
Alessandra Lintas · Stefano Rovetta
Paul F.M.J. Verschure
Alessandro E.P. Villa (Eds.)

 123

LN
CS

 1
06

14

26th International Conference on Artificial Neural Networks
Alghero, Italy, September 11–14, 2017
Proceedings, Part II

Artificial Neural Networks
and Machine Learning –
ICANN 2017

Lecture Notes in Computer Science 10614

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Alessandra Lintas • Stefano Rovetta
Paul F.M.J. Verschure • Alessandro E.P. Villa (Eds.)

Artificial Neural Networks
and Machine Learning –

ICANN 2017
26th International Conference on Artificial Neural Networks
Alghero, Italy, September 11–14, 2017
Proceedings, Part II

123

Editors
Alessandra Lintas
University of Lausanne
Lausanne
Switzerland

Stefano Rovetta
University of Genoa
Genoa
Italy

Paul F.M.J. Verschure
Universitat Pompeu Fabra
Barcelona
Spain

Alessandro E.P. Villa
University of Lausanne
Lausanne
Switzerland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-68611-0 ISBN 978-3-319-68612-7 (eBook)
https://doi.org/10.1007/978-3-319-68612-7

Library of Congress Control Number: 2017956064

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume is part of the two-volume proceedings of the 26th International Confer-
ence on Artificial Neural Networks (ICANN-2017), held during September 11–14,
2017 in Alghero, Italy. ICANN 2017 was organized with the support of the Department
of Architecture of the University of Sassari, the Neuroheuristics Research Group of the
University of Lausanne, and the European Neural Network Society (ENNS).

The ICANN conference is the flagship annual conference of the European Neural
Network Society. The ICANN series of conferences was initiated in 1991 and soon
became the major European gatherings of experts in the field of neural networks and
related areas. The unique character of this conference is its transdisciplinarity, beyond
the interdisciplinarity of machine learning, bringing together researchers from all
horizons, i.e., mathematics, physics, information and computer sciences, engineering,
as well as theoretical and experimental neurosciences. The conference is organized in
partnership with ENNS with its governance fully committed to not-for-profit proce-
dures that allow us to keep the congress fees low compared with international stan-
dards. This policy granted the participation of a significant number of undergraduate
and master students, who accounted for 18% of the scientific delegates. The ICANN
governance model consolidated the practice to include membership of ENNS, valid
through December of the calendar year of the conference, for all ICANN participants
who present a scientific communication. Last, but not least, two best paper awards are
distributed, along with ten travel grants sponsored by ENNS.

Following the practice of the ICANN conference series since 2011, the ICANN
2017 conference was organized following a dual-track stream of oral talks lasting 20
minutes each, one track including seven sessions of mainly ANN and
machine-learning-inspired presentations, and one track including seven sessions of
mainly bio-inspired presentations. A tutorial on the capabilities of shallow and deep
networks supported by ENNS President Vera Kurkova and a special session organized
on the topic of neural networks and applications to environmental sciences were
organized on the first day of the conference, before the opening of the main program.
Poster sessions have always played a key role in successful ICANN conferences. This
year, the time and space allocated to nine poster sessions was further expanded, and
posters were left on display throughout the entire duration of the conference. The
scientific program was completed by five keynote lectures from world-renowned
scholars: Professor Moshe Abeles talking about temporal information in neural coding;
Professor Marco Gori about the computational framework associated with the emer-
gence of inference rules; Professor Elisabeth André about emotional intelligence in
human–computer interaction; Professor David Ríos about adversarial machine learn-
ing; and Professor Michele Giugliano about information transmission in weakly cou-
pled large-scale neural ensembles.

Out of approximately 270 papers submitted to ICANN 2017, the Program Com-
mittee selected 128 full and 63 short papers. It is interesting to note that about half
of the accepted short papers were initially submitted as full papers. Although these
papers did not get through the strict reviewing process for full papers, their authors
prepared a short paper version for presentation at ICANN. Because of its reputation as
a high-level conference, ICANN rarely receives papers of poor quality, and the fact that
one third of the scientific delegates chose to submit short papers is certainly a proof
of the vitality and attractiveness of the ICANN conference. The type of submission was
not the ultimate criterion in assigning the submitters to an oral or a poster presentation.
Short papers account for 19/79 oral presentations and 44/112 poster presentations.

The number of accepted papers necessitated publishing the proceedings in two
volumes. The contributions (oral and posters) were grouped following the respective
track: Volume I for Artificial Neural Networks and Biological Inspiration and
Volume II for Formal Models and Their Applications. The proceedings of the short
papers have been grouped, following the rules of the publisher, at the end of each
volume. The presenting authors came from 33 countries all over the world: 87 from
Europe, 74 from Asia, 26 from the Americas, three from Oceania and one from Africa.
China (39) and Germany (33) were the most represented countries.

It is our pleasure to express our gratitude to everybody who contributed to the
success of the conference and the publication of the proceedings. In particular, we
thank the members of the Executive Committee of the ENNS and the president, Vera
Kurkova, for entrusting us with the organization of the conference. We would like to
express our sincere gratitude to the members of the Program Committee and all the
reviewers, who did a tremendous job under time constraints during the review process.
We thank all members of the local Organizing Committee and the local staff for the
great effort and assistance in the organization of the conference, in particular, Antonello
Monsù Scolaro (Department of Architecture in Alghero of the University of Sassari),
Eugenio Lintas (Sassari), and Anna Mura (SPECS, Universitat Pompeu Fabra,
Barcelona). We are greatly indebted to Dr. Paolo Masulli for his commitment as ENNS
interim secretary and ICANN communication chair along all phases of the organiza-
tion. We would also like to thank the publisher, Springer, for their cooperation during
the publishing process that was under strict time limitations. Finally, we thank all
authors who contributed to these volumes for sharing their ideas, their results, and their
spirit with the community during the scientific and social programs of the conference.
We are sure that the participants of ICANN 2017 maintained the enthusiasm of the
founders of ENNS and initial organizers of the ICANN conferences and that they will
continue to generate new ideas and innovative results in the field of neural networks
and related areas.

August 2017 Alessandra Lintas
Stefano Rovetta

Paul F.M.J. Verschure
Alessandro E.P. Villa

VI Preface

Organization

General Chair

Alessandro E.P. Villa University of Lausanne, Switzerland

General Co-chair

Alessandra Lintas University of Lausanne, Switzerland

Local Co-chairs

Stefano Rovetta University of Genoa, Italy
Paul F.M.J. Verschure SPECS-Universitat Pompeu Fabra, Spain

Communication Chair

Paolo Masulli University of Lausanne, Switzerland

Local Organizing Committee

Paolo Enrico University of Sassari, Italy
Alessandra Lintas University of Lausanne, Switzerland
Eugenio Lintas Sassari
Antonello Monsù Scolaro University of Sassari, Italy
Anna Mura SPECS-Universitat Pompeu Fabra, Barcelona, Spain

Scientific and Reviewing Committee

Jérémie Cabessa Université Panthéon-Assas - Paris 2, France
Petia Koprinkova-Hristova Bulgarian Academy of Sciences, Sofia, Bulgaria
Věra Kůrková Czech Academy of Sciences, Prague, Czech Republic
Alessandra Lintas University of Lausanne, Switzerland
Paolo Masulli University of Lausanne, Switzerland
Francesco Masulli University of Genoa, Italy
Paul F.M.J. Verschure SPECS-Universitat Pompeu Fabra, Spain
Antonio Javier Pons Rivero Universitat Politècnica de Catalunya, Spain
Yifat Prut Hebrew University Jerusalem, Israel
Stefano Rovetta University of Genoa, Italy
Antonino Staiano University of Naples Parthenope, Italy
Igor V. Tetko Helmholtz Zentrum München, Germany
Alessandro E.P. Villa University of Lausanne, Switzerland

Program Committee

Lydia Fischer Honda Research Institute Europe, Germany
Věra Kůrková Czech Academy of Sciences, Prague, Czech Republic
Alessandra Lintas University of Lausanne, Switzerland
Francesco Masulli University of Genoa, Italy
Stefano Rovetta University of Genoa, Italy
Antonino Staiano University of Naples Parthenope, Italy
Alessandro E.P. Villa University of Lausanne, Switzerland

Secretariat and Communication

Alessandra Lintas University of Lausanne, Switzerland
Paolo Masulli University of Lausanne, Switzerland

ENNS Travel Grant Committee

Cesare Alippi Politecnico di Milano, Italy
Jérémie Cabessa Université Panthéon-Assas - Paris 2, France
Barbara Hammer University of Bielefeld, Germany
Petia Koprinkova-Hristova Bulgarian Academy of Sciences, Sofia, Bulgaria
Věra Kůrková Czech Academy of Sciences, Prague, Czech Republic
Paolo Masulli University of Lausanne, Switzerland
Jaakko Peltonen University of Tampere, Finland
Antonio Javier Pons Rivero Universitat Politècnica de Catalunya, Spain
Yifat Prut Hebrew University Jerusalem, Israel
Igor V. Tetko Helmholtz Zentrum München, Germany
Paul F.M.J. Verschure SPECS-Universitat Pompeu Fabra, Spain
Francisco Zamora-Martínez University of Pamplona, Spain

Additional Reviewers

Tayfun Alpay University of Hamburg, Knowledge Technology,
WTM, Germany

Pablo Barros University of Hamburg, Germany
Lluis Belanche Universitat Politècnica de Catalunya, Spain
Michael Biehl University of Groningen, The Netherlands
Giacomo Boracchi Politecnico di Milano, Italy
Hans Albert Braun University of Marburg, Germany
Li Bu China
Guido Bugmann Plymouth University, UK
Jérémie Cabessa Université Panthéon-Assas, Paris 2, France
Francesco Camastra University of Naples Parthenope, Italy
Angelo Cangelosi Plymouth University, UK
Giovanna Castellano University of Bari, Italy
Marta Castellano Institute of Cognitive Sciences, Germany

VIII Organization

Davide Chicco University of Toronto, Canada
Angelo Ciaramella University of Naples Parthenope, Italy
Jorg Conradt TU München, Germany
David Coufal Insitute of Computer Science AS CR, Czech Republic
Jose Enrique De Tomas University of Alicante, Spain
Marc Deffains Hebrew University Jerusalem, Israel
Sergey Dolenko D.V. Skobeltsyn Institute of Nuclear Physics,

M.V. Lomonosov Moscow State University, Russia
Jose Dorronsoro Universidad Autonoma de Madrid, Spain
Wlodzislaw Duch Nicolaus Copernicus University, Poland
David Díaz-Vico Universidad Autónoma de Madrid, Spain
Lambros Ekonomou City University London, UK
Anna Maria Fanelli University of Bari, Italy
Andreas Fischer University of Fribourg, Switzerland
Lydia Fischer Honda Research Institute Europe
Giorgio Gnecco IMT Lucca, Italy
José Luis González-de-Suso das-Nano, Spain
Claudius Gros Goethe University of Frankfurt, Germany
Ankur Gupta University of British Columbia, Canada
Tatiana V. Guy Institute of Information Theory and Automation,

Czech Republic
Frantisek Hakl Institute of computer Science, Czech Republic
Barbara Hammer Bielefeld University, Germany
Stefan Heinrich Universität Hamburg, Germany
Katsuhiro Honda Osaka Prefecture University, Japan
Brian Hyland University of Otago, New Zealand
Lazaros Iliadis Democritus University of Thrace, Greece
Maciej Jedynak University Grenoble Alpes, Grenoble Institute

of Neuroscience, France
Marika Kaden HS Mittweida, Germany
Fotis Kanellos National Technical University of Athens, Greece
Juha Karhunen Aalto University, Finland
Matthias Kerzel Universität Hamburg, Germany
Mario Koeppen Kyushu Institute of Technology, Japan
Stefanos Kollias National Technical University of Athens, Greece
Ján Koloda das-Nano, Spain
Petia Koprinkova-Hristova Bulgarian Academy of Sciences, Bulgaria
Irena Koprinska University of Sydney, Australia
Vera Kurkova Institute of Computer Science, Academy of Sciences

of the Czech Republic, Czech Republic
Giancarlo La Camera SUNY Stony Brook, USA
Alessandra Lintas University of Lausanne, Switzerland
Ling Luo University of Sydney, Australia
Iván López-Espejo University of Granada, Spain
Sven Magg Universität Hamburg, Germany
Miroslaw Malek USI-Lugano, Switzerland

Organization IX

Petr Marsalek Charles University in Prague, Czech Republic
Francesco Masulli University of Genoa, Italy
Paolo Masulli University of Lausanne, Switzerland
Joshua Mati Hebrew University Jerusalem, Israel
Corrado Mencar University of Bari A. Moro, Italy
George Mengov Sofia University, Bulgaria
Valeri Mladenov Technical University of Sofia, Bulgaria
Juan Manuel Moreno Universitat Politecnica de Catalunya, Spain
Anna Mura SPECS-UPF Barcelona, Spain
Roman Neruda Institute of Computer Science, ASCR, Czech Republic
Nathan Netanyahu Bar-Ilan University, Israel
Francesca Odone University of Genoa, Italy
Luca Oneto University of Genoa, Italy
Sebastian Otte University of Tübingen, Germany
Joan Pastor Pellicer Universitat Politècnica de València, Spain
Riccardo Pecori eCampus, Italy
Jaakko Peltonen Aalto University, Finland
Vincenzo Piuri University of Milan, Italy
Mirko Polato University of Padova, Italy
Antonio Javier Pons Rivero Universitat Politècnica de Catalunya, Barcelona, Spain
Yifat Prut Hebrew University Jerusalem, Israel
Federico Raue University of Kaiserslautern, Germany
Francesco Regazzoni Università della Svizzera Italiana, Switzerland
Marina Resta University of Genoa, Italy
Jean Roaut University of Québec Sherbrooke, Canada
Manuel Roveri Politecnico di Milano, Italy
Stefano Rovetta University of Genoa, Italy
Alessandro Rozza Waynaut, Italy
Marcello Sanguineti University of Genoa, Italy
Wolfram Schenck Bielefeld University of Applied Sciences, Germany
Friedhelm Schwenker University of Ulm, Germany
Jordi Soriano Universitat de Barcelona, Spain
Alessandro Sperduti University of Padova, Italy
Antonino Staiano University of Naples Parthenope, Italy
Michael Stiber University of Washington Bothell, USA
Aubin Tchaptchet Philipps University of Marburg, Germany
Igor Tetko HMGU, Germany
Yancho Todorov Aalto University, Finland
Alberto Torres-Barrán Universidad Autónoma de Madrid, Spain
Jochen Triesch Frankfurt Institute for Advanced Studies, Germany
Francesco Trovo Politecnico di Milano, Italy
Georgi Tsvetanov Tsenov Technical University Sofia, Bulgaria
Antonio Vergari University of Bari, Italy
Paul F.M.J. Verschure SPECS-Universitat Pompeu Fabra, Spain
Petra Vidnerová Czech Academy of Sciences, Czech Republic
Alexander Vidybida Bogolyubov Institute for Theoretical Physics, Ukraine

X Organization

Alessandro E.P. Villa University of Lausanne, Switzerland
Thomas Villmann UAS Mittweida, Germany
Roseli Wedemann Universidade do Estado do Rio de Janeiro, Brazil
Thomas Wennekers Plymouth University, UK
Heiko Wersing Honda Research Institute Europe, Germany
Baptiste Wicht University of Applied Sciences of Western

Switzerland, Switzerland
Francisco Zamora-Martinez das-Nano SL, Spain
Jianhua Zhang East China University of Science and Technology,

China
Dongbin Zhao China

Organization XI

Contents – Part II

Convolutional Neural Networks

Spiking Convolutional Deep Belief Networks . 3
Jacques Kaiser, David Zimmerer, J. Camilo Vasquez Tieck,
Stefan Ulbrich, Arne Roennau, and Rüdiger Dillmann

Convolutional Neural Network for Pixel-Wise Skyline Detection 12
Darian Frajberg, Piero Fraternali, and Rocio Nahime Torres

1D-FALCON: Accelerating Deep Convolutional Neural Network Inference
by Co-optimization of Models and Underlying Arithmetic Implementation . . . 21

Partha Maji and Robert Mullins

Shortcut Convolutional Neural Networks for Classification
of Gender and Texture. 30

Ting Zhang, Yujian Li, and Zhaoying Liu

Word Embedding Dropout and Variable-Length Convolution Window
in Convolutional Neural Network for Sentiment Classification 40

Shangdi Sun and Xiaodong Gu

Reducing Overfitting in Deep Convolutional Neural Networks Using
Redundancy Regularizer . 49

Bingzhe Wu, Zhichao Liu, Zhihang Yuan, Guangyu Sun, and Charles Wu

An Improved Convolutional Neural Network for Sentence
Classification Based on Term Frequency and Segmentation 56

Qi Wang, Jungang Xu, Ben He, and Zhengcai Qin

Parallel Implementation of a Bug Report Assignment Recommender
Using Deep Learning. 64

Adrian-Cătălin Florea, John Anvik, and Răzvan Andonie

A Deep Learning Approach to Detect Distracted Drivers
Using a Mobile Phone . 72

Renato Torres, Orlando Ohashi, Eduardo Carvalho,
and Gustavo Pessin

A Multi-level Weighted Representation for Person Re-identification 80
Xianglai Meng, Biao Leng, and Guanglu Song

http://dx.doi.org/10.1007/978-3-319-68612-7_1
http://dx.doi.org/10.1007/978-3-319-68612-7_2
http://dx.doi.org/10.1007/978-3-319-68612-7_3
http://dx.doi.org/10.1007/978-3-319-68612-7_3
http://dx.doi.org/10.1007/978-3-319-68612-7_4
http://dx.doi.org/10.1007/978-3-319-68612-7_4
http://dx.doi.org/10.1007/978-3-319-68612-7_5
http://dx.doi.org/10.1007/978-3-319-68612-7_5
http://dx.doi.org/10.1007/978-3-319-68612-7_6
http://dx.doi.org/10.1007/978-3-319-68612-7_6
http://dx.doi.org/10.1007/978-3-319-68612-7_7
http://dx.doi.org/10.1007/978-3-319-68612-7_7
http://dx.doi.org/10.1007/978-3-319-68612-7_8
http://dx.doi.org/10.1007/978-3-319-68612-7_8
http://dx.doi.org/10.1007/978-3-319-68612-7_9
http://dx.doi.org/10.1007/978-3-319-68612-7_9
http://dx.doi.org/10.1007/978-3-319-68612-7_10

Games and Strategy

DeepAPT: Nation-State APT Attribution Using End-to-End Deep
Neural Networks . 91

Ishai Rosenberg, Guillaume Sicard, and Eli (Omid) David

Estimation of the Change of Agents Behavior Strategy
Using State-Action History. 100

Shihori Uchida, Sigeyuki Oba, and Shin Ishii

Boltzmann Machines and Phase Transitions

Generalising the Discriminative Restricted Boltzmann Machines 111
Srikanth Cherla, Son N. Tran, Artur d’Avila Garcez, and Tillman Weyde

Extracting M of N Rules from Restricted Boltzmann Machines. 120
Simon Odense and Artur d’Avila Garcez

Generalized Entropy Cost Function in Neural Networks. 128
Krzysztof Gajowniczek, Leszek J. Chmielewski, Arkadiusz Orłowski,
and Tomasz Ząbkowski

Learning from Noisy Label Distributions . 137
Yuya Yoshikawa

Phase Transition Structure of Variational Bayesian Nonnegative
Matrix Factorization . 146

Masahiro Kohjima and Sumio Watanabe

Link Enrichment for Diffusion-Based Graph Node Kernels. 155
Dinh Tran-Van, Alessandro Sperduti, and Fabrizio Costa

Context Information Learning and Self-Assessment
in Advanced Machine Learning Models

Classless Association Using Neural Networks . 165
Federico Raue, Sebastian Palacio, Andreas Dengel, and Marcus Liwicki

Shape from Shading by Model Inclusive Learning Method
with Simultaneous Estimation of Parameters . 174

Yasuaki Kuroe and Hajimu Kawakami

Radius-Margin Ratio Optimization for Dot-Product Boolean
Kernel Learning . 183

Ivano Lauriola, Mirko Polato, and Fabio Aiolli

XIV Contents – Part II

http://dx.doi.org/10.1007/978-3-319-68612-7_11
http://dx.doi.org/10.1007/978-3-319-68612-7_11
http://dx.doi.org/10.1007/978-3-319-68612-7_12
http://dx.doi.org/10.1007/978-3-319-68612-7_12
http://dx.doi.org/10.1007/978-3-319-68612-7_13
http://dx.doi.org/10.1007/978-3-319-68612-7_14
http://dx.doi.org/10.1007/978-3-319-68612-7_15
http://dx.doi.org/10.1007/978-3-319-68612-7_16
http://dx.doi.org/10.1007/978-3-319-68612-7_17
http://dx.doi.org/10.1007/978-3-319-68612-7_17
http://dx.doi.org/10.1007/978-3-319-68612-7_18
http://dx.doi.org/10.1007/978-3-319-68612-7_19
http://dx.doi.org/10.1007/978-3-319-68612-7_20
http://dx.doi.org/10.1007/978-3-319-68612-7_20
http://dx.doi.org/10.1007/978-3-319-68612-7_21
http://dx.doi.org/10.1007/978-3-319-68612-7_21

Learning a Compositional Hierarchy of Disparity Descriptors for 3D
Orientation Estimation in an Active Fixation Setting 192

Katerina Kalou, Agostino Gibaldi, Andrea Canessa,
and Silvio P. Sabatini

A Priori Reliability Prediction with Meta-Learning Based
on Context Information . 200

Jennifer Kreger, Lydia Fischer, Stephan Hasler,
Thomas H. Weisswange, and Ute Bauer-Wersing

Attention Aware Semi-supervised Framework for Sentiment Analysis 208
Jingshuang Liu, Wenge Rong, Chuan Tian, Min Gao, and Zhang Xiong

Chinese Lexical Normalization Based on Information Extraction:
An Experimental Study . 216

Tian Tian and WeiRan Xu

Analysing Event Transitions to Discover Student Roles
and Predict Grades in MOOCs . 224

Ángel Pérez-Lemonche, Gonzalo Martínez-Muñoz,
and Estrella Pulido-Cañabate

Applying Artificial Neural Networks on Two-Layer Semantic Trajectories
for Predicting the Next Semantic Location . 233

Antonios Karatzoglou, Harun Sentürk, Adrian Jablonski,
and Michael Beigl

Model-Aware Representation Learning for Categorical Data
with Hierarchical Couplings . 242

Jianglong Song, Chengzhang Zhu, Wentao Zhao, Wenjie Liu,
and Qiang Liu

Perceptron-Based Ensembles and Binary Decision Trees
for Malware Detection . 250

Cristina Vatamanu, Doina Cosovan, Dragoş Gavriluţ,
and Henri Luchian

Multi-column Deep Neural Network for Offline Arabic
Handwriting Recognition . 260

Rolla Almodfer, Shengwu Xiong, Mohammed Mudhsh,
and Pengfei Duan

Using LSTMs to Model the Java Programming Language 268
Brendon Boldt

Contents – Part II XV

http://dx.doi.org/10.1007/978-3-319-68612-7_22
http://dx.doi.org/10.1007/978-3-319-68612-7_22
http://dx.doi.org/10.1007/978-3-319-68612-7_23
http://dx.doi.org/10.1007/978-3-319-68612-7_23
http://dx.doi.org/10.1007/978-3-319-68612-7_24
http://dx.doi.org/10.1007/978-3-319-68612-7_25
http://dx.doi.org/10.1007/978-3-319-68612-7_25
http://dx.doi.org/10.1007/978-3-319-68612-7_26
http://dx.doi.org/10.1007/978-3-319-68612-7_26
http://dx.doi.org/10.1007/978-3-319-68612-7_27
http://dx.doi.org/10.1007/978-3-319-68612-7_27
http://dx.doi.org/10.1007/978-3-319-68612-7_28
http://dx.doi.org/10.1007/978-3-319-68612-7_28
http://dx.doi.org/10.1007/978-3-319-68612-7_29
http://dx.doi.org/10.1007/978-3-319-68612-7_29
http://dx.doi.org/10.1007/978-3-319-68612-7_30
http://dx.doi.org/10.1007/978-3-319-68612-7_30
http://dx.doi.org/10.1007/978-3-319-68612-7_31

Representation and Classification

Classification of Categorical Data in the Feature Space
of Monotone DNFs . 279

Mirko Polato, Ivano Lauriola, and Fabio Aiolli

DeepBrain: Functional Representation of Neural In-Situ Hybridization
Images for Gene Ontology Classification Using Deep Convolutional
Autoencoders . 287

Ido Cohen, Eli (Omid) David, Nathan S. Netanyahu, Noa Liscovitch,
and Gal Chechik

Mental Workload Classification Based on Semi-Supervised
Extreme Learning Machine. 297

Jianrong Li and Jianhua Zhang

View-Weighted Multi-view K-means Clustering . 305
Hong Yu, Yahong Lian, Shu Li, and JiaXin Chen

Indefinite Support Vector Regression. 313
Frank-Michael Schleif

Instance-Adaptive Attention Mechanism for Relation Classification 322
Yao Lu, Chunyun Zhang, and Weiran Xu

ReForeSt: Random Forests in Apache Spark. 331
Alessandro Lulli, Luca Oneto, and Davide Anguita

Semi-Supervised Multi-view Multi-label Classification Based
on Nonnegative Matrix Factorization . 340

Guangxia Wang, Changqing Zhang, Pengfei Zhu, and Qinghua Hu

Masked Conditional Neural Networks for Audio Classification 349
Fady Medhat, David Chesmore, and John Robinson

A Feature Selection Approach Based on Information Theory
for Classification Tasks . 359

Jhoseph Jesus, Anne Canuto, and Daniel Araújo

Two-Level Neural Network for Multi-label Document Classification 368
Ladislav Lenc and Pavel Král

Ontology Alignment with Weightless Neural Networks 376
Thais Viana, Carla Delgado, João C.P. da Silva, and Priscila Lima

Marine Safety and Data Analytics: Vessel Crash Stop Maneuvering
Performance Prediction . 385

Luca Oneto, Andrea Coraddu, Paolo Sanetti, Olena Karpenko,
Francesca Cipollini, Toine Cleophas, and Davide Anguita

XVI Contents – Part II

http://dx.doi.org/10.1007/978-3-319-68612-7_32
http://dx.doi.org/10.1007/978-3-319-68612-7_32
http://dx.doi.org/10.1007/978-3-319-68612-7_33
http://dx.doi.org/10.1007/978-3-319-68612-7_33
http://dx.doi.org/10.1007/978-3-319-68612-7_33
http://dx.doi.org/10.1007/978-3-319-68612-7_34
http://dx.doi.org/10.1007/978-3-319-68612-7_34
http://dx.doi.org/10.1007/978-3-319-68612-7_35
http://dx.doi.org/10.1007/978-3-319-68612-7_36
http://dx.doi.org/10.1007/978-3-319-68612-7_37
http://dx.doi.org/10.1007/978-3-319-68612-7_38
http://dx.doi.org/10.1007/978-3-319-68612-7_39
http://dx.doi.org/10.1007/978-3-319-68612-7_39
http://dx.doi.org/10.1007/978-3-319-68612-7_40
http://dx.doi.org/10.1007/978-3-319-68612-7_41
http://dx.doi.org/10.1007/978-3-319-68612-7_41
http://dx.doi.org/10.1007/978-3-319-68612-7_42
http://dx.doi.org/10.1007/978-3-319-68612-7_43
http://dx.doi.org/10.1007/978-3-319-68612-7_44
http://dx.doi.org/10.1007/978-3-319-68612-7_44

Combining Character-Level Representation for Relation Classification 394
Dongyun Liang, Weiran Xu, and Yinge Zhao

On Combining Clusterwise Linear Regression and K-Means
with Automatic Weighting of the Explanatory Variables 402

Ricardo A.M. da Silva and Francisco de A.T. de Carvalho

PSO-RBFNN: A PSO-Based Clustering Approach for RBFNN Design
to Classify Disease Data . 411

Ramalingaswamy Cheruku, Damodar Reddy Edla,
Venkatanareshbabu Kuppili, and Ramesh Dharavath

Clustering

Modularity-Driven Kernel k-means for Community Detection 423
Felix Sommer, François Fouss, and Marco Saerens

Measuring Clustering Model Complexity . 434
Stefano Rovetta, Francesco Masulli, and Alberto Cabri

GNMF Revisited: Joint Robust k-NN Graph and Reconstruction-Based
Graph Regularization for Image Clustering . 442

Feng Gu, Wenju Zhang, Xiang Zhang, Chenxu Wang, Xuhui Huang,
and Zhigang Luo

Two Staged Fuzzy SVM Algorithm and Beta-Elliptic Model
for Online Arabic Handwriting Recognition . 450

Ramzi Zouari, Houcine Boubaker, and Monji Kherallah

Evaluating the Compression Efficiency of the Filters
in Convolutional Neural Networks . 459

Kazuki Osawa and Rio Yokota

Dynamic Feature Selection Based on Clustering Algorithm
and Individual Similarity . 467

Carine A. Dantas, Rômulo O. Nunes, Anne M.P. Canuto,
and João C. Xavier-Júnior

Learning from Data Streams and Time Series

Dialogue-Based Neural Learning to Estimate the Sentiment
of a Next Upcoming Utterance . 477

Chandrakant Bothe, Sven Magg, Cornelius Weber, and Stefan Wermter

Solar Power Forecasting Using Pattern Sequences . 486
Zheng Wang, Irena Koprinska, and Mashud Rana

Contents – Part II XVII

http://dx.doi.org/10.1007/978-3-319-68612-7_45
http://dx.doi.org/10.1007/978-3-319-68612-7_46
http://dx.doi.org/10.1007/978-3-319-68612-7_46
http://dx.doi.org/10.1007/978-3-319-68612-7_47
http://dx.doi.org/10.1007/978-3-319-68612-7_47
http://dx.doi.org/10.1007/978-3-319-68612-7_48
http://dx.doi.org/10.1007/978-3-319-68612-7_49
http://dx.doi.org/10.1007/978-3-319-68612-7_50
http://dx.doi.org/10.1007/978-3-319-68612-7_50
http://dx.doi.org/10.1007/978-3-319-68612-7_51
http://dx.doi.org/10.1007/978-3-319-68612-7_51
http://dx.doi.org/10.1007/978-3-319-68612-7_52
http://dx.doi.org/10.1007/978-3-319-68612-7_52
http://dx.doi.org/10.1007/978-3-319-68612-7_53
http://dx.doi.org/10.1007/978-3-319-68612-7_53
http://dx.doi.org/10.1007/978-3-319-68612-7_54
http://dx.doi.org/10.1007/978-3-319-68612-7_54
http://dx.doi.org/10.1007/978-3-319-68612-7_55

A New Methodology to Exploit Predictive Power
in (Open, High, Low, Close) Data. 495

Andrew D. Mann and Denise Gorse

Recurrent Dynamical Projection for Time Series-Based Fraud Detection 503
Eric A. Antonelo and Radu State

Transfer Information Energy: A Quantitative Causality Indicator
Between Time Series . 512

Angel Caţaron and Răzvan Andonie

Improving Our Understanding of the Behavior of Bees Through
Anomaly Detection Techniques. 520

Fernando Gama, Helder M. Arruda, Hanna V. Carvalho,
Paulo de Souza, and Gustavo Pessin

Applying Bidirectional Long Short-Term Memories (BLSTM)
to Performance Data in Air Traffic Management for System Identification . . . 528

Stefan Reitmann and Karl Nachtigall

Image Processing and Medical Applications

A Novel Image Tag Completion Method Based on Convolutional
Neural Transformation . 539

Yanyan Geng, Guohui Zhang, Weizhi Li, Yi Gu, Ru-Ze Liang,
Gaoyuan Liang, Jingbin Wang, Yanbin Wu, Nitin Patil,
and Jing-Yan Wang

Reducing Unknown Unknowns with Guidance in Image Caption 547
Mengjun Ni, Jing Yang, Xin Lin, and Liang He

A Novel Method for Ship Detection and Classification on Remote
Sensing Images. 556

Ying Liu, Hongyuan Cui, and Guoqing Li

Single Image Super-Resolution by Learned Double Sparsity
Dictionaries Combining Bootstrapping Method . 565

Na Ai, Jinye Peng, Jun Wang, Lin Wang, and Jin Qi

Attention Focused Spatial Pyramid Pooling for Boxless Action Recognition
in Still Images . 574

Weijiang Feng, Xiang Zhang, Xuhui Huang, and Zhigang Luo

The Impact of Dataset Complexity on Transfer Learning over
Convolutional Neural Networks . 582

Miguel D. de S. Wanderley, Leonardo de A. e Bueno, Cleber Zanchettin,
and Adriano L.I. Oliveira

XVIII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-68612-7_56
http://dx.doi.org/10.1007/978-3-319-68612-7_56
http://dx.doi.org/10.1007/978-3-319-68612-7_57
http://dx.doi.org/10.1007/978-3-319-68612-7_58
http://dx.doi.org/10.1007/978-3-319-68612-7_58
http://dx.doi.org/10.1007/978-3-319-68612-7_59
http://dx.doi.org/10.1007/978-3-319-68612-7_59
http://dx.doi.org/10.1007/978-3-319-68612-7_60
http://dx.doi.org/10.1007/978-3-319-68612-7_60
http://dx.doi.org/10.1007/978-3-319-68612-7_61
http://dx.doi.org/10.1007/978-3-319-68612-7_61
http://dx.doi.org/10.1007/978-3-319-68612-7_62
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_64
http://dx.doi.org/10.1007/978-3-319-68612-7_64
http://dx.doi.org/10.1007/978-3-319-68612-7_65
http://dx.doi.org/10.1007/978-3-319-68612-7_65
http://dx.doi.org/10.1007/978-3-319-68612-7_66
http://dx.doi.org/10.1007/978-3-319-68612-7_66

Real-Time Face Detection Using Artificial Neural Networks. 590
Pablo S. Aulestia, Jonathan S. Talahua, Víctor H. Andaluz,
and Marco E. Benalcázar

On the Performance of Classic and Deep Neural Models
in Image Recognition . 600

Ricardo García-Ródenas, Luis Jiménez Linares,
and Julio Alberto López-Gómez

Winograd Algorithm for 3D Convolution Neural Networks 609
Zelong Wang, Qiang Lan, Hongjun He, and Chunyuan Zhang

Core Sampling Framework for Pixel Classification 617
Manohar Karki, Robert DiBiano, Saikat Basu,
and Supratik Mukhopadhyay

Biomedical Data Augmentation Using Generative Adversarial
Neural Networks . 626

Francesco Calimeri, Aldo Marzullo, Claudio Stamile,
and Giorgio Terracina

Detection of Diabetic Retinopathy Based on a Convolutional Neural
Network Using Retinal Fundus Images . 635

Gabriel García, Jhair Gallardo, Antoni Mauricio, Jorge López,
and Christian Del Carpio

A Comparison of Machine Learning Approaches for Classifying Multiple
Sclerosis Courses Using MRSI and Brain Segmentations 643

Adrian Ion-Mărgineanu, Gabriel Kocevar, Claudio Stamile,
Diana M. Sima, Françoise Durand-Dubief, Sabine Van Huffel,
and Dominique Sappey-Marinier

Advances in Machine Learning

Parallel-Pathway Generator for Generative Adversarial Networks
to Generate High-Resolution Natural Images . 655

Yuya Okadome, Wenpeng Wei, and Toshiko Aizono

Using Echo State Networks for Cryptography. 663
Rajkumar Ramamurthy, Christian Bauckhage, Krisztian Buza,
and Stefan Wrobel

Two Alternative Criteria for a Split-Merge MCMC on Dirichlet
Process Mixture Models. 672

Tikara Hosino

Contents – Part II XIX

http://dx.doi.org/10.1007/978-3-319-68612-7_67
http://dx.doi.org/10.1007/978-3-319-68612-7_68
http://dx.doi.org/10.1007/978-3-319-68612-7_68
http://dx.doi.org/10.1007/978-3-319-68612-7_69
http://dx.doi.org/10.1007/978-3-319-68612-7_70
http://dx.doi.org/10.1007/978-3-319-68612-7_71
http://dx.doi.org/10.1007/978-3-319-68612-7_71
http://dx.doi.org/10.1007/978-3-319-68612-7_72
http://dx.doi.org/10.1007/978-3-319-68612-7_72
http://dx.doi.org/10.1007/978-3-319-68612-7_73
http://dx.doi.org/10.1007/978-3-319-68612-7_73
http://dx.doi.org/10.1007/978-3-319-68612-7_74
http://dx.doi.org/10.1007/978-3-319-68612-7_74
http://dx.doi.org/10.1007/978-3-319-68612-7_75
http://dx.doi.org/10.1007/978-3-319-68612-7_76
http://dx.doi.org/10.1007/978-3-319-68612-7_76

FP-MRBP: Fine-grained Parallel MapReduce Back
Propagation Algorithm. 680

Gang Ren, Qingsong Hua, Pan Deng, and Chao Yang

IQNN: Training Quantized Neural Networks with Iterative Optimizations . . . 688
Shuchang Zhou, He Wen, Taihong Xiao, and Xinyu Zhou

Compressing Neural Networks by Applying Frequent Item-Set Mining 696
Zi-Yi Dou, Shu-Jian Huang, and Yi-Fan Su

Applying the Heavy-Tailed Kernel to the Gaussian Process Regression
for Modeling Point of Sale Data . 705

Rui Yang and Yukio Ohsawa

Chaotic Associative Memory with Adaptive Scaling Factor 713
Tatsuuya Okada and Yuko Osana

Short Papers

EvoCNN: Evolving Deep Convolutional Neural Networks
Using Backpropagation-Assisted Mutations . 725

Eli (Omid) David and Nathan S. Netanyahu

Stage Dependent Ensemble Deep Learning for Dots-and-Boxes Game 727
Yipeng Zhang, Shuqin Li, Meng Ding, and Kun Meng

Conditional Time Series Forecasting with Convolutional Neural Networks . . . 729
Anastasia Borovykh, Sander Bohte, and Cornelis W. Oosterlee

A Convolutional Neural Network Based Approach for Stock Forecasting 731
Haixing Yu, Lingyu Xu, and Gaowei Zhang

The All-Convolutional Neural Network with Recurrent Architecture
for Object Recognition. 733

Yiwei Gu and Xiaodong Gu

Body Measurement and Weight Estimation for Live Yaks Using Binocular
Camera and Convolutional Neural Network . 735

Siqi Liu, Chun Yu, Yuan Xie, Zhiqiang Liu, Pin Tao, and Yuanchun Shi

A Modified Resilient Back-Propagation Algorithm in CNN for Optimized
Learning of Visual Recognition Problems . 737

Sadaqat ur Rehman, Shanshan Tu, and Yongfeng Huang

Learning in Action Game by Profit Sharing Using Convolutional
Neural Network . 739

Kaichi Murakami and Yuko Osana

XX Contents – Part II

http://dx.doi.org/10.1007/978-3-319-68612-7_77
http://dx.doi.org/10.1007/978-3-319-68612-7_77
http://dx.doi.org/10.1007/978-3-319-68612-7_78
http://dx.doi.org/10.1007/978-3-319-68612-7_79
http://dx.doi.org/10.1007/978-3-319-68612-7_80
http://dx.doi.org/10.1007/978-3-319-68612-7_80
http://dx.doi.org/10.1007/978-3-319-68612-7_81
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65

Deep Learning for Adaptive Playing Strength in Computer Games 741
Eli (Omid) David and Nathan S. Netanyahu

Benchmarking Reinforcement Learning Algorithms for the Operation
of a Multi-carrier Energy System . 743

J. Bollenbacher and B. Rhein

Differentiable Oscillators in Recurrent Neural Networks for Gradient-Based
Sequence Modeling . 745

Sebastian Otte and Martin V. Butz

Empirical Study of Effect of Dropout in Online Learning. 747
Kazuyuki Hara

Context Dependent Input Weight Selection for Regression
Extreme Learning Machines . 749

Yara Rizk and Mariette Awad

Solution of Multi-parameter Inverse Problem by Adaptive Methods:
Efficiency of Dividing the Problem Space . 751

Alexander Efitorov, Tatiana Dolenko, Sergey Burikov, Kirill Laptinskiy,
and Sergey Dolenko

Hopfield Auto-Associative Memory Network for Content-Based
Text-Retrieval. 753

Vandana M. Ladwani, Y. Vaishnavi, and V. Ramasubramanian

From Deep Multi-lingual Graph Representation Learning
to History Understanding . 756

Sima Sharifirad, Stan Matwin, and Witold Dzwinel

Adaptive Construction of Hierarchical Neural Network Classifiers:
New Modification of the Algorithm. 757

Sergey Dolenko, Vsevolod Svetlov, and Igor Isaev

Automobile Insurance Claim Prediction Using Distributed Driving
Behaviour Data on Smartphones . 759

Chalermpol Saiprasert, Pantaree Phumphuang,
and Suttipong Thajchayapong

A Fault-Tolerant Indoor Localization System with Recurrent
Neural Networks . 761

Eduardo Carvalho, Bruno Ferreira, Geraldo P.R. Filho, Jó Ueyama,
and Gustavo Pessin

SNN Model for Highly Energy and Area Efficient On-Chip Classification . . . 763
Anmol Biswas, Aditya Shukla, Sidharth Prasad, and Udayan Ganguly

Contents – Part II XXI

http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63

A Highly Efficient Performance and Robustness Evaluation Method
for a SNN Based Recognition Algorithm . 765

Sidharth Prasad, Anmol Biswas, Aditya Shukla, and Udayan Ganguly

Metric Entropy and Rademacher Complexity of Margin
Multi-category Classifiers. 767

Khadija Musayeva, Fabien Lauer, and Yann Guermeur

A Fuzzy Clustering Approach to Non-stationary Data Streams Learning 768
A. Abdullatif, F. Masulli, S. Rovetta, and A. Cabri

Data Stream Classification by Adaptive Semi-supervised Fuzzy Clustering . . . 770
Giovanna Castellano and Anna Maria Fanelli

The Discovery of the Relationship on Stock Transaction Data 772
Wanwan Jiang, Lingyu Xu, Gaowei Zhang, and Haixing Yu

Confirmation of the Effect of Simultaneous Time Series Prediction
with Multiple Horizons at the Example of Electron Daily Fluence
in Near-Earth Space . 774

Irina Myagkova and Sergey Dolenko

A Neural Attention Based Approach for Clickstream Mining 776
Chandramohan T.N. and Balaraman Ravindran

Classification of Quantitative Light-Induced Fluorescence Images
Using Convolutional Neural Network . 778

Sultan Imangaliyev, Monique H. van der Veen,
Catherine M.C. Volgenant, Bruno G. Loos, Bart J.F. Keijser,
Wim Crielaard, and Evgeni Levin

Deep Residual Hashing Network for Image Retrieval 780
Edwin Jimenez-Lepe and Andres Mendez-Vazquez

Model Evaluation Improvements for Multiclass Classification
in Diagnosis Prediction . 782

Adriana Mihaela Coroiu

MMT: A Multimodal Translator for Image Captioning. 784
Chang Liu, Fuchun Sun, and Changhu Wang

A Multi-Channel and Multi-Scale Convolutional Neural Network
for Hand Posture Recognition . 785

Jiawen Feng, Limin Zhang, Xiangyang Deng, and Zhijun Yu

Semi-supervised Model for Feature Extraction and Classification
of Fashion Images. 786

Seema Wazarkar, Bettahally N. Keshavamurthy, and Shitala Prasad

XXII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63

Identification of Differential Flat Systems with Artifical Neural Networks . . . 788
J. Hoedt, J. Kaste, K. Van Ende, and F. Kallmeyer

Adaptive Weighted Multiclass Linear Discriminant Analysis. 790
Haifeng Zhao, Wei He, and Feiping Nie

Efficient Graph Construction Through Constrained Data
Self-Representativeness . 792

L. Weng, F. Dornaika, and Z. Jin

Author Index . 795

Contents – Part II XXIII

http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63
http://dx.doi.org/10.1007/978-3-319-68612-7_63

Contents – Part I

From Perception to Action

Semi-supervised Phoneme Recognition with Recurrent Ladder Networks 3
Marian Tietz, Tayfun Alpay, Johannes Twiefel, and Stefan Wermter

Mixing Actual and Predicted Sensory States Based on Uncertainty
Estimation for Flexible and Robust Robot Behavior 11

Shingo Murata, Wataru Masuda, Saki Tomioka, Tetsuya Ogata,
and Shigeki Sugano

Neurodynamical Model for the Coupling of Action Perception
and Execution. 19

Mohammad Hovaidi-Ardestani, Vittorio Caggiano, and Martin Giese

Neural End-to-End Self-learning of Visuomotor Skills
by Environment Interaction . 27

Matthias Kerzel and Stefan Wermter

Learning of Labeling Room Space for Mobile Robots Based
on Visual Motor Experience . 35

Tatsuro Yamada, Saki Ito, Hiroaki Arie, and Tetsuya Ogata

Towards Grasping with Spiking Neural Networks for Anthropomorphic
Robot Hands . 43

J. Camilo Vasquez Tieck, Heiko Donat, Jacques Kaiser, Igor Peric,
Stefan Ulbrich, Arne Roennau, Marius Zöllner, and Rüdiger Dillmann

Obstacle Avoidance by Profit Sharing Using Self-Organizing
Map-Based Probabilistic Associative Memory. 52

Daisuke Temma and Yuko Osana

An Ultra-Compact Low-Powered Closed-Loop Device for Control
of the Neuromuscular System . 60

Davide Polese, Luca Pazzini, Ignacio Delgado-Martínez, Luca Maiolo,
Xavier Navarro, and Guglielmo Fortunato

Comparing Action Sets: Mutual Information as a Measure of Control 68
Sascha Fleer and Helge Ritter

Sensorimotor Prediction with Neural Networks on Continuous Spaces 76
Michaël Garcia Ortiz

http://dx.doi.org/10.1007/978-3-319-68600-4_1
http://dx.doi.org/10.1007/978-3-319-68600-4_2
http://dx.doi.org/10.1007/978-3-319-68600-4_2
http://dx.doi.org/10.1007/978-3-319-68600-4_3
http://dx.doi.org/10.1007/978-3-319-68600-4_3
http://dx.doi.org/10.1007/978-3-319-68600-4_4
http://dx.doi.org/10.1007/978-3-319-68600-4_4
http://dx.doi.org/10.1007/978-3-319-68600-4_5
http://dx.doi.org/10.1007/978-3-319-68600-4_5
http://dx.doi.org/10.1007/978-3-319-68600-4_6
http://dx.doi.org/10.1007/978-3-319-68600-4_6
http://dx.doi.org/10.1007/978-3-319-68600-4_7
http://dx.doi.org/10.1007/978-3-319-68600-4_7
http://dx.doi.org/10.1007/978-3-319-68600-4_8
http://dx.doi.org/10.1007/978-3-319-68600-4_8
http://dx.doi.org/10.1007/978-3-319-68600-4_9
http://dx.doi.org/10.1007/978-3-319-68600-4_10

Classifying Bio-Inspired Model of Point-Light Human Motion
Using Echo State Networks . 84

Pattreeya Tanisaro, Constantin Lehman, Leon Sütfeld, Gordon Pipa,
and Gunther Heidemann

A Prediction and Learning Based Approach to Network Selection
in Dynamic Environments . 92

Xiaohong Li, Ru Cao, Jianye Hao, and Zhiyong Feng

Learning a Peripersonal Space Representation as a Visuo-Tactile
Prediction Task. 101

Zdenek Straka and Matej Hoffmann

Learning Distance-Behavioural Preferences Using a Single Sensor
in a Spiking Neural Network . 110

Matt Ross, Nareg Berberian, André Cyr, Frédéric Thériault,
and Sylvain Chartier

From Neurons to Networks

Towards an Accurate Identification of Pyloric Neuron Activity with VSDi . . . 121
Filipa dos Santos, Peter Andras, and K.P. Lam

Interactions in the Striatal Network with Different Oscillation Frequencies . . . 129
Jovana J. Belić, Arvind Kumar, and Jeanette Hellgren Kotaleski

Robot Localization and Orientation Detection Based on Place Cells
and Head-Direction Cells . 137

Xiaomao Zhou, Cornelius Weber, and Stefan Wermter

Algorithms for Obtaining Parsimonious Higher Order Neurons 146
Can Eren Sezener and Erhan Oztop

Robust and Adaptable Motor Command Representation
with Sparse Coding . 155

Nobuhiro Hinakawa and Katsunori Kitano

Translation-Invariant Neural Responses as Variational Messages
in a Bayesian Network Model . 163

Takashi Sano and Yuuji Ichisugi

Implementation of Learning Mechanisms on a Cat-Scale Cerebellar
Model and Its Simulation . 171

Wataru Furusho and Tadashi Yamazaki

XXVI Contents – Part I

http://dx.doi.org/10.1007/978-3-319-68600-4_11
http://dx.doi.org/10.1007/978-3-319-68600-4_11
http://dx.doi.org/10.1007/978-3-319-68600-4_12
http://dx.doi.org/10.1007/978-3-319-68600-4_12
http://dx.doi.org/10.1007/978-3-319-68600-4_13
http://dx.doi.org/10.1007/978-3-319-68600-4_13
http://dx.doi.org/10.1007/978-3-319-68600-4_14
http://dx.doi.org/10.1007/978-3-319-68600-4_14
http://dx.doi.org/10.1007/978-3-319-68600-4_15
http://dx.doi.org/10.1007/978-3-319-68600-4_16
http://dx.doi.org/10.1007/978-3-319-68600-4_17
http://dx.doi.org/10.1007/978-3-319-68600-4_17
http://dx.doi.org/10.1007/978-3-319-68600-4_18
http://dx.doi.org/10.1007/978-3-319-68600-4_19
http://dx.doi.org/10.1007/978-3-319-68600-4_19
http://dx.doi.org/10.1007/978-3-319-68600-4_20
http://dx.doi.org/10.1007/978-3-319-68600-4_20
http://dx.doi.org/10.1007/978-3-319-68600-4_21
http://dx.doi.org/10.1007/978-3-319-68600-4_21

Neuromorphic Approach Sensitivity Cell Modeling
and FPGA Implementation . 179

Hongjie Liu, Antonio Rios-Navarro, Diederik Paul Moeys,
Tobi Delbruck, and Alejandro Linares-Barranco

Brain Imaging

Event Related Potentials Reveal Fairness in Willingness-to-share 191
Alessandra Lintas, Sarat Chandra Vysyaraju, Manon Jaquerod,
and Alessandro E.P. Villa

Individual Identification by Resting-State EEG Using Common
Dictionary Learning. 199

Takashi Nishimoto, Yoshiki Azuma, Hiroshi Morioka, and Shin Ishii

Performance Comparison of Machine Learning Algorithms
for EEG-Signal-Based Emotion Recognition . 208

Peng Chen and Jianhua Zhang

Recurrent Neural Networks

A Neural Network Implementation of Frank-Wolfe Optimization 219
Christian Bauckhage

Inferring Adaptive Goal-Directed Behavior Within Recurrent
Neural Networks . 227

Sebastian Otte, Theresa Schmitt, Karl Friston, and Martin V. Butz

Information Bottleneck in Control Tasks with Recurrent Spiking
Neural Networks . 236

Madhavun Candadai Vasu and Eduardo J. Izquierdo

Neural Computation with Spiking Neural Networks Composed
of Synfire Rings . 245

Jérémie Cabessa, Ginette Horcholle-Bossavit, and Brigitte Quenet

Exploiting Recurrent Neural Networks in the Forecasting of Bees’
Level of Activity. 254

Pedro A.B. Gomes, Eduardo C. de Carvalho, Helder M. Arruda,
Paulo de Souza, and Gustavo Pessin

Inherently Constraint-Aware Control of Many-Joint Robot Arms
with Inverse Recurrent Models . 262

Sebastian Otte, Adrian Zwiener, and Martin V. Butz

Contents – Part I XXVII

http://dx.doi.org/10.1007/978-3-319-68600-4_22
http://dx.doi.org/10.1007/978-3-319-68600-4_22
http://dx.doi.org/10.1007/978-3-319-68600-4_23
http://dx.doi.org/10.1007/978-3-319-68600-4_24
http://dx.doi.org/10.1007/978-3-319-68600-4_24
http://dx.doi.org/10.1007/978-3-319-68600-4_25
http://dx.doi.org/10.1007/978-3-319-68600-4_25
http://dx.doi.org/10.1007/978-3-319-68600-4_26
http://dx.doi.org/10.1007/978-3-319-68600-4_27
http://dx.doi.org/10.1007/978-3-319-68600-4_27
http://dx.doi.org/10.1007/978-3-319-68600-4_28
http://dx.doi.org/10.1007/978-3-319-68600-4_28
http://dx.doi.org/10.1007/978-3-319-68600-4_29
http://dx.doi.org/10.1007/978-3-319-68600-4_29
http://dx.doi.org/10.1007/978-3-319-68600-4_30
http://dx.doi.org/10.1007/978-3-319-68600-4_30
http://dx.doi.org/10.1007/978-3-319-68600-4_31
http://dx.doi.org/10.1007/978-3-319-68600-4_31

Neuromorphic Hardware

Accelerating Training of Deep Neural Networks via Sparse
Edge Processing . 273

Sourya Dey, Yinan Shao, Keith M. Chugg, and Peter A. Beerel

Unsupervised Learning Using Phase-Change Synapses
and Complementary Patterns . 281

Severin Sidler, Angeliki Pantazi, Stanisław Woźniak, Yusuf Leblebici,
and Evangelos Eleftheriou

Brain Topology and Dynamics

The Variational Coupled Gaussian Process Dynamical Model 291
Dmytro Velychko, Benjamin Knopp, and Dominik Endres

q-Maximum Entropy Distributions and Memory Neural Networks. 300
Roseli S. Wedemann and Angel R. Plastino

Adaptively Learning Levels of Coordination from One’s, Other’s and Task
Related Errors Through a Cerebellar Circuit: A Dual Cart-Pole Setup 309

Martí Sánchez-Fibla, Giovanni Maffei, and Paul F.M.J. Verschure

Weighted Clique Analysis Reveals Hierarchical Neuronal
Network Dynamics . 317

Paolo Masulli and Alessandro E.P. Villa

Why the Brain Might Operate Near the Edge of Criticality. 326
Xerxes D. Arsiwalla and Paul Verschure

Interactive Control of Computational Power in a Model of the Basal
Ganglia-Thalamocortical Circuit by a Supervised Attractor-Based
Learning Procedure . 334

Jérémie Cabessa and Alessandro E.P. Villa

Synaptic Plasticity and Learning

Model Derived Spike Time Dependent Plasticity. 345
Melissa Johnson and Sylvain Chartier

Online Representation Learning with Single and Multi-layer Hebbian
Networks for Image Classification. 354

Yanis Bahroun and Andrea Soltoggio

Building Efficient Deep Hebbian Networks for Image Classification Tasks. . . 364
Yanis Bahroun, Eugénie Hunsicker, and Andrea Soltoggio

XXVIII Contents – Part I

http://dx.doi.org/10.1007/978-3-319-68600-4_32
http://dx.doi.org/10.1007/978-3-319-68600-4_32
http://dx.doi.org/10.1007/978-3-319-68600-4_33
http://dx.doi.org/10.1007/978-3-319-68600-4_33
http://dx.doi.org/10.1007/978-3-319-68600-4_34
http://dx.doi.org/10.1007/978-3-319-68600-4_35
http://dx.doi.org/10.1007/978-3-319-68600-4_36
http://dx.doi.org/10.1007/978-3-319-68600-4_36
http://dx.doi.org/10.1007/978-3-319-68600-4_37
http://dx.doi.org/10.1007/978-3-319-68600-4_37
http://dx.doi.org/10.1007/978-3-319-68600-4_38
http://dx.doi.org/10.1007/978-3-319-68600-4_39
http://dx.doi.org/10.1007/978-3-319-68600-4_39
http://dx.doi.org/10.1007/978-3-319-68600-4_39
http://dx.doi.org/10.1007/978-3-319-68600-4_40
http://dx.doi.org/10.1007/978-3-319-68600-4_41
http://dx.doi.org/10.1007/978-3-319-68600-4_41
http://dx.doi.org/10.1007/978-3-319-68600-4_42

Automatic Recognition of Mild Cognitive Impairment from MRI Images
Using Expedited Convolutional Neural Networks . 373

Shuqiang Wang, Yanyan Shen, Wei Chen, Tengfei Xiao, and Jinxing Hu

Interplay of STDP and Dendritic Plasticity in a Hippocampal
CA1 Pyramidal Neuron Model . 381

Ausra Saudargiene, Rokas Jackevicius, and Bruce P. Graham

Enhancements on the Modified Stochastic Synaptic Model:
The Functional Heterogeneity . 389

Karim Ellatihy and Martin Bogdan

Multicompartment Simulations of NMDA Receptor Based Facilitation
in an Insect Target Tracking Neuron . 397

Bo Bekkouche, Patrick A. Shoemaker, Joseph Fabian, Elisa Rigosi,
Steven D. Wiederman, and David C. O’Carroll

Neural Networks Meet Natural and Environmental Sciences

On the Estimation of Pollen Density on Non-target Lepidoptera Food Plant
Leaves in Bt-Maize Exposure Models: Open Problems and Possible
Neural Network-Based Solutions. 407

Francesco Camastra, Angelo Ciaramella, and Antonino Staiano

Short Papers

Neural Networks for Adaptive Vehicle Control . 417
J. Kaste, J. Hoedt, K. Van Ende, and F. Kallmeyer

Brain–Computer Interface with Robot-Assisted Training
for Neurorehabilitation . 418

Roman Rosipal, Natália Porubcová, Peter Barančok, Barbora Cimrová,
Michal Teplan, and Igor Farkaš

Unsupervised Learning of Factors of Variation in the Sensory
Data of a Planar Agent . 419

Oksana Hagen and Michaël Garcia Ortiz

State Dependent Modulation of Perception Based on a Computational
Model of Conditioning . 421

Jordi-Ysard Puigbò, Miguel Angel Gonzalez-Ballester,
and Paul F.M.J. Verschure

Optimal Bases Representation for Embodied Supervised Learning 422
Ivan Herreros, Xerxes D. Arsiwalla, and Paul Verschure

Contents – Part I XXIX

http://dx.doi.org/10.1007/978-3-319-68600-4_43
http://dx.doi.org/10.1007/978-3-319-68600-4_43
http://dx.doi.org/10.1007/978-3-319-68600-4_44
http://dx.doi.org/10.1007/978-3-319-68600-4_44
http://dx.doi.org/10.1007/978-3-319-68600-4_45
http://dx.doi.org/10.1007/978-3-319-68600-4_45
http://dx.doi.org/10.1007/978-3-319-68600-4_46
http://dx.doi.org/10.1007/978-3-319-68600-4_46
http://dx.doi.org/10.1007/978-3-319-68600-4_47
http://dx.doi.org/10.1007/978-3-319-68600-4_47
http://dx.doi.org/10.1007/978-3-319-68600-4_47
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65

The Effects of Neuronal Diversity on Network Synchronization 423
Aubin Tchaptchet and Hans Albert Braun

Temporal Regions for Activity Recognition . 424
João Paulo Aires, Juarez Monteiro, Roger Granada, Felipe Meneguzzi,
and Rodrigo C. Barros

Computational Capacity of a Cerebellum Model . 425
Robin De Gernier, Sergio Solinas, Christian Rössert, Jonathan Mapelli,
Marc Haelterman, and Serge Massar

The Role of Inhibition in Selective Attention . 427
Sock Ching Low, Riccardo Zucca, and Paul F.M.J. Verschure

Stochasticity, Spike Timing, and a Layered Architecture
for Finding Iterative Roots . 429

Adam Frick and Nicolangelo Iannella

Matching Mesoscopic Neural Models to Microscopic Neural Networks
in Stationary and Non-stationary Regimes . 431

Lara Escuain-Poole, Alberto Hernández-Alcaina, and Antonio J. Pons

Hyper Neuron - One Neuron with Infinite States. 432
Shabab Bazrafkan, Joseph Lemley, and Peter Corcoran

Sparse Pattern Representation in a Realistic Recurrent Spiking
Neural Network . 434

Jesús A. Garrido and Eduardo Ros

Gender Differences in Spontaneous Risky Decision-Making Behavior:
A Hyperscanning Study Using Functional Near-Infrared Spectroscopy 436

Mingming Zhang, Tao Liu, Matthew Pelowski, and Dongchuan Yu

An Implementation of a Spiking Neural Network Using Digital Spiking
Silicon Neuron Model on a SIMD Processor . 437

Sansei Hori, Mireya Zapata, Jordi Madrenas, Takashi Morie,
and Hakaru Tamukoh

Hardware Implementation of Deep Self-organizing Map Networks 439
Yuichiro Tanaka and Hakaru Tamukoh

A Model of Synaptic Normalization and Heterosynaptic Plasticity
Based on Competition for a Limited Supply of AMPA Receptors 442

Jochen Triesch

Hebbian Learning Deduced from the Stationarity Principle Leads
to Balanced Chaos in Fully Adapting Autonomously Active Networks 444

Claudius Gros, Philip Trapp, and Rodrigo Echeveste

XXX Contents – Part I

http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65

A Granule-Pyramidal Cell Model for Learning and Predicting
Trajectories Online . 446

Mehdi Abdelwahed, Ihor Kuras, Artem Meltnyk, and Pierre Andry

Single Neurons Can Memorize Precise Spike Trains Immediately:
A Computational Approach . 448

Hubert Loeffler

Learning Stable Recurrent Excitation in Simulated Biological
Neural Networks . 449

Michael Teichmann and Fred H. Hamker

Speech Emotion Recognition: Recurrent Neural Networks Compared
to SVM and Linear Regression . 451

Leila Kerkeni, Youssef Serrestou, Mohamed Mbarki,
Mohamed Ali Mahjoub, Kosai Raoof, and Catherine Cleder

Pelagic Species Identification by Using a PNN Neural Network
and Echo-Sounder Data . 454

Ignazio Fontana, Giovanni Giacalone, Angelo Bonanno,
Salvatore Mazzola, Gualtiero Basilone, Simona Genovese,
Salvatore Aronica, Solon Pissis, Costas S. Iliopoulos, Ritu Kundu,
Antonino Fiannaca, Alessio Langiu, Giosue’ Lo Bosco,
Massimo La Rosa, and Riccardo Rizzo

The Impact of Ozone on Crop Yields by Combining Multi-model
Results Through a Neural Network Approach . 456

A. Riccio, E. Solazzo, and S. Galmarini

Artificial Neural Networks for Fault Tollerance of an Air-Pressure
Sensor Network . 457

Salvatore Aronica, Gualtiero Basilone, Angelo Bonanno,
Ignazio Fontana, Simona Genovese, Giovanni Giacalone,
Alessio Langiu, Giosué Lo Bosco, Salvatore Mazzola,
and Riccardo Rizzo

Modelling the Impact of GM Plants and Insecticides
on Arthropod Populations of Agricultural Interest . 458

Alberto Lanzoni, Edison Pasqualini, and Giovanni Burgio

Deep Neural Networks for Emergency Detection. 460
Emanuele Cipolla, Riccardo Rizzo, and Filippo Vella

Author Index . 463

Contents – Part I XXXI

http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65
http://dx.doi.org/10.1007/978-3-319-68600-4_65

Convolutional Neural Networks

Spiking Convolutional Deep Belief Networks

Jacques Kaiser(B), David Zimmerer, J. Camilo Vasquez Tieck, Stefan Ulbrich,
Arne Roennau, and Rüdiger Dillmann

FZI Research Center for Information Technology, 76131 Karlsruhe, Germany
{jkaiser,zimmerer,tieck,sulbrich,roennau,dillmann}@fzi.de

Abstract. Understanding visual input as perceived by humans is a
challenging task for machines. Today, most successful methods work by
learning features from static images. Based on classical artificial neural
networks, those methods are not adapted to process event streams as
provided by the Dynamic Vision Sensor (DVS). Recently, an unsuper-
vised learning rule to train Spiking Restricted Boltzmann Machines has
been presented [9]. Relying on synaptic plasticity, it can learn features
directly from event streams. In this paper, we extend this method by
adding convolutions, lateral inhibitions and multiple layers. We evaluate
our method on a self-recorded DVS dataset as well as the Poker-DVS
dataset. Our results show that our convolutional method performs bet-
ter and needs less parameters. It also achieves comparable results to
previous event-based classification methods while learning features in an
unsupervised fashion.

Keywords: Spiking neural network · Convolutional Restricted Boltz-
mann Machine · event-based Contrastive Divergence

1 Introduction

Extracting features from visual input is an important topic of computer vision.
It allows reducing the redundancy in pixel intensities, so that images can be
described with fewer parameters. However, finding good features to represent
natural images is complicated, and today most feature extractors are learned.
While there are many methods to learn features from an image dataset, only few
methods learn features from event streams as provided by the Dynamic Vision
Sensor (DVS) [8].

In this paper, we present a method to learn event-based features in an unsu-
pervised fashion called Spiking Convolutional Deep Belief Network (SCDBN).
The core component of our method is the Spiking Convolutional Restricted
Boltzmann Machine (SCRBM), which convolves input spike trains and learns
with event-based Contrastive Divergence (eCD) [9]. We evaluate our method
against previously presented event-based feature extractors by ranking it on the
Poker-DVS dataset [12]. The main contribution of this paper is the addition of
convolutions and lateral inhibitions to the original method [9], as proposed in
[6] for classical non-spiking RBMs.
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 3–11, 2017.
https://doi.org/10.1007/978-3-319-68612-7_1

4 J. Kaiser et al.

2 Related Work

The Convolutional Restricted Boltzmann Machine (CRBM) was invented simul-
taneously in [3,6,10]. In similarity to Convolutional Neural Networks (CNNs),
it can be seen as the advancement of an energy-based model adapting to com-
positional data. Unlike a normal RBM, the visible and hidden layer in a CRBM
are connected in a convolutional manner instead of being fully connected.

In contrast to CNNs, due to their local learning rule, RBMs can not be
explicitly trained to perform max pooling operations. Thus a softmax based
probabilistic max pooling is introduced in [6] to enforce local sparseness in the
hidden activations, on which a pooling layer can be stacked. Since RBMs have
been described as the most biologically plausible deep learning architecture [1],
there were many attempts to adapt them to spiking networks. Indeed, recent
studies suggest that information is encoded in the brain as representations of
probability distributions and probabilistic interference [5,7,14].

A first framework which proposed how spiking neurons can perform Markov
chain Monte Carlo (MCMC) sampling and approximate a Boltzmann distribu-
tion was introduced in [2]. A neuron is regarded as a random variable with a
binary state defined by whether it is firing or not. Since the firing of a neuron
is instantaneous, after a neuron has fired it is set to the firing state for a time
period τ . A common choice for τ is the refractory period of the neuron τref . Con-
sequently, one way to characterize the firing probability of a neuron is to take the
relative time a neuron has spent in the firing state. Thus for a given timestep,
the state of the network is defined by the states of the individual neurons.

This model is improved in [11] by replacing the stochastic neuron model
by conductance based LIF neurons, a more common and biologically inspired
neuron model. Indeed, under high frequency (Poisson) noise, a conductance-
based LIF neuron reaches a high conductance state of its membrane potential.
In this high conductance state, the neuron shows stochastic firing of sigmoidal
shape, determined by the input current and the noise frequency.

This neural sampling framework was further extended by a synaptic plasticity
rule to perform Contrastive Divergence (CD) in continuous time [4,9]. The app-
roach presented in [9], called event-based Contrastive Divergence (eCD), relies on
bidirectional synapses and an adapted symmetric Spike-Timing-Dependent Plas-
ticity (STDP) variant, which alternates between Long-Term Potentiation (LTP)
and Long-Term Depression (LTD) to model the positive and negative phases of
the CD algorithm respectively. The same network can therefore perform an arbi-
trary number of CD steps. In this paper, we use the eCD learning rule presented
in [9] to train Spiking Convolutional Restricted Boltzmann Machine (SCRBM)
and stack them into Spiking Convolutional Deep Belief Network (SCDBN).

3 Architecture

In this section we describe the architecture of our SCRBM, how we tune
the synaptic weights and stack them to form a SCDBN. For the convolution

Spiking Convolutional Deep Belief Networks 5

(Sect. 3.1), we highlight the differences between our method and the method
proposed in [6], which relies on classical artificial neurons. For the learning rule
(Sect. 3.2), we highlight the differences between our method and the method pro-
posed in [9], which does not consider convolutions or multi-layer architectures.

3.1 Spiking Convolutional Layer

Convolution in neural networks stands for weight sharing over receptive fields
in structured data. It reduces the number of parameters to tune by applying
the same processing to all receptive fields. Convolution is now a widely adopted
concept to process images with neural networks.

The architecture of our SCRBM is similar to the one presented in [6]. The
hidden layer is splitted into feature maps defined by kernels. A kernel represents
the weights that are shared across receptive fields in a feature map. Adjacent
receptive fields are overlapping and the output neurons have the same topology
as their input regions, see Fig. 1a.

(a) (b) (c)

Fig. 1. Schema of the architectures for the proposed SCDBN. (a) The hidden layer of
a SCRBM is organized in feature maps convolving the input. (b) The feature maps
have inhibitory connections from one to another to encourage feature discrimination,
and across local neighborhood for sparsity. (c) A SCDBN consisting of two stacked
SCRBMs, connected with a purely feedforward layer.

Unlike [6], our network consists of spiking neurons, where each synapse has
its own dynamics. Therefore, each synapse has its own weight on which it per-
forms local updates following the STDP learning rule. We synchronize all weight
updates within a feature map at regular timesteps.

3.2 Learning Rule

To train a SCRBM, we adapt the eCD rule proposed in [9]. The original eCD
rule can be expressed as:

d
dt

wij = g(t) · STDP(vi(t), hj(t)), (1)

6 J. Kaiser et al.

where vi(t) and hj(t) are the spike trains of the visible and hidden units vi and
hj , g(t) ∈ R is the global signal determining positive and negative phases of CD
and STDP (v, h) is a symmetric LTP rule on the bidirectional synapse.

The original division into four training phases has similarities to persistent
CD since the activity of the hidden layer of the previous step is used as starting
state for the next step. Therefore, we extend the learning rule with a fifth phase,
where the network is “flushed” thus enabling normal CD (see Fig. 2).

Fig. 2. The five phases of eCD for a training step. The input stream is only clamped
to the visible units during the burn-in phase. In the second phase, we learn the data
by activating LTP. Learning is then deactivated in the burn-out phase. In the fourth
phase, we unlearn the model with LTD. Unlike [9], we add a fifth phase to flush the
network. A training step is simulated for Tstep = 168 ms, the learning phases last 8%,
the burn phases 36% and the flush phase 12%.

We implement the weight sharing by averaging the synaptic weights of a
kernel within a feature map at discrete timesteps:

wshared ←

∑

w∈Wgroup

w

|Wgroup|
∀w ∈ Wgroup, w ← wshared,

(2)

with Wgroup the set of shared synaptic weights within a feature map.

3.3 Lateral Inhibition

Classical Convolutional Neural Networks often alternate between convolutional
layers and max pooling layers. A softmax based probabilistic max pooling was
proposed in [6] to introduce local sparseness in the hidden activations. However,
this approach requires information about neighboring neuron activations at dis-
crete timesteps and is therefore not suited for networks of spiking neurons. In
contrast to [6], we enforce sparseness in the hidden layer by introducing lateral
inhibitions. Specifically, we introduce two types of lateral inhibition: between all
neurons within the same feature map, and between all neurons having the same
location across different feature maps, see Fig. 1b. The former increases sparsity
in a feature map by reducing the probability of a neighbor neuron to fire when
another already fired, similar to probabilistic max pooling. The latter enforces
the learning of discriminative features by reducing the correlation between dif-
ferent kernels, see Fig. 1b. Let wi′j′k′

ijk be the weight between two hidden-layer

Spiking Convolutional Deep Belief Networks 7

neurons xijk and xi′j′k′ at position i, j and i′, j′ at feature map k and k′ respec-
tively. We have:

wi′j′k′
ijk =

⎧
⎪⎨

⎪⎩

β1, for |i − i′| < bd , |j − j′| < bd and k �= k′,
β2, for |i − i′| < bs , |j − j′| < bs and k = k′,
0, otherwise,

(3)

where bd and bs are the neighborhood size in different feature maps and within
the same feature map respectively, and β1, β2 ≤ 0 are inhibitory weights. This
removes one advantage of RBMs since the hidden units are no longer indepen-
dent, which makes it harder to sample from the true Boltzmann distribution.
However, since the spiking network continuously performs sampling steps, the
approximation has shown to be sufficient if the weights are not too strong and
prevent changes of different modes, see Fig. 3.

(a) (b) (c)

Fig. 3. Spike trains of neurons in the hidden layer during many training steps with
varying lateral inhibitions. As the lateral inhibition increases, the activity becomes
more sparse, preventing mode switching. We set inhibition size bd = bs = 1 and weights
β1 = β2 = β, see Eq. 3. (a) No lateral inhibitions β = 0. (b) Weak lateral inhibitions:
β = −1. (c) Strong lateral inhibitions: β = −10.

3.4 Spiking Convolutional Deep Belief Network

With networks of classical artificial neurons, several RBMs are stacked upon
each other to form a DBN, which has more representational power thanks to
its hierarchy of layers. More precisely, a RBM is trained greedily on the whole
dataset, which is then entirely converted to hidden layer activations after a
forward pass. The converted dataset is then used to train the next RBM in the
stack, and so forth. During testing, the resulting DBN can then abstract the data
by performing one forward pass per layer. In other words, layers are sampled one
by one with respect to the previous one in a bottom-up fashion.

Unfortunately, spiking RBMs can not sample a layer with respect to another
one and ignore all other top-down connections from the next layer. Instead, one-
way forward connections between the hidden layer of the previous RBM and the

8 J. Kaiser et al.

visible layer of the next RBM (see Fig. 1c) must be added. This approach only
allows the abstraction of data (forward passes) and prevents the reconstruction
over more than one layer (downward passes). Bidirectional synapses can therefore
also be replaced with forward synapses to save computational power.

4 Results

In contrast to networks of classical artificial neurons which are trained on images,
we train our network of spiking neurons on event-based data captured by a DVS
[8]. We evaluate the quality of the learned features in two ways. Firstly, we quan-
titatively evaluate the ability of our SCDBN to abstract event-based data on a
classification task. We show how convolutions improve the performance on a self-
recorded dataset, where objects are not properly centered in the event stream.
We then compare our method against other event-based classification methods
by ranking it on the popular Poker-DVS dataset [12]. Secondly, we qualitatively
evaluate the ability of our method to reconstruct a partially occluded stream of
events.

4.1 Experimental Setup

We evaluate our approach on two different event-based datasets. Ball-Can-Pen:
Motivated by different grasp types [13], we recorded ball, can and pen images
flashing on a screen with a DVS. The set consists of 90 samples for each of the
three classes, each sample lasting 100ms. The samples were further downscaled
from 128 × 128 to 16 × 16 pixels. In this dataset, the objects do not have
the same location on the images, making them harder to classify. Poker-DVS
Dataset [12]: we further downsample the extracted Poker patches to a size of
16 × 16 pixels and only consider spikes in the first 8 ms.

4.2 Classification

We quantitatively compare our method to other event-based classification meth-
ods. The architecture of our SCDBN consists of two layers. The first layer is con-
volutional with ten filters of size 10 × 10 and performs the feature extraction.
The second layer is fully connected and performs the association between the
extracted features and the correct labels. The complete architecture is depicted
in Fig. 4b. For both datasets, each layer is trained over 600 randomly drawn
samples. The final accuracy is calculated over the training set.

To outline the benefits of our convolutional architecture, we compare the
performance against a similar architecture but without any convolutions, with
ten fully connected hidden units for extracting features. This non-convolutional
architecture is similar as the one used in [9], with an additional layer. Due to the
lower number of parameters in convolutional layer, the convolutional model is
less prone to overfitting than the non-convolutional one. The number of parame-
ters and the classification accuracy can be seen in Table 1 and in Fig. 4c. Even
with fewer parameters, the convolutional architecture has a higher classification
accuracy. Moreover, our model reaches 90% accuracy on Poker-DVS.

Spiking Convolutional Deep Belief Networks 9

Table 1. Classification accuracy of our method on two event-based datasets. Due to
the small amount of training samples, testing is performed on the training set. Despite
fewer parameters for the convolutional architecture, runtime is longer due to the shared
synapses having their own dynamics.

Accuracy Parameters in 1st layer Runtime/Sample

Ball-Can-Pen without convolution 0.82 2560 4.8 s

Ball-Can-Pen with convolution 1.0 1000 6.2 s

Poker-DVS with convolution 0.90 1000 6.2 s

Poker-DVS Spiking CNN [12] 0.91 600 (trained offline) -

Poker-DVS H-First [12] 0.975 0 (hard coded) -

4.3 Reconstruction

In this section, we qualitatively evaluate the quality of our learned features by
reconstructing missing data in the event stream input. Specifically, we start by
streaming events in the visible layer of the first SCRBM, and after streaming
is done, we record the spikes of the visible layer. We also corrupt the stream
of data by spatially removing half of the events. The results indicate that the
network is not just able to reconstruct complete data samples but is also able to
fill in missing information, see Fig. 4d.

(a)

(b) (c) (d)

Fig. 4. Experimental evaluation of our SCDBN. (a) Samples of balls, cans and pens
from our self-recorded Ball-Can-Pen dataset. Event-streams are aggregated to images
for visualization. (b) The SCDBN consists of 16 × 16 visible neurons, 10 feature maps
of size 10 × 10 and 10 association neurons. (c) Classification accuracy on the Ball-
Can-Pen dataset of our method against a similar network without convolutions, as
presented in [9]. (d) Reconstructed event-stream from the first SCRBM in the SCDBN
stack. Top: full input, middle: horizontal crop, bottom: vertical crop.

10 J. Kaiser et al.

5 Conclusion

In this paper, we introduce the Spiking Convolutional Deep Belief Network
(SCDBN), a new method to learn high-level features from event-based data.
Relying on event-based contrastive divergence [9], our network is trained with
synaptic plasticity directly within the spiking network. We demonstrate that by
adding convolutions to the original method, we can improve the performance
while reducing the number of parameters to learn (Fig. 4c). Moreover, we show
that the performance of our method is comparable to previous event-based clas-
sification methods while learning features in an unsupervised fashion. The main
bottleneck of our method is the runtime required for training, see Table 1. It could
be reduced by using neuromorphic hardware. However, bidirectional synapses,
shared weights and global phases are currently technically difficult to implement
on such hardware.

Acknowledgments. The research leading to these results has received funding
from the European Union Horizon 2020 Programme under grant agreement n.720270
(Human Brain Project SGA1).

References

1. Bengio, Y., Lee, D.H., Bornschein, J., Lin, Z.: Towards Biologically Plausible Deep
Learning. arXiv preprint arXiv:1502.0415, p. 18 (2015)

2. Buesing, L., et al.: Neural dynamics as sampling: a model for stochastic computa-
tion in recurrent networks of spiking neurons. PLoS Comput. Biol. 7(11), e1002211
(2011)

3. Desjardins, G., et al.: Empirical evaluation of convolutional RBMs for vision. Tech-
nical report 1327, Département d’Informatique et de Recherche Opérationnelle,
Université de Montréal (2008)

4. Diehl, P.U., et al.: Fast-classifying, high-accuracy spiking deep networks through
weight and threshold balancing. In: International Joint Conference on Neural Net-
works (IJCNN), vol. 2015 (2015)

5. Griffiths, T.L., Kemp, C., Tenenbaum, J.B.: Bayesian models of cognition. In: Sun,
R. (ed.) Cambridge Handbook of Computational Cognitive Modeling. Cambridge
University Press, Cambridge (2008)

6. Lee, H., et al.: Convolutional deep belief networks for scalable unsupervised learn-
ing of hierarchical representations. In: International Conference on Machine Learn-
ing, pp. 609–616 (2009)

7. Lee, T.S., Mumford, D.: Hierarchical Bayesian inference in the visual cortex. J.
Opt. Soc. Am. 20(7), 1434–1448 (2003)

8. Lichtsteiner, P., et al.: A 128 × 128 120 dB 15us latency asynchronous temporal
contrast vision sensor. IEEE J. Solid-state Circuits 43(2), 566–576 (2008)

9. Neftci, E., et al.: Event-driven contrastive divergence for spiking neuromorphic
systems. Front. Neurosci. 7, 1–14 (2014)

10. Norouzi, M., Ranjbar, M., Mori, G.: Stacks of convolutional restricted boltzmann
machines for shift-invariant feature learning. In: Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2735–2742. IEEE (2009)

http://arxiv.org/abs/1502.0415

Spiking Convolutional Deep Belief Networks 11

11. Petrovici, M.A.: Form Versus Function: Theory and Models for Neuronal Sub-
strates. Springer, New York (2016)

12. Serrano-Gotarredona, T., et al.: Poker-DVS and MNIST-DVS: Their history, how
they were made, and other details. Front. Neurosci. 9, 1–10 (2015)

13. Vasquez Tieck, J.C., et al.: Towards grasping with spiking neural networks for
an anthropomorphic robot hand. In: International Conference on Artificial Neural
Networks (ICANN) (2017)

14. Yang, T., Shadlen, M.N.: Probabilistic reasoning by neurons. Nature 447(7148),
1075–1080 (2007)

Convolutional Neural Network for Pixel-Wise
Skyline Detection

Darian Frajberg(B), Piero Fraternali, and Rocio Nahime Torres

Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Italy
{darian.frajberg,piero.fraternali,rocionahime.torres}@polimi.it

Abstract. Outdoor augmented reality applications are an emerging
class of software systems that demand the fast identification of natural
objects, such as plant species or mountain peaks, in low power mobile
devices. Convolutional Neural Networks (CNN) have exhibited superior
performance in a variety of computer vision tasks, but their training is a
labor intensive task and their execution requires non negligible memory
and CPU resources. This paper presents the results of training a CNN
for the fast extraction of mountain skylines, which exhibits a good bal-
ance between accuracy (94,45% in best conditions and 86,87% in worst
conditions), memory consumption (9,36 MB on average) and runtime
execution overhead (273 ms on a Nexus 6 mobile phone), and thus has
been exploited for implementing a real-world augmented reality applica-
tions for mountain peak recognition running on low to mid-end mobile
phones.

1 Introduction

Convolutional Neural Networks (CNNs) are a powerful tool for addressing hard
object recognition tasks, and have achieved significant improvements outper-
forming previous computer vision techniques in many benchmarks. In particular,
detection problems such as biomedical images analysis [3] and edges extraction
[9] require solutions with high precision at pixel level. An emerging field of appli-
cation of CNNs is the implementation of Augmented Reality (AR) systems, in
which the users are offered an interface that enriches the view of real objects
with computer-generated information [5]. AR applications are normally imple-
mented on portable, low power devices, such as smart glasses or even mobile
phones. Examples are found in tourism (e.g., PeakLens1), astronomy (e.g., Star
Chart2), games (e.g., PokemonGo3), etc. The main challenge of developing a
computer vision component for an AR application for low power devices is the
need of providing high recognition accuracy, real-time performance, with accept-
able memory and battery consumption. These competing objectives require ade-
quate training of the CNN, minimization of the model, and reduction of the

1 http://www.peaklens.com.
2 http://www.sites.google.com/site/starchartuserguide.
3 http://www.pokemongo.com.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 12–20, 2017.
https://doi.org/10.1007/978-3-319-68612-7_2

http://www.peaklens.com
http://www.sites.google.com/site/starchartuserguide
http://www.pokemongo.com

Convolutional Neural Network for Pixel-Wise Skyline Detection 13

overall application fingerprint. This paper presents the training and evalua-
tion of a CNN for a pixel-wise mountain skyline detection task and reports
the result of its usage in the development of PeakLens [4], an AR mobile app
for mountain peaks identification. PeakLens relies on the alignment between a
virtual panorama visible from the current user’s location, computed from the
GPS coordinates, from the compass orientation, and from a Digital Elevation
Model (DEM) of the Earth, and the mountain skyline extracted from the camera
view. Such alignment must be done precisely and in real-time and thus requires
very high accuracy of the extracted skyline and fast execution. For training and
evaluating the skyline detection CNN, we executed a crowd-sourcing task and
manually annotated 8.940 mountain images, fetched from Flickr and from over
2.000 publicly available touristic web-cams. Images in the data set are complex,
diverse, and contain a variety of obstacles occluding the skyline horizon.

The focus of this paper is the description of the CNN model and of its
training, and the evaluation of the resulting pixel-level classifier for mountain
images taken in uncontrolled conditions. The training data set consists of positive
and negative patches automatically sampled from the annotated mountain photo
collection. For evaluation, we noted that the CNN accuracy obtained at patch
level does not represent well the quality of the output for an entire image; thus,
we defined metric functions that assess the quality of the mountain skylines
extracted with the CNN at the whole image level, and computed such functions
with the help of the manually annotated ground truth skylines. The contributions
of the paper are the following:

– We recall the mountain skyline extraction problem, as defined in the relevant
literature (e.g., [2]).

– We illustrate a mountain skyline extraction pipeline that exploits a CNN
for evaluating the probability of pixels to belong to the skyline, and a post-
processing step for extracting the actual skyline from pixel probabilities.

– We define whole image metrics for evaluating the quality of an extracted
skyline with respect to the gold standard created with annotations.

– We evaluate the designed pipeline quantitatively, in terms of precision and
execution overhead (time and memory). Precision is evaluated on two classes
of images: without occlusions and with occlusions.

– We discuss the use of the realized component in a real world mobile app
(www.peaklens.com), with very demanding accuracy, speed and memory con-
straints.

The paper is organized as follows: Sect. 2 briefly surveys the related work
on pixel-wise feature and objected detection and on the specific problem of
mountain skyline extraction; Sect. 3 explains the proposed CNN models and
the method to train it; Sect. 4 presents the evaluation methods and results of
the accuracy and performance of the trained skyline extraction component and
also discusses a real-world case study where the component is embedded in a
mobile app for mountain peak detection; finally, Sect. 5 concludes and gives an
outlook on the future work.

http://www.peaklens.com

14 D. Frajberg et al.

2 Related Work

Skyline extraction is a sub-problem of image-to-terrain alignment; early works,
such as [1,2], tackled the problem by computing the alignment between the
digital elevation model (DEM) and skylines extracted from mountain images.
All documented methods work offline and at the server-side.

Heuristic methods. To extract skylines, [2] proposed an automatic approach
exploiting an edge-based heuristics, whereas [1] applied sky segmentation tech-
niques based on dynamic programming, which required manual support for chal-
lenging pictures. The authors of [1] also released a data set that contains 203
images with ground truth information (including segmentation masks). Feature-
based heuristic methods (e.g., based on edge detection) work well on images
taken in good conditions, but do not address bad weather and skyline occlusions
adequately. In these cases, a cloud, a high voltage cable, or a roof impact nega-
tively the heuristic edge filter, e.g., a cloud edge would be treated as skyline and
the mountain slope below would be erroneously regarded as noise.

CNN methods. Skyline extraction problems can also be addressed with CNNs,
which have exhibited superior performance in a variety of computer vision tasks,
such as object recognition and semantic segmentation. In [8] the authors used
the data set of [1] to extract the skyline with a deconvolutional neural network
for image segmentation; their approach treats an input image as a foreground-
background segmentation problem and does not single out obstacles. Pixel-level
CNN methods have been experimented successfully e.g., in biomedical images
analysis. In [3] the authors proposed a novel binary pixel-based CNN for the
detection of mitosis in breast cancer histology images. The network is trained
with patches extracted from the images, classified as mitosis or non-mitosis based
on the probability of the center pixel of being close to the centroid of a mitosis.
Pixel-wise CNNs are also used for edges extraction problems. In [9] the authors
take image patches as input and predict if their central pixels belong to an edge.

Our skyline detection approach is inspired by [3] and works at pixel-level. We
consider an image as a map of patches and analyze the local context around each
center pixel to predict whether it belongs to the skyline or not. Differently from
[3,9] we specialize the CNN for mountain skyline detection; differently from [8],
we train the network on a large data set of images (8.940) taken in uncontrolled
conditions including samples with many different types of obstacles, and we
evaluate the obtained precision quantitatively (94,45% in best conditions and
86,87% in worst conditions). Differently from all the mentioned works, we target
the fast execution of the CNN on low power devices, in real time and at the
client side, and report the performance of skyline extraction (273 ms per image
on a Nexus 6 mobile phone).

3 Skyline Extraction with CNN

We defined the CNN architecture presented in Table 1, which is an adaptation of
the well known LeNet model [7]. The main difference is that we do not consider

Convolutional Neural Network for Pixel-Wise Skyline Detection 15

Table 1. CNN architecture

Layer Type Input Filter Stride Pad Output

Layer 1 Conv 29× 29 × 3 6× 6 × 3× 20 1 0 24× 24 × 20

Layer 2 Pool (max) 24× 24 × 20 2× 2 2 0 12× 12× 20

Layer 3 Conv 12× 12× 20 5× 5 × 20× 50 1 0 8× 8 × 50

Layer 4 Pool (max) 8× 8 × 50 2× 2 2 0 4× 4 × 50

Layer 5 Conv 4× 4 × 50 4× 4 × 50× 500 1 0 1× 1 × 500

Layer 6 Relu 1× 1 × 500 Max(0,x) 1 0 1× 1 × 500

Layer 7 Conv 1× 1 × 500 1× 1 × 500× 2 1 0 1× 1 × 2

Layer 8 Softmaxloss 1× 1 × 2 - 1 0 1× 1 × 2

28× 28 gray-scaled inputs, but 29× 29 RGB inputs. The output of our architec-
ture considers 2 classes, which represent whether the center pixel of the input
image is part of the skyline (1) or not (0). In the sequel, we will consider the
probability of a pixel to be part of the skyline.

To create the input data set, we conducted an internal crowdsourcing task
and manually annotated the skyline of 8.940 mountain images fetched from Flickr
and from over 2.000 publicly available touristic web-cams. Images in the data
set are complex, diverse and contain a variety of obstacles occluding the skyline
horizon. The data set images were split: 65% for training, 25% for validation and
10% for test. The preparation of the training data set consisted in the extraction
of positive and negative patches from the mountain photo collection. To sample
patches with the most informative content, we applied to each image a soft Canny
filter, computed the edge map, and selected only candidate patches with an edge
pixel at their center. Patches are then labeled as positive or negative based on
their central pixel: if this matches an annotated pixel, the patch is considered
positive; otherwise, it is considered negative. Since non-skyline points are much
more numerous than skyline points, we generated an unbalanced data set by
randomly extracting 100 positive and 200 negative patches from each image.
The CNN model was trained using the Caffe framework [6] on a machine with
an NVIDIA GeForce GTX 1080. It took 61 min to complete and the total number
of learned parameters of the resulting model is 428.732. At execution time, the
fully convolutional network is fed with whole images and returns a spatial map
for each image, in which each pixel is assigned a probability of being positive.

Post-processing. Post-processing is executed over the output of the CNN to
select at most N pixels per column (PPC). 0. . . 1 values are mapped to the
0. . . 255 range, a small erosion is applied and all pixels with scores lower than
a predefined threshold (THR) are removed. We tested also another subsequent
extra post-processing step (EPS), in which the CNN output is multiplied by a
Canny edge map extracted from the original image (see Tables 2 and 3 for an
evaluation).

16 D. Frajberg et al.

4 Evaluation

Accuracy. The maximum accuracy achieved by the CNN model over the test
data set at patch level was 95,05%, obtained with a threshold value for posi-
tive probability of 0,4644. However, accuracy measured at patch level does not
intuitively represent the quality of the output for an entire image. Therefore, we
defined metric functions that assess image level quality by comparing the skyline
extracted with the CNN with the one manually annotated in the ground truth.
Then we evaluated such functions on the test data set images, which were resized
down to 321 pixels of width and corresponding height. For sake of tolerance, the
ground truth annotations were slightly dilated to 9 pixels of size. The following
image-level metric functions have been used:

Average Skyline Accuracy (ASA) measures the fraction of image
columns that contain ground truth skyline pixels and in which at least one
of the positive (i.e., above threshold) pixels extracted by the CNN matches one
of the ground truth pixels; Average No Skyline Accuracy (ANSA) mea-
sures the fraction of columns that do not contain any ground truth skyline pixel
(due to obstacles) and for which also the CNN output does not contain posi-
tive pixels; this metric evaluates false positives in images with an interrupted
skyline; Average Accuracy (AA) measures the fraction of columns in which
the ground truth and the CNN skyline agree, considering agreement when none
contain pixels or otherwise at least one of the CNN pixels matches one of the
ground truth pixels.

Let CNN(i, j) be a function that returns 1 if the image pixel at coordinates
(i,j) belongs to the skyline extracted by the CNN (0 otherwise) and let GT (i, j)
be a function that returns 1 if the pixel (i,j) belongs to the ground truth skyline
(0 otherwise).

ASA =
cols∑

j=1

IGT∧CNN (j)/
cols∑

j=1

IGT (j) (1)

ANSA =

cols∑

j=1

IGT∧CNN (i, j)/(cols−
cols∑

j=1

IGT (j)) (2)

AA =
1

cols

cols∑

j=1

Iagree(j) (3)

where:
IGT (j) := 1 if ∃i| GT (i, j) = 1; 0 otherwise
IGT∧CNN (j) := 1 if ∃i| GT (i, j) = 1 ∧ CNN(i, j) = 1; 0 otherwise
IGT∧CNN (j) := 1 if ∀i| GT (i, j) = 0 ∧ CNN(i, j) = 0; 0 otherwise
Iagree(j) := 1 if IGT∧CNN (j) = 1 ∨ IGT∧CNN (j) = 1; 0 otherwise

Figure 1 shows a mountain image with the ground truth annotation in red
(left) and the quality metrics calculated on the output produced by a CNN with a
regular post-processing that selects 1 PPC. On the right, pixels in white represent
the ground truth annotation, pixels in green represent correctly predicted skyline
pixels, while pixels in red represent incorrect ones.

Convolutional Neural Network for Pixel-Wise Skyline Detection 17

Fig. 1. Evaluation of image with interrupted skyline. Average Skyline Accuracy: 98%.
Average No Skyline Accuracy: 73%. Average Accuracy: 94%. (Color figure online)

To evaluate the quality loss due to occlusions that produce non continuous
skylines, we performed two evaluation rounds. First, we assessed the 462 images
of the test data set (51,68%) with no interruptions. As shown in Table 2 Average
Accuracy is 94,45% with 1 PPC (row 1) and 97,04% with 3 PPC (row 6). The
threshold was set to 0 to maximize the chances of selecting at least one CNN pixel
per column. The loss of accuracy is only due to pixels that the CNN positions
at a different row w.r.t. the ground truth. In the second round, we considered
the entire test data set of 894 images, in which 8% of all the columns correspond
to interrupted skyline. Results are reported in Table 3: the maximum Average
Accuracy decreases to 86,87% for 1 PPC (row 7) and 89,36% for 3 PPC (row
12): occlusions that interrupt the skyline impact the accuracy by introducing
false positives and false negatives. A threshold of 100 proved the most suitable
value to maximize the AA metric. Different post-processing methods were also
evaluated, as shown in the other rows of Tables 2 and 3: overall the use of the
CNN with EPS achieved the highest result with 1 PPC (Table 2, row 1: 94,45%;
and 3 row 7: 86,87%), such values improve when the multiplication between the
CNN output and Canny is used, achieving the best results with 3 PPC (Table 2,
row 6: 97,04% and Table 3, row 12: 89,36%); the multiplication between the
extracted skyline and the edge map obtained with a Gaussian Blur followed by
a Canny filter is always outperformed.

Table 2. Evaluation on test data set with only continuous skyline images

V PPC THR EPS ASA ANSA AA

1 1 0 No 94,45% - 94,45%

2 1 0 (Blur + Canny) 92,69% - 92,69%

3 1 0 Canny 93,73% - 93,73%

4 3 0 No 95,92% - 95,92%

5 3 0 (Blur + Canny) 96,72% - 96,72%

6 3 0 Canny 97,04% - 97,04%

18 D. Frajberg et al.

Table 3. Evaluation on complete test data set

V PPC THR EPS ASA ANSA AA

7 1 100 No 92,45% 20,14% 86,87%

8 1 100 (Blur + Canny) 90,11% 28,77 85,31%

9 1 100 Canny 91,55% 23,19% 86,21%

10 3 100 No 94,25% 18,83% 88,41%

11 3 100 (Blur + Canny) 93,97% 28,65% 88,83%

12 3 100 Canny 95,07% 22,54% 89,36%

Runtime Performance. The execution of the CNN model in desktop PCs has
negligible execution time per image. To evaluate the suitability for an AR appli-
cation on low power mobile devices, where not only a high recognition accuracy
is needed, but also a real-time performance, we assessed the execution time per
image in smart phones of different categories. To this end, we selected an input
image of dimensions 321 × 241 pixels. While most smart-phones support captur-
ing frames of larger size, after different experimental trials we observed that this
dimension has the best balance of accuracy, memory consumption (9,36 MB on
average), and execution time, on a broad spectrum of devices. The evaluation
was performed by repeating skyline extraction on a test image 1.000 times in
each device, taking as result the average execution time. As shown in Table 4, the
execution time in low power mobile devices is much higher than in a PC, where
skyline extraction can be performed at a frequency of 13 images per second: the
best smart-phone of the test could process around 3 images per second, whereas
computation took something less than 2 s in the devices with lowest hardware.
Processing images at the rates shown in Table 4 is compatible with the usability
requirements of a real-time AR application. Image processing is done in back-
ground with respect to the user interface; if the camera view movements are not
too sudden, as one expects in a mountain peak recognition use case, the skyline
extraction and the subsequent DEM alignment step could be done at a frequency
lower that the 15 frame per second normally considered viable for video play;
the price to pay is some jitter in the camera view, when the skyline extraction
and DEM alignment execute and require an update of the peak positions in the
camera view. However, this limitation on low power mobile phones did not seem
to impact users too much, as discussed next.

Usage experience. The skyline extraction CNN described in the paper is
embedded in the PeakLens AR mobile app, which provides real-time moun-
tain peak identification by processing camera frames at the maximum allowed
speed and overlaying onto them the icons of the visible mountain peaks. Peaks
are fetched by an annotated DEM, queried online, when Internet connectivity is
available, or offline on board of the mobile phone, where it is stored in a com-
pressed format. The initial peak positioning is done using only the DEM and the
GPS and compass sensors: the virtual panorama in view is estimated and peaks

Convolutional Neural Network for Pixel-Wise Skyline Detection 19

Table 4. Time required to execute the skyline extraction

Device Time(ms)

MacBook Pro - 2,9 GHz Intel Core i5 (2 cores) - 16 GB 73

Nexus 6 - 2,65 GHz Qualcomm Snapdragon 805 (4 cores) - 3GB 273

One Plus A0001 - 2,46 GHz Qualcomm Snapdragon 801 (4 cores) - 3 GB 296

Nexus 5X - 1,82 GHz Qualcomm Snapdragon 808 (6 cores) - 2 GB 437

Moto G4 PLUS - 1,52 GHz Qualcomm Snapdragon 617 (8 cores) - 2 GB 472

Asus Z00D - 1,6 GHz Intel Atom z2560 (2 cores) - 2 GB 1128

Galaxy Nexus - 1,2 GHz TI OMAP 4460 (2 cores) - 1GB 1775

are projected onto the camera frame based on where they are in the virtual
panorama. Obviously, such method is extremely prone to the frequently occur-
ring errors in the DEM, GPS and compass. Here is where the skyline extraction
component is exploited, by updating the peak positions based on the registra-
tion of the camera view skyline extracted by the CNN and the skyline of the
virtual panorama. Thanks to such registration, PeakLens is able to automatically
correct substantial errors in the DEM, GPS position and compass, in real-time.

5 Conclusions and Future Work

In this paper we have discussed a CNN model for mountain skyline extraction,
trained with a large set of annotated images taken in uncontrolled conditions,
and capable of supporting an AR mountain peak recognition app also on low-end
mobile phones. Future work will concentrate on the optimization of the CNN
model, to make its execution faster on phones with less than 1GB RAM and
support usage even without the compass, which requires the very fast alignment
of the camera view with a 360◦ virtual panorama.

References

1. Baatz, G., Saurer, O., Köser, K., Pollefeys, M.: Large scale visual geo-localization of
images in mountainous terrain. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato,
Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 517–530. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33709-3 37

2. Baboud, L., Čad́ık, M., Eisemann, E., Seidel, H.P.: Automatic photo-to-terrain
alignment for the annotation of mountain pictures. In: 2011 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 41–48. IEEE (2011)

3. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in
breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I.,
Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5 51

http://dx.doi.org/10.1007/978-3-642-33709-3_37
http://dx.doi.org/10.1007/978-3-642-40763-5_51

20 D. Frajberg et al.

4. Fedorov, R., Frajberg, D., Fraternali, P.: A framework for outdoor mobile augmented
reality and its application to mountain peak detection. In: De Paolis, L.T., Mongelli,
A. (eds.) AVR 2016. LNCS, vol. 9768, pp. 281–301. Springer, Cham (2016). doi:10.
1007/978-3-319-40621-3 21

5. Jain, P., Manweiler, J., Roy Choudhury, R.: Overlay: practical mobile augmented
reality. In: Proceedings of the 13th International Conference on Mobile Systems,
Applications, and Services, pp. 331–344. ACM (2015)

6. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature
embedding. In: Proceedings of 22nd ACM International Conference on Multimedia,
pp. 675–678. ACM (2014)

7. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
Comput. 1(4), 541–551 (1989)

8. Porzi, L., Rota Bulò, S., Ricci, E.: A deeply-supervised deconvolutional network for
horizon line detection. In: Proceedings of ACM Multimedia Conference, pp. 137–
141. ACM (2016)

9. Wang, R.: Edge detection using convolutional neural network. In: Cheng, L., Liu,
Q., Ronzhin, A. (eds.) ISNN 2016. LNCS, vol. 9719, pp. 12–20. Springer, Cham
(2016). doi:10.1007/978-3-319-40663-3 2

http://dx.doi.org/10.1007/978-3-319-40621-3_21
http://dx.doi.org/10.1007/978-3-319-40621-3_21
http://dx.doi.org/10.1007/978-3-319-40663-3_2

1D-FALCON: Accelerating Deep Convolutional
Neural Network Inference by Co-optimization

of Models and Underlying Arithmetic
Implementation

Partha Maji(B) and Robert Mullins

Computer Laboratory, University of Cambridge,
15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
{partha.maji,robert.mullins}@cl.cam.ac.uk

Abstract. Deep convolutional neural networks (CNNs), which are at
the heart of many new emerging applications, achieve remarkable per-
formance in audio and visual recognition tasks, at the expense of high
computational complexity, limiting their deployability. In modern CNNs
it is typical for the convolution layers to consume the vast majority of
the compute resources during inference. This has made the acceleration
of these layers an important research and industrial goal. In this paper,
we examine the effects of co-optimizing the internal structures of the
convolutional layers and underlying implementation of fundamental con-
volution operation. We demonstrate that a combination of these meth-
ods can have a big impact on the overall speed-up of a CNN, achieving
a tenfold increase over baseline. We also introduce a new class of fast
1-D convolutions for CNNs using the Toom-Cook algorithm. We show
that our proposed scheme is mathematically well grounded, robust, does
not require any time-consuming retraining, and still achieves speed-ups
solely from convolutional layers with no loss in baseline accuracy.

Keywords: Convolutional neural network · Deep learning · Computa-
tional optimization · Hardware implementation

1 Introduction

Convolutional neural networks (CNNs) are becoming a mainstream technology
for an array of new embedded applications including speech recognition, lan-
guage translation, image classification and numerous other complex tasks. This
breakthrough has been made possible by recent progress in deep learning. But,
these deep models typically require millions of parameters and billions of oper-
ations to produce human level accuracy [1,8,18]. The memory and compute
requirements especially complicate the deployment of deep neural networks on
low power embedded platforms as they have a very limited compute and power
budget. To avoid running end-to-end inference on embedded systems, the cur-
rent state-of-the-art solutions enable this type of application by off-loading the
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 21–29, 2017.
https://doi.org/10.1007/978-3-319-68612-7_3

22 P. Maji and R. Mullins

computation to cloud-based infrastructures where server-grade machines (GPUs
and other manycore processors) perform the heavy number crunching. Unfor-
tunately, the cloud assisted approach is limited due to the implications on the
privacy, latency, and scalability of mobile applications [18].

In this paper, we propose a robust and easy-to-implement acceleration
scheme, named 1-D FALCON (Fast Approximate Low-rank CONvolution),
which can be applied on readily available state-of-the-art pre-trained models.
Our proposed scheme exploits the inherent redundancy present in the convolu-
tion layers in order to reduce the compute complexity of deep networks. Addi-
tionally, we decompose each convolution layer into low-rank vectors to exploit
row stationary computing [18]. We then apply a modified version of the Toom-
Cook algorithm to compute the convolution on 1-D vectors to further reduce the
number of multiplications in discrete convolution.

Although many earlier studies have focused on reducing overall memory foot-
print by compression, only a few have aimed at speeding up convolutional layers.
Unlike many previously proposed pruning and regularization techniques, our
scheme does not involve any time-consuming iterative retraining cycle. Further-
more, since rank selection and decomposition are only dependent on individual
layer’s inherent property, each convolution layer can be approximated in par-
allel. Our approximation scheme is mathematically well grounded, robust and
thus easily tunable using numerical formulation and without sacrificing baseline
accuracy. To the best of our knowledge, this paper is the first to study a co-
optimization scheme that combines both the one-shot low-rank model approx-
imation technique and a fast arithmetic scheme that exploits convolutions by
separability.

2 Related Work

Model pruning has been used both to reduce over-fitting and memory footprint.
Optimal brain damage [3] and optimal brain surgeon [9] are early examples of
pruning which aimed at reducing the number of connections within a network.
Recently, Han et al. proposed a pruning scheme for CNNs which aims at reduc-
ing the total number of parameters in the entire network [7,8]. However, the
authors in this paper mentioned that it is challenging to achieve any significant
runtime speed-up of convolutional network with conventional direct implemen-
tation. In addition, pruning involves a very long iterative prune and retraining
cycle. For example, it took seven days to retrain the pruned five (convolution)
layer AlexNet [8], which is not practical for fast time-to-market products.

Liu et al. [14] proposed a Sparse Convolutional Neural Networks (SCNN)
model that exploits both inter-channel and intra-channel redundancy to maxi-
mize sparsity in a model. This method is very effective for number of parameter
reduction in the fully-connected layers. The retraining stage with a modified cost
function is very time-consuming.

Denton et al. showed in a recent research that the generalized eigendecompo-
sition based truncation can help to reduce parameters from the fully-connected

Accelerating Deep Convolutional Neural Network Inference 23

layers [4]. Although, the authors didn’t consider the compute heavy convolu-
tional layers. Jaderberg et al. proposed a singular value decomposition based
technique for layer-by-layer approximation [10]. Their methodology uses itera-
tive steps where a layer can only be approximated after the previous layer has
been compressed. The author used an updated loss function to learn the low-rank
filters which is again a time consuming process. The author also reported that
simultaneous approximation of all the layers in parallel is not efficient. Mamalet
et al. design the model to use low-rank filters from scratch and combine them
with pooling layer [15]. However, their technique cannot be applied to general
network design. Sironi et al. showed that learning-based strategies can be used
to obtain seperable (rank-1) filters from multiple filters, allowing large speedups
with minimal loss in accuracy [17]. We build our methodology on this fundamen-
tal idea. Instead of learning separable filters, we use a one-shot approach which
can be applied statically.

Gupta et al. [5] studied the effect of limited precision data representation in
the context of training CNNs. They observed that CNNs can be trained using
only 16-bit wide fixed-point number representation with little to no degradation
in the classification accuracy. A number of optimization schemes have been pro-
posed recently that recommend use of fewer bits to represent the parameters and
datapaths [2,6,7]. Our proposed scheme is orthogonal to these techniques and
can be combined with quantization to further reduce the compute complexity
and storage requirement.

Cong et al. showed that by using Strassen’s algorithm computation complex-
ity in convolutional layers can be reduced by up to 47% [1]. Vasilache et al. used
a FFT based scheme to speed up convolutions, which are not very effective for
small filters [19]. Recently, both nVidia’s cuDNN and Intel’s MKL library added
support for Winograd’s algorithm to speed up convolutions, which was originally
proposed by Lavin et al. [12]. Although combining sparse methods and Wino-
grad’s convolution holds the potential to achieve significant speed up, pruning
Winograd kernels to induce sparsity poses challenges.

3 Methodology

Sze et al. in their Eyeriss research project showed that a row stationary (RS)
1-D convolution is optimal for throughput and energy efficiency than traditional
tiled 2-D implementation [18]. Our methodology follows the principles of 1-D
row-stationary convolution. To achieve this we first approximate each layer to
the necessary level to reduce compute complexity and then decompose each con-
volutional filter bank into two rank-1 filter banks by introducing an intermediate
layer in between. If the classification accuracy drops at this stage we fine-tune
the model using the training dataset. Then we apply a modified version of the
Toom-Cook algorithm, which computes each 1-D convolution for a chosen set of
distinct data points, to further reduce the number of strong operations (in this
case multiplications). We will show that the combined application of these two
schemes results into significant reduction in compute complexity.

24 P. Maji and R. Mullins

Fig. 1. (a) The original convolution with a (m × n) kernel. (b) The two-stage approx-
imate convolution using a (m × 1) column kernel in stage-1 followed by a (1 × n)
row kernel in stage-2. There are R channels in the intermediate virtual layer.

3.1 Layerwise Approximation and Convolution by Separability

In CNNs, multiple layers of convolutional filter (also known as kernel) banks
are stacked on top of each other followed by a non-linear activation function.
A significant redundancy exists between those spatial filter dimensions and also
along cross-channel feature maps. Most of the previous research has focussed on
either exploiting approximation along spatial filter dimensions or along one of
the feature channel dimension. In our approach, we aim at approximating the
redundancy across both the input and output feature maps.

Let us assume, in a convolutional neural network, a 4-dimensional kernel can
be represented as W ∈ R

FIx(mxn)xFO , where spatial 2-dimensional kernels are
of size (mxn) and FI , FO are the input and output channels within a layer,
respectively. We can also represent an input feature map as X ∈ R

MxNxFI and
corresponding kernels as Wi ∈ R

mxnxFI for i-th set of weights, where each input
feature map is of size (MxN). The original convolution for the i-th set of weights
in a given layer now becomes

Wi ∗ X =
FI∑

f=1

Wf
i ∗ xf (1)

Our goal is to find an approximation of kernel Wi, such that Wi = W̃i+E . Using
the concept of separable filters [17], let us assume for a small error E , the chosen
rank is R. How the rank R is chosen will be explained in the next section. The
modified kernel now can be represented by the Eq. (2), where V ∈ R

Rx(mx1xFI)

is the approximate column kernel, and H ∈ R
FOx(1xnxR) is the approximate row

kernel.

Accelerating Deep Convolutional Neural Network Inference 25

Wi ∗ X �
R∑

r=1

hr
i ∗ Vr =

R∑

r=1

hr
i ∗ (vr ∗ x) =

R∑

r=1

hr
i ∗ (

FI∑

f=1

vf
r ∗ xf) (2)

Figure 1 depicts the idea of re-constructing the convolution layer using the
newly constructed column and row low-rank kernels and compares them with the
original 2-D direct convolution. We compute the column and row kernels (V,H)
statically using generalized eigenvalue decomposition by minimizing the error
E . Since we decide the magnitude of the approximation statically, we avoid long
running time from learning based techniques. Additionally, as the approximation
is an inherent property of each layer, we can restructure all the convolutional
layers in a CNN in parallel, which also saves time. If the accuracy of a model
drops at this stage after approximating all the layers, we fine-tune the complete
model for once using the training dataset.

3.2 Rank Search and Layer Restructuring Algorithm

The rank R is chosen by the one-shot minimization criterion described before.
We apply singular value decomposition on the 2-D tensor R(FIm)x(nFO), which we
obtain from the original 4-D tensor RFIxmxnxFO . Unlike other minimization crite-
rion such as Mahalanobis distance metric or data covariance distance metric [4],
our simple criterion gives us an exact decomposition. Algorithm 1 describes the
main steps of our low-rank approximation and CNN layer restructuring scheme.

Algorithm 1. Rank Approximation and Layer Restructuring Algorithm
1 function LayerwiseReduce (M,C,W);

Input : Target ConvNet model: M, Kernel Dimension: pi,
Compression factor of each layer: [c1, c2, .., cn],
Pre-trained weights of individual layer:[w1, w2, .., wn]

Output: Reduced ConvNet Model: M∗,
Reduced weights of each layer: [v1, v2, .., vn], [h1, h2, .., hn]

2 for i ← 1 to Layers do
3 if layerType == Conv then
4 targetRank ← piFIFO

ci(FI+FO) ;
5 UΛV T ← SV D(wi);
6 disconnectLayers(wi);
7 vi ← U

√
Λ;

8 hi ← V
√

Λ;
9 addNewLayer(targetRank);

10 M∗ ← reconstructModel(M,vi, hi);
11 end
12 end

26 P. Maji and R. Mullins

3.3 The Modified Toom-Cook’s Fast 1-D Convolution

Once we have obtained newly constructed multi-stage 1-D convolution layers,
we then apply a modified version of the Toom-Cook algorithm to reduce number
of multiplication further. In the Toom-Cook method, a linear convolution can
be written as product of two polynomials in the real field [20].

s(p) = w(p)x(p), where deg[x(p)] = N − 1 , deg[w(p)] = L − 1

The output polynomial s(p) has degree L + N − 2 and has L + N − 1 dif-
ferent coefficients. Instead of explicitly multiplying the polynomials w(p).x(p)
using the discrete convolution, the Toom-Cook algorithm evaluates the polyno-
mials w(p) and x(p) for a set of data points βi and then multiplies their values
s(βi) = w(βi)x(βi). Afterwards the product polynomials s(p) is constructed
using Lagrange interpolation. The algorithm consists of four steps:

1. Choose L + N − 1 distinct data points β0, β1,...,βL+N−2.
2. Evaluate w(βi) and x(βi) for all the data points.
3. Compute s(βi) = w(βi)x(βi).
4. Finally, compute s(p) by Lagrange interpolation as follows

s(p) =
L+N−2∑

i=0

s(βi)

∏
j �=i(x − βj)∏
j �=i(βi − βj)

(3)

Since, (L+N −1) distinct data points are chosen in step 1, total (L+N −1)
multiplications are required in step 3. The Toom-Cook algorithm can also be
viewed as a method of factoring matrices and can be expressed as the following
form (� denotes element-wise multiplication)

s(p) = S[{Ww(p)} � {Xx(p)}] (4)

where W,X and S are the transform matrix for kernels, input, and output respec-
tively. The cost of computing {Ww(p)} gets amortized over reuse of the result for
many input slices. The matrices X and S consist of small integers (0,±1,±2, ..),
making it possible to realize them by a number of pre- and post-additions. The
only dominant cost over here are (L + N − 1) elementwise multiplications.

4 Results and Analysis

In order to evaluate the effectiveness of our scheme we compared it against several
popular networks targeting MNIST, CIFAR-10 and ImageNet dataset. In this
paper, we demonstrate our result for VGG-16 model, which won the ImageNet
challenge in 2014. VGG-16 is a deep architecture and consists of 13 convolutional
layers out of a total 16 layers. To make a comparison with wide variety of speed-
up techniques we chose a direct 2-D convolutional scheme [18], a low-rank scheme
based on Tucker decomposition [11], two popular pruning techniques [8,16], a

Accelerating Deep Convolutional Neural Network Inference 27

sparsification scheme [13], and Winograd’s filtering scheme [12]. We used three
main metrics for comparison: (i) MULs: Total number of strong operations
in the convolutional layers, (ii) Speed-up: Total speed-up achieved compared
to baseline 2-D convolution, and (iii) Fine-Tuning Time: Average fine-tuning
time in number of epochs. As can be seen from the Table 1, our FALCON scheme
achieves significant speed-up compared to any other scheme and does not require
long fine-tuning time. The overall speed-up comes from combined application of
both low-rank approximation scheme and fast 1-D convolution technique.

Table 1. A comparison of speed-up of VGG-16 using different schemes

Optimization scheme #MULs Speed-up Fine-tuning time

2-D convolution [18] 15.3G 1.0x None

Groupwise sparsification [13] 7.6G 2.0x >10 epochs

Iterative pruning [16] 4.5G 3.4x 60 epochs

Winograd [F(4× 4,3× 3)], [12] 3.8G 4.0x None

Pruning+Retraining [8] 3.0G 5.0x 20–40 epochs

Tucker decomposition [11] 3.0G 5.0x 5–10 epochs

1-D FALCON [Ours] 1.3G 11.4x 1–2 epochs

Speed-up from Low-rank Approximation: The computational cost of
the baseline 2-D direct convolution is O(FIMNmnFO). But, using our 1-D
FALCON approximation scheme, the computational cost for vertical-stage and
horizontal-stage are O(FIMNmR), O(RMNnFO), respectively, resulting a
total computational cost of O((mFI + nFO)MNR). If we choose R such that
R(mFI + nFO) << mn(FIFO), then computational cost can be reduced. Our
evaluation on VGG-16 showed an average speed-up of 3–5x in all layers and a
maximum 8–9x speed-up on many individual layers.

