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1 Core Messages

• Allergenicity depends on several factors deter-
mined by the very physicochemical nature of
the molecules themselves, i.e., their capacity to
penetrate the horny layer, lipophilicity, and
chemical reactivity. The sensitizing property of
the majority of contact allergens could be pre-
dicted from these characteristics (Patlewicz et al.
2004; Gerberick et al. 2008). Two other factors,
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however, further contribute to the allergenicity
of chemicals, viz. their pro-inflammatory activ-
ity and capacity to induce maturation of
LC. These issues will be dealt with in more
detail in the following sections.

• Along with their migration and settling within
the draining lymph nodes, haptenized LC fur-
ther mature, as characterized by their increased
expression of costimulatory and antigen-
presentation molecules (Cumberbatch et al.
1997; Heufler et al. 1988). In addition, they
adopt a strongly veiled, interdigitating appear-
ance, thus maximizing the chances of produc-
tive encounters with naive T lymphocytes
and recognition of altered self (Steinman
et al. 1995; Furue et al. 1996; Schuler and
Steinman 1985).

• The intricate structure of lymph node para-
cortical areas, the differential expression of
chemokines and their receptors, the character-
istic membrane ruffling of IDC, and the pre-
dominant circulation of naïve T lymphocytes
through these lymph node areas provide opti-
mal conditions for T-cell-receptor binding, i.e.,
the first signal for induction of T-cell activation
(Banchereau and Steinman 1998). Intimate
DC–T-cell contacts are further strengthened
by secondary signals, provided by sets of cel-
lular adhesion molecules, and growth-
promoting cytokines (reviewed in Hommel
(2004), Cella et al. (1997)).

• In healthy individuals, primary skin contacts
with contact allergens lead to differentiation
and expansion of allergen-specific effector T
cells displaying Th1, Th2, and/or Th17 cyto-
kine profiles. The same allergens, if encoun-
tered along mucosal surfaces, favor the
development of allergen-specific Th2 and
Th17 effector cells, and/or Th3 and Tr1
allergen-specific regulatory T cells. Whereas
the first two subsets may assist or replace Th1
cells in pro-inflammatory effector functions,
the latter two subsets are mainly known for
downregulating immune responsiveness. For
most, if not all allergens, along with prolonged
allergenic contacts, the role of Th2 cells as
effector cells gradually increases given
reduced longevity of Th1 responses.

• The respective contributions of similar subsets of
allergen-specific CD8+ Tcells are still unknown,
but distinct effector roles of allergen-specific Tc1
and Tc2 have been postulated.

• Priming via the skin results in CLA positive T
cells, which upon inflammatory stimuli prefer-
entially enter the skin; on the other hand, gut
homing T cells have been primed and gener-
ated along mucosal surfaces. Upon priming, T
cells loose much of their capacity to recirculate
via the lymph nodes, but gain the capacity to
enter the tissues. In particular recently acti-
vated T cells will enter skin inflammatory
sites. ACD reactions are primarily infiltrated
by CD4 and/or CD8 pro-inflammatory cells,
later reactions may be dominated by Th2 cells
and regulatory T cells. Skin infiltation by T
cells is fine-tuned by sets of adhesion mole-
cules and chemokine receptors, whose expres-
sion is not rigid, but can be modulated by
micro-environmental factors.

• After antigenic activation the progeny of
primed T cells is released via the efferent
lymphatics into the bloodstream. Circulating
allergen-specific cells can be challenged
in vitro to provide diagnostic parameters for
contact hypersensitivity. At least for water-
soluble allergens, like metal salts, the degree
of allergen-specific proliferation and cytokine
production, in particular type-2 cytokines,
correlate with clinical allergy. For routine
application of a broad spectrum of allergens,
culture conditions still need to be improved.
For mechanistic in vitro studies in ACD, how-
ever, with selected sets of relatively nontoxic
allergens, peripheral blood provides an excel-
lent source of lymphocytes and antigen-
presenting cells.

• ACD reactions can be mediated by classical
effector cells, i.e., allergen-specific CD4+

type-1 T cells which, upon triggering by
allergen-presenting cells, produce IFN-γ to
activate nonspecific inflammatory cells like
macrophages. However, CD8+ T cells, and
other cytokines, including IL-4, IL-17, and
IL-22 can also play major roles in ACD. The
conspicuous difference with DTH reactions
induced by intradermal administration of
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protein antigens, i.e., the epidermal infiltrate,
can largely be attributed to hapten-induced
chemokine release by keratinocytes.

2 Introduction

During the past few decades, the understanding of
why, where, and when allergic contact dermatitis
(ACD) might develop has rapidly increased. Crit-
ical discoveries include the identification of T
cells as mediators of cell-mediated immunity,
their thymic origin and recirculation patterns,
and the molecular basis of their specificity to just
one or few allergens out of the thousands of aller-
gens known (Janeway 2008). Progress has also
resulted from the identification of genes that deter-
mine T-cell function, and the development of
monoclonal antibodies that recognize their prod-
ucts. Moreover, the production of large amounts
of recombinant products, e.g., cytokines and
chemokines, and the breeding of mice with dis-
ruptions in distinct genes (knockout mice) or pro-
vided with additional genes of interest (transgenic
mice), have allowed in-depth analysis of skin-
inflammatory processes, such as those taking
place in ACD.

Although humoral antibody-mediated reac-
tions can be a factor, ACD depends primarily on
the activation of allergen-specific T cells
(Bergstresser 1989), and is regarded as a proto-
type of delayed hypersensitivity, as classified by
Turk (1975) and Gell and Coombs (type IV hyper-
sensitivity) (Gell et al. 1975). Evolutionarily, cell-
mediated immunity has developed in vertebrates
to facilitate eradication of microorganisms and
toxins. Elicitation of ACD by usually nontoxic
doses of small molecular weight allergens indi-
cates that the T-cell repertoire is often slightly
broader than one might wish. Thus, ACD can be
considered to reflect an untoward side effect of a
well-functioning immune system.

Subtle differences can be noted in macro-
scopic appearance, time course, and histopathol-
ogy of allergic contact reactions in various
vertebrates, including rodents and man (Mestas
and Hughes 2004). Nevertheless, essentially all
basic features are shared. Since both mouse and

guinea pig models, next to clinical studies, have
greatly contributed to our present knowledge of
ACD, both data sets provide the basis for this
chapter.

In ACD, a distinction should be made between
induction (also known as sensitization or primary)
and effector (also known as elicitation or second-
ary) phases (Saint-Mezard et al. 2003) (Fig. 1).
The induction phase includes the events following
a first contact with the allergen and is complete
when the individual is sensitized and capable of
giving a positive ACD reaction. The effector
phase begins upon elicitation (challenge) and
results in clinical manifestation of ACD. The
entire process of the induction phase requires at
least 4 days to several weeks, whereas the effector
phase reaction is fully developed within 1–4 days.
Main episodes in the induction phase (steps 1–5)
and effector phase (step 6) are:

1. Binding of allergen to skin components. The
allergen penetrating the skin readily associates
with all kinds of skin components, including
major histocompatibility complex (MHC) pro-
teins. These molecules, in humans encoded for
by histocompatibility antigen (HLA) genes,
are abundantly present on epidermal antigen-
presenting cells, called Langerhans cells
(LC) (Lepoittevin 2006; Gerberick et al.
2008; Divkovic et al. 2005).

2. Hapten-induced activation of allergen-
presenting cells.Allergen-carrying LC become
activated, mature, and travel via the afferent
lymphatics to the regional lymph nodes,
where they settle as so-called interdigitating
cells (IDC) in the paracortical T-cell areas.

3. Recognition of allergen-modified LC by spe-
cific T cells. In nonsensitized individuals the
frequency of T cells with certain specificities is
usually far below 1 per million. Within the
paracortical areas, conditions are optimal for
allergen-carrying IDC to encounter naive
T cells that specifically recognize the
allergen–MHC molecule complexes. The den-
dritic morphology of these allergen-presenting
cells strongly facilitates multiple cell contacts,
leading to binding and activation of allergen-
specific T cells.
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4. Proliferation of specific T cells in draining
lymph nodes. Supported by interleukin (IL)-1,
released by the allergen-presenting cells, acti-
vated T cells start producing several growth
factors, including IL-2 (Hoyer et al. 2008). A
partly autocrine cascade follows since at the
same time receptors for IL-2 are upregulated in
these cells, resulting in vigorous blast forma-
tion and proliferation within a few days.

5. Systemic propagation of the specific T-cell
progeny. The expanded progeny is subse-
quently released via the efferent lymphatics
into the blood flow and begins to recirculate.
Thus, the frequency of specific effector-
memory T cells in the blood may rise to as
high as one in a thousand, whereas most

of these cells display receptor molecules facil-
itating their migration into peripheral tissues.
In the absence of further allergen contacts, their
frequency gradually decreases in subsequent
weeks or months, but does not return to the
low levels found in naive individuals.

6. Effector phase. By renewed allergen contact,
the effector phase is initiated, which depends
not only on the increased frequency of specific
T cells, and their altered migratory capacities,
but also on their low activation threshold.
Thus, within the skin, allergen-presenting
cells and specific T cells can meet, and lead to
plentiful local cytokine and chemokine release.
The release of these mediators, many of which
have a pro-inflammatory action, causes the
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Fig. 1 Immunological events in allergic contact dermatitis
(ACD). During the induction phase (left), skin contact with
a hapten triggers migration of epidermal Langerhans cells
(LC) via the afferent lymphatic vessels to the skin-draining
lymph nodes. Haptenized LC home into the T cell-rich
paracortical areas. Here, conditions are optimal for encoun-
tering naïve T cells that specifically recognize
allergen–MHC molecule complexes. Hapten-specific T
cells now expand abundantly and generate effector and
memory cells, which are released via the efferent lym-
phatics into the circulation. With their newly acquired

homing receptors, these cells can easily extravasate periph-
eral tissues. Renewed allergen contact sparks off the effec-
tor phase (right). Due to their lowered activation threshold,
hapten-specific effector T cells are triggered by various
haptenized cells, including LC and keratinocytes (KC), to
produce proinflammatory cytokines and chemokines.
Thereby, more inflammatory cells are recruited further
amplifying local inflammatory mediator release. This
leads to a gradually developing eczematous reaction,
reaching a maximumwithin 18–48 h, after which reactivity
successively declines
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arrival of more inflammatory cells, thus further
amplifying local mediator release. This leads to
a gradually developing eczematous reaction
that reaches its maximum after 18–72 h and
then declines.

The following sections discuss these six main
episodes of the ACD reaction in more detail.
Furthermore, the chapter will discuss local hyper-
reactivity, such as flare-up and retest reactivity,
and hyporeactivity, i.e., upon desensitization or
tolerance induction.

3 Binding of Contact Allergens
to Skin Components

Chemical Nature of Contact Allergens.Most con-
tact allergens are small, chemically reactive mol-
ecules with a molecular weight less than 500 Da
(Bos and Meinardi 2000) (Fig. 2). Since these

molecules are too small to be antigenic them-
selves, contact sensitizers are generally referred
to as haptens.

