI must not query Ork(IDdel, IDch).
− AI must not query Ork(IDch, IDi), where IDi is a corrupt user.
On receiving {m0,m1}, C picks δ ∈ {0, 1} at random and generates a challenge
ciphertext D∗ = Re − Encrypt(IDdel, IDch, Encrypt(IDch, ˆPKch,mδ,
params), RKIDdel→IDch

, params) and gives to AI .
• Phase 2: AI issues the queries to the oracles similar to Phase 1, with the same

adversarial constraint as mentioned in Phase 1 and constraints on the target
identity IDch mentioned in the Challenge phase. Additionally, AI cannot
query Oredec(IDch, C∗), for the same public key of IDch that was used to
initially encrypt mδ.

• Guess: AI outputs its guess δ′ ∈ {0, 1}.



420 S. Sharmila Deva Selvi et al.

We define the advantage of AI in winning the game as:

AdvIND−CLPRE−CCA
AI ,second = 2|Pr�δ′ = δ�−1

2
|

where the probability is over the random coin tosses performed by C and AI .
The scheme is said to be (t, ε)IND−CLPRE −CCA secure for the second level
ciphertext against Type-I adversary AI if for all t-time adversary AI that makes
qpe queries to Ope, qppe queries to Oppe, que queries to Oue, qre queries to Ore,
qrk queries to Ork, qdec queries to Odec, qredec queries to Oredec and qrep queries
to Orep, the advantage of AI is AdvIND−CLPRE−CCA

AI ,second ≤ ε.

Security Against Type-II Adversary AII

The Type-II adversary models an honest-but-curious KGC who has access to
the master secret key msk, but is not allowed to replace the public keys of users.
We consider separate security models for the first and second level ciphertexts.

First Level Ciphertext Security: We consider the following security game
where AII interacts with the challenger C as follows.

• Initialization: C runs Setup(λ) to generate the public parameters params and
master secret key msk. It sends both params and msk to AII .

• Phase 1: The challenger C maintains the list of honest and corrupt users and
initialises ˆPKi to PKi for all the users in the public key list Pcurrent. AII

issues several queries to the above stated oracles simulated by C with the
restriction that it cannot make partial key extract queries (Oppe) or user key
extract queries (Oue) of the users whose public keys have been replaced.

• Challenge: AII outputs two equal length messages {m0,m1} in M and the
target identity IDch, with the adversarial constraints as follows:
− IDch should not be a corrupt user.
− AII must not replace the public key of IDch.
− AII must have not queried Ork(IDch, IDi), where IDi is a corrupt user.
On receiving {m0,m1}, C selects δ ∈ {0, 1} at random, generates a challenge
ciphertext C∗ = Encrypt(IDch, ˆPKch,mδ, params) and gives C∗ to AII .

• Phase 2: AII issues the queries to the oracles similar to Phase 1, with the
same adversarial constraints as mentioned in Phase 1 and the constraints on
the target identity IDch as mentioned in the Challenge phase. Additionally,
there are other constraints as below:
− AII cannot query Odec(IDch, C∗), for the same public key of IDch that

was used to initially encrypt mδ.
− AII cannot query the re-decryption oracle Oredec(ID,C) if (ID,C) is a

challenge derivative.
− AII cannot query Ore(IDi, IDj , C), if (IDi, C) is a challenge derivative

and IDj is a corrupt user.
− AII cannot query Ork(IDch, IDj), if IDj is a corrupt user.

• Guess: AII outputs its guess δ′ ∈ {0, 1}.



An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 421

We define the advantage of AII in winning the game as:

AdvIND−CLPRE−CCA
AII ,first = 2|Pr�δ′ = δ�−1

2
|

where the probability is over the random coin tosses performed by C and AII .
The scheme is said to be (t, ε)IND − CLPRE − CCA secure for the first level
ciphertext against Type-II adversary AII if for all t-time adversary AII that
makes qpe queries to Ope, qppe queries to Oppe, que queries to Oue, qre queries to
Ore, qrk queries to Ork, qdec queries to Odec, qredec queries to Oredec and qrep

queries to Orep, the advantage of AII is AdvIND−CLPRE−CCA
AII ,first ≤ ε.

Second Level Ciphertext Security: We consider the following security game
where AII interacts with the challenger C in the following stages.

• Initialization: C runs Setup(λ) to generate the public parameters params and
master secret key msk. It sends both params and msk to AII .

• Phase 1: The challenger C sets up the list of corrupt and honest users, ini-
tialises ˆPKi to PKi for all the users and updates the public key list Pcurrent.
AII issues several queries to the above stated oracles simulated by C with
the restriction that it cannot make partial key extract queries (Oppe) or user
key extract queries (Oue) of the users whose public keys have been replaced.
Also, AII cannot place queries to Oppe as it already has access to msk and
can generate the partial keys itself.

• Challenge: AII outputs two messages m0 and m1 in M where |m0| = |m1|, the
target identity IDch, and the delegator’s identity IDdel with the adversarial
constraints as follows:
− IDch should not be a corrupt user.
− AII must not query the user key extract oracle (Oue) of IDch.
− AII must not replace the public key of IDch.
− AII must not query Ork(IDdel, IDch).
− AII must have not queried Ork(IDch, IDi), where IDi is a corrupt user.
On receiving {m0,m1}, C picks δ ∈ {0, 1} at random and generates a challenge
ciphertext D∗ = Re − Encrypt(IDdel, IDch, Encrypt(IDch, ˆPKch,mδ,
params), RKIDdel→IDch

, params) and gives to AII .
• Phase 2: AII issues the queries to the oracles similar to Phase 1, with the same

adversarial constraint as mentioned in Phase 1 and the added constraint on
the target identity IDch as mentioned in the Challenge phase. Additionally,
AII cannot query Oredec(IDch, C∗), for the same public key of IDch that was
used to initially encrypt mδ.

• Guess: AII outputs its guess δ′ ∈ {0, 1}.

We define the advantage of AII in winning the game as:

AdvIND−CLPRE−CCA
AII ,second = 2|Pr�δ′ = δ�−1

2
|

where the probability is over the random coin tosses performed by C and AII .
The scheme is said to be (t, ε)IND−CLPRE −CCA secure for the second level



422 S. Sharmila Deva Selvi et al.

ciphertext against Type-II adversary AII if for all t-time adversary AII that
makes qpe queries to Ope, qppe queries to Oppe, que queries to Oue, qre queries to
Ore, qrk queries to Ork, qdec queries to Odec, qredec queries to Oredec and qrep

queries to Orep, the advantage of AII is AdvIND−CLPRE−CCA
AII ,second ≤ ε.

Hardness Assumption

We state the computational hardness assumption we use to prove the security
of our scheme. Let G be a cyclic group with a prime order q.

Definition 1. Computational Diffie-Hellman (CDH) assumption: The
Computational Diffie-Hellman (CDH) assumption in G is, given elements
{P, aP, bP} ∈ G, there exists no PPT adversary which can compute abP ∈ G

with a non-negligible advantage, where P is a generator of G and a, b ∈R Z
∗
q .

3 Analysis of a Certificateless PRE Scheme by Srinivasan
et al. [10]

3.1 Review of the Scheme

• Setup(1λ):
− Choose two large primes p and q such that q|p − 1 and the security para-

meter λ defines the bit length of q. Let G be a subgroup of Z∗
p of order q

and g is a generator of G. Pick x ∈R Z
∗
q and compute y = gx.

− Choose the following cryptographic hash functions:

H : G → Z
∗
q ,

H1 : {0, 1}∗ × G → Z
∗
q ,

H2 : {0, 1}∗ × G
3 → Z

∗
q ,

H3 : G → {0, 1}l0+l1 ,

H4 : {0, 1}l0 × {0, 1}l1 → Z
∗
q ,

H5 : G2 × {0, 1}l0+l1 → Z
∗
q ,

H6 : {0, 1}∗ × G
2 → Z

∗
q

Here l0 = log q and l1 is determined by the security parameter λ. The
message space M is set to {0, 1}l0 .

− Return the public parameters params = (p, q,G, g, y,H,H1,H2,H3,H4,
H5,H6). The master secret key is msk = x.

• PartialKeyExtract(msk, IDi, params):
− Pick s1, s2, s3 ∈R Z

∗
q and compute Q1 = gs1 , Q2 = gs2 , Q3 = gs3 .

− Compute S1 = s1 + xH1(IDi, Q1), S2 = s2 + xH1(IDi, Q2) and S3 =
s3 + xH2(IDi, Q1, Q2, Q3).

− Return the partial public key PPK = (Q1, Q2, Q3, S3) and the partial
secret key PSK = (S1, S2).



An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 423

• UserKeyGen(IDi, params):
− Pick z1, z2 ∈R Z

∗
q and compute (gz1 , gz2).

− Return USK = (U1, U2) = (z1, z2) and UPK = (P1, P2) = (gz1 , gz2).
• SetPublicKey(IDi, PPK,PSK,UPK,USK, params):

− Pick t1, t2 ∈R Z
∗
q . Compute T1 = gt1 and T2 = gt2 .

− Compute μ1 = t1 + S1H6(IDi, P1, T1) and μ2 = t2 + S2H6(IDi, P2, T2).
− Return the full public key PK = (P1, P2, Q1, Q2, Q3, S3, T1, T2, μ1, μ2).

• Public Verify(IDi, PK, params):
− Compute R1 = Q1 · yH1(IDi,Q1) and R2 = Q2 · yH1(IDi,Q2).
− Check if gμ1

?= (T1)(R1)H6(IDi,P1,T1), gμ2
?= (T2)(R2)H6(IDi,P2,T2), gS3

?=
(Q3)(yH2(IDi,Q1,Q2,Q3)).

− If all the above checks are satisfied, return success, else return failure.
• SetPrivateKey(IDi, PSK,USK, params):

− Output the full secret key of the identity IDi as SK = (U1, U2, S1, S2).
• Re-KeyGen(IDi, IDj , SKi, PKj , params):

− Check the validity of the public key of IDj by verifying if Public
V erify(IDj , PKj , params) = success. If the check fails, return ⊥.

− Compute Rj,1 = Qj,1(yH1(IDj ,Qj,1)), X1 = Pj,1(R
H(Pj,1)
j,1 ).

− Compute X = Pj,1(Pj,2)H(Pj,1) and α = H(X).
− Select h ∈R {0, 1}l0 and π ∈R {0, 1}l1 . Compute v = H4(h, π).
− Compute V = (X1)v, W = H3(gv) ⊕ (h||π).
− Compute rk = h

Ui,1+H(Pi,1)Ui,2+α(Si,1+H(Ri,1)Si,2)
.

− Output the re-encryption key RKi→j = (rk, V,W ).
• Encrypt(IDi, PKi,m, params):

− Check the validity of the public key PKi by verifying if Public
V erify(IDi, PKi, params) = success. If the check fails, output ⊥.

− Compute Ri,1 = Qi,1(yH1(IDi,Qi,1)), Ri,2 = Qi,2(yH1(IDi,Qi,2)), X =
Pi,1(Pi,2)H(Pi,1), Y = Ri,1(Ri,2)H(Ri,1), α = H(X) and set Z = (X(Y )α).

− Select u ∈R Z
∗
q and ω ∈R {0, 1}l1 . Compute r = H4(m,ω).

− Compute D = (Z)u, E = Zr, F = H3(gr)⊕(m||ω), s = u + rH5(D,E, F ).
− Return the ciphertext C = (D,E, F, s) as the first level ciphertext.

• Re-Encrypt(IDi, IDj , C,RKi→j , params):
− Check validity of the ciphertext by computing Z as shown in

Encrypt(IDi, PKi,m, params) and performing the following checks.

(Z)s ?= D · EH5(D,E,F ) (1)

If the check fails, return ⊥.
− Else, compute E′ = Rrk.
− Output D = (E′, F, V,W ) as the second level ciphertext.

• Decrypt(IDi, SKi, C, params):
− Obtain the public key PKi corresponding to IDi. Check validity of the

ciphertext by checking if Eq. 1 holds. If the check fails, output ⊥.
− Else, compute Ri,1 = Qi,1(yH1(IDi,Qi,1)), Ri,2 = Qi,2(yH1(IDi,Qi,2)), X =

Pi,1(Pi,2)H(Pi,1), Y = Ri,1(Ri,2)H(Ri,1), α = H(X) and set Z = (X(Y )α).
Set K = Ui,1 + H(Pi,1)Ui,2 + α(Si,1 + H(Ri,1)Si,2).



424 S. Sharmila Deva Selvi et al.

− Compute (m||ω) = F ⊕H3(E
1
K ). Output m if E

?= (Z)H4(m,ω) holds. Else,
return ⊥.

• Re-Decrypt(IDj , SKj ,D, params):
− Compute Rj,1 = Qj,1(yH1(IDj ,Qj,1)), X1 = Pj,1(R

H(Pj,1)
j,1 ).

− Compute (h||π) = W ⊕H3(V
1

Uj,1+H(Pj,1)Sj,1 ) and (m||ω) = F ⊕H3(E′1/h).
− Output m if V

?= (X)H4(h,π)
1 , E′ ?= gh(H4(m,ω)). Else, return ⊥.

3.2 Our Attack

In this section, we highlight the flaw in the security reduction of the CLPRE
scheme due to Srinivasan et al. [10]. We demonstrate that the simulation of the
random oracles does not comply with the real system due to which, the adversary
can distinguish the simulation of the challenger from the real system. Note that
the flaw is observed in the proof for both Type − I and Type − II adversary
and we refer to both the two types of adversaries as A in general. Consider that
the adversary constructs a first level dummy ciphertext Cd = (D,E, F, s) in
the following way under a public key PKi. We use Encryptfake to denote this
technique to construct dummy ciphertexts.

– Compute Z using Encrypt(IDi, PKi,m, params) algorithm.
– Select u ∈R Z

∗
q and compute D = (Z)u.

– Pick r ∈R Z
∗
q and compute E = (Z)r.

– Choose F ∈R {0, 1}l0+l1 .
– Compute s = u + rH5(D,E, F ) mod q.

Note that the computation of F and r in Cd using Encryptfake vio-
lates the definition of the Encrypt(IDi, PKi,m, params) algorithm. But Cd

clears the ciphertext validity check of Eq. (1). The decryption algorithm
Decrypt(IDi, SKi, Cd, params) detects the ciphertext Cd as invalid and returns
⊥. However, the ReEncrypt(IDi, IDj , Cd, RKi→j , params) algorithm accepts
Cd as a valid ciphertext. We use this knowledge to construct a distinguisher for
the simulated environment from the real system described stepwise as follows:

1. After the Challenge phase, A generates a dummy ciphertext C1 =
(D1, E1, F1, s) under the target identity PKch using Encryptfake as shown:

– Compute Zch using Encrypt(IDi, PKi,m, params) algorithm.
– Select u1 ∈R Z

∗
q and compute D1 = (Zch)u1 .

– Pick r1 ∈R Z
∗
q and compute E1 = (Zch)r1 .

– Choose F1 ∈R {0, 1}l0+l1 .
– Compute s1 = u1 + r1H5(D1, E1, F1) mod q.

2. A generates another dummy ciphertext C2 = (D2, E2, F2, s2) in the same way
described above considering random values r2 ∈R Z

∗
q and F2 ∈R {0, 1}l0+l1 .

3. A queries the re-encryption oracle Orenc(IDch, IDj , C1, RKch→j). As per
Orenc, C searches the H4 list for a tuple of the form (〈m,ω〉, r) such
that E1 = (Zr

ch). If no such tuple exists, Orenc outputs ⊥. Note
that, on an output ⊥, A can distinguish between the simulation and



An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 425

the real system, since C1 is a valid ciphertext as per the definition of
ReEncrypt(IDch, IDj , C,RKch→j , params) algorithm and should produce a
valid second level ciphertext D1.

– If Orenc returns ⊥, A aborts.
– Else, Orenc computes D1 = (E′

1, F1, V1,W1) and outputs D1.
4. Similarly, A queries the re-encryption oracle Orenc(IDch, IDj , C2, RKch→j).

As per Orenc, C searches the H4 list for a tuple of the form (〈m,ω〉, r)
such that E2 = (Zr

ch). If no such tuple exists, Orenc outputs ⊥. Note
that, on an output ⊥, A can distinguish between the simulation and
the real system, since C1 is a valid ciphertext as per the definition of
ReEncrypt(IDch, IDj , C,RKch→j , params) and should produce a valid sec-
ond level ciphertext D2.

– If Orenc returns ⊥, A aborts.
– Else, Orenc computes D2 = (E′

2, F2, V2,W2) and outputs D2.

5. On receiving D1 and D2, A computes T1 = E′
1
r1
1 and T2 = E′

1
r2
2 .

6. If T1
?= T2 does not hold, ReEncrypt(IDch, IDj , C,RKch→j , params) �=

Orenc, A learns it is not the real system and aborts. Else, if T1
?= T2 holds,

A cannot distinguish between the simulated environment and real system.

3.3 A Possible Fix

The flaw in the scheme can be fixed by modifying the encryption algorithm
Encrypt(IDi, PKi,m, params) with additional ciphertext validity checks in
both Re-Encrypt and the Decrypt. The modified scheme is shown below.

• Setup(1λ): The Setup algorithm remains the same as in [10] described in
Sect. 3.1. Add another cryptographic hash function to the existing public
parameters as defined:

H̃ : G4 × {0, 1}l0+l1 → G

Return public parameters params = (p, q,G, g, y, H̃,H,H1,H2,H3,H4,H5,
H6) and the master secret key is msk = x, generated as described in Sect. 3.1.

• The PartialKeyExtract, UserKeyGen, SetPublicKey, Public Ver-
ify, SetPrivateKey, Re-KeyGen algorithms are the same as described
in Sect. 3.1.

• Encrypt(IDi, PKi,m, params):
− Check the validity of the public key PKi by verifying if Public Ver-

ify(IDi, PKi) = success. If the check fails, output ⊥.
− Compute Ri,1 = Qi,1(yH1(IDi,Qi,1)), Ri,2 = Qi,2(yH1(IDi,Qi,2)), X =

Pi,1(Pi,2)H(Pi,1), Y = Ri,1(Ri,2)H(Ri,1), α = H(X) and set Z = (X(Y )α).
− Select u ∈R Z

∗
q and ω ∈R {0, 1}l1 . Compute r = H4(m,ω).

− Compute D = (Z)u, E = Zr.
− Compute D̄ = H̃(X,Y,D,E, F )u, Ē = H̃(X,Y,D,E, F )r.
− Compute F = H3(gr) ⊕ (m||ω) and s = u + rH5(E, Ē, F ).
− Return the ciphertext C = (E, Ē, F, s) as the first level ciphertext.



426 S. Sharmila Deva Selvi et al.

• Re-Encrypt(IDi, IDj , C,RKi→j , params): On input of a re-encryption key
RKi→j = (RK

〈1〉
i→j , V,W ), a first level ciphertext C = (E, Ē, F, s) encrypted

under PKi, obtain a second level ciphertext D under PKj as follows:
− Compute Ri,1 = Qi,1(yH1(IDi,Qi,1)), Ri,2 = Qi,2(yH1(IDi,Qi,2)), X =

Pi,1(Pi,2)H(Pi,1), Y = Ri,1(Ri,2)H(Ri,1), α = H(X) and set Z = (X(Y )α).
− Compute D and D̄ as follows:

D = (Z)s · (EH5(E,Ē,F ))−1

= Zu · Zr·H5(E,Ē,F ) · Z−r·H5(E,Ē,F )

= (Z)u.

D̄ = H̃(X,Y,D,E, F )s · (ĒH5(E,Ē,F ))−1

= H̃(X,Y,D,E, F )u+r·H5(E,Ē,F ) · H̃(X,Y,D,E, F )−r·H5(E,Ē,F )

= H̃(X,Y,D,E, F )u.

− Check the validity of the ciphertext by performing the following checks.

(Z)s ?= D · EH5(E,Ē,F ) (2)

H̃(X,Y,D,E, F )s ?= D̄ · ĒH5(E,Ē,F ) (3)

If the check fails, return ⊥.
− Else, parse RKi→j as (rk, V,W ) compute E′ = Rrk.
− Output D = (E′, F, V,W ) as the second level ciphertext.

• Decrypt(IDi, SKi, C, params):
− Obtain the public key PKi corresponding to IDi. Check if the ciphertext

is well-formed by computing the values of D and D̄ and checking if Eqs. 2
and 3 holds. If they do not hold, return ⊥.

− Else, compute Ri,1, Ri,2,X, Y, α, Z,K and retrieve m as described in the
Decrypt(IDi, SKi, C, params) algorithm in Sect. 3.1.

• Re-Decrypt(IDj , SKj ,D, params): Same as described in in Sect. 3.1.

4 Our Unidirectional CCA-secure CLPRE Scheme

4.1 Our Scheme

• Setup(1λ): Given λ as the security parameter, choose a group G of prime
order q. Let P be a generator of G. Pick s ∈R Z

∗
q and compute Ppub = sP .

Choose cryptographic hash functions:

H̃ : {0, 1}lID × G
2 × {0, 1}l0+l1 → G

H1 : {0, 1}lID × G
2 → Z

∗
q

H2 : Z∗
q × Z

∗
q → Z

∗
q

H3 : G → Z
∗
q

H4 : {0, 1}l0 × {0, 1}l1 → Z
∗
q

H5 : G2 → {0, 1}l0+l1

H6 : G2 × {0, 1}l0+l1 → Z
∗
q



An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 427

where {0, 1}l0 is the size of the message space M, l1 is determined by the secu-
rity parameter λ and {0, 1}lID is the size of the identity of a user. Return the
public parameters params = (G, q, P, Ppub, H̃,H1,H2,H3,H4,H5,H6) and
master secret key msk = s.

• PartialKeyExtract(msk, IDi, params):
− Choose xi, yi ∈R Z

∗
q .

− Compute Xi = xiP, Yi = yiP .
− Compute qi = H1(IDi,Xi, Yi).
− Compute di = (xi + qis) mod q.
− Return the Partial Public Key PPKi = (Xi, Yi, di) and the Partial Private

Key PSKi = yi.
• UserKeyGen(IDi, params):

− Pick zi ∈R Z
∗
q .

− Compute Zi = ziP .
− Return the user private key-public key pair (USKi, UPKi) = (zi, Zi).

• SetPrivateKey(IDi, PSKi, USKi, params): Set the full secret key as
SKi = 〈zi, yi〉.

• SetPublicKey(IDi, PPKi, PSKi, UPKi, USKi, params): Set the full pub-
lic key as PKi = 〈Xi, Yi, Zi, di〉.

• PublicVerify(IDi, PKi, params): We additionally provide public verifiabil-
ity of the public keys of each user. This is done by the following check:

diP
?= Xi + H1(IDi,Xi, Yi) · Ppub (4)

If the check is satisfied, return valid, else return invalid.

Remark 1. Our public key verification algorithm PublicV erify(IDi, PKi,
params) ensures the validity of the public keys, since an adversary can replace the
public keys with false keys of its choice.

• Re-KeyGen(IDi, IDj , SKi, PKj , params):
− Pick α

(1)
ij , β

(1)
ij ∈R Z

∗
q .

− Compute α
(2)
ij such that α

(1)
ij · α

(2)
ij = yi mod q.

− Compute β
(2)
ij such that β

(1)
ij · β

(2)
ij = zi mod q.

− Compute vij = H2(α
(2)
ij ||β(2)

ij ).

− Compute Vij = vij · Yj and Wij = H3(vijP ) ⊕ (α(2)
ij ||β(2)

ij ).

− Return RKi→j = (α(1)
ij , β

(1)
ij , Vij ,Wij).

• Encrypt(IDi, PKi,m, params):
− Check the validity of the public key of identity IDi by checking if

PublicVerify(IDi, PKi, params)=valid.
− If invalid, return ⊥.
− Else, pick σ ∈R {0, 1}l1 , u ∈R Z

∗
q .

− Compute r = H4(m,σ) ∈ Z
∗
q .

− Compute the ciphertext C = (C1, C2, C3, C4) where:
Compute C1 = rP ∈ G.



428 S. Sharmila Deva Selvi et al.

Compute C1 = uP ∈ G.
Compute C2 = rH̃(IDi, C1, C1, C3) ∈ G.
Compute C2 = uH̃(IDi, C1, C1, C3) ∈ G.
Compute C3 = H5(rYi, rZi) ⊕ (m||σ) ∈ {0, 1}l0+l1 .
Compute C4 = u + rH6(C1, C2, C3) ∈ Z

∗
q .

− Return C = (C1, C2, C3, C4).
• Re-Encrypt(IDi, IDj , C,RKi→j , params): To verify that C is well-formed,

compute C1 and C2 as given:

C1 = C4P − H6(C1, C2, C3) · C1

= uP + H6(C1, C2, C3)rP − H6(C1, C2, C3) · C1

= uP.

C2 = C4 · H̃(IDi, C1, C1, C3) − H6(C1, C2, C3) · C2

= (u + rH6(C1, C2, C3))H̃(IDi, C1, C1, C3) − H6(C1, C2, C3) · C2

= uH̃(IDi, C1, C1, C3).

We verify if the ciphertext is well-formed by performing the following checks:

C4 · P
?= C1 + H6(C1, C2, C3) · C1 (5)

C4 · H̃(IDi, C1, C1, C3)
?= C2 + H6(C1, C2, C3) · C2 (6)

If verification is successful, do the following computation:
− Compute D1 = α

(1)
ij · C1.

− Compute D2 = β
(1)
ij · C1.

− Return the re-encrypted ciphertext as D = (D1,D2,D3,D4,D5) = (D1,
D2, C3, Vij ,Wij).

• Decrypt(IDi, SKi, C, params): Verify that C is a valid ciphertext by check-
ing if Eqs. 5 and 6 holds. If satisfied, compute m using:

(m||σ) = C3 ⊕ H5(yi · C1, zi · C1) (7)

• Re-Decrypt(IDj , SKj ,D, params):
− Compute (α(2)

ij ||β(2)
ij ) = Wij ⊕ H3( 1

yj
Vij).

− Check if Vij
?= H2(α

(2)
ij ||β(2)

ij ) · Yj .
− If satisfied, compute m as:

(m||σ) = C3 ⊕ H5

(
α
(2)
ij · D1, β

(2)
ij · D2

)
(8)



An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 429

4.2 Correctness

Due to space constraints, the correctness of our scheme appears in the full version
of the paper [8].

4.3 Security Proof

First-level Ciphertext Security Against Type I Adversary

Theorem 1. Our proposed scheme is CCA-secure against Type-I adversary for
the first level ciphertext under the CDH assumption and the EUF −CMA secu-
rity of Schnorr signature scheme [7]. If a (t, ε)IND − CLPRE − CCA Type-I
adversary AI with an advantage ε breaks the IND-CLPRE-CCA security of the
given scheme, C can solve the CDH problem with advantage ε′ within time t′

where:

ε′ ≥ 1
qH5

(
(1 − ω)1+qrkε

e(qppe + 1)
− qH4

2l0+l1
− qH6

2l0+l1
− qH̃

2l0+l1

− qdec

(
qH5/q

1 − (qH4/(2l0+l1))
+

qH4/(2l0+l1)
1 − (qH5/q)

+
2
q

))

where ω is the advantage of an attacker against the EUF-CMA security game of
the Schnorr signature scheme and e is the base of the natural logarithm. Time
taken by C to solve the CDH problem is:

t′ ≤ t + (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1 + qH2 + qH3 + qH4 + qH5 + qH6 , TO = 4tpe + 4tppe +
4tue + 2trk + 8tre + 8tdec + 6tredec. We denote the time taken for exponentiation
operation in group G as texp.

Proof. Due to space constraints, the proof of the theorem is given in the full
version of this paper [8].

Second-level Ciphertext Security Against Type I Adversary

Theorem 2. Our proposed scheme is CCA-secure against Type-I adversary for
the second level ciphertext under the CDH assumption and the EUF − CMA
security of the Schnorr signature scheme. If a (t, ε)IND − CLPRE − CCA
Type-I adversary AI with an advantage ε breaks the IND-CLPRE-CCA security
of the given scheme, C can solve the CDH problem with advantage ε′ within time
t′ where:

ε′ ≥ 1
qH5

(
2(1 − ω)2+qrkε

e(qppe + 2)2
− qdec

(
qH5/q

1 − (qH4/(2l0+l1))
+

qH4/(2l0+l1)
1 − (qH5/q)

+
2
q

))



430 S. Sharmila Deva Selvi et al.

where ω is the advantage of an attacker against the EUF-CMA security game of
the Schnorr signature scheme and e is the base of the natural logarithm. Time
taken by C to solve the CDH problem is:

t′ ≤ t + (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1 + qH2 + qH3 + qH4 + qH5 + qH6 , TO = 4tpe + 4tppe +
4tue + 2trk + 8tre + 8tdec + 6tredec. We denote the time taken for exponentiation
operation in group G as texp.

Proof. Due to space constraints, the proof of the theorem is given in the full
version of this paper [8].