Speed-up from Toom-Cook Algorithm: The 1-D Toom-Cook algorithm
requires a (N + L − 1) number of multiplications compared to a direct imple-
mentation which will require NxL number of multiplications, where N, L are the
dimensions of input feature slice and 1-D filter, respectively. In case of VGG-16
model, we chose N = 4 and L = 3, resulting a 2x savings in each 1-D stage.
As our modified VGG-16 model has vertical and horizontal stages, it achieves a
total 4x saving in multiplication.

Efficient Use of Memory Bandwidth and Improved Local Reuse: The
1-D convolution by separability in our FALCON scheme also aims to maxi-
mize the reuse and accumulation at the local storage level for all types of data
including weights, activations and partial sums. In case of padded convolution
unnecessary data loads are also avoided due to the fact that halo regions are
now needed only either at the vertical or horizontal edges.

28 P. Maji and R. Mullins

5 Conclusions

In this work we demonstrated that co-optimization of internal structure of mod-
els and underlying detailed implementation together can help to achieve signif-
icant speed-up in convolutional neural network based inference tasks. We have
introduced an easy-to-implement and mathematically well grounded scheme to
aim at row stationary 1-D convolution, which can be applied on any pre-trained
model statically. Unlike many pruning and regularization techniques, our scheme
does not require any time consuming fine-tuning. Our evaluation showed that
using our 1-D FALCON scheme, a significant speed-up can be achieved in the
convolutional layers without sacrificing baseline accuracy.

References

1. Cong, J., Xiao, B.: Minimizing computation in convolutional neural networks. In:
Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg,
S., Palm, G., Villa, A.E.P. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 281–290.
Springer, Cham (2014). doi:10.1007/978-3-319-11179-7 36

2. Courbariaux, M., Bengio, Y.: Binarynet: training deep neural networks with
weights and activations constrained to +1 or −1. CoRR abs/1602.02830 (2016)

3. Cun, Y.L., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural
Information Processing Systems, pp. 598–605 (1990)

4. Denton, E., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear
structure within convolutional networks for efficient evaluation. In: NIPS (2014)

5. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with
limited numerical precision. CoRR abs/1502.02551 (2015)

6. Gysel, P., Motamedi, M., Ghiasi, S.: Hardware-oriented approximation of convo-
lutional neural networks. CoRR abs/1604.03168 (2016)

7. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural network
with pruning, trained quantization and huffman coding. In: ICLR (2016)

8. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural networks. In: NIPS (2015)

9. Hassibi, B., Stork, D.G.: Second order derivatives for network pruning: optimal
brain surgeon. In: NIPS (1993)

10. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. CoRR abs/1405.3866 (2014)

11. Kim, Y., Park, E., Yoo, S., Choi, T., Yang, L., Shin, D.: Compression of deep con-
volutional neural networks for fast and low power mobile applications. In: EMDNN
(2016)

12. Lavin, A.: Fast algorithms for convolutional neural networks. In: CVPR (2016)
13. Lebedev, V., Lempitsky, V.: Fast convnets using group-wise brain damage. In:

CVPR (2016)
14. Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M.: Sparse convolutional

neural networks. In: CVPR, June 2015
15. Mamalet, F., Garcia, C.: Simplifying convnets for fast learning. In: Villa, A.E.P.,

Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012. LNCS, vol. 7553,
pp. 58–65. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33266-1 8

16. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource efficient transfer learning. In: EMDNN (2016)

http://dx.doi.org/10.1007/978-3-319-11179-7_36
http://dx.doi.org/10.1007/978-3-642-33266-1_8

Accelerating Deep Convolutional Neural Network Inference 29

17. Rigamonti, R., Sironi, A., Lepetit, V., Fua, P.: Learning separable filters (2013)
18. Sze, V., Chen, Y., Emer, J.S., Suleiman, A., Zhang, Z.: Hardware for machine

learning: challenges and opportunities. CoRR abs/1612.07625 (2016)
19. Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S., LeCun, Y.: Fast

convolutional nets with fbfft: A GPU performance evaluation. In: ICLR (2015)
20. Wang, Y., Parhi, K.: Explicit cook-toom algorithm for linear convolution. In:

ICASSP (2000)

Shortcut Convolutional Neural Networks
for Classification of Gender and Texture

Ting Zhang, Yujian Li(B), and Zhaoying Liu

College of Computer Science, Beijing University of Technology,
Beijing 100124, China

zhangting08@emails.bjut.edu.cn,

{liyujian,zhaoying.liu}@bjut.edu.cn

Abstract. Convolutional neural networks are global trainable multi-
stage architectures that automatically learn translation invariant features
from raw input images. However, in tradition they only allow adjacent
layers connected, limiting integration of multi-scale information. To fur-
ther improve their performance in classification, we present a new architec-
ture called shortcut convolutional neural networks. This architecture can
concatenate multi-scale feature maps by shortcut connections to form the
fully-connected layer that is directly fed to the output layer. We give an
investigation of the proposed shortcut convolutional neural networks on
gender classification and texture classification. Experimental results show
that shortcut convolutional neural networks have better performances
than those without shortcut connections, and it is more robust to differ-
ent settings of pooling schemes, activation functions, initializations, and
optimizations.

Keywords: Convolutional neural networks · Multi-scale · Shortcut con-
nections · Gender classification · Texture classification

1 Introduction

Image classification (e.g. of gender and texture) has been a long standing problem
in computer vision and machine learning. It is a very challenging task from
the viewpoint of classical feature extraction, requiring image features ideally
designed to capture important, distinctive and robust information in images [1].
However, deep learning can demonstrate excellent performance, especially using
convolutional neural networks (CNNs).

Traditionally, a standard CNN is composed of convolutional layers (CLs),
pooling layers (PLs) and fully-connected layers (FCLs). CLs and PLs are
exploited to extract features from different scales, with FCLs working as a clas-
sifier. For convenience, we refer to a CL or a PL as a CPL. In fact, a CNN may
have a number of CPLs, followed by several FCLs. Note that a CL/PL may con-
sist of many convolutional/pooling feature maps. Strictly speaking, a standard
CNN has no shortcut connections across layers. Thus, although such a CNN

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 30–39, 2017.
https://doi.org/10.1007/978-3-319-68612-7_4

Shortcut Convolutional Neural Networks 31

can work very well in many applications, it is limited to integrate multi-scale
information from an image.

To make use of discriminative information from non-topmost CPLs, we
present a new architecture, called shortcut convolutional neural network (S-
CNN). An S-CNN can integrate multi-scale features through shortcut connec-
tions from a number of CPLs to the FFCL. It is well admitted that human
vision is a multi-scale process [2]. Therefore, it would be reasonable to integrate
different levels of image features for robust classification.

2 Shortcut CNNs

In this section, we describe a specific architecture of S-CNNs and the learning
algorithm in detail.

2.1 Model Description

As displayed in Fig. 1, the S-CNNs alternately stack three convolutional layers
and three max-pooling layers, followed by a fully-connected layer to concatenate
multi-scale features, and the softmax output layer indicating classes. The input
size is 32×32×1, and the dimension of the output layer is the number of classes.

All convolutional layers can be represented as:

hk,j = f (uk,j) = f
(∑

i
hk−1,j ∗ Wk

ij + bk
j

)
, k = 1, 3, 5. (1)

Note that Wk
ij is the weight matrix between hk−1,i and hk,j , and bk

j is the
bias of hk,j . hk,j denotes the j-th feature map in the k-th convolutional layer. ∗
stands for convolution and f for activation function. By default, f is chosen as
the rectified linear unit (ReLU). As a convolutional feature map, hk,j can learn

Fig. 1. A specific architecture of S-CNNs. Cuboids stand for the input and all convolu-
tional and max-pooling layers. The length of a cuboid denotes the number of maps, and
its width × height denotes the map dimension. The inside small cuboids and squares
denote the 3D convolution kernel sizes and the pooling region sizes of convolutional
and max-pooling layers, respectively. The fully-connected layer is the concatenation of
some lower-hidden-layer activations. The neuron number of the output layer equals C,
i.e. the number of classes.

32 T. Zhang et al.

a spatial level of features from its input. These features are usually different in
different maps, and would be more abstract for higher levels.

In each max-pooling layer, we use the stride of 2 for all feature maps. The
max-pooling function has the expression:

hk,j = maxpooling {hk−1,j} , k = 2, 4, 6. (2)

where hk,j denotes the j-th feature map in the k-th pooling layer. Its function
is to progressively reduce the spatial size of the representation to reduce the
amount of parameters and computation in the network, and hence to also control
overfitting.

The fully-connected layer is the concatenation of two or more CPL activations
through shortcut connections, forming the entire discriminative vector of multi-
scale features [3]. It takes the form:

h7 = (a1h1, a2h2, a3h3, a4h4, a5h5,h6) . (3)

where hk denotes the k-th hidden layer (1 ≤ k ≤ 5). Let A = a1a2a3a4a5
be a binary string indicating the style of shortcut connections. For example,
A = 11111 indicates that all the five associated CPLs have shortcut connections
to the FCL. A = 00000 means no shortcut connections at all, meaning the
standard CNN. In practice, the shortcut style is configured manually.

The actual output is a C-way softmax with the form:

o8 = softmax (u8) = softmax
(
W8h7 + b8

)
. (4)

where W8 and b8 denote the weight and bias of the output layer, with
softmaxi(x) = exp (xi)

/∑
j exp (xj) .

2.2 Learning Algorithm

For the l-th sample, the S-CNNs compute the activations of each hidden and the
actual outputs as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hl
1,j = max

(
0,ul

1,j

)
= max

(
0, xl ∗ W1

j + b1
j

)
, 1 ≤ j ≤ 6

hl
2,j = maxpooling

{
hl
1,j

}
, 1 ≤ j ≤ 6

hl
3,j = max

(
0,ul

3,j

)
= max

(
0,

∑6
i=1 hl

2,i ∗ W3
ij + b3

j

)
, 1 ≤ j ≤ 12

hl
4,j = maxpooling

{
hl
3,j

}
, 1 ≤ j ≤ 12

hl
5,j = max

(
0,ul

5,j

)
= max

(
0,

∑12
i=1 h

l
4,i ∗ W5

ij + b5
j

)
, 1 ≤ j ≤ 16

hl
6,j = maxpooling

{
hl
5,j

}
, 1 ≤ j ≤ 16

hl
7 =

(
a1hl

1, a2h
l
2, a3h

l
3, a4h

l
4, a5h

l
5,h

l
6

)
ol
8 = softmax

(
ul
8

)
= softmax

(
W8hl

7 + b8
)

(5)

Let yl =
(
yl
1, y

l
2, ..., y

l
C

)T be the desired output and ol
8 =

(
ol
8,1, o

l
8,2, ..., o

l
8,C

)T

the actual output. Taking the objective function of cross entropy loss, namely,

E
(
yl,ol

8

)
= −

∑N

l=1

∑C

c=1
yl

c log
(
ol
8,c

)
(6)

Shortcut Convolutional Neural Networks 33

we can compute the sensitivities δl
k (1 ≤ k ≤ 8) of each layer as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δl
8 = ol

8 − yl

δl
7 =

[(
W8

)T
δl
8

]
◦ softmax′ (ul

8

)
(
δl
1,FCδl

2,FCδl
3,FCδl

4,FCδl
5,FCδl

6,FC

)
= δl

7

δl
6 = δl

6,FC

δl
5,j = max′ (0,ul

5,j

) ◦ upmax
{
δl
6,j

}
+ a5δ

l
5,FC,j , 1 ≤ j ≤ 16

δl
4,j = δl

5,j

�∗ rot180
(
W5

ij

)
+ a4δ

l
4,FC,j , 1 ≤ j ≤ 12

δl
3,j = max′ (0,ul

3,j

) ◦ upmax
{
δl
4,j

}
+ a3δ

l
3,FC,j , 1 ≤ j ≤ 12

δl
2,j = δl

2,j

�∗ rot180
(
W3

ij

)
+ a2δ

l
3,FC,j , 1 ≤ j ≤ 6

δl
1,j = max′ (0,ul

1,j

) ◦ upmax
{
δl
2,j

}
+ a1δ

l
1,FC,j , 1 ≤ j ≤ 6

(7)

where δl
8 stands for the sensitivity (or backpropagation error) of the output layer,

δl
1, δ

l
2, · · · , δl

7 represent the sensitivities of the first, second, ... , and seventh hid-
den layers, respectively. δl

k,FC (1 ≤ k ≤ 6) is the part of the seventh hidden layer
(i.e. the fully-connected layer) that corresponds to the k-th hidden layer. Addi-
tionally, upmax {·} is the upsampling function for the max-pooling. Moreover,

�∗
denotes the full version of convolutional operation, rot180 (·) indicates flipping a
matrix horizontally and vertically. softmax′ (·) stands for the derivative of the
softmax function.

Using (6) and (7), we can compute the derivatives with respect to each para-
meter (i.e., weights and biases) as follows:

{
∂E

∂W8 =
∑N

l=1 δl
8

(
hl
7

)T
, ∂E

∂b8 =
∑N

l=1 δl
8,

∂E
∂Wk

ij

=
∑N

l=1 δl
k,j ∗ hl

k−1,i,
∂E
∂bk

j

=
∑N

l=1 δl
k,j , k = 1, 3, 5 (8)

Based on (5)–(8), we design a training algorithm of gradient descent for the
S-CNN model illustrated in Fig. 1, as shown in Algorithm 1. Note that maxepoch
stands for the number of training iterations.

Algorithm 1. BP for the S-CNN
Input : Training set, network architecture, maxepoch;
Output: W1

j ,b
1
j (1 ≤ j ≤ 6),W3

ij ,b
3
j (1 ≤ j ≤ 12),W5

ij ,b
5
j (1 ≤ j ≤ 16), W8,b8.

1 Randomly initialize the weights and biases of the S-CNN;
2 for epoch=1 to maxepoch do
3 for l=1 to N do
4 Compute the activations and the actual outputs by (5);
5 Compute the sensitivities of each layer by (7);
6 Compute the derivatives by (8);
7 Update all the weights and biases with gradient descent;

8 end

9 end

34 T. Zhang et al.

3 Results

In this section, we evaluate S-CNNs for gender classification on three benchmark
datasets: AR, FaceScrub, CelebA, and for texture classification on one bench-
mark dataset: CUReT. The basic information and the setup of experiments are
described in Subsect. 3.1, with gender classification, texture classification, and
different settings shown in Subsects. 3.2, 3.3 and 3.4, respectively. In experiments
on each dataset, we train all S-CNNs together with the CNN, and then give the
results of all different shortcut styles.

3.1 Datasets and Setup

Table 1 gives the information of datasets in experiments. Figure 2 shows examples
from the above datasets. It should be noted that for each of the first four datasets,
all images for any single subject are either in the training set or the testing set,
but not both. In our experiments, all images were resized to 32×32 and converted
to gray scale. The CNN and S-CNNs were implemented with the stochastic
version of Algorithm 1 by the GPU-accelerated CNN library Caffe. The weights
were initialized using the “Xavier” method [4] with a momentum of 0.9, a weight
decay of 0.004, a mini-batch size of 100, a fixed learning rate of 0.001 for weights
and double for biases. On a desktop PC equipped with E5-2643 V3 CPU, 64 GB
memory and a NVIDIA Tesla K40c, the training iterations of the four datasets
are 5000, 50000, 60000, and 60000, respectively.

3.2 Gender Classification

We compare performances of the CNN and S-CNNs on the three datasets of AR,
FaceScrub and CelebA. The styles (S) and accuracy (Acc) of gender classification

Table 1. Number of training samples and testing samples of the datasets.

Dataset Training set Testing set

Training number Female Male Testing number Female Male

AR 2080 1040 1040 520 260 260

FaceScrub 61817 30169 31648 8151 4081 4070

CelebA 160000 80000 80000 8000 4000 4000

CUReT 11285 915

Fig. 2. Images examples from the AR dataset(a), the FaceScrub dataset(b), the CelebA
dataset(c) and the CUReT dataset(d).

Shortcut Convolutional Neural Networks 35

are reported in Tables 2, 3 and 4, respectively. And the highest accuracies are
bolded.

In Table 2, all S-CNNs outperform the CNN (92.30%) in terms of accuracy.
With only one shortcut CPL, i.e. the styles of 10000, 01000, 00100, 00010 and
00001, S-CNNs gradually have slightly worse performance. With two shortcut
CPLs, the highest accuracy of S-CNNs is 95.23% obtained by the 01010 style, and
the lowest is 93.65% by the 00011 style. With three shortcut CPLs, the highest
accuracy is 94.83% obtained by the 01101 style, and the lowest is 93.84% by the
11010 style. With four shortcut CPLs, the highest accuracy is 94.64% obtained
by the 01111 style, and the lowest is 93.85% by the 11011 style.

In Table 3, all S-CNNs have higher accuracies than the CNN (78.57%). With
one shortcut CPL, the highest accuracy of S-CNNs is 80.98% reached by the
style of 00100, and the lowest is 79.98% by 10000. With two shortcut CPLs,
the highest accuracy is 82.14% reached by 01001, and the lowest is 80.01% by
11000. With three shortcut CPLs, the highest accuracy is 81.37% reached by
11010, and the lowest is 80.52% by 10011 and 00111. With four shortcut CPLs,
the highest accuracy is 81.58% reached by 10111, and the lowest is 79.79% by
11011.

Table 2. Test accuracies (%) of the CNN and S-CNNs on the AR dataset.

S Acc S Acc S Acc S Acc

00000 92.30 10010 93.85 11100 94.05 01011 94.45

10000 94.26 10001 93.84 11010 93.84 00111 94.24

01000 94.25 01100 94.46 11001 94.06 11110 94.62

00100 94.21 01010 95.23 10110 93.85 11101 94.42

00010 93.70 01001 95.22 10101 94.06 11011 93.85

00001 93.47 00110 94.44 10011 94.05 10111 94.61

11000 93.68 00101 93.86 01110 94.83 01111 94.64

10100 93.86 00011 93.65 01101 94.42 11111 94.44

Table 3. Test accuracies (%) of the CNN and S-CNNs on the FaceScrub dataset.

S Acc S Acc S Acc S Acc

00000 78.57 10010 80.04 11100 80.55 01011 80.67

10000 79.98 10001 80.53 11010 81.37 00111 80.52

01000 80.68 01100 80.96 11001 80.79 11110 80.72

00100 80.98 01010 81.10 10110 81.07 11101 80.56

00010 80.60 01001 82.14 10101 80.57 11011 79.79

00001 80.97 00110 80.85 10011 80.52 10111 81.58

11000 80.01 00101 80.99 01110 81.21 01111 80.80

10100 80.37 00011 80.93 01101 80.74 11111 80.59

36 T. Zhang et al.

Table 4. Test accuracies (%) of the CNN and S-CNNs on the CelebA dataset.

S Acc S Acc S Acc S Acc

00000 84.21 10010 86.62 11100 86.73 01011 86.39

10000 86.30 10001 86.20 11010 87.19 00111 86.19

01000 85.95 01100 86.62 11001 86.15 11110 86.73

00100 85.92 01010 86.57 10110 87.06 11101 86.67

00010 85.81 01001 86.29 10101 86.74 11011 86.64

00001 85.72 00110 86.26 10011 86.63 10111 86.62

11000 86.18 00101 86.17 01110 86.54 01111 86.75

10100 86.89 00011 86.54 01101 86.40 11111 87.00

In Table 4, all S-CNNs have accuracies exceeding the CNN (84.21%). With
one shortcut CPL, S-CNNs perform slightly worse gradually for the styles of
10000, 01000, 00100, 00010 and 00001. With two shortcut CPLs, the highest
accuracy of S-CNNs is 86.89% attained by 10100, and the lowest is 86.17% by
00101. With three shortcut CPLs, the highest accuracy is 87.19% attained by
11010, and the lowest is 86.15% by 11001. With four shortcut CPLs, the highest
accuracy is 86.75% attained by 01111, and the lowest is 86.62% by 10111.

Overall, the S-CNNs get the highest accuracies of 95.23% on AR, 82.14%
on FaceScrub, and 87.19% on CelebA. Compared to the CNN, these accuracies
gain a relative increase of 3.17%, 4.54%, and 3.54%, respectively. This is probably
because the S-CNNs can integrate multi-scale features from many CPLs, leading
to a more suitable model.

3.3 Texture Classification

We also compare performance of the CNN and S-CNNs on the CUReT dataset
for texture classification. The results are reported in Table 5, where all S-CNNs

Table 5. Test accuracies (%) of the CNN and S-CNNs on the CUReT dataset.

S Acc S Acc S Acc S Acc

00000 66.17 10010 69.95 11100 73.42 01011 77.35

10000 66.97 10001 72.44 11010 73.58 00111 77.24

01000 71.70 01100 76.86 11001 70.39 11110 74.00

00100 73.42 01010 74.38 10110 71.87 11101 75.81

00010 74.91 01001 70.24 10101 74.69 11011 75.14

00001 75.12 00110 75.97 10011 75.49 10111 75.38

11000 64.87 00101 77.34 01110 76.13 01111 73.00

10100 72.13 00011 78.86 01101 79.00 11111 74.72

Shortcut Convolutional Neural Networks 37

have higher accuracies than the CNN (66.17%). And the highest accuracy is
bolded. For 1–4 shortcut CPLs, the highest accuracies of S-CNNs are 75.12%,
78.86%, 79.00% and 75.81% with the lowest of 66.97%, 64.87%, 70.39% and
73.00%, respectively. The highest ones are achieved by the styles of 00001, 00011,
01101 and 11101, and the lowest by 10000, 11000, 10110 and 01111.

Overall, on CUReT the highest accuracy of S-CNNs is 79.00%, relatively
increased by 19.39% in comparison with the CNN. This means that the S-CNNs
could be more suitable than the CNN for text classification by integration of
multi-scale features. However, in general the best style is not 11111, with which
the S-CNN gets 74.72%.

3.4 Different Settings

We further compare the CNN and S-CNNs with different settings of pool-
ing schemes, activation functions, initializations, and optimizations on the AR
dataset. The results are reported in Tables 6, 7, 8 and 9, with the best accuracies
bolded.

Table 6. Test accuracies (%) of the CNN and S-CNNs with average pooling on the
AR dataset.

S Acc S Acc S Acc S Acc

00000 88.50 10010 93.66 11100 93.27 01011 93.68

10000 93.66 10001 93.67 11010 93.44 00111 94.45

01000 93.48 01100 93.13 11001 93.48 11110 93.86

00100 92.90 01010 94.42 10110 93.67 11101 93.85

00010 92.88 01001 94.45 10101 93.67 11011 92.73

00001 92.12 00110 94.46 10011 94.45 10111 93.28

11000 93.08 00101 93.48 01110 94.85 01111 94.24

10100 93.27 00011 92.13 01101 93.31 11111 94.05

Table 7. Test accuracies (%) of the CNN and S-CNNs with sigmoid function on the
AR dataset.

S Acc S Acc S Acc S Acc

00000 67.67 10010 93.65 11100 94.45 01011 91.34

10000 93.68 10001 93.64 11010 94.41 00111 85.05

01000 93.00 01100 94.06 11001 94.22 11110 94.85

00100 88.10 01010 94.00 10110 93.67 11101 94.84

00010 67.93 01001 92.00 10101 93.70 11011 94.27

00001 67.67 00110 85.60 10011 93.70 10111 94.25

11000 94.26 00101 90.23 01110 94.00 01111 90.29

10100 93.70 00011 69.29 01101 91.78 11111 94.06

38 T. Zhang et al.

Table 8. Test accuracies (%) of the CNN and S-CNNs with Mara initialization on the
AR dataset.

S Acc S Acc S Acc S Acc

00000 91.49 10010 94.35 11100 94.25 01011 93.32

10000 93.47 10001 94.24 11010 94.21 00111 93.49

01000 94.04 01100 94.24 11001 93.86 11110 94.06

00100 92.53 01010 94.24 10110 93.73 11101 94.05

00010 91.97 01001 92.70 10101 93.66 11011 93.86

00001 91.90 00110 92.52 10011 93.56 10111 92.90

11000 93.67 00101 93.69 01110 94.02 01111 92.13

10100 94.62 00011 93.49 01101 92.91 11111 93.85

Table 9. Test accuracies (%) of the CNN and S-CNNs with Adam optimization on
the AR dataset.

S Acc S Acc S Acc S Acc

00000 91.35 10010 94.23 11100 94.04 01011 94.84

10000 93.37 10001 93.66 11010 93.65 00111 92.72

01000 93.88 01100 93.47 11001 93.09 11110 94.80

00100 93.47 01010 93.09 10110 93.09 11101 94.43

00010 93.45 01001 92.34 10101 93.03 11011 94.04

00001 93.27 00110 94.06 10011 92.89 10111 92.70

11000 93.85 00101 93.86 01110 94.07 01111 92.33

10100 94.23 00011 91.53 01101 93.86 11111 92.52

Table 6 shows the performance of the CNN and S-CNNs with average pooling
instead of max-pooling. Compared to 92.30% in Table 2, the CNN has a relative
reduction of 4.12% in accuracy, whereas to 95.23%, the highest accuracy of
S-CNNs is 94.85%, relatively reduced by 0.40%.

In Table 7, we describe their performance with ReLU replaced by sigmoid.
With a relative reduction of 26.68%, the accuracy of the CNN decreases from
92.30% to 67.67%, whereas the highest accuracy of S-CNNs drops from 95.23%
to 94.85%, relatively reduced by 0.40%.

In Table 8, we depict their performance with a different initialization of Msra
[5] from Xavier. It can be seen that the CNN has a relative 0.88% reduction,
from 92.30% to 91.49%. However, the S-CNN has a relative 0.64% reduction in
terms of the highest accuracy, from 95.23% to 94.62%.

In Table 9, we delineate their performance with the Adam [6] optimization.
We clearly get that, the CNN achieves the 91.35% accuracy, and the S-CNNs
obtain the best performance of 94.84%. They respectively have a relative reduc-
tion of 1.03% and 0.41% in comparison with 92.30% and 95.23%.

Shortcut Convolutional Neural Networks 39

Overall, on the AR dataset the S-CNNs have a smaller accuracy reduction
than the CNN with different settings, especially of the sigmoid function, indi-
cating that our S-CNN has a more stable performance than the standard CNN.

4 Conclusion

We have presented a novel architecture of shortcut convolutional neural net-
works to improve the performance of standard CNNs. Moreover, we compared
performance of the standard CNN and S-CNNs on gender and texture classi-
fication. Additionally, we evaluated their performance with different settings.
Experimental results show that S-CNNs can achieve higher accuracies than the
standard CNN by concatenating multi-scale features from many CPLs. Mean-
while, the performance of S-CNNs are more stable in different choices of pooling
schemes, activation functions, initializations, and optimizations. Although the
best shortcut style is generally data-dependent, it is helpful to improve CNNs
in accuracy. As future work, we would focus study on more general S-CNNs and
related shortcut methods in theory and practice.

Acknowledgments. This work was supported in part by the National Natural Sci-
ence Foundation of China under grant 61175004,China Postdoctoral Science Foun-
dation funded project(2015M580952), and Beijing Postdoctoral Research Foundation
(2016ZZ-24).

References

1. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Comp. Visi.
60(2), 91–110 (2004)

2. Donoho, D.L., Huo, X.: Beamlets and multiscale image analysis. In: Barth, T.J.,
Chan, T., Haimes, R. (eds.) Multiscale and Multiresolution Methods, vol. 20, pp.
149–196. Springer, Heidelberg (2001)

3. Sermanet P., Y. Lecun Y.: Traffic sign recognition wit multi-scale convolutional
networks. In: IEEE International Joint Conference on Neural Networks, pp. 2809–
2813 (2011)

4. Glorot, X., Bengio, Y.: Understanding the difficulity of training deep feedforward
neural networks. J. Mach. Learn. Res. 9, 249–256 (2010)

5. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In: IEEE Internatioal Conference on
Computer Vision, pp. 1026–1034 (2015)

6. Kingma, D.F., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd IEEE
International Conference on Learning Representation (2015)

Word Embedding Dropout and Variable-Length
Convolution Window in Convolutional Neural

Network for Sentiment Classification

Shangdi Sun and Xiaodong Gu(B)

Department of Electronic Engineering, Fudan University, Shanghai, China
xdgu@fudan.edu.cn

Abstract. Recently the research on sentiment analysis has been attract-
ing growing attention because of the popularity of opinion-rich resources,
such as internet movie databases and e-commerce websites. Convolu-
tional neural network(CNN) has been widely used in sentiment analysis
to classify the polarity of reviews. For deep convolutional neural net-
works, dropout is known to work well in the fully-connected layer. In
this paper, we use dropout technique in the word embedding layer, and
proof it is equivalent to randomly picking activation based on a multino-
mial distribution at training time. Empirical results also support this and
show that using dropout in the word embedding layer can reduce over-
fitting. Meanwhile, we investigate the effect of convolution window size
on the classification results, and use variable-length convolution win-
dow in proposed method. Experimental results show that our method
obtains a state-of-the-art performance on ASR. Compared with other
similar architectures, the accuracies of our method in this paper are also
competitive on IMDB and Subj.

Keywords: Sentiment classification · Convolutional neural network ·
Word embedding dropout · Variable-length convolution window

1 Introduction

Nowadays, people have been accustomed to buying goods on the online shopping
platform, and booking movie tickets on the movie information website. With the
increase in the number of users, as well as the emergence of a variety of social
media, the number of reviews is extremely large and the source is becoming
more and more widely. However, the huge number reviews with diverse forms
resulting in the inconvenience for the potential consumers to read, the users
will neither spend a lot of time to read these redundant comments nor find
useful information. It is very important to dig out the information that users are
interested in and can really help. Sentiment Analysis(SA), also called Opinion
Mining(OM), is the cardinal technology in this field. It analyzes the product
reviews, social trends and other text data, in order to find out the user’s views,
emotions, attitudes, opinions on any object. Sentiment analysis is a cross field of
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 40–48, 2017.
https://doi.org/10.1007/978-3-319-68612-7_5

Word Embedding Dropout and Variable-Length Convolution Window 41

data mining and statistical machine learning, and now it is a hot topic in deep
learning and artificial intelligence. It can be divided into three levels: document
level, sentence level, entity and aspect level. In this paper, we focus on the
classification of document level and sentence level. The research object of this
paper is the movie reviews and commodity reviews, which will be divided into
positive/negative or subjective/objective.

Convolutional neural network (CNN) is currently achieving a brilliant success
in computer vision [1] and computer speech. Motivated by the terrific discrimi-
native capability of deep convolutional features, CNN also is used in many tra-
ditional Natural Language Processing(NLP) tasks [2] and other NLP areas such
as information retrieval [3]. In comparison with one-hot representation, words
are encoded as low-dimensional vector which called distributed representation
by CNN.

Convolutional neural network has got some competitive results in sentiment
classification, but compared with the traditional method, the accuracy has no
clear superiority. One of the important reasons is over-fitting. Because of the
particularity of text data, we use dropout technique in the embedding layer which
is an unique layer in the text categorization. That means that some terms are
discarded randomly and their corresponding weights in the word embedding layer
will not be updated in the training period. The experimental results show that
dropout can prevent over-fitting in word embedding layer just as it does in the
fully-connected layer. In addition, we explore the effect of convolution window
size on the classification accuracy. In general, most of the papers chose 3 as their
window size, which is an empirical value, especially for English text, the window
size can get good results. Under the premise of not changing the total number of
filter, we employ a combination of different lengths of window and verify that the
association of multiple window sizes can improve the classification accuracy. In
experiment, word embedding dropout and variable-length convolution window
are used simultaneously, we obtain some competitive results on IMDB, Subj.
and ASR.

2 Word Embedding Layer Dropout

Convolutional neural network have far been known to produce remarkable per-
formance on MNIST [4]. But like other types of neural networks, CNN was not
the focus of the machine learning academia in the 1990 s and 2000 s. SVM was
the most popular choice because it could achieve a pretty good outcome in most
of the tasks. With the revival of deep learning [5–7], convolutional neural net-
works and other deep models regained attention in the field of machine learning
and artificial intelligence. As with other depth networks, improper training of
deep convolutional neural networks can create many problems. The computation
time and over-fitting are two main issues. In recent years, GPUs help a lot by
speeding up computation significantly to solve the former problem. Over-fitting
has been a obstacle which restricts the convolutional neural network to get better
results.

42 S. Sun and X. Gu

2.1 Regularization and Dropout

Thanks to the local-connectivity and shared-filter architecture in convolutional
layers, CNN have much fewer connections and need training fewer parameters
compared to regular feed-forward networks with similarly-sized layers. At the
same time, pool operation makes the network select the maximum response. It
provides a form of translation invariance and thus benefits generalization. So
compared with the traditional neural network, convolutional neural network is
far less prone to over-fitting problem. However, when the number of layers of
the convolution network is large enough or the training sample is not enough,
the over-fitting phenomenon still occurs.

In general, there are two traditional ways to resist over-fitting: (1) Reduce
the features and retain the most important features. (2) Penalty the weights of
unimportant features. For the first kind of method, it usually selects the features
using feature engineering. The typical method is Principal Component Analy-
sis(PCA), it extracts the main factors from multiple features and can get the
most important variables. In fact, in CNN structure, the multiple convolution
kernels are responsible for getting enough features. The pooling operation selects
the strongest responses and most important features. For idea (2), in deep learn-
ing or other tasks with huge features, it is really difficult to select major features,
so that we can not according to the thought of (1) to reduce the feature, so we
can only start from another perspective: give smaller weights to the important
features. This is the regularization. A simple and effective regularization method
is to impose a L2 regularization to penalty the weights to constraint the solution
space.

In addition, early stopping which will terminate the training when the loss
function of the validation set does not fall, to prevent the phenomenon of over-
fitting. Bayesian fitting smooths the prediction using the posterior probability
distribution [8]. Weight elimination prunes redundant weights in the network
[9]. Data augmentation makes additional diversification to the original data to
increase the training samples. In practical applications, employing these tech-
niques to train a larger neural network can get better results than using any
regularization technique to train a small network.

Dropout is a radically different technique for regularization, which is widely
used in deep learning. The idea is not the same as the above methods, it does
not modify the loss function to limit the weight, nor does it change the weight
itself. Instead, it modifies the network directly, the procedure is like averaging
the effects of a very large number of different networks. Dropout is similar to the
bagging proposed in 1996 [10]. In the case of dropout training, some neurons in
the network are deleted randomly (and temporarily), so there are many possibly
trained models, and these models share the same parameters, but the number of
trained models is uncertain. Actually, the number of explicitly trained models is
not larger than N × E, where N is the number of training examples, and E is
the training epochs. And the number of possibly trained models is 2n, where n
is the number of neural units in a layer which will adopt dropout.

Word Embedding Dropout and Variable-Length Convolution Window 43

Dropout was first used in the full-connected layer [11]. Then, dropout in
the convolutional layer [12] and the pooling layer [13] can also improve the
generalization ability.

2.2 Dropout Training in Word Embedding Layer

The role of the word embedding layer is to convert One-hot representation to
distributed representation. Let l ∈ R be the sentence length, |V | ∈ R be the
vocabulary size and W ∈ Rk×|V | be the embedding matrix of k-dimensional
word vectors. The i-th word in a sentence is transformed into a k-dimensional
vector wi by matrix-vector product:

wi = W × xi. (1)

Here xi is the one-hot representation for the i-th word.
For every mini-batch, we generate a column vector M and the dimension is

the same with xi which is equal to |V |. The mi of each dimension in the vector
are subject to the Bernoulli distribution, that is, the probability of 0 is P , the
probability of 1 is 1 − P :

mi ∼ B(1, 1 − P). (2)

Thus, the column vector M is a vector of |V | dimensions, and the value of each
dimension is set to 0 by probability P. The vector M is applied to Eq. (1):

wi = W × (xi ◦ M). (3)

Here ◦ is the Hadamard product, that means two vectors of the same length are
multiplied by the corresponding positions.

After such an operation, “1” in the xi may be set to “0”. The word xi will be
removed, which is equivalent to cutting off the connection with the corresponding
weight, and the word vector formed by these weights will not be expressed. For
this mini-batch, the word vector corresponding to these “missing term” will not
be updated. In the test phase, all the word vector weights are preserved, so we
subtract the weight of the word embedding layer by the retain probability 1−P
during the test phase.

3 Variable-Length Convolution Window

The related parameters of the convolutional kernel (or filter) are mainly initial-
ization, the number and the size of kernel. The initialization is generally taken
to random initialization, because if the initialization by adding too much manual
design, that the process of extracting features is more like “feature engineering”
approach, deviated from the essence of deep learning. Therefore, the adjustment
of the parameters of the kernel is mainly concentrated in the number and the
size. Since the dimension of the word vector is fixed, the convolution window
length becomes the only factor in determining the size of the kernel, that is, how
many consecutive words are convoluted.

44 S. Sun and X. Gu

We think that a single length of the window is too simple. Some common
phrases which express strong emotional may be two words or four words or more,
so take a combination of different window lengths is very necessary. Figure 1 is
our multi-length convolution window model.

Fig. 1. The window lengths are 2, 3, 4 with one feature map each. The window length
of the red one is 2. Since the length of the sentence is 5 and the stride is 1, the red
kernel will generate 4 different convolutional value. The yellow and blue kernels do
the same procedure. Then, max pooling takes the maximum value generated by each
kernel and the features of “I love this phone!” are obtained. (Color figure online)

4 Experiments

We conduct sentiment classification experiments on three datasets. Detailed sta-
tistics are shown in Table 1.

Table 1. Dataset statistics

Dataset (N+, N−) |V | l CV

IMDB (25k,25k) 392K 231 N

Subj (5000,5000) 24K 23 10

ASR (1731,830) 6K 17 10

The first one is IMDB, a large movie review dataset with 50k length
reviews [14]. Subj. is our second dataset, the subjectivity dataset with sub-
jective reviews and objective plot summaries [15]. The third dataset called ASR
(Amazon Smartphone reviews) which introduced in [16]. (N+, N−): number of
positive and negative examples. |V |: the vocabulary size. l: average number of
words per example. CV: number of cross-validation splits, or N for train/test
split.

Word Embedding Dropout and Variable-Length Convolution Window 45

Our network has a convolutional layer, a max-pooling layer and a fully-
connected layer with 200 hidden neurons. We use rectified linear units as activa-
tion functions for convolutional layer and hidden layer, and sigmoid function for
output layer. The weights in all layers are initialized from a zero-mean Gaussian
distribution with 0.1 as standard deviation and the constant 0 as the neuron
biases. The dropout rate in hidden layer is 0.5 which is a typical value [11]. The
settings of hyper-parameters on the network are shown in Table 2.

Table 2. Network parameters

Hyper-parameters Value

Word embedding dimension 50

Convolution window size 3

Number of convolution kernels 120

Mini-batch 50

4.1 Results of Word Embedding Dropout

Cross-entropy loss is used as loss function. Figure 2 shows the value of loss func-
tion on training set and test set.

Fig. 2. The results of word embedding dropout on three datasets.

The dropout rate of word embedding layer is 0.2(P = 0.2), other value like 0.3
and 0.5 also could weaken over-fitting, but we achieved the most obvious effect
on three datasets under the value of 0.2. We can see that the loss function on the
training set drops rapidly and approaches 0 without dropout. The training set

46 S. Sun and X. Gu

does not fit perfectly for every sample after adding the word embedding dropout.
However, in the testing phase, with the increase in the number of epoch, the loss
function value of the test set without dropout increases rapidly and the over-
fitting phenomenon occurs. The blue curve which has dropout always maintain
at a small loss value on the test set. For ASR, the over-fitting is more serious
probably because the dataset is too small. But even so, the word embedding
dropout weakened the over-fitting to a certain extent.

4.2 Combination of Different Window Lengths

In this experiment, we keep the total number of convolution kernels at 120. We
use word embedding dropout and other parameters are same as last experiment.
We change the length of the convolution window to make a different combination.
The specific combinations are shown in Table 3.

Table 3. Classification accuracy of convolution window combinations with different
lengths

Combination methods IMDB Subj. ASR

3 with 120 feature maps 89.03 91.80 83.05

3,4 with 60 feature maps each 89.32 91.90 83.27

2,3 with 60 feature maps each 89.11 92.10 84.44

2,3,4 with 40 feature maps each 89.76 92.40 85.60

Baseline(BoWSVM) 89.39 91.95 83.05

The experimental results prove that the combination of multi-length convo-
lution windows is better than windows with length of 3. Although the optimal
combination scheme of different datasets is different, the combination of variable-
length convolution window can really achieve higher classification accuracy. The
results under the combination of 2,3,4 with 40 feature maps each are better
than the baseline (BoWSVM) [15]. The 85.60% is currently the best classifica-
tion results on ASR. The accuracy compared with other similar architectures
are also competitive on IMDB and Subj.

5 Conclusions

In this paper, we propose to add dropout to the word embedding layer in order
to reduce the over-fitting of standard CNN. Every term will be discarded by
probability in training time, and the word vector weights are not updated. In
this way, the effect of a single term on the positive and negative attributes of the
sample is reduced. It encourages our network to learn a useful feature without
relying on specific term. Experiments show that the dropout of the word embed-
ding layer can effectively prevent over-fitting. In addition, we change the original

Word Embedding Dropout and Variable-Length Convolution Window 47

fixed length of the window to a combination of variable-length convolution win-
dow and achieve the best or near optimal sentiment classification accuracy in
three datasets. The result under the combination of 2,3,4 with 40 feature maps
each obtains the state-of-the-art sentiment classification accuracy on ASR. So
the convolution window size can have a large effect on performance. Each dataset
has its own optimal combination and should be tuned.

Acknowledgments. This work was supported in part by National Natural Science
Foundation of China under grant 61371148.

References

1. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1–9. IEEE Computer
Society, Boston (2015)

2. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–
2537 (2011)

3. Shen, Y., He, X., Gao, J., Deng, L., Mesnil, G.: A latent semantic model with
convolutional-pooling structure for information retrieval. In: 23rd ACM Interna-
tional Conference on Conference on Information and Knowledge Management, pp.
101–110. ACM, Shanghai (2014)

4. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

5. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

6. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with
neural networks. Science 313(5786), 504–507 (2006)

7. LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521(7553), 436–444
(2015)

8. Mackay, D.J.: Probable networks and plausible predictions: a review of practical
Bayesian methods for supervised neural networks. Netw. Comput. Neural Syst.
6(3), 469–505 (1995)

9. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and
Processes. Springer Science & Business Media, New York (2013)

10. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
11. Hinton, G.E., Srivastave, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:

Improving neural networks by preventing co-adaption of feature detectors. arXiv
preprint arXiv:1207.0580 (2012)

12. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

13. Wu, H., Gu, X.: Towards dropout training for convolutional neural networks.
Neural Netw. 71, 1–10 (2015)

14. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A., Potts, C.: Learning word
vectors for sentiment analysis. In: 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, vol. 1, pp. 142–150.
ACL, Portland (2011) Portland (2011)

http://arxiv.org/abs/1207.0580

48 S. Sun and X. Gu

15. Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity
summarization based on minimum cuts. In: 42nd Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 271–278. ACL, Barcelona (2004)

16. Sun, S., Gu, X.: Sentiment analysis using extreme learning machine with linear
kernel. In: 25th International Conference on Artificial Neural Networks, pp. 547–
548. Springer, Barcelona (2016)

Reducing Overfitting in Deep Convolutional
Neural Networks Using Redundancy Regularizer

Bingzhe Wu1,2(B), Zhichao Liu1, Zhihang Yuan1,2, Guangyu Sun1,
and Charles Wu2

1 CECA, Peking University, Beijing 100871, China
wubingzhe@pku.edu.cn

2 Otureo Technologies (Beijing) Co., Ltd., Beijing 100080, China

Abstract. Recently, deep convolutional neural networks (CNNs) have
achieved excellent performance in many modern applications. These high
performance models normally accompany with deep architectures and
a huge number of convolutional kernels. These deep architectures may
cause overfitting, especially when applied to small training datasets. We
observe a potential reason that there exists (linear) redundancy among
these kernels. To mitigate this problem, we propose a novel regularizer to
reduce kernel redundancy in a deep CNN model and prevent overfitting.
We apply the proposed regularizer on various datasets and network archi-
tectures and compare to the traditional L2 regularizer. We also compare
our method with some widely used methods for preventing overfitting,
such as dropout and early stopping. Experimental results demonstrate
that kernel redundancy is significantly removed and overfitting is sub-
stantially reduced with even better performance achieved.

1 Introduction

Recently, various deep CNN architectures have been widely proposed for modern
applications, such as image classification and semantic segmentation. Most state-
of-the-art CNN models tend to employ a lot of stacked layers along with a huge
number of parameters, such as deep residual network [3], which has included
more than 100 layers. Normally, it is easier to result in overfitting with more
parameters included, especially on small training datasets. Thus, it has become
one obstacle to apply these complicated models on many practical problems.

In the past few years, research works have been proposed to prevent over-
fitting by reducing Co-dependence in deep CNNs. Hinton et al. [4] introduced
“dropout” to prevent overfitting. Srivastava et al. [10] show that dropout has
a regularizing effect, leading to less correlated features. Cogswell et al. [1] find
correlation between the cross-covariance of hidden unit activations. Then, they
propose a loss function termed DeCov to prevent overfitting, which is based
on the covariance matrix of the activation. Inspired by these works, we pro-
pose a novel regularizer to prevent overfitting in this work. Different from prior
approaches, we concentrate on reducing the kernel redundancy instead of Co-
dependence in deep networks. More specifically, we propose a new regularizer
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 49–55, 2017.
https://doi.org/10.1007/978-3-319-68612-7_6

50 B. Wu et al.

called correlationloss, which encourages kernels that have less (linear) correla-
tion. In addition, this regularizer is applied to convolutional layers rather than
fully-connected layers.

We apply the proposed regularizer on different network architectures using
various datasets, which include CIFAR10/100 and ImageNet. Experimental
results show that kernel redundancy is significantly removed and overfitting is
substantially reduced. Comparison with L2 penalty demonstrate the advantage
of using our approach over traditional approaches. In addition, we even achieve
a higher accuracy on CIFAR100 dataset than the previous state-of-the-art result
(81.03 % vs. 75.72 %).

The rest of this paper is organized as follows. In Sect. 2, we present how to
calculate correlation coefficients between two kernels. Based on this, we visual-
ize features and convolutional kernels to show kernel redundancy. In Sect. 3, we
propose our novel regularizer termed correlationloss. In Sect. 4, we provide com-
prehensive experimental results over a range of datasets, followed by a conclusion
in Sect. 5.

2 Exploring Kernel Redundancy in Deep CNNs

In this section, we first quantitatively define redundancy between two convolu-
tion kernels using correlation coefficient. Then, we demonstrate kernel redun-
dancy in real CNN models.

2.1 Correlation Between Two Kernels

First, we explain how to compute the correlation coefficient between two vectors
denoted as x, y. Let fcor(x, y) denote the Pearson’s correlation coefficient [7] of
two vectors,

fcor(x, y) =

∑

i

(xi − x)(yi − y)
√∑

i

(xi − x)2
∑

i

(yi − y)2
, (1)

where x and y denote the average of elements in vector x and y, respectively.
Here we denote two given convolutional kernels as S1 and S2. We first flatten

S1, S2 to S1flatten, S2flatten. The correlation is computed between two flattened
vectors. We use the computed correlations as a metric of similarity between
two kernels. For simplicity, we denote cor(S1, S2) as the similarity metric. The
computing formula is listed as follows:

cor(S1, S2) = fcor(S1flatten, S2flatten) (2)

2.2 Distribution of Correlations in a Real CNN Model

We apply the proposed cor(Si, Sj) on a VGG19 [9] model trained on ImageNet.
We calculate the correlation coefficients among all pairs of kernels i and j from

Reducing Overfitting in Deep Convolutional Neural Networks 51

the same layer in VGG19. The histogram of correlation coefficients for all kernel
pairs is shown in Fig. 1. For the first convolution layer, we can observe that
the distribution of cor(Si, Sj) is zero centered. But a number of kernel pairs
gather at both ends in the histogram. This indicates that there are many kernel
pairs, which have high correlation coefficients in the first convolution layer of the
VGG19 model. While going deeper into the network, we find that the numbers
of high correlation kernel pairs decrease sharply. An interesting observation is
that this trend is similar to that found in Shang’s work [8]. Shang et al. propose
a new activation to eliminate this phenomenon. In this work, we will address
this issue by minimizing the correlationloss (will be introduced in Sect. 3).

(a) conv1 1 (b) conv1 2 (c) conv2 1 (d) conv2 2

Fig. 1. Histograms of the correlation coefficients from conv1 1 to conv2 2 in VGG19.
There are many kernel pairs with high correlation coefficient in conv1 1. Numbers of
high-correlation pairs gradually decrease when going deeper into the network.

2.3 Visualizing High-Similarity Kernels and Features

Based on the above observation, we select some high-correlation kernel pairs for
visualization in Fig. 2. We put kernel pairs with high-correlation together and we
find that they have a similar pixel distributions. For comparison, we select some
high-similarity kernel pairs from VGG19 [9] and AlexNet [6] in Figs. 3 and 4,
respectively.

Fig. 2. Illustration of kernel pairs with high-correlation.

52 B. Wu et al.

Fig. 3. Some high-correlation pairs of kernels from the same layer of AlexNet.

In Fig. 4, column 2 and column 3 demonstrate the features that extracted by
the kernels from high-similarity pairs. It is difficult for human to distinguish two
generated features from the same image.

Fig. 4. Demonstrate the features extracted by high-similarity pair of kernels.

Inspired by these observations, we can treat these pairs with high correlation
as a (linear) redundancy in deep CNNs. To address this issue, we minimize the
correlationloss to eliminate the (linear) redundancy of convolution layer in deep
CNNs. The correlationloss will be introduced in next section.

3 Correlationloss

We collect correlation coefficients among all pairs of kernels from same convo-
lution layer and form a matrix G listed as follows. Si and Sj represent the i-th
kernel and j-th kernel of a convolution layer in a deep CNN.

Gi,j = cor(Si, Sj) (3)

As discussed in last section, we try to minimize the correlations among these
kernels. Thus, we can treat the Frobenius norm of G as a regularizer. Since the
diagonal of G is the self-correlation coefficients, we can subtract the term from
the matrix norm to calculate a final penalty term as follows:

correlationloss =
1
2
(‖G‖2F − ‖diag(G)‖22) (4)

where || · ||F is the Frobenius norm.

Reducing Overfitting in Deep Convolutional Neural Networks 53

We can find that correlationloss is different from LDeCov introduced in [1].
Instead, it is similar to the L2 or L1 regularizers because it is a function purely
based on weight vectors. We can simply implement the regularizer and apply it
to any layer in a deep CNN. We add this loss with classification loss and get total
loss with following equation. l represents the l-th layer in a deep CNN model.

totalloss = Lclassification + λ ∗
∑

l

correlationloss (5)

4 Experiment Results

4.1 CIFAR10 and CIFAR100

CIFAR10 and CIFAR100 datasets each consist of 50,000 training and 10,000 test-
ing images evenly drawn from 10 and 100 classes respectively. For preprocessing,
we subtracted the mean and divide by the variance. We also use random hori-
zontal flip and change the contrast for data augmentation.

We conduct experiments with VGG16 [9] and 34 layers Res-Net [3] on these
two datasets. We add batch normalization [5] after each convolutional layers.
For correlationloss, we set λ = 0.01 in Eq. (5).

We refer corloss to correlationloss in the result table for simplicity. In this
paper, we use the gap between train and test accuracy for evaluating overfitting.
We conduct a serial of experiments to compare different strategies for preventing
overfitting. Firstly, we compare our proposed regularizer with the traditional L2
regularizer. In Tables 1 and 2, we observe a significant improvement when using
correlationloss on these two models. We see that using correlationloss instead
of L2 weight decay has obviously decreased the gap (between train accuracy and
test accuracy) while obtaining a better test accuracy.

Table 1. Results on CIFAR10

Model corloss L2 Train Test Train-test

VGG16 No Yes 98.78 85.45 13.33

VGG16 Yes No 95.24 90.28 4.96

ResNet-34 No Yes 100 91.13 8.87

ResNet-34 Yes No 99.45 93.45 6.00

To compare our method with previous methods for preventing overfitting,
We conduct experiments with 34 layers ResNet [5] on cifar10 dataset. For fair
comparison, we add L2 regularizer in all these experiments. Table 3 shows the
results.

From the experimental results in Table 3, our method has a slight improve-
ment compared to dropout. We find that using both our method and dropout
can further improve the accuracy.

54 B. Wu et al.

We also combine early stopping with our method and dropout to see if it
can provide improvement. In our experiment, 10% of the original training set is
split into a validation set. We find that using early stopping doesn’t improve the
generation of such a complicated deep convolutional neural network. In [10], the
authors also mentioned this issue.

Table 2. Results on CIFAR100

Model corloss L2 Train Test Train-test

VGG16 No Yes 99.45 75.50 8.01

VGG16 Yes No 85.34 81.03 4.31

ResNet-34 No Yes 100 66.6 33.4

ResNet-34 Yes No 95.43 72.24 23.19

Table 3. Comparative Experiments with dropout based on Resnet-34.

Dataset corloss Dropout Early stopping Train Test Train-test

Cifar10 No Yes No 98.97 93.02 5.95

Cifar10 Yes No No 98.22 93.20 5.02

Cifar10 Yes Yes No 97.32 94.18 3.14

Cifar10 Yes Yes Yes 97.12 93.41 3.71

4.2 ImageNet

Imagenet [2] is a large labeled dataset. In our experiment, we select the validation
set of ImageNet2012 as testing dataset and the ILSVRC12’s training data as the
training dataset. We test our new regularizer on VGG19 [9] and find once again
that the corloss gives improvement over the baseline model with L2 regularizer.

Table 4. ImageNet Benchmark set results

Models Top1 Top5 Train-val (Top1)

VGG19 with L2 68.44 88.37 15.27

VGG19 with corloss 69.52 88.47 11.84

Even more interesting thing is that we observe the phenomenon discussed in
Sect. 3 vanishes when we use the correlationloss instead of the L2 regularizer.
It proves that this new regularizer is effective for reducing the (linear) kernel
redundancy.

Reducing Overfitting in Deep Convolutional Neural Networks 55

5 Conclusion

In this paper, we propose a new regularizer called correlationloss, which explic-
itly penalizes correlations among kernels in convolutional layers. Our new reg-
ularizer has demonstrated a strong ability to prevent overfitting. We show that
using correloationloss achieves better performance than traditional regularizer
with different datasets and model architectures.

Acknowledgments. This work is supported by National Natural Science Foundation
of China (No. 61572045).

References

1. Cogswell, M., Ahmed, F., Girshick, R., Zitnick, L., Batra, D.: Reducing overfitting
in deep networks by decorrelating representations. ICLR (2016)

2. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-
scale hierarchical image database. In: IEEE Conference on Computer Vision and
Pattern Recognition, 2009, CVPR 2009, pp. 248–255. IEEE (2009)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR, abs/1512.03385 (2015)

4. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012)

5. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

7. Pearson, K.: Note on regression and inheritance in the case of two parents. Proc.
R. S. London 58, 240–242 (1895)

8. Shang, W., Sohn, K., Almeida, D., Lee, H.: Understanding and improving con-
volutional neural networks via concatenated rectified linear units. arXiv preprint
arXiv:1603.05201 (2016)

9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. Eprint Arxiv (2014)

10. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1603.05201

An Improved Convolutional Neural Network
for Sentence Classification Based on Term

Frequency and Segmentation

Qi Wang(B), Jungang Xu, Ben He, and Zhengcai Qin

University of Chinese Academy of Sciences, Beijing, China
397254703@qq.com

Abstract. Recently, Sentence classification is a ubiquitous Natural Lan-
guage Processing (NLP) task and deep learning is proved to be a kind of
methods that has a significant effect in this area. In this work, we propose
an improved Convolutional Neural Network (CNN) for sentence classi-
fication, in which a word-representation model is introduced to capture
semantic features by encoding term frequency and segmenting sentence
into proposals. The experimental results show that our methods outper-
form the state-of-the-art methods.

Keywords: Sentence classification · CNN · Term frequency · Segmen-
tation

1 Introduction

With the popularity of Internet and the rapid development of intelligent ter-
minals, Internet users generate a lot of information everyday, including original
articles, news, reviews, etc. This information is spreading in the form of text
and is used to judge whether information is effective and whether it is attrac-
tive. So in recent years, sentence classification has been an active research filed in
NLP. Traditional sentence classification methods are mainly based on statistical
principles, and which are almost classic machine learning methods.

Currently, deep learning models have achieved remarkable results in com-
puter vision [1], speech recognition [2] and NLP [3]. And CNN has proved to
be very effective in achieving state-of-the-art results for sentence classification
tasks. In a sentence classification task, the aim is to predict class label informa-
tion for one or more sentences. For example, we classify the movie reviews into
positive or negative. However, the input for CNN is just concatenated by the
word embeddings, so some semantic features for a sentence may be lost.

In this paper, an improved CNN model for sentence classification based on
term frequency and sentence segmentation is proposed. Our contributions are
as follows. First, the term frequency embedding to encode the frequency of each
word is introduced. Second, sentence segmentation is added when forming the
word embedding matrix. Last, the term frequency and the sentence segmentation
results are taken as a CNN input.
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 56–63, 2017.
https://doi.org/10.1007/978-3-319-68612-7_7

An Improved Convolutional Neural Network for Sentence Classification 57

This paper is organized as follows. Section 2 introduces related works on
neural networks in NLP. Section 3 describes our novel approach for sentence
classification. Section 4 discusses the experiments for validating our proposed
method. Finally, Sect. 5 concludes the work and suggests the future work.

2 Related Works

Language modeling is the first application for neural networks in NLP, and
which has been useful to learn distributed representations for words [3–7]. These
word embeddings have guided the new direction for NLP tasks. So neural net-
works are using more extensively in NLP. In addition to the above mentioned,
a class of recursive neural networks and neural tensor networks are proposed
for paraphrase detection [8], parsing [9], sentiment analysis [10], knowledge base
completion [11], question answering [12], etc.

Much prior work has exploited deep neural networks to model sentence. A
general class of basic sentence model is Neural Bag-of-Words (NBOW) model,
and which includes a projection layer and one or more fully connected lay-
ers. The model using an external parse tree is the Recursive Neural Network
(RecNN) [13]. And the Recurrent Neural Network (RNN) [14] is a special case
of recursive networks. The RNN can be used as a language model and also can be
viewed as a sentence model with a linear structure. The CNN is also introduced
into sentence modeling. A simple one layer CNN model [15] combines softmax
to achieve sentence classification tasks. A CNN typically has one or more convo-
lutional layers and a final fully-connected layer, and there will be a pooling layer
between every two layers. Combined with the characteristics between CNN and
Time-Delay Neural Networks (TDNN) [3], the Dynamic Convolutional Neural
Networks (DCNN) [16] are using for sentence modeling and have a good perfor-
mance on many datasets.

3 Model Description

Our proposed model based on CNN is shown in Fig. 1. The whole model consists
of four main layers: (i) sentence representation, (ii) convolution, (iii) pooling and
(iv) logistic regression.

3.1 Input

To extract sentence-level features of the input for our improved CNN, we propose
two methods as follows.

– Addition of term frequency (TF): It is necessary to specify which words
are frequently appear in sentences. Therefore, the TF is proposed, which is
defined as the word’s frequency in the whole dataset. The value of TF is the
normalization of the term count. In addition, the term frequency of stop word
is set to zero.

58 Q. Wang et al.

Fig. 1. Model architecture with term frequency and segmentation for sentence classi-
fication. (Color figure online)

– Segmentation: Each input sentence is split into several parts as proposals.
Thus more internal/edge features can be extracted. The length of a sentence
decides how many proposals a sentence could have.

As shown in Fig. 1, the sentence feature input module contains two parts,
Context-Word Feature (CWF) [17] and TF feature. CWF is the vector of each
word transformed by looking up word embeddings [15,16,18]. TF feature is the
term frequency of each word.

The whole sentence can be represented by x = [x1, x2, ..., xn], where xi is the
i-th word in the sentence and n is the length of the input sentence. Set dt as
the width of term frequency embedding, and set dw as the width of the word
embedding. So the whole width of the i-th word in the sentence is defined as d.

d = dt + dw (1)

Each word in a sentence is replaced with its vector representation, a sentence
matrix X ∈ R

n×d can be obtained.
Next, the step size of segmentation m is calculated by Eq. 2.

m = �k
n

� (2)

Here, k is a fixed parameter. A window of length m is used to split each sentence
from the beginning into w parts, where

w = � n
m

� (3)

Several zeros are inserted between w proposals to separate them. The number
of zero is decided by the height of max filter window. The number of padding
zeros is defined as z,

z = (w − 1) × (max(F (h)) − 1) (4)

where F (h) denotes the height of filter windows.

An Improved Convolutional Neural Network for Sentence Classification 59

As shown in Fig. 1, the red box represents the filter window. When we need
to separate two proposals, several zeros should be inserted between them. Only
in this way, a convolutional window which only contains one proposal content
at some moment in convolution process can be ensured. The number of zeros
depends on the height of max filter window. As the filter windows of 3, 4, 5 in
our experiments are used, at least 4 zeros need to be inserted between proposals
as shown in Fig. 1 to achieve our method. So the reason that the (max(F (h))−1)
is used to denote the number of padding zeros between proposals is that neither
can separate proposals exactly to get more internal/edge features nor can cause
redundancy.

Thus, the sentence feature input in Fig. 1 can be described as matrix X ∈
R

(n+z)×d.

3.2 Convolution

The convolution layer is aiming to capture the compositional semantics of an
entire sentence and compress these valuable semantics into feature maps.

Concretely, the following operator is used to obtain another sequence c:

c = f(F · xi:i+h−1 + b) (5)

where a filter F ∈ R
h×d and b is a bias term, and f is an activation function,

such as tanh or rectifier linear unit (ReLU).

3.3 Pooling

To extract the most remarkable features(max value) within each feature maps,
a max-over-time pooling [15,16,18] operation over feature map is applied. The
approach takes one feature map as a pool and get one max value for each feature
map.

For each filter F , its score sequence c is passed through the max function to
produce a single number,

PF = max{c} = max{c1, c2, ..., cn−h+1} (6)

which is used to estimate the possibility n-gram of F appears in the context.

3.4 Regularization and Classification

Finally, the pooling scores for every filter are concatenated into a single feature
vector o to represent the sentence.

o = [P1, P2, ...Pq] (7)

Here, q is the number of filters in the model and Pi is the pooling score of the
i-th filter. Then, a dropout [15,19] is employed to prevent the co-adaptation of
hidden units by randomly dropping out a proportion p of the hidden units during
forward and backpropagation. The weights whose l2-norms exceed a hyperpara-
meter as Kim [15] are also rescaled.

60 Q. Wang et al.

4 Experiments

4.1 Datasets

To evaluate the performance of our proposed method, The summary of the
selected datasets are listed in Table 1. Here, a is the number of target classes, l
is the average sentence length, N is the dataset size, |V | is the vocabulary size,
|Vpre| is the number of words presented in the set of pre-trained word vectors.

Table 1. Summary of the datasets after tokenization.

Dataset a l N |V | |Vpre|
MR 2 20 10662 18765 16448

CR 2 19 3775 5340 5046

– MR: Movie reviews with one sentence per review. Classification involves
detecting positive/negative reviews [20].

– CR: Customer reviews of various products (camera, MP3 etc.). Task is to
predict positive/negative reviews [21].

4.2 Hyperparameters and Training

For all datasets we use rectified linear units, filter windows (F (h)) of 3, 4, 5 with
100 feature maps each, dropout rate (r) of 0.5, l2 constraint (s) of 3, parameter k
of 300, mini-batch size of 50 and static model. The static model is that all words
are pre-trained from word2vec and they are kept static during the experiments.

4.3 Pre-trained Word Vectors

The word embedding we used is word2vec which is trained on 100 billion tokens of
Google News dataset. The vectors have 301 dimensions including term frequency
embedding and word embedding. If words do not appear in the pre-trained words,
they are initialized randomly.

4.4 Experimental Results and Analysis

Experimental results are listed in Table 2. The first four works in the top section
have good results on sentence classification. The method NBSVM [22] uses Naive
Bayes SVM and MNB [22] uses multinomial Naive Bayes with uni-bigrams to
achieve sentence classification. The G-Dropout [23] uses Gaussian Dropout train-
ing for classification and Tree-CRF [24] presents a dependency tree-based method
using conditional random fields with hidden variables. The next three works in
the middle section are state-of-the-art methods. The CNN-static [15] is a model
with pre-trained vectors from word2vec and all words are kept static and only the

An Improved Convolutional Neural Network for Sentence Classification 61

Table 2. Results of our CNN models against other methods.

Model MR CR

NBSVM [22] 79.4 81.8

MNB [22] 79.0 80.0

G-Dropout [23] 79.0 82.1

Tree-CRF [24] 77.3 81.4

CNN-static [15] 81.0 84.7

CNN-non-static [15] 81.5 84.3

CNN-multichannel [15] 81.1 85.0

CNN-TF 81.3 85.0

CNN-TF-Segmentation 81.8 85.1

other parameters are learned. The CNN-non-static [15] is the same as CNN-static
but the pre-trained vectors are fine-tuned for each task. The CNN-multichannel
[15] uses two sets of word vectors and each set is treated as a channel. The works
in the bottom section are our methods. The results of our methods are signif-
icantly better than that of above methods. Note that static CNN model which
does not allow the input embeddings to be updated during training is used in
our experiment to explored the performance of our methods which introduced
TF and sentence segmentation.

When using the CNN-TF, it can achieve better results than most of other
methods except CNN-non-static in MR and CNN-multichannel in CR. One pos-
sible reason is that TF plays an important role in extracting the sentence seman-
tic features. TF represents the frequency of one word which determines this word
is necessary or not. If a word appears frequently (except the stop words) in a
dataset, its weights should be higher.

When using the CNN-TF-Segmentation, it can achieve the best results in
MR and CR. These results show that the internal/edge features can be extracted
through sentence segmentation. These features play important roles in sentence
classification. So the term frequency and internal/edge features are necessary for
sentence classification.

5 Conclusions

In this paper, an improved CNN method for sentence classification is proposed.
On one hand, the term frequency is introduced to be an important feature.
The higher term frequency one word has, the more important the word is. On
the other hand, sentence segmentation is introduced to produce more sentence
proposals, and the sentence proposals are presented to learn more internal fea-
tures and edge features and the features are much valuable for classification. The
effectiveness of our approach is verified by applying it to sentence classification
on two benchmark datasets: a movie review dataset called MR and a customer

62 Q. Wang et al.

review dataset called CR. Experimental results show that our methods perform
better than the state-of-the-art methods on both datasets.

Our future work will concentrate on how to extract more semantic features,
improving CNN further and extending the improved CNNs to other applications.

Acknowledgements. This work is supported by the Beijing Natural Science Foun-
dation under Grant No. 4162067.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Proceedings of the 26th Annual Conference on
Neural Information Processing Systems, pp. 1097–1105 (2012)

2. Graves, A., Mohamed, A.R., Hinton, G.E.: Speech recognition with deep recurrent
neural networks. In: Proceedings of the 38th International Conference on Acoustics,
Speech and Signal Processing, pp. 6645–6649. IEEE Press, New York (2013)

3. Collobert, R., Weston, J.: A unified architecture for natural language processing:
deep neural networks with multitask learning. In: Proceedings of the 25th Inter-
national Conference on Machine Learning, pp. 160–167. ACM, New York (2008)

4. Bengio, Y., Ducharme, R., Vincent, P.: A neural probabilistic language model. J.
Mach. Learn. Res. 3(6), 1137–1155 (2003)

5. Mnih, A., Hinton, G.E.: A scalable hierarchical distributed language model. In:
Proceedings of the 22nd Annual Conference on Neural Information Processing
Systems, pp. 1081–1088 (2008)

6. Turian, J., Ratinov, L., Bengio, Y.: Word representations: a simple and general
method for semi-supervised learning. In: Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics, pp. 384–394. ACL Press,
Stroudsburg (2010)

7. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and of words and phrases and their compostionality.
In: Proceedings of the 27th Annual Conference on Neural Information Processing
Systems, pp. 3111–3119 (2013)

8. Socher, R., Pennington, J., Huang, E.H., Ng, A.Y., Manning, C.D.: Semi-
supervised recursive autoencoders for predicting sentiment distributions. In: Pro-
ceedings of the 8th Conference on Empirical Methods in Natural Language Process-
ing, pp. 151–161. ACL Press, Stroudsburg (2011)

9. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., et al.:
Recursive deep models for semantic compositionality over a sentiment treebank.
In: Proceedings of the 10th Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642. ACL Press, Stroudsburg (2013)

10. Socher, R., Bauer, J., Manning, C.D., Ng, A.Y.: Parsing with compositional vec-
tor grammars. In: Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics, pp. 455–465. ACL Press, Stroudsburg (2013)

11. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor
networks for knowledge base completion. In: Proceedings of the 27th Annual Con-
ference on Neural Information Processing Systems, pp. 464–469 (2013)

12. Iyyer, M., Boyd-Graber, J., Claudino, L., Socher, R., Iii, H.D.: A neural network for
factoid question answering over paragraphs. In: Proceedings of the 11th Conference
on Empirical Methods in Natural Language Processing, pp. 633–644. ACL Press,
Stroudsburg (2014)

An Improved Convolutional Neural Network for Sentence Classification 63

13. Socher, R., Huang, E.H., Pennington, J., Ng, A.Y., Manning, C.D.: Dynamic pool-
ing and unfolding recursive autoencoders for paraphrase detection. In: Proceedings
of the 25th Annual Conference on Neural Information Processing Systems, pp. 801–
809 (2011)

14. Mikolov, T., Kombrink, S., Burget, L., Cernocky, J.H.: Extensions of recurrent
neural network language model. In: Proceedings of the 36th IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 5528–5531. IEEE
Press, New York (2011)

15. Kim, Y.: Convolutional neural networks for sentence classification. In: 11th Confer-
ence on Empirical Methods in Natural Language Processing, pp. 1746–1751. ACL
Press, Stroudsburg (2014)

16. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network
for modelling sentences. In: Proceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 655–665. ACL Press, Stroudsburg (2014)

17. Chen, Y., Xu, L., Liu, K., Zeng, D., Zhao, J.: Event extraction via dynamic multi-
pooling convolutional neural networks. In: Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and 7th International Joint
Conference on Natural Language Processing of the Asian Federation of Natural
Language Processing, pp. 167–176. ACL Press, Stroudsburg (2015)

18. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(1),
2493–2537 (2011)

19. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors.
CoRR, abs/1207.0580 (2012)

20. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment catego-
rization with respect to rating scales. In: Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics, pp. 115–124. ACL Press,
Stroudsburg (2005)

21. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the
10th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 168–177. ACM, New York (2004)

22. Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic
classification. In: Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics, pp. 90–94. ACL Press, Stroudsburg (2012)

23. Wang, S., Manning, C.D.: Fast dropout training. In: Proceedings of the 30th Inter-
national Conference on Machine Learning, pp. 118–126 (2013)

24. Nakagawa, T., Inui, K., Kurohashi, S.: Dependency tree-based sentiment classi-
fication using CRFs with hidden variables. In: Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pp. 786–794 (2010)

Parallel Implementation of a Bug Report
Assignment Recommender Using Deep Learning

Adrian-Cătălin Florea1(B), John Anvik2, and Răzvan Andonie1,3

1 Electronics and Computers Department, Transilvania University of Braşov,
Braşov, Romania

acflorea@unitbv.ro
2 Department of Mathematics and Computer Science, University of Lethbridge,

Lethbridge, AB, Canada
john.anvik@uleth.ca

3 Computer Science Department, Central Washington University,
Ellensburg, WA, USA
andonie@cwu.edu

Abstract. For large software projects which receive many reports daily,
assigning the most appropriate developer to fix a bug from a large pool of
potential developers is both technically difficult and time-consuming. We
introduce a parallel, highly scalable recommender system for bug report
assignment. From a machine learning perspective, the core of such a sys-
tem consists of a multi-class classification process using characteristics of
a bug, like textual information and other categorical attributes, as fea-
tures and the most appropriate developer as the predicted class. We use
alternatively two Deep Learning classifiers: Convolutional and Recurrent
Neural Networks. The implementation is realized on an Apache Spark
engine, running on IBM Power8 servers. The experiments use real-world
data from the Netbeans, Eclipse and Mozilla projects.

1 Introduction

Bug report triage is the process by which bug reports submitted to a software
project’s “bug tracker”, a form of issue tracking system, are analyzed to deter-
mine if the report will result in development activity. As large software devel-
opment projects can receive hundreds of bug reports per day [4,5], bug report
triage is a significant software maintenance problem, as it can take substantial
time and resources [8]. Bug report assignment is an important bug report triage
decision, as errors can result in delays to the project [4,5,7].

Deep Learning techniques are a modern tool that provides highly promis-
ing results in a vast area of applications [10]. They have the drawback of long
training times and complex architectures which often do not scale well. The high
complexity of such models has so far lead to their low adoption rate in the area
of recommender systems.

We present a highly scalable parallel Deep Learning-based implementation
of a bug report assignment recommender system. To the best of our knowledge,
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 64–71, 2017.
https://doi.org/10.1007/978-3-319-68612-7_8

Bug Assignment Recommender - A Deep Learning Parallel Implementation 65

no previous attempts have been made in using Deep Learning techniques for
bug report assignment recommendations. Our main focus is not the execution
time itself, but the scalability of the system on a cluster. This is measured by the
speedup (the ratio of the sequential execution time to the parallel execution time)
and parallel efficiency (speedup divided by the number of processors/cores). In
a cluster architecture, these are important metrics. Our contributions are the
following:

– The first Deep Learning-based approach for automated bug report assignment
in large software projects, with prediction performance on par with the state
of the art.

– A highly scalable, parallel implementation that alleviates the problem of a
long training time and model size.

The paper proceeds as follows: Sect. 2 gives a brief overview of the existing
work in the context of Deep Learning for recommender systems and previous
attempts of using machine learning techniques for bug report assignment recom-
mendation. We then describe our recommender system in Sect. 3. In Sect. 4, we
discuss the results obtained using three real-world datasets from the Netbeans,
Eclipse and Mozilla projects. The paper is concluded in Sect. 5.

2 Related Work

We restrict our focus to Deep Learning architectures used to train recommender
systems. The following are some of the results which are related to the recent
high interest in Deep Learning.

Salakhutdinov et al. [17] proposed one of the first approaches, where they inte-
grate an instance of a two-layer Restricted Boltzmann Machines (RBM) into a
Collaborative Filtering type recommender to be able to handle large datasets.
They tested their model on the Netflix dataset, consisting of over 100 million
user/movies rating. Although the approach outperformed the existing models at
that time, it used as input exclusively the ratings and it was found to be not deep
enough. Wang et al. [20] proposed a hierarchical Bayesian model called Collabo-
rative Deep Learning (CDL) and used movie review text along with the ratings
to alleviate the cold-start problem. Reviews were converted into a numerical rep-
resentation using the Bag Of Words (BOW) technique, and this numerical data
were fed into a Deep Auto Encoder to obtain a lower dimensional feature space
[19]. The model gave good results, but it suffered from losing the semantic infor-
mation embedded in the text, as well as from ignoring the word order.

There have been other attempts to integrate different types of Deep Neural
Networks into recommender systems. As a potential solution to deal with the
cold start problem, Wang et al. used a Convolutional Neural Network (CNN)
to develop a hybrid recommender that considers real-world users information
and high-level representation of audio data [21]. Kyo-Joong et al. [16] developed
a personalized news recommender system based on a three-layer perceptron in
which they integrated several numerical features extracted from textual data.

66 A.-C. Florea et al.

Tomar et al. [18] used a Word2Vec [6] model to provide hashtag recommendations
for English tweets1. The obtained word representation was then fed into a deep
feedforward neural network.

Given the large amount of data, as well as the large number of parameters
required to build deep learning models, leveraging the resources of a cluster to
optimize the training is gaining a lot of attention. With Apache Spark offering a
dense and intuitive API for building parallel applications, combining Spark and
Deep Learning is an emerging research direction. Stoica et al. [13] developed
the SparkNet framework that uses Apache Spark to train multiple instances of
Caffe models, distributed over a cluster using data parallelism2. Even though it is
not a recommender system per se, SparkNet can provide the backbone of such a
system. Similar attempts of using Apache Spark to parallelize deep learning were
also reported by Abu Alsheikh [2]. Their work focused on using Deep Learning
for mobile data analytics.

In the area of bug report assignment recommendation, standard machine
learning techniques have been employed, including Näıve Bayes [14], SVM [9],
and C4.5 [3]. Some of these techniques were also used in combination with dimen-
sionality reduction, such as LSI [1], X2 [5,9] and LDA [9,15]. The first parallel
bug report assignment recommender systems was implemented by Florea et al.
[9] and used a distributed version of a SVM on a Spark cluster.

3 Deep Learning Bug Report Assignment Recommender

This section presents our recommender system. As shown in Fig. 1, the input
to the recommender system consists of MySQL database dumps. The data is
filtered and pre-processed as described in Sect. 3.2. We export the pre-processed
data as input for building a Paragraph2Vec [12] model which we later feed into
either a CNN or a Long Short Term Memory (LSTM) network [10].

Fig. 1. Recommender system macro architecture.

We describe in the following sections: the datasets used for evaluation, the
cleansing and pre-processing phases, the training algorithm, and the implemen-
tation.

1 https://twitter.com/.
2 https://en.wikipedia.org/wiki/Data parallelism.

https://twitter.com/
https://en.wikipedia.org/wiki/Data_parallelism

Bug Assignment Recommender - A Deep Learning Parallel Implementation 67

3.1 Datasets

To evaluate the performance of our recommender system, we use real data from
the following three software projects: Eclipse and Netbeans - both datasets
available from the 2011 Working Conference on Mining Software Repositories
Data Challange webpage,3 and Mozilla - made available to us by the Mozilla
Foundation. All of the datasets were in the form of anonymized MySQL dumps
of the respective Bugzilla database. From these data dumps, we extract data
from the fields of the following tables: bugs (bug id, creation ts, bug status,
product id, resolution, component id, bug severity), bugs activity (who,
bug when), longdescs (bug id, thetext) and duplicates (dupe). The bugs
table stores essential details of a bug including its id, severity, creation date, and
current bug status. The bugs activity table stores the activity logs, including
all of the changes in the bug status. The duplicates table contains information
about duplicate bug reports. The bug report’s textual information is kept in the
longdescs table.

3.2 Data Preparation

To prepare the data, we apply similar data cleansing steps as described by
Anvik and Murphy [4] and Florea et al. [9]. Among all the CLOSED bugs
(bugs.bug status = ‘CLOSED’), we consider exclusively the reports marked as
FIXED (bugs.resolution = ‘FIXED’). Based on project heuristics, as detailed
by Anvik and Murphy [4], we consider the developer who fixed a report as the one
marking it as FIXED in bugs activity. To be able to produce effective predic-
tions, we restrict our input both in terms of training data and in terms of target
classes (developers). We consider a developer to be active in the project if, and
only if, she fixed an average of three or more bug reports per month over the last
three months. Doing so eliminates developers with only occasional contributions
to the project. We also remove those that have an exceptionally high frequency of
marking reports FIXED (more than mean+2∗stddev), on the assumptions that
these represent project managers and not developers. For each bug report, we
use a normalized version of its textual representation obtained by converting the
text to lower case, removing any non-alphanumerical characters, and concate-
nating the text from the report’s title, description, and comments. In addition
to textual data, we use the component id, product id and bug severity fields
as one-hot-encoded categorical variables.

We use the Distributed Bag of Words version of Paragraph Vector
(PV-DBOW) [12] to obtain numerical values for features from our textual data.
For each dataset, we train a model with 100 features for 20 epochs, with no
hard-coded stopwords, using a window size of 5. The input for the PV-DBOW
model is the text retrieved from all of the reports in the database. This is done
as each term can contain valuable semantic information, regardless of the report
status, resolution or age. For training, we restrict the data to bugs marked as

3 http://2011.msrconf.org/msr-challenge.html.

http://2011.msrconf.org/msr-challenge.html

68 A.-C. Florea et al.

FIXED during the most recent 240 days, considering that the most recent data
is also the most relevant data.

3.3 Recommender Training

We are interested in predicting recent data based on older one. Therefore, we
order the data based on most recent change date and split it into 80% training,
10% validation and 10% test. We tune the recommender using the validation data
and report the results obtained on the test data. We train the recommender on
an Apache Spark4 cluster using either a CNN or a LSTM network.

Convolutional Neural Network. To induce a level of spatiality between
words from a certain paragraph, for CNN, we split the textual representation of
bugs into n equal sequences and compute their PV-DBOW representation indi-
vidually. Our network of choice consists of two pairs of convolution and average
pooling layers, followed by two dense layers, as shown in Fig. 2. The “C” layers
(C(ki, 1)(1, 1)fi) represent convolution layers with a (ki, 1) size kernel, a stride
of (1, 1) and fi filters. “P” layers are pooling layers, while “D” layers are dense
layers. For our recommender system, we set the value of n to five and (ki) to two
for both of the “C” layers. The first dense layer has 500 neurons and uses ReLU
(f(x) = max(0, x)) activation. For the second dense layer, we use the softmax
(σ(z)j = ezj∑K

k=1 ezk
) activation.

n

feature #
C: (k1,1)(1,1)f1 P C: (k2,1)(1,1)f2 P D D

Fig. 2. The CNN architecture

Memory Cell
Input Output

Input Gate Output Gate

Forget Gate

Fig. 3. An LSTM cell

Long Short Term Memory. For LSTM, no further data preprocessing is
required. The data is fed to a two-layer Recurrent Neural Network. The first
layer is a “Graves” [11] RNN unidirectional layer with 250 output neurons, a
dropout of 0.5 and the softsign (f(x) = x

1+|x|) activation. Each cell is a typical
memory cell as shown in Fig. 3. The output layer uses the softmax activation.

3.4 Implementation Details

The recommender system is developed in Scala 2.11.8, with the exception of the
data cleansing phase, which is implemented in Python 2.7.11. We use Deeplearn-
ing4j5 to build and train the neural networks. We train both the CNN and LSTM
4 http://spark.apache.org/.
5 https://deeplearning4j.org/about.

http://spark.apache.org/
https://deeplearning4j.org/about

Bug Assignment Recommender - A Deep Learning Parallel Implementation 69

networks on an Apache Spark engine. Each Spark cluster consists of one mas-
ter node and 4, 8 or 12 workers. Data is distributed among the workers and the
training starts with the initial set of parameters. Once every n iterations, the new
parameter values are sent back to the master which averages and re-distributes
them to the worker nodes. Training continues with the new parameter values and
the process repeats for a predefined number of steps or until certain convergence
criteria are met.

We train and test our recommender on two IBM Power8 8001-22C (Briggs)
servers with Ubuntu 16.04 LTS installed, using the IBM. version of Spark 1.6.3.
Each server has 2 processors with 20 cores each and 512GB of RAM. The code
is publicly available on GitHub6.

4 Results

Table 1 shows the precision, recall and F1-measure values obtained by the
LSTM and CNN recommenders compared to the distributed SVM-based results
reported in Florea et al. [9]. The CNN recommender version shows comparable
results across all projects in terms of classification performance when compared
to the parallel SVM implementation. Although LSTM has, in most of the cases, a

Table 1. Precision, recall and F1-measure after 100 epochs with batch sizes of 10 and
25 samples compared to the parallel SVM implementation. Best values are in bold.

Dataset Netbeans Eclipse Mozilla

Architecture LSTM CNN SVM LSTM CNN SVM LSTM CNN SVM

Batch size 10 25 10 25 - 10 25 10 25 - 10 25 10 25 -

Precision 0.86 0.85 0.90 0.88 0.89 0.73 0.67 0.80 0.80 0.78 0.59 0.62 0.78 0.77 0.77

Recall 0.83 0.83 0.87 0.86 0.88 0.70 0.68 0.75 0.75 0.77 0.70 0.71 0.75 0.75 0.75

F1-measure 0.84 0.84 0.88 0.87 0.88 0.71 0.67 0.77 0.77 0.77 0.64 0.66 0.76 0.75 0.73

Table 2. Network average training time per epoch (in seconds), speedup and efficiency
with increasing number of workers as compared to a 4 cores execution baseline.

Dataset Netbeans Eclipse Mozilla

Architecture LSTM CNN LSTM CNN LSTM CNN

Batch size 10 25 10 25 10 25 10 25 10 25 10 25

Average training time 408 212 442 175 1192 492 1411 525 3347 1028 3636 1579

Speedup 8 cores 1.83 2.93 2.85 1.84 2.02 2.14 2.34 2.16 2.84 1.66 2.01 1.82

Efficiency 8 cores 0.92 1.47 1.42 0.92 1.01 1.07 1.17 1.08 1.42 0.83 1.00 0.91

Speedup 12 cores 2.53 4.06 4.31 4.12 2.52 2.69 3.96 3.67 5.23 3.12 2.94 3.06

Efficiency 12 cores 1.27 2.03 2.15 2.06 1.26 1.35 1.98 1.84 2.62 1.56 1.47 1.53

6 https://github.com/acflorea/deep-columbugus,mariana-triage.

https://github.com/acflorea/deep-columbugus,mariana-triage

70 A.-C. Florea et al.

significantly lower training time, as shown in Table 2, it yields worse performance
results for all projects. Of the four sample sizes (10, 25, 100 and 250) examined,
100 and 250 samples led to notably worse classification performance for LSTM
when compared to sample sizes of 10 or 25. However, for CNN, increasing the
sample size resulted in only a small performance degradation.

Both network architectures have good scalability. The speedup and efficiency
values for training the recommender are depicted in Table 2.

5 Conclusions

A highly scalable parallel Deep Learning-based implementation of a bug report
assignment recommender system was introduced, with both the CNN and LSTM
approaches explored. Using a parallel implementation, we trained the recom-
mender relatively fast, considering that deep network training is generally slow.
Although the CNN recommender achieves results on par with the parallel SVM
implementation, the SVM approach remains superior in terms of training speed.

This work opens further research directions both in terms of optimizing the
training speed (e.g., use GPUs instead of CPUs) and prediction performance
(e.g., identify more efficient CNN architectures).

Acknowledgments. The authors are grateful to the Mozilla Foundation for providing
a dump of their Bugzilla database and to IBM Client Center, Poughkeepsie, NY, USA
for allowing us to use their infrastructure.

References

1. Ahsan, S.N., Ferzund, J., Wotawa, F.: Automatic software bug triage system (bts)
based on latent semantic indexing and support vector machine. In: Fourth Inter-
national Conference on Software Engineering Advances, ICSEA 2009, pp. 216–221,
September 2009

2. Alsheikh, M.A., Niyato, D., Lin, S., Tan, H., Han, Z.: Mobile big data analytics
using deep learning and apache spark. CoRR abs/1602.07031 (2016). http://arxiv.
org/abs/1602.07031

3. Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: Proceedings of
the 28th International Conference on Software Engineering, ICSE 2006, NY, USA,
pp. 361–370 (2006). http://doi.acm.org/10.1145/1134285.1134336

4. Anvik, J., Murphy, G.C.: Reducing the effort of bug report triage: recommenders
for development-oriented decisions. ACM Trans. Softw. Eng. Methodol. 20(3),
10:1–10:35. http://doi.acm.org/10.1145/2000791.2000794

5. Banitaan, S., Alenezi, M.: Tram: an approach for assigning bug reports using their
metadata. In: 2013 Third International Conference on Communications and Infor-
mation Technology, pp. 215–219, June 2013

6. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic lan-
guage model. J. Mach. Learn. Res. 3, 1137–1155. http://dl.acm.org/citation.cfm?
id=944919.944966

http://arxiv.org/abs/1602.07031
http://arxiv.org/abs/1602.07031
http://doi.acm.org/10.1145/1134285.1134336
http://doi.acm.org/10.1145/2000791.2000794
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=944919.944966

Bug Assignment Recommender - A Deep Learning Parallel Implementation 71

7. Bhattacharya, P., Neamtiu, I., Shelton, C.R.: Automated, highly-accurate, bug
assignment using machine learning and tossing graphs. J. Syst. Softw. 85(10),
2275–2292 (2012)

8. Cavalcanti, Y.A.C., da Mota Silveira Neto, P.A., do Carmo Machado, I., de
Almeida, E.S., de Lemos Meira, S.R.: Towards understanding software change
request assignment: a survey with practitioners. In: Proceedings of the 17th Inter-
national Conference on Evaluation and Assessment in Software Engineering, pp.
195–206 (2013)

9. Florea, A.-C., Anvik, J., Andonie, R.: Spark-based cluster implementation
of a bug report assignment recommender system. In: Rutkowski, L., Kory-
tkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2017. LNCS, vol. 10246, pp. 31–42. Springer, Cham (2017). doi:10.1007/
978-3-319-59060-8 4

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

11. Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks.
Studies in Computational intelligence, New York (2012). http://opac.inria.fr/
record=b1133792

12. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents.
CoRR abs/1405.4053 (2014). http://arxiv.org/abs/1405.4053

13. Moritz, P., Nishihara, R., Stoica, I., Jordan, M.I.: SparkNet: training deep networks
in spark. ArXiv e-prints, November 2015

14. Nasim, S., Razzaq, S., Ferzund, J.: Automated change request triage using alpha
frequency matrix. In: Frontiers of Information Technology (FIT), pp. 298–302
(2011)

15. Nguyen, T.T., Nguyen, A.T., Nguyen, T.N.: Topic-based, time-aware bug assign-
ment. SIGSOFT Softw. Eng. Notes 39(1), 1–4. http://doi.acm.org/10.1145/
2557833.2560585

16. Oh, K.J., Lee, W.J., Lim, C.G., Choi, H.J.: Personalized news recommendation
using classified keywords to capture user preference. In: 16th International Con-
ference on Advanced Communication Technology, pp. 1137–1155 (2014)

17. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for collab-
orative filtering. In: Proceedings of the 24th International Conference on Machine
Learning, ICML 2007, NY, USA, pp. 791–798 (2007). http://doi.acm.org/10.1145/
1273496.1273596

18. Tomar, A., Godin, F., Vandersmissen, B., Neve, W.D., de Walle, R.V.: Towards
twitter hashtag recommendation using distributed word representations and a deep
feed forward neural network. In: 2014 International Conference on Advances in
Computing, Communications and Informatics, Delhi, India, September 24–27, 2014
(2014). http://dx.doi.org/10.1109/ICACCI.2014.6968557

19. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denois-
ing autoencoders: Learning useful representations in a deep network with a
local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408. http://dl.acm.org/
citation.cfm?id=1756006.1953039

20. Wang, H., Wang, N., Yeung, D.: Collaborative deep learning for recommender
systems. CoRR abs/1409.2944 (2014). http://arxiv.org/abs/1409.2944

21. Wang, X., Wang, Y.: Improving content-based and hybrid music recommendation
using deep learning. In: Proceedings of the 22nd ACM International Conference
on Multimedia, MM 2014, NY, USA, pp. 627–636 (2014). http://doi.acm.org/10.
1145/2647868.2654940

http://dx.doi.org/10.1007/978-3-319-59060-8_4
http://dx.doi.org/10.1007/978-3-319-59060-8_4
http://www.deeplearningbook.org
http://opac.inria.fr/record=b1133792
http://opac.inria.fr/record=b1133792
http://arxiv.org/abs/1405.4053
http://doi.acm.org/10.1145/2557833.2560585
http://doi.acm.org/10.1145/2557833.2560585
http://doi.acm.org/10.1145/1273496.1273596
http://doi.acm.org/10.1145/1273496.1273596
http://dx.doi.org/10.1109/ICACCI.2014.6968557
http://dl.acm.org/citation.cfm?id=1756006.1953039
http://dl.acm.org/citation.cfm?id=1756006.1953039
http://arxiv.org/abs/1409.2944
http://doi.acm.org/10.1145/2647868.2654940
http://doi.acm.org/10.1145/2647868.2654940

A Deep Learning Approach to Detect Distracted
Drivers Using a Mobile Phone

Renato Torres1,2(B), Orlando Ohashi3, Eduardo Carvalho4,5,
and Gustavo Pessin5

1 Institute of Exact and Natural Sciences, Federal University of Pará,
Belém, PA, Brazil

renato.hidaka@ifpa.edu.br
2 Informatics Department, Federal Institute of Pará, Paragominas, PA, Brazil

3 Cyberspace Institute, Federal Rural University of Amazônia, Belém, PA, Brazil
4 SENAI Institute of Innovation in Minerals Technologies, Belém, PA, Brazil
5 Applied Computing Lab, Vale Institute of Technology, Belém, PA, Brazil

Abstract. Detect distracted driver is an essential factor to maintain
road safety and avoid the risk of accidents and deaths. Studies of the
World Health Organization shows that the distraction caused by mobile
phones can increase the crash risk by up to 400%. This paper proposes
a convolutional neural network that is able to monitor drivers video
surveillance, more specifically detect and classify when the driver is using
a cell phone. The experiments show an impressive accuracy, achieving up
99% of accuracy detecting distracted driver.

Keywords: Convolutional neural network (CNN) · Driver behavior ·
Driver distraction · Driver’s monitoring

1 Introduction

According to World Health Organization (WHO), the road traffic accident is
one of the ten most frequent causes of death in the world [1]. In 2005, WHO
published the report The Global Burden of Disease [2] that shows that more than
1.2 million people died and 50 million were injured in traffic accidents worldwide
only in 2014. Traffic accidents cost US$ 518 billion every year. If nothing changes,
in 2030, traffic accident will be the fifth cause of death in the world. In 2010, the
United Nations (UN) created the program Global Plan for Decade of Action for
Road Safety 2011–2020 [3]. The program main goal is to reduce the road traffic
fatalities by 50% and save 5 million lives in ten years. UN proposes five main
lines of action: (i) road safety management; (ii) safer roads and mobility; (iii)
safer vehicles; (iv) safer road users and (v) post-crash response.

The UN invited WHO to continuously monitoring the traffic safety. WHO
created a Global Status Report on road safety and special series. The reports
provide a snapshot of the gaps and needs of the road safety situations. Among
the reports already published by WHO, the report Mobile Phone Use: a growing
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 72–79, 2017.
https://doi.org/10.1007/978-3-319-68612-7_9

A Deep Learning Approach to Detect Distracted Drivers 73

problem of driver distraction (2011) [4] highlights the impact of cell phone use
on driving performance. This report shows that the use of mobile phone can
increase the drivers crash risk by a factor of four and if a driver is sending or
retrieving text messaging, the amount of time that it spent with their eyes off
the road increase by up to 400%. The use of mobile phone causes slower reaction
times to detect and respond to driving-related events as, slower reactions to
traffic signals and aggressive breaking.

In this context, we understand that automatically detect driver’s distraction
is an essential task in maintaining a safer traffic, one of the programs created
by UN. In this paper, we propose a deep learning solution that automatically
processes images from internal video surveillance system, with the aim to detect
distracted drivers associated with the use of mobile phone. More specifically the
proposed approach is a convolutional neural network (CNN) that detect if a
driver is using or not a mobile phone, and the specific action, if the driver is
sending/reading text messaging or talking on the phone.

2 Related Studies

There is a vast literature on detect driver distraction. Usually, driver’s distraction
is classified as internal and external to the vehicle. Regarding the internal dis-
traction, the object of study this paper, we can highlight some related research.

Wollmer et al. [5] developed a long short term memory (LSTM) recurrent
neural network to detect eight type of distraction based on modeling contextual
information in driving and head tracking data captured during test drivers in
real traffic. The approach used an interface of controller area network (CAN)
and a head tracking system to obtain the necessary features to the model. The
results show that the LSTM enable a reliable subject-independent detection of
inattention with an accuracy of up to 96.6%.

Craye and Karry [6] proposed a computational model to detect distracted
drivers. The model consists of four Kinect modules that are responsible for
tracking: the eye behavior, arm position, head orientation and facial expressions.
These features analyzed by these modules were used in two different classifica-
tion strategies: AdaBoost classifier and Hidden Markov Model. The results show
that the model achieved 85% of accuracy for the type of distraction and 90% for
distraction detection.

Liu et al. [7] explored a semi-supervised method for driver distraction detec-
tion in real driving conditions to alleviate the cost of the labeling training
data. The authors developed a Laplacian support vector machine and a semi-
supervised extreme learning machine that use eyes and head movements to clas-
sify alert and distracted drivers. The main benefits of this work are that it
reduces the necessity manual labeling of the data. The authors show that the
approach improves the detection accuracy as compared with traditional super-
vised methods.

The work of Fernández et al. [8] show a review of the role of computer
vision technology applied to the development of monitoring systems to detect

74 R. Torres et al.

distraction. The main methods for face detection, face tracking and detection
of facial landmarks are summarized in this paper showing that they are a key
component in many of the video-based inattention monitoring systems.

Unlike previous studies that require specialized equipment to detect distracted
drivers, by analyzing specific behaviors such as eye tracking, head orientation,
arms positions and facial expressions. In this work, we propose a methodology
that uses surveillance camera and CNN to analyze driver’s distraction. Our pro-
posal does not require any additional equipment and achieved impressive results.
Research as Wang et al. [9] and Bejiga et al. [10] are examples of the power of the
CNN in correlated areas.

3 The Problem

The task of detect distracted drivers can be summarized as a binary classification
problem. The driver is driving safely, or it’s distracted. By contrast, if the goal is
to identify the cause of the distraction, it’s a multiclass classification problem. In
this paper, we address both tasks, we classify the type of distraction, associated
with the use of the mobile phone and we also classify as a binary problem
combining the types of distraction in one major class.

We have used the StateFarm database [12] in our experiments. StateFarm was
a database employed in a public kaggle contest1. The objective of the competition
is to classify nine types of driver distraction, that are: C1 - texting right; C2 -
talking on the phone right; C3 - texting left; C4 - talking on the phone left; C5 -
operating the radio; C6 - drinking; C7 - reaching behind; C8 - hair and make-up;
C9 - talking to a passenger. Besides C0 class that refers to non-distracted drivers.

In this research, we restrict to the classes associated with the use of mobile
phone. The drivers can be classified in one of the following situations: C0 - safe
driving; C1 - texting right; C2 - talk on the phone right; C3 - texting left and
C4 - talk on the phone left (see Fig. 1). The issue to classify distracted drivers
consists, at each sample define the correct class Ci such that i = {1, 2, 3, 4}. On
the other hand, the problem of detecting distracted drivers can be summarized
as, if the sample is in C0 or not. If it doesn’t belong, means that the driver is
distracted.

4 Methodology

In this section, we present the pre-processing methodology realized in this work,
the architecture design of convolutional neural network (CNN) developed and
the experiments that were accomplished to measure the accuracy of the model.

In the pre-processing stage, each image was loaded and resized to 150× 150
pixels. These images were storage in a 150× 150× 3 matrix. The 3D matrix was
necessary because of the RGB color model. Each cell of the matrix kept a value
between 0 to 255. We use Min-Max transformation to normalize the values of
the matrix. Each value between 0 to 255 was transformed to values in the 0 to
1 range.
1 https://www.kaggle.com/c/state-farm-distracted-driver-detection.

https://www.kaggle.com/c/state-farm-distracted-driver-detection

A Deep Learning Approach to Detect Distracted Drivers 75

Fig. 1. Types of distractions.

4.1 Convolutional Neural Network

Convolutional neural networks (CNN) are structures divided into two parts:
convolution layer and fully connected layer. According to Goodfellow, Bengio and
Courville [11], the convolutional layer is responsible for extracting the features
using a combination of linear and nonlinear activation functions such as pooling,
that summarizes the output of the layer. The second structure of the network is
a fully connected layer that is responsible for using the extracted features of the
convolutional layer to realize the prediction or classification. Normally, the fully
connected layer is build using a Multilayer Perceptron (MLP).

Figure 2 shows the CNN architecture developed in this work. We can see
that each convolution layer is composed of a 3-upla <Convolution, Nonlinear
activation function, Pooling>. The first and second convolution layer are setting
with 32 kernels of 3× 3, ReLU activation function, and MaxPooling of 2× 2. In
the third layer, we used a convolution with 64 kernels of 3× 3, ReLU activation
function and MaxPooling of 2× 2. In the fully connected layer, we used a Mul-
tilayer Perceptron with 64 neurons and ReLU activation function in the hidden
layer and 5 neurons and sigmoid activation function in the output layer. We used
the Keras2 framework implementations to build this architecture.

4.2 Experiments

The main purpose this research is to detect and classify distracted driver’s asso-
ciated with the use of the mobile phone, we use only the samples referring to
the classes C0, C1, C2, C3 and C4 of the original problem [12]. Table 1 shows the
number of pictures used for the training and validation of each class.

2 https://keras.io/.

https://keras.io/

76 R. Torres et al.

Fig. 2. CNN architecture developed.

Table 1. Number of samples to training and validate.

C0 C1 C2 C3 C4 Total

Training 2088 1864 2065 1936 1888 9841

Validation 401 403 252 410 438 1904

Total 2489 2267 2317 2346 2326 11745

From the 9841 training samples, we used 6593 (67%) for the training of the
network and 3248 (33%) for the validation of each epoch. We set the number
of epochs in the training of the CNN to 13 and the batch size to 32. Since we
are dealing with a multiclass classification problem, we used the loss function
categorical cross entropy and the optimizer RMSprop.

To run the experiments, we use a computer with the following settings: 2,9
GHz Intel Core i7 processor, 8 GB 1600 MHz DDR3 memory and Intel HD
Graphics 4000 of 1536 MB. CNN training lasted about an hour and the accuracy
of training and validation set were, respectively, acc = 0.9841 and acc val =
0.9926. Figure 3 shows the learning curve of the 13 training epochs in function
of the error. In this graphic, we can see that in the last epoch we have the lowest
error rates in both the training set and test set. These characteristics inform that
we have a low bias and variance and that our proposed approach can realize the
necessary generalization to reduce the possibility of overfitting.

To demonstrate the generalization of the model the next step of the exper-
iment was to perform the classification of the 1904 test samples. The accuracy

A Deep Learning Approach to Detect Distracted Drivers 77

Fig. 3. Learning curve of the 13 training epochs in function of the error.

obtained was 0.9952 and can be observed in detail in the confusion matrix of
Fig. 4. In this confusion matrix, we can see that we had only nine wrong clas-
sifications. These level of accuracy show that the proposed model was able to
successfully realize the generalization in the task of classifying distracted driver’s
associated with the mobile phone use.

Fig. 4. Confusion matrix

Considering the binary classification task of detecting distracted drivers,
recognize if the sample is in C0 or not. We modify the confusion matrix for
the binary problem. In this case, the cause of distraction is not relevant, we

78 R. Torres et al.

merge all the types of distracted classes, C1, C2, C3 and C4 in one major class
called Cx.

As expected in this new confusion matrix, the number of misclassification
reduced. Two misclassifications are false negative and four are false positive.
The false negative indicates the sample that is of the C0 type but was classified
as Cx type, i.e., two situations where the driver was driving safely, but the
model classified as distracted. On the other hand, the false positive indicates the
number of samples that are of the Cx type but were incorrectly classified as C0
type. In this case, were four situations where the driver was distracted but was
not detected by the model.

Using the number of false positives and negatives it is possible to calculate
precision and recall measures. Precision has the purpose of measure the pro-
portion of elements that were classified as C0 in relation to false positives. By
contrast, recall has the aim of the measure the proportion of elements that were
classified as C0 in relation to false negatives. These two measures indicate that
the closer to one, better the level of generalization performed by the model.
Equation 1 summarizes precision, recall, and accuracy calculated from the con-
fusion matrix.

precision =
TP

TP + FP
=

399
399 + 4

= 0.99

recall =
TP

TP + FN
=

399
399 + 2

= 0.995

accuracy =
TP + TN

n
=

399 + 1499
1904

= 0.9968

(1)

The experiments and analyses carried out show that the developed model
was able to successfully perform the necessary learning to detect and classify
with an excellent accuracy, the four types of driver distraction associated with
the mobile phone use.

5 Conclusion

The results presented in this paper shows that the proposed approach is
extremely efficient to detect distracted drivers associated with the mobile phone
use. In the experiments realized, the convolutional neural network presented
an accuracy of 99%. These results are relevant because driver’s distraction is a
risk factor to traffic injuries and deaths. Comparing with correlated works that
detect driver distraction using specific and expensive hardware, like Kinect as
eye behavior, arm position, head orientation and facial expressions. This excel-
lent accuracy combined with the fact that our solution requires a minimal setup,
a standard video camera. Allow our proposed solution to be applied in indus-
trial scale. Therefore, we concluded that our solution is promising and, for this
reason, as future work, we will create an application so that people can use our
solution.

A Deep Learning Approach to Detect Distracted Drivers 79

References

1. World Health Organization: Global Status Report on Road Safety (2015). http://
www.who.int/violence injury prevention/publications/road traffic/en/

2. World Health Organization: The global burden of disease. http://www.who.int/
healthinfo/global burden disease/2004 report update/en/

3. United Nations: Global Plan for the Decade of Action for Road Safety 2011–2020.
http://www.who.int/roadsafety/decade of action/plan/en/

4. World Health Organization: Mobile phone use: a growing problem of
driver distraction. http://www.who.int/violence injury prevention/publications/
road traffic/distracted driving/en/

5. Wollmer, M., Blaschke, C., Schindl, T., Schuller, B., Farber, B., Mayer, S., Trefflich,
B.: Online driver distraction detection using long short-term memory. IEEE Trans.
Intell. Transp. Syst. 12(2), 574–582 (2011)

6. Craye, C., Karray, F.: Driver distraction detection and recognition using RGB-D
sensor. In: Computer Vision and Patter Recognition. Cornel University Library
(2015). https://arxiv.org/abs/1502.00250

7. Liu, T., Yang, Y., Huang, G., Yeo, Y., Lin, Z.: Driver distraction detection using
semi-supervised machine learning. IEEE Trans. Intell. Transp. Syst. 17(4), 1108–
1120 (2016)

8. Fernández, A., Usamentiaga, R., Cars, J.L., Casado, R.: Driver distraction using
visual-based sensors and algorithms. Sensors 16(11), 1805 (2016). doi:10.3390/
s16111805. (Basel, Switzerland)

9. Wang, R., Xu, Z.: A pedestrian and vehicle rapid identification model based on
convolutional neural network. In: Proceedings of the 7th International Conference
on Internet Multimedia Computing and Service (ICIMCS 2015). NY, USA, Article
32. ACM, New York (2015)

10. Bejiga, M., Zeggada, A., Nouffidj, A., Melgani, F.: A convolutional neural network
approach for assisting avalanche search and rescue operations with UAV imagery.
Sensors 9(2), 100 (2017). doi:10.3390/rs9020100

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press. http://www.
deeplearningbook.org/

12. StateFarm: State Farm Distracted Driver Detection. https://www.kaggle.com/c/
state-farm-distracted-driver-detection/data

http://www.who.int/violence_injury_prevention/publications/road_traffic/en/
http://www.who.int/violence_injury_prevention/publications/road_traffic/en/
http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/
http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/
http://www.who.int/roadsafety/decade_of_action/plan/en/
http://www.who.int/violence_injury_prevention/publications/road_traffic/distracted_driving/en/
http://www.who.int/violence_injury_prevention/publications/road_traffic/distracted_driving/en/
https://arxiv.org/abs/1502.00250
http://dx.doi.org/10.3390/s16111805
http://dx.doi.org/10.3390/s16111805
http://dx.doi.org/10.3390/rs9020100
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
https://www.kaggle.com/c/state-farm-distracted-driver-detection/data
https://www.kaggle.com/c/state-farm-distracted-driver-detection/data

A Multi-level Weighted Representation
for Person Re-identification

Xianglai Meng(B), Biao Leng, and Guanglu Song

School of Computer Science and Engineering, Beihang University, Beijing, China
mengxianglai@buaa.edu.cn

Abstract. The introduction of deep neural networks (DNN) into per-
son re-identification tasks has significantly improved the re-identification
accuracy. However, the substantial characteristics of features extracted
from different layers of convolutional neural networks (CNN) are infre-
quently considered in existing methods. In this paper, we propose a multi-
level weighted representation for person re-identification, in which fea-
tures containing strong discriminative powers or rich semantic meanings
are extracted from different layers of a deep CNN, and an estimation
subnet evaluates the quality of each feature and generates quality scores
used as concatenation weights for all multi-level features. The features
multiplied by their weights are concatenated together to the final rep-
resentations which are improved eventually by a triplet loss to increase
the inter-class distance. Therefore, the representation exploits the various
benefits of different level features jointly. Experiments on the iLIDS-VID
and PRID 2011 datasets show that our proposed representation signifi-
cantly outperforms the baseline and the state of the art methods.

Keywords: Deep learning · Multi-level · Weighting scheme · Person
re-identification

1 Introduction

Person re-identification is a task of matching a person captured by non-
overlapping cameras. It is crucial for smart surveillance systems and has
attracted enormous attentions to promote the re-identification accuracy. A typ-
ical resolution for person re-identification contains two central parts: a discrim-
inative feature extraction method and a distance metric learning approach. In
spite of considerable efforts in recent years, this problem is still challenging as a
consequence of large appearance variations caused by massive changes of envi-
ronments and viewpoints.

Recently, many works tend to use deep convolutional neural networks and
achieves outstanding performances compared with traditional hand-crafted fea-
tures [8,10,11]. However, the majority of works using CNN concentrate on dig-
ging up information from features of multiple images or from features of multiple
parts of an image, while the substantial characteristics of multi-level features

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 80–88, 2017.
https://doi.org/10.1007/978-3-319-68612-7_10

A Multi-level Weighted Representation for Person ReID 81

extracted from different layers of CNN are generally disregarded. Advantages
of using multi-level CNN features have been explored in visual tracking tasks,
and experiments show that features of a top convolutional layer contains more
abstract and semantic meanings and that features of a lower layer are more dis-
criminative to separate instances of the same class [11]. Studies [9,14] on visual-
ization and understanding of convolutional networks can support this argument
as well.

Inspired by the situation, multi-level features of CNN are utilized to construct
a more discriminative representation in this work. Furthermore, an estimation
of the features extracted from different layers should be implemented to esti-
mate their contributions to the final representation, as the values of different
level features are diverse. However, it’s nearly impossible to establish a standard
assessment of features’ qualities or to get score labels of features’ discriminative
powers, which leaves an explicit supervised feature-quality-score generating hard
to perform. As a consequence, a weighting scheme using triplet loss is proposed
to address this issue by taking the scores generated by the estimation subnet
as weights when multi-level features are concatenated together to construct the
final representation of person re-identification.

The contribution of this paper is twofold. First, we exploit the discrimi-
native and semantic characteristics of multi-level CNN features in person re-
identification task and achieved the state of the art performance. Second, we
propose an estimation subnet under a weighting scheme to generate the quality
scores of different level features which is used to improve the holistic accuracy.
Experiments on the iLIDS-VID and PRID 2011 datasets show that our multi-level
weighted representation outperforms the state of the art and baseline methods.

2 Related Work

Most works [3,4,6,12,13] on person re-identification task concentrate on either
extracting discriminative and robust features or on establishing an enhanced
feature similarity metric. And recently, inspired by the successful applications of
DNN in various areas of computer-vision [5,8,10], DNN have been used in the
person re-identification task [1,7,15]. However, most of these methods ignore the
importance of multi-level information in the person re-identification task. Our
proposed approach differs significantly from all these methods, as the multi-level
information extracted from different layers of the convolutional network is used
in the construction of our representation, and an estimation subnet is developed
to generate quality scores of multi-level features under a weighting scheme for a
better accuracy. In addition, an aggressive data augmentation method demon-
strates the robustness of our representation and improves the performance on
iLIDS-VID dataset which has many heavily occluded images.

82 X. Meng et al.

3 Method

3.1 The Proposed Representation Construction Network

A diagram of our multi-level weighting network is shown in Fig. 1. As illustrated
in the figure, the proposed re-id method uses triplet images as inputs for the final
triplet loss during the training process. In each triplet, there are two different
images of one same person and the third image of another person, with images
of camera one and of camera two mixed together. In our architecture, each
frame is firstly processed by a deep convolutional network, and then multi-level
features are extracted from different layers of the network and supervised with
softmax losses so that the qualities of extracted features can be guaranteed.
After that, estimation subnets perform a quality evaluation of features, which
generate quality scores for each extracted feature. All features are multiplied by
weights via the weighting layer. The weighted features are then concatenated
together in the channel dimension and sliced in the num dimension according to
the triplet they belong to. After an L2 normalization layer, these concatenated
features are sent into a low-margin triplet loss layer, as our experiments show
that it’s easy to see overfitting problems with a high margin as a consequence of
the small scale of person re-id datasets.

Fig. 1. The multi-level weighted training network. Triplet training images are fed into
a deep CNN from which multi-level features are extracted. These features are super-
vised with the softmax loss and estimated to generate quality scores. Subsequently,
the features are multiplied with their scores and concatenated together in the channel
dimension. The final representation is supervised with a triplet loss.

A Multi-level Weighted Representation for Person ReID 83

3.2 Quality Estimation Subnets

We proposed two quality estimation structures to evaluate the extracted features
and to generate quality scores.

The first structure is shown in Fig. 2(b), in which a fully-connected layer is
used to perform the assessment of multi-level features and followed by a sig-
moid layer to produce a projection to the interval of 0 and 1 since the out-
puts of subnets are used as weights. This subnet is intuitively devised with an
intention to estimate the features directly and thus the fully-connected layer
is straightly connected to the extracted features. The structure is straightfor-
ward but short of enough information for the estimation of the features with
such connection. Experiments prove that the performance of this uncomplicated
structure is unstable.

To address this issue, the structure in Fig. 2(a) is proposed. With a con-
volutional layer connected to the convolutional feature maps from which the
multi-level features are extracted, the estimation subnet obtains more infor-
mation about the multi-level features. Experiments show that representation
constructed with this subnet achieves higher and steadier performance than the
former subnet.

Fig. 2. Two proposed quality estimation subnets for the evaluation of each feature and
for the generation of quality scores.

3.3 Weighting Scheme with Triplet Loss

With the quality estimation subnet, we propose to train a network for the eval-
uation of features’ qualities and the generation of quality scores. However, there
is no quality score label and it’s hard to establish such an assessment by hand,

84 X. Meng et al.

which means an explicit supervision of the quality estimation subnet is unattain-
able. Thus, the estimation subnet is settled in a weighting scheme in which the
quality scores generated by subnets are taken as weights of the extracted features
when the final representations are concatenated from the weighted multi-level
features. Under the supervision of a triplet loss, the inter-class distance of the
final representation is improved and the quality estimation subnet is trained
indirectly during back propagations.

4 Experiments

4.1 Datasets and Data Augmentation

The iLIDS-VID dataset involves 300 different pedestrians observed across two
disjoint camera views at an airport arrival hall, in which the images contain
cluttered backgrounds, frequent occlusions, and large variations of lighting con-
ditions and cameras’ viewpoints. We use the 178 persons of the PRID 2011
dataset who appear in both two cameras with more than 27 clean frames in our
experiments. Persons in each dataset are randomly split into the training set
and the testing set in equal amounts, and all experiments are repeated 10 times
with 10 different splits of datasets to get the average results.

Occlusion is one of the major difficulties in person re-identification task. To
solve this problem, we utilize an aggressive data augmentation method to fabri-
cate pseudo-occlusion instances by covering a large part of original images with
a mean value block. With the increase of heavily occluded training instances,
the CNN model can learn more about how to classify person images with large
occlusions. However, a huge disadvantage of this method is the large divergence
and the severe disturbance of training data, as a result that the accuracy of the
baseline method decreases with this data augmentation.

4.2 Training and Testing

In our experiments, we chose the GoogLeNet [10] model using batch normaliza-
tion [2] as our baseline method and the convolutional part of our network. The
pre-trained model on the ImageNet dataset is used, and the initial learning rate
was set to 0.001 and decreased by multi-steps. The covering rate of our data
augmentation process was set to one-third both in height and in width.

During the testing stage, the cumulative match curve (CMC) was used to
quantitatively evaluate our models. Features of all images in a sequence were
extracted and averaged for one final representation of a person in that camera,
with the first camera chosen as the probe and the second camera as the gallery,
and the simple cosine similarity metric was used to rank the features and to
match the same person in different cameras.

A Multi-level Weighted Representation for Person ReID 85

4.3 Comparison with the Baseline and the State of the Art

In this experiment, we investigate the performances of our weighted multi-level
feature on the iLIDS-VID and PRID 2011 datasets. In Table 1, Ours represents
our multi-level weighted representation using the subnet in Fig. 2(a), and aug
signifies that the features are trained with the data augmentation in Sect. 4.1.

Due to the great discriminative power of GoogLeNet with batch normaliza-
tion, our baseline method has achieved the same performance with the state of
the art. And our proposed method significantly outperforms the state of the art
and the baseline method on both datasets. With the use of our aggressive data
augmentation in the training stage, a significant degeneration of the baseline
method can be observed as a consequence of the deficiency of robustness, while
our method improves the rank 1 accuracy remarkably by 7.5% on the iLIDS-VID
dataset which contains numerous heavily occluded images.

Table 1. Comparison of our feature with related methods and baseline on iLIDS-VID
and PRID 2011. Ours represents the weighted multi-level feature using the estimation
subnet in Fig. 2(a) and aug means the features are trained with our data augmentation
described in Sect. 4.1.