Upon penetration through the epidermal horny
layer, haptens readily conjugate to endogenous
epidermal and dermal molecules. Sensitizing
organic compounds may covalently bind to pro-
tein nucleophilic groups, such as thiol, amino, and
hydroxyl groups, as is the case with poison
oak/ivy allergens (reviewed in Roberts and
Lepoittevin 1998). Examples of contact allergens
containing electrophilic components include alde-
hydes, ketones, amides, or polarized bonds. Metal
ions, e.g., nickel cations, instead form stable meta-
l–protein chelate complexes by coordination bonds
(Budinger and Hertl 2000). The most reactive
nucleophilic side chains are those found in the
amino acids lysine, cysteine, and histidine
(Gerberick et al. 2008). Of note, their degree of
ionization and hence nucleophilicity is dependent
on the pH of the microenvironment which is

LC

hydrophiliclipophilic

MHC-II

MHC-I

presentation to

CD8 ligand CD4 ligand

hapten

horny layer

Fig. 2 Hapten presentation by epidermal Langerhans
cells. Allergen penetrating into the epidermis readily asso-
ciates with all kinds of skin components, including major
histocompatibility complex (MHC) proteins, abundantly

present on epidermal Langerhans cells (LC). Both MHC
class I and class II molecules may be altered directly or via
intracellular hapten processing and, subsequently, be rec-
ognized by allergen-specific CD8+ and CD4+ T cells
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influenced by surrounding amino acids as well as
protein location within the epithelium (Divkovic
et al. 2005). Predicting the chemicals that can func-
tion as haptens in allergic contact dermatitis as well
as identifying cutaneous proteins involved in
hapten–protein complexes is the subject of current
intense investigations (Gerberick et al. 2008;
Mutschler et al. 2009; Lepoittevin 2006).

Hapten Presentation by Langerhans cells
(LC). Sensitization is critically dependent on
direct association of haptens with epidermal
LC-bound MHC molecules, or peptides present
in the groove of these molecules. Both MHC class
I and class II molecules may be altered this way,
and thus give rise to allergen-specific CD8+ and
CD4+ T cells, respectively. Distinct differences
between allergens can, however, arise from differ-
ences in chemical reactivity and lipophilicity
(Fig. 2), since association with MHC molecules
may also result from internalization of the hap-
tens, followed by their intracellular processing as
free hapten molecules or hapten–carrier com-
plexes. Lipophilic haptens can directly penetrate
into LC, conjugate with cytoplasmic proteins and
be processed along the “endogenous” processing
route, thus favoring association with MHC class I
molecules (Blauvelt et al. 2003). In contrast,
hydrophilic allergens such as nickel ions may,
after conjugation with skin proteins, be processed
along the “exogenous” route of antigen pro-
cessing and thus favor the generation of altered
MHC class II molecules. Thus, the chemical
nature of the haptens can determine to what extent
allergen-specific CD8+ and/or CD4+ T cells will
be activated (Kimber et al. 2002; Liberato et al.
1981; Kalish et al. 1994; Toebak et al. 2006).

Pre- and Prohaptens. Whereas most contact
allergens can form hapten–carrier complexes
spontaneously, some need activation first. Contact
allergens requiring activation outside the body,
e.g., by UV-light or oxygen, are called prehaptens
(Naisbitt 2004; Lepoittevin 2006). The typical
photoallergen tetrachlorosalicylanilide is a proto-
type of this. Tetrachlorosalicylanilide, which
undergoes photochemical dechlorination with
UV irradiation, ultimately provides photoadducts
with skin proteins (Epling et al. 1988). Contact
allergens dependent on activation inside the body,

e.g., by enzyme-induced metabolic conversion,
are referred to as prohaptens. A classical pro-
hapten is p-phenylenediamine, which needs to
be oxidized by N-acetyltransferases to a reactive
metabolite which can form a trimer, known as
Bandrowski’s base (Krasteva et al. 1993; Merk
et al. 2004). Reduced enzyme activity in certain
individuals, related to genetic enzyme polymor-
phisms, explains the reduced risk of sensitization
to prohaptens that need enzymatic activation
(Schnuch et al. 1998; Karlberg et al. 2008;
Blömeke et al. 2009).

4 Hapten-Induced Activation
of Allergen-Presenting Cells

Physiology of Langerhans Cells. Although origi-
nally thought to be neurons based on their staining
properties and cellular morphology (Langerhans
1868), LC subsequently were surmised to func-
tion as “professional” antigen-presenting cells
(Wilson and Villadangos 2004). They form a con-
tiguous network within the epidermis and repre-
sent 2–5% of the total epidermal cell population
(Hoath and Leahy 2003). Their principal func-
tions are internalization, processing, transport,
and presentation of skin-encountered antigens
(Breathnach 1988; Romani et al. 2003). As such,
LC play a pivotal role in the induction of cutane-
ous immune responses to infectious agents as well
as to contact sensitizers (Kimber and Dearman
2003; Inaba et al. 1986; Kimber and Cumberbatch
1992). Recent studies of LC indicate that this cell
type has direct epidermal innervations and can
respond to a number of neurotransmitters
(among them are calcitonin gene-related peptide,
α-melanocyte stimulating hormone and substance P)
(Luger 2002). Most of the experimental evidence
to date indicates a suppressive effect of the neu-
rohormones and neuropeptides on Langerhans
cell function and cutaneous inflammation, but it
has become evident lately that the timing of expo-
sure to a stimulus is critical to the outcome of the
immune response (Romagnani 2006). Thus,
administration of a stress hormone or exposure
to a stressor before the LC encounters an allergen
may diminish the immune response toward that
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substance, while a stressor may enhance immune
function when acting on a maturing LC or before
reexposure to the allergen (Seiffert and Granstein
2006). LC originate from CD34+ bone marrow
progenitors, entering the epidermis via the blood
stream (Dieu et al. 1998). Their continuous pres-
ence in the epidermis is also assured by local
proliferation (Stingl et al. 1978; Czernielewski
and Demarchez 1987). They reside as relatively
immature DC, characterized by a high capacity to
gather antigens by macropinocytosis, whereas
their capacity to stimulate naïve T cells is still
underdeveloped at this stage (Streilein and
Grammer 1989). Their prominent dendritic mor-
phology and the presence of distinctive Birbeck
granules were observed long ago (Langerhans
1868; Birbeck 1961; Braathen 1980). In the last
decade, their pivotal function in the induction of
skin immune responses was explained by high
expression of molecules mediating antigen pre-
sentation (e.g., MHC class I and II, CD1), as
well as of cellular adhesion and costimulatory
molecules (e.g., CD54, CD80, CD86, and cutane-
ous lymphocyte antigen [CLA]) (Kimber et al.
1998, 2002; Park et al. 1998).

Hapten-Induced LC Activation. Upon topical
exposure to contact sensitizers, or other appropri-
ate stimuli (e.g., trauma, irradiation), up to 40% of
the local LC become activated (Weinlich et al.
1998; Richters et al. 1994), leave the epidermis,
and migrate, via afferent lymphatic vessels, to the
draining lymph nodes (Jakob et al. 2001) (Fig. 3).
This process of LC migration results from several
factors, including contact allergen-induced pro-
duction of cytokines favoring LC survival
(Ozawa et al. 1996; Wong et al. 1997; Aiba and
Tagami 1999) and loosening from surrounding
keratinocytes (Inaba et al. 1993; Jakob and Udey
1998; Schwarzenberger and Udey 1996). Thus,
within 15 min after exposure to a contact sensi-
tizer, production of IL-1β mRNA is induced (Enk
1992; Enk et al. 1993). Along with this, caspase-1,
formerly known as interleukin-1-converting
enzyme, is activated and cleaves the active IL1 β
cytokine from the translated precursor-IL1β pro-
tein. Caspase-1 activates also IL-18 from its pre-
cursor form. These inflammatory processes are
now viewed at as making up the “inflammasome”

(Iversen and Johansen 2008). IL-1β in concert
with IL-18 stimulates release of tumor necrosis
factor (TNF)-α and granulocyte-macrophage col-
ony-stimulating factor (GM-CSF) from
keratinocytes (Iversen and Johansen 2008).
Together, these three cytokines facilitate migra-
tion of LC from the epidermis toward the lymph
nodes (Wang et al. 2003; Steinman et al. 1995).
IL-1β and TNF-α downregulate membrane-bound
E-cadherin expression and thus cause disentan-
glement of LC from surrounding keratinocytes
(Fig. 3) (Schwarzenberger and Udey 1996; Tang
et al. 1993; Jakob and Udey 1998). Simulta-
neously, adhesion molecules are upregulated pro-
moting LC migration by mediating interactions
with the extracellular matrix and dermal cells,
such as CD54, α 6 integrin, and CD44 variants
(Ma et al. 1994; Rambukhana et al. 1995; Price
et al. 1997; Weiss et al. 1997; Brand et al. 1999).
Also, production of the epidermal basement mem-
brane degrading enzyme metalloproteinase-9 is
upregulated in activated LC (Kobayashi 1997).

Next, LC migration is directed by hapten-
induced alterations in chemokine receptor levels
(Randolph 2001). Upon maturation, LC down-
regulate expression of receptors for inflammatory
chemokines (e.g., CCR1, 2, 5, and 6), whereas
others (including CCR4, 7, and CXCR4) are
upregulated (Fig. 3) (reviewed by Sallusto
(1998a), Zlotnik et al. (1999), Caux et al. (2000),
Sallusto et al. (1999)). Notably, CCR7 may guide
maturing LC into the draining lymphatics and the
lymph node paracortical areas, since two of its
ligands (CCL19 and 21) are produced by both
lymphatic and high endothelial cells (Saeki et al.
1999; Gunn et al. 1998). Importantly, the same
receptor-ligand interactions cause naive T cells,
which also express CCR7, to accumulate within
the paracortical areas (Kim and Broxmeyer 1999).
Migratory responsiveness of both cell types to
CCR7 ligands is promoted by leukotriene C4,
released from these cells via the transmembrane
transporter molecule Abcc1 (previously called
MRP1) (Randolph 2001; Robbiani et al. 2000;
Honig et al. 2003; van de Ven et al. 2009). Inter-
estingly, Abcc1 belongs to the same superfamily
as the transporter associated with antigen-
processing TAP, known to mediate intracellular
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Fig. 3 (a–d) Hapten-induced migration of Langerhans
cells. (a) In a resting state, epidermal Langerhans cells
(LC) reside in suprabasal cell layers, tightly bound to
surrounding keratinocytes (KC), e.g., by E-cadherin. (b)
Early after epidermal hapten exposure, LC produce IL-1β
and IL-18, which induces the release of IL-1α, TNF-α and
GM-CSF from keratinocytes. Together, these three

cytokines facilitate migration of LC from the epidermis
toward the lymph nodes. (c) Emigration of LC starts with
cytokine-induced disentanglement from surrounding
keratinocytes (e.g., by downregulation of E-cadherin) and
production of factors facilitating penetration of the
basal membrane (e.g., matrix metalloproteinases) and
interactions with extracellular matrix and dermal cells
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peptide transport in the “endogenous route”which
favors peptide association with MHC Class I mol-
ecules. Final positioning of the LC within the
paracortical T-cell areas may be due to another
CCR7 ligand, EBI1-ligand chemokine (ELC,
CCL19), produced by resident mature DC
(Sallusto 1998).

5 Recognition of Allergen-
Modified Langerhans’ Cells by
Specific T Cells

Homing of Naive T Cells into Lymph Nodes.More
than 90% of naive lymphocytes present within the
paracortical T-cell areas have entered the lymph
nodes by high endothelial venules (HEV) (Haig
et al. 1999). These cells are characterized not only
by CCR7 but also by the presence of a high
molecular weight isoform of CD45 (CD45RA)
(Haig et al. 1999; Altin and Sloan 1997). Entering
the lymph nodes via HEV is established by the
lymphocyte adhesion molecule l-selectin
(CD62L), which allows rolling interaction along
the vessel walls by binding to peripheral node
addressins (PNAd), such as GlyCAM-1 or CD34
(Schon et al. 2003; von Andrian and Mrini 1998;
Vestweber and Blanks 1999). Next, firm adhesion
is mediated by the interaction of CD11a/CD18
with endothelial CD54, resulting in subsequent
endothelial transmigration. Extravasation and
migration of naïve T cells to the paracortical
T-cell areas is supported by chemokines such as
CCL18, 19, and 21 produced locally by HEVand
by hapten-loaded and resident DC (Robbiani et al.
2000; Adema et al. 1997; Ngo et al. 1998; Nagira
et al. 1997). In non-sensitized individuals, fre-
quencies of contact-allergen-specific T cells are
very low, and estimates vary from 1 per 109 to
maximally 1 per 106 (Haig et al. 1999;

Rustemeyer et al. 1999). Nevertheless, the prefer-
ential homing of naive Tcells into the lymph node
paracortical areas, and the large surface area of
interdigitating cells, make allergen-specific T-cell
activation likely with only few dendritic cells
exposing adequate densities of haptenized MHC
molecules (Crivellato et al. 2004; Itano and
Jenkins 2003).