First-level Ciphertext Security Against Type II Adversary

Theorem 3. Our proposed scheme is CCA-secure against Type-II adversary
for the first level ciphertext under the CDH assumption and the EUF − CMA
security of the Schnorr signature scheme. If a (t, ε)IND−CLPRE−CCA Type-
II adversary AII with an advantage ε breaks the IND-CLPRE-CCA security of
the given scheme, C can solve the CDH problem with advantage ε′ within time t′

where:

ε′ ≥ 1
qH2

(
(1 − ω)1+qrkε

e(qppe + que + 1)
− qH4

2l0+l1
− qH6

2l0+l1
− qH̃

2l0+l1

− qdec

(
qH5/q

1 − (qH4/(2l0+l1))
+

qH4/(2l0+l1)
1 − (qH5/q)

+
2
q

))

where ω is the advantage of an attacker against the EUF-CMA security game of
the Schnorr signature scheme and e is the base of the natural logarithm. Time
taken by C to solve the CDH problem is:

t′ ≤ t + (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1 + qH2 + qH3 + qH4 + qH5 + qH6 , TO = 4tpe + 4tppe +
4tue + 2trk + 8tre + 8tdec + 6tredec. We denote the time taken for exponentiation
operation in group G as texp.

Proof. Due to space constraints, the proof of the theorem is given in the full
version of this paper [8].

Second-level Ciphertext Security Against Type II Adversary

Theorem 4. Our proposed scheme is CCA-secure against Type-II adversary for
the second level ciphertext under the CDH assumption and the EUF − CMA
security of the Schnorr signature scheme. If a (t, ε)IND − CLPRE − CCA
Type-II adversary AII with an advantage ε breaks the IND-CLPRE-CCA security



An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 431

of the given scheme, C can solve the CDH problem with advantage ε′ within time
t′ where:

Pr[EH∗
5
] ≥ 2(1 − ω)2+qrk

e(qppe + que + 2)2
− qdec

(
qH5/q

1 − (qH4/(2l0+l1))
+

qH4/(2l0+l1)
1 − (qH5/q)

+
2
q

)

where ω is the advantage of an attacker against the EUF-CMA security game of
the Schnorr signature scheme and e is the base of the natural logarithm. Time
taken by C to solve the CDH problem is:

t′ ≤ t + (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1 + qH2 + qH3 + qH4 + qH5 + qH6 , TO = 4tpe + 4tppe +
4tue + 2trk + 8tre + 8tdec + 6tredec. We denote the time taken for exponentiation
operation in group G as texp.

Proof. Due to space constraints, the proof of the theorem is given in the full
version of this paper [8].

5 Efficiency Comparison

We give a comparison of the efficiency of our proposed CLPRE scheme with the
suggested fix to [10] as described in Sect. 3.3. In Table 1, we show the computa-
tional efficiency of our scheme and the modified scheme by comparing the time
taken by the different algorithms in our protocols. Note that we use texp to denote
the time required for exponentiation in a group. The comparison reveals that our
scheme is more efficient than the existing scheme with our suggested fix.

Table 1. Efficiency comparison of the scheme [10] with the suggested fix with our
CLPRE scheme indicates that our scheme is more efficient.

Scheme Modified CLPRE scheme of Srinivasan et al. [10] Our CLPRE
scheme

Setup texp texp

PartialKeyExtract 3texp 2texp

UserKeyGen 2texp texp

SetPublicKey 2texp −
PublicVerify 8texp 2texp

Re-KeyGen 5texp 2texp

Encrypt 10texp 4texp

Re-Encrypt 10texp 6texp

Decrypt 11texp 6texp

Re-Decrypt 6texp 4texp



432 S. Sharmila Deva Selvi et al.

6 Conclusion

Although several CLPRE schemes have been proposed in the literature, to the
best of our knowledge, only one scheme [6] has reported the certificateless prop-
erty without any known attacks to the scheme. The scheme is based on costly
bilinear pairing operation and satisfies a weaker notion of security, termed as
RCCA security. Recently, Srinivasan et al. [10] proposed a CLPRE scheme with-
out resorting to bilinear pairing in the random oracle model. However, we demon-
strated that their security proof is flawed by presenting a concrete attack. We
then presented a unidirectional CLPRE scheme which is pairing-free and satis-
fies CCA-security against both the Type-I and Type-II adversaries for the first
and second level ciphertexts. We remark that a potential fix to [10] is also sug-
gested in our paper but our proposed algorithm is more efficient as noted from
our efficiency comparison. Our work affirmatively resolves the problems faced
by PKI-based and IB-based PRE schemes by proposing an efficient pairing-free
certificateless Proxy Re-encryption scheme.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-40061-5 29

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: IN NDSS (2005)

3. Ateniese, G., Kevin, F., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Tran. Inf. Syst.
Secur. (TISSEC) 9(1), 1–30 (2006)

4. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). doi:10.1007/BFb0054122

5. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol.
6055, pp. 316–332. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12678-9 19

6. Guo, H., Zhang, Z., Zhang, J., Chen, C.: Towards a secure certificateless
proxy re-encryption scheme. In: Susilo, W., Reyhanitabar, R. (eds.) ProvSec
2013. LNCS, vol. 8209, pp. 330–346. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41227-1 19

7. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991)

8. Sharmila Deva Selvi, S., Paul, A., Pandu Rangan, C.: An efficient certificateless
proxy re-encryption scheme without pairing. Cryptology ePrint Archive, Report
2017/768 (2017). http://eprint.iacr.org/2017/768

9. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). doi:10.1007/3-540-39568-7 5

10. Srinivasan, A., Pandu Rangan, C.: Certificateless proxy re-encryption without pair-
ing: revisited. In: Proceedings of the 3rd International Workshop on Security in
Cloud Computing, SCC@ASIACCS 2015, Singapore, Republic of Singapore, 14
April 2015, pp. 41–52 (2015)

http://dx.doi.org/10.1007/978-3-540-40061-5_29
http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/978-3-642-12678-9_19
http://dx.doi.org/10.1007/978-3-642-41227-1_19
http://dx.doi.org/10.1007/978-3-642-41227-1_19
http://eprint.iacr.org/2017/768
http://dx.doi.org/10.1007/3-540-39568-7_5


An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing 433

11. Sur, C., Jung, C.D., Park, Y., Rhee, K.H.: Chosen-ciphertext secure certificate-
less proxy re-encryption. In: De Decker, B., Schaumüller-Bichl, I. (eds.) CMS
2010. LNCS, vol. 6109, pp. 214–232. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13241-4 20

12. Yang, K., Xu, J., Zhang, Z.: Certificateless proxy re-encryption without pairings.
In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 67–88. Springer,
Cham (2014). doi:10.1007/978-3-319-12160-4 5

13. Zheng, Y., Tang, S., Guan, C., Chen, M.-R.: Cryptanalysis of a certificateless
proxy re-encryption scheme. In: 2013 Fourth International Conference on Emerging
Intelligent Data and Web Technologies, Xi’an, Shaanxi, China, 9–11 September
2013, pp. 307–312 (2013)

http://dx.doi.org/10.1007/978-3-642-13241-4_20
http://dx.doi.org/10.1007/978-3-642-13241-4_20
http://dx.doi.org/10.1007/978-3-319-12160-4_5


Mergeable Functional Encryption

Vincenzo Iovino1(B) and Karol Żebrowski2

1 University of Luxembourg, Luxembourg City, Luxembourg
vincenzo.iovino@uni.lu

2 University of Warsaw, Warsaw, Poland
k.zebrowski@mimuw.edu.pl

Abstract. In this paper we put forward a new generalization of Func-
tional Encryption (FE) that we call M ergeable FE (mFE). In a mFE sys-
tem, given a ciphertext c1 encrypting m1 and a ciphertext c2 encrypting
m2, it is possible to produce in an oblivious way a ciphertext encrypt-
ing the merged string m1||m2 under the security constraint that the new
ciphertext does not leak more information about the original ciphertexts.
For instance, let us suppose to have a token for a program (for inputs
of variable length) Px that, on input a string D representing a list of
elements, checks if a given element x is in D, and suppose that c1 (resp.
c2) encrypts a list D1 (resp. D2). Then the token evaluated on c1 (resp.
c2) reveals if x is in list D1 (resp. D2) but the same token evaluated on c,
the ciphertext resulting from the merge of c1 and c2, should only reveal
if x is in D1 or x is in D2 but not in which of the two lists it is in.

This primitive is in some sense FE with the “best possible” homo-
morphic properties and, besides being interesting in itself, it offers wide
applications. For instance, it has as special case multi-inputs FE (and
thus indistinguishability obfuscation), but enables applications not pos-
sible with the latter.

Keywords: Functional Encryption · Obfuscation · Homomorphic cryp-
tography

1 Introduction

Functional Encryption (FE) [5] is a sophisticated type of encryption that allows
to finely control the amount of information that is revealed by a ciphertext. In
a FE scheme, for any function f allowed by the system, the owner of the master
secret key can compute a restricted key, called token, for f , that enables to com-
pute f(m) on a ciphertext encrypting m, and nothing else. In recent years, more
expressive forms of FE were constructed in a series of works (see, e.g., [3,7,16,18])
culminating in the breakthrough of Garg et al. [10] who showed the first candi-
date construction of FE for all polynomial-size circuits from indistinguishability
obfuscation. Another line of research investigated extensions and generalizations
of FE such as multi-inputs FE [13], FE for randomized functionalities [14], FE
in the private-key model [19] and in alternative models [4]. While these works
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 434–451, 2017.
https://doi.org/10.1007/978-3-319-68637-0_26



Mergeable Functional Encryption 435

offer unique applications and pose new insights and challenges, we call for the
need for a new and further generalization of FE not previously discussed in the
literature.

We put forward the concept of mergeable FE (mFE) scheme. A mFE scheme
is identical to a FE scheme but in addition it is endowed with a Merge algorithm
that given two ciphertexts c1 and c2 encrypting respectively m1 and m2 can
produce a ciphertext c encrypting m1||m2 where ‘||’ represents the concatenation
symbol, i.e., can merge the original ciphertexts, in an oblivious way without
knowledge of the underlying plaintexts. As special case, a mFE also allows to
update a ciphertext in an oblivious way. That is, having a ciphertext encrypting
an unknown plaintext m, the system allows to produce a ciphertext c encrypting
m||m2 where m2 is any plaintext. Notice that a mFE system represents in some
sense a FE scheme with the best possible homomorphic properties. Indeed, it
is easy to see that a FE scheme can not be in general fully homomorphic: for
instance, the token for the function f(·) such that f(x) = f(y) for some messages
x, y but f(g(x)) �= f(g(y)) for some function g(·), allows to distinguish whether
a ciphertext c encrypts x or y by homomorphically evaluating the function g(·)
on c. Instead, the restricted form of homomorphism allowed by mFE preserves
and does not contradict its functional properties. Apart from being interesting
in itself, the applications of mFE and the settings where it can be applied are
vast and we will illustrate few of them.

Applications of mFE. The works of [13] introduced the concept of multi-
inputs FE (MI-FE), a generalization of FE where a token corresponds to a
multi-variate function that takes multiple ciphertexts as input. In these works,
several settings were defined. mFE implies MI-FE1: to evaluate a multi-variate
token on multiple ciphertexts it is sufficient to merge the ciphertexts. As special
case, a mFE supporting a single merging operation implies 2-inputs MI-FE.

One of the most notable applications of FE is to searching over encrypted
databases in a cloud computing setting. In this scenario, Alice, the manager of
a company, can distribute a token for a function f to any of her employees who
can use such tokens to perform queries over encrypted databases located in a
cloud server. For instance, one database D1 is produced by Bob and sent to
the cloud server in an encrypted form under the public-key of Alice. Similarly,
Eve produced her database D2 and sent it to the cloud server in the same
encrypted form. The two databases could contain information about products
sold, respectively, by the companies of Bob and Eve and of interest for the
company of Alice. Moreover, we assume that the cloud servers own a lot of
computational power and space but are not trusted by Bob and Eve, i.e., Bob
and Eve wish to leak as few information as possible to the servers. For simplicity,
suppose that the databases are implemented as lists of elements, let us say
D1 = (x1|| . . . ||xn) and D2 = (y1|| . . . ||yn). An employee of the company of
Alice could be interested in searching whether a specific product x is in one of

1 This holds for the public-key setting where the adversary is given the public-key
that allows to encrypt messages corresponding to any dimension.



436 V. Iovino and K. Żebrowski

the two databases but he does not care in which one it is in. Thus, the employee
sends to both servers a token for the function fx(D)

�
= 1 iff the list D contains x.

The server evaluates the token on both encrypted databases one at time and
then communicate to the employee whether the requested product x is or is not
in the databases. Suppose that at some point there is a commercial agreement
between the companies of Bob and Eve and as result of it they decide to merge
their respective data without compromising the needs of the company of Alice
and to keep on storing the merged encrypted data in the same cloud server.
One solution could be to reveal to each other their data and re-encrypt anything
under the public-key of Alice. However, this is not a valid solution as they wish
to preserve the confidentiality of their own data. Another approach could be to
store on the server just the concatenation of the previous ciphertexts. That is, if
c1 is the encryption of D1 and c2 is the encryption of D2, then the new encrypted
data could just consist of c1||c2.

Anyway, recall that Bob and Eve wish to hide to the cloud server the contents
of the new encrypted database. If the new encrypted database was just the
concatenation of the encryptions of D1 and D2, then from a query for a product
x, the server could figure out whether x was in the database of Alice or in the
database of Bob by running the token separately on c1 and c2. Thus, this solution
is not satisfactory. Another approach could to make Alice to create a new FE
system and to ask the server to merge the two encrypted data under the new
Alice’s public-key. This solution incurs in a lot of problems as well. First of all,
it requires a work from the Alice’s side. Instead, Bob and Eve would like to
merge their data without involving Alice’s company (the employees of Alice are
interested in searching whether a product is in one of the encrypted databases
and not in which one it is in). That is, in the scenario we envision, Alice consents
the companies with which she collaborates with to merge their own encrypted
data without even informing her, i.e., in a non-interactive way. Furthermore, the
size of the public-keys and parameters would grow (as the new system is based on
the old one) and the main drawback is that Alice would have to re-compute and
re-distribute new tokens to each employee. Instead, mFE offers a valid solution
to this problem: if the databases are encrypted with a mFE system, then Bob
and Eve can merge their own encrypted databases in an oblivious way hiding
any information on the original databases to the server.

From mFE it is possible to derive CCA1-secure PKE with special homomor-
phic properties. Recall that FE (specifically, identity-based encryption) implies
CCA1-secure public-key encryption (PKE) [8]. If the underlying FE scheme used
in the construction of CCA1-secure PKE is in particular a mFE scheme, the
resulting PKE scheme would be a CCA1-secure PKE scheme supporting merg-
ing operations.

We defer further applications to the full version.

The requirements of a mFE scheme. In view of the above and further
applications we desire mFE systems to satisfy the following properties:

– The operation of merging two ciphertexts c1 and c2 can be performed having
just the public-key of the system, c1 and c2.



Mergeable Functional Encryption 437

– The size of the merged ciphertext should be proportional to the sum of the
lengths of the old ciphertexts plus an additive factor polynomial in the security
parameter. That is, suppose that c1 has size m1 and c2 has size m2 and let k
be the security parameter. Then, the result of merging c1 and c2 must be a
ciphertext of length O(m1 + m2 + k). This is to rule out solutions where the
ciphertext resulting from the merge has for instance length k · (|m1| + ·|m2|)
that would bound the number of mergings to be logarithmic (or less) in the
security parameter. We call this requirement compactness.

– The systems must be designed for the Turing Machine (TM) model of com-
putation as the circuit model does not fit well with the mFE setting. In fact,
circuits can compute over a fixed number of bits, and thus, even though the
system allowed multiple merging operations, a token could be used only on
ciphertexts resulting from a bounded number of merging operations.

Our solutions of Sect. 3 only support a single merging operation and are easily
generalizable to bounded number of merging operation. In the full version we
will discuss an heuristic construction supporting unbounded messages from new
assumptions. Anyway, we stress that also a mFE supporting single merge is
already sufficient for most of our applications like the implications of MI-FE,
and all other applications when limited to a single operation.

We adopt as security definition an indistinguishability-based (IND) one.
Recall that in the standard IND-Security game for FE an efficient adversary
can output two challenge messages m0 and m1 and can ask any token for a
function f that does not allow to distinguish the two messages, i.e., such that
f(m0) = f(m1). This is to avoid trivial attacks. In mFE this constraint is not
sufficient. In fact, it could be that f(m0) = f(m1) but f(m||m0) �= f(m||m1)
allowing the adversary to distinguish by merging the challenge ciphertext with
a ciphertext encrypting m. Notice that this situation is similar to the case of
MI-FE. Therefore, we change the definition in the obvious way, by generalizing
the above constraint to take in account any sequence of messages that “extends”
the challenge messages (in poor words, to any message that has the challenge
message as substring). More formally we also allow the challenge to be a pair
of sequences (s0, s1) of merging operations with the same length and structure.
Details are given in Sect. 2.1.

Overview of the construction. We assume that the reader is familiar with the
construction of FE of Garg et al. [10]. Let us now sketch how to construct mFE
scheme that supports a single merging operation. The technical details of our
construction are tightly related with the need of proving its security so we will
explain it step by step following an informal approach. Let us call ciphertexts
of “first level” the ciphertexts encrypting directly messages and not resulting
from merge operations. Suppose that in our scheme the ciphertexts of first level
have the same form as in the Garg et al.’s scheme. Consider now the following
implementation of the merge operation. To merge two ciphertexts (c1, c2, π1)
and (c3, c4, π2), re-encrypt c1 and c3 under the first public-key to get Ct1 and
c2 and c4 under the second public-key to get Ct2 adding a proof that Ct1 and
Ct2 encrypt respectively strings (c1||c3) and (c2||c4) such that there exist proofs



438 V. Iovino and K. Żebrowski

π1, π2 of the fact that c1 and c2 encrypt the same message and c3 and c4 encrypt
the same message with respect to some proof systems to be specified later. We
call the NP language consisting of statements of such form L2 to distinguish it
from L1, the language used for the ciphertexts of first level (consisting of pairs
of ciphertexts that encrypt the same message). That is, the new ciphertext will
be (Encrypt(Pk1, (c1, c3)),Enc(Pk2, (c2, c4), π), where π is a proof of the fact that
Ct1 and Ct2 belong to L2.

To simplify the construction, let us use the following tools. First of all, we
employ (1) a non-interactive witness indistinguishable proof systems (NIWI)
with statistical soundness [9] and (2) a statistically binding commitment scheme.
In the public-key we put two CRSs of the NIWI system, one used to prove
statements in L1 and one for L2, and a statistically binding commitment com.
Actually for the needs of our reduction, the languages L1 and L2 are changed as
follows. In the real scheme the NIWI is used to prove the following statement:
“the pair of ciphertexts (Ct1,Ct2) are well formed (as specified before) or com is
a commitment to (Ct1||Ct2)”. Let us now sketch the security reduction. Recall
that the adversary A selects as challenges two sequences (s0 = (m1,m2), s1 =
(m3,m4)) of merging operations and let us denote by x1

b (resp. x2
b) the inner

string encrypted in the ciphertext induced by the sequence sb with respect to
the first (resp. second) public-key.

The definition is better explained by an example. For instance, with respect to
the sequences s0, x1

0 is string (Encrypt(Pk1,m1)||Encrypt(Pk1,m2)). Furthermore,
let use denote by xi

b[L] (resp. xi
b[R]) the left part (resp. right part) of xi

b, e.g., in
the previous example x1

0[L] = Encrypt(Pk1,m1) and x1
0[R] = Encrypt(Pk1,m2).

Note that the challenge ciphertext Ct consists of (Ct1,Ct2, π) where, if for
instance the challenge bit b = 0, Ct1 encrypts x1

0 and Ct2 encrypts x2
0 and π

is a proof that (Ct1,Ct2) ∈ L2 that is in turn relative to the two proofs π′
1, π

′
2.

The latter proofs are such that (1) π′
1 is a proof that x1

0[L] and x2
0[L] encrypt

the same message (in the previous example m1) and (2) π′
2 is a proof that x1

0[R]
and x2

0[R] encrypt the same message (in the previous example m2). The security
proof proceeds in a standard hybrid argument and is deferred to Sect. 3.1.

For simplicity we presented the construction for a single merging operation
but it is straight-forward to extend it to a bounded number d of merging oper-
ations at cost of having parameters growing as d. In Sect. 3.2 we show how
this construction can be also extended to support a bounded number of merging
operations but for messages of unbounded length but for that we need public-coin
diO instead of iO.

Related work. The primitive we introduce is novel yet it is related to the
following cryptographic objects. mFE shares with homomorphic encryption (see
[11]) the capability of “combining” different ciphertexts in an oblivious way but it
extends homomorphic encryption with functional features. As discussed before,
in some sense mFE achieves the best of possible homomorphism capabilities
for FE. mFE shares with MI-FE [13] the capability of computing over multiple
encrypted data and indeed mFE enables all the applications of MI-FE but the
converse is not true.



Mergeable Functional Encryption 439

In particular, MI-FE differs from mFE in an essential aspect. When two
ciphertexts c1 and c2 are merged with mFE, it is not longer possible to recover
the original information. Instead, while MI-FE allows to compute a function
f over two ciphertexts c1 and c2 yet it is possible to swap c2 with any other
ciphertext c3 to compute f over c1 and c3. We also remark that it is not known
how to use MI-FE to re-encrypt so to imply mFE.

FE for randomized functionalities was studied by Goyal et al. [14] who pre-
sented two types of notions, one simulation-based and one indistinguishability-
based. The simulation-based one can be defined only in limited settings due
to known impossibility results [1,5], and moreover, to be useful in construct-
ing mFE, simulation-based secure FE for randomized functionalities should be
generalized to 2-inputs for which more severe impossibility results are known as
it would imply VBB obfuscation. Instead, the indistinguishability-based notion
is limited to statistically indistinguishable distributions, thus excluding the re-
encryption functionality.

Target malleability introduced by Boneh et al. [6] restricts the set of homo-
morphic operations one can perform on encrypted data but does not offer func-
tional features. Gentry et al. [12] construct an attribute-based encryption (ABE)
scheme with fully homomorphic properties. In ABE the ciphertext is associated
with a pair (m,x) where x is public and only m is hidden. The system of Gentry
et al. allows homomorphic operations only on m, and thus is incomparable to
ours.

2 Definitions

Functional Encryption. Functional encryption (FE) schemes are encryption
schemes for which the owner of the master secret can compute restricted keys,
called tokens, that allow to compute a functionality on the plaintext associated
with a ciphertext. In this work we consider FE for Turing Machines (TMs)
[17] and we assume that the reader is familiar with it. We assume a standard
definition of FE scheme and its indistinguishability-based security as in [5].

2.1 Mergeable Functional Encryption

In this Section we will formally introduce the concept of mergeable functional
encryption (mFE).

We first introduce our notation related to merging operations. To not over-
burden the discussion, we prefer to adopt a non too much formal style but
expanding the definitions with concrete examples.

We denote the merge of string x1 with string x2 by (x1, x2)2 and we call such
string (x1, x2) a sequence. (We assume implicitly that the symbols ‘(‘,’)’ and ‘,’
do not belong to the string alphabet and thus sequences can be parsed efficiently.

2 Notice that the order is important, so the operation (x1, x2) is different from (x2, x1).



440 V. Iovino and K. Żebrowski

This can be formalized in standard ways but we over skip these details). Fur-
thermore, we define a sequence of merging inductively in the obvious way. That
is, a string in the message space is a sequence of merging operations and if s1
and s2 are sequences of merging operations, then (s1, s2) is a sequence of merg-
ing operations. For instance, the sequence s = ((x1, (x2, x3)), x4) is the result
of (1) merging x2 with x3 to get sequence s1, then (2) merging x1 with s1 to
get sequence s2 and finally (3) s2 with x4 to get sequence s. Note that in this
paper with a slight abuse of notation sometimes we use the notation (x.y) and
similar to denote both sequences of merging operations and lists of elements. We
say that a sequence of merging operations s splits over the strings (x1, . . . , xn)
if such variables appear in s in that order. For instance (x1, (x2, (x3, x4))) splits
over (x1, x2, x3, x4). We say that a sequence of merging operations s ranges over
the set of strings M if the strings appearing in s belong to M . For instance
(x1, (x2, (x3, x2))) ranges over any set containing {x1, x2, x3}. If s is a sequence
we denote by cat(s) the concatenation of the strings which the sequence consists
of. For instance if s = ((x1, (x2, x3)), x4) then cat(s) = x1||x2||x3||x4.

We say that a sequence of merging operations s1 splitting over the strings
(x1, . . . , xn) has the same structure of a sequence of merging operations s2 split-
ting over (y1, . . . , ym) if (1) m = n and (2) if s′

1 is the string obtained by
replacing any string xi in s1 with 0|xi| and s′

2 is the string obtained by replac-
ing any string yi in s2 with 0|yi|, then s′

1 = s′
2. Note that this implies that

for any i, |xi| = |yi|. For instance, (010, (111, 001)) does not have the same
structure of ((010, 111), 001), (010, (111, 001)) does not have the same struc-
ture of (010, (11, 001)), but (010, (11, 001)) does have the same structure of
(111, (00, 110)). That is, two sequences have the same structure if the sequence
of parenthesis and commas correspond and any string has the same length. We
say that t(·) is a function of merging operations if t(·) is a sequence of merg-
ing operations containing at least one special symbol � and if s is a sequence of
merging operations then t(s) is the result of replacing � with s in t. Furthermore,
If t(·) = � then t(s) = s for any sequence of merging operations s. For instance,
if t(·) = ((x1, (x2, ∗)), x3) and s = (x3, x4) then t(s) = ((x1, (x2, (x3, x4))), x3).
We say that a function of merging operations t(·) ranges over the set of strings
M if except the symbol � the strings appearing in t belong to M . For instance
t(·) = (x1, (�, (x3, x2))) ranges over any set containing {x1, x2, x3}. Finally, we
stress that the strings in the sequence of merging operations we will consider will
be both messages in the message space and ciphertexts. For instance, if c1, c2, c3
and c4 are ciphertexts, then s = ((c1, c2), (c3, c4)) is a sequence of merging oper-
ations on ciphertexts.

Definition 1 [mergeable Functional Encryption Scheme]. A mergeable func-
tional encryption scheme mFE for functionality F is a tuple mFE =
(Setup,KeyGen,Enc,Eval,Merge) of 5 algorithms with the following syntax:

1. Setup(1λ) outputs public and master secret keys (Pk,Msk) for security para-
meter λ.

2. KeyGen(Msk, k), on input a master secret key Msk and key k ∈ K outputs
token Tok.



Mergeable Functional Encryption 441

3. Enc(Pk,m), on input public key Pk and plaintext m ∈ M outputs ciphertext
Ct: Furthermore, if s is a sequence of merging operations splitting over the
strings (x1, . . . , xn), with a slight abuse of notation, we denote by Enc(Pk, s),
the sequence s′ that is equal to s except that for any i ∈ [n], any occur-
rence of xi is replaced by Enc(Pk, xi). For instance, Enc(Pk, (x1, (x2, x3))) =
(c1, (c2, c3)) where c1, c2 and c3 are respectively the encryptions of x1, x2

and x3. (We stress that even if a sequence s contains two equal strings, e.g.,
(x1, (x2, x1)), in the encryption of s any ciphertext is generated with inde-
pendent randomness).

4. Eval(Pk,Ct, Tok) outputs y ∈ Σ ∪ {⊥}.
5. Merge(1λ,Pk,Ct1,Ct2): if Ct1 and Ct2 are ciphertexts, the algorithm outputs

a ciphertext Ct resulting from merging Ct1 with Ct2.
With a slight abuse of notation, we also define Merge to take as input a
sequence of merging operations on ciphertexts in the obvious way, described
by the following example. Let s1 = (c1, (c2, c3)) be a sequence of merging
operations on ciphertexts, then
Merge(1λ,Pk, s)

�
= Merge(1λ,Pk, c1,Merge(1λ,Pk, c2, c3)).

In addition we make the following requirements:

– Correctness: For all (Pk,Msk) ← Setup(1λ), all k ∈ K and any sequence s
splitting over strings ∈ M such that cat(s) ∈ M , for Tok ← KeyGen(Msk, k)
and Ct ← Merge(1λ,Pk,Enc(Pk, s)), we have that Eval(Pk,Ct, Tok) =
F (k, cat(s)) whenever F (k, cat(s)) �= ⊥, except with negligible probability
in λ. (See [2] for a discussion about this condition.)

– Compactness: there exists a polynomial poly such that for all (Pk,Msk) ←
Setup(1λ), for any sequences s1, s2 splitting over strings ∈ M such
that cat(s1), cat(s2) ∈ M , for Ct1 ← Merge(1λ,Pk,Enc(Pk, s1)), Ct2 ←
Merge(1λ,Pk,Enc(Pk, s2)), Ct ← Merge(1λ,Pk,Ct1,Ct2), we have that |Ct| ∈
O(|Ct1| + |Ct2| + poly(λ)). Note that here sequences s1, s2 might be a single
message.

Remark 2. Notice that the correctness requirement has as special case the
correctness for traditional FE.

Indistinguishability-based security. The indistinguishability-based notion
of security for mergeable functional encryption scheme mFE = (mFE.Setup,
mFE.KeyGen,mFE.Enc,mFE.Eval) for functionality F defined over (K,M) is for-
malized by means of the following game parametrized by a polynomial poly:

mINDmFE,poly
A between an adversary A = (A0,A1) and a challenger C. Below,

we present the definition for only one message; it is easy to see the definition
extends naturally for multiple messages.