Datasets iLIDS-VID PRID 2011

CMC rank (%) 1 5 10 20 1 5 10 20

Ours+aug 80.1 94.2 97.3 98.8 83.8 96.2 98.0 100

Ours 72.6 87.8 92.2 95.4 83.8 96.6 97.8 99.8

Baseline+aug [2] 53.3 77.8 88.0 94.9 81.3 93.9 96.6 98.7

Baseline [2] 58.3 79.4 87.1 92.0 79.1 94.8 97.8 99.3

CNN+RNN [7] 58 84 91 96 70 90 95 97

CNN+XQDA [15] 53.0 81.4 89.7 95.1 77.3 93.5 95.7 99.1

TDL [13] 56.3 87.6 95.6 98.3 56.7 80.0 87.6 93.6

STA [6] 44.3 71.7 83.7 91.7 64.1 87.3 89.9 92.0

eSDC [12] 41.3 63.5 72.7 83.1 48.3 74.9 87.3 94.4

KISSME [4] 36.5 67.8 78.8 87.1 34.4 61.7 72.1 81.0

4.4 Comparison of Weighted Multi-level Feature and Non-weighted
Multi-level Feature

To evaluate our quality estimation subnets, we compare the performances on the
iLIDS-VID dataset of our multi-level weighted features implemented with the
two estimation subnets in Fig. 2 and the non-weighted multi-level feature. In the
experiments, our aggressive data augmentation is performed during the training
stage, and Fig. 3 shows the CMC curves of these features.

As shown in the diagram, the weighted multi-level features achieve an
improvement by about 2.5% on average in accuracy compared with the non-
weighted multi-level feature, and the quality estimation subnet in Fig. 2(a)

86 X. Meng et al.

0 2 4 6 8 10 12 14 16 18 20

Rank

0.75

0.8

0.85

0.9

0.95

1

C
M

C
 (

%
)

weighted multi-level feature1
weighted multi-level feature2
non-weighted multi-level feature

Fig. 3. CMC curves for the iLIDS-VID dataset, comparing weighted multi-level fea-
ture1 using the subnet in Fig. 2(a), weighted multi-level feature2 using the subnet in
Fig. 2(b), and non-weighted multi-level feature. Our data augmentation in Sect. 4.1 is
used for training.

behaves more accurate and steady than the subnet in Fig. 2(b). The results
show the effectiveness of our quality estimation weighting scheme.

4.5 Cross-Dataset Testing

A cross-dataset testing is more meaningful to value the method’s performance
in real-world applications. Hence, a cross-dataset testing was performed using
the whole iLIDS-VID dataset as training set and using the PRID 2011 dataset
as the testing set. The results of the cross-dataset testing shown in Table 2
show that our multi-level weighted representation significantly outperforms the
related methods and the baseline by large margins, which demonstrates the
strong robustness of our presentation for person re-id.

Table 2. Cross-dataset testing results. CD [1] is trained on Shinpuhkan 2014 dataset
and other methods are trained on iLIDS-VID. CNN+RNN [7] is tested on 50% of the
PRID 2011 dataset and other methods are tested on the whole PRID 2011 dataset.

CMC rank (%) 1 5 10 15 20 30

Ours 43.8 69.1 81.5 84.8 89.3 94.4

Baseline [2] 32.6 57.3 67.4 73.0 80.9 87.1

CNN+RNN [7] 28 57 69 - 81 -

CD [1] 16.8 - 43.3 - 52.4 56.8

A Multi-level Weighted Representation for Person ReID 87

5 Conclusion

In this paper, we have presented a novel multi-level weighted representation
for person re-identification. In our architecture, multi-level features are firstly
extracted from different layers of a deep CNN and then evaluated by a subnet
which generates quality scores for all multi-level features. Due to the lack of
quality score labels and of explicit supervisions, the subnet is settled to be trained
indirectly in a weighting scheme in which the scores are taken as weights of the
extracted features. These features multiplied with their weights are eventually
concatenated together to the final representations which are supervised with a
triplet loss for a holistic improvement. With the comprehensive consideration of
multi-level features and the effective quality estimation weighting approach, our
representation outperforms the baseline and the state of the art methods on two
standard datasets by large margins.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China (No. 61472023).

References

1. Hu, Y., Yi, D., Liao, S., Lei, Z., Li, S.Z.: Cross dataset person re-identification.
In: Jawahar, C.V., Shan, S. (eds.) ACCV 2014. LNCS, vol. 9010, pp. 650–664.
Springer, Cham (2015). doi:10.1007/978-3-319-16634-6 47

2. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift, pp. 448–456 (2015)

3. Khamis, S., Kuo, C., Singh, V.K., Shet, V., Davis, L.S.: Joint learning for attribute-
consistent person re-identification, pp. 134–146 (2014)

4. Kostinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale metric
learning from equivalence constraints, pp. 2288–2295 (2012)

5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks, pp. 1097–1105 (2012)

6. Liu, K., Ma, B., Zhang, W., Huang, R.: A spatio-temporal appearance representa-
tion for viceo-based pedestrian re-identification, pp. 3810–3818 (2015)

7. Mclaughlin, N., Rincon, J.M.D., Miller, P.: Recurrent convolutional network for
video-based person re-identification, pp. 1325–1334 (2016)

8. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face
recognition and clustering, pp. 815–823 (2015)

9. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
visualising image classification models and saliency maps (2013)

10. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions, pp. 1–9 (2015)

11. Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional
networks, pp. 3119–3127 (2015)

12. Wang, T., Gong, S., Zhu, X., Wang, S.: Person re-identification by discriminative
selection in video ranking. IEEE Trans. Pattern Anal. Mach. Intell. 38(12), 2501–
2514 (2016)

13. You, J., Wu, A., Li, X., Zheng, W.: Top-push video-based person re-identification,
pp. 1345–1353 (2016)

http://dx.doi.org/10.1007/978-3-319-16634-6_47

88 X. Meng et al.

14. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.
8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1 53

15. Zheng, L., Bie, Z., Sun, Y., Wang, J., Su, C., Wang, S., Tian, Q.: MARS: a video
benchmark for large-scale person re-identification. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 868–884. Springer, Cham
(2016). doi:10.1007/978-3-319-46466-4 52

http://dx.doi.org/10.1007/978-3-319-10590-1_53
http://dx.doi.org/10.1007/978-3-319-46466-4_52

Games and Strategy

DeepAPT: Nation-State APT Attribution Using
End-to-End Deep Neural Networks

Ishai Rosenberg, Guillaume Sicard, and Eli (Omid) David(B)

Deep Instinct Ltd., Tel Aviv, Israel
{ishair,guillaumes,david}@deepinstinct.com

Abstract. In recent years numerous advanced malware, aka advanced
persistent threats (APT) are allegedly developed by nation-states. The
task of attributing an APT to a specific nation-state is extremely chal-
lenging for several reasons. Each nation-state has usually more than a sin-
gle cyber unit that develops such advanced malware, rendering traditional
authorship attribution algorithms useless. Furthermore, those APTs use
state-of-the-art evasion techniques, making feature extraction challenging.
Finally, the dataset of such available APTs is extremely small.

In this paper we describe how deep neural networks (DNN) could be
successfully employed for nation-state APT attribution. We use sandbox
reports (recording the behavior of the APT when run dynamically) as
raw input for the neural network, allowing the DNN to learn high level
feature abstractions of the APTs itself. Using a test set of 1,000 Chinese
and Russian developed APTs, we achieved an accuracy rate of 94.6%.

1 Introduction

While malware detection is always a challenging research topic, a special challenge
involves nation-state advanced persistent threats (APT), highly sophisticated and
evasive malware. Since the usage of such cyber weapons might be considered an act
of war [10], the question “which country is responsible?” could become critical.

In this paper we use raw features of dynamic analysis to train a nation-state
APT attribution classifier. The main contribution of this paper is providing
the first nation-state APT attribution classifier, which achieves a high accuracy
on the largest test set of available nation-state developed APTs ever collected,
successfully attributing new malware families.

The rest of the article is structured as follows: Sect. 2 contains the relevant
related work to our use cases. Section 3 specifies the problem definition and the
unique challenges in this domain, both with nation-state APT attribution in
general and especially when using feature engineering. Section 4 contains our
nation-state APT attribution classifier implementation and the experimental
results. Section 5 contains our concluding remarks.

2 Background and Related Work

There are numerous topics related to authorship attribution, such as plagiarism
detection, books authorship attribution, source code authorship attribution and
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 91–99, 2017.
https://doi.org/10.1007/978-3-319-68612-7_11

92 I. Rosenberg et al.

binary program authorship attribution. [15] provides a broad review of many of
those topics, including the natural language processing (NLP) and traditional
machine learning (ML) algorithms and the relevant features used, for exam-
ple lexical (e.g., word frequencies), syntactic (e.g., sentence structure), seman-
tic (e.g., synonyms), and application specific (such as a specific structure, for
instance HTML).

In the following sub-sections, we focus only on the ones relevant to our work
(and ignoring those that are irrelevant, such as source code authorship attribu-
tion, which cannot be used in our case since a source code is not available for
the APTs).

2.1 Binary Code Authorship Attribution

Certain stylistic features can survive the compilation process and remain intact
in binary code, which leads to the feasibility of authorship attribution for binary
code. Rosenblum et al. [13] extracted syntax-based and semantic-based fea-
tures using predefined templates, such as idioms (sequences of three consecu-
tive instructions), n-grams, and graphlets. Machine learning techniques are then
applied to rank these features based on their relative correlations with author-
ship. Alrabaee et al. [1] extracted a sequence of instructions with specific seman-
tics and to construct a graph-based on register manipulation, where a machine
learning algorithm is applied afterwards. Caliskan et al. [5] extracted syntactical
features present in source code from decompiled executable binary.

Though these approaches represent a great effort in authorship attribution, it
should be noted that they were not applied to real malware. Furthermore, some
limitations could be observed including weak accuracy in the case of multiple
authors, being potentially thwarted by light obfuscation, and their inability to
decouple features related to functionality from those related to authors styles.

2.2 Malware Attribution

The difficulty in obtaining ground truth labels for samples has led much work in
this area to focus on clustering malware, and the wide range of obfuscation tech-
niques in common use have led many researchers to focus on dynamic analysis
rather than static features (i.e., instead of examining the static file, focus on the
report generated after running the file dynamically in a sandbox).

The work of Pfeffer et al. [12] examines information obtained via both static
and dynamic analysis of malware samples, in order to organize code samples
into lineages that indicate the order in which samples are derived from each
other. Alrabaee et al. [2] have used both features extracted from the disassem-
bled malware code (such as idioms) and from the executable itself, used mutual
information and information gain to rank them, and built an SVM classifier using
the top ranked features. Those methods require a large amount of pre-processing
and manual domain-specific feature engineering to obtain the relevant features.

The malware attribution papers mentioned so far are applicable only to cases
where a malware is an evolution of another malware (e.g., by mutation), or from

DeepAPT: Nation-State APT Attribution 93

the same family, functionality-wise. These methods are not effective when com-
pletely different families of malware are examined. Our paper presents a novel
application of DNN for APT attribution, specifying which nation has developed
a specific APT, when the APTs in question are not derivatives of one another,
and belong to completely different families.

The work of Marquis-Boire et al. [4] examines several static features intended
to provide credible links between executable malware binary produced by the
same authors. However, many of these features are specific to malware, such
as command and control infrastructure and data exfiltration methods, and the
authors note that these features must be extracted manually. To the best of
our knowledge, this is the only available paper that explicitly dealt with nation-
state APTs detection (using features common in them, such as APTs). However,
those use cases are limited, and no accuracy or other performance measures
were provided. In addition, the paper did not deal with classifying which nation
developed the malware, and rather mentioned that one could use the similarities
between a known (labeled) nation-state APT to an unknown one to infer the
attribution of the latter.

3 Problem Definition: Nation-State APT Attribution

Given an APT as an executable file, we would like to determine which nation
state developed it. This is a multi-class classification problem, i.e., one label per
candidate nation-state.

3.1 The Challenges of Nation-State Attribution

Trying to classify the nation that developed an APT can be an extremely chal-
lenging task for several reasons that we cover here.

Each nation-state has usually more than a single cyber unit developing such
products, and there is more than a single developer in each unit. This means that
the accuracy of traditional authorship attribution algorithms, which associates
the author of source code or program using stylistic features in the source code,
or such features that have survived the compilation, would be very limited.

These APTs also use state-of-the-art evasion techniques, such-as anti-VM,
anti-debugging, code obfuscation and encryption ([16]), making feature extrac-
tion challenging.

Moreover, the number of such available APTs is small, since such APTs tend
to be targeted, used for specific purposes (and, unlike common criminal malware,
not for monetary gain) and therefore are not available on many computers. Their
evasion mechanisms make them hard to detect as well. This results in a further
decrease in the training set size from which to learn.

Finally, since nation states are aware that their APTs can be caught, they
commonly might try to fool the security researchers examining the APT to think
that another malware developer group (e.g., another nation) has developed it

94 I. Rosenberg et al.

(e.g., by adding the APT strings in a foreign language, embedding data asso-
ciated with a previously published malware, etc.). That is, unlike traditional
authorship attribution problems, in this case the “authors” are actively trying
to evade attribution and encourage false attribution.

Despite these issues, manual nation-state APT attribution is performed,
mostly based on functional similarities, shared command and control servers
(C&Cs, which provide an accurate attribution), etc. For example, the APTs
Duqu, Flame and Gauss were attributed to the same origin as Stuxnet following
a very cumbersome advanced manual analysis ([3]). The question is: How can
we overcome these challenges and create an automated classifier (that does not
require lengthy manual analysis)?

3.2 Using Raw Features in DNN Classifications in the Cyber
Security Domain

One of Deep Neural Networks (DNN) greatest advantages is the ability to use
raw features as input, while learning higher level features on its own during the
training process. In this process, each hidden layer extracts higher level features
from the previous layer, creating a hierarchy of higher-level features.

This is the reason why deep learning classifiers perform better than tradi-
tional machine learning classifiers in complex tasks that requires domain-specific
features such as language understanding [6], speech recognition, image recogni-
tion [17], etc. In such a framework the input is not high level features, which are
derived manually based on limited dataset, thus not necessarily fitting the task
at hand. Instead, the input is raw features (pixels in image processing, characters
in NLP, etc.). The DNN learns a high-level hierarchy of the features during the
training phase. The deeper the hidden layer is the higher the abstraction level
of the features (higher-level features).

While most previous work on applying machine learning to malware analysis
relied on manually crafted features, David et al. [7] trained DNN on raw dynamic
analysis reports to generate malware signatures for use in a malware family clas-
sification context. In this paper we similarly train a DNN on raw dynamic analy-
sis reports but the goal is obtaining a different functionality (APT attribution
rather than signature generation).

The benefits of using raw features are:

(1) Cheaper and less time consuming than manual feature engineering. This is
especially true in the case of nation-state APTs, where the code requires a
lot of time to reverse engineer in-order to gain insights about features, due
to obfuscation techniques commonly used by it, as mentioned above.

(2) Higher accuracy of Deep Learning classifiers, since important features are
never overlooked. For instance, in our nation-state APT attribution classi-
fier, mentioned in the next section, we have used the technique suggested in
[11] to assess the contribution of each of our features, by multiplying (and
summing up) their weights in the network, where the highest value indicates
the most significant feature. We have seen that, besides the expected API

DeepAPT: Nation-State APT Attribution 95

calls and IP strings of C&C servers, arbitrary hexadecimal values were sur-
prisingly some of the most important features. A security researcher might
throw such addresses away, since they are useless. However, those values were
the size of data of specific PE section which contained encrypted malicious
shellcode, identifying a specific malware family.

(3) More flexibility due to the ability to use the same features for different classi-
fication objectives. For instance, our nation-state APT attribution classifier
uses the same raw features of the malware signature generator implemented
in [7]. Therefore, we could implement both, using only a single feature extrac-
tion process.

4 Implementation and Experimental Evaluation

The challenges mentioned in the previous section require a novel approach in-
order to mitigate them. As mentioned before, the problem at hand is not a
regular authorship attribution problem, since more than a single developer is
likely to be involved, some of them might be replaced in the middle of the devel-
opment. This makes regular authorship attribution algorithms, using personal
stylistic features irrelevant. Another approach would be to consider all of the
same nation state APTs as a part of a single malware family. The rationale is
that common frameworks and functionality should exist in different APTs from
the same nation. However, this is also not accurate: each nation might have
several cyber units, each with its own targets, frameworks, functionality, etc.
Thus, it would be more accurate to look at this classification task as a mali-
cious/benign classifier: each label might contain several “families” (benign web
browsers, malicious ransomware, etc.) that might have very little in common.
Fortunately, DNN is known to excel in such complex tasks.

This brings us to the usage of raw features: since we do not know how many
“actual APT families” are available in the dataset, we need to use raw features,
letting the DNN build its feature abstraction hierarchy itself, taking into account
all available APT families, as mentioned in Sect. 1.

4.1 Raw Features Used

A sandbox analysis report of an executable file can provide a lot of useful infor-
mation, which can be leveraged for many different classification tasks. In order
to show the advantages of using raw features by a DNN classifier, we have chosen
raw features that can be used for different classification tasks.

Cuckoo Sandbox is a widely used open-source project for automated dynamic
malware analysis. It provides static analysis of the analyzed file: PE header meta-
data, imports, exports, sections, etc. Therefore, it can provide useful information
even in the absence of dynamic analysis, due to, e.g., anti-VM techniques used by
nation-state APTs. Cuckoo Sandbox also provides dynamic analysis and moni-
tors the process system calls, their arguments and their return value. Thus, it can

96 I. Rosenberg et al.

provide useful information to mitigate obfuscation techniques used by nation-
state APTs. We have decided to use Cuckoo Sandbox reports as raw data for our
classifiers due to their level of detail, configurability, and popularity. We used
Cuckoo Sandbox default configuration.

Our purpose was to let our classifiers learn the high-level abstraction hierar-
chy on their own, without involving any manual or domain-specific knowledge.
Thus, we used words only, which are basic raw features commonly used in the
text analysis domain. Although Cuckoo reports are in JSON format, which can
be parsed such that specific information is obtained from them, we did not
perform any parsing. In other words, we treated the reports as raw text, com-
pletely ignoring the formatting, syntax, etc. Our goal was to let our classifiers
learn everything on their own, including JSON parsing, if necessary. Therefore,
the markup and tagged parts of the files were extracted as well. For instance,
in “api: CreateFileW” the terms extracted are“ap” and ”CreateFileW”, while
completely ignoring what each part means.

Specifically, our method follows the following simple steps to convert sandbox
files into fixed size inputs to the neural network:

(1) Select as features the top 50,000 words with highest frequency in all Cuckoo
reports, after removing the words which appear in all files. The rationale is
that words which appear in all files, and words which are very uncommon
do not contain lots of useful information.

(2) Convert each sandbox file to a 50,000-sized bit string by checking whether
each of the 50,000 words appear in it. That is, for each analyzed Cuckoo
report, feature[i]=1 if the i-th most common word appears in that cuckoo
report, or 0 otherwise.

In other words, we first defined which words participated in our dictionary
(analogous to the dictionaries used in NLP, which usually consist of the most
frequent words in a language) and then we checked each sample against the
dictionary for the presence of each word, thus producing a binary input vector.

4.2 Network Architecture and Hyper-Parameters

We trained a classifier based on Cuckoo reports of samples of APT which were
developed (allegedly) by nation-states. Due to the small quantity of available
samples, we used only two classes: Russia and China (which are apparently the
most prolific APT developers).

Our training-set included 1,600 files from each class (training set size of
3,200 samples) of dozens of known campaigns of nation-developed APTs. 200
samples from the training set were used as a validation set. The test set con-
tained additional 500 files from each class (test set size of 1,000 files). The labels
(i.e., ground-truth attribution) of all these files are based on well-documented
and extended manual analyses within the cyber-security community, conducted
during the past years.

Note that the above-mentioned separation between training and
test sets completely separates between different APT families as well.

DeepAPT: Nation-State APT Attribution 97

That is, if an APT family is in test set, then all its variations are also
in test set only. This makes the training challenge much more difficult
(and more applicable to real-world), as in many cases inevitably we
will be training on APT developed by one group of developers, and
testing on APT developed by a completely different group.

Our DNN architecture is a 10-layers fully-connected neural network, with
50,000-2,000-1,000-1,000-1,000-1,000-1,000-1,000-500-2 neurons, (that is, 50,000
neurons on the input layer, 2,000 in the first hidden layer, etc.), with an addi-
tional output softmax layer. We used a dropout ([14]) rate of 0.5 (ignoring 50%
of the neurons in hidden layers for each sample) and an input noise (zeroing)
rate of 0.2 (ignoring 20% of input neurons) to prevent overfitting. A ReLU ([8])
activation function was used, and an initial learning rate of 10−2 which decayed
to 10−5 over 1000 epochs. These hyper-parameters were optimized using the
validation set.

4.3 Experimental Evaluation

Following the training phase, we tested the accuracy of the DNN model over the
test set. The accuracy for the nation-state APT attribution classifer was 94.6%
on the test set, which contained only families that were not in the training set.

These are test accuracies are surprising in light of the complete separation
of malware families between train and test sets. Inevitably in many cases the
developers or even the developing units of the APT in train and test sets are
different (e.g., APTs in train set developed by one Chinese cyber unit, and APTs
in test set developed by another Chinese cyber unit).

Given this strict separation, and in light of the high accuracy results obtained,
the results lead to the conclusion that each nation-state has (apparently) dif-
ferent sets of methodologies for developing APTs, such that two separate cyber
units from nation A are still more similar to each other than to a cyber unit
from nation B.

5 Concluding Remarks

In this paper we presented the first successful method for automatic APT attri-
bution to nation-states, using raw dynamic analysis reports as input, and train-
ing a deep neural network for the attribution task. The use of raw features has
the advantages of saving costs and time involved in the manual training and
analysis process. It also prevents losing indicative data and classifier accuracy,
and allows flexibility, using the same raw features for many different classification
tasks.

Our results presented here lead to the conclusion that despite all the efforts
devoted by nation states and their different cyber units in developing unattribut-
able APTs, it is still possible to reach a rather accurate attribution. Additionally,
different nation-states use different APT developing methodologies, such that the

98 I. Rosenberg et al.

works of developers in separate cyber units are still sufficiently similar to each
other that allow for attribution.

While the work presented here could help facilitate automatic attribution of
nation-state attacks, we are aware that nation-states could subvert the methods
presented here such that they would modify their new APTs to lead to their
misclassification and attribution to another nation-state. For example, using
deep neural networks themselves, they could employ generative adversarial net-
works (GAN)[9] to modify their APT until it successfully fools our classifier
into attributing it to another nation-state. Applying GAN for APT modification
would prove very difficult, but theoretically possible.

In our future works in this area we will examine additional nation state labels
(multi-class classifier), once larger datasets of such APTs become available.

References

1. Alrabaee, S., Saleem, N., Preda, S., Wang, L., Debbabi, M.: Oba2: an onion app-
roach to binary code authorship attribution. Digit. Invest. 11, S94–S103 (2014)

2. Alrabaee, S., Shirani, P., Debbabi, M., Wang, L.: On the feasibility of malware
authorship attribution. arXiv preprint arXiv:1701.02711 (2017)

3. Bencsath, B., Pek, G., Buttyan, L., Felegyhazi, M.: The cousins of stuxnet: duqu,
flame, and gauss. In: Proceedings of Future Internet (2012)

4. Marquis-Boire, M., Marschalek, M., Guarnieri, C.: Big game hunting: the peculiar-
ities in nation-state malware research. In: Proceedings of Black Hat USA (2015)

5. Caliskan-Islam, A., Yamaguchi, F., Dauber, E., Harang, R., Rieck, K., Greenstadt,
R., Narayanan, A.: When coding style survives compilation: de-anonymizing pro-
grammers from executable binaries. arXiv preprint arXiv:1512.08546 (2015)

6. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (Almost) from scratch. J. Mach. Learn. Res. 12, 2493–
2537 (2011)

7. David, O.E., Netanyahu N.S.: DeepSign: deep learning for automatic malware sig-
nature generation and classification. In: Proceedings of the International Joint
Conference on Neural Networks (IJCNN), pp. 1–8 (2015)

8. Glorot, X., Bordes, A., Bengio. Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of 14th International Conference on Artificial Intelligence and Statistics,
pp. 315–323 (2011)

9. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A.C., Bengio, Y.: Generative adversarial nets. In: Advances in Neural
Information Processing Systems (NIPS), pp. 2672–2680 (2014)

10. Hathaway, O.A., Crootof, R.: The Law of Cyber-Attack. Faculty Scholarship Series.
Paper 3852 (2012)

11. Olden, J.D., Jackson, D.A.: Illuminating the ‘black-box’: a randomization approach
for understanding variable contributions in artificial neural networks. Ecol. Model.
154, 135–150 (2002)

12. Pfeffer, A., Call, C., Chamberlain, J., Kellogg, L., Ouellette, J., Patten, T.,
Zacharias, G., Lakhotia, A., Golconda, S., Bay, J., Hall, R., Scofield, D.: Mal-
ware analysis and attribution using genetic information. In: Proceedings of the 7th
IEEE International Conference on Malicious and Unwanted Software (2012)

http://arxiv.org/abs/1701.02711
http://arxiv.org/abs/1512.08546

DeepAPT: Nation-State APT Attribution 99

13. Rosenblum, N., Zhu, X., Miller, B.P.: Who wrote this code? identifying the authors
of program binaries. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879,
pp. 172–189. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23822-2 10

14. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014)

15. Stamatatos, E.: A survey of modern authorship attribution methods. J. Am. Soc.
Inf. Sci. Technol. 60(3), 538–556 (2009). ISSN 1532–2882

16. Virvilis N., Gritzalis D.: The big four - what we did wrong in protecting critical ICT
infrastructures from advanced persistent threat detection? In: Proceedings of the
8th International Conference on Availability, Reliability & Security, pp. 248–254.
IEEE (2013)

17. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.
8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1 53

http://dx.doi.org/10.1007/978-3-642-23822-2_10
http://dx.doi.org/10.1007/978-3-319-10590-1_53

Estimation of the Change of Agents Behavior
Strategy Using State-Action History

Shihori Uchida1(B), Sigeyuki Oba1, and Shin Ishii1,2

1 Kyoto University, Yoshidahonmachi 36-1, Sakyo-ku, Kyoto-city, Japan
uchida-s@sys.i.kyoto-u.ac.jp

2 ATR Cognitive Mechanism Laboratories, Kyoto, Japan
http://ishiilab.jp/kyoto/en/

Abstract. Reinforcement learning (RL) provides a computational
model to animal’s autonomous acquisition of behaviors even in an uncer-
tain environment. Inverse reinforcement learning (IRL) is its opposite;
given a history of behaviors of an agent, IRL attempts to determine the
unknown characteristics, like a reward function, of the agent. Conven-
tional IRL methods usually assume the agent has taken a stationary
policy that is optimal in the environment. However, real RL agents do
not necessarily take stationary policy, because they are often on the way
of adapting to their own environments. Especially when facing an uncer-
tain environment, an intelligent agent should take a mixed (or switching)
strategy consisting of an exploitation that is best at the current situa-
tion and an exploration to resolve the environmental uncertainty. In this
study, we propose a new IRL method that can identify both of a non-
stationary policy and a fixed but unknown reward function, based on the
behavioral history of a learning agent; in particular, we estimate a change
point of the behavior policy from an exploratory one in the agent’s early
stage of the learning and an exploitative one in its later learning stage.
When applied to a computer simulation during a simple maze task of an
agent, our method could identify the change point of the behavior policy
and the fixed reward function, only from the agent’s history of behaviors.

Keywords: Reinforcement learning · Inverse reinforcement learning ·
Behavior strategy · Change point · Maximum likelihood estimation

1 Introduction

Reinforcement learning (RL) [1] provides a computational model to animal’s
acquisition of behaviors even in an uncertain environment, based on its trial and
error. Especially when the environment is unknown or uncertain, an RL agent
needs to take a behavior policy that is not necessarily the best in the current
situation but is good for getting new information to know the environment or to
resolve the uncertainty thereof. There are two major strategies to characterize
the behavioral policy; an exploitation policy determines the next action such
to maximize the current value function, and an exploration policy determines
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 100–107, 2017.
https://doi.org/10.1007/978-3-319-68612-7_12

Estimation of the Change of Agents Behavior Strategy 101

the next action so to resolve the uncertainty of the environment. The agent can
take a balance of the two strategies above, by, for example, ε-greedy policy and
soft-max policy.

Recently, inverse reinforcement learning (IRL) has been emerged, in which
the unknown characteristics, like a reward function, of an agent are determined,
given a history of behaviors of the agent [1]. In this study, we propose a new
IRL method that can track the strategy change of the behaving agent, under the
assumption that the reward function is consistent; in particular, we estimate the
change point of behavior policy using the history of states and actions even from
learning processes of an RL agent. Conventional IRL methods often assumed
the agent has taken a stationary policy that is optimal in the environment. A
previous study presented an idea to apply IRL to learning, so non-stationary,
processes of an RL agent, in which the agent’s learning strategy was still fixed
[7]. Since such strategies of a learning agent are represented as hyper-parameters,
our topic can be said as meta inverse reinforcement learning. When applied to
our computer simulation, our method successfully identified not only the change
point of the behavior policy, but also other agent’s characters, like the consistent
reward function, only from the agent’s behavioral history.

2 Background

2.1 Reinforcement Learning

RL is a computation model of animal’s decision making such to adapt to its
environment, in terms of maximization of the expected accumulation of rewards
provided by the environment. The learner (agent) observes a state st ∈ S and
selects an action π(st) = at ∈ A using its policy π(st). The state is updated
from st to st+1 according to a Markovian process P (st+1|st, a), and the agent
receives a reward R(st, at, st+1) ∈ R. The agent may learn a value function, an
estimated accumulation of rewards to be obtained toward the future;

Qπ(s, a) = Eπ

[∞∑
t=0

γtR(st, at, st+1)|s0 = s, a0 = a

]
. (1)

2.2 Model-Free Reinforcement Learning

In this study, we employ SARSA(λ) learning, a model-free RL algorithm to
estimate the action-value function Q(s, a) in an unknown environment [1]. The
algorithm is as follows:

e(st, at) ← e(st, at) + 1
Q(s, a) ← Q(s, a) + αe(s, a){R(st, at, st+1) + γQ(st+1, at+1) − Q(st, at)}(∀s, a)
e(s, a) ← γλe(s, a), (2)

where e(s, a) denotes an eligibility trace, an approximate number of visits of the
state-action pair (s, a).

102 S. Uchida et al.

When we use the action value function as a utility function, a soft-max
(Boltzmann) policy is given as

π(a|s) =
exp(βQ(s, a))∑

a′∈A exp(βQ(s, a′))
, (3)

where β > 0 is a hyper-parameter, called an ‘inverse temperature’, that controls
the randomness of action selection [1]. When β is large the agent chooses an
action that maximizes the action value with a large probability, whereas a small
β facilitates the agent to choose its actions at random. We call β as ‘temperature’
in this article for simplicity.

2.3 The Change of Action Policy During Learning Situation

In RL, there are two major strategies to determine behavioral policy, exploration
and exploitation [6]. If the value function has been well estimated, a policy that
selects a ‘greedy’ action at each state is the best to get the largest reward: this
is called an exploitation. When the value function is poorly estimated because
of the lack of environmental information, on the other hand, the agent needs
additional trials and errors to well identify the value, hence non-optimal actions
based on the current, temporal value function: this is called an exploration.

When facing an uncertain environment, a natural way for an animal to adapt
to it is to take an exploration policy, which is appropriate to get knowledge of
the environment in its early stage of learning, and then to turn to exploitation,
which is best to get much rewards based on the well-identified value function in
its later stage of learning. Although these two strategies can be mixed so that the
mixing rate can be gradually changed like simulated annealing, in this study, we
assume there is an unknown timing to switch from the early explorative policy
to the later exploitive policy, which is characterized by a change point of the
policy’s hyper-parameter.

2.4 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) estimates reward function based on an
agent history of behaviors; it is called IRL because it solves an inverse problem
of RL. The original development of IRL was to estimate a reward function and
hence the purpose of animals [3], and later was extended into apprenticeship
learning [4].

On the other hand, there are some factors, like policy hyper-parameters, that
determine the character of the agent, other than the reward function. A typical
example is the temperature. Although existing studies proposed an estimation
method of the policy hyper-parameter based on the animals behaviors [5] and
its dynamic control method to adapt uncertain environments [6], there has been
no study to estimate such hyper-parameters within the framework of IRL.

Estimation of the Change of Agents Behavior Strategy 103

2.5 Previous Work

Although the most IRL studies have assumed that the agent is taking optimal,
and hence stationary policy, Sakurai et al. extended the conventional framework
into such to include behaviors even in a learning process of the target agent [7].
Assuming that an agent performs an RL with a soft-max policy based on the
value function and the value learning by SARSA(λ), they estimated the unknown
reward function based on the agent’s learning behaviors. Given the observed
behavioral history of the RL agents, the log likelihood becomes

J =
T∑

t=0

Jt(Qt(st, at)),

Jt(Qt(st, at)) = Qt(st, at) − log
∑
a∈A

exp(Qt(st, at)), (4)

where Jt is the logarithm of probability to observe a state-action pair (st, at) at
time t under the current action-value Qt(st, at). Calculating the gradient of the
log-likelihood above with respect to the reward function R(s, a, s′) and the initial
action-value Q0(s, a), they estimated those unknowns according to a stochastic
gradient method.

3 Proposed Method

In this study, we extend the IRL method above to such to include a dynamic
change of policy hyper-parameter β(t), so that the log-likelihood becomes

G =
T∑

t=0

Gt(Qt(st, at), β(t)),

Gt(Qt(st, at), β(t)) = β(t)Qt(st, at) − log
∑

a

exp(β(t)Qt(st, at)). (5)

The unknowns in our new IRL are the reward function R(s, a, s′), the ini-
tial action-value Q0(s, a), and the time-dependent temperature hyper-parameter
β(t). However, there is obvious indeterminancy among these due to the co-linear
dependency on the policy, we need some additional constraints to solve the max-
imum likelihood problem.

3.1 Derivation of the Gradient

Here, we present a matrix form of the log-likelihood:

Gt(Qt, β) = βXT
t Qt + log(YT

t F
′
t), (6)

where Qt denotes a vector-formed action-value function whose i-th element is
[Qt]i = Qt(si, ai). Xt is a vector such that [Xt]i = 1, [Xt]k �=i = 0 holds, where

104 S. Uchida et al.

i indexes the state-action pair (st, at). Yt is a vector such that [Yt]k∈H =
1, [Yt]k/∈H = 0 holds, where H is a set of such state-action pairs that can lead to
the next state st. Ft is a vector whose l-th element is exp([βQt]l), where l takes
any index for every possible state-action pair. Using these vector notations, the
SARSA learning, Eq. (2), is rewritten as

Qt+1 = Qt + αEt(AtR + γBt,t+1Qt − Bt,tQt)
= {I + αEt(γBt,t+1 − Bt,t)}Qt + αEtAtR, (7)

where Et is the eligibility trace whose update rule is also given as a matrix form:

Et = λγEt−1 + Bt,t. (8)

Here, R is a vector whose each element corresponds to the reward value received
by taking an action a at state s. Bt,t is a diagonal matrix whose i-th diagonal
element [Bt,t](i,i) is 1 and all the other elements are 0, where i indicates the
current state-action pair (s, a) = (st, at). Similarly, Bt,t+1 is a diagonal matrix
whose j-th diagonal element is 1 and all the other elements are 0, where j
indicates the next state-action pair (s, a) = (st+1, at+1). At is a matrix such that
[AtR]i = R(st, at, st+1) holds. Accordingly, the gradient of the log-likelihood
with respect to β is given by

∂Gt

∂β
= QT

t Xt − YT
t (F′

t ⊗ Qt)
YT

t F′
t

. (9)

3.2 Estimation of Change of Temperature Hyper-parameter

The above formulation aims at estimating the time-course of the temperature
hyper-parameter β(t). Although it is possible by introducing an appropriate
dynamical model onto the temperature profile, in this study, we assume for
simplicity that the temperature parameter β may be switched at a single change
point t = Tswitch and β1 < β2 holds, where β1 and β2 are the temperature values
before and after the change point, respectively. Thus, the log-likelihood becomes

G =
Tswitch∑

t=0

Gt(Q(st, at), β1) +
T∑

t=Tswitch

Gt(Q(st, at), β2),

Gt(Qt(st, at, βi)) = βiQt(st, at) − log
∑
a

exp(βiQt(st, at)) (i = 1, 2)(10)

Our unknowns are the reward function, the change point Tswitch, and the
temperature hyper-parameters before and after the change point, β1 and β2,
which are all estimated by maximizing the log-likelihood, equation (10).

Estimation of the Change of Agents Behavior Strategy 105

4 Results

4.1 Experiment Setting

We generated state-action sequences by simulating an RL agent that tries to
reach the right-bottom corner from the left-upper corner in a simple 3 × 3 maze
(Fig. 2(a)). The agent with the optimal policy takes four actions from the start to
the goal, Nshort = 4 . The state transitions are deterministic. The RL agent (i.e.,
the target agent) performed the value learning of SARSA(0) and the soft-max
policy whose temperature hyper-parameter may change in time.

4.2 Simultaneous Estimation of the Values and the Change Point

Before the main experiments, we checked the basic behaviors of our IRL algo-
rithm. We confirmed our algorithm could estimate (1) fixed β over learning
episodes, (2) changing timing of β when the true values of β before and after
the change point are known, with high accuracy.

Here, we simultaneously estimated the reward function, a single change point
of the temperature, and a pair of unknown temperature values, β1 and β2, by
assuming that the ratio β2/β1 = 10 was known by our IRL. We used the state-
action history data of a learning agent, consisting of 200 and 200 episodes before
and after the change point. In the actual IRL estimation, we used a sequential
estimation heuristics; we divided the simultaneous estimation into the following
four steps: (1) Assuming the constant temperature, we estimated the reward
function and the constant temperature based on the method in Sect. 3.1. (2)
Based on the consistent temperature estimated in step 1, we set the initial esti-
mates of β1 and β2 such to satisfy the known ratio of them, i.e., β2 = 10β1. (3)
We estimated the change point, with a fixed pair of the temperature values as
in step 2. (4) After separating the learning episodes into before and after the
change point estimated in step 3, we re-estimated β1 and β2 individually based
on the separated behavior data.

Figure 1 shows the average and variance of the likelihood obtained in step
3 above, over 10 learning runs. We can see our IRL algorithm could exactly
estimate the change point of the temperature hyper-parameter for all 10 runs.
Next, we show how our IRL works for estimating the temperature β. The target
agent used β1 = 0.1 and β2 = 1.0, before and after the change point, respectively.
After step 2 above, our IRL estimated the temperature values as 0.18 and 1.0,
before and after the change point. After step 4, they were improved as β1 = 0.193
and β2 = 0.88.

Figure 2 partly shows the estimated reward function that is assumed to be
consistent between before and after the change point. The estimated reward
increased as the corresponding state-action was approaching the goal. Also, there
was variance in the estimation, due to the ill-posedness in the IRL-based reward
estimation problem and the insufficiency of samples produced the target agent.

Next, we attempted to evaluate the proposed method in terms of the repro-
ducibility of the target agent behaviors. The log-likelihood is a mutual entropy

106 S. Uchida et al.

Fig. 1. Estimation of change points of the policy over 10 IRL runs. Horizontal and
vertical axes denote the possible change point (1 phase = 10 episodes) and the likelihood
of change point respectively. Average and standard deviation among 10 runs, and three
examples out of the 10 runs are shown. The likelihood was maximal at the true change
point (the 200-th episode) for all runs.

Fig. 2. (a) A 3× 3 maze task. These are no obstacles other than the outer walls (thick
lines); moves rushing into the wall and returning to the start square are not allowed.
When an agent arrives at the goal square, it receives a positive reward, is returned
to the start square, and an episode ends. At other squares, it does not receive any
reward. The objective of the RL agent is to acquire the optimal policy by repeating
the episodes. (b) A part of reward function estimated by our IRL. We actually estimated

a reward function in the form of R(s, a, s
′
), but it is equivalent to R(s, a), because of

the deterministic nature of our maze setting. SD is over 10 IRL runs. The variance
varies according to the ill-posedness of the IRL and the short of samples produced by
the target agent. The reward function was estimated as increasing as the action was
effective in approaching the goal. For example, moving left at square 1, R(1,←), was
much better than moving right at the same square, R(1,→). Some example of reward.

We assume the deterministic state transition,thus the reward function R(s, a, s
′
) is

expressed in the form of R(s, a).

Estimation of the Change of Agents Behavior Strategy 107

between the empirical distribution of the target agent’s behaviors and the pre-
dictive distribution estimated by our IRL, so can be seen as the criterion of the
accuracy of the reproducibility of the target agent behaviors, even it was still
on the way of learning. When evaluating our method in terms of the behavior
reproducibility, we used the previous IRL method (Sakurai et al. [7]) as a base-
line, because our method is an extended version of that method. In Fig. 1, the
horizontal coordinate of phase 0 corresponds to the previous method, because it
does not incorporate any change in the temperature, although the constant tem-
perature value was estimated based on the target agent’s behaviors. Apparently,
the likelihood calculated by the proposed method that assumed a single change
point at phase = 20 was higher than that of the baseline method, suggesting
our method showed higher reproducibility in the target agent’s behaviors than
the baseline method. From this result, we conclude the proposed method can be
used for estimating wider range of behavioral strategies.

5 Conclusion

We proposed a new IRL method that can estimate both the unknown reward
function and the unknown characteristics of RL agents. This method is applicable
to non-optimal or non-stationary agents. Our computer simulation showed that
our method successfully identified not only the reward function, but also the
timing of the policy change and the policy hyper-parameters before and after
the change point, only from the agent’s behaviors. Since the current experiment
was for a very simple maze task, an extensive experiment using various nonlinear
problems would be necessary. Moreover, identification and mimicking animal’s
adaptation in unknown or changing environments are our particular interests
that should be tackled in a near future.

References

1. Sutton, R.A., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

2. Ramachandran, D., Amir, E.: Bayesian inverse reinforcement learning. Urbana
51(61801), 1–4 (2007)

3. Russell, S.: Learning agents for uncertain environments. In: Proceedings of the
Eleventh Annual Conference on Computational Learning Theory, pp. 101–103.
ACM, July 1998

4. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning.
In: Proceedings of the Twenty-First International Conference on Machine Learning,
p. 1. ACM, July 2004

5. Samejima, K., Doya, K., Ueda, Y., Kimura, M.: Estimating internal variables and
paramters of a learning agent by a particle filter. In: Neural Information Processing
Systems (NIPS), pp. 1335–1342, December 2003

6. Ishii, S., Yoshida, W., Yoshimoto, J.: Control of exploitation-exploration meta-
parameter in reinforcement learning. Neural Netw. 15(4), 665–687 (2002)

7. Sakurai, S., Oba, S., Ishii, S.: Inverse reinforcement learning based on behav-
iors of a learning agent. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.)
ICONIP 2015. LNCS, vol. 9489, pp. 724–732. Springer, Cham (2015). doi:10.1007/
978-3-319-26532-2 80

http://dx.doi.org/10.1007/978-3-319-26532-2_80
http://dx.doi.org/10.1007/978-3-319-26532-2_80

Boltzmann Machines and Phase
Transitions

Generalising the Discriminative Restricted
Boltzmann Machines

Srikanth Cherla, Son N. Tran(B), Artur d’Avila Garcez, and Tillman Weyde

School of Mathematics, Computer Science and Engineering, City University London,
Northampton Square, London EC1V 0HB, UK

{srikanth.cherla.1,son.tran.1,a.garcez,t.e.weyde}@city.ac.uk

Abstract. We present a novel theoretical result that generalises the Dis-
criminative Restricted Boltzmann Machine (DRBM). While originally
the DRBM was defined assuming the {0, 1}-Bernoulli distribution in each
of its hidden units, this result makes it possible to derive cost functions
for variants of the DRBM that utilise other distributions, including some
that are often encountered in the literature. This paper shows that this
function can be extended to the Binomial and {−1, +1}-Bernoulli hidden
units.

Keywords: Restricted Boltzmann Machine · Discriminative learning ·
Hidden layer activation function

1 Introduction

The restricted Boltzmann machine (RBM) is a generative latent-variable model
which models the joint distribution of a set of input variables. It has gained pop-
ularity over the past decade in many applications, especially for pretraining deep
neural network classifiers [3,7]. One of its applications is as a standalone classi-
fier, referred to as the Discriminative Restricted Boltzmann Machine (DRBM)
[5]. As the name might suggest, the DRBM is a classifier obtained by carrying
out discriminative learning in the RBM and it directly models the conditional
distribution one is interested in for prediction. This bypasses one of the key
problems faced in learning the parameters of the RBM generatively, which is the
computation of the intractable partition function. In the DRBM this partition
function is cancelled out in the expression for the conditional distribution thus
simplifying the learning process.

It is often the case that a new type of activation function results in an
improvement in the performance of an existing model or in a new insight into
the behaviour of the model itself. In the least, it offers researchers with the
choice of a new modelling alternative. In fact, different type of units such as
bipolar Bernoulli [1], Gaussian [11], Binomial [10] and rectified linear [8] have
been studied. However, we observe that while effort has gone into enhancing

Srikanth and Son contribute equally.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 111–119, 2017.
https://doi.org/10.1007/978-3-319-68612-7_13

112 S. Cherla et al.

the performance of a few other connectionist models by changing the nature
of their hidden units, this has not been attempted with the DRBM. So in this
paper, we first describe a novel theoretical result that makes it possible to gen-
eralise the model’s cost function. The result is then used to derive two new cost
functions corresponding to DRBMs containing hidden units with the Binomial
and {−1,+1}-Bernoulli distributions respectively. These two variants are eval-
uated and compared with the original DRBM on the benchmark MNIST and
USPS digit classification datasets, and the 20 Newsgroups document classifica-
tion dataset. We find that each of the three compared models outperforms the
remaining two in one of the three datasets, thus indicating that the proposed the-
oretical generalisation of the DRBM may be valuable in practice. Applications
of such models can be classification tasks such as handwritten digit recognition,
document categorisation.

In the next Section, we explain the generalisation of the discriminative func-
tion in RBMs. It is followed by Sect. 3 that shows how to implement this idea.
Experimental results are discussed in Sects. 4 and 5 presents a summary, together
with potential extensions of this work1.

2 Generalising the Discriminative Learning in RBMs

The Restricted Boltmzann Machine (RBM) [9] is an undirected bipartite graph-
ical model. In the case for classification, it contains a set of visible units
v = {x ∈ R

nx ,y ∈ R
ny}, where x is the input vector, and y is the one-hot

encoding of the class-label; and a set of hidden units h ∈ R
nh . The two lay-

ers are fully inter-connected but there exist no connections between any two
hidden units, or any two visible units. Additionally, the units of each layer are
connected to a bias unit whose value is always 1. The edge between the ith

input xi and the jth hidden unit hj is associated with a weight wij . All these
weights are together represented as a weight matrix W ∈ R

nx×nh . Similarly,
U ∈ R

ny×nh is the weight matrix between labels y and the hidden layer h.
The weights of connections between input and label units and the bias unit
are contained in bias vectors a ∈ R

nx , b ∈ R
ny respectively. Likewise, for the

hidden units there is a hidden bias vector c ∈ R
nh . The RBM is characterized

by an energy function: E(x,y,h) = −a�x − b�y − c�h − x�Wh − y�Uh
to represent the joint probability of every possible pair of visible and hid-
den vectors as: P (x,y,h) = 1

Z e−E(x,y,h) where Z is the partition function,
Z =

∑
x,y,h e−E(x,y,h).

In this paper, we are interested in the conditional function which is important
for classification:

P (y|x) =

∑
h exp (−E (x,y,h))

∑
y∗
∑

h exp (−E (x,y∗,h))
(1)

The denominator sums over all class-labels y∗ to make P (y|x) a probability
distribution. In the original RBM, x and y together make up the visible layer.

1 Another version of this work is stored online at https://arxiv.org/abs/1604.01806.

https://arxiv.org/abs/1604.01806

Generalising the Discriminative RBM 113

The model is learned discriminatively by maximizing the log-likelihood function
based on the expression of the conditional distribution above. Normally, such
RBMs have binary states {0, 1} for the hidden units. We will show how to extend
the conditional distribution with different type of hidden units.

Proposition 1. If an RBM whose hidden units have K states {sk|k = 1 :
K,K ∈ Z} then its conditional distribution in (1) can be computed analytically
as:

P (y|x) =
exp (by)

∏
j

∑
k exp (skαj)

∑
y∗ exp (by∗)

∏
j

∑
k exp

(
skα∗

j

) (2)

where αj =
∑

i xiwij + uyj + cj

Proof. We consider the term containing the summation over h in (1):

∑

h

exp (−E (x,y,h)) =
∑

h

exp

(
∑

i,j

xiwijyj +
∑

j

uyjhj +
∑

i

aixi + by +
∑

j

cjhj

)

= exp

(
∑

i

aixi + by

)
∑

h

exp

(
∑

j

hj

∑

i

xiwij + uyj + cj

)

(3)
Now consider only the second term of the product in (3). We simplify it by re-
writing

∑
i xiwij + uyj + cj as αj. Thus, we have:

∑

h

exp

(
∑

j

hj

∑

i

xiwij + uyj + cj

)

=
∏

j

∑

k

exp (skαj) (4)

where sk is each of the k states that can be assumed by each hidden unit j of the
model. The last step of (4) results from re-arranging the terms after expanding
the summation and product over h and j in the previous step respectively. The
summation

∑
h over all the possible hidden layer vectors h can be replaced by

the summation
∑

k over the states of the units in the layer. The number and
values of these states depend on the nature of the distribution in question. The
result in (4) can be applied to (3) and, in turn, to (1) to get the following general
expression of the conditional probability P (y|x):

P (y|x) =
exp (by)

∏
j

∑
k exp (skαj)

∑
y∗ exp (by∗)

∏
j

∑
k exp

(
skα∗

j

)

Proposition 1 generalises the conditional probability of the DRBM first intro-
duced in [5]. The term inside the summation over k can be viewed as a product
between αj corresponding to each hidden unit j and each possible state sk of
this hidden unit. Knowing this makes it possible to extend the original DRBM
to be governed by other types of distributions in the hidden layer, as what will
be discussed in the next section.

3 Extensions to Other Hidden Layer Distributions

We first use the Proposition 1 to derive the expression for the conditional prob-
ability P (y|x) in the original DRBM [5]. This will be followed by its exten-
sion, first to the {−1,+1}-Bernoulli distribution (referred to here as the Bipolar
DRBM)and then the Binomial distribution (the Binomial DRBM).

114 S. Cherla et al.

DRBM: The {0, 1}-Bernoulli DRBM corresponds to the model originally intro-
duced in [5]. In this case, each hidden unit hj can either be a 0 or a 1, i.e.
sk = {0, 1}. This reduces P (y|x) in (2) to

Pber (y|x) =
exp (by)

∏
j (1 + exp (αj))

∑
y∗ exp (by∗)

∏
j

(
1 + exp

(
α∗

j

)) (5)

which is identical to the result obtained in [5].

Bipolar DRBM: A straightforward adaptation to the DRBM involves replac-
ing its hidden layer states by {−1,+1} as previously done in [1] in the case of
the RBM. This is straightforward because in both cases the hidden states of the
models are governed by the Bernoulli distribution, however, in the latter case
each hidden unit hj can either be a −1 or a +1, i.e. sk = {−1,+1}. Applying
this property to (2) results in the following expression for P (y|x):

Pbip (y|x) =
exp (by)

∏
j (exp (−αj) + exp (αj))

∑
y∗ exp (by∗)

∏
j

(
exp
(−α∗

j

)
+ exp

(
α∗

j

)) (6)

Binomial DRBM: It was demonstrated in [10] how groups of N (where N is
a positive integer greater than 1) stochastic units of the standard RBM can be
combined in order to approximate discrete-valued functions in its visible layer
and hidden layers to increase its representational power. This is done by repli-
cating each unit of one layer N times and keeping the weights of all connections
to each of these units from a given unit in the other layer identical. The key
advantage for adopting this approach was that the learning algorithm remained
unchanged. The number of these “replicas” of the same unit whose values are
simultaneously 1 determines the effective integer value (in the range [0, N]) of
the composite unit, thus allowing it to assume multiple values. The resulting
model was referred to there as the Rate-Coded RBM (RBMrate).

The intuition behind this idea can be extended to the DRBM by allowing
the states sk of each hidden unit to assume integer values in the range [0, N].
The summation in (2) would then be SN =

∑N
sk=0 exp (skαj), which simplifies

as below:

SN =
N∑

sk=0

exp (skαj) =
1 − exp ((N + 1) αj)

1 − exp (αj)
(7)

in (2) to give

Pbin (y|x) =
exp (by)

∏
j

1−exp((N+1)αj)
1−exp(αj)

∑
y∗ exp (by∗)

∏
j

1−exp((N+1)α∗
j)

1−exp(α∗
j)

. (8)

Generalising the Discriminative RBM 115

4 Experiments

We evaluated the Bipolar and the Binomial DRBMs on three benchmark machine
learning datasets. These are two handwritten digit recognition datasets — USPS
and MNIST, and one document classification dataset — 20 Newsgroups.

4.1 MNIST Handwritten Digit Recognition

The MNIST dataset [6] consists of optical characters of handwritten digits. Each
digit is a 28 × 28 pixel gray-scale image (or a vector x ∈ [0, 1]784). Each pixel
of the image corresponds to a floating-point value lying in the range [0, 1] after
normalisation from an integer value in the range [0, 255]. The dataset is divided
into a single split of pre-determined training, validation and test folds containing
50, 000 images, 10, 000 images and 10, 000 images respectively.

Table 1 lists the classification performance on this dataset of the three DRBM
variants derived above using the result in (2). The first row of the table corre-
sponds to the DRBM introduced in [5]. We did not perform a grid search in
the case of this one model and only used the reported hyperparameter setting
in that paper to reproduce their result2. It was stated there that a difference of
0.2% in the average loss is considered statistically significant on this dataset.

Table 1. A comparison between the three different variants of the DRBM on the USPS
dataset. The Binomial DRBM in this table is the one with nbins = 2.

Model Average loss (%)

DRBM (nhid = 500, ηinit = 0.05) 1.78 (±0.0012)

Bipolar DRBM (nhid = 500, ηinit = 0.01) 1.84 (±0.0007)

Binomial DRBM (nhid = 500, ηinit = 0.01) 1.86 (±0.0016)

Going by this threshold of difference, it can be said that the performance
of all three models is equivalent on this dataset although the average accuracy
of the DRBM is the highest, followed by that of the Bipolar and the Binomial
DRBMs. All three variants perform best with 500 hidden units. It was observed
that the number of bins nbins didn’t play as significant a role as first expected.
There seemed to be a slight deterioration in accuracy with an increase in the
number of bins, but the difference cannot be considered significant given the
threshold for this dataset. These results are listed in Table 2.

4.2 USPS Handwritten Digit Recognition

The USPS dataset [2] contains optical characters of handwritten digits. Each
digit is a 16 × 16 pixel gray-scale image (or a vector x ∈ [0, 1]256). Each pixel
2 We obtained a marginally lower average loss of 1.78% in our evaluation of this model

than the 1.81% reported in [5].

116 S. Cherla et al.

Table 2. Classification performance of the Binomial DRBM with different values of
nbins on the MNIST dataset. While the performance does show a tendency to worsen
with the number of bins, the difference was found to be within the margin of significance
for this dataset.

nbins nhid ηinit Average loss (%)

2 500 0.01 1.86

4 500 0.01 1.88

8 500 0.001 1.90

of the image corresponds to a floating-point value lying in the range [0, 1] after
normalisation from an integer value in the range [0, 255]. The dataset is divided
into a single split of pre-determined training, validation and test folds containing
7, 291 images, 1, 458 images and 2, 007 images respectively.

Table 3 lists the classification performance on this dataset of the three DRBM
variants derived above using the result in (2). Here the Binomial DRBM (of
nbins = 8) was found to have the best classification accuracy, followed by the
Bipolar DRBM and then the DRBM. The number of hidden units used by each
of these models varies inversely with respect to their average loss.

Table 3. A comparison between the three different variants of the DRBM on the USPS
dataset. The Binomial DRBM in this table is the one with nbins = 8.

Model Average loss (%)

DRBM (n = 50, ηinit = 0.01) 6.90 (±0.0047)

Bipolar DRBM (n = 500, ηinit = 0.01) 6.49 (±0.0026)

Binomial DRBM (8) (n = 1000, ηinit = 0.01) 6.09 (±0.0014)

Table 4 shows the change in classification accuracy with a change in the
number of bins. In contrast to the observation in the case of MNIST, here an
increase in nbins is accompanied by an improvement in accuracy.

Table 4. Classification average losses of the Binomial DRBM with different values of
nbins.

nbins ηinit nhid Average loss (%)

2 0.01 50 6.90 (±0.0047)

4 0.01 1000 6.48 (±0.0018)

8 0.01 1000 6.09 (±0.0014)

Generalising the Discriminative RBM 117

4.3 20 Newsgroups Document Classification

The 20 Newsgroups dataset [4] is a collection of approximately 20, 000 news-
group documents, partitioned evenly across 20 different categories. A version of
the dataset where the training and the test sets contain documents collected at
different times is used here. The aim is to predict the correct category of a doc-
ument published after a certain date given a model trained on those published
before the date. We used the 5, 000 most frequent words for the binary input
features to the models. This preprocessing follows the example of [5], as it was
the second data used to evaluate the DRBM there. We made an effort to adhere
as closely as possible to the evaluation methodology there to obtain results com-
parable to theirs despite the unavailability of the exact validation set. Hence a
validation set of the same number of samples was created3.

Table 5 lists the classification performance on this dataset of the three DRBM
variants derived above using the result in (2). Here the Bipolar DRBM outper-
formed the remaining two variants, followed by the Binomial DRBM and the
DRBM.

Table 5. A comparison between the three different variants of the DRBM on the 20
Newsgroups dataset. The Binomial DRBM in this table is the one with nbins = 2.

Model Average loss (%)

DRBM (n = 50, ηinit = 0.01) 28.52 (±0.0049)

Bipolar DRBM (n = 50, ηinit = 0.001) 27.75 (±0.0019)

Binomial DRBM (n = 100, ηinit = 0.001) 28.17 (±0.0028)

Table 6 shows the change in classification accuracy with a change in the
number of bins.

Table 6. Classification performance of the Binomial DRBM with different values of
nbins.

nbins ηinit nhidden Average loss (%)

2 0.001 100 28.17 (±0.0028)

4 0.001 50 28.24 (±0.0032)

8 0.0001 50 28.76 (±0.0040)

3 Our evaluation resulted in a model with a classification accuracy of 28.52% in com-
parison with the 27.6% reported in [5].

118 S. Cherla et al.

5 Conclusions and Future Work

This paper introduced a novel theoretical result that makes it possible to gen-
eralise the hidden layer activations of the Discriminative RBM (DRBM). This
result was first used to reproduce the derivation of the cost function of the
DRBM, and additionally to also derive those of two new variants of it, namely
the Bipolar DRBM and the Binomial DRBM. The three models thus derived
were evaluated on three benchmark machine learning datasets — MNIST, USPS
and 20 Newsgroups. It was found that each of the three variants of the DRBM
outperformed the rest on one of the three datasets, thus confirming that gener-
alisations of the DRBM may be useful in practice.

It was found in the experiments in Sect. 4, that the DRBM achieved the
best classification accuracy on the MNIST dataset, the Bipolar DRBM on the
20 Newsgroups dataset and the Binomial DRBM on the USPS dataset. While
this does indicate the practical utility of the two new variants of the DRBM
introduced here, the question of whether each of these is better suited for any
particular types of dataset than the rest is to be investigated further.

Given the application of the result in (2) to obtain the Binomial DRBM, it
is straightforward to extend it to what we refer to here as the Rectified Linear
DRBM. This idea is inspired by [8], where the Rate-coded RBM [10] (analogous
to the Binomial DRBM here) is extended to derive an RBM with Rectified
Linear units by increasing the number of replicas of a single binary unit to
infinity. Adopting the same intuition here in the case of the DRBM, this would
mean that we allow the states sk to assume integer values in the range [0,∞)
and thus extend the summation SN in the case of the Binomial DRBM to an
infinite sum S∞.

References

1. Freund, Y., Haussler, D.: Unsupervised learning of distributions on binary vectors
using two layer networks. In: Advances in Neural Information Processing Systems,
pp. 912–919 (1992)

2. Hastie, T., Tibshiran, R., Friedman, J., Franklin, J.: The Elements of Statistical
Learning: Data Mining, Inference and Prediction. Springer Series in Statistics.
Springer, New York (2005). Chap. 1

3. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554. doi:10.1162/neco.2006.18.7.1527

4. Lang, K.: Newsweeder: learning to filter netnews. In: Proceedings of the 12th Inter-
national Conference on Machine Learning, pp. 331–339 (1995)

5. Larochelle, H., Bengio, Y.: Classification using discriminative restricted Boltzmann
machines. In: International Conference on Machine Learning, pp. 536–543. ACM
Press (2008)

6. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

7. Mohamed, A.R., Dahl, G., Hinton, G.: Acoustic modeling using deep belief net-
works. IEEE Trans. Audio Speech Lang. Process. 20(1), 14–22 (2012)

http://dx.doi.org/10.1162/neco.2006.18.7.1527

Generalising the Discriminative RBM 119

8. Nair, V., Hinton, G.: Rectified linear units improve restricted boltzmann machines.
In: Proceedings of the 27th International Conference on Machine Learning
(ICML2010), pp. 807–814 (2010)

9. Smolensky, P.: Information processing in dynamical systems: foundations of har-
mony theory. In: Parallel Distributed Processing: Explorations in the Microstruc-
ture of Cognition, vol. 1, pp. 194–281. MIT Press (1986)

10. Teh, Y.W., Hinton, G.: Rate-coded restricted boltzmann machines for face recogni-
tion. In: Advances in Neural Information Processing Systems, pp. 908–914 (2001)

11. Welling, M., Rosen-Zvi, M., Hinton, G.: Exponential family harmoniums with an
application to information retrieval. In: Advances in Neural Information Processing
Systems, pp. 1481–1488 (2004)

Extracting M of N Rules from Restricted
Boltzmann Machines

Simon Odense(B) and Artur d’Avila Garcez

City, University of London, London EC1V 0HB, UK
{simon.odense,artur.garcez}@city.ac.uk

Abstract. Rule extraction is an important method seeking to under-
stand how neural networks are able to solve problems. In order for rule
extraction to be comprehensible, good knowledge representations should
be used. So called M of N rules are a compact way of representing knowl-
edge that has a strong intuitive connection to the structure of neural
networks. M of N rules have been used in the past in the context of
supervised models but not unsupervised models. Here we present a novel
extension of a previous rule extraction algorithm for RBMs that allows
us to quickly extract accurate M of N rules. The results are compared
on simple datasets showing that M of N extraction has the potential to
be an effective method for the knowledge representation of RBMs.

Keywords: Rule extraction · M of N · RBM · Neural networks

1 Introduction

Despite being effective tools for classification and prediction, neural networks
suffer from the black box problem. Although it might be able to solve a prob-
lem, a neural network by itself does not offer much insight into the solution.
Many techniques to extract the implicit knowledge of neural networks and rep-
resent it using more interpretable logical structures have been developed. The
two important factors to weigh when considering these techniques are accuracy
and representation. On one hand, we would like the extracted logical rules to
accurately capture the behaviour of the network. On the other hand, we want the
rules to be easily understood by people and represented in a compact way. These
two issues represent a trade off, generally the more accurate your extracted rules
the less compact/comprehensible they will be. Consider the two extreme cases,
at one end we have a large rule set calculating the expected output of the neural
network for every possible combination of inputs, the output of these rules will
match the output of the network 100% of the time for a deterministic network
but will be incomprehensible. The other extreme case is when we have a triv-
ial rule with a constant output, this is very easy to understand but it doesn’t
faithfully represent the network at all. With this in mind we would ideally use
representations that closely resemble the network itself but are more compre-
hensible. In many applications decision trees are used to capture the behaviour
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 120–127, 2017.
https://doi.org/10.1007/978-3-319-68612-7_14

Extracting M of N Rules from RBMs 121

of a network. These models are easy to understand but are not always powerful
enough to accurately represent a network. Perhaps the most basic way of rep-
resenting extracted knowledge from a neural network is with Horn clauses [10],
that is rules of the form a ← x1 ∧ ...∧xn. Here a is called the head of the clause
and x1 ∧ ... ∧ xn the body. Horn clauses are appealing for their simplicity and
their connection to logic programming. However, it can be difficult for them to
accurately capture the behaviour of a network. The problem is that in a neural
network, the structure of the input data is irrelevant when the total input to a
neuron is already known, whereas a Horn clause depends on the exact structure
of the input. A more intuitive representation of a neural network is the M of N
rule. The purpose of this paper is to develop a method for extracting M of N
rules that can be applied to unsupervised and probabilistic networks such as the
RBM. An M of N rule is a generalization of a Horn clause in which the body
consist of a set of literals (Boolean variables or their negation) (x1, ..., xN) and
a positive integer M . The head of an M of N rule is true iff M of the literals are
true. For example 2 of (a, b, c) is true if a ∧ b or a ∧ c or b ∧ c is true. There is a
strong link between M of N rules and neural networks since an M of N rule can
be thought of as a “weightless perceptron” by considering a simple perceptron
with weights identically 1 and with a bias of M . The similarity to the structure
of neural networks allows M of N rules to accurately represent neural networks
in a more compact way than simple Horn clauses as illustrated by the following
example. Consider a simple perceptron with a single output node with bias −30
and 100 input nodes all with weight 10. Any three input nodes being on is suffi-
cient to predict an output of 1, however a Horn clause needs to specify exactly
which three. A single Horn clause cannot represent this network accurately at
all, instead we need

(
100
3

)
Horn clauses, each with 3 literals in the body to accu-

rately represent this network. By contrast a single M of N rule will do the trick,
3 of the set of input neurons. This is a single rule with 101 parameters verses(
100
3

)
rules each with 3 parameters. The comparison of Horn clauses to M of

N rules is reminiscent of the comparison between traditional circuits and linear
threshold circuits. It can be shown that in some cases there is an exponential
gap in compactness between threshold circuits and traditional AND-OR-NOT
circuits [11]. Clearly M of N rules have huge potential to provide a compact
representation of a neural network. However, to the author’s knowledge, M of N
rules have only been applied to the supervised and deterministic case.

M of N rules were first derived in the context of the KBANN model [4]. This
method clustered the weights and looked for combinations of weights which
exceeded the threshold of the output neuron. Shortly after, M of N rules were
used in conjunction with decision trees in ID2-of-3 and then TREPAN [3,5].
Here M of N rules were constructed using a hill climbing search (a greedy search
considering M+1 of N and M+1 of N+1 at each step) to maximize the difference
in entropy. The combination of M of N rules with decision trees can be a powerful
way of representing a network, however, interpretability suffers [9]. Another M
of N extraction algorithm using clustering, MofN3 [6], first extracts DNF rules
from supervised networks using the X2R algorithm [8] before converting them

122 S. Odense and A. d’Avila Garcez

to M of N rules. All of these algorithms were developed for supervised networks.
MofN3 crucially uses class labels for clustering and calculating the difference
in entropy on a split for an unsupervised probabilistic models like the RBM is
intractable. One approach would be to find another function on which to perform
hillclimbing, the obvious one being the expected value of the error between the
rules and the network. This however is still intractable and as we will see in the
experiments not optimal anyways. Instead we take a decompositional approach.

A decompositional algorithm for extracting conjunctive rules from RBMs
along with associated confidence values was developed in [1]. We will proceed by
extending this algorithm using techniques similar to the original M of N extraction
algorithms in order to give a fast and accurate method for extracting M of N rules
from RBMs which could in principle be applied to any neural network. Section 2
will give an overview of the method for extracting conjunctive rules from RBMs
given in [1], Sect. 3 we will present an algorithm which uses conjunctive rules with
confidence values to generate M of N rules for RBMs, we’ll conclude by testing the
two algorithms along with a third greedy algorithm on networks trained on small
datasets and show that extracting M of N rules represents a significant advantage
in terms of accuracy over purely conjunctive rules.

2 Extracting Conjunctive Rules from RBMs

Here we outline the algorithm presented in [1] for extracting Conjunctive rules
from RBMs (see [13] for example for details about RBMs). By conjunctive rules
we mean rules of the form hj ← x1∧x2∧...∧¬xk∧...∧¬xn. Furthermore this algo-
rithm gives, for each rule, an associated confidence value cj ∈ R

+. We interpret
the confidence value in a way similar to penalty logic [7], that is it is a measure
of how confident we are that the rule is true. Given all possible conjunctive rules
of the network each with a confidence value, The confidence can be thought of as
a degree of belief in the rule. This somewhat mitigates the inherent issue of com-
paring deterministic rules with a probabilistic network. In order to achieve this,
the algorithm works by minimizing the loss function given below

Iloss =
∑

i,j

1
2
|wi,j − cjS(i, j)|2 (1)

where S(i, j) = 1 if xi is in the rule corresponding to hj , S(i, j) = −1 if ¬xi is
in the rule corresponding to hj , and S(i, j) = 0 otherwise. The algorithm begins
by setting S(i, j) = 1 if wi,j ≥ 0 and S(i, j) = −1 if wi,j < 0. Then we can set
each confidence to the value that minimizes Iloss. It is not hard to see that this
is simply

Extracting M of N Rules from RBMs 123

cj =

∑

i

wi,jS(i, j)
∑

i

S(i, j)2
(2)

From there we want to set S(i, j) = 0 if it will decrease (1), this is true iff
cj ≥ 2|wi,j |.

The algorithm proceeds by iteratively choosing c to minimize (1) and then
updating S(i, j) based on the previous condition until no improvements are seen.
This results in a set of purely conjunctive rules, one for each hidden neuron, each
of which has an associated confidence value, cj . This algorithm can be extended
to deep networks by using the fact that deep networks can be learned greedily
with stacks of RBMs [12]. This is done by first applying the algorithm to each
layer to produce a hierarchical set of inference rules each with a confidence value.
Then, given a set of inputs each with an associated confidence value, we can
propagate through the layers by inferring the confidence value of each successive
layer from the extracted rules and the confidence values of the previous layer.

3 Extracting M of N Rules from RBMs

We want to extend the previous algorithm in a way that will produce M of N
rules instead of purely conjunctive ones. We can make a conjunctive rule into
an M of N rule simply by choosing a value, M , for that rule. Given a set of
conjunctive rules, all we need to do is choose a value,Mj , for every rule. We use
a method similar to the one found in [2] by setting Mj to be the minimum value
so that Mj · cj ≥ Tj where Tj is some threshold. Consider the minimum possible
input to hj , this is just Imin,j := bj +

∑

i:wi,j<0

wi,j . Then since P (hj = 1|x) > 0.5

if the total input to hj is greater than 0 and we want our rule to predict 1 in
this case, we should set Mj to be the minimum value such that Mj · cj + Ij ≥ 0
In other words Tj = −Ij . For the case that no value of M can exceed Tj we
proceed by attempting to add a literal to the rule and recalculating cj according
to (2), we choose the literal to add to be the one corresponding to the neuron
with the highest absolute weight in the set of literals not in the rule. If there is
nothing to add and we still cannot exceed Tj then we output the rule N + 1 of
N , in other words the rule which always outputs 0. To illustrate we consider a
simple example. Take an RBM with a single hidden unit and two visible units
with weights w1,h = 1, w2,h = −1, hb = 0. Then minimizing (1) gives us the rule
h ← x1 ∧ ¬x2 with confidence c = 1. Then we set the threshold T = 1 and since
1 · 1 ≥ 1 we set M = 1 giving us the rule 1 of (x1,¬x2). To summarize, our
algorithm is as follows.

124 S. Odense and A. d’Avila Garcez

Data: A neural network, N
Result: A set of M of N rules R
Run the algorithm from the previous section on N to get an initial set of
rules R;
for Each hidden neuron hj ∈ N do

Mj = N + 1
Wj,to add = {wi,j : S(i, j) = 0}
while Wj,to add �= ∅ and{M : M · cj ≥ −bj − ∑

i:wi,j<0

wi,j} = ∅ do

k =arg max{|w·,j | : S(i, j) = 0}
S(k, j) = sign(wk,j)
Wj,to add = Wj,to add \ wk,j

Update cj according to (2)
end
if {M : M · cj ≥ −bj − ∑

i:wi,j<0

wi,j} �= ∅ then

Mj = min{M : M · cj ≥ −bj − ∑

i:wi,j<0

wi,j};

end
end

Algorithm 1. Extracting M of N rules from a network using a set of conjunc-
tive rules with confidence values as a starting point

4 Experiments

4.1 Experimental Setup

Three different rule extraction algorithms were tested on 12 different RBMs
each trained on a different small dataset generated using logical functions. The
datasets were generated by taking every possible combination of the first n −
1 visible units and setting the nth visible unit to the output of the first n −
1 visible units with the function. For example the XOR (3 vis) dataset has
the first two variables free and the third calculated as x1 XOR x2 giving us
(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0). Since the datasets are small, we are able to
get an exact measure of the accuracy of the extracted rules by calculating their
expected error. This is just the expected value of the difference between the
output of our rules and the output of the network for a single hidden unit,
averaged over all hidden units. To be precise the expected error is

1
m

∑

i

∑

v∈V

(p(hi = 1|v)|1 − r(v)| + P (hi = 0|v)|r(v)|) (3)

Here V is the space of visible configurations, r(v) is the output of our rule on
input v, and m is the number of hidden neurons. Note that this is equivalent to
measuring the expected error of the rule compared to the whole network when
using the Hamming distance. The maximum error possible is 1 and the minimum
is 0. Again note that we are comparing deterministic rules to a probabilistic

Extracting M of N Rules from RBMs 125

network which is why we look at the error as a random variable dependent on
the output of the network, also note that the M of N rules generated also have
associated confidence values which we can take into consideration when looking
over the set of generated rules. We also report the average value of M and N
in order to gain some insight into how interpretable these rules might be, if N
scales linearly with the size of the input data then large datasets will give us
totally incomprehensible rules (Table 1).

Table 1. Comparing hill climbing with expected error (hcee) to the optimal confidence
algorithm presented in [1] and the M of N version of the optimal confidence algorithm

hcee optmial confidence
Network M/N Error Time(s) M/N Error Time(s)

XOR(3 vis 10 hid) 2.1/2.7 0.0991 0.322 2.7/2.7 0.2279 0.09
XOR(6 vis 20 hid) 2.65/3.4 0.1095 7.819 4.55/4.55 0.3344 0.014
XOR(9 vis 30 hid) 3.36/4.03 0.1035 89.158 5.8/5.8 0.2766 0.036
NAND(3 vis 10 hid) 1.4/1.4 0.1277 0.222 2.6/2.6 0.2302 0.007
NAND(6 vis 20 hid) 2.35/2.65 0.1206 5.248 3.6/3.6 0.2540 0.022
NAND(9 vis 30 hid) 2.93/3.3 0.1227 74.511 5.4/5.4 0.2723 0.034
OR(3 vis 10 hid) 1.6/2.1 0.1424 0.095 2.4/2.4 0.2328 0.004
OR(6 vis 20 hid) 2.4/2.8 0.1132 5.429 3.6/3.6 0.2665 0.021
OR(9 vis 30 hid) 2.53/3.26 0.1369 74.209 5.13/5.13 0.3614 0.036
AND(3 vis 10 hid) 2.0/2.2 0.0884 0.249 2.4/2.4 0.1735 0.007
AND(6 vis 20 hid) 2.5/2.85 0.1068 3.584 3.5/3.5 0.2439 0.021
AND(9 vis 30 hid) 3.26/3.93 0.1052 87.367 5.4/5.4 0.2819 0.035

MofN optimal confidence

Network M/N Error Time(s)

XOR(3 vis 10 hid) 2.4/2.8 0.1149 0.009
XOR(6 vis 20 hid) 3.35/4.75 0.1067 0.023
XOR(9 vis 30 hid) 4.86/6.06 0.1234 0.043
NAND(3 vis 10 hid) 2.3/2.8 0.1562 0.011
NAND(6 vis 20 hid) 3.3/3.9 0.1312 0.026
NAND(9 vis 20 hid) 4.53/5.56 0.1300 0.039
OR(3 vis 10 hid) 1.8/2.5 0.1614 0.004
OR(6 vis 20 hid) 3.1/3.75 0.1223 0.024
OR(9 vis 30 hid) 3.83/5.2 0.1440 0.038
AND(3 vis 10 hid) 2.2/2.4 0.1042 0.007
AND(6 vis 20 hid) 3.4/4.05 0.1125 0.029
AND(9 vis 30 hid) 4.6/5.6 0.1240 0.040

4.2 Experimental Results

Here we tested three different rule extraction algorithms on small RBMs trained
on datasets constructed from Boolean functions. We tested the original optimal

126 S. Odense and A. d’Avila Garcez

confidence algorithm along with the M of N optimal confidence algorithm and
with the expected error.

Each Network was trained for 10000 iteration using contrastive divergence
with 10 Gibbs steps. It is clear that overall the M of N optimal confidence
algorithm gives the best trade off for time and accuracy. As expected the most
accurate method is the hill climb using the expected error but this sums over
all visible states and is thus exponential. We see that the time it takes grows
quite quickly whereas the time it takes the M of N optimal confidence algorithm
to finish grows relatively slowly. In addition the expected error for the M of N
optimal confidence algorithm is more or less in line with hill climbing, in some
cases even beating it, which implies that hill climbing is not optimal for finding
the minimum expected error.

Speed wise the optimal confidence algorithm is the fastest with the M of N
optimal confidence algorithm being only slightly slower. Also interesting things
to note is that for all algorithms the expected error is relatively consistent as
the dataset increasing in size. This is encouraging. Finally notice that M and N
appear to increase slower than the dimension of the test set in all cases although
they grow slowest with hill climbing. For larger datasets the expected error will
be intractable and instead we will have to rely on test error over a sample set to
evaluate the accuracy.

5 Conclusion

Even in the probabilistic context, deterministic rule extraction can provide us
with rules that accurately capture the network’s behaviour. The representation
used for the rule extraction is crucial. The results show that M of N rules repre-
sent a significant potential advantage in accuracy for rule extraction from RBMs.
This is in addition to the advantage of the more compact representation com-
pared to purely conjunctive rules. We see that our simple extension of the optimal
confidence algorithm is almost on par with hill climbing in terms of accuracy.
Since hill climbing directly minimizes the expected error it is not surprising that
it beats the optimal confidence methods, however, the fact that computing the
expected error is exponential in the number of visible units makes hill climbing
impossible for the vast majority of real world datasets. The fact that MofN opti-
mal confidence is close to, and in some cases even beats hill climbing, shows that
it is possible to extract accurate M of N rules quickly using this algorithm. Fur-
thermore, the fact that in some cases our algorithm beats hill climbing suggests
that hill climbing might not be the best method for constructing M of N rules in
general. It is possible that you can find another loss function which can be cal-
culated faster than the expected error but it is implausible that performing hill
climbing on this new loss function could result in rules that are better, or even
on par with, the rules generated by hill climbing using the expected error itself.
We can see too that M of N extraction represents a significant improvement
to the accuracy of the extracted rules versus the standard optimal confidence
algorithm. This shows that using M of N extraction in the probabilistic, unsu-
pervised context can be advantageous compared to standard optimal confidence

Extracting M of N Rules from RBMs 127

rule extraction both in terms of accuracy and compactness. Future work to be
done is defining rules for composing M of N rules with confidence values so that
we can apply this algorithm in a greedy way to create rules for deep networks.

References

1. Son, T., d’Avila Garcez, A.: Deep logic network: inserting and extracting knowledge
from deep belief networks. IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–13
(2016)

2. Towell, G.G., Shavlik, J.W.: The extraction of refined rules from knowledge-based
neural networks. Mach. Learn. 13(1), 71–101 (1993)

3. Craven, M.: Extracting comprehensible models from trained neural networks.
Ph.D. thesis, University of Wisconsin-Madison (1996)

4. Towell, G.G.: Symbolic knowledge and neural networks: insertion, refinement and
extraction. Ph.D. thesis, University of Wisconsin - Madison (1991)

5. Murphy, P., Pazzani, M.: ID2-of-3: constructive induction of M-of -N concepts for
discriminators in decision trees. In: Machine Learning: Proceedings of the Eighth
International Workshop (1991)

6. Setiono, R.: Extracting M of N rules from trained neural networks. IEEE Trans.
Neural Netw. Learn. Syst. 11(2), 512–519 (2000)

7. Pinkas, G.: Reasoning, connectionist nonmonotonicity and learning in networks
that capture propositional knowledge. Artif. Intell. 77, 203–247 (1995)

8. Liu, H., Tan, S.: X2R: a fast rule generator. In: IEEE International Conference on
Systems, Man and Cybernetics, Intelligent Systems for the 21st Century (1995)

9. Percy, C., d’Avila Garcez, A., Dragic̆ević, S. França M., Slabaugh, G., Weyde,
T.: The need for knowledg extraction: understanding harmful gambling behaviour
with neural networks. In: 22nd European Conference on Artificial Intelligence, pp.
974–981 (2016)

10. d’Avila Garcez, A., Lamb, L., Gabbay, D.: Neural-Symbolic Cognitive Reasoning.
Springer, New York (2009)

11. Kautz, W.: The realization of symmetric switching functions with linear-input
logical elements. IRE Trans. Electron. Comput. EC–10(3), 371–378 (1961)

12. Hinton, G.E., Osindero, S., Teh, T.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)

13. Smolensky, P.: Information proessing in dynamical systems: foundations of har-
mony theory. In: Parallel Distributed Processing, vol. 1, pp. 194–281. Foundations.
MIT Press, Cambridge (1986)

Generalized Entropy Cost Function
in Neural Networks

Krzysztof Gajowniczek(&), Leszek J. Chmielewski,
Arkadiusz Orłowski, and Tomasz Ząbkowski

Faculty of Applied Informatics and Mathematics – WZIM,
Warsaw University of Life Sciences – SGGW,
Nowoursynowska 159, 02-787 Warsaw, Poland
krzysztof_gajowniczek@sggw.pl

Abstract. Artificial neural networks are capable of constructing complex
decision boundaries and over the recent years they have been widely used in
many practical applications ranging from business to medical diagnosis and
technical problems. A large number of error functions have been proposed in the
literature to achieve a better predictive power. However, only a few works
employ Tsallis statistics, which has successfully been applied in other fields.
This paper undertakes the effort to examine the q-generalized function based on
Tsallis statistics as an alternative error measure in neural networks. The results
indicate that Tsallis entropy error function can be successfully applied in the
neural networks yielding satisfactory results.

Keywords: Neural networks � Tsallis entropy error function � Classification

1 Introduction and Problem Statement

Artificial neural networks (ANNs) are flexible and powerful statistical learning models
used in many applications. They have been extensively and successfully applied in
areas such as signal processing, pattern recognition, machine learning, system control,
and many business problems including marketing and finance [1–5]. Several features of
artificial neural networks make them very popular and attractive for practical appli-
cations. First, they possess an ability to generalize, even in the case of incomplete or
noisy data. Second, neural networks are non-parametric which means that they do not
require any a-priori assumptions about the distribution of the data. Third, they are good
approximators able to model continuous function to a desired accuracy.

From a pattern recognition perspective, the goal is to find the required mapping
from input to output variables in order to solve the classification or the regression
problem. The main issue in neural networks application is to find the correct values for
the weights between the input and output layer using a supervised learning paradigm
(training). During the training process the difference between the prediction made by
the network and the correct value for the output is calculated, and the weights are
changed in order to minimize the error.

The form of the error function is one of the factors in the weight update process. For
the successful application it is important to train the network with an error function that

© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part I, LNCS 10614, pp. 128–136, 2017.
https://doi.org/10.1007/978-3-319-68612-7_15

reflects the objective of the problem. The mean square error (MSE) is the most com-
monly used function although it has been suggested that it is not necessarily the best
function to be used, especially in classification problems [6–8]. A number of alternative
error functions have been proposed in the literature and the maximum likelihood (cross
entropy) function was particularly reported as a more appropriate function for classi-
fication problems [7, 8].

In this paper we undertake the effort to examine an alternative error function such
as the q-generalized function based on Tsallis statistics. In particular the properties of
the function and its impact on the neural network classifiers is analyzed as well as
a careful analysis of the way in which the error function is introduced in the weight
update equations is presented. To the best of our knowledge the proposed error
function was never examined before in the context of the neural network learning.

The rest of this paper is organized as follows. In the second section the literature
review on similar problems is presented. An analysis of the way the error function is
incorporated in the training algorithm is presented in section three. The fourth section
deals with the experiments carried out and their results are presented. The paper ends
with concluding remarks in the last section.

2 Literature Review on Similar Problems

The research on neural networks is considerable and the literature around this filed is
growing rapidly. While the method becomes a more and more substantial part of the
state-of-the-art automatic pattern recognition systems applicable in a variety of fields,
different questions arise considering the network architecture and the fundamentals of
training process.

Usually, the works include modifications and improvements of the neural network
structure, weights initialization [9], weights updating procedure [10], error functions
[11, 12] and activation functions [13, 14]. The training of artificial neural networks
usually requires that users define an error measure in order to adapt the network
weights to meet certain model performance criteria. The error measure is very
important and in certain circumstances it is essential for achieving satisfactory results.
Different error measures have been used to train feedforward artificial neural networks,
with the mean-square error measure (and its modifications) and cross-entropy being the
most popular ones.

It can be shown that the true posterior probability is reaching a global minimum for
both the cross-entropy and squared error criteria. Thus, in the theory an ANN can be
trained equally well by minimizing each of the functions, as long as it is capable of
approximating the true posterior distribution arbitrarily close. When it comes to the
modelling of distribution, squared error is bounded and the optimization is therefore
more robust to outliers than minimization of cross-entropy. However, in practice,
cross-entropy mostly leads to quicker convergence resulting better quality in terms of
classification error rates. Hence, squared error became less popular over the last years
[8, 15]. In the literature, the previous works on the error functions have usually been
evaluated on rather small datasets.

Generalized Entropy Cost Function in Neural Networks 129

When it comes to applications under the nonextensive statistics with Tsallis dis-
tributions, called q-distributions, formed by maximizing Tsallis entropy with certain
constraints – such distributions have applications in physics, astronomy, geology,
chemistry and finance [16]. However, these q-distributions remain largely unnoticed by
the computer science audience, with only a few works applying them to ANNs, not
necessary as the error functions [17]. For instance, [17] introduces q-generalized RNNs
(random neural network) for classification where parametrized q-Gaussian distributions
are used as activation functions. These distributions arise from maximizing Tsallis
entropy and have a continuous real parameter q – the entropic index – which represents
the degree of nonextensivity.

In this paper, in order to address the identified literature gap, we present an
investigation on the properties of the q-entropic error criteria for training of ANNs. The
theoretical analysis of the error bounds was supported by experimental evaluation with
properly trained networks taking into account classification accuracy measures.

3 Theoretical Framework

As a general measure of diversity of objects, a Shannon entropy is often used which is
defined as:

HS ¼ �
Xn
i¼1

ti log ti; ð1Þ

where ti is the probability of occurrence of an event xi being an element of the event X
that can take values xi; . . .; xn. The value of the entropy depends on two parameters:
(1) disorder (uncertainty) and it is maximum when the probability ti for every xi is
equal; (2) the value of n. Shannon entropy assumes a tradeoff between contributions
from the main mass of the distribution and the tail. To control both parameters a
generalizations was proposed by Tsallis:

HTq ¼
1

q� 1
1�

Xn
i¼1

tqi

 !
: ð2Þ

With Shannon entropy, events with high or low probability have equal weights in
the entropy computation. However, using Tsallis entropy, for q[1, events with high
probability contribute more to the entropy value than those with low probabilities.
Therefore, the higher is the value of q, the higher is the contribution of high probability
events in the final result.

It can be shown that q-Tsallis relative entropy is a generalization of the
Kullback-Leibler entropy (in the limit of q ! 1 the q-Tsallis relative entropy becomes
the Kullback-Leibler entropy). It refers to two probability distributions tif g and yif g,
i ¼ 1 to n, over the same alphabet, and is defined as [18]:

130 K. Gajowniczek et al.

HTqðtijjyiÞ ¼
1

1� q
1�

Xn
i¼1

tqi y
1�q
i

 !
: ð3Þ

At the limit q ¼ 1, one has HT1ðtijjyiÞ ¼
Pn
i¼1

ti logð
ti
yi
Þi, i.e., the Kullback-Leibler

relative entropy [19]. For any order q 6¼ 0, the Tsallis relative entropy HTqðtijjyiÞ of the
above Eq. (3) vanishes if and only if ti ¼ yi for all i ¼ 1 to n. For any q[0, the Tsallis
relative entropy HTqðtijjyiÞ is always nonnegative. In this regime of q[0, the Tsallis
relative entropy HTqðtijjyiÞ behaves much like the conventional Kullback-Leibler relative
entropy, yet in a generalized form realized by the additional parameterization by q.

In the present paper we have used a variant of gradient descent method known as
Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm [20], in order to
train a neural network (multilayer perceptron). To make use of BFGS, the function
being minimized should have an objective function that accepts a vector of parameters,
input data, output data, and should return both the cost and the gradients. In these
circumstances the cost function which implements the Tsallis entropy is defined as:

C t; yð Þ ¼ 1
1� q

1� tqy1�q � 1� tð Þqð1� yÞ1�q
� �

; ð4Þ

where t and y stand for the true value and output of the neural network, respectively.
Figure 1 shows the general behavior of the error function for different values of

parameter q.

Fig. 1. Error entropy values for different q values in terms of different score values. Color denotes
the value of the parametr q as follows: 0 – green, 0.5 – blue, 1 – black, 1.5 – red, 2 – purple.
The difference between the solid and dashed lines is explained in the main text. (Color figure
online)

Generalized Entropy Cost Function in Neural Networks 131

The solid lines show entropy values for the growing score (outcome of ANN) in
case if the true value is 0. It could be clearly seen that if the score tends to 1 the error
function increases; in other words, this is an undesirable situation for a given case. In
contrast, the dashed lines show entropy values for the growing score in case if the true
value is 1. Once again, entropy values increase when the ANN network outcome is
inconsistent with the true value.

4 Numerical Experiment

4.1 Implementation

In our case, all the numerical calculations were performed on a personal computer with
the following parameters: Ubuntu 16.04 LTS operating system and Intel Core
i5-2430 M 2.4 GHz, 2 CPU * 2 cores, 8 GB RAM. R-CRAN [21], which is an
advanced statistical package, as well as an interpreted programming language, was
used as the computing environment. For training neural networks we used the BFGS
algorithm, available in the nnet library [21]. A logistic function was used to activate all
of the neurons in the neural network and initial weights vector was chosen randomly
using a uniform distribution.

To compare the neural networks obtained for different values of q we define two
measures. These are: (1) AUC (area under the ROC curve) and (2) classification
accuracy. Those measures are related to efficiency and effectiveness of the ANN and
they have been often used for evaluation of classification models in the context of
various practical problems such as credit scoring, income and poverty determinants or
customer insolvency and churn [22, 23].

The starting point for the numerical experiments was the randomly selected split of
the examined datasets into two parts, which corresponded to the training and validation
with the following proportions: training 70%, validation 30%. The main criterion taken
into account while learning the models was to gain good generalization of knowledge
with the least error. The most commonly used measure to assess the quality of binary
classification problem is AUC. Therefore, to find the best parameters for all models and
to assure their generalization, the following function was maximized:

f AUCT;AUCWð Þ ¼ � 1
2
AUCT � AUCWj j þ 1

2
AUCW; ð5Þ

where AUCT and AUCW stand for the training and validation errors, respectively.
In contrast to other machine learning algorithms, ANN required special preparation

of the input data. The vector of continuous variables were standardized, while the
binary variables were converted such that the value of 0 was transformed into −1.

Each time, 15 neural networks were learned with various parameters (the number of
neurons in the hidden layer from 1 to 15). To avoid overfitting, after the completion of
each learning iteration (with a maximum of 50 iterations), the models were checked for
the error measure defined in Eq. (5). At the end, the ANN characterized by the smallest
error was chosen as the best model. In order to achieve robust estimation of models’
error, for each number of hidden neurons, ten different ANN were learned with

132 K. Gajowniczek et al.

different initial weights vector. Final estimation of the error was computed as the
average value over ten models and for each number of hidden neurons.

4.2 Results

Our research was conducted on several benchmarking data sets which are freely
available. However, due to limited room, results for two datasets only are shown. We
conducted the simulations using the dataset known as Churn (3333 observations 19
predictors [24]) and Hepatitis [25] (155 observations and 19 predictors). Moreover,
only relevant results related to the best performance in terms of Eq. 5 are discussed. For
both datasets the networks with at least 10 hidden units delivered the robust results as
provided in Tables 1 and 2.

Table 1. The results for the Churn dataset.

q-value Number
of
hidden
neurons

Avg
number
of
iterations

Training sample Validation sample AUC
Equation
No 5

Accuracy AUC Accuracy AUC

1.0 10 20.3 0.904 0.895 0.888 0.874 0.852
1.2 10 14.8 0.913 0.906 0.899 0.886 0.867
1.4 10 13.5 0.906 0.893 0.898 0.880 0.867
1.0 11 17.7 0.921 0.915 0.904 0.891 0.868
1.2 11 14.8 0.922 0.912 0.905 0.891 0.869
1.4 11 14.9 0.909 0.896 0.901 0.884 0.871
1.0 12 18.3 0.919 0.909 0.903 0.891 0.872
1.2 12 15.0 0.913 0.906 0.901 0.894 0.882
1.4 12 16.2 0.900 0.904 0.902 0.891 0.878

Table 2. The results for the Hepatitis dataset.

q-value Number
of hidden
neurons

Avg
number
of
iteration

Training sample Validation sample AUC
Equation
No 5

Accuracy AUC Accuracy AUC

1.0 11 5.4 0.773 0.841 0.762 0.837 0.832
1.2 11 4.1 0.772 0.838 0.755 0.835 0.832
1.4 11 4.7 0.774 0.837 0.758 0.834 0.829
1.0 12 6.0 0.778 0.844 0.756 0.837 0.830
1.2 12 5.5 0.775 0.841 0.756 0.836 0.829
1.4 12 5.1 0.770 0.836 0.754 0.833 0.827
1.0 13 4.6 0.769 0.838 0.748 0.832 0.825
1.2 13 4.3 0.771 0.836 0.746 0.830 0.824
1.4 13 4.1 0.768 0.835 0.745 0.831 0.826

Generalized Entropy Cost Function in Neural Networks 133

In particular, the results can be summarized as follows:

• The best results were obtained for q-value equal to 1.0, 1.2 and 1.4; significant drop
in classification accuracy was in general observed for q[2 (due to the limit of
pages and the goal of the article set for the best results, data not shown).

• Behavior of error function with q-parameter greater than 1 is more non-linier
(see Fig. 1) than behavior of error function based on Shannon entropy ðq � 1Þ;

• ANN learned with q[1 required less iteration to achieve convergence in terms of
Eq. (5);

• Overall performance depends on number of input variables (input neurons) and
number of hidden neurons; The choice of the proper network structure should be
based on solid experiments, since this may lead to unwanted effects influencing the
stability and performance of the training algorithm and the trained network as
a whole.

5 Summary and Concluding Remarks

The results of this study indicate that in classification problems, Tsallis entropy error
function can be successfully applied in the neural networks yielding satisfactory results
in terms of the number of iterations required for training, and the generalization ability
of the trained network.

The contribution of this study provides the proof that the q-entropy can substitute
other standard entropic error functions like the Shannon’s one with satisfactory results,
leading to less epochs and delivering the same percentage of correct classifications. The
choice of the error function is indeed an important factor to be examined with great care
when designing a neural network for a specific classification problem.

Possible future research on this topic could consider two streams. Firstly, com-
parative study on the impact of various error functions, including mean square error
and the mean absolute error, used for various classification problems [26–28], should
be made. Secondly, the effect of the proposed error functions on other types of neural
network architectures, including application on a variety of real datasets, should be
studied.

References

1. Paliwal, M., Kumar, U.A.: Neural networks and statistical techniques: a review of
applications. Expert Syst. Appl. 36(1), 2–17 (2009)

2. Bishop, C.M.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford (1995)
3. Szupiluk, R., Wojewnik, P., Ząbkowski, T.: Prediction improvement via smooth component

analysis and neural network mixing. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.)
ICANN 2006. LNCS, vol. 4132, pp. 133–140. Springer, Heidelberg (2006). doi:10.1007/
11840930_14

4. Gajowniczek, K., Ząbkowski, T.: Data mining techniques for detecting household
characteristics based on smart meter data. Energies 8(7), 7407–7427 (2015)

134 K. Gajowniczek et al.

http://dx.doi.org/10.1007/11840930_14
http://dx.doi.org/10.1007/11840930_14

5. Ząbkowski, T., Szczesny, W.: Insolvency modeling in the cellular telecommunication
industry. Expert Syst. Appl. 39, 6879–6886 (2012)

6. Kalman, B.L., Kwasny, S.C.: A superior error function for training neural networks. In:
International Joint Conference on Neural Networks, pp. 49–52 (1991)

7. White, H.: Artificial Neural Networks: Approximation and Learning Theory. Blackwell,
Cambridge (1992)

8. Golik, P., Doetsch, P., Ney, H.: Cross-entropy vs squared error training: a theoretical and
experimental comparison. In: 14th Annual Conference of the International Speech
Communication Association “Interspeech-2013”, pp. 1756–1760, France (2013)

9. Waghmare, L.M., Bidwai, N.N., Bhogle, P.P.: Neural network weight initialization. In:
Proceedings of IEEE International Conference on Mechatronics and Automation, pp. 679–
681 (2007)

10. Ramos, E.Z., Nakakuni, M., Yfantis, E.: Quantitative measures to evaluate neural network
weight initialization strategies. In: IEEE Computing and Communication Workshop and
Conference (CCWC), pp. 1–7 (2017)

11. Falas, T., Stafylopatis, A.G.: The impact of the error function selection in neural
network-based classifiers. In: International Joint Conference on Neural Networks, pp. 1799–
1804 (1999)

12. Shamsuddin, S.M., Sulaiman, M.N., Darus, M.: An improved error signal for the
backpropagation model for classification problems. Int. J. Comput. Math. 76(3), 297–305
(2001)

13. Narayan, S.: The generalized sigmoid activation function: competitive supervised learning.
Inf. Sci. 99(1–2), 69–82 (1997)

14. Kamruzzaman, J., Aziz, S.M.: A note on activation function in multilayer feedforward
learning, In: Proceedings of the 2002 International Joint Conference on Neural Networks,
IJCNN 2002, pp. 519–523 (2002)

15. Kline, D.M., Berardi, V.L.: Revisiting squared-error and cross-entropy functions for training
neural network classifiers. Neural Comput. Appl. 14(4), 310–318 (2005)

16. Picoli, S., Mendes, R.S., Malacarne, L.C., Santos, R.P.B.: Q-distributions in complex
systems: a brief review. Braz. J. Phys. 39(2A), 468–474 (2009)

17. Stosic, D., Stosic, D., Zanchettin, C., Ludermir, T., Stosic, B.: QRNN: q-generalized random
neural network. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 383–390 (2016)

18. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics. Springer, New York (2009)
19. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)
20. Dai, Y.H.: Convergence properties of the BFGS algorithm. SIAM J. Optim. 13(3), 693–701

(2002)
21. R Core Team: A language and environment for statistical computing, R Foundation for

Statistical Computing, Vienna, Austria (2015)
22. Gajowniczek, K., Ząbkowski, T., Szupiluk, R.: Estimating the ROC curve and its

significance for classification models’ assessment. Quant. Methods Econ. 15(2), 382–391
(2014)

23. Chrzanowska, M., Alfaro, E., Witkowska, D.: The individual borrowers recognition: single
and ensemble trees. Expert Syst. Appl. 36(3), 6409–6414 (2009)

24. Churn dataset. http://www.dataminingconsultant.com/DKD.htm. Last Accessed 12 Jan 2017
25. Hepatitis dataset. https://archive.ics.uci.edu/ml/datasets/Hepatitis. Last Accessed 12 Jan

2017

Generalized Entropy Cost Function in Neural Networks 135

http://www.dataminingconsultant.com/DKD.htm
https://archive.ics.uci.edu/ml/datasets/Hepatitis

26. Gajowniczek, K., Ząbkowski, T., Orłowski, A.: Entropy based trees to support decision
making for customer churn management. Acta Phys. Pol., A 129(5), 971–979 (2016)

27. Gajowniczek, K., Karpio, K., Łukasiewicz, P., Orłowski, A., Ząbkowski, T.: Q-entropy
approach to selecting high income households. Acta Phys. Pol., A 127(3A), 38–44 (2015)

28. Gajowniczek, K., Ząbkowski, T., Orłowski, A.: Comparison of decision trees with renyi and
tsallis entropy applied for imbalanced churn dataset. Ann. Comput. Sci. Inf. Syst. 5, 39–43
(2015)

136 K. Gajowniczek et al.

Learning from Noisy Label Distributions

Yuya Yoshikawa(B)

Software Technology and Artificial Intelligence Research Laboratory (STAIR Lab),
Chiba Institute of Technology, Narashino, Japan

yoshikawa@stair.center

Abstract. In this paper, we consider a novel machine learning prob-
lem, that is, learning a classifier from noisy label distributions. In this
problem, each instance with a feature vector belongs to at least one group.
Then, instead of the true label of each instance, we observe the label distri-
bution of the instances associated with a group, where the label distribu-
tion is distorted by an unknownnoise. Our goals are to (1) estimate the true
label of each instance, and (2) learn a classifier that predicts the true label
of a new instance. We propose a probabilistic model that considers true
label distributions of groups and parameters that represent the noise as
hidden variables. Themodel can be learned based on a variationalBayesian
method. In numerical experiments, we show that the proposed model out-
performs existing methods in terms of the estimation of the true labels of
instances.

Keywords: Probabilistic generative model · Variational Bayesian
methods · Demographic estimation

1 Introduction

In this paper, we consider a novel machine learning problem, that is, learning a
classifier from noisy label distributions. Figure 1 illustrates the assumptions for
this problem. There are N groups and U instances. Each instance has a feature
vector and true single label. Each group consists of a subset of all instances. Then,
for each group, the true label distribution, that is, the distribution of the true
labels of the instances associated with the group, can be calculated. However, the
true labels and true label distribution cannot be observed. Instead, we observe
the noisy label distribution, that is, the label distribution such that the true label
distribution is distorted by an unknown noise. Our goals are to (1) estimate the
true label of each instance, and (2) learn a classifier that predicts the true label
of a new instance.

We propose a generative probabilistic model that considers the true label
distributions of groups and parameters that represent the noise as hidden vari-
ables. The model can be learned based on a variational Bayesian method [1]. In
numerical experiments, we show that, using a synthetic dataset generated based
on the problem, the proposed model outperforms existing methods in terms of
the estimation of the true labels of instances.
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 137–145, 2017.
https://doi.org/10.1007/978-3-319-68612-7_16

138 Y. Yoshikawa

Fig. 1. Assumptions for learning a classifier from noisy label distributions. The shape of
each instance indicates its label. The edge connecting an instance to a group indicates
that the instance belongs to the group.

As a particular example of this problem, we consider the demographic esti-
mation of individuals, which is the estimation of gender, age, occupation, race,
and living place using individuals’ features [2,6,9]. In social networking services
(SNS) on the web, marketing and developing advertisement delivery systems are
conducted using the demographic information of users. However, because such
demographic information cannot be obtained in many cases, its estimation is
required. A typical approach to demographic estimation using machine learning
is to first annotate the demographic information for individuals and then learn
a classifier that predicts the demographics for unknown individuals using the
annotated demographic information. However, it is difficult and expensive to
annotate the information manually.

Instead, using the machine learning approach, we can use the proposed
model for demographic estimation. For the case of demographic estimation, each
instance corresponds to a user on SNS, and its feature vector and label are the
content created by the user and the demographic label of the user, respectively.
Then, we use corporate accounts on SNS as groups and regard the users who fol-
low the corporate accounts as members of the groups. Because the demographic
labels of the users are unknown, we cannot also observe the true label distrib-
utions of the groups. Instead, we use the demographic distributions of visitors
to corporate websites, which can be obtained easily and cheaply from audience
measurement services, such as Quantcast1. Because the demographic distribu-
tions of websites differ from those of SNS, we use the distributions as noisy
label distributions in our problem. Finally, by learning the proposed model, it is
expected that the demographics of the users in SNS can be estimated without
annotating demographic information.

1 https://www.quantcast.com/.

https://www.quantcast.com/

Learning from Noisy Label Distributions 139

2 Related Work

To the best of our knowledge, there is no study that addresses the problem
contained in this paper. However, this problem may be considered to be similar
to or a type of multiple instance learning (MIL) [5,7]. In standard MIL, the sets
that consist of pairs of instances and their binary labels are given. Each of the
sets is labeled positive if at least one positive label is included in the set, and
negative otherwise. Then, the goal of MIL is to learn a classifier that predicts
whether a new set that consists only of instances is positive or negative. There are
two main differences between our problem and MIL. First, our problem assumes
that the label of each instance is unobserved. Second, the goal of our problem is
to learn a classifier that predicts a label of a newly given instance rather than a
set of instances.

Note that our problem is inspired by the demographic estimation method of
Culotta et al. [3,4]. They considered the situation described in the last paragraph
of Sect. 1. Then, they proposed learning a demographic classifier of SNS users
directly using the demographic distributions of website visitors. However, their
method implicitly assumes that the demographic distributions of SNS users and
website visitors are identical.

In this study, we formalize the problem of Culotta et al. as a general machine
learning problem. Then, the proposed model can capture the difference between
two distributions, such as the demographic distributions of SNS users and web-
site visitors, by modeling the process by which they are distorted by an unknown
noise.

3 Proposed Method

In this section, we propose a probabilistic model to address the problem described
in the first paragraph of Sect. 1. First, we explain the formulation of the proposed
model. Then, we explain how to learn the proposed model based on a variational
Bayesian method.

3.1 Model Formulation

In the problem, there are N groups and U instances. Each instance has a D-
dimensional feature vector and true label. Let xu ∈ R

D be the feature vector of
the uth instance and yu ∈ {1, 2, · · · ,M} be the true label of the uth instance,
where M is the number of classes. For convenience, we define a set of all feature
vectors and set of all true labels as X = {xu}U

u=1 and Y = {yu}U
u=1, respectively.

Each group consists of a subset of all instances. We denote the set of instances
associated with the ith group by Gi ⊆ {u}U

u=1. Then, for each group, the true
label distribution, that is, the distribution of the true label of the instances asso-
ciated with the group, can be calculated. In particular, we denote the true label
distribution of the ith group by zi ∈ R

M , where zi = 1
|Gi|

∑
u∈Gi

vec(yu) and
∑M

m=1 zim = 1, where vec(yu) returns a vector whose yuth element is one and

140 Y. Yoshikawa

other elements are zero. Note that, the true label of each instance and true label
distribution of each group are unobserved. Instead, we observe the noisy label
distribution, that is, a label distribution such that the true label distribution is
distorted by an unknown noise. We denote the noisy label distribution of the ith
group by si ∈ R

M , where
∑M

m=1 sim = 1.

Fig. 2. Graphical representation of the proposed model. The white and the gray cir-
cles represent hidden and observed variables, respectively. The edges represent the
dependency between the variables. The dots are hyper-parameters determined manu-
ally before training.

Figure 2 illustrates the graphical representation of the proposed model. The
generative process of the proposed model is as follows:

1. For each class m = 1, 2, · · · ,M :
(a) Draw weight vector wm ∼ N (0, α−1

w ID).
(b) Draw confusion vector cm ∼ Dir(βm).

2. For each instance u = 1, 2, · · · , U :
(a) Draw true label yu ∼ Softmax([w�

mxu]Mm=1).
(b) For each group i = 1, 2, · · · , N :

i. Draw group-dependent label ti ∼ Cat(cyu
).

3. For each group i = 1, 2, · · · , N :
(a) Draw noisy label distribution si ∼ N (ti, α

−1
s IM),

where ti = 1
|Gi|

∑
u∈Gi

vec(tiu).

In the proposed model, the true label yu of each instance u is generated
from the distribution calculated based on the inner product of weight vector wm

and feature vector xu. Weight vector wm for each class m is generated from an
isotropic Gaussian with zero mean and covariance matrix α−1

w ID, where ID is a
D-dimensional identity matrix. The distribution is normalized using a softmax
function. Although this is the same idea as multi-class logistic regression, in
the proposed model, the true label is unobserved and considered as a hidden
variable.

The true label distribution (unobserved) and noisy label distribution
(observed) are different because of the distortion by an unknown noise. To cap-
ture such a phenomenon, the proposed model has confusion vector cm ∈ R

M
+

Learning from Noisy Label Distributions 141

for each class m, where the lth element of cm represents the probability with
which class m is changed to class l by an unknown noise. We assume that con-
fusion vector cm for each class m is generated from the Dirichlet distribution,
with parameter βm ∈ R

M
+ .To incorporate the magnitude of the noise as prior

knowledge into the proposed model, we parameterize βm as follows:

βml =

{
αc0 (m �= l)
αc1 (m = l).

(1)

When a large magnitude of noise is expected, we set αc0 to a larger value
than αc1 .

Then, the noisy label distribution of each group is generated. In particular, for
each instance u ∈ Gi associated with the ith group, group-dependent label tiu ∈
{1, 2, · · · ,M} is generated from the categorical distribution, with parameter cyu

.
We define ti = 1

|Gi|
∑

u∈Gi
vec(tiu). Note that, because the instance can belong to

multiple groups, the group-dependent labels of the instance may vary according
to the groups. Finally, the noisy label distribution of the ith group is generated
from a Gaussian distribution, with ti as a mean vector and α−1

s IM as a covariance
matrix.

3.2 Inference Based on Variational Bayesian Method

We introduce the inference method of the proposed model based on a variational
Bayesian method [1].

First, the logarithm of the marginal posterior of weight matrix W and con-
fusion matrix C is given by

log p(W,C|X,S, α) ∝ log
∑

T,Y

p(S|T, αs)p(T|Y,C)p(Y|W,X)

+ log p(W|αw) + log p(C|αc0 , αc1). (2)

According to the generative process, the factors in (2) are defined as follows:

p(S|T, αs) =
N∏

i=1

N (si|ti, α
−1
s IM), (3)

p(T|Y,C) =
N∏

i=1

∏

u∈Ei

cyu,tiu , (4)

p(Y|W,X) =
U∏

u=1

exp(w�
yu
xu)

∑
m=1 exp(w�

mxu)
, (5)

p(W|αw) =
M∏

m=1

N (wm|0, α−1
w ID), (6)

142 Y. Yoshikawa

p(C|αc0 , αc1) =
M∏

m=1

Γ
(∑M

l=1 βml

)

∏M
l=1 Γ (βml)

M∏

l=1

cβml−1
ml . (7)

The goal of inference is to obtain W and C such that 2 is maximized. How-
ever, considering all possible combinations of T and Y is impossible in terms of
the complexity of computational time. Therefore, we derive the following varia-
tional lower bound L(Θ) for (2) according to Jensen’s inequality:

log p(W,C|X,S, α) ≥
∑

T,Y

q(T,Y) log
p(S|T, αs)p(T|Y,C)p(Y|W,X)

q(T,Y)

+ log p(W|αw) + log p(C|αc0 , αc1)
= L(Θ). (8)

Then, we optimize the variational lower bound (8) instead. For convenience,
we define Θ = {W,C, ζ, η}. With variational distribution q(T,Y), we assume
the following factorization: q(T,Y) = q(Y|ζ)q(T|η), where

q(Y|ζ) =
U∏

u=1

ζuyu
, q(T|η) =

N∏

i=1

U∏

u=1

ηiutiu . (9)

Next, we derive the update rules for W, C, ζ, and η.

Update W. Because W cannot be updated in closed form, we calculate the
gradient with respect to W as follows:

∂L(Θ)
∂wm

=
U∑

u=1

(

ζum − exp(w�
mxu)

∑M
l=1 exp(w�

l xu)

M∑

l=1

ζul

)

xu − αwwm. (10)

Then we update W using a gradient-based optimization method, such as the
quasi-Newton method.

Update C. Because of the constraint that
∑M

l=1 cml = 1 for each class m, we
derive the update rule for C according to the Lagrange multiplier method as
follows:

cml =
∑N

i=1

∑U
u=1 ζumηium + βml − 1

∑M
m′=1

∑N
i=1

∑U
u=1 ζum′ηium′ +

∑M
l′=1 βml′ − M

. (11)

Update ζ. Because of the constraint that
∑M

m=1 ζum = 1 for each instance u,
we derive the update rule for ζ according to the Lagrange multiplier method as
follows:

ζum ∝ exp

{
N∑

i=1

M∑

l=1

ηiul log cml + aum − log
M∑

m′=1

exp(aum′)

}

, (12)

where aum = x�
u wm. After calculating (12), the values are normalized such that

∑M
m=1 ζum = 1.

Learning from Noisy Label Distributions 143

Update η. Because of the constraint that
∑M

m=1 ηium = 1 for the pair of each
group i and each instance u, we derive the update rule for η according to the
Lagrange multiplier method. However, because the update rule cannot be calcu-
lated in closed form, we derive the gradients with respect to ηium and multiplier
parameter λiu as follows:

∂L(Θ)
∂ηium

= − αs

|Gi| (sim − E[ti]m) +
M∑

l=1

ζul log clm − log ηium − 1 + λiu, (13)

∂L(Θ)
∂λiu

=
M∑

m=1

ηium − 1. (14)

and then we alternatively update the parameters using these gradients, where
E[ti]m = 1

|Gi|
∑

u∈Gi
ηium.

We continue to update the parameters W, C, ζ, and η sequentially until
the value of (8) converges. The hyper-parameters α are determined by cross-
validation.

4 Experiments

To confirm the effectiveness of the proposed model in the scenario shown in
Fig. 1, we performed numerical experiments on a synthetic dataset.

We considered a four-class classification problem. The synthetic dataset was
generated according to the generative process of the proposed model described
in Sect. 3.1. Note the following:

– The feature vector of each instance was generated from an isotropic Gaussian
with zero mean and a variance equal to one.

– We set the number of instances to U = 100 and the number of groups to
N = 1, 000, and each group consisted of 30 randomly chosen instances.

– We defined β according to (1), where we set αc0 = 1 and αc1 ∈ {1, 10, 100}.

For comparison, we used two methods proposed by Culotta et al. [4]. These
methods learn a regression function that predicts the values of the noisy label dis-
tribution of each group from the feature vector of each instance associated with
the group. After learning, they calculate the label distribution of a newly given
instance, and then output the label with the highest value of the label distribu-
tion as a prediction result. Culotta et al. used a multi-task elastic net (MTEN)
that captured the relationship among each dimension of the distribution, and a
ridge regression that predicted the value of each dimension of the distribution
independently. For MTEN and ridge regression, we used the implementation of
scikit-learn [8] in the same way as Culotta et al.

Table 1 shows the accuracy of the true label estimation on three synthetic
datasets with different αc1 . When αc1 was small, the difference between the true
label distribution and the noisy label distribution was large. As a result, the

144 Y. Yoshikawa

Table 1. Accuracy of true label estimation on a synthetic dataset.

αc1 = 1 αc1 = 10 αc1 = 100

Proposed 0.43 0.52 0.45

MTEN [4] 0.32 0.51 0.31

Ridge [4] 0.24 0.48 0.24

accuracy of the existing method, for example, ridge regression, was much the
same as a random choice, that is, 1/4 = 0.25. By contrast, because the proposed
model could capture the difference by learning confusion matrix C, it could
estimate the true labels accurately. Moreover, when αc1 was large, the proposed
model consistently outperformed existing methods.

5 Conclusion

We considered a novel machine learning problem, that is, learning a classifier
from noisy label distributions. To address this problem, we proposed a genera-
tive probabilistic model, which can be inferred based on a variational Bayesian
method. In numerical experiments, we showed that, the proposed model out-
performed existing methods in terms of the estimation of the true labels of
instances.

In future work, we will confirm the effectiveness of the proposed model in
demographic estimation using real datasets provided by Culotta et al. [3]. Addi-
tionally, because the proposed model only captured a single pattern of noise, we
will extend the proposed model so that it captures multiple patterns of noise.