Activation of Hapten-Specific T Cells. As
outlined in “Binding of Contact Allergens to
Skin Components,” the chemical nature of the
hapten determines its eventual cytoplasmic
routing in antigen-presenting cells (APC), and
thus whether presentation will be predominantly
in context of MHC class I or II molecules (Fig. 2).
T cells, expressing CD8 or CD4 molecules can
recognize hapten-MHC class I or II complexes
showing stabilized MHC membrane expression
(Griem et al. 1998; Moulon et al. 1995). Chances
of productive interactions with T cells are high
since each MHC-allergen complex can trigger a
high number of T-cell receptor (TCR) molecules
(“serial triggering”) (Li et al. 2004). Moreover,
after contacting specific CD4+ T cells, hapten-
presenting DC may reach a stable super-activated
state, allowing for efficient activation of subse-
quently encountered specific CD8+ T cells
(Schoenberger et al. 1998). The actual T-cell acti-
vation is executed by TCRξ-chain mediated signal
transduction, followed by an intracellular cascade
of biochemical events, including protein phos-
phorylation, inositol phospholipid hydrolysis,
increase in cytosolic Ca2+ (Gascoigne and Zal
2004; Cantrell 1996), and activation of transcrip-
tion factors, ultimately leading to gene activation
(Fig. 4) (Kuo and Leiden 1999).

For activation and proliferation, TCR trigger-
ing (“signal 1”) is insufficient, but hapten-
presenting APC also provide the required
costimulation (“signal 2”; Fig. 5) (Davis and van

��

Fig. 3 (continued) (e.g., integrins and integrin ligands).
(d) Once in the dermis, LCmigration is directed toward the
draining afferent lymphatic vessels, guided by local pro-
duction of chemokines (e.g., CCL19 and CCL21) acting on
newly expressed chemokine receptors, such as CCR7, on

activated LC. Along their journey, haptenized LC further
mature as characterized by their increased dendritic mor-
phology and expression of costimulatory and antigen-
presentation molecules
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Fig. 4 Activation of hapten-specific T cells. T-cell recep-
tor (TCR) triggering by hapten–major histocompatibility
complex (MHC) complexes (“signal 1”) is insufficient for
T-cell activation. But “professional” antigen-presenting
cells (APC), such as Langerhans cells, can provide the
required costimulation (“signal 2”), involving secreted
molecules, such as cytokines, or sets of cellular adhesion

molecules present on the outer cellular membranes of APC
and T cells. T cells, stimulated in this way, activate nuclear
responder elements (e.g., CD28RE). Together with nuclear
transcription factors (NF), produced upon TCR triggering,
these nuclear responder elements enable transcription of
T-cell growth factors, e.g., IL-2. APC–T cell interaction
gives rise to mutual activation (“amplification”): on APC,
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derMerwe 2003; Trautmann and Randriamampita
2003). The costimulatory signals may involve
secreted molecules, such as cytokines (IL-1), or
sets of cellular adhesion molecules (CAMs) and
their counter-structures present on the outer cellu-
lar membranes of APC and T cells. Expression
levels of most of these CAMs vary with their
activational status, and thus can provide positive
stimulatory feedback loops. For example, as men-
tioned above, after specific TCR binding and

ligation of CD40L (CD154) on T cells with
CD40 molecules, APC reach a superactivated
state, characterized by overexpression of
several CAMs, including CD80 and CD86
(Fig. 4) (Acuto and Michel 2003; Quezada et al.
2004). In turn, these molecules bind to and
increase expression of CD28 on T cells. This
interaction stabilizes CD154 expression,
causing amplified CD154–CD40 signaling
(Dong et al. 2003).

���

Fig. 4 (continued) ligation of CD40 with CD154 mole-
cules on T cells induces overexpression of several
costimulatory molecules, including CD80 and CD86. In
turn, these molecules bind to and increase expression of
CD28 on T cells. This interaction stabilizes CD154

expression, causing amplified CD154–CD40 signaling,
and preserves strong IL-2 production, finally resulting in
abundant T-cell expansion
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Fig. 5 Spectrum of allergen driven CD4+ T cell differentia-
tion: current schematic view. Depending on the immunolog-
ical microenvironment (amount of allergen, danger signals,
and other soluble mediators), activated naïve T cells are
skewed into distinct phenotypes. The presence of allergen
and sufficient danger signals leads to the development of
effector T cell phenotypes of ACD. Presence of IL-6,

TGF-β, IL-21, and IL-23 stimulates the generation of TH17/
Th23 cells. Development of TH1 cells is stimulated by the
presence of IL-12 and IFN-γ, and the development of TH2 is
favored by IL-4. The absence of sufficient danger signals
stimulates the development of tolerogenic phenotypes,
including TH3 and Tr1 (Larsen 2009; Dong 2008; Zhu
2008; Duhen 2009; Ward 2009; Cavani 2008; Sallusto 2009)
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The activational cascade is, as illustrated
above, characterized by mutual activation of
both hapten-presenting APC and hapten-reactive
T cells. Whereas this activation protects the APC
from apoptotic death and prolongs their life to
increase the chance of activating their cognate T
cells, only the latter capitalize on these interac-
tions by giving rise to progeny. As discussed
below, to promote T-cell growth, cellular adhesion
stimuli need to be complimented by a broth of
cytokines, many of which are released by the
same APC. Together, elevated expression levels
of (co-)stimulatory molecules on APC and local
abundance of cytokines overcome the relatively
high activation threshold of naive T cells (Viola
and Lanzavecchia 1996).

6 Proliferation and
Differentiation of Specific
T Cells

T-Cell Proliferation. Upon their activation, naive
allergen-specific T cells start producing several
cytokines, including IL-2, the classical T-cell
growth factor (Crispin 2009; Malek 2009). In
particular, ligation of T cell-bound CD28 recep-
tors unleashes full-scale IL-2 production in T cells
by increasing IL-2 transcription and mRNA sta-
bilization (Pei 2008). T-cell IL-2 production peaks
within 24 h and declines subsequently (Villarino
2007). Concomitant upregulation of the IL-2
receptor α-chain facilitates the assembly of high-
affinity IL-2 receptor complexes which augment
autocrine T-cell responsiveness, thus providing a
positive feedback loop leading to T-cell clonal
expansions up to 1,000 fold (Lan 2008). The
process of proliferation can be visible as an
impressive, sometimes painful lymph node
swelling.

T-Cell Differentiation. Whereas allergen spec-
ificity remains strictly conserved along with their
proliferation, within few days T cells show dis-
tinct expression of transcription factors associated
with varying cytokine production profiles and
surface marker expression (Zhu and Paul 2008;
Sallusto 2009; Dong 2008; Oboki 2008). Thus,
the recent offspring of allergen-specific CD4+ T

cells can show at least five distinct cytokine pro-
files, generally associated with helper/effector or
regulatory/suppressive functions (Fig. 5). Type-1
Th cells are characterized by a predominant
release of IFN-γ, IL-2, and TNF-β, all known as
prototypical pro-inflammatory and cytotoxic
cytokines. Type-2 Th cells secrete IL-4, IL-5,
IL-13, which have distinct pro-inflammatory
activities but are most prominent in promoting
humoral antibody production, e.g., along mucosal
surfaces where IgA contributes to exclusion of
microbial entry (Dabbagh and Lewis 2003; Faria
and Weiner 2006). Next, the Th3 subset is distin-
guished by its release of transforming growth
factor (TGF)-β, which displays anti-inflammatory
activities (Allan et al. 2008; Faria and Weiner
2006). Recently, Th-17 cells have been recog-
nized as a separate lineage of pro-inflammatory
T cells, characterized by production of IL-17A
and IL-17E, as well as IL-22, all of which play
pivotal roles in auto-immune diseases, e.g., by
recruiting neutrophils and macrophages (Korn
et al. 2009; Louten 2009). Finally, still another
subset of CD4+ T cells is recognized for its strong
regulatory role in controlling inflammatory reac-
tivities, i.e., the Tr1 cells or “inducible Tregs,”
characterized by the secretion of IL-10 (Zhu and
Paul 2008; Allan et al. 2008; Sallusto 2009).
This CD4+ T-cell population is phenotypically
remarkably heterogeneous, with part of the cells
expressing high amounts of the high affinity IL-2
receptor (“CD25 high”), either or not accompanied
by expression of the transcription factor FoxP3
(Romagnani 2006; Feuerer 2009; Cavani 2008)
(Fig. 5). Tr1 cells have essential roles in mainte-
nance of immune homeostasis, regulating effector
T-cell responses and preventing their potentially
pathogenic effects by various indirect ways, e.g.,
by suppressing macrophage functions (Wu et al.
2007; Shevach 2009). Each of these five cytokine
profiles is under control of distinct sets of tran-
scription factors which are shown in Fig. 5, but
discussed further elsewhere (e.g., Zhu and Paul
2008; Wilson 2009; Zhou and Littman 2009;
Basso et al. 2009; Dong 2008).

To some extent the same distinct cytokine pro-
files may develop in CD8+ T cells, where at least
type 1 and 2 cytokine-releasing CD8+ cells are
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known to contribute to allergic contact dermatitis
(Kimber and Dearman 2002; Coulter et al. 2010).

Several factors are thought to contribute to the
above-described polarized cytokine production
profiles in allergen-specific T cells, including
(1) the site and cytokine environment of first aller-
genic contact, (2) the molecular nature and con-
centrations of the allergen, and (3) the
neuroendocrine factors.

Cytokine Environment. In the skin-draining
lymph nodes, allergen-activated LC and dermal
dendritic cells rapidly produce large amounts of
IL-12, switching off IL-4 cytokine production,
thus promoting the differentiation of Th1 cells
(Nakamura et al. 1997b; Kang et al. 1996;
Pulendran 2004). Of note, since Th1 cells retain,
next to IL12R, high IL-4R expression they remain
sensitive to IL-4 as a growth factor (Kubo et al.
1997). Thus, they also retain the capacity to shift
cytokine production toward the type-2 profile. In
contrast, type-2 T cells, e.g., developing in
mucosa-draining lymph nodes, rapidly lose the
genes encoding the IL-12-R β2 chain and thus,
type-2 differentiation is irreversible (Rogge et al.
1997; Zhou et al. 2009).

Early differentiation of type-1 T cells is pro-
moted by microbial danger-signal-induced IL-12
and IL-18, leading to IFN-γ release by nonspecific
“bystander” cells, e.g., DC and NK cells, within
the lymph nodes (Nakamura et al. 1997; Orange
and Biron 1996). IFN-γ interferes with skewing
toward other cytokine profiles. Since Th1 cells
rapidly lose functional IFN-γR expression, these
cells, in contrast to e.g., Th2, Th3 and Th17 cells,
become refractory to the growth-inhibitory effects
of IFN-γ (Groux et al. 1997; Gajewski and Fitch
1988; Takatori et al. 2008). Interestingly, T-cell
skewing may also be facilitated by primary
contact-mediated signals, e.g., Th1 skewing by
CD154 ligation through APC-bound CD40
[124], or Th2 skewing by ligation of CD134
(OX40) through APC-bound CD252 (Ohshima
et al. 1997; Croft et al. 2009).