442 V. Iovino and K. Żebrowski

mINDmFE,poly
A (1λ)

1. C generates (Pk,Msk) ← mFE.Setup(1λ) and runs A0 on input Pk;
2. A0 submits queries for keys ki ∈ K for i = 1, . . . , q1 and, for each such

query, C computes Toki = mFE.KeyGen(Msk, ki) and sends it to A0.
When A0 stops, it outputs two challenge sequences of merging operations
s0, s1 and its internal state st.

3. C picks b ∈ {0, 1} at random, computes the challenge ciphertext Ct =
mFE.Merge(Pk,mFE.Encrypt(Pk, sb))a and sends Ct to A1 that resumes its
computation from state st.

4. A1 submits queries for keys ki ∈ K for i = q1 + 1, . . . , q and, for each such
query, C computes Toki = mFE.KeyGen(Msk, ki) and sends it to A1.

5. When A1 stops, it outputs b′.
6. Output: The challenger outputs 1 (i.e., the adversary wins the game) iff

the following conditions are all satisfied:
(a) b = b′.
(b) s0 and s1 are sequences of strings over strings in M satisfying |s0| =

|s1|.
(c) for any function of merging operations t(·) of length ≤ poly(λ) ranging

over M it holds that: F (ki, t(s0)) = F (ki, t(s1)) for i = 1 . . . , q.

—————
a We refer the reader to the definition of the procedure Merge for the use of

this notation.

For any polynomial poly, the advantage of adversary A in the above game para-
metrized by poly is defined as

AdvmFE,mIND,poly
A (1λ) = |Prob[mINDmFE,poly

A (1λ) = 1] − 1/2|.

Definition 3. We say that mFE is indistinguishably secure (IND-Secure, for
short) for all probabilistic polynomial-time adversaries A there exists a poly-
nomial poly such that the quantity AdvmFE,mIND,poly

A (1λ) is negligible in λ.

Definition 4 [Selective IND-Security].The selective security game of mFE is sim-
ilar to the above game except that the adversary has to declare the challenges at the
beginning of the experiment. We say that a mFE scheme is selectively IND-Secure
if any PPT adversaries has at most negligible advantage in such game.

We provided definitions for mFE supporting unbounded number of opera-
tions. It is straight-forward to adapt them to the case of mFE supporting one
merging operation as needed in Sect. 3. Moreover, for mFE supporting one merg-
ing operation the compactness property is not required.

Building blocks. In our work we will indistinguishability obfuscation (iO) for
Turing Machines [17], public-coin differing-inputs obfuscation (diO) [15], NIWI
proof system [9] and other standard primitives.



Mergeable Functional Encryption 443

3 Our mFE Scheme for One Merging Operation

Definition 5 [MFE scheme for one merging operation]. Let NIWIi =
(CRSGeni,Provei,Verifyi) for i = 1, 2 be two NIWI proof systems for some NP-
languages to be specified later, Com a (perfectly binding) commitment scheme,
E = (E.Setup,E.Encrypt,E.Decrypt) a PKE scheme, and iO an iO for TMs with
bounded inputs [17]. Let n(λ) be a bound on the size of the messages that our
mFE has to support and m(λ) a bound on the size of ciphertexts of E that
encrypt messages of length n(λ). We define a mFE scheme
mFE[NIWI1,NIWI2,Com,E] = (Setup,KeyGen,Enc,Merge,Eval) for functionality
TM as follows.

– Setup(1λ)3: runs (Pk1,Sk1) ← E.Setup(1λ), (Pk2,Sk2) ← E.Setup(1λ), and
com ← Com(02m(λ)), and sets crsi ← CRSGeni(1λ)i for i = 1, 2. The proce-
dure returns a pair (Mpk,Msk) where Mpk = (Pk1,Pk2, com, crs1, crs2) and
Msk = Sk1.

– Enc(Pk,m): on input Pk = (Pk1,Pk2, com, crs1, crs2) and m ∈ n(λ),
the algorithm chooses randomness r1 and r2, and computes Ct1 =
E.Encrypt(Pk1,m; r1),Ct2 = E.Encrypt(Pk2,m; r2). Consider the following
NP-language4:
L1 = {(Ct1,Ct2) ∈ {0, 1}2m(λ) : ∃m, r, r1, r2 : (Ct1 = E.Encrypt(Pk1,m; r1) ∧
Ct2 = E.Encrypt(Pk2,m; r2)) ∨ com = Com(Ct1||Ct2; r)}.
(Note that L1 is relative to com,Pk1,Pk2). The procedure outputs a ciphertext
of first level (1,Ct1,Ct2, π) where π is a proof of the fact that (Ct1,Ct2) ∈ L1

computed with Prove1 and crs1 using as witness m, r1, r2.
– KeyGen(Msk,M): on input Msk and a machine M , the algorithm outputs an

iO of the following machine T [M,Sk1,Pk1,Pk2, crs
1, crs2, com] as token.

Machine T [M,Sk1,Pk1,Pk2, crs
1, crs2, com](l,Ct1,Ct2, π)

1. Pad with machine T2[M,Sk2,Pk1,Pk2, crs
1, crs2, , com]

2. if l = 1 then do
3. If Verify1(crs1, (Ct1,Ct2), π) = 0 then return ⊥
4. set m = E.Decrypt(Sk1,Ct1) and return M(m)
5. if l = 2 then do
6. If Verify2(crs2, (Ct1,Ct2), π) = 0 then return ⊥
7. (c1, c2) = E.Decrypt(Sk1,Ct1)
8. set m1 = E.Decrypt(Sk1, c1) and m2 = E.Decrypt(Sk1, c2)
9. return M(m1||m2)

3 Formally, the procedure should also take as input the bound m(λ) on the size of the
messages (since it is used to generate the commitment) but for simplicity we omit
such details.

4 Formally we should define it as a family of languages indexed by the security para-
meter but henceforth for simplicity we omit this detail.



444 V. Iovino and K. Żebrowski

– Merge(Pk,Ct1,Ct2): Let Ct1 = (c1, c2, π1) and Ct2 = (c3, c4, π2). The pro-
cedure sets Ct′1 = E.Encrypt(PK1, c1||c3) and Ct′2 = E.Encrypt(PK2, c2||c4).
Consider the following NP-language L2:
L2 = {(Ct1,Ct2) ∈ {0, 1}2m(λ) : ∃c1, c2, c3, c4, π1, π2, r, r1, r2 : (Ct′1 = E.
Encrypt(Pk1, c1||c3; r1) ∧ Ct2 = E.Encrypt(Pk2, c2||c4; r2) ∧ Verify1(crs1, c1||
c2) = 1 ∧ Verify1(crs1, c3||c4) = 1) ∨ com = Com(Ct1||Ct2; r)}.
(Note that L2 is relative to com, crs1,Pk1,Pk2). The procedure computes a
proof π of the fact that (Ct′1,Ct

′
2) ∈ L2 using Prove2 with crs2 and witness

r1, r2, c1, c2, c3, c4, π1, π2. The procedure outputs (Ct′1,Ct
′
2, π).

– Eval(Pk,Ct, Tok): on input Pk = (Pk1,Pk2), Ct = (i, C1, C2, π) and Tok =
iO(T [M,Sk1,Pk1,Pk2, crs, com]), returns the output Tok(Ct) (i.e., evaluates
the obfuscated program on input Ct).

It is straight-forward to see that the scheme is correct.

3.1 Security Reduction

We assume that the reader is familiar with the overview presented in Sect. 1. We
reduce the security of our mFE scheme to that of the underlying primitives via a
series of hybrid experiments against a PPT adversary A attacking the selective
IND-Security of mFE.

For simplicity we assume that the challenge sequences do not consist of single
messages so that the challenge ciphertexts can not be of first level. However, it
is easy to observe that in the latter case the reduction can be derived as special
case of ours, but not to overburden the presentation we omit the details. Recall
that the adversary A selects as challenges two sequences (s0, s1) of merging oper-
ations. We denote by x1

b (resp. x2
b) the inner string encrypted in the ciphertext

induced by the sequence sb with respect to the first (resp. second) public-key. The
definition is better explained by an example. For instance, if s0 = (m1,m2), then
x1
0 is the string Encrypt(Pk1,m1)||Encrypt(Pk1,m2). Furthermore, we denote by

xi
b[L] (resp. xi

b[R]) the left part (resp. right part) of xi
b, e.g., in the previous

example x1
0[L] = Encrypt(Pk1,m1) and x1

0[R] = Encrypt(Pk1,m2). Note that
in our construction the challenge ciphertext Ct with respect to the challenges
(s0, s1) consist of (Ct1,Ct2, π) where Ct1 encrypts x1

b and Ct2 encrypts x2
b and

π is a proof that (Ct1,Ct2) ∈ L2 that is in turn relative to (1) a NIWI proof π′
1

of the fact that x1
b [L] and x2

b [L] encrypt the same message and (2) a proof π′
2 of

the fact that x1
b [R] and x2

b [R] encrypt the same message.

– H0. This corresponds to the IND-Security game in which the chosen challenge
sequence is s0. Thus, the challenge ciphertext consists of (Ct1,Ct2, π) where
(Ct1,Ct2) belong to L2.

– H1. This experiment is identical to H0 except that the commitment com
in the public-key is a commitment to (Ct1,Ct2). Specifically, A selects its
challenges (s0 = (m1,m2), s1 = (m3,m4)) and x1

0 = x1
0[L]||x1

0[R] and x2
0 =

x2
0[L]||x2

0[R] are computed as described above along with (1) the NIWI proof
π′
1 of the fact that x1

0[L] and x2
0[L] encrypt the same message (specifically



Mergeable Functional Encryption 445

m1) and (2) the NIWI proof π′
2 of the fact that x1

0[R] and x2
0[R] encrypt

the same message (specifically m2). Then, the procedure Setup of mFE is run
as in its definition except that com is set to be com = Com((Ct1||Ct2); r)
for some fresh randomness r where Ct1 is an encryption of x1

0 and Ct2 is
an encryption of x2

0. The rest of the experiment can be simulated by means
of Msk and Pk generated by the procedure Setup. Indeed, note that in the
challenge ciphertext Ct = (Ct1,Ct2, π) the proof π is computed with respect
to the proofs of “first level” π′

1, π
′
2 and the randomness to encrypt x1

0 in Ct1
and x2

0 in Ct2.
Indistinguishability of H1 from H0. It is easy to see that the claim follows from
the computational hiding property of com.

– H2. This experiment is identical to H1 except that the NIWI proof π in
the challenge ciphertext Ct = (Ct1||Ct2) is computed with respect to the
randomness r used to generate com.
Indistinguishability of H2 from H1. It is easy to see that the claim follows from
the witness indistinguishability property of NIWI observing that both the
witness used in H1 and the witness used in H1 are valid witnesses of the fact
that (Ct1,Ct2) ∈ L2.

– H3. This experiment is identical to H2 except that Ct2 is set to an encryption
of x2

1. The commitment com is still generated as com = Com((Ct1||Ct2); r)
and the randomness r is still used as witness to compute the proof π in the
challenge ciphertext Ct = (Ct1,Ct2, π).
Indistinguishability of H3 from H2. It is easy to see that the claim follows from
the IND-CPA security of E observing that Sk2 is never needed to simulate
the experiment.

– H4. This experiment is identical to H3 except that any token is changed to
be the obfuscation of the following machine:

Machine T2[M,Sk2,Pk1,Pk2, crs
1, crs2, com](l,Ct1,Ct2, π)

1. Pad with machine T [M,Sk1,Pk1,Pk2, crs
1, crs2, com]

2. if l = 1 then do
3. If Verify1(crs1, (Ct1,Ct2), π) = 0 then return ⊥
4. set m = E.Decrypt(Sk2,Ct2) and return M(m)
5. if l = 2 then do
6. If Verify2(crs2, (Ct1,Ct2), π) = 0 then return ⊥
7. (c1, c2) = E.Decrypt(Sk2,Ct2)
8. set m1 = E.Decrypt(Sk2, c1) and m2 = E.Decrypt(Sk2, c2)
9. return M(m1||m2)

Indistinguishability of H4 from H3. For simplicity we can assume that A asks
only one token query for the TM M computing the function f . The general
case can be handled by a standard hybrid argument. By the statistical binding
property of Com and by the correctness of E and by definition of Li, i = 1, 2
and statistical soundness of NIWI, with all except negligible probability, there



446 V. Iovino and K. Żebrowski

is exactly one pair of ciphertexts (Ct1,Ct2) that encrypts different inner-
messages, the challenge ciphertext, and by definition of the experiments, the
message M0 resulting from decrypting Ct1 recursively using Sk1 and the mes-
sage M1 resulting from decrypting Ct2 recursively using Sk2, are such that
f(M0) = f(M1) where f is the function associated with the token. Thus,
we can invoke the security of iO to argue the indistinguishability of the two
hybrids.

– H5. This experiment is identical to H4 except that Ct1 is set to an encryption
of x1

1. The commitment com is still generated as com = Com((Ct1||Ct2); r)
and the randomness r is still used as witness to compute the proof π in the
challenge ciphertext Ct = (Ct1,Ct2, π).
Indistinguishability of H5 from H4. The indistinguishability of H5 from H4 is
symmetrical to that of H3 from H2.

– H6. This experiment is identical to H5 except that any token is changed to
be the obfuscation of the machine T [M,Sk1,Pk1,Pk2, crs

1, crs2, com].
Indistinguishability of H6 from H5. The indistinguishability of H6 from H5 is
symmetrical to that of H4 from H3.

– H7. This experiment is identical to H6 except that the NIWI proof π in
the challenge ciphertext Ct = (Ct1,Ct2) is computed with respect to the
randomness r used to generate com.
Indistinguishability of H7 from H6. The indistinguishability of H7 from H6 is
symmetrical to that of H2 from H1.

– H8. This experiment is identical to H7 except that the commitment com in
the public-key is a commitment to 02m(λ).
Indistinguishability of H8 from H7. The indistinguishability of H8 from H7 is
symmetrical to that of H8 from H7.

The indistinguishability of the above hybrid experiments implies the following
theorem.

Theorem 6. If for i = 1, 2 NIWIi = (CRSGeni,Provei,Verifyi) is a NIWI proof
system for the NP-language Li, Com is a (perfectly binding) commitment
scheme, E = (E.Setup,E.Encrypt,E.Decrypt) is a IND-CPA secure PKE scheme,
and iO is an iO for TMs with bounded inputs, then the proposed scheme mFE is
a selective IND-Secure mFE scheme for bounded messages supporting one merg-
ing operation. If in addition iO satisfies succinctness and input-specific running
time, so mFE does.

3.2 Extension to Messages of Unbounded Length

To extend the above scheme to support messages of unbounded length we make
the following changes, but first we would like to stress that, whereas in the case
of bounded messages it is possible to concatenate strings of fixed length without
a separator and indeed we often did this making use of the symbol ‘||’, instead
in the case of unbounded messages we would need to separate strings of variable
length with a separator but with a slight abuse of notation we will continue to



Mergeable Functional Encryption 447

use the previous notation, i.e., we will write z = x||y for strings x, y ∈ {0, 1}�

assuming that it is possible to parse z in x and y.

1. We assume a public-coin differing-inputs obfuscation [15] (diO, in short) for
TMs with unbounded inputs. This is necessary since the TM to be obfuscated
have to read inputs of variable length.

2. We assume collision-resistant hash functions (CRHF, in short) CRHF =
(Gen,Hash) mapping strings from {0, 1}� to {0, 1}λ.

3. The Setup procedure of the mFE scheme is identical except that an hashing
key hk is generated by Gen(1λ), and com is a commitment to 0λ.

4. The languages Li are changed to the following languages L′i.
L′1 = {(Ct1,Ct2) ∈ {0, 1}2m(λ) : ∃m, r, r1, r2 : (Ct1 = E.Encrypt(Pk1,m; r1) ∧
Ct2 = E.Encrypt(Pk2,m; r2)) ∨ com = Com(Hash(hk,Ct1||Ct2); r)}.
L′2 = {(Ct1,Ct2) ∈ {0, 1}2m(λ) : ∃c1, c2, c3, c4, π1, π2, r, r1, r2 : (Ct′1 = E.
Encrypt(Pk1, c1||c3; r1) ∧ Ct2 = E.Encrypt(Pk2, c2||c4; r2) ∧ Verify1(crs1,
c1||c2) = 1 ∧ Verify1(crs1, c3||c4) = 1) ∨ com = Com(Hash(hk,Ct1||Ct2); r)}.
Note that L′1 is relative to com,Pk1,Pk2, hk and L′2 is relative to
com, crs1,Pk1,Pk2, hk and the languages are still in NP. As consequence,
the NIWI proofs used in the modified scheme will be relative to the latter
languages.

5. The machine T [M,Sk1,Pk1,Pk2, crs
1, crs2, com] is changed to the machine

T ′[M,Sk1,Pk1,Pk2, crs
1, crs2, hk, com] with the obvious modification that the

new machine verifies the proofs with respect to the new languages L′i (and
thus, implicitly using the hashing key hk).

Security reduction. We now show how a security reduction for the modified
scheme supporting inputs of unbounded size. Such security reduction follows the
lines of the security reduction of Sect. 3.1. Consider the following series of hybrid
experiments against a PPT adversary A attacking the selective IND-Security of
the modifed scheme.

– H ′
0. Identical to H0 except that com is a commitment to Hash(hk, (Ct1,Ct2)).

– H1. This experiment is identical to H ′
0 except that the commitment com in

the public-key is a commitment to Hash(hk, (Ct1,Ct2)).

Claim 7 Indistinguishability of H ′
1 from H ′

0. Identical to the indistinguishability
of H1 from H0.

– H ′
2. This experiment is identical to H1 except that the NIWI proof π in

the challenge ciphertext Ct = (Ct1,Ct2) is computed with respect to the
randomness r used to generate com.

Claim 8 Indistinguishability of H ′
2 from H ′

1. Identical to the indistinguishability
of H2 from H1.

– H ′
3. This experiment is identical to H ′

2 except that Ct2 is set to an
encryption of x2

1. The commitment com is still generated as com =
Com(Hash(hk, (Ct1,Ct2)); r) and the randomness r is still used as witness
to compute the proof π in the challenge ciphertext Ct = (Ct1,Ct2, π).



448 V. Iovino and K. Żebrowski

Claim 9 Indistinguishability of H ′
3 from H ′

2. Identical to the indistinguishability
of H3 from H2.

– H ′
4. This experiment is identical to H ′

3 except that any token is changed to
be the obfuscation of the following machine:
T ′
2[M,Sk2,Pk1,Pk2, crs

1, crs2, hk, com] that is identical to
T2[M,Sk2,Pk1,Pk2, crs

1, crs2, hk, com] except that it verifies the proofs for the
new languages L′i.

Claim 10 Indistinguishability of H4 from H3. For simplicity we can assume that
A asks only one token query for a TM M computing the function f . The general
case can be handled by a standard hybrid argument. By the the correctness of
E, by definition of Li, i = 1, 2, and statistical soundness of NIWI, with all except
negligible probability, the set of pairs of ciphertexts S = {(Ct′1,Ct

′
2)} for which

(1) there exists an associated valid (i.e., accepted by the verifier) NIWI proof of
the fact that Ct ∈ L2 (or in the case of ciphertexts of first level, a proof of the
fact that Ct ∈ L1) and (2) such that the message M0 resulting from decrypting
Ct1 recursively using Sk1 and the message M1 resulting from decrypting Ct2
recursively using Sk2 satisfy f(M0) �= f(M1), have one of the following two
forms:

1. ∀Ct′ = (Ct′1,Ct
′
2) ∈ S, Hash(hk,Ct′) = Hash(hk,Ct) where Ct = (Ct1,Ct2) is

the value committed in com.
2. Let (Ct′1,Ct

′
2) ∈ S and x1 = (x1[L], x1[R]) and x2 = (x2[L], x2[R]) be the

strings resulting from decrypting respectively Ct′1 with Sk1 and Ct′2 with Sk2.
Then Hash(hk, (x1[L], x2[L])) = Hash(hk,Ct) and Hash(hk, (x1[R], x2[R])) =
Hash(hk,Ct), where Ct = (Ct1,Ct2) is the value committed in com.

Furthermore, note that the set S does not contain the challenge cipher-
text Ct committed in com. Consider now the following sampling algorithm
Sampler. It takes as input a random string ρ and parses it as (hk, τ).
The sampler runs the adversary A simulating to it the view in experiment
H ′

4 until A asks the token query. Specifically, it uses the randomness hk
for Hash and the randomness τ to generate the public-/secret- keys for E,
for Com, and for the ciphertexts and the NIWI proofs. Then, it outputs
the two (non-obfuscated) machines T ′[M,Sk1,Pk1,Pk2, crs

1, crs2, hk, com] and
T ′
2[M,Sk2,Pk1,Pk2, crs

1, crs2, hk, com]. Consider a distinguisher D that takes as
input the randomness ρ and machine M ′ that is the obfuscation (with respect
to diO) of one of the two previous machines. D executes all steps of Sampler and
continues the execution of A answering the token query sending M ′. It is easy
to see that if A has non-negligible advantage in distinguishing the two hybrids,
so D does for the two machines. Thus, to prove the claim we have to show that
Sampler is a public-coin differing-inputs sampler. Suppose towards a contradic-
tion that there exists an adversary B that finds a differing-input to the pair of
TMs sampled by Sampler. Then we build an algorithm CHash that breaks the
security of Hash. CHash incorporates Sampler and B. On input a random hashing
key hk, the algorithm samples a uniform string τ and runs B and Sampler on



Mergeable Functional Encryption 449

ρ = (hk, τ). Let the output of Sampler be T ′, T ′
2 and let Ct′ = (Ct′1,Ct

′
2) be the

output of B. Furthermore, let Ct = (Ct1,Ct2) be the challenge ciphertext com-
mitted in com that is computed by Sampler at the beginning of its execution. By
the fact that the only distinguishing inputs for T ′ and T ′

2 are strings in S and by
correctness of diO and by the above two facts, it holds that Ct′ �= Ct and either
(1) Hash(hk,Ct′) = Hash(hk,Ct) or (2) Hash(hk, (x′

1[L], x′
2[L])) = Hash(hk,Ct)

and Hash(hk, (x′
1[R], x′

2[R])) = Hash(hk,Ct), where x′
1 = (x′

1[L], x′
1[R]) and

x′
2 = (x′

2[L], x′
2[R]) are the strings resulting from decrypting respectively Ct′1

with Sk1 and Ct′2 with Sk2. Observing that in the case (2) CHash has the secret-
keys Sk1,Sk2 to decrypt Ct1 and Ct2, we conclude that in both cases CHash can
find a collision for Hash(hk,Ct) as desired.

– H ′
5. This experiment is identical to H ′

4 except that Ct1 is set to an
encryption of x1

1. The commitment com is still generated as com =
Com(Hash(hk, (Ct1,Ct2)); r) and the randomness r is still used as witness
to compute the proof π in the challenge ciphertext Ct = (Ct1,Ct2, π).

Claim 11 Indistinguishability of H ′
5 from H ′

4. The indistinguishability of H ′
5

from H ′
4 is symmetrical to that of H ′

3 from H ′
2.

– H ′
6. This experiment is identical to H ′

5 except that any token is changed to
be the obfuscation of the machine T ′[M,Sk1,Pk1,Pk2, crs

1, crs2, hk, com].

Claim 12 Indistinguishability of H ′
6 from H ′

5. The indistinguishability of H ′
6

from H ′
5 is symmetrical to that of H ′

4 from H ′
3.

– H ′
7. This experiment is identical to H ′

6 except that the NIWI proof π in
the challenge ciphertext Ct = (Ct1,Ct2) is computed with respect to the
randomness r used to generate com.

Claim 13 Indistinguishability of H ′
7 from H ′

6. The indistinguishability of H ′
7

from H ′
6 is symmetrical to that of H ′

2 from H ′
1.

– H ′
8. This experiment is identical to H ′

7 except that the commitment com in
the public-key is a commitment to 0λ.

Claim 14 Indistinguishability of H ′
8 from H ′

7. The indistinguishability of H ′
8

from H ′
7 is symmetrical to that of H ′

8 from H ′
7.

The indistinguishability of the above hybrid experiments implies the following
theorem.

Theorem 15. If for i = 1, 2 NIWIi = (CRSGeni,Provei,Verifyi) is a NIWI
proof system for the NP-language Li, Com is a (perfectly binding) commitment
scheme, E = (E.Setup,E.Encrypt,E.Decrypt) is a IND-CPA secure PKE scheme,
Hash is a CRHF, and diO is a public-coin differing-inputs obfuscator for TMs
(with unbounded inputs), then the modified scheme is a selective IND-Secure
mFE scheme for unbounded messages supporting one merging operation. If in
addition iO satisfies succinctness and input-specific running time, so the mFE
scheme does.



450 V. Iovino and K. Żebrowski

References

1. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 28

2. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possibility
results, impossibility results and the quest for a general definition. In: Abdalla,
M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234.
Springer, Cham (2013). doi:10.1007/978-3-319-02937-5 12

3. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryp-
tion with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 30

4. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40084-1 26

5. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

6. Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic encryption
for restricted computations. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pp. 350–366. ACM (2012)

7. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-70936-7 29

8. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 13

9. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: 31st Annual Symposium
on Foundations of Computer Science (1990)

10. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013,
Berkeley, CA, USA, 26–29 October 2013, pp. 40–49. IEEE Computer Society (2013)

11. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. Thesis, Stanford Uni-
versity (2009). crypto.stanford.edu/craig

12. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

13. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 32

14. Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized
functionalities. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
325–351. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 13

http://dx.doi.org/10.1007/978-3-642-40084-1_28
http://dx.doi.org/10.1007/978-3-642-40084-1_28
http://dx.doi.org/10.1007/978-3-319-02937-5_12
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-642-40084-1_26
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://dx.doi.org/10.1007/978-3-540-24676-3_13
http://crypto.stanford.edu/craig
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-642-55220-5_32
http://dx.doi.org/10.1007/978-3-662-46497-7_13


Mergeable Functional Encryption 451

15. Ishai, Y., Pandey, O., Sahai, A.: Public-coin differing-inputs obfuscation and its
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
668–697. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 26

16. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 9

17. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. Cryptology ePrint Archive, Report 2014/925
(2014). http://eprint.iacr.org/

18. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 35

19. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-00457-5 27

http://dx.doi.org/10.1007/978-3-662-46497-7_26
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-29011-4_35
http://dx.doi.org/10.1007/978-3-642-29011-4_35
http://dx.doi.org/10.1007/978-3-642-00457-5_27


Protocols



Private Subgraph Matching Protocol

Zifeng Xu, Fucai Zhou(B), Yuxi Li, Jian Xu, and Qiang Wang

Software College, Northeastern University, Shenyang, Liaoning, China
fczhou@mail.neu.edu.cn

Abstract. In many applications, information can be stored and man-
aged using graph data structures, and there is a rich set of graph
algorithms that can be used to solve different problems. The subgraph
isomorphism problem is defined as, given two graphs G and H, whether
G contains a subgraph that is isomorphic to H. The problem has been
well studied for many years, and it can be used for many application
areas, such as cheminformatics, pattern matching, data mining and image
processing. In this paper, we present a private subgraph matching pro-
tocol, which solves a special case of the subgraph isomorphism problem.
The protocol allows two parties, each holding a private graph, to jointly
compute whether one graph is a subgraph of the other. During the proto-
col, each party learns no useful information about the graph of the other
party. We prove that the protocol is secure in the semi-honest setting.

Keywords: Graph theory · Subgraph isomorphism problem · Multi-
party computation · Homomorphic encryption

1 Introduction

In graph theory, the subgraph isomorphism problem is defined as, given two
graphs G and H, determining whether there is a subgraph G′ ⊆ G, such that G′

is isomorphic to H [1]. The subgraph isomorphism problem have been extensively
studied for many years, and several algorithms are proposed [1–7]. Since graph
data structures have been widely used across various areas in industry, the prob-
lem can be used for solving many computational tasks in different applications,
such as cheminformatics, computer vision and data mining.

Generally speaking, a graph consists of a set of vertices and a set of edges. The
vertices are often used to represented entities, and the edges represent the rela-
tions between them. In a labeled graph, all the vertices are labeled with unique
values. For directed and unweighted graphs, the edges are having orientations
and no weight.

The subgraph matching problem a special case of the subgraph isomorphism
problem. Formally speaking, a the subgraph matching problem between two
labeled, directed and unweighted graphs, denoted as G and H, is defined as
computing whether H is a subgraph of G, i.e. H ⊆ G. Let H = (VH , EH) and
G = (VG, EG), where V and E are the sets of vertices and edges. H ⊆ G is
defined as VH ⊆ VG and EH ⊆ EG.
c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 455–470, 2017.
https://doi.org/10.1007/978-3-319-68637-0_27



456 Z. Xu et al.

The problem itself is trivial, and can be easily solved with straight forward
solutions. However, no solution has been proposed in literature to solve the
subgraph matching problem for two parties in a privacy-preserving manner.