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

2. Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet : a content-based app-
roach to geo-locating twitter users. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, pp. 759–768 (2010)

3. Culotta, A., Kumar, N.R., Cutler, J.: Predicting twitter user demographics using
distant supervision from website traffic data. J. Artif. Intell. Res. 1, 389–408 (2016)

4. Culotta, A., Ravi, N.K., Cutler, J.: Predicting the demographics of twitter users
from website traffic data. In: Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, pp. 72–78 (2015)

5. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance
problem with axis-parallel rectangles. Artif. Intell. 89, 31–71 (1997)

6. Li, J., Ritter, A., Hovy, E.: Weakly Supervised User Profile Extraction from Twitter.
In: Association of Computational Linguistics, pp. 165–174 (2014)

7. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In:
Advances in Neural Information Processing, pp. 570–576 (1997)

Learning from Noisy Label Distributions 145

8. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

9. Rao, D., Yarowsky, D., Shreevats, A., Gupta, M.: Classifying latent user attributes
in twitter. In: Proceedings of the 2nd International Workshop on Search and Mining
User-Generated Contents (2010)

Phase Transition Structure of Variational
Bayesian Nonnegative Matrix Factorization

Masahiro Kohjima(B) and Sumio Watanabe

Department of Mathematical and Computing Science, Tokyo Institute of Technology,
G5-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
koujima.m.aa@m.titech.ac.jp, swatanab@c.titech.ac.jp

Abstract. In this paper, we theoretically clarify the phase transition
structure of the variational Bayesian nonnegative matrix factorization
(VBNMF). By asymptotic analysis of the objective functional in varia-
tional inference, we find that the variational posterior distribution of the
VBNMF is drastically changed by hyperparameters; we call this phe-
nomenon phase transition of the VBNMF. We also discuss a numerical
experiment demonstrating our theoretical results.

Keywords: Nonnegative matrix factorization · Variational Bayes ·
Phase transition · Asymptotic analysis · Hyperparameter design

1 Introduction

Nonnegative matrix factorization (NMF) [1,2] is a ubiquitous tool used in var-
ious research fields including signal processing, pattern recognition, and data
mining [3]. NMF is formulated as the method which decomposes an input matrix
into the product of factor matrices with nonnegative values (Fig. 1(a)). Thanks
to the nonnegativity constraint, extracted factors are readily interpretable. NMF
is frequently used for extracting latent structure and patterns.

The standard algorithms for NMF such as majorization minimization [1] and
variational Bayes (VB) [4], require the setting of the number of factors. Since
the true number of factors of the input matrix is unknown, the chosen number
of factors may be larger than the true one. This setting frequently appears in
practical model selection scenarios. In this case, the factorization result cannot be
uniquely determined, as shown in Fig. 1(a). Because both Result case 1, in which
redundant factors vanish, and Result case 2, in which redundant factors remain,
can exactly reconstruct the input matrix, we cannot distinguish which result is
better from the difference from the input matrix. In order to compare the results,
the factorization results should be evaluated by the value of hyperparameters.

In this paper, we theoretically prove the following two results. (i) The factor-
ization results of the variational Bayesian NMF algorithm (VBNMF) are changed
according to hyperparameters. (ii) Its critical line is explicitly given by the size
of the input matrix. Figure 1(b) shows our theoretical results. Depending on
whether the hyperparameters are in the area above or below the critical line
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 146–154, 2017.
https://doi.org/10.1007/978-3-319-68612-7_17

Phase Transition Structure of VBNMF 147

(a) (b)

Fig. 1. (a) NMF and example of factorization results when redundant factor exists.
(b) Phase transition diagram obtained by our analysis

φAI + φBJ = (I + J)/2, the factorization results drastically change, where I
and J are sizes of the input matrix and φA and φB are hyperparameters. We
call this phenomenon phase transition of the VBNMF. Clarification of the phase
transition structure provides useful insight in the hyperparameter design.

These results are derived by analyzing the minimum value of the objective
function of the VBNMF, which is called the variational free energy (VFE). In
this paper, we consider the setting that the amount of data (the number of
observed matrices) is sufficiently large and identify the optimal number of factors
through an asymptotic analysis. Note that the setting where multiple matrices
are observed arises in recent application, e.g., purchase data analysis [5] and
traffic data analysis [6]. The analysis of VFE itself is also important topic in the
literature of statistical learning theory [7–9].

The rest of this paper is organized as follows. Section 2 is the preliminary
section. We briefly discuss NMF, the VB algorithm, and VFE. In Sect. 3, we
present the main theoretical results and proof. We also provide an interpretation
of the results. In Sect. 4, we discuss a numerical experiment and we conclude the
paper in Sect. 5.

2 Preliminaries

2.1 Variational Bayesian Nonnegative Matrix Factorization

Let X ∈ R
I×J
+ be an I×J matrix whose elements are all nonnegative real values.

We also denote a set of matrices X1,X2, · · · ,Xn as Xn, where n is the number
of matrices. The xm

ij represents the (i, j)-th element of the m-th matrix Xm.
With NMF, it is assumed that each matrix can be approximated by a product
of nonnegative factor matrices A ∈ R

I×R
+ and B ∈ R

J×R
+ . By modeling that the

148 M. Kohjima and S. Watanabe

elements of X are subject to Poisson distribution, the probability distribution
of generating Xn is given by

P (Xn|A,B) =
∏n

m=1

∏I,J

i,j=1
PO(

xm
ij

∣∣∣
∑R

r=1
airbjr

)
, (1)

where air and bjr represent the (i, r)-th element of A and the (j, r)-th elements
of B, respectively. PO is Poisson distribution, PO(x|μ) = exp{−μ + x log(μ) −
log Γ (x + 1)}. We introduce a hidden variable Sn whose element smijr represents
the contribution of the r-th factor to xm

ij . The joint distribution is given by

P (Xn,Sn|A,B) =
∏n

m=1

∏I,J

i,j=1
δ
(
xm
ij − smij·

) ∏R

r=1
PO(

smijr
∣∣airbjr

)
. (2)

Note that a dot index means the corresponding one is summed out: sij· =∑R
r=1 sijr, s·jr =

∑I
i=1 sijr, si·r =

∑J
j=1 sijr. We use the conjugate gamma pri-

ors on A and B.

P (A) =
∏I,R

i,r=1
G(air|φA, ηA/φA), P (B) =

∏J,R

j,r=1
G(bjr|φB , ηB/φB), (3)

where φA, ηA, φB , and ηB are hyperparameters. G denotes Gamma distribution,
G(x|φ, η) = exp

{
(φ− 1) log x−x/η − log Γ (φ)−φ log η

}
. As shown in Fig. 2, air

and bjr tend to be small as φA and φB decrease. Using them together, the joint
distribution is P (Xn,Sn,A,B) = P (Xn,Sn|A,B)P (A)P (B).

The variational Bayesian (VB) algorithm is used to estimate the variational
distribution, which approximates a posterior distribution of parameters and hid-
den variables. The VB algorithm for NMF with Poisson distribution was derived
by Cemgil [4]1. The variational distribution q(A,B,Sn) is optimized by mini-
mizing the functional F̄ [q], which is defined by

F̄ [q] = Eq(A)q(B)q(Sn)

[
log

q(A)q(B)q(Sn)
p(Xn,Sn,A,B)

]
, (4)

under the constraint that variational distribution is independent: q(A,B,Sn) =
q(A)q(B)q(Sn). Note that Eq(A)q(B)q(Sn) denotes the expectation w.r.t. A,B

and Sn following the variational distribution. Minimizing the functional F̄ [q] is
equivalent to minimizing the Kullback-Leibler divergence between posterior and
variational distributions. From the optimality condition derived from the varia-
tional method, the variational distribution of A and B is a gamma distribution
and that of S is a multinomial distribution:

q(A) =
∏

i,r

G(air|αA
ir, β

A
ir), αA

ir ≡ φA + ns̄i·r, βA
ir ≡ (φA/ηA + nb̄·r

)−1
, (5)

q(B) =
∏

j,r

G(bjr|αB
jr, β

B
jr), αB

jr ≡ φB + ns̄·jr, βB
jr ≡ (φB/ηB + nā·r)

−1 , (6)

q(Sn) =
∏

m,i,j

M(sij |xm
ij , {pS

ijr}
)
, pS

ijr ∝ ρijr ≡ exp
(
Eq(A)q(B) [log air + log bjr]

)
. (7)

1 More precisely, Cemgil derived the VB when n = 1 [4]. For the asymptotic analysis
provided in the next section, we slightly modify the algorithm for arbitral n.

Phase Transition Structure of VBNMF 149

Fig. 2. Density function of Poisson
and Gamma distributions.

.

Table 1. Definition of symbols

Symbol Description

F̄ Functional to be minimized
using VB

F̄vb Variational free energy (VFE)

E Empirical entropy

R∗ Nonnegative rank of true matrix
X∗

R∗
vb Optimal number of factors that

minimize VFE

R Number of factors used in
VBNMF

R̂ Effective number of factors,
which remain in result of
VBNMF

The statistics in above equations are computed as āir = αA
irβ

A
ir, b̄jr =

αB
jrβ

B
jr, s̄ijr = x̄ijp

s
ijr, x̄ij = 1

n

∑n
m=1 xm

ij , Eq(A) [log air] =Ψ(αA
ir) + log(βA

ir),
Eq(B) [log bjr] = Ψ(αB

jr) + log(βB
jr), where Ψ(·) denotes the digamma function.

The VB algorithm is the recursive iteration of Eqs. (5), (6), and (7).

2.2 Variational Free Energy (VFE)

To analyze the result of the VBNMF, we need to investigate the objective func-
tional. The minimum value is referred to as the variational free energy (VFE),
F̄vb = minq(A)q(B)q(Sn) F̄ [q]. This indicates the objective value at the (opti-
mal) output of the VB algorithm. Investigation of this value enables us to
investigate the factorization result of the VBNMF. Note that the reason the
term “free energy” is used is that the VFE is an upper bound of free energy:
F = − log

∫
p(Xn,Sn,A,B)dAdBdSn. Analogous to the role of free energy2,

the smaller VFE indicates the better choice of the model.
The VFE of NMF has an analytic form. In the next section, we use the

following decomposition.

F̄vb = FA + FB + FX , (8)

2 Since free energy is a sign inversion of the log marginal likelihood, a lower free energy
means a higher log-likelihood of the model.

150 M. Kohjima and S. Watanabe

FA =
∑

i,r

{(
αA
ir −φA

)
Ψ(αA

ir)−φA log(βA
ir)+ (

φA

ηA
)āir + log

Γ (φA)

Γ (αA
ir)

+φA log(
ηA

φA
)−αA

ir

}
,

FB =
∑

j,r

{(
αB
jr −φB

)
Ψ(αB

jr)−φB log(βB
jr)+ (

φB

ηB
)b̄jr + log

Γ (φB)

Γ (αB
jr)

+φB log(
ηB

φB
)−αB

jr

}
,

FX =
∑

i,j

{∑

r

nāir b̄jr +
∑

m

log Γ (xm
ij + 1)− nx̄ij log

(∑

r

ρijr
)}

.

3 Theoretical Analysis

3.1 Main Result

This section provides our main theoretical result. In the proof of the theorem,
we assume that the following assumption is satisfied.

Assumption 1. The true probability distribution, which generates observed
matrices Xn, is given by P (Xn|X∗) =

∏n
m=1

∏I,J
i,j=1 PO

(
xm
ij

∣∣∣ (X∗)ij
)

. We
denote the nonnegative rank [10] of the true matrix X∗, i.e., true number of
factors, as R∗3.

Our main theorem clarifies the effect of hyperparameters on the result of the
VBNMF.

Main Theorem. Suppose Assumption 1 is satisfied and R is not less than R∗.
Then, as the number of observed matrices n → ∞, the R∗

vb, which minimizes the
VFE, is given by

R∗
vb =

{
R∗ (

if φAI + φBJ < (I + J)/2
)
,

R
(
otherwise

)
.

(9)

Moreover, the asymptotic form of the VFE is given by4

F̄vb = E + λvb log(n) + Op(1), (10)

λvb =
{

(φAI + φBJ) (R − R∗) + I+J
2 R∗ (

if φAI + φBJ < (I+J)
2

)
I+J
2 R

(
otherwise

)
,

(11)

where E is the empirical entropy defined by E = − log p(Xn|X∗).

The proof is shown in the following subsection. Here, we provide an interpretation
of the theorem. Equation (9) shows that the optimal number of factors R∗

vb is
determined by the hyperparameters. Figure 1(b) is the diagram that describes

3 Nonnegative rank is defined as the smallest number of “nonnegative” rank-1 matrix
into which the matrix can be decomposed. Nonnegative rank does not generally
equal “standard” rank. For more details, see [11].

4 Op is the order notation of random variables. A sequence of random variables Xn is
said to be Op(1) if it is bounded in probability [12].

Phase Transition Structure of VBNMF 151

the relation of hyperparameters and R∗
vb, which we call phase transition. In the

area under the critical line φAI + φBJ = (I + J)/2, R∗
vb equals the true number

of factors, R∗. On the other hand, above the critical line, the optimal number
of factors equals the number of factors used in the algorithm, R. Since φA and
φB are the parameters of the gamma prior, our result fits the fact smaller values
make A and B sparse. Analogous to the optimal number of factors, Eqs. (10) and
(11) show that the behavior of VFE is also changed whether the hyperparameters
are above or under the critical line.

This theorem provides useful application to the hyperparameter design. Let
us consider the case in which the redundant factors are required to vanish. In
this case, Eq. (9) shows that it is not enough to set a small value to either φA

or φB . This setting is sometimes done by researchers who try to obtain a sparse
matrix A and dence matrix B. The following example shows how the theorem
is used to determine the setting of hyperparameters.

Example: Let I = 10, J = 90 and consider setting φA = 0.1. To remove
redundant factors, φAI + φBJ = 1 + 90φB < 50 = (I + J)/2 must be satisfied
then φB < (50 − 1)/90 ≈ 0.54. Therefore, φA = 0.1, φB = 0.5 is recommended.

3.2 Proof of Main Theorem

Finally, this subsection provides the proof of main theorem.

Theorem 1. As the number of matrices n → ∞, the asymptotic form of the
VFE F̄vb is given by F̄vb = E + {minR∗≤R̂≤R Λ(R, R̂)} log(n) + Op(1), where
Λ(R, R̂) = (φAI + φBJ) R − (

φAI + φBJ − I+J
2

)
R̂.

Note that R̂ is the effective number of factors, which does not vanish. The main
theorem is immediately obtained from Theorem 1.

Proof of Main Theorem. From the definition of Λ(R, R̂), in the case of φAI+
φBJ < (I + J)/2, the smaller R̂ is, the smaller F̄vb. Therefore, R∗

vb = R∗. In
the another case, a larger R̂ is better, and R∗

vb = R. Substituting R∗
vb into R̂,

Eq. (11) is obtained. ��
Thus, we need to prove Theorem 1. It requires following three lemmas, Lemmas 1,
2, and 3. The proofs of these lemmas are provided in the Appendix.

Lemma 1. As the number of matrices n → ∞, the first and second terms of
Eq. (8), FA and FB, are given by FA =

{
φAIR − (

φA − 1
2

)
IR̂

}
log(n) + Op(1)

and FB =
{
φBJR − (

φB − 1
2

)
JR̂

}
log(n) + Op(1).

Lemma 2. FX in Eq. (8) is given by FX = − log P (Xn|Ā, B̄) + Op(1).

Lemma 3. Suppose Assumption 1 is satisfied and R is not less than R∗. Then,
F [q] is minimized if and only if R̂ satisfies R∗ ≤ R̂ ≤ R. Moreover, as the number
of matrices n → ∞, the asymptotic form of FX is given by FX = E + Op(1).

By applying Lemmas 1, 2, 3, Theorem 1 is proven.

152 M. Kohjima and S. Watanabe

Proof (Theorem 1). From Eq. (8), F̄vb = FA + FB + FX holds. Using the
Lemmas 1, 2 and 3, we can obtain the asymptotic form with R̂. Since the VFE
with R̂ is minimized when R̂ minimizes the Λ(R, R̂), we complete the proof. ��

4 Experiment

In this section, we confirm the validity of the main theorem through numer-
ical experiment. We prepared the true matrix X∗ = {x∗

ij} ∈ R
5×J
+ as x∗

ij =
max (4 − (j%5), 1) if i = 0, 1, 2 and otherwise, x∗

ij = max ((j%5) − 1, 1). Note
that c%d denotes the remainder when c is divided by d. Obviously, nonnegative
rank of X∗, R∗ = 2. Using this matrix, we generated matrices Xn follow-
ing Eq. (1) and applied the VBNMF. Using the matrices and the result of the
VBNMF, we computed the empirical entropy E and the experimental value of
the VFE F̄vb. To obtain the experimental values, we ran the VBNMF 2000 times
with a random initialization and set the maximum number of iterations to 1000.
We checked whether the asymptotic value of VFE in the main theorem was sat-
isfied since it is the key of our theoretical results. We conducted an experiment
involving varying the size of input matrices and the number of factors.

Figure 3 shows the results when the hyperparameters were set to φA = ηA =
φB = ηB = 1.0. The horizontal axis represents the number of observed matrices
with log scale. The solid line represents the theoretical value λvb log(n), and the
angle corresponds to λvb. The marked point represents the experimental value
F̄vb−E . The dashed line represents the linear regression line to the experimental
values. Since Eq. (10) contains the Op(1) constant term, there exists a small
difference between the solid and dashed lines. Therefore, we need to focus on the
angle of the solid and dashed lines since it indicates the coefficient with respect
to log(n). We can easily confirm that the angles of the lines are almost the same.
This means our theory effectively explains the experimental results.

(a) I = 5, J = 5 (b) I = 5, J = 10 (c) I = 5, J = 20

Fig. 3. Comparison of experimental and theoretical values of VFE.

5 Conclusion

We theoretically clarified the phase transition structure of VBNMF through the
asymptotic analysis of VFE. The numerical experiments support the validity of
our analysis. Future work includes an extension of our analysis to the case where
different probability distributions or different factorization form is adopted.

Phase Transition Structure of VBNMF 153

Appendix: Proof Sketch of Lemmas 1, 2, and 3

For the proof of the Lemmas 1 and 2, we apply following two inequalities of the
digamma and log-digamma functions [13]: for x > 0, 1

2x < log(x) − Ψ(x) < 1
x ,

0 ≤ log Γ (x)−{
(x− 1

2) log(x)−x+ 1
2 log 2π

} ≤ 1
12x . Without loss of generality, we

can assume s̄i·r = s̄·jr = 0 is satisfied for all r, R̂ < r ≤ R, the proof is completed.
For the Lemma 3, two different strategies are needed for deriving upper

bound and lower bound. We first show the upper bound. From the defini-
tion of the VFE and the results of Lemmas 1 and 2, VFE can be written as
F̄vb = Λ(R,R∗

vb) log(n) − log P (Xn|Ā, B̄) + Op(1). Since VFE is the minimum
value of F̄ [q], VFE satisfies

F̄vb = Λ(R,R∗
vb) − log P (Xn|Ā, B̄) + Op(1) ≤ Λ(R,R∗

vb) + E + Op(1). (12)

Then, − log P (Xn|Ā, B̄) ≤ E + Op(1) is shown. The lower bound is derived
by using the classical statistical learning theory. Let us define the probabilistic
model that has a parameter of Poisson distribution for all the elements of matrix
(i, j), µ̃ = {μ̃ij}I,Ji,j=1. By using this model, the probability of generating matrix
Xm can be written as P̃ (Xm|µ̃) =

∏
(i,j) PO(xm

ij |μ̃ij). From the property of the
maximum likelihood estimator (MLE) µ̃ML and the definition of the MLE,

1

n

n∑

m=1

log
P (Xm|X∗)

P̃ (Xm|µ̃ML)
=

C

n
+ Op(

1

n
),

n∑

m=1

log
P (Xm|X∗)

P (Xm|Ā, B̄)
≥

n∑

m=1

log
P (Xm|X∗)

P̃ (Xm|µ̃ML)

(13)

holds, where C is a constant term. Then, we obtain − log P (Xn|Ā, B̄) ≥
− log P (Xn|X∗) + C + Op(1) = E + Op(1).

References

1. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In:
Advances in Neural Information Processing Systems, pp. 556–562 (2001)

2. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788–791 (1999)

3. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor
Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind
Source Separation. Wiley, Chichester (2009)

4. Cemgil, A.T.: Bayesian inference for nonnegative matrix factorisation models.
Comput. Intell. Neurosc. 2009, 17 (2009). doi:10.1155/2009/785152. Article ID:
785152

5. Kohjima, M., Matsubayashi, T., Sawada, H.: Probabilistic non-negative
inconsistent-resolution matrices factorization. In: Proceedings of the 24th ACM
International Conference on Information and Knowledge Management, pp. 1855–
1858 (2015)

6. Deng, D., Shahabi, C., Demiryurek, U., Zhu, L., Yu, R., Liu, Y.: Latent space
model for road networks to predict time-varying traffic. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 1525–1534 (2016)

http://dx.doi.org/10.1155/2009/785152

154 M. Kohjima and S. Watanabe

7. Watanabe, K., Watanabe, S.: Stochastic complexities of Gaussian mixtures in vari-
ational Bayesian approximation. J. Mach. Learn. Res. 7, 625–644 (2006)

8. Watanabe, K., Shiga, M., Watanabe, S.: Upper bound for variational free energy
of bayesian networks. Mach. Learn. 75(2), 199–215 (2009)

9. Nakajima, S., Sato, I., Sugiyama, M., Watanabe, K., Kobayashi, H.: Analysis
of variational Bayesian latent dirichlet allocation: weaker sparsity than map. In:
Advances in Neural Information Processing Systems, pp. 1224–1232 (2014)

10. Cohen, J.E., Rothblum, U.G.: Nonnegative ranks, decompositions, and factoriza-
tions of nonnegative matrices. Linear Algebra Appl. 190, 149–168 (1993)

11. Vavasis, S.A.: On the complexity of nonnegative matrix factorization. SIAM J.
Optim. 20(3), 1364–1377 (2009)

12. Van der Vaart, A.W.: Asymptotic Statistics, vol. 3. Cambridge University Press,
Cambridge (2000)

13. Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput.
Am. Math. Soc. 66(217), 373–389 (1997)

Link Enrichment for Diffusion-Based Graph
Node Kernels

Dinh Tran-Van1, Alessandro Sperduti1, and Fabrizio Costa2(B)

1 Department of Mathematics, Padova University, Padua, Italy
{dinh,sperduti}@math.unipd.it

2 Department of Computer Science, University of Exeter, Exeter, UK
f.costa@exeter.ac.uk

Abstract. The notion of node similarity is key in many graph process-
ing techniques and it is especially important in diffusion graph kernels.
However, when the graph structure is affected by noise in the form of
missing links, similarities are distorted proportionally to the sparsity of
the graph and to the fraction of missing links. Here, we introduce the
notion of link enrichment, that is, performing link prediction in order to
improve the performance of diffusion-based kernels. We empirically show
a robust and large effect for the combination of a number of link predic-
tion and a number of diffusion kernel techniques on several gene-disease
association problems.

Keywords: Graph kernels · Diffusion kernels · Link prediction

1 Introduction

A powerful approach to process large heterogeneous sources of data is to use
graph encodings [1,8] and then use graph-based learning systems. In these sys-
tems the notion of node similarity is key. A common approach is to resort to
graph node kernels such as diffusion-based kernels [2] where the graph node ker-
nel measures the proximity between any pair of nodes by taking into account
the paths that connect them. However, when the graph structure is affected by
noise in the form of missing links, node similarities are distorted proportionally
to the sparsity of the graph and to the fraction of missing links. Two of the main
reasons for this are that (1) the lower the average node degree is, the smaller the
number of paths through which information can travel, and (2) missing links can
end up separating a graph into multiple disconnected components. In this case,
since information cannot travel across disconnected components, the similarity
of nodes belonging to different components is null. To address these problems we
propose to solve a link prediction task prior to the node similarity computation
and start studying the question: how can we improve node similarity using link
prediction? In this work we review both the link prediction literature and the
diffusion kernel literature, select a subset of approaches in both categories that
seem well suited, focus on a set of node predicting problems in the bioinformatics
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 155–162, 2017.
https://doi.org/10.1007/978-3-319-68612-7_18

156 D. Tran-Van et al.

domain and empirically investigate the effectiveness of the combination of these
approaches on the given predictive tasks. The encouraging result that we find is
that all the strategies for link prediction we examined consistently enhance the
performance on downstream predictive tasks, often significantly improving state
of the art results.

2 Notation and Background

Let us consider an undirected graph G = (V,E) in which V represents a set
of entities (vertices) and E characterizes the entity relationships (links). The
adjacency matrix A is a symmetric matrix used to describe the direct links
between vertices vi and vj in the graph. Any entry Aij is equal to 1 when there
exists a link connecting vi and vj , and is 0 otherwise. The Laplacian matrix L
is defined as L = D − A, where D is the diagonal matrix with non-null entries
equal to the summation over the corresponding row of the adjacency matrix, i.e.
Dii =

∑
j Aij .

Graph Node Kernels. A graph node kernel is a kernel which defines the
similarity between nodes in a graph. Formally, a graph node kernel, k(·, ·), is
defined as k : V × V −→ R such that k is symmetric positive semidefinite.
Graph node kernels have been successfully applied in various domains ranging
from recommendation systems to disease gene prioritization. The most popular
graph node kernels can be classified in: (1) diffusion-based or (2) decomposition
graph node kernels.

Diffusion-based graph node kernels derive from the Laplacian diffusion
kernel [2]. These kernels measure the node proximity between pairs of nodes
on the basis of the paths that connect them. They achieve state-of-the-art per-
formance on dense graphs because of their ability to define a good notion of
global similarity. However, their performance degrades for sparse graphs, espe-
cially in the presence of disconnected components. Among the most popular
diffusion-based graph node kernels, there are:

– Laplacian exponential diffusion kernel (LEDK) [2]: This kernel is based on
heat diffusion phenomenon: imagine to initialize each vertex with a given
amount of heat and let it flow through the edges until an arbitrary instant
of time. The similarity between any vertex couple vi, vj is the amount of
heat starting from vi and reaching vj within a given time. The LEDK kernel
matrix is computed by:

KLEDK = e−βL , (1)

where β is the diffusion parameter used to control the rate of diffusion, and
eX =

∑∞
k=0

1
k!X

k refers to the matrix exponential for matrix X. Choosing a
consistent value for β is very important: on the one side, if β is too small, the
local information cannot be diffused effectively and, on the other side, if it is
too large, the local information will be lost. KLEDK is positive semi-definite
as proved in [2].

Link Enrichment for Diffusion-Based Graph Node Kernels 157

– Markov exponential diffusion kernel (MEDK) [3]: In LEDK, similarity values
between high degree vertices is generally higher compared to that between
low degree ones. This could be problematic since peripheral nodes have unbal-
anced similarities with respect to central nodes. To make the strength of
individual vertices comparable, a modified version of LEDK is introduced:

KMEDK = e−βM , (2)

where M = (D−A−nI)/n and n, I are the total number of vertices in graph
and identity matrix, respectively.

– Markov diffusion kernel (MDK) [10]: MDK exploits the idea of diffusion dis-
tance, which is a measure of how similar the pattern of heat diffusion is
between a pair of initialized nodes. In other words, it expresses how much
nodes “influence” each other in a similar fashion. From the transition matrix
P (P = D−1A), we define Z(t) = 1

t

∑t
τ=1 P τ . MDK kernel matrix is then

computed as follows:
KMDK = Z(t)Z�(t) . (3)

– Regularized Laplacian kernel (RLK) [4]: It represents a normalized version of
the random walk with restart model. The kernel matrix is defined as:

KRLK =
∞∑

n=0

βn(−L)n , (4)

where β is again the diffusion parameter. RLK counts the paths connecting
two nodes on the graph induced by taking -L as the adjacency matrix, regard-
less of the path length. Thus, a non-zero value is assigned to any couple of
nodes as long as they are connected by any indirect path.

In decomposition graph node kernels [5] the similarity notion between two
graphs is obtained by decomposing each graph into all the possible subgraphs
belonging to a predetermined class and by devising a valid kernel between the
resulting simpler subgraphs. It is possible to convert a decomposition graph ker-
nel into a node kernel simply by extracting a subgraph to associate to each node,
such as the neighborhood subgraph rooted at the node under consideration. An
advantage of decomposition kernels is that they can autonomously address the
case of nodes belonging to distinct graph components. A recent decomposition
graph node kernel is the Conjunctive Disjunctive Node Kernel (CDNK), pro-
posed in [6], based on the extension of a neighborhood graph kernel [7] to the
dense graph case.

Link Prediction. Link prediction is the task of recovering missing links or pre-
dicting links that are going to be present in the future state of an evolving graph.
A link prediction algorithm allows to score all non-observed links and rank them
from the most to the least probable. Several link prediction algorithms have been
proposed in literature and have been applied to different domains ranging from
recommendation systems, to bioinformatics, to network security. Following [9],

158 D. Tran-Van et al.

we can classify these methods in: similarity-based algorithms, maximum likeli-
hood methods, and probabilistic models. Similarity-based methods assign for each
non-observed link a score and this score is then directly used as the proximity
between starting and ending nodes of that link. In maximum likelihood methods,
some organizing principles of the graph structure are assumed. Then, we com-
pute the likelihood of non-observed links based on the corresponding rules and
parameters. Probabilistic models intent to make the abstract of observed graph
structure and then the missing link prediction process is made by employing a
trained model. Given a graph, the probabilistic model works by optimizing a
built target function in order to form a model composed of a set of parameters
that best fits the observed data of the graph.

The similarity-based methods are popular since they are simpler and compu-
tationally more efficient than maximum likelihood and probabilistic models. To
define a notion of similarity, we can use vertices’ attributes. However, these
attributes are normally hidden. Therefore, most similarity-based approaches
are based on the structured similarity. Among similarity-based methods, global
ones normally outperform local and semi-local similarity-based algorithms since
global methods are able to capture the global similarity between nodes of graph.
It is important to notice that all graph node kernels belong to similarity group,
and all graph node kernels described in previous section: LEDK, MEDK, MDK,
RLK, CDNK, are global ones. Therefore, in this paper, we employ graph node
kernels also for link prediction task. Given a graph, in order to use a graph node
kernel for link prediction we first use kernel to compute a kernel matrix which
encodes the similarity between any couple of nodes of the graph. The values
inside the achieved matrix are used as the scores for non-observed links to be
considered as link of the graph.

3 Method

Often the relational information that defines the graph structure is incomplete
because certain relations are not known at a given moment in time or have not
been yet investigated. When this happens the resulting graphs tend to become
sparse and composed of several disconnected components. Diffusion-based ker-
nels are not suited in these cases and show a degraded predictive capacity. Our
key idea is to introduce a link enrichment phase that can address both issues
and enhance the performance of diffusion-based systems.

Given a link prediction algorithm M , a diffusion-based graph node kernel K
and a sparse graph G = (V,E) in which |V | = n and |E| = m, with m ≈ n the
link enrichment method consists of two phases:

– enrichment: the link prediction algorithm M is used to score all possible
n(n−1)

2 − m missing links. The top scoring t links are added to E to obtain
E′ that defines the new graph G′ = (V,E′).

– kernel computation: the diffusion-based graph node kernel K is applied to
graph G

′
to compute the kernel matrix K ′ which captures the similarities

Link Enrichment for Diffusion-Based Graph Node Kernels 159

between any couple of nodes, possibly belonging to different components in
the graph G.

The kernel matrix K ′ can be used directly by a kernelized learning algorithm,
such as a support vector machine, to make predictive inferences.

4 Empirical Evaluation

To empirically study the answer to the question: how can we improve node sim-
ilarity using link prediction? we would need to define a taxonomy of prediction
problems on graphs that make use of the notion of node similarity and analyze
which link prediction strategies can be effectively coupled with specific node
similarity computation techniques for each given class of problems. In addition
we should also study the quantitative relation between the degree of missingness
and the size of the improvement offered by prepending the link prediction to
the node similarity assessment. In this paper we start such endeavor restricting
the type of predictive problems to that of node ranking in the sub-domain of
gene-disease association studies with a fixed but unknown degree of missingness
given by the current medical knowledge. More in detail, the task, known as gene
prioritization, consists in ranking candidate genes based on their probabilities
to be related to a disease on the basis of a given a set of genes experimentally
known to be associated to the disease of interest. We have studied the proposed
approach on the following 4 datasets:

BioGPS: a gene co-expression graph (7311 nodes and 911294 edges) con-
structed from the BioGPS dataset, which contains 79 tissues, measured with
the Affymetrix U133A array. Edges are inserted when the pairwise Pearson cor-
relation coefficient (PCC) between genes is larger than 0.5.

HPRD: a database of curated proteomic information pertaining to human pro-
teins. It is derived from [13] with 9,465 vertices and 37,039 edges. We employ
the HPRD version used in [12] that contains 7311 nodes and 30503 edges.

Phenotype similarity: we use the OMIM [11] dataset and the phenotype sim-
ilarity notion introduced by Van Driel et al. [14] based on the relevance and the
frequency of the Medical Subject Headings (MeSH) vocabulary terms in OMIM
documents. We built the graph linking those genes whose associated phenotypes
have a maximal phenotypic similarity greater than a fixed cut-off value. Follow-
ing [14], we set the similarity cut-off to 0.3. The resulting graph has 3393 nodes
and 144739 edges.

Biogridphys: this dataset encodes known physical interactions among proteins.
The idea is that mutations can affect physical interactions by changing the shape
of proteins and their effect can propagate through protein graphs. We introduce
a link between two genes if their products interact. The resulting graph has
15389 nodes and 155333 edges.

160 D. Tran-Van et al.

4.1 Evaluation Method

To evaluate the performance of the diffusion kernels, we follow [3]: we choose
14 diseases with at least 30 confirmed genes. For each disease, we construct a
positive set P with all confirmed disease genes. To build the negative set N , we
randomly sample a set of genes that are associated at least to one disease class,
but not related to the class which defines the positive set such that |N | = 1

2 |P|.
We replicate this procedure 5 times1. We assess the performance of kernels via
a 3-fold CV, where, after partitioning the dataset P ∪ U in 3 folds, we use one
fold for training model using SVM and the two remaining folds for testing. For
each test gene gi, the model returns a score si proportional to the likelihood of
being associated to the disease. Next a decision score qi is computed as the top
percentage value of si among all candidate gene scores. We collect all decision
scores for every test genes to compute the area under the curve for the receiver
operating characteristic (AUC-ROC). The final performance on the disease class
is obtained by taking average over 3 folds × 5 trials.

Model Selection: The hyper-parameters of the various methods are set
using a 3-fold on training set in which one fold is used for training the
model and two remaining folds are used for validation. We try the values for
LEDK and MEDK in {0.01, 0.05, 0.1}, time steps in MDK in {3, 5, 10} and
RLK parameter in {0.01, 0.1, 1}. For CDNK, we try for the degree threshold
value in {10, 15, 20}, clique size threshold in {4, 5}, maximum radius in
{1, 2}, maximum distance in {2, 3, 4}. The number of links used for the
enrichment are chosen in {40%, 50%, 60%, 70%} of the number of exist-
ing links. Finally, the regularization tradeoff C for the SVM is chosen in
{10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104}.

5 Results and Discussion

In Table 1 we report a synthesis of all the experiments. Each row represent a
different disease, in the columns we consider the different sources of information
used to build the underlying graph (BioGPS, Biogridphys, Hprd, Omim). Note
that each resource yields a graph with different characteristic sparsity and num-
ber of components. We compare the average AUC-ROC scores in two cases: plain
diffusion kernel (denoted by a “−” symbol) and diffusion kernel on a modified
graph G′ (denoted by a “+” symbol) which includes the novel edges identified
by a link prediction system. Here we report the aggregated results (a detailed
breakdown is available in Appendix 2) where we have averaged not only across a
random choice of negative genes, but also among the type of diffusion kernel and
the type of link prediction. The noteworthy result is how consistent the result
is: each link prediction method improves each diffusion kernel algorithm, and
on average using link prediction yields a 15% to 20% relative error reduction

1 Note that the positive set is held constant, while the negative set varies.
2 https://github.com/dinhinfotech/ICANN/blob/master/appendix.pdf.

https://github.com/dinhinfotech/ICANN/blob/master/appendix.pdf

Link Enrichment for Diffusion-Based Graph Node Kernels 161

Table 1. Predictive performance on 14 gene-disease associations using four different
graphs induced by the BioGPS, Biogridphys, Hprd and Omim. We report the average
AUC-ROC (%) and standard deviations for all diffusion-based kernels with (+) and
without (−) link enrichment.

BioGPS Biogridphys Hprd Omim

Disease − + − + − + − +

1 60.3± 1.5 63.4± 1.0 73.1± 4.1 77.1± 2.9 75.5± 0.2 77.5± 0.9 85.3± 1.1 86.9± 1.5

2 53.7± 1.4 63.4± 3.8 56.6± 3.4 61.3± 4.1 57.1± 0.9 60.2± 1.8 75.0± 2.2 76.5± 2.4

3 50.2± 0.4 58.6± 3.0 58.9± 5.9 67.5± 7.7 61.8± 3.6 70.7± 3.8 77.3± 1.8 83.1± 0.9

4 61.5± 0.9 72.2± 2.2 65.7± 4.1 74.6± 4.2 67.3± 1.1 71.9± 2.2 90.2± 1.2 92.1± 1.2

5 55.1± 0.4 61.7± 0.9 54.2± 4.8 60.7± 4.0 57.7± 1.6 67.0± 1.8 76.4± 0.8 81.9± 1.5

6 60.8± 0.9 67.9± 2.2 60.6± 3.6 65.9± 3.5 66.8± 1.3 71.9± 2.3 79.9± 2.4 83.3± 1.2

7 68.1± 1.4 73.4± 0.7 57.7± 3.2 63.7± 4.0 68.9± 2.1 72.5± 1.2 81.0± 1.2 84.1± 1.0

8 69.2± 2.3 74.0± 2.2 68.1± 3.6 72.6± 2.5 76.6± 2.2 80.3± 2.8 85.4± 2.2 91.0± 1.0

9 62.0± 1.6 64.5± 1.4 68.7± 4.6 71.7± 4.3 68.4± 2.5 75.0± 3.2 78.5± 0.2 80.6± 0.6

10 67.5± 2.9 72.9± 1.8 58.8± 3.2 66.1± 3.8 65.8± 3.4 74.4± 2.6 86.1± 0.6 87.8± 0.3

11 58.7± 1.8 62.3± 1.5 58.2± 1.2 61.6± 1.7 60.1± 1.1 64.2± 1.5 82.0± 1.4 83.6± 0.9

12 64.0± 1.3 73.6± 1.7 59.3± 2.1 67.0± 2.8 60.8± 1.1 68.8± 2.8 82.0± 1.8 85.9± 1.7

13 56.5± 0.9 63.3± 2.4 55.8± 1.1 65.1± 4.2 66.4± 1.3 71.8± 1.7 83.1± 2.8 87.5± 2.5

14 55.2± 0.3 62.3± 1.2 55.6± 1.6 63.5± 4.0 66.3± 2.3 71.1± 2.8 97.4± 0.1 99.0± 0.4

AUC 60.2± 0.3 66.7± 1.2 60.8± 1.6 67.0± 4.0 65.7± 2.3 71.2± 2.8 82.8± 0.1 86.0± 0.4

for diffusion-based methods. What varies is the amount of improvement, which
depends on the coupling between the four elements: the disease, the information
source, the link prediction method and the diffusion kernel algorithm. In specific
we obtain that the largest improvement is obtained for disease 3 (connective)
where we have a maximum improvement of 20% ROC points, while the mini-
mum improvement is for disease 8 (immunological) with a minimal improvement
of 0% ROC points (see in the detailed report). On average the largest improve-
ment is of 13% ROC points, while the smallest improvement is on average of
1% ROC point. Such stable results are of interest since diffusion-based methods
are currently state-of-the-art for gene-disease prioritization tasks, and hence a
technique that can offer a consistent and relatively large improvement can have
important practical consequences in the understanding of disease mechanisms.

6 Conclusion and Future Work

In this paper we have proposed the notion of link enrichment for diffusion ker-
nels, that is, the idea of carrying out the computation of information diffusion
on a graph that contains edges identified by link prediction approaches. We
have discovered a surprisingly robust signal that indicates that diffusion-based
node kernels consistently benefit from the coupling with similarity-based link
prediction techniques on large scale datasets in biological domains.

162 D. Tran-Van et al.

In future work we will carry out a more fine grained analysis, defining a tax-
onomy of prediction problems on graphs that make use of the notion of node
similarity and analyze which link prediction strategies can be effectively cou-
pled with specific node similarity computation techniques for a given problem
class. In addition we will study the quantitative relation between the degree of
missingness and the size of the improvement offered by prepending the link pre-
diction to the node similarity assessment. Finally, we will extend the analysis to
the more complex case of kernel integration and data fusion, i.e. when multiple
heterogeneous information sources are used jointly to define the predictive task.

Acknowledgments. This work was supported by the University of Padova, Strategic
Project BIOINFOGEN.

References

1. Huang, Z., et al.: A graph-based recommender system for digital library. In: Pro-
ceedings of the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries. ACM
(2002)

2. Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete structures.
In: Proceedings of the 19th International Conference on Machine Learning (ICML
2002) (2002)

3. Chen, B., et al.: Disease gene identification by using graph kernels and Markov
random fields. Sci. China Life Sci. 57(11), 1054 (2014)

4. Chebotarev, P., Shamis, E.: The matrix-forest theorem and measuring relations in
small social groups. Autom. Remote Control 58(9), 1505–1514 (1997)

5. Haussler, D.: Convolution kernels on discrete structures. Technical report UCS-
CRL-99-10, UC Santa Cruz (1999)

6. Tran-Van, D., Sperduti, A., Costa, F.: Conjunctive disjunctive node kernel. In:
Proceedings of 25th European Symposium on Artificial Neural Networks, Compu-
tational Intelligence and Machine Learning (2017)

7. Costa, F., Kurt, D.: Fast neighborhood subgraph pairwise distance kernel. In:
Proceedings of the 26th International Conference on Machine Learning. Omnipress
(2010)

8. Ramadan, E., Sadiq, A., Rafiul, H.: Network topology measures for identifying
disease-gene association in breast cancer. BMC Bioinform. 17(7), 274 (2016)

9. Lu, L., Tao, Z.: Link prediction in complex networks: a survey. Phys. A 390(6),
1150–1170 (2011)

10. Fouss, F., et al.: An experimental investigation of kernels on graphs for collabo-
rative recommendation and semisupervised classification. Neural Netw. 31, 53–72
(2012)

11. McKusick, V.A.: Mendelian inheritance in man and its online version, OMIM. Am.
J. Hum. Genet. 80(4), 588–604 (2007)

12. Chatr-Aryamontri, A., et al.: The BioGRID interaction database: 2015 update.
Nucleic Acids Res. 43(D1), D470–D478 (2015)

13. Prasad, T.S.K., et al.: Human protein reference database - 2009 update. Nucleic
Acids Res. 37(Database), D767–D772 (2009)

14. Van Driel, M.A., et al.: A text-mining analysis of the human phenome. Eur. J.
Hum. Genet. 14(5), 535–542 (2006)

Context Information Learning
and Self-Assessment in Advanced

Machine Learning Models

Classless Association Using Neural Networks

Federico Raue1,3(B), Sebastian Palacio3, Andreas Dengel1,3,
and Marcus Liwicki2

1 Computer Science Department, University of Kaiserslautern,
Kaiserslautern, Germany

{federico.raue,andreas.dengel}@dfki.de
2 MindGarage, University of Kaiserslautern, Kaiserslautern, Germany

liwicki@cs.uni-kl.de
3 Smart Data and Knowledge Services,

German Research Center for Artificial Intelligence (DFKI), Kaiserslautern, Germany
sebastian.palacio@dfki.de

Abstract. The goal of this paper is to train a model based on the
relation between two instances that represent the same unknown class.
This task is inspired by the Symbol Grounding Problem and the associ-
ation learning between modalities in infants. We propose a novel model
called Classless Association that has two parallel Multilayer Perceptrons
(MLPs) with a EM-training rule. Moreover, the training relies on match-
ing the output vectors of the MLPs against a statistical distribution as
alternative loss function because of the unlabeled data. In addition, the
output classification of one network is used as target of the other network,
and vice versa for learning the agreement between both unlabeled sample.
We generate four classless datasets based on MNIST, where the input
is two different instances of the same digit. Furthermore, our classless
association model is evaluated against two scenarios: totally supervised
and totally unsupervised. In the first scenario, our model reaches a good
performance in terms of accuracy and the classless constraint. In the
second scenario, our model reaches better results against two clustering
algorithms.

1 Introduction

Infants are able to learn the binding between abstract concepts to the real world
via their sensory input. For example, the abstract concept ball is binding to the
visual representation of a rounded object and the auditory representation of the
phonemes /b/ /a/ /l/. This scenario can be seen as the Symbol Grounding Prob-
lem [6]. Moreover, infants are also able to learn the association between different
sensory input modes while they are still learning the binding of the abstract
concepts. Several results have shown a correlation between object recognition
(visual) and vocabulary acquisition (auditory) in infants [1,2]. One example of
this correlation is the first words that infants have learned. In that case, the
words are mainly nouns, which are visible concepts, such as, dad, mom, ball,
dog, cat [5].
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 165–173, 2017.
https://doi.org/10.1007/978-3-319-68612-7_19

166 F. Raue et al.

Furthermore, we can define the previous scenario in terms of a machine learn-
ing task. More formally, the task is defined by learning the association between
two parallel streams of data that represent the same unknown class. Note that
this task is different from the supervised association where the data has labels.
First, the classes are unknown in our scenario whereas the classes are known in
the supervised case. Second, both classifiers need to agree on the same coding
scheme (i.e. one-hot encoding) for each sample pair during training. In contrast,
the coding-scheme is already pre-defined before training in the supervised case.

Usually, classifiers require labeled data for training. However, the presented
scenario needs an alternative training mechanism. One way is to train based
on statistical distributions. Casey [3] proposed to solve the OCR problem using
language statistics for inferring form images to characters. Later on, Knight
et al. [9] applied a similar idea to machine translation. Recently, Sutskever et
al. [13] defined the Output Distribution Matching (ODM) cost function for dual
autoencoders and generative networks.

In this paper1, we are proposing a novel model that is trained based on the
association of two different samples of the same unknown class. The presented
model has two parallel Multilayer Perceptrons (MLPs) with an Expectation-
Maximization (EM) [4] training rule that matches the network output against a
statistical distribution. Moreover, both networks agree on the same classification
because one network is used as target of the other network, and vice versa. This
work is an extension of Raue et al. [11] where the authors proposed a symbolic
association, which is based on representing the input samples with soft labels
(labels without the vectorial representation of the association). In contrast, our
model does only require a statistical distribution instead of labels for training.
Our contributions in this paper are

– We define a novel training rule based on matching the output vectors of
the presented model and a statistical distribution. Note that the output vec-
tors are used as symbolic features similar to the Symbol Grounding Problem.
Furthermore, the proposed training rule is based on an EM-approach and
classified each sample based on generated pseudo-classes (Sect. 2).

– We propose a novel architecture for learning the association in the class-
less scenario. Moreover, the presented model uses two parallel MLPs, which
require to agree on the same class for each input sample. This association
is motivated by the correlation between different sensory input signals in
infants development. In more detail, one network is the target of the other
network, and vice versa. Also, note that our model is gradient-based and can
be extended to deeper architectures (Sect. 2).

– We evaluate our classless association task against two cases: totally super-
vised and totally unsupervised. In this manner, we can verify the range of
our results in terms of supervised and unsupervised cases since our model
is neither totally supervised nor totally unsupervised. We compare against a
MLP trained with labels as the supervised scenario (upper bound) and two

1 a preliminary draft of this paper was submitted elsewhere [12].

Classless Association 167

clustering algorithms (K-means and Hierarchical Agglomerative) as the unsu-
pervised scenario (lower bound). First, our model reaches better results than
the clustering. Second, our model shows promising results with respect to the
supervised scenario (Sects. 3 and 4).

2 Classless Association Model

In this work, we present a novel model that is trained based on the association
between two different instances of the same unknown class. More formally, x(1) ∈
Rn1 and x(2) ∈ Rn2 are feature vectors for each input, and the task is to classify
both input vectors with the same pseudo-class c(1) = c(2), where c(1), c(2) ∈ Rn3.
With this in mind, our model has two parallel Multilayer Perceptrons(MLPs)
with an EM-training rule [4] that does not rely on labeled data. In contrast, our
training rule uses a statistical constraint as alternative loss function for training
each network. As a result, we have introduced a weighting vector (γ) for learning
the statistical matching. In addition, each MLP generates pseudo-classes during
training based on the statistical constraint. The pseudo-classes are used for
learning the agreement between both MLPs, which relies on using the pseudo-
classes of one MLP as target of the other MLP, and vice versa. Figure 1 shows
a general view of our model.

Initially, all input samples x(1) and x(2) have random pseudo-classes c(1)

and c(2), which have the same desired statistical distribution φ ∈ Rn3 (i.e.
uniform distribution). Both, the weighting vectors γ(1) ∈ Rn3 and γ(2) ∈ Rn3

are initialized to one. Note that the E-step and M-step are applied to each MLP
indepently.

Fig. 1. Overview of the presented model for classless association of two input sam-
ples that represent the same unknown classes. The association relies on matching the
network output and a statistical distribution. In addition, our model uses the pseudo-
classes obtained by MLP (1) as targets of MLP (2), and vice versa.

168 F. Raue et al.

The E-step generates the pseudo-classes for each MLP and calculates the
current statistical distribution of network output z(1) ∈ Rn3 and z(2) ∈ Rn3 and
weighting vectors2. In this case, an approximation of the distribution is obtained
by the following equation

ẑ =
1
M

M∑

i=1

power(zi,γ) (1)

where γ is the weighting vector, zi is the output vector of the network, M
is the number of elements, and the function power3 is the element-wise power
operation between the output vector zi and the weighting vector γ. We have
used the power function because the output vectors are quite similar at the
initial state of the network, and the power function provides an initial boost
for learning to separate the input samples in different pseudo-classes in the first
iterations. Moreover, the output classification is retrieved by the maximum value
of the following equation

c∗ = arg maxc power(zi,γ) (2)

where c∗ is the pseudo-class, which is used in the M-step for updating the MLP
weights. Note that the pseudo-classes are not updated in an online manner,
but after a certain number of iterations since the network requires a number of
iterations to learn the common features.

The M-step updates the weighting vector and the MLP parameters. The
cost function is the variance between the distribution and the desired statistical
distribution, which is defined by

cost = (ẑ − φ)2 (3)

where ẑ is the current statistical distribution of the output vectors, and φ ∈
Rn3 is a vector that represents the desired statistical distribution, e.g. uniform
distribution. Consequently, the weighting vector is updated via gradient descent

γ = γ − α ∗ ∇γcost (4)

where α is the learning rate and ∇γcost is the derivative w.r.t γ. Also, the MLP
weights are updated via the generated pseudo-classes, which are used as targets
in the backpropagation step.

3 Experiments

In this paper, we are interested in a simplified scenario inspired by the Symbol
Grounding Problem and the association learning between sensory input signal

2 From now on, we drop the super-indexes (1) and (2) for explanation purposes.
3 We decide to use power function instead of zγ

i in order to simplify the index notation.

Classless Association 169

in infants. We evaluated our model in four classless datasets that are gener-
ated from MNIST. The procedure of generating classless datasets from labeled
datasets have been already applied in [7,13]. Each dataset has two disjoint sets
input 1 and input 2. The first dataset (MNIST) has two different instances
of the same digit. The second dataset (Rotated-90 MNIST) has two different
instances of the same digit, and all input samples in input 2 are rotated 90◦.
The third dataset (Inverted MNIST) follows a similar procedures as the second
dataset, but the transformation of the elements in input 2 is the invert function
instead of rotation. The last dataset (Random Rotated MNIST) is more chal-
lenging because all elements in input 2 are randomly rotated between 0 and 2π.
All datasets have a uniform distribution between the digits and the dataset size
is 21,000 samples for training and 4,000 samples for validation and testing.

The following parameters turned out being optimal on the validation set. For
the first three datasets, each internal MLP relies on two fully connected layers of
200 and 100 neurons respectively. The learning rate for the MLPs was set to start
at 1.0 and was continuously decaying by half after every 1,000 iterations. We set
the initial weighting vector to 1.0 and updated after every 1,000 iterations as well.
Moreover, the best parameters for the fourth dataset were the same for MLP (1)

and different for MLP (2), which has two fully connected layers of 400 and 150
neurons respectively and the learning rate stars at 1.2. The target distribution
φ is uniform for all datasets. The decay of the learning rate for the weighting
vector was given by 1/(100+ epoch)0.3, where epoch was the number of training
iterations so far. The mini-batch size M is 5,250 sample pairs (corresponding to
25% of the training set) and the mean of the derivatives for each mini-batch is
used for the back-propagation step of MLPs. Note that the mini-batch is quite
big comparing to common setups. We infer from this parameter that the model
requires a sample size big enough for estimating the uniform distribution and
also needs to learn slower than traditional approaches.

To determine the baseline of our classless constraint, we compared our model
against two cases: totally supervised and totally unsupervised. In the supervised
case, we used the same MLP parameters and training for a fair comparison. In
the unsupervised scenario, we used K-means and Agglomerative Clustering to
each set (input 1 and input 2) independently. The clustering algorithm imple-
mentation are provided by scikit-learn.

4 Results and Discussion

In this work, we have generated ten different folds for each dataset and report
the average results. We introduce the Association Accuracy for measuring asso-
ciation, and it is defined by the following equation

Association Accuracy =
1
N

N∑

i=1

1(c(1)i = c
(2)
i) (5)

where the indicator function is one if c
(1)
i = c

(2)
i , zero otherwise; c

(1)
i and c

(2)
i

are the pseudo-classes for MLP (1) and MLP (2), respectively (N is the number

170 F. Raue et al.

of elements). In addition, we also reported the Purity of each set (input 1 and
input 2).

Table 1 shows the Association Accuracy between our model as well as the
supervised association task and the Purity between our model and two cluster-
ing algorithms. First, the supervised association task performs better that the
presented model. This was expected because our task is more complex in rela-
tion to the supervised scenario. However, we can infer from our results that the
presented model has a good performance in terms of the classless scenario and
supervised method. Second, our model not only learns the association between
input samples but also finds similar elements covered under the same pseudo-
class. Furthermore, we evaluated the purity of our model and found that the
performance of our model reaches better results than both clustering methods
for each set (input 1 and input 2).

Figure 2 illustrates an example of the proposed learning rule. The first two
columns (MLP (1) and MLP (2)) are the output classification (Eq. 2) and each
row represents a pseudo-class. We have randomly selected 15 output samples
for each MLP (not cherry picking). Initially, the pseudo classes are random
selected for each MLP. As a result, the output classification of both networks
does not show any visible discriminant element and the initial purity is close to
random choices (first row). After 1,000 iterations, the networks start learning
some features in order to discriminate the input samples. Some groups of digits
are grouped together after 3,000 iterations. For example, the first row of MLP (2)

Table 1. Association accuracy (%) and purity (%) results. Our model is compared to
the supervised scenario (class labels are provided) and to K-means and Hierarchical
Agglomerative clustering (no class information).

Dataset Model Association Purity (%)

Accuracy (%) input 1 input 2

MNIST Supervised association 96.7± 0.3 96.7± 0.2 96.6± 0.3

Classless association 86.1± 3.2 89.6± 4.5 89.0± 4.2

K-means - 63.9± 2.2 62.5± 3.7

Hierarchical Agglomerative - 64.9± 4.7 64.3± 5.5

Rotated-90 MNIST Supervised association 93.2± 0.3 96.4± 0.2 96.6± 0.2

Classless association 86.5± 2.5 82.9± 4.5 82.9± 4.3

K-means - 65.0± 2.8 64.0± 3.6

Hierarchical Agglomerative - 65.4± 3.5 64.1± 4.1

Inverted MNIST Supervised association 93.2± 0.3 96.5± 0.2 96.5± 0.2

Classless association 89.2± 2.4 89.0± 6.8 89.1± 6.8

K-means - 64.8± 2.0 65.0± 2.5

Hierarchical Agglomerative - 64.8± 4.4 64.4± 3.8

Random Rotated MNIST Supervised association 88.0± 0.5 96.5± 0.3 90.9± 0.5

Classless association 69.3± 2.2 75.8± 7.3 65.3± 5.0

K-means - 64.8± 2.6 14.8± 0.4

Hierarchical Agglomerative - 65.9± 2.8 15.2± 0.5

Classless Association 171

Fig. 2. Example of the presented model during classless training. In this example,
there are ten pseudo-classes represented by each row of MLP (1) and MLP (2). Note
that the output classification is randomly selected (not cherry picking). The classless
association model slowly start learning the features and grouping similar input samples.
Afterwards, the output classification of both MLPs slowly agrees during training, and
the association matrix shows the relation between the occurrences of the pseudo-classes.

shows several digits zero, whereas MLP (1) has not yet agreed on the same digit
for that pseudo-class. In contrast, both MLPs have almost agree on digit one
at the fifth row. Finally, the association is learned using only the statistical
distribution of the input samples and each digit is represented by each pseudo-
class.

5 Conclusion

In this paper, we have shown the feasibility to train a model that has two par-
allel MLPs under the following scenario: pairs of input samples that represent
the same unknown classes. This scenario was motivated by the Symbol Ground-
ing Problem and association learning between sensory input signal in infants
development. We proposed a model based on gradients for solving the classless
association. Our model has an EM-training that matches the network output
against a statistical distribution and uses one network as a target of the other
network, and vice versa. Our model reaches better performance than K-means

172 F. Raue et al.

and Hierarchical Agglomerative clustering. In addition, we compare the pre-
sented model against a supervised method. We find that the presented model
with respect to the supervised method reaches good results because of two extra
conditions in the unsupervised association: unlabeled data and agree on the same
pseudo-class. We want to point out that our model was evaluated in an optimal
case where the input samples are uniformly distributed and the number of classes
is known. However, we will explore the performance of our model if the number
of classes and the statistical distribution are unknown. One way is to change
the number of pseudo-classes. This can be seen as changing the number of clus-
ters k in K-means. With this in mind, we are planning to do more exhaustive
analysis of the learning behavior with deeper architectures. Moreover, we will
work on how a small set of labeled classes affects the performance of our model
(similar to semi-supervised learning). Furthermore, we are interested in replicat-
ing our findings in more complex scenarios, such as, multimodal datasets like
TVGraz [8] or Wikipedia featured articles [10]. Finally, our work can be applied
to more classless scenarios where the data can be extracted simultaneously from
different input sources at the same time. Also, transformation functions can be
applied to input samples for creating the association without classes.

References

1. Asano, M., Imai, M., Kita, S., Kitajo, K., Okada, H., Thierry, G.: Sound symbolism
scaffolds language development in preverbal infants. Cortex 63, 196–205 (2015)

2. Balaban, M.T., Waxman, S.R.: Do words facilitate object categorization in 9-
month-old infants? J. Exp. Child Psychol. 64(1), 3–26 (1997)

3. Casey, R.G.: Text OCR by Solving a Cryptogram. International Business Machines
Incorporated, Thomas J. Watson Research Center, New York (1986)

4. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
the EM algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977)

5. Gershkoff-Stowe, L., Smith, L.B.: Shape and the first hundred nouns. Child Dev.
75(4), 1098–114 (2004)

6. Harnad, S.: The symbol grounding problem. Phys. D 42(1), 335–346 (1990)
7. Hsu, Y.C., Kira, Z.: Neural network-based clustering using pairwise constraints.

arXiv preprint arXiv:1511.06321 (2015)
8. Khan, I., Saffari, A., Bischof, H.: Tvgraz: multi-modal learning of object categories

by combining textual and visual features. In: AAPR Workshop, pp. 213–224 (2009)
9. Knight, K., Nair, A., Rathod, N., Yamada, K.: Unsupervised analysis for decipher-

ment problems. In: Proceedings of the COLING/ACL on Main Conference Poster
Sessions, pp. 499–506. Association for Computational Linguistics (2006)

10. Rasiwasia, N., Costa Pereira, J., Coviello, E., Doyle, G., Lanckriet, G., Levy, R.,
Vasconcelos, N.: A new approach to cross-modal multimedia retrieval. In: ACM
International Conference on Multimedia, pp. 251–260 (2010)

11. Raue, F., Palacio, S., Breuel, T.M., Byeon, W., Dengel, A., Liwicki, M.: Symbolic
association using parallel multilayer perceptron. In: Villa, A.E.P., Masulli, P., Pons
Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 347–354. Springer, Cham
(2016). doi:10.1007/978-3-319-44781-0 41

http://arxiv.org/abs/1511.06321
http://dx.doi.org/10.1007/978-3-319-44781-0_41

Classless Association 173

12. Raue, F., Palacio, S., Dengel, A., Liwicki, M.: Classless association using neural net-
works. In: ICLR 2017 (2017, submitted). https://openreview.net/forum?id=ryh
8f9lg¬eId=ryh 8f9lg

13. Sutskever, I., Jozefowicz, R., Gregor, K., Rezende, D., Lillicrap, T., Vinyals, O.:
Towards principled unsupervised learning. arXiv preprint arXiv:1511.06440 (2015)

https://openreview.net/forum?id=ryh_8f9lg¬eId=ryh_8f9lg
https://openreview.net/forum?id=ryh_8f9lg¬eId=ryh_8f9lg
http://arxiv.org/abs/1511.06440

Shape from Shading by Model Inclusive
Learning Method with Simultaneous Estimation

of Parameters

Yasuaki Kuroe1(B) and Hajimu Kawakami2

1 Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
kuroe@kit.ac.jp

2 Department of Electronics and Informatics, Ryukoku University, 1-5, Yokotani,
Ohe-cho, Seta, Ohtsu 520-2194, Japan

kawakami@rins.ryukoku.ac.jp

Abstract. The problem of recovering shape from shading is important
in computer vision and robotics. It is essentially an ill-posed problem
and several studies have been done. In this paper, we present a versatile
method of solving the problem by neural networks. The proposed method
introduces the concept of the model inclusive learning with simultane-
ous estimation of unknown parameters. In the method a mathematical
model, which we call ‘image-formation model’, expressing the process
that the image is formed from an object surface, is introduced and is
included in the learning loop of a neural network. The neural network
is trained so as to recover the shape with simultaneously estimating
unknown parameters in the image-formation model. The performance of
the proposed method is demonstrated through experiments.

Keywords: Model inclusive learning · Neural network · Shape from
shading · Parameter estimation

1 Introduction

The problem of surface-shape recovery of an object from a single intensity image
is an important problem in computer vision and robotics and so on. The problem
was first formulated in the general setting by Horn and several studies have been
done based on the formulation [1,2]. The problem is essentially ill-posed and
reduced to a nonlinear-function approximation problem.

In recent years, there have been increasing research interests of artificial
neural networks and many efforts have been made on applications of neural
networks to various fields. The most significant features of artificial neural net-
works are the extreme flexibility due to the learning capability of nonlinear func-
tion approximation and the generalization ability. It is expected, therefore, that
neural networks make it possible to easily solve the ill-posed problem of shape
from shading by their learning and generalization ability. Wei and Hirzinger
presented a solution of the problem by using a multilayer feedforward network
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 174–182, 2017.
https://doi.org/10.1007/978-3-319-68612-7_20

Shape from Shading by Model Inclusive Learning Method 175

[3]. Motivated by the work [3], we already proposed a versatile method of solv-
ing the problem of recovering shape from shading by neural networks [4]. The
proposed method is versatile in the sense that it can solve the problem in var-
ious circumstances. In order to realize the versatility, we introduced the con-
cept of model inclusive learning of neural networks [5]. In the model inclusive
learning a priori knowledge and inherent properties of a target are incorporated
into the formulation of learning problem, which could regularize an ill-posed
problem and could improve learning and generalization ability of neural net-
works. It has been extended to a method which realizes recovering surface shape
with simultaneously estimating the parameters of reflections [6] and illumination
directions [7].

In this paper, we present a method of solving the shape from shading problem
by introducing the concept of the model inclusive learning with simultaneous
estimation of unknown parameters. In order to realize recovering shape and
estimating all the unknown parameters simultaneously we propose a method of
dividing the learning procedure into some steps and determining the order of
those steps based on the sensitivity analysis of the parameters. The performance
of the proposed method is demonstrated through experiments.

2 Model Inclusive Learning Method with Simultaneous
Estimation of Unknown Parameters

Supervised learning is one of the most popular learning methods. Figure 1 shows
a block diagram that illustrates its general framework. There are a lot of learning
problems of neural networks, where teaching signals are not given directly to
the output of neural networks, to which supervised learning cannot be applied.
We have developed a learning method that can cope with those problems by
incorporating a priori knowledge and inherent properties of a target, which we
call model inclusive learning [5]. Figure 2 shows a block diagram that illustrates
its general framework. In the method we construct a mathematical model for the

Neural Network

_

Learning Algorithm

Teacher

Error Signal

Desired Response

Input

Actual Response +

Fig. 1. General framework of super-
vised learning (learning with a
teacher).

Neural Network

Partial Model
+

_

Learning Algorithm

Teacher

Error Signal

Desired Response

Input

Fig. 2. General framework of model
inclusive learning method of neural
networks with simultaneous estimation
of unknown parameters.

176 Y. Kuroe and H. Kawakami

knowledge and inherent properties, which we call a partial model of the target,
and include it in the learning loop of a neural network. The neural network is
trained so as to minimize the error between the teaching signal (desired response)
and the corresponding output of the partial model. If there are parameters whose
values are unknown in the partial model, not only values of the weight coefficients
of the neural network but also those of the unknown parameters are adjusted
in the learning, which is the model inclusive learning method with simultaneous
estimation of unknown parameters.

3 General Framework of Proposed Shape from Shading
by Model Inclusive Learning Method

An image of a three-dimensional object taken by a camera in an imaging con-
dition depends on its geometric structure (shape), its reflectance properties and
the imaging conditions (the distribution of light sources etc.). The image forma-
tion process can be illustrated as shown in the upper part of Fig. 3. The process
can be regarded as a mapping from the geometric structure of the surface to the
image. We call the mathematical model of the mapping ‘image-formation model’.
Note that the image-formation model, denoted by F̂ , depends on the reflectance
properties and the imaging conditions. We assume that, in the image-formation
model F̂ , the mathematical models of reflectance properties and the imaging
conditions are known. This problem can be solved by the model inclusive learn-
ing of neural networks shown in Fig. 2, as follows.

The schematic diagram of the proposed method is shown in Fig. 3. Suppose
that an image of a three-dimensional target object is formed through an image
formation process shown in the upper part of Fig. 3. Let G(x, y) denote the
brightness at a position (x, y) on the image. We formulate the learning problem

Fig. 3. General framework of proposed
shape from shading by model inclusive
learning of a neural network.

Fig. 4. Block diagram of proposed
model inclusive learning algorithm.

Shape from Shading by Model Inclusive Learning Method 177

of a neural network such that it recovers the geometric structure of the surface of
the object as its input and output relation. In the formulation the neural network
is trained with including the image-formation model F̂ as follows. As shown in
Fig. 3, we input a position (x, y) on the image to the neural network (NN), and we
also input the corresponding output of the neural network to the image-formation
model F̂ together with the reflection properties and the imaging conditions. If
the neural network is successfully trained so that the geometric structure of the
surface of the object is realized as its input and output relation, the output of the
image-formation model F̂ becomes equal to the brightness G(x, y). Therefore,
training the neural network so as to reduce the error between the output of the
image-formation model F̂ and the brightness G(x, y) over all the data points to
zero would make it possess the geometric structure of the surface as its input and
output relation. Noting that, if there are unknown parameters in the imaging
conditions and reflection properties, we adjust not only values of the neural
network parameters but also those unknown parameters, as shown in Fig. 3, so
as to minimize the error between the output of the image-formation model F̂
and the brightness G(x, y) over all the data points. If the error can be reduced
sufficiently by the adjustments of the parameters, the surface recovery and the
estimation of the unknown parameters are achieved simultaneously.

4 Problem Formulation and Proposed Learning Method

4.1 Problem Formulation

Suppose that the surface of an object is represented by

z = f(x, y) (1)

in a camera coordinate system x - y - z, with the x - y plane coinciding with
the image plane, and z axis coinciding with the optical axis of the camera. It
is known that, assuming that orthographic projection and uniform reflectance
property of the object, the brightness at a position (x, y) on the image plane can
be described as

G (x, y) = R (p, q ; l), p =
∂f

∂x
, q =

∂f

∂y
(2)

where l = (�1, �2, �3) is the illuminant direction and (p, q) is the surface gradient
at (x, y). Equation (2) is called image irradiance equation. R (p, q ; l) is called
the reflectance map and represents reflection properties. Note that the image
irradiance Eq. (2) is corresponding to the image-formation model F̂ . In general
the image formation model is known to be composed of the specular reflection
Φ(θ(p, q; l), c) and the diffuse reflection cos φ(p, q; l) as follows:

R(p, q; ρ, c, l) = ρ · Φ(θ(p, q; l), c) + (1 − ρ) · cos φ(p, q; l) (3)

where θ(p, q; l) = cos−1 pl1+ql2−(l3−1)√
p2+q2+1

√
l21+l22+(l3−1)2

, cos φ(p, q; l) = pl1+ql2−l3√
p2+q2+1

,

ρ (0 ≤ ρ ≤ 1) is the ratio parameter and c is the parameter describing extent

178 Y. Kuroe and H. Kawakami

of the specular reflection. Note that in (3) we use the expression R(p, q; ρ, c, l)
to represent the reflectance map in (2) in order to clarify that it also depends
on reflection parameters ρ and c. There have been several models proposed for
the specular reflection Φ(θ(p, q; l), c), a typical representative of which is the
Torrance-Sparrow Model [9]:

Φ(θ(p, q; l), c) = exp(−c2θ2(p, q; l)) (4)

The illumination direction l = (�1, �2, �3) is expressed as follows:

�1 = sin θ cos ϕ, �2 = sin θ sin ϕ, �3 = cos θ (5)

where θ is the polar angle and ϕ is the azimuth.
The objective here is to recover the geometric structure of the surface (1)

from a single image. In this paper we propose a model inclusive learning method
to solve the problem under the following conditions: (A1) the mathematical
expression of the reflectance map R(p, q; ρ, c, l) is known, (A2) values of the
reflection parameters ρ and c are unknown, and values of the illuminant direction
l = (�1, �2, �3), that is, θ and ϕ in (5) are unknown.

4.2 Proposed Learning Method

Figure 4 shows the schematic diagram of the proposed model inclusive learning
method of neural networks. Let Gk denote the brightness which is observed at a
position (xk, yk) from an image taken from an object surface. We prepare a neural
network (NN) with two inputs denoted by I = [I1, I2]T and one output denoted
by O and consider that the input I = [I1, I2]T and the output O correspond
to the position (x, y) on the image and the depth z of the surface, respectively.
For an observed brightness Gk, we give its position (xk, yk) on the image to the
input I = [I1, I2]T of the neural network and derive the derivatives of the output
of the neural network with respect to the input, and obtain the values of the
derivatives at [I1, I2]T = (xk, yk)T :

∂O

∂I

∣
∣
∣
∣
I=(xk,yk)

= (
∂O

∂I1

∣
∣
∣
∣
I=(xk,yk)

,
∂O

∂I2

∣
∣
∣
∣
I=(xk,yk)

)T . (6)

Note that those derivatives become equal to the surface gradient (p, q) at
the position (xk, yk) if the input and output relation of the neural network
exhibits the geometric structure (1) of the object. We substitute the values of
the derivatives (6) into the surface gradient (p, q) of the image-formation model
R (·, · ; ρ, c, l). The obtained R(∂O/∂I1, ∂O/∂I2; ρ, c, l) corresponds to the out-
puts of the image formation model F̂ in Fig. 3 and is to be coincided with the
brightness Gk. Accordingly, training the neural network so as to reduce the
error between the brightness Gk and R(∂O/∂I1, ∂O/∂I2; ρ, c, l) over all the data
points to zero, we can obtain the geometric structure of the surface as the input
and output relation of the neural network. Note that we assume that values
of the reflection parameters ρ and c are unknown and those of the parameters

Shape from Shading by Model Inclusive Learning Method 179

of the illumination direction l = (�1, �2, �3) (i.e. θ and ϕ) are unknown. In the
model inclusive learning we adjust not only values of the neural-network para-
meters but also those of the reflection parameters ρ and c and the illumination
direction l = (�1, �2, �3) so as to minimize the error between the brightness Gk

and R(∂O/∂I1, ∂O/∂I2; ρ, c, l) as shown in Fig. 4. Note also that the reflectance
map R(p, q; ρ, c, l) contains unknown parameters l (θ and ϕ), ρ and c, in the
calculation of R(∂O/∂I1, ∂O/∂I2; ρ, c, l) we use their current estimated values.

Define the performance index by

J =
1
2

∑

(xk,yk)∈DG

{

R

(

∂O

∂I1

∣
∣
∣
∣
I=(xk,yk)

,
∂O

∂I2

∣
∣
∣
∣
I=(xk,yk)

; ρ, c, l

)

− Gk

}2

(7)

where DG is a set of data points (xk, yk) at which the brightness Gk is
observed from the image. Note that J is the square error between Gk and
R(∂O/∂I1, ∂O/∂I2; ρ, c, l) over the data points DG. The problem is now reduced
to finding values of parameters of the neural network and also those of the para-
meters of the illumination direction l (θ and ϕ) and the reflection parameters ρ
and c that minimize the performance index J , a solution of which could achieve
simultaneously recovering shape and estimating the illumination direction and
the reflection parameters.

In order to search values of the network parameters and the unknown para-
meters which minimize J , the gradient based methods can be used, in which
several useful algorithms are available: the steepest descent algorithm, the con-
jugate gradient algorithm, the quasi-Newton algorithm and so on. The main
problem associated with these algorithms is the computation of the gradients
of J with respect to the parameters of the neural network and the unknown
parameters l (θ and ϕ), ρ and c. Note that, as previously stated, the derivatives
of the output with respect to the input of the neural network ∂O/∂I are also
needed to be calculated. Efficient algorithms to calculate these gradients and the
derivatives can be derived by introducing adjoint models of the neural network
[8]. The derivation is omitted.

It is important to note that, in the minimization of the performance index
J by the use of an appropriate gradient based algorithm, it may not succeed
to converge if all the parameters, that is, the parameters of the neural network
and the unknown parameters l (θ and ϕ), ρ and c, are simultaneously adjusted
from the beginning of the optimization. In order to solve the problem we divide
the learning procedure into some steps. In order to determine the order of those
steps we perform the sensitivity analysis of those parameters ρ, c and l (θ and
ϕ). Evaluating the sensitivities of the performance index (7) with respect to
those unknown parameters l (θ and ϕ), ρ and c, we obtain the following result.
For the parameters of the illumination direction, ∂J

∂θ and ∂J
∂ϕ are of order 10−2

and of order 10−3, respectively. For the reflection parameters, ∂J
∂ρ is of order

10−4 and ∂J
∂c is order of 10−4. Hence we divide the learning procedure into three

steps; in the first step we adjust only the parameters of the neural network,
and in the second step we adjust the parameters of the neural network together

180 Y. Kuroe and H. Kawakami

with the reflection parameters, and in the third step we adjust all the parameters
simultaneously. The three-step optimization procedure is summarized as follows:

Step 1: Give an appropriate initial guess of the values of the illumination direc-
tion l (θ and ϕ) and the reflection parameters ρ and c. Adjust only the
parameters of the neural network according to an appropriate gradient based
algorithm with the parameters of the illumination direction and the reflec-
tion parameters being kept constant at the initial guess. The adjustment is
repeated until it converges and the tentative surface shape of the target object
is obtained. We call it the initial surface shape.

Step 2: Starting from the initial surface shape, adjust the parameters of the
neural network together with the parameters of illumination direction l (θ and
ϕ) according to an appropriate gradient based algorithm. The adjustment is
continued until it converges.

Step 3: Adjust the parameters of the neural network together with all the
unknown parameters l (θ and ϕ), ρ and c according to an appropriate gradient
based algorithm until the adjustment converges.

5 Experiment

In this section we show the results of the experiment in order to demonstrate the
performance of the proposed method. In the following experiment a four-layer
feedforward neural network with 15 hidden units is used, the structure of which
is determined by preparatory experiments. We utilize the quasi-Newton method
with the Davidon-Fletcher-Powell algorithm [10] in Step 1, 2 and 3.

In the experiment the image we used is a Venus statue which is made up
of curved surfaces shown in Fig. 5. The experiment was performed by using the
image of size 71 × 51 shown in Fig. 6 which is the right eye of the Venus statue
in Fig. 5. In Step 1 of the three-step optimization procedure we give the initial
guess of the parameters of illumination direction and the reflection parameters
as θ = 2.98[rad], ϕ = 0.95[rad], ρ = 0.407 and c = 0.317, which are obtained by
the preparatory calibration experiment.

Fig. 5. Venus statue consisted of
curved surfaces.

Fig. 6. Real images of the right eye of
the Venus statue.

Shape from Shading by Model Inclusive Learning Method 181

Figure 7 shows the recovered surface obtained by the proposed method. In
the lower part of the figure the contour map of the surface is shown. Figure 8
shows the recovered surface obtained by the model inclusive learning method
without estimating the unknown parameters l (θ and ϕ), ρ and c, that is, only
the Step 1 is performed until it converges. It is observed by comparing those
figures that the result of Fig. 7 can captures the fine structure much more than
that of Fig. 8, which reveals the effectiveness of the proposed model inclusive
learning method with simultaneous estimation of unknown parameters. Figure 9
shows an example of the convergence behavior of the proposed learning method
in which the result in Fig. 7 is obtained, and Fig. 10 shows that in which the
result in Fig. 8 is obtained. In those figures the variations of the performance
index J versus the number of the learning iterations are plotted. It can be seen
that the value of J in Fig. 9 converges to the value much smaller than that in

Recovered Surface

X-axis

Y-axis

40
50
60
70
80
90

100

Output

Fig. 7. Recovered eye-surface obtained
by the proposed method.

Recovered Surface

X-axis

Y-axis

0
10
20
30
40
50
60
70
80
90

100

Output

Fig. 8. Recovered eye-surface obtained
by the method without estimating the
unknown parameters.

0.1

1

0 5000 10000 15000 20000 25000 30000

"obj.dat"

STEP1 STEP2 STEP3

Number of Learning Iteration

Pe
rf

or
m

an
ce

 In
de

x
J

Fig. 9. An example of convergence
behaviour of J during the learning
iteration obtained by the proposed
method.

0.1

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

"OBJ.DAT"

Number of Learning Iteration

Pe
rf

or
m

an
ce

 In
de

x
J

Fig. 10. An example of convergence
behaviour of J during the learning iter-
ation obtained by the method without
estimating the unknown parameters.

182 Y. Kuroe and H. Kawakami

Fig. 10. Note that the value of J in Fig. 9 begins to decrease again just after
the optimization iteration switches from Step 1 to 2 and also from Step 2 to 3
although it converges during the previous step. This fact reveals the effectiveness
of the proposed three-step optimization procedure.

6 Conclusion

The problem of recovering shape from shading is important in computer vision
and robotics and many studies have been done. This paper presented a versatile
method of solving the problem by neural networks introducing the concept of the
model inclusive learning with simultaneous estimation of unknown parameters.
In order to realize recovering shape and estimating parameters simultaneously
we proposed a method of dividing the learning procedure into three steps and
determining the order of those steps based on the sensitivity analysis of para-
meters. The performance of the proposed method was demonstrated through
experiments.

References

1. Horn, B.K.P., Brooks, M.J. (eds.): Shape from Shading. The MIT Press, Cambridge
(1989)

2. Klette, R., et al.: Computer Vision: Three-Dimensional Data From Images.
Springer, Heidelberg (1998). pp. 263–345

3. Wei, G.Q., Hirzinger, G.: Learning shape from shading by a multilayer network.
IEEE Trans. Neural Netw. 7(4), 985–995 (1996)

4. Kuroe, Y., Kawakami, H.: Versatile neural network method for recovering shape
from shading by model inclusive learning. In: Proceedings of International Joint
Conference on Neural Networks, pp. 3194–3199 (2011)

5. Kuroe, Y., Kawakami, H.: Estimation method of motion fields from images by
model inclusive learning of neural networks. In: Alippi, C., Polycarpou, M.,
Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5769, pp. 673–683.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04277-5 68

6. Kuroe, Y., Kawakami, H.: Shape from shading by model inclusive learning with
simultaneously estimating reflection parameters. In: Wermter, S., Weber, C., Duch,
W., Honkela, T., Koprinkova-Hristova, P., Magg, S., Palm, G., Villa, A.E.P. (eds.)
ICANN 2014. LNCS, vol. 8681, pp. 443–450. Springer, Cham (2014). doi:10.1007/
978-3-319-11179-7 56

7. Kuroe, Y., Kawakami, H.: Model inclusive learning for shape from shading with
simultaneously estimating illumination directions. In: Arik, S., Huang, T., Lai,
W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9489, pp. 501–511. Springer, Cham
(2015). doi:10.1007/978-3-319-26532-2 55

8. Kuroe, Y., Nakai, Y., Mori, T.: A learning method of nonlinear mappings by neural
networks with considering their derivatives. In: Proceedings of the IJCNN, Nagoya,
Japan, pp. 528–531 (1993)

9. Torrance, K.E., Sparrow, E.M.: Theory for off-specular reflection from roughened
surfaces. J. Opt. Soc. Am. 57(9), 1105–1114 (1967)

10. Luenberger, D.G.: Introduction to Linear and Nonlinear Programming. Addison-
Wesley, Boston (1973). pp. 194–197

http://dx.doi.org/10.1007/978-3-642-04277-5_68
http://dx.doi.org/10.1007/978-3-319-11179-7_56
http://dx.doi.org/10.1007/978-3-319-11179-7_56
http://dx.doi.org/10.1007/978-3-319-26532-2_55

Radius-Margin Ratio Optimization
for Dot-Product Boolean Kernel Learning

Ivano Lauriola(B), Mirko Polato, and Fabio Aiolli

Department of Mathematics, University of Padova,
Via Trieste, 63, 35121 Padova, Italy

ivanolauriola@gmail.com, {mpolato,aiolli}@math.unipd.it

Abstract. It is known that any dot-product kernel can be seen as a
linear non-negative combination of homogeneous polynomial kernels.
In this paper, we demonstrate that, under mild conditions, any dot-
product kernel defined on binary valued data can be seen as a linear
non-negative combination of boolean kernels, specifically, monotone con-
junctive kernels (mC-kernels) with different degrees. We also propose a
new radius-margin based multiple kernel learning (MKL) algorithm to
learn the parameters of the combination. An empirical analysis of the
MKL weights distribution shows that our method is able to give solu-
tions which are more sparse and effective compared to the ones of state-
of-the-art margin-based MKL methods. The empirical analysis have been
performed on eleven UCI categorical datasets.

Keywords: Multiple kernel learning · Radius-margin optimization ·
Boolean kernels

1 Introduction

In the context of kernel machines, the choice of the kernel function is a key step
to build good predictors. Kernel learning (KL), and the multiple kernel learning
(MKL) paradigm in particular, aims at learning the best representation, i.e., the
kernel function, directly from data. In the case of MKL, the used kernel is a
combination of many base kernels. There exists several methods for combining
kernels. In this paper, we consider only linear non-negative combinations of base
kernels, in the form κ(x, z) =

∑R
r=0 μrκr(x, z), μr ≥ 0.

Learning is usually supported by a validation step, where a user estimates
the effectiveness of different kernels on a subset of training data, namely the
validation set. More recently, alternative criteria have been proposed to estimate
the goodness of a representation [4]. An important example of these strategies is
the minimization of the radius-margin bound [2], that is the ratio between the
radius of the minimum enclosing ball (MEB) and the margin observed on training
data. In [5], for example, this strategy has been used for MKL optimization.

It is well known [3,8] that any dot-product kernel (DPK) of the form
κ(x, z) = f(〈x, z〉) can be seen as a dot product polynomial (DPP), that is a non-
negative linear combination of homogeneous polynomial kernels (HP-kernels),
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 183–191, 2017.
https://doi.org/10.1007/978-3-319-68612-7_21

184 I. Lauriola et al.

i.e., κ(x, z) =
∑D

d=0 ad〈x, z〉d, with appropriate coefficients ad ≥ 0. Recently, it
has been shown that it is possible to generalize any DPK by making this com-
bination non-parametric and by optimizing the coefficients ad from data via a
maximum margin MKL algorithm in both binary [3] and multiclass [6] contexts.

A first important contribution of the present paper is an extension of the
above-mentioned result in the case of boolean input vectors x, z ∈ {0, 1}n. Specif-
ically, we demonstrate that any DPK defined on boolean vectors can be seen as a
non-negative linear combination of monotone conjunctive kernels (mC-kernels)
of different degrees. The mC-kernel of degree d basically counts the number of
common true d-degree (positive) conjunctions of variables in the two input vec-
tors and can be easily computed by a binomial coefficient κd

∧(x, z) =
(〈x,z〉

d

)
. The

combination is referred to as monotone conjunctive kernel polynomial (mCKP).
Similarly to [3], here we propose to optimize the coefficients of a general

mCKP via MKL. However, in our case, we propose a new gradient-descent
method able to effectively minimize the exact radius-margin ratio. A similar
kind of minimization have been proposed in [5] for MKL. However, in that work,
different approximations were made to make the problem tractable.

We compare the proposed MKL algorithm (here dubbed RM-GD) in terms
of AUC and the obtained radius-margin ratio on several categorical datasets,
against two MKL baselines. Interestingly, we observed that, in almost every
dataset, the distribution of the weights obtained by our MKL algorithm is very
sparse and typically picked around two (one low degree and one high degree)
mC-kernels. Hence, we refine our proposal by giving another simpler version of
the algorithm that combines just one conjunctive kernel of a given degree with
the identity matrix. This version has the advantage to be easily parallelizable.

2 Notation and Background

Let X ∈ {0, 1}l×n be the binary training matrix, and let y ∈ {+1,−1}l be the
vector of labels. We denote by κd

∧(x, z) =
(〈x,z〉

d

)
and κd

HP(x, z) = 〈x, z〉d the d-
degree monotone conjunctive kernel (mC-kernel) and the d-degree homogeneous
polynomial kernel (HP-kernel) between x and z, respectively.

The normalized version of a given kernel κ, here denoted κ̃, can also be
considered. Note that, when needed, it can be easily computed by means of the
well-known formula κ̃(x, z) = κ(x, z)/

√
κ(x,x)κ(z, z).

Given a training kernel matrix K such that Ki,j = κ(xi,xj), it can be shown
that the margin obtained by a (hard-margin) SVM using that kernel can be
computed as ρ2 = minγ∈Γ γ�YKYγ, where Y is the diagonal matrix of training
labels Y = diag(y) and Γ = {γ ∈ R

l
+|∑i:yi=+1 γi = 1 ∧ ∑

i:yi=−1 γi = 1}.
Furthermore, it can be seen that, when a kernel is normalized, the radius of

the MEB enclosing training data in feature space can be obtained by solving
R2 = 1 − minα∈A α�Kα where A = {α ∈ R

l
+,

∑
i αi = 1}.

Finally, given x ∈ R
n and p ∈ N

n
0 , the symbol xp will denote the product

among variables exponentiated component-wise, that is xp = xp1
1 , . . . , xpn

n .

Radius-Margin Ratio Optimization for Dot-Product Boolean KL 185

3 DPKs as Linear Combinations of mC-kernels

The feature space of the HP-kernel of a given degree d is formed by all the
monomials of degree d, each weighted by some coefficient. When the input vectors
are binary, then many of these monomials collide in a single value, since the
factors of the monomials xp

i will have the same value for every p ≥ 1. This
observation allows us to give the following results concerning the relationship
between HP-kernels and mC-kernels.

Theorem 1. Given x, z ∈ {0, 1}n, then any HP-kernel can be decomposed as a
finite non-negative linear combination of mC-kernels (a mCKP) of the form:

κd
HP(x, z) =

d∑

s=0

h(s, d) κs
∧(x, z), h(s, d) ≥ 0.

Proof. Given x, z ∈ {0, 1}n, by definition:

κs
∧(x, z) =

(〈x, z〉
s

)

=
∑

b∈Bs

xbzb (1)

where Bs ≡ {b ∈ {0, 1}n
∣
∣ ‖b‖1 = s}. Moreover, we have:

κd
HP(x, z) = 〈x, z〉d =

(
n∑

i=1

xizi

)d

=
∑
p∈Pd

⎛
⎝d!

∏
pi∈p

1

pi!

⎞
⎠

︸ ︷︷ ︸
q(p,d)

xpzp =
∑
p∈Pd

q(p, d)xpzp, (2)

with Pd ≡ {p ∈ N
n
0

∣
∣ ‖p‖1 = d}. Hence, Eq. 2 can be written as

κd
HP(x, z) =

d∑

s=0

∑

p∈P
s
d

q(p, d)xpzp, (3)

where P
s
d ≡ {p ∈ Pd

∣
∣ ∑n

i=1�pi > 0� = s} and �·� the indicator function.
Let us now partition the set Ps

d in such a way to have two vectors taken from
P

s
d in the same class of equivalence if and only if they share the same components

greater than zero. Specifically, given b ∈ Bs, then P
s
d(b) ≡ {p ∈ P

s
d | ∀i : pi >

0 ⇐⇒ bi = 1}. With this notation, we can rewrite Eq. 3 as:

κd
HP(x, z) =

d∑

s=0

∑

b∈Bs

xbzb
∑

p∈P
s
d(b)

q(p, d). (4)

Now, we can observe that, when s is fixed, then
∑

p∈P
s
d(b)

q(p, d) is constant over
the elements b ∈ Bs. This is because the terms of the summations are the same.
So, by taking any representative bs ∈ Bs, we can rewrite Eq. 4 as:

κd
HP(x, z) =

d∑

s=0

⎛

⎝
∑

p∈P
s
d(bs)

q(p, d)

⎞

⎠

︸ ︷︷ ︸
h(s,d)

(
∑

b∈Bs

xbzb
)

=
d∑

s=0

h(s, d) κs
∧(x, z). �

186 I. Lauriola et al.

In the following we will show that, assuming boolean input vectors with the
same number of active variables, a similar result of Theorem 1 also holds when
using normalized monotone conjunctive kernels.

Theorem 2. Given x, z ∈ {0, 1}n such that ‖x‖1 = ‖z‖1 = m, then any HP-
kernel can be decomposed as a finite non-negative linear combination of normal-
ized mC-kernels, that is:

κd
HP(x, z) =

d∑

s=0

h(m, s, d) κ̃s
∧(x, z), h(m, s, d) ≥ 0.

Proof. Consider the normalized mC-kernel, defined as follows:

κ̃s
∧(x, z) =

(〈x,z〉
s

)

(〈x,x〉
s

) 1
2
(〈z,z〉

s

) 1
2
.

Since we assume ‖x‖1 = ‖z‖1 = m, we can write:

κ̃s
∧(x, z) =

(〈x,z〉
s

)

(
m
s

) 1
2
(
m
s

) 1
2

=
1

(
m
s

)κs
∧(x, z)

where we used the fact that for binary vectors ‖ · ‖1 = ‖ · ‖22 always holds and
hence, by Theorem 1 we can conclude:

κd
HP(x, z) =

d∑

s=0

h(s, d)
(

m

d

)

︸ ︷︷ ︸
h(m,s,d)

κ̃s
∧(x, z) =

d∑

s=0

h(m, s, d) κ̃s
∧(x, z).

�

As discussed by Donini and Aiolli in [3], under mild conditions, any DPK
of the form κ(x, z) = f(〈x, z〉) can be seen as a DPP, that is κ(x, z) =∑+∞

d=0 adκ
d
HP(x, z). Exploiting this result and the theorems above, we can get

the following corollary.

Corollary 1. Given x, z ∈ {0, 1}n such that ‖x‖1 = ‖z‖1 = m, then any DPK
can be decomposed as a finite non-negative linear combination of normalized
mC-kernels:

κ(x, z) = f(〈x, z〉) =
m∑

s=0

g(m, s) κ̃s
∧(x, z), g(m, s) ≥ 0

Proof (sketch). By using Theorem 1 we can see that κd
HP(x, z) can always be seen

as a non-negative linear combination of the first m mC-kernels (since κs
∧(x, z) =

0 always holds when s > m). Hence, using the result in [3] and Theorem 2, the
claim can be easily demonstrated.

�

Radius-Margin Ratio Optimization for Dot-Product Boolean KL 187

4 The Proposed Algorithm

In the previous section we have shown that any DPK defined on binary vectors
can be seen as a parametric linear combination of mC-kernels (a mCKP). In this
section, we propose to make the combination non-parametric and to learn the
coefficients of the mCKP by optimizing the radius-margin ratio of the combined
kernel. Basically, we search on the kernel space κ(x, z) =

∑d
s μsκ̃

s
∧(x, z), where

μs ≥ 0,
∑

s μs = 1 are the parameters to optimize. In this space we want to
obtain the kernel that minimizes the radius-margin ratio.

First of all, we perform a change of variables by introducing a new vector
of variables β and replacing μs(β) = eβs/(

∑
r eβr). This allows us to obtain an

unconstrained problem easier to optimize. Specifically, we are now able to write
the radius-margin ratio minimization problem as in the following:

min
β

Ψ(β), where Ψ(β) =
1 − α̂(β)�

(∑R
r=1 μr(β)Kr

)
α̂(β)

γ̂(β)�Y
(∑R

r=1 μr(β)Kr

)
Yγ̂(β)

,

α̂(β) = arg min
α∈A

α�
(

R∑
r=1

µr(β)Kr

)
α and γ̂(β) = arg min

γ∈Γ
γ�Y

(
R∑

r=1

µr(β)Kr

)
Yγ.

By definition
∑R

r=1 μr(β) = 1, so

Ψ(β) =

∑R
r=1 eβr

ar(β)
︷ ︸︸ ︷(
1 − α̂(β)�Krα̂(β)

)

∑R
r=1 eβr

(
γ̂(β)�YKrYγ̂(β)

)

︸ ︷︷ ︸
br(β)

≈ 〈eβ,a〉
〈eβ,b〉 = Ψ̄(β),

where eβ = [eβ1 , . . . , eβR], a = [a1, a2, . . . , aR]�, b = [b1, b2, . . . , bR]� and we
assume a,b constants around a given β. In order to optimize the function Ψ(β)
we then perform a series of steps of gradient descent on the approximated func-
tion Ψ̄(β) followed by a new computation of a = a(β), and b = b(β). The
gradient step can be easily found as ∀r ∈ {1, . . . , R} we have the following:

∂Ψ̄(β)
∂βr

=
are

βr 〈eβ,b〉 − bre
βr 〈eβ,a〉

〈eβ,b〉2 =
eβr (ar〈eβ,b〉 − br〈eβ,a〉)

〈eβ,b〉2

Summarizing, starting from β = 0 and μ(β) the uniform distribution over
base kernels, at each iteration, the kernel combination K is computed using the
current μ(β) and then the vectors a = a(β) and b = b(β) can be computed as
described above. Finally, the update of β and μ(β) are performed as follows:

βr ← βr − η
eβr

∑
s eβs(arbs − asbr)

〈eβ,b〉2 ∀r ∈ {1, . . . , R}, μ ← 1
∑

r eβr
eβ

188 I. Lauriola et al.

where η is the learning rate. This iterative procedure continues until a maximum
number of iterations (max iter) is reached.

5 Experimental Assessment

Experiments have been performed using 11 binary and categorical datasets
obtained from the UCI Machine Learning Repository [7]. The datasets have
different sizes and characteristics, which are reported in Table 1. A preprocess-
ing phase has been performed to make all these datasets binary. In particular,
categorical features have been mapped into binary features by one-hot encod-
ing, examples with missing values have been removed, and multiclass problems
(audiology, zoo, primary-tumor, soybean, dna) transformed to binary ones by
manually splitting the original classes in two groups. Different MKL settings for
the combination of normalized mC-kernels have been compared. Namely:

Table 1. AUC score (1st row) and radius-margin ratio (2nd row) for all the methods.
In the case of KRM-GD

C,id the average parameters obtained in validation, i.e. average of
degrees and average of the weights given to the identity matrix, are also indicated. For
each dataset, in parenthesis, the information about #examples, #features and type of
the dataset: binary (‘b’) or categorical (‘c’).

Dataset Kavg
C KMKL

C KRM-GD
C KRM-GD

C,id

audiology
(92,84,c)

99.99±0.04

6.08±0.33

99.99±0.04

5.99±0.32

100.00±0.00

5.38±0.25

100.00±0.00(2.64, 0.0023)
5.41±0.25

zoo
(101,21,c)

100.00±0.00

3.01±0.23

100.00±0.00

2.62±0.28

100.00±0.00

2.24±0.32

100.00±0.00(2.10, 0.0021)
2.27±0.34

promoters
(106,228,c)

96.37±1.99

11.27±0.25

96.38±1.96

11.02±0.32

95.83±1.93

8.77±0.63

95.82±1.95(1.00, 0.0068)
8.79±0.65

primary-tumor
(132,24,c)

72.55±4.37

15.87±1.30

72.69±4.30

15.05±0.87

74.58±4.58

14.31±0.72

75.53±4.76(1.38, 0.7079)
14.37±0.69

house-votes
(232,16,b)

99.11±0.41

8.90±1.13

99.10±0.42

8.90±1.17

99.20±0.41

8.49±1.13

99.21±0.45(2.30, 0.1992)
8.60±1.12

soybean
(266,88,c)

99.73±0.19

11.49±0.73

99.73±0.19

11.32±0.82

99.70±0.25

10.86±0.96

99.69±0.25(3.30, 0.0008)
10.93±0.98

spect
(267,23,b)

82.01±3.14

18.91±1.32

82.06±3.02

18.56±1.15

83.39±3.10

17.53±1.08

83.81±3.11(1.04, 0.5154)
17.63±1.09

tic-tac-toe
(958,27,c)

98.82±0.46

73.39±1.57

99.04±0.39

70.93±1.45

99.74±0.20

60.75±1.49

99.76±0.20(4.00, 0.0001)
60.92±1.61

dna-bin
(2000,180,b)

98.46±0.21

118.49±1.98

98.53±0.20

108.87±2.46

98.71±0.18

103.45±2.43

98.69±0.18(2.00, 0.0001)
104.16±2.53

splice
(3175,240,c)

98.98±0.13

195.50±2.13

99.04±0.12

143.85±2.99

99.14±0.15

133.39±3.26

99.08±0.13(2.00, 0.0001)
134.35±3.30

kr-vs-kp
(3196,38,c)

99.90±0.05

109.84±2.75

99.91±0.04

109.19±2.89

99.92±0.04

107.92±2.95

99.95±0.04(3.80, 0.090)
112.28±2.79

Radius-Margin Ratio Optimization for Dot-Product Boolean KL 189

– Kavg
C : the average of normalized mC-kernels of degrees 1 to 10, that is ∀r, μr =

1
10 ;

– KMKL
C : the MKL solution where coefficients μ are computed by the EasyMKL

method [1] on normalized mC-kernels of degrees 1 to 10;
– KRM-GD

C : the MKL solution of the gradient descent based algorithm proposed
in this paper for the minimization of the radius-margin ratio when combining
normalized mC-kernels of degrees 1 to 10;

For each MKL method, an SVM model has been trained using the obtained
kernel. Available data have been split into training (50%) and test (50%); train-
ing data has been used to select the kernel and fit the SVM, then the AUC
score has been calculated on the test set. To improve the statistical significance
of the results, for each method, 50 runs with different splits (the same set for
all the methods) have been performed. The average AUC in the test sets and
the average ratio obtained in the training sets are reported in Table 1. Results
show a significant AUC improvement of the proposed methodology KRM-GD

C with
respect to MKL baselines, for the large majority of tasks.

In order to better evaluate the behaviour of the proposed algorithm for the
radius-margin optimization, in Fig. 1 the distribution of weights is reported with

Fig. 1. Distribution of the weights obtained by EasyMKL (in white) and RM-GD (in
blue) when combining mC-kernels of degrees 1 to 10 on nine UCI datasets. (Color
figure online)

190 I. Lauriola et al.

respect to the one of EasyMKL, a MKL algorithm which aims at maximizing
the margin alone. From the figure it is self-evident that margin maximization
can give very different results with respect to the minimization of the radius-
margin ratio. We observe that the weight vectors learned by our algorithm are
very sparse, and hence only a small subset of kernels are combined to form the
final kernel. The most typical configuration sets only two coefficients with large
values, one low degree mC-kernel and one high degree mC-kernel.

Given the considerations above, we tried to apply the same gradient-descent
radius-margin ratio optimization algorithm using only one non trivial mC-kernel
combined with the identity matrix (note that high degree mC-kernels approxi-
mates the identity matrix). The optimal degree of the mC-kernel to combine is
then chosen by selecting the one with the best ratio of the combined kernel. The
obtained results, together with the average parameter selected in validation (the
degree of the mC-kernel selected and the weight given to the identity matrix),
are presented in the last column of Table 1. Not surprisingly, the obtained ratio
is always worse than the ratio obtained by considering all the kernels at once.
However, the difference is not so significant and the AUC score obtained by this
simplified method is comparable, with the advantage of being highly paralleliz-
able.

6 Conclusions

In this work we showed that, under mild conditions, any dot-product kernel
applied to binary data can be decomposed in a linear non-negative paramet-
ric combination of monotone conjunctive kernels with different degrees. Then, a
procedure to learn the (non-parametric) coefficients of the combination is pro-
posed which exploits a radius-margin optimization algorithm based on gradient
descent (here called RM-GD). The solutions returned by RM-GD are generally
characterized by high sparseness and high AUC performance when compared to
state-of-the-art margin-based MKL methods. Finally, our experiments also con-
firmed that the minimization of the radius-margin bound is an effective principle
to pursue in order to minimize the expected test error.

References

1. Aiolli, F., Donini, M.: EasyMKL: a scalable multiple kernel learning algorithm.
Neurocomputing 169, 215–224 (2015)

2. Chung, K., Kao, W., Sun, C., Wang, L., Lin, C.: Radius margin bounds for support
vector machines with the RBF kernel. Neural Comput. 15(11), 2643–2681 (2003).
http://dx.doi.org/10.1162/089976603322385108

3. Donini, M., Aiolli, F.: Learning deep kernels in the space of dot product polynomials.
Mach. Learn. 106, 1–25 (2016)

4. Duan, K., Keerthi, S.S., Poo, A.N.: Evaluation of simple performance measures for
tuning SVM hyperparameters. Neurocomputing 51(Complete), 41–59 (2003)

http://dx.doi.org/10.1162/089976603322385108

Radius-Margin Ratio Optimization for Dot-Product Boolean KL 191

5. Kalousis, A., Do, H.T.: Convex formulations of radius-margin based support vector
machines. In: Proceedings of the 30th International Conference on Machine Learn-
ing, vol. 28, pp. 169–177 (2013)

6. Lauriola, I., Donini, M., Aiolli, F.: Learning dot-product polynomials for multi-
class problems. In: Proceedings of the European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (ESANN) (2017)

7. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml

8. Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9(1), 96–108
(1942)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Learning a Compositional Hierarchy of Disparity
Descriptors for 3D Orientation Estimation

in an Active Fixation Setting

Katerina Kalou1(B), Agostino Gibaldi1,2,
Andrea Canessa1, and Silvio P. Sabatini1

1 Department of Informatics, Bioengineering, Robotics and System Engineering,
University of Genoa, Genoa, Italy
aikaterini.kalou@edu.unige.it

2 School of Optometry, University of California, Berkeley, Berkeley, CA, USA

Abstract. Interaction with everyday objects requires by the active
visual system a fast and invariant reconstruction of their local shape lay-
out, through a series of fast binocular fixation movements that change the
gaze direction on the 3-dimensional surface of the object. Active binocu-
lar viewing results in complex disparity fields that, although informative
about the orientation in depth (e.g., the slant and tilt), highly depend
on the relative position of the eyes. Assuming to learn the statistical
relationships between the differential properties of the disparity vector
fields and the gaze directions, we expect to obtain more convenient, gaze-
invariant visual descriptors. In this work, local approximations of dispar-
ity vector field differentials are combined in a hierarchical neural network
that is trained to represent the slant and tilt from the disparity vector
fields. Each gaze-related cell’s activation in the intermediate representa-
tion is recurrently merged with the other cells’ activations to gain the
desired gaze-invariant selectivity. Although the representation has been
tested on a limited set of combinations of slant and tilt, the resulting high
classification rate validates the generalization capability of the approach.

Keywords: Active vision · Binocular disparity · Gaze direction ·
Biologically-inspired neural networks

1 Introduction

Recovering the 3D layout of an object or a scene from images is a well for-
malized problem [3], which, provided a sufficiently dense disparity information,
allows a full reconstruction of the scene. Typically, in 3D reconstruction one
assumes a vision system with a fixed parallel optical axis binocular geometry
yielding to binocular disparities along the horizontal epipolar lines; if necessary
including a rectification stage of the stereo image pairs. This is not the case
for natural binocular vision systems, where the stereo images are acquired by
pairs of eyes that are highly mobile and that continuously explore the scene
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 192–199, 2017.
https://doi.org/10.1007/978-3-319-68612-7_22

Learning a Compositional Hierarchy of Disparity Descriptors 193

in a vergent geometry, by changing the fixation point on the visible surfaces
of the 3D external world [2]. A vergent stereo imaging geometry is a powerful
means for focusing the attention of a vision system on a particular 3D region
of interest. However, the price we pay is a more complex geometric relationship
between binocular corresponding points. This is especially true for visual explo-
ration of the peripersonal space where large values of vergence occur [4]. The
zero-disparity condition at fixation, granted by vergence movements, directly
influences the visually-based information for the 3D position and orientation of
the fixated object. Only the residual disparities elsewhere in the visual field are
cues for stereopsis. Moreover, also how the system verges has an impact for the
accuracy of stereopsis. Different eye positions can influence the local shape of
the zero disparity surface near the fixation point and thus the mechanisms of
perceptual vision. The momentarily existing fixation point, i.e. where the system
verges, becomes a reference that can be parameterized by the relative orienta-
tions of the eyes. From this perspective, it is plausible that the visual system
develops convenient visual descriptors of 3D shapes, concurrently with the capa-
bility of making binocular exploratory fixations on the surface of the observed
objects. Towards this goal, using the data collected from a biologically inspired
simulator of an active binocular visual system, we propose a hierarchical neural
architecture that, starting from local disparity fields of 3D planar surfaces, learns
to extract a set of invariant feature maps for reconstructing the plane orientation
in depth across a number of different gaze directions.

2 State of the Art

There are several evidences of disparity-based representation for 3D surface per-
ception along the cortical visual pathway. Area V3A, a part of the higher primary
visual stream, is associated with disparity processing for 3D shape perception
in both human and primates [15]. Ban and Welchman [1] in an fMRI experi-
ment reported a sensitivity to the relative disparity of planar surfaces slanted
about the horizontal axis. Furthermore, the middle temporal area (MT) has been
reported to be responsible for gradient disparity processing [12]. Overall, find-
ings in a large number of exstrastriate cortical areas have shown that populations
of neurons exhibit selective responses to 3D shape and orientation encoded on
the basis of global differential properties of the binocular disparity of elongated
surfaces in depth [6].

These findings demonstrate the sensitivity of visual cortical neurons to the
disparity gradient components elicited by the local shape’s orientation that can-
not be explained by the conventional tuning for frontoparallel disparities. It is
worth noting that the majority of the experimental studies on 3D shape-from-
disparity and their computational modeling counterparts consider the horizontal
disparity component, only. In the present study, we do consider the gradient of
the 2D disparity vector field as it naturally arises in an active binocular sys-
tem setup [5]. As proposed by Koenderick and van Doorn [7], using both the
vertical and horizontal components of disparity allows us to compute the differ-
ential geometric transformations of the vector field: divergence (div), rotation

194 K. Kalou et al.

(rot) and the two components for shear (def1 and def2). These disparity trans-
formations have been found to be invariant with the viewing geometry and the
environmental noise and thus, an ideal input for a method that learns a set of
disparity-based gaze-invariant features for 3D orientation reconstruction [8].

By exploiting the vector field information induced by the motion parallax,
Liu and van Hulle [9] trained a multilayered recurrent network to reconstruct
the slant and tilt of a 3D plane from its 2D projected motion vectors. Following
a similar paradigm, in the present work we propose a hierarchical recurrent
architecture of interconnected layers trained to discriminate among four planar
orientation categories from the four-dimensional inputs of the local differentials
of the input disparity vector field maps using a sampled dataset of nine different
gaze directions.

3 Methods

3.1 Simulating the 3D Environment and the Fixation Geometry

For the collection of the disparity patterns corresponding to different oriented
planes in 3D, we use an active vision simulator, that implements the biological
principles of cyclopean binocular geometry as described by Hansard and Horaud
[5] modeled in an ideal stereo head. The fixation point F 0 was initialized in space,
defined in a Cartesian coordinates fixed reference frame with (X0, Y0, Z0) =
[0, 0, 350] mm referenced on the cyclopean nodal point N = [0, 0, 0] mm. The
initial cyclopean gaze direction was defined as the unit vector u0 = F0

|F0| that
defined the direction from point N to the fixation point F 0 (Fig. 1). The initial
azimuth and elevation angles were computed as tanα0 = −Y0

Z0
and sin ε0 =

X0
Z0

respectively. Each new gaze direction u was expressed as a new pair of
(α, ε) angles, leading to the computation of a new fixation point F . During the
simulation, 9 different gaze directions on the surface of the 3D plane uL with
L = [1, 2, ..., 9] were implemented, so as the fixation points FL were sampled in
a clockwise order on a 3 × 3 rectangular grid of approximately 10◦ × 10◦ visual
degrees around the initial fixation point. The parameters used in this study are:
baseline b = 70 mm, focal length f = 17 mm and field of view equal to 20◦ that
approximate the biological structure of the human visual system.

After the visual parameter setup, the 3D geometry of the scene was created
by the simulator as a planar mesh rotated in space with a center fixed in P0 =
(0, 0, 350) mm and a size of 502 × 502 mm (�70◦ × 70◦ visual degrees). This size
was chosen to cover the whole visual field for every condition of slant, tilt and
gaze direction. Each plane was built by the simulator as a union of all the points
Pi in this virtual space that satisfy the equation P = {Pi : nT (Pi − P0) =
0} where n is the normal vector of the plane. The plane’s rotation space was
finally parameterized, as a matrix: RXY Z(θστ) = RZ(τ) RY (σ) RX(θ) where the
torsion (θ), slant (σ) and tilt (τ) orientation angles were expressed as rotations
around a fixed [X,Y,Z] world reference frame. The disparity vector field was
then computed for each σ, τ and gaze direction L while the torsion angle was

Learning a Compositional Hierarchy of Disparity Descriptors 195

Fig. 1. The overall architecture of the model. (a): The active fixation geometry in the
simulation environment with u representing the gaze direction characterized by the
pair of elevation and azimuth angles (α, ε). (b): The planar 3D orientation parametric
space where the slant (σ) and the tilt (τ) angles represent the latitude and longitude
of a polar grid, respectively. (c): For each gaze direction L a disparity vector field is
collected and transformed in the 4D elementary disparity field differentials, that were
the input of a three layer recurrent network in (d) used for learning gaze-invariant
disparity components in the slant/tilt parametric space.

kept at θ = 0, as δ = (δH , δV) = p l − pr where pl(xl, yl) and pr(xr, yr) are the
two-dimensional projections of each of the points of the plane P on the left and
right virtual eye, respectively.

3.2 Intermediate Representations

The input to the network was the disparity vector maps computed for the 144
unique sampling points of slant and tilt angles: 12 values of slant σ in the range
[3◦, 42◦] by steps of 3◦, and 12 values of tilt (τ) in the range [30◦, 330◦] by
steps of 30◦. Subsequently, such slant and tilt combinations were grouped into
4 categories of planar orientation samples so as to be used as the training set of
our network. For each of the original 144 orientation points a 2D vector disparity
map was computed with a 123×123 pixel (�20◦ ×20◦ visual degrees) resolution
for each of the 9 different gaze directions - arrayed as inputs to the network
with the same clockwise order as their spatial sampling on the 3× 3 rectangular
grid - resulting in a 2 × 123 × 123 × 9 training input vector. Furthermore, a
white Gaussian noise (zero mean and 0 < SD < 1) was added to the stimuli, in

196 K. Kalou et al.

order to simulate the degree of uncertainty encountered in naturalistic setups.
This resulted in a final dataset of 2880 disparity vector maps for all four planar
orientation categories.

The model of our proposed network comprises two main stages: preprocessing
and training. The preprocessing stage of our model follows the principles of a
convolutional network with two non-trainable layers, a convolutional (c-layer)
and a subsampling one (s-layer). The c-layer consists of a 2D spatial convolution
on the disparity fields with Gaussian derivative kernels to locally approximate
the gradient operation:

∇δ =

[
∂δH
∂x

∂δH
∂y

∂δV
∂x

∂δV
∂y

]
∼

[
Gx ∗ δH Gy ∗ δH

Gy ∗ δH Gy ∗ δV

]
(1)

where (Gx, Gy) = (∂G
∂x , ∂G

∂y) are used to locally smooth the disparity derivatives.
A Gaussian with a standard deviation of 12 pixels is used. Then, we followed the
linear combination between vector differential to obtain the first-order trans-
formations of the disparity field (i.e., the elementary disparity components):
div = (δH∗Gx+δV∗Gy)/2, rot = (δV∗Gy−δH∗Gy)/2, def1 = (δH∗Gx−δV∗Gy)/2,
and def2 = (δH ∗Gy + δV ∗Gx)/2. Each component was taken as an input to the
s-layer where it was pooled by means of a 7×7 sliding Gaussian kernel resulting
in the 5 × 5 × 4 × 9 dataset that was used as the input for the training module
of the network. The data were finally normalized to have zero mean and [−1 1]
magnitude range, and divided in 70% and 30% for the training and test sets,
respectively.

3.3 Training the Architecture

As shown in Fig. 1 the second stage of the network is a three-layer recurrent
architecture with the input layer consisting of 9 diverse 4×4 hidden layer maps -
one for each gaze direction. During the first step of the feed-forward process, each
of the elementary disparity components ‘gaze blocks’ projects to its own hidden
layer map with its own set of synaptic weights. The weights between each of the
input units and their forward layer were initialized as a 2D Gaussian kernel acting
as a smooth decreasing function of the distance between each input unit i and
the respective hidden layer unit j; k refers to the specific disparity component:

W k
ji = exp

[
−

(
(xk

i − xj)2 + (yk
i − yj)2

2s2

)]
(2)

where s models the size of the smoothing kernel.
Including the recurrent step, each hidden unit (hj) receives an input from

the activations ar of all the units belonging to the same hidden layer map (i.e.,
gaze direction L) as well as the ones from the maps related to all the other
gaze directions aM

r , M = 1, . . . 9,M �= L. The intra-map weights Wjr as well as
the weights WM

jr between the different hidden unit maps were initialized as a
difference of Gaussian functions, representing a pattern of localized excitatory

Learning a Compositional Hierarchy of Disparity Descriptors 197

and inhibitory synapses. As a whole, the activation function of each hidden layer
unit j can be written as:

aj = S

⎛
⎝hj +

∑
r

Wjrar +
∑
r,M

WM
jr arM + bj

⎞
⎠ (3)

where hj =
∑
i,k

W k
jiz

k
i is the weighted sum of all the inputs z, S(.) the sigmoid

function and bj the activation bias.
Finally, each hidden unit projects to the four output units encoding the

possible combinations of slant and tilt plane orientation in an abstract paramet-
ric space. The weights Wmj between the hidden unit j and an output unit m
were initialized with random positive values with uniform distribution and their
activation was again characterized by the sigmoid function. At each iteration
the weights were updated as: W k

ji ← W k
ji + λ ∂E

∂Wk
ji

, WL
jr ← WL

jr + λ ∂E
∂WL

jr
, and

Wmj ← Wmj + λ ∂E
∂Wmj

, until the logistic error E was below 0.1. The training
algorithm was run for 500 iterations with a learning rate λ = 0.2. A modified
version of the Backpropagation Through Time algorithm (BTT) is used to oper-
ate in batch mode as in Liu and van Hulle [9]. The BTT algorithm considers
a special case of the general gradient descent backpropagation algorithm [13],
where the weights are updated through a number of steps defined by the number
of recurrent connections between their layers. For a given 3D orientation cate-
gory, the desired output was 1 for the corresponding output unit and 0 for all
other units (1-out-of-N coding).

4 Results and Conclusions

The accuracy of the algorithm at the end of training procedure, reached a level
of 100% on the training and 94% on the test set. Since the random selection of
the test data among the denoised data excludes any potential bias, the source of
the 6% error is possibly the entrapment of the cost function in a local minima -
a well known vulnerability of NN’s with long recurrent temporal series [11].
Future work will include a probabilistic ordering of the gaze data series based on
psychophysical data that will lead to a more informative representation of the
3D planar orientation across gaze directions.

Figure 2a shows examples of the weight pattern between the input and hid-
den layer, before and after the training. The initial input weight field (Wji has a
smooth spatial radially symmetric retinotopic (x, y) profile for all the gaze direc-
tions. However, it is worth noting that at the end of the training process the input
weight field looses its local retinotopy, resulting in a more global weighting of
the elementary disparity components all over the visual field, and for all gaze
directions. Most importantly, Fig. 2b shows that the trained weight fields Wmj

between the hidden and the output layer form a characteristic selectivity for
their output slant/tilt class (class 2 in the example of Fig. 2), even if they were

198 K. Kalou et al.

Fig. 2. Composition of the weight fields before and after training. (a): Weight fields
between an elementary differential component of the disparity field (rot) and the hidden
unit in the position corresponding to the position of the red square. (b): Weight fields
between the hidden units and the output layer in the position corresponding to the
position of the red square. The maps represent the field for a single gaze direction
(L = 1) while the plots below show the cross-sections of the weight fields for all gaze
directions. (Color figure online)

randomly initialized. As it can be seen in the plots at the bottom of Fig. 2b, this
emerging selectivity appears to be a common feature across gaze directions. Fur-
thermore, an interesting characteristic of the weight field development appears
in Fig. 3. The weights between the hidden layer units for gaze direction L = 1
and each of the output units of the classification layer m = [1, .., 4] tend to learn
an emerging clustered connectivity pattern that directly maps to the slant and
tilt parametric space.