In the process of T-cell skewing toward the
other major cytokine profiles, TGF-β plays a cen-
tral role. TGF-β can be produced by various cell
types, including Th3 cells themselves, but is most
prominently produced by mucosal epithelial cells

(Zhu and Paul 2008; Takatori et al. 2008; Iliev
et al. 2009). Apparently, in conjunction with
IL-10 production, e.g., produced by mucosal B
cells, allergen-stimulated T cells rapidly initiate
endogenous TGF-β production thus revealing the
Th3 phenotype (Izcue et al. 2009). These cells
may stimulate IgA production along the mucosae,
but elsewhere immunosuppressive activities pre-
vail. Interestingly, in conjunction with abundant
local IL-2 production, such as induced by strong
antigenic stimulation involving most effective
CD28 triggering, TGF-β favors skewing toward
IL-10 production, thus providing an effective
immunoregulatory feedback loop (Hoyer et al.
2008; Letourneau 2009). Still, in the presence of
strong and persistant microbial molecule-induced
danger/growth signals, e.g., IL-6, IL-21, and
IL-23, TGF-β induces the development of Th17
and/or Th22 cells, which both have been postu-
lated to contribute to various allergic and autoim-
mune disorders (Larsen 2009; Oboki 2008;
Louten 2009; Oukka 2008; Takatori et al. 2008)
(Fig. 5).

Thus, ACDmay be caused by any combination
of at least three distinct types of effector T cells,
releasing type-1, -2, and -17/22 cytokines, respec-
tively. Considering that contact allergens will
mainly enter via the skin, type-1 pro--
inflammatory T cells are thought to represent the
primary effector cells in ACD (Edele et al. 2007;
Fyhrquist-Vanni et al. 2007). Nevertheless, in sen-
sitized individuals, type-2 T cells also play a role,
as shown by both IL-4 production and allergen-
specific type-2 T cells in the blood and at ACD
reaction sites (see Sect. 7) (Werfel et al. 1997;
Probst et al. 1995; Grewe et al. 1998). Their role
may increase along with the longevity of sensiti-
zation, since several factors contribute to shifting
type-1 to type-2 responses, including reversibility
of the former and not of the latter T cells, as
mentioned above (Perez et al. 1995; Ulrich et al.
2001). Still, other sets of cytokines, including
IL-17 and/or IL-22, are important in immune
defense mechanisms, and thus Th17 and or Th22
cells have also been found to mediate allergic and
autoimmune disorders (van Beelen et al. 2007).
Given rapid local release of both IL-4 and TGF-β
within mucosal tissues, mucosal allergen contacts,
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if accompanied by strong danger signals, may lead
in particular to Th2 and Th17 effector cells. With-
out these signals, rather immunoregulatory subsets
(Th3, Tr1) would develop, as is observed in the
induction of “oral tolerance” (see below) (Mucida
and Salek-Ardakani 2009).

Nature of the Allergen. A second factor in
determining T-cell cytokine-production profiles,
although still poorly understood, is the molecular
character of the contact allergen itself, and the
resulting extent of TCR triggering (Constant and
Bottomly 1997; Constant et al. 1995). For both
protein and peptide antigens, high doses of anti-
gen might favor type-2 responses, whereas inter-
mediate/low doses would induce type-1 T-cell
responses (Constant and Bottomly 1997;
Bretscher et al. 1997). Strong antigenic stimula-
tion was also shown to upregulate CD40L expres-
sion on T cells and, in combination with
microbial-induced IL-6, to promote, Th17 differ-
entiation (Lezzi 2009). To what extent this trans-
lates to contact allergens is still unclear. Certainly,
endogenous capacities of contact allergens to pro-
vide danger signals and activate the
“inflammasome,” in combination with their
capacity to induce differentiation-skewing cyto-
kines (in particular IL-4, IL-6, IL-12, and IL-23),
will affect the outcome (Toebak and Moed 2006;
Watanabe 2008). In this respect, some contact
allergens are notorious for inducing type-2
responses, even if their primary contact is by the
skin route, e.g., trimellitic acid, which is also
known as a respiratory sensitizer (Kanerva et al.
1997).

Neuroendocrine Factors. Diverse neuroendo-
crine factors co-determine T-cell differentiation
(Geenen and Brilot 2003; Luger and Lotti 1998,
2002). An important link has been established
between nutritional deprivation and decreased T-
cell-mediated allergic contact reactions (Lord
et al. 1998). Apparently, adipocyte-derived leptin,
a hormone released by adequately nourished and
functioning fat cells, is required for type-1 T-cell
differentiation. Administration of leptin to mice
restored ACD reactivity in mice during starvation
(Lord et al. 1998). Also, androgen hormones and
adrenal cortex-derived steroid hormones, e.g.,
dehydroepiandrosterone (DHEA), promote type-

1 T-cell and ACD reactivity. DHEA, like testos-
terone, may favor differentiation of type-1 T cells
by promoting IFN-γ and suppressing IL-4 release
(Morfin et al. 2000; Cutolo et al. 2002). In con-
trast, the female sex hormone progesterone fur-
thers the development of type-2 CD4+ T cells and
even induces, at least transient, IL-4 production
and CD30 expression in established type-1 T cells
(Kidd 2003; Piccinni 1995). Type-2 T-cell polar-
ization is also facilitated by adrenocorticotrophic
hormone (ACTH) and glucocorticosteroids
(Vieira et al. 1998), and by prostaglandin (PG)E2

(Calder et al. 1992). PGE 2, released from mono-
nuclear phagocytes, augments intracellular cAMP
levels, resulting in inhibition of pro-inflammatory
cytokine production, like IFN-γ and TNF-α
(Uotila 1996; Demeure et al. 1997; Abe et al.
1997; Kalinski et al. 1997), and thus can influence
the development of effector T cells in ACD.

7 Systemic Propagation
of the Specific T-Cell Progeny

T-Cell Recirculation. Upon sensitization via the
skin, the progeny of primed T cells is released via
the efferent lymphatic vessels of the skin draining
lymph nodes and the thoracic duct into the blood
(Fig. 6). If the first encounter with allergen occurs
via the intestinal route (e.g., along with induction
of oral tolerance), priming will take place in the
Peyer’s patches and mesenteric lymph nodes, and
primed T cells will be released from there to the
circulation. The subsequent recirculation and hom-
ing pattern of primed T cells is guided by adhesion
molecules and chemokine receptors which they
express on the cell membrane (Table 1). As
outlined below, expression of these molecules is
determined by the site of priming, as well as by the
activational state of the T cells. In addition, there is
a distinct relationship between the sets of chemo-
kine and homing receptors expressed by Tcells and
their type of differentiation.

First, primed T cells have different homing
receptors depending on the site of priming, a
process called “imprinting” (Woodland 2009;
Edele 2008). During priming of allergen-specific
T cells in the skin draining lymph nodes, both
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CD4+ and CD8+ T cells are stimulated to express
cutaneous lymphocyte antigen (CLA; Fuhlbrigge
et al. 1997) and the chemokine receptors CCR4
and CCR10, a phenotype that predisposes for
eventual migration to the skin. In the mesenteric
lymph nodes, on the other hand, T cells are stim-
ulated to express the integrin α4:β7 and the che-
mokine receptor CCR9, a phenotype which
predisposes for gut homing. An instructive role
of the peripheral tissues in this imprinting process
was demonstrated in a mouse model on T cell
priming by dendritic cells, where either dermal
or intestinal cells were added to the cultures,
resulting in T cells expressing mouse “CLA” or
α4:β7 integrin, respectively (Edele 2008).

Whereas for the imprint of gut homing retinoic
acid was identified as a crucial factor, for the
imprint of skin homing, the active metabolite of
vitamin D3 was shown to be essential, because it
induces CCR10 expression in T cells
(Sigmundsdottir 2008). Still, for induction of
CLA and thus for establishing the full skin hom-
ing profile, cell-cell contact and/or other media-
tors like IL-12 seem to be required (Edele 2008).

After priming and imprinting, circulating gut
homing memory T lymphocytes, bearing the
α4:β7 integrin, can attach to intestinal endothelial
cells by binding to the mucosal vascular addressin
MAdCAM-1. Further infiltration in the mucosa is
guided by chemokines, such as CCL25, produced

venular endothelium
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afferent
lymphatic

vessel

efferent lymphatic vessel

skin
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heart
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Fig. 6 Systemic propagation of hapten-specific T cells.
From the skin-draining lymphoid tissue, the progeny of
primed Tcells is released via the efferent lymphatic vessels
and the thoracic duct (DT) into the blood and becomes part
of the circulation. Like their naïve precursors, these CCR7 +

effector/memory T cells can still enter lymphoid tissues
and settle in paracorticale areas by binding to its ligands
CCL19 and CCL21. But increased expression of skin-
homing molecules, e.g., cutaneous lymphocyte antigen
(CLA), facilitates their spontaneous migration in the skin
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by small intestinal epithelial cells (Miles 2008).
Thus, along the gut, T lymphocyte progeny is
attracted that has been generated in other mucosal
tissues. Likewise, in the skin, CLA-positive cells
are attracted that have been generated in skin
draining lymph nodes. CLA binds to E-selectin
(CD62E) on dermal endothelial cells, while
CCR4 and CCR10 expression allow the lympho-
cytes to migrate in the skin toward CCL17 and
CCL27 produced by keratinocytes in the
epidermis.

At least as important for the recirculation and
homing characteristics of Tcells is the activational
state of the cells. In this respect, primed Tcells can
be divided into two main subsets: the central
memory T cells (T CM) and the effector memory

T cells (T EM). Like their naive precursors, T CM

can still enter the peripheral lymphoid tissues, due
to the fact that they continue to express CD62L
and CCR7, allowing for binding to high endothe-
lial venules in the lymph nodes and migration into
the paracortical areas. T EM, on the other hand,
have lost these molecules and migrate, due to
simultaneous upregulation of several other adhe-
sion molecules, preferentially to peripheral
inflamed tissues. T EM are characterized by rapid
effector function upon antigenic stimulation, but,
in the absence of antigenic stimuli, T EM eventu-
ally convert to T CM by reacquiring CCR7 and
CD62L. In turn, T CM may convert to T EM upon
antigenic restimulation (Sallusto et al. 1999,
2004; Woodland 2009; Sallusto 2009).

Table 1 Molecules involved in the migration of hapten-specific T lymphocytes

Receptor/ Ligand T Cell Ligand / Receptor Cell Tissue References

CD62L
(L-selectin)

CD34, GlyCAM-1
(PNAd)

HEV Janeway 2008,
Sallusto 2004

4002otsullaSCD,slleclamortS12LCC,91LCC7RCC

CD11a/CD18
(αL:β2-integrin, LFA-1)

increased upon
activation
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(ICAM-1, ICAM-2) 

8002yawenaJslleclailehtodnE

CD49d
(α4:β1-integrin,  VLA-4)
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activation

CD106, fibronectin
(VCAM-1)  

8002yawenaJslleclailehtodnE

CD162
(P-selectin ligand, PSGL-1)

increased upon
activation

CD62P
(P-selectin)

9002dnaldooWslleclailehtodnE

gnimohniksALC CD62E
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endothelial cells

Woodland 200
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Larsen 2009
Meller 2007
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Kagami 2008,  Woodland
2009
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Peripheral endothelial binding and extravasa-
tion of T cells to inflamed tissues requires the
expression of both selectins and integrins on the
T cell membrane, such as LFA-1, VLA-4, and
PSGL-1. The vascular expression of their respec-
tive ligands (Table 1) is strongly increased by
cytokines released at inflammatory sites. The den-
sity of adhesionmolecules on the Tcell membrane
is generally upregulated upon activation, in par-
ticular in T EM. Since their expression is highest
only for short periods after activation, only
recently activated T cells show a unique propen-
sity to enter skin sites and exert effector functions.