1.1 Related Work

Graph data structure is widely used to store and manage data in the areas of
chemistry, biology and biochemistry. A large number of algorithms based on
subgraph isomorphism have been proposed to solve different problems [8–12].
Furthermore, many problems in pattern matching and recognition can be nat-
urally converted into the subgraph isomorphism problem. Therefore, subgraph
isomorphism is suitable for solving many problems in the area of computer vision
[13,14].

In the era of big data, the size of a single graph data and the size of a graph
database have a rapid growth in recent years. Therefore, developing efficient sub-
graph isomorphism algorithms for large graph data and database is becoming
an urgent task. As a result, several solutions that solves the subgraph isomor-
phism problem for large graphs and large graph databases have been proposed
[15,16]. In addition, several performance comparisons between the subgraph iso-
morphism algorithms for different types of graphs have been conducted [17,18].

Furthermore, in the aspect of privacy protecting, various algorithms and
protocols for different graph operations have been proposed [19–22]. However,
as far as we can tell, the study of privacy-preserving subgraph isomorphism
problems is still missing.

1.2 Our Contribution

In this paper, we propose a private subgraph matching protocol (PSM). The
protocol solves the subgraph matching problem between two parties, a verifier
and a prover, while protecting the privacies of the input graphs. At the end of
the protocol, only the verifier learns the result.

We prove that the protocol is correct and zero-knowledge for both the verifier
and the prover in the semi-honest setting. Furthermore, we analyse the leakage
problem and the efficiency of our protocol.

2 Preliminaries

2.1 Paillier Cryptosystem

The Paillier cryptosystem is one of the most practical homomorphic encryption
schemes, proposed by Paillier in 1999 [23]. Homomorphic encryption schemes
allow the user to perform certain computation operations on the ciphertext
space, such as addition and multiplication. The Paillier cryptosystem contains
three algorithms, described as follows:

(pk, sk) ← KeyGen(1k): the key generation algorithm takes as input a security
parameter k, and outputs a public key pk and a secret key sk.



Private Subgraph Matching Protocol 457

m⊕ ← Enc(pk,m): the encryption algorithm takes as inputs the public key pk
and a plaintext m, and outputs the corresponding ciphertext m⊕.

m ← Dec(sk,m⊕): the decryption algorithm takes as inputs the secret key sk
and a ciphertext m⊕, and outputs the corresponding plaintext m.

The Paillier cryptosystem supports homomorphic addition operation on
the ciphertext space. For the rest of this paper, let ⊕ denotes the homomor-
phic addition operation. For any m0 and m1 chosen from the plaintext space,
Dec(Enc(m0) ⊕ Enc(m1)) = m0 + m1 always holds.

In addition, the Paillier cryptosystem also supports homomorphic multipli-
cation between a ciphertext and a plaintext. For the rest of this paper, let ⊗
denotes the homomorphic multiplication operation. For any m0 and m1 chosen
from the plaintext space, Dec(Enc(m0) ⊗ m1) = m0 · m1 always holds.

The Paillier cryptosystem is proved to have semantic security against chosen-
plaintext attacks, i.e. IND-CPA.

In our Private Subgraph Matching Protocol, we will use the Paillier cryp-
tosystem to prevent from information leakage. For simplicity, we will use the
notion m⊕ = Enc(m) for the encryption algorithm and m = Dec(m⊕) for the
decryption algorithm for the rest of the paper.

2.2 Private Subset Relation Protocol

Kissner and Song proposed several privacy-preserving set operations in 2005,
and one of which is the private subset relation protocol [24]. Suppose there are
two parties, Alice and Bob, each holding a private set, denoted as SA and SB,
respectively. The protocol allows Alice and Bob to jointly compute whether
SA is a subset of SB , in other words, whether SB contains all the elements in
SA. The protocol is based on oblivious polynomial evaluation and an additive
homomorphic encryption scheme, such as the Paillier cryptosystem. The protocol
runs as follows:

1. Bob represents his set SB as a polynomial P (x) =
|SB |∑

i=0

αix
i, where αi is the

coefficient for each term. P (x) has the property that all the roots are exactly
the elements in SB . Then Bob encrypts all the coefficients using the Paillier
cryptosystem, and sends them to Alice.

2. Alice obviously evaluates the polynomial using each elements in her set SA

as input, and obtains |SA| resulting ciphertexts. Then Alice homomorphi-
cally multiplies each ciphertext by a random number, and homomorphically
compute the sum of all the resulting products. At last, Alice obtains a single
ciphertext and sends it to Bob.

3. Bob decrypts the receiving ciphertext and checks whether the decrypted value
is 0. A decryption of 0 will indicates that all the elements in SA is also in SA,
i.e. SA ⊆ SB .

The construction of the protocol is efficient and straight forward. At the
end of the protocol, Bob learns the subset relation result, and Alice learns the



458 Z. Xu et al.

cardinality of SB by counting the ciphertexts received from Bob. The protocol
is secure under the semi-honest setting, which means no information is leaked
during the protocol, beyond the subset relation result and the cardinality of
SB . However the protocol cannot deal with malicious Alice, since she can easily
encrypts 0 from scratch and sends it to Bob.

In our private subgraph matching protocol, we will use the above protocol
as a building block.

3 Model and Definition

We formally describe the private subgraph matching protocol (PSM). There
are two parties that participates the protocol, a verifier and a prover. Each of
the participates holds a private graph. The private graphs are directed, labeled
and unweighted. The verifier wish to learn that whether the prover’s graph is a
subgraph of the verifier’s graph. During the protocol, both of the parties wish
to keep their graphs private. In other words, they do not want to leak any
information about their graphs to the other party. At the end of the protocol,
only the verifier learns the result.

Leakage. While achieving truly no information leakage is the ideal goal, our
protocol leaks partial information about the graphs of the verifier and the prover.
We define four information leakages that take place during the protocol, denoted
as L1, L2, L3 and L4, respectively. Let GA = (VA, EA) and GB = (VB , EB)
denote the graphs of the verifier and the prover, respectively. VA and VB are the
vertex sets, and EA and EB are the edge sets. The degree of a vertex is defined
as the number of neighbors of the vertex. Let D(v) denotes the degree of the
vertex v.

L1 is defined as the number of vertices of the verifier’s graph, i.e. L1 = |VA|.
L2 is defined as the number of vertices with non-zero degree in the verifier’s
graph, i.e. L2 = |{va}va∈VA,D(va) �=0|. L3 is defined as the degree of each vertex
of the verifier’s graph, i.e. L3 = {D(va)}va∈VA

. L4 is defined as the number of
vertices with non-zero degree in the prover’s graph, i.e. L4 = |{vb}vb∈VB ,D(vb) �=0|.
We will discuss the leakage problem in more details in Sect. 5.2.

Threat Model. In our model, both of the verifier and the prover is considered as
semi-honest or “honest-but-curious”. Both of the parties will follow the protocol
faithfully without forging any fake result. However they may try to learn or
deduce any useful information about the graph of the other party by analysing
the data they received during the protocol.

Definition 1 (Private Subgraph Matching Protocol). Two probabilistic
polynomial time interactive Turing machines, a verifier and a prover, defines a
private subgraph matching protocol if the following conditions hold:

Correctness: If both parties are honest, for any GA = (VA, EA) and any GB =
(VB , EB), the private subgraph matching protocol computes whether GB ⊆
GA. At the end of the protocol, only the verifier learns the result.



Private Subgraph Matching Protocol 459

Verifier Zero-knowledge: A semi-honest verifier learns no information about
the prover’s graph, beyond the result of the protocol and the pre-defined
leakage L4.

Prover Zero-knowledge: A semi-honest prover learns no information about
the verifier’s graph, beyond the pre-defined leakages L1, L2 and L3.

4 Private Subgraph Matching Protocol

In this section, we describe the private subgraph matching protocol in details.
First we introduce how the graphs are represented in the protocol, then we
describe the detailed construction of the protocol.

4.1 Graph Representation

In our protocol, a graph is denoted as G = (V,E), where V is the set of all vertices
and E is the set of all edges. G is labeled, directed and unweighted, which means
each vertex is labeled as a unique value, and the edges have orientations and no
weight.

The vertex set is denotes as V = {v1, ...vm}, where m = |V | is the number
of vertices of graph G. Each vi is labeled as an integer chosen from the domain
Zv, where v being a positive integer. The edge set is denotes as E = {(vi, vj)},
where (vi, vj) represents an edge from vertex vi to vertex vj . E contains all the
edges in graph G.

The neighbors or adjacent vertices of a vertex v is defined as the set of all
vertices, such that there exists an edge from v to each of them in graph G. We
denote the set of neighbors of a vertex v as N(v).

The degree of a vertex v is defined as the number of neighbors of v, and in
other words, number of edges from v. We denote the degree of a vertex v as
D(v), i.e. D(v) = |N(v)|.

Furthermore, the edges of graph G can also be represented as an adjacency
list. The adjacency list has the form {vi : N(vi)}vi∈V,D(vi) �=0. We denote the
adjacency list of graph G as A(G).

Fig. 1. Example graph

For example, we represent the graph illustrated in Fig. 1 as G = (V,E),
where V is the vertex set and E is the edge set. By the above definition,



460 Z. Xu et al.

V = {3, 25, 44, 9, 12}, and E = {(3, 25), (3, 12), (25, 12), (25, 44), (44, 25), (9, 9)}.
The neighbors of vertice 25 is N(25) = {12, 44}. The degree of vertice 25 is
D(25) = |N(25)| = 2. The adjacency list of G is

A(G) = {3 : {25, 12},

25 : {12, 44},

44 : {25},

9 : {9}}.

4.2 Protocol Construction

The participates of the private subgraph matching protocol are a verifier and
a prover, denoted as PA and PB, respectively. Each of the participates holds
a labeled, directed and unweighted graph, which is intended to be kept secret
from the other participate. The graphs of the verifier and the prover are denoted
as GA and GB , respectively. During the protocol, both of the verifier and the
prover interactively compute whether GB is a subgraph of GA. At the end of
the protocol, only the verifier learns the result.

The vertices and the edges of the input graphs are represented using the
forms described in Sect. 4.1. The vertices of GA and GB are represented as
VA = {a1, ..., am} and VB = {b1, ..., bn}, respectively. The edges of GA and GB

are represented as EA = {(ai, aj)} and EB = {(bi, bj)}, respectively.
During the protocol, the privacy of the input graphs is preserved by the Pail-

lier cryptosystem, which is denoted as a tuple of algorithms, (KeyGen,Enc,Dec),
as described in Sect. 2.1.

The protocol is described as follows:

Input : PA holds GA = (VA, EA), and PB holds GB = (VB , EB).
Output : PA learns weather GB ⊆ GA.
Protocol :

Step 1: PA runs the (pk, sk) ← KeyGen(1k) algorithm of the Paillier cryptosys-
tem, and obtains a public key and a secret key. Then PA sends pk to PB .

As described in Sect. 4.1, each vertex of the input graphs are labeled as a value
in Zv, where v is a positive integer. The public key of the Paillier cryptosystem
contains a large number N , which specifies the plaintext domain as ZN . We
require that N is large enough, such that an element drawn uniformly from ZN

will only has a negligible probability of representing an element in Zv. More
details about the above condition are in [24].

Step 2

(a) PA constructs a polynomial P (x) = (x − a1)...(x − am) =
m∑

i=0

αix
i for all

ai ∈ VA. P (x) has the property that P (x) = 0 if and only if x ∈ VA. Let
C = {α0, ..., αm} denotes the set of all the coefficients of P (x).



Private Subgraph Matching Protocol 461

(b) PA uses the Paillier cryptosystem to encrypt all the elements in C, and
obtains C⊕ = {Enc(α0), ...,Enc(αm)}. Then PA sends C⊕ to PB.

Step 3

(a) Upon receiving C⊕, PB uses the homomorphic property of the Paillier
cryptosystem to homomorphically evaluate the polynomial P (x), using all
bi ∈ VB as inputs. Then PB homomorphically multiplies each evaluation
result by a different non-zero random number γ. Let {r⊕

1 , ..., r⊕
n } denotes

the set of results, where r⊕
i = Enc(P (bi)) ⊗ γ. Note that, r⊕

i is a ciphertext
under the Paillier cryptosystem.

(b) PB homomorphically adds all r⊕
i together to obtain a single ciphertext r⊕ =

r⊕
1 ⊕ ... ⊕ r⊕

n . Then PB sends r⊕ to PA.

Step 4: PA decrypts the received ciphertext, and obtains r = Dec(r⊕). A decryp-
tion of zero will indicate that VB ⊆ VA, otherwise VB � VA. If r = 0, execute
Step 5.1, otherwise execute Step 5.2. Note that, only one of Step 5.1 and
Step 5.2 will be executed.

Step 5.1

(a) PA constructs a set V ′
A containing all the vertices ai ∈ VA satisfying N(ai) �=

∅. Let V ′
A = {a′

1, ..., a
′
g}. In other words, V ′

A contains all the vertices in VA

that have a non-zero degree, and g is number of such vertices. Each a′
j ∈ V ′

A

maps to a unique ai ∈ VA.
(b) PA constructs a set of polynomial pairs {(F1(x), G1(y)), ..., (Fg(x), Gg(y))},

for each of the vertex a′
i ∈ V ′

A. Fi(x) is defined as Fi(x) = (x − a′
i). Gi(y) is

defined as Gi(y) =
∏

aj∈N(a′
i)

(y −aj). Fi(x) has the property that Fi(x) = 0
if and only if x = a′

i. Gi(y) has the property that Gi(y) = 0 if and only if

y ∈ N(a′
i). Then PA rewrites Gi(y) to the form Gi(y) =

|N(a′
i)|∑

j=0

βi,jy
j , where

βi,j are coefficients of Gi(y). Let βi = {βi,0, ..., βi,|N(a′
i)|}.

(c) PA encrypts −a′
i and βi for 1 � i � g under the Paillier cryptosystem, and

obtains D⊕
i = {Enc(−a′

i),Enc(βi,0), ...,Enc(βi,|N(a′
i)|)}, for 1 � i � g. Then

PA sends D⊕
1 , ...,D⊕

g to PB.

Step 5.2

(a) PA constructs a set V ′
A containing all the vertices ai ∈ VA satisfying N(ai) �=

∅. Let V ′
A = {a′

1, ..., a
′
g}. Then PA constructs g sets, for each of a′

i ∈ V ′
A.

In each set, PA generates |N(a′
i)| + 2 random values. In other words, PA

constructs D⊕
1 , ...,D⊕

g , where D⊕
i = {γ0, ..., γ|N(a′

i)|+2} and γ being random
numbers. PA sends D⊕

1 , ...,D⊕
g to PB .

(b) Discard any data sent by PB in later steps, and the protocol outputs GB �

GA. In other words, Step 7 will not be executed.



462 Z. Xu et al.

Step 6

(a) After receiving D⊕
1 , ...,D⊕

g , PB constructs a set V ′
B in the same manner as

V ′
A. Let V ′

B = {b′
1, ..., b

′
h}.

(b) For a certain i ∈ [1, g] and a certain j ∈ [1, h], PB homomorphically evalu-
ates the polynomial Fi(b′

j), and homomorphically multiplies the result by a
non-zero random number γ. Then PB homomorphically evaluates the poly-
nomials Gi(bk), using all the vertices bk ∈ N(b′

j) as inputs, and homomor-
phically multiplies each result by a non-zero random number γ. After that,
PB homomorphically adds all the previous results together to obtain a single
ciphertext r⊕

i,j . PB keeps doing the above computation for every 1 � i � g
and every 1 � j � h. In other words, PB homomorphically computes

r⊕
i,j = (Enc(Fi(b′

j)) ⊗ γ) ⊕
∑⊕

bk∈N(b′
j)

(Enc(Gi(bk)) ⊗ γk)

for 1 � i � g and 1 � j � h, where γ are non-zero random numbers.
(c) PB organizes all r⊕

i,j into sets {r⊕
1,1, ..., r

⊕
g,1}, ..., {r⊕

1,h, ..., r⊕
g,h}. In other words,

PB divided all r⊕
i,j into h sets, and each set contains g ciphertexts. Then PB

send all the sets of ciphertexts to PA.

Step 7: PA decrypts all the received ciphertext, and checks the number of zeros
in each set. If there is exact one zero in each set, the protocol outputs GB ⊆ GA,
otherwise, outputs GB � GA.

5 Analysis

5.1 Security Analysis

In this section, we denote the verifier and the prover as PA and PB, respectively.
Let GA = (VA, EA) be the graph of the verifier, and let GB = (VB , EB) be the
graph of the prover. For simplicity, let g denotes the number of vertices with
non-zero degree in GA, and let h denotes the number of vertices with non-zero
degree in GB . N(v) denotes the set of neighbors of vertex v.

Lemma 1 (Correctness). If both parties are honest, for any GA = (VA, EA)
and any GB = (VB , EB), the private subgraph matching protocol computes
whether GB ⊆ GA. At the end of the protocol, only the verifier learns the result.

Proof. In order to prove the correctness of the private subgraph matching pro-
tocol, we need to show that the protocol will output GB ⊆ GA if both VB ⊆ VA

and EB ⊆ EA, otherwise, the protocol will output GB � GA.
Step 2–Step 4 of the protocol are using the private subset relation protocol

to compute whether VB ⊆ VA. If VB � VA, the protocol will always outputs
GB � GA in Step 5.2.

If VB ⊆ VA, Step 5.1 will be executed. Let V ′
A = {a′

1, ..., a
′
g} be the set of

vertices in VA that satisfying N(ai) �= ∅ for 1 � i � g. Let V ′
B = {b′

1, ..., b
′
h} be

the set of vertices in VB that satisfying N(bj) �= ∅ for 1 � j � h.



Private Subgraph Matching Protocol 463

We consider the edges of GA and GB as adjacency lists, denoted as A(GA)
and A(GB), respectively, as described in Sect. 4.1. We denote A(GA)[i] as the
i-th item in A(GA).

A(GA)[i] represents all the edges from the vertex a′
i in graph GA. There-

fore, A(GA) contains all the edges in EA. Furthermore, we define that an item
A(GB)[j] is a sub item of A(GA)[i], if a′

i = b′
j and N(b′

j) ⊆ N(a′
i). We denote the

above operation as A(GB)[j] ⊆ A(GA)[i]. If all the items in A(GB) is a sub item
of a certain item in A(GA), we say that A(GB) is a sub set of A(GA), denoted
as A(GB) ⊆ A(GA).

The meaning of A(GB)[j] ∈ A(GA) is all the edges from b′
j in EB are also in

EA. Therefore, the meaning of A(GB) ⊆ A(GA) is all the edges in EB are also
in EA, i.e. EB ⊆ EA.

In Step 5.1, for each a′
i ∈ V ′

A, PA constructs two polynomials Fi(x) and
Gi(y). The root of Fi(x) is a′

i and the roots of Gi(y) are all the elements in
N(a′

i). In Step 6, for each b′
j ∈ V ′

B , PB homomorphically computes r⊕
i,j =

(Enc(Fi(b′
j))⊗γ)⊕∑⊕

bk∈N(b′
j)

(Enc(Gi(bk)) ⊗ γk). The decryption of r⊕
i,j will be

0 if and only if A(GB)[j] ∈ A(GA)[i].
Therefore, in Step 7, PA decrypts all the ciphertexts received. If there is

exact one decryption of 0 in each {r⊕
1,1, ..., r

⊕
g,1}, ..., {r⊕

1,h, ..., r⊕
g,h}, it indicates

A(GB) ⊆ A(GA), i.e. EB ⊆ EA, and the protocol outputs GB ⊆ GA. Otherwise,
A(GB) � A(GA), i.e. EB � EA, and the protocol outputs GB � GA. 	

Lemma 2 (Verifier Zero-knowledge). A semi-honest verifier learns no infor-
mation about the prover’s graph, beyond the result of the protocol and the
pre-defined leakage L4.

Proof. During the protocol, there are two parts where PA receives information
from PB . The first part is during Step 3, where PA receives a single ciphertext
r⊕ under the Paillier cryptosystem. Upon decryption, a corresponding plaintext
of 0 will indicate that VB is a subset of VA, which is a part of the final result
of the protocol. Otherwise, the decryption will yields a random value. Since
Step 2–Step 4 essentially follows the private subset relation protocol, we skip
the proof of r⊕ reveals no additional information about VB , beyond whether
VB ⊆ VA, and more details can be found in [24].

The second part is During Step 6, where PA receives h sets, each containing
g ciphertexts under the Paillier cryptosystem. By counting the number of sets
received, PA can learn the number of vertices with non-zero degree in GB , which
is the pre-defined leakage L4. By decrypting the sets of ciphertexts, the result
plaintexts will indicate whether EB ⊆ EA, which is a part of the final result of
the protocol.

Therefore, we can proof that the data PA received during Step 6 does not
leak any additional information about GB , if PA cannot distinguish between
the cases where PB has different input graphs, given the knowledge of whether
GB ⊆ GA and L4. Consider the following experiment in the real model:



464 Z. Xu et al.

EXPIND-CPA
A (1k,L4) :

(pk, sk) ← Step 1(1k)
(G0, G1) ← A
b

$←− {0, 1}
C⊕ ← Step 2(VA, pk)

r⊕ ← Step 3(C⊕, Vb, pk)

Vb ⊆ VA ← Step 4(r⊕, sk)

D⊕
1 , ...,D⊕

g ← Step 5.1(GA, pk)

{r⊕
1,1, ..., r

⊕
g,1}, ..., {r⊕

1,h, ..., r⊕
g,h} ← Step 6(D⊕

1 , ...,D⊕
g , Gb, pk)

b̂ ← A({r⊕
1,1, ..., r

⊕
g,1}, ..., {r⊕

1,h, ..., r⊕
g,h}, Vb ⊆ VA, Eb ⊆ EA or Eb � EA,L4)

if b̂ = b, output 1
otherwise, output 0

In the above experiment, A is a probabilistic polynomial-time adversarial
verifier with a private graph GA = (VA, EA). Step 1–Step 6 are the steps of

the protocol, and $←− denotes randomly choosing.
First, A runs the Step 1 of the protocol and obtains pk and sk. Then A

choose two graphs G0 = (V0, E0) and G1 = (V1, E1), and sends them to a honest
prover PB . The vertices of the graphs are satisfying V0 ⊆ VA and V1 ⊆ VA. The
edges of the graphs are satisfying either (E0 ⊆ EA, E1 ⊆ EA) or (E0 � EA, E1 �

EA). Furthermore, the number of vertices with non-zero degree of G0 is the same
with that of G1.

PB randomly picks a bit b = {0, 1}, and chooses Gb to be his private graph.
A and PB then execute the rest of the protocol as normal until Step 6. At last,
given the knowledge of the output of Step 6, Vb ⊆ VA, Eb ⊆ EA or Eb � EA

and L4, A guesses a bit b̂. If b̂ = b, A wins the experiment. Otherwise, A
loses. The advantage of A winning the above experiment is defined as AdvA =
Pr[EXPIND-CPA

A (1k,L4) = 1].
The output of Step 6 is having the property that, if Eb ⊆ EA, each set

will contains exactly one 0 after decryption, and all other values are random
numbers. If Eb � EA, at least one of the sets contains non-zero random numbers
only.

Due to the condition (E0 ⊆ EA, E1 ⊆ EA) or (E0 � EA, E1 � EA),
the output of the Step 6 will have the same property no matter which
value b has, and the random numbers are indistinguishable for A. As a
result, {r⊕

1,1, ..., r
⊕
g,1}, ..., {r⊕

1,h, ..., r⊕
g,h} gives no additional information about the

prover’s graph, beyond the final result and L4. In other words, the advantages
of A winning the above experiment will not be greater than a random guess, i.e.
AdvA = Pr[EXPIND-CPA

A (1k,L4) = 1] = |12 + ε|, where ε is negligible.
At last, we construct a simulator S to simulate the view of the verifier in

the ideal model. S is given the knowledge of L4. At Step 3, S sends a random



Private Subgraph Matching Protocol 465

value to PA. At Step 6, S sends a random number of sets to PA, each contain
L4 random values. Due to the nature of the Paillier cryptosystem, PA cannot
distinguish between random values and the ciphertexts.

As a result, the view of the verifier in the ideal model will be indistinguish-
able from the view in the real model. In other words, Viewreal

PA
[PA, PB(GB))] ≈

Viewideal
PA

[PA,S(L4)].
In conclusion, if both parties are honest, the verifier will not learn any infor-

mation about the prover’s graph, beyond the result of the protocol and the
pre-defined leakage L4. 	

Lemma 3 (Prover Zero-knowledge). A semi-honest prover learns no infor-
mation about the verifier’s graph, beyond the pre-defined leakages L1, L2 and L3.

Proof. During the protocol, there are two parts where PB receives information
from PA. The first part is during Step 2, where PB receives a set of ciphertexts
C⊕ under the Paillier cryptosystem. PB can learn the information about |VA|
by counting the ciphertexts received, which is the pre-defined leakage L1. Again,
for the same reason, we skip the proof of C⊕ reveals no additional information
about VA beyond |VA|, and more details can be found in [24].

The second part is During Step 5.1 or Step 5.2. In the case where Step
5.1 is executed, i.e. VB ⊆ VA, PB receives g sets, D⊕

1 , ...,D⊕
g , each containing

[3, |VA| + 2] ciphertexts. By counting the number of sets received, PB can learn
the number of vertices with non-zero degree in GA, which is the pre-defined
leakage L2. By counting the number of elements in each set, PB can learn the
degree of each vertex in GA, which is the pre-defined leakage L3. In addition,
by counting number of ciphertexts in the largest set, l = max(|D⊕

i |)1�i�g, PB

can learn partial information about |VA|, which is |VA| will be at least l − 2.
However, we consider it as useless information, since PB already learns |VA|.

In the case where Step 5.2 is executed, i.e. VB � VA, PB receives g sets,
D⊕

1 , ...,D⊕
g , each containing [3, |VA|+2] random values. Due to the nature of the

Paillier cryptosystem, PB cannot distinguish between ciphertexts and random
values. Therefore, PB cannot distinguish which step is executed. In other words,
Step 5.2 will not give more information to PB than Step 5.1.

In order to prove that D⊕
1 , ...,D⊕

g does not reveal any additional information
beyond L2 and L3, we need to show that PB cannot distinguish between the
cases where PA has different input graphs, given the knowledge of L1, L2 and
L3. Consider the following experiment in the real model:



466 Z. Xu et al.

EXPIND-CPA
A (1k,L1,L2,L3) :

(pk, sk) ← Step 1(1k)
(G0, G1) ← A
b

$←− {0, 1}
C⊕ ← Step 2(Vb, pk)

r⊕ ← Step 3(C⊕, VB , pk)

VB ⊆ Vb or VB � Vb ← Step 4(r⊕, sk)
VB ⊆ Vb :

D⊕
1 , ...,D⊕

g ← Step 5.1(Gb, pk)

VB � Vb :

D⊕
1 , ...,D⊕

g ← Step 5.2(Gb, pk)

b̂ ← A(D⊕
1 , ...,D⊕

g ,L1,L2,L3)

if b̂ = b, output 1
otherwise, output 0

In the above experiment, A is a probabilistic polynomial-time adversarial
prover with a private graph GB = (VB , EB). Step 1–Step 5 are the steps of

the protocol, and $←− denotes randomly choosing.
First, a honest verifier PA runs the Step 1 of the protocol and obtains pk

and sk. Then A choose two graphs G0 = (V0, E0) and G1 = (V1, E1), and sends
them to PA. The two graphs are satisfying the condition that the number of
vertices of both graphs are the same, i.e. |V0| = |V1|. The number of vertices
with non-zero degree of G0 is the same with that of G1. Let V0 = {a1, ..., am}
and V1 = {b1, ..., bm}. The degree of each vertex in both graphs are the same,
i.e. D(ai) = D(bi) for 1 � i � m.

After that, PA randomly picks a bit b = {0, 1}, and and chooses Gb to be his
private graph. A and PA then execute the rest of the protocol as normal until
Step 5 (no matter which of Step 5.1 and Step 5.2 is executed). At last, given
the knowledge of the outputs of Step 5, L1, L2 and L3, A guesses a bit b̂. If
b̂ = b, A wins the experiment. Otherwise, A loses. The advantage of A winning
the above experiment is defined as AdvA = Pr[EXPIND-CPA

A (1k,L1,L2,L3) = 1].
The outputs of Step 5.1 are g sets of ciphertexts under the Paillier cryp-

tosystem. Note that, no matter b = 0 or b = 1, the number of elements in
each set will be fixed. Due to the nature of the Paillier cryptosystem, A cannot
distinguish between two ciphertexts, given the knowledge of the corresponding
plaintexts. Therefore, the outputs of Step 5.1 give no information about the
verifier’s graph, beyond L2 and L3. In addition, A cannot distinguish which of
Step 5.1 and Step 5.2 is executed, as explained before.

As a result, the advantages of A winning the above experiment will not be
greater than a random guess, i.e. AdvA = Pr[EXPIND-CPA

A (1k,L1,L2,L3) = 1] =
|12 + ε|, where ε is negligible.



Private Subgraph Matching Protocol 467

At last, we construct a simulator S to simulate the view of the prover in the
ideal model. S is given the knowledge of L1, L2 and L3. At Step 2, S sends
a set of L1 + 1 random values to PB . At Step 5.2 (Step 5.2 will always be
executed at overwhelming probability), S sends L2 sets to PB , each containing
several random values. The number of random values in each set is determined
by L3. Due to the nature of the Paillier cryptosystem, PB cannot distinguish
between random values and the ciphertexts.