Fig. 3. Weight fields between the hidden units and the four-classes output units. The
local patterns of connectivity point out an emerging clusterization of the slant and tilt
information in the hidden representation. Here, only the case for gaze direction L = 1
is shown.

In conclusion, the results of the model demonstrate that, starting from a
retinotopic multi-dimensional connectivity of locally-defined disparity compo-
nents, it is possible to learn a set of globally-defined invariant descriptors that
successfully encode the parametric space of slant and tilt orientation across a
number of different gaze directions. The high accuracy results achieved and the
short training time will allow us, as the next step, to study how the same model
framework can incorporate the input disparity as the population activity of a
large set of biologically-inspired disparity detectors.

Learning a Compositional Hierarchy of Disparity Descriptors 199

References

1. Ban, H., Welchman, A.E.: fMRI analysis-by-synthesis reveals a dorsal hierarchy
that extracts surface slant. J. Neurosci. 35(27), 9823–9835 (2015)

2. Canessa, A., Gibaldi, A., Chessa, M., Fato, M., Solari, F., Sabatini, S.P.: A dataset
of stereoscopic images and ground-truth disparity mimicking human fixations in
peripersonal space. Sci. Data 4 (2017)

3. Dhond, U.R., Aggarwal, J.K.: Structure from stereo-a review. IEEE Trans. Syst.
Man Cybern. 19(6), 1489–1510 (1989)

4. Gibaldi, A., Canessa, A., Sabatini, S.P.: The active side of stereopsis: fixation
strategy and adaptation to natural environments. Sci. Rep. 7, 44800 (2017)

5. Hansard, M., Horaud, R.: Cyclopean geometry of binocular vision. JOSA A 25(9),
2357–2369 (2008)

6. Hinkle, D.A., Connor, C.E.: Three-dimensional orientation tuning in macaque area
V4. Nat. Neurosci. 5(7), 665–670 (2002)

7. Koenderink, J.J., van Doorn, A.J.: The internal representation of solid shape with
respect to vision. Biol. Cybern. 32(4), 211–216 (1979)

8. Koenderink, J.J., van Doorn, A.J.: Facts on optic flow. Biol. Cybern. 56(4), 247–
254 (1987)

9. Liu, L., van Hulle, M.M.: Modeling the surround of MT cells and their selectivity
for surface orientation in depth specified by motion. Neural Comput. 10(2), 295–
312 (1998)

10. LeCun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recog-
nition with invariance to pose and lighting. In: 2004 Proceedings of the 2004
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2004, vol. 2, pp. II–104. IEEE (2004)

11. Medsker, L.R., Jain, L.C.: Recurrent neural networks. Des. Appl. 5 (2001)
12. Nguyenkim, J.D., DeAngelis, G.C.: Disparity-based coding of three-dimensional

surface orientation by macaque middle temporal neurons. J. Neurosci. 23(18),
7117–7128 (2003)

13. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representation by
back propagation. Parallel Distrib. Process.: Explor. Microstruct. Cogn. 1 (1986)

14. Salinas, E., Abbott, L.F.: A model of multiplicative neural responses in parietal
cortex. Proc. Nat. Acad. Sci. 93(21), 11956–11961 (1996)

15. Tsao, D.Y., Vanduffel, W., Sasaki, Y., Fize, D., Knutsen, T.A., Mandeville, J.B.,
Wald, L.L., Dale, A.M., Rosen, B.R., Van Essen, D.C., Livingstone, M.S.: Stereop-
sis activates V3A and caudal intraparietal areas in macaques and humans. Neuron
39(3), 555–568 (2003)

A Priori Reliability Prediction with
Meta-Learning Based on Context Information

Jennifer Kreger1(B), Lydia Fischer2, Stephan Hasler2,
Thomas H. Weisswange2, and Ute Bauer-Wersing1

1 Frankfurt University of Applied Sciences, Nibelungenplatz 1,
60318 Frankfurt am Main, Germany

j.kreger@fb2.fra-uas.de
2 Honda Research Institute Europe GmbH,

Carl-Legien-Str. 30, 63073 Offenbach am Main, Germany

Abstract. Machine learning systems are used in a wide variability of
tasks, where reliability is very important. Often from the output of these
systems their reliability cannot directly be deduced. We propose an app-
roach to predict the reliability of a machine learning system externally.
We tackle this by using an additional machine learning component we
call meta-learner. This meta-learner can use the original input as well
as supplementary context information for its judgment. With this app-
roach the meta-learner can make a prediction of the performance of
the machine learner before this one is actually executed. Based on this
prediction unreliable decisions can be rejected and the systems reliabil-
ity is retained. We show that our method outperforms certainty-based
approaches at the example of road terrain detection.

Keywords: Reliability prediction · Meta-learning · Rejection

1 Introduction

Lately machine learning and statistical classification techniques significantly
gained in popularity and became an integral part of many daily life applica-
tions. Although machine learning algorithms perform well in many situations,
sometimes they fail. Of course, wrong outputs have different impacts depend-
ing on the intended application, from e.g. user disappointment in the case of
recommendation systems or automatic speech recognition systems, up to seri-
ous endangerment of life caused by safety critical systems such as self-driving
cars or medical diagnosis systems. Hence, productive systems relying on machine
learning methods must be able to estimate the reliability of the output in order
to differentiate between situations where outputs are safe for further processing
and those where failure is likely. Moreover, in real-time safety critical systems
this decision has to be made fast.

Therefore research in the field calls more and more attention to reliability
estimation of classification methods and efficient rejection strategies [1,8,14,15]
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 200–207, 2017.
https://doi.org/10.1007/978-3-319-68612-7_23

A Priori Reliability Prediction with Meta-Learning 201

as an effective way to improve the system’s overall performance. Many state-of-
the-art rejection approaches are based on certainty measures indicating whether
a given data point is classified correctly or not. Uncertain data points are rejected
dependent on a predefined threshold, that is obtained by optimizing the so-called
error-reject tradeoff [6]. However, to design a proper certainty measure, detailed
knowledge of the machine learning algorithm itself is required.

Another approach that aims to improve the performance of machine learn-
ers by investigating the system and its output is meta-learning [3,10,13,16,17].
Additional data is gathered that is not considered mandatory to solve the orig-
inal task. Meta-learning approaches seek to find and use correlations between
this additional knowledge and the machine learner’s performance. The internal
goal is not simply to reject results, but also to feed back information about the
learning process into the system. Hence, to enable the system to adapt to the
current situation and improve its performance, e.g. by selecting the features most
suitable to solve the task under the current circumstances.

Both approaches, certainty-based and meta-learning-based, depend on obser-
vations and evaluations of the specific machine learning algorithm and rely on
detailed internal knowledge of the machine learner itself. This implies that a
model which is able to judge the reliability of one algorithm cannot necessarily
be transferred to another machine learning approach. Moreover, methods using
the machine learner’s outputs or internal state parameters to estimate its perfor-
mance must definitely execute the machine learning algorithm, even if the result
on a data sample turns out as unreliable. This can be time consuming and as a
consequence, triggering a defined fall-back mechanism may be late in the case
of real-time safety critical applications.

Here, we propose an approach to rapidly predict the reliability of a machine
learner’s output independent of its underlying algorithm. For this purpose, we
adapted the meta-learning approach (cf. Fig. 1). We use only (i) the raw input
sample and additional data from the environment that is available prior to
processing of the machine learner and (ii) a performance measure that is derived
from the output of the machine learner and the ground truth data associated
with the input sample. The machine learner and its output are no direct part
of the reject decision, i.e. the prediction phase remains completely unknown to
the meta-learner. We test our approach exemplary on two different vision-based
segmentation systems, RTDS [9] and Bayesian SegNet [11]. We assume that even
with very good models these systems may fail in case of technical issues as strong
over-/underexposure or dirt on the camera lense. Also, the systems will proba-
bly fail in unknown environments like unpaved roads. For both machine learning
applications we demonstrate the suitability of our approach and compare it to
a certainty-based rejection method as state-of-the-art alternative. Please note,
that our approach is generic, i.e. is – in principle – applicable to machine learn-
ing systems where ground truth data is available and a suitable performance
measure can be deduced. Preliminary results of the study have been published
in [12].

202 J. Kreger et al.

Environment
Sensors

Context
Extractor
ci(ei,xi)

Performance
Predictor
p̂i(ci, ξ)

p̂i > θ

System
ŷi(xi)

Performance
Evaluator
pi(ˆ yi, i)

Alternative
System

xi ŷi

yi

ei ci p̂i

accept

reject

Meta-Learner

y

Fig. 1. Description of a general system (top row) enhanced with our Meta-Learner
approach (gray box).

2 Methods

The structure of our approach is shown in Fig. 1. We assume to have a given
System that generates output ŷi for input xi. Usually the System is a machine
learner that was trained on a classification or regression task. Based on ground
truth information yi a performance measure pi can be computed offline.

The aim of our Meta-Learner extension (Fig. 1: gray box) is to predict the
performance of the System for the current input xi at run time. For this it
computes context features ci on sensor measurements of the environment that
are usually composed of the System’s input xi and an additional input ei. These
context features are used by the Performance Predictor to estimate a scalar
value p̂i that is later compared against a threshold θ to decide if the System’s
output ŷi will be credible or not. In the latter case potentially an Alternative
System could be used to handle the current situation. This Alternative System
is usually more costly.

The important aspect of our Meta-Learner method is that it treats the Sys-
tem as a black box, i.e. it has no knowledge about the System’s inner structure
and state. Furthermore, at run time the final decision of accepting or rejecting
does not depend on the System’s output ŷi. Therefore the Meta-Learner can
perform an early reject decision and potentially save computation time.

In general, the Performance Predictor is a regression model that estimates
the true performance of the System. Hence the regression parameters ξ are cho-
sen as to minimize the prediction error between pi and the estimated System’s
performance p̂i for a given training set {ci, pi}Ni=1. Again the System’s output
ŷi is not used directly, but in its abstract form as a real-valued performance
measure pi. To compute pi, ground truth information yi is required.

For choosing an optimal threshold θ, the costs for a reject decision and a
false accept decision have to be taken into account. Rejecting a sample should
increase the Evaluated Performance for the remaining samples. Note that the

A Priori Reliability Prediction with Meta-Learning 203

costs of rejecting a sample directly depend on the Alternative System. An optimal
threshold can only be chosen if all costs are known.

3 Application

We apply our meta-learning approach in the context of computer vision and
image segmentation, precisely we focus on machine learning methods performing
segmentation tasks on complex traffic scenes. In this setting a input data sample
xi is an RGB image, the output of the image segmentation systems ŷi is an array
of class labels indicating for each pixel in xi, whether it belongs to e.g. road
terrain or any other defined class that can occur in traffic scenes. Accordingly,
we need a measure that takes the performance pi accumulated over a whole
image into account and that is later predicted by our meta-learner. We choose
the Quality score [9] as performance measure:

pi := pi(ŷi,yi) =
TP

TP + FN + FP
∈ [0, 1] (1)

where the quantities true positives (TP), false negatives (FN), and false pos-
itives (FP) are determined by comparing the system’s output ŷi to labeled
ground truth images yi pixel-wise. The Quality score does not depend the true
negatives (TN) and is therefore less biased by class imbalances. For multiple
classes the quality is averaged over all classes.

To design a system for our scenarios that is computationally inexpensive and
fast, we restrict the extraction of context features ci to: (1) methods describing
the image xi holistically, and (2) methods resulting in low dimensional feature
vectors. We therefore choose the global image descriptor Centrist [18] comple-
mented with a color histogram. So far we do not consider further input ei from
the environment.

The first machine learning system we apply our meta-learner to is the road
terrain detection system (RTDS [9]). It differentiates between road and non-road
areas (Fig. 2a–d). RTDS returns a confidence value for each pixel indicating
the probability of belonging to road area in a 2-dimensional bird’s eye view.
Thresholding on the confidence map generates the segmentation result ŷRTDS

i

for road and non-road area of the corresponding input image xi. The original
data set consists of Nnat = 204 raw natural images of traffic scenes for which
hand-labeled ground-truth is available. Unfortunately, the original data set is
biased and contains only few samples where RTDS has poor results. Since it
is the overall goal to provide an efficient reject strategy, examples where the
machine learning method fails are vital to our approach. Therefore, we artificially
enriched the original data set: we added disturbances by applying different sorts
of global noise to some of the natural images (γ-correction, Gaussian blur, and
salt noise). In summary, we extend the original data set with a set of artificially
disturbed images to Nnat+art = 536 images in total.

The second machine learning system is Bayesian SegNet1 [11]. It is a seg-
mentation system designed especially for traffic scene analysis and handles 11
1 Available at: https://github.com/alexgkendall/caffe-segnet.

https://github.com/alexgkendall/caffe-segnet

204 J. Kreger et al.

related classes. The output ŷSegNet
i is a color coded image indicating the pre-

dicted classes. Additionally there is a certainty map for each class that are aver-
aged into a single certainty map (Fig. 2e–g). Bayesian SegNet is trained on the
CamVid data [4] with a test set of Ncamvid = 232 images.

Fig. 2. RTDS input image (a), image transformed into a 2D bird’s eye view (b), hand
labeled ground truth (c), output confidence matrix (d). Bayesian SegNet [11] input
image (e), output segmentation prediction (f), and certainty output (g), light means
high certainty. (Color figure online)

In the experiments we compare the rejection strategy based on the quality
predicted by our meta-learners against the true quality (ground truth) and a
state-of-the-art certainty-based approach [8]. We consider three different regres-
sion models for our meta-learner: (i) AdaBoost [7] with decision trees, known to
be robust and fast, (ii) support vector machines (SVM [5]), as a more sophis-
ticated model, and (iii) k-nearest neighbor regression (KNN [2]), as a simple
model2.

4 Experiments

To evaluate our meta-learner we plot the mean quality over the rate of rejected
samples. Therefor we iteratively increase the rejection threshold θ starting with
no rejection (θ = 0, rejection rate r = 0) such that one more data sample is
rejected. When one data sample is remaining we stop the rejection.

2 We use the implementations of scikit learn available at: http://scikit-learn.org/
stable.

http://scikit-learn.org/stable
http://scikit-learn.org/stable

A Priori Reliability Prediction with Meta-Learning 205

r(θ) =
1
N

∑
{

1 p̂i <= θ

0 else
(2)

After each rejection we compute the mean quality of the machine learner for
the remaining data samples:

pmean(θ) =
1
N

∑
{

pi p̂i > θ

0 else
(3)

Note that a small rejection rate causing a high increase of the mean quality
is appreciated. Due to the small amount of available data we use leave-one-out
cross validation averaging over 10 repetitions.

In Fig. 3 (top) we compare the rejection performance of different meta-
learners using varying regression models (AdaBoost, SVM, KNN) to the ground
truth and a certainty-based approach. For the related experiments we use the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.7

0.8

0.9

1

RTDS (Dnat+art)

Rejection rate r

M
ea

n
q
u
a
li
ty

p
m
e
a
n

Rejection based on

1a) AdaBoost meta-learner

1b) SVM meta-learner

1c) KNN meta-learner

2) true quality

3) certainty

0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

RTDS (Dnat)

Rejection rate r

M
ea

n
q
u
a
li
ty

p
m
e
a
n

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

Bayesian SegNet (Dcamvid)

Rejection rate r

M
ea

n
q
u
a
li
ty

p
m
e
a
n

Fig. 3. Comparison of different rejection approaches. The worst sample is rejected
dependent on (1) the prediction of the meta-learner, (2) the true quality, (3) the clas-
sification certainty. Top: comparison of different regression models – (a) Ada-Boost,
(b) SVM, (c) KNN – on RTDS with Dnat+art. Bottom left: RTDS with Dnat. Bottom
right: Bayesian SegNet with Dcamvid.

206 J. Kreger et al.

data set Dnat+art with artificial and natural images, as well as the obtained
RTDS qualities. It can be seen that the meta-learners almost reach the best
possible performance obtained with the true output quality for the interesting
regime of small rejection rates (<10%). For higher rates the difference increases
but it is still outperforming the certainty-based approach. The results also state
that there is nearly no difference between the analyzed meta-learners. Therefore
we use AdaBoost in the following because it is known to deliver robust and fast
results.

The bottom plots show the RTDS and SegNet results only using natural
images. In both scenarios our approach provides similar results as the certainty-
based approach. For the RTDS both rejection approaches reach a reasonable
improvement of the mean quality on the natural images with low rejection rates.
The difficulty on the Bayesian SegNet is the homogeneous distribution of the
related quality values. Therefore both rejection approaches achieve only slight
improvements of the mean output quality, but even the rejection based on the
true quality values can barely achieve an increase of the quality.

5 Conclusion and Future Work

Machine learning methods are used in a wide field of applications wherein reli-
ability is very important. Many of these methods lack information how reliable
their output is. Often they are enhanced with a certainty estimation based on in
depth knowledge of the machine learner itself. We relax this constraint by esti-
mating the reliability externally only incorporating the raw input data and the
machine learner’s output performance for training. The meta-learner is indepen-
dent of the machine learner. The input data can be enriched with information
extracted from the environment. For the application solely the input is required.
An additional benefit of this approach is that we rapidly determine if the output
of the machine learner is reliable without executing it. Hence, the aim of our
approach is to reject samples where the machine learner is predicted to fail.

We demonstrate the usefulness of our approach on two exemplary vision-
based applications tackling two different traffic scene analysis tasks. Therefore we
compare our approach with an optimal baseline and a state-of-the-art certainty-
based approach. It turned out that our approach provides almost as good results
as the baseline in the relevant regime of small rejection rates and shows a better
or similar performance as the certainty-based rejection. Hence, the rejection app-
roach based on the meta-learner’s predictions can improve the machine learner’s
mean performance.

One future research direction could be to incorporate features extracted from
the environment. A further interesting approach is to investigate whether one can
train the meta-learner to predict the quality of a future data sample. This would
be useful in applications dealing with image streams, especially for autonomous
cars where a time dependency between data samples is guaranteed. In this case it
might be beneficial as well to apply a more sophisticated rejection strategy, e.g.
an adaptive threshold, that adjusts to the current data distribution, assuming
an online learning scenario.

A Priori Reliability Prediction with Meta-Learning 207

References

1. Alvarez, I., Bernard, S., Deffuant, G.: Keep the decision tree and estimate the
class probabilities using its decision boundary. In: International Joint Conference
on Artificial Intelligence, pp. 654–659 (2007)

2. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate near-
est neighbor in high dimensions. In: Annual IEEE Symposium on Foundations of
Computer Science, pp. 459–468. IEEE (2006)

3. Brazdil, P., Carrier, C.G., Soares, C., Vilalta, R.: Metalearning: Applications to
Data Mining. Springer Science & Business Media, Berlin (2008)

4. Brostow, G.J., Fauqueur, J., Cipolla, R.: Semantic object classes in video: a high-
definition ground truth database. Pattern Recogn. Lett. 30(2), 88–97 (2008)

5. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

6. Chow, C.: On optimum recognition error and reject tradeoff. IEEE Trans. Inf.
Theory 16(1), 41–46 (1970)

7. Drucker, H.: Improving regressors using boosting techniques. In: International Con-
ference on Machine Learning, vol. 97, pp. 107–115 (1997)

8. Fischer, L., Hammer, B., Wersing, H.: Efficient rejection strategies for prototype-
based classification. Neurocomputing 169, 334–342 (2015)

9. Fritsch, J., Kühnl, T., Kummert, F.: Monocular road terrain detection by com-
bining visual and spatial information. IEEE Trans. Intell. Transp. Syst. 15(4),
1586–1596 (2014)

10. Giraud-Carrier, C.: Metalearning-a tutorial. In: Tutorial at the International Con-
ference on Machine Learning and Applications, pp. 11–13 (2008)

11. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian SegNet: model uncer-
tainty in deep convolutional encoder-decoder architectures for scene understanding.
arXiv:1511.02680 (2015)

12. Kreger, J., Fischer, L., Hasler, S., Bauer-Wersing, U., Weisswange, T.H.: Quality
prediction for a road detection system. Mach. Learn. Rep. 04(2016), 93–94 (2016)

13. Lemke, C., Budka, M., Gabrys, B.: Metalearning: a survey of trends and technolo-
gies. Artif. Intell. Rev. 44(1), 117–130 (2015)

14. Lu, H., Wei, S., Zhou, Z., Miao, Y., Lu, Y.: Regularised extreme learning machine
with misclassification cost and rejection cost for gene expression data classification.
Int. J. Data Min. Bioinform. 12(3), 294–312 (2015)

15. Pillai, I., Fumera, G., Roli, F.: Multi-label classification with a reject option. Pat-
tern Recogn. 46(8), 2256–2266 (2013)

16. Rossi, A.L.D., Carvalho, A.C., Soares, C.: Meta-learning for periodic algorithm
selection in time-changing data. In: IEEE Brazilian Symposium on Neural Net-
works, pp. 7–12. IEEE (2012)

17. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell.
Rev. 18(2), 77–95 (2002)

18. Wu, J., Rehg, J.M.: CENTRIST: a visual descriptor for scene categorization. IEEE
Trans. Pattern Anal. Mach. Intell. 33(8), 1489–1501 (2011)

http://arxiv.org/abs/1511.02680

Attention Aware Semi-supervised Framework
for Sentiment Analysis

Jingshuang Liu1, Wenge Rong1(B), Chuan Tian1, Min Gao2, and Zhang Xiong1

1 School of Computer Science and Engineering, Beihang University, Beijing, China
{jingshuangliu,w.rong,chuantian,xiongz}@buaa.edu.cn

2 School of Software Engineering, Chonqing University, Chongqing, China
gaomin@cqu.edu.cn

Abstract. Using sentiment analysis methods to retrieve useful infor-
mation from the accumulated documents in the Internet has become an
important research subject. In this paper, we proposed a semi-supervised
framework, which uses the unlabeled data to promote the learning ability
of the long short memory (LSTM) network. It is composed of an unsuper-
vised attention aware long short term memory (LSTM) encoder-decoder
and a single LSTM model used for feature extraction and classification.
Experimental study on commonly used datasets has demonstrated our
framework’s good potential for sentiment classification tasks. And it has
shown that the unsupervised learning part can improve the LSTM net-
work’s learning ability.

Keywords: Sentiment analysis · Semi-supervised learning · Attention ·
Long short term memory · Encoder-decoder

1 Introduction

Nowadays, people tend to publish opinions and comments on goods, movies,
and etc. through the Internet based services. As a result a large number of such
documents have been collected, which makes it an important task to retrieve
valuable information beneath these online collections [13]. Sentiment analysis is
an effective method to investigate the polarity of online posted messages [13].

Many deep models have been introduced to the sentiment analysis tasks,
among which Recurrent Neural Network (RNN) has shown its great power since
it can learn the underlying relationships between the words [12]. However, RNN
had the vanishing gradient problem [6]. To overcome this shortcoming, long short
term memory (LSTM) with gates and cell mechanism has been proposed in the
literature. It has proven its potential in maintaining the advantages of RNN
while overcoming the problems of vanishing gradient [8].

Besides the more and more advanced model, for the classification tasks it is
also believed that importing external knowledge from different domains can help
to improve the model’s performance [3]. Under this assumption, we proposed a
framework which employs an unsupervised model for pre-training the parameters
in the supervised model. At present, the encoder-decoder is a useful structure for
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 208–215, 2017.
https://doi.org/10.1007/978-3-319-68612-7_24

Attention Aware Semi-supervised Framework for Sentiment Analysis 209

unsupervised learning in natural language process (NLP) tasks [5], and attention
mechanism is another valid promotion to the behaviour of unsupervised learning
[4]. Therefore, we proposed to use an attention mechanism aware LSTM encoder-
decoder to pre-train parameters in a unsupervised step. In this part, we applied
unlabelled data for training. Then the supervised learning LSTM network is
implemented for feature extraction and classification.

The rest of the paper is organized as follows: Sect. 2 will present the back-
ground knowledge about our research. The pipeline of our proposed semi-
supervised model will be illustrated in Sect. 3. Finally, the experiment study
and discussion will be discussed in Sect. 4 and Sect. 5 will conclude this paper
and point out possible future directions.

2 Background

Currently sentiment analysis has gained much attention in both academic and
industrial community [13]. Since a large amount of information can be collected
through the social media network, sentiment analysis has witnessed a great devel-
opment in analysing the information beneath the online documents. Due to its
capability of analysing polarity of online documents, it has become a fundamen-
tal technique in a lot of applications [13].

For sentiment analysis, supervised learning has proven its success in many
tasks [3]. However, in order to enhance the generalisation ability of the learning
model, this kind of method need a large number of labelled corpus. At present,
it is convenient to acquire abundant unlabelled corpus from the website. But the
dataset are usually limited in quantity, quality, and coverage [2]. Meanwhile, in
some cases, the supervised learning model was only randomly initialised and the
parameters was likely to get into poor local minimums [3]. If the model can be
initialised properly, the generalisation ability can be improved [3].

In machine learning, semi-supervised learning is a useful technique to use
both the unlabelled and labelled data [2]. The most common way for semi-
supervised learning is to split the training process into two parts [11]. The first
part is the unsupervised learning using large unlabelled corpus. In this step, a
set of parameters can be obtained. The second is using the retrieved parameters
to initialise a supervised learning model. In this way, the parameters are fine
tuned with the model globally using labelled data. In this research, we used
the data crawled from website for unsupervised learning. For instance, we used
the Amazon Review data which has high relevance to our experimental dataset.
Therefore, we can acquire high quality parameters with these unlabelled dataset.

The encoder-decoder model has achieved great success in the tasks for NLP
lately, such as machine translation, speech recognition, slot filling and text pars-
ing [5]. In this approach, sequence models can be applied as an encoder to encode
the input data into a state. Afterwards the state is used for the input of a
decoder, which is also variable, to predict the output sequence. In our work, we
used LSTM as both the encoder and decoder.

The attention mechanism has been proposed in recent years and has made
great breakthroughs in fields like machine translation, video and image analysis

210 J. Liu et al.

[4]. It can free the model from having to encode a whole sequence into a vec-
tor, and the decoder only needs to focus on the relevant information [4]. This
mechanism can help enhance the accuracy of the unsupervised process greatly.

3 Methodology

The proposed sentiment analysis framework is shown in Fig. 1, where the first
section is the unsupervised model to obtain the parameters for initialisation.
The second section is a supervised LSTM network with a Softmax layer used to
learn the hidden features of the instance and make prediction.

Unlabelled
Dataset

Input

Attention aware LSTM encoder-decoder

Initialise

C
us

to
m

er
 R

ev
ie

w

M
ov

ie
 R

ev
ie

w

M
PQ

A
 O

pi
ni

on

IM
D

B

Labelled Dataset
Split Training set

Test set

Input

LSTM unit

Softmax

Unsupervised learning step Supervised learning step

Data preprocessing

Cell

tanh

sig

sig

tanh

sig

y0

y1

a

Input

Attention vector

LSTM encoder

LSTM decoder

Input gate

Forget gate

Output gate
Output

Fig. 1. Attention aware semi-supervised LSTM framework

3.1 Unsupervised Learning

Here we employed an attention aware LSTM encoder-decoder structure in the
unsupervised learning step to pre-train the parameters. The LSTM encoder-
decoder is used to reconstruct the input word sequence. For the encoding part,
at each time step, a single word was inputted into the encoder until the model
gets an 〈EOS〉 symbol. Finally the hidden state of the encoder could be gained.
And for the decoding part, the hidden state acquired from former step worked
as the initial state of the LSTM decoder. At each time step, the output was
applied as the input for next time step until the model outputted an 〈EOS〉.

The attention mechanism is employed as follows: As shown in the unsuper-
vised learning step in Fig. 1, a context vector at is added to the output layer of
the LSTM decoder. The vector at was computed by:

etj = sim(st−1, hj) (1)

αtj =
exp(etj)

∑Tx

i=1 exp(eti)
(2)

at =
Tx∑

j=1

αtjhj (3)

Attention Aware Semi-supervised Framework for Sentiment Analysis 211

where etj is the cosine similarity between the state of the memory cell in time
step t1 in the decoder st−1 and the state of the memory cell in time step j of
the encoder hj . In the figure, we only take one attention vector for example
for simplicity, and in fact there are a lot more context vectors (For instance,
if the input length is 10, then there are 10 context vectors in total). With the
context vector added, the values of the gates and cells in the LSTM decoder
were computed as follows:

i = σ(xtU
i + st−1W

i + at) (4)
f = σ(xtU

f + st−1W
f + at) (5)

o = σ(xtU
o + st−1W

o + at) (6)
ĉt = tanh(xtU

c + st−1W
c + at) (7)

ct = ct−1 ◦ f + ĉt ◦ i (8)
st = tanh(ct) ◦ o (9)

where xt is the input to the memory cell. U i, Uf , Uo, U c, W i, W f , W o, W c

are weight matrices. i, f , o stand for values of the input gate, forget gate, and
output gate. ĉt is the candidate value for states of the memory cell. ct is the new
state of memory cell and st is the output of hidden state at time step t. And at

is added respectively.
In this part, we trained the unsupervised model with unlabelled dataset.

After the unsupervised training process, we extracted the parameters of the
LSTM encoder and used it in the later supervised training part.

3.2 Supervised Learning

Feature Extraction. We initialised the LSTM network with the parameters
we obtained from the last part. In this step, we used the labelled instances as
input. In the LSTM, the new state of memory cell ct and the output of hidden
state st are computed the same as Eqs. 8 and 9. The other values of gates and
cells were computed like those we introduced before in Sect. 3.1 only without the
attention vector at.

Prediction. In the last part, a Softmax classifier was attached to the LSTM
network to predict whether the output of the LSTM network is positive or neg-
ative. After Implementing the framework, we trained the two parts respectively.
The Cross Entropy was used as the cost function:

Cost = − 1
m

m∑

i=1

[yi log ŷi + (1 − yi) log(1 − ŷi)] (10)

where ŷi is the predicted result and yi is the label of the instance i, m is the num-
ber of the instances. In this research, we employed stochastic gradient descend
(SGD) method to optimise the back propagation through time algorithm. Our

212 J. Liu et al.

algorithm was realized on the Theano platform. And in order to accelerate our
training process, we referenced Bengio et al.’s approach to train compute the i,
f , o, at in parallel [1].

4 Experiment Study

4.1 Datasets and Evaluation Metrics

In this research, in order to evaluate the proposed model and test the perfor-
mance of different word embedding strategy, four public datasets are employed,
i.e. the non-balanced dataset Customer Review1, MPQA opinion corpus2, and
the balanced dataset Movie Review3 and IMDB4. The four datasets have
3,772, 10,662, 10624, 50,000 instances respectively and the positive and neg-
ative instances rates are 0.64/0.36, 0.31/0.69, 0.5/0.5, 0.5/0.5. In this research,
for the first three datasets, we randomly split the datasets into ten sets and
adopt the 10-fold cross validation strategy to compute the average accuracy.
And for IMDB, since the author has already split it into 50%/50% for training
and testing, we just followed this common splitting approach.

To evaluate the proposed model’s potential, the widely used measurement
accuracy [9] is employed in this research and it is defined as:

Accuracy =

n∑

i=1

1{yi = pi}
#testdata

(11)

where yi stands for the true value that the instance is labelled, and pi is the
result predicted by our model. By evaluating the accuracy in testing set, we can
see our model’s performance towards generalised dataset.

To test the performance of the proposed model, several baselines in the lit-
erature are employed. For the Customer Review, MPQA Opinion Corpus and
Movie Review, Bag-of-Words, Vote by lexicon, Rule-based reversal, Tree-Based
CRF, word embedding based CNN, RNN and LSTM are employed [7,8,10,12].
While for IMDB dataset, LSA, LDA, MAAS Semantic, MAAS Full, word embed-
ding based CNN, RNN and LSTM are used [7–9,12]. Also, for comparsion, we
implemented a framework with random initialised parameters (without attention
aware pre-training step).

4.2 Results and Discussion

The comparison of the proposed model against the baseline methods are dis-
played in Tables 1 and 2. It is found that the proposed model outperform the

1 http://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html.
2 http://mpqa.cs.pitt.edu/.
3 http://www.cs.cornell.edu/people/pabo/movie-review-data/.
4 http://ai.stanford.edu/∼amaas/data/sentiment/.

http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://mpqa.cs.pitt.edu/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://ai.stanford.edu/~amaas/data/sentiment/

Attention Aware Semi-supervised Framework for Sentiment Analysis 213

baseline methods in all the four datasets. The reason is that other baseline meth-
ods cannot learn the underlying relationships between words in great intervals.
For instance, word embedding based CNN is not a time series model, Word
embedding based RNN has the problem of vanishing gradient and WB+LSTM
is not well pre-trained since it is a simple supervised learning model.

Table 1. Accuracy for customer review, MPQA opinion and movie review

Method Customer review MPQA opinion Movie review

Bag-of-word 0.814 0.841 0.764

Voting by lexicon 0.742 0.817 0.631

Rule-based reversal 0.743 0.818 0.629

Tree-CRF 0.814 0.861 0.773

Word embedding based CNN 0.819 0.918 0.778

Word embedding based RNN 0.821 0.867 0.781

Word embedding based LSTM 0.764 0.922 0.774

Our framework (no attention aware) 0.830 0.921 0.784

Our framework (attention aware) 0.846 0.928 0.797

Table 2. Accuracy for IMDB

Method IMDB

LSA 0.839

LDA 0.674

MAAS semantic 0.873

MAAS full 0.874

Word embedding based CNN 0.884

Word embedding based RNN 0.829

Word embedding based LSTM 0.835

Our framework (no attention aware) 0.891

Our framework (attention aware) 0.901

Besides, our framework surpasses the semi-supervised LSTM without atten-
tion mechanism. It indicates that the attention mechanism used in our framework
can promote the performance of the LSTM encoder-decoder model. The reason
is that the attention mechanism makes the LSTM encoder not have to encode
a long sequence into a single vector. It helps the LSTM decoder focus on the
relevant information and enhances the unsupervised process.

Comparing with other baseline methods, we find the proposed model gained
satisfactory performance. The reason is probably mainly three folds: (1) the
unsupervised step which pre-training the parameters for the LSTM network

214 J. Liu et al.

can really help to improve the performance of the LSTM; (2) the attention
mechanism makes the LSTM encoder-decoder get better training ability; (3) the
LSTM network behaves well in learning long-range dependencies of words as it
can catch long sequence information.

Furthermore, we also compared different unlabelled dataset used for the pre-
training step and the result is as shown in Fig. 2, where we set a LSTM with ran-
dom initialised parameters (without pre-training) as the baseline. In this experi-
ment, we found the Amazon review (256,479 sentences) attained the best result.
And the model pre-trained by IMDB training set (25,000 sentences) also got
better results than the randomly initialised LSTM. The reason is that the unla-
belled dataset consists of exterior knowledge. And the Amazon Review includes
highly relevant information to our experimental dataset since most of them are
all reviews. As a result, the Amazon Review has more useful messages.

0.7

0.75

0.8

0.85

0.9

0.95

Customer Review MPQA OPINION Movie Review IMDB

Random Initialised

IMDB training set

Amazon Review

Fig. 2. Results of different datasets used in the unsupervised learning step

5 Conclusion and Future Work

In this paper, we proposed an attention aware semi-supervised LSTM framework.
We first introduced the tasks of sentiment analysis and analysed the benefits of
unsupervised learning for sentiment analysis. The attention mechanism made
the unsupervised encoder-decoder LSTM to focus on the useful information and
thus we can obtain the well pre-trained parameters for initialising the super-
vised LSTM. Afterwards, we presented our model in detail. We first employed
an unsupervised learning model for pre-training the parameters. Then we con-
structed an LSTM network for feature extraction and prediction. The LSTM
network was initialised by the parameters obtained in the unsupervised proce-
dure. In our experiments, the proposed framework beat the baseline methods.
The experimental results had proven the generalisation ability of framework for
sentiment analysis tasks. Concerning to the future work, we plan to use differ-
ent kinds of unlabelled data for the unsupervised learning process. And we will
replace the LSTM encoder-decoder structure with other sequence model.

Acknowledgments. This work was partially supported by the National Natural Sci-
ence Foundation of China (No. 61332018), and the Fundamental Research Funds for
the Central Universities.

Attention Aware Semi-supervised Framework for Sentiment Analysis 215

References

1. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron,
A., Bouchard, N., Warde-Farley, D., Bengio, Y.: Theano: new features and speed
improvements. CoRR abs/1211.5590 (2012)

2. Cheng, Y., Xu, W., He, Z., He, W., Wu, H., Sun, M., Liu, Y.: Semi-supervised
learning for neural machine translation. In: Proceedings of 54th Annual Meeting
of the Association for Computational Linguistics, pp. 1965–1974 (2016)

3. Erhan, D., Bengio, Y., Courville, A.C., Manzagol, P., Vincent, P., Bengio, S.: Why
does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–
660 (2010)

4. Firat, O., Cho, K., Bengio, Y.: Multi-way, multilingual neural machine translation
with a shared attention mechanism. In: Proceedings of 2016 Conference of the
North American Chapter of the Association for Computational Linguistics, pp.
866–875 (2016)

5. Gu, J., Lu, Z., Li, H., Li, V.O.K.: Incorporating copying mechanism in sequence-
to-sequence learning. In: Proceedings of 54th Annual Meeting of the Association
for Computational Linguistics, pp. 1631–1640 (2016)

6. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recur-
rent network architectures. In: Proceedings of 32nd International Conference on
Machine Learning, pp. 2342–2350 (2015)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Proceedings of 26th Annual Conference on Neural
Information Processing Systems, pp. 1106–1114 (2012)

8. Lu, Y., Salem, F.M.: Simplified gating in long short-term memory (LSTM) recur-
rent neural networks. CoRR abs/1701.03441 (2017)

9. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning
word vectors for sentiment analysis. In: Proceedings of 49th Annual Meeting of
the Association for Computational Linguistics, pp. 142–150 (2011)

10. Nakagawa, T., Inui, K., Kurohashi, S.: Dependency tree-based sentiment classifica-
tion using CRFs with hidden variables. In: Proceedings of 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
pp. 786–794 (2010)

11. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised
learning with ladder networks. In: Proceedings of 29th Annual Conference on
Neural Information Processing Systems, pp. 3546–3554 (2015)

12. Raza, K.: Recurrent neural network based hybrid model for reconstructing gene
regulatory network. Comput. Biol. Chem. 64, 322–334 (2016)

13. Zhao, J., Liu, K., Xu, L.: Sentiment analysis: mining opinions, sentiments, and
emotions. Comput. Linguist. 43(3), 595–598 (2016)

Chinese Lexical Normalization
Based on Information Extraction:

An Experimental Study

Tian Tian(B) and WeiRan Xu

Pattern Recognition and Intelligent System Laboratory,
Beijing University of Posts and Telecommunications, Beijing 100876, China

tt1717@foxmail.com

Abstract. In this work, we described a novel method for normalizing
Chinese informal words to their standard equivalents. We form the task
as an information extraction problem, using Q & A community answers
as source corpus. We proposed several LSTM based models for the extrac-
tion task. To evaluate and compare performances of the proposed models,
we developed a standard dataset containing factoid generated by real-
world users in daily life. Since our method do not use any linguistic
features, it’s also applicable to other languages.

Keywords: Text normalization · LSTM · Q & A community

1 Introduction

Social media, such as Twitter1 and Weibo2, has become an important topic in the
computational linguistic community. Unlike the formal text, the user-generated
text are littered with neologisms, abbreviations and phonetic substitutions. The
existence of informal word is problematic for many NLP systems which are
generally trained on clean and formal text. To handle this problem, One possible
way is retrain the NLP tools on data from the domain. However this approach
could be labor expensive and time consuming. Although the form of informal
words varied, an informal word often has a viable formal equivalent such as tmrw
is short for tomorrow. Thus an alternative approach is to mapping the informal
lexical variants back to their standard orthography [1,2].

Generally, the text normalization task in social media field can be decom-
posed into two subtasks: identify informal word in source corpus and mapping
informal word back to it’s formal equivalent. In this study, we focus on the sec-
ond sub-task assuming that the informal word has been identified already. The
inspiration for our work comes mainly from the work of Li and Yarowsky [3].
They tackle the problem of identifying informal/formal Chinese word pairs in the

1 www.twitter.com.
2 www.weibo.com.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 216–223, 2017.
https://doi.org/10.1007/978-3-319-68612-7_25

www.twitter.com
www.weibo.com

Chinese Lexical Normalization Based on Information Extraction 217

Web domain. Given an informal word, They employ a general search engine3 to
collect sentences that illustrate the equivalence between informal/formal pairs,
then generating candidate hypotheses from the sentences and further ranked
using a conditional log-linear model. From our perspectives, data retrieved from
a general search engine could be much noisy even with specially designed queries
and a conditional log-linear model may not powerful enough to learn the complex
mapping function between informal/formal pairs. In our work, we replace the
general search engine with a Q & A community search engine. Given an Informal
word, we search the Q & A community use designed questions, collecting answers
that satisfy specific rules as evidence and from which we extract the informal
word’s corresponding formal equivalent. Thus we transfer the normalization task
into an information extraction task. Formally, the task can be stated as follows:

Suppose we have an sentence which illustrate the equivalence between an
informal-formal pairs, the sentence x = {x1, . . . , xN} consisting of N words
and an informal word xi exist in it, extract a sub-sequence {xb, . . . , xe}, where
1 ≤ b ≤ e ≤ N , as the informal words formal equivalent that most consistent
with the meaning of the evidence.

In the following sections, We will introduce the proposed LSTM based models
for the extraction task. To evaluate and compare performances of the proposed
models, we developed a standard dataset containing factoid generated by real-
world users in daily life performance of each model will reported in later sections.

2 Proposed Models

2.1 LSTM Networks

Recurrent Neural Networks (RNN) is a neural network designed for modeling
sequential information. Given an input sequence of vectors {x1, . . . , xN}, RNN
generates a sequence of hidden states {h1, . . . , hN}, which computed as follows:

ht = tanh(Whht−1 + Wxxt + b) (1)

Theoretically, RNN is capable of learning long distance dependence, however in
practice, it suffers from the gradient vanishing/exploding problems [4]. Long-
short term memory networks (LSTM) [5] is a variant of RNN, introduced to
cope with the gradient problems. By incorporating three gating functions and
maintaining a memory cell, LSTM allows information to flow over long distances.
Formally the hidden states in LSTM computed in the following ways:

ft = σ(Wfxt + Ufht−1 + bf)
it = σ(Wixt + Uiht−1 + bi)
ot = σ(Woxt + Uoht−1 + bo)
gt = tanh(Wgxt + Ught−1 + bg)
ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(2)

3 www.baidu.com.

www.baidu.com

218 T. Tian and W. Xu

where it, ft, ot, ct represents the input, forget, output gates and memory cell,
main mechanism fight against the gradient problem, σ(·) and tanh(·) are the
element-wise sigmoid and hyperbolic tangent function, and � is the element-wise
multiplication operator. We use xt denotes both the word and its embeddings
for simplicity.

In the first model, we use a standard LSTM networks to encode the evidence
and derive the target sequence by predicting its beginning and ending indices
independently. The probability distributions of the start index and end index
over entire sentence are computed as:

ps = softmax(vsh) (3)

pe = softmax(veh) (4)

where h = [h1; ...;hN], H ∈ R
d×N , is the hidden states generated by LSTM, vs,

ve ∈ R
1×d are parameters to be learned.

During training, we minimize the following loss function based on training
examples:

−
K∑

i=1

log(psys
i
) + log(peye

i
) (5)

where ys
i , ye

i are the truth start and end indices of the i’th example, K is
the number of examples in the training set, pi represents the i’th element of
vector p.

During predicting, we choose the valid span (j, k) with maximum value of
psjp

e
k as the target sequence:

(j, k) = argmax
j≤k

psjp
e
k (6)

2.2 Bi-LSTM Networks

In the aforementioned LSTM based models, we use a standard LSTM processing
the input sentence in one direction. At time step t, the hidden state ht only
contains information about previous time step. Bi-directional LSTM (Bi-LSTM)
is designed to capture full contextual information from past and future context.
BiLSTM network has two parallel standard LSTM layer, refer to as forward
layer and backward layer. Given an input sequence x, the forward layer process
input sequence from left to right, generate a sequence of hidden states

−→
h , the

backward layer process input sequence from right to left, generate a sequence of
hidden states

←−
h . The final representation of hidden state at each time step is the

concatenation of the two layers hidden states ht = [
−→
ht ,

←−
ht]. The BiLSTM based

model in this section is similar with the aforementioned LSTM based model
except that the LSTM layer is replaced by a Bi-LSTM layer.

Chinese Lexical Normalization Based on Information Extraction 219

2.3 Stacked Bi-LSTM

The proposed stacked Bi-LSTM has two layers of Bi-LSTM. The first layer
process the input sequence in bi-direction and generates a sequence of hidden
states h1 = [h1

1; ...;h
1
N], then the second layer takes h1 as input and outputs

hidden states h2 = [h2
1; ...;h

2
N]. h1 and h2 are used to compute the probability

distributions of start index and end index individually.

ps = softmax(vsh1) (7)

pe = softmax(veh2) (8)

2.4 LSTM with Chunk Encoding

In the previous models, we extract answer chunks by predicting the start and
end indices separately. In this model, we encode a possible answer chunks within
a maximum length into a fixed size representation and directly model the prob-
ability distribution over all possible answer chunks.

First, the input sentence x is encoded by a bi-directional LSTM resulting in
hidden states

−→
h of the forward layer and

←−
h of the backward layer. For a certain

candidate answer chunks a = xi:j , which starting at position i and ending at
position j, we encode it as:

ha = [
−→
hj ;

←−
hk] (9)

Then the probability is modeled as:

p(a|x) =
exp(vha)∑

ã∈A(x)

exp(vhã)
(10)

where A(x) is the set of all possible candidate chunks.
In training, the following negative log likelihood is minimized:

−
K∑

i=1

log P (ai|xi) (11)

where K is the number of examples, ai is the golden answer of the i’th example.

3 Experiment

3.1 Data Collection

Baidu Zhidao4 is the largest Chinese Q & A community. The website provides a
search engine which can retrieve relevant questions along with peoples’ answers
according to the input query. Given an informal word, we search the community
with designed queries like “what is the meaning of ?”, in which the slot is
filled with the informal word. Then we download web pages returned in the first
3 result pages and extract answers as evidence with the following rules:
4 www.zhidao.baidu.com.

www.zhidao.baidu.com

220 T. Tian and W. Xu

• the informal word consist in both the question and the answer
• the selected answers should get high points of “agree”

The first rule aims to filter out irrelevant questions retrieved by the search engine,
the second rule ensures that the answer is appropriate to our question. In most
cases, answers selected under the restriction of these two rules, will contain an
appropriate formal word that equivalent to the given informal word. To construct
the dataset, we manually collect 858 informal words. Following this procedure, we
finally get 2901 unique sentences5. Each sentence contains at least an informal-
formal pair and has illustrated the equivalence between them. We employed LTP
Toolkit6 for sentence tokenization. An additional informal words dictionary is
used to help the toolkit segment informal words correctly.

3.2 Implement Details

In the experiments, the first layer for all LSTM models are word embedding
layer. The embedding layers are initialized with pre-trained 100-dimensional
embeddings using skip-gram model [6] implemented by word2vec toolkit. The
embeddings is trained on part of Chinese Gigaword corpus7 and fixed during
training. All words without pre-trained embedding are mapped to an <unk>
token. Especially, all given informal word are mapped to an <informal> token
to help the models identify the informal word’s location.

The hidden size used in all LSTM is set to 50 and tune this parameter did
not significantly influence the final result. All LSTM weights and feed-forward
layers are initialized from a uniform distribution between (0.01, 0.01). For reg-
ularization, we adopt dropout with a probability of 0.2 in all LSTM layers and
word embedding layer. All models are trained end-to-end using Adam with initial
learning rate 0.0005. We employ gradient clipping when the norm of gradients
exceeds 5. The batch size is set to 10. All models are implemented with Keras
and Theano.

The sentences was split into training (80%) and test set (20%) with informal
word as a key. During training, 10% of the training data form the validation set
for the purpose of model evaluation and early stoping. We report result based
on Exact Match (EM) and F-score. The EM metric measures the percentage of
predictions that exact match the ground truth answers. The F-score is carry out
on word level which measures the overlap between the prediction and ground
truth answer. Word based F-score is a more relaxed metric than Exact Match.

3.3 Result and Discussion

Table 1 shows the performances of each models. From the results we observe that
the stacked Bi-LSTM performs better than the other starting/ending prediction

5 Our dataset is available at www.github.com/tiantian002/.
6 www.ltp-cloud.com.
7 www.catalog.ldc.upenn.edu/LDC2009T14.

www.github.com/tiantian002/
http://www.ltp-cloud.com
www.catalog.ldc.upenn.edu/LDC2009T14

Chinese Lexical Normalization Based on Information Extraction 221

Table 1. Evaluation results

Models EM Precision Recall F1 Parameters

LSTM 49.1 50.5 58.3 54.2 30.3K

Bi-LSTM 50.6 53.3 62.8 57.7 60.6K

Stacked Bi-LSTM 53.9 55.2 68.7 61.2 121K

LSTM with chunk encoding 55.3 57.3 68.4 62.5 60.5K

models. We believe that the two-layer stacked architecture can establish depen-
dence between the begin and ending index to a certain degree. The Bi-LSTM
model performs better than the LSTM model, since it benefit from the full con-
textual features. The chunk encoder performs best since it directly predict a
answer chunk rather than predict it’s starting/ending points. In experiment, we
observed that, all start/ending prediction models performs better than the chunk
encoding model when the target sequence contains only one word. However their
performance drops rapidly when the length of target sequence increased. The
performance of the chunk encoding model among each length of target sequence
is relatively stable, since it encodes all chunks in a unified way.

Inherently, given a sentence contains N tokens, the number of possible can-
didates is in the order of O(N2). The first three models benefit from the simple
independent assumption of predicting the beginning and ending points, which
reduce the size of models softmax operation into O(N) order. The chunk model
reduce complexity by reusing outputs of the encoder layer and limiting the max
length of candidates. With the max length of candidates set to M , the size of
the softmax operation is O(MN) order. Additionally, the models complexity is
also affected by the different architectures of RNNs, the amount of trainable
parameters of each model is shown in Table 1.

We analyse the error cases that all proposed models failed and find out that
they mainly fall into two categories. Some answers contains more than one pair
of informal-formal words, an example in English could be like “tmr is often
used for tomorrow, just like asap equals as soon as possible”. In this case, the
target sequence depends on the given informal words, tomorrow for tmr and as
soon as possible for asap. This makes extraction be a target-depended task. An
example of the second class could be like “see you 2nite just is see you tonight”,
semantically the sentence defines two equivalent chunk see you 2nite and see
you tonight, however it involved inference to know that 2nite equals tonight.
Designing model for this two problems should enhance the overall performance
and we leave it to further research.

4 Related Works

Text normalization has been an important topic in text-to-speech and clinical
text processing for a long time. In recently years, the researchers focused more on
the field of social media. Many works are inspired by other tasks, such as machine

222 T. Tian and W. Xu

translation [7], spell checking [2]. In [8] Liu et al. proposed a cognitively-inspired
approaches, Beaufort et al. [9] incorporating rule with statistical based models,
random walks also involved to solve the normalization task [10]. Due to the
lack of annotated data, unsupervised or semi-supervised method [11–13] is also
popular with the researchers.

In processing Chinese, Wang and Kan [14] proposed a model to process infor-
mal word detection and word segmentation jointly. In [15], they further extend
their work into text normalization. By using context information, they generates
candidates from large corpus, then classify the candidates with linguistic and sta-
tistic features. Li and Yarowsky [3] tackle the problem in the web domain by
generating candidates from Baidu search engine and ranking using a conditional
log-linear model. Qian et al. [16] proposed a joint model for segmentation, POS-
tagging and normalization for Chinese microblogs. To meet the normalization
task, they build up a noisy informal/formal pair dictionary with bootstrapping
algorithm.

Recent years, neural networks have shown outstanding performance in vari-
ous NLP tasks. Researchers start introduce neural techniques into social media
normalization. In [17] word-level edits are predicted based on LSTM networks
with character sequences and POS features. In [18], a hierarchical two layer for-
ward feed neural networks was proposed to jointly predict whether a word should
be normalized and the normalized token given an input token.

In addition, a thorough discussion of the effect of text normalization in social
media could be seen in [19].

5 Conclusion

In this work, we tackle the lexical normalization task with information extraction
method. We proposed several LSTM based models for the extraction. To evaluate
and compare performances of the proposed models, we developed a standard
dataset containing factoid generated by Q&A community users in daily life. We
reported our experiment result and discussed advantages and disadvantages of
each model. In future work, We want annotate more training data and introduce
linguistic features to push the performance further and test our method on other
languages.

Acknowledgments. This work was supported by 111 Project of China under Grant
No. B08004, National Natural Science Foundation of China (61273217, 61300080,
61671078), the Ph.D Programs Foundation of Ministry of Education of China
(20130005110004).

References

1. Han, B., Baldwin, T.: Lexical normalisation of short text messages: makn sens
a Twitter. In: Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics, Portland, pp. 368–378. ACL (2011)

Chinese Lexical Normalization Based on Information Extraction 223

2. Liu, F., Weng, F., Wang, B., Liu, Y.: Insertion, deletion, or substitution? Normal-
izing text messages without pre-categorization nor supervision. In: Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, Portland, pp. 71–76. ACL (2011)

3. Li, Z., Yarowsky, D.: Mining and modeling relations between formal and informal
Chinese phrases from web corpora. In: Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pp. 1031–1040 (2008)

4. Bengio, Y., Simard, P.: Learning long-term dependencies with gradient descent is
difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: Proceedings of NIPS
(2013)

7. Aw, A.T., Zhang, M., Xiao, J.: A phrase-based statistical model for SMS text
normalization. In: Proceedings of COLING/ACL 2006, Sydney. ACL (2006)

8. Liu, F., Weng, F., Jiang, X.: A broad-coverage normalization system for social
media language. In: Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics, Jeju Island, pp. 1035–1044. ACL (2012)

9. Beaufort, R., Roekhaut, S., Cougnon, L.-A., Fairon, C.: A hybrid rule/model-based
finite-state framework for normalizing SMS messages. In: ACL, pp. 770–779 (2010)

10. Hassan, H., Menezes, A.: Social text normalization using contextual graph random
walks. In: Proceedings of ACL (2013)

11. Cook, P., Stevenson, S.: An unsupervised model for text message normalization.
In: Proceedings of the Workshop on Computational Approaches to Linguistic Cre-
ativity, Boulder, pp. 71–78. ACL (2009)

12. Han, B., Cook, P., Baldwin, T.: Automatically constructing a normalisation dictio-
nary for microblogs. In: Proceedings of the Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning,
Jeju Island, pp. 421–432. ACL (2012)

13. Yang, Y., Eisenstein, J.: A log-linear model for unsupervised text normalization.
In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, Seattle, pp. 61–72. ACL (2013)

14. Wang, A., Kan, M.-Y.: Mining informal language from Chinese microtext: joint
word recognition and segmentation. In: Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics, pp. 731–741 (2013)

15. Wang, A., Kan, M.-Y., Andrade, D., Onishi, T., Ishikawa, K.: Chinese informal
word normalization: an experimental study. In: Proceedings of IJCNLP, pp. 127–
135 (2013)

16. Qian, T., et al.: A transition-based model for joint segmentation, POS-tagging and
normalization. In: EMNLP (2015)

17. Min, W., Mott, B., Lester, J.: NCSU SAS WOOKHEE: a deep contextual long-
short term memory model for text normalization. In: Proceedings of WNUT, Bei-
jing (2015)

18. Leeman-Munk, S., Lester, J.: NCSU SAS SAM: deep encoding and recon-
struction for normalization of noisy text. In: Proceedings of WNUT,
Beijing (2015)

19. Baldwin, T., Li, Y.: An in-depth analysis of the effect of text normalization in
social media. In: Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (2015)

Analysing Event Transitions to Discover Student
Roles and Predict Grades in MOOCs

Ángel Pérez-Lemonche(B), Gonzalo Mart́ınez-Muñoz,
and Estrella Pulido-Cañabate

Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
angel.perezl@estudiante.uam.es, {gonzalo.martinez,estrella.pulido}@uam.es

Abstract. When interacting with a MOOC, students can perform dif-
ferent kinds of actions such as watching videos, answering exercises, par-
ticipating in the course forum, submitting a project or reviewing a doc-
ument. These actions represent the dynamism of student learning paths,
and their preferences when learning in an autonomous mode. In this
paper we propose to analyse these learning paths with two goals in mind.
The first one is to try to discover the different roles that students may
adopt when interacting with an online course. By applying k-means, six
of these roles are discovered and we give a qualitative interpretation of
them based on student information associated to each cluster. The other
goal is to predict academic performance. In this sense, we present the
results obtained with Random Forest and Neural Networks that allow us
to predict the final grade with around 10% of mean absolute error.

Keywords: Learning analytics · Role clustering · Neural networks

1 Introduction

Massive Open Online Courses (MOOCs) generate loads of data that can be
processed by using Learning Analytics to further exploration and comprehension
of the courses. In [5], concepts, processes and potential applications of what
Learning Analytics could bring are defined and developed in a theoretical way.
Educational data mining can also be applied to educational data for extracting
further knowledge of the learning processes [2]. In addition, as stated in [4]
Educational Big Data also applies analysis techniques but in a time-efficient
manner so that educational institutions can benefit from the analysis results
and redesign their online courses accordingly.

In this sense, one way to explore MOOC data is to apply unsupervised or
supervised machine learning algorithms in order to identify groups of students
by their learning approaches or to predict their performance. This can help to
understand the behaviour not only within the course given, but also in general,
as a pedagogical instrument to know how people learn best and identify the roles
that foster learning.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 224–232, 2017.
https://doi.org/10.1007/978-3-319-68612-7_26

Analysing Event Transitions to Discover Student Roles in MOOCs 225

In [10], different techniques are reviewed for role discovering in social net-
works. Three approaches are described to solve this problem: graph-based analy-
sis, feature-based analysis and a hybrid approach. Their experiments, that focus
on a graph-based approach, identified persistent roles in different social networks.
In the proposed work, we followed a feature-based approach, since the definition
of a graph in the context of online learning is unclear.

Other study related to unsupervised learning in MOOCs is the analysis of
discussion forums by applying word-based methods [6]. This study compares
with the results obtained by using manual labelling. The authors identify seven
clusters based on student interactions with the forum. In other studies [7,11],
clustering techniques are applied to measure the engagement of students in the
courses. In [7], they define a feature to measure the level of interaction with the
course and then compute its value for each week of the course. These sequences of
values are clustered for different users and courses to detect engagement patterns
across courses.

In [11], they find three profiles based on the number of logins, assignment
submissions and watched videos. However, most students were assigned to a
cluster identified with those that carried out very few actions in the course. In
our work, we preferred to discard students with a small number of interactions
to better understand the behaviour of those interested in the course work.

Another important application of machine learning in MOOCs is grade pre-
diction. The goal is to predict how well students will perform before they actually
finish the course and to understand which factors affect academic performance.
The results of this analysis can be useful to personalise and improve the course
contents [9]. Some works such as [1] predict the grade based only on activity-
related events. In [8] predictions are based on quizzes’ results. In other study
[12], timestamps of events are used to perform their predictions.

In contrast with existing work that analyses the number of events generated
by students when interacting with online courses, in this paper we propose to add
the temporal dimension and analyse the temporal sequence of events that we call
learning paths. We extract the information contained in these temporal sequence
of events by using the transitions between consecutive events as features.

We show that learning paths give information about students learning process
that can help us to identify and understand the roles that students take when
following an online course. Furthermore, they are also useful to predict students
academic performance and can discriminate students that will achieve a high
score from others not interested in getting a certificate.

2 Problem Description and Data Processing

The analysis presented in this work is based on log data obtained from the first
edition of the MOOC Playing with Android - Learn how to program your first app
offered by the Universidad Autónoma de Madrid in edX1. The goal of this course

1 https://www.edx.org/school/uamx.

https://www.edx.org/school/uamx

226 Á. Pérez-Lemonche et al.

(taught in Spanish) is to understand the fundamental aspects of programming
in Android and to be able to use these elements to develop a simple Android
app.

The course is structured in seven weeks. The first six weeks introduce the
contents of the course and propose programming activities. The last week is
reserved for a final exam. During the six-week period, videos, short questions
related to the video contents and programming activities are made available to
students in a weekly basis. Each week’s content is presented using an average of
five short videos. After each video, a few short questions are proposed in order
to check whether the main ideas explained in the videos have been understood.
Each week also includes a programming activity intended for students to program
some elements related to the topics covered during the week. Both questions
and activities are evaluable and have a weight of 10% and 30% for the final
grade, respectively. In addition, there is a programming project activity that
runs throughout the course with a weight of 30% of the grade. The final exam
accounts for the final 30% of the grade. All the documentation of the course is
available in pdf format. In addition a general forum allows students to obtain
help and interact with other students.

As the students progress through the elements of the course different events
are recorded. The path that each student follows in the course is free within the
weeks that are available. However the contents are organised sequentially and
there is a suggested path that can be followed. From the myriad of events the
edX platform generates, we have identified six that we consider able to describe
the behaviour of students in the course. The identified events are Video —
from all events related to student interaction with videos we have kept only the
one related to the action of playing the video—, Exercise —event related to
student answering a multiple choice question associated to a video—, Activity
—student submission of a multiple choice question related to the programming
activities of the week—, Forum —the event accounts for every possible student
interaction with the course forum—, Project —student submission of one of
the parts of the programming project—, and Document —student navigation
through one of the text documents related to videos or downloading them—.

For each identified event, the following information is kept: student identifier,
timestamp, content identifier and, in the case of evaluable content, the submitted
value and the result of the submission. Note that, in addition to filtering the
events, a cleaning phase was also applied to remove repeated events and events
with missing information such as the id of the student generating the event,
time, etc. Finally, events are sorted by time and grouped by student.

In order to model the progress of students through the course and to keep
temporal information, transitions between consecutive events are extracted from
the sorted series of events of each user. For each student, a transition matrix is
generated where each row of the matrix corresponds to a starting event type,
each column to the ending event and each cell value to the number of transitions
from the event of the corresponding row to the given column. The event types are
the ones described above, thus the matrix size is 6 by 6. Furthermore, students

Analysing Event Transitions to Discover Student Roles in MOOCs 227

with less than 20 transitions were removed in order to avoid noisy patterns. After
this whole process, we obtained transition matrices for 2, 329 students.

Finally, these transition matrices were normalized by dividing each cell by
the total number of events in the matrix. Preliminary experiments showed that
working with normalized transition matrices provided more consistent results.
This preliminary analysis also showed that many transitions were never, or very
rarely, observed. Hence, instead of working with these rare features, we selected
the features that accounted for more than 95% of the transitions. The remaining
set of transitions were accumulated into a new feature. In total, from the 36 pos-
sible transitions we kept 13 of them and an additional one summarizing the rest,
leaving the resulting features to use as: Activity to Activity (A2A), Activity to
Exercise (A2E), Activity to Video (A2V), Document to Document (D2D), Doc-
ument to Video (D2V), Exercise to Activity (E2A), Exercise to Exercise (E2E),
Exercise to Video (E2V), Forum to Forum (F2F), Video to Activity (V2A),
Video to Document (V2D), Video to Exercise (V2E), Video to Video (V2V) and
Rest (Rest).

3 Experiments

In this section, the information related to student transitions between events, as
described above, is used to carry out two experiments. In the first experiment,
students are clustered based on transitions, in order to identify the different
learning patterns that students follow in the course. The second experiment
shows that the information about how students move through the course (i.e.
the transitions) can be used to accurately predict the final grade.

For both experiments, the 14 previously identified features are used to
describe the student interactions with the course.

In order to extract the different groups of students in relation to how they
move in the course, several clustering algorithms were applied. Specifically, we
tested: Mean Shift clustering, Hierarchical clustering, Gaussian Mixture Model
and k-means.

Mean Shift and Hierarchical clustering grouped most students in one big
cluster (≈86% of students), one medium cluster (≈13% of students) and one or
several very small clusters (<1%). Gaussian Mixture Model finds rather balanced
clusters, however, with very small inter-cluster distance. Small inter-cluster dis-
tance and highly unbalanced clusters makes the interpretation of the different
patterns difficult.

The best and most interpretable results were given by k-means. We combined
this method with BIC and with inter-cluster distance to select the number of
clusters. Figure 1, shows the average inter-cluster distance (top plot) and BIC
(bottom plot) with respect to the number of clusters. We identified six clusters
as a reasonable number of k, which provides a small BIC and a good inter-
cluster distance together with interpretability. By using higher values of k, the
interpretability of clusters decreases with no significant improvement in the inter-
cluster distance.

228 Á. Pérez-Lemonche et al.

Table 1. Information associated to each cluster

of
Students

Average
grade

Avg. access
time (Days)

Avg. time
last event

Avg. # of
transitions

Cluster 0 269 0.0 ± 0.1 20.8 ± 11.0 25.9 ± 10.8 45.5 ± 21.8

Cluster 1 395 0.2 ± 0.4 9.6 ± 6.9 15.6 ± 10.3 32.6 ± 14.4

Cluster 2 111 0.4 ± 1.0 19.3 ± 10.0 28.9 ± 10.0 45.2 ± 25.4

Cluster 3 324 1.2 ± 2.3 12.8 ± 7.7 23.0 ± 11.4 90.9 ± 71.5

Cluster 4 200 3.5 ± 3.5 16.9 ± 6.7 26.0 ± 10.1 103.1 ± 51.7

Cluster 5 1030 3.9 ± 3.5 15.5 ± 5.9 28.6 ± 10.2 132.2 ± 61.5

Fig. 1. (a) Inter-cluster distance for k-means algorithm. (b) BIC variation between
clusters.

A similar number of clusters was found in other studies [6,7] that suggest
using a number of clusters between 3 and 10.

Table 1 shows the statistics related to the students in those clusters. The table
shows for each cluster: the number of students assigned to it, their average grade
(ranged 0 to 10), average access time (average of event timestamps measured in
days since the beginning of the course), the average time of the last event of
each user (in days since the beginning), and the average number of transitions
performed. The clusters are sorted by ascending average grade. Note that none
of the clusters have an average grade greater than 5.0. This is due to the fact
that only ≈25% of the analysed students actually finish the course and take the
final exam.

Analysing Event Transitions to Discover Student Roles in MOOCs 229

In Fig. 2 the centroids of the clusters found are plotted as a radar chart in
the 14-dimensions of the problem. Since vectors are normalized to sum one, they
take values from 0 to 1, being 1 the centre of the plot.

Fig. 2. Centroids position in the cluster.

Based on the information of Table 1 and Fig. 2, different kinds of students
can be identified:

– Cluster 0: This cluster corresponds to the one with the highest peak in
document to document transitions (D2D). In fact, students assigned to this
cluster barely carry out any other activity. Hence, their final mark in average
is 0.0. In addition, they perform their interaction with the course at the latest
time with respect to all clusters on average, indicating that they wait until
all contents are available to download the documents. They could be the ones
whose aim is just downloading the course documents to read them later.

– Cluster 1: Students in this cluster distribute their activities among all tran-
sitions related to videos and exercises (V2V, V2E, E2V and E2E). They work
at the beginning of the course as can be seen by the lowest average access
time observed. These students could be identified as the ones that start the
course but soon dropout.

– Cluster 2: This cluster presents the highest peak in video to video transi-
tions (V2V) and smaller peaks in exercise related and document to document
transitions (D2D). They barely perform any evaluable activity, as can be
observed in their low final mark but this group is active along the whole
course. They have one of the highest average access time. This group could
be identified with students interested in the contents but not in the evaluation
or certificate. This is the cluster with the lowest number of students assigned.

230 Á. Pérez-Lemonche et al.

– Cluster 3: The students of this group dropout quite early in the course on
average. They perform some activities and exercises and finally download the
documents. This cluster could be identified with students that cannot follow
the course but download the documents for reviewing them later.

– Cluster 4: The students in this cluster show peaks in activities (A2A) and
exercises (E2E) and show a smaller number of interactions with the contents.
Nevertheless, they perform quite well on average.

– Cluster 5: The students in this cluster also show peaks in activities (A2A)
and exercises together with interactions with the content. This is the cluster
with the largest number of students assigned. The students in this cluster
could be seen as the normal students, that is, the ones that follow the course
going through all the contents and activities.

In order to understand whether student transitions along the course could
be used to predict the grade, a second experiment was carried out. For this
experiment, a multilayer Neural Networks and Random Forest [3] regressors
were applied to predict the grade in the range [0, 10]. The procedure followed
in this experiment was the same for both methods: (i) Data were split using
10-fold cross-validation; (ii) For each train partition, the best parameter con-
figuration was selected by applying a grid search with 10-fold cross-validation
within the training set. For the Neural Network the following parameters were
tested: the maximum number of iterations [100; 200; 500; 1,000], alpha [10e−2,
10e−4, 10e−6], and one and two hidden layers with [(5), (10), (50), (100), (5,
2), (10, 5), (50, 10), (100, 10)]. For Random Forest we used 500 estimators,
unlimited maximum depth, and the number of features selected in each node
using sqrt and log2 of the total number of features; (iii) After selecting the best
parameter configuration over the train data, the model was trained using the full
training data and (iv) finally, the test partition was used to obtain an estimation
of the generalization error.

Two metrics were used to both select the optimum set of parameters and eval-
uate the models in test: the mean squared error (MSE) and the mean absolute
error (MAE). The mean values obtained for both error metrics are shown in
Table 2 together with the standard deviation given after the ± sign. For the
Neural Network the median parameters chosen were the maximum number of
iterations 500, alpha 0.001, and two hidden layers, the first one with 50 neurons
and the second one with 10 neurons; whereas for Random Forest the median
parameters chosen were 500 estimators, and the maximum number of features
selected using square root of the number of features. The average results are
shown in Table 2.

From Table 2, it can be observed that Random Forest achieves slightly better
results for this task than Multilayer Neural Network. Both methods obtain an
absolute mean error close to 1, which is a rather accurate prediction, only one
point above or below, on average, of the student final mark.

Analysing Event Transitions to Discover Student Roles in MOOCs 231

Table 2. Average grade prediction error

SME MAE

Neural network 3.8 ± 0.7 1.3 ± 0.16

Random forest 3.3 ± 0.5 1.1 ± 0.15

4 Conclusions

In this paper we propose to model the progress of students through online courses
as well as the associated temporal information by extracting the transitions
between consecutive events from those generated by each student. By applying
clustering and neural networks methods to data related to these event transitions
we showed that it is possible to identify different student learning patterns and
to predict student academic performance with around 10% of mean absolute
error. This allows us to conclude that the analysis of event transitions can be a
promising approach to understand and predict student behaviour.

Acknowledgments. The authors acknowledge financial support from the Spanish
Ministerio de Economa y Competitividad (TIN2016-76406-P and from the UAM/IBM
Chair).

References

1. Ashenafi, M.M., Riccardi, G., Ronchetti, M.: Predicting students’ final exam scores
from their course activities. In: 2015 IEEE Frontiers in Education Conference
(FIE), pp. 1–9 (2015)

2. Baker, R.S., Inventado, P.S.: Educational data mining and learning analytics. In:
Larusson, J.A., White, B. (eds.) Learning Analytics, pp. 61–75. Springer, New York
(2014). doi:10.1007/978-1-4614-3305-7 4

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
4. Ducange, P., Pecori, R., Sarti, L., Vecchio, M.: Educational big data mining:

how to enhance virtual learning environments. In: Graña, M., López-Guede,
J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds.) ICEUTE/
SOCO/CISIS -2016. AISC, vol. 527, pp. 681–690. Springer, Cham (2017). doi:10.
1007/978-3-319-47364-2 66

5. Elias, T.: Learning Analytics: The Definitions, the Processes, and the Potential
(2011)

6. Ezen-Can, A., Boyer, K.E., Kellogg, S., Booth, S.: Unsupervised modeling for
understanding MOOC discussion forums: a learning analytics approach. In: Pro-
ceedings of the Fifth International Conference on Learning Analytics And Knowl-
edge, LAK 2015, pp. 146–150. ACM (2015)

7. Ferguson, R., Clow, D.: Examining engagement: analysing learner subpopulations
in massive open online courses (MOOCs). In: Proceedings of the Fifth International
Conference on Learning Analytics and Knowledge, LAK 2015, pp. 51–58. ACM
(2015)

http://dx.doi.org/10.1007/978-1-4614-3305-7_4
http://dx.doi.org/10.1007/978-3-319-47364-2_66
http://dx.doi.org/10.1007/978-3-319-47364-2_66

232 Á. Pérez-Lemonche et al.

8. Jiang, S., Williams, A., Schenke, K., Warschauer, M., O’dowd, D.: Predicting
MOOC performance with week 1 behavior. In: Educational Data Mining 2014
(2014)

9. Lefevre, M., Guin, N., Marty, J.C., Clerc, F.: Personalization of MOOCs (2016)
10. Revelle, M., Domeniconi, C., Johri, A.: Persistent roles in online social net-

works. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML
PKDD 2016. LNCS, vol. 9852, pp. 47–62. Springer, Cham (2016). doi:10.1007/
978-3-319-46227-1 4

11. Tseng, S.F., Tsao, Y.W., Yu, L.C., Chan, C.L., Lai, K.R.: Who will pass? Analyzing
learner behaviors in MOOCs. Res. Pract. Technol. Enhanced Learn. 11(1), 8 (2016)

12. Xu, B., Yang, D.: Motivation classification and grade prediction for MOOCs learn-
ers. In: Computational Intelligence and Neuroscience 2016 (2016)

http://dx.doi.org/10.1007/978-3-319-46227-1_4
http://dx.doi.org/10.1007/978-3-319-46227-1_4

Applying Artificial Neural Networks
on Two-Layer Semantic Trajectories

for Predicting the Next Semantic Location

Antonios Karatzoglou1,2(B), Harun Sentürk1, Adrian Jablonski1,
and Michael Beigl1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{antonios.karatzoglou,michael.beigl}@kit.edu,

antonios.karatzoglou@de.bosch.com,

{harun.sentuerk,adrian.jablonski}@student.kit.edu
2 Robert Bosch GmbH, Corporate Sector Research and Advance Engineering,

Stuttgart, Germany

Abstract. Location-awareness and prediction play a steadily increas-
ing role as systems and services become more intelligent. At the same
time semantics gain in importance in geolocation application. In this
work, we investigate the use of artificial neural networks (ANNs) in the
field of semantic location prediction. We evaluate three different ANN
types: FFNN, RNN and LSTM on two different data sets on two dif-
ferent semantic levels each. In addition we compare each of them to a
Markov model predictor. We show that neural networks perform overall
well, with LSTM achieving the highest average score of 76,1%.

Keywords: Feed-forward-, Recurrent-, LSTM- Artificial Neural Net-
works · Markov chains · Semantic trajectories · Location prediction

1 Introduction

Knowing the location constitutes an important asset especially for location based
management systems (LBMS) and services (LBS), whereby knowing both cur-
rent, as well as the future location are equally important. In resource manage-
ment systems for instance like intelligent traffic systems (ITS) and mobile com-
munication, location prediction helps systems to look ahead in people’s behavior
and (pro-)act in an appropriate way. While predicting the location point (e.g.
GPS coordinates) of a user is useful, knowing more about the particular location
itself brings additional benefits. Having for instance knowledge about the loca-
tion type (“home”, “work”, “restaurant”, etc.) enables systems to better under-
stand the logic behind users’ movement patterns. This understanding results
subsequently in deriving more sophisticated, high level rules and to provide con-
sequently more accurate predictions. The use of semantics leads to the notion
semantic trajectories described in Sect. 3. There exist many different location

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 233–241, 2017.
https://doi.org/10.1007/978-3-319-68612-7_27

234 A. Karatzoglou et al.

prediction algorithms. Each approach points out certain advantages and disad-
vantages depending on its model and the nature and size of the available data.
Artificial Neural Networks (ANNs) show generally a good performance in time
series analysis and forecasting. Moreover, recurrent networks in particular, per-
form well when it comes to modeling sequences due to their nature. This makes
them an ideal candidate for modeling spatio-temporal sequences. In addition,
mobility analysis is generally considered to be a complex and nonlinear prob-
lem, which ANNs are also capable of handling well. In this paper we investigate
the use of artificial neural networks in modeling semantic trajectories of mobile
users and predicting their future semantic location. For this purpose we imple-
ment and compare three different types of neural networks: Feed-Forward, simple
Recurrent and Long-Short-Term-Memory (LSTM), a special form of recurrent
nets. The resulting models are trained and tested on two different data sets:
a 3-month long single user data set and the multi-user MIT data set [3]. In
addition, we compare their performance to the one of a typical probabilistic
approach, Markov Chains. We show that neural networks perform overall well in
predicting the next semantic locations with LSTM outperforming the competi-
tion. The rest of the paper is organized as follows; The related work is described
in Sect. 2. Next, Sect. 3 gives a short insight in semantic trajectories. In Sect. 4
we will go deeper to the theoretical background and the implementation of our
models. Section 5 gives a comprehensive view on our evaluation results, while
lastly, Sect. 6 outlines our overall conclusions.

2 Related Work

Biesterfeld et al. were one of the first that used neural networks to address
the topic location prediction. In their work [2], they investigated several vari-
ants of feed-forward and recurrent networks. They showed that neural networks
perform generally well when it comes to motion pattern representation, with
feed-forward achieving the best results. In [7], Vintan et al. within the scope of
building an indoor location prediction system based on a 3-layer feed-forward
perceptron investigated both separate models for each of the user, as well as
a joint model composed of all of them. Their result indicate a higher accuracy
on the part of the individualized models by showing an accuracy up to 92%.
In 2012, Etter et al. compared three different models for solving a location pre-
diction task [4]. A 3-layer feed-forward ANN achieved the best results, outper-
forming both the Dynamic Bayesian Network (DBN) and the Gradient Boosted
Decision Trees (GBDT). Finally, Song et al. describe in their recent work [5]
a deep LSTM based neural network architecture for simulating and predicting
human mobility and transportation mode. They evaluated their system against
Hidden Markov Model (HMM), Gaussian Model (GM) and a set of other neural
networks variants. The deep LSTM was found to perform at best. The afore-
mentioned research work dedicates itself to the use of ANNs on modeling and
forecasting users’ trajectories in general. However, recently there exists a small
but growing research community, which takes the semantics behind the trajec-
tories explicitly into consideration. Alvares et al. were one of the first in [1], who

ANN-Based Future Semantic Location Prediction 235

modeled and analyzed semantic trajectories. Some years later, in 2011, Ying et
al. presented a first location prediction approach based on semantic trajectories
[9]. They used prefix trees to model the respective trajectories and took both
the popularity of the location, as well as the movement pattern similarity of
users for estimating the future location. Semantic trajectories can also be found
in (location) recommendation systems and/or location based social networks,
where knowing the semantics of a location plays a major role. An interesting
approach is given by Zheng et al. [10], who take different geographic levels into
account by applying a tree-based hierarchical graph, whereby each level denotes
a different geospatial scale (city, district, block) and thereby a different semantic
interpretation accordingly. The recommended location itself is finally provided
through a HITS-based inference model depending on the travel history of the
user in the respective different levels. In our work we aim at exploring both the
modeling of semantic trajectories with ANNs, as well as the notion of different
semantic layers, while testing several ANN types at the same time.

3 Semantic Trajectories

Trajectories define spatio-temporal sequences, which describe the movement of
objects. A typical (GPS) trajectory can be seen in formula 1. A single point
is determined by its latitude, its longitude, the altitude and the corresponding
time:

traj = (lat1, long1, alt1, t1), (lat2, long2, alt2, t2), ... (1)

Coordinates are not enough though for understanding the logic behind such
movement patterns and the overall people’s behavior; an understanding that
promotes a more accurate estimation of their next steps. Spaccapietra et al.
highlighted first the importance of semantics when modeling trajectories in order
to understand the varying underlying meaning of them. So, in [6] they introduced
a conceptual view over them by importing basic semantic elements such as stops,
moves, begin and end. Yan et al. define a semantic trajectory in [8] as:

“a structured trajectory where the spatial data (the coordinates) are
replaced by geo-annotations and further semantic annotations”

resulting to a sequence of semantic episodes:

trajsem = se1, se2, se3, ... (2)

There are many ways to describe a location depending on the semantic level
to which is regarding to. Locations can be clustered and arranged in a type
taxonomy. The higher the level, the wider becomes the definition. The location
instance, that is the actual place itself that the user visits, lies at the very bottom.
For instance chinese restaurant in the 76th street → chinese restaurant → asian
food restaurant → restaurant → food serving location. Our work relies on this
kind of semantic trajectories, while investigating different semantic levels at the
same time.

236 A. Karatzoglou et al.

4 Neural Network Based Semantic Location Prediction -
Design, Implementation, and Parameter Selection

We implemented three different semantic location predictors in total, based on
three different ANN architecture types respectively: Feed-Forward, simple Recur-
rent and LSTM. This section describes our implemented models and their cor-
responding parameters, while giving a short glimpse behind the theory of each
at the same time. In order to have a fair comparison, we used the same 3-layer
architecture (one hidden layer) for all. The number of input and output neurons
Ni = No = N complies with the number of different locations lN found in each
training and testing dataset respectively. We used one-hot encoding in order to
represent the l semantic locations for both our input, as well as output vec-
tor. Our predictors were evaluated once with and once without taking temporal
information (time and day) into account. In the case, in which time and day are
being considered, our input vector grows by 7 + |timeslots|.

4.1 Feed-Forward Neural Networks (FFNN)

Feed-Forward neural networks represent the simplest type of neural networks,
but nonetheless they feature a good performance across multiple domains. A
typical 3-layer FFNN similar to the one we implemented can be seen in Fig. 1.
In the case of FFNN, we extended the input vector and hence the number of
input neurons by lhist for covering the movement history of the users resulting
in a l× lhist long vector. The sigmoid function and back propagation (BP) were
used as activation function and learning algorithm accordingly.

li,1

li,2

li,3

lo,1

lo,2

Input
layer

Hidden
layer

Output
layer

Fig. 1. Visualization of a typical 3-layer FFNN. li,j represent current and previous
visited semantic locations (depending on the set location history value). lo,j are the
predicted semantic locations.

4.2 Recurrent Neural Networks (RNN)

Recurrent neural networks feature feedback loops that allow knowledge to be
passed through the time from one step to the next. They are non-memoryless.

ANN-Based Future Semantic Location Prediction 237

In particular, such loops are capable of pushing the output of a certain neuron
in every time step either as an additional input to the same neuron itself, or
to another neuron of the same or of a previous layer. This fact makes them
ideal for modeling sequences. We used a similar 3-layer layout and encoding like
the one by the FFNN, except that now, due to the nature of RNN, we don’t
have to explicitly extend the input vector by the previously visited places. Back
propagation through time (BPTT) was selected to be our learning algorithm.

4.3 Long-Short-Term-Memory Neural Networks (LSTM)

LSTMs constitute a special type of recurrent neural networks, which are capable
of storing longer sequences without showing the fading long-term dependency
effect that appears in other RNNs. This is achieved by using so called cells that
decide which and how many input sequences to keep or not.

4.4 Parameter Selection

In this work by taking primarily Vintan et al’s results in [7] into consideration,
who showed that individual models outperform a general model, we concentrate
ourselves on creating personal models for each user. We applied 10-fold cross-
validation on the single user dataset described in Sect. 5 as fitting optimization
approach in order to find the best experimental setup for each of our models.
Thus, we trained our models in 90% of the data and tested them on the remaining
10% for each possible combination of following parameter values: numbers of
hidden neurons: [16, 32, 64, 128], epoch: [10, 20, 50, 100, 150], learning rate:
[0.005, 0.01], history: [1, 2, ..., 16] and batch size: [1, 10, 50]. The training data
set was build up through random selection of sequences with a length depending
on the history that our model takes each time into consideration. The setup that
led to the highest accuracy and f-score performance was selected for each ANN
type respectively. This procedure took place twice, once for each semantic level
(see Sect. 5). Table 1 summarizes the results.

5 Evaluation

We evaluated the following three models for predicting the next semantic loca-
tion: FFNN, RNN and LSTM. All three models were evaluated on their perfor-
mance they achieved on two different data sets: a 3-months long single-user data
set and the multi-user Reality Mining data set [3]. Because of the sparseness
and the partial inconsistency of the last, we preprocessed it first by remov-
ing duplicated entries and illogical outliers such as jumps to other countries.
We selected furthermore the most conscientious users with the most check-ins,
resulting in a total of 26 users over a time of 9 months. Each data set contains
semantically labeled locations recorded by the users, like “Hilton hotel”, “Media
Lab”, “MIT main campus”, “Dentist” etc. Next, in order to investigate how
different semantic levels affect the prediction, we processed both data sets to

238 A. Karatzoglou et al.

Table 1. Final parameter setups obtained as described in Subsect. 4.4. MM refers to
the Markov model, which is used as reference in our evaluation.

ANN type Hidden neurons
(or cells)

Epoch Learning
rate

Weekday Time History Batch
size

Low sem.
level

FFNN 32 100 0,01 No No 2 1

RNN 32 10 0,01 No No 15 1

LSTM 16 10 0,005 No No 2 50

MM - - - No No 1 1

High
sem. level

FFNN 32 10 0,01 No No 9 1

RNN 64 150 0,01 No No 7 1

LSTM 16 1,00 0,005 No No 2 50

MM - - - No No 1 1

Table 2. Average statistic scores with and without taking time and day into account
(1st and 2nd value respectively) (Reality Mining MIT data set)

ANN type Accuracy Precision Recall f-Score

Low sem.
level

FFNN 0,583 | 0,547 0,272 | 0,251 0,260 | 0,239 0,248 | 0,231

RNN 0,611 | 0,626 0,269 | 0,249 0,286 | 0,268 0,260 | 0,244

LSTM 0,580 | 0,576 0,234 | 0,249 0,263 | 0,268 0,228 | 0,232

High sem.
level

FFNN 0,679 | 0,664 0,378 | 0,437 0,387 | 0,377 0,379 | 0,387

RNN 0,670 | 0,664 0,338 | 0,4124 0,370 | 0,383 0,351 | 0,382

LSTM 0,696 | 0,692 0,541 | 0,452 0,483 | 0,458 0,469 | 0,439

Table 3. Average and maximal accuracy scores (single-user data set)

ANN type Accuracy Max value

Low sem. level FFNN 0,411 0,594

RNN 0,421 0,640

LSTM 0,543 0,623

MM 0,611 0,942

High sem. level FFNN 0,634 0,787

RNN 0,582 0,789

LSTM 0,761 0,783

MM 0,750 1,00

derive a higher conceptual view on them. For this purpose we applied a seman-
tic clustering algorithm and assigned a higher label to each of the locations.

ANN-Based Future Semantic Location Prediction 239

We oriented ourselves on the location taxonomy of foursquare1, which led us to
following higher semantic types: “home”, “friend’s home”, “education”, “med-
ical”, “transport”, “shop”, “square”, “street”, “(foreign) city”, “entertainment”,
“center” and “other”. These semantic annotations subsume the lower ones and
represent therefore a higher location interpretation. We applied the same 10-fold
cross-validation process in order to evaluate our predictors as we did for finding
the optimal setup described in Sect. 4.4. Each predictor was trained and tested
separately on each user, which led us to 26 individual models per predictor. The
parameter setup for each predictor can be found in Table 1. Accuracy, precision,
recall and f-score were used as metrics for our evaluation. Table 2 provides our
summary statistics from the evaluation with the multi-user MIT data set. It con-
tains the average ascertained results among all users. This table is quite revealing
in many ways. What stands out is that in general temporal information does not
lead to significant higher scores as one would expect. In contrary, in most of the
cases, temporal information seems to affect negatively the scores. This justifies
once more our parameter choice (time and weekday: “no”) in Table 1. Thus, one
could infer that it is not the absolute time and day that is important, but the
sequence when it comes to semantic trajectory based prediction. Furthermore, it
is apparent that all three models perform much better with semantically anno-
tated locations of higher order. This can be attributed on the one hand to the
fact that people move in space based on rules and patterns of higher semanti-
cal order. On the other hand, we must not forget that in the high level case,
the models have to deal with clustered and therefore overall less locations. This
favors additionally their performance. Closer inspection of the table shows that
other than expected both recurrent networks do not stand out significantly over
the FFNN. In the high semantic level case, LSTM outperforms the other two
and RNN shows the worst performance, whereas the opposite is true for the
lower one. Thus, the architecture type plays a significant role. Additionally, it
must be mentioned that FFNN provided respectively high results with a much
higher epoch value (100) than RNN and LSTM (both 10), which makes it more
CPU-intensive and time-consuming. What is also striking about the figures in
the table is that LSTM outperforms clearly the other models with regard to pre-
cision, recall and f-score. This means that it is not only more accurate, but also
more consistent, that is its predictions scatter much less. This can be attributed
partly to its solid memory-based architecture. Table 3 illustrates our findings of
our evaluation with the single-user data set. In addition to the neural networks,
we compared each model against a Markov model (MM) based predictor that
serves as our reference. Table 1 shows the parameters of the Markov model that
yield its best results and were used for our comparison. Furthermore, Table 3
contains the maximum recorded prediction accuracy (right column). The results
correlate with the values in Table 2. The average scores achieved with the high
level semantical data are again clearly higher compared to the low level ones. In
addition, LSTM outperforms this time in both cases the FFNN and the simple
RNN. LSTM outperforms even the Markov Model in the high level data case,

1 https://developer.foursquare.com.

https://developer.foursquare.com

240 A. Karatzoglou et al.

which interestingly shows similar high accuracy values. MM seem moreover to
perform better than ANNs on low level location types. In individual cases MM
achieved a 100% accuracy. A possible explanation might be the size of the avail-
able data. ANNs show their best performance in modeling big data and our data
were probably not big enough.

6 Conclusion

The purpose of this work was to investigate the use of artificial neural networks
in the field of semantic trajectory based location prediction. For this purpose
three different neural network architectures were implemented: FFNN, RNN and
LSTM. A two-(semantic)level evaluation was carried out on two different data
sets, a 3-month long single-user data set and the MIT Reality Mining data set.
In addition, we compared our models against a Markov Model based predictor.
Our results illustrate a good average performance of the ANNs, especially on
the higher semantic layer, with LSTM reaching an average accuracy of 76,1%
outperforming the competition. Furthermore, our results indicate a significant
contribution of high level semantic annotation of locations to the prediction.
Overall this study strengthens the idea of using ANNs for location prediction
and highlights the importance of semantics in this area. In our future work, we
plan to extend the semantic knowledge that flows through the model by utilizing
a.o. linked data libraries, and to experiment with other ANN types.

References

1. Alvares, L.O., Bogorny, V., Kuijpers, B., Moelans, B., Fern, J.A., Macedo, E.,
Palma, A.T.: Towards semantic trajectory knowledge discovery. In: Data Mining
and Knowledge Discovery (2007)

2. Biesterfeld, J., Ennigrou, E., Jobmann, K.: Neural networks for location prediction
in mobile networks. In: Proceedings of International Workshop on Applications of
Neural Networks to Telecommunications, pp. 207–214 (1997)

3. Eagle, N., Pentland, A.S.: Reality mining: sensing complex social systems. Pers.
Ubiquit. Comput. 10(4), 255–268 (2006)

4. Etter, V., Kafsi, M., Kazemi, E.: Been there, done that: what your mobility traces
reveal about your behavior. In: Proceedings of MDC by Nokia Workshop 10th
PerCom (2012)

5. Song, X., Kanasugi, H., Shibasaki, R.: Deeptransport: prediction and simulation
of human mobility and transportation mode at a citywide level. In: Proceedings of
25th International Joint Conference on Artificial Intelligence, pp. 2618–2624 (2016)

6. Spaccapietra, S., Parent, C., Damiani, M.L., de Macedo, J.A., Porto, F., Vangenot,
C.: A conceptual view on trajectories. Data Knowl. Eng. 65(1), 126–146 (2008)

7. Vintan, L., Gellert, A., Petzold, J., Ungerer, T.: Person movement prediction using
neural nets. In: 1st Workshop on Modeling and Retrieval of Context, vol. 114, pp.
1–12 (2004)

8. Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., Aberer, K.: Semantic tra-
jectories: mobility data computation and annotation. ACM Trans. Intell. Syst.
Technol. 4(3), 49:1–49:38 (2013)

ANN-Based Future Semantic Location Prediction 241

9. Ying, J.J.C., Lee, W.C., Weng, T.C., Tseng, V.S.: Semantic trajectory mining for
location prediction. In: Proceedings of 19th ACM SIGSPATIAL, GIS 2011, pp.
34–43 (2011)

10. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel
sequences from GPS trajectories. In: Proceedings of 18th International Conference
on WWW, pp. 791–800 (2009)

Model-Aware Representation Learning
for Categorical Data with Hierarchical Couplings

Jianglong Song1(B), Chengzhang Zhu1,2, Wentao Zhao1, Wenjie Liu1,
and Qiang Liu1

1 College of Computer, National University of Defense Technology, Changsha, China
{songjl,wtzhao,liuwenjie15,qiangliu06}@nudt.edu.cn

2 Advanced Analytics Institute, University of Technology Sydney, Ultimo, Australia
kevin.zhu.china@gmail.com

Abstract. Learning an appropriate representation for categorical data
is a critical yet challenging task. Current research makes efforts to embed
the categorical data into the vector or dis/similarity spaces, however,
it either ignores the complex interactions within data or overlooks the
relationship between the representation and its fed learning model. In
this paper, we propose a model-aware representation learning framework
for categorical data with hierarchical couplings, which simultaneously
reveals the couplings from value to object and optimizes the fitness of
the represented data for the follow-up learning model. An SVM-aware
representation learning method has been instantiated for this framework.
Extensive experiments on ten UCI categorical datasets with diverse char-
acteristics demonstrate the representation via our proposed method can
significantly improve the learning performance (up to 18.64% improved)
compared with other three competitors.

Keywords: Categorical data · Model-aware representation learning ·
Hierarchical couplings

1 Introduction

Categorical data appears widely in our daily living, study, work and social activ-
ities. Compared with numerical data, analyzing categorical data is much harder
due to the intrinsic complexities brought by its nominal values. A fundamental
task for categorical data analytics is representing the nominal values in a numer-
ical space, which largely determines the quality of data understanding and the
flexibility of data mining.

Instead of the basic one-hot embedding method [5], there are two groups
of methods for categorical data representation. One group of methods focuses
on embedding intrinsic data complexities into vector or dis/similarity space.
To capture the intra-attribute couplings, the work in [4,9] proposed the condi-
tional probability and rough membership function based method, respectively.
To reveal the inter-attribute couplings, the inter-attribute conditional probabil-
ity in [1,6,8] and the co-occurrence frequency of highly interdependent attribute
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 242–249, 2017.
https://doi.org/10.1007/978-3-319-68612-7_28

Model-Aware Representation Learning 243

in [7] were adopted. Some recently proposed methods [13,16] integrate the mul-
tiple types of relationship that show better representation strength. Another
group of methods learns the representation of categorical data based on the final
learning task or the follow-up learning model. One of the typical methods is value
difference metric (VDM) [11], which embeds the categorical data to a similarity
space based on the value distribution in class spaces. However, this method does
not consider the embedded data distribution. In contrast, the method proposed
in [15] learns a vector to maximize the inter-class margin of the represented
data. To further consider the impact of the fed learning model, the heteroge-
neous support vector machine (HSVM) [10] has been proposed, which finds a
representation to minimize the generalization error bound of SVM.

Although the aforementioned work showed some merits in categorical data
embedding, they either ignore the complex interactions within data or overlook
the relationship between the representation and its fed learning model. Failing to
disentangle the complex interactions within data will cause the represented data
lack of generalized ability [2], while decoupling from follow-up learning model
will reduce the learnability of the whole learning system [12].

In this paper, we propose a Model-aware representation learning framework
for Categorical data with hierarchical couplings (MoreCatch) to simultaneously
reveal the couplings from value to object and optimize the fitness of the rep-
resented data for the follow-up learning model. In particular, MoreCatch first
leverages the value-level complex interactions as intra-attribute couplings, and
combines it with attribute-level complex interactions as inter-attribute couplings
to embed the object-level couplings into a similarity space. Then, it learns a
representation by minimizing the generalization error bound of the follow-up
learning model with the learned dis/similarity space as a regularization. There-
fore, the represented data via MoreCatch will not only reflect the value-to-object
couplings but also is adaptive to the specific learning model.

The key contributions made in this work are:

– A model-aware representation learning framework: this is the first framework
to jointly learn the data and model characteristics for categorical data repre-
sentation. This framework guarantees both the generalization ability and the
fitness of the represented data.

– An SVM-aware representation learning method: an instantiation of the pro-
posed MoreCatch has been proposed, which considers support vector machine
(SVM) [12] as the fed classification. The method learns a vector representa-
tion by maximizing the radius margin bound of SVM with the regularization
learned by coupled attribute similarity for objects (CASO) [13].

– We propose an efficient optimization algorithm for the SVM-aware represen-
tation learning instantiation. It has the capacity for parallelization, thus suits
for the large amounts of data.

We compare the MoreCatch with several state-of-the-art and baseline cate-
gorical data representation methods on ten datasets with diverse characteristics.
The experimental results demonstrate that MoreCatch significantly improves the
learning performance (up to 18.64% improved).

244 J. Song et al.

2 Related Work

2.1 Support Vector Machine Generalization Error Estimation

Given a dataset {(xi, yi)}n
i=1, we map an input vector x into higher dimensional

feature space through the nonlinear function ϕ(x). SVM finds a linear decision
function by maximizing the margin between two different classes. The parame-
ters w and b are obtained by solving the following convex optimization problem.

min
w,b

1
2 ||w||2 + c ·

n∑

i=1

ξi

s.t. yi · (wT · ϕ(xi) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, 2, ...n,
(1)

where c is regularization parameter and ξi is a slack variable.The upper bound
of radius margin error estimation is computed as in [12]:

T =
R2

γ2
= R2 · ||w||2, (2)

where R is the minimum radius of a sphere which contains all samples and γ is
the maximal distance between the two different classes.

2.2 Coupled Attribute Similarity Metric

Coupled attribute similarity for objects (CASO) measure is proposed by Can
Wang et al. CASO is an efficient data-driven similarity learning approach for cat-
egorical objects with attribute couplings to capture a global picture of attribute
similarity [13]. It involves the intra-coupled similarity, the inter-coupled simi-
larity and their integration on the object level. The intra-coupled similarity is
obtained based on attribute value frequency distribution within an attribute
and the inter-coupled similarity is calculated from value co-occurrences between
attributes. In this paper, we apply the coupled attribute dissimilarity for objects
(CADO) induced from CASO to investigate the intrinsic characteristics of data.

CADO(xk
i , xk

j)=
m∑

i=1

h1(δIa
k (xk

i , xk
j)) · h2(δIe

k (xk
i , xk

j , {Xq}q �=k)), (3)

where xk
i and xk

j are current categorical values of kth dimension of sample xi

and xj . δIa
k and δIe

k are intra-coupled and inter-coupled attribute similarity for
values. In addition, h1(t) and h2(t) are decreasing functions. Based on intra-
coupled and inter-coupled similarities, h1(t) and h2(t) can be flexibly chosen to
build dissimilarity measures according to specific requirements.

3 Model-Aware Representation Learning

3.1 The MoreCatch Framework

The proposed model-aware representation learning framework for categorical
data with hierarchical couplings (MoreCatch) is presented in Fig. 1. It first com-
bines the value-level intra-attribute couplings with attribute-level inter-attribute

Model-Aware Representation Learning 245

Fig. 1. Framework of MoreCatch

couplings as the object-level couplings, and then embeds it into a dis/similarity
space. Finally, it learns the representation by minimizing the generalization error
bound of the follow-up learning model with the learned dis/similarity as a regu-
larization. Formally, given a classifier H with a generalization error bound E(H)
and a categorical dataset X, the objective of the MoreCatch learns a vector
representation V for X that

min
V

E(H) + λ‖S(X) − K(V)‖2, (4)

where S(·) is the dis/similarity metric in the categorical data space that captur-
ing the hierarchical couplings, K(·) is the dis/similarity metric in the represented
space that will be used in the H, and λ is a trade-off parameter to control the
influence of the data and model characterises.

3.2 An SVM-Aware Representation Learning Method

We implement an SVM-aware representation learning method as an instantia-
tion of the MoreCatch. It considers SVM as the follow-up classifier H of the
represented categorical data. Inspired by the [10], it uses radius margin bound
to instantiate the E(H). Meanwhile, the S(·) is implemented by the CADO since
it can comprehensively leverage the couplings from value-level to object-level.

Correspondingly, we select Euclidean distance as the metric in the repre-
sented data space. Putting Eqs. (2) and (3) into Eq. (4), we have the objective
function SVM-aware representation as follows:

L = R2 · ‖w‖2 + λ

n∑

i,j=1

(CADO(vi, vj) − D(xi, xj))
2
, (5)

where D(·, ·) is the Euclidean distance between objects in represented data space.
Minimize L can induce the vector representation of categorical data, V.

3.3 Algorithm for the SVM-Aware Representation Learning

In this subsection, we propose an efficient stochastic gradient descent algorithm
to optimize the Eq. (5).

246 J. Song et al.

The partial derivative of the objective function L with respect to a categorical
attribute value ak

p (ak
p is the pth categorical value of the kth dimension of sample)

is computed as
∂L

∂ak
p

=
∂L1

∂ak
p

+
∂L2

∂ak
p

, (6)

where L1 and L2 refer to the radius error bound and similarity regularization,
respectively. The partial derivative of the objective L1 is computed as

∂L1

∂ak
p

= R2 · ∂||w||2
∂ak

p

+
∂R2

∂ak
p

· ||w||2. (7)

The parameter w of traditional SVM can be obtained by solving its dual
formula, and we can calculate the partial derivative of ||w||2 with respect to the
categorical attribute value ak

p as follows:

∂||w||2
∂ak

p

=α∗T · ∂K

∂ak
p

· α∗, (8)

where α∗T is the optimal solution (α1y1, α2y2, ..., αnyn)1×n. R is the minimum
radius of a sphere which contains all samples in the feature space. It can be
calculated based on the following formula:

R2 = β · diag(K) − βT · K · β, (9)

where β is the optimal solution to the dual problem, and K is a kernel
matrix. diag(K) = (K(x1, x1),K(x2, x2), ...,K(xn, xn))T

n×1. ∂K(xi, xi)/∂ak
p

equals zero in a regularization kernel function. Therefore, the partial derivative
of radius R2 can be simplified as follows:

∂R2

∂ak
p

= − βT · ∂K

∂ak
p

· β. (10)

Then, Eqs. (8) and (10) are taken into Eq. (7) to get the derivative of L1:

∂L1

∂ak
p

=R2 · (α∗T · ∂K

∂ak
p

· α∗) − ||w||2 · (βT · ∂K

∂ak
p

· β). (11)

The partial derivative of the Gaussian kernel matrix can be calculated as
follows:

∂K(xi,xj)
∂ak

p
= K(xi, xj) · (−vk

i −vk
j

σ2) ·
⎧
⎨

⎩

+1, if vk
i = ak

p

−1, if vk
j = ak

p

0, otherwise.
(12)

The value of CADO is calculated in the stage of data preprocessing and it is a
constant that has no influence in the process of derivation. The partial derivative
of the objective L2 is computed as follows:

∂L2
∂ak

p
= −4 · λ

n∑

i,j=1

(CADO(xi, xj) − D(xi, xj)) · (vk
i − vk

j) ·
⎧
⎨

⎩

+1, if vk
i = ak

p

−1, if vk
j = ak

p

0, otherwise.
(13)

Model-Aware Representation Learning 247

Algorithm 1. SVM-aware representation learning
Input: Categorical dataset X = {x1, x2, ..., xn}
Output: A mapping table for each categorical attribute value and a classifier
Iteration:
1: t ← 0
2: Assign an initial real value for each categorical attribute ak

p

3: while stop criteria not satisfied do
4: Calculate ||w||2 and kernel matrix based on SVM
5: Calculate radius R2 based on Eq. (9)
6: Calculate the Euclidean distance D between objects
7: Calculate ∂L1

∂ak
p

for categorical attribute value based on Eqs. (11) and (12)

8: Calculate ∂L2
∂ak

p
for each categorical attribute value based on Eq. (13)

9: Calculate ∂L
∂ak

p
for each categorical attribute value based on Eq. (6)

10: Update mapping value (ak
p)t+1 = (ak

p)t − η · ∂L
∂ak

p

11: Calculate the error bound L
12: t ← t + 1
13: end while

During the SVM-aware representation learning, the algorithm maps categor-
ical attributes into a real number space by minimizing the generalization error
bound with the dissimilarity regularization. The mapping is learned by a gradient
descent scheme, which can randomly assign the initial real value, then iteratively
update the assignments of categorical attributes until the generalization error
bound converges to a minimum state. It is shown in Algorithm 1.

Here, we initialize each categorical attribute value by calculating its con-
ditional probability in the manner as VDM (Value Difference Metric). VDM
calculates the distance between categorical attributes by utilizing the label infor-
mation of samples [14]. The more similar the frequencies of categorical attributes
that appear in one class, the shorter is the distance between attributes.

It is noted that the coupled attribute dissimilarity for objects (CADO) is
computed on the basis of original categorical attribute values which has no
assignments in the real number space. And it is a constant during the process of
representation learning. This algorithm also gets benefit from the parallel ability
since the gradient of each value can be calculated separately.

4 Experiments and Analysis

Ten categorical datasets from the UCI machine learning repository are used in
the experiments. The details of these datasets are shown in Table 1.

We compare the SVM-aware representation under MoreCatch framework
(MoreCatch (SVM-aware), for short) with state-of-the-art categorical data rep-
resentation method HSVM [10] and the baseline method VDM [11]. The rep-
resented data of the above methods is fed into SVM with Gaussian kernel for
classification. The samples containing missing values are discarded in data pre-
processing stage. We utilize one-against-all for multi-class tasks and evaluate the

248 J. Song et al.

Table 1. Predictive accuracy (%) of SVM with different representation methods

Dataset Size Attri. Class MoreCatch (SVM) VDM HSVM Δ

molecular 106 57 2 78.70± 9.75 74.68± 8.43 41.66± 9.82 5.38

spect 267 22 2 100 79.38± 4.48 84.29± 4.10 18.64

solar flare1X 323 10 2 100 97.82± 2.15 100 0.00

vote 435 16 2 98.29± 2.41 96.53± 3.24 98.72± 1.28 0.00

tic-tac-toe 958 9 2 100 98.22± 0.72 100 0.00

chess 3196 36 2 99.44± 0.40 97.03± 0.20 98.89± 0.20 0.56

mushroom 8124 22 2 100 100 100 0.00

splice 3190 61 3 99.90± 0.10 97.20± 1.70 99.70± 0.30 5.88

soybean-small 47 35 19 98.96± 2.23 95.83± 2.00 98.33± 2.60 0.30

soybean-large 307 35 19 85.39± 0.56 82.50± 3.17 83.70± 1.68 1.96

Mean - - - 96.07 91.92 90.53 4.51

molecular spect solar flare1X vote tic−tac−toe chess meshroom splice soy−smallsoy−large
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Ac
cu

ra
cy

 w
ith

 S
ta

nd
ar

d
D

ev
ia

tio
n

CART
MoreCatch

Fig. 2. MoreCatch-enabled SVM and CART comparison on ten datasets

algorithm based on 10-fold cross validation. The performance of representation
learning method is evaluated by the accuracy of its enabled SVM.

The mean and standard deviation of accuracy are shown in Table 1 as mean ±
std. Bold font has been used to mark the best method for each dataset. The last
column of the table, Δ, stands for the improvement of the proposed method
compared with the best one of the other three methods. As shown in Table 1,
the accuracy of the MoreCatch (SVM) is superior to that of other algorithms. For
the DNA data with complex couplings, the MoreCatch (SVM-aware) improves
significantly compared with the state-of-the-art method HSVM. Such a high
improvement is due to MoreCatch not only considers the model complexity, but
also captures the intrinsic data characteristics.

To further demonstrate the performance of the proposed MoreCatch, we
compare it with CART [3], which is a decision tree algorithm that can handle
categorical data directly. The results are showed in Fig. 2. It demonstrates that
MoreCatch is consistently better than CART. The key reason is our proposed
MoreCatch can get benefit from the kernelized SVM for non-linear classification.

Model-Aware Representation Learning 249

5 Conclusion

In this paper, a model-aware representation learning framework for categori-
cal data with hierarchical couplings(MoreCatch) is proposed to jointly learn
the data and model characteristics. Then, a SVM-aware representation learning
method is proposed as an instantiation of MoreCatch. Experiments show that
representation via our proposed method can significantly improve the learning
performance compared with other three competitors.

References

1. Ahmad, A., Dey, L.: A method to compute distance between two categorical values
of same attribute in unsupervised learning for categorical data set. Pattern Recogn.
Lett. 28(1), 110–118 (2007)

2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

3. Breiman, L., Friedman, J.H., Olshen, R., Stone, C.J.: Classification and regression
trees. Biometrics 40(3), 358 (1984)

4. Cao, F., Liang, J., Li, D., Bai, L., Dang, C.: A dissimilarity measure for the k-modes
clustering algorithm. Knowl.-Based Syst. 26, 120–127 (2012)

5. Gr ↪abczewski, K., Jankowski, N.: Transformations of symbolic data for continu-
ous data oriented models. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds.)
ICANN/ICONIP -2003. LNCS, vol. 2714, pp. 359–366. Springer, Heidelberg (2003).
doi:10.1007/3-540-44989-2 43

6. Ienco, D., Pensa, R.G., Meo, R.: From context to distance: learning dissimilarity
for categorical data clustering. ACM Trans. Knowl. Discov. Data 6(1), 1–25 (2012)

7. Jia, H., Cheung, Y.M., Liu, J.: A new distance metric for unsupervised learning of
categorical data. IEEE Trans. Neural Netw. Learn. Syst. 27(5), 1065–1079 (2016)

8. Le, S.Q., Ho, T.B.: An association-based dissimilarity measure for categorical data.
Pattern Recogn. Lett. 26(16), 2549–2557 (2005)

9. Ng, M.K., Li, M.J., Huang, J.Z., He, Z.: On the impact of dissimilarity measure
in k-modes clustering algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 29(3),
503–507 (2007)

10. Peng, S., Hu, Q., Chen, Y., Dang, J.: Improved support vector machine algorithm
for heterogeneous data. Pattern Recogn. 48(6), 2072–2083 (2015)

11. Stanfill, C., Waltz, D.: Toward memory-based reasoning. Commun. ACM 29(12),
1213–1228 (1986)

12. Vapnik, V.N.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)
13. Wang, C., Dong, X., Zhou, F., Cao, L., Chi, C.H.: Coupled attribute similarity

learning on categorical data. IEEE Trans. Neural Netw. Learn. Syst. 26(4), 781
(2015)

14. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. J. Artif.
Intell. Res. 6(1), 1–34 (1997)

15. Xie, J., Szymanski, B.K., Zaki, M.J.: Learning dissimilarities for categorical sym-
bols. In: JMLR: Workshop on Feature Selection in Data Mining, pp. 2228–2238.
JMLR.org (2013)

16. Zhang, K., Wang, Q., Chen, Z., Marsic, I., Kumar, V., Jiang, G., Zhang, J.: From
categorical to numerical: multiple transitive distance learning and embedding. In:
SIAM International Conference on Data Mining, pp. 46–54. SIAM (2015)

http://dx.doi.org/10.1007/3-540-44989-2_43
http://jmlr.org/

Perceptron-Based Ensembles and Binary
Decision Trees for Malware Detection

Cristina Vatamanu1,2(B), Doina Cosovan1, Dragoş Gavriluţ1,2,
and Henri Luchian1

1 Faculty of Computer Science, Alexandru Ioan Cuza University, Iaşi, Romania
{cvatamanu,dgavrilut}@bitdefender.com,
{doina.cosovan,hluchian}@info.uaic.ro

2 Bitdefender Anti-Malware Laboratory, Bucharest, Romania

Abstract. Nowadays, security researchers witness an exponential
growth of the number of malware variants in the wild. On top of this,
various advanced techniques like metamorphism, server-side polymor-
phism, anti-emulation, commercial or custom packing, and so on, are
being used in order to evade detection. It is clear that standard detec-
tion techniques no longer cope with the ongoing anti-malware fight. This
is why machine learning techniques for malware detection are contin-
ually being developed and improved. These, however, operate on huge
amounts of data and face challenges like finding an equilibrium between
the three most desired requirements: low false positive rate, high detec-
tion rate, acceptable performance impact. This paper aims to reach this
equilibrium by starting with an algorithm which has a zero false positive
rate during the training phase and continuing by further improving it,
in order to increase the detection rate without significantly altering the
low false positive property.

Keywords: Linear classifier · Perceptron · Ensemble · One side class
perceptron · Binary decision tree · Hybrid methods · False positive rate

1 Introduction

In the Cyber Security industry a false positive is by far more problematic than a
false negative. It is easier to add detection later than to help customers recover
their data. This is why reducing the number of false positives is our top prior-
ity. Our approach is to start with a classifier that has a zero false positive rate
during the training phase and to continue by improving the detection rate while
keeping the false positive rate as close to zero as possible. Of all the machine
learning algorithms, we decided to use the perceptron because it has an accept-
able performance impact and because we want to start with a low false positive
algorithm and there is a perceptron variation, called the One Side Class Percep-
tron, which is able to obtain a zero false positive rate during the training phase.
This paper tries to improve the One Side Class ensemble (OSC-BC) which was
first introduced in [13]. An ensemble system was considered for improving the
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 250–259, 2017.
https://doi.org/10.1007/978-3-319-68612-7_29

Malware Detection Techniques Based on Machine Learning 251

detection rate. Though it managed to keep the false positive rate low (0.007%),
the detection could not be improved more than 35%. Because of this, the data
was first clustered with the help of the Binary Decision Tree (BDT) and then
ensembles were trained on each cluster. This improved the detection up to 70%,
keeping the false positive rate as low as 0.2%. This led us to the idea that the
starting point (the OSC-BC algorithm) is good while the mechanism used to
improve the detection rate could be improved. This paper proposes two tech-
niques to achieve this: adapting perceptron parameters and intercalating the
ensemble steps of OSC-BC with BDT clustering.

2 Related Work

Machine learning techniques are being rapidly adopted in malware detection
field of research thanks to their ability to counter polymorphism, metamorphism,
and packing techniques used by malware. Consequently, different authors tried to
approach the problem of malware detection using various machine learning algo-
rithms like Artificial Neural Networks (ANN), Bayesian Networks (BN), Naive
Bayes (NB), Decision Tree (DT), k-Nearest Neighbor (kNN), Support Vector
Machines (SVM), OneR, and so on. In this section, we are going to discuss the
advances in malware detection in two different directions, both related to our
research: perceptron variations and ensembles.

In [11], Rosenblatt introduced the perceptron. The idea behind it is very sim-
ple: first it computes a linear combination of the input applied to its synapses and
then applies a sign function on the result in order to classify the element. Since
then, perceptrons proved to be effective in solving various problems. Because
each problem requires different aspects to be considered and optimized, a lot of
perceptron variations, adaptations and enhancements appeared.

A perceptron variation, the voted-perceptron algorithm, is introduced in [3].
It combines Rosenblatt’s perceptron algorithm with Helmbold and Warmuth’s
leave-one-out method and takes advantage of the data that are linearly separable
with large margins. Used against malware detection in [1], it provides a 99%
accuracy and a high detection rate. However their focus was not to minimize the
false positive rate, thus making their algorithm difficult to use in practice.

A few papers have focused on budget-conscious perceptrons, which attempt
to keep the number of support patterns small. The attractiveness of the idea
comes from the improvements observed in both training and classification time,
but also in the simplicity of the model. For example, in [2], the budget-conscious
perceptron keeps track of the support patterns and discards the ones that become
redundant as new, nearer to the separation plan examples are being received. In
the same paper a budget-conscious aggressive algorithm perceptron is proposed.
Although the authors in [12] argue that a perceptron with zero false positives
during the training phase can not be developed, a solution is proposed in [5] and
optimized in [4]. Since we use this perceptron in an ensemble, this section also
presents various ensembles proposed in the literature for malware detection.

252 C. Vatamanu et al.

Some papers present and provide a detailed analysis of a single but new
combination technique aiming at solving a specific problem [15], where individual
decisions of PNN (Probabilistic Neural Networks) classifiers are combined using
rules created in the frame of Dempster-Shafer theory.

Another example is [8], which introduces SVM-AR. This ensemble consists
of an SVM component, which computes a hyper-plane classifying the samples
as clean or malicious, and association rules, behaving as local optima filters for
the records miss-classified by the SVM classifier.

Another SVM-based ensemble is proposed in [14], where SBMDS (inter-
pretable String-Based Malware Detection System) is introduced. It uses Support
Vector Machine (SVM) ensemble with Bagging in order to classify the samples.