Third, the differentiation of T cells (Th1, Th2,
etc.) is clearly associated with distinct homing
chracteristics. T cells biased toward a
pro-inflammatory phenotype show a higher pro-
pensity to enter skin sites, as compared to mucosal
tissues (Austrup et al. 1997; Fuhlbrigge et al.
1997; Larsen 2009; Duhen 2009). In mice, the
early influx of type-1 T cells into delayed-type
hypersensitivity (DTH) reactions was found to
be more efficient than that of type-2 T cells,
although both cell types expressed CLA. Here,
CD162, highly expressed by type-1 T cells, was
found to be important for this preferential homing
(Borges et al. 1997). Also the pattern of chemo-
kine receptors differs between the Th subsets
(Table 1). Some receptors, such as CXCR3, are
preferentially expressed on Th1 cells, whereas
others like CCR4 and CCR8 are in particular
expressed by Th2 cells (Ward 2009; Cavani
2008; Hudak 2002; Sallusto 2009). The latter
chemokine receptors are not only overexpressed
on type-2 cytokine-producing T cells, but also on
basophils and eosinophils. Together, these cells
strongly contribute to local immediate allergic
hyperresponsiveness. The more recently
described Th17 and Th22 lymphocyte subsets
expressing CCR4, CCR6, and CCR10 (Ward
2009; Duhen 2009) are attracted to the skin by
epidermal CCL17, CCL20, and CCL27, respec-
tively (Table 1, Fig. 5). Overall, results obtained
thus far favor the view that the pro-inflammatory
subsets (Th1 and Th17/22) will be the first to enter
skin sites upon local inflammatory stimuli, their
primary function being an early control of anti-
genic pressure, e.g., through amplification of

macrophage effector functions. The ACD reaction
is, however, a dynamic process, in which the first
influx of cells influences the local chemokine
environment and determines the type of subse-
quent infiltrating cells. Thus, upon repeated expo-
sure to contact allergens gradually Th2 cells and
regulatory cells may dominate (Kitagaki 1997).
Interestingly, also at the T-cell level modulation of
the cytokine and chemokine receptor profiles may
occur, thereby maintaining plasticity of the
immune response (Wilson 2009; Sallusto 2009).
Of note, the actual composition of the T-cell infil-
trate in ACD skin lesions does not only depend on
the influx of lymphocytes, but should rather be
regarded as the resultant of infiltration, apoptosis,
and retention of lymphocytes, next to their emi-
gration to the lymphatics.

Finally, the antigen specificity of T cells con-
tributes to their migration pattern. Allergens pen-
etrated via the epidermis and displayed at the
dermal endothelial surface may be recognized by
allergen-specific T cells, thus resulting in activa-
tion, immobilization, and transendothelial migra-
tion of these cells at sites of allergen exposure
(Ward 2009).

Allergen-Specific T-Cell Recirculation:
Options for In Vitro Testing. The dissemination
and recirculation of primed, allergen-specific T
cells in the body suggests that peropheral blood
offers a most useful and accessible source for T
cell based in vitro assays for ACD (Fig. 6). A
major advantage of in vitro testing would be the
noninterference with the patient’s immune sys-
tem, thus eliminating any potential risk of primary
sensitization and boosting by in vivo skin testing.
Although such tests have found several applica-
tions in fundamental research, e.g., on recognition
of restriction elements, cross-reactivities and
cytokine-profile analyses, their use for routine
diagnostic purposes is still limited. Even in highly
sensitized individuals, frequencies of contact
allergen-specific memory/effector cells may still
be below 1 per 104 (Cavani et al. 1998;
Lindemann 2008; Kalish 1990). Given the rela-
tively small samples of blood obtainable by
venepuncture (at only one or a few time points),
numbers of specific T cells in any culture well
used for subsequent in vitro testing would
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typically be below 100 cells/well. For compari-
son, in vivo skin test reactions recruit at least
1,000 times more specific T cells from circulating
lymphocytes passing by for the period of testing,
i.e., at least 24 h (von Blomberg et al. 1991).

Therefore, the sensitivity of in vitro assays,
e.g., allergen-induced proliferation or cytokine
production may not always be sufficient to pick
up weak sensitization. Intermediate or strong sen-
sitization is, however, readily detected in vitro by
both proliferation and cytokine production assays
(Lindemann 2008; Bordignon 2008; Minang
2005; Moed 2005). With respect to the latter,
both the “Elispot” assay, where allergen induced
cytokine production is evaluated at the single cell
level, and the cytokine evaluation in allergen-
stimulated culture supernatants provide adequate
information (Rustemeyer et al. 2004; Spiewak
2007; Minang 2005). Notably with respect to
cytokine production, type-2 cytokines appear to
provide most specific parameters for contact sen-
sitization in these assays (Rustemeyer et al. 2004;
Minang 2008), although generally both Th1 and
Th2 cytokines are being produced in vitro by
allergic individuals upon allergen exposure
(Moed 2005; Minang 2006).

Importantly, most of the above-mentioned,
successful in vitro studies evaluated hydrophilic
allergens, like nickel, chromium, and palladium
salts. Reports on successful in vitro assays with
other hydrophobic and more toxic allergens are
scarce (Moed 2005; Wahlkvist 2007; Skazik
2008). Appropriate allergen presentation is a
major hurdle in in vitro studies, because of the
broad range of requirements for different allergens
with unique solubilities, toxicities, and reactivity
profiles. Moreover, in the absence of LC, mono-
cytes are the major source of APC, and their
numbers in peripheral blood vary substantially
within and between donors. Of note, optimal
APC function is particularly critical for in vitro
activation of resting memory T cells, since, in the
absence of repeated allergenic contacts, activated
effector memory T cells (T EM) may finally revert
to a more naïve phenotype, with a higher thresh-
old for triggering (Sallusto et al. 2004; Boyman
2009). Supplementing in vitro test cultures with
appropriate mixtures of cytokines may, however,

compensate for suboptimal APC function
(Rustemeyer et al. 1999, 2004; Moed 2005).

8 The Effector Phase of Allergic
Contact Dermatitis

Elicitation of ACD. Once sensitized, individuals
can develop ACD upon reexposure to the contact
allergen. Positive patch test reactions mimic this
process of allergen-specific skin hyperreactivity.
Thus, skin contacts induce an inflammatory reac-
tion that, in general, is maximal within 2–3 days
and, without further allergen supply, declines
thereafter (Fig. 7). Looked at superficially, the
mechanism of this type of skin hyperreactivity is
straightforward: allergen elicitation or challenge
leads to the (epi)dermal accumulation of contact
allergen-specific memory/effector T lymphocytes
which, upon encountering allergen-presenting
cells, are reactivated to release pro-inflammatory
cytokines. These, in turn, spark the inflammatory
process, resulting in macroscopically detectable
erythema and induration. As compared to imme-
diate allergic reactions, developing within a few
minutes after mast-cell degranulation, ACD reac-
tions show a delayed time course, since both the
migration of allergen-specific T cells from the
dermal vessels and local cytokine production
need several hours to become fully effective.
Still, the picture of the rise and fall of ACD reac-
tions is far from clear. Some persistent issues are
discussed below, notably: (1) irritant properties of
allergens, (2) role of early-phase reactivity,
(3) T-cell patrol and specificity, (4) effector
T-cell phenotypes, and (5) down regulatory
processes.

Irritant Properties of Allergens. Within a few
hours after allergenic skin contact, immunohisto-
pathological changes can be observed, including
vasodilatation, upregulation of endothelial adhe-
sion molecules (Goebeler et al. 1993, 1995), mast-
cell degranulation (Walsh et al. 1990; Waldorf
et al. 1991), keratinocyte cytokine and chemokine
production (Spiekstra 2005; Meller 2007), influx
of leucocytes (Bangert et al. 2003; Houck et al.
2004), and LC migration toward the dermis
(Rambukhana et al. 1995; Silberberg-Sinakin

168 T. Rustemeyer et al.



afferent       
lymphatic     

vessel    

LC

ba

mast cell
DC

blood
capillary 

CLA ligand
(CD62E)

0 hours

KC KC

hapten

IL-1β

     IL-1α
   TNF-α
GM-CSF

vasoactive
amines

DC
IL-4

B cell (?) 
γ δ T cell (?)

0-4 hours

NKT cell

IL-4, IFN-γ

adhesion molecules
(e.g. CD54, CD106,
CD49d/CD29, CD62E/L/P)

DC

   inflammatory
chemokines

   inflammatory
chemokines

DC

IFN-g

2-6 hoursc d

KC KC

4-8 hours

Fig. 7 (continued)

14 Mechanisms of Allergic Contact Dermatitis 169



et al. 1976; Hill et al. 1990; Toebak 2009). These
pro-inflammatory phenomena, which are also
observed in non-sensitized individuals (Sterry
et al. 1991) and in T-cell-deficient nude mice
(Herzog et al. 1989), strongly contribute to aller-
genicity (Saint-Mezard et al. 2003). Clearly most,
if not all, of these effects can also be caused by
irritants and, therefore, do not unambiguously
discriminate between irritants and contact aller-
gens (Willis et al. 1986; Hoefakker et al. 1995;
Brasch et al. 1992; Spiekstra 2005). Apparently,
true differences between these types of com-
pounds depend on whether or not allergen-
specific T cells become involved. Thus, only
after specific T-cell triggering distinctive features
might be observed, e.g., local release of certain

chemokines, such as the Th1 associated
chemokines CXCL9, CXCL10 (IP-10), and
CXCL11 (I-TAC/IP-9) ([206], Meller 2007) or
the Th2-related chemokines CCL11, CCL17,
and CCL22 (Flier et al. 1999; Meller 2007). Cer-
tainly, pro-inflammatory effects of contact aller-
gens increase, in many ways, the chance of
allergen-specific T cells meeting their targets.
The first cells affected by skin contact, i.e.,
keratinocytes and LC, are thought to represent
major sources of pivotal mediators such as IL-1β
and TNF-α (Enk 1992; Kondo and Sauder 1995).
First, as described in “Hapten-Induced Activation
of Allergen-Presenting Cells,” these cytokines
cause hapten-bearing LC to mature and migrate
toward the dermis (Kimber et al. 1998; Steinman
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Fig. 7 The effector phase of allergic contact dermatitis.
(a) 0 h: In resting skin relatively few randomly patrolling,
skin-homing CLA+ T cells are present. (b) 0–4 h:
Reexposure of the contact allergen, binding to (epi)dermal
molecules and cells, induces release of proinflammatory
cytokines. (c) 2–6 h: Influenced by inflammatory media-
tors, activated epidermal Langerhans cells (LC) start
migrating toward the basal membrane and endothelial
cells express increased numbers of adhesion molecules.
Endothelial cell-bound hapten causes preferential extrava-
sation of hapten-specific T cells, which are further guided

by inflammatory chemokines. (d) 4–8 h: Hapten-activated
T cells release increasing amounts of inflammatory medi-
ators, amplifying further cellular infiltration. (e) 12–48 h:
The inflammatory reaction reaching its maximum, charac-
terized by (epi)dermal infiltrates, oedema, and spongiosis.
(f) 48–120 h: Gradually, downregulatory mechanisms take
over, leading to decreased inflammation and disappearance
of the cellular infiltrate. Finally, primordial conditions are
reconstituted except for a few residual hapten-specific T
cells causing the local skin memory. KC keratinocyte, DC
dendritic cell
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et al. 1995; Toebak 2009). But, these cytokines
also cause (over)expression of adhesion mole-
cules on dermal postcapillary endothelial cells
and loosen intercellular junctions. Thereby,
extravasation of leucocytes, including allergen-
specific T cells, is strongly promoted (Wardorf
et al. 1991; Pober et al. 1986; Shimizu et al.
1991; Ward 2009). Moreover, haptens can stimu-
late nitric oxide (NO) production of the inducible
NO-synthase (iNOS) of LC and keratinocytes,
which contributes to local edema, vasodilatation,
and cell extravasation (Ross et al. 1998; Rowe
et al. 1997; Virag et al. 2002). In addition to
these pathomechanisms that contribute to inflam-
matory responses, toll-like receptors (TLR) can be
involved in triggering sensitization. Recent stud-
ies have indicated that at least the contact allergen
nickel can specifically trigger human TLR-4,
which adds to the release of unspecific danger
signals (Rothenberg 2010; Schmidt et al. 2010).