As a result, the view of the prover in the ideal model will be indistinguish-
able from the view in the real model. In other words, Viewreal

PB
[PA(GA), PB)] ≈

Viewideal
PB

[S(L1,L2,L3), PB ].
In conclusion, if both parties are honest, the prover will not learn any

information about the verifier’s graph, beyond the pre-defined leakages L1, L2

and L3. 	


5.2 Information Leakage

The security of the private subgraph matching protocol is mainly focused on
protecting the privacies of the input graphs. Therefore preventing information
from leakage is the first priority when designing the protocol. While truly no
information leakage is the ideal goal, our protocol leaks partial information about
the graphs. We define four information leakage, denoted as L1, L2, L3 and L4,
respectively, as described in Sect. 3.

Commonly speaking, when considering labeled, directed and unweighted
graph data, the most valuable information includes the labels of the vertices, the
number of vertices, the edges between the vertices and the number of edges. The
order of the values of such information may vary based on different applications.

In certain applications, the vertices give no useful information, while the infor-
mation about the edges are consider valuable. For example, in a location based
service, the paths of users traveling across the country are stored as graphs. The
vertices of the graph represent all the cities within the country, and the edges rep-
resent how a certain user travels from city to city. In such scenario, the vertices
is public information that can be acquired by anyone, while the edges should be
kept secret, since the location information can be treated as sensitive data.

In our protocol, L1 is defined as the number of vertices of the verifier’s graph.
Since the verifier and the prover are jointly performing the protocol, it can be
reasonable to assume that both of the parties know what does the graph of the
other party represents, i.e. each of them has certain knowledge about the graph
of the other party. In some applications, L1 can be a public information, which
means leaking it will not affect preserving the privacy of the verifier’s graph.
However, in other applications, L1 may cause major information leakage.

There is an easy solution that can be applied to improve the situation, with
the price of more computation costs. During Step 2 of the protocol, PA con-
structs the polynomial P (x) as normal. Then he randomly chooses an irreducible
polynomial R(x) with degree d, and computes P ′(x) = P (x)R(x). The polyno-
mial P ′(x) will have the same property as P (x), and PA uses P ′(x) instead in



468 Z. Xu et al.

the later steps of the protocol. By using this solution, the prover can only learns
the upper bond of the number of vertices in GA, i.e. |VA| + d.

L2 and L4 are defined as the number of vertices with non-zero degree in
GA and GB , respectively. Normally speaking, L2 and L4 can be safely treated
as unvalued information. In most circumstances, L2 and L4 contain very little
information, and by acquiring them will not leads to more information leakage.
Therefore, leaking L2 and L4 will be considered as acceptable in our protocol.

L3 is defined as the degree of each vertex of the verifier’s graph. However,
the prover will not have the knowledge of the labels of the vertices in GA.
Furthermore, in the cases where the vertices of the verifier’s graph are public
information, the prover will not have the knowledge of the mappings between
the vertices and the elements in L3. In other words, even if the prover knows
the degree of a certain vertex in GA, he does not know which one. Therefore, we
can also assume L3 is acceptable in our protocol.

5.3 Performance Analysis

In this section, we denote the graph of the verifier and the prover as GA =
(VA, EA) and GB = (VB , EB), respectively. Let |VA| = m and |VB | = n. Let the
numbers of vertices with non-zero degree in GA and GB denoted as g and h,
respectively.

The communication cost is measured in terms of ciphertexts being trans-
mitted, and the computation cost is measured in terms of modular multiplica-
tions and exponentiations. Constructing k polynomials with degree d requires
O(kd) modular multiplications. Encrypting k plaintexts requires O(k) modular
exponentiations, and decrypting k ciphertexts requires O(k) modular exponenti-
ations. Obviously evaluating k polynomials with degree d requires O(kd) modular
exponentiations. Performing k homomorphic additions requires O(k) modular
multiplications, and performing k homomorphic multiplications requires O(k)
modular exponentiations.

Communication Cost: In Step 2, PA sends m ciphertexts to PB. In Step
3, PB sends 1 ciphertext to PA. In Step 5.1 and Step 5.2, PA sends O(mg)
ciphertexts to PB in the worst case. In Step 6, PB sends gh ciphertexts. As a
result, the communication cost is O(mg + gh) ciphertexts.

Communication Round: The communication round of our protocol is fixed,
i.e. O(1).

Verifier Computation Cost: In Step 2, PA constructs 1 polynomial with
degree m and encrypts m + 1 plaintexts. In Step 4, PA decrypts 1 ciphertext.
In Step 5.1, PA constructs g polynomials with degree 1 and g polynomials with
degree O(m) in the worst case, and PA encrypts O(gm) plaintexts. In Step 7,
PA decrypts gh ciphertexts. As a result, the computation cost for the verifier is
O(mg + gh) modular exponentiations and O(mg) modular multiplications.

Prover Computation Cost: In Step 3, PB evaluates n polynomials with
degreem, performsnhomomorphicmultiplications andnhomomorphic additions.



Private Subgraph Matching Protocol 469

In Step 6, PB evaluates hg polynomials with degree 1 and O(ng) polynomials
with degree O(m). PB also performs hg+O(ng) homomorphic multiplications and
O(ng) homomorphic additions. As a result, the computation cost for the prover is
O(mng) modular exponentiations and O(ng) modular multiplications.

6 Conclusion

In this work, we proposed a private subgraph matching protocol. The two parties
that participate the protocol are a verifier and a prover, and each of which holds
a private graph. After jointly executing the protocol, the verifier learns whether
the prover’s graph is a subgraph of the verifier’s graph. The protocol is based on
the Paillier cryptosystem and oblivious polynomial evaluation, and we used a pri-
vate subset relation protocol as a building block. We proved that our protocol is
secure under the semi-honest setting, and we analysed the efficiency in terms of
computation cost, communication cost and communication round. Further works
may include further improving the leakage problem and reduce the computation
costs.

Acknowledgements. This work was supported in part by the National Science and
Technology Major Project under Grant No. 2013ZX03002006, the Liaoning Province
Science and Technology Projects under Grant No. 2013217004, the Liaoning Province
Doctor Startup Fund under Grant No. 20141012, the Fundamental Research Funds
for the Central Universities under Grant Numbers N130317002, N151704002, the
Shenyang Province Science and Technology Projects under Grant No. F14-231-1-08,
and the National Natural Science Foundation of China under Grant Numbers 61272546,
61321491, 61402095, 61472184.

References

1. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM (JACM) 23(1),
31–42 (1976)

2. Solnon, C.: All different-based filtering for subgraph isomorphism. Artif. Intell.
174(12–13), 850–864 (2010)

3. Cordella, L.P., Foggia, P., Sansone, C., et al.: A (sub) graph isomorphism algorithm
for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367–
1372 (2004)

4. Messmer, B.T., Bunke, H.: A new algorithm for error-tolerant subgraph isomor-
phism detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(5), 493–504 (1998)

5. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. In:
SODA 1995, pp. 632–640 (1995)

6. Shang, H., Zhang, Y., Lin, X., et al.: Taming verification hardness: an efficient
algorithm for testing subgraph isomorphism. Proc. VLDB Endowment 1(1), 364–
375 (2008)

7. Messmer, B.T., Bunke, H.: Efficient subgraph isomorphism detection: a decompo-
sition approach. IEEE Trans. Knowl. Data Eng. 12(2), 307–323 (2000)

8. Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms
for the matching of chemical structures. J. Comput. Aided Mol. Des. 16(7), 521–
533 (2002)



470 Z. Xu et al.

9. Bonnici, V., Giugno, R., Pulvirenti, A., et al.: A subgraph isomorphism algorithm
and its application to biochemical data. BMC Bioinform. 14(7), S13 (2013)

10. Ehrlich, H.C., Rarey, M.: Maximum common subgraph isomorphism algorithms
and their applications in molecular science: a review. Wiley Interdiscip. Rev. Com-
put. Mol. Sci. 1(1), 68–79 (2011)

11. Koyutrk, M., Grama, A., Szpankowski, W.: An efficient algorithm for detecting
frequent subgraphs in biological networks. Bioinformatics 20(Suppl. 1), i200–i207
(2004)

12. Artymiuk, P.J., Grindley, H.M., Poirrette, A.R., et al.: Identification of beta-sheet
motifs, of psi-loops, and of patterns of amino acid residues in three-dimensional
protein structures using a subgraph-isomorphism algorithm. J. Chem. Inf. Comput.
Sci. 34(1), 54–62 (1994)

13. Wong, E.K.: Model matching in robot vision by subgraph isomorphism. Pattern
Recogn. 25(3), 287–303 (1992)

14. Llads, J., Mart, E., Villanueva, J.J.: Symbol recognition by error-tolerant subgraph
matching between region adjacency graphs. IEEE Trans. Pattern Anal. Mach.
Intell. 23(10), 1137–1143 (2001)

15. Zhu, K., Zhang, Y., Lin, X., Zhu, G., Wang, W.: NOVA: a novel and efficient frame-
work for finding subgraph isomorphism mappings in large graphs. In: Kitagawa,
H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp.
140–154. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12026-8 13

16. Han, W.S., Lee, J., Lee, J.H.: Turbo ISO: towards ultrafast and robust subgraph
isomorphism search in large graph databases. In: Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pp. 337–348. ACM
(2013)

17. Foggia, P., Sansone, C., Vento, M.: A performance comparison of five algorithms
for graph isomorphism. In: Proceedings of the 3rd IAPR TC-15 Workshop on
Graph-Based Representations in Pattern Recognition, pp. 188–199 (2001)

18. Lee, J., Han, W.S., Kasperovics, R., et al.: An in-depth comparison of subgraph
isomorphism algorithms in graph databases. Proc. VLDB Endowment 6(2), 133–
144 (2012). VLDB Endowment

19. Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-
honest model. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 236–252.
Springer, Heidelberg (2005). doi:10.1007/11593447 13

20. Cao, N., Yang, Z., Wang, C., et al.: Privacy-preserving query over encrypted graph-
structured data in cloud computing. In: 2011 31st International Conference on
Distributed Computing Systems (ICDCS), pp. 393–402. IEEE (2011)

21. Meng, X., Kamara, S., Nissim, K., et al.: GRECS: graph encryption for approxi-
mate shortest distance queries. In: Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 504–517. ACM (2015)

22. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-17373-8 33

23. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

24. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005). doi:10.
1007/11535218 15

http://dx.doi.org/10.1007/978-3-642-12026-8_13
http://dx.doi.org/10.1007/11593447_13
http://dx.doi.org/10.1007/978-3-642-17373-8_33
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/11535218_15
http://dx.doi.org/10.1007/11535218_15


A New Blockchain-Based Value-Added
Tax System

Dimaz Ankaa Wijaya1,2(&), Joseph K. Liu1(&),
Dony Ariadi Suwarsono3, and Peng Zhang4(&)

1 Faculty of Information Technology, Monash University, Melbourne, Australia
{dimaz.wijaya,joseph.liu}@monash.edu

2 Data61, CSIRO, Melbourne, Australia
3 Directorate General of Taxes, Jakarta, Indonesia

dony.suwarsono@pajak.go.id
4 College of Information Engineering, Shenzhen University, Shenzhen, China

zhangp@szu.edu.cn

Abstract. Value-Added Tax or VAT plays an important role in the Indonesian
state revenue. Despite its importance, it requires a complex administration
process to be done properly. The complexity of the tax administration creates
loopholes that can be exploited by dishonest taxpayers to minimize the tax paid
to the government. The current system does not prevent the dishonest taxpayers
to forge tax invoices which bring tax loss for the government. We utilize the
blockchain technology to create a novel approach of implementing the dis-
tributed ledger in taxation area. Our proposed protocol creates a transparent and
secure VAT system as well as simplifies the process of administering the VAT.
The system increases the tax compliance by reducing the risk of tax fraud and
increasing the monitoring capability of the tax authority.

Keywords: Blockchain � Value-Added Tax � Tax credits

1 Introduction

In Indonesia, Value-Added Tax (VAT) was introduced in the 1983 tax reform to extend
the tax base [1]. VAT is an indirect tax in which the tax is charged for every price
increase. VAT contributes to 33.7% of the total inland revenue in 2017 Indonesian state
budget [2]. VAT is an indirect tax; the tax is paid along the chain of business, but
eventually the end user will be charged for the accumulated tax which is included in the
final price of the goods or services purchased.

VAT provides a self-policing feature with tax credit mechanism. A tax invoice is a
proof that the seller has collected the VAT from the buyer. The VAT paid by the buyer
recovers a part of the tax previously paid by the seller to the previous seller. The tax
due is calculated by subtracting the value of the tax invoice created and the tax invoices
received. The tax due is paid at the end of VAT reporting period before submitting the
tax return. Not every taxpayer can create a tax invoice; only those Taxable Person for
VAT Purposes (TPVP) have permission to produce tax invoices.

© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 471–486, 2017.
https://doi.org/10.1007/978-3-319-68637-0_28



In VAT, a seller creates a tax invoice for every taxable goods and services sold to a
buyer. The buyer pays the price for the goods or services bought from the seller
including the VAT. The tax invoice states that the seller has sold the goods or services
to the buyer and the seller has received the VAT from the buyer [3–5]. The tax invoice
received could then be used by the buyer to reduce her tax due because she has paid a
part of her VAT to her seller. Before e-Faktur was developed, the tax invoices are
paper-based documents and they must be kept well. e-Faktur was developed to help
TPVP to create, manage, and organise the tax invoices that they no longer need to print
the tax invoices. Every tax invoice record is kept in a centralised database managed by
DGT. The seller only needs to create the tax invoice records and then upload the
records to the server. The buyer imports the records to her e-Faktur account and they
will be ready to be processed. e-Faktur helps the TPVPs in managing the tax invoices
and in the same time helps DGT to collect the tax invoice records.

However, there are 2 problems related to the tax invoice fraud that are not covered
by e-Faktur. First, e-Faktur does not prevent a dishonest TPVP to forge fictitious tax
invoices which have no actual transaction. As creating tax invoices through the
e-Faktur application is free, the dishonest TPVP creates tax invoices as much as she
wants and sells the tax invoices to other dishonest TPVPs. In a sophisticated case, the
tax invoice forgery could utilise layers of dishonest TPVPs in which they create fake
transactions and send the forged tax invoices among themselves. By using such lay-
ering, it will be hard to determine all parties involved in the case if the paperworks are
well-prepared by the dishonest TPVPs.

Second, the e-Faktur does not implement strict codification to determine the type of
the goods or services mentioned in the tax invoices. Each TPVP is allowed to create
their own codification. Therefore, as long as the tax invoice number and value match,
redeeming the tax invoice will always succeed. The loose codification system could
motivate a dishonest TPVP to forge tax invoices based on real transactions. The tax
invoices originally must be given to the real buyers, but because of the loose codifi-
cation system, the dishonest TPVP modifies and sells the tax invoices to other dis-
honest TPVPs.

We propose a new method to mitigate these problems. Our protocol reverses the
process of managing the tax invoices. Any TPVP cannot create tax invoices to other
TPVPs without first acquire valid tax credits. A TPVP needs to pay some money to get
the tax credits, then they can create a tax invoice as a way to transfer the tax credits to
another TPVP. By reversing the process, it is guaranteed that the tax credits in the
system are representation of real tax money flowing through VAT system. The risk of
the government suffers loss from tax invoice forgery is reduced since the tax is paid up
front. By levying the VAT money to other parties, the motivation of a TPVP to act
dishonestly is also reduced.

In order to enforce the new rules, we implement the blockchain technology in our
protocol. The tax credits will be represented by tokens, and the tax invoices will be
represented by transactions among the TPVPs. The blockchain technology helps the
protocol to remain transparent for every participant and offers security of the trans-
actions, in which it cannot be tampered once they are verified and validated by the
authority. The blockchain also enables multiple parties to have a monitoring role in the
system. Monitoring bodies will be able to audit the transactions while the end users are

472 D.A. Wijaya et al.



given a capability of tracking the tax they pay. We also implement a strict codification
system based on an international standard. By using such standard, it is easier to
analyse if there is any unusual transaction in the tax invoices.

2 Context

2.1 Bitcoin

Bitcoin was first introduced in 2008 as a new kind of virtual currency in a whitepaper
written by Satoshi Nakamoto [6]. Bitcoin is different compared to fiat money or any
existing electronic cash system since it does not employ any central authority to run the
system. Instead, a peer-to-peer network is used to run the decentralized currency based
on a consensus protocol. In Bitcoin, the consensus protocol is done by a concept called
proof-of-work (PoW) which requires computing power, which is similar to Hashcash
[7]. The PoW is also used to protect the information contained in the system from
unauthorized tampering. By using the decentralized ledger, Bitcoin provides a mech-
anism to transfer value with accountability. Moreover, Bitcoin supports scripting
language which can be used to develop various value transfer protocols.

2.2 Blockchain

Information inside the Bitcoin system is kept in a database structure called blockchain
[8]. The blockchain is a type of decentralized database stored in multiple intercon-
nected nodes through Internet. Each node keeps identical information without any
master node controlling other nodes [9]. The transaction data are grouped in blocks.
Each block is connected to a predecessor block by including its hash value into the next
block’s header data. In such system, new blocks are created by miners. The miners are
participants providing the computing power. They compute a value which satisfies a
certain requirement set by the network. The computing job is the PoW protecting the
data from tampering.

2.3 Blockchain Case Studies

Multichain [10] is an open source blockchain project which can be deployed in a
private environment. Multichain maintains compatibility with Bitcoin protocol, such as
network protocol, transaction format, block format, and output script, including run-
time parameter, JSON-RPC API, and most features in Bitcoin Developer Documen-
tation [11]. In Multichain, each node is registered in a permission list and will be
verified by other nodes against the list. If the condition is not satisfied, the node denies
the connection request. Multichain also enables user to configure the behavior of the
blockchain, e.g. target time, permission type, mining rewards, etc.

Everledger developed a blockchain-based system to track diamonds. The diamonds
are numbered and recorded into the blockchain. For each diamond transaction
involving these diamonds, the transaction records will be saved in the blockchain.
Therefore, everyone buying these diamonds will be able to track the ownership history

A New Blockchain-Based Value-Added Tax System 473



to determine whether these diamonds have any history of theft or involved in unethical
activities [12]. Everledger utilizes the blockchain capability of securing the information
and make the unauthorized data modification infeasible.

Bitnation is a blockchain project trying to provide governmental services by
employing blockchain technology [12]. Although Bitnation does not have any real
institution, its idea might become a breakthrough to run a government by taking
advantages of modern technology. One of Bitnation’s project collaborating with
Estonian government is e-Resident. E-Residents can notarize official documents
through the service provided to them.

Bitcoin can be used to store large amount of data as in asset management system
extension protocol [13]. The protocol enables the users to store at most 520 bytes of
data for each P2SH script, while the maximum data which can be stored in a transaction
should be around 85 kB, since the maximum size of a transaction in Bitcoin is limited
to 100 kB and the density of the data in the protocol is 85%.

2.4 Blockchain in Tax System

A report by PricewaterhouseCoopers describes the advantages of blockchain technol-
ogy in taxation [14]. They concluded that blockchain technology could reduce VAT
fraud by tracking where and when VAT has been paid. The blockchain-based tax
system can also supply good quality data to authorities and regulators. Not mentioning
the transparency of the data stored in the blockchain, multinational companies need to
provide a consistent data set for tax authorities in different countries.

A study in VAT related to European Union (EU) intra-community trading shows
that implementing blockchain in VAT system can reduce revenue loss between 50 to
60 billion Euro per year from missing trader intra-community (MTIC) fraud cases [15].
The blockchain solution is proposed to be utilized under the Digital Invoice Customs
Exchange (DICE) which is a data sharing platform between several cooperating
countries. The DICE is intended to replace the current system called The VAT
Information Exchange System (VIES) which uses multiple centralized databases.
A data exchange system is deployed to share information between the separated
database systems maintained by different tax authorities. The distributed ledger will
create a more integrated transaction data to be used by these tax authorities. The shared
information is best used to mitigate risks from multinational transactions. The block-
chain is not only fit for VAT; even the payroll tax can be implemented in a blockchain
system [16].

2.5 Scope

In this paper, we limit our research scope to several parts of the VAT system, due to
vast amount of regulations we need to adopt to our system. Our paper describes a
method to identify taxpayers, transfer tax credits between taxpayers, and how to create
tax invoices through blockchain technology. We assume that a private blockchain
system already exists and this protocol works over that system. We also assume that the
transaction fee is negligible since the closed system is maintained by a central authority
which may receive funding from the government.

474 D.A. Wijaya et al.



3 Preliminaries

3.1 Deterministic Address

Deterministic address is commonly used in Deterministic Wallet in Bitcoin environ-
ment to simplify the address storage in a wallet. By using deterministic addresses, a
wallet only need to save a parent key and indexes. Those indexes are used to generate
child keys (the addresses and the private keys altogether) by deriving them from the
parent key and the indexes through a deterministic function [8, 17]. Hierarchical
deterministic (HD) address is similar to deterministic address with additional feature of
deriving child keys in the form of a tree [18]. Therefore, a child address derived from
an index of a parent key can be further derived to create multiple child addresses.

3.2 Pay to Script Hash

Pay to Script Hash (P2SH) is one of the transaction methods available in Bitcoin
system [19]. P2SH is a unique transaction in which to complete the transactions, users
need to complete 2 phases. The first phase is the commit phase; in this phase, a user
pays to a P2SH address generated from a P2SH script. The second phase is the redeem
phase; in this phase, the receiver takes control by redeeming the transaction from the
P2SH address to the destination address.

The P2SH is important in our proposed protocol, since the transaction related to tax
invoice need to satisfy VAT regulations. Without the P2SH, a regular transaction will
oversimplify the requirements and thus it may not fit the requirements.

3.3 Relative Lock-Time

Relative Lock-Time (RLT) is a type of Bitcoin transaction which utilizes time variable
in the transaction, whether to lock the transaction or to use it inside a conditional
procedure [20]. RLT does not mention a precise time in the future, but rather defines a
relative time compared to the time the commit transaction is confirmed in the block-
chain. RLT is defined as OP_CHECKSEQUENCEVERIFY (or also called as OP_CSV)
which is a new definition of OP_NOP3 operation code.

3.4 Sequence Number

Sequence number (nSequence) in Bitcoin is 4 bytes information inside Bitcoin raw
transaction to detect the version number of the transaction [21]. A transaction is con-
sidered as final if the nSequence shows the maximum number. After OP_CHECKSE-
QUENCEVERIFY was deployed, nSequence has a new function of determining the
earliest block to confirm. This new usage is active only if OP_CHECKSEQUENCE-
VERIFY is activated.

A New Blockchain-Based Value-Added Tax System 475



3.5 Multisignature

Multisignature is a type of Bitcoin transaction which requires multiple digital signature
to validate the transaction. The multisignature could be defined explicitly or could also
be used inside a P2SH transaction. It is denoted as m-of-n multisignature with
m is the minimum number of signature required to redeem the transaction and n is the
number of possible signatures to validate the transaction. Multisignature requires
multiple parties to agree upon a transaction before it is sent to the network. The
agreement is proved by the digital signature provided by each party. In another word,
the transaction cannot be validated without consent of minimum number of parties as
determined by the multisignature. By employing multisignature, a dishonest action can
be prevented by honest parties.

4 Our Proposed Solution

4.1 Overview

In our system, we define tokens called PAKO to represent the tax credits. PAKO works
inside a system we define as Pajakoin. Pajakoin is a centralized blockchain system run
by DGT. The overview of the system is described in Fig. 1.

The system works as follows. First, the TPVP needs to convert her fiat money into
PAKO tokens. The process will be further explained later in Chap. 4.6. When the
TPVP needs to create tax invoices, she creates PAKO transactions to transfer the
PAKO to the buyers. The buyers pay the seller the same amount of money as the VAT
they need to pay to the government. This mechanism is adapted from the VAT system.
If later the buyers sell goods or services to others, they could then transfer the PAKO
tokens to others.

Fig. 1. Overview of Pajakoin system

476 D.A. Wijaya et al.



The Pajakoin blockchain is a system limited to authorized participants only. DGT
as the tax authority can closely monitor the PAKO transactions. Banks receive money
from the TPVP and then create reports containing the amount of money received and
the detail of PAKO buyers. These reports are sent to DGT which will be used to match
the tax revenue and the PAKO transactions.

4.2 The System Participants

We define the participants of our proposed system as follows.

– DGT as the manager of the system will have a full control over the system.
– Banks as the agents selling PAKO to the taxpayers and collect the payment.
– Monitoring bodies as independent third parties (can be trusted government agen-

cies) to monitor the system. The monitoring bodies will be able to audit the system
through view permission.

– The taxpayers as the clients which are able to create transactions by using PAKO
they purchased from the banks.

4.3 The Pajakoin Blockchain

We define a blockchain infrastructure very similar to Bitcoin blockchain in terms of its
scripting language, but different in terms of how the blockchain works. We prefer a
private (permissioned) blockchain over a public (permissionless) blockchain for
security reasons. We adapt the user management from the Multichain system where the
blockchain owner assigns authorizations to other users as follows: the blockchain will
be managed by DGT, while banks, monitoring bodies, and the taxpayers will require a
permission to view or create transactions in the blockchain. The banks will be allowed
to view and create transactions. The monitoring bodies can only view the transactions
without the ability to create any transaction. The TPVPs will be allowed to connect to
the blockchain and create transactions. The limitation of their transactions lies on the
P2SH script used in our proposed system.

The mining process through Proof of Work (PoW) and the transaction validation
will be entirely done by DGT as the authority. Therefore, other participants do not need
to provide any mining equipment. As the nodes are managed by multiple parties, they
can detect if there is any block reorganisation in the system. Raw transactions created
by the taxpayers or the banks can be sent directly to the nodes controlled by DGT.
A transaction is considered as confirmed if it is included in a valid block. There is no
need to wait for the block to have a certain depth since chain split is unlikely to happen
in the closed system.

4.4 The Taxpayer’s Identity

Every taxpayer is identified by her tax registration number. In Pajakoin system, the tax
registration number is replaced by the Pajakoin address, which is similar to Bitcoin
address. Each taxpayer has one or more unique Pajakoin addresses. They correspond to
private keys in which only the respected taxpayer has the access to them. The private

A New Blockchain-Based Value-Added Tax System 477



key is used to sign transactions related to the Pajakoin address. The taxpayer’s Pajakoin
addresses can only be used to receive PAKO if the taxpayer is the end user of the goods
or services. The central authority lists all Pajakoin addresses owned by the taxpayers
for administrative purposes. To identify these Pajakoin address, DGT can provide
digital certificates for these taxpayers by signing the public keys. The digital certificates
prove that DGT approves the usage of those Pajakoin addresses in the
blockchain-based VAT system.

For TPVP, the taxpayer Pajakoin address is used to generate TPVP Pajakoin
address. Unlike any regular taxpayer address, the TPVP can move her PAKO token
from her TPVP Pajakoin address to other TPVPs as a representation of tax invoice
creation. We separate the regular taxpayer and the TPVP. To mimic Taxable Person for
VAT Purposes Registration Number (TPVPRN), we define a unique P2SH address as
TPVP Pajakoin address which is shown in Fig. 2 below.

PUBKEY 1 is owned by the TPVP, while PUBKEY 2 and PUBKEYHASH 2 are
owned by DGT. The P2SH address from above script is the TPVP Pajakoin address
uniquely generated for every TPVP. The TPVP Pajakoin address will always be unique
for each TPVP because of the uniqueness of taxpayer’s Pajakoin address as represented
in PUBKEY 1. DGT generates PUBKEY 2 and PUBKEYHASH 2 by using HD
address scheme, therefore DGT only needs a parent address to create child addresses
for each associated TPVP Pajakoin address.

The CSV VALUE is used in the OP_CHECKSEQUENCEVERIFY operation. It is
intended to “freeze” the PUBKEY 2’s capability of redeeming the committed trans-
action. Once the predefined time expressed in the CSV VALUE has expired, then DGT
must redeem the committed transaction by using a private key associated with the
PUBKEY 2 and the PUBKEYHASH 2. Since the timeframe determined in VAT
regulations is 3 months, we need to simplify this requirement to 90 days. The value is
applied to every TPVP Pajakoin address.

4.5 The Bank’s Address

We determine similar scheme as in Chap. 4.4 for the bank’s address. This scheme is
used to control the transactions created by the banks that they can only transfer the
PAKO to existing addresses. Therefore, these transactions must be approved by DGT

Fig. 2. The P2SH script

478 D.A. Wijaya et al.



by employing 2-of-2 multisignature which requires the bank’s signature and
DGT’s signature, although it is not necessary to put a timelock in the scheme.

4.6 Acquiring and Selling PAKO

All PAKO tokens are created by DGT as the central authority in the system.
The PAKO tokens are then distributed to the banks by sending the PAKO tokens to the
banks’ addresses. To make the protocol works, we need to slightly modify the VAT
payment procedure. Instead of paying the tax due at the end of VAT tax period, the
TPVPs are required to pay the VAT to acquire tax credits before they are transferred
through tax invoices to other TPVPs. The VAT payment is described as PAKO
acquisition, by buying PAKO from banks which have the authority to sell PAKO.
The PAKO conversion rate is determined by DGT and the banks to make sure the
amount of PAKO represents tax credits in real transactions.