The same combination of Support Vector Machine and Bagging is presented
in [6]. First, individual SVMs are trained independently on samples randomly
chosen through a bootstrap technique. Then, the obtained SVM classifiers are
aggregated in various ways like Majority Voting, LSE (least squares estimation)-
based weighting, and the double-layer hierarchical combining.

Other papers focus on comparing different well-known mechanisms of com-
bining the algorithms in order to find the one best suiting a specific problem.
For example, the authors in [9] combine 5 different classifiers (C4.5, kNN, VFI,
OneR and Naive Bayes) using 8 different combination techniques (Best Classifier,
Majority Voting, Performance Weighting, Distribution Summation, Bayesian
Combination, Naive Bayes, Stacking, and Troika) for finding the best ensemble
which classifies files, described by structural, API-based features, and n-grams.

The authors of [10], however, test various ensembles for Android detection.
Algorithms like kNN, NNet, CART, and SVM variations (SVMLinear, SVMPoly,
SVMRadical) are aggregated through Majority Voting and Stacking.

Most papers conclude that ensembles perform better than individual algo-
rithms.

3 Algorithms

The One-Side Class Perceptron [4] (abbreviated OSCP) is a perceptron that
satisfies the following property: given two classes, the hyper-plane will separate
on one side only elements belonging to the first class and on the other - all the
elements belonging to the second class and a few elements from the first class.
In order to achieve this property, each perceptron iteration is followed by an
adaptation of the hyper-plane in order to restore the property.

When used in malware detection, the OSCP can build a linear classifier with
zero false positives during training (only malicious samples on one side of the
hyper-plane and both clean and malicious - on the other side).

Further, in order to ensure a high detection rate along with the property
of having a close to zero false positive rate (during testing), a combination of
two One Side Class Perceptrons is proposed in [13]. If these two One Side Class
Perceptrons are merged, then two correctly classified sets of data are obtained:
one containing clean samples and the other - malicious samples.

Malware Detection Techniques Based on Machine Learning 253

Figure 1 illustrates on the upper left side the dataset containing clean (circles)
and malicious (squares) samples. The first hyper-plane separates clean samples
on one side and both clean and malicious samples on the other side (upper right
side of the image). The second hyper-plane divides only malicious samples on
one side and both clean and malicious samples - on the other side (lower left
side of the image). Between the two hyper-planes there are data that could not
be correctly classified (lower right side of the image).

Fig. 1. Ensemble with both classes based on OSC perceptron

In order to deal with the incorrectly classified data, an ensemble was devel-
oped starting from the previously described combination of two One Side Class
Perceptrons [13]. It is called One Side Class Perceptron ensemble with both
classes and abbreviated ENS10-OSC-BC in the paper in which it is introduced,
but, for simplicity, we abbreviate it ENS throughout this paper. Specifically, we
can run this ensemble algorithm on the training data, save the obtained model
(the two hyper-planes), discard the correctly classified elements and reiterate the
same process on the misclassified elements. The algorithm stops either when all
the data is correctly classified (no data remains between the two hyper-planes)
or when the maximum number of iterations is reached (enforced in practice).

3.1 Parameter Adaptation

In our experiments [13], we have used 10 ensemble steps and for each ensemble
step, 2 OSC algorithms were trained using 500 perceptron iterations. In order to
choose the number of ensemble steps, we decided to try to execute the algorithm
with as many steps as possible in order to correctly classify all the data. However,
since the dataset is very big, we performed this test on a subset (332.404 records:
31.940 infected files and 300.464 clean ones). Unfortunately, at the 39th ensemble
step, the algorithm couldn’t produce a hyper-plane able to correctly classify and
remove from the dataset at least one of the records. By doubling the number of
perceptron iterations from this point on, we allowed the algorithm to continue
beyond the 39th step. But seven steps later (at the 46th step), the algorithm was
blocked again. Repeating the same operation on the perceptron iterations, the
algorithm continued only 12 more steps (until the 58th step). Since in the last
executed 5 ensemble steps only one record per step was correctly classified and
discarded, with 113.560 records still unclassified, we came to the conclusion that
the algorithm has and will continue to have a very slow decrease. The decrease
can be seen in Fig. 2.

254 C. Vatamanu et al.

Fig. 2. Number of unclassified records during ensemble steps

Note how the first three ensemble steps managed to correctly classify and
remove from the dataset more than half of the records. From the 6th step the
decrease started to be and remained almost imperceptible with the exception of
the 39th and 46th steps, which correspond to the two ensemble steps for which
the number of perceptron iterations was doubled. Using 10 ensemble steps is
a reasonable choice from three points of view. Firstly, the number of records
correctly classified and removed from the dataset beyond the 10th step is not
big in comparison to the remaining unclassified records. Secondly, the training
time with 10 ensemble steps and 500 perceptron iterations allows the models
to be train fast enough for the anti-virus product to have a quick response in
the wild. Thirdly, the space needed to save the model trained with 10 steps is
reasonable. At each ensemble step, the model needs to save (2 bytes for feature
ID + 4 bytes for feature value) * 2 models * n features (n is minimum 500).

In order to train perceptrons on millions of samples in an acceptable amount
of time, restrictions are usually set on the algorithm parameters. Given the way
OSC-BC operates (at each step, the algorithm discards the samples correctly
classified), the number of processed samples decreases with each step, which
means the processing time will decrease as well. In order to take advantage of
the gained processing time, the number of perceptron training iterations and/or
the number of features can be increased with each ensemble step.

First, we tried to adapt the number of features used during the ensem-
ble’s steps. We came up with 5 ensembles of the form ENS-xF, which means
500+ step * x features per ensemble step, x taking on the values 0, 100, 200,
300, and 400.

The ensemble ENS-100F improves significantly the detection of the initial
ensemble ENS, but, unfortunately, it also doubles the number of false positives.
By further increasing the number of used features for each ensemble step in ENS-
200F, we notice that both the detection and the false positive rates increase, but
the proportions are much smaller. However, by increasing the same parameter to
300 and 400 in ENS-300F and ENS-400F respectively, we observe that detection
rate as well as false positive rate start to decrease.

Malware Detection Techniques Based on Machine Learning 255

Fig. 3. Detection rate and false positive rate over 10 ensemble steps

Second, we tried to apply the same technique for the number of iterations of
the OSC training, obtaining two ensembles ENS-xIT, which means the OSCs are
trained for 500+ step * x, x taking on the values 100 and 200. For these last two
tests, both the detection and false positive rates increased with a slower rate.

Studying these two methods we have decided to combine the algorithms
that obtained the best detection results. In this way we came up with ENS-
200F-200IT, which has 500+ step * 200 iterations per perceptron training and
500+ step * 200 features per ensemble step. It performs better than all the others
regarding the detection rate, but worse than all of them regarding the false
positive rate.

The Fig. 3 illustrates the way the number of records correctly classified
respectively incorrectly classified decreases during the 10 steps performed by
all defined ensembles: ENS, ENS-100F, ENS-200F, ENS-300F, ENS-400F, ENS-
100IT, ENS-200IT, ENS-200F-200IT. It can be easily observed that ENS-200F-
200IT has the smoothest decrease. This means that the number of correctly
classified samples during the subsequent steps was improved by this technique.

3.2 BDT Steps

During the experiments conducted in [13], we observed that the OSC-BC algo-
rithm performed well on the first ensemble step, but the number of records
correctly classified and discarded in subsequent steps decreased significantly. In
order to solve this problem, the present paper proposes a new way of combining
the OSC-BC algorithm with the BDT. Instead of clustering all the data and
applying the OSC-BC algorithm on each obtained cluster (as in [13]), this paper
proposes to intercalate the ensemble steps of OSC-BC with BDT clustering for
maximizing the number of records being discarded at each step.

First, we give more details regarding the steps performed by the ensem-
ble disregarding both classes of correctly classified samples at each step, which
may be observed in Algorithm 1. Note that this algorithm represents a single

256 C. Vatamanu et al.

Algorithm 1. Ensemble Both Classes Iteration Algorithm
1: S ← ⋃|R|

i=1 Ri - the records
2: function EnsembleBothClassesIteration(S)
3: NS ← ∅
4: Modelclean ← OSC(S, clean)
5: Modelinfected ← OSC(S, infected)
6: for i ← 1 → |S| do
7: if IsCorrectlyClassified(Modelclean, Si) then
8: if not IsCorrectlyClassified(Modelinfected, Si) then
9: NS.push(Si)
10: end if
11: else
12: if IsCorrectlyClassified(Modelinfected, Si) then
13: NS.push(Si)
14: end if
15: end if
16: end for
17: return (Modelclean, Modelinfected, NS)
18: end function

step of the OSC-BC algorithm. It receives as parameter the dataset to be clas-
sified and returns the models computed using the One Side Class Perceptron
(Modelclean and Modelinfected) and the incorrectly classified subset (NS, which
contains the records correctly classified by Modelclean and incorrectly classi-
fied by Modelinfected and the records correctly classified by Modelinfected and
incorrectly classified by Modelclean).

Second, we review the BDT splitting and clustering mechanisms. The algo-
rithm is parameterized with the records being classified, the feature set used
to describe the records and the BDT maximum depth. The leaf nodes con-
tain the final clusters, while the internal nodes are decision nodes and con-
tain conditions used to split the current data in two groups as follows: if a
record contains a specific feature, then it is sent to the right node/sub-cluster,
otherwise, to the left node/sub-cluster. At each step in the BDT, the feature
with the highest score is chosen, where the score is computed with the formula
(1−| countClean

totalClean −0.5|)+(1−| countInfected
totalInfected −0.5|)

2 , where totalClean/totalInfected is the
total number of clean/infected files and countClean/countInfected is the num-
ber of clean/infected files for which the given feature is set to true.

The reason we use this score is because we want to split the data in 2 subsets
so that both subsets have an equilibrium between the number of malicious and
the number of clean samples. We don’t want to choose a feature which is present
in most clean samples and in a small number of malicious samples or vice-versa.
On the contrary, the best feature according to this score would be the feature
which is present in half of the clean samples and in half of the malicious samples.
Such a feature is not useful when training a perceptron and might as well be used

Malware Detection Techniques Based on Machine Learning 257

Algorithm 2. Ensemble based on BDTs and Ensemble Steps with Both Classes
1: S ← ⋃|R|

i=1 Ri - the records

2: F ← ⋃|R.F |
j=1 R.Fj - the feature set

3: MaxDepth - the maximum BDT level
4: CountEns - the number of ensemble steps
5: CurrentIteration ← 0
6: function BdtEnsembleBothClasses(S, F)
7: (Modelclean, Modelinfected, NS) = EnsembleBothClasses(S)
8: Save(Modelclean, Modelinfected)
9: CurrentIteration ← CurrentIteration+ 1
10: if CurrentIteration = CountEns then
11: return
12: end if
13: C ← GetBdtClust(NS, F, MaxDepth)
14: for j ← 1 → |C| do
15: BdtEnsembleBothClasses(Cj)
16: end for
17: end function

to split the dataset in 2 subsets which are easier classified with a perceptron,
especially since after splitting the data in two according to a chosen feature, this
feature is removed from the set of features of the resulted 2 subsets/nodes.

Another reason for using this score is that we have a smaller chance to obtain
a very big cluster and a very small cluster at each splitting step, causing the final
clusters to have similar sizes.

In this way, by increasing the number of features and decreasing the number
of records, the chance to classify all the records is higher.

Third, the way the BDT Algorithm and the ensemble method are interlaced
is illustrated in Algorithm 2. At each ensemble step, the algorithm computes
the two hyper-planes (Modelclean and Modelinfected) using the Algorithm 1.
The computed models are saved and BDT clustering is used to split the mis-
classified samples in subsets. For each resulted subset, the mechanism is applied
recursively.

4 Results

The dataset used in our experiments consists of 242.811 malicious and 2.105.896
clean samples collected during three months and one year respectively. Each
sample is described by 6.275 boolean features obtained either in a static (file
geometry and characteristics) or dynamic (behavior) manner. The 500 features
used in the training process were selected using the F2 score [7]. Each algorithm
was tested using a 3-fold cross validation. Table 1 illustrates the obtained results.

258 C. Vatamanu et al.

Table 1. Results for ensembles and the hybrid mechanisms

Algorithm FP rate Detection rate Training time

ENS 0.0159% 34.9699% 4:25:27.031

ENS-100F 0.0334% 45.9307% 5:07:26.870

ENS-200F 0.0374% 49.9215% 6:07:44.738

ENS-300F 0.0342% 49.4652% 7:00:54.222

ENS-400F 0.0299% 48.5496% 7:51:11.673

ENS-100IT 0.0220% 36.1729% 6:49:06.055

ENS-200IT 0.0242% 36.6923% 9:16:27.555

ENS-200F-200IT 0.0537% 56.8767% 13:39:01.548

BDT4-ENS 0.2618% 70.07% 4:48:00.000

BDT4-ENS-200F-200IT 0.5990% 83.10% 5:11:00.000

ENS-BDT1-200F-200IT 0.8690% 84.02% 5:15:00.000

5 Conclusions

In comparison to our previous paper [13], in this paper we managed to obtain
an increase in detection with almost 15% (from 70.07% to 83.10% for BDT4-
ENS-200F-200T and 84.02% for ENS-BDT1-200F-200IT) while keeping a small
number of false positives. When comparing BDT4-ENS-200F-200IT and ENS-
BDT1-200F-200IT, it becomes clear that the detection increase for BDT4-ENS-
200F-200IT comes at a significantly smaller cost regarding the false positive rate
(0.5990% and respectively 0.8690%). The training time (around 5 h) is reasonable
enough in order to use it in the cyber-security industry.

In search of an equilibrium between the 3 most important variables (detection
rate, false positive rate and training time), from the industry point of view, the
most desirable algorithm among those studied above is BDT4-ENS-200F-200IT.

References

1. Altaher, A., Ramadass, S., Ali, A.: Computer virus detection using features ranking
and machine learning. J. Appl. Sci. Res. 7(9), 1482–1486 (2011)

2. Crammer, K., Kandola, J.S., Singer, Y.: Online classification on a budget. In:
Advances in Neural Information Processing Systems 16 [Neural Information
Processing Systems, NIPS 2003, Vancouver and Whistler, British Columbia,
Canada, 8–13 December 2003], pp. 225–232 (2003)

3. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algo-
rithm. Mach. Learn. 37(3), 277–296 (1999)

4. Gavrilut, D., Benchea, R., Vatamanu, C.: Optimized zero false positives perceptron
training for malware detection. In: 14th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC 2012, Timisoara, Roma-
nia, 26–29 September 2012, pp. 247–253 (2012)

Malware Detection Techniques Based on Machine Learning 259

5. Gavrilut, D., Cimpoesu, M., Anton, D., Ciortuz, L.: Malware detection using
machine learning. In: Proceedings of the International Multiconference on Com-
puter Science and Information Technology, IMCSIT 2009, Mragowo, Poland, 12–14
October 2009, pp. 735–741 (2009)

6. Kim, H.-C., Pang, S., Je, H.-M., Kim, D., Bang, S.-Y.: Support vector machine
ensemble with bagging. In: Lee, S.-W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388,
pp. 397–408. Springer, Heidelberg (2002). doi:10.1007/3-540-45665-1 31

7. Ng, K.L.S., Mishra, S.K.: De novo SVM classification of precursor microRNAs
from genomic pseudo hairpins using global and intrinsic folding measures. Bioin-
form./Comput. Appl. Biosci. 23(11), 1321–1330 (2007)

8. Lu, Y.-B., Din, S.-C., Zheng, C.-F., Gao, B.-J.: Using multi-feature and classifier
ensembles to improve malware detection. J. C.C.I.T. 39(2), 57–72 (2010)

9. Menahem, E., Shabtai, A., Rokach, L., Elovici, Y.: Improving malware detection
by applying multi-inducer ensemble. Comput. Stat. Data Anal. 53(4), 1483–1494
(2009)

10. Ozdemir, M., Sogukpinar, I.: An android malware detection architecture based on
ensemble learning. Trans. Mach. Learn. Artif. Intell. 2(3), 90–106 (2014)

11. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychol. Rev. 65(6), 386 (1958)

12. Tretyakov, K.: Machine learning techniques in spam filtering. Data Min. Prob.-
Oriented Semin. 3(177), 60–79 (2004)

13. Vatamanu, C., Cosovan, D., Gavriluţ, D., Luchian, H.: A comparative study of
malware detection techniques using machine learning methods. Int. J. Comput.
Electr. Autom. Control Inf. Eng. 9(5), 1157–1164 (2015)

14. Ye, Y., Chen, L., Wang, D., Li, T., Jiang, Q., Zhao, M.: SBMDS: an interpretable
string based malware detection system using SVM ensemble with bagging. J. Com-
put. Virol. 5(4), 283–293 (2009)

15. Zhang, B., Yin, J., Hao, J., Zhang, D., Wang, S.: Malicious codes detection based
on ensemble learning. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C., Hua,
Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 468–477. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-73547-2 48

http://dx.doi.org/10.1007/3-540-45665-1_31
http://dx.doi.org/10.1007/978-3-540-73547-2_48

Multi-column Deep Neural Network for Offline
Arabic Handwriting Recognition

Rolla Almodfer1, Shengwu Xiong1,2, Mohammed Mudhsh1,
and Pengfei Duan1,2(&)

1 School of Computer Science and Technology,
Wuhan University of Technology, Wuhan 430070, China

duanpf@whut.edu.cn
2 Hubei Key Laboratory of Transportation Internet of Things,

Wuhan University of Technology, Wuhan 430070, China

Abstract. In recent years Deep Neural Networks (DNNs) have been success-
fully applied to several pattern recognition filed. For example, Multi-Column
Deep Neural Networks (MCDNN) achieve state of the art recognition rates on
Chinese characters database. In this paper, we utilized MCDNN for Offline
Arabic Handwriting Recognition (OAHR). Through several settings of experi-
ments using the benchmarking IFN/ENIT Database, we show incremental
improvements of the words recognition comparable to approaches used Deep
Belief Network (DBN) or Recurrent Neural Network (RNN.) Lastly, we com-
pare our best result to those of previous state-of-the-arts.

Keywords: Multi-Column Deep Neural Networks � DNN � Offline Arabic
handwriting recognition

1 Introduction

During the past decade, significant progress has been made in handwriting words
recognition field. Applications like postal address and zip code recognition, passport
validation, check processing are practical applications in handwriting recognition area.
Numerous research results have been reported on handwriting recognition during last
few decades. Although there are promising results for recognition Latin, Chinese and
Japanese script, accuracies on recognition handwriting Arabic scripts fall behind. This
is due to unlimited variation in human handwriting, the large variety of Arabic char-
acter shapes, the presence of ligature between characters and overlapping of the
components. The different approaches of handwritten word recognition (HWR) fall into
either the on-line or off-line category. In on-line HWR, the computer recognizes the
words as they are written. Off-line recognition is performed after the writing is com-
pleted. We here focus on Off-line HWR which has traditionally been tackled by fol-
lowing two main approaches: (i) Analytic approach and (ii) holistic approach. The
analytic approach [1, 2] a word is decomposed into a set of smaller components (e.g.,
characters, graphemes, allographs) and then features are extracted for each component.
Finally, the word is transformed into sequential feature vectors suited for training and
recognition. A large variety of techniques/classifiers have been employed for the

© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 260–267, 2017.
https://doi.org/10.1007/978-3-319-68612-7_30

analytic approach; we cite: HMM (hidden Markovian Models) [3], LVQ (Learning
Vector Quantization) [4], SVM (Support Vector Machines) [5], and PGM (Probabilistic
Graphical Models) [6]. Although being successful, the performance of such approaches
has always been substantially dependent on the selection of right representing features,
which is a difficult task for cursive writing. In a holistic approach, the entire word is
recognized without prior decomposition of the word [7, 8]. In this case, the features
vectors are extracted from the word as a whole.

Recently, Deep Neural Networks (DNN) has acquired a reputation for solving
many computer vision problems, and its application to the field of HWR has been
shown to provide significantly better results than traditional methods [9]. In this vein,
the first reported successful use of DNN for Arabic handwritten word recognition was
multidimensional recurrent neural networks [10]. The authors obtained 91.4% accuracy
on IFN/ENIT database. Later, Elleuch et al. [11] presented a Convolutional Deep Belief
Network (CDBN) to recognize Arabic words. The authors obtained 83.7 Accuracy rate
on IFN/ENIT Database. In spite of the previous works, using Deep architectures on
Arabic handwriting recognition are relatively scarce comparative to other languages.

Deep Neural Networks (DNN) brings about new breakthrough technology for
Handwriting Chinese Character Recognition (HCCR) with great success. For example,
the multi-column deep neural network (MCDNN) method proposed by Cireşan et al.
[12, 13] shows remarkable ability in lots of applications and attains near-human per-
formance on handwritten datasets. It has achieved state of the art recognition rates on
Chinese characters from the ICDAR 2011 [14] and ICDAR 2013 [15] offline hand-
writing competitions, approaching human accuracy [16]. The MCDNN is a simple
average voting ensemble model, composed of several standard DNNs.

In this paper, we utilized the successful Multi Column Deep Neural Net-
work MCDNN for OAHR. In the proposed model, each of DNN is trained to predict
word label using the same training data but normalized differently. Therefor we create
additional datasets by normalizing word width to 100, 200, 300 pixels. The normal-
ization helps to reduce both error rate and number of columns required to reach a good
accuracy [13]. Through output averaging, three independently trained DNNs form a
MCDNN with error rate 8.5% below the error rate of single DNN. We show that this is
an effective technique to improve classification performance of the model.

2 Arabic Handwriting Characteristics and Challenges

Arabic cursive writing is unique compared to Latin, Chinese and Japanese. Arabic is
composed of 28 main characters and written from right to left in both printed and
handwritten forms. Each character has two or four different shapes depending on its
position in the word, which will increase the number of classes to be recognized from
28 to 84. The number and position of dots dominate characters that have similar shapes
[17, 18]. Fifteen characters have dots with the character and 52 basic character shapes
without dots. Some challenging structural characteristics of the characters in the
database are described below:

Multi-column Deep Neural Network for OAHR 261

1. Arabic word consists of one or more connected components (sub-words), and each
one contains one or more characters that can be overlapped with other characters or
diacritics. Moreover, multiple characters can be combined vertically to form a
ligature (Fig. 1a).

2. Some words have touching or broken characters (Fig. 1b).
3. Every writer has an individual writing style (Fig. 1c).
4. Some Arabic characters have diacritic marks (a diacritic may be placed above or

below the body of the character). These diacritics can be overlapped (Fig. 1d).

3 System Overview

In this section we briefly summarize a standard DNN. We then describe our proposed
MCDNN for offline Arabic handwriting recognition (OAHR).

3.1 Deep Neural Networks

A DNN is one of the most advanced machine learning techniques, it consists of a
succession of convolutional and max-pooling layers, and each layer receives connec-
tions from its preceding layer. The most popular image classification structure of DNN
is constructed by three main processing layers: Convolutional Layer, Pooling Layer
and Fully Connected Layer (or classification layer). DNN units are described below:

Convolutional Layer
Let xli 2 R

Ml�Ml represents the ith map in the lth layer, jth kernel filter in the lth layer
connected to the ith map in the (l−1)th layer denoted Kl

ij 2 R
kl�kl and index maps set

Mj = {i|ith in the (l−1)th Layer map connected to jth map in the lth layer}. The con-
volution operation can be given by Eq. (1).

(b) Touching and
broken characters

(a) Ligature and
overlapping

(c) Different writers
different style

(d) Confusion in as-
signing dots/diacritics

Fig. 1. Complexities in Arabic handwriting recognition

262 R. Almodfer et al.

xli ¼ f
X

i2Mj
xl�1
i � Kl

ij þ blj
� �

ð1Þ

where f (.) is non-linearity activation function and blj is bias.

Max-Pooling Layer
The max-pooling layer abstracts the input feature into a lower dimensional feature. It
has been shown that max-pooling can lead to faster convergence select superior
invariant features, and improve generalization [19]. Pooling equation can be described
in Eq. (2).

xlj ¼ Maxðxl�1
i Þ ð2Þ

where Max (.) is Max-sampling function to compute the max value of each n � n re-
gion in xl�1

i map.

Classification Layer
The fully connected layer is used at the end of the network. After multiple convolu-
tional and max-pooling layers, a shallow Multi-Layer Perceptron (MLP) is used to
complete the DNN. The output maps of the last convolutional layer are either
down-sampled to 1 pixel per map, or a fully connected layer combines the outputs of
the topmost convolutional layer into a 1D feature vector. The last layer is always a fully
connected layer with one output unit per class in the classification task. This layer may
have a non-linear activation function or a softmax activation in order to output prob-
abilities of class predictions.

3.2 MCDNN Architecture

The MCDNN was originally designed as an ensemble method to improve the per-
formance of DNN for image classification [13]. In this model, each column (or single
DNN) share the same network configuration and training data. They are randomly
initialized, and the input data preprocessed differently for each column. The number of
columns varied depending on the dataset used. Predictions from all columns are
averaged to get the final output. Here, the original IFN/ ENIT data are normalized such
that the height always equals 100 pixels. We normalized the words widths to 100, 200,
300 pixels (see Fig. 2). This is like seeing the data from different angles [13]. We
trained one column (one DNN) per normalization, resulting in total of 3 columns for
the MCDNN. Each column configured with seven layers, counting input and output
layer. The number of maps per layer is 32. The last layer always has 937 neurons, i.e.
one per class. The first column (DNN A) trained on 100 � 100 pixels images, the
second column (DNN B) trained on 200 � 100 pixels images. The last column (DNN
C) trained on 300 � 100 pixels images.

Given the outputs of the columns, we compute the prediction by averaging the
output of each column:

Multi-column Deep Neural Network for OAHR 263

yNMCDNN ¼ 1
N

XN

i¼1
yiDNN ð3Þ

where yiDNN corresponds to the prediction from ith column DNN; N corresponds to the
number of total columns. The architecture of MCDNN is depicted in Fig. 3.

4 Experiments Results

Dataset IFN/ENIT [7] contains 32492 binary images of Arabic words written by more
than 400 writers. 19724 words for training and 12768 for testing. The handwritten
words represent 937 Tunisian town/village names. The database is normalized before
the training starts. The architecture of a single DNN is composed of two convolution
layers and two max pooling layers. Each of the first two convolution layers is followed
by a max pooling layer, with a pooling size of 2 � 2 and a stride of 2 pixels. No spatial
zero padding is used in the convolution layer, and the convolution stride is fixed to 1
pixel. In Fig. 4 the 300 � 100 input image to DNN C was filtered by 32 convolution
filters of size 5 � 5 in the first convolution layer, resulting in 32 feature maps of size

200 * 100 300 * 100 100 * 100

Fig. 2. Arabic word images with different normalization

DNN A DNN C

Averaging

DNN B

 Word Image

N N N

N Normalization

Fig. 3. MCDNN architecture, the final predictions are obtained by averaging individual
predictions of each DNN

264 R. Almodfer et al.

296 � 96. After the first pooling layer, their sizes become 148 � 48. The first pooling
layer’s outputs are sent into the second convolution layer, which has a convolution
filter size of 5 � 5, leading to 32 feature maps of size 144 � 44. After the second
pooling layer, their sizes become 72 � 22 which brings out 32 feature maps of size
72 � 22. These features are then fed to a simple Multi- Layer Perceptron (MLP) with
two layer. The first is fully connected layer size is 256. Finally the output layer has one
neuron per class (937).

The three DNNs are trained using on-line gradient descent with a momentum of
0.9, and a weight of 0.0005 per iteration. The type of non-linearity used is Rectified
Linear Unit (ReLU) which given as f(x) = max (0, x). The reason for using it instead of
other nonlinear functions like tanh (f(x) = tanh(x)) and sigmoid (f(x) = (1 + e-x)−1) is
because training with gradient descent is comparatively much faster for ReLU than the
other non-linearities functions [15], moreover it can be more easily developed by
thresholding the matrix of activations at zero, without suffering from saturation. We
used a softmax [6] activation function, thus each neuron’s output represents the pos-
terior class probability. Softmax activation function, is applied as an effective method
for multi-class classification problem. The mini-batch size is 128 and the networks
were trained for 200 epochs. The whole training procedure for a single network took at
most 66 h on a desktop PC with an Intel i7 3770 processor, a NVidia GTX780 graphics
card and 16 gigabytes of on-board RAM.

Table 1 compares the error rate of different methods [10, 11, 20] on IFN/ENIT. For
a single DNN, DNN C gave about a 3% improvement over DNN A and DNN B. This

300x100 296x96x32 148x48x32 144x44x32 72x22x32

Feature Learning Classification

C1-layer
32 Maps
Kernel:5x5

Mp2-layer
Kernel:2x2

Input layer
1 Map

FC-
Output layer

C2-layer
32 Maps
Kernel:5x5

Mp1-layer
Kernel:2x2

FC
layer

256
937 classes

Fig. 4. The architecture of DNN C

Table 1. Error rate for the IFN/ENIT database

Author Model Error rate%

Elleuch et al. [11] CDBN 16.3%
Maalej and Kherallah [20] MDLSTM 11.2%
Present work DNN C 10.9%
Graves [10] MDLSTM 8.6%
Present work MCDNN 8.5%

Multi-column Deep Neural Network for OAHR 265

improvement comes at a cost of increase in training and classification time, as the sizes
of images fed to DNN C were bigger. Our lowest error rate in the Table 1 is 8.5%, not
far from the result (8.6%) obtained by Graves et al. Nevertheless, our model is less
complex and easy to implement. MCDNN improves the results over single DNN (DNN
C) and achieves the lowest error rate. The error rate of MCDNN considers low to a very
hard classification problem, with many classes and relatively few samples per class.
The DNN suffers more from a lack of training samples.

5 Conclusion

In this paper, we have explored the applicability of MCDNN on Arabic handwritten
recognition and demonstrated the efficiency applied on IFN/ENIT databases. We show
incremental improvements of the word recognition comparable to approaches used
DBN with an error rate of 16.3% or RNN with an error rate of 8.6%. Our results were
promising with an error rate of 10.9% using single DNN and 8.5% using 3-columns
MCDNN. As a future work, we plan to add more columns inspiring by the success
from other applications used MCDNN, like Chinese characters recognition (8 columns
with an error rate of 6.5%) and traffic signs recognition (25 columns with an error rate
of 0.54%) [13]. Moreover, we will increase the depth of each DNN as deeper network
can increase the classification accuracy [21].

Acknowledgments. This research was supported in part by Science & Technology Pillar Pro-
gram of Hubei Province under Grant (#2014BAA146), Nature Science Foundation of Hubei
Province under Grant (#2015CFA059), Science and Technology Open Cooperation Program of
Henan Province under Grant (#152106000048).

References

1. Kim, K.K., Jin, H.K., Yun, K.C., et al.: Legal amount recognition based on the segmentation
hypotheses for bank check processing. In: Proceedings of International Conference on
Document Analysis and Recognition, pp. 964–967. IEEE Xplore (2001)

2. Vinciarelli, A.: A survey on off-line cursive word recognition. Pattern Recogn. 35(7), 1433–
1446 (2002)

3. Mohamad, A.H., Likformansulem, L., Mokbel, C.: Combining slanted-frame classifiers for
improved HMM-based Arabic handwriting recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 31(7), 1165–1177 (2009)

4. Ali, M.A.: Arabic handwritten characters classification using learning vector quantization
algorithm. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008.
LNCS, vol. 5099, pp. 463–470. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69905-
7_53

5. Elzobi, M., Al-Hamadi, A., Al Aghbari, Z., Dings, L., Saeed, A.: Gabor wavelet recognition
approach for off-line handwritten arabic using explicit segmentation. In: Choras, R.S. (ed.)
Image Processing and Communications Challenges 5, pp. 245–254. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-01622-1_29

266 R. Almodfer et al.

http://dx.doi.org/10.1007/978-3-540-69905-7_53
http://dx.doi.org/10.1007/978-3-540-69905-7_53
http://dx.doi.org/10.1007/978-3-319-01622-1_29

6. Khemiri, A., Kacem, A., Belaid, A.: Towards Arabic handwritten word recognition via
probabilistic graphical models. In: International Conference on Frontiers in Handwriting
Recognition, pp. 678–683. IEEE (2014)

7. Madhvanath, S., Govindaraju, V.: The role of holistic paradigms in handwritten word
recognition. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 149–164 (2001)

8. Ruiz-Pinales, J., Jaime-Rivas, R., Castro-Bleda, M.J.: Holistic cursive word recognition
based on perceptual features. Pattern Recogn. Lett. 28(13), 1600–1609 (2007)

9. Wu, C., Fan, W., He, Y., et al.: Handwritten character recognition by alternately trained
relaxation convolutional neural network. In: International Conference on Frontiers in
Handwriting Recognition, pp. 291–296. IEEE (2014)

10. Graves, A.: Offline Arabic handwriting recognition with multidimensional recurrent neural
networks. In: Advances in Neural Information Processing Systems, pp. 545–552 (2012)

11. Elleuch, M., Tagougui, N., Kherallah, M.: Deep learning for feature extraction of Arabic
handwritten script. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257,
pp. 371–382. Springer, Cham (2015). doi:10.1007/978-3-319-23117-4_32

12. Cireşan, D., Meier, U., Masci, J., et al.: Multi-column deep neural network for traffic sign
classification. Neural Netw. 32(1), 333 (2012)

13. Schmidhuber, J., Meier, U., Ciresan, D.: Multi-column deep neural networks for image
classification, vol. 157, no. 10, pp. 3642–3649 (2012)

14. Liu, C.L., Yin, F., Wang, Q.F., et al.: ICDAR 2011 Chinese handwriting recognition
competition. In: International Conference on Document Analysis and Recognition,
pp. 1464–1469. IEEE (2011)

15. Yin, F., Wang, Q.F., Zhang, X.Y., Liu, C.L.: ICDAR 2013 Chinese handwriting recognition
competition. In: ICDAR 2013 (2013)

16. Dan, C., Meier, U.: Multi-column deep neural networks for offline handwritten Chinese
character classification. In: International Joint Conference on Neural Networks, pp. 1–6.
IEEE (2015)

17. Aburas, A.A., Gumah, M.E.: Arabic handwriting recognition: challenges and solutions. In:
International Symposium on Information Technology, pp. 1–6. IEEE (2008)

18. Srihari, S.N., Ball, G.: An assessment of arabic handwriting recognition technology. In:
Märgner, V., El Abed, H. (eds.) Guide to OCR for Arabic Scripts, pp. 3–34. Springer,
London (2012). doi:10.1007/978-1-4471-4072-6_1

19. Lecun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision.
In: International Symposium on Circuits and Systems, DBLP, pp. 253–256 (2010)

20. Maalej, R., Kherallah, M.: Improving MDLSTM for offline Arabic handwriting recognition
using dropout at different positions. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.)
ICANN 2016. LNCS, vol. 9887, pp. 431–438. Springer, Cham (2016). doi:10.1007/978-3-
319-44781-0_51

21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. Comput. Sci. (2014)

Multi-column Deep Neural Network for OAHR 267

http://dx.doi.org/10.1007/978-3-319-23117-4_32
http://dx.doi.org/10.1007/978-1-4471-4072-6_1
http://dx.doi.org/10.1007/978-3-319-44781-0_51
http://dx.doi.org/10.1007/978-3-319-44781-0_51

Using LSTMs to Model the Java
Programming Language

Brendon Boldt(B)

Marist College, 3399 North Rd., Poughkeepsie, NY, USA
brendon.boldt1@marist.edu

Abstract. Recurrent neural networks (RNNs), specifically long-short
term memory networks (LSTMs), can model natural language effectively.
This research investigates the ability for these same LSTMs to perform
next “word” prediction on the Java programming language. Java source
code from four different repositories undergoes a transformation that pre-
serves the logical structure of the source code and removes the code’s var-
ious specificities such as variable names and literal values. Such datasets
and an additional English language corpus are used to train and test stan-
dard LSTMs’ ability to predict the next element in a sequence. Results
suggest that LSTMs can effectively model Java code achieving perplex-
ities under 22 and accuracies above 0.47, which is an improvement over
LSTM’s performance on the English language which demonstrated a per-
plexity of 85 and an accuracy of 0.27. This research can have applicability
in other areas such as syntactic template suggestion and automated bug
patching.

1 Introduction

Machine learning techniques of language modeling are often applied to natural
languages, but techniques used to model natural languages such as n-gram,
graphed-based, and context sensitive models can be applicable to programming
languages as well [1–3]. One such application of a language model is next-word
prediction which can prove very useful for tasks such as syntactic template sug-
gestion and bug patching [2,4]. There has been research into programming lan-
guage models which use Bayesian statistical inference (n-gram models) to per-
form next-word prediction [1]. Yet some of the most successful natural language
models have been built using recurrent neural networks (RNNs); their ability to
remember information over a sequence of tokens makes them particularly apt
for next-word prediction [5].

Specifically, long-short term memory (LSTM) RNNs have further improved
the basic RNN model by increasing the ability of an RNN to remember data
over a long sequence of input without the signal decaying quickly [5]. LSTMs
are a sequence-to-word language model which means given a sequence of words
(e.g., words in the beginning of a sentence), the model will produce a probability
distribution describing what the next word in the sequence is.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 268–275, 2017.
https://doi.org/10.1007/978-3-319-68612-7_31

Using LSTMs to Model the Java Programming Language 269

In terms of the Java programming language, we are specifically investigating
next-statement prediction in method bodies. While other parts of Java source
code (e.g., class fields, import statements) do have semantic significance, method
bodies make up the functional aspect of source code1 and most resemble natural
language sentences. Just as individual semantic tokens (words) comprise natural
language sentences, statements, which can be thought of as semantic tokens,
comprise method bodies. Furthermore, the semantics of individual natural lan-
guage words coalesce to form the semantics of sentence just as the semantics of
the statement in a method body form the semantics of the method as a whole.
By this analogy, language modeling techniques which operate on sentences com-
prised of words could apply similarly to method bodies comprised of statements.

2 Tokenizing Java Source Code

We are specifically looking at predicting the syntactic structure of the next state-
ment in within Java source code method bodies. The syntactic structure of a
complete piece of source code can be represented as an abstract syntax tree
(AST) where each node of the tree represents a distinct syntactic element (e.g.,
statement, boolean operator, literal integer). Method bodies are, in particular,
comprised of statements which, more or less, represent a self-contained action.
Each of these statements is the root of its own sub-AST which represents the
syntactic structure of only that statement. In this way, statements are indepen-
dent, semantically meaningful units of a method body which are suitable to be
tokenized for input into the RNN.

Nguyen and Nguyen [2] studied a model for syntactic statement prediction
called ASTLan which uses Bayesian statistical inference to interpret and predict
statements in the form of sequential statement ASTs. While Bayesian statistical
inference can be applied to statements directly in their AST form, RNNs operate
on independent tokens such as English words. Thus, it is necessary that state-
ment ASTs be flattened into a tokenized form in order to produce an RNN-based
model.

2.1 Statement-Level AST Tokenization

The RNN model described in Zaremba et al. [5] specifically uses space-delimited
text strings; hence, when the statement ASTs are tokenized, they must be rep-
resented as space-delimited text strings.

To show the tokenization of Java source, take the following Java statement:
int x = obj.getInt();. The corresponding AST, as given by the Eclipse AST
parser, appears in Fig. 1 [6]. This statement, in turn, would be transformed as
follows2

1 Functional insofar as method bodies describe the active (non-declarative) behavior
of the program.

2 VariableDeclarationStatement is not included in the tokenized version of the AST
since the syntax is adequately represented by starting with the root node’s children.

270 B. Boldt

Fig. 1. The abstract syntax tree (AST) representation of the Java statement int x =

obj.getInt();

_PrimitiveType_VariableDeclarationFragment(_SimpleName
_MethodInvocation(_SimpleName_SimpleName)))

_60(_39_59(_42_32(_42_42)))

The first token uses the AST node names while second token represents the
same AST by instead using integer IDs corresponding to the AST node names
as assigned by the Eclipse parser (e.g., 60 corresponds to “PrimitiveType” nodes
and 42 corresponds to “SimpleName” nodes). Using integer IDs saves space and
is the format used in the actual LSTM.

Individual AST nodes are separated by underscores (“ ”) and parentheses
are used to denote a parent-child relationship so that the tree structure of the
statement is preserved. In fact, it is possible to recreate the syntax of the original
source code from the tokens; thus, this tokenization is lossless in terms of syn-
tactical information yet lossy in other areas. For example, variable and function
names are discarded during the translation to make the model independent of
variable and function names.

2.2 Method-Level Tokenization

Consider the following Java method:

int foo() {
int x = obj.getInt();
if (x > 0) {

x = x + 5;
}
return x;

}

Each statement in the method body is tokenized just as the single statement
was above, and the resulting tokens are delimited using spaces. Braces, while
not statements, are included (denoted by “{” and “}”) to retain the semantic
structure of the method body. The method above becomes the following sequence
of tokens:

Using LSTMs to Model the Java Programming Language 271

(_39_42 { _60(_39_59(_42_32(_42_42)))
_25(_27(_42_34) { _21(_7(_42_27(_42_
34))) } _41(_42) }

The sequence of these tokens forms a “sentence” which represents the body of
a Java method. Sentences in the dataset are separated by the <eos> metatoken
to mark the end of a sentence. These sentences of tokens will then comprise the
corpus that the LSTM network uses to train and make predictions.

2.3 English and Java Source Corpora Used

Similarly to Zaremba et al. [5], we are using the Penn Treebank (PTB) for the
English language corpus as it provides an effective, general sample of the English
language. For the Java programming languages, four different corpora were each
built by processing (as described above) a large repository of Java source code.
The repositories used were the Java Development Kit (JDK), Google Guava,
ElasticSearch, and Spring Framework. The JDK is a good reference for Java
since it is a widely-used implementation of the Java language; the other three
projects were selected based on their high popularity on GitHub in addition to
the fact they are Java-based projects.

It is important to note that the PTB does not contain any punctuation
while the tokenized Java source contains “punctuation” only in the form of
statement body-delimiting curly braces (“{” and “}”) since these are integral
to the semantic structure of source code. All English and Java corpora use a
metatoken to mark the end of a sentence.

2.4 Vocabulary Comparison

In addition to preserving the logical structure of the source code, another goal of
the specific method of tokenization was to produce a vocabulary with a frequency
distribution similar to that of the English corpus. If the same Java statement
tokens appear too frequently, the tokenization might be generalizing the Java
source too much such that it loses the underlying semantics. If the statement
tokens, instead, all have a very low frequency it would be difficult to effectively
perform inference on the sequence of tokens within the allotted vocabulary size.

In all of the Java corpora, the left and right curly braces comprise approxi-
mately 35% of the total tokens present. This a disproportionately high number
in comparison to the rest of the tokens, but removing them from the frequency
distribution, since they classify as punctuation, gives a more accurate represen-
tation of the vocabularies. The adjusted frequency distribution shown in Fig. 2
compares the PTB to the JDK source code. The rate of occurrence for the
highest ranked words is significantly higher in the JDK than in the PTB, but
the frequency distributions track closely together beyond the fifth-ranked words.
Generally, all four Java corpora showed similar frequency distributions.

The statistical similarities between the English and the translated Java cor-
pora suggest that the Java statement tokens have an adequate amount of detail

272 B. Boldt

0 5 10 15 20 25 30

0

0.1

0.2

Word Rank

F
re

q
u
en

cy

PTB

JDK

Fig. 2. Comparison of English and Java word frequency distributions. The y-axis rep-
resents the total proportion of the word with a given rank (specified by the x-axis).

in terms of mimicking English words. If the Java statement tokens were too
detailed, their frequencies would be far lower than those of English words; if
the Java statement tokens were not detailed enough, their frequencies would be
much higher than those of English words (Table 1).

Table 1. Proportion and rank of the metatoken <unk>. Proportions and ranks are from
the adjusted Java corpora with the left and right curly braces removed.

Corpus Proportion Rank

PTB 0.0484 2

JDK 0.0724 2

Guava 0.0476 5

ElasticSearch 0.1618 2

Spring framework 0.0873 2

Another consideration when comparing the English and Java corpora is the
prevalence of the metatoken <unk> which denotes a token not contained in the
language model’s vocabulary. Due to the nature of LSTMs, the vocabulary of
the language model is finite; hence, any word not contained in the vocabulary is
considered unknown. We specifically used a vocabulary size of 10, 000. A vocabu-
lary size which is too small will fail to represent enough words in the corpus; the
result is the LSTM seeing a high proportion of the <unk> metatoken. A vocab-
ulary which is too large increases the computation required during training and
inference. The proportion of <unk> tokens in both the English and the Java
source data sets (save for ElasticSearch3) are <10% which indicates that the
10, 000 word vocabulary accounts for approximately 90% of the corpus’ words
by volume. It is important that the Java corpora’s <unk> proportion is not sig-
nificantly higher than that of the PTB since that would suggest that 10, 000 is
too small a vocabulary size to describe the tokenized Java source code.
3 ElasticSearch had a proportion of 16%.

Using LSTMs to Model the Java Programming Language 273

3 Language Modeling

3.1 Neural Network Structure and Configuration

In order to make a good comparison between language modeling in English and
Java, a model with demonstrated success at modeling English was chosen. The
model selected was an LSTM neural network, a type of RNN, as described in
Zaremba et al. [5]. This particular LSTM uses regularization via dropout to act
as a good language model for natural languages such as English [5].

The LSTM’s specific configuration was the same as the “medium” configura-
tion described in Zaremba et al. [5] with the exception that the data was trained
for 15 epochs instead of 39 epochs. Beyond 15 epochs (on both the English
and Java datasets), the training cost metric (perplexity) continued to decrease
while the validation cost metric remained steady. This suggests that the model
was beginning to overfit the training data and that further training would not
improve performance on the test data. Specifically, this model contains two RNN
layers with a vocabulary size of 10, 000 words.

Each corpora was split into partitions such that 80% was training data and
the remaining 20% was split evenly between test and validation data. Perplexity,
the performance metric of the LSTM, is determined by the ability of the LSTM
to perform sequence-to-word prediction on the test set of that corpus. Perplex-
ity represents how well the prediction (in the form of a probability distribution)
given by the LSTM matches the actual word which comes next in the sentence.
A low perplexity means that the language model’s predicted probability distri-
bution matched closely the actual probability distribution, that is, it was better
able to predict the next word. Perplexity is the same metric that is used in
Zaremba et al. [5] to compare language models.

3.2 Language Model Metrics

We chose word-level perplexity as the metric for comparing the language models’
performance on the given corpora since it provides a good measurement of the
model’s overall ability to predict words in the given corpus [7]. Perplexity for
a given model is calculated by exponentiating (base e) the mean cross-entropy
across all words in the test set. This is formally expressed as follows:

P (L) = exp

(
1
N

N∑
i=1

H(L,wi)

)
, (1)

where N is the test data set size, L is the language model, wi is the ith word
in the test set, and H(L,wi) is the natural log cross-entropy from wi to the
prediction given by L(wi). A lower perplexity represents a language model with
better predictive performance [8].

The cross-entropy is the opposite of summing the product of the probability
of that word appearing, i.e., 1 for the correct word and 0 for all other incorrect
words, and the natural logarithm of the output value of LSTM’s softmax layer.
The cross-entropy is defined as follows:

274 B. Boldt

H(L,w) = −
V∑
i=1

p(wi) lnL(wi) , (2)

where V is the vocabulary size and p(wi) is the probability of wi being the
correct word. Since the probability for incorrect words is 0 and the correct word
is 1, the sum can be reduced to −1 times the natural log of the probability of
the correct word as given by the LSTM. Thus, the cross-entropy is simply

H(L,w) = − lnLw(w). (3)

Lw(w) represents the LSTM’s softmax output specifically for the word w. Addi-
tionally, mean word-level accuracy was calculated for each language model con-
sidering the top 1, 5, and 10 predictions made by the model.

4 Results

The perplexities achieved on the corpora by the LSTM are displayed in Table 2.
The smallest perplexity for non-English data sets was measured for the Spring
Framework, while the largest was for the JDK data. The table also indicates
that all four Java data sets showed a drastic reduction in perplexity compared
to the English data set. Nonetheless, the perplexity achieved on the English
dataset is similar to that reported by Zaremba et al. [5]. These results indicate
the superiority of LSTMs on both programming languages and a language as
complex as the English language.

Table 2 shows the top-k accuracies for each corpora. Clearly, results suggest
that the proposed LSTM model is able to more accurately model pre-processed
Java source code than it can English. The table also indicates that, for the
English data set, the use of a large number of predictors can dramatically increase
the overall rate of predictors with the correct next word; e.g., increasing from one
to ten predictors at least doubled the proportion of predictors. There is a similar
effect over Java-based data sets; however, in these data sets the predictors start
at a higher proportion than with English.

Table 2. Perplexities (P) given by Eq. 1. Proportion of predictions which had the
correct word in their top-k predictions. “ElasticSearch” is written as “ES” and “Spring
Framework” is written as “SF”.

Corpus P Top 1 Top 5 Top 10 Language

PTB 85.288 0.269 0.470 0.552 English

JDK 21.808 0.474 0.652 0.716 Java

Guava 18.678 0.519 0.696 0.751 Java

ES 11.397 0.576 0.739 0.784 Java

SF 11.318 0.560 0.722 0.783 Java

Using LSTMs to Model the Java Programming Language 275

5 Conclusion

In this paper, we have presented a way of modeling a predictive strategy over
the Java programming language using an LSTM. Using datasets such as PTB,
JDK, Guava, ElasticSearch, and Spring Framework we have shown that LSTMs
are suitable in predicting the next syntactic statements of source code based
on preceding statements. Results indicate that the LSTMs can achieve lower
perplexities and, hence, produce more accurate models on the Java datasets
than the English dataset.

The pre-processed Java code represents a very general and cursory represen-
tation of the original code as it does not include anything such as variable names
or variable types. Future research along these lines could account for informa-
tion such as variable types, variable names, etc. It would also be beneficial to
compare the modeling of Java with other programming languages or to train the
model across multiple repositories in one language.

Source code repositories:
LSTM model: https://github.com/brendon-boldt/lstm-language-model
Java translator: https://github.com/brendon-boldt/javalator

References

1. Allamanis, M., Sutton, C.: Mining source code repositories at massive scale using
language modeling. In: Proceedings of the 10th Working Conference on Mining
Software Repositories, MSR 2013, Piscataway, NJ, USA, pp. 207–216. IEEE Press
(2013)

2. Nguyen, A.T., Nguyen, T.N.: Graph-based statistical language model for code. In:
Proceedings of the 37th International Conference on Software Engineering, ICSE
2015, Piscataway, NJ, USA, vol. 1, pp. 858–868. IEEE Press (2015)

3. Asaduzzaman, M., Roy, C.K., Schneider, K.A., Hou, D.: A simple, efficient, context-
sensitive approach for code completion. J. Softw.: Evol. Process 28(7), 512–541
(2016). JSME-15-0030.R3

4. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from
human-written patches. In: Proceedings of the 2013 International Conference on
Software Engineering, ICSE 2013, Piscataway, NJ, USA, pp. 802–811. IEEE Press
(2013)

5. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization.
CoRR, abs/1409.2329 (2014)

6. Eclipse Foundation: Eclipse documentation on the AST class (2016). http://help.
eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%
2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FAST.html. Accessed 18 Aug 2016

7. Sundermeyer, M., Ney, H., Schlüter, R.: From feedforward to recurrent LSTM neural
networks for language modeling. IEEE/ACM Trans. Audio Speech Lang. Process.
(TASLP) 23(3), 517–529 (2015)

8. Wang, M., Song, L., Yang, X., Luo, C.: A parallel-fusion RNN-LSTM architecture
for image caption generation. In: 2016 IEEE International Conference on Image
Processing (ICIP), pp. 4448–4452. IEEE (2016)

https://github.com/brendon-boldt/lstm-language-model
https://github.com/brendon-boldt/javalator
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FAST.html
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FAST.html
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FAST.html

Representation and Classification

Classification of Categorical Data in the Feature
Space of Monotone DNFs

Mirko Polato(B), Ivano Lauriola, and Fabio Aiolli

Department of Mathematics, University of Padova,
Via Trieste, 63, 35121 Padova, Italy

{mpolato,aiolli}@math.unipd.it, ivanolauriola@gmail.com

Abstract. Nowadays, kernel based classifiers, such as SVM, are widely
used on many different classification tasks. One of the drawbacks of these
kind of approaches is their poor interpretability. In the past, some efforts
have been devoted in designing kernels able to construct a more under-
standable feature space, e.g., boolean kernels, but only combinations of
simple conjunctive clauses have been proposed.

In this paper, we present a family of boolean kernels, specifically, the
Conjunctive kernel, the Disjunctive kernel and the DNF-kernel. These
kernels are able to construct feature spaces with a wide spectrum of
logical formulae. For all of these kernels, we provide a description of
their corresponding feature spaces and efficient ways to calculate their
values implicitly. Experiments on several categorical datasets show the
effectiveness of the proposed kernels.

Keywords: Kernel methods · Boolean kernels · DNF · SVM

1 Introduction

The SVM classifier is one of the widest used machine learning method. Its high
accuracy in many classification problems has meant that, nowadays, it is applied
on very different domains, such as text categorization, diagnoses information
classification and so on. However, one of the weakest points of the SVM model
is its black-box nature. Specifically, since it is based on the, so called, kernel
trick, it is very difficult to give an understandable interpretation of what the
features represent. For example, one of the most famous kernel, the Radial Basis
Function (RBF) kernel, also known as Gaussian kernel, maps input vectors into
a space with infinite dimensions. Even though some efforts have been spent in
order to extract rules from it [1,2], there is no a really successful method.

On the other hand, Decision Trees (DT), thanks to their easy logical inter-
pretation, are very appreciated especially by non-expert users. The drawback of
DTs is that, in general, they are not as accurate as more complex methods.

One of the possible approach to make SVM more interpretable is to design
feature spaces which are easy to relate to human-friendly rules, and this can be
easily done through the use of boolean kernels. The idea behind these kind of
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 279–286, 2017.
https://doi.org/10.1007/978-3-319-68612-7_32

280 M. Polato et al.

kernels is to map vectors into a space made of logical formulae. In literature,
as far as we know, all the proposed boolean kernels have embeddings made of
conjunctive clauses of the input variables, which, however, represents only part
of the whole spectrum of all the possible logical formulae.

In this paper we propose a family of boolean kernels, in particular we intro-
duce a kernel, called (monotone) Disjunctive kernel, in which the embedding
is made of disjunctive clauses, of a certain degree, of the input variables. We
also propose another boolean kernel, the (monotone) DNF-kernel, which has a
feature space made of monotone Disjunctive Normal Form formulae of the input
variables. For both of these kernels we give a very efficient closed formula in
order to implicitly calculate them. We finally assess their effectiveness against
the linear kernel and the RBF kernel on several categorical datasets.

2 Related Works

Boolean kernels are those kernel functions which take in input binary vectors
of dimension n and apply the dot product in a feature space, of dimension N
(generally N � n), where each dimension represents a logical formula over the
input variables.

Formally, a generic boolean kernel κ can be defined as κ : B
n×B

n → N, where
B ≡ {0, 1}. Anytime x, z ∈ B

n, the linear kernel, that is κLIN(x, z) = 〈x, z〉,
where 〈·, ·〉 is the dot-product, can be interpreted as a particular case of boolean
kernel, in which the features simply correspond to the boolean literals. The kernel
counts how many active literals the input vectors have in common.

A more complex special case of boolean kernel is the polynomial kernel
[12,13], κd

POLY(x, z) = (〈x, z〉 + c)d, c ∈ N. In this case the feature space con-
tains all possible monomials up to the degree d. From a logical stands point, a
monomial can be seen as a conjunction of boolean variables.

It is worth to notice that the polynomial kernel contains sets of equivalent
features in its embedding, e.g., with d = 3 and x ∈ B

2 we would have the features
x2
1x2, x1x

2
2 which are indeed the same feature x1x2.

However, the all-subset kernel [5,11], κ⊆(x, z) =
∏n

i=1(xizi + 1) = 2〈x,z〉,
overcomes this duplicate issue. This kernel generates all combination of features
but, each factor in the monomial has degree at most one.

In [4,9] the DNF-kernel (Disjunctive Normal Form), κ′
⊆(x, z) = 2〈x,z〉 − 1,

is presented, which is very similar to the all-subset kernel. In fact, it is easy to
note that κ′

⊆ and κ⊆ are the same kernel up to the constant −1.
By fixing the degree of the monomials of the all-subset kernel to a single

d, we obtain the so called ANOVA kernel (κd
A) [11]. In [9], the non-monotone

version of κ′
⊆ is also proposed, κ∗

⊆(x, z) = 2〈x,z〉+〈x̄,z̄〉 −1, where x̄ and z̄ are the
complements of the binary vectors x, z ∈ B

n. The core difference between κ′
⊆

and κ∗
⊆ is that the former considers also variables in their negate version. So, for

instance, the feature x1 ∧ x̄2 ∧x3 is inside the feature space of κ∗
⊆ but not inside

the one of κ′
⊆. A generalization of both κ′

⊆ and κ∗
⊆ is presented by Zhang et al.

[13]. [7,10] present a reduced variation of κ′
⊆ and κ∗

⊆ in which only conjunctions

Classification of Categorical Data in the Feature Space of Monotone DNFs 281

with up to d variables are considered: κ′d
⊆(x, z) =

∑d
i=1

(〈x,z〉
i

)
and κ∗d

⊆ (x, z) =
∑d

i=1

(〈x,z〉+〈x̄,z̄〉
i

)
. In [12] the authors propose a Decision Rule Classifier based

on boolean kernels which mines interesting rules from the solution of the SVM.
In this work we present two new boolean kernels, the (monotone) Disjunc-

tive kernel and the (monotone) DNF-kernel, in which monomials in the fea-
ture space are interpreted as disjunctions and as disjunctions of conjunctions of
boolean variables, respectively. We reuse the name (m) DNF-kernel with a differ-
ent meaning: our kernel constructs features that are DNFs of the input variables,
so the solution of a kernel machine using this kernel would be a weighted sum-
mation of verified DNFs formulae.

In the experimental section we compare these new kernels, along with the
(monotone) Conjunctive kernel, against the linear and the RBF kernel, using a
standard Support Vector Machine (SVM), on many categorical datasets.

3 Boolean Kernels

3.1 Monotone Conjunctive Kernel

As mentioned in Sect. 2, since we are working inside a binary input space, mono-
mials of degree c can be interpreted as conjunctions of boolean variables, e.g.,
x1x3x7 ≡ x1 ∧ x3 ∧ x7, assuming 1 as true and 0 as false.

Using this logical interpretation, we can define the ANOVA kernel [11], of
degree c, between x and z as the number of true conjunctions of c literals in
common between x and z. We call this kernel monotone Conjunctive kernel (or
simply mC-kernel for brevity). The prefix “monotone” specifies the fact that the
variables in the conjunctions are always considered in their affermative (non-
negative) form. Formally, the embedding of the mC-kernel of degree c is given
by

φc
∧ : x 	→ (φ(b)

∧ (x))b∈Bc
,

where Bc = {b ∈ B
n | ‖b‖1 = c}, and

φ
(b)
∧ (x) =

n∏

i=1

xbi
i = xb,

where the notation xb means xb1
1 xb2

2 · · · xbn
n .

The dimension of the resulting feature space is
(
n
c

)
, that is the number of

all combinations of c different variables. A conjunction is satisfied if and only if
all the monomials by which it is formed are true. So, in order to count all the
possible conjunctions of c variables satisfied in both φc

∧(x) and φc
∧(z) we have

to calculate the number of combinations of c monomials that can be formed by
using all the active variables in both x and z.

Formally, the kernel (κc
∧) is calculated by

κc
∧(x, z) = 〈φc

∧(x),φc
∧(z)〉 =

∑

b∈Bc

xbzb =
(〈x, z〉

c

)

.

282 M. Polato et al.

It is worth to notice that the mC-kernel generalizes the linear kernel, in fact,
by fixing c = 1 we obtain κ1

∧(x, z) =
(〈x,z〉

1

)
= 〈x, z〉 = κLIN(x, z).

3.2 Monotone Disjunctive Kernel

In the previous section we described a kernel which computes conjunctions of
variables in the feature space. With a similar approach, in this section we present
a kernel which computes disjunctions of variables in the feature space.

The embedding of the monotone Disjunctive kernel (mD-kernel) is the same
as the mC-kernel, because it forms all the possible combinations of a certain
degree d. The difference is the logical interpretation: in the mD-kernel the com-
binations of variables represent disjunctions, e.g., x1x2x5 ≡ x1 ∨ x2 ∨ x5. A
disjunction is satisfied if and only if at least one of its literals is true, so, in the
feature space, a feature is active if and only if one of its (input) variables is
active.

Formally, the embedding of the mD-kernel of degree d is given by

φd
∨ : x 	→ (φ(b)

∨ (x))b∈Bd
,

with

φ
(b)
∨ (x) = H(〈x,b〉) = H

(
n∑

i=1

xibi

)

,

where H : R → B is the Heaviside step function.
The dimension of the mD-kernel embedding is

(
n
d

)
. It is clear that comput-

ing the kernel is not feasible in an explicit way because of the combinatorial
explosion. However, we can rely on the analogy between binary vectors and sets.

Let U ≡ {1, . . . , n} be the universal set and let X ≡ {i | xi = 1} and Z ≡
{i | zi = 1} be the sets interpretation of the vectors x and z, respectively. An
active disjunction of d literals can be defined as a set of d elements taken from
U , let us call it Ud, such that ∃a, b ∈ Ud |a ∈ X ∧b ∈ Z and potentially a = b. We
will call Ud an active subset for X and Z. Using this interpretation, we can define
the mD-kernel between x and z, κd

∨(x, z) = 〈φd
∨(x),φd

∨(z)〉, as the number of
active subsets Ud ⊆ U for both X and Z.

We can count the number of these subsets Ud in a negative fashion. Starting
from the number of all possible subsets Ud, which is

(|U|
d

)
, we have to remove

the number of inactive subsets for X and for Z. An inactive subset for X is the
set Ud such that ∀a ∈ Ud, a /∈ X , and the number of this kind of sets is

(|U�X|
d

)
.

Analogously, we can do the same for Z. Now, we have removed twice the subsets
formed by elements taken from X ∪ Z ≡ U�(X ∪ Z) and hence we have to add
its contribution once, that is

(|U�(X∪Z)|
d

)
. Formally:

κd
∨(x, z) =

(|U|
d

)

−
(|U�X|

d

)

−
(|U�Z|

d

)

+
(|U�(X ∪ Z)|

d

)

=
(

n

d

)

−
(

n − ‖x‖22
d

)

−
(

n − ‖z‖22
d

)

+
(

n − ‖x‖22 − ‖z‖22 + 〈x, z〉
d

)

.

Classification of Categorical Data in the Feature Space of Monotone DNFs 283

It is worth to notice that, as for the mC-kernel, the mD-kernel is a general-
ization of the linear one. Fixed d = 1, then:

κ1
∨(x, z) =

(|U|
1

)

−
(|U�X|

1

)

−
(|U�Z|

1

)

+
(|U�(X ∪ Z)|

1

)

= n − (n − |X |) − (n − |Z|) + (n − |X | − |Z| + |X ∩ Z|)
= |X ∩ Z| := 〈x, z〉 = κLIN(x, z).

3.3 Monotone Disjunctive Normal Form (DNF) Kernel

In boolean logic, a Disjunctive Normal Form (DNF) is a normalization of a logical
formula which is a disjunction of conjunctive clauses, e.g., (x1∧x2)∨(x3∧x5)∨x4.

The idea of the monotone DNF kernel (mDNF-kernel) is to compute the
dot product of vectors in a feature space composed by monotone DNF (mDNF)
formulae of the input variables. In particular, the variables are mapped into the
space containing all the monotone DNF formulae composed by disjunction of
exactly d conjunctive clauses formed by c literals. For example, by fixing d = 2
and c = 3 a possible mDNF would be (x1 ∧ x3 ∧ x5) ∨ (x2 ∧ x3 ∧ x4).

Formally, the embedding map is the composition of the embedding maps of
the mC-kernel and the mD-kernel, φd,c

∨∧ : x 	→ φd
∨(φc

∧(x)).
From the embedding map definition we can see that in order to calculate

this kernel we have to compute the mD-kernel of degree d in the space formed
by all conjunctions of degree c. Using the same sets analogy as in Sect. 3.2, the
mDNF-kernel between the vectors x, z ∈ B

n is calculated by:

κd,c
∨∧(x, z) =

(U∣
∣
c

d

)

−
(U∣

∣
c
−X ∣

∣
c

d

)

−
(U∣

∣
c
−Z∣

∣
c

d

)

+
(U∣

∣
c
−X ∣

∣
c
−Z∣

∣
c
+(X ∩ Z)

∣
∣
c

d

)

=
((

n
c

)

d

)

−
((

n
c

) − (‖x‖2
2

c

)

d

)

−
((

n
c

) − (‖z‖2
2

c

)

d

)

+
((

n
c

) − (‖x‖2
2

c

) − (‖z‖2
2

c

)
+

(
n−‖x‖2

2−‖z‖2
2+〈x,z〉

c

)

d

)

where A∣
∣
c

=
(|A|

c

)
. In this case the dimension of the embedding is

((nc)
d

)
.

As for the previous kernels, it is easy to see that for d = c = 1 the mDNF-
kernel generalizes the linear kernel:

κ1,1
∨∧(x, z) =

(U∣
∣
1

1

)

−
(U∣

∣
1
−X ∣

∣
1

1

)

−
(U∣

∣
1
−Z∣

∣
1

1

)

+
(U∣

∣
1
−X ∣

∣
1
−Z∣

∣
1
+(X ∩ Z)

∣
∣
1

1

)

= n − (n − |X |) − (n − |Z|) + (n − |X | − |Z| + |X ∩ Z|)
:= κ1

∨(x, z) = κLIN(x, z).

284 M. Polato et al.

4 Experiments and Results

All the experiments are conducted using the datasets reported in Table 1. The
datasets are freely available from the UCI repository [6]. We selected datasets
with binary or categorical features and for each of them the following preprocess-
ing steps have been performed:

– instances with missing attributes have been removed;
– categorical features have been mapped into binary features by means of the
one-hot encoding [3];

– non binary tasks have been artificially transformed into binary ones, by
arranging the classes into two groups while trying to keep the number of
instances balanced.

Table 1. Datasets information: name, number of instances, number of features, classes
distribution and features type.

Dataset #Instance #Features Distribution (%) Features type

dna bin 2000 180 48/52 Binary

house-votes 232 16 53/47 Binary

spect 267 23 79/21 Binary

audiology 92 84 50/50 Categorical

connect-4 30554 126 73/27 Categorical

kr-vs-kp 3196 38 53/47 Categorical

primary-tumor 132 24 45/55 Categorical

promoters 106 228 50/50 Categorical

soybean 266 88 55/45 Categorical

splice 3175 240 49/51 Categorical

tic-tac-toe 958 27 66/34 Categorical

zoo 101 21 59/41 Categorical

We evaluated the effectiveness of the proposed kernels against twelve datasets
using SVM as the kernel method classifier. For each dataset, we performed 30
runs of a 5-fold nested cross validation and the average accuracies (with standard
deviations) are reported in Table 3. Table 2 shows, for each kernel, the validated
parameters, while the regularization parameter C have been validated in the set
of values {2−5, 2−4 . . . , 24}.

The experiments have been implemented in Python, in particular with the
machine learning module Scikit-learn [8]. The source code is freely available at
https://github.com/makgyver/pyros.

We compared the proposed kernels against the linear kernel and the RBF
kernel. In every experiment all the kernels are normalized. On average the best
performing kernel is the mDNF-kernel, followed by the mC-kernel and the mD-
kernel. For all the binary datasets (the ones which did not require the one-hot

https://github.com/makgyver/pyros

Classification of Categorical Data in the Feature Space of Monotone DNFs 285

Table 2. Validated parameters for the kernels.

Kernel Parameters

Linear -

RBF γ ∈ {10−4, . . . , 103}
mC-kernel c ∈ [1, 2, 3, 4, 5]

mD-kernel d ∈ [1, 2, 3, 4, 5]

mDNF-kernel d ∈ [1, 2, 3, 4, 5], c ∈ [1, 2, 3, 4, 5]

Table 3. Accuracy results: best for each dataset are highlighted in bold. The mD-
kernel have been validated with 1 ≤ d ≤ 5, the mC-kernel with 1 ≤ c ≤ 5, the
DNF-kernel with 1 ≤ d, c ≤ 5, while for the RBF kernel γ ∈ {10−4, . . . , 103}. For
all the tested kernels the SVM has been validated with C ∈ {2−5, . . . , 24}. Inside
the parenthesis the average degrees chosen during the validation over the 30 runs are
reported.

Dataset LIN RBF mD(d) mC(c) mDNF(d,c)

dna bin 93.54
±0.35

95.1
±0.29

95.46
±0.30

(4.7) 95.65
±0.23

(2.7) 95.78
±0.21

(3.5, 2.7)

house-votes 96.92
±0.20

96.74
±0.25

96.92
±0.20

(1) 96.92
±0.20

(1) 96.92
±0.20

(1, 1)

spect 83.43
±0.66

83.12
±1.54

83.47
±0.97

(2.3) 83.51
±0.73

(1.3) 83.61
±0.78

(2.2, 1.1)

audiology 99.93
±0.27

99.82
±0.40

100
±0.00

(1.1) 99.93
±0.27

(1) 99.93
±0.27

(1, 1)

connect-4 83.52
±0.05

91.68
±0.08

89.14
±0.06

(4.9) 92.00
±0.09

(5) 92.01
±0.1

(3.9, 5)

kr-vs-kp 96.57
±0.14

99.55
±0.1

99.11
±0.13

(4.6) 99.57
±0.09

(3.3) 99.60
±0.08

(2.4, 2.8)

primary-tumor 70.04
±2.83

70.87
±2.27

70.26
±2.73

(2.4) 69.84
±3.08

(1.4) 70.14
±2.89

(2.1, 1.3)

promoters 91.43
±2.04

91.84
±1.87

91.15
±2.01

(1.6) 91.27
±2.06

(1.2) 91.15
±2.09

(1.2, 1.2)

soybean 97.62
±0.56

97.66
±0.65

97.75
±0.58

(1.4) 97.8
±0.61

(2.3) 97.77
±0.63

(1.1, 2.3)

splice 94.31
±0.18

96.02
±0.17

96.24
±0.19

(4.9) 96.95
±0.13

(3.1) 96.95
±0.14

(1.5, 3.1)

tic-tac-toe 98.29
±0.07

99.16
±0.22

98.41
±0.21

(4.4) 99.59
±0.19

(3.2) 99.59
±0.19

(1.2, 3.2)

zoo 99.87
±0.34

99.61
±0.65

99.87
±0.34

(1) 99.87
±0.34

(1) 99.87
±0.34

(1, 1)

Avg. rank 3.67±1.60 3.58±1.38 2.75±1.16 1.83±1.11 1.58±0.95

encoding) the mDNF-kernel achieves the best accuracies. On the other set of
datasets both the mDNF-kernel and the mC-kernel achieve the best accuracy in
five, and four out of nine datasets, respectively. Only on two datasets, namely
primary-tumor and promoters, the RBF kernel is the best performing one, even
though on average it is weaker than the kernels proposed in this paper.

It is worth to notice that anytime the linear kernel had the best results,
during the validation the chosen degrees (on average) for the proposed kernels
are very close to 1. This means that the validation phase worked properly.

286 M. Polato et al.

5 Conclusions

In this paper, we have introduced a family of boolean kernels able to achieve,
on categorical datasets, a significant improvement in performance with respect
to the state-of-the-art RBF kernel. We have also presented efficient ways to
compute these kernels by means of simple operations over binomial coefficients.
In the future we aim to build an efficient and effective algorithm able to extract
from these kernels the most relevant features, namely the most relevant boolean
rules. In this way we will be able to provide explanations of the solutions given
by a kernel machine, e.g., SVM.

References

1. Barakat, N., Bradley, A.P.: Rule extraction from support vector machines: a review.
Neurocomputing 74(1–3), 178–190 (2010)

2. Fu, X., Ong, C., Keerthi, S., Hung, G.G., Goh, L.: Extracting the knowledge embed-
ded in support vector machines. In: 2004 IEEE International Joint Conference on
Neural Networks, vol. 1, p. 296, July 2004

3. Harris, D.M., Harris, S.L.: Digital Design and Computer Architecture, 2nd edn.
Morgan Kaufmann, Boston (2013)

4. Khardon, R., Roth, D., Servedio, R.A.: Efficiency versus convergence of boolean
kernels for on-line learning algorithms. J. Artif. Intell. Res. (JAIR) 24, 341–356
(2005)

5. Kusunoki, Y., Tanino, T.: Boolean kernels and clustering with pairwise constraints.
In: 2014 IEEE International Conference on Granular Computing (GrC), pp. 141–
146, October 2014

6. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml

7. Nguyen, S.H., Nguyen, H.S.: Applications of Boolean kernels in rough sets. In:
Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś,
Z.W. (eds.) RSEISP 2014. LNCS, vol. 8537, pp. 65–76. Springer, Cham (2014).
doi:10.1007/978-3-319-08729-0 6

8. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

9. Sadohara, K.: Learning of Boolean functions using support vector machines. In:
Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT 2001. LNCS, vol. 2225, pp. 106–
118. Springer, Heidelberg (2001). doi:10.1007/3-540-45583-3 10

10. Sadohara, K.: On a capacity control using Boolean kernels for the learning of
Boolean functions. In: Proceedings of the 2002 IEEE International Conference on
Data Mining, pp. 410–417 (2002)

11. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, New York (2004)

12. Zhang, Y., Li, Z., Cui, K.: DRC-BK : mining classification rules by using Boolean
kernels. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganà, A., Lee, H.P., Mun,
Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3480, pp. 214–222.
Springer, Heidelberg (2005). doi:10.1007/11424758 23

13. Zhang, Y., Li, Z., Kang, M., Yan, J.: Improving the classification performance of
Boolean kernels by applying Occam’s razor (2003)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/978-3-319-08729-0_6
http://dx.doi.org/10.1007/3-540-45583-3_10
http://dx.doi.org/10.1007/11424758_23

DeepBrain: Functional Representation of Neural
In-Situ Hybridization Images for Gene Ontology

Classification Using Deep Convolutional
Autoencoders

Ido Cohen1, Eli (Omid) David1(B), Nathan S. Netanyahu1,2, Noa Liscovitch3,
and Gal Chechik3

1 Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel
cido15@gmail.com, mail@elidavid.com, nathan@cs.biu.ac.il,

nathan@cfar.umd.edu
2 Center for Automation Research, University of Maryland, College Park, MD, USA

3 Gonda Multidisiplinary Brain Research Center, Bar-Ilan University,
Ramat-Gan, Israel

noalis@gmail.com, gal.chechik@mail.biu.ac.il

Abstract. This paper presents a novel deep learning-based method for
learning a functional representation of mammalian neural images. The
method uses a deep convolutional denoising autoencoder (CDAE) for
generating an invariant, compact representation of in situ hybridization
(ISH) images. While most existing methods for bio-imaging analysis were
not developed to handle images with highly complex anatomical struc-
tures, the results presented in this paper show that functional represen-
tation extracted by CDAE can help learn features of functional gene
ontology categories for their classification in a highly accurate manner.
Using this CDAE representation, our method outperforms the previous
state-of-the-art classification rate, by improving the average AUC from
0.92 to 0.98, i.e., achieving 75% reduction in error. The method operates
on input images that were downsampled significantly with respect to the
original ones to make it computationally feasible.

1 Introduction

A very large volume of high-spatial resolution imaging datasets is available these
days in various domains, calling for a wide range of exploration methods based on
image processing. One such dataset has become recently available in the field of
Neuroscience, thanks to the Allen Institute for Brain Science. This dataset con-
tains in situ hybridization (ISH) images of mammalian brains, in unprecedented
amounts, which has motivated new research efforts [3,11,12]. ISH is a powerful
technique for localizing specific nucleic acid targets within fixed tissues and cells;
it provides an effective approach for obtaining temporal and spatial information
about gene expression [16]. Images now reveal highly complex patterns of gene
expression varying on multiple scales.
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 287–296, 2017.
https://doi.org/10.1007/978-3-319-68612-7_33

288 I. Cohen et al.

However, analytical tools for discovering gene interactions from such data
remain an open challenge due to various reasons, including difficulties in extract-
ing canonical representations of gene activities from images, and inferring sta-
tistically meaningful networks from such representations. The challenge in ana-
lyzing these images is both in extracting the patterns that are most relevant
functionally, and in providing a meaningful representation that allows neurosci-
entists to interpret the extracted patterns.

One of the aims at finding a meaningful representation for such images, is to
carry out classification to gene ontology (GO) categories. GO is a major Bioinfor-
matics initiative to unify the representation of gene and gene product attributes
across all species [5]. More specifically, it aims at maintaining and developing
a controlled vocabulary of gene and gene product attributes and at annotating
them. This task is far from done; in fact, several gene and gene product func-
tions of many organisms have yet to be discovered and annotated [14]. Gene
function annotations, which are associations between a gene and a term of con-
trolled vocabulary describing gene functional features, are of paramount impor-
tance in modern biology. They are used to design novel biological experiments
and interpret their results. Since gene validation through in vitro biomolecular
experiments is costly and lengthy, deriving new computational methods and soft-
ware for predicting and prioritizing new biomolecular annotations, would make
an important contribution to the field [20]. In other words, deriving an effec-
tive computational procedure that predicts reliably likely annotations, and thus
speed up the discovery of new gene annotations, would be very useful [9].

Past methods for analyzing brain images had to reference a brain atlas, and
based on smooth non-linear transformations [10,13]. These types of analyses
may be insensitive to fine local patterns, like those found in the layered struc-
ture of the cerebellum1, or to spatial distribution. In addition, most machine
vision approaches address the challenge of providing human interpretable analy-
sis. Conversely, in bioimaging usually the goal is to reveal features and structures
that are hardly seen even by human experts. For example, one of the new func-
tions that follow this approach is presented in [17], using a histogram of local
scale-invariant feature transform (SIFT) [8] descriptors on several scales.

Recently, many machine learning algorithms have been designed and imple-
mented to predict GO annotations [1,7,15,18,22]. In our research, we examine an
artificial neural network (ANN) with many layers (also known as deep learning)
in order to achieve functional representations of neural ISH images.

In order to find a compact representation of these ISH images, we explored
autoencoders (AE) and convolution neural networks (CNN), and found the con-
volutional autoencoder (CAE) to be the most appropriate technique. Subse-
quently, we use this representation to learn features of functional GO categories
for every image, using a simple support vector machine (SVM) classifier [4], as in
[17]. As a result, each image is represented as a point in a lower-dimensional space
whose axes correspond to meaningful functional annotations. A similar example

1 The cerebellum is a region of the brain. It plays an important role in motor control,
and has some effect on cognitive functions [23].

DeepBrain: Functional Representation of Neural ISH Images 289

to ours is the work of Krizhevsky and Hinton [2], who used deep autoencoders
to create short binary codes for content-based images. The resulting represen-
tations define similarities between ISH images which can be easily explained,
hopefully, by such functional categories.

Our experimental results demonstrate that a so-called convolutional denois-
ing autoencoder (CDAE) representation (see Subsect. 3.2) outperforms the pre-
vious state-of-the-art classification rate, by improving the average AUC from
0.92 to 0.98, i.e., achieving 75% reduction in error. The method operates on
input images that were downsampled significantly with respect to the original
ones to make it computationally feasible.

2 Background

2.1 FuncISH - Learning Functional Representations

ISH images of mammalian brains reveal highly complex patterns of gene expres-
sion varying on multiple scales. Our study follows [17], which we pursue using
deep learning. In [17] the authors present FuncISH, a learning method of func-
tional representations of ISH images, using a histogram of local descriptors on
several scales.

They first represent each image as a collection of local descriptors using SIFT
features. Next, they construct a standard bag-of-words description of each image,
giving a 2004-dimension representation vector for each gene. Finally, given a
set of predefined GO annotations of each gene, they train a separate classifier
for each known biological category, using the SIFT bag-of-words representation
as an input vector. Specifically, they used a set of 2081 L2-regularized logistic
regression classifiers for this training. A scheme representing the work flow is
presented in Fig. 2 (see Sect. 4).

Applying their method to the genomic set of mouse neural ISH images avail-
able from the Allen Brain Atlas, they found that most neural biological processes
could be inferred from spatial expression patterns with high accuracy. Despite
ignoring important global location information, they successfully inferred ∼700
functional annotations, and used them to detect gene-gene similarities which
were not captured by previous, global correlation-based methods. According to
[17], combining local and global patterns of expression is an important topic for
further research, e.g., the use of more sophisticated non-linear classifiers.

2.2 Deep Learning Techniques

Pursuing further the above classification problem poses a number of challenges.
First, we cannot define a certain set of rules that an ISH image has to conform to
in order to classify it to the correct GO category. Therefore, conventional com-
puter vision techniques, capable of identifying shapes and objects in an image,
are not likely to provide effective solutions to the problem. Thus, we use deep
learning to achieve better results, as far as functional representations of the

290 I. Cohen et al.

ISH images. This yields an interpretable measure of similarity between complex
images that are difficult to analyze and interpret.

Deep learning techniques that support this kind of problems use AE and
CNN, as well as CAE, which are successful in preforming feature extraction and
finding compact representations for the kind of large ISH images we have been
dealing with. While traditional machine learning is useful for algorithms that
learn iteratively from the data, our second issue concerns the type of data we
possess. Our data consist of 16K images, representing about 15K different genes,
i.e., an average of one image per gene. This prevents us from extracting features
from each gene independently, but rather consider the data in their entirety.
Moreover, not only is there only one image per gene, there are merely a few genes
in every examined GO category, and the genes are not unique to one category,
i.e., each gene may belong to more than one category. Despite these difficulties,
machine learning is capable of capturing underlying “insights” without resorting
to manual feature selection. This makes it possible to automatically produce
models that can analyze larger and more complex data, achieving thereby more
accurate results.

In the next section we present our convolutional autoencoder approach, which
operates solely on raw pixel data. This supports our main goal, i.e., learning
representations of given brain images to extract useful information, more easily,
when building classifiers or other predictors. The representations obtained are
vectors which can be used to solve a variety of problems, e.g., the problem
of GO classification. For this reason, a good representation is also one that is
useful as input to a supervised predictor, as it allows us to build classifiers for
the biological categories known.

3 Feature Extraction Using Convolutional Autoencoders

3.1 Auto-Encoders (AE)

While convolutional neural networks (CNN) are effective in a supervised frame-
work, provided a large training set is available, this is incompatible to our case. If
only a small number of training samples is available, unsupervised pre-training
methods, such as restricted Boltzmann machines (RBM) [21] or autoencoders
[24], have proven highly effective.

An AE is a neural network which sets the target values (of the output layer)
to be equal to those of the input, using hidden layers of smaller and smaller size,
which comprise a bottleneck. Thus, an AE can be trained in an unsupervised
manner, forcing the network to learn a higher-level representation of the input.
An improved approach, which outperforms basic autoencoders in many tasks is
due to denoising autoencoders (DAEs) [24,25]. These are built as regular AEs,
where each input is corrupted by added noise, or by setting to zero some portion
of the values. Although the input sample is corrupted, the network’s objective
is to produce the original (uncorrupted) values in the output layer. Forcing the
network to recreate the uncorrupted values results in reduced network overfitting
(also due to the fact that the network rarely receives the same input twice), and

DeepBrain: Functional Representation of Neural ISH Images 291

in extraction of more high-level features. For any autoencoder-based approach,
once training is complete, the decoder layer(s) are removed, such that a given
input passes through the network and yields a high-level representation of the
data. In most implementations (such as ours), these representations can then be
used for supervised classification.

3.2 Convolutional Autoencoders (CAE)

CNNs and AEs can be combined to produce CAEs. As with CNNs, the CAE
weights are shared among all locations in the input, preserving spatial locality
and reducing the number of parameters. In practice, to combine CNNs with
AEs (or DAEs), it is necessary for each encoder layer to have a corresponding
decoder layer. Deconvolution layers are essentially the same as convolutional
layers, and similarly to standard autoencoders, they can either be learned or set
equal to (the transpose of) the original convolution layers, as with tied weights
in autoencoders (both work well). For the unpooling operation, more than one
method exists [6,19]. In the CAE we use, during unpooling all locations are set
to the maximum value which is stored in that layer (Fig. 1).

Fig. 1. Pooling and unpooling layers; for each pooling layer, the max value is kept, and
then duplicated in the unpooling layer.

Similarly to an AE, after training a CAE, the unpooling and deconvolution
layers are removed. At this point, a neural net, composed from convolution and
pooling layers, can be used to find a functional representation, as in our case, or
initialize a supervised CNN. Similarly to a DAE, a CAE with input corrupted
by added noise is called a convolutional denoising autoencoders (CDAE).

4 CDAE for GO Classification

Figure 2 depicts a framework for capturing the representation of FuncISH. A
SIFT-based module was used in [17] for feature extraction. Alternatively, our
scheme learns a CDAE-based representation, before applying a similar classifi-
cation method as in [17], where two layers of 5-fold cross-validation were used,
one for training the classifier and the other for tuning the logistic regression
regularization hyperparameter.

For unsupervised training of our CDAE we use the genomic set of mouse
neural ISH images available from the Allen Brain Atlas, which includes 16,351
images representing 15,612 genes. These JPEG images have an average resolution

292 I. Cohen et al.

Fig. 2. (1) 16K grayscale images indicating level of gene expression, (2) SIFT- or
CDAE-based feature extraction for a compact vector representation of each gene, (3)
vector representation due to feature extraction, (4) 16K vectors trained with respect
to each of 15 GO categories with best AUC classification in [17], (5) L2-regularized
logistic regression classifiers for top 15 GO categories, and (6) classification accuracy
measured.

of 15, 000×7, 500 pixels. To get a representation vector of size ∼2, 000, the images
were downsampled to 300 × 140 pixels.

The CDAE architecture for finding a compact representation for these down-
sampled images is as follow:

(
1
)
Input layer: Consists of the raw image, resam-

pled to 300× 140 pixels, and corrupted by setting to zero 20% of the values,
(
2
)

three sequential convolutional layers with 32 9 × 9 filters each,
(
3
)

max-pooling
layer of size 2 × 2,

(
4
)

three sequential convolutional layers with 32 7 × 7 filters
each,

(
5
)

max-pooling layer of size 2× 2,
(
6
)

two sequential convolutional layers
with 64 5 × 5 filters each,

(
7
)

convolutional layer with a single 5 × 5 filter,
(
8
)

unpooling layer of size 2 × 2,
(
9
)

three sequential deconvolution layers with 32
7× 7 filters each,

(
10

)
unpooling layer of size 2× 2,

(
11

)
three sequential decon-

volution layers with 32 9 × 9 filters each,
(
12

)
deconvolution layer with a single

5 × 5 filter, and
(
13

)
output layer with the uncorrupted resampled image.

After training the CDAE, all layers past item 8 are removed, so that item 7
(the convolutional layer of size 1 × 2, 625) becomes the output layer. Therefore,
each image is mapped to a vector of 2,625 functional features. Given a set of
predefined GO annotations for each gene (where each GO category consists of 15–
500 genes), we trained a separate classifier for each biological category. Training
requires careful consideration, in this case, due to the vastly imbalanced nature
of the training sets. Similarly to [17], we performed a weighted SVM classification
using 5-fold cross-validation.

This network yields remarkable AUC results for every category of the top
15 GO categories reported in [17]. Figure 3 illustrates the AUC scores achieved
for various representation vectors. While the average AUC score (of the top 15
categories) reported in [17] was 0.92, the average AUC using our CDAE scheme
was 0.98, i.e., a 75% reduction in error.

4.1 Reducing Vector Dimensionality

The above improvement was achieved with a vector size of 2,625, which is larger
than the 2004-dimensional vector obtained by SIFT. In an attempt to maintain,
as much as possible, the scheme’s performance for a comparable vector size, we
explored the use of smaller vectors, by resampling the images to different scales,
and constructing CDAEs with various numbers of convolution and pooling layers.

DeepBrain: Functional Representation of Neural ISH Images 293

Figure 3(b) shows the average AUC for the top 15 categories mentioned earlier,
with the same CDAE structure and the images resampled to smaller scales, thus
obtaining lower-dimensionality representation vectors.

Downsampling to 240 × 120 images, we obtained a 1800-dimensional rep-
resentation vector, for which the AUC scores are still superior (relatively to
[17]) for each of the top 15 GO categories (as shown in Fig. 3(a)). The 10%-
dimensionality reduction results only in a slightly lower AUC average of 0.97
(see Fig. 3(b)).

The CDAE network for the more compact representation is shown in Fig. 4.
The architecture consists of the following layers:

(
1
)
Input layer: consists of

the raw image, resampled to 240 × 120 pixels, and corrupted by setting to zero
20% of the values,

(
2
)

four sequential convolutional layers with 16 3 × 3 filters
each,

(
3
)

max-pooling layer of size 2×2,
(
4
)

four sequential convolutional layers
with 16 3×3 filters each,

(
5
)

max-pooling layer of size 2×2,
(
6
)

three sequential
convolutional layers with 16 3×3 filters each,

(
7
)

convolutional layer with a single
3 × 3 filter,

(
8
)

unpooling layer of size 2 × 2,
(
9
)

four sequential deconvolution
layers with 16 3 × 3 filters each,

(
10

)
unpooling layer of size 2 × 2,

(
11

)
four

sequential deconvolution layers with 16 3 × 3 filters each,
(
12

)
deconvolution

layer with a single 3 × 3 filter, and
(
13

)
output layer with the uncorrupted

resampled image.
We used the ReLU activation function for all convolution and deconvolution

layers, except for the last deconvolution layer, which uses tanh.

Fig. 3. AUC results using convolutional denoising autoencoder for feature extraction:
(a) AUC obtained from training a SVM classifier for each GO category, using a compact
representation vector for every gene; representation vector dimensionality depends on
method used and image resampling rate; (b) average AUC for top 15 classifiers, trained
on different representation vectors due to CDAE (as in Fig. 4), for different resampling
of brain images.

294 I. Cohen et al.

Fig. 4. Illustration of our convolutional denoising autoencoder, achieving a compact
representation for each gene.

The learning rate starts from 0.05 and is multiplied by 0.9 after each epoch,
and the denoising effect is obtained by randomly removing 20% of the pixels
every image in the input layer. We used the AUC as a measure of classification
accuracy.

5 Conclusion

Many machine learning algorithms have been designed lately to predict GO
annotations. For the task of learning functional representations of mammalian
neural images, we used deep learning techniques, and found convolutional denois-
ing autoencoder to be very effective. Specifically, using the presented scheme for
feature learning of functional GO categories improved the previous state-of-the-
art classification accuracy from an average AUC of 0.92 to 0.98, i.e., a 75%
reduction in error. We demonstrated how to reduce the vector dimensionality by
10% compared to the SIFT vectors, with very little degradation of this accuracy.
Our results further attest to the advantages of deep convolutional autoencoders,
as were applied here to extracting meaningful information from very high res-
olution images and highly complex anatomical structures. Until gene product
functions of all species are discovered, the use of CDAEs may well continue to
serve the field of Bioinformatics in designing novel biological experiments.

Appendix: Network Architecture Description

We provide a brief explanation as to the choice of the main parameters of the
CDAE architecture. Our objective was to obtain a more compact feature rep-
resentation than the 2,004-dimensional vector used in FuncISH. Since a CNN
is used, the representation along the grid should capture the two-dimensional
structure of the input, i.e., the image dimensions should be determined accord-
ing to the intended representation vector, while maintaining the aspect ratio of
the original input image. Thus, we picked an 1,800-dimensional feature vector,
corresponding to an (output) image of size 60 × 30. Taking into account the
characteristic of max-pooling (i.e., that at each stage the dimension is reduced
by 2), the desire to keep the number of layers as small as possible, and the fact
that the encoding and decoding phases each contains the same number of lay-
ers (resulting in twice the number of layers in the network), we settled for two
max-pooling layers, namely an input image of size 240 × 120. Between each two

DeepBrain: Functional Representation of Neural ISH Images 295

max-pooling layers, which eliminate feature redundancy, there is an “array” of 16
convolution layers, each with the purpose of detecting locally connected features
from its previous layer. The number of convolution layers (i.e., different filters
used) was determined after experimenting with several different layers, all of
which gave similar results. Choosing 16 layers (as shown in Fig. 4) provided the
best result. We experimented also with various filter sizes for each layer, ranging
from 3 × 3 to 11 × 11; while increasing the filter size significantly increased the
amount of network parameters learned, it did not contribute much to the feature
extraction or the improvement of the results. Using a learning rate decay in the
training of large networks (where there is a large number of randomly generated
parameters) has proven helpful in the network’s convergence. Specifically, the
combination of a 0.05 learning rate parameter with a 0.9 learning rate decay
resulted in an optimal change of the parameter value. In this case, too, small
changes in the parameters did not result in significant changes in the results.

References

1. Kordmahalleh, M.M., Homaifar, A., Dukka, B.K.C.: Hierarchical multi-label gene
function prediction using adaptive mutation in crowding niching. In: Proceedings
of IEEE International Conference on Bioinformatics and Bioengineering, pp. 1–6
(2013)

2. Krizhevsky, A., Hinton, G.E.: Using very deep autoencoders for content-based
image retrieval. In: Proceedings of European Symposium on Artificial Neural Net-
works (2011)

3. Henry, A.M., Hohmann, J.G.: High-resolution gene expression atlases for adult and
developing mouse brain and spinal cord. Mamm. Genome 23, 539–549 (2012)

4. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20(3), 273–297
(1995)

5. The Gene Ontology Consortium: The gene ontology project in 2008. Nucleic Acids
Res. 36, D440–D444 (2008)

6. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-
encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami,
M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21735-7 7

7. Pinoli, P., Chicco, D., Masseroli, M.: Computational algorithms to predict gene
ontology annotations. BMC Bioinform. 16(6), S4 (2015)

8. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004)

9. Skunca, N., du Plessis, L., Dessimoz, C.: The what, where, how and why of gene
ontology-a primer for bioinformaticians. Briefings Bioinform. 12(6), 723–735 (2011)

10. Hawrylycz, M., Ng, L., Page, D., Morris, J., Lau, C., Faber, S., Faber, V., Sunkin,
S., Menon, V., Lein, E., Jones, A.: Multi-scale correlation structure of gene expres-
sion in the brain. Neural Netw. 24, 933–942 (2011)

11. Lein, E.S., et al.: Genome-wide atlas of gene expression in the adult mouse brain.
Nature 445, 168–176 (2007)

12. Ng, L., et al.: An anatomic gene expression atlas of the adult mouse brain. Nat.
Neurosci. 12, 356–362 (2009)

http://dx.doi.org/10.1007/978-3-642-21735-7_7

296 I. Cohen et al.

13. Davis, F.P., Eddy, S.R.: A tool for identification of genes expressed in patterns of
interest using the allen brain atlas. Bioinformatics 25, 1647–1654 (2009)

14. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.:
Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000)

15. King, O.D., Foulger, R.E., Dwight, S.S., White, J.V., Roth, F.P.: Predicting gene
function from patterns of annotation. Genome Res. 13(5), 896–904 (2013)

16. Puniyani, K., Xing, E.P.: GINI: from ISH images to gene interaction networks.
PLoS Comput. Biol. 9, 10 (2013)

17. Shalit, U., Liscovitch, N., Chechik, G.: FuncISH: learning a functional representa-
tion of neural ISH images. Bioinformatics 29(13), i36–i43 (2013)

18. Zitnik, M., Zupan, B.: Matrix factorization-based data fusion for gene function
prediction in baker’s yeast and slime mold. In: Proceedings of Pacific Symposium
on Biocomputing, pp. 400–411 (2014)

19. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.
8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1 53

20. Bork, P., Thode, G., Perez, A.J., Perez-Iratxeta, C., Andrade, M.A.: Gene anno-
tation from scientific literature using mappings between keyword systems. Bioin-
formatics 20(13), 2084–2091 (2004)

21. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)

22. Vembu, S., Morris, Q.: An efficient algorithm to integrate network and attribute
data for gene function prediction. In: Proceedings of Pacific Symposium on Bio-
computing, pp. 388–399 (2014)

23. Rapoport, M.J., Wolf, U., Schweizer, T.A.: Evaluating the affective component of
the cerebellar cognitive affective syndrome. J. Neuropsychol. Clin. Neurosci. 21(3),
245–253 (2009)

24. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing
robust features with denoising autoencoders. In: Proceedings of the 25th Interna-
tional Conference on Machine learning, pp. 1096–1103 (2008)

25. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.: Stacked denois-
ing autoencoders: learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

http://dx.doi.org/10.1007/978-3-319-10590-1_53

Mental Workload Classification Based
on Semi-Supervised Extreme Learning

Machine

Jianrong Li and Jianhua Zhang(&)

School of Information Science and Engineering,
East China University of Science and Technology, Shanghai 200237, China

zhangjh@ecust.edu.cn

Abstract. The real-time operator’s mental workload (MWL) monitoring sys-
tem is crucial for the design and development of adaptive operator-aiding/
assistance systems. Although the data-driven approach has shown promising
performance for MWL recognition, its major challenge lies in the difficulty in
acquiring extensive labeled data. This paper attempts to apply the
semi-supervised extreme learning machine (ELM) to the challenging problem of
operator’s mental workload classification based only on a small number of
labeled physiological data. The real data analysis results show that the
semi-supervised ELM method can effectively improve the accuracy and com-
putational efficiency of the MWL pattern classification.

Keywords: Mental workload � Physiological signals � Feature extraction �
Semi-Supervised Learning � Extreme learning machine

1 Introduction

In recent years, automation technology has been widely used in various fields, but the
development of automation technology and artificial intelligence technology are not yet
mature, fully automated control can’t be achieved, therefore, Human Machine System
(HMS) was born [1]. Compared with machines, operators are more susceptible to
external factors or their own physiological and psychological impact [2], which will
affect the performance of HMS. It is the focus of experts both at home and abroad that
how to maintain the best Operator Function State (OFS) [3] to ensure the completion of
the planning tasks in the HMS.

The operator’s MWL level is an important part in OFS research area. The MWL is
considered as a potential variable to measure mental status [4], which reflects the mental
needs of operators participating task. For operators, too high or too low psychological
load isn’t conducive to the performance of HMS. In order to avoid this situation, scholars
have proposed an Adaptive Automation (AA) system. The system can reasonably allo-
cate the tasks between operators and the machines according to the levels of operators’
MWL. Operators MWL measurement methods are usually divided into three categories
[5]: (1) subjective assessment, (2) task performance based assessment, (3) physiological
data based assessment. Compared with the first two methods, the third measurement

© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 297–304, 2017.
https://doi.org/10.1007/978-3-319-68612-7_34

method has the advantages of uninterrupted, on-linemeasurement and easy access, so this
paper evaluates the operators’ MWL by using psychophysiological signals. Electroen-
cephalogram (EEG), Electrocardiogram (ECG) and Electro-Oculogram (EOG) are
widely used in WML recognition.

The structure of this paper is as follows. In Sect. 2, we describe the operator’s
MWL detection system based on the Semi-Supervised Learning (SSL). The operator’s
physiological signal acquisition and processing is described in Sect. 3. Section 4 shows
the results of the algorithm in six subjects. Section 5 explains the conclusions drawn in
this paper.

2 Semi-Supervised Mental Workload Recognition

Operator’s MWL classification is a multi-class issue. Figure 1 shows the operator’s
MWL classification flow chart. The process is divided into two parts, off-line training
part and on-line detection part. The data used in the off-line training part consists of two
parts: labeled data and unlabeled data. These two parts of the data are used as training
samples for the Semi-Supervised Extreme Learning Machine (SS-ELM) [6–8, 14]. The
best model is constructed under the off-line part, and then, the physiological signal is
detected in the case of on-line.

3 Data Acquisition and Preprocessing

3.1 Experimental Task Environment

The simulation task platform is “automated-enhanced Cabin Air Management System
(aCAMS)”, which consists of four subsystems closely related to the enclosed cabin
environment, representing oxygen concentration (O2), pressure (P), carbon dioxide
concentration (CO2), and temperature (T). In the experiment, we used the aCAMS to
simulate the environment in the sealed cabin and affect the operator’s MWL by the

Labeled
Training

Data

Unlabeled
Training

Data

Feature
extraction

Feature
extraction

SS-ELM Model

Electrophysiolo
-gical signals

Feature
extraction

Classifica on

Detected
Mental Load Status

Offline Training Real-time Detection

Fig. 1. Flowchart of SSL-based high-risk MWL detection algorithm

298 J. Li and J. Zhang

Number Of Subsystems (NOS) and the Actuator Sensitivity (AS). The aCAMS sim-
ulation platform and Nihon Kohden® signal measurement system together constitute a
complex HMS task simulation platform software and hardware environment.

3.2 Experimental Subjects

There were 6 subjects (22–24 years old, male, numbers: A, B, C, D, E, F) participated
in the experiments. All subjects were healthy, normal vision, and used right hand
regularly. Before the experiment, all subjects were informed by the experimenter of
goals and procedures of the experiments, and they were trained more than 10 h of
aCAMS simulation exercises.

3.3 Experimental Procedure

The aCAMS system has four subsystems, each subsystem has two control strategies:
automatic control and manual control. The two strategies can be switched arbitrarily.
The control objective of this experiment is to maintain the control variables of the four
subsystems within the target range by automatic control or manual control. In order to
further investigate changes in MWL, manual control is set to two different actuators:
Standard Level (SL) and High Level (HL). The HL indicates that the sensitivity of the
control variables of the subsystem is greater than SL [9, 11].

Each session lasts 50 min and is divided into 10 stages. The stage 1, 4, 7, 10 are the
automatic control phase. Operators manually control two subsystems (O2 and P) in the
2 and 3 stages, the difference between the two stages is that the sensitivity of the control
variables is different. Similarly, Fig. 2 shows the situation at each stage. At the last 10 s
of each stage, the operators perform self-assessment, so the actual data acquisition time
is 290 s. Based on the international standard 10–20 electrode configuration method
[10], 15 electrodes most relevant to MWL studies were selected, namely, F3, F4, Fz,
C3, C4, Cz, CPz, P3, P4, Pz, O1, O2, AFz, CPz, POz, Oz. In addition, EOG data and
ECG data are also measured.

Fig. 2. Task-load conditions in an exper-
imental session

Fig. 3. The average Silhouette index vs. the
number of clusters in k-means clustering
algorithm

Mental Workload Classification Based on Semi-Supervised ELM 299

3.4 Determination of Target Classes

The data is divided by the time window of 1 s (without overlapping). Each stage is
divided into 290 samples. In addition to measuring physiological data, this experiment
also records the performance data of the control subsystem. Through the performance
data, we can get two important performance indicators PIm and PIs:

PIm ¼ c1ð½rO2ðtÞþ rPðtÞþ rCO2ðtÞþ rTðtÞ�=4Þþ c2NOS
PIs ¼ c1ð½dO2ðtÞþ dPðtÞþ dCO2ðtÞþ dTðtÞ�=4Þþ c2NOS

�
ð1Þ

where, c1 and c2 are empirical weights, NOS describes the difficulty of the task.
rO2ðtÞ; rPðtÞ; rCO2ðtÞ; rTðtÞ are Boolean variables of the corresponding subsystem at
time t (when the control variable of the corresponding subsystem is within the target
range at time t, rðtÞ ¼ 1, otherwise rðtÞ ¼ 0). dðtÞ represents the absolute value of the
deviation between the actual value of the controlled variable of the corresponding
subsystem and the set-point at the sampling time t. Finally, based on these two indi-
cators, we use K-means to cluster them to determine the corresponding label for the
data. According to Fig. 3, when the number of clusters is 2, 3, 4, 5, the average
Silhouette index (six subjects) is greater than 0.8. The classification of the two cases
has no practical significance in the OFS study, so, we believe that there are three classes
(baseline, low, high), four classes (baseline, low, normal, high) and five classes
(baseline, low, normal, high, higher).

3.5 Physiological Feature Extraction

In this experiment, The Hilbert-Huang Transform (HHT) is used to extract the char-
acteristics of physiological signals [12, 13]. The original signal is decomposed into
several Intrinsic Modal Function (IMF) components by Empirical Mode Decomposi-
tion (EMD) algorithm. The sample entropy of the three IMF components with most
relevant to the original signal and the Hilbert marginal spectral entropy and energy
spectrum entropy are taken as the characteristics of the sample,so each sample will
have 85 features (17 channels * 5 features).

4 MWL Classification Results and Analysis

According to the data acquisition and processing methods mentioned in Sect. 3, we can
get 2900� 85 (2900, sample number; 85, sample dimension) data for each subject. As
the data of this experiment have been correctly marked. We can delete some of the tags
to get unlabeled data. Usually unlabeled data is much more than label data, so we
divide the data into labeled data and unlabeled data at the rate of 1:9. Labeled data is
divided into test data and training data according to the proportion of 1:4. So, the
number of training samples, test samples and unlabeled samples are 232, 58, 2610. In
particular, due to space constraints, the effect of number of unlabeled samples and
labeled samples on the accuracy of the algorithm and comparison of algorithms are
studied in the case of three classes.

300 J. Li and J. Zhang

4.1 Results of Semi-Supervised ELM

In this paper, the SS-ELM is applied to classify operator’s MWL. As it is showed in
Fig. 4, the proposed algorithm has better performance in OFS data set. Specifically, the
accuracy of the algorithm is 93.00% (three classes), 90.43% (four classes), 88.93%
(five classes). Overall, the results of the three classes are better than the four classes,
better than the accuracy of the five classes. When the number of classes becomes large,
the difficulty of classification is increased. In addition, the difference between the
subjects is quite obvious in the MWL classification test.

4.2 Effect of Number of Unlabeled Data

In order to explore the ability of semi-supervised methods in unlabeled data, we
evaluate the classifier model by increasing the number of unlabeled samples. In the
case of three classes, the average classification accuracy is shown in Fig. 5
(mean ± standard deviation). When the number of training samples is 58, the testing
accuracy increases as the number of unlabeled samples increases, and the accuracy of
classification does not increase significantly when the number of labeled samples
continues to increase. When the number of labeled samples is 232, with the increasing
of unlabeled data, the effect on the accuracy of the algorithm changed little. This shows
that the semi-supervised algorithm has a significant effect when the labeled samples are
few.

4.3 Effect of Number of Labeled Data

We set the number of unlabeled samples set to 1450 and increase the size of the labeled
samples set. In the case of three classes, the average accuracy of all subjects was
reported in Fig. 6 (mean ± standard deviation).

Fig. 4. MWL classification accuracy
for each of the six subjects

Fig. 5. The change of subject-average classifica-
tion accuracy with the number of unlabeled data.
(A) 58 training samples; (B) 232 training samples

Mental Workload Classification Based on Semi-Supervised ELM 301

With the increase of the labeled data, the accuracy of the three classes has been
improved and the promotion is obvious. When the number of labeled data continues to
increase, the accuracy of the three data sets (Training samples set, Test samples set,
Unlabeled samples set) is no longer increasing.

4.4 Performance Comparison of Five Different Classifiers

In order to highlight the superior performance of the SS-ELM on OFS data set, the
feature extraction algorithm adopts Hilbert-Huang algorithm. The classifiers are Naive
Bayesian (NB), Random Forest (RF), Support Vector Machines (SVM), ELM, and
SS-ELM. As the number of label samples increases, the accuracy of each algorithm is
shown in Fig. 7.

With the increase of the number of trained training samples, the accuracy of the test
sample gradually increases, the tag data continues to increase, the accuracy of the test

Fig. 6. The change of subject-averaged classification accuracy with the number of labeled data.

Fig. 7. The change of subject-averaged classification accuracy with the number of labeled data
for five different classifiers.

302 J. Li and J. Zhang

sample will not be significantly improved; When the number of labels is small (the
number of labels is 29), the advantage of SS-ELM is the most obvious. Compared with
supervised learning, the improvement of accuracy is 12.05% (NB), 7.99% (SVM),
7.08% (RF), 8.39% (ELM). When the number of labeled data is large, the advantage of
semi-supervised learning is smaller than that of other algorithms. Overall, the proposed
SS-ELM is relatively best classifier in MWL classification issue.

5 Conclusion

The main contributions of this paper are as follows: (1) Most previous work on
operator functional state (OFS) analysis was mainly based on various supervised
learning techniques. This paper successfully applies semi-supervised learning tech-
nique to the mental workload (MWL) recognition problem. (2) Our results show that
accurate MWL classification can be achieved using only a small number of labeled
data, which overcomes the difficulty in acquiring enough labeled data in real-world
applications. (3) Our results also show that the further increase of the number of the
labeled training samples does not necessarily improve the classification accuracy if the
existing labeled training data is basically representative of the inherent data structure.

All in all, the results presented in this paper demonstrate that the SSL is a promising
approach to MWL recognition based on the operator’s physiological signals. By taking
full advantage of cheap and easy-to-obtain unlabeled data, the SSL algorithm can
improve the classification accuracy requiring only a relatively small number of labeled
physiological data. When only a smaller number of labeled data are available in
practical MWL pattern recognition application, the SSL algorithm seems more appli-
cable and advantageous than supervised learning schemes. Therefore, how to select
valuable data from a large number of unlabeled data will be the focus of our further
research.

References

1. Lal, S.K., Craig, A.: A critical review of the psychophysiology of driver fatigue. Biol.
Psychol. 55(3), 173–194 (2001)

2. Bobko, N., Karpenko, A., Gerasimov, A., Chernyuk, V.: The mental performance of
shiftworkers in nuclear and heat power plants of Ukraine. Int. J. Ind. Ergon. 21(3–4), 333–
340 (1998)

3. Hollender, N., Hofmann, C., Deneke, M., Schmitz, B.: Integrating cognitive load theory and
concepts of human–computer interaction. Comput. Hum. Behav. 26(6), 1278–1288 (2010)

4. Cain, B.: A review of the mental workload literature. Defence Research and Development
Toronto (Canada) (2007)

5. Mahfouf, M., Zhang, J., Linkens, D.A., Nassef, A., Nickel, P., Hockey, G.R.J., Roberts, A.C.:
Adaptive fuzzy approaches to modelling operator functional states in a human-machine
process control system. In: Fuzzy Systems Conference, FUZZ-IEEE 2007, pp. 1–6. IEEE
International, July 2007

6. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications.
Neurocomputing 70(1), 489–501 (2006)

Mental Workload Classification Based on Semi-Supervised ELM 303

7. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and
multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529
(2012)

8. Liu, T., Yang, Y., Huang, G.B., Yeo, Y.K., Lin, Z.: Driver distraction detection using
semi-supervised machine learning. IEEE Trans. Intell. Transp. Syst. 17(4), 1108–1120
(2016)

9. Wang, Y., Zhang, J., Wang, R.: Mental workload recognition by combining wavelet packet
transform and kernel spectral regression techniques. IFAC-PapersOnLine 49(19), 561–566
(2016)

10. Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., Oda, I., Isobe, S.,
Suzuki, T., Kohyama, K., Dan, I.: Three-dimensional probabilistic anatomical
cranio-cerebral correlation via the international 10–20 system oriented for transcranial
functional brain mapping. Neuroimage 21(1), 99–111 (2004)

11. Zhang, J., Yin, Z., Wang, R.: Recognition of mental workload levels under complex human–
machine collaboration by using physiological features and adaptive support vector machines.
IEEE Trans. Hum.-Mach. Syst. 45(2), 200–214 (2015)

12. Sharma, P., Ray, K.C.: Efficient methodology for electrocardiogram beat classification. IET
Sig. Process. 10(7), 825–832 (2016)

13. Wang, R., Wang, Y., Luo, C.: EEG-based real-time drowsiness detection using
Hilbert-Huang transform. In: 7th International Conference on Intelligent Human-Machine
Systems and Cybernetics (IHMSC), vol. 1, pp. 195–198. IEEE, August 2015

14. Huang, G., Song, S., Gupta, J.N.D., et al.: Semi-supervised and unsupervised extreme
learning machines. IEEE Trans. Cybern. 44(12), 2405–2417 (2012)

304 J. Li and J. Zhang

View-Weighted Multi-view K-means Clustering

Hong Yu(B), Yahong Lian, Shu Li, and JiaXin Chen

School of Software, Dalian University of Technology, Dalian, China
hongyu@dlut.edu.cn, lianyahong1@163.com, ann ssdut@163.com,

jiaxin chen@163.com

Abstract. In many clustering problems, there are dozens of data which
are represented by multiple views. Different views describe different
aspects of the same set of instances and provide complementary infor-
mation. Considering blindly combining the information from different
views will degrade the multi-view clustering result, this paper proposes
a novel view-weighted multi-view k-means method. Meanwhile, to reduce
the adverse effect of outliers, l2,1 norm is employed to calculate the dis-
tance between data points and cluster centroids. An alternative itera-
tive update schema is developed to find the optimal value. Comparative
experiments on real world datasets reveal that the proposed method has
better performance.

Keywords: Multi-view clustering · l2,1 norm · Weighting · k-means

1 Introduction

In our daily life, more and more instances have representations in the form of
multiple views [3,13]. Typical examples include web pages, which can be repre-
sented by two main attribute sets. One is page contents, another is anchor texts
of inbound hyperlink. The appearance of such data has induced the clustering
of technique called multi-view clustering [1].

The traditional clustering methods note as single view clustering just utilize
one of the feature sets to learn. The goal of multi-view clustering is to take
advantage of information from all views so that it can obtain more stable and
accurate clustering result than single-view clustering. Recent years, the research
on multi-view clustering has attracted a lot of attention [10–12].

Kumar and Daumé [9] presented a co-training based multi-view spectral
clustering method. It uses the spectral embedding from one view to constrain
the similarity graph used for the other view. Xia et al. [15] proposed a robust
Markov chain based multi-view spectral clustering method which has low-rank
and sparse constraint. In the study [4], authors delivered a multi-view normal-
ized cut approach which fuses the spectral clustering with local search procedure.
The common problem of the above mentioned methods is that they lose sight
of discriminating views from one another. As a result, some views that contain
noise may degrade the clustering result.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 305–312, 2017.
https://doi.org/10.1007/978-3-319-68612-7_35

306 H. Yu et al.

To discriminate the importance of different views in multi-view data, it is
necessary to assign an appropriate weight for each view. Multi-view kernel k-
means (MVKKM) algorithm [14] assigns a weight for each view according to the
view’s contribution to the clustering result and then combines the kernels derived
from the weighted views together. Weighted multi-view convex mixture model
[7] allocates weights to each view. Then, a similarity matrix is built using these
weights, as a weighted sum of the individual view kernels. In comparison with
most of the other multi-view clustering methods, the view weighting approach
performs competitive clustering result, strong robustness and good scalability
[8,16].

As a popular clustering algorithm k-means has been extensively studied on
account of its computational easiness and satisfactory result. When formulating
classical k-means as matrix problem, it becomes Frobenius norm of matrix, and
this brings about k-means a higher sensitivity to data outliers. To tackle the
problem, l2,1 norm is used. In detail, l2 norm is imposed on all features and l1
norm is imposed among data points. By this way, the side effect of data outliers
can be reduced and a more robust result can be expected [2,6].

Inspired by the above analysis, we propose a view-weighted multi-view k-
means clustering method which combines l2,1 norm and weighting scheme.

It is worthwhile to highlight the main contribution of our work:

1. We propose a novel view-weighting schema which can discriminate views from
one to another according to the views’ contribution to clustering process.

2. To recap the effectiveness of our weighting schema, we present a view-weighted
multi-view k-means clustering algorithm. It can get more efficient clustering
result.

3. Besides, in order to optimize objective function, an efficient iterative update
method is developed.

2 View-Weighted Multi-view K-means Clustering

The proposed view-weighted k-means clustering algorithm is elaborated in this
section.

According to [5], k-means for single-view data can be formulated as:

min||XT − ZCT ||2F s.t.Zik ∈ {0, 1},

K∑

k=1

Zik = 1,∀i = 1, 2, . . . , n (1)

where X ∈ Rd×n is the input data matrix with n instances and d-dimensional
attributes, C ∈ Rd×K is the cluster centroids matrix, and Z ∈ Rn×K is the
cluster assignment matrix.

Extending to multi-view scene, objective function can be overwritten as:

min||X(v)T − ZC(v)T ||2F s.t.Zik ∈ {0, 1},
K∑

k=1

Zik = 1,∀i = 1, 2, . . . , n (2)

View-Weighted Multi-view K-means Clustering 307

where X(v) ∈ Rdv×n is the input matrix with n instances and d-dimensional
attributes in view v, C(v) ∈ Rdv×K is the cluster centroid matrix in view v, and
Z ∈ Rn×K is defined like Eq. (1).

Due to F-norm in the objective function, k-means is sensible to data outliers.
To tackle this problem, we use the l2,1 norm to measure the reconstruction error,
combine with entropy-based weighting scheme which can avoid overfitting and
we can get the following optimization formula:

min
C(v),Z,w(v)

V∑

v=1

w(v)||X(v)T − ZC(v)T ||2,1 + λ

V∑

v=1

w(v) ln(w(v))

s.t.Zik ∈ {0, 1},

K∑

k=1

Zik = 1,

V∑

v=1

w(v) = 1

(3)

where w(v) is the view weight variable which is limited in range 0 to 1. The
parameter λ ≥ 0 is used to control the view distribution.