Histopathological analyses support the view
that the major causative events take place in the
papillary dermis, close to the site of entry of
allergen-specific T cells, for instance at hair folli-
cles, where haptens easily penetrate and blood
capillaries are nearby (Szepietowski et al. 1997).
Here, perivascular mononuclear cell infiltrates
develop, giving the highest chance of encounters
between allergen-presenting cells and specific T
cells. Once triggered, extravasated T cells will
readily enter the lower epidermal layers, in
which haptenized keratinocytes produce
lymphocyte-attracting chemokines, like CXCL9/10,
CCL17, CCL20, and CCL27 (Flier et al. 1999;
Larsen 2009; Meller 2007; Woodland 2009,
Table 1). Subsequently, since effector memory T
cells can also be triggered by “non-professional”
APC, including KC, fibroblasts, and infiltrating
mononuclear cells, ACD reactivity is amplified in
the epidermis (Hommel 2004; Viola and
Lanzavecchia 1996). Together, these events result
in the characteristic epidermal damage seen in
ACD, such as spongiosis and hyperplasia. Nota-
bly, in ongoing ACD reactions, the production of
chemokines attracting lymphocytes and mono-
cytes/macrophages, in addition to the production
of cytokines, adds to the nonspecific recruitment
and activation of leucocytes (Yu et al. 1994;

Buchanan and Murphy 1997). Thus, like the
very early events in the effector phase reaction,
the final response to a contact allergen is antigen-
non-specific. It is therefore not surprising that
allergic and irritant reactions are histologically
alike.

Early Phase Reactivity. In the elicitation phase
allergen-specific T cells are triggered by
MHC-bound allergen, just like in the afferent
phase. The role of Langerhans cells in allergen
presentation upon elicitation is, however, less
prominent, and also other cells, like mast cells,
macrophages and keratinocytes may now contrib-
ute, since effector T cells are easily triggered and
do not require professional antigen presentation.
The role of keratinocytes in the onset of the ACD
reaction is important, because of the cytokines and
chemokines they produce upon hapten application
(Meller 2007; Spiekstra 2005), thereby facilitat-
ing the influx of effector T cells. In addition, a
variety of other cells and mediators may contrib-
ute to the initiation of the ACD reaction, as sum-
marized below.

The role of neutrophils in the onset of ACD
reactions has not been well established, though
recent studies in mice demonstrate that skin reac-
tivity to haptens largely depends on CXCL1,
released from endothelial cells when the first
hapten-specific CD8 Tcells encounter the allergen
and produce IL-17. CXCL1 may then attract neu-
trophils to the elicitation site, thus facilitating
further influx of allergen-specific T cells (Kish
2009). In the human system, neutrophil infiltra-
tion was also observed in skin biopsies from
nickel patch tests, presumably as a result of
IL-17/IL-22-mediated inflammation (Larsen
2009). Moreover, it has been shown that IL-8/
CXCL8, a potent neutrophil chemoattractant, is
readily produced by human antigen presenting
cells upon hapten exposure (Toebak et al. 2006);
this could also contribute to an early influx of
neutrophils in ACD reactions.

The role of an antibody-mediated early phase
reaction in the development of ACD is still
unclear in man, although Askenase and his col-
leagues have generated robust data to support this
view in murine models (Askenase 2000): Hapten-
specific IgM, produced upon sensitization by
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distant hapten-activated B-1 cells, can bind anti-
gen early after challenge and activate comple-
ment. The resulting C5a causes the release of
serotonin and TNF-α from local mast cells and
platelets, leading to vascular dilatation and
permeabilization, detectable as an early ear swell-
ing peaking at 2 h (Van Loweren et al. 1983).
Furthermore, C5a and TNF-α induce the
upregulation of adhesion molecules on local
endothelial cells (Foreman et al. 1994; Groves
et al. 1995), thereby contributing to the recruit-
ment of T cells in hapten challenge sites (Groves
et al. 1995; Tsuji et al. 1997). In addition, human T
cells were found to express the C5a receptor and
are chemoattracted to endothelium-bound C5a
(Nataf et al. 1999). However, against most contact
allergens, including nickel, no antibodies have
been detected in man, arguing against humoral
mechanisms playing more than a minor role in
clinical ACD (Wilkinson et al. 1994; Shirakawa
et al. 1992). Interestingly in mice, immunoglobu-
lin light chains, which have long been considered
as the meaningless remnants of a spillover in the
regular immunoglobulin production of B cells,
were discovered to mediate very early hypersen-
sitivity reactions by mast cell activation
(Redegeld and Nijkamp 2003; vd Heyden 2006).

In addition to an auxiliary role of B cells and
antibodies, natural killer (NK) cells have been
reported to play a role in the onset ofACD reactions.
Mice lacking both T- and B-cells (RAG2�/�)
could still be sensitized to contact allergens
and Thy1+ NK cells were identified here as effec-
tor cells with a prominent role for the activating
NK receptor NKG2D (O’Leary 2006). Interest-
ingly, another NK-like cell, the invariant NKT
cell, that recognizes CD1d bound glycolipids
resulting in rapid IL-4 and IFN-γ release, was
also found to play a role in the elicitation of
contact sensitivity in mice: Blocking of CD1d
prevented both sensitization and elicitation by
contact allergens (Nieuwenhuis 2005). Notably,
in human ACD reactions relatively high frequen-
cies of invariant NKT cells have been observed,
ranging from 1.7% to 33% of total infiltrating T
cells, which is 10–100 fold higher than the fre-
quency found in the circulation (Gober 2008).
Also other T cells with relatively restricted TCR

repertoire such as Tγδ cells have been reported to
contribute in a non-antigen-specific, probably
non-MHC-restricted manner, to (early) elicitation
responses (Dieli et al. 1998).

To conclude, using various mouse models, dif-
ferent types of early allergen specific reactivity
have been claimed to play initiating roles in
ACD, but clinical evidence for such mechanisms
is still lacking.

T-Cell Patrol and Specificity of T-Cell Infil-
trates. Whereas early nonspecific skin reactivity
to contact allergens is pivotal for both sensitiza-
tion and elicitation, full-scale development of
ACD, of course, depends on allergen-specific T
cells within the (epi)dermal infiltrates. In healthy
skin there is a constant flow of memory T cells
ending up in the draining lymph nodes: about
200 T cells/h/cm 2 skin (Brand et al. 1999,
Fig. 6). Since one single antigen-specific T cell
can already trigger visible skin inflammation
(Milon et al. 1981; Marchal et al. 1982), randomly
skin-patrolling memory/effector T cells might
account for the initiation of the allergen-specific
effector phase. However, since frequencies of
hapten-specific T cells in sensitized individuals
may still remain below 1 in 10,000, this does not
seem to be a realistic scenario. Thus, augmented
random and/or specific T-cell infiltration accom-
panies the development of ACD. Apparently,
local chemokine release upon allergen contact is
pivotal in this respect (see T-Cell recirculation;
Meller 2007). Chemokine gene expression evalu-
ated 48 h after NiSO4 application was increased
for both Th1-related cytokines (CXCL9,
CXCL10, and CXCL11) and Th2-related cyto-
kines (CCL11, CCL17, and CCL22). CCL27, on
the other hand, which attracts preferentially
CCR10 bearing Th17/22 cells is constitutively
produced in resting skin, but is rapidly released
upon allergen contact to accumulate in the
draining lymph nodes (Huang 2008).

The question concerning the specificity of
ACD T-cell infiltrates has so far received little
attention. In a guinea pig model, preferential
entry of dinitrochlorobenzene (DNCB)-specific
T cells was observed within 18 h after elicitation
of skin tests with DNCB, as compared to
non-related compounds (Scheper et al. 1985).
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Probably, extravasation of hapten-specific T cells
benefits from T cell receptor-mediated interac-
tions with endothelial MHC molecules, pre-
senting hapten penetrated from the skin (Ward
2009). Within minutes after epicutaneous applica-
tion, hapten can indeed be found in dermal tissues
and on endothelial cells (Goebeler et al. 1993;
Macatonia et al. 1987; Lappin et al. 1996). Indeed,
the frequency of allergen-specific cells in positive
patch tests to urushiol was found to be 10- to
100-fold higher than in the blood (Kalish 1990).
Interestingly, whereas preferential entry may
already contribute to relatively high frequencies
of allergen-specific Tcells (within 48 h up to 10%)
(Probst et al. 1995; Milon et al. 1981), at later
stages, when the ACD reaction fades away, the
local frequency of allergen-specific T cells may
increase even further, due to allergen-induced
proliferation and rescue from apoptosis. Thus, at
former skin reaction sites these cells can generate
“local skin memory” (see Sect. 8).

Effector T-Cell Phenotypes. The debate on
phenotypes of effector T cells in ACD is still
ongoing and the number of T cell subsets poten-
tially involved is growing every year (Fig. 7).
Consensus exists, however, on the phenotype of
the skin homing T cell, i.e., CLA postive. This
molecule enables binding to cutaneous endothe-
lial cells via E-selectin (CD62E) and thus migra-
tion into the dermis.

Since cutaneous infiltrates show a clear pre-
ponderance of CD4+ T cells, it is not surprising
that these cells have most often been held respon-
sible for mediating ACD. In nickel allergic indi-
viduals, indeed, allergen-responding cells were
found to be CD4+CLA+ memory T cells (Moed
2004a, 2004b). Other studies, however, revealed
CD8+CLA+ nickel reactive T cells as most dis-
criminating for allergic individuals, since CD4+

nickel-reactive T cells were also found in healthy
controls (Cavani et al. 1998). While the effector
mechanism of CD4+ T cells is mainly based on
cytokine production, CD8+ T cells may mediate
skin inflammation also through killing of hapten-
bearing target cells. In mice, generally CD8+ T
cells are found to cause contact sensitivity reac-
tions, certainly to strong allergens, like DNFB
(Kish 2009; Gober 2008). In mice CD4+ T cells

are rather found to be regulatory, as shown by the
fact that contact sensitization to weak allergens
succeeded only after depletion of the CD4+ Tcells
(Vocanson 2006). Of note, most model allergens
studied in mice are hydrophobic molecules like
DNFB and oxazolone, whereas in human studies
very often water soluble metal salts, such as NiSO

4 are used as model allergen. This could, at least
partly explain the different T-cell subsets involved
(Figs. 2 and 5 MHCI/II presentation). So, taken
together, it has become clear that both CD4+ and
CD8+ T cells can act as effector cells in DTH and
ACD reactions. Likewise, neither of these subsets
can be regarded simply as regulatory or suppres-
sor cells, although both of these subsets may,
depending on the allergen models and read-out
assays, play such roles (Kimber et al. 2002; Abe
et al. 1996).

An essentially similar conclusion holds true for
T-cell subsets (whether CD4+ or CD8+), releasing
type-1, type-2, or type-17 cytokines or combinations
thereof. Whereas type-1 cytokines, in particular
IFN-γ, display well-established pro-inflammatory
effects by increasing MHC and ICAM-1 expression
(Saulnier 1995; Kish 2009) thereby contributing to
improved allergen presentation and infiltration,
IL-4, a hallmark type-2 cytokine, can cause ery-
thema and induration, when released in the skin
(Rowe and Bunker 1998; Asherson et al. 1996).
Indeed, blockage of IL-4 can interfere with ACD
(Asherson et al. 1996). IL-17 plays a role in recruit-
ment and activation of neutrophils. It was shown to
be produced both by CD8+ Tcells (in mousemodels
with DNFB; Kish 2009) and by CD4+ T cells
(in human nickel patch tests; Larsen 2009). The
latter study shows, interestingly, that within a few
hours after challenge CCL20 expression is
upregulated in the skin, attracting CCR6 positive
cells. Since all Th17 cells do express this receptor,
an early preferential influx of Th17, and as a conse-
quence IL-17 and IL-22 production, could be an
essential early event in the development of the
ACD reaction.