The PAKO tokens bought from a bank are transferred to TPVP Pajakoin addresses
owned by the people buying the PAKO. Only TPVPs are allowed buy PAKO tokens
from the banks. A TPVP Pajakoin address has a limited time of 90 days to transfer the
tokens as tax credits or redeem them to the banks to get their money back as tax
overpayment. In this case, the redeem transactions need approval from DGT before
execution in the form of digital signature provided by DGT.

4.7 Transferring PAKO

PAKO can only be transferred by the permission of DGT as the tax authority. Based on
VAT regulations, there are several destinations of the PAKO transaction. The first one
is transferring PAKO from a TPVP to other TPVPs in which the PAKO can be further
transferred as tax credits. In this case, the sender needs to know the TPVP Pajakoin
address of the receiver. The second one is transferring PAKO from a TPVP to
non-TPVPs (or to regular taxpayer Pajakoin address) in which the PAKO cannot be
further transferred as tax credits. In this case, the sender needs the receiver’s taxpayer
Pajakoin address. The third one, the PAKO is transferred to a coin-eater Pajakoin
address, whenever TPVPs trade with non-taxpayers. This coin-eater Pajakoin address
can be supplied by DGT for every TPVP.

Since our system relies heavily on P2SH protocol, it must also comply with the
P2SH requirements, therefore there are 2 phases in a transaction: commit phase and
redeem phase. But because the intermediary address used in the P2SH protocol is
always the same, we only see a single transaction for each PAKO transfer, which is a
transaction between TPVP addresses. The commit phase and the redeem phase are
done in that single transaction.

There are 2 ways of redeeming the script. The first one, the receiver will be able to
redeem the transaction with the approval from DGT, proved by digital signature pro-
vided by DGT to the TP to complete the transaction. DGT needs to check the trans-
action to make sure that the destination address is another TPVP Pajakoin address
before approving it, therefore we make sure that the tax credits transfer is between
TPVP Pajakoin addresses only. This way of redeeming the script requires a script as in
Fig. 3 below.

A New Blockchain-Based Value-Added Tax System 479



The second way of redeeming the commit scheme is the act of DGT removing the
expired tax credits from TPVP Pajakoin address. This mechanism is required so that
the TP does not transfer tax credits beyond the determined timeframe; Indonesia VAT
regulations determine 3 months of timeframe. Once the time expired, DGT shall
redeem the transaction. The second redeem script is in Fig. 4. The SIGNATURE 2 can
only be created by DGT as the owner of PUBKEY 2 mentioned in P2SH script in
Fig. 2.

After the transaction is redeemed by any of these 2 different ways, then the
transaction is considered final. The time count is reset to 90 days prior to token
expiration.

4.8 Tax Invoice

The PAKO transaction can contain tax invoice information. There are 2 ways of
embedding the data. The first choice is by utilizing the Null Data transaction which can
contain up to 80 bytes of data. If the information is larger than 80 bytes, we use the
second choice by utilizing a protocol proposed by Wijaya [13]. The protocol includes a
hash-locked transaction (HLT) in the commit phase which will be revealed during the
redeem phase.

We put the data into JSON format to save space and maximize the amount of data
to be inserted. To determine the type of taxed goods or services, we use Harmonized
Commodity Description and Coding System (also called Harmonized System or HS)
which is a standardized codification of goods maintained by World Customs Organi-
zation Organisation Mondiale des Douanes (WCOOMD). The JSON data shall include
goods or services codes, prices, tax base, and the VAT. The example of the data format
is shown in Fig. 5.

The transaction needs to be sent from the seller’s TPVP Pajakoin address to the
buyer’s TPVP Pajakoin address or taxpayer Pajakoin address, which is the same
Pajakoin address where the PAKO is transferred. There is an intermediary P2SH
address to accommodate the data storage. This information is then collected and
analysed by DGT for tax compliance audit.

Fig. 3. Redeem script by TPVP with the approval from DGT

Fig. 4. Redeem script by DGT

480 D.A. Wijaya et al.



4.9 VAT Periodic Tax Return

The PAKO transaction can contain tax invoice information. There are 2 ways of
embedding the data. The first choice is by utilizing the Null Data transaction which can
contain up to 80 bytes of data. If the information is larger than 80 bytes, we use the
second choice by utilizing a protocol proposed by Wijaya [13]. The protocol includes a
hash-locked transaction (HLT) in the commit phase which will be revealed during the
redeem phase.

Although the Pajakoin mechanism has already covered VAT calculation contained
in VAT periodic tax return through its token transactions, the VAT regulation requires
every TPVP to submit VAT periodic tax return as mandatory. To comply the regu-
lation, we propose a method to submit a report containing a compilation of transaction
IDs. The sample is shown in Fig. 6. The identity of the TPVP is not explicitly defined
in the report, but will be identified by the sender address of the report.

Fig. 5. Tax invoice data format

Fig. 6. VAT periodic tax return data format

A New Blockchain-Based Value-Added Tax System 481



Since the VAT periodic tax return might require more than 80 bytes of space, then
we use the same protocol as in tax invoice data storage from [13]. There is a slight
difference in the destination Pajakoin address of the data storage transaction. Instead of
sending the data to the buyer’s Pajakoin address, we send the transaction to DGT’s
special Pajakoin address which is uniquely created to store every VAT periodic tax
return for a specific TPVP. In other words, every TPVP may need to send the data to
different Pajakoin address. To securely store the data, it may be encrypted by using a
strong encryption method which is not discussed in the paper.

5 Security Evaluation

5.1 Cheating Model

We define several cheating models of the proposed protocol as follows. A dishonest
taxpayer tries to create PAKO by herself to be used as tax credits. She could then sell
the PAKO to other taxpayers or use it for her own need. We also define a model where
a dishonest bank trying to embed new blocks containing fraudulent transactions into
their controlled nodes.

We also define a dishonest bank trying to modify the sales report to DGT in order
to minimise the tax money to be collected by the tax authority. With the assumption
that DGT and monitoring bodies are always honest and the blockchain is negligible to
modify, our scheme is secure if the probability of any participant tries to cheat is
negligible.

5.2 Cheating Evaluation

We look into the possibility of a dishonest taxpayer creating PAKO by herself. Under
the assumption that the blockchain is controlled in a centralised manner and no security
vulnerability is found, the case is not possible. If, by any means, the taxpayer manages
to create PAKO, then an audit can find such irregularity and the authority can take
further actions to mitigate the problem. In the case where the bank tries to embed their
own transactions by adding new blocks into their nodes, the system will evaluate the
blocks against the blockchain managed by the trusted nodes. If the evaluation fails,
then the blocks are rejected.

Sales report modification is also not possible if the banks do not modify the
blockchain to comply the data. DGT or the monitoring bodies have the capability of
auditing the total PAKO sold by each bank and thus makes the cheating model easy to
identify.

6 Discussion

6.1 Centralized Blockchain

Deploying the Pajakoin in an open system such as Bitcoin will put the state revenue at
stake, since there are motivations of the adversaries to disrupt the system by possible

482 D.A. Wijaya et al.



attacks such as 51% attack or Sybil attack. Therefore, Pajakoin is run in a closed
system. Several actors including DGT, banks, and monitoring bodies maintain the
blockchain by running one or more nodes. We have evaluated that the probability of
any cheating participant to successfully launch an attack against the system is
negligible.

6.2 Monitoring Mechanism

DGT as the Indonesian tax authority has been given a mandate to monitor as well as to
enforce the tax regulations. Therefore, the major function of the monitoring is done by
DGT. However regular taxpayers also can participate in the function. For DGT, an
integrated data as proposed in our protocol enables further analysis. The information is
interconnected and the probability of someone creating a fraudulent tax invoice without
buying tax credits is negligible if the probability of unauthorized party creating tokens
is negligible. The analysis flags suspicious transactions based on the patterns, con-
sidering the TPVP’s field of business and the nature of the transaction.

For a non-TPVP taxpayer, the tokens received can be used to calculate the amount
of tax paid to the government, which is currently a hard task to do, since there is no
central system to record every taxed transaction. The tokens can be used as a mean to
get discount as in loyalty program funded by the government. By providing this
mechanism, the non-TPVP taxpayers are motivated to request for tax invoices, and in
turn it reduces the probability of the tax invoices being shifted to unauthorized parties.

By employing the blockchain, the monitoring bodies can easily create audit pro-
jects. The blockchain mechanism ensures that the information inserted in the blocks
can no longer be modified. If there is any block reorganization in the centralized
blockchain, then the monitoring bodies can detect such occurrence and raise an enquiry
to DGT to get an explanation why the event happens.

6.3 Supporting Databases

Blockchain is a protocol of communication which enables multiple users to share
information securely. On top of blockchain there are databases and applications
developed to add features and functions to be used by the end users. In order our
system to work, DGT must maintain other databases to support the information con-
tained inside the blockchain. The most important database is the taxpayer identity. This
database connects the Pajakoin addresses to the respective taxpayers holding the pri-
vate keys. The database enables the blockchain to remain pseudo-anonymous; without
access to the database, determining the identity of the users requires effort. This
characteristic is derived from Bitcoin’s pseudo-anonymity model [6]. DGT must also
maintain a database containing indexes for every deterministic address created for each
TPVP for several purposes including signing token transactions and receiving VAT
periodic tax returns.

A New Blockchain-Based Value-Added Tax System 483



6.4 Determining VAT Revenue

Since we are using token-based transaction in the proposed protocol, the final VAT
revenue can be determined by calculating the number of tokens transferred to
non-TPVP taxpayers and DGT special Pajakoin addresses. The money received from
taxpayers buying PAKO tokens can still be refunded and therefore cannot be con-
sidered as final. Thus, this mechanism is easier compared to current system, where state
revenue record and the tax reported in tax returns do still have discrepancies and
therefore requires data consolidation.

6.5 Simplicity over Anonymity

We have decided to prioritize the simplicity of the design over anonymity. The address
reuse is not recommended in the real world of Bitcoin system, but in our design, TPVP
addresses and taxpayers’ addresses as well as their associated public key pairs are
reused to make the system easy to understand by people with different background. The
addresses can be replaced, of course, but only in selected situations.

7 Conclusion

E-Faktur system was launched by DGT as an effort to simplify the administrative
process of VAT, especially related to tax invoice. E-Faktur helps the TPVP to convert
their paper-based administration to paperless. However, the system is unable to avoid
the forged tax invoices being created by adversaries. The proposed protocol imple-
ments tax credits transfer in a blockchain system. The tax credits transfer ensures that
there is no tax due to be paid at the end of the reporting period, since the tax due needs
to be paid before a tax invoice is created. The proposed protocol reduces the risk of tax
fraud by integrating the tax payment and the tax crediting system as well as simplifying
the way the taxpayers submit the mandatory VAT reports. The proposed protocol
enables tax authority to have more control over the tax crediting mechanism and
therefore minimize fraud risks over it. The transaction data submitted by taxpayers by
using the proposed protocol could then be used in further analysis to support more
precise executive decisions regarding the tax.

8 Future Works

To emulate all regulations in VAT system, we might need a more flexible blockchain
system. Since the Bitcoin-like blockchain has a limited operation code, smart contract
could be a better option. For future works, we also need to work on a system which will
reduce DGT’s involvement in tax credits transfer and depend solely on the system and
the script. For this purpose, we investigate the possibility of using smart contract
system which has a greater flexibility in terms of writing scripts with more functions
and features.

484 D.A. Wijaya et al.



The blockchain type choice must also be revisited, since a blockchain system
managed by a single central authority may not deliver the best impact in term of
transparency and independency. We also need to investigate the effect of immediate
VAT payment to the cashflow of the taxpayers. We could also consider to replace the
PoW consensus with another mechanism to make the system more efficient.

Acknowledgement. This work was partially supported by Science & Technology Innovation
Projects of Shenzhen, China (GJHZ20160226202520268, JCYJ20170302151321095).

References

1. Gillis, M.: Tax Reform and the Value Added Tax: Indonesia. World Tax Reform Case
Studies of Developed and Developing Countries. ICEG, pp. 227–250 (1990)

2. Directorate General of Budget Ministry of Finance: Indonesian State Budget 2017
Information Book (2017)

3. Ministry of Finance Republic of Indonesia: Peraturan Menteri Keuangan Republik Indonesia
Nomor 151/PMK.03/2013 Tentang Tata Cara Pembuatan dan Tata Cara Pembetulan atau
Penggantian Faktur Pajak [Regulation of Ministry of Finance Republic of Indonesia Number
151/PMK.03/2013 about Procedures of Creating and Procedures of Correcting or Replacing
Tax Invoice], M.o.F.R.o. Indonesia, Editor, Jakarta (2013)

4. Directorate General of Taxes Ministry of Finance: Peraturan Direktur Jenderal Pajak Nomor
PER-16/PJ/2014 Tentang Tata Cara Pembuatan dan Pelaporan Faktur Pajak Berbentuk
Elektronik [Regulation of Director General of Taxes Number PER-16/PJ/2014 About
Procedures of Creating and Reporting Electronic Tax Invoice], D.G.o.T.M.o. Finance,
Editor, Jakarta (2014)

5. Directorate General of Taxes Ministry of Finance: Peraturan Direktur Jenderal Pajak Nomor
PER-17/PJ/2014 Tentang Perubahan Kedua Atas Peraturan Direktur Jenderal Pajak Nomor
PER-24/PJ/2012 Tentang Bentuk, Ukuran, Tata Cara Pengisian Keterangan, Prosedur
Pemberitahuan Dalam Rangka Pembuatan, Tata Cara Pembetulan atau Penggantian, dan
Tata Cara Pembatalan Faktur Pajak [Regulation of Director General of Taxes Number
PER-17/PJ/2014 About Second Amendment of Regulation of Director General of Taxes
Number PER-24/PJ/2012 About Form, Size, Procedures for Filling in Information, Notice
Procedure In Order of Making, Procedures for Repair or Replacement, and Procedures for
Cancellation of Tax Invoice], D.G.o.T.M.o. Finance, Editor, Jakarta (2014)

6. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
7. Back, A.: Hashcash-a denial of service counter-measure (2002)
8. Franco, P.: Understanding Bitcoin: Cryptography, Engineering, and Economics. Wiley,

New York (2015)
9. Bitcoin Wiki: Full node. 2014, 30 December 2015. https://en.bitcoin.it/wiki/Full_node.

Accessed 27 Jan 2016
10. Greenspan, G.: MultiChain Private Blockchain—White Paper (2015)
11. Harding, D.A.: Bitcoin Developer Guide (2015). https://bitcoin.org/en/developer-guide.

Accessed 12 Jan 2016
12. Mattila, J.: The Blockchain Phenomenon. In: The Blockchain Phenomenon. Berkeley

Roundtable of the International Economy (2016)
13. Wijaya, D.A.: Extending asset management system functionality in bitcoin platform. In:

2016 International Conference on Computer, Control, Informatics and its Applications
(IC3INA). IEEE (2016)

A New Blockchain-Based Value-Added Tax System 485

https://en.bitcoin.it/wiki/Full_node
https://bitcoin.org/en/developer-guide


14. PricewaterhouseCoopers: How blockchain technology could improve the tax system (2016)
15. Ainsworth, R.T., Shact, A.: Blockchain (Distributed Ledger Technology) Solves VAT Fraud

(2016)
16. Ainsworth, R.T., Viitasaari, V.: Payroll Tax & the Blockchain (2017)
17. Maxwell, G. Deterministic Wallets (2011). https://bitcointalk.org/index.php?topic=19137.0.

Accessed 12 Sep 2015
18. Wuille, P.: Hierarchical Deterministic Wallets (2012). https://github.com/bitcoin/bips/blob/

master/bip-0032.mediawiki. Accessed 29 Feb 2016
19. Andresen, G.: Pay to Script Hash (2012). https://github.com/bitcoin/bips/blob/master/bip-

0016.mediawiki. Accessed 9 Jan 2016
20. Mark Friedenbach, B., Nicolas Dorier, K.: Relative lock-time using consensus-enforced

sequence numbers (2016). https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
21. Harding, D.A:. Sequence Number (Transactions) (2015). https://bitcoin.org/en/glossary/

sequence-number. Accessed 12 Jan 2016

486 D.A. Wijaya et al.

https://bitcointalk.org/index.php?topic=19137.0
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://bitcoin.org/en/glossary/sequence-number
https://bitcoin.org/en/glossary/sequence-number


Verifiable Private Polynomial Evaluation

Xavier Bultel1, Manik Lal Das2, Hardik Gajera2, David Gérault1,
Matthieu Giraud1(B), and Pascal Lafourcade1

1 Université Clermont Auvergne, CNRS, LIMOS, Clermont-Ferrand, France
{xavier.bultel,david.gerault,matthieu.giraud,pascal.lafourcade}@uca.fr

2 DA-IICT, Gandhinagar, India
maniklal@gmail.com, kidrah123@gmail.com

Abstract. Delegating the computation of a polynomial to a server in a
verifiable way is challenging. An even more challenging problem is ensur-
ing that this polynomial remains hidden to clients who are able to query
such a server. In this paper, we formally define the notion of Private Poly-
nomial Evaluation (PPE). Our main contribution is to design a rigorous
security model along with relations between the different security prop-
erties. We define polynomial protection (PP), proof unforgeability (UNF),
and indistinguishability against chosen function attack (IND-CFA), which
formalizes the resistance of a PPE against attackers trying to guess which
polynomial is used among two polynomials of their choice. As a second
contribution, we give a cryptanalysis of two PPE schemes of the liter-
ature. Finally, we design a PPE scheme called PIPE and we prove that
it is PP-, UNF- and IND-CFA-secure under the decisional Diffie-Hellman
assumption in the random oracle model.

1 Introduction

Mathematical models are powerful tools that are used to make predictions about
a system’s behaviour. The idea is to collect a large set of data for a period of
time and use it to build a function predicting the evolution of the system in the
future. This topic has many applications, for instance, meteorology or economics.
It can be used to predict the weather or the behaviour of stock exchange.

Consider a company that collects and stores a very large set of data, for
example about the state of the soil, such as humidity, acidity, temperature and
mineral content. Using it, it computes some function that predicts the state of the
soil for next years. The clients are farmers who want to anticipate the state of the
soil during the sowing periods to determine how much seeds to buy and when
to plant them. The company gives its client access to the prediction function
through a cloud server. A paying client can then interact with the server to
evaluate the function on his own data. For economic reasons, the company does
not want the clients to be able to recover the prediction function. Moreover, the
clients do not trust the server: it might be corrupted to produce incorrect results.
Hence, the server should provide a proof that its output is correct with regards
to the secret prediction function. A similar scenario was studied in [GFLL15],

c© Springer International Publishing AG 2017
T. Okamoto et al. (Eds.): ProvSec 2017, LNCS 10592, pp. 487–506, 2017.
https://doi.org/10.1007/978-3-319-68637-0_29



488 X. Bultel et al.

where a server receives medical data collected by sensors worn by the users, and
provides the users with an evaluation of their health status. More precisely, the
company defines a polynomial f which returns meaningful information, such as
potential diseases. Then, it uploads this polynomial to the server, and sells to
the end users the ability to query that function with their own medical data.

The underlying problem is how to delegate computations on a secret poly-
nomial function to a server in a verifiable way. By secret we mean that no user
should be able to retrieve the polynomial used by the server. By verifiable we
mean that the server must be able to prove the correctness of its computation. To
solve this problem, we propose the Private Polynomial Evaluation (PPE) prim-
itive, which ensures that: (i) the polynomial f is protected as much as possible,
and (ii) the user is able to verify the result given by the server.

Figure 1 illustrates a PPE scheme where x is the user data and f(x) is the
evaluation of the data by the function f of the company. Moreover, the proof
π sent by the server and the verification key vk sent by the company allow the
user to verify the correctness of the delegated computation.

Alice

Server

Company

x

(f(x), π)
f(·)

vk

Fig. 1. Illustration of a PPE scheme.

Consider a company using a PPE
scheme for prediction functions. An attacker
wants to guess which prediction function
is used by the company. Assume this
attacker gains access to some of the data
used to build the prediction function, for
instance by corrupting a technician. Thus,
the attacker can build several prediction
functions by using different mathematical
models and the collected data, and try to
distinguish which of these functions is used
by the company. Intuitively, in a secure
PPE scheme, this task should be as hard
as if the server only returned f(x), and no additional information for verifica-
tion. We formalise this notion and design a PPE scheme having this security
property.

Contributions

– We give a cryptanalysis of two PPE schemes, the first one presented by Guo
et al. [GFLL15] and the second one presented by Gajera et al. [GND16]. Our
attack allows an adversary to recover the secret polynomial in a single query.

– Our main contribution is to provide a formal definition and security frame-
work for PPE schemes. We define two one-way notions, Weak Polynomial
Protection (WPP) and Polynomial Protection (PP), stating that a user lim-
ited to k queries cannot recover the polynomial, where k is the degree of
the polynomial. Additionally, we define IND-CFA which formalises the idea
that no adversary can guess which of two polynomials of his choice is used. In
essence, the proof of a correct computation should not reveal any information
about the polynomial. We finally study the relations between these notions.



Verifiable Private Polynomial Evaluation 489

– We design PIPE (for Private IND-CFA Polynomial Evaluation), an efficient
IND-CFA-secure PPE scheme. This scheme combines the Verifiable Secret
Sharing introduced by Feldman [Fel87] and the ElGamal encryption scheme
in order to achieve verifiability and IND-CFA security. We also formally prove
its security under the DDH assumption in the random oracle model.

Related Works: Verifiable Computation (VC) refers to the cryptographic prim-
itives where an untrusted server can prove the correctness of its output. It
was introduced in [GGP10]. The aim of a such primitive is to allow a client
with limited computational power to delegate difficult computations. Primi-
tives where everyone can check the correctness of the computation are said
to be publicly verifiable [PRV12]. This subject has led to a dense litera-
ture [PST13,CRR12,FG12,CKKC13,PHGR13]. In 2012, Canetti et al. [CRR12]
proposed formal security models for VC. Fiore and Gennaro [FG12] propose a
scheme for polynomial evaluations and matrix computations. Unlike our paper,
these works consider that the polynomial used by the server is public.

To the best of our knowledge, four papers study how to hide the function used
by the server [GFLL15,GND16,KZG10,NP99].Kate et al.define a primitive called
commitment to polynomials (CTP) [KZG10]. In this primitive, a user commits to
a hidden polynomial f and reveals some points (x, y) together with a proof that
f(x) = y. The user can open the commitment a posteriori to reveal the polyno-
mial. CTP is close to PPE: the verification key in a PPE scheme can be viewed
as a commitment in a CTP scheme, the main difference is that this verification
key is computed by a trusted party (the company) and the points are evaluated
by an untrusted party (the server). The authors formalise the hardness of guessing
the polynomial knowing less than k points. In this model, the polynomial is ran-
domly chosen, then they does not consider the case where the adversary tries to
distinguish the committed polynomial between two chosen polynomials as in our
IND-CFA model. Moreover, Kate et al. design two CTP schemes in [KZG10]. The
first one is not IND-CFA since the commitment algorithm is deterministic.Weprove
that the second scheme is IND-CFA-secure in the extended version [BDG+17].
Moreover, we show that our scheme PIPE can be used as a CTP scheme, and we
compare it to the scheme of Kate et al.. We show that our scheme solves an open
problem described by Kate et al.: designing a scheme that is secure under a weaker
assumption than t-SDDH.

Independently of Kate et al. [KZG10], Guo et al. [GFLL15] propose a scheme
with similar security properties to delegate the computation of a secret health
related function on the users’ health record. The polynomials are explicitly
assumed to have low coefficients and degree, which greatly reduces their random-
ness. However, the authors give neither security models nor proof. Later, Gajera
et al. [GND16] show that any user can guess the polynomial using the Lagrange’s
interpolation on several points.Theypropose a schemewhere the degreek is hidden
and claim that it does not suffer from this kind of attack. We show that hiding the
degree k is useless and that no scheme can be secure when user query more than k
points to the server.Moreover, we give a cryptanalysis on these both schemes which
requires only one query to the server. To the best of our knowledge, we present



490 X. Bultel et al.

the first security model for Indistinguishability Against Chosen Function Attack
(IND-CFA).

Finally, there has been lots of work done on a similar but slightly different topic,
Oblivious Polynomial Evaluation (OPE), introduced by Naor and Pinkas [NP99].
In OPE, there are two parties. One party A holds a polynomial f and another
party B holds an element x. The aim of OPE is that the party B receives f(x)
in such a way that A learns nothing about x and B learns nothing about f ,
except f(x). Researchers have studied OPE extensively and shown that it can be
used to solve various cryptographic problems, such as set membership, oblivious
keyword search, data entanglement, set-intersection and more [FIPR05,FNP04,
LP02]. Despite the similarities between OPE and PPE, they are different in nature.
In particular, OPE does not consider the verifiability of f(x), whereas it is a cru-
cial point in PPE. Additionally, in a PPE, the requirement that the server does not
learn anything about x is relaxed. In our scheme, the major contribution to com-
putational cost is due to computation of the proof on server side and verification
of computation on user side. Since OPE doesn’t consider verifying computation,
we feel that it would not be fair to compare the performances.

Outline: In the next section we recall the cryptographic notions used in this
paper. In Sect. 3, we show how to break schemes proposed by Guo et al. [GFLL15]
and by Gajera et al. [GND16]. In Sect. 4, we propose security models for PPE
schemes. Finally, in Sect. 5, we present our PPE scheme PIPE and we prove that it
is IND-CFA-secure before concluding.

2 Cryptographic Tools

We start by recalling the basic cryptographic assumptions used in this paper. In
the following, we denote by poly(λ) the set of probabilistic polynomial time algo-
rithms with respect to the security parameter λ.

Definition 1 (Discrete Logarithm assumption [DH76]). Let p be a prime
number generated according to a security parameter λ ∈ N. LetG be amultiplicative
group of order p, and g ∈ G be a generator.The discrete logarithmassumption (DL)
in (G, p, g) states that there exists a negligible function ε such that for all x $← Z

∗
p

and A ∈ poly(λ): Pr [x′ ← A(gx) : x = x′] ≤ ε(λ)

Definition 2 (Decisional Diffie-Hellman assumption [Bon98]). Let p be a
prime number generated according to a security parameter λ ∈ N. Let G be a multi-
plicative group of order p, and g ∈ G be a generator. The Decisional Diffie-Hellman
assumption (DDH) in (G, p, g) states that there exists a negligible function ε such
that for all (x, y, z) ← (Z∗

p)
3 and A ∈ poly(λ):

|Pr [b ← A(gx, gy, gz) : b = 1] − Pr [b ← A(gx, gy, gx·y) : b = 1]| ≤ ε(λ)



Verifiable Private Polynomial Evaluation 491

In the following, we recall definition and security requirements of public key
cryptosystems.

Definition 3 (Public Key Encryption). A Public Key Encryption (PKE)
scheme is defined by three algorithms (Gen,Enc,Dec) as follows:

Gen(λ): It returns a public/private key pair (pk, sk).
Encpk(m): It returns the ciphertext c of the message m.
Decsk(c): It returns the plaintext m from the ciphertext c.

ExpIND-CPA
Π,A (λ):

b
$← {0, 1}

(pk, sk) ← Gen(λ);
b′ ← AEncpk(LRb(·,·))(λ, pk)
return (b = b′)

Fig. 2. IND-CPA experi-
ment [BBM00].

A PKE scheme Π = (Gen,Enc, Dec) is
indistinguishable under chosen-plaintext attack
(IND-CPA) if for any probabilistic polynomial-
time (PPT) adversary A, the difference between
1
2 and the probability that A wins the IND-CPA
experiment presented in Fig. 2 is negligible in
λ. The oracle Encpk(LRb(·, ·)) takes (m0,m1) as
input and returns Encpk(mb). The standard def-
inition of CPA experiment allows the adversary to
call this oracle only one time. However, Bellare
et al. [BBM00] prove that the two definitions of
CPA security are equivalent using a hybrid argument. For instance, the ElGamal
encryption is IND-CPA.

Definition 4 (ElGamal Encryption [ElG85]). The ElGamal PKE scheme is
defined as follows:

Gen(λ): It returns pk = (G, p, g, h) and sk = x where G is a multiplicative group of
prime order p, g is a generator of G, h = gx and x is uniform in Z

∗
p.

Encpk(m): It returns (c, d) = (gr, hr · m) where r is randomly chosen in Z
∗
p.

Decsk((c, d)): It returns m = d · c−x.

A zero-knowledge proof (ZKP) allows a prover knowing a witness to convince
a verifier that a statement s is in a given language without leaking any information
except s. We recall the definition of a non-interactive ZKP.

Definition 5 (NIZKP [FS87]).A non-interactive ZKP (NIZKP) for a language
L is a couple of algorithms (Prove,Verify) such that:

Prove(s, w): It outputs a proof π that s ∈ L using the witness w.
Verify(s, π): It checks whether π is a valid proof that s ∈ L and outputs a bit.

A NIZKP proof verifies the following properties:

Completeness: For any statement s ∈ L and the corresponding witness w, we
have that Verify(s,Prove(s, w)) = 1.