3 Optimization Algorithm

Solving optimal objective (3) is not so easy, the hard problem has two folds. One
is each row vector of cluster indicator matrix Z must satisfy the 1-of-K coding
scheme. Another is l2,1 norm is non-smooth. So it cannot be directly optimized.
Therefore, we propose the iterative algorithm to deal with them efficiently.

3.1 Algorithm Derivation

For convenience, we rewrite the optimization problem:

min
C(v),D(v),Z,w(v)

V∑

v=1

w(v)A(v) + λ

V∑

v=1

w(v) ln(w(v)) (4)

where

A(v) = Tr{(X(v) − C(v)ZT)D(v)(X(v) − C(v)ZT)T } (5)

D(v) ∈ Rn×n is the diagonal matrix which represents the v-th view. The i-th
element of the diagonal matrix is defined as:

D
(v)
ii =

1
2||e(v)i|| ,∀i = 1, 2, . . . n, (6)

where e(v)i is the i-th row of the following matrix:

E(v) = X(v)T − ZC(v)T

. (7)

To solve this problem, we developed the following iterative stages.

308 H. Yu et al.

Updating the Cluster Centroid for Each View C(v). Taking derivative of
Eq. (5) with respect to C(v), we get:

− 2X(v)D̃(v)Z + 2C(c)ZT D̃(v)Z (8)

where D̃(v) = w(v)D(v). Let the derivative equal zero, we can compute C(v):

C(v) = X(v)D̃(v)Z(ZT D̃(v)Z)−1. (9)

Updating the Cluster Indicator Matrix Z. It can be concluded that

V∑

v=1

Tr{(X(v) − C(v)ZT)D̃(v)(X(v) − C(v)ZT)T }

=
N∑

i=1

(
V∑

v=1

D̃
(v)
ii ||x(v)

i − C(v)zi||22)
(10)

For the specific fixed i, with respect to vector z=[z1, z2, . . . zK]T ∈ RK×1,
Eq. (4) equals to

min
z

V∑

v=1

d̃(v)||x(v) − C(v)z||22 s.t.zk ∈ {0, 1},

K∑

k=1

zk = 1 (11)

where d̃(v) = D̃
(v)
ii is the i-th element of the diagonal of the matrix D̃(v).

Equation (11) has K candidate solutions because z should satisfy 1-of-K cod-
ing scheme. And each candidate is exactly the k-th column of matrix IK =
[e1, e2, . . . eK]. So, we can choose k that satisfy:

k = argmin
j

V∑

v=1

d̃(v)||x(v) − C(v)ej ||22, (12)

And then

z∗ = ek. (13)

Updating View Weight w(v). As Eq. (4) equals to

min
w(v)

V∑

v=1

w(v)A(v) + λ

V∑

v=1

w(v) ln(w(v)) s.t.

V∑

v=1

w(v) = 1, w(v) ≥ 0. (14)

where A(v) is also defined as in Eq. (5). To find the optimal w(v), we bring in
Lagrange multiplier β ≥ 0, and take the constraint into account, we have:

L =
V∑

v=1

w(v)A(v) + λ

V∑

v=1

w(v) ln(w(v)) + β(
V∑

v=1

w(v) − 1). (15)

View-Weighted Multi-view K-means Clustering 309

Taking derivative with respect to w(v), and setting it to zero, we can get:

w(v) = e
−β−A(v)−λ

λ (16)

Considering the constraint
∑V

v′=1 w(v′) = 1, we get:

w(v) =
e

−A(v)
λ

∑V
v′=1 e

−A(v′)
λ

(17)

Obviously, the less the intra-cluster differences A(v) of view v, the larger its
weight is. And the larger λ induces the flatter view distribution. If λ = 0 it
turns to the single best view situation. The complete algorithm is described as
Algorithm 1.

Algorithm 1. The algorithm of view-weighted multi-view k-means
Input:

1: Data for V views X(1), ...X(V) and X(v) ∈ Rn×dv .
2: cluster number K.

3: Predefined parameter λ.
Output:

4: The common cluster indicator matrix Z.

5: The learned view weighted w(v).
Initialization:

6: Set iter=0
7: Randomly generate the common cluster indicator matrix Z ∈ Rn×K , such that Z satisfy

1-of-K coding scheme.

8: Initialize the diagonal matrix D(v) as n × n identity matrix, that is D(v) = In.
9: Initialize the view weight variable w(v) = 1

V
for each view.

10: repeat

11: Calculate the diagonal matrix ˜D(v) according to ˜D(v) = w(v)D(v)

12: Update the centroid matrix C(v) for each view according Eq. (9)

13: Update the cluster indicator vector z for each data one by one according to Eq. (12)
and Eq. (13)

14: Update the diagonal matrix D(v) for each view according to Eq. (6) and Eq. (7).
15: Update the view weight variable w(v) for each view according to Eq.(17)
16: Update iter=iter+1

17: until convergence.

3.2 Time Complexity Analysis

For k-means clustering, the estimated time complexity is Q(IKnd), where I
represents the number of iteration, K is the cluster number, n is the number of
instances and d is the dimension number. Similar to k-means, the time complex-
ity of our method is Q(IKV nd), where V is the view number and others are the
same as those of traditional multi-view k-means.

310 H. Yu et al.

4 Experiment and Evaluation

4.1 Experimental Settings

Five real world datasets are used to evaluate the performance of our algorithm.
Brief description is given in Table 1.

Table 1. The properties of real world datasets

Dataset Size View num Cluster num

Digit 2000 5 10

SensIT 300 2 3

3-Sources 169 3 6

Animal 1800 4 9

NUS 900 4 6

Our method is compared with a number of baseline algorithms. In particular,
we compare with:

Single-Best is single view clustering algorithm which chooses the best view;
SMKM is simple multi-view k-means that based on Frobenius norm.
RSMKM is robust simple multi-view k-means by imposing the l2,1-norm.
WSMKM is based on view weight technique and utilizing F-norm.
MVKKM [14] is a weighted combination of kernel which is learned to conduct

clustering.
Co-trainSC [9] learns the clustering in one view and uses it to label the data

in other view so as to modify the graph structure (similarity matrix).

For every algorithm, 50 tests run with different random initializations were
conducted and the average performances are given. To the experiment, λ chooses
from {1, 2, 4, 8, 12, 16, 24, 32}.

4.2 Experimental Results

Tables 2 and 3 report the clustering quality of the compared algorithms by F1
score and normalized mutual information (NMI). From the tables, we can sum-
marize the following:

(1) Compared with single-best, most of the multi-view clustering methods gain
better performance which means that utilizing the complementary informa-
tion of instances is meritorious.

(2) In most cases, the performance of RSMKM is better than SMKM, which
shows that imposing l2,1 norm to calculate k-means’s reconstruction error
is more robust and accurate than using F-norm.

(3) Our method (VWMKM) can boost the clustering results in most of the
datasets, which is brought about mainly by the proposed weighting schema
and l2,1 norm.

View-Weighted Multi-view K-means Clustering 311

Table 2. Clustering results evaluated by F1 score

F1 Handwritten sensIT 3-Sources Animal NUS

Single-Best 0.6720 0.5387 0.4413 0.1601 0.2239

SMKM 0.6823 0.5404 0.4437 0.1621 0.2542

RSMKM 0.7211 0.5515 0.4693 0.1630 0.2593

WSMKM 0.6901 0.5430 0.4527 0.1628 0.2586

MVKKM 0.6766 0.5765 0.5133 0.1613 0.2311

Co-trainSC 0.7150 0.5659 0.5092 0.1607 0.2342

VWMKM 0.7617 0.5888 0.5236 0.1641 0.2632

Table 3. Clustering results evaluated by NMI

NMI Handwritten sensIT 3-Sources Animal NUS

Single-Best 0.6823 0.3134 0.3663 0.0793 0.0801

SMKM 0.7169 0.3301 0.4095 0.0842 0.0888

RSMKM 0.7350 0.3323 0.4426 0.0860 0.0844

WSMKM 0.7652 0.3321 0.4098 0.0852 0.0813

MVKKM 0.6963 0.3385 0.4769 0.0862 0.0949

Co-trainSC 0.7630 0.3207 0.4754 0.0876 0.0833

VWMKM 0.7914 0.3623 0.4870 0.0886 0.1152

5 Conclusion

In this paper, we proposed a novel view-weighted multi-view k-means clustering
algorithm. It can automatically learn the weight of different views. Moreover, by
utilizing the structured sparsity l2,1 norm on the objective function, our method
is more stable and robust to the data outliers. An iterative update algorithm is
introduced in detail. Experimental results on five data sets show the proposed
methods have the comparable or even better accuracy than the state-of-the-art
methods. It is possible to apply the view weighting schema to other multi-view
clustering algorithms.

Acknowledgment. Research reported in this publication was supported by the
National Natural Science Foundation of China (61602081) and Natural Science Foun-
dation of Liaoning Province (201602180).

References

1. Bickel, S., Scheffer, T.: Multi-view clustering. In: ICDM, pp. 19–26 (2004)
2. Cai, X., Nie, F., Huang, H.: Multi-view k-means clustering on big data. In: IJCAI,

pp. 2598–2604 (2013)

312 H. Yu et al.

3. Chaudhuri, K., Kakade, S.M., Livescu, K., Sridharan, K.: Multi-view clustering
via canonical correlation analysis. In: ICML, pp. 129–136 (2009)

4. Chikhi, N.F.: Multi-view clustering via spectral partitioning and local refinement.
Inf. Process. Manag. 52(4), 618–627 (2016)

5. Ding, C., He, X., Simon, H.D.: Nonnegative Lagrangian relaxation of K -means and
spectral clustering. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo,
L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 530–538. Springer, Heidelberg
(2005). doi:10.1007/11564096 51

6. Du, L., Zhou, P., Shi, L., Wang, H., Fan, M.: Robust multiple kernel k-means using
l21-norm. In: IJCAI (2015)

7. Ioannidis, A., Chasanis, V., Likas, A.: Key-frame extraction using weighted multi-
view convex mixture models and spectral clustering. In: ICPR, pp. 3463–3468
(2014)

8. Jiang, B., Qiu, F., Wang, L.: Multi-view clustering via simultaneous weighting on
views and features. Appl. Soft Comput. 47, 304–315 (2016)

9. Kumar, A., Daumé, H.: A co-training approach for multi-view spectral clustering.
In: ICML, pp. 393–400 (2011)

10. Kumar, A., Rai, P., Daumé, H.: Co-regularized multi-view spectral clustering. In:
Advances in Neural Information Processing Systems, pp. 1413–1421 (2011)

11. Son, J.W., Jeon, J., Lee, A., Kim, S.J.: Spectral clustering with brainstorming
process for multi-view data. In: AAAI (2017)

12. Sun, J., Lu, J., Xu, T., Bi, J.: Multi-view sparse co-clustering via proximal alter-
nating linearized minimization. In: ICML, pp. 757–766 (2015)

13. Sun, S.: A survey of multi-view machine learning. Neural Comput. Appl. 23(7–8),
2031–2038 (2013)

14. Tzortzis, G., Likas, A.: Kernel-based weighted multi-view clustering. In: ICDM,
pp. 675–684 (2012)

15. Xia, R., Pan, Y., Du, L., Yin, J.: Robust multi-view spectral clustering via low-rank
and sparse decomposition. In: AAAI, pp. 2149–2155 (2014)

16. Xu, Y.M., Wang, C.D., Lai, J.H.: Weighted multi-view clustering with feature
selection. Pattern Recogn. 53, 25–35 (2016)

http://dx.doi.org/10.1007/11564096_51

Indefinite Support Vector Regression

Frank-Michael Schleif1,2(B)

1 University of Applied Sciences Wuerzburg-Schweinfurt, 97074 Wuerzburg, Germany
frank-michael.schleif@fhws.de

2 School of Computer Science Edgbaston, University of Birmingham,

Birmingham B15 2TT, UK

Abstract. Non-metric proximity measures got wide interest in various
domains such as life sciences, robotics and image processing. The major-
ity of learning algorithms for these data are focusing on classification
problems. Here we derive a regression algorithm for indefinite data rep-
resentations based on the support vector machine. The approach avoids
heuristic eigen spectrum modifications or costly proxy matrix approx-
imations, as used in general. We evaluate the method on a number of
benchmark data using an indefinite measure.

1 Introduction

The relationship between data and response values is always interesting as it
can be used to explain the structure or mechanism of a complicated system or
to construct a predictive model. This analysis is typically done via a regression
analysis, where least squares regression (LSR) is the most popular one.

With kernelization of LSR, a major restriction of regression, where data
points and estimated values have to be in linear relation, are relaxed by selecting
a more expressive feature transforms or kernel functions. Due to the flexibility
and simplicity of the regression model, it is widely applied in various domains
such as image processing, bioinformatics and other [1]. A recent review about
regression methods and applications is given in [2].

In traditional practice, the construction of kernel is based on applying a valid
kernel function over feature vectors. Valid refers to kernel functions satisfying
the Mercer’s conditions [3]. Under this context, the resulting kernels are always
positive semidefinite (psd) and work fine in most kernelized learning methods.

Nowadays non-metric proximity measures receive substantial interest with
the advent of domain specific similarity measures, non-standard- and (semi-)
structured data, leading to indefinite (non-psd) kernels [4–7]. A recent review
is given in [1]. The use of divergence measures [8] is very popular for spectral
data analysis in chemistry, geo- and medical sciences [9], and are in general not
metric. Also the popular Dynamic Time Warping (DTW) [10] algorithm provides
a non-metric alignment score which is often used as a proximity measure between
two one-dimensional functions of different length. In image processing and shape
retrieval indefinite proximities are often obtained by means of the inner distance
[5] - another non-metric measure.
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 313–321, 2017.
https://doi.org/10.1007/978-3-319-68612-7_36

314 F.-M. Schleif

Indefinite kernels are a severe problem for most kernel based learning algo-
rithms because classical mathematical assumptions such as positive definiteness,
used in the underlying optimization frameworks are violated. As a consequence
e.g. the classical support vector machine (SVM) [11] has no longer a convex
solution - in fact, most standard solvers will not even converge for this problem
[12].

As shown in different works in psychology, image analysis [13,14] and machine
learning [15] a restriction to Mercer kernels and metric similarity measures is
often inappropriate.

In [15] it is shown that many real life problems are better addressed by e.g.
kernel functions which are not restricted to be based on a metric.

Many studies on indefinite kernel methods focus on classification techniques
such as support vector machine (SVM) and only few are considering regression
models. As indicated in [1] there are two major approaches to address the indefi-
niteness in a kernel, both leading to a direct or indirect alternative representation
of the data by means of a psd kernel. One strategy is focusing on modifications
of the eigenspectrum (clipping, flipping, shifting, squaring) (see [1]), another is
generating a psd proxy kernel which should be similar to the original indefinite
kernel. Both strategies are easy to implement but costly. Further the out of sam-
ple extension to new samples is either very costly due to recalculations of the
model or inaccurate. Some work on indefinite regression following these concepts
was discussed in [1].

A novel alternative concept was proposed in [12], by means of a stabiliza-
tion approach1 calculating a valid SVM model in the Krĕin space which can be
directly applied on indefinite kernel matrices. This approach shows great promise
but was presented for classification problems only and is extended to regression
in the following.

In Sect. 2 we briefly review the novel indefinite SVM approach proposed
in [12], with some basic notation. We present the indefinite Support Vector
Regression (iSVM) in Subsect. 2.2 and summarize the results of our empirical
studies in Sect. 4.

2 Background and Basic Notation

Consider a collection of N objects xi, i = {1, 2, . . . , N}, in some input space X .
Given a similarity function or inner product on X , corresponding to a metric,
one can construct a proper Mercer kernel acting on pairs of points from X . For
example, if X is a finite dimensional vector space, a classical similarity function
is the Euclidean inner product (corresponding to the Euclidean distance) - a core
component of various kernel functions such as the famous radial basis function
(RBF) kernel. Now, let φ : X �→ H be a mapping of patterns from X to a
Hilbert space H equipped with the inner product 〈·, ·〉H. The transformation φ
is in general a non-linear mapping to a high-dimensional space H and may in

1 A mathematical construct detailed in [16].

Indefinite Support Vector Regression 315

general not be given in an explicit form. Instead, a kernel function k : X ×X �→ R

is given which encodes the inner product in H. The kernel k is a positive (semi)
definite function such that k(x,x′) = 〈φ(x), φ(x′)〉H, for any x,x′ ∈ X . The
matrix Ki,j := k(xi,xj) is an N × N kernel (Gram) matrix derived from the
training data. The motivation for such an embedding comes with the hope that
the non-linear transformation of input data into higher dimensional H allows for
using linear techniques in H. Kernelized methods process the embedded data
points in a feature space utilizing only the inner products 〈·, ·〉H (kernel trick)
[3], without the need to explicitly calculate φ. The kernel function can be very
generic. Most prominent are the linear kernel with k(x,x′) = 〈φ(x), φ(x′)〉 where
〈φ(x), φ(x′)〉 is the Euclidean inner product and φ identity mapping, or the
RBF kernel k(x,x′) = exp

(
− ||x−x′||2

2σ2

)
, with σ > 0 as a free scale parameter.

In any case, it is always assumed that the kernel function k(x,x′) is positive
semi definite (psd). This assumption is however not always fulfilled, and the
underlying similarity measure may not be metric and hence not lead to a Mercer
kernel. Examples can be easily found in domain specific similarity measures as
mentioned before and detailed later on. Such similarity measures imply indefinite
kernels, preventing standard “kernel-trick” methods developed for Mercer kernels
to be applied.

2.1 Support Vector Regression

Suppose we are now given training data with a continuous output label
{(x1, y1), . . . , (xN , yN)} ⊂ X × R. The values in y could be some outcome vari-
able such as the level of protein in a biological measure, the expected costs for
buying a product or other econometric indicators. We define Y = [y1, . . . , yN]�

as the values of the output function.
In ε-SV regression [17], our goal is to find a function f(x) that has at most ε

deviation from the actually obtained targets yi for all the training data, and at
the same time is as flat as possible. In its simplest from f(x) may be given as
f(x) =<w,x> where w ∈ X . We skip the explicit use of the bias term b ∈ R in
f . The aim is to fit the data to the output function such that f(xi)− f̂(xi) ≤ ±ε,
where f̂(xi) is the prediction for a given xi and ε is a user defined parameter
controlling the permitted error of the prediction. Using the so called epsilon-loss
this can be formalized as:

min
1
2
||w||2 s.t.

{
yi − <w,xi> − b ≤ ε

<w,xi> + b − yi ≤ ε
(1)

As shown e.g. in [17] the parameter vector w can be completely described as a
linear combination of the training patterns xi. In Eq. 1 the data and parameters
occur only by means of inner products which permits the use of the kernel trick.
Accordingly the problem can be formulated using the kernel function k only (for
detailed deviations see e.g. [17]). The kernelized SVR problem can be solved
using a quadratic problem solver, providing a unique solution given the kernel

316 F.-M. Schleif

function k is psd. Before we derive the indefinite Support Vector Regression we
review the main concepts for the Krĕin Space SVM, which provides the relevant
concepts.

2.2 Indefinite Support Vector Classification

Lets assume (for this section) that the training points in the input space X are
labeled with labels yi ∈ {−1, 1}, representing the class of the respective point
xi. For a given positive C, SVM is the minimum of the following regularized
empirical risk functional, employing the hinge loss:

JC(f, b) = min
f∈H,b∈R

1

2
||f ||2H + CH(f, b) H(f, b) =

N∑

i=1

max(0, 1 − yi(f(xi) + b)) (2)

Using the solution of Eq. (2) as (f∗
C , b∗

c) := arg minJC(f, b) one can introduce
τ = H(f∗

C , b∗
C) and the respective convex quadratic program (QP)

min
f∈H,b∈R

1
2
||f ||2H s.t.

∑N
i=1 max(0, 1 − yi(f(xi) + b)) ≤ τ (3)

As outlined in [12], this QP can be also seen as the problem of retrieving the
orthogonal projection of the null function in a Hilbert space H onto the convex
feasible set. The view as a projection will help to link the original SVM formu-
lation in the Hilbert space to a KSVM formulation in the Krein space, or the
respective SVM regression problem. First we need to repeat a few definitions,
widely following [12]: A Krĕin space is an indefinite inner product space endowed
with a Hilbertian topology.

Definition 1 (Inner products and inner product space). Let K be a real
vector space. An inner product space with an indefinite inner product 〈·, ·〉K
on K is a bi-linear form where all f, g, h ∈ K and α ∈ R obey the condi-
tions: Symmetry: 〈f, g〉K = 〈g, f〉K, linearity: 〈αf + g, h〉K = α〈f, h〉K + 〈g, h〉K,
〈f, g〉K = 0 ∀g ∈ K implies f = 0.

An inner product is positive definite if ∀f ∈ K, 〈f, f〉K ≥ 0, negative definite
if ∀f ∈ K, 〈f, f〉K ≤ 0, otherwise it is indefinite. A vector space K with inner
product 〈·, ·〉K is called inner product space.

Definition 2 (Krĕin space). An inner product space (K, 〈·, ·〉K) is a Krĕin
space if we have two Hilbert spaces H+, H− and spanning K such that ∀f ∈ K
we have f = f+ + f− with f+ ∈ H+, f− ∈ H− and ∀f, g ∈ K, 〈f, g〉K =
〈f+, g+〉H+ − 〈f−, g−〉H− .

If H+ and H− are reproducing kernel hilbert spaces (RKHS), K is a repro-
ducing kernel Krĕin space (RKKS). For details on RKHS and RKKS see e.g.
[18]. In [16] the reproducing property is shown for a RKKS K.

As shown in [16] for any symmetric non-positive kernel k that can be decom-
posed as the difference of two positive kernels k+ and k−, a RKKS can be

Indefinite Support Vector Regression 317

associated to it. In [12] it was shown how the classical SVM problem can be
reformulated by means of a stabilization problem. This is necessary because a
classical norm as used in Eq. (3) does not exist in the RKKS, but instead an
alternative projection based SVM was derived, providing an equivalent solu-
tion to the SVM in the RKHS. Instead of the norm the projection operator is
used as a regularization technique [12]. The detailed mathematical formalism
behind this concept is provided in [12,16]. As detailed in [12] one finally gets a
stabilization problem, allowing to calculate a SVM in a Krĕin space.

stabf∈K,b∈R

1
2
〈f, f〉K s.t.

l∑
i=1

max(0, 1 − yi(f(xi) + b)) ≤ τ (4)

where stab means stabilize and refers to finding a stationary point. Note that the
norm is replaced by a projection operator in the Krĕin space. In [12] it is further
shown that the stabilization problem Eq. (4) can be written as a minimization
problem using a semi-definite kernel matrix. By defining projection matrices it is
also shown how the dual RKKS problem for the SVM can be related to the dual
in the RKHS. Especially the later one permits a reasonable simple algorithmic
implementation. This permits to used standard solvers for this classification
problems.

3 Indefinite Support Vector Regression

Comparing the derivation in Subsect. 2.2 with the formulation of the Support
Vector Regression in Eq. (1), we see that only the conditions on SVR have
changed with respect to SVM. As addressed in [12] the crucial part with the
Krĕin space SVM is the minimization of a norm, which is not available in the
Krĕin space. The SVR contains a norm operator in the objective but not in the
constraints. Accordingly, we can use the same derivation as for the Krĕin space
SVM and obtain the following optimization problem for iSVR (SVR in Krĕin
space)2

stabf∈K,b∈R

1
2
〈f, f〉K s.t.

{
yi − f(xi) − b ≤ ε

f(xi) + b − yi ≤ ε
(5)

Similar as for the Krĕin space SVM (see [12], Sect. 3.3) the algorithm for the
iSVR consists of the following five steps:

1. An eigen-decomposition of the full kernel matrix is calculated.
2. A flipping operation is applied on the kernel matrix and the signs of the

eigenvalues are stored. The flipping operator is a consequence of the derivation
of the Krein SVM which transfers to the iSVR.

2 Details are skipped due to lack of space, but follow analogous to the derivation of
the Krein SVM. Instead we provide an adapted pseudo code with descriptions.

318 F.-M. Schleif

3. The solution of an SV regression solver is calculated on the flipped kernel
with parameter C and ε.

4. The application of the projection operator obtained from the eigen-
decomposition on the α vector of the SVR model. This is needed to permit the
usage of the unmodified input kernel to the optimized SVR model (linking
the Krĕin space solution with the Hilbert space solution).

5. The bias b has to be recalculated as the average of the modified α-vector
weighted by the labels Y This is necessary because b is not included in f and
the calculation of the projection matrices.

A pseudo code roughly related to a Matlab notation is shown in Algorithm1.

Algorithm 1. Indefinite SVR (iSVR).
SVR in the Krĕin space:
[U, D] = EigenDecomposition(K) U-Eigenvectors, D-Eigenvalues (on a diagonal

matrix)
K̂ = USDU� with S = sign(D)
[α] = KernelSVRSolver(K̂, Y, C, ε) α’s from the dual solution of SVR
α̃ = USU�α b̃ = 1

N2 Y α̃ linking to the Krĕin space solution

return α̃, b̃;
Prediction function:
f(x′) = 1

2
·∑m

i=1 α̃ik(xi, x
′) + b̃ k(·, ·) - indefinite kernel function

4 Experiments

We show the effectiveness of iSVR on a number of simulated and real life bench-
mark regression problems and compare with solutions as obtained by using stan-
dard SVR but for flipped (all signs of the eigenspectrum become positive) and
clipped eigenspectra (negative einvalues are set to 0) of the respective kernel
matrices. Data are given as X ∈ R

D. Target function values yi ∈ R
1. The fol-

lowing one-dimensional simulated datasets have been used:

– (SIM1) basic sinc sample, with 200 samples, f(x) = sinc(x/π)+0.05 ·σ where
σ is Gaussian noise and x is linearly spread in [−30, 30]

– (SIM2) Friedman function, with 200 samples, f(x) = 10 · sin(π · σ1 · σ2) + 20 ·
(σ3 − 0.5)2 + 10 · σ4 + 5 · σ5 + σ; and uniform noise σ1, . . . , σ5, σ is Gaussian
noise

– (SIM3) The Mackey glass data, with 12000 samples (down-sampled to 1500
points), in 1 dimension

Further we used the following real life regression datasets.

– (DS1) Carsmall, with 100 samples, D = 2 (horse power, weight) (part of
Matlab)

– (DS2) Abalone, with 4177 samples, D = 8 taken from [19]

Indefinite Support Vector Regression 319

– (DS3) Forest fires, with 517 samples, D = 13, dimension 13 was used as
output variable, taken from [20]

– (DS4) Diabetis, with 569 samples, D = 32, dimension 3 was used as output
variable, taken from [19]

– (DS5) White wine quality, with 4898 samples, D = 12, dimension 12 was used
as output variable, taken from [21]

– (DS6) Tecator, with 240 samples, D = 122, dimension 123 was used as output
variable (fat content), taken from [22]

All regression functions (outputs) have been z-transformed. The indefinite-
ness was caused using a Manhattan kernel Km = −||X − X�||. The regression
profiles for SIM1-SIM3 and DS1, DS2 and DS6 are depicted in Fig. 1. In the
experiments we apply the indefinite SVR approach on the given datasets and
compare it with the standard SVR algorithm were the indefinite input kernel
was corrected by applying a flip or clip eigenspectrum transformation. In Fig. 2
a plot of the output function for DS6 and its prediction using iSVR and SVR on
a clipped kernel is shown. The plot shows substantial prediction errors on the
clipped kernel in contrast to the prediction of iSVR with the indefinite maha-
lanobis kernel (Table 1).

0 50 100 150 200
x

-2

-1

0

1

2

3

4

5

f(
x)

0 50 100 150 200
x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

f(
x)

0 500 1000 1500
x

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

f(
x)

Fig. 1. Plots of the SIM1, SIM2 and SIM3 data.

Table 1. Mean square error (mean± std-dev.) in the 10-fold crossvalidation. Best
results are highlighted in bold, significant results worst↔best (t-test, p < 0.05) are
marked with a ∗

Dataset iSVR (Km) SVR-flip (Km) SVR-clip (Km)

SIM1 0.09 ± 0.02 0.11 ± 0.01 0.11 ± 0.03

SIM2 0.15 ± 0.03 0.17 ± 0.04 0.18 ± 0.05

SIM3 ≈0± ≈0 ≈0± ≈0 0.01± ≈0

DS1 0.42 ± 0.25 0.42 ± 0.05 0.40 ± 0.22

DS2 0.49 ± 0.05 0.49 ± 0.04 0.70 ± 0.34∗
DS3 1.42 ± 0.26 1.47 ± 0.23 1.85 ± 1.00∗
DS4 0.01± ≈0 0.01± ≈0 0.50 ± 0.31∗
DS5 0.68 ± 0.06 0.67 ± 0.03 0.70 ± 0.03

DS6 0.04 ± 0.02 0.04 ± 0.01 0.10 ± 0.01∗

320 F.-M. Schleif

150 155 160 165 170 175 180 185 190 195 200
x

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

f(x
)

Original f(x)

Predicted f(x) mahalanobis kernel

Predicted f(x) clipped mahalanobis kernel

Fig. 2. Zoom in a plot of the tecator output function (green, line+ circle). We also show
the predicted output using SVR on a clipped mahalanobis kernel (black dashed) and
a prediction of the output function using iSVR on the indefinite mahalanobis kernel
(red, dashed+diamond). (Color figure online)

It should be noted that an application of the standard SVR on the indefi-
nite kernels is not possible, which was also experimentally verified, because the
obtained problem becomes non-convex and the solver is unable to provide a
solution to the optimization problem.

5 Conclusions

Here we proposed a formulation for indefinite Support Vector Regression. The
algorithm permits to use indefinite kernels and a direct out of sample extension
without any modifications of the eigenspectrum or the calculation of a psd proxy
kernel on the test data. As the experiments showed the iSVR performs well on
a number of different datasets, accordingly also data representation employing
non-metric measures can now be used easily for regression tasks3.

References

1. Schleif, F.-M., Tiño, P.: Indefinite proximity learning: a review. Neural Comput.
27(10), 2039–2096 (2015)

2. Stulp, F., Sigaud, O.: Many regression algorithms, one unified model: a review.
Neural Netw. 69, 60–79 (2015)

3. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis and Dis-
covery. Cambridge University Press, Cambridge (2004)

4. Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern
classification. Pattern Recogn. 39(10), 1852–1863 (2006)

5. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans.
Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)

3 Note: iSVR can be applied on non-psd as well as on psd kernels.

Indefinite Support Vector Regression 321

6. Gisbrecht, A., Schleif, F.-M.: Metric and non-metric proximity transformations at
linear costs. Neurocomputing 167, 643–657 (2015)

7. Gnecco, G.: Approximation and estimation bounds for subsets of reproducing ker-
nel Krein spaces. Neural Process. Lett. 39(2), 137–153 (2014)

8. Zhang, Z., Ooi, B.C., Parthasarathy, S., Tung, A.K.H.: Similarity search on Breg-
man divergence: towards non-metric indexing. PVLDB 2(1), 13–24 (2009)

9. Mwebaze, E., Schneider, P., Schleif, F.-M., Aduwo, J.R., Quinn, J.A., Haase, S.,
Villmann, T., Biehl, M.: Divergence based classification in learning vector quanti-
zation. Neurocomputing 74, 1429–1435 (2010)

10. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Sig. Process. 26(1), 43–49 (1978)

11. Vapnik, V.N.: The Nature of Statistical Learning Theory. Statistics for Engineering
and Information Science. Springer, New York (2000)

12. Loosli, G., Canu, S., Ong, C.S.: Learning SVM in Krein spaces. IEEE Trans. Pat-
tern Anal. Mach. Intell. PP(99), 1 (2015)

13. Xu, W., Wilson, R.C., Hancock, E.R.: Determining the cause of negative dis-
similarity eigenvalues. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano,
A., Kropatsch, W. (eds.) CAIP 2011. LNCS, vol. 6854, pp. 589–597. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23672-3 71

14. Scheirer, W.J., Wilber, M.J., Eckmann, M., Boult, T.E.: Good recognition is non-
metric. Pattern Recogn. 47(8), 2721–2731 (2014)

15. Duin, R.P.W., Pekalska, E.: Non-Euclidean dissimilarities: causes and informative-
ness. In: Proceedings of Structural, Syntactic, and Statistical Pattern Recognition,
Joint IAPR International Workshop, SSPR&SPR 2010, Cesme, Izmir, Turkey, 18–
20 August 2010. pp. 324–333 (2010)

16. Ong, C.S., Mary, X., Canu, S., Smola, A.J.: Learning with non-positive kernels.
In: Brodley, C.E. (ed.) Proceedings of 21st International Conference on Machine
Learning (ICML 2004), vol. 69. ACM (2004)

17. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput.
14(3), 199–222 (2004)

18. Pekalska, E., Duin, R.: The Dissimilarity Representation for Pattern Recognition.
World Scientific, Singapore (2005)

19. Lichman, M.: UCI Machine Learning Repository (2013)
20. Cortez, P., Morais, A.: A data mining approach to predict forest fires using meteo-

rological data. In: Neves, J., Santos, M.F., Machado, J. (eds.) Proceedings of EPIA
2007, pp. 512–523 (2007)

21. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine prefer-
ences by data mining from physicochemical properties. Decis. Support Syst. 47(4),
547–553 (2009)

22. Thente, K.: Tecator dataset. http://lib.stat.cmu.edu/datasets/tecator. Accessed
01 Feb 2017

http://dx.doi.org/10.1007/978-3-642-23672-3_71
http://lib.stat.cmu.edu/datasets/tecator

Instance-Adaptive Attention Mechanism
for Relation Classification

Yao Lu(B), Chunyun Zhang, and Weiran Xu

PRIS, Beijing University of Posts and Telecommunications, Beijing, China
luyao bupt@outlook.com

Abstract. Recently, attention mechanism has been transferred to rela-
tion classification task. Since relation classification is a sequence-to-label
task, the challenge is how to generate the deciding factor to calculate
attention weights. The previous solution randomly initializes a global
deciding factor, which is easy to suffer from over-fitting. To solve the
problem, we propose instance-adaptive attention mechanism, which gen-
erates a specially designed deciding factor for each sentence. The exper-
imental result on SemEval-2010 Task 8 dataset shows that our method
can outperform most state-of-the-art systems without external linguistic
features.

Keywords: Relation classification · Instance-adaptive · Attention
mechanism

1 Introduction

Relation classification plays an important role in natural language processing
(NLP), and are of great significance for many other NLP researches, such as
information retrieval [2], question answering system [4] and knowledge base com-
plementation [3]. Given a specific pair of entities marked in a sentence, relation
classification system tries to identify the semantic relation between these two
entities correctly. For instance, the following sentence is an example of relation
Cause-Effect(e2,e1) between nominals burst and pressure.

“The burst has been caused by water hammer pressure”.

Traditional relation classification methods use handcrafted features that are arti-
ficially constructed or come from NLP tools [15]. These methods have achieved
good results. However, NLP tools, which are utilized to extract higher level
features, require large computational cost and may cause the problem of error
propagation. What’s more, designing and selection of features is time-consuming
and difficult to generalize. In order to alleviate the issues, in recent years, many
deep learning-based methods have been proposed. First, the original sentence
is mapped into a sequence of word vectors. Then, the neural network takes the
sequence as input and is trained to extract abstract features automatically. These
methods avoid complex feature engineering and are currently more effective than
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 322–330, 2017.
https://doi.org/10.1007/978-3-319-68612-7_37

Instance-Adaptive Attention Mechanism for Relation Classification 323

traditional ones. Convolutional neural networks (CNN), recurrent neural net-
works (RNN) and their variants are currently the most commonly used frame-
work [7,8]. Recently, the Attention mechanism has been extensively studied and
applied in the field of deep learning. Imitating people focusing on key informa-
tion while reading, researchers want to align larger weights to words that are
more informative for the training target. Compared with max-pooling, attention
mechanism is more flexible. By weighting each word, it not only emphasizes key
information but also avoids the information loss caused by rigid max-pooling
rule. Attention mechanism was first used in sequence-to-sequence learning. Tak-
ing the translation task as an example, attention weights are calculated based
on the hidden state of the predicted word (deciding factor), and exerted on
the hidden states of source language word sequence [1]. However, relation classi-
fication is a sequence-to-label task. How to obtain the attention deciding factor
is a problem to be solved.

In this paper, we propose an instance-adaptive attention mechanism. Specifi-
cally, the model can automatically generate an adaptive deciding factor for each
instance to calculate the attention weights. We try to make the deciding fac-
tor contain the main relation-related information of the sentence. We evaluate
the proposed method on the SemEval-2010 benchmark and achieve F1-score of
84.6%, higher than most existing methods in the literature.

2 Related Works

Over the years, a variety of methods have been proposed for relation classifica-
tion. At first, most of them are based on pattern matching. Later, supervised
models with complex handcrafted features are proposed to solve the problem.
One related work is the support vector machine (SVM) model which utilizes var-
ious features from NLP tools and external resource [15]. Recently, the end-to-end
deep neural networks have gradually replaced the traditional ones. Zeng et al.
[10] used CNN to obtain the abstract features of sentence-level and achieved a
good result. While CNN can better learn local features, it is not suitable to learn
inconsecutive patterns. To overcome this issue, RNN is applied in relation clas-
sification task. To further solve the biased problem of single RNN, bi-directional
RNN structure is introduced. The typical models include BRNN [11] and BLSTM
[12]. In the proposed method, we continue use this framework. To eliminate irrel-
evant words in sentence, SDP-LSTM [6] leverages the shortest dependency path
(SDP) between two entities as input and picks up semantic information with long
short term memory unit (LSTM). It also combines external linguistic features
to make another step forward in performance, such as part-of-speech (POS),
grammatical relations and WordNet hypernyms.

Attention mechanism was proposed by [1] in machine translation, and cur-
rently attracts lots of interest. It is widely applied in a variety of tasks, including
question answering, machine translation, speech recognition et al. Recently, this
mechanism is transferred to relation classification. Zhou et al. proposed Att-
BLSTM [13], which takes raw sentences as input. The model randomly initializes

324 Y. Lu et al.

an equal-length vector as the global deciding factor and calculates the similar-
ity between this vector and each word-level vector as corresponding attention
weight. By training, this vector is properly adjusted to effectively improve the
results on the limited dataset. But it can not adapt to the rich relationship
expression outside the training set and thus has the risk of over-fitting. What’s
more, this method itself is difficult to explain from the logic. Comparing to
this model, our model is robuster for leveraging better designed deciding factor,
which is generated adaptively according to each individual sentence.

Fig. 1. Bidirectional GRU network with SDP-attention

3 Methodology

Given an input sentence with annotated entity pairs, the relation classification
model is to calculate the probabilities of all candidate relations and choose the
relation with the highest probability as output. In general, the proposed model
mainly contains the following four parts:

(1) Input embedding layer: each token of input sentence is mapped into a fixed-
size real-valued vector, including word vector and position vector;

(2) Bi-directional gated recurrent unit (GRU) layer: utilize bi-directional GRU
to get word-level features;

(3) Attention layer: calculate weight vector based on the special deciding factor
for each sentence. Weighted by this vector, word-level features from each
time step are merge into a sentence-level feature vector;

(4) Output layer: use the obtained sentence-level vector to identify relation type.

3.1 Embedding Layer

With regard to relation classification, every input sentence is actually a word
sequence S = {x1, x2, . . . , xn}, in which the annotated entities are [xe1, xe2].

Instance-Adaptive Attention Mechanism for Relation Classification 325

In embedding layer, each word xi is converted into a real-valued vector w∗
i ,

which is the concatenation of its corresponding word embedding wd
i and position

embedding wp
i :

w∗
i = [(wd

i)
T, (wp

i)
T]T (1)

Word Embedding: For each word xi in S, we search for wd
i in the word

embedding matrix Wword ∈ R
dw|V |, where V is a fixed-sized vocabulary and

dw is the size of word embedding. Here, we utilize pre-trained word vectors
to initialize Wword in order to speed up model training and introduce prior
semantic information of each word. In the process of training, Wword is updated
as parameters after each epoch.

Position Embedding: Crucial words for identifying relation tend to appear
close to the target entity pair in sentences. Therefore, position information is
used to enrich word representation. Position embedding transforms the relative
distance from word to each target entity as distributed representation. For word
xi and entity pair [xe1, xe2], the two partial distance vectors are p1 and p2, which
are concatenated together to form position embedding wp

i = [pT1 , pT2]T. Here, p1
and p2 are initialized randomly with the same dimension of dp and modified via
model training.

3.2 Bidirectional GRU

LSTM is firstly proposed by [16], aiming to alleviate gradient vanishing and
exploding problem in basic RNN. In LSTM, an adaptive gating mechanism is
introduced to control the flow of information between adjacent units. GRU is a
simplified version of LSTM, which can achieve equivalent performance. It inherits
the gating mechanism but greatly reduces the number of parameters [14]. There
is no separate memory cell for each time step. Instead, it purely uses states of
hidden units and current inputs to control information transfer. Consequently,
hidden layer operations are mainly controlled by two gates: the update gate zt
and reset gate rt. While rt determines to what extent previous hidden state ht−1

influences the generation of new state ˜ht, zt defines the ratio of ht−1 and ˜ht in
current hidden state ht. Just as these following equations demonstrate:

zt = σ (Wzxt + Uzht−1 + bz) (2)
rt = σ (Wrxt + Urht−1 + br) (3)

ht = (1 − zt)ht−1 + zt ˜ht (4)
˜ht = tanh (Whxt + Uh (ht−1 � rt) + bh) (5)

where xt denotes current input and σ is logistic sigmoid function.
Standard GRU processes sequences in temporal order, which ignores the

influence of future context. Hence, we adopt bi-directional GRU (Bi-GRU). Here,

326 Y. Lu et al.

forward GRU processes sequences the same way as standard GRU while back-
ward GRU does it in opposite temporal order. Then, at each time step t, hidden
states

−→
ht ∈ R

dr

and
←−
ht ∈ R

dr

of two directions are concatenated together to
form the final hidden state ht.

3.3 Attention Mechanism

Theoretically speaking, the deciding factor for each sentence should be unique
and relevant to the training target. Ideally, treating the distributed representa-
tion of the target relation type as the deciding factor can get the most reasonable
attention weights. Since we can not make the cause and effect upside down, we try
to find a substitution. Our solution is to build another neural network to gener-
ate a relation-related vector. Previous studies have proven that SDP from entity
e1 to entity e2 can retain most relation semantics while eliminating the interfer-
ence of irrelevant words. However, SDP also may lose some useful information.
Hence, previous studies tend to make another step forward in performance by
appending additional linguistic features. Here, we build an SDP-based neural
network to generate the deciding factor. As showed in Fig. 1, we apply CNN
of multi window length (3, 4, 5) on SDP, then get the output vector a through
operations of max-pooling and concatenation. To achieve dimension consistency
with the hidden states of Bi-GRU, a full-connected layer is applied later to get
final deciding factor c.

Let H be a matrix consisting of output vectors [h1, h2, . . . , hn] that Bi-GRU
produced. Through inner product with deciding factor and a softmax operation,
we get a normalized attention weight vector α. The representation r ∈ R

2dr

of
the sentence is formed by a weight sum of H.

α = softmax
(

cTH
)

(6)

r = HαT (7)

3.4 Classifying

We use a softmax classifier to predict the semantic relation type ŷ of the tar-
get entity pair in sentence S. Before the last classification layer, the sentence
representation r is fed into a full-connected layer and get r∗ ∈ R

dm

:

r∗ = tanh (Wmr + bm) (8)

Then, a softmax classifier is used to get the probability for each candidate rela-
tion y. The relation with the highest probability is identified as final result:

p (y|S) = softmax (Wsr
∗ + bs) (9)

ŷ = arg max
y

p (y|S) (10)

Instance-Adaptive Attention Mechanism for Relation Classification 327

3.5 Regularization

Dropout [17] is proved to be a good regularization technique. It randomly omits
units in hidden layers during forward propagation, so as to prevent co-adaptation
of some units. Here, we employ dropout on embedding layer, attention layer and
penultimate layer, where the corresponding dropout rates are ρw, ρc, ρo respec-
tively. We additionally utilize Max-norm to constrain L2-norms of parameters.
After a gradient descent step, rescale ω to have ‖ω‖ = ε, whenever ‖ω‖ > ε.

4 Dataset and Experimental Set

Experiments are conducted on SemiEval-2010 Task 8 dataset. The dataset has
10717 sentences, including 8000 examples for training and 2717 for testing. Each
sentence is annotated with a target entity pair and a relation label. There are
9 relationship types with two directions and an undirected Other type. So, the
total number of relation labels is 19. We adopt the official evaluation metric,
which is based on macro-averaged F1-score for the 9 actual relations (excluding
the Other type) and takes the directionality into consideration.

We use the released word embedding set GoogleNews-vectors-negative300.
bin to initialize our embedding layer, which is trained by Mikolov’s word2vec1

tool [9]. For words not contained in the word embedding set, we randomly ini-
tialize their word embeddings following a Gaussian distribution. Our model is
trained using AdaDelta with a minibatch size of 20 and learning rate of 1.0.
The size of position vector is 25 and other vector sizes dr, dm, da are set as
100, 200, 100 respectively. Dropout rate ρw, ρc, ρo are 0.7, 0.7, 0.3 respectively.
We randomly select 800 sentences in training set for validation.

5 Results and Discussion

Table 1 compares our proposed SDP-Att-BiGRU with other state-of-the-art
methods of relation classification.

SVM: This is the top performed traditional feature-based method. It lever-
ages a large variety of handcrafted features and uses SVM as the classifier. The
model achieves an F1-score of 82.2%.

CNN: Treat an input sentence as sequence data and utilize CNN to extract
sentence-level features. The model also exploits position embedding to identify
the position of words. Then extra lexical features and sentence-level features
are concatenated together and fed into a softmax classifier for prediction. The
achieved F1-score is 82.7%.

SDP-LSTM: Let LSTM process the shortest dependency path between entity
pair to get sentence-level features. The external linguistic features are integrated
via multichannel architecture. Based on this, it achieves an F1-score of 83.7%.

1 http://code.google.com/p/word2vec/.

http://code.google.com/p/word2vec/

328 Y. Lu et al.

Table 1. Result comparison. PF and PI stand for position features and position indi-
cators.

Model Feature set F1

SVM POS, prefixes, morphological, WordNet, dependency parse,
Levin classed, ProBank, FramNet, NomLex-Plus, Google
n-gram, paraphrases,TextRunner

82.2

CNN Word embeddings+PF+WordNet, words around nominal 78.9

82.7

BRNN Word embeddings 82.5

CR-CNN Word embeddings+PF 82.8

84.1

SDP-LSTM Word embeddings+POS+GR+WordNet embeddings 82.4

83.7

BLSTM Word embeddings+PF+POS+NER+WNSYN+DEP 82.7

84.3

Att-BLSTM Word embeddings+PI 84.0

Att-BiGRU Word embeddings+PF 83.4

SDP-Att-BiGRU Word embeddings+PF 84.6

CR-CNN [5]: The main contribution of this model is that it gives special
treatment for class Other and proposes a new pair-wise ranking function to
substitute softmax. It obtains a F1-score of 84.0%.

BRNN, BLSTM, Att-BLSTM: Similar to our proposed model, this three
models utilize bidirectional RNN architecture. BRNN leverages basic RNN and
max-pooling operation to learn sentence-level features. It also introduces position
indicator (like <e1> . . . </e1>) and gets a F1-score of 82.5%. BLSTM adopts
bidirectional LSTM and employs many external lexical features. This model
learns sentence-level features by piece-wise max pooling and raises F1-score to
84.3%. Att-BLSTM introduces attention mechanism to relation classification for
the first time. Through randomly initializing a common deciding factor, the
model generates weight for each word and gets a F1-score of 84.0%.

Our proposed model SDP-Att-BiGRU obtains F1-score of 84.6%. It is worth
noting that our proposed model does not use any external lexical feature. In
order to compare with previous attention mechanism, which randomly initializes
a global deciding factor, we make the experiment of Att-BiGRU under the same
conditions. The result shows that our proposed model works better. We attribute
it to the specially designed deciding factor, which contains corresponding key
relation-related information of each sentence and thus reduces the risk of over-
fitting that single global deciding factor may suffer. Meanwhile, the proposed
mechanism can also be treated as a special way of model blending, which utilizes
one model to generate deciding factors for the other model to calculate attention

Instance-Adaptive Attention Mechanism for Relation Classification 329

weights. We also try to replace GRU with LSTM in the experiment but can not
achieve the same good result. We haven’t figured out the reason yet.

6 Conclusion

In this paper, we improve the attention mechanism applied in relation classifi-
cation task by generating instance adaptive deciding factors. Based on this, we
construct a novel neural network, named SDP-Att-BiGRU. In addition to the
dependency parse tool, the model does not rely on any other NLP tool or external
lexical resource. The experiment results on SemEval-2010 relation classification
task demonstrate that our model achieves state-of-the-art performance.

Acknowledgments. This work was supported by 111 Project of China under Grant
No. B08004, National Natural Science Foundation of China (61273217, 61300080,
61671078), the Ph.D. Programs Foundation of Ministry of Education of China
(20130005110004).

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. Comput. Sci. (2014)

2. Luo, Z., Osborne, M., Petrovi, S., et al.: Improving Twitter retrieval by exploiting
structural information. In: Twenty-Sixth AAAI Conference on Artificial Intelli-
gence (2012)

3. Bienvenu, M., Bourgaux, C., Goasdou, F.: Explaining inconsistency-tolerant query
answering over description logic knowledge bases. In: AAAI Conference on Artifi-
cial Intelligence (2016)

4. Yao, X., Durme, B.V.: Information extraction over structured data: question
answering with freebase. In: Meeting of Association for Computational Linguis-
tics, pp. 956–966 (2014)

5. Santos, C.N.D., Xiang, B., Zhou, B.: Classifying relations by ranking with convo-
lutional neural networks. Comput. Sci. (2015)

6. Yan, X., Mou, L., Li, G., et al.: Classifying relations via long short term memory
networks along shortest dependency path. In: Conference on Empirical Methods
in Natural Language Processing. 56–61, arXiv (2015)

7. Xu, Y., Jia, R., Mou, L., et al.: Improved relation classification by deep recurrent
neural networks with data augmentation. In: COLING, arXiv (2016)

8. Xu, K., Feng, Y., Huang, S., et al.: Semantic relation classification via convolutional
neural networks with simple negative sampling. Comput. Sci. 71(7), 941–949 (2015)

9. Mikolov, T., Sutskever, I., Chen, K., et al.: Distributed representations of words
and phrases and their compositionality. Adv. Neural Inf. Process. Syst. 26, 3111–
3119 (2013)

10. Zeng, D., Liu, K., Lai, S., et al.: Relation classification via convolutional deep
neural network (2014)

11. Zhang, D., Wang, D.: Relation classification via recurrent neural network. Comput.
Sci. (2015)

12. Zhang, S., Zheng, D., Hu, X., et al.: Bidirectional long short-term memory networks
for relation classification (2015)

330 Y. Lu et al.

13. Zhou, P., Shi, W., Tian, J., et al.: Attention-based bidirectional long short-term
memory networks for relation classification. In: Meeting of Association for Com-
putational Linguistics, pp. 207–212 (2016)

14. Cho, K., Merrienboer, B.V., Gulcehre, C., et al.: Learning phrase representa-
tions using RNN encoder-decoder for statistical machine translation. Comput. Sci.
(2014)

15. Rink, B., Harabagiu, S.: Classifying semantic relations by combining lexical and
semantic resources. In: International Workshop on Semantic Evaluation, pp. 256–
259. Association for Computational Linguistics (2010)

16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

17. Hinton, G.E., Srivastava, N., Krizhevsky, A., et al.: Improving neural networks by
preventing co-adaptation of feature detectors. Comput. Sci. 3(4), 212–223 (2012)

ReForeSt: Random Forests in Apache Spark

Alessandro Lulli, Luca Oneto(B), and Davide Anguita

DIBRIS - University of Genoa, Via Opera Pia 13, 16145 Genova, Italy
alessandro.lulli@dibris.unige.it, {luca.oneto,davide.anguita}@unige.it

Abstract. Random Forests (RF) of tree classifiers are a popular ensem-
ble method for classification. RF are usually preferred with respect to
other classification techniques because of their limited hyperparameter
sensitivity, high numerical robustness, native capacity of dealing with
numerical and categorical features, and effectiveness in many real world
classification problems. In this work we present ReForeSt, a Random
Forests Apache Spark implementation which is easier to tune, faster,
and less memory consuming with respect to MLlib, the de facto stan-
dard Apache Spark machine learning library. We perform an extensive
comparison between ReForeSt and MLlib by taking advantage of the
Google Cloud Platform (https://cloud.google.com). In particular, we test
ReForeSt and MLlib with different library settings, on different real world
datasets, and with a different number of machines equipped with differ-
ent number of cores. Results confirm that ReForeSt outperforms MLlib
in all the above mentioned aspects. ReForeSt is made publicly available
via GitHub (https://github.com/alessandrolulli/reforest).

Keywords: Random Forests · Apache Spark · Open source software

1 Introduction

It is well known that combining the output of several classifiers results in a
much better performance than using any one of them alone [11]. In [4] Breiman
proposed the Random Forests (RF) of tree classifiers, one of the state-of-the-
art learning algorithm for classification which has shown to be one of the most
effective tool in this context [9,16]. RF combine bagging to random subset feature
selection. In bagging, each tree is independently constructed using a bootstrap
sample of the dataset [8]. RF add an additional layer of randomness to bagging.
In addition to constructing each tree using a different bootstrap sample of the
data, RF change how the classification trees are constructed. In standard trees,
each node is split using the best division among all variables. In RF, each node is
split using the best among a subset of predictors randomly chosen at that node.
Eventually, a simple majority vote is taken for prediction.

The challenge today is that the size of data is constantly increasing making
infeasible to analyze it with classic learning algorithms or their naive implemen-
tations [14]. Data is often distributed, since it is collected and stored by distrib-
uted platforms like the Hadoop-based ones [7]. Apache Spark [19] is currently
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 331–339, 2017.
https://doi.org/10.1007/978-3-319-68612-7_38

https://cloud.google.com
https://github.com/alessandrolulli/reforest

332 A. Lulli et al.

gaining momentum for distributed processing because it enables fast iterative
in-memory computation with respect to classical disk-based MapReduce jobs.
MLlib [14] is the de facto standard for the use of RF learning algorithm in a
distributed environment. It is built-in Spark, implemented by the very same
authors. They follow a common approach to distributed computation. The ini-
tial data is divided into a number of partitions, which is in general larger with
respect to the number of machines. Each machine maintains a subset of the
partitions. Therefore, in order to construct the forest (i) the needed information
must be collected inside a partition, (ii) it is aggregated locally in the machine,
and (iii) all the machines’ information is aggregated in order to complete the
computation. The main downside is that for each node an amount of memory
proportional with the number of partitions handled by the machine is allocated.

In addition to the already mentioned MLlib [14] other RF implementations
exist, but they show analogous drawbacks. For instance, Chung [6] presents an
optimization of MLlib that switches from distributed to local computation when
the size of the data relative to a sub-tree is below a threshold, but no source code
is available. In [10] it is proposed to send each chunk of data to an independent
job and then aggregate the information of each chunk. However, this approach
requires the transmission of the entire subsamples to all the machines in the
cluster. Wakayama et al. [17] construct in each machine a candidate random
forest. Such forests are then aggregated and just the trees which show the best
accuracy are kept. The major drawback is that many trees are discarded resulting
in wasting computation time. Chen et al. [5] propose to vertically partition the
data. The training dataset is split into several feature subsets and then each
subset is allocated to a different distributed data structure. Unfortunately, this
approach requires a large shuffling phase at the beginning and the comparisons
are performed against an old implementation of MLlib.

In this paper we present ReForeSt, a distributed, scalable implementation of
the RF learning algorithm which targets fast and memory efficient processing.
ReForeSt main contributions are manifold: (i) it provides a novel approach for
the RF implementation in a distributed environment targeting an in-memory
efficient processing, (ii) it is faster and more memory efficient with respect to the
de facto standard MLlib, (iii) the level of parallelism is self-configuring, and (iv)
its source code is made publicly available. With respect to current approaches
we provide several benefits. With respect to MLlib we avoid the use of multiple
data structures requested by the partitioning-based distributed computation,
since each machine maintains only one data structure to collect the information
of the data stored in it. Contrarily to [14] we grow all the trees in parallel in order
to reduce the number of scans of the data. With respect to [17] and [5,10] we
avoid to generate trees that are not useful for the final result and to perform too
many communications in each iteration respectively. Finally, we do not occupy
memory with repetitions of the same data as opposed to [5].

ReForeSt: Random Forests in Apache Spark 333

2 ReForeSt: Random Forests in Apache Spark

Let us recall the multi-class classification problem [3] where a set of labeled sam-
ples Dn = {(X1, Y1), · · · , (Xn, Yn)} drawn according to an unknown probability
distribution μ over X ×Y are available and where X ∈ X = {X1×X2×· · ·×Xd}
and Y ∈ Y = {1, 2, · · · , c}. A learning algorithm A maps Dn into a function
belonging to a possibly unknown set of functions f ∈ F according to some crite-
ria A : Dn → F . The error of f in approximating μ is measured with reference to
a loss function � : Y × Y → R. Since we are dealing with classification problems
we choose the loss function which counts the number of misclassified samples
�(f(X), Y) = [f(X) �= Y], where the Iverson bracket notation is exploited. The
expected error of f in representing μ is called generalization error [15] and it is
defined as L(f) = E(X,Y)�(f(X), Y). Since μ is unknown L(f) cannot be com-
puted, but we can compute its empirical estimator, the empirical error, defined
as ̂L(f) = 1/n

∑n
i=1 �(f(̂Xi), ̂Yi) where Tn = {(̂X1, ̂Y1), · · · , (̂Xn, ̂Yn)} must be

a different set with respect to Dn which has been used to build f in order to
ensure that the estimator of the quality of the model is unbiased [1].

In our case A are RF. We briefly describe the learning phase of each of the nt

trees composing the RF. From Dn, �bn� samples are sampled with replacement
and D′

�bn� is built. A tree is constructed with D′
�bn� but the best split is chosen

among a subset of nv predictors over the possible d predictors randomly chosen
at each node. The tree is grown until its depth reaches the maximum value of nd

or all the samples in Dn are correctly classified. During the classification phase of
a previously unseen X ∈ X , each tree classifies X in a class Yi∈{1,··· ,nt} ∈ Y, and
then the final classification is the majority vote of all the answers of each tree
of the RF. If b = 1, nv =

√
n, and nd = ∞ we get the original RF formulation

[4] where nt is usually chosen to tradeoff accuracy and efficiency [12].
ReForeSt is a distributed, scalable algorithm for RF computation targeting

fast and memory efficient processing. Our main idea is to create only one data
structure, called matrix, on each machine. This is used for local data aggregation
and to concurrently aggregate information to compute the best cuts. The goal
is to reduce the memory requirements and the computational time with respect
to alternative approaches. For example, MLlib uses one data structure for each
partition in order to collect the information resulting in an inefficient memory
management.

Our proposal (see Algorithm 1) counts two main phases. The first phase is
called data preparation. The output of the first phase is the working data, a
statically allocated collection of items. Each item is an optimized representation
of the original data coupled with how much it contributes to each of the trees.
The second phase performs the tree generation. The working data is iteratively
processed to grow each tree of the forest.

2.1 Data Preparation

Starting from the raw data Dn we build the working data. Such working data
is kept in memory for the entire duration of the second phase statically. For

334 A. Lulli et al.

performance reasons, similarly to [6,14], the domain of each feature is discretized.
We call this operation binning and the number of bin nb is configurable. For each
feature, we search for the nb values for splitting the domain (see L:3, namely
Line 3 of Algorithm 1) using a sample D′′

s ⊂ Dn where s ≈ 104. Than, each bin is
constructed to have approximately the same number of samples D′′

s /nb. Finally,
each sample (Xj , Yj) ∈ Dn is converted in a working data item (Xnb

j , Yj , Bj)
which belongs to the dataset of converted data items Dnb

n = {(Xnb
j , Yj , Bj) : j ∈

{1, · · · , n}}. Xnb
j is the discretized version of Xj , while Bj ∈ N

nt is a vector
which contains in Bj,i the contribution of (Xj , Yj) ∈ Dn to the i-th tree built
based on D′

�bn�.

Algorithm 1. ReForeSt pseudo-code.
Input: Dn, nt, b, nb, nv and nd

Output: A set of tree {T1, · · · , Tnt}
// Data Preparation

1 Dn ← loadData(); /* Parallelized over the n samples */

2 D′′
s ← sample(Dn); /* Parallelized over the d features */

3 S ← findSplit(nb,D′′
s); /* Parallelized over the d features */

4 Dnb
n ← convertInWorkingData(Dn,S, b); /* Parallelized over the n samples */

// Tree Generation
5 {T1, · · · , Tnt} ← initializeEmptyTrees(nt);
6 for i ← 0, · · · , (nd − 1) do

// Local Information Collection
7 for j ← 1, · · · , Nm do in parallel

8 Mj ← instantiate a matrix N
2int×nbcnv ;

9 for (Xnb , Y, B) ∈ (Dnb
n)j do /* (Dnb

n)j ⊂ Dnb
n which resides on machine j */

10 for t ← 1, · · · , nt do
11 node ← getNode(t,Xnb);
12 if ¬isLeaf(node) then
13 for f ← Rnv do
14 p ← getColumnInM(t, node, f,Xnb , Y);
15 r ← getRowOfMFromNode(node);

16 Mj
r,p ← Mj

r,p + Bt;

// Distributed Information Aggregation

17 M ← mergeByNode(∀Mj , j ∈ {1, · · · , Nm});
// Trees Update

18 for r ← 1, · · · , 2int do in parallel /* Every machine handles a subset of the nodes */
19 node ← getNodeFromRowOfM(r);
20 bestCut ← findBestCut(Mr,{1,··· ,nbcnv});
21 {T1, · · · , Tnt}.growTreeBasedOnNode(node, bestCut);

2.2 Tree Generation

The tree generation phase proceeds breadth-first and each tree is computed
in parallel. An iteration is divided in three steps: local information collec-
tion, distributed information aggregation, and trees update. At each iteration
i ∈ {0, · · · , nd − 1} all the nodes at the i-th level are computed by each
machine j ∈ {1, · · · , Nm} in parallel. In particular, we exploit the matrix
M j ∈ N

2i×nt×nb×c×nv which resides on the j-th machine. M j contains the con-
tributions, needed to select the best split based on the information gain criteria,
to the different nv randomly selected subset of the d original features and to

ReForeSt: Random Forests in Apache Spark 335

the c classes of the subset of items Dnb
n handled by the j-th machine to the 2i

nodes at i-th level of the nt trees of the forest. Note that M j is flattened from
a five-dimensional matrix to a two-dimensional matrix M j ∈ N

2int×nbcnv for
performance reasons. Then all the matrices are aggregated in order to collect
the information needed to find the best cuts and update the trees of the forest.
If M j does not fit in the memory of the machine, since M j can become very
large, the iterations are automatically divided in many sub-iterations based on
the available memory and the number of nodes processed at the i-th iteration.

Local Information Collection. This step does not require any communication
between the machines. It operates on the working data saved in each machine
j and collects the information in M j which is instantiated at the beginning
of the iteration. All the partitions are processed concurrently by the machine
which stores them. In the following we describe how an item (Xnb , Y,B) ∈
Dnb

n contributes to M j for one tree t ∈ {1, · · · , nt} with its weight Bt. Each
(Xnb , Y,B) is stored in a Spark partition and it contributes to all the trees in
the forest as follows. First we have to recall that (Xnb , Y,B) can contribute
to only one node per tree since we are processing all the nodes at a particular
depth of all the trees. Then, given (Xnb , Y,B) and the t-th tree we can navigate it
until we reach the right node where (Xnb , Y,B) contributes (see L:11). For each
feature f ∈ Rnv

, where Rnv
is a set of nv indexes randomly sampled without

replacement from {1, · · · , d}, the proper element of M j to be updated is found
(see L:14). The row of M j is the specified node index. The column of M j is
computed as nbcf + cXnb

f + Y . Bt is added to the aforementioned position of
M j (see L:16). At the end of this step, each machine has one matrix populated
with the contributions of each item of the working data stored in it.

Distributed Information Aggregation. In this step the information stored
in each M j is aggregated as follows. The rows of each M j are shuffled in the
machines. In particular, the rows belonging to the same node are collected in
a same machine thanks to the Spark hashing function. At the end of this step,
each machine stores a subset of the nodes processed at the particular iteration
i. The number of nodes in each machine is approximately 2int/Nm thanks to
the hashing function that distributes the nodes to the machines uniformly. The
matrix instantiated at the beginning of the iteration is freed during the shuffling
phase.

Trees Update. In the last step of each iteration each machine, having the
complete knowledge about the nodes stored in it, searches the best cuts (see
L:20). The best cut is chosen in such a way to maximize the information gain in
the sub-tree. All the computed cuts are then exploited to update the nt trees in
the forest (see L:21).

336 A. Lulli et al.

3 Experimental Evaluation

In this Sect. ReForeSt and MLlib [14] are compared through a comprehensive set
of experiments. We run the experiments on the Google Cloud Platform (GCP)
making use of Linux shell scripts for automatically deploying the clusters of
virtual machines (VMs). Each VM runs Debian 8.7 and is equipped with Hadoop
2.7.3 and Apache Spark 2.1.0. To evaluate the ReForeSt and MLlib scalability we
tested them on different cluster configurations. In particular, one master node is
deployed and a different number of worker machines Nm ∈ {4, 8, 16} equipped
with different number of cores Nc ∈ {4, 8, 16} is handled by the master. For this
purpose, we used the n1-standard-4, n1-standard-8, and n1-standard-16 machine
types from GCP with approximately 15, 30, and 60 GB of RAM respectively
and 500 GB of SSD disk space. For every combination of parameters we run
the experiments 10 times. Different datasets have been exploited to conduct the
experiments: Susy, Epsilon, Higgs, and Infimnist. Their descriptions are reported
in Table 1. The 70% of each dataset is used as Dn whereas the remaining 30%
as Tm.

Table 1. Dataset exploited in the paper.

Name Ref. n d c Size (GB)

Susy [2] 5 · 106 18 2 3

Epsilon [18] 5 · 105 2 · 103 2 11

Higgs [2] 11 · 106 28 2 8.4

Infimnist [13] 14 · 106 784 10 20

Figure 1 depicts the average memory consumption of ReForeSt and MLlib
for the Higgs dataset. We collect the memory used by the Java Virtual Machine
(JVM) in each second of computation for the environment with Nm = 4, Nc =
{4, 8}, nb = 32, nd = 10 and b = 1. The JVM Garbage Collector has been
invoked periodically in order to avoid artifacts in the results. On the x-axis we
report the normalized computational time with respect to the total time in order
to better compare the ReForeSt and MLlib memory usage. Figure 1 shows the
memory usage picks due to the allocation of the matrices used to collect the
information at each iteration of ReForeSt and MLlib. From Fig. 1 it is possible
to observe that:

– ReForeSt requires always less memory with respect to MLlib to perform the
computation. In particular it requires always less than 3 GB of RAM while
MLlib requires 16 GB of RAM;

– the MLlib memory usage linearly increases with the number of cores, whereas
the ReForeSt memory usage does not depend on the number of cores.

Results over the other datasets present a similar behavior.

ReForeSt: Random Forests in Apache Spark 337

Fig. 1. Memory usage of MLlib and ReForeSt over the Higgs dataset with Nm = 4,
Nc = {4, 8, 16}, nt = 100, nb = 32, nd = 10, b = 1.

Table 2 reports a series of metrics for the complete sets of experiments run
over the different cluster architectures and datasets and by changing nt. These
metrics are: the computation time of ReForeSt and MLlib in seconds, respectively
tR and tM , the speed-up of ReForeSt and MLlib with respect to the base scenario
Nm = 4 and Nc = 4, respectively SR and SM , and Δ = tM/tR. nb and nd have
been fixed to the default MLlib values (nb = 32 and nd = 10) and standard
deviation is not reported because of space constraints. However changing nb and
nd does not substantially change the outcomes and the standard deviation of the
results is always less than 5%. Based on Table 2 it is possible to observe that:

– from a computational point of view, ReForeSt is much more efficient than
MLlib. We obtain a speed-up with respect to MLlib of at least Δ = 1.48
with a maximum of Δ = 3.05. On average, ReForeSt is two times faster than
MLlib;

– ReForeSt scales better with nt with respect to MLlib as one can observe
trough the values of Δ. For instance, on the Epsilon dataset when Nm = 16
and Nc = 16 we obtain Δ = 2.08 with nt = 100 and Δ = 3.05 with nt = 400;

– ReForeSt scales better with Nc. This effect is easier to observe when the size
of the dataset is larger. For instance, in the Infimnist dataset with Nm = 16
and nt = 400 we obtain Δ = 1.87, 2.15, 2.78 respectively for Nc = 4, 8, 16;

– ReForeSt exhibits comparable or better speed-up, when Nm or Nc are
increased, with respect to MLlib;

– ReForeSt requires considerable less memory with respect to MLlib; In fact
MLlib is not able to finish the computation on several clusters because of
memory constraints. For instance, with Nm = 4 and Nc = 4 we got the fol-
lowing error “There is insufficient memory for the Java Runtime Environment
to continue” since MLlib fails to provide a solution for the Infimnist dataset
and for Higgs with nt = 400.

338 A. Lulli et al.

Table 2. Comparison between the computational time of MLlib and ReForeSt. (∗)
JVM out of memory error, (-) value cannot be computed because of the JVM error.

Nm Nc nt
Susy (3GB) Higgs (8GB) Epsilon (11GB) Infimnist (20GB)

tR tM SR SM Δ tR tM SR SM Δ tR tM SR SM Δ tR tM SR SM Δ

4 4
100 178 287 1 1 1.61 399 685 1 1 1.72 197 348 1 1 1.77 1064 ∗ 1 1 -
200 319 570 1 1 1.79 756 1306 1 1 1.73 264 543 1 1 2.06 1847 ∗ 1 1 -
400 665 1163 1 1 1.75 1598 ∗ 1 1 - 400 959 1 1 2.4 3635 ∗ 1 1 -

4 8
100 104 173 1.7 1.7 1.66 223 400 1.8 1.7 1.79 123 192 1.6 1.8 1.56 581 1106 1.8 - 1.9
200 175 357 1.8 1.6 2.04 429 788 1.8 1.7 1.84 155 304 1.7 1.8 1.96 1013 2095 1.8 - 2.07
400 370 688 1.8 1.7 1.86 903 16621.8 - 1.84 246 543 1.6 1.8 2.21 1935 ∗ 1.9 - -

4 16
100 78 138 2.3 2.1 1.77 142 275 2.8 2.5 1.94 94 1722.1 2 1.83 380 799 2.8 2.8 2.1
200 118 280 2.7 2 2.37 617 3 2.1 2.47 654 107 2852.5 1.9 2.66 250 1460 2.8 2.9 2.23
400 226 608 2.9 1.9 2.69 521 12563.1 2.6 2.41 172 5192.3 1.8 3.02 1284 2842 2.8 - 2.21

8 4
100 107 160 1.7 1.8 1.5 238 408 1.7 1.7 1.71 122 192 1.6 1.8 1.57 659 1078 1.6 2.1 1.64
200 182 317 1.8 1.8 1.74 437 752 1.7 1.7 1.72 168 303 1.6 1.8 1.8 1040 ∗ 1.8 - -
400 365 619 1.8 1.9 1.7 930 1530 1.7 2.2 1.65 257 526 1.6 1.8 2.05 1912 ∗ 1.9 - -

8 8
100 65 97 2.7 3 1.49 133 239 3 2.9 1.8 78 1512.5 2.3 1.94 354 639 3 3.5 1.81
200 106 213 3 2.7 2.01 249 452 3 2.9 1.82 100 2562.6 2.1 2.56 586 1170 3.2 3.6 2
400 210 410 3.2 2.8 1.95 478 897 3.3 3.7 1.88 162 4582.5 2.1 2.83 1164 2235 3.1 5.1 1.92

8 16
100 54 80 3.3 3.6 1.48 78 168 5.1 4.1 2.15 66 128 3 2.7 1.94 234 513 4.5 4.3 2.19
200 72 162 4.4 3.5 2.25 140 328 5.4 4 2.34 78 1943.4 2.8 2.49 392 963 4.7 4.4 2.46
400 139 375 4.8 3.1 2.7 275 722 5.8 4.6 2.63 129 3713.1 2.6 2.88 776 1927 4.7 5.9 2.48

16 4
100 67 102 2.7 2.8 1.52 135 222 3 3.1 1.64 83 1622.4 2.1 1.95 364 629 2.9 3.5 1.73
200 109 193 2.9 3 1.77 252 423 3 3.1 1.68 109 2652.4 2 2.43 610 1138 3 3.7 1.87
400 223 381 3 3.1 1.71 512 860 3.1 3.9 1.68 174 4882.3 2 2.8 1167 2177 3.1 5.2 1.87

16 8
100 47 80 3.8 3.6 1.7 74 135 5.4 5.1 1.82 57 1153.5 3 2.02 216 435 4.9 5.1 2.01
200 79 175 4 3.3 2.22 150 263 5 5 1.75 73 1853.6 2.9 2.53 381 823 4.8 5.1 2.16
400 130 270 5.1 4.3 2.08 261 519 6.1 6.4 1.99 118 3423.4 2.8 2.9 686 1477 5.3 7.7 2.15

16 16
100 44 64 4 4.5 1.45 50 101 8 6.8 2.02 53 1103.7 3.2 2.08 132 339 8.1 6.5 2.57
200 50 127 6.4 4.5 2.54 89 212 8.5 6.2 2.38 62 1794.3 3 2.89 230 636 8 6.6 2.77
400 102 250 6.5 4.7 2.45 172 441 9.3 7.5 2.56 104 3173.8 3 3.05 455 1266 8 9 2.78

Finally, we do not include in the table the accuracies since the differences
between ReForeSt and MLlib are not statistically relevant. For instance, for the
Infimnist dataset with nt = 400, with ReForeSt we obtain an error of ̂LR(f) =
0.082± .001 while with MLlib we obtain an error of ̂LM (f) = 0.083± .001. With
the Higgs dataset the errors are ̂LR(f) = 0.029± .001 and ̂LM (f) = 0.028± .001.

4 Conclusion

In this work we developed ReForeSt, an Apache Spark implementation of the RF
learning algorithm that we made publicly available through GitHub. ReForeSt is
easier to tune, faster, and less memory consuming with respect to MLlib, the de-
facto standard Apache Spark machine learning library. An extensive comparison
between ReForeSt and MLlib performed by taking advantage of the GCP and
different big data problems confirms the quality of the proposal.

As future works, we plan to further develop ReForeSt by introducing the
possibility to conclude the construction of the sub-tree on a single machine when
the cardinality of the data relative to a sub-tree is below a certain threshold
similarly to [6] and we will take care to develop an ad-hoc computationally
inexpensive model selection strategy for the purpose of automatically tuning the
hyperparameters of the RF over the available data.

ReForeSt: Random Forests in Apache Spark 339

References

1. Anguita, D., Ghio, A., Oneto, L., Ridella, S.: In-sample and out-of-sample model
selection and error estimation for support vector machines. IEEE Trans. Neural
Netw. Learn. Syst. 23(9), 1390–1406 (2012)

2. Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic particles in high-energy
physics with deep learning. Nature Commun. 5(4308), 1–9 (2014)

3. Bishop, B.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
5. Chen, J., et al.: A parallel random forest algorithm for big data in a spark cloud

computing environment. IEEE Transactions on Parallel and Distributed Systems
(2016, in press)

6. Chung, S.: Sequoia forest: random forest of humongous trees. In: Spark Summit
(2014)

7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

8. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1–26
(1979)

9. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds
of classifiers to solve real world classification problems? JMLR 15(1), 3133–3181
(2014)

10. Genuer, R., Poggi, J., Tuleau-Malot, C., Villa-Vialaneix, N.: Random forests for
big data. arXiv preprint arXiv:1511.08327 (2015)

11. Germain, P., Lacasse, A., Laviolette, A., ahd Marchand, M., Roy, J.F.: Risk bounds
for the majority vote: from a PAC-Bayesian analysis to a learning algorithm. JMLR
16(4), 787–860 (2015)

12. Hernández-Lobato, D., Mart́ınez-Muñoz, G., Suárez, A.: How large should ensem-
bles of classifiers be? Pattern Recogn. 46(5), 1323–1336 (2013)

13. Loosli, G., Canu, S., Bottou, L.: Training invariant support vector machines using
selective sampling. In: Large Scale Kernel Machines (2007)

14. Meng, X., et al.: Mllib: Machine learning in apache spark. J. Mach. Learn. Res.
17(34), 1–7 (2016)

15. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)
16. Wainberg, M., Alipanahi, B., Frey, B.J.: Are random forests truly the best classi-

fiers? J. Mach. Learn. Res. 17(110), 1–5 (2016)
17. Wakayama, R., et al.: Distributed forests for MapReduce-based machine learning.

In: Asian Conference on Pattern Recognition (2015)
18. Yuan, G., Ho, C., Lin, C.: An improved GLMNET for l1-regularized logistic regres-

sion. J. Mach. Learn. Res. 13, 1999–2030 (2012)
19. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster

computing with working sets. HotCloud 10(10–10), 1–9 (2010)

http://arxiv.org/abs/1511.08327

Semi-Supervised Multi-view Multi-label
Classification Based on Nonnegative Matrix

Factorization

Guangxia Wang, Changqing Zhang(B), Pengfei Zhu, and Qinghua Hu

School of Computer Science and Technology, Tianjin University, Tianjin, China
{wangguangxia,zhangchangqing,zhupengfei,huqinghua}@tju.edu.cn

Abstract. Many real-world applications involve multi-label classifica-
tion where each sample is usually associated with a set of labels.
Although many methods have been proposed, most of them are just
applicable to single-view data neglecting the complementary informa-
tion among multiple views. Besides, most existing methods are super-
vised, hence they cannot handle the case where only a few labeled data
are available. To address these issues, we propose a novel semi-supervised
multi-view multi-label classification method based on nonnegative matrix
factorization (NMF). Specifically, it explores the complementary infor-
mation by adopting multi-view NMF, regularizes the learned labels of
each view towards a common consensus labeling, and obtains the labels
of the unlabeled data guided by supervised information. Experimental
results on real-world benchmark datasets demonstrate the superior per-
formance of our method over the state-of-the-art methods.

Keywords: Multi-view · Multi-label · Semi-supervised · Nonnegative
matrix factorization

1 Introduction

Multi-label classification aims at predicting the proper label sets for the unseen
samples. It is ubiquitous in many real-world applications, such as image classi-
fication, text categorization and gene function prediction [1]. For example, the
image shown in Fig. 1 has three labels, i.e., “person”, “car”, “motorbike”. Many
methods have been developed to tackle the multi-label classification problem.
Binary relevance (BR) trains a classifier for each label straightforwardly, but it
neglects the label correlations [2]. Label powerset (LP) explores all possible label
subsets and transforms multi-label classification problem into single-label prob-
lem. Although LP addresses the disadvantage of BR, it cannot be applied when
the number of labels is very large [3]. Recently, researchers have proposed some
ensemble methods [4,5] which overcome the drawbacks of BR and LP. Besides,
there are several adaptation methods that adopt existing algorithms for the task
of multi-label classification [6,7].

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 340–348, 2017.
https://doi.org/10.1007/978-3-319-68612-7_39

Semi-Supervised Multi-view Multi-label Classification 341

Fig. 1. Multi-view Multi-label image from
PASCAL.

Fig. 2. Framework of NMF-SSMM.

Moreover, real-world data often consist of multiple views. For example, image
data can be represented by multiple heterogenous features in the form of multiple
views. As shown in Fig. 1, the image has three different feature views: DenseSift,
DenseHue and Gist. Since each view describes the particular aspect of the data
and often provides complementary information to each other, jointly utilizing all
views could improve the overall classification performance. As above mentioned,
there are many multi-label classification methods, however, most of them are
confronted with the limitation that they are only designed for single view data
and cannot be used to deal with multi-view case directly. Another limitation is
that they are supervised methods which require sufficient labeled training data.
Unfortunately, in real-world applications, since labeling data is rather expen-
sive, there are only a small number of labeled data available. Therefore, how to
deal with a small number of labeled data and a large number of unlabeled data
simultaneously is a key issue. Recently, to handle the aforementioned limitations,
multi-view matrix completion and multi-view vector-valued manifold regular-
ization (MV3MR) algorithm are introduced in the semi-supervised approaches
[8,9], respectively. However, they do not take into account the consistency of
multi-view data as in our method.

In this paper, we propose a novel Semi-Supervised Multi-view Multi-label
classification method based on Nonnegative Matrix Factorization (NMF), named
NMF-SSMM. As shown in Fig. 2, it exploits the complementary information of
multi-view data by multi-view NMF and then acquires the label matrix P(v) of
each view. To guarantee the consistency of multi-view data, it regularizes P(v)

towards a common consensus labeling P(∗). Moreover, it utilizes labeled data
and unlabeled data simultaneously, and obtains the labels of the unlabeled data
through minimizing the label loss of the labeled data.

2 The Proposed Method: NMF-SSMM

2.1 Notations

Throughout this paper, matrices are written as boldface capital letters and vec-
tors are denoted as boldface lowercase letters. For matrix A = (Ai,j), its i-th row,

342 G. Wang et al.

j-th column are defined as Ai,·, A·,j respectively. ‖A‖F is the Frobenius norm of
A, and Tr(A) is the trace of A. Given N samples with V views, X = {xi, yi}Ni=1,
the first L samples {xi, yi}Li=1 are labeled data and the rest are unlabeled data.
Denote the v-th view data matrix as X(v) = [x(v)

1 ,x(v)
2 , . . . ,x(v)

N] ∈ RDv×N

where x(v)
i ∈ RDv . Supposing these N samples are draw from K classes,

denote Y = [y1;y2;. . .;yN] ∈ {0, 1}N×K as the label matrix. For labeled data,
{yi}Li=1 ∈ {0, 1}K , where yij = 1 means that xi is assigned into the j-th class
and vice versa. For unlabeled data, yi is set to a vector with all zeros (i > L).

2.2 Formulation

Nonnegative matrix factorization (NMF) [10] is a technique which was originally
used to address dimensionality reduction problem. Due to its simplicity and flex-
ibility, NMF has been widely used in many areas of machine learning, such as
image classification [11], feature selection [12]. Recently, the researchers adopt
NMF in multi-view data [13]. There are some differences between [13] and our
methods: (1) [13] is an unsupervised method for clustering, while ours simul-
taneously utilizes unlabeled and labeled samples for multi-label classification;
(2) Our method could automatically weight different views thus balances the
importance of multiple views. NMF is a matrix factorization algorithm which
aims to find two non-negative matrices B ∈ RD×K and P ∈ RN×K where their
product can well approximate the original data matrix X, i.e., X ≈ BPT . To
explore the complementary information of multi-view data, we adopt multi-view
NMF :

min
B(v),P(v)

V∑

v=1

‖X(v) − B(v)(P(v))
T ‖

2

F s.t. B(v),P(v) ≥ 0, (1)

where B(v), P(v) are basis matrix and label matrix of the v-th view, respectively.
Following the strategy which is generally adopted in multi-view learning,

NMF-SSMM assumes that there exists a common consensus labeling P(∗) which
is the desired labeling. It constrains the learned labels matrix P(v) in each view
towards the common consensus labeling P(∗) to preserve the consistency of multi-
view data:

min
P(∗),P(v)

V∑

v=1

‖P(v) − P(∗)‖2F s.t. P(v),P(∗) ≥ 0. (2)

To predict the labels of the unlabeled data, NMF-SSMM minimizes the loss
between the common consensus labeling P(∗) and the ground truth labels Y on
the labeled data:

min
P(∗)

‖(P(∗) − Y) ◦ S‖2F s.t. P(∗) ≥ 0, (3)

where ◦ is the hadamard product of two matrices and S is the matrix that the
values of the first L rows’s entries are set to be one while the rest entries are set
as zero.

Semi-Supervised Multi-view Multi-label Classification 343

Hence, the objective function of the NMF-SSMM is defined as follows:

min
P(∗),B(v),P(v),α

V∑

v=1

αr
v||X(v) − B(v)(P(v))

T ||2F + β

V∑

v=1

||P(v) − P(∗)||2F

+ γ||(P(∗) − Y) ◦ S||2F

s.t. B(v),P(v),P(∗),α ≥ 0,

V∑

v=1

αv = 1, ||B(v)
·,k ||1 = 1,

(4)

where v = 1, . . . V , k = 1, . . . K, and both β and γ are tradeoff parameters.
Meanwhile, as different views characterize distinct aspect of the data, the contri-
butions of different views are different. Hence, we utilize nonnegative view-weight
vector α to adaptively adjust the importance of different views. Moreover, we
impose the �1 normalization with respect to the basis vectors B(v)

·,k to make the
comparison between the label matrix P(v) and the common consensus labeling
matrix P(∗) more reasonable [13,14].

Similar to [13], we can simplify the computation by introducing auxiliary
variables. Denote the auxiliary matrix as:

Q(v) = Diag(
Dv∑

i=1

B(v)
i,1 ,

Dv∑

i=1

B(v)
i,2 , . . . ,

Dv∑

i=1

B(v)
i,K). (5)

Then the problem of minimizing Eq. 4 is equivalent to minimizing the following
objective function:

min
P(∗),B(v),P(v),α

V∑

v=1

αr
v||X(v) − B(v)(P(v))

T ||2F + β

V∑

v=1

||P(v)Q(v) − P(∗)||2F

+ γ||(P(∗) − Y) ◦ S||2F

s.t. B(v),P(v),P(∗),α ≥ 0,

V∑

v=1

αv = 1, v = 1, · · · , V.

(6)

2.3 Optimization Algorithm for NMF-SSMM

In this subsection, we present an iterative updating algorithm to solve the opti-
mization problem of NMF-SSMM. There are four sub-problems to be solved and
the following four steps are repeated until convergence is achieved.

Fixing P(v), P(∗), and α, update B(v) : By introducing Lagrange multiplier
matrix Φ = [φij], the Lagrange function over B(v) is defined as follows:

αr
v‖X(v) − B(v)(P(v))T ‖2F + β‖P(v)Q(v) − P(∗)‖2F + Tr(ΦTB(v)). (7)

Setting the derivative of Eq. 7 to be zero and according to the Karush-Kuhn-
Tucker (KKT) condition, i.e., φikB

(v)
ik = 0, we can get the following updating

rule:

344 G. Wang et al.

B
(v)
i,k ← B

(v)
i,k

(αr
vX

(v)P(v))i,k + β
N∑
j=1

P
(v)
j,k P

(∗)
j,k

(αr
vB(v)(P(v))TP(v))i,k + β

Dv∑
l=1

B
(v)
l,k

N∑
j=1

(P (v)
j,k)

2
. (8)

Fixing P(∗), B(v) and α, update P(v): First, we normalize the column
vectors of B(v) with Q(v) in Eq. 5: B(v) ← B(v)(Q(v))−1,P(v) ← P(v)Q(v).

Similar to B(v), we can get the updating rule as follows:

P
(v)
j,k ← P

(v)
j,k

(αr
v(X

(v))
T
B(v))j,k + βP

(∗)
j,k

(αr
vP(v)(B(v))TB(v))j,k + βP

(v)
j,k

. (9)

Fixing P(v), B(v) and α, update P(∗): We need to minimize the objective
function with respect to P(∗):

β

V∑

v=1

‖P(v)Q(v) − P(∗)‖2F + γ‖(P(∗) − Y) ◦ S‖2F s.t. P(∗) ≥ 0. (10)

Taking the derivative of Eq. 10 to be zero, the updating rule of P(∗) is obtained:

P
(∗)
j,k =

β
V∑

v=1
(P(v)Q(v))j,k + γYj,kSj,k

γSj,k + βV
≥ 0.

(11)

Fixing P(v), P(∗) and B(v), update α: Similar to B(v) and P(v), we have the
updating rule of α:

αv =
(1

||X(v)−B(v)(P(v))T ||2F
)1/r−1

V∑
v=1

(1
||X(v)−B(v)(P(v))T ||2F

)1/r−1
. (12)

2.4 Complexity and Convergence Analysis

Generally, we have V � N , V � D, and V � K in practice. For simplicity,
we suppose the dimension of each view is D. For these sub-problems, the com-
plexities are O(NDK), O(NDK), O(NK2) and O(N2D + NDK) to update
B(v), P(v), P(∗) and α, respectively. Thus the overall cost of our method is
O(T (N2D + NK2 + NDK)) where T is the number of iterations. Since there
are closed-form (optimal) solution when solving each step, our algorithm is guar-
anteed to convergence to a stationary point.

Semi-Supervised Multi-view Multi-label Classification 345

3 Experiment

In this section, we evaluate the proposed NMF-SSMM on three real-world bench-
mark multi-label datasets: Corel5K [15], PASCAL VOC′ 07 [16] and Esp Game
[17]. The Corel5K dataset consists of 4,999 images (4,500 training, 499 test)
in 260 categories. The PASCAL VOC′ 07 dataset contains 9,963 images (5,011
training, 4,952 test) with 20 categories. There are around 20,000 images (18,689
training, 2,081 test) from 268 categories in the Esp Game dataset. For all the
three datasets, we choose one globe feature (Gist) and two local feature (Dense-
Hue, DenseSift). Here, we regard each kind of feature as a single view. The
dimension of DenseHue, GIST, and DenseSift are 100, 512, and 1,000, respec-
tively. All the datasets and features used are from Lear website1. For all methods,
we randomly select 20% data from training data as labeled data while use the
whole test data as unlabeled data. We repeat each experiment 20 times to avoid
randomness. The average results with standard deviation are reported. Five eval-
uation criteria (Hamming loss, One-error, Coverage, Ranking loss and Average
precision (Ave-Pre)) widely used in multi-label classification are employed in
this paper [7].

We compare our method with closely related works: (1) six single-view multi-
label methods: BR [2], LP [3], RAndom k-labELsets (RAkEL) [4], Ensemble of
Pruned Sets (EPS) [5], the multi-label version of AdaBoost based on Hamming
loss (AdaBoost.MH) [6] and multi-label k-nearest neighbors (ML-kNN) [7]; (2)
one semi-supervised multi-view multi-label classification method: MV3MR [9].
For single-view methods, we conduct experiments on each view and report their
performance on the best single view for the sake of fairness. In our method, we
tune β and γ from the set {10−5, 10−4, · · · , 104, 105}, and r is tuned from the
set {2, 4, 6, 8, 10}. We report the best result.

Table 1. Results (mean ± standard deviation) of different algorithms on Corel5K. The
bolded numbers indicate the best performance among all comparisons.

Method Hamming loss ↓ One-error ↓ Coverage ↓ Ranking loss ↓ Ave-Pre ↑
BR .016 ± .001 .722 ± .006 .606 ± .015 .284 ± .004 .228 ± .010

LP .024 ± .000 .974 ± .003 .905 ± .001 .697 ± .003 .040 ± .002

EPS .014 ± .001 .782 ± .023 .729 ± .033 .428 ± .029 .185 ± .017

ML-kNN .013± .000 .674 ± .004 .392 ± .005 .175 ± .002 .285 ± .004

AdaBoost.MH .014 ± .000 .768 ± .000 .852 ± .000 .551 ± .000 .144 ± .002

RAkEL .017 ± .001 .755 ± .024 .741 ± .008 .415 ± .002 .208 ± .007

MV3MR .014 ± .000 .685 ± .009 .351 ± .010 .148± .003 .291 ± .001

Ours .014 ± .000 .642± .004 .338± .031 .151 ± .017 .315± .004

1 http://lear.inrialpes.fr/people/guillaumin/data.php.

http://lear.inrialpes.fr/people/guillaumin/data.php

346 G. Wang et al.

Table 2. Results (mean ± standard deviation) of different algorithms on PASCAL. The
bolded numbers indicate the best performance among all comparisons.

Method Hamming loss ↓ One-error ↓ Coverage ↓ Ranking loss ↓ Ave-Pre ↑
BR .104 ± .000 .736 ± .019 .464 ± .000 .425 ± .015 .361 ± .008

LP .112 ± .000 .798 ± .004 .469 ± .001 .424 ± .001 .291 ± .002

EPS .071± .000 .610 ± .003 .354 ± .003 .296 ± .002 .443 ± .004

ML-kNN .071± .000 .600 ± .003 .338 ± .000 .279 ± .001 .444 ± .002

AdaBoost.MH .071± .000 .595 ± .000 .419 ± .013 .353 ± .010 .414 ± .002

RAkEL .081 ± .000 .617 ± .002 .334 ± .003 .277 ± .003 .460 ± .003

MV3MR .071± .000 .595 ± .000 .305 ± .021 .239 ± .017 .456 ± .006

Ours .071± .000 .592± .001 .288± .002 .234± .004 .465± .002

Table 3. Results (mean ± standard deviation) of different algorithms on Esp Game.
The bolded numbers indicate the best performance among all comparisons.

Method Hamming loss ↓ One-error ↓ Coverage ↓ Ranking loss ↓ Ave-Pre ↑
BR .019 ± .000 .677 ± .002 .623 ± .007 .270 ± .000 .209 ± .005

LP .031 ± .000 .924 ± .002 .791 ± .001 .488 ± .001 .057 ± .000

EPS .018 ± .000 .608 ± .018 .721 ± .000 .382 ± .001 .190 ± .003

ML-kNN .017± .000 .647 ± .018 .489 ± .000 .205 ± .001 .239 ± .004

AdaBoost.MH .017± .000 .757 ± .000 .766 ± .000 .449 ± .000 .118 ± .000

RAkEL .018 ± .000 .634 ± .009 .733 ± .001 .393 ± .002 .187 ± .006

MV3MR .018 ± .000 .702 ± .000 .423 ± .002 .169± .000 .245 ± .004

Ours .018 ± .000 .605± .021 .401± .001 .180 ± .006 .268± .003

Tables 1, 2 and 3 show the classification performance of different algorithms
on the three real-world benchmark datasets. Figure 3 shows the statistical infor-
mation in terms of average precision for competitive methods. It is clear that
our method almost consistently outperforms other methods. The superiority of
our method may arise in the following aspects: (1) NMF-SSMM learns class
labels by nonnegative matrix factorization correctly; (2) NMF-SSMM exploits
the complementary information of multi-view data and guarantees the consis-
tency by learning the common consensus labeling effectively; (3) NMF-SSMM
utilizes the small number of labeled data and the large number of unlabeled
data simultaneously and properly. Besides, we also experimentally study the
speed of the convergence of NMF-SSMM. We can see that our algorithm con-
verges within 40 iterations from Fig. 4, which demonstrates that the proposed
optimization algorithm is effective and can converge fast.

Semi-Supervised Multi-view Multi-label Classification 347

Fig. 3. Boxplot on Esp Game. Fig. 4. Convergence curve on Esp Game.

4 Conclusion

In this paper, we have developed a novel semi-supervised multi-view multi-label
classification method based on nonnegative matrix factorization (NMF-SSMM).
The proposed method has two appealing properties. First, it leverages comple-
mentary information of multi-view data while guarantees the consistency among
multiple views. Second, it handles the problem that there exist a small number
of labeled data and a large number of unlabeled data simultaneously. An efficient
alternating optimization algorithm is developed to solve the optimization prob-
lem of NMF-SSMM. Experiment results on the real-world datasets demonstrate
the effectiveness of our method.

Acknowledgement. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grants 61602337, 61432011, U1435212 and 61502332.

References

1. Bi, W., Kwok, J.T.: Multilabel classification with label correlations and missing
labels. In: Proceedings of 28th AAAI Conference on Artificial Intelligence, pp.
1680–1686 (2014)

2. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data
Warehouse. Min. 3(3), 1–13 (2006)

3. Boutell, M.R., Luo, J., Shen, X., et al.: Learning multi-label scene classification.
Pattern Recogn. 37(9), 1757–1771 (2004)

4. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classi-
fication. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)

5. Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of
pruned sets. In: 8th IEEE International Conference on Data Mining, pp. 995–1000
(2008)

6. Schapire, R.E., Singer, Y.: BoosTexter: a boosting-based system for text catego-
rization. Mach. Learn. 39(2–3), 135–168 (2000)

7. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learn-
ing. Pattern Recogn. 40(7), 2038–2048 (2007)

8. Luo, Y., Liu, T., Tao, D., et al.: Multiview matrix completion for multilabel image
classification. IEEE Trans. Image Process. 24(8), 2355–2368 (2015)

348 G. Wang et al.

9. Luo, Y., Tao, D., Xu, C., et al.: Vector-valued multi-view semi-supervsed learning
for multi-label image classification. In: Proceedings of 27th AAAI Conference on
Artificial Intelligence, pp. 647–653 (2013)

10. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788–791 (1999)

11. Guillamet, D., Vitria, J., Schiele, B.: Introducing a weighted non-negative matrix
factorization for image classification. Pattern Recogn. Lett. 24(14), 2447–2454
(2003)

12. Qian, M., Zhai, C.: Robust unsupervised feature selection. In: International Joint
Conference on Artificial Intelligence. pp. 1621–1627. Citeseer (2013)

13. Liu, J., Wang, C., Gao, J., et al.: Multi-view clustering via joint nonnegative matrix
factorization. In: Proceedings of 2013 SIAM International Conference on Data
Mining, pp. 252–260. SIAM (2013)

14. Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of 22nd
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 50–57. ACM (1999)

15. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.A.: Object recognition as
machine translation: learning a lexicon for a fixed image vocabulary. In: Heyden,
A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp.
97–112. Springer, Heidelberg (2002). doi:10.1007/3-540-47979-1 7

16. Everingham, M., Van Gool, L., Williams, C.K.I., et al.: The PASCAL Visual Object
Classes Challenge 2007 (VOC 2007) Results (2007). http://www.pascalnetwork.
org/challenges/VOC/voc2007/workshop/index.html

17. Von Ahn, L., Dabbish, L.: Labeling images with a computer game. In: Proceedings
of SIGCHI Conference on Human Factors in Computing Systems, pp. 319–326.
ACM (2004)

http://dx.doi.org/10.1007/3-540-47979-1_7
http://www.pascalnetwork.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascalnetwork.org/challenges/VOC/voc2007/workshop/index.html

Masked Conditional Neural Networks
for Audio Classification

Fady Medhat(B), David Chesmore, and John Robinson

Department of Electronic Engineering, University of York, York, UK
{fady.medhat,david.chesmore,john.robinson}@york.ac.uk

Abstract. We present the ConditionaL Neural Network (CLNN) and
the Masked ConditionaL Neural Network (MCLNN) designed for tempo-
ral signal recognition. The CLNN takes into consideration the temporal
nature of the sound signal and the MCLNN extends upon the CLNN
through a binary mask to preserve the spatial locality of the features
and allows an automated exploration of the features combination anal-
ogous to hand-crafting the most relevant features for the recognition
task. MCLNN have achieved competitive recognition accuracies on the
GTZAN and the ISMIR2004 music datasets that surpass several state-
of-the-art neural network based architectures and hand-crafted methods
applied on both datasets.

Keywords: Restricted Boltzmann Machine (RBM) · Conditional
Restricted Boltzmann Machine (CRBM) · Music Information Retrieval
(MIR) · Conditional Neural Network (CLNN) · Masked Conditional
Neural Network (MCLNN) · Deep Neural Network

1 Introduction

The success of the deep neural network architectures in image recognition [1]
induced applying these models for audio recognition [2,3]. One of the main
drivers for the adaptation is the need to eliminate the effort invested in hand-
crafting the features required for classification. Several neural networks based
architectures have been proposed, but they are usually adapted to sound from
other domains such as image recognition. This may not exploit sound related
properties. The Restricted Boltzmann Machine (RBM) [4] treats sound as static
frames ignoring the inter-frame relation and the weight sharing in the vanilla
Convolution Neural Networks (CNN) [5] does not preserve the spatial locality
of the learned features, where limited weight sharing was proposed in [2] in an
attempt to tackle this problem for sound recognition.

The Conditional Restricted Boltzmann Machine (CRBM) [6] in Fig. 1 extends
the RBM [7] to the temporal dimension. This is applied by including conditional
links from the previous frames (v̂−1, v̂−2, . . . , v̂−n) to both the hidden nodes ĥ
and the current visible nodes v̂0 using the links (B̂−1, B̂−2, . . . , B̂−n) and the
autoregressive links (Â−1, Â−2, . . . , Â−n), respectively as depicted in Fig. 1. The
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 349–358, 2017.
https://doi.org/10.1007/978-3-319-68612-7_40

350 F. Medhat et al.

Fig. 1. Conditional Restricted Boltzmann Machine

Interpolating CRBM (ICRBM) [8] achieved a higher accuracy compared to the
CRBM for speech phoneme recognition by extending the CRBM to consider
both the previous and future frames.

The CRBM behavior (and similarly this work) overlaps with that of a Recur-
rent Neural Network (RNN) such as the Long Short-Term Memory (LSTM) [9],
an architecture designed for sequence labelling. The output of an RNN at a cer-
tain temporal instance depends on the current input and the hidden state of the
network’s internal memory from the previous input. Compared to an LSTM, a
CRBM does not require an internal state, since the influence of the previous
temporal input states is concurrently considered with the current input. Addi-
tionally, increasing the order n does not have the consequence of the vanishing
or exploding gradient related to the Back-Propagation Through Time (BPTT)
as in recurrent neural networks that LSTM was introduced to solve, since the
back-propagation in a CRBM depends on the number of layers as in normal
feed-forward neural networks.

Inspired by the human visual system, the Convolutional Neural Network
(CNN) depends on two main operations namely the convolution and pooling. In
the convolutional operation, the input (usually a 2-dimensional representation) is
scanned (convolved) by a small-sized weight matrix, referred to as a filter. Several
small sized filters, e.g. 5×5, scan the input to generate a number of feature maps
equal to the number of filters scanning the input. A pooling operation generates
lower resolution feature maps, through either a mean or a max pooling operation.
CNN depends on weight sharing that allows applying it to images of large sizes
without having a dedicated weight for each pixel, since similar patterns may
appear at different locations within an image. This is not optimally suitable
for time-frequency representations, which prompted attempts to tailor the CNN
filters for sound [2,10,11].

2 Conditional Neural Networks

In this work, we introduce the ConditionaL Neural Network (CLNN). The CLNN
adaptes from the Conditional RBM the directed links between the previous
visible and the hidden nodes and extends to future frames as in the ICRBM.

Masked Conditional Neural Networks for Audio Classification 351

Fig. 2. Two CLNN layers with n = 1.

Additionally, the CLNN adapts a global pooling operation [12], which behaves
as an aggregation operation found to enhance the classification accuracy in [13].
The CLNN allows the sequential relation across the temporal frames of a multi-
dimensional signal to be considered collectively by processing a window of frames.
The CLNN has a hidden layer in the form of a vector having e neurons, and it
accepts an input of size [d, l], where l is the feature vector length and d = 2n+1
(d is the number of frames in a window, n is the order for the number of frames
in each temporal direction and 1 is for the window’s middle frame). Figure 2
shows two CLNN layers each having an order n = 1, where n is a tunable hyper-
parameter to control the window’s width. Accordingly, each CLNN layer in the
figure has a 3-dimensional weight tensor composed of one central matrix Ŵm

0

and two off-center weight matrices, Ŵm
−1 and Ŵm

1 (m is the layer id). During the
scanning of the signal across the temporal dimension, a frame in the window at
index u is processed with its corresponding weight matrix Ŵm

u of the same index.
The size of each Ŵm

u is equal to the feature vector length × hidden layer width.
The number of weight matrices is 2n + 1 (the 1 is for the central frame), which
matches the number of frames in the window. The output of a single CLNN step
over a window of frames is a single representative vector.

Several CLNN layers can be stacked on top of each other to form a deep
architecture as shown in Fig. 2. The figure also depicts a number of k extra
frames remaining after the processing applied through the two CLNN layers.
These k extra frames allow incorporating an aggregation operation within the
network by pooling the temporal dimension or they can be flattened to form a

352 F. Medhat et al.

single vector before feeding them to a fully connected network. The CLNN is
trained over segments following (1)

q = (2n)m + k , n, mand k ≥ 1 (1)

where q is the segment size, n is the order, m is the number of layers and k is
for the extra frames. The input at each CLNN layer has 2n fewer frames than
the previous layer. For example, for n = 4, m = 3 and k = 5, the input is of
size 29 frames. The output of the first layer is 29 − 2 × 4 = 21 frames. Similarly,
the output of the second and third layers is 13 and 5 frames, respectively. The
5 remaining frames of third layer are the extra frames to be pooled or flattened.
The activation at a hidden node of a CLNN can be formulated as in (2)

yj, t = f

(
bj +

n∑
u=−n

l∑
i=1

xi, u+t Wi, j, u

)
(2)

where yj, t, the activation at node j of a hidden layer, for frame t in a segment
of size q, which is also the window’s middle frame at u = 0, is given by the
value of the activation function f when applied on the summation of the bias
bj of node j and the multiplication of Wi, j, u and xi, u+t. The input xi, u+t is
the ith feature in a single feature vector of size l at index u + t within a window
and Wi, j, u is the weight between the ith input of a feature vector and the jth

hidden node. The u index (in Wi, j, u and xi, u+t) is for the temporal window of
the interval of frames to be considered within [−n + t, n + t]. Reformulating (2)
in a vector form is given in (3).

ŷt = f

(
b̂ +

n∑
u=−n

x̂u+t · Ŵu

)
(3)

where ŷt is activation vector observed at the hidden layer for the central frame
conditioned on the input vectors in the interval [x̂−n+t, x̂n+t] is given by the
activation function f applied on the summation of the bias vector b̂ and the
summation of the multiplication between the vector x̂u+t at index u + t (t
is for the window’s middle frame at u = 0 and the index of the frame in
the segment) and the corresponding weight matrix Ŵu at the same index,
where u takes values in the range of the considered window from −n up to
n. The conditional distribution can be captured using a logistic function as in
p(ŷt|x̂−n+t, ..., x̂−1+t, x̂t, x̂1+t, ..., x̂n+t) = σ(...), where σ is the hidden layer sig-
moid function or the output layer softmax.

3 Masked Conditional Neural Networks

The Mel-Scaled analysis applied in MFCC and Mel-Scaled spectrograms, both
used extensively as intermediate signal representation by sound recognition
systems, exploit the use of a filterbank (a group of signal processing filters).

Masked Conditional Neural Networks for Audio Classification 353

Considering a sound signal represented in a spectrogram, the energy of a certain
frequency bin may smear across nearby frequency bins. Aggregating the energy
across neighbouring frequency bins is a possible representation to overcome the
frequency shifts, which is tackled by filterbanks. More general mixtures across
the bins could be hand-crafted to select the most prominent features for the
signal under consideration.

Fig. 3. Masking patterns. (a) Bandwidth = 5 and Overlap = 3, (b) the active links
following the masking pattern in a. (c) Bandwidth = 3 and Overlap = −1

The Masked ConditionaL Neural Network (MCLNN), we introduce in this
work embeds a filterbank-like behaviour and allows the exploration of a range of
feature combinations concurrently instead of manually hand-crafting the opti-
mum mixture of features. Figure 3 depicts the implementation of the filterbank-
like behaviour through the binary mask enforced over the network’s links that
activate different regions of a feature vector while deactivating others following a
band-like pattern. The mask is designed based on two tunable hyper-parameters:
the bandwidth and the overlap. Figure 3a. shows a binary mask having a band-
width of 5 (the five consecutive ones in a column) and an overlap of 3 (the
overlapping ones between two successive columns). A hidden node will act as
an expert in a localized region of the feature vector without considering the
rest of it. This is depicted in Fig. 3b. The figure shows the active connections
for each hidden node over a local region of the input feature vector matching
the mask pattern in Fig. 3a. The overlap can be assigned negative values as
shown in Fig. 3c. The figure shows a mask with a bandwidth of 3 and overlap
of −1, depicted by the non-overlapping distance between the 1’s of two succes-
sive columns. Additionally, the figure shows an additional role introduced by
the mask through the presence of shifted versions of the binary pattern across
the first set of three columns compared to the second and third sets. The role
involves the automatic exploration of a range of feature combinations concur-
rently. The columns in the figure map to hidden nodes. Therefore, for a single
feature vector, the input at the 1st node (corresponding to the 1st column) will
consider the first 3 features in the feature vector, the 4th node will consider a
different combination involving the first 2 features and the 7th node will consider
even a different combination using the first feature only. This behaviour embeds
the mix-and-match operation within the network, allowing the hidden nodes to

354 F. Medhat et al.

learn different properties through the different combinations of feature vectors
meanwhile preserving the spatial locality. The position of the binary values is
specified through a linear index lx following (4)

lx = a + (g − 1)(l + (bw − ov)) (4)

where lx is given by bandwidth bw, the overlap ov and the feature vector length
l. a takes the values in [0, bw −1] and g is in the interval [1, �(l× e)/(l+(bw −
ov))�]. The binary masking is enforced through an element-wise multiplication
following (5).

Ẑu = Ŵu ◦ M̂ (5)

where Ŵu is the original weight matrix at a certain index u and M̂ is the masking
pattern applied. Ẑu is the new masked weight matrix to replace the weight matrix
in (3).

4 Experiments

We performed the MCLNN evaluation using the GTZAN [32] and the ISMIR2004
datasets widely used in the literature for benchmarking several MIR tasks includ-
ing genre classification. The GTZAN consists of 1000 music files categorized
across 10 music genres (blues, classical, country, disco, hip-hop, jazz, metal, pop,
reggae and rock). The ISMIR2004 dataset comprise training and testing splits of
729 files each. The splits have 6 unbalanced categories of music genres (classical,
electronic, jazz-blues, metal-punk, rock-pop and world) of full length recordings.
All files were resampled at 22050 Hz and chunks of 30 s were extracted. Loga-
rithmic Mel-Scaled 256 frequency bins spectrogram transformation was applied
using an FFT window of 2048 (≈100 ms) and an overlap of 50%. The feature-
wise z-score parameters of the training set was applied to both the validation
and test sets. Segments of frames following (1) were extracted.

The network was trained to minimize the categorical cross entropy between
the segment’s predicted label and the target one. The final decision of the
clip’s genre is decided based on a majority voting across the frames in the
clip. The experiments for both datasets were carried out using a 10-fold cross-
validation that is repeated for 10 times. An additional experiment was applied
using the ISMIR2004 dataset original split (729 training, 729 testing) that was
also repeated for 10 times. We adapted a two layered MCLNN, as listed in
Table 3, followed by a single dimensional global mean pooling [12] layer to pool
across k = 10 extra frames and finally a 50 node fully connected layer before
the softmax output layer. Parametric Rectified Linear Units (PReLU) [28] were
used for all the model’s neurons. We applied the same model to both datasets
to gauge the generalization of the MCLNN to datasets of different distributions.
Tables 1 and 2 list the accuracy achieved by the MCLNN among other methods
widely cited in the literature for the genre classification task on the GTZAN
and the ISMIR2004 datasets. MCLNN surpasses several state-of-the-art meth-
ods that are dependent on hand-crafted features or neural networks, achieving

Masked Conditional Neural Networks for Audio Classification 355

Table 1. Accuracies on the GTZAN

Classifier and features Acc. %

CS+Multiple feat. sets [14]2 92.7

SRC+LPNTF+Cortical features [15]2 92.4

RBF-SVM+Scattering Trans. [16]2 91.4

MCLNN+Mel−Spec. (this work)2 85.1

RBF-SVM+Spec.−DBN [4]4 84.3

MCLNN+Mel−Spec. (this work)3 84.1

Linear SVM+PSD on Octaves [17]3 83.4

Random Forest+Spec.−DBN [18]5 83.0

AdaBoost+Several features [13]1 83.0

RBF SVM+Spectral Covar. [19]2 81.0

Linear SVM+PSD on frames [17]3 79.4

SVM+DWCH [20]2 78.5

15-fold cross-validation 450% training, 20% validation and 30% testing 7leave-one-out cross-validation
210-fold cross-validation 54×50% training, 25% validation and 25% testing 8Not referenced
310× 10-fold cross-validation 610×(Train 729 file , test 729 file) 9Train 729 files,test 729 files

Table 2. Accuracies on the ISMIR2004

Classifier and features Acc. %

SRC+NTF+Cortical features [15]9 94.4

KNN+Rhythm&timbre [21]2 90.0

SVM+Block-Level features [22]8 88.3

MCLNN+Mel−Spec. (this work)2 86.0

MCLNN+Mel−Spec. (this work)3 84.8

MCLNN+Mel−Spec. (this work)9 84.8

GMM+NMF [23]1 83.5

MCLNN+Mel−Spec. (this work)6 83.1

SVM+Symbolic features [24]2 81.4

NN+Spectral Similarity FP [25]7 81.0

SVM+High-Order SVD [26]2 81.0

SVM+Rhythm and SSD [27]6 79.7

Table 3. MCLNN parameters

Layer Hidden

nodes

MCLNN

order

Mask

bandwidth

Mask

overlap

1 220 4 40 −10

2 200 4 10 3

Table 4. GTZAN random and filtered

Model Random

acc. %

Filtered

acc. %

MCLNN (this work) 84.4 65.8

DNN [25] 81.2 42.0

an accuracy of 85.1% and 86% over a 10-fold cross-validation for the GTZAN
and ISMIR2004, respectively. We repeated the 10-fold cross-validation 10 times
to validate the accuracy stability of the MCLNN, where the MCLNN achieved
84.1% and 84.83% over the 100 training runs for each of the GTZAN and the
ISMIR2004, respectively.

To further evaluate the MCLNN performance, we adapted the publicly avail-
able splits released by Kereliuk et al. [29]. In their work, they released two ver-
sions of splits for the GTZAN files: a randomly stratified split (50% training, 25%
validation and 25% testing) and a fault filtered version, where they cleared out
all the mistakes in the GTZAN as reported by Sturm [30], e.g. repetitions, dis-
tortion, etc. As listed in Table 4, MCLNN achieved 84.4% and 65.8% compared
to Kereliuk’s attempt that achieved 81.2% and 42% for the random and fault-
filtered, respectively, in their attempt to reproduce the work by Hamel and Eck
[4]. The experiments show that MCLNN performs better than several neural
networks based architectures and comparable to some other works dependent
on hand-crafted features. MCLNN achieved these accuracies irrespective of the
rhythmic and perceptual properties [31] that were used by methods that reported
higher accuracies than the MCLNN. Finally, we wanted to tackle the problem
of the data size used in training, referring to the works in [4,13,17,19,29], an
FFT window of 50 ms was used. On the other hand, the MCLNN achieved the

356 F. Medhat et al.

mentioned accuracies using a 100 ms window, which decreases the number of
feature vectors to be used in classification by 50% and consequently the training
complexity allowing the MCLNN to scale for larger datasets.

5 Conclusions and Future Work

We have introduced the ConditionaL Neural Network (CLNN) and its extension
the Masked ConditionaL Neural Network (MCLNN). The CLNN is designed
to exploit the properties of the multi-dimensional temporal signals by consid-
ering the sequential relationship across the temporal frames. The mask in the
MCLNN enforces a systematic sparseness that follows a frequency band-like pat-
tern. Additionally, it plays the role of automating the exploration of a range of
feature combinations concurrently analogous to the exhaustive manual search
for the hand-crafted feature combinations. We have applied the MCLNN to the
problem of genre classification. Through an extensive set of experiments without
any especial rhythmic or timbral analysis, the MCLNN have sustained accuracies
that surpassed neural based and several hand-crafted feature extraction meth-
ods referenced previously on both the GTZAN and the ISMIR2004 datasets,
achieving 85.1% and 86%, respectively. Meanwhile, the MCLNN still preserves
the generalization that allows it to be adapted for any temporal signal. Future
work will involve optimizing the mask patterns, considering different combina-
tions of the order across the layers. We will also consider applying the MCLNN
to other multi-channel temporal signals.

Acknowledgments. This work is funded by the European Union’s Seventh Frame-
work Programme for research, technological development and demonstration under
grant agreement no. 608014 (CAPACITIE).

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep
convolutional neural networks. In: Neural Information Processing Systems, NIPS
(2012)

2. Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn, G., Yu, D.: Convo-
lutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech
Lang. Process. 22(10), 1533–1545 (2014)

3. Schlter, J.: Unsupervised audio feature extraction for music similarity estimation.
Thesis (2011)

4. Hamel, P., Eck, D.: Learning features from music audio with deep belief networks.
In: International Society for Music Information Retrieval Conference, ISMIR (2010)

5. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

6. Taylor, G.W., Hinton, G.E., Roweis, S.: Modeling human motion using binary
latent variables. In: Advances in Neural Information Processing Systems, NIPS,
pp. 1345–1352 (2006)

7. Smolensky, P.: Information processing in dynamical systems: foundations of har-
mony theory, pp. 194–281 (1986)

Masked Conditional Neural Networks for Audio Classification 357

8. Mohamed, A.-R., Hinton, G.: Phone recognition using restricted Boltzmann
machines. In: IEEE International Conference on Acoustics Speech and Signal
Processing, ICASSP (2010)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–80 (1997)

10. Pons, J., Lidy, T., Serra, X.: Experimenting with musically motivated convolu-
tional neural networks. In: International Workshop on Content-Based Multimedia
Indexing, CBMI (2016)

11. Piczak, K.J.: Environmental sound classification with convolutional neural net-
works. In: IEEE International Workshop on Machine Learning for Signal Process-
ing (MLSP) (2015)

12. Lin, M., Chen, Q., Yan, S.: Network in network. In: International Conference on
Learning Representations, ICLR (2014)

13. Bergstra, J., Casagrande, N., Erhan, D., Eck, D., Kgl, B.: Aggregate features and
AdaBoost for music classification. Mach. Learn. 65(2–3), 473–484 (2006)

14. Chang, K.K., Jang, J.-S.R., Iliopoulos, C.S.: Music genre classification via com-
pressive sampling. In: International Society for Music Information Retrieval, ISMIR
(2010)

15. Panagakis, Y., Kotropoulos, C., Arce, G.R.: Music genre classification using local-
ity preserving non-negative tensor factorization and sparse representations. In:
International Society for Music Information Retrieval Conference, ISMIR (2009)

16. Anden, J., Mallat, S.: Deep scattering spectrum. IEEE Trans. Sig. Process. 62(16),
4114–4128 (2014)

17. Henaff, M., Jarrett, K., Kavukcuoglu, K., LeCun, Y.: Unsupervised learning of
sparse features for scalable audio classification. In: International Society for Music
Information Retrieval, ISMIR (2011)

18. Sigtia, S., Dixon, S.: Improved music feature learning with deep neural networks.
In: International Conference on Acoustics, Speech, and Signal Processing, ICASSP
(2014)

19. Bergstra, J., Mandel, M., Eck, D.: Scalable genre and tag prediction with spectral
covariance. In: International Society for Music Information Retrieval, ISMIR (2010)

20. Li, T., Ogihara, M., Li, Q.: A comparative study on content-based music genre
classification. In: ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR (2003)

21. Pohle, T., Schnitzer, D., Schedl, M., Knees, P., Widmer, G.: On rhythm and general
music similarity. In: International Society for Music Information Retrieval, ISMIR
(2009)

22. Seyerlehner, K., Schedl, M., Pohle, T., Knees, P.: Using block-level features for
genre classification, tag classification and music similarity estimation. In: Music
Information Retrieval eXchange, MIREX (2010)

23. Holzapfel, A., Stylianou, Y.: Musical genre classification using nonnegative matrix
factorization-based features. IEEE Trans. Audio Speech Lang. Process. 16(2), 424–
434 (2008)

24. Lidy, T., Rauber, A., Pertusa, A., Inesta, J.M.: Improving genre classification by
combination of audio and symbolic descriptors using a transcription system. In:
International Conference on Music Information Retrieval (2007)

25. Pampalk, E., Flexer, A., Widmer, G.: Improvements of audio-based music simi-
larity and genre classification. In: International Conference on Music Information
Retrieval, ISMIR (2005)

26. Panagakis, I., Benetos, E., Kotropoulos, C.: Music genre classification: a multilinear
approach. In: International Society for Music Information Retrieval, ISMIR (2008)

358 F. Medhat et al.

27. Lidy, T., Rauber, A.: Evaluation of feature extractors and psycho-acoustic trans-
formations for music genre classification. In: International Conference on Music
Information Retrieval, ISMIR (2005)

28. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In: IEEE International Conference
on Computer Vision, ICCV (2015)

29. Kereliuk, C., Sturm, B.L., Larsen, J.: Deep learning and music adversaries. IEEE
Trans. Multimedia 17(11), 2059–2071 (2015)

30. Sturm, B.L.: The state of the art ten years after a state of the art: future research
in music information retrieval. J. New Music Res. 43(2), 147–172 (2014)

31. Bello, J.P.: Machine Listening of Music, pp. 159–184. Springer, New York (2014)
32. Tzanetakis, G., Cook, P.: Musical genre classification of audio signals. IEEE Trans.

Speech Audio Process. 10(5) (2002)

A Feature Selection Approach Based on
Information Theory for Classification Tasks

Jhoseph Jesus1, Anne Canuto1, and Daniel Araújo2(B)

1 Department of Informatics and Applied Math, Federal University of Rio Grande do
Norte, Campus Universitário, Lagoa Nova, Natal, RN, Brazil

jhoseph.kelvin@gmail.com, anne@dimap.ufrn.br
2 Digital Metropolis Institute, Federal University of Rio Grande do Norte,

Campus Universitário, Lagoa Nova, Natal, RN, Brazil
daniel@imd.ufrn.br

Abstract. This paper proposes the use of a Information Theory mea-
sure in a dynamic feature selection approach. We tested such approach
including elements of Information Theory in the process, such as Mutual
Information, and compared with classical methods like PCA and LDA
as well as Mutual Information based algorithms. Results showed that
the proposed method achieved better performance in most cases when
compared with the other methods. Based on this, we could conclude
that the proposed approach is very promising since it achieved better
performance than well-established dimensionality reduction methods.

1 Introduction

In recent days, the amount of data is exponentially growing due to several rea-
sons, like popularization of smart devices, social media, sensors (like cameras,
for instance), etc. With the advance of Internet of Things and Smart Cities ini-
tiatives, the number of devices and applications that constantly capture and
generate data is enormous. Most of this data is created, used for a specific and
punctual purpose, and stored without further analysis. With such amount of
data, it is very likely that there is far more underlying information in this data
that needs exploration.

Due to its complexity, real world data analysis is usually achieved by Machine
Learning algorithms [13] which extract useful information from the huge amount
of data. In order to do so, we can use feature selection [4] algorithms, which try
to filter the data in order to choose the best features that represents the data.

This kind of approach is important in two aspects [4]: it can drastically reduce
the amount of data providing a faster processing; and it eliminates non useful
data that can disturb the whole information extraction process. In this context,
Information-theoretic descriptors, initially used to measure the efficiency of data
transmission, are being used to perform feature selection in complex datasets. For
instance, [2] proposed several Mutual Information based techniques to select the
most relevant features of a dataset. Methods based on Mutual Information have
the advantage over traditional linear methods because it can actually measure
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 359–367, 2017.
https://doi.org/10.1007/978-3-319-68612-7_41

360 J. Jesus et al.

the dependency of two variables, including non-linear correlation, which are very
common in real world situations. On the other hand, some papers are successfully
using clustering algorithms as a previous step to classification tasks, like [16].

Based on that, this paper proposes an exploratory study on a dynamic fea-
ture selection approach in the context of classification tasks. This method is an
extension of the approach proposed in [14], since the original paper used only
Spearman correlation, we included some Information-theoretical descriptors as
similarity measures in order to increase robustness. The proposed selection app-
roach uses clustering to select the best attributes for an instance rather than to
the entire dataset.

2 Related Works

The main purpose of feature selection algorithms is to find a subset of the feature
set that optimizes a given criteria. Usually this is made using a heuristic, since
testing all possible subsets of features is not feasible for most situations. Based
on that, a great variety of feature selection algorithms were proposed in the past
years, both for pattern classification and clustering tasks. A review of the most
used algorithms can be found in [4].

In the clustering context, many other studies were conducted to analyze
how feature selection algorithms can be used to improve clustering results. For
example, [8] used feature selection algorithms with k-means and Expectation
Maximization to improve its accuracy or the running time of these algorithms.

From the studies mentioned before, we can see that most papers are mainly
concerned with the application of feature selection algorithms as a pre-processing
step for pattern classification or clustering algorithms. To the best of our knowl-
edge, little has been done to explore the use of clustering algorithm in the feature
selection process itself. Examples of this kind of approach can be found in [16]
and [14] where clustering algorithms are used to determine the most relevant
features of the dataset. With the exception of [14], all other methods perform a
static selection process based exclusively on the feature space instead of consid-
ering the particularity of the instances in the dataset. In this paper, we explore
the approach proposed in [14] introducing an information-theoretic measure to
extract the underlying information present in the data, since the use of this kind
of measure has achieved good results in previous works like [1,5].

3 The Feature Selection Approach

The most common feature selection algorithms consider the entire dataset to
choose a subset of the attributes to represent the feature space. This can be
very suitable for a set of instances but not for others, which should be better
represented by another subset of features. So, in order to overcome this global
drawback of usual feature selection algorithm, this paper uses a strategy to select
features considering groups of individual instances of the dataset.

A Feature Selection Approach Based on Information Theory 361

In fact, this paper brings an extension of the approach proposed in [14], where
we use the benefits of information-theoretic measures to extract the underlying
information of the data and select the best features considering some charac-
teristics present in groups of instances. This means that, individual instances
behaviors are considered when selecting the features. Fig. 1 shows the overall
approach.

Fig. 1. The general structure of the feature selection approach [14].

The original paper used correlation to determine the best features for each
cluster of instances, which is suitable for linear relations between data. When
there is a non-linear relation in the data, correlation measures cannot deliver
good quality values and lead the overall process to fail. In this paper, we decided
to use measures from the Information Theory which, as mentioned before, can
capture high order statistical information about the data. In this case, we used
Mutual Information [2] as the similarity measure during the clustering and fea-
ture selection tasks. As we can see in Fig. 1, a clustering algorithm is applied to
a validation set, which creates a partition C = c1, . . . , cj with similar instances
divided into clusters. After that, for each cluster, all attributes have an impor-
tance value assigned to them based on a specific evaluation criterion. This is
done considering the importance of the attribute to the cluster it belongs. We
used Mutual Information to measure the importance of the attributes. The goal
in this step is to capture the amount of information shared by each feature and
the class label. Once we selected the most important attributes for each cluster,
j classifiers are trained, one for each cluster. But instead of using all attributes,
we only use the attributes selected to represent each cluster. To test the model,
a new instance is provided and, in order to know which features are valid for
that instance, it is compared with the clusters in the partition. Once this is done,
this instance is assigned to the most similar cluster using the smallest euclidean
distance between the instance and the centroids of each cluster and it is classified
using the model defined by that cluster. All further details of this approach can
be found in [14].

362 J. Jesus et al.

4 Material and Methods

This section brings a brief description of material and techniques used to evalu-
ate the proposed approach. As part of the proposed method of dynamic feature
selection, one important phase is the choice of the similarity measure to be used.
Unlike [14] that used Spearman Correlation as the similarity measure, we used
mutual information [2] as the similarity measure in this paper. This measure
allows us to deal with problems that the correlation suffers in solve. Including
problems of non-linear correlation and sparse-data in very large datasets, which
are very common in real world scenarios. The Mutual Information (MI) descrip-
tor calculates the amount of information shared by two random variables. In
other words, it quantifies the amount of information obtained about one vari-
able, through other variable. Let X and Y be random variables and p be a
probability function, where we assume the normality of the data. Based on that,
Mutual Information can be defined as:

I(X,Y) =
∑

y∈Y

∑

x∈X

p(x, y) log
(

p(x, y)
p(x)p(y)

)
(1)

We selected the following algorithms to perform feature selection in our
experiments: Conditional Infomax Feature Extraction (CIFE) [11], Mutual Infor-
mation Feature Selection (MIFS) [2] and Maximum Relevance Minimum Redun-
dancy (MRMR) [15]. We selected these algorithms to perform a comparison
between our approach, when using mutual information as similarity measure,
with other feature selection algorithms that use the same measure. It is impor-
tant to notice that, during the experiments, all dimensionality reduction algo-
rithms have performed a 90% reduction of attributes (or 10% selection) for all
datasets.

In addition to feature selection algorithms based on mutual information,
we also used two feature extraction algorithms widely used by machine learn-
ing community, PCA (unsupervised) [6] and LDA (supervised) [12], in order to
compare their performance with our proposed approach.

In this empirical analysis, we used three different methods of classification,
which are: search-based method (Decision Tree) [13], optimization-based method
(SVM) [13] and distance-based method (k-NN) [13]. These classifiers were chosen
because they are widely used in the Machine Learning community and each one
has a distinct approach to find the best solution. Based on this, we tried to cover
a wide range of heuristics of classification to avoid a possible bias to a specific
approach. Additionally, with the purpose of performing the clustering task of
the proposed approach, we chose to use the k-Means clustering algorithm [7].

In order to compare the effectiveness of the proposed approach, two statistical
tests were applied: Friedman’s Test [3] and post-hoc Wilcoxon Rank-Sum Test
[3]. The second one was applied when the p-value of Friedman’s test was lower
than 0.05. Both tests were used with a confidence level of 95% (α = 0.05).

In our experiments we used twelve datasets from different natures, these
datasets were selected aiming to cover different ranges of number of samples,

A Feature Selection Approach Based on Information Theory 363

features and contexts. The datasets are distributed in distinct areas, such
as: Bioinformatics, text data, face pictures, handwriting images and signal
processing. They were collected in three different repositories: UCI Machine
Learning [10], Arizona State University repository [9] and Bioinformatics
Research Group of Seville repository [17]. The main characteristics of each
dataset will be described in the ID, name(n,C, d) format, where n is the
number of samples, C is the number of classes and d is the number of
features (dimensionality). The used datasets are: B1, LSVT(126, 2, 310); B2,
Lung Cancer(181, 2, 12533); B3, Breast Cancer(569, 2, 30); B4, Connectionist
Bench(208, 2, 60); B5, Ionosphere(351, 2, 32); B6, Lymphoma(96, 9, 4026); B7,
USPS(9298, 10, 256); B8, PCMAC(1943, 2, 3289); B9, Friedman(1000, 2, 100);
B10, Colon Cancer(62, 2, 2000); B11, COIL-20 (1440, 20, 1024); B12, Arrhyth-
mia(452, 16, 279);

All algorithms used in this paper were implemented using Matlab software.
In this empirical analysis, with the purpose to achieve more robust results, a
10-fold cross-validation approach will be applied for all analyzed methods. One
fold is defined to belong to the validation set, one fold to the testing set and
eight folds to the training set. Once the dataset is divided, we use the validation
fold to create the groups to be used in the k-means clustering algorithm, with
the parameter k equals to the number of classes of the corresponding dataset
in execution. After the clustering process, we train the classification method
using all eight folds of the training set, according to the attributes selected by
the dynamic feature selection measure. The remaining fold is used to evaluate
the performance of the proposed approach. Finally, as the analyzed approach
are non-deterministic methods, all algorithms are performed 10 times, making a
total of 100 accuracy values that are averaged to provide the values used in this
paper.

5 Results and Discussion

This experimental analysis is divided in two parts; the first one aims to compare
the performance of the proposed method to some information theory-based fea-
ture selection methods. The other one compares the performance of the proposed
method to two well-known feature extraction methods, as well as the original
dataset, trying to assess the performance of the proposed method.

Keeping in mind that different datasets with different accuracy levels are
being evaluated in this analysis, the direct use of these values can lead to a
mistaken analysis of the obtained results. In order to address this issue, in this
paper, the performance of the feature selection methods will be assessed taking
into consideration the mean ranking of the obtained results. These rankings are
based on their accuracy levels, always assigning 1 to the best value, followed by
2, 3 and/or 4 in ascending order according to its performance. This ranking is
calculated for each configuration, taking all 3 classification algorithms used in
this analysis. The average score for each method is then calculated and the final
classification is made according to their average score for each dataset.

364 J. Jesus et al.

5.1 Analysis of Some MI-Based Methods

In this section, we aim to compare the performance of the proposed method
(DFS-MI) to three information theory-based feature selection methods, which
are: CIFE, MIFS and MRMR. Table 1 describes the average ranking values for
all four analyzed methods for all datasets. In this table the shaded cells with
bold numbers represent the best performance (lowest ranking), for each dataset.

Table 1. Results using MI-based methods

Average Ranking - MI-based Methods
Approaches DFS-MI CIFE MIFS MRMR Friedman

Metrics Mean±Std Mean±Std Mean±Std Mean±Std p-value
B1 1.6±1.0 2.5±0.8(<) 3.3±0.8(<) 2.3±0.9(<) 5.14E-69
B2 2.0±1.3 2.1±0.9(=) 3.2±0.9(<) 1.8±1.0(=) 1.00E-40
B3 1.9±1.3 2.9±0.8(<) 1.8±0.7(>) 3.1±0.7(<) 7.03E-63
B4 1.7±1.2 2.5±0.8(<) 3.4±0.7(<) 2.1±0.8(<) 1.96E-71
B5 1.6±1.1 2.5±0.8(<) 2.9±0.8(<) 2.7±1.0(<) 1.00E-49
B6 2.2±1.1 3.1±1.0(<) 2.9±0.7(<) 1.5±0.7(>) 8.35E-86
B7 4.0±0.0 2.3±0.5(>) 1.0±0.0(>) 2.6±0.5(>) 1.13E-218
B8 2.8±0.6 3.9±0.2(<) 1.6±0.6(>) 1.6±0.6(>) 4.08-180
B9 1.5±1.0 2.4±0.7(<) 3.5±0.7(<) 2.4±0.7(<) 2.3E-104
B10 2.4±1.2 2.8±1.1(<) 2.5±0.9(=) 1.9±0.9(>) 5.21E-24
B11 3.2±1.2 2.1±0.9(>) 1.9±0.9(>) 2.3±1.0(>) 2.34E-37
B12 2.5±0.9 2.2±0.6(>) 3.8±0.4(<) 1.3±0.6(>) 3.36E-144

From Table 1, we can observe that the proposed method (DFS-MI) achieved
the best performance (lowest ranking values) in five datasets, while MIFS
achieved the best performance in 4 datasets, MRMR in 3 datasets and CIFE has
not achieved the best performance in any dataset. The last column of Table 1
presents the results of the statistical test, comparing all four feature selection
methods (Friedman test). In order to compare the the proposed method to the
MI-based methods, for each dataset there are three possible signals, >, = or <
between brackets to define whether the corresponding method is better, similar
or worse than DFS-MI, respectively, according to the post-hoc Wilcoxon test.

As can be detected in Table 1, the performance of all four feature selection
methods are different, from a statistical point of view, in all 12 datasets. When
comparing the proposed method in the post-hoc test, we can observe that, from
a statistical point of view, the proposed method had better performance in 8
datasets, similar performance in one dataset and worse performance in only 3
datasets, when compared to CIFE. When compared to MIFS, the performance
of the proposed method was higher in 7 datasets, similar in one dataset and
worse in 4 datasets. Finally, when compared to MRMR, the performance of the
proposed method was either similar or higher, from a statistical point of view,
in 6 dataset, while it achieved worse performance in 6 datasets.

In summarizing, the results obtained in Table 1 are very promising since it
shows a competitive performance of the proposed method, in which it had an
overall better performance than CIFE and MIFS and similar performance to
MRMR.

A Feature Selection Approach Based on Information Theory 365

5.2 Comparative Analysis

In this section, we will describe an analysis comparing the performance of the
proposed method to some well-known feature extraction methods (PCA and
LDA) as well as the original dataset (no feature selection). Table 2 presents the
average ranking for all four methods, for all datasets.

Table 2. Results using feature extraction methods and original dataset

Average Ranking - Comparative Analysis
Approaches DFS-MI PCA LDA Original Friedman

Metrics Mean±Std Mean±Std Mean±Std Mean±Std p-value
B1 1.8±0.8 3.4±0.6(<) 1.3±0.4(>) 3.1±0.6(<) 1.17E-160
B2 1.9±1.1 2.6±0.4(<) 1.2±0.5(>) 3.0±1.0(<) 7.64E-82
B3 1.8±1.0 3.2±0.8(<) 2.5±1.1(<) 2.3±1.0(<) 2.41E-51
B4 1.7±0.9 2.9±0.8(<) 3.0±0.9(<) 2.2±1.0(<) 5.88E-53
B5 1.7±1.2 3.6±0.6(<) 1.7±0.5(<) 2.7±0.6(<) 2.35E-114
B6 2.9±1.2 2.6±0.8(>) 1.0±0.1(>) 2.9±0.8(=) 3.47E-120
B7 4.0±0.0 2.1±0.6(>) 2.3±0.9(>) 1.4±0.5(>) 1.33E-167
B8 2.7±0.8 2.9±0.9(<) 2.0±1.4(>) 2.2±0.8(>) 1.89E-26
B9 1.4±0.8 3.6±0.5(<) 1.9±0.7(<) 2.9±0.8(<) 1.08E-136
B10 2.1±1.1 2.5±0.9(<) 2.7±1.1(<) 2.3±1.2(<) 8.78E-08
B11 3.1±1.0 1.6±0.7(>) 2.0±1.4(>) 2.0±1.1(>) 5.85E-48
B12 2.6±1.0 2.8±0.9(=) 2.7±1.2(<) 1.7±0.8(>) 9.37E-32

In analyzing Table 2, we can state that the proposed method surpasses the
performance of some well-established feature selection methods, as well the use
of no feature selection, since it obtained the best performance (shaded cells
with bold numbers) in 5 datasets, out of 12. Then, we have LDA with the best
performance in only 4 datasets, the original dataset with the best performance
in 2 datasets and, finally, PCA with only 1 best performance.

From the last column of Table 2, it is possible to observe that the performance
of all four analyzed methods are different, from a statistical point of view, in all
12 datasets. When comparing the proposed method in the post-hoc test, we can
observe that, from a statistical point of view, the proposed method had better
performance in 8 datasets, similar performance in one dataset and worse per-
formance in only 3 datasets, when compared to PCA. When compared to LDA,
the performance of the proposed method was higher in 6 datasets and worse in 6
datasets. Finally, when compared to the original dataset, the performance of the
proposed method was either similar or higher, from a statistical point of view,
in 8 datasets, while it achieved worse performance in 4 datasets.

Based on the results obtained in Table 2, we can state that the proposed
methods showed a competitive performance, in which it had an overall better
performance than PCA and the original dataset and similar performance to
LDA.

6 Final Remarks

This paper presented and evaluated a dynamic feature selection method which
can be applied to classification tasks. This proposed method (DFS-MI) is an

366 J. Jesus et al.

extension of the one used in [14] which uses a clustering algorithm as the basis
of the feature selection process. In order to assess the feasibility of the proposed
method, an empirical analysis was conducted. In this analysis, we applied three
different classification algorithms to receive the subset of attributes selected by
the feature selection methods, using 12 datasets. We analyzed the performance of
the proposed method, compared to three other Mutual Information (MI-based)
feature selection algorithms (CIFE, MIFS and MRMR) as well as two existing
feature extraction methods PCA and LDA along with the use of the original
dataset (no feature selection).

Through this empirical analysis, we could observe that the DFS-MI method
obtained competitive results, since it surpassed the performance of most of the
feature selection methods. The results provided in this paper are very promising
since the proposed method achieved better performance than well-established
dimensionality reduction methods. Additionally, the use of the proposed method
achieved better performance than using the original datasets, showing that the
reduction of noisy and/or redundant attributes can have a positive effect in the
performance of a classification task.

References

1. Araújo, D., Jesus, J., Neto, A.D., Martins, A.: A combination method for reducing
dimensionality in large datasets. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J.
(eds.) ICANN 2016. LNCS, vol. 9887, pp. 388–397. Springer, Cham (2016). doi:10.
1007/978-3-319-44781-0 46

2. Battiti, R.: Using mutual information for selecting features in supervised neural
net learning. Trans. Neural Netw. 5(4), 537–550 (1994)

3. Gibbons, J., Chakraborti, S.: Nonparametric Statistical Inference. Statistics, Text-
books and Monographs. Marcel Dekker Incorporated, New York (2003)

4. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

5. Jesus, J., Arajo, D., Canuto, A.: Fusion approaches of feature selection algorithms
for classification problems. In: 2016 5th Brazilian Conference on Intelligent Systems
(BRACIS), pp. 379–384, October 2016

6. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986). doi:10.
1007/978-1-4757-1904-8

7. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: An efficient k-means clustering algorithm: analysis and implementation.
IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

8. Law, M.H., Figueiredo, M.A., Jain, A.K.: Simultaneous feature selection and clus-
tering using mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1154–
1166 (2004)

9. Li, J., Cheng, K., Wang, S., Morstatter, F., Robert, T., Tang, J., Liu, H.: Feature
selection: a data perspective. arXiv:1601.07996 (2016)

10. Lichman, M.: UCI Machine Learning Repository (2013)
11. Lin, D., Tang, X.: Conditional infomax learning: an integrated framework for

feature extraction and fusion. In: Leonardis, A., Bischof, H., Pinz, A. (eds.)
ECCV 2006. LNCS, vol. 3951, pp. 68–82. Springer, Heidelberg (2006). doi:10.1007/
11744023 6

http://dx.doi.org/10.1007/978-3-319-44781-0_46
http://dx.doi.org/10.1007/978-3-319-44781-0_46
http://dx.doi.org/10.1007/978-1-4757-1904-8
http://dx.doi.org/10.1007/978-1-4757-1904-8
http://arxiv.org/abs/1601.07996
http://dx.doi.org/10.1007/11744023_6
http://dx.doi.org/10.1007/11744023_6

A Feature Selection Approach Based on Information Theory 367

12. McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition. Wiley
Series in Probability and Statistics. Wiley, Hoboken (2004)

13. Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc., New York (1997)
14. Nunes, R.O., Dantas, C.A., Canuto, A.M.P., Xavier-Junior, J.C.: An unsupervised-

based dynamic feature selection for classification tasks. In: 2016 International Joint
Conference on Neural Networks (IJCNN), pp. 4213–4220, July 2016

15. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: crite-
ria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern
Anal. Mach. Intell. 27(8), 1226–1238 (2005)

16. Santhanam, T., Padmavathi, M.: Application of k-means and genetic algorithms for
dimension reduction by integrating SVM for diabetes diagnosis. Procedia Comput.
Sci. 47(Complete), 76–83 (2015)

17. BioInformatics Group Seville: BIGS Bioinformatics Research Group of Seville
Repository (2004)

Two-Level Neural Network for Multi-label
Document Classification

Ladislav Lenc1,2(B) and Pavel Král1,2

1 Department of Computer Science and Engineering, Faculty of Applied Sciences,
University of West Bohemia, Plzeň, Czech Republic

{pkral,llenc}@kiv.zcu.cz
2 NTIS - New Technologies for the Information Society, Faculty of Applied Sciences,

University of West Bohemia, Plzeň, Czech Republic

Abstract. This paper deals with multi-label document classification
using neural networks. We propose a novel neural network which is com-
posed of two sub-nets: the first one estimates the scores for all classes,
while the second one determines the number of classes assigned to the
document. The proposed approach is evaluated on Czech and English
standard corpora. The experimental results show that the proposed
method is competitive with state of the art on both languages.

Keywords: Convolutional neural networks · Czech · Deep neural net-
works · Document Classification · Multi-label

1 Introduction

This paper is focused on multi-label document classification using neural net-
works. This task can be seen as the problem to find a model M which assigns
a document d ∈ D a set of appropriate classes c ∈ C as follows M : d → c where
D is the set of all documents and C is the set of all possible document classes
(labels).

In our previous work [7], we have used standard feed-forward networks and
popular convolutional networks (CNNs) with thresholding to obtain the final
classification result. We have shown the superior accuracy of these networks
without any manually defined features against the state-of-the-art methods.

In this paper, we propose an alternative multi-label document classification
approach which uses another neural classifier to identify the number of labels
assigned to the document. An original neural network architecture which is com-
posed of two sub-nets is thus proposed: the first one estimates the scores for all
classes, while the second one is dedicated to determine the number of classes.
To the best of our knowledge, this approach has never been used for multi-label
document classification before.

The proposed approach is evaluated on Czech and English standard corpora.
The Czech language has been chosen as a representative of highly inflectional

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 368–375, 2017.
https://doi.org/10.1007/978-3-319-68612-7_42

Two-Level Neural Network for Multi-label Document Classification 369

Slavic language with a free word order. These properties decrease the perfor-
mance of usual methods and therefore, sophisticated methods are beneficial.
English is used to compare the results of our method with state of the art.

The following section contains a short review of the usage of neural networks
for document classification with a particular focus on multi-label classification
approaches. Section 3 describes the proposed model. Section 4 deals with experi-
ments realized on the ČTK and Reuters corpora and then analyzes and discusses
the obtained results. In the last section, we conclude the experimental results
and propose some future research directions.

2 Related Work

Nowadays, “deep” neural nets outperform majority of the state-of-the art nat-
ural language processing (NLP) methods on many tasks with only very simple
features. These include for example POS tagging, chunking, named entity recog-
nition and semantic role labelling.

Recurrent convolutional neural nets are used for text classification in [5].
The authors demonstrated that their approach outperforms the standard con-
volutional networks on four corpora in single-label document classification task.

On the other hand, traditional feed-forward neural net architectures are not
used for multi-label document classification very often. These models were pop-
ular previously as shown for instance in [8]. They build a simple multi-layer
perceptron with three layers (20 inputs, 6 neurons in hidden layer and 10 neu-
rons in the output layer, i.e. number of classes) which gives F-measure about
78% on the standard Reuters dataset.

The feed-forward neural networks were used for multi-label document classi-
fication in [15]. The authors have modified standard backpropagation algorithm
for multi-label learning which employs a novel error function. This approach is
evaluated on functional genomics and text categorization.

Le and Mikolov propose in [6] so called Paragraph Vector, an unsupervised
algorithm that addresses the issue of necessity of a fixed-legth document repre-
sentation. This algorithm represents each document using a dense vector. This
vector is trained to predict words in the document. The results show that this
approach for creating text representations outperforms many other methods
including bag-of-words models. The authors obtain new state-of-the-art results
on several text classification and sentiment analysis tasks.

A recent study on multi-label text classification was presented by Nam et
al. in [10]. The authors use cross-entropy algorithm instead of ranking loss for
training and they also further employ recent advances in deep learning field,
e.g. rectified linear units activation, AdaGrad learning with dropout [9,13]. The
TF-IDF representation of documents is used as network input. The multi-label
classification is done by thresholding of the output layer. The approach is eval-
uated on several multi-label datasets and reaches results comparable or better
than the state-of-the-art.

370 L. Lenc and P. Král

Another method [4] based on neural networks leverages the co-occurrence of
labels in the multi-label classification. Some neurons in the output layer cap-
ture the patterns of label co-occurrences, which improves the classification accu-
racy. The architecture is basically a convolutional network and utilizes word
embeddings as inputs. The method is evaluated on the natural language query
classification in a document retrieval system.

An alternative multi-label classification approach is proposed by Yang and
Gopal in [14]. The conventional representations of texts and categories are trans-
formed into meta-level features. These features are then utilized in a learning-
to-rank algorithm. Experiments on six benchmark datasets show the abilities of
this approach in comparison with other methods.

For additional information about multi-label document classification, please
refer the survey [12].

3 Network Architecture

We use two types of neural networks that were proposed in [7] as the first sub-net.
The first one is a convolutional neural network (CNN) while the second one is
a standard feed-forward neural network (FNN). Therefore, using the feature vec-
tor F , both networks learn a function S = f1(F) which assigns a score S to each
of possible labels. The values of the output layer were usually thresholded [10]
using a fixed threshold. The labels with values higher than this threshold are
then assigned to a document.

In this paper, we replace the thresholding method by another neural classifier
and then we merge both nets together. Therefore, the output of the first network
is used as an input of the second-level feed-forward network which is used to
estimate the number of relevant labels l. Finally, the l labels with the highest
scores are assigned to the classified document.

(1a) Convolutional Neural Network

The input (vector F) of the CNN is a sequence of word indexes from a dictio-
nary. The network requires fixed-length inputs and the documents thus must be
shortened or padded to a specified length N . The following layer is an embed-
ding layer which maps the words to real-valued vectors of the size K. In the
convolutional layer we employ NC kernels of the size k × 1. Rectified linear unit
(ReLU) activation is used. The next layer performs the max-over-time pooling.
The dropout [13] is then applied due to regularization. The output of this layer is
fed to a fully-connected layer with ReLU activation function. The output layer
of the size C is another fully connected layer which gives the scores for each
possible label. We use either sigmoid or softmax activation function in this layer.

(1b) Feed-forward Neural Network

This network is an alternative to the CNN described previously. The input (vec-
tor F) is a bag-of-words (BoW) representation of the documents. It is followed

Two-Level Neural Network for Multi-label Document Classification 371

by two fully connected layers. Each of them has a ReLU activation with a sub-
sequent dropout regularization. We use the softmax/sigmoid activation in the
output layer of the size |C|.
(2) 2nd-Level Feed-forward Neural Network

This network is a multi-layer perceptron with one hidden layer. It takes the
output from the underlying network (CNN or FNN) S and learns a function
l = f2(S) that maps the vector S to the number of relevant labels l. The output
layer has the softmax activation.

Figure 1 shows the architecture of the whole network where the CNN and
2nd-level FNN are merged. Due to the space limits, the architecture of the
second network which merges together the two FNNs is not depicted.

Fig. 1. The architecture of the proposed network - CNN+FNN

The whole network learns the complex function l, S = f(F) = f2(f1(F))
When we trained the whole network at once, unfortunately, the convergence
was not very good. Therefore, we decided to train both sub-nets independently.
First, we train the CNN (or FNN) which gives the score S for all labels, then
the connected 2nd-level FNN is trained using these scores S. Both sub-nets are
learned using adaptive moment estimation (Adam [3]) optimization algorithm.

4 Experiments

4.1 Tools and Corpora

For implementation of all neural nets we used Keras tool-kit [2] which is based on
the Theano deep learning library [1]. It has been chosen mainly because of good

372 L. Lenc and P. Král

performance and our previous experience with this tool. For evaluation of the
multi-label document classification results, we use the standard recall, precision
and F-measure (F1) metrics [11]. The values are micro-averaged. To measure the
performance of the second sub-net we utilize label accuracy (L-ACC) and mean
absolute error (MAE).

Czech Text Document Corpus v 1.0. This corpus is composed of 11,955
documents provided by ČTK and contains 2,974,040 words. The documents are
annotated from a set of 60 categories as for instance agriculture, weather, politics
or sport out of which we used 37 most frequent ones. The category reduction
was done to allow comparison with previously reported results on this corpus
where the same set of 37 categories was used. Average number of categories
per document is 2.55. 500 randomly chosen documents are reserved for devel-
opment set while the remaining part is used for training and testing. Left part
of Fig. 2 illustrates the distribution of the documents depending on the number
of labels, while the right part shows the distribution of the document lengths
(in word tokens). This corpus is freely available for research purposes at http://
home.zcu.cz/∼pkral/sw/. We use the five-folds cross validation procedure for all
experiments on this corpus.

Fig. 2. Distribution of documents depending on the number of labels (left) and distri-
bution of the document lengths (right)

Reuters-21578 English Corpus. The Reuters-215781 corpus is a collection of
21,578 documents. As suggested by many authors, the training part is composed
of 7769 documents, while 3019 documents are reserved for testing. The number
of possible categories is 90 and average label/document number is 1.23. This
dataset is used in order to compare the performance of our method with state-
of-the-art approaches.

4.2 System Configuration

In this section we summarize the important parameters that we used in our
system configuration. The preprocessing was the same for both Czech and Eng-
lish corpora. We convert all texts to lowercase and replace all numbers by one
common token.
1 http://www.daviddlewis.com/resources/testcollections/reuters21578/.

http://home.zcu.cz/~pkral/sw/
http://home.zcu.cz/~pkral/sw/
http://www.daviddlewis.com/resources/testcollections/reuters21578/

Two-Level Neural Network for Multi-label Document Classification 373

The dictionary size is set to 20,000 for both networks. The document length
is unified to 400 tokens and the embedding size is 300 for the CNN. The convo-
lutional layer utilizes 40 kernels of the size 16 × 1. The fully connected layer in
CNN has 256 neurons. The two hidden layers of FNN have 1024 and 512 neurons
respectively. All dropout rates are set to 20%. In the case of the 2nd-level FNN
we use hidden layer with 100 neurons. All the networks are trained for 20 epochs
and with the mini-batch size 32.

4.3 Results on the Czech Corpus

The first experiment (see Table 1) shows the performance of the individual net-
works with the thresholding method. It is realized in order to compare the results
of the proposed neural net with state of the art2. The threshold values are set
on the development data. This table shows that CNN with sigmoid activation
function gives the best classification results.

Table 1. Results on Czech corpus with thresholding method, thresholds set on the
development corpus

Method Prec. Recall F1 [%] Threshold

CNN sigmoid 87.68 79.09 83.17 0.19

CNN softmax 80.84 80.54 80.69 0.06

MLP sigmoid 80.03 83.35 81.66 0.15

MLP softmax 67.78 90.99 77.69 0.04

The second experiment (see Table 2) presents the results obtained with the
proposed neural network method. This table shows that this approach performs
better when the sigmoid activation function is used. This behavior is not sur-
prising because sigmoid function usually suits better for the multi-label classi-
fication problems. This table further shows that this approach outperforms the
reference thresholdind method (see Table 1). This experiment also shows that
both network topologies (CNN + FNN or FNN + FNN) are comparable. Note

Table 2. Results on the Czech corpus using the proposed neural network approach

Method Prec. Recall F1 [%] L-ACC MAE

CNN sigmoid 87.20 81.13 84.06 63.54 0.46

CNN softmax 84.13 80.20 82.12 60.96 0.53

MLP sigmoid 85.61 82.82 84.19 64.47 0.48

MLP softmax 77.28 85.30 81.09 57.11 0.62

2 This approach has been proposed in [7].

374 L. Lenc and P. Král

that L-ACC is the label accuracy of the second level FNN and MAE is its mean
absolute error. It is obvious that there is still room for improvement in the
2nd-level FNN performance.

4.4 Results on Reuters-21578

The third experiment (see Table 3) shows the performance of the proposed app-
roach on standard English Reuters dataset. This experiment was realized in order
to show its robustness across languages and to compare our method with state of
the art (SoTa). The results show that especially CNN with the sigmoid activation
has very good performance and is comparable with the best performing approach
of Nam et al. [10] (SoTa). Note that the authors use TF-IDF representation of
documents which is slightly more sophisticated than ours.

Table 3. Results on English Reuters corpus using the proposed neural network app-
roach

Method Prec. Recall F1 [%] L-ACC MAE

CNN sigmoid 89.79 84.99 87.32 88.17 0.17

CNN softmax 87.52 83.96 85.70 85.80 0.19

MLP sigmoid 85.16 83.22 84.18 86.27 0.19

MLP softmax 81.52 83.24 82.37 81.29 0.23

BRR [10] (SoTa) 89.82 86.03 87.89 - -

5 Conclusions and Perspectives

In this paper, we have proposed a novel neural network for multi-label document
classification. This network is composed of two sub-nets where the first one
estimates the scores for all classes, while the second one is used to determine
the number of classes. We have evaluated the proposed approach on Czech and
English standard corpora. We have experimentally shown that the proposed
method is competitive with state-of-the-art methods on both languages

The experiments have shown that the 2nd-level FNN performance could
be further improved. This is thus the first perspective. Another possibility for
improvement is using manually pre-trained embeddings. However, in this paper,
we did not concentrate on this issue and it will thus be solved in our future work.
We also would like to experiment with different network types, as for instance
LSTM or recurrent CNNs.

Acknowledgements. This work has been supported by the project LO1506 of the
Czech Ministry of Education, Youth and Sports.

Two-Level Neural Network for Multi-label Document Classification 375

References

1. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,
Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPUmath expression
compiler. In: Proceedings of Python for Scientific Computing Conference (SciPy),
Austin, TX, vol. 4, p. 3 (2010)

2. Chollet, F.: Keras (2015). https://github.com/fchollet/keras
3. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)
4. Kurata, G., Xiang, B., Zhou, B.: Improved neural network-based multi-label clas-

sification with better initialization leveraging label co-occurrence. In: Proceedings
of NAACL-HLT, pp. 521–526 (2016)

5. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text
classification (2015)

6. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In:
ICML, vol. 14, pp. 1188–1196 (2014)

7. Lenc, L., Král, P.: Deep neural networks for Czech multi-label document clas-
sification. In: 17th International Conference on Intelligent Text Processing and
Computational Linguistics (CICLing 2016). Springer, Konya, 3–9 April 2016

8. Manevitz, L., Yousef, M.: One-class document classification via neural networks.
Neurocomputing 70(7–9), 1466–1481 (2007). http://www.scopus.com/inward/
record.url?eid=2-s2.0-33847410597&partnerID=40&md5=3d75682f283e19695f285
7dea9d9f03f

9. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of 27th International Conference on Machine Learning
(ICML-2010), pp. 807–814 (2010)

10. Nam, J., Kim, J., Loza Menćıa, E., Gurevych, I., Fürnkranz, J.: Large-scale multi-
label text classification - revisiting neural networks. In: Calders, T., Esposito, F.,
Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS, vol. 8725, pp. 437–452.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44851-9 28

11. Powers, D.: Evaluation: from precision, recall and F-measure to ROC., informed-
ness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

12. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput.
Surv. (CSUR) 34(1), 1–47 (2002)

13. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

14. Yang, Y., Gopal, S.: Multilabel classification with meta-level features in a learning-
to-rank framework. Mach. Learn. 88(1–2), 47–68 (2012)

15. Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to func-
tional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10),
1338–1351 (2006)

https://github.com/fchollet/keras
http://arxiv.org/abs/1412.6980
http://www.scopus.com/inward/record.url?eid=2-s2.0-33847410597&partnerID=40&md5=3d75682f283e19695f2857dea9d9f03f
http://www.scopus.com/inward/record.url?eid=2-s2.0-33847410597&partnerID=40&md5=3d75682f283e19695f2857dea9d9f03f
http://www.scopus.com/inward/record.url?eid=2-s2.0-33847410597&partnerID=40&md5=3d75682f283e19695f2857dea9d9f03f
http://dx.doi.org/10.1007/978-3-662-44851-9_28

Ontology Alignment with Weightless
Neural Networks

Thais Viana1, Carla Delgado1,2(B), João C.P. da Silva2, and Priscila Lima1

1 Prog. de Pós Graduação em Informática, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, Brazil

{thaisviana,priscila.lima}@ppgi.ufrj.br, {carla,jpcs}@dcc.ufrj.br
2 Dep. Ciência da Computação, IM, Universidade Federal do Rio de Janeiro,

Av. Athos da Silveira Ramos, 274, Cidade Universitária, Rio de Janeiro 68530, Brasil
http://www.ppgi.ufrj.br, http://www.dcc.ufrj.br

Abstract. In this paper, we present an ontology matching process based
on the usage of Weightless Neural Networks (WNN). The alignment of
ontologies for specific domains provides several benefits, such as inter-
operability among different systems and the improvement of the domain
knowledge derived from the insights inferred from the combined informa-
tion contained in the various ontologies. A WiSARD classifier is built to
estimate a distribution-based similarity measure among the concepts of
the several ontologies being matched. To validate our approach, we apply
the proposed matching process to the knowledge domain of algorithms,
software and computational problems, having some promising results.

Keywords: Weightless Neural Network · WiSARD · Ontology align-
ment · Ontology matching

1 Introduction

An ontology typically provides a vocabulary describing a domain of interest and a
related specification of the meaning of the terms used in this vocabulary. Accord-
ing to the granularity of the specification, the notion of ontology encompasses
several data and conceptual models, including sets of terms, classifications, tax-
onomies, thesauri and database schemas [13]. As disparate backgrounds are a
major barrier to communication among people, organizations and software sys-
tems, the conception and implementation of an ontology in a given domain
should provide an explicit account of a shared understanding, thus improving
communication, software interoperability and enhancing reuse and sharing [18].

Interoperability and communication are also an issue when different applica-
tions use even slightly different ontologies. Most often, these applications cannot
interact sound and smoothly, unless the ontologies used are aligned [7]. The
alignment of ontologies for domains that intercept or even touch each other

T. Viana—Thanks to CNPq for the financial support received.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 376–384, 2017.
https://doi.org/10.1007/978-3-319-68612-7_43

Ontology Alignment with Weightless Neural Networks 377

has benefits beyond interoperability, as new insights can be inferred by combin-
ing information from various sources. Such insights can be valuable to advance
the domain knowledge. Besides, human users could access the knowledge from
numerous ontologies in a transparent way.

An alignment between two (or even more) ontologies is the output of a hard
and challenging process, which is called ontology matching [8]. This paper tackles
ontology alignment by proposing a matching process using a Weightless Neural
Network (WNN) model. A WiSARD classifier [2] is built and used to estimate
a distribution-based similarity measure among the concepts of the ontologies
being matched. We consider that our approach has two strong points. First, new
patterns can be learned without the need to retrain the complete neural network.
Second and most important, other information besides class and property names
are taken into account in order to obtain a more significant alignment, which is
generally not the case with other approaches.

We apply the proposed matching process to the knowledge domain of algo-
rithms, software and computational problems, having some promising results
which we compare to results obtained by other classifiers. We also discuss the
conceptual difficulties to apply our matching process to benchmarks used in
ontology matching competitions, what we believe will bring insights also to the
evaluation process of ontology matching approaches in general.

In Sect. 2 we provide a brief description of related works. Section 3 presents
the proposed approach to ontology matching using WNNs. Section 4 describes
the application of our approach to the software knowledge domain. Sections 5
and 6 state respectively our results and conclusions.

2 Related Works

Several ontology alignment methods attempt to identify the semantic similarity
between the entities of two or more ontologies. The strengths and weaknesses
of the proposed approaches have been discussed in several publications [6]. The
Ontology Alignment Evaluation Initiative (OAEI) is a coordinated international
initiative which organizes the evaluation of the increasing number of ontology
alignment systems [4]. Carefully observing the results from past OAEIs, we can
see that there is no definite method or system for all existing alignment problems.

AgreementMakerLight (AML) was the top performing system in five tracks
from OAEI 2016 [1], including the Instance and instance-based Process Model
tracks, and one of the top performing systems in three others. AML is based
mainly on element-level matching and on the use of external resources as back-
ground knowledge [9]. By the time we ran our experiments, the 2016 benchmark
was not available anymore. In OAEI 2015 benchmark we can not find the com-
ments associated with class names, which is an essential input for the proper
functioning of our algorithm. In this way, our approach has not performed very
well classifying this benchmark. We can say that a fair comparison between
OAEI results to our approach is not feasible, as our system is supposed to work
with ontologies that do have descriptions of their properties and classes.

378 T. Viana et al.

[5] tackles the automatic matching of ontologies by using recursive neural
networks, an extension to the recurrent neural networks capable of efficiently
process structured data. [5] considers an ontology as a graph, with the ontology
concepts (relations) corresponding to the nodes (edges) of the graph. The method
was tested on small-scale datasets with promising initial results, which are con-
sidered intuitively correct. Different from [5], our approach does not consider
the structure of the ontologies being aligned. As we will present, we use a bag
of words approach, considering the descriptions of properties and classes of each
ontology being considered. This approach captures information that is neither
explicitly available through the properties specification nor the instances data.
Matching two ontologies just based on terms, which would be the general case
of names of properties and classes, is not enough. Therefore, we take advantage
of longer pieces of text in order to obtain a more satisfactory alignment.

3 A Weightless Neural Network for Ontology Alignment

Ontology alignment is an important task in heterogeneous models as for exam-
ple, database schemas and ontologies. Usually these models are analyzed and
matched either manually or semi-automatically at design time [16]. Given two
ontologies O1 and O2, an alignment between O1 and O2 is a set of correspon-
dences 〈e1, e2, r, n〉 with e1 ∈ O1 and e2 ∈ O2 being the two matched entities,
r being a relationship holding between e1 and e2, and n ∈ [0, 1] represents the
level of confidence in this correspondence [8].

Our system handles input ontologies both in OWL and RDF formats, and
the algorithm used is a string-based classifier. String-based classifiers are divided
into two main categories, regarding the method used for comparing terms: either
they only consider character strings; or use some linguistic knowledge to interpret
these strings [8]. Our approach is of the second kind. The technique we use comes
from information retrieval and considers a string as a (multi)set of words (bag
of words), i.e., a set in which a particular item can appear several times [8].

We used the Natural Language ToolKit (NLTK) [3] to tokenize the textual
description of each ontology class we want to align, and a process known as
stemming for removing morphological affixes from words1. Next, we created
the word incidence matrix, where each line represents a binary vector indicating
whether the word of that column appears or not in the textual description of the
respective ontology class. The final result of the concatenation of these vectors
in array format is used by a WiSARD2 neural network during training and
classification.

WiSARD [2] is a RAM based neural network, composed of a set of individ-
ual classifiers, called discriminators, each one assigned to learn binary patterns
belonging to a particular category. Therefore, a typical WiSARD architecture
has as many discriminators as the number of categories it should be able to
distinguish [17]. The binary input vector in a discriminator, traditionally called
1 In this project, we adopted the Lancaster Stemmer implementation available in [3].
2 We developed our python project using the open source PyWaNN library from [15].

Ontology Alignment with Weightless Neural Networks 379

retina3, is of size m (in bits), and is usually divided into m/n addresses of n bits
each. These addresses are used to access RAMs of 2n positions, for writing during
training and for reading during classification. The mapping of the address bits is
usually random and exclusive. In an ontology matching scenario, WiSARD has
the benefit of being a one shot classifier, allowing incremental online learning.

During the training of a class, the input pattern bits define addresses to access
the RAMs. Each RAM updates the value in the position addressed. When pre-
dicting the class of a new pattern, WiSARD uses the same mapping to access the
contents of the positions addressed. If the position addressed contains an inte-
ger higher than a predefined value (threshold), 1 is added to the discriminator’s
response [11]. WiSARD decides the class of the pattern by choosing the discrim-
inator which returns the highest response. The threshold can be incremented to
filter lower RAMs’ values in case of a draw between two or more discriminators,
or when these values are too close [15]. This process is called bleaching.

Despite bleaching successful results as a general classification technique, when
applied to bag of words many pieces of text can be classified by terms they do not
have in common rather than by their proximity. This way, text categorization
requires another adaptation of WiSARD due to the sparsity of the feature vector.
As many RAMs would access the zero position (those which all address bits are
zeros), the prediction would happen based on absent features. To work around
this issue, on full-zero patterns the memory does not contribute to the discrim-
inator response. Those digits equally compose the addresses that will indicate
which position in each of the discriminator’s RAMs will be accessed (written in
the case of training or read in the case of classification). In many applications,
zero means the absence of a given feature, and that is our case. In our ontolo-
gies alignment approach, zero indicates the absence of the document of a term
present in the dictionary. In dictionaries relatively larger than the documents
analyzed, it is expected that many RAMs will have their position of address
zero accessed many times during training, thus rendering an out of proportion
emphasis on the absence of terms, rather than on the terms that characterize a
particular document. Thus, in the classification mode, zero-addressed positions
will not be taken into consideration [15].

After we calibrated all parameters described above, the algorithm returns
a map of classifications for all given inputs. The main result is composed by a
label of discriminator, the number of memories accepted (#acceptMem) and total
number of memories (#totalMem) by that pattern. We calculated this relation
rate dividing those two values. So WiSARD classifies a new relation with rate:

ratio =
#acceptMem

#totalMem

This ratio is used to compare our method with other similarity-based meth-
ods described in the results section.

After the classification phase, we used the value ratio. To refine the
results, we analyze all the classifications generated and create the triple

3 Due to its initial applications to graphical pattern classification.

380 T. Viana et al.

(classontA , is related to, classontB) only for the classifications that return a per-
centage above the mean added to the standard deviation. Thus, all other clas-
sifications are discarded. All triples created inside the same ontology are also
eliminated. This is what we call cut statistical filter.

4 Case Study - Software Ontologies

The domain of software is an interesting candidate for being formalized through
an ontology. It is a complex domain with different paradigms (object orientation,
procedural, functional, etc.) and different aspects (security, legal information,
interface descriptions, etc.). Despite its complexity, this is a sufficiently stable
domain where new paradigms and aspects tend to occur rather seldomly [12].
That choice of domain was motivated by an ongoing project that aims to build an
encyclopedia in a wiki format with information about computational problems,
algorithms and implementations. The Algpedia project is accessible in http://
algpedia.dcc.ufrj.br/.

We selected four ontologies, and used WiSARD to generate a unique cohesive
ontology from the matching of them, where new relations between classes of
different ontologies could be presented to a specialist to be validated. The source
ontologies are:

– Core Software Ontology (CSO) defines fundamental concepts of the software
domain such as software itself, data, classes and methods. The purpose of
this ontology is to provide a reference by specifying the intended meanings of
software terms as precisely as possible [12].

– Core Ontology of Programs and software (COPS) is a core ontology proposing
a set of main concepts in the field of computer programs and software. COPS
specializes in the DOLCE foundational ontology [10] and is composed of sev-
eral modules (sub-ontologies). Unfortunately, this ontology was not available
on the internet during the execution of this work, so all classes were extracted
from a non-formal descriptive document.

– Core Ontology of Software Components (COSC) [14] is based on CSO, but
devoted to the paradigm of software componentry. It tackles concepts like
libraries and licenses, component profiles, and component taxonomies.

– AlgPedia Ontology is the basic ontology from Algpedia [19,20], a free collabo-
rative encyclopedia about algorithms and programs in a wiki format released
in 2014. Algpedia was initially fed with information from Wikipedia and since
it was launched Algpedia’s users collaborate by adding new or editing infor-
mation about algorithms and implementations.

We expect that the ontology generated in this matching will expand the
initial ontology created for Algpedia in such a way to better structure its seman-
tic database, turning the process of querying information more meaningful and
smooth both to human and to non-human intelligent agents. Table 1 presents
the number of instances, properties and classes in the four ontologies.

http://algpedia.dcc.ufrj.br/
http://algpedia.dcc.ufrj.br/

Ontology Alignment with Weightless Neural Networks 381

Table 1. Number of instances, properties and classes in each ontology

Ontology Instances Properties Classes

CSO 0 12 17

COPS 0 0 245

COSC 0 24 6

Algpedia 122 4 4

From each ontology, we used the names of classes, instances and properties
and also the respective descriptions contained in the rdf:comment properties. The
names became the labels of incidence vectors extracted during the tokenization
process of rdf:comment properties, as was mentioned in Sect. 3. In order to obtain
a resulting cohesive ontology, we did not consider any alignment between classes
of the same ontology.

After the tokenization process, each vector was presented to our WNN that
learns the associated patterns. In case a pattern shown to the WNN is perceived
as completely different from those already presented, the WNN creates a new
discriminator and splits this pattern among its memories. Once all vectors were
presented, the WiSARD architecture is ready to classify new ontologies in the
same domain due to its online learning characteristics.

5 Results

The goal of ontology matching is to find the relations between elements from
different ontologies. Normally these relations are identified using a measure of
similarity between the elements of the ontologies [8]. To validate our results, we
used three classifiers based on similarities (Euclidean distance, cosine similar-
ity and Manhattan distance), which are indicated in the literature as classical
approaches.

The total number of alignments discovered by our WNN was 246 pairs being
108 connecting classes from different ontologies. After applying the statistical
filter described in Sect. 3, we cut off all pairs with a ratio lower than the mean
plus the standard deviation (in our case, respectively, 0.05075329064917711 and
0.07454194887862817). The final number of alignments was 24 pairs. Table 2
shows the number of alignments between the different ontologies. Note that
Algpedia and COSC had no alignment between them. This was expected since
they are very distinct ontologies, the former concerning algorithms and the later
concerning software license.

Using the string-based strategies present in the literature and the statistical
filter, the number of alignments obtained was: (i) 37 for Euclidean distance, (ii)
34 for cosine distance and (iii) 56 for Manhattan distance. All 24 alignments
obtained by our WNN appear in each one of the others approaches. Consid-
ering the alignments obtained by string-based approaches, we observed that 4
meaningful pairs were not identify by our WNN. Such pairs appeared in all

382 T. Viana et al.

Table 2. Number of matches between each pair of ontologies

Onto. alignment # of matches Onto. alignment # of matches

CSO-COPS 10 COPS-COSC 2

CSO-COSC 3 COPS-AlgPedia 8

CSO-AlgPedia 1 AlgPedia-COSC 0

string-based approaches: 3 in Euclidean, 4 in cosine and 2 in Manhattan dis-
tance. The remaining alignments, as for example software license and low level
language, were considered meaningless, which suggests that such approaches gen-
erate more false-positives than true-negatives.

6 Conclusions

In this paper, we presented a process for ontology alignment based on Weightless
Neural Networks. We described its implementation and application to perform
the matching of four ontologies for the knowledge domain of algorithms, software
and computational problems.

From a technical perspective, our approach has the advantage that new pat-
terns can be learned without the need to retrain the complete neural network.
This constitutes a leverage particularly if further ontologies (or parts of other
ontologies) are to be aligned after a previous alignment has already taken place,
thus making an incremental improvement of the ontology feasible.

From a semantic perspective, our approach takes into account more infor-
mation besides class and property names, as it also considers the descriptions of
properties and classes. Descriptions are usually longer pieces of text that contain
information that is neither explicitly available through the properties’ specifica-
tion nor through the data instances, so we believe this may stand for a significant
improvement in the quality and the consistency of the relations identified.

Our approach was able to find a more cohesive set of alignments than those
found by all three classical methods we compared. For our case study, the number
of false negatives was very low, and no false positives were generated. Besides,
when we took a closer look at the false negatives, we get the feeling that the
description texts from the corresponding entities of at least one of the ontologies
should be improved. As said before, no existing automatic method or system
can successfully handle all existing alignment problems. This suggests that more
than one method should be used, and a human expert should then have a closer
look at the discrepancy in the outcomes. When the expert analyzed the results
from our case study, the conclusions were favorable to the output of our WNN,
as all alignments found were validated, and the false negatives showed the expert
points from the original ontologies that needed improvement.

Ontology Alignment with Weightless Neural Networks 383

References

1. Achichi, M., Cheatham, M., Dragisic, Z., Euzenat, J., Faria, D., Ferrara, A.,
Flouris, G., Fundulaki, I., Harrow, I., Ivanova, V., et al.: Results of the ontol-
ogy alignment evaluation initiative 2016. In: 11th ISWC Workshop on Ontology
Matching (OM), pp. 73–129. No commercial editor (2016)

2. Aleksander, I., Thomas, W., Bowden, P.: Wisard a radical step forward in image
recognition. Sens. Rev. 4(3), 120–124 (1984)

3. Bird, S.: NLTK: the natural language toolkit. In: Proceedings of COLING/ACL
on Interactive Presentation Sessions, COLING-ACL 2006, pp. 69–72 (2006)

4. Cheatham, M., Dragisic, Z., Euzenat, J., Faria, D., Ferrara, A., Flouris, G., Fundu-
laki, I., Granada, R., Ivanova, V., Jiménez-Ruiz, E., et al.: Results of the ontology
alignment evaluation initiative 2015. In: 10th ISWC Workshop on Ontology Match-
ing (OM), pp. 60–115. No commercial editor (2015)

5. Chortaras, A., Stamou, G., Stafylopatis, A.: Learning ontology alignments using
recursive neural networks. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.)
ICANN 2005. LNCS, vol. 3697, pp. 811–816. Springer, Heidelberg (2005). doi:10.
1007/11550907 128

6. Djeddi, W.E., Khadir, M.T.: Ontology alignment using artificial neural network
for large-scale ontologies. Int. J. Metadata Semant. Ontol. 16 8(1), 75–92 (2013)

7. Ehrig, M.: Ontology Alignment: Bridging the Semantic Gap (Semantic Web and
Beyond). Springer-Verlag New York, Inc., Secaucus (2006)

8. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag New York, Inc.,
Secaucus (2007)

9. Faria, D., Pesquita, C., Balasubramani, B.S., Martins, C., Cardoso, J., Curado,
H., Couto, F.M., Cruz, I.F.: OAEI 2016 results of AML. In: Ontology Matching,
p. 138 (2016)

10. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweeten-
ing ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW
2002. LNCS, vol. 2473, pp. 166–181. Springer, Heidelberg (2002). doi:10.1007/
3-540-45810-7 18

11. Grieco, B.P.A., Lima, P.M.V., De Gregorio, M., França, F.M.G.: Producing pattern
examples from “mental” images. Neurocomputing 73(7–9), 1057–1064 (2010)

12. Oberle, D., Grimm, S., Staab, S.: An ontology for software. In: Staab, S., Studer,
R. (eds.) Handbook on Ontologies, pp. 383–402. Springer, Berlin (2009). doi:10.
1007/978-3-540-92673-3 17

13. Oberle, D., Grimm, S., Staab, S.: What is an ontology? In: Handbook on Ontolo-
gies, pp. 383–402 (2009)

14. Oberle, D., Lamparter, S., Grimm, S., Vrandečić, D., Staab, S., Gangemi, A.:
Towards ontologies for formalizing modularization and communication in large
software systems. Appl. Ontol. 1(2), 163–202 (2006)

15. Rangel, F., Vieira, P.L.M., Oliveira, J.: Semi-supervised classification of social
textual data using wisard. In: Proceedings of ESANN 2016 (2016)

16. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

17. Staffa, M., Rossi, S., Giordano, M., Gregorio, M.D., Siciliano, B.: Segmentation
performance in tracking deformable objects via WNNs. In: 2015 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2462–2467 (2015)

18. Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications.
Knowl. Eng. Rev. 11, 93–136 (1996)

http://dx.doi.org/10.1007/11550907_128
http://dx.doi.org/10.1007/11550907_128
http://dx.doi.org/10.1007/3-540-45810-7_18
http://dx.doi.org/10.1007/3-540-45810-7_18
http://dx.doi.org/10.1007/978-3-540-92673-3_17
http://dx.doi.org/10.1007/978-3-540-92673-3_17

384 T. Viana et al.

19. Viana, T.N., Abdelhay, P., da Silva, J.C.P., Delgado, C.A.D.M.: AlgPedia: the free
algorithms encyclopedia (2014). http://algpedia.dcc.ufrj.br/

20. Viana, T., da Silva, J.C.P., Delgado, C., Martins, C.E.S., Gouvêa, F.R.: Collab-
orative encyclopedia of algorithms - AlgPedia. In: 25o WEI - Workshop sobre
Educação em Computação - CSBC, 2017, São Paulo - SP. Anais do 25o WEI -
Workshop sobre Educação em Computação - CSBC, pp. 2277–2286 (2017)

http://algpedia.dcc.ufrj.br/

Marine Safety and Data Analytics: Vessel Crash
Stop Maneuvering Performance Prediction

Luca Oneto1(B), Andrea Coraddu2, Paolo Sanetti1, Olena Karpenko3,
Francesca Cipollini1, Toine Cleophas3, and Davide Anguita1

1 DIBRIS, University of Genoa, Genoa, Italy
{luca.oneto,paolo.sanetti,francesca.cipollini,davide.anguita}@unige.it

2 School of Marine Science and Technology, Newcastle University,
Newcastle upon Tyne, UK

andrea.coraddu@newcastle.ac.uk
3 DAMEN Shipyards Gorinchem, Gorinchem, The Netherlands

{olena.karpenko,toine.cleophas}@damen.com

Abstract. Crash stop maneuvering performance is one of the key indi-
cators of the vessel safety properties for a shipbuilding company. Many
different factors affect these performances, from the vessel design to the
environmental conditions, hence it is not trivial to assess them accu-
rately during the preliminary design stages. Several first principal equa-
tion methods are available to estimate the crash stop maneuvering per-
formance, but unfortunately, these methods usually are either too costly
or not accurate enough. To overcome these limitations, the authors pro-
pose a new data-driven method, based on the popular Random Forests
learning algorithm, for predicting the crash stopping maneuvering per-
formance. Results on real-world data provided by the DAMEN Shipyards
show the effectiveness of the proposal.

Keywords: Marine safety · Vessel maneuvering · Crash stop · Data-
driven methods · Random forests · Performance assessment · Perfor-
mance estimation

1 Introduction

Shipping is one of the most safety critical industry [15]. For this reason, as
reported in [16,17], the vessel’s design has to ensure that the craft should be
controllable and be capable of maneuvering securely up to the critical design
conditions. In this paper, the authors focus their attention on a particular safety
related maneuver which is the crash stop. The goal is to predict, at design
stage, the crash stop main characteristics, for the preliminary assessment of
safety requirement imposed by the classification society [14]. The crash stop
maneuvering is usually performed to avoid any collision or crashing of a ship into
any other ship or structure. During this maneuver, the main engine is subjected
to severe stress and loading since it involves slowing, stopping and reversing the
direction as fast as possible.
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 385–393, 2017.
https://doi.org/10.1007/978-3-319-68612-7_44

386 L. Oneto et al.

The assessment of the ship crash stop maneuver plays a crucial role in the
marine engineering field. Several first principal equation methods are available
to estimate the crash stop performance [12,18,20,21,25], but the latter are either
too complex [18,25] or not accurate enough [20] due to the complexity of the
system. To increase their accuracy, several parameters need to be provided by
the different manufacturer of the vessel components, and finally, models need
to be fine tuned based on the outcomes of several sea trials which makes the
process costly, time-consuming, and not applicable at design stage [18]. More-
over, suppliers are usually not willing to share technical details which may harm
their industrial competitive advantages.

In this paper, the authors propose a new fully data-driven method based on
Random Forests (RF), a state-of-the-art powerful learning algorithm, first devel-
oped in [4] and then recently improved in [3], for predicting the crash stopping
performance. Data-driven methods, instead of relying on the physical knowledge
about the system, build upon historical data collected about a phenomenon to
build a model which can easily take into account many different sources of infor-
mation which cannot be easily modeled with first principle equations. RF are
usually preferred to other classification techniques, because of their high numer-
ical robustness, their innate capacity of dealing with numerical and categorical
features, and their effectiveness in many real-world problems [10,24]. By care-
fully tuning the RF hyperparameters [22] and by assessing the performance of
the final learned model with state-of-the-art resampling techniques [2], authors
will show the effectiveness of the proposal.

In summary, the paper contribution is twofold. From a marine engineering
perspective, the paper deals with the problem of the prediction of the crash
stop main characteristics without taking into account the physical laws that are
governing the phenomenon. In fact, authors proposal does not require any a-
priory knowledge about the problems and allows to exploit information sources
which cannot be modeled with conventional approaches. From a data analytics
perspective, this paper proposes an alternative RF formulation and shows that
a careful tuning procedure of the RF hyperparameters can remarkably improve
its performance. Results on real-world data coming from the DAMEN Shipyards
demonstrate the effectiveness of the proposal. In particular, DAMEN, in its
many years of vessels production, conducted several sea trials to measure vessels
general seaworthiness and performance. For this application, the authors used a
particular cluster of DAMEN vessels, the High-Speed Craft family [8], as a test
case.

2 Vessel Crash Stop Maneuvering

As reported in [1] the stopping ability of a vessel is measured by three main
parameters: the Track Reach (TR), the Head Reach (HR) and the Time for Full
Maneuver (or time to dead in water) TFM. Also the Lateral Deviations (LD),
Lateral Deviation Direction (LDD), and Heading Deviation Direction (HDD)
are parameters of interest, but they are more sensitive to initial conditions and

Vessel Crash Stop Maneuvering Performance Prediction 387

wind disturbances. The crash stop maneuver consists in a stop engine full astern
performed after a steady approach at the test speed until the vessel starts going
backwards. TR is defined as a distance along the vessel track that the vessel
covers from the moment that the full astern command is given until ahead speed
changes sign. The HR, instead, is the distance along the direction of the course
at the moment when the full astern command is given. The distance is measured
from the moment when the full astern command is given until the vessel is
stopped dead in the water. The LD is defined as the distance perpendicular to
the direction of the course at the moment when the full astern command is given.
Also this distance is measured from the moment when the full astern command
is given until the vessel is stopped dead in the water. Figure 1 shows the meaning
of each parameter.

Fig. 1. Crash stop maneuver performance indexes.

The main parameters of the crash stop maneuver are evaluated by means of
the full-scale trials. At design stage, in order to assess the maneuvering charac-
teristics both in trail and full load conditions, reliable methods should be applied.
These methods should ensure satisfactory accuracies for the prediction of new
vessels and satisfactory extrapolation of trial results to the full load condition.
As reported in [12], the factors which affect the stopping ability of vessels are the
vessel displacement, the initial speed, the block coefficient, the vessel hull fouling
degree, the main engine full astern power, the time taken to effect changes in
engine telegraph settings, the propeller category, and the environmental condi-
tions (e.g. wind, stream, and the depth of water). During this maneuvers, the
interactions between hull and propeller(s) are quite complex to be modeled.
For this reason, empirical calculations of its characteristics are used when ade-
quate motion equation coefficients are not available for simulation [18,20]. In
this paper the authors focused their attention only on the crash stop from maxi-
mum operational speed and any transient mode speed according to the available
data provided to DAMEN Shipyards. To prove the effectiveness of the new data-
driven approach, authors focused on a particular cluster of DAMEN vessels, the
High-Speed Craft (HSC) family [8], but the method is general and the data can
be easily retrieved by any shipbuilder. The total amount of the vessels is 230
divided into four product clusters: Fast Crew Supplier, Search And Rescue, Stan

388 L. Oneto et al.

Pilot and Stan Tender. For each product cluster, different products (vessel type)
are available, each one characterized by several yard numbers. Every single yard
number can perform several crash stop maneuvers. For each of the vessels, the
information reported in Table 1 is available. During the trials, the maneuvers are
digitally recorded using advanced portable measurement equipment. Therefore,
the goal is to predict, based on the information of Table 1, available at design
stages, the crash stop maneuver performance indexes (TR, HR, TFM, LD, LDD,
and HDD).

3 Proposed Data Driven Approach

In this section, the authors will present the proposed data-driven vessel crash
stop maneuvering performance prediction system.

Let authors consider the supervised learning framework where an input space
X = X1 × · · · × Xd, composed of d features, and an output space Y are avail-
able [23]. Xi can be a categorical feature space Xi = {c1i , · · · , c

nci
i } or a real

valued feature space Xi ⊆ R (see Table 1). Analogously, also Y can be a binary
valued output space Y = {±1} (LDD and HSS) or real valued output space
Y ⊆ R (TR, HR, TFM, and LD). Based on the type of output space the asso-
ciated learning problem is called binary classification or regression respectively
[23]. In the supervised learning framework, the goal is to estimate the unknown
rule μ : X → Y which associates an element Y ∈ Y to an element X ∈ X .
Note that, in general, μ can be non-deterministic [23] and some components
of X may be missing (errors in the measurements, careless operators, etc.) [9].
In this case, if the missing value is located in a categorical feature, an addi-
tional category for missing values is introduced on those features. If, instead,
the missing value is associated to a numerical feature, as suggested in [9], that
missing value is replaced with the mean value of that feature and an addi-
tional logical feature is introduced to indicate if the value of that feature for
a particular sample is missing or not. An ML technique estimates μ through
a learning algorithm AH : Dn × F → f , characterized by its set of hyper-
parameters H, which maps a series of examples of the input/output relation,
contained in a datasets of n samples Dn : {(X1, Y1) , · · · , (Xn, Yn)} sampled i.i.d
from μ, into a function f : X → Y. The error that f commits, in approxi-
mating μ, is measured with reference to a loss function � : X × Y × F → [0,∞)
through the empirical error. Note that, for binary classification problems, authors
will make use of the hard loss function which counts the number of errors
�H(f(X), Y) = [f(X) �= Y] ∈ {0, 1} [23] and for regression the truncated
relative absolute error �TRAE(f(X), Y) = min[1, |f(X) − Y |/|Y |] ∈ [0, 1] will
be exploited [7]. The purpose of any learning procedure is to select the best
set of hyperparameters H such that the expected error L(f) = Eμ�(f(X), Y),
which unfortunately is unknown since μ is unknown, is minimum. Since L(f)
is unknown, the empirical error ̂LDn(f) = 1/n

∑

(X,Y)∈Dn
�(f(X), Y) must be

exploited in order to estimate it.
In this paper A is a RF because of their high numerical robustness, native

capacity of dealing with numerical and categorical features, and effectiveness in

Vessel Crash Stop Maneuvering Performance Prediction 389

Table 1. Available vessels information.

Variable name Unit Variable name Unit Variable name Unit

Product Cluster [] Draught aftmark [m] Waterplane area [m2]
Product [] Draught foremark [m] Waterplane area inertia (x-axis) [m4]
Yard Number [] Static trim [m] Waterplane area inertia (y-axis) [m4]
Location [] Displacement [tons] Waterline length [m]
Country [] Longitudinal center of gravity [m] Waterline breadth [m]
Trial Engineer [] Number of driveline [] Midship section area [m2]
Orientation [] Propeller diameter [m] Wetted surface [m2]
Crash Stop type [] Number of propeller blades [] Midship draught [m]
Initial vessel speed [knots] Blade area ratio [] Roll angle [deg]
Initial heading [] Engine break power [kW] Pitch angle [deg]
Initial Engine Speed [rpm] Engine speed [rpm] Longitudinal center of floatation [m]
Heading Deviation [deg] Gearbox reduction ratio [] Transversal center of floatation [m]
Propeller mass [kg] Propeller inertia in air [kg

m4] Propeller inertia in water [kg

m4]

Under Keel Clearance [m] Water Density [kg

m3] Main engine type []
Rotative efficiency (design) [] Design vessel speed [knots]Main engine nominal power [kW]
Wave Height [m] Design wake factor [] Gearbox manufacturer []
Wave Direction [deg] Design propeller pitch [] Gearbox type []
Wind Velocity [m/s] Volume [m3] Main engine nominal speed [rpm]
Wind Direction [bar] Longitudinal center of buoyancy [m] Propeller manufacturer []
Current velocity [knots] Transversal center of buoyancy [m] Propeller type []
Current direction [deg] Vertical center of buoyancy [m] Propeller diameter [m]
Loading condition [] Vertical center of gravity [m] Propeller number of blades []

many real-world classification problems [3,4]. The original RF learning phase of
each of the nt trees {T1, · · · , Tnt

} composing the RF is quite simple [4]. From
Dn, �bn� samples are sampled with replacement and D′

�bn� is built. A tree is
constructed with D′

�bn� but the best split is chosen among a subset of nv features
over the possible d features randomly chosen at each node. The tree is grown until
the node contains a maximum of nl samples. During the classification phase of
a previously unseen X, each tree classifies X in a class Yi∈{1,··· ,nt}, and then the
final classification is the {p1, · · · , pnt

}-weighted combination of all the answers of
each tree of the RF. The empirical error of the tree T built based on D′

�bn� over

the out of bag data Dn\D′
�bn� is defined as ̂Loob(T). p{i∈1,··· ,nt} are of paramount

importance for the accuracy of an ensemble classifier [11,19] and for this reason
authors will exploit a state-of-the-art alternative proposed in [5] and recently
further developed in [19,22] where pi = e−γ̂Loob(T) with γ ∈ [γ,∞). If γ = 0,
b = 1, nv =

√
n, and nl = 1 we get the original RF formulation [4]. RF have been

recently improved in [3] which proposes to avoid the initial bootstrapping and
the subset feature selection at each node construction of the trees by replacing it
with a random rotation of the numerical feature space before learning each tree
of the forest. Note that, since rotations can be sensitive to scale in general and to
outliers in particular, the RF developed in [3] need to scale the numerical feature
space. As suggested by the results in [3], the simple scaling of each feature in
the range [0, 1] should be adopted. In this paper, authors propose to use the
RF learning algorithm reported in Algorithm 1 which merges the original RF
formulation [4] with the most recent one of [3]. In particular, authors propose to
use the learning strategy proposed in [4] by also including the random rotation
proposed in [3] in order to get the benefits of both approaches. Note that in
Algorithm 1 the rotation does not change at each tree but every nr trees in
order to reduce the computational requirements of the RF with respect to [3].

In order to tune, in a data dependent manner, the different hyperparameters
of the RF of Algorithm 1 and to estimate the performance of the final model,

390 L. Oneto et al.

Algorithm 1. RF learning algorithm: learning and forward phases.
/* Learning phase */

Input: Dn, nt, γ, b, nv , nr , and nl
Output: A set of tree {T1, · · · , Tnt }

1 for i ← 1 to nt do
2 if i − �i/nr�nr = 1 then
3 Θ = random rotation matrix defined in [3];
4 Dr

n = rotate the numerical features space Dn based on Θ;

5 D′
�bn� sample with replacement �bn� sample from Dr

n;

6 Ti.Θ = Θ; Ti.T = DT(D′
�bn�, nv, nl); Ti.p = Exp[−γ ̂Loob(Ti.T)];

/* Forward phase */

Input: X, nt
Output: Y

7 for i ← 1 to nt do
8 Xr = rotate X based on Ti.Θ; Yi = Ti.T (Xr);
9 if Classification Task then Y = arg maxj∈{1,··· ,c}

∑

i∈{1,··· ,nt}:Yi=j Ti.p ;

10 if Regression Task then Y =
∑nt

i=1 Yi · Ti.p ;

/* Functions */

11 function T = DT(Dn, nv, nl);
12 if n ≤ nl then
13 T.l = mode({Y ∈ Dn}) ;
14 else

15 Split Dn in D′
n′ and D′′

n′′ based on the best split over a random subset of size nv of all the features ;

16 T.s = s; T.T ′ = DT(D′
n′ , nv, nl); T.T ′′ = DT(D′′

n′′ , nv, nl);

the nonparametric Bootstrap (BOO) is exploited [2]. BOO relies on a simple
idea: the original dataset Dn is resampled once or many (no) times with replace-
ment, to build three independent datasets called training, validation, and test
sets, respectively Lo

l , Vo
v , and T o

t , with o ∈ {1, · · · , no}. Note that Lo
l ∩ Vo

v = �,
Lo

l ∩ T o
t = �, and Vo

v ∩ T o
t = �. Then, in order to select the best set of hyper-

parameters H in the set of possible ones H = {H1,H2, · · · } for the algorithm
AH or, in other words, to perform the performance tuning phase, the following
procedure needs to be applied:

H∗ : arg minH∈H
1

no

∑no

o=1
̂LVo

v (AH(Lo
l)). (1)

Since the data in Lo
l are i.i.d. with respect to the ones in Vo

v , the idea is that H∗

should be the set of hyperparameters which allows to achieve a small error on a
data set that is independent from the training set. The uncertainty quantifica-
tion, instead, is performed as follows [2,13]:

L(AH∗(Dn)) ≤ ̂L(AH∗(Dn)) +
√

log(1
δ)

2t , ̂L(AH∗(Dn)) = 1
no

∑no

o=1
̂LT o

t (AH∗(Lo
l ∪ Vo

v))
(2)

where the bound holds with probability (1 − δ). Note that after the best set of
hyperparameters is found, one can select the best model by training the algo-
rithm with the whole data set AH∗(Dn) [2] and since the data in Lo

l ∪ Vo
v

are i.i.d. with respect to T o
t it follows that ̂LT o

t (AH∗(Lo
l ∪ Vo

v)) is an unbiased
estimator of L(A(Dn,H∗)). Then, any concentration result can be used, like the
Hoeffding inequality [13], for bounding the bias between the expected value and
its empirical estimator. Note that, in the BOO, l = n and Lo

l must be sampled
with replacement from Dn, while Vo

v and T o
t are sampled without replacement

from Dn \ Lo
l .

Vessel Crash Stop Maneuvering Performance Prediction 391

Finally, note that in this paper authors set nt as large as possible. Since the
performance of the RF always increases by increasing nt [3,4] we stop increasing
nt when the performance of the RF stops to increase.

4 Results

In this section, authors report the results of applying the techniques proposed
in Sect. 3 to the problem described in Sect. 2, based on the data provided
by DAMEN Shipyards and outlined in the same section. In particular three
approaches have been compared:

– ORF: the original RF proposed in [4];
– RFR: the RF proposed in [3] which improve over the ORF;
– PRF: the RF algorithms proposed in this paper (see Algorithm 1) where

their hyperparameters have been tuned with the BOO procedure described
in Sect. 3.

For what concerns PRF authors set H = {γ, b, nv, nr, nl} and H = {10−4.0,
10−3.5, · · · , 103.0} × {0.7, 0.8, · · · , 1.2} × d{0.0,0.1,··· ,1} × {1, 10, 100} ×
n·{0.0, 0.01, 0.05, 0.1}, no = 100 in the BOO procedure, and nt = 103 since
larger values did not produce any improvement in the accuracies of ORF, RFR,
and PRF in any of the experiments.

Moreover, three different scenarios have been investigated:

– S1: authors kept different yard number in each of the sets Lo
l , Vo

v , and T o
t . In

this way in the training set both examples of different products and different
product clusters are present;

– S2: authors kept different products in each of the sets Lo
l , Vo

v , and T o
t . In this

way the case when a new product needs to be designed is simulated;
– S3: authors kept different product clusters in each of the sets Lo

l , Vo
v , and T o

t .
In this way, the case when a new series of products needs to be designed is
simulated.

Note that S1 is a simpler task with respect to S2, which is again a simpler task
with respect to S3. In fact, authors try to simulate the increasingly difficult
task to extrapolate the performance indexes of a vessel, which is more and more
different with respect to the vessels contained in the training set.

In Table 2 is reported ̂L(AH∗(Dn)) and L(AH∗(Dn)) in percentage respec-
tively for ORF, RFR, and PRF in S1, S2, and S3 where δ = 0.05. From the
results it is possible to observe that:

– PRF mostly outperform ORF and RFR as expected;
– ̂L(AH∗(Dn)) and L(AH∗(Dn)) are close with each other and this means that

it is possible to guarantee a quality of the estimation which is close enough
to the expected quality of the produced data-driven model;

– as expected, the performances in S1 are better than the ones in S2 and S3.
Nevertheless, even in S2 an S3 the performances of PRF are quite satisfying
since the errors are around 5%. Note, instead, that for S3, ORF and RFR
cannot be used in a real-world application because of their low accuracies.

392 L. Oneto et al.

Table 2. ̂L(AH∗(Dn)) and L(AH∗(Dn)) of ORF, RFR, PRF in S1, S2, S3 (in %).

̂L(AH∗ (Dn)) Loss S1 S2 S3
Function ORF RFR PRF ORF RFR PRF ORF RFR PRF

TR �TRAE 3.9±0.4 3.1±0.3 2.7±0.3 10.2±1.0 4.0±0.4 3.1±0.4 12.9±1.4 3.9±0.4 3.7±0.4
HR �TRAE 3.7±0.4 3.0±0.3 2.7±0.3 10.8±1.1 4.3±0.4 3.3±0.3 13.3±1.1 4.0±0.4 4.0±0.4
LD �TRAE 30.8±3.2 12.2±1.1 2.9±0.3 37.1±3.9 14.9±1.6 5.0±0.5 36.1±3.7 14.5±1.4 5.4±0.5

TFM �TRAE 3.8±0.4 3.1±0.3 2.7±0.3 12.2±1.2 4.9±0.5 4.9±0.5 12.6±1.2 5.0±0.5 5.0±0.5
LDD �H 7.1±0.8 5.7±0.6 4.3±0.5 10.3±1.1 6.2±0.7 5.3±0.6 26.7±3.1 8.0±0.7 3.9±0.4
HDD �H 8.2±0.9 5.7±0.6 4.1±0.4 11.7±1.2 7.1±0.7 4.7±0.4 25.6±2.4 7.7±0.9 3.9±0.4

L(AH∗ (Dn)) Loss S1 S2 S3
Function ORF RFR PRF ORF RFR PRF ORF RFR PRF

TR �TRAE 7.1±0.7 5.8±0.5 5.2±0.6 14.2±1.3 7.1±0.7 5.8±0.6 17.6±1.7 7.1±0.7 6.5±0.6
HR �TRAE 6.5±0.7 5.8±0.6 5.2±0.4 15.3±1.7 7.7±0.8 6.5±0.6 18.1±1.9 7.1±0.8 7.1±0.8
LD �TRAE 36.8±3.7 16.5±1.7 5.8±0.5 43.0±3.7 19.8±2.0 8.3±0.9 42.0±4.6 19.2±1.9 8.9±0.9

TFM �TRAE 7.1±0.6 5.8±0.6 5.2±0.5 16.5±1.6 8.3±1.1 8.3±0.9 17.0±1.8 8.3±0.9 8.3±0.8
LDD �H 10.7±1.2 8.9±0.8 7.7±0.7 14.8±1.5 9.5±0.9 8.9±1.0 32.1±3.6 11.9±1.3 7.1±0.8
HDD �H 11.9±1.3 8.9±0.9 7.1±0.7 15.9±1.7 10.7±1.0 7.7±0.7 31.1±3.7 11.3±1.2 7.1±0.8

5 Conclusions

In this paper, authors developed a series of data-driven models able to estimate
the vessel safety properties during the preliminary design stages. In particular,
authors have proposed a vessel crash stop maneuvering performance prediction
which can accurately predict the results of this safety test. To achieve this goal,
authors proposed to use a recent improvement of the RF learning algorithm and
show that an accurate tuning procedure can remarkably improve their predictive
power. Results on real-world data, collected and provided by the DAMEN Ship-
yards, demonstrate the effectiveness of the proposal which is already exploited
in DAMEN for the realization of new High-Speed Craft vessels. This work is
a step forward in the direction of a smart and safe ship design since it allows
to better forecast the safety properties of a ship before its production. As a
future work, authors plan to derive new predictive models able to both take into
account the principal equation methods and the data driven ones, analogously
to [6], to obtain even more accurate models able to provide more insights on the
ship safety properties.

References

1. ABS: Guide for vessel manoeuvrability (2006)
2. Anguita, D., Ghio, A., Oneto, L., Ridella, S.: In-sample and out-of-sample model

selection and error estimation for support vector machines. IEEE TNNLS 23(9),
1390–1406 (2012)

3. Blaser, R., Fryzlewicz, P.: Random rotation ensembles. JMLR 2, 1–15 (2015)
4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
5. Catoni, O.: Pac-Bayesian Supervised Classification. Institute of Mathematical Sta-

tistics (2007)
6. Coraddu, A., Oneto, L., Baldi, F., Anguita, A.: Ship efficiency forecast based on

sensors data collection: Improving numerical models through data analytics. In:
OCEANS 2015-Genova (2015)

7. Coraddu, A., Oneto, L., Baldi, F., Anguita, D.: Vessels fuel consumption forecast
and trim optimisation: a data analytics perspective. Ocean Eng. 130, 351–370
(2017)

Vessel Crash Stop Maneuvering Performance Prediction 393

8. Damen: http://products.damen.com/en/clusters/crew-supply-vessel
9. Donders, A.R.T., van der Heijden, G.J.M.G., Stijnen, T., Moons, K.G.: Review:

a gentle introduction to imputation of missing values. J. Clin. Epidemiol. 59(10),
1087–1091 (2006)

10. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds
of classifiers to solve real world classification problems? JMLR 15(1), 3133–3181
(2014)

11. Germain, P., Lacasse, A., Laviolette, F., Marchand, M., Roy, J.F.: Risk bounds for
the majority vote: from a PAC-Bayesian analysis to a learning algorithm. JMLR
16(4), 787–860 (2015)

12. Harvald, S.A.: Factors affecting the stopping ability of vessels. J. Int. Shipbuild.
Prog. 23(260), 106–121 (1976)

13. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

14. Hoppe, H.: International regulations for high-speed craft an overview. In: Interna-
tional Conference on Fast Sea Transportation (2005)

15. IMO: Maritime safety. http://www.imo.org/
16. IMO: Resolution MSC.36(63). International Code of Safety for High-Speed Craft

(1994)
17. IMO: Resolution MSC.97(73). International Code of Safety for High-Speed Craft

(2000)
18. Langxiong, G., Liangming, L., Yuangzhou, Z., Baogang, Z.: A new method for

accurate prediction of ship’s inertial stopping distance. Res. J. Appl. Sci. Eng.
Technol. 18(6), 3437–3440 (2013)

19. Lever, G., Laviolette, F., Shawe-Taylor, F.: Tighter PAC-Bayes bounds through
distribution-dependent priors. Theoret. Comput. Sci. 473, 4–28 (2013)

20. Ming, L., Liu, J.X., Yang, S.: A new method on calculation of vessels stopping
distance and crash stopping distance. Adv. Mater. Res. 779, 800–804 (2013)

21. Okamoto, H., Tanaka, A., Nozawa, K., Saito, Y.: Stopping abilities of vessels
equipped with controllable pitch propeller. J. Int. Shipbuild. Prog. 21(235), 53–69
(1974)

22. Orlandi, I., Oneto, L., Anguita, D.: Random forests model selection. In: ESANN
(2016)

23. Vapnik, V.N.: Statistical Learning Theory. Wiley, Hoboken (1998)
24. Wainberg, M., Alipanahi, B., Frey, B.J.: Are random forests truly the best classi-

fiers? JMLR 17(110), 1–5 (2016)
25. Wirz, D.I.F.: Optimisation of the crash-stop manoeuvre of vessels employing slow-

speed two-stroke engines and fixed pitch propellers. J. Mar. Eng. Technol. 11(1),
35–43 (2012)

http://products.damen.com/en/clusters/crew-supply-vessel
http://www.imo.org/

Combining Character-Level Representation
for Relation Classification

Dongyun Liang(B), Weiran Xu, and Yinge Zhao

PRIS, Beijing University of Posts and Telecommunications, Beijing, China
{dongyunliang,xuweiran}@bupt.edu.cn, yingezhao@outlook.com

Abstract. Word representation models have achieved great success in
natural language processing tasks, such as relation classification. How-
ever, it does not always work on informal text, and the morphemes of
some misspelling words may carry important short-distance semantic
information. We propose a hybrid model, combining the merits of word-
level and character-level representations to learn better representations
on informal text. Experiments on the SemEval-2010 Task8 dataset for
relation classification show that our model achieves a competitive result.

Keywords: Word embedding · Character-level representation · Rela-
tion classification · Recurrent neural network · Highway network

1 Introduction

Deep learning has made significant progress in natural language processing, and
most of approaches treat word representation as the cornerstone. Though it is
effective, word-level representation is inherently problematic: it assumes that
each word type has its own vector that can vary independently; most words
only occur once in training data and out-of-vocabulary (OOV) words cannot
be addressed. A word may typically include a root and one or more affixes
(rock-s, red-ness, quick-ly, run-ning, un-expect-ed), or more than one root in a
compound (black-board, rat-race). It is reasonable to assume that words which
share common components (root, prefix, suffix) may be potentially related, while
word-level representation considers each word separately. On the other hand,
new words enter English from every area of life, e.g. Chillaxing - Blend of chill-
ing and relaxing , represent taking a break from stressful activities to rest or
relax. Whereas the vocabulary size of word-level model is fixed beforehand, out-
of-vocabulary or rare words in training data are mapped to a common type
‘UNKNOWN’ to constrain memory requirements when training neural network
models, and the lack of these word representations may lose important semantic
information.

Especially on informal text, the problems of word-level representation will
be amplified and hard to ignore. Some approaches use lexical resources, such
as WordNet [1], or segment each word to infer its components (root, prefix,
suffix) to build orthographically aware model, however, it entailed extra work
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 394–401, 2017.
https://doi.org/10.1007/978-3-319-68612-7_45

Combining Character-Level Representation for Relation Classification 395

to increase handcrafted features. Recently, character-level representation, which
takes characters as atomic units to derive the embeddings, demonstrates that it
can memorize the arbitrary aspects of word orthography. Parameters of these
simple model are less, and it will be not ideal when processing long sentence.
Combining word-level and character-level representations attempts to overcome
the weaknesses of the two representations.

We utilize a Bidirectional Gated Recurrent Unit (Bi-GRU) [2] and Convo-
lutional Neural Networks (CNN) to capture two-level semantic representations
respectively. While character-level information is likely to be drowned out by
word-level information if simply connected, we adopt Highway Networks [3]
to balance both. To evaluate our model, we evaluate on a public benchmark:
SemEval-2010 Task8.

2 Related Work

Some works [4,5] started to learn semantic representations of word by unsu-
pervised approaches. Recently, relation classification has focused on neural net-
works. CNN [6,7] is used to learn patterns of relations from raw text data to
make representative progress, but a potential problem of that is that CNN is not
suitable for learning long-distance semantic information. Some models [8,9] lever-
aged the shortest dependency path (SDP) between two nominals. Others [10,11]
employed attention mechanism to capture more important semantic information.

Working to a new dataset KBP37, Zhang and Wang [12] proposed a frame-
work based on a bidirectional Recurrent Neural Network (RNN). However, all
these methods depend on learning word-level distributed representation without
utilizing morphological feature.

Recent work captures word orthography using character-based neural net-
works. Zhang et al. demonstrated the effectiveness of character-level CNN [13]
in text classification. Kim et al. [14] employed CNN and a highway network to
learn rich semantic and orthographic features from encoding characters. There
were some models [15,16] based on RNN structures, which can memorize arbi-
trary aspects of word orthography over characters.

Nakov and Tiedemann [17] combined character-based transliteration with a
word-level translation model for machine translation, but their work still trained
on n-gram aligned characters.

Inspired by these, our model uses multi-channel GRU units and CNN archi-
tecture to learn the representations of word-level and character-level, and project
it to a softmax output layer for relation classification.

3 Model

As shown in Fig. 1, the architecture of our model contains four components:

1. Input: look up the embedding matrices of words and characters in sequence
respectively to obtain input vectors;

396 D. Liang et al.

Fig. 1. Hybrid model that combines character-level representation.

2. Word-level representation: process word vector of the sequence by a Bi-GRU
layer;

3. Character-level representation: apply convolution to character vector of the
sequence, and followed by a GRU layer;

4. Combination: concatenate the word-level representation with character-level
representation, and pass them through a Highway Network [3].

The model learns word-level and character-level representations respectively, and
combines them with interaction to get the final representation.

3.1 Word-Level

Given a relation sentence consisting of words w1, w2, . . . , wm, each wi is defined
as a one hot vector 1wi

, with value 1 at index wi and 0 in all other dimensionality.
We multiply a matrix PW ∈ R

dw×|V | by 1wi
to project the word wi into its word

embedding xi, as with a lookup table:

xi = PWwi (1)

where dw is the size of word embedding and V is the vocabulary of training set.
Then input the x1, x2, . . . , xm sequence to a Bi-GRU network iteratively. Each
GRU unit applies the following transformations:

rt = σ(Wrxt + Urht−1 + br)
zt = σ(Wzxt + Uzht−1 + bz)

ht = (1 − zt) � ht−1 + zt � ˜ht

˜ht = tanh(Whxt + Uh(rt � ht−1) + bh)

(2)

where zt is a set of update gates, rt is a set of reset gates and � is an element-wise
multiplication. Wr,Wz,Wh and Ur, Uz, Uh are weight matrices to be learned, and
˜ht is the candidate activation. We use element-wise sum to combine the forward
and backward pass final states as word-level representation: hw

m = [
−→
hm +

←−
h0].

Combining Character-Level Representation for Relation Classification 397

3.2 Character-Level

To capture morphological features, we use convolutions to learn local n-gram
features at the lower network layer. At the higher layer, we build a GRU to
obtain the long range dependency.

As character-level input, original sentence is decomposed into a sequence
of characters, including special characters, such as white-space. We first project
each character into a character embedding xi by a lookup table whose mechanism
is exactly as Eq. 1.

Given the x1, x2, . . . , xn embedding sequence, we compose the matrix Dk ∈
R

kdc×n to execute convolutions with same padding:

Ck = tanh(W k
conDk) (3)

where dc is the size of word embedding and each column i in Dk consists of
the concatenation of vectors (i.e. k embeddings centered at the i-th character),
W k

con is a weight matrix of convolution layer, and Ck ∈ R
c×n is the output of

the convolution with c filters. We use p groups of filters with varying widths to
obtain n-gram feature, and concatenate them by column:

C = Ck1 ⊕ Ck2 ⊕ . . . ⊕ Ckp (4)

The next step, ci, . . . , cn denoted by the column vector of C are fed as input
sequence to a forward-GRU network (Eq. 2), and we pick up final states activa-
tion hc

n as character-level representation.

3.3 Combination

Instead of fully connected network layer, we utilize Highway Networks to empha-
size impact of character level. Highway can be used to adaptively copy or trans-
form representations, even when large depths are not required. We apply this
idea to retain some independence of word and character when merging with
interaction. Let h∗ be the concatenation of hw

m and hc
n, The combination z is

obtained by the Highway Network:

z = t � g(WHh∗ + bH) + (1 − t) � h∗

t = σ(WTh∗ + bT)
(5)

where g is a nonlinear function (tanh), t is referred to as the transform gate, and
(1 − t) as the carry gate. WT and WH are square weight matrices, and bT and
bH are bias vectors.

3.4 Training

Training our model for classifying sentence relation is a processes to opti-
mizing the whole parameters θ of network layers. Given an input sentence

398 D. Liang et al.

X and the candidate set of relation Y , the classifier returns output ŷ =
arg maxy∈Y p(y|X, θ).

We let the combination vector z through a softmax layer to give the distrib-
ution y = softmax(Wfz + bf).

The training objective is the penalized cross-entropy loss between predicted
and true relation:

J(θ) = − 1
N

N
∑

i=1

m
∑

j=1

ti,j log(yi,j) + λ‖θ‖2F (6)

where N is the mini-batch size, m is the size of relation set, t ∈ R
m denotes the

one-hot represented ground truth, yi,j is the predicted probability that the i-th
sentence belongs to class j, and λ is a coefficient of L2 regularization.

4 Experiments

4.1 Dataset

We evaluate our model on SemEval-2010 Task8 dataset. This dataset is an estab-
lished benchmark for relation classification containing 9 directional relations and
an Other class. For instance, Cause-Effect(e1,e2) and Cause-Effect(e2,e1) are
distinct relations with directionality taken into account.

The following sentence contains an example of the Cause-Effect relation
between the nominals singer and commotion, and there are four position indi-
cators which specify start and end of the nominals.

The <e1> singer <e1/>, who performed three of the nominated songs, also
caused a <e2> commotion <e2/> on the red carpet.

The former 9 relations are directed, the Other class is undirected, so we have
19 different classes for 10 relations as follows:

– Cause-Effect
– Component-Whole
– Content-Container
– Entity-Destination
– Entity-Origin
– Message-Topic
– Member-Collection
– Instrument-Agency
– Product-Agency
– Other

There are 8,000 examples for training that consists of 86 unique characters
and 2,717 for testing. We randomly split 800 samples out of the training set for
validation, and adopt the official evaluation metric in terms of macro-averaged
F1 score (excluding Other class) to evaluate our model.

Combining Character-Level Representation for Relation Classification 399

4.2 Setup

We employ some tricks to assist training, such as pre-trained embedding and
dropout [18]. Firstly, we initialize the word embedding with 100-dimensional
vectors pre-trained by [5]. Character embeddings are being trained from a simple
Bi-RNN network on the principle of [19], and are set to size 100. The width of
convolution filter’s group is chosen to be [2, 3, 4, 5], and each group contains 40
separate filters. L2 regularization coefficient is set to 10−5.

Dropout can prevents co-adaptation of hidden units by randomly omitting
feature detectors from the network during forward propagation. We employ
dropout on the embedding layer and the penultimate layer, and the dropout
rate is set as 0.3. Then we learn the parameters using AdaDelta [20] on a learn-
ing rate of 1.0 by a mini-batch size 30.

As average sentence length of relation classification is long, we take the
characters of the sentence between two nominals with position indicators as
character-level input.

4.3 Results

Table 1 compares our model with other previous state-of-the-art methods on
SemEval-2010 Task8 dataset. The SVM classifier [21] on a variety of handcrafted
features achieved an F1-score of 82.2%. Zeng et al. [6] utilized CNN and con-
structed lexical features by WordNet, making representative progress. Xu et
al. [8] achieved an F1-score of 83.7% via heterogeneous information along the
SDP. BRCNN [9] combined CNN and two-channel LSTM units to learns features
along SDP, and made use of POS tags, NER and WordNet hypernyms. Att-
BLSTM [10] only operated attention mechanism on Bidirectional Long Short-
Term Memory (BLSTM) units with word vector.

Table 1. Comparison on SemEval-2010 Task8.

Model F1

SVM [21] 82.2

CNN [6] 82.7

SDP-LSTM [8] 83.7

BRCNN [9] 86.3

Att-BLSTM [10] 84.0

Character-level Only [16] 82.1

Full connected network 83.9

Our architecture 84.1

Our model yields an F1-score of 84.1%, and outperforms most of the existing
competing approaches. Compared with the BRCNN [9], our model learns good

400 D. Liang et al.

representations to get a competitive result without using any human-designed
features and relying on any lexical resources.

Then, we illustrate Bi-GRU architecture of Tweet2Vec [16], a pure character-
level composition model, to show the effectiveness of character-level representa-
tion. Next, we get rid of the impact of characters to do word-level only experi-
ment, and replace the highway with a fully connected layer. These clean compar-
isons demonstrate that the character-level and Highway network help to learn a
better representation for classification.

5 Conclusion

In this paper, we propose a hybrid model that combines character-level repre-
sentation. This model encodes characters by a cascade of CNN and GRU units,
encodes words by Bi-GRU units, and uses Highway Network to combine. We
demonstrate that our model achieves competitive results on the popular bench-
mark SemEval-2010 Task8 and achieves a great performance at learning char-
acter features without relying on any lexical resources. In future, we plan to
release a appropriate dataset to demonstrate further effectiveness of the com-
bination and add interactions for each word with the corresponding positional
characters.

Acknowledgments. This work was supported by 111 Project of China under Grant
No. B08004, National Natural Science Foundation of China (61273217, 61300080,
61671078), and the Ph.D. Programs Foundation of Ministry of Education of China
(20130005110004).

References

1. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995)

2. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint (2014). arXiv:1412.3555

3. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In:
Advances in Neural Information Processing Systems (2015)

4. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint. arxiv:1301.3781 (2013)

5. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: EMNLP, vol. 14, pp. 1532–1543 (2014)

6. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J., et al.: Relation classification via
convolutional deep neural network. In: COLING, pp. 2335–2344 (2014)

7. dos Santos, C.N., Xiang, B., Zhou, B.: Classifying relations by ranking with con-
volutional neural networks. arXiv preprint. arxiv:1504.06580 (2015)

8. Xu, Y., Mou, L., Li, G., Chen, Y., Peng, H., Jin, Z.: Classifying relations via long
short term memory networks along shortest dependency paths. In: EMNLP (2015)

9. Cai, R., Zhang, X., Wang, H.: Bidirectional recurrent convolutional neural network
for relation classification. In: ACL, vol. 1, pp. 756–765 (2016)

http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1504.06580

Combining Character-Level Representation for Relation Classification 401

10. Zhou, P., Shi, W., Tian, J., Qi, Z., Li, B., Hao, H., Bo, X.: Attention-based bidi-
rectional long short-term memory networks for relation classification. In: ACL, p.
207 (2016)

11. Wang, L., Cao, Z., de Melo, G., Liu, Z.: Relation classification via multi-level
attention CNNs. In: ACL, vol. 1, pp. 1298–1307 (2016)

12. Zhang, D., Wang, D.: Relation classification via recurrent neural network. arXiv
preprint (2015). arxiv:1508.01006

13. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. In: Advances in Neural Information Processing Systems, pp. 649–657
(2015)

14. Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language
models. arXiv preprint (2015). arxiv:1508.06615

15. Ling, W., Lúıs, T., Marujo, L., Astudillo, R.F., Amir, S., Dyer, C., Black, A.W.,
Trancoso, I.: Finding function in form: compositional character models for open
vocabulary word representation. arXiv preprint (2015). arxiv:1508.02096

16. Dhingra, B., Zhou, Z., Fitzpatrick, D., Muehl, M., Cohen, W.W.: Tweet2vec:
character-based distributed representations for social media. arXiv preprint (2016).
arxiv:1605.03481

17. Nakov, P., Tiedemann, J.: Combining word-level and character-level models for
machine translation between closely-related languages. In: ACL, pp. 301–305
(2012)

18. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint (2012). arxiv:1207.0580

19. Mou, L., Meng, Z., Yan, R., Li, G., Yan, X., Zhang, L., Jin, Z.: How transferable
are neural networks in NLP applications? In: ACL (2016)

20. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint
(2012). arxiv:1212.5701

21. Rink, B., Harabagiu, S.: UTD: classifying semantic relations by combining lexical
and semantic resources. ACL, p. 256 (2010)

http://arxiv.org/abs/1508.01006
http://arxiv.org/abs/1508.06615
http://arxiv.org/abs/1508.02096
http://arxiv.org/abs/1605.03481
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1212.5701

On Combining Clusterwise Linear Regression
and K-Means with Automatic Weighting

of the Explanatory Variables

Ricardo A.M. da Silva and Francisco de A.T. de Carvalho(B)

Centro de Informatica - CIn, Universidade Federal de Pernambuco, Recife, Brazil
{rams,fatc}@cin.ufpe.br
http://www.cin.ufpe.br

Abstract. This paper gives a clusterwise linear regression method aim-
ing to provide linear regression models that are based on homogeneous
clusters of observations w.r.t. the explanatory variables. To achieve this
aim, this method combine the standard clusterwise linear regression
and K-Means with automatic computation of relevance weights for the
explanatory variables. Experiments with benchmark datasets corrobo-
rate the usefulness of the proposed method.

1 Introduction

Regression modeling includes a set of well-known methodologies used for describ-
ing (predicting) one dependent (response) variable, by fitting a mathematical
regression model to the observed data so that the theoretical relationship with
one or more independent (explanatory) variables can be explained in a reason-
able way. The most widely used method of regression is the Multivariate Linear
Regression (MLR) [11] where one or many explanatory variables are related to
one response variable according to a parametric linear model.

Often, when the number of observations and explanatory variables are almost
the same, only one regression model may be sufficient to achieve a good data
modeling. However, when this is not the case, it is reasonable to assume that
more than one regression model will be needed to get a good data modeling
[13]. As a consequence of the heterogeneity in the data [2,14], different kind of
relationships are supposed to exist between the predictive and the explanatory
variables into different groups of observations, so that a number of linear regres-
sion models should be fitted, one for each group, to fully describe all the relations
present in the data.

The classical approach to address the problem of establishing multiple linear
regression models for heterogeneous data is called Clusterwise Linear Regression
(CLR) [13] where the aim is to find a partition of the dataset in a way that the
sum of squared residuals for each within-cluster regression model is minimized
for all clusters.

The authors would like to thanks CNPq and FACEPE (Brazilian agencies) for their
financial support.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 402–410, 2017.
https://doi.org/10.1007/978-3-319-68612-7_46

CLR and K-Means with Automatic Weighting of the Variables 403

As stated by Brusco et al. [2] and Vicari and Vichi [14], the CLR method
is not designed to identify the linear relationships within homogeneous clusters,
with respect to the explanatory variables, that exhibit an internal cohesion and
an external separation. The clustering process just follow the minimum residual
requirement which can assign very far observations, in terms of their explanatory
variables, to the same group just because they have the smallest residual on the
regression model associated with this group. Consequently, it is very difficult
the choice of the appropriated regression model for an unknown observation
using the explanatory variables measurements. To overcome these difficulties,
following [9,14], in this paper we propose a clusterwise regression method aiming
to provide linear regression models that are based on homogeneous clusters of
observations w.r.t. the explanatory variables and that are well fitted w.r.t. the
response variable.

Although the methods described in [9,14] fulfill these requirements, they do
not take into account the relevance of the variables, i.e., these methods consider
that all explanatory variables are equally important to the clustering process in
the sense that all have the same relevance weight. However, in most areas we
typically have to deal with high dimensional datasets. Therefore, some explana-
tory variables may be irrelevant and, among the relevant ones, some may be
more or less relevant than others [4,6,10].

A better strategy is to consider that there may exist differences in the rele-
vance among explanatory variables. By considering these relevances, the perfor-
mance of the clustering process can be improved. We use an adaptive distance
metric [4] to assess the relevance of the variables during the clustering process.
This approach allows us to cluster the dataset into homogeneous groups w.r.t. the
relevant explanatory variables. A related approach was developed in the frame-
work of fuzzy clusterwise linear regression [5], where the simultaneous determi-
nation of a data partition and regression equations is modified in such a way that
the shapes of clusters are changed dynamically and adaptively in the clustering
process [12].

To summarize, the proposed method combine the standard clusterwise linear
regression and K-Means with automatic computation of relevance weights to the
explanatory variables. This method aims to form homogeneous clusters based
simultaneously on the relevant explanatory variables and on the minimization
of the sum of the squared residuals of the response variable. Because it learns
simultaneously a prototype and a linear regression model for each cluster it
is able to provide an appropriated regression model for unknown observations
based on their description by the explanatory variables.

The paper is organized as follows. Section 2 provides a detailed description
of the method. Section 3 presents the experiments with benchmark datasets.
Finally, Sect. 4 gives the final remarks of the paper.

404 R.A.M. da Silva and F.A.T. de Carvalho

2 Clusterwise Linear Regression and K-Means with
Automated Weighting of the Explanatory Variables

This section presents the Weighted Clusterwise Linear Regression method, here-
after named WCLR, that aims to provide homogeneous clusters w.r.t. the rel-
evant explanatory variables and linear regression models, one for each cluster.
This method is able to select the important explanatory variables in the cluster-
ing process and therefore provides linear regression models of better quality.

Let E = {e1, . . . , en} be a set of n objects described by a real-valued response
variable y and by p real-valued explanatory variables x1, . . . , xp. Each object
ei (i = 1, . . . , n) is described by a tuple (xi, yi), where xi = (xi1, . . . , xip) ∈ Rp is
the vector of explanatory variables and yi ∈ R is the corresponding value of the
response variable. The WCLR method provides a partition P = (P1, . . . , PK)
of E into K clusters, a vector of relevance weights λ = (λ1, . . . , λp), one for
each explanatory variable, a matrix of cluster representatives (prototypes) G =
(g1, . . . ,gK), and K linear regression models.

2.1 WCLR Method

In the WCLR method, the matrix of prototypes G, the vector of relevance
weights of the explanatory variables λ, the vector of parameters of the linear
regression models β(k) (k = 1, . . . , K) and the partition P are obtained itera-
tively in four steps (representation, weighting, modeling and assignment) by the
minimization of a suitable objective function that combines the total homogene-
ity of the partition, obtained according to the explanatory variables, and the
total sum of squared residuals:

JWCLR =
K∑

k=1

∑

ei∈Pk

⎡

⎣
p∑

j=1

λj(xij − gkj)2 + α(yi − ŷi(k))2

⎤

⎦ (1)

subject to
∏p

j=1 λj = 1, where

– ŷi(k) = β̂0(k) +
∑p

j=1 β̂j(k)xij is the ith predicted value provided by the kth

linear regression model;
– α > 0 is a user defined parameter that decides the relative weight of the two

terms.

From an initial random partition P, four steps are repeated until the conver-
gence of the WCLR algorithm. These four steps are:

Representation Step. This step provides the optimal solution to the compu-
tation of the clusters representatives gk = (gk1, . . . , gkp) (k = 1, . . . , K). During
the representation step, the vector of relevance weights of the explanatory vari-
ables λ, the vector of parameters of the linear regression models β(k), and the
partition P are kept fixed. The objective function J is optimized with respect
to the prototypes.

CLR and K-Means with Automatic Weighting of the Variables 405

Thus, from ∂J
∂gkj

= 0, and after some algebra, the component gkj of the cluster
prototype gk is obtained as follows:

gkj =

∑
ei∈Pk

xij∑
ei∈Pk

=

∑
ei∈Pk

xij

nk
k = 1, 2, . . . ,K , j = 1, 2, . . . , p.

where nk is the cardinal of cluster Pk.

Weighting Step. This step provides the optimal solution to the computation
of the vector of relevance weights of the explanatory variables λ = (λ1, . . . , λp).
During the weighting step, the matrix of prototypes G, the vector of parameters
of the linear regression models β(k) and the partition P are kept fixed. We use
the method of Lagrange multipliers with the restriction that [4]

∏p
j=1 λj = 1

and, after some algebra, we obtain

λj =

{∏p
h=1

[∑K
k=1

∑
ei∈Pk

(xih − gkh)2
]} 1

p

∑K
k=1

∑
ei∈Pk

(xij − gkj)2
j = 1, 2, . . . , p. (2)

Model Step. This step provides the optimal solution to the computation of the
vector of parameters of the linear regression models βk = (β0(k), . . . , βp(k)) (k =
1, . . . , K). During the model step the matrix of prototypes G, the vector of
relevance weights λ, and the partition P are kept fixed.

Thus, from ∂J
∂β0(k)

= 0, ∂J
∂βj(k)

= 0 (k = 1, . . . , K), and after some algebra, one
obtain the following system of equations:

β0(k)nk +
p∑

j=1

βj(k)

∑

ei∈Pk

xij =
∑

ei∈Pk

yi

β0(k)

∑

ei∈Pk

xij +
p∑

l=1

βl(k)

∑

ei∈Pk

xijxil =
∑

ei∈Pk

xijyi k = 1, 2 . . . ,K. (3)

This system can be solved similarly to the ordinary linear least squares
method [11].

Assignment Step. This step provides the optimal solution for the cluster parti-
tion P = (P1, . . . , PK). During the assignment step, the matrix of prototypes G,
the vector of relevance weights of the explanatory variables λ, and the vector of
parameters of the linear regression models β(k) = (β0(k), β1(k), . . . , βp(k))T (k =
1, . . . , K), are kept fixed.

The partition Pk (k = 1, . . . , K), that minimizes the clustering criterion J , is
updated according the following assignment rule:

Pk =

⎧
⎨

⎩ei ∈ E:k = arg
K

min
h=1

p∑

j=1

[
λj(xij − ghj)2

]
+ αε2i(h)

⎫
⎬

⎭ (4)

406 R.A.M. da Silva and F.A.T. de Carvalho

The K-Means algorithm can be viewed as an Expectation-Maximization
(EM) algorithm and it is convergent because each EM algorithm is convergent
[3]. As the WCLR algorithm is a modified version of the classical K-Means algo-
rithm, its convergence can be proved. The final solution provided by this kind
of algorithm depends on the initial partition. It converges to a solution that is
locally optimal. Therefore, it is recommended to repeat the process from multiple
initial partitions and then select the best one.

3 Experimental Analysis

The aim of this session is to evaluate the performance of the proposed method,
WCLR, for a prediction task. The standard Multiple Linear Regression (MLR)
[11], the Clusterwise Linear Regression (CLR) [13] and the “Modified K-plane”
[9], hereafter named KPLANE, methods were also considered for comparison
purposes.

3.1 Benchmark Datasets

We assess the performance of the tested methods on several selected benchmarks
datasets from the UCI Machine Learning repository [8] (Table 1). These datasets
have a single response variable. Moreover, the variables were normalized (by
scaling [0,1]) at a preprocessing phase.

Table 1. UCI repository datasets

Dataset Number of explanatory
variables

Number of
observations

Wine Quality (Red) 11 1599

Auto-mpg 7 392

Concrete 8 1030

Forest Fires 11 517

Glass 9 214

Housing 13 452

Wine 12 178

Yacht Hydrodynamics 6 252

3.2 Hyper-Parameters Setting

The number of clusters K must be fixed a priori for CLR, KPLANE and WCLR
methods. The parameters γ and α have a similar role in, respectively, KPLANE
and WCLR methods. They are responsible for deciding the relative influence of

CLR and K-Means with Automatic Weighting of the Variables 407

the two terms of their respective cost functions. This value is extremely depen-
dent on the dataset used and on the absolute value the two terms of the objective
function. Following [2,9], we search for the best value of K ∈ {1, 2, 3, 4}, and
α, γ ∈ {0.01, 0.1, 1.0, 10.0, 100.0} for all datasets.

3.3 Assignment Criterion

In order to predict the value of a new observation we need to choose one regres-
sion model among the K generated models. We use the cluster’s centers provided
by WCLR and KPLANE methods and, for CLR, we use the center of the clus-
ters computed after the training process. Thus, for an observation x we use the
hth regression model to predict its value as follows:

WCLR: h = arg
K

min
k=1

∑p
j=1

[
λj(xj − gkj)2

]

CLR and KPLANE: h = arg
K

min
k=1

∑p
j=1

[
(xj − gkj)2

]

3.4 Performance Measure

The prediction accuracy of the fitted regression models were measured by the

Root Mean Squared Error [11]: RMSE =
√

1
n

∑n
i=1(yi − ŷi)2.

3.5 Model Selection

Following [7], we used a 5 × 10-fold grid-search cross validation procedure to
make the best cross-validatory choice for the hyper-parameter set in a prediction
context. Table 2 shows the obtained optimal (with respect to the given grid and
the given search criterion) parameters for CLR, KPLANE and WCLR methods.

Table 2. Cross-validatory choice for the K, γ and α

Dataset CLR KPLANE WCLR

Wine Quality (red) K = 1 K = 2, γ = 1.0 K = 3, α = 0.01

Auto-mpg K = 1 K = 4, γ = 100.0 K = 3, α = 0.01

Concrete K = 2 K = 3, γ = 10.0 K = 4, α = 0.01

Forest Fires K = 1 K = 1, γ = 0.01 K = 1;α = 0.01

Glass K = 1 K = 2, γ = 10.0 K = 2, α = 0.01

Housing K = 1 K = 3, γ = 10.0 K = 2, α = 10.0

Wine K = 1 K = 1, γ = 0.01 K = 1, α = 0.01

Yacht Hydrodynamics K = 2 K = 3, γ = 0.01 K = 3, α = 1.00

408 R.A.M. da Silva and F.A.T. de Carvalho

3.6 Model Assessment

The use of predictive models depends on reliable model assessment. Following [7],
a repeated nested Kfold cross-validation procedure was used in order to assess
the expected prediction loss (RMSE) of the tested models. The cross-validatory
assessment was made, for each dataset individually, with 5 repetition of a 10-Fold
cross-validation resulting in a sample of 50 values for each tested method.

To assess the statistical significance of the sampled RMSE measures obtained
by the cross-validatory assessment protocol we proceed with nonparametric tests.
Following [1], we did the Kruskall-Wallis test (nonparametric version of ANOVA)
to compare the RMSE samples from each tested method and a post hoc pairwise
comparison using the Tukey and Kramer (Nemenyi) test with a confidence level
of 0.95. Table 3 shows the mean, standard deviation, minimum and maximum
RMSE values obtained from the model assessment procedure. The methods with
the lowest average RMSE values are in bold. The difference in performance
between a given method and WCLR