Thus, a picture emerges in which ACD reactions
can be caused both by allergen-specific type-1, type-
2, and type-17 T cells (Cavani et al. 1998;
Rustemeyer et al. 2004; Moed 2004; Larsen 2009;
Gober 2008; Oboki 2008). In retrospect, the down
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regulatory effects of IL-4 on ACD reactions
observed earlier in some mouse models (Asada
et al. 1997) might be ascribed to accelerated
allergen-clearance rather than to blunt suppression.
Still, both with time and repeated allergen-pressure,
type-2 responsiveness may rapidly take over
(Kitagaki et al. 1995; Kitagaki 1997). Allergen-
specific T cells isolated from skin test sites of sensi-
tized individuals, as compared to blood, showed a
strong bias toward type-2 cytokine profiles (Werfel
et al. 1997). Additional local IFN-γ release seems,
however, indispensable, since for a broad panel of
contact allergens, clinical ACD reactions were char-
acterized by increased expression of mRNA
encoding IFN-γ-inducible chemokines (Flier et al.
1999). In addition, transgenic mice expressing
IFN-γ in the epidermis showed strongly increased
ACD reactivity (Carroll et al. 1997).

Downregulatory Processes. Resolution of
ACD reactions and risk factors for the develop-
ment of chronicity are not yet fully understood. Of
course, if the allergen source is limited, as with
skin testing, local concentrations of allergen usu-
ally rapidly decrease, thus taking away the critical
trigger of the ACD reaction cascade. Since even
ACD reactions due to chronic exposure to aller-
gen seldom result in permanent tissue destruction
and scarification, immunoregulatory factors most
likely contribute to prevention of excessive cyto-
toxicity and fatal destruction of the basal mem-
brane. Both IL-1 and heparinase, secreted from
activated keratinocytes and T cells, protect
keratinocytes from TNF-α-induced apoptosis
(Lider et al. 1995; Kothny-Wilkes et al. 1998).
Moreover, activated effector T cells can undergo
activation-induced cell death (AICD) during the
resolution phase (Orteu et al. 1998). Notably,
pro-inflammatory type-1 T cells, expressing high
levels of Fas-ligand (CD95L) and low amounts of
apoptosis-protecting FAP-1 protein, are more sus-
ceptible to AICD than type-2 cells (Zhang et al.
1997). This may partly explain the shift toward
type-2 reactivity that is observed upon prolonged
allergen exposure (Kitagaki et al. 1995). More-
over, during the late phase of ACD, keratinocytes,
infiltrated macrophages and T cells start produc-
ing IL-10 (Enk 1992; Schwarz et al. 1994; Berg
et al. 1995), which has many anti-inflammatory

activities, including suppression of antigen-
presenting cell and macrophage functions ([110],
Lalani et al. 1997; Morel and Oriss 1998). In
addition, the release of factors, such as PGE2 and
TGF-β, derived from activated keratinocytes and
infiltrated leucocytes, e.g., type-3 T cells, contrib-
ute to dampening of the immune response
(Epstein et al. 1991; Lawrence et al. 1997).
Release of PGE2, on the one hand, inhibits pro-
duction of pro-inflammatory cytokines (Kalinski
et al. 1997; Walker et al. 1983) and, on the other
hand, activates basophils (Weston and Peachell
1998). These may constitute up to 5–15% of infil-
trating cells in late phase ACD reactions (Dvorak
et al. 1976) and are also believed to contribute to
down regulation of the inflammatory response
(Marone et al. 1994; Lundeberg et al. 1999).
TGF-β silences activated T cells and inhibits
further infiltration by down regulating the
expression of adhesion molecules on both endo-
thelial and skin cells (Sallusto et al. 2004).
Regulatory cells producing these suppressive
mediators might even predominate in skin
sites, frequently exposed to the same allergen,
and known to show local (allergen-specific)
hypo-responsiveness [283]. It is of interest in
this context that CD4+ memory T cells expanded
from late DTH reactions could be educated
to become CD4+CD25++ regulatory T cells
expressing Foxp3 (Vukmanovic 2008).

9 Flare-Up and Retest Reactivity

Local allergen-retention. Flare-up reactivity of for-
mer ACD and patch test reaction sites is sometimes
observed (Jensen et al. 2003; Hindsen et al. 2001;
Larsson et al. 1997). From the basic mechanisms of
ACD, it can be inferred that allergen-specific flare-
up reactions depend either on local allergen or
T-cell retention at these skin sites. Upon short-
lasting, low-dose contacts, e.g., by skin testing,
local allergen retention usually does not exceed a
2-week period, which is actually long enough to
exceed the time required for active sensitization. In
experimental guinea-pig studies we observed that
skin tests with DNCB, chromium or penicillin
could become positive even if primary sensitization
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was postponed to 1 week after skin testing. Appar-
ently effector T cells released into the circulation at
that late time still detected sufficient residual aller-
gen at the former skin test sites to cause flare-up
reactivity (Scheper et al. unpublished results).Max-
imum allergen-persistence for around 14 days was
also reported by Saint-Mezard et al. (2003), using
the hapten fluorescein-isothiocyanate in a mouse
model for flare-up reactivity. Also in humans flare-
up reactions due to locally persisting allergen can
be observed, when from about 4–6 days after pri-
mary sensitization, peripheral effector T-cell fre-
quency increases (Skog 1976). Clinically, this
phenomenon can explain anomalous results from
patch testing with multiple contact allergens. When
a patient suspected for penicillin allergy was patch
tested with cross-reactive penicillin derivatives, a
regular 24–72 h reaction was only observed to one
of the penicillins, but all others also became posi-
tive from about 8–9 days after skin testing. The first
penicillin derivative turned out to release formalde-
hyde to which the patient was found to be allergic.
Positive reactivity to formaldehyde apparently had
potentiated primary sensitization to penicillin,
causing the other, previously negative reaction
sites to flare up (Neering, personal communica-
tion). Thus, skin test sites may occasionally flare-
up if the testing dose itself led to the release or
activation of sufficiently high numbers of effector
T cells in the circulation.

Local T-cell retention. In contrast, allergen-
specific T cells may persist for at least several
months in the skin causing “local skin
memory”(Fig. 8) (Scheper et al. 1983; Moed
2004). Thus, locally increased allergen-specific
hyperreactivity, detectable through either acceler-
ated “retest” reactivity (after repeated allergenic
contact at the same skin site) or flare-up reactivity
(after allergen entry from the circulation, e.g.,
derived from food ingestion), may be observed
for long periods of time at former skin reaction
sites (Christensen et al. 1985; Hindsen and
Christensen 1992). Typically, the erythematous
reactions peak between 2 and 6 h after contact
with the allergen. Histological examination of
such previously positive skin reaction sites
shows that the majority of remaining T cells is
CD4+ CCR10+ (Moed 2004). The remarkable

flare-up reactivity at such sites can be understood
by considering that just one specific effector T cell
can be sufficient to generate macroscopic reactiv-
ity (Marchal et al. 1982). Moreover, a very high
frequency of the residual T cells may be specific
for the allergen, as discussed above in “The Effec-
tor Phase of Allergic Contact Dermatitis.” Appar-
ently, local specific T-cell retention is highly
advantageous in combating microbial infections,
since memory T cells localized in peripheral tis-
sues contribute to robust protection e.g., to viral
infections (Woodland 2009). Only in highly sen-
sitized individuals unrelated skin test sites may
also show flare-up reactions (Scheper et al.
1983) and even generalized erythematous macu-
lar eruptions can be observed with higher allergen
doses (Polak 1968). The latter reactivities proba-
bly relate to the fact that recently activated T cells
show strong expression of adhesion and homing
molecules, e.g., CLA and chemokine receptors,
such as CCR5, facilitating random migration into
peripheral tissues and thus allergen-specific T-cell
patrol in the skin (Moser et al. 1998; Woodland
2009). Upon subsequent allergen entry from the
circulation, these allergen-specific T cells could
mediate generalized erythematous reactions
(Hindsen et al. 2001).

Interestingly, local allergen-specific T-cell
retention/“local skin memory” can be clinically
exploited to discriminate between simultaneous
sensitization to different sensitizers (“concomitant
sensitization”) and cross-reactivity between dif-
ferent sensitizers (Rustemeyer et al. 2002; Matura
1998; Inerot and Moller 2000). Using several
different combinations of contact allergens in a
guinea pig model, we retested guinea pigs previ-
ously sensitized to DNCB and methyl methacry-
late (MMA), with the same allergens and some
other methacrylate congeners. Accelerated retest
reactivities were observed with the latter conge-
ners on the former MMA, but not DNCB, patch
test sites (Rustemeyer et al. 2002). Thus, with
preferential local retention of MMA-specific T
cells at the MMA skin test site, no accelerated
retest reactivity could be elicited with DNCB,
but to varying degrees with all four
MMA-related compounds. In clinical practice
using this approach, Matura et al. (1998)
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confirmed positive cross-retest reactions for
cloprednol and tixocortol pivalate, both belonging
to group A, and budesonide, amcinonide, and
triamcinolone, all belonging to group B cortico-
steroids (see also Isaksson and Bruze 2003).

10 Hyporeactivity: Tolerance
and Desensitization

Of course, uncontrolled development and expres-
sion of T-cell-mediated immune function would
be detrimental to the host. During evolution, sev-
eral mechanisms developed to curtail lymph node
hyperplasia or to prevent excessive skin damage
upon persisting antigen exposure.

Regulation of Immune Responses. First, aller-
gen contacts, e.g., by oral or intravenous admin-
istration, may lead to large-scale presentation of
allergen by cells other than skin DC (Fig. 9). In the
absence of appropriate costimulatory signals

(as described above in “Recognition of Allergen-
Modified Langerhans’ Cells”) allergen presented
by e.g., immature Langerhans’ cells may anergize
naive T cells, i.e., cause receptor-downregulation
associated with an unresponsive state, eventually
leading to their death by apoptosis (Fig. 10) (Zin-
kernagel 2004; Piccirillo and Thornton 2004;
Benson andWhitacre 1997). With increasing den-
sities of MHC-antigen complexes on the surface
of professional APC, at least three different
levels of T-cell tolerance may be induced, charac-
terized by active suppression, anergy or deletion
(Ferber et al. 1994; Morgan et al. 1999).
Unresponsiveness of T cells, induced by aller-
genic contacts at skin sites where LC/DC func-
tions have been damaged, e.g., by UV irradiation,
or are naturally absent, e.g., in the tail skin of
mice, may be ascribed to T-cell anergy, frequently
associated with TCR/CD4 or CD8 down regula-
tion, and apoptosis/deletion (Shreedhar et al.
1998; Semma and Sagami 1981). Whereas anergy
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Fig. 8 Local skin memory. In former allergic contact der-
matitis sites a few hapten-specific T cells can remain, mainly
close to dermal dendritic cells (DC). Retest reaction: renewed

hapten contact can induce a rapid onset of an erythematous
reaction, sparked off by the residual hapten-specific T cells.
KC keratinocyte, LC Langerhans cell
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and deletion reflect “passive” unresponsiveness,
tolerance by active suppression may also be
induced under similar circumstances (Taams
et al. 1999). Actually, with increasing dose and
exposure times, even regular epicutaneous aller-
genic contacts not only induce T effector cells but
also lymphocytes controlling T-cell proliferation
(afferently acting regulatory cells) and/or causing
decreased skin reactivity (regulatory cells of
effector phase). Thus, allergic contact hypersensi-
tivity is the resultant of a delicate balance between
effector and regulatory mechanisms (Boerrigter
and Scheper 1987; Girolomoni et al. 2004).