Soundness: There is no polynomial time adversary A such that A(L) outputs
(s, π) such that Verify(s, π) = 1 and s �∈ L with non-negligible probability.



492 X. Bultel et al.

Zero-knowledge: A proof π leaks no information, i.e. there exists a PPT algo-
rithm Sim (called the simulator) such that outputs ofProve(s, w) and the outputs
of Sim(s) follow the same probability distribution.

We use the NIZKP given by Chaum and Pedersen [CP93] to prove the equality
of two discrete logarithms. Let G be a multiplicative group, the language is the set
of all statements (g1, h1, g2, h2) ∈ G4 such that logg1

(h1) = logg2
(h2) = x.

Definition 6 (LogEq [CP93]). Let G be a multiplicative group of prime order p
and H be a hash function, L be the set of all (g1, h1, g2, h2) ∈ G4 where logg1

(h1) =
logg2

(h2). We define the NIZKP LogEq = (Prove,Verify) for L as follow:

Prove((g1, h1, g2, h2), w): Using the witness w = logg1
(h1), it picks r

$← Z
∗
p, com-

putes A = gr
1,B = gr

2, z = H(A,B) and ω = r+w ·z. It outputs π = (A,B, ω).
Verify((g1, h1, g2, h2), π): Using π = (A,B, ω), it computes z = H(A,B). If gω

1 =
A · hz

1 and gω
2 = B · hz

2 then it outputs 1, else it outputs 0.

LogEq is unconditionally complete, sound and zero-knowledge in the ROM.

We recall Lagrange’s interpolation formula to find the single polynomial f of
degree at most k from k + 1 points (xi, yi) such that f(xi) = yi.

Definition 7 (Lagrange’s interpolation). Let k be an integer and F be a field.
For all i ∈ {0, . . . , k}, let (xi, yi) ∈ F 2 such that for all i1, i2 ∈ {0, . . . , k},xi1 �= xi2 .
There exists one and only one polynomial f of degree at most k such that for all
i ∈ {0, . . . , n}, f(xi) = yi. This polynomial is given by Lagrange’s interpolation
formula:

f(x) =
k∑

i=0

⎛

⎝yi ·
k∏

j=0,j �=i

x − xj

xi − xj

⎞

⎠ .

In the following, we denote the set of polynomials with coefficients in the field
F by F [X] and we denote the set of all f ∈ F [X] of degree k by F [X]k.

3 Cryptanalysis of [GFLL15] and [GND16]

We start by presenting the inherent limitation of PPE schemes, then we explain
how to break those presented by Guo et al. [GFLL15] and by Gajera et al. [GND16].

3.1 Inherent Limitation

In the scheme [GFLL15], the degree k of the polynomial f is public. Gajera
et al. [GND16] use it to mount an attack: a user queries k + 1 points to guess the
polynomial using Lagrange’s interpolation. To fix this weakness, they propose a
scheme where k is secret. However, any user can guess k and f after k + 1 interac-
tions with the server. To do so, the attacker chooses an input x0 and sends it to the
server. He receives y0 and computes the polynomial f0 of degree 0 using Lagrange’s



Verifiable Private Polynomial Evaluation 493

interpolation on (x0, y0). Next, the attacker chooses a second and a different input
x1 and asks y1 = f(x1) to the server. He computes the polynomial f1 of degree
1 using Lagrange’s interpolation on {(x0, y0), (x1, y1)}. By repeating this process
until the interpolation gives the same polynomial fi = fi+1 for two consecutive
iterations, he recovers the degree and the polynomial. This problem is an inher-
ent limitation of PPE schemes and was already considered in the security model of
Kate et al. [KZG10]. Thus, to preserve the protection of the polynomial, the server
must refuse to evaluate more than k points for each client and we must assume that
clients do not collude to collect more than k points.

3.2 Cryptanalysis of [GFLL15] and [GND16]

In addition to the protection of f , the scheme [GFLL15] requires that the user’s
data is encrypted for the server. More formally, the user uses an encryption
algorithm to compute x′ = Enck(x) and sends this cipher to the server which
returns y′. Then, the user computes y = Deck(y′) such that y = f(x) where f
is the secret polynomial. The encryption scheme is based on the discrete logarithm
assumption. The decryption algorithm works in two steps: first the user computes
a value h such that h = gf(x) where g is a generator of a multiplicative group of
large prime order n, next he computes the discrete logarithm of h in base g using
Pollard’s lambda method [Pol78]. The authors assume that the size of f(x) is rea-
sonable: more formally, they define a set of possible inputs X and M ∈ N such that
∀x ∈ X , 0 ≤ f(x) < M . The authors assume that the users can efficiently perform
Pollard’s lambda algorithm on any h = gy where y < M . Actually, for practical
reasons, since h = gf(x) mod n and logg(h) = f(x), we assume that 0 ≤ f(x) < n
for any input x of reasonable size, i.e. x � n. Hence, the authors of [GFLL15]
consider f as a positive polynomial in Z with sufficiently small coefficients.

It is easy to evaluate a small M ′ such that M ′ > M by choosing M ′ such that
Pollard’s lambda algorithm on gM ′

is computable by a powerful server but is too
slow for a practical application. For example, if Pollard’s lambda algorithm takes
less than one minute for the server but more than one hour for the user’s computer,
we can assume that M ′ > M and attacks that are polynomial in M ′ are practical.
To sum up, the user has the following tools:

– M ′ ∈ N such that ∀x ∈ X , 0 ≤ f(x) < M ′ and such that algorithms that
require p(M ′) operations (where p is a polynomial) are easily computable.

– A server which returns y = f(x) for any input x. This server can be used at
most k times where k is the degree of the polynomial.

Finally, note that the authors assume that 0 ≤ f(x) for any x and that X ⊂ N.
We show that any user can guess the secret polynomial during his first interaction
with the server. We first prove the following two properties.

Property 1. For any polynomial f ∈ Z[X] and any integers x and y, there exists
P ∈ Z such that

f(x + y) = f(x) + y · P.



494 X. Bultel et al.

Proof. Seen as a polynomial in y, f(x + y) − f(x) has a root at y = 0. By the
Factor Theorem y divide f(x + y) − f(x). Hence, there exists P ∈ Z such that
f(x + y) − f(x) = y · P , i.e. f(x + y) = f(x) + y · P .

Note that for anypositive integersa and b such thata < b, wehavea mod b=a.
Then, we can deduce the following property from Property 1.

Property 2. For any polynomial f ∈ Z[X] and any integers x and y such that 0 ≤
f(x) < y and 0 ≤ f(x + y), it holds that

f(x + y) mod y = f(x).

Proof. From the previous property, we have f(x+y) = f(x)+y ·P , where P is an
integer. Assume P < 0, we define P ′ = −P > 0, then f(x+y) = f(x)−y ·P ′ ≥ 0.
Hence we have f(x) ≥ y · P ′ > f(x) · P ′.

– If 0 < f(x) then we deduce 1 = f(x)/f(x) > P ′ and 1 > P ′.
– If f(x) = 0 then 0 ≥ y · P ′ > 0.

In both cases, we obtain a contradiction. We conclude that 0 ≤ P . Finally, we
deduce f(x + y) mod y = f(x) + y · P mod y = f(x).

Our attack on [GFLL15] works as follows. The attacker chooses a vector of k

integers (x1, x2, . . . , xk) ∈ N
k such that, for all 0 < i ≤ k, x′

i =
∑i

j=1 xj where
x′

i ∈ X .
For the sake of clarity, we show to begin with the attack in the case where

{1, . . . , k} ⊂ X . Thus the attacker chooses the vector (x1, x2, . . . , xk) =
(1, 1, . . . , 1) and sends x = k + M ′ to the server that returns the encryption of
y = f(x). Pollard’s lambda algorithm complexity [Pol78] on M ′ is O(M ′1/2). We
consider that k � M ′ (for instance k ≈ 10 as in [GFLL15]), thus x < 2 · M ′, the
complexity of the decryption with Pollard’s lambda algorithm is O(f(2M ′)1/2) ≈
O(M ′k/2). For all 1 ≤ i ≤ k, the attacker computes M ′

i = k − i + M ′ and yi = y
mod M ′

i .
Since for all a ∈ X ,M ′ > f(a), we have for all 1 ≤ i ≤ k,M ′

i = k − i + M ′ ≥
M ′ > f(a). Using Property 2 and since i ∈ X , we deduce that

yi = f(x) mod M ′
i

= f(k + M ′) mod M ′
i

= f(k − i + i + M ′) mod M ′
i

= f (i + M ′
i) mod M ′

i = f(i).

Hence, the attacker obtains k +1 points from one single queried point and uses
Lagrange’s interpolation on ((1, y1), (2, y2), . . . , (k, yk), (x, y)) to guess f . Then,
the attacker can compute f with reasonable computation time.

Now, we show the generalized case for any set X where |X | ≥ k. To begin,
the attacker chooses a vector of k integers (x1, . . . , xk) such that, for all 1 ≤ j ≤
k, xj > 0 and: x′

i =
(∑i

j=1 xj

)
where x′

i ∈ X . Then the attacker sends the query



Verifiable Private Polynomial Evaluation 495

x =
(∑k

i=1 xi

)
+M ′ to the server such thatM ′ ∈ N and for alla ∈ X wehaveM ′ >

f(a). After he sends the query to the server, the attacker receives the encryption
of y = f(x).

Pollard’s lambda algorithm complexity [Pol78] on M ′ is O(M ′1/2). We consider
that k � M ′, k ≈ 10 as in [GFLL15], thus x < 2 · M ′, the complexity of the
decryption with Pollard’s lambda algorithm is O(f(2M ′)1/2) ≈ O(M ′k/2).

With the y = f(x) returned by the server, the attacker computes for all 1 ≤
i ≤ k:

M ′
i =

k∑

j=i+1

xj + M ′.

Then we define yi for all 1 ≤ i ≤ k such that yi = y mod M ′
i . Since for all

a ∈ X ,M ′ > f(a), we have for all 1 ≤ i ≤ k and for all a ∈ X :

M ′
i =

k∑

j=i+1

xj + M ′ ≥ M ′ > f(a) .

Using Properties 1 and 2 of Sect. 3 and since x′
i ∈ X , we deduce:

yi = f(x) mod M ′
i = f

(
k∑

i=1

xi + M ′
)

mod M ′
i

= f

⎛

⎝
k∑

j=i+1

xj +
i∑

j=1

xj + M ′

⎞

⎠ mod M ′
i = f

⎛

⎝
i∑

j=1

xj + M ′
i

⎞

⎠ mod M ′
i

= f

⎛

⎝
i∑

j=1

xj

⎞

⎠ = f(x′
i).

Finally, the attacker knows the k points of f : (x′
i, f(x′

i)) for 1 ≤ i ≤ k, and also
(x, f(x)). Hence, using Lagrange’s interpolation, the attacker is able to retrieve the
polynomial f .

It is possible to attack the scheme of Gajera et al. [GND16] in a similar way.
Indeed, as in [GFLL15], the user knows a value M such that ∀x ∈ X , f(x) < M . A
simple countermeasure could be to not allow the user to evaluate inputs that are
not in X . Unfortunately, this is not possible in these two schemes since the user
encrypts his data x. Hence, the server does not know whether x ∈ X or not.

4 SecurityModels

We revisit the formal security models for PPE schemes for two main reasons: (i)
Kate et al. [KZG10] propose some models where the secret polynomial is randomly
chosen. However, they present several practical applications where the polynomial



496 X. Bultel et al.

is not actually random, and some information, such as bounds for f(x) or candi-
dates for f , can be inferred easily from the context. Their models are clearly not
sufficient for analysing the security of this kind of applications. (ii) The schemes
presented by Guo et al. [GFLL15] and Gajera et al. [GND16] consider polynomi-
als that are not randomly chosen. The authors give neither security models nor
security proofs. We show previously a practical attack on these two schemes where
a user exploits some public information. To avoid such attacks, we need a model
where public information does not give significant advantage.

Our goal is to design a model where the public parameters and the server’s
proofs of correctness give no advantage to an attacker. Ideally, we would like the
attacker to have no more chances of guessing the polynomial than if he only had
access to a server reliably returning polynomial evaluations with no proof of cor-
rectness. Our security model considers an attacker that tries to determine which
polynomial is used by a PPE among two polynomials of his choice. This model is
inspired by the IND-CPA model used in public key cryptography.

4.1 Formal Definition

In order to be able to define our security model, we first need to formally define a
Private Polynomial Evaluation scheme.

Definition 8. A Private Polynomial Evaluation (PPE) scheme is composed of
four algorithms (setup, init, compute, verif) such that:

setup(λ): It returns a ring F and a public setup pub.
init(pub, f): It returns a server key sk and a verification key vk according to the

polynomial f ∈ F [X].
compute(pub, vk, x, sk, f): It returns y and a proof π that y = f(x).
verif(pub, vk, x, y, π): It returns 1 if the proof π is “accepted” otherwise 0.

4.2 Security Models

We start be redefining the notion of weak security presented in the literature.
We then introduce the notion of chosen function attack and the natural notion of
unforgeability. Proofs for Theorems 2, 3 and 4 are given in [BDG+17].

PolynomialProtection. We introduce thePolynomialProtection (PP) security.
A PPE is PP-secure if no adversary can output a new point (not computed by the
server) of the secret polynomial f with a better probability than by guessing. In
this model, the polynomial is randomly chosen and the adversary cannot use the
server more than k times, where k is the degree of f . This security model is similar
to the Hiding Model [KZG10] except that the adversary chooses the points to be
evaluated. We define the Weak Polynomial Protection (WPP) as the same model
as PP except that the adversary has no access to the server.



Verifiable Private Polynomial Evaluation 497

Expk-PP
Π,A (λ):

(pub, F ) ← setup(λ);

f
$← F [X]k;

Σ ← ∅;
c ← 0;
(sk, vk) ← init(pub, f);
(x∗, y∗) ← ACOPP(·)(pub, vk, F, k);
If (x∗, y∗) �∈ Σ and f(x∗) = y∗:
Then return 1;
Else return 0;

ExpUNF
Π,A(λ):

(pub, F ) ← setup(λ);
(f, st) ← A1(pub, F );
(sk, vk) ← init(pub, f);
(x∗, y∗, π∗) ← A2(pub, sk, vk, F, f, st);
If f(x∗) �= y∗ and verif(pub, vk, x∗, y∗, π∗):
Then return 1;
Else return 0;

Expk-IND-CFA
Π,A (λ):

b
$← {0, 1}∗;

(pub, F ) ← setup(λ);
(f0, f1, st) ← A1(pub, F, k);
(sk, vk) ← init(pub, fb);

b∗ ← ACOCFA(·)
2 (pub, vk, F, k, st);

If f0 �∈ F [X]k or f1 �∈ F [X]k:
Then return 0;
Else return (b = b∗);

COPP(x):
(y, π) ← compute(pub, vk, x, sk, f);
c ← c + 1;
Σ ← Σ ∪ {(x, y)};
If c = k + 1:
Then return ⊥;
Else return (y, π);

COCFA(x):
(y, π) ← compute(pub, vk, x, sk, fb);
If f0(x) �= f1(x):
Then return ⊥;
Else return (y, π);

Fig. 3. Security experiments and oracles definitions.

Definition 9 (PP and WPP). Let Π be a PPE, A be a probabilistic polynomial
time (PPT) adversary. ∀k ∈ N, the k-Polynomial Protection (k-PP) experiment
for A against Π denoted by Expk-PP

Π,A (λ) is defined in Fig. 3, where A has access to
the server oracle COPP(·). We define the advantage of the adversary A against the
k-PP experiment by:

ADVk-PP
Π,A (λ) = Pr

[
1 ← Expk-PP

Π,A (λ)
]
.

A scheme Π is k-PP-secure if this advantage is negligible for any A ∈ poly(λ).
We define the k-Weak Polynomial Protection (k-WPP) experiment as the k-PP

experiment except that A does not have access to the oracle COPP(·). In a similar
way, we define the WPP advantage and security.

The only difference between PP and WPP is that the adversary has no access
to the oracle in WPP, so PP security implies the WPP security.

Theorem 1. For any Π and k, if Π is k-PP-secure then Π is k-WPP-secure.

Chosen Function Attack. We define a model for indistinguishability against
chosen function attack. In this model, the adversary chooses two polynomials



498 X. Bultel et al.

(f0, f1) and tries to guess the polynomial fb used by the server, where b ∈ {0, 1}.
The adversary has access to a server that evaluates and proves the correctness of
y = fb(x) only if f0(x) = f1(x). This is an inherent limitation: if the adversary can
evaluate another point (x, y) such that f0(x) �= f1(x), then he can compare y with
f0(x) and f1(x) and recover b. In practice, an adversary chooses (f0, f1) such that
f0 �= f1, but with k points (xi, yi) such that f0(xi) = f1(xi). It allows the adversary
to maximize his oracle calls in order to increase his chances of success. We remark
that schemes [GFLL15,GND16] are not IND-CFA-secure: users know a value M
and the set of inputs X such that ∀x ∈ X , f(x) < M . An attacker may choose two
polynomials f0 and f1 such that for a chosen a, f0(a) < M and f1(a) > M . Since
X is public, the attacker returns f0 if and only if a ∈ X .

Definition 10 (IND-CFA). Let Π be a PPE, A = (A1,A2) be a two-party PPT
adversary and k be an integer. The k-Indistinguishability against Chosen Function
Attack (k-IND-CFA) experiment for A against Π is defined in Fig. 3, where A has
access to the server oracle COCFA(·). The advantage of the adversary A against the
k-IND-CFA experiment is given by:

Advk-IND-CFA
Π,A (λ) =

∣∣∣∣
1
2

− Pr
[
1 ← Expk-IND-CFA

Π,A (λ)
]∣∣∣∣ .

A scheme Π is k-IND-CFA-secure if this advantage is negligible for any A ∈
poly(λ)2.

k-IND-CFA k-WPP

andZK k-PP

Fig. 4. Security relations.

InTheorem 2,weprove that IND-CFA
security implies WPP security: if there
exists an adversary A against the WPP
experiment who is able to decrypt a ran-
dom polynomial from the public val-
ues, then we can use it to guess fb in
an IND-CFA experiment for any chosen
polynomials (f0, f1). However, surpris-
ingly, it is not true for the PP security
(Theorem 3). The reason is that the oracle of the IND-CFA experiment has restric-
tion, so it cannot be used to simulate the oracle of the PP experiment in a security
reduction.

Theorem 2. If Π is a k-IND-CFA-secure PPE, then it is k-WPP-secure.

Theorem 3. Let Π be a k-IND-CFA-secure PPE, it does not imply that Π is k-PP.

However, we would like to have a simple and sufficient condition under which
the IND-CFA security implies the PP security. For this, we define the proof induced
by a PPE which is the proof algorithm used by the algorithm compute. We show
that if this proof system is zero-knowledge, then the IND-CFA security implies the
PP security.

Definition 11. LetΠ = (setup, init, compute, verif) be a PPE, the non-interactive
proof inducted by Π, denoted PΠ = (proofΠ , verΠ) is defined as follows. For any
λ, k ∈ N, (pub, F ) ← setup(λ), f ∈ F [X]k and (vk, sk) ← init(pub, f):



Verifiable Private Polynomial Evaluation 499

proofΠ((pub, vk, x, y), (f, sk)): returns π, where (y′, π) ← compute(pub, vk, x,
sk, f). verΠ((pub, vk, x, y), π): runs b ← verif(pub, vk, x, y, π) and returns it.

We say that Π is Zero-Knowledge (ZK) if PΠ is Zero-Knowledge.

Theorem 4. Let Π be a ZK and k-IND-CFA-secure PPE, then Π is k-PP-secure.

In Fig. 4, we recall all relations between our security properties.

Unforgeability. Finally, we define the unforgeability property for a PPE. A PPE
is unforgeable when a dishonest server cannot produce a valid proof on the point
(x, y) when f(x) �= y. The secret polynomial f is chosen by the server.

Definition 12. LetΠ be a PPE,A = (A1,A2) be a two-party PPT adversary. The
Unforgeability (UNF) experiment for A against Π is defined in Fig. 3. We define
the advantage of the adversary A against the UNF experiment by:

AdvUNFΠ,A(λ) = Pr
[
1 ← ExpUNFΠ,A(λ)

]
.

A scheme Π is UNF-secure if this advantage is negligible for any A ∈ poly(λ)2.

4.3 Security Against Collusion Attacks

To conclude, our security model implicitly prevents all non-inherent collusion
attacks, because in our context the clients have no secret information. There are
two kinds of collusion scenarios:

A client colludes with the server: If a client colludes with the server, then the
server can obviously give him the secret polynomial. This limitation is inherent
and cannot be prevented. On the other hand, all keys known by the clients are
public and known to the server, the server has no advantage in colluding with a
client. In particular, the collusion does not allow the server to forge fake validity
proofs for others clients.

Several clients collude together: All clients have the same verification keys.
Thus, a client gains no advantage by colluding with other clients, as long as
the total number of known points is less than k after collusion. Obviously the
inherent limitation of PPE still holds: if the collusion of clients learn more than
k points, then they can guess the polynomial.

5 PIPEDescription

We recall Feldman’s Verifiable Secret Sharing (VSS) scheme and build a simple
k-PP PPE that is not k-IND-CFA. We then propose some modifications based on
theFeldman’sVSSand theElGamal scheme in order design our securePPEscheme
PIPE that is k-IND-CFA. We analyse its security and compare it with the scheme
of Kate et al. [KZG10].



500 X. Bultel et al.

5.1 Feldman’s Verifiable Secret Sharing

Feldman’s VSS [Fel87] is based on Shamir’s Secret Sharing [Sha79], where each
share is a point (x, y) of a secret polynomial f of degree k. Knowing more than k
shares, one can guess the polynomial f and can compute the secret s = f(0). In
Feldman’s VSS, there is a public value that allows anybody to check the validity
of a share. For any point (x, y), anybody can check if y is f(x) or not. This scheme
works as follows. Let G be a multiplicative group of prime order p where DL is hard.
Let f ∈ Z

∗
p[X] be the secret polynomial and ai ∈ F be a coefficient for all 0 ≤ i ≤ k

such that

f(x) =
k∑

i=0

ai · xi.

Let g ∈ G be a generator of G. For all i ∈ {0, . . . , k}, we set hi = gai . Val-
ues g and {hi}0≤i≤k are public, however, the coefficients ai are hidden under DL
hypothesis. We remark that f(x) = y if and only if gy =

∏k
i=0 hxi

i since

k∏

i=0

hxi

i =
k∏

i=0

gai·xi

= g
∑k

i=0 ai·xi

= gf(x).

Then, we can use it to check that (x, y) is a valid share.

5.2 Our Scheme: PIPE

Feldman’s VSS can be used to design a PPE that is k-PP-secure: using the pub-
lic values g and {hi}0≤i≤k, any user can check that the point (x, y) computed by
the server is a point of f . However, in a practical use, the polynomial f is not ran-
domly chosen in a large set. An IND-CFA attacker knows that f = f0 or f = f1
for two known polynomials (f0, f1), since he knows the coefficients {a0,i}0≤i≤k and
{a1,i}0≤i≤k of these two polynomials, he can compute the values {ga0,i}0≤i≤k and
{ga1,i}0≤i≤k and he can compare it with the public set {hi}0≤i≤k.

In order to construct our k-IND-CFA PPE, called PIPE, we give an ElGamal
key pair (pk, sk) to the server where pk = (G, p, g, h) and h = gsk and we encrypt
all the hi. Then for all i ∈ {0, . . . , k}, the users do not know hi = gai but know
the ElGamal ciphertext (ci, di) such that ci = gri and di = hri · hi where ri is
randomly chosen. Since ElGamal is IND-CPA-secure, an attacker that chooses two
polynomials (f0, f1) cannot distinguish, for 0 ≤ i ≤ k, if the ciphertext (ci, di)
encrypts a coefficient of f0 or of f1. Thus, the attacks on the previous scheme are
no longer possible.

Moreover, the user can check that f(x) = y for a point (x, y) using the values
{(ci, di)}0≤i≤k. We set r(x) =

∑k
i=0 ri · xi. The user computes:

c =
k∏

i=0

cxi

i =
k∏

i=0

gri·xi

= g

k∑

i=0
ri·xi

= gr(x).



Verifiable Private Polynomial Evaluation 501

On the other hand, he computes:

d′ =
k∏

i=0

dxi

i =

(
k∏

i=0

hri·xi

)
·
(

k∏

i=0

gai·xi

)
= h

k∑

i=0
ri·xi

· g

k∑

i=0
ai·xi

= hr(x) · gf(x).

Finally, (c, d′) = (gr(x), hr(x) · gf(x)) is an ElGamal ciphertext of gf(x). Then,
to convince the user that (x, y) is a valid point of f , the server proves that (c, d′) is
a ciphertext of gy using a NIZKP of logg(c) = logh(d′/gy).

This leads us to the following formal definition of our scheme PIPE.

Definition 13. Let PIPE = (setup, init, compute, verif) be a PPE defined by:

setup(λ): Using the security parameter λ, it generates G a group of prime order p
and a generator g ∈ G. It chooses a hash function H : {0, 1}∗ → Z

∗
p and it sets

F = Z
∗
p. It sets pub = (G, p, g,H) and returns (pub, F ).

init(pub, f): We set f(x) =
∑k

i=0 ai · xi. This algorithm picks sk $← Z
∗
p and com-

putes pk = gsk. For all i ∈ {0, . . . , k}, it picks ri
$← Z

∗
p and computes ci = gri

and di = pkri ·gai . Finally, it sets vk = ({(ci, di)}0≤i≤k, pk) and returns (vk, sk).
compute(pub, vk, x, sk, f): Using vk which is equal to ({(ci, di)}0≤i≤k, pk), this

algorithm picks θ
$← Z

∗
p and computes

c =
k∏

i=0

cxi

i , π = (gθ, cθ, θ + H(gθ, cθ) · sk).

Finally, it returns (f(x), π).
verif(pub, vk, x, y, π): Using vk = ({(ci, di)}0≤i≤k, pk) and π = (A,B, ω), this

algorithm computes

c =
k∏

i=0

cxi

i , d =

(∏k
i=0 dxi

i

)

gy
.

If gω = A · pkH(A,B) and cω = B · dH(A,B), then the algorithm returns 1, else it
returns 0.

5.3 Security

We prove the security of PIPE in our security model:

Lemma 1. For any k ∈ N, PIPE is k-IND-CFA-secure under the DDH assumption
in the ROM.

Lemma 2. PIPE is unconditionally ZK-secure in the ROM.

Lemma 3. PIPE is unconditionally UNF-secure in the ROM.



502 X. Bultel et al.

Proofs of Lemmas 1, 2 and 3 are presented in [BDG+17]. Using Lemmas 2 and
4 and Theorem 4, we have that PIPE is k-PP-secure. Hence, using Lemma 1 and
Theorem 2, we deduce that PIPE is k-WPP-secure. Finally, we have the following
theorem.

Theorem 5. For any k ∈ N, PIPE is is ZK, k-IND-CFA, k-PP, k-WPP and UNF-
secure under the DDH assumption in the ROM.

5.4 Comparison with PolyCommitPed

Kate et al. [KZG10] propose two CTP schemes that can be used as PPE schemes.
Even if Kate et al. security model does not take into account IND-CFA security,
we prove in [BDG+17] that one of these two schemes, called PolyCommitPed, is
IND-CFA-secure. We recall the PolyCommitPed scheme in AppendixA and we com-
pare PIPE with this scheme in this section. Table 1 resumes this comparison.

The PIPE verification algorithm is in O(k) and the PolyCommitPed one is in
constant time. However, the PolyCommitPed verification algorithm requires sev-
eral pairing computations which are significantly costly in terms of computation
time whereas PIPE only requires exponentiations and multiplication in a prime
order group. Consequently, PIPEwill be more efficient than PolyCommitPed for suf-
ficiently small polynomial degree k.

Table 1. Comparison of PIPE and PolyCommitPed.

Setup size Key size Verif. cost Pairing Assumption Security

PIPE O(1) O(k) O(k) Paring free DDH IND-CFA

PolyCommitPed [KZG10] O(k) O(1) O(1) Pairing based t-SDH IND-CFA

The main advantage of PolyCommitPed is that the verification key size is con-
stant whereas the verification key size ofPIPE is in O(k). However, the public setup
size ofPolyCommitPed is inO(k)whereas thePIPE one is in constant. Since the client
knows both the verification key and the public setup, PolyCommitPed is advanta-
geous only if each client has access to several polynomials simultaneously.

PIPE is secure under the DDH assumption whereas PolyCommitPed is secure
under the t-SDH assumption. Note that finding a scheme that is secure under
a weaker assumption than t-SDH was an open problem mentioned by Kate
et al. [KZG10]. Finally, note that the security PolyCommitPed is proven in the
standard model. A simple way to obtain a version of PIPE that is secure in the
standard model is to use the interactive version of LogEq [CP93] instead of the
non-interactive one in the algorithm. In return, it requires an interaction between
the client and the server during the evaluation algorithm.



Verifiable Private Polynomial Evaluation 503

6 CFA Security for Commitments to Polynomials

Our scheme can be used as a commitment to polynomials scheme [KZG10] that is
CFA-secure.Wegive an overviewof a such scheme inFig. 5.To commit apolynomial
f , the committer computes (vk, sk) ← init(pub, f) and returns the commitment
vk to the user corresponding to the encryption of coefficients of the polynomial f .
Then, the user sends his data to the committer (xi in Fig. 5) and receives the results
with correctness proof ((f(xi), proof) in Fig. 5). To open the commitment, the com-
mitter reveals to the user the key vk together with f (open(vk, f) in Fig. 5), then
the user can open all the ElGamal ciphertexts of vk and check that they encrypt
gai where ai are the coefficients of f .

Alice Committer

vk = commit(f)

xi

(f(xi), proof)
. . .

open(vk, f)

Fig. 5. PIPE scheme used as a commitment to polynomials scheme [KZG10].

7 Anonymous Private Polynomial Evaluation

In a practical scenario, the company does not allow anybody to interact freely
with the computation server. The company distributes authentication keys to the
clients, and the server uses a protocol to authenticate the client at the beginning
of each interaction. It allows the server to verify that a client does not request to
evaluate more than k points, where k is the degree of the polynomial. However,
for a lot of applications, preserving the privacy of the clients is important. Guo
et al. [GFLL15] propose an anonymous authenticationmechanism for their scheme,
which is broken and fixed by Gajera et al. [GND16].

We remark that anonymous authentication for PPE prevents the server from
knowing how much points of the polynomial it gives to each client, leading to
security issues. To solve this problem, we suggest that the server uses k-times
anonymous authentication [TFS04]: this primitive allows a client to anonymously
authenticate k times. If a client exceeds this limit, the server can identify him.Using
such a scheme, the server can refuse to respond if the user requires more point eval-
uations than allowed, and the privacy of honest users is preserved.

8 Conclusion

In this paper, we gave a formal definition for a primitive called PPE. This primitive
allows a company to delegate computations on a secret polynomial for users in a



504 X. Bultel et al.

verifiable way. In essence, the user sends x and receives y from the server along with
a proof of y = f(x); even though he does not know the polynomial f . We proposed
a security model of indistinguishability against chosen function attack (IND-CFA)
and we built a PPE scheme called PIPE which is secure in this model. We proved
that another scheme called PolyCommitPed [KZG10] is IND-CFA-secure, and we
compared it with PIPE. Moreover, we exhibited a critical flaw in two papers which
proposed schemes tackling the same problem. In the future, we aim at designing a
scheme that is pairing free and that uses constant size verification keys. Another
possible extension is to add practical privacy mechanism to protect the data sent
by the users.

Acknowledgements. This research was conducted with the support of the FEDER
program of 2014–2020, the region council of Auvergne-Rhône-Alpes, the support of the
“Digital Trust” Chair from the University of Auvergne Foundation, the Indo-French
Centre for the Promotion of Advanced Research (IFCPAR) and the Center Franco-
Indien Pour La Promotion De La Recherche Avancée (CEFIPRA) through the project
DST/CNRS 2015-03 under DST-INRIA-CNRS Targeted Programme.

A PolyCommitPed Scheme [KZG10]

We recall the PolyCommitPed construction presented by Kate et al. [KZG10].

Definition 14. PolyCommitPed = (setup, init, compute, verif) is a PPE scheme
defined as follows:

setup(λ): Using the security parameter λ, it generates two groups G and GT of
prime order p (providing λ-bit security) such that there exists a symmetric bilin-
ear pairing e : G × G → GT . Moreover, it chooses two generators g and h of
G and picks α ← Z

∗
p. It sets F = Z

∗
p, pub = (G,GT , p, e, g, h, (gα, . . . , gαk

),
(hα, . . . , hαk

)) and returns (pub, F ).
init(pub, f): Using f(x) =

∑k
i=0 ai·xi, this algorithmchooses a randompolynomial

of degree k, r(x) =
∑k

i=0 ri · xi ∈ Zp[x] and sets sk = r(x). It computes C =∏k
i=0(g

αi

)ai(hαi

)ri = gf(α)hr(α) and sets vk = C. Finally, it returns (sk, vk).
compute(pub, vk, xi, sk, f): This algorithm computes ψi(x) = (f(x) − f(xi))/(x −

xi) and ψ̂i(x) = (r(x) − r(xi))/(x − xi). Let (γ0, . . . , γk) and (γ̂0, . . . , γ̂k)
be such that ψi(x) =

∑k
j=0 γj · xj and ψ̂i(x) =

∑k
j=0 γ̂j · xj. It computes

wi =
∏k

j=0(g
αj

)γj (hαj

)γ̂j = gψi(α)hψ̂i(α). It sets π = (xi, r(xi), wi) and returns
(f(xi), π).

verif(pub, vk, xi, f(xi), π): If e(C, g) equals to e(wi, (gα)−xi)e(gf(xi)hr(xi), g), the
algorithm outputs 1, else it outputs 0.

References

[BBM00] Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-
user setting: security proofs and improvements. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000).
doi:10.1007/3-540-45539-6 18

http://dx.doi.org/10.1007/3-540-45539-6_18


Verifiable Private Polynomial Evaluation 505

[BDG+17] Bultel, X., Das, M.L., Gajera, H., Grault, D., Giraud, M., Lafourcade, P.:
Verifiable private polynomial evaluation. Cryptology ePrint Archive, Report
2017/756 (2017). http://eprint.iacr.org/2017/756

[Bon98] Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS
1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). doi:10.1007/
BFb0054851

[CKKC13] Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive
verifiable computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
499–518. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2 28

[CP93] Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg
(1993). doi:10.1007/3-540-48071-4 7

[CRR12] Canetti, R., Riva, B., Rothblum, G.N.: Two protocols for delegation of
computation. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 37–61.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32284-6 3

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf.
Theor. 22(6), 644–654 (1976)

[ElG85] ElGamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Inf. Theor. 31, 469–472 (1985)

[Fel87] Feldman, P.: A practical scheme for non-interactive verifiable secret sharing.
In: 28th FOCS, pp. 427–437. IEEE Computer Society Press, October 1987

[FG12] Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials
and matrix computations, with applications. In: ACM CCS 2012. ACM Press
(2012)

[FIPR05] Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search
and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005.
LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-30576-7 17

[FNP04] Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and
set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 1

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/
3-540-47721-7 12

[GFLL15] Guo, L., Fang, Y., Li, M., Li, P.: Verifiable privacy-preserving monitoring for
cloud-assisted mHealth systems. In: INFOCOM. IEEE (2015)

[GGP10] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing:
outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14623-7 25

[GND16] Gajera, H., Naik, S., Das, M.L.: On the security of “Verifiable Privacy-
Preserving Monitoring for Cloud-Assisted mHealth Systems”. In: Ray,
I., Gaur, M.S., Conti, M., Sanghi, D., Kamakoti, V. (eds.) ICISS 2016.
LNCS, vol. 10063, pp. 324–335. Springer, Cham (2016). doi:10.1007/
978-3-319-49806-5 17

[KZG10] Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to
polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17373-8 11

http://eprint.iacr.org/2017/756
http://dx.doi.org/10.1007/BFb0054851
http://dx.doi.org/10.1007/BFb0054851
http://dx.doi.org/10.1007/978-3-642-36594-2_28
http://dx.doi.org/10.1007/3-540-48071-4_7
http://dx.doi.org/10.1007/978-3-642-32284-6_3
http://dx.doi.org/10.1007/978-3-540-30576-7_17
http://dx.doi.org/10.1007/978-3-540-30576-7_17
http://dx.doi.org/10.1007/978-3-540-24676-3_1
http://dx.doi.org/10.1007/978-3-540-24676-3_1
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-319-49806-5_17
http://dx.doi.org/10.1007/978-3-319-49806-5_17
http://dx.doi.org/10.1007/978-3-642-17373-8_11
http://dx.doi.org/10.1007/978-3-642-17373-8_11


506 X. Bultel et al.

[LP02] Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Crypt. 15(3), 177–
206 (2002)

[NP99] Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Pro-
ceedings of the Thirty-First Annual ACM Symposium on Theory of Com-
puting, STOC 1999, pp. 245–254. ACM, New York (1999)

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical
verifiable computation. In: 2013 IEEE Symposium on Security and Privacy.
IEEE (2013)

[Pol78] Pollard, J.M.: A Monte Carlo method for index computation (mod p). Math.
Comput. 32, 918–924 (1978). Springer

[PRV12] Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in
public: verifiable computation from attribute-based encryption. In: Cramer,
R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28914-9 24

[PST13] Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computa-
tion. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36594-2 13

[Sha79] Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11),
612–613 (1979)

[TFS04] Teranishi, I., Furukawa, J., Sako, K.: k -times anonymous authenti-
cation (extended abstract). In: Lee, P.J. (ed.) ASIACRYPT 2004.
LNCS, vol. 3329, pp. 308–322. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-30539-2 22

http://dx.doi.org/10.1007/978-3-642-28914-9_24
http://dx.doi.org/10.1007/978-3-642-36594-2_13
http://dx.doi.org/10.1007/978-3-540-30539-2_22
http://dx.doi.org/10.1007/978-3-540-30539-2_22


Author Index

Acharya, Kamalesh 329
Alawatugoda, Janaka 167
Au, Man Ho 400

Buchmann, Johannes 251
Buldas, Ahto 251
Bultel, Xavier 487

Chakraborty, Suvradip 167
Chen, Long 285
Chen, Xiaofeng 24
Chen, Yuan 236
Cheng, Changsong 147
Cui, Hui 400

Das, Manik Lal 487
Deng, Robert H. 400
Dong, Qingkuan 236
Dutta, Ratna 329

Fazio, Nelly 381
Fukumitsu, Masayuki 201

Gajera, Hardik 487
Geihs, Matthias 251
Gennaro, Rosario 381
Gérault, David 487
Giraud, Matthieu 487

Han, Jinguang 39
Hartmann, Dominik 87
Hartung, Gunnar 87
Hasegawa, Shingo 201
He, Jingnan 188
He, Mingxing 127
Hu, Honggang 147

Iovino, Vincenzo 434

Jafarikhah, Tahereh 381
Jia, Dingding 361

Kaidel, Björn 87
Koch, Alexander 87

Koch, Jessica 87
Kuai, Wenke 147

Lafourcade, Pascal 487
Lai, Junzuo 74
Lai, Qiqi 236
Li, Bao 188
Li, Xingxin 57
Li, Yanling 74
Li, Yuxi 455
Liang, Kaitai 39
Liang, Zhi 3
Ling, San 305
Liu, Hanlin 261
Liu, Jianwei 3
Liu, Joseph K. 24, 471
Liu, Weiran 3
Liu, Yang 57
Liu, Zhe 57
Luo, Xiling 107

Meng, Ru 39
Mu, Yi 127, 349

Nguyen, Khoa 305
Ning, Jianting 39

Pandu Rangan, C. 167
Pandu Rangan, Chandrasekaran 413
Paul, Arinjita 413

Qin, Baodong 400

Rezaeibagha, Fatemeh 349

Santoso, Bagus 271
Sharmila Deva Selvi, S. 413
Skeith III, William E. 381
Su, Chunhua 271
Sun, Shi-Feng 24
Susilo, Willy 24, 39
Suwarsono, Dony Ariadi 471



Wang, Chuansheng 74
Wang, Huaxiong 305
Wang, Jian 57
Wang, Jianfeng 24
Wang, Peng 147
Wang, Qiang 455
Wang, Xiaofen 349
Wang, Yunling 24
Wang, Zhen 107
Wijaya, Dimaz Ankaa 471
Wu, Guangzheng 74
Wu, Qianhong 3, 107

Xiao, Fu 3
Xiong, Jie 74
Xu, Jian 455
Xu, Zifeng 455
Xue, Haiyang 188

Yan, Di 261
Yang, Guomin 127
Yi, Xun 400
Yu, Yu 261

Żebrowski, Karol 434
Zeng, Shengke 127
Zhang, Fangguo 219
Zhang, Juanyang 305
Zhang, Peng 471
Zhang, Ping 147
Zhang, Renjun 361
Zhang, Shiwei 349
Zhang, Zhenfeng 285
Zhao, Shuoyao 261
Zhou, Fucai 455
Zhou, Yanwei 39
Zhu, Dali 361
Zhu, Youwen 57

508 Author Index


	Preface
	Organization ProvSec 2017 The 11th International Conference on Provable Security
	Contents
	Secure Cloud Storage and Computing
	Provably Secure Self-Extractable Encryption
	1 Introduction
	2 Related Work
	3 Techniques Preliminaries
	3.1 Syntax
	3.2 Pseudo Random Functions
	3.3 Bilinear Groups
	3.4 Access Structures and Linear Secret Sharing Schemes

	4 System Overview
	4.1 System Model for Cryptography-Based Cloud Storage
	4.2 Abstract Access Policy Representation: Predicate
	4.3 Refined System Model for Self-Extractable Encryption
	4.4 Threat Model
	4.5 Design Goal

	5 Generic SEXE Construction
	5.1 Basic Idea
	5.2 Our Construction

	6 SEXE Instantiations
	6.1 Self-Extractable IBE
	6.2 Self-Extractable ABE

	7 Formal Security Analysis
	7.1 Formal Security Model
	7.2 Proof of Theorem 1

	8 Conclusions
	References

	Towards Multi-user Searchable Encryption Supporting Boolean Query and Fast Decryption
	1 Introduction
	1.1 Our Contribution
	1.2 Organization

	2 Preliminaries
	2.1 Bilinear Pairings
	2.2 Intractable Assumption
	2.3 Access Policy

	3 SMSE Scheme with Fast Decryption
	3.1 Server-Side Match Technique for Anonymous CP-ABE
	3.2 Our Construction

	4 Analysis of Our Proposed Scheme
	4.1 Security Analysis
	4.2 Comparison

	5 Conclusion
	References

	An Efficient Key-Policy Attribute-Based Searchable Encryption in Prime-Order Groups
	1 Introduction
	1.1 Technical Roadmap
	1.2 Contributions
	1.3 Related Work
	1.4 Organization

	2 System Definitions
	2.1 System Algorithms
	2.2 System Workflow
	2.3 Adversary Models

	3 Preliminaries
	3.1 Bilinear Maps
	3.2 Complexity Assumptions
	3.3 Building Blocks

	4 A New KP-ABSE
	4.1 Construction
	4.2 Security Proof

	5 Comparison
	6 Conclusions
	References

	Secure Multi-label Classification over Encrypted Data in Cloud
	1 Introduction
	2 Preliminaries and Problem Definition
	2.1 Multi-label Learning
	2.2 Paillier Cryptosystem
	2.3 Secure Computing Protocol
	2.4 ML-kNN

	3 Models and Design Goal 
	3.1 System Model
	3.2 Design Goal
	3.3 Threat Model

	4 Our Proposed Scheme
	4.1 Secure Training Stage: Build the Multi-label Classification Model
	4.2 Secure Classifying Stage: Classify the Unclassified Instance 

	5 Evaluation
	5.1 Security Analysis
	5.2 Computation and Communication Complexity

	6 Related Work
	7 Conclusions
	References

	A Secure Cloud Backup System with Deduplication and Assured Deletion
	1 Introduction
	2 Background and Related Work
	3 Preliminaries
	3.1 Assumptions and Problem Statement
	3.2 Security Definition

	4 System Function Construction
	4.1 Deduplication
	4.2 Uploading
	4.3 Deleting

	5 Experiments and Analysis
	6 Conclusion and Future Work
	References

	Digital Signature and Authentication
	Practical and Robust Secure Logging from Fault-Tolerant Sequential Aggregate Signatures
	1 Introduction
	2 Preliminaries
	2.1 Aggregate Signatures
	2.2 Forward-Secure Signatures
	2.3 Forward-Secure Sequential Aggregate Signatures
	2.4 Cover-Free Families

	3 Fault-Tolerant Forward-Secure Sequential Aggregate Signatures
	3.1 Fault Tolerance of FS-SAS Schemes
	3.2 Security Notion
	3.3 Generic Construction

	4 Robust Secure Logging
	4.1 Generic Construction

	5 Implementation and Performance Results
	6 Conclusion
	A Implementation Details
	References

	Verifiably Encrypted Group Signatures
	1 Introduction
	1.1 Our Contributions
	1.2 Outline

	2 Preliminaries
	2.1 Bilinear Maps
	2.2 Complexity Assumptions

	3 Modelling VEGS
	3.1 Definition of VEGS Scheme
	3.2 Security Definitions

	4 VEGS Scheme
	4.1 Construction of VEGS Scheme
	4.2 Security

	5 Extensions
	5.1 Other Properties
	5.2 Batch Verification
	5.3 Dynamic Groups

	6 Conclusion
	References

	Deniable Ring Authentication Based on Projective Hash Functions
	1 Introduction
	1.1 Related Work
	1.2 Contribution
	1.3 Organization

	2 Tools
	2.1 Projective Hash Functions
	2.2 Commitment Scheme
	2.3 Non-interactive Witness Indistinguishable Proofs

	3 Deniable Ring Authentication
	3.1 Syntax
	3.2 Security Model

	4 Generic Construction
	4.1 Deniable Ring Authentication Protocol DRA

	5 Security
	5.1 Soundness (Unforgeability)
	5.2 Deniability
	5.3 Anonymity

	6 Performance
	6.1 Comparison in Performance
	6.2 Security Requirement

	7 Conclusion
	A Instantiation of Protocol DRA
	References

	Authenticated Encryption and Key Exchange
	INT-RUP Security of Checksum-Based Authenticated Encryption
	1 Introduction
	2 Preliminaries
	3 INT-RUP Security Model of Authenticated Encryption
	4 INT-RUP Security of Checksum-Based Authenticated Encryption Schemes
	4.1 INT-RUP Analysis of Authenticated Encryption with PCC
	4.2 OCB with Intermediate Checksum: OCB-IC
	4.3 Discussions

	5 Conclusion
	References

	Leakage-Resilient Non-interactive Key Exchange in the Continuous-Memory Leakage Setting
	1 Introduction and Related Work
	2 Preliminaries
	2.1 Notations
	2.2 Basics of Information Theory
	2.3 Leakage-Resilient Storage (LRS)
	2.4 Decisional Bilinear Diffie-Hellman Assumption over Type-2 Pairing Groups (DBDH-2 Problem)

	3 Chameleon Hash Functions with Oblivious Sampling
	4 Leakage-Resilient NIKE in Continuous-Memory Leakage Model
	4.1 CLR-CKS-heavy Security Model
	4.2 After-the-Fact CLR-CKS-Heavy-Secure NIKE Protocol: CLR-NIKE

	5 Construction of Other Leakage-Resilient Primitives from CLR-NIKE
	6 Conclusion and Future Works
	References

	New Framework of Password-Based Authenticated Key Exchange from Only-One Lossy Encryption
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works

	2 Preliminaries
	2.1 Notations
	2.2 Encryption
	2.3 Password-Based Authenticated Key Exchange

	3 Only-One Lossy Encryption
	3.1 Only-One Lossy Encryption from DDH Assumption
	3.2 Only-One Lossy Encryption from LWE Assumption

	4 New Framework of PAKE
	5 Conclusion
	References

	Security Models
	Impossibility of the Provable Security of the Schnorr Signature from the One-More DL Assumption in the Non-programmable Random Oracle Model
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works

	2 Preliminaries
	2.1 Signature Scheme
	2.2 Cryptographic Assumption

	3 Impossibility of Provable Security of Schnorr Signature from OM-DL Assumption in NPROM
	3.1 Case: Vanilla Reduction
	3.2 Case: Turing Reduction

	References

	Bit Security of the Hyperelliptic Curves Diffie-Hellman Problem
	1 Introduction
	2 Mathematical Preliminaries
	2.1 Hyperelliptic Curves and Hyperelliptic Curve Diffie-Hellman Problem
	2.2 Twisting Hyperelliptic Curves
	2.3 HNP-CM Problem and HNP-CMd Problems

	3 Our Results for Least Significant Bit
	4 Extention to Any Bit
	5 Generalization to General Hyperelliptic Curves
	6 Conclusions and Further Works
	A Appendix: Explicit Formula for Addition in Genus 2
	B Appendix: Magma Program
	References

	Natural sd-RCCA Secure Public-Key Encryptions
	1 Introduction
	1.1 Further Discussions and Related Notions

	2 Preliminaries
	2.1 RCCA Security for PKE
	2.2 KEM+DEM and Related Security Notions

	3 Sd-RCCA Secure Hybrid Public-Key Encryptions from Sd-RCCA Secure DEMs
	4 Sd-RCCA Secure DEMs from Regular Secure and Secretly Detectable MACs
	4.1 MAC and Related Security Notions
	4.2 Sd-RCCA Secure DEMs from the ``encrypt-then-authenticate'' Paradigm
	4.3 Achieving Sd-RCCA Security from Regular MACs by Other Paradigms

	5 Instantiations
	5.1 Instantiations of Regular but Not Strong, Secretly but Not Publicly Detectable MACs
	5.2 Instantiations of sd-RCCA Secure Hybrid Encryptions

	6 Conclusion
	References

	Long-Term Secure Time-Stamping Using Preimage-Aware Hash Functions
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Extractable Time-Stamping
	2.1 Scheme Description
	2.2 Security Definition
	2.3 Security Analysis

	3 Extractable Long-Term Time-Stamping
	3.1 Scheme Description
	3.2 Adversary Model
	3.3 Security Definition
	3.4 Security Analysis

	4 Evaluation
	4.1 Scenario
	4.2 Results

	5 Conclusions and Future Work
	References

	On the Hardness of Sparsely Learning Parity with Noise
	1 Introduction
	2 Preliminaries
	3 Hardness of the Sparse LPN Problem
	4 Conclusion
	References

	Lattice and Post-quantum Cryptography
	Provable Secure Post-Quantum Signature Scheme Based on Isomorphism of Polynomials in Quantum Random Oracle Model
	1 Introduction
	2 Preliminaries
	3 Signature Scheme Based on IP2S
	3.1 Basic Identification Scheme
	3.2 Construction of Signature Scheme
	3.3 Security of Signature Scheme

	4 Conclusion
	References

	Bootstrapping Fully Homomorphic Encryption with Ring Plaintexts Within Polynomial Noise
	1 Introduction
	1.1 Our Contributions
	1.2 Main Techniques
	1.3 Related Works

	2 Preliminaries
	2.1 Ring-LWE
	2.2 Useful Subroutines
	2.3 Symmetric Group and Zq-Embedding
	2.4 The Batched BGV SWHE Scheme

	3 GSW Scheme with Ring Plaintexts
	3.1 The Scheme Description
	3.2 Analysis
	3.3 Ciphertexts Transformation from GSW to BGV

	4 Our Bootstrapping Method
	4.1 The Blueprint for Bootstrapping
	4.2 The Representation Map rep
	4.3 The Reduction Map red
	4.4 Bootstrapping Within Polynomial Noise
	4.5 Computation Complexity

	5 Parameter Calculation
	References

	Revocable Predicate Encryption from Lattices
	1 Introduction
	2 Preliminaries
	2.1 Background on Lattices
	2.2 The Agrawal-Freeman-Vaikuntanathan Predicate Encryption Scheme
	2.3 Revocable Predicate Encryption
	2.4 The Complete Subtree Method

	3 Our Lattice-Based RPE Scheme
	3.1 Description of the Scheme
	3.2 Correctness, Efficiency and Potential Implementation
	3.3 Security

	4 Extensions and Open Questions
	4.1 Extensions
	4.2 Open Questions

	References

	Public Key Encryption and Signcryption
	Provable Secure Constructions for Broadcast Encryption with Personalized Messages
	1 Introduction
	2 Preliminaries
	2.1 Broadcast Encryption with Personalized Messages
	2.2 Security Framework
	2.3 Complexity Assumptions

	3 BEPM-I: BEPM with Selective Security 
	4 BEPM-II: BEPM with Adaptive Security
	5 BEPM-III: BEPM from Multilinear Maps
	6 Efficiency
	7 Conclusion
	References

	Provably Secure Homomorphic Signcryption
	1 Introduction
	2 Related Work
	3 Definitions and Models
	3.1 System Model
	3.2 Complexity Assumptions
	3.3 The Definition of Homomorphic Signcryption Scheme
	3.4 Security Model

	4 Our Proposed Scheme
	5 Security Analysis
	6 Conclusion
	References

	Public-Key Encryption with Simulation-Based Sender Selective-Opening Security
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Notation
	2.2 Public Key Encryption
	2.3 Sender Selective-Opening Security
	2.4 Sender Selective-Opening Security from Lossy Encryption

	3 SIM-SSO-CPA Secure PKE from Hash Proof System
	3.1 Hash Proof System
	3.2 Generic Construction
	3.3 Security Proof
	3.4 Instantiation Based on Matrix Diffie-Hellman Assumption

	4 SIM-SSO-CPA Secure Construction from Quadratic Residuosity
	4.1 SIM-SSO-CPA Secure Construction from BGH Scheme
	4.2 SIM-SSO-CPA Secure Construction from Cocks' Scheme

	5 SIM-SSO-CPA Secure Construction from Homomorphic Trapdoor Commitment
	5.1 SIM-SSO-CPA Secure Construction from Subgroup Decision Assumption
	5.2 SIM-SSO-CPA Secure Construction from Decisional Linear Assumption

	6 Conclusion
	References

	Homomorphic Secret Sharing from Paillier Encryption
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Results
	1.3 Techniques

	2 Preliminaries
	2.1 Encryption
	2.2 The Paillier Encryption Scheme
	2.3 Homomorphic Secret Sharing
	2.4 Restricted Multiplication Straight-Line Programs (RMS)

	3 Share Conversion
	4 Construction from DCRA
	5 Verifying Computations
	6 Conclusions and Future Work
	References

	Fuzzy Public-Key Encryption Based on Biometric Data
	1 Introduction
	1.1 Challenges and Contributions
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Basic Notations
	2.2 Fuzzy Key Setting

	3 Framework and Security Model
	3.1 Framework
	3.2 Security Model

	4 Fuzzy Public-Key Encryption
	4.1 Public-Key Encryption
	4.2 Generic Construction

	5 Conclusions
	References

	Proxy Re-encryption and Functional Encryption
	An Efficient Certificateless Proxy Re-Encryption Scheme Without Pairing
	1 Introduction
	1.1 Related Work and Contribution

	2 Definition and Security Model
	2.1 Definition
	2.2 Security Model

	3 Analysis of a Certificateless PRE Scheme by Srinivasan et al. 
	3.1 Review of the Scheme
	3.2 Our Attack
	3.3 A Possible Fix

	4 Our Unidirectional CCA-secure CLPRE Scheme
	4.1 Our Scheme
	4.2 Correctness
	4.3 Security Proof

	5 Efficiency Comparison
	6 Conclusion
	References

	Mergeable Functional Encryption
	1 Introduction
	2 Definitions
	2.1 Mergeable Functional Encryption

	3 Our mFE Scheme for One Merging Operation
	3.1 Security Reduction
	3.2 Extension to Messages of Unbounded Length

	References

	Protocols
	Private Subgraph Matching Protocol
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Paillier Cryptosystem
	2.2 Private Subset Relation Protocol

	3 Model and Definition
	4 Private Subgraph Matching Protocol
	4.1 Graph Representation
	4.2 Protocol Construction

	5 Analysis
	5.1 Security Analysis
	5.2 Information Leakage
	5.3 Performance Analysis

	6 Conclusion
	References

	A New Blockchain-Based Value-Added Tax System
	Abstract
	1 Introduction
	2 Context
	2.1 Bitcoin
	2.2 Blockchain
	2.3 Blockchain Case Studies
	2.4 Blockchain in Tax System
	2.5 Scope

	3 Preliminaries
	3.1 Deterministic Address
	3.2 Pay to Script Hash
	3.3 Relative Lock-Time
	3.4 Sequence Number
	3.5 Multisignature

	4 Our Proposed Solution
	4.1 Overview
	4.2 The System Participants
	4.3 The Pajakoin Blockchain
	4.4 The Taxpayer’s Identity
	4.5 The Bank’s Address
	4.6 Acquiring and Selling PAKO
	4.7 Transferring PAKO
	4.8 Tax Invoice
	4.9 VAT Periodic Tax Return

	5 Security Evaluation
	5.1 Cheating Model
	5.2 Cheating Evaluation

	6 Discussion
	6.1 Centralized Blockchain
	6.2 Monitoring Mechanism
	6.3 Supporting Databases
	6.4 Determining VAT Revenue
	6.5 Simplicity over Anonymity

	7 Conclusion
	8 Future Works
	Acknowledgement
	References

	Verifiable Private Polynomial Evaluation
	1 Introduction
	2 Cryptographic Tools
	3 Cryptanalysis of [GFLL15] and [GND16]
	3.1 Inherent Limitation
	3.2 Cryptanalysis of [GFLL15] and [GND16]

	4 Security Models
	4.1 Formal Definition
	4.2 Security Models
	4.3 Security Against Collusion Attacks

	5 PIPE Description
	5.1 Feldman's Verifiable Secret Sharing
	5.2 Our Scheme: PIPE
	5.3 Security
	5.4 Comparison with PolyCommitPed

	6 CFA Security for Commitments to Polynomials
	7 Anonymous Private Polynomial Evaluation
	8 Conclusion
	A PolyCommitPed Scheme [KZG10]
	References

	Author Index