Cellular Basis of Active Tolerance. Upon pref-
erential stimulation of regulatory cells, e.g., by
feeding non-primed, naïve individuals with con-
tact allergens, strong and stable allergen-specific,
active tolerance may develop (Mayer et al. 2001;
Weiner 1997; Wang 2008). The concept of active
regulatory (“suppressor”) cells controlling ACD
is based on the fact that, in experimental animal
models, such allergen-specific tolerance can be
transferred by lymphoid cells from tolerant to

naive animals (Dieli et al. 1998; Rustemeyer
et al. 2001). Active suppression, as revealed by
these adoptive cell transfers, is a critical event in
regulating T-cell responses to contact sensitizers,
and to all possible peptide/protein antigens,
including bacterial, autoimmune, and graft rejec-
tion antigens (Miller et al. 1977; Polak 1980;
Weiner 1997).

Like effector T cells in ACD, regulatory cells
are not a single subpopulation of cells. As outlined
above, depending on e.g., the nature of the aller-
gen and route of exposure, ACD can be mediated
by both CD4+ and CD8+ T cells, either or both
releasing Th1, Th2, Th3, Th17/22 cytokines.With
distinct effector phenotypes for particular aller-
gens, each of the other phenotypes can act as
regulatory cells (Weigle and Romball 1997;
Arnaboldi 2009). Notwithstanding, type-2 cyto-
kine producing cells are prominent in regulating
ACD, with allergic contact hypersensitivity
enhanced and tolerance reversed by interfering
with type-2 T-cell functions (Zembala and
Ashershon 1973; Boerrigter and Scheper 1984;

antigen ingestion skin contact(s) 48h after 
reexposure

hypersensitivity

tolerance

Fig. 9 Induction of oral tolerance. Hapten ingestion, prior to potential sensitizing skin contact(s), can induce hapten-
specific tolerance
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Mokyr et al. 1998). Also, interferons and IL-12,
both impairing Th2 and Th17/22 cells, were
shown to inhibit regulatory cells and to stimulate
effector-cell functions in mouse models (Knop
et al. 1982; Zhang and Michael 1990; Claessen
et al. 1996). In particular after mucosal allergen
contact stimulation, T cells producing IL-10
and/or TGF-β (type-3 cytokine profile), many of
which co-expressing CD4, CD25 and the transcrip-
tion factor Foxp3 (Treg), may act as regulatory cells
(Bridoux et al. 1997; Cavani et al. 2003; Feuerer
2009). These T cells promote anti-inflammatory
immunity, e.g., by switching antibody production
to IgA, which mediates secretory immunity and
thus contributes to antigen exclusion in the
lumen, e.g., of the gastro-intestinal tract (Hafler
et al. 1997). Of note, TGF-β strongly suppresses
development of both type-1 and -2 effector
T cells, and can silence T cells in a semi-naïve
state (O’Garra 1998).

Regulatory Mechanisms of the Effector Phase.
A critical feature of the regulatory principles
involving mutual regulation of T-cell subpopula-
tions by Th1, Th2, Th3 and Th17/22 cytokines, is
that regulatory functions are most effective during
initiation of immune responses (Fig. 5). Thus,
once established, effector T cell and cytokine pro-
files show remarkable stability and refractoriness
to regulatory forces. Down-regulation of allergic
skin reactions may, therefore, take considerable
time. Of course, the preliminary factor facilitating
decreased allergic skin reactivity is removal of
hapten by exudate and innate immune cells of
the inflammatory infiltrate. But, at chronically
exposed sites also specific regulatory mechanisms
can be involved, such as CD8+ T cells, acting
either as regulator/suppressor (CD28�CD11b+)
or cytotoxic (CD28+CD11b�) T cells (Lonati et al.
1998; De panfilis 1998), which may downregulate
skin reactivity by targeting allergen-presenting
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Fig. 10 The character of the APC–T-cell interaction
determines the immunological outcome. Sensitization:
Naïve T cells, activated by antigen-presenting cells (APC)
providing both hapten-specific (“signal 1”) and appropriate
costimulatory (“signal 2”) signals, develop into effector T
cells, characterized by Th-17/22, -1, and -2 cytokine

secretion profiles. Tolerance: In the absence of appropriate
costimulatory signals, immunological tolerance may
develop. With increasing density of MHC-hapten com-
plexes on the surface of APC, activating “signal 1” T-cell
pathways, multiple levels of T-cell tolerance might be
induced
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DC [331]. Multiplicity and reduncancy of regula-
tory mechanisms have thus far hampered devel-
opment of robust clinical treatments exploiting
regulatory T-cell functions to provide for
allergen-specific downregulation of the effector
phase of ACD. The development of potential
therapeutic applications of regulatory cells in var-
ious disorders, such as allergic contact dermatitis
and autoimmune diseases, therefore, needs much
more time than envisioned earlier (Ilan 2009).

Redundancy of Tolerance Mechanisms.
Besides regulatory T cells, producing different
cytokines, or exerting distinct cytotoxicities,
other mechanisms may also contribute to immune
regulation and tolerance. Clearly, the risk of
excessive immune reactivity should be very low.
These mechanisms involve allergen-specific T
cells shedding truncated T-cell receptors, acting
as antagonists and blocking allergen presentation
(Kuchroo 1998), and high-dose allergen-induced
anergic T cells (Morgan et al. 1999). Possibly, the
latter cells, by actively suppressing DC functions,
can function as “active” suppressor cells (Taams
et al. 1998, 2000). Interestingly, DC, becoming
suppressive by this mechanism (Taams et al.
1998) or by suppressive cytokines like IL-10 and
PGE 2 (Kumar and Sercarz 1998; Kalinski et al.
1998), can, in turn, act themselves as suppressor
cells by conferring antigen-specific anergy to sub-
sequently encountered T cells (Steinbrink et al.
1999; Taams et al. 2000). Although, at present,
consensus has been reached about a critical role of
regulatory/suppressor cells in the development
and expression of ACD, the relative contributions
of each of the various mechanisms are still far
from clear.

Induction of Lasting Tolerance Only in Naive
Individuals. Both clinical and experimental find-
ings indicate that full and persistent tolerance can
only be induced prior to any sensitizing allergen
contacts (Van Hoogstraten et al. 1989; Strobel and
Mowat 1998; Wang 2008). Upon primary aller-
genic contacts, naive Tcells differentiate to produce
polarized cytokine profiles (Figs. 5 and 9). Once
polarized, however, T-cell profiles are irreversible,
due to loss of cytokine (receptor) genes, or at least
very stable, due to the mutually suppressive activ-
ities of T-cell cytokines. An important corollary

of the latter concept of active suppression is
the bystander effect, in which the response to any
antigen can be downregulated by immunosuppres-
sive cytokines acting in a local tolerogenic micro-
environment (von Herrath 1997). The latter was
observed for both protein antigens (Fowler and
Weiner 1997) and methacrylate contact allergens
(Rustemeyer et al. 2001). Stable polarization/
skewing may also explain why even low,
non-sensitizing doses of nickel applied to the
skin prevented subsequent tolerance induction
by feeding the metal allergen (Van Hoogstraten
et al. 1994). Apparently, the progeny of naïve
allergen-specific cells, once “on the stage,”
have been triggered to a “subclinical” degree
toward effector cell differentiation and become
refractory to regulatory cell action (Fig. 10).
This may also have contributed to incomplete
tolerance induction in earlier clinical studies
when feeding with poison ivy-/oak-derived aller-
gens (Epstein 1987). Indeed, to our knowledge,
permanent reversal of existing ACD in healthy
individuals has, as yet, never been achieved.
Nevertheless, as described above, effector cells
still seem susceptible, though transiently, to
the downregulation of allergen reactivity, as
was observed in desensitization procedures
(Van Hoogstraten et al. 1994; Morris 1998).

Transient Desensitization in Primed Individ-
uals. For dermatologists, methods by which
patients might be desensitized for existing ACD
would be a welcome addition to the currently
prevailing symptomatic therapies, and investiga-
tors have made a wide variety of attempts to
achieve this goal. Unfortunately, as mentioned
above, therapeutic protocols involving ingestion
of poison ivy allergen, penicillin, or nickel sul-
fate were of only transient benefit to the patients
(Epstein 1987; Wendel et al. 1985; Panzani et al.
1995; Tammaro et al. 2009). Similarly in animal
models, only a limited and transient degree of
hyposensitization was obtained by Chase (1946)
when feeding DNCB-contact-sensitized guinea
pigs with the allergen, whereas, for achieving
persistent chromium-unresponsiveness in pre-
sensitized animals, Polak and Turk (1968a, b)
needed a rigorous protocol involving up to lethal
doses of the allergen. As outlined above,
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mechanisms underlying specific desensitization
in ACD probably depend on direct interference
of allergen with effector T-cell function, by
blocking or downregulating T-cell receptors,
leading to anergy and apoptosis (Polak and
Rinck 1978). As the onset of desensitization is
immediate, no suppressor mechanisms may ini-
tially be involved. Apparently in the absence of
LC, MHC class II-positive keratinocytes can
serve as APC and are very effective in rendering
allergen-specific effector cells anergic (Gaspari
et al. 1988). Moreover, at later stages active
suppression may come into play resulting from
secondary inactivation of DC function by
anergized T cells (Shreedhar et al. 1998). Never-
theless, major problems with in vivo desensiti-
zation procedures relate to the refractoriness
of effector T cells to regulatory cell functions,
and the rapid replacement of anergized effector
cells by naïve T cells from relatively protected
peripheral lymphoid tissues provides a source
of new effector cells upon sensitizing allergen
contacts. The same conclusions can be drawn
from attempts to achieve local desensitization.
It was found that local desensitization by
repeatedly applying allergen at the same
skin site did not result from local skin hardening
or LC inactivation, as local reactivity to an
unrelated allergen at the site was unimpaired
(Boerrigter and Scheper 1987). Persistence of
cellular infiltrates, in the absence of erythema-
tous reactivity, at a desensitized skin site
could reflect local anergy, but also locally
active regulatory cells. Upon discontinuation
of allergen exposure, however, local
unresponsiveness was rapidly (within 1 week)
lost. Collectively, this data illustrates the
problems encountered in attempting to erad-
icate established effector-T-cell function, not
only in ACD but also in autoimmune diseases
(Weiner 1997; Wang 2008).

11 Summary and Conclusions

Extensive research has led to a better understanding
of the mechanisms of ICD and ACD. The primary
role of innate immune cells in coping with exoge-
nous potential harmful threats is rapidly being

uncovered. Also, the basic immunology of ACD
is now well-defined, including T-cell migratory
patterns, recognition of distinct allergens, interac-
tions with other inflammatory cells to generate
inflammation, and cytokine profiles. But new com-
plexities have emerged. For instance, in contrast to
earlier belief, many of the currently known T-cell
subpopulations can act either or both as effector and
regulatory cells, depending on the nature of the
allergen, the route of entry, frequency of exposure,
and many other, still ill-defined factors. In particu-
lar, the poor understanding of regulatory mecha-
nisms in ACD still hampers further therapeutic
progress. So far, no methods of permanent desen-
sitization have been devised.

Nevertheless, next to the established anti-
inflammatory drugs, recently defined cellular
interaction molecules and mediators provide
promising targets for new generations of anti-
inflammatory drugs, some of which have already
entered clinical trials. Clearly, drugs found to be
effective in preventing severe T-cell-mediated
conditions, e.g., rejection of a vital organ graft,
should be very safe before their use in ACDwould
seem appropriate. To date, prudence favors alter-
native measures to prevent ICD and ACD, be it
through legal action to outlaw the use of certain
materials or through avoiding personal contact
with these materials. In the meantime, for
difficult-to-avoid allergens, further studies on the
potential value of tolerogenic treatments prior to
possible sensitization seem warranted.
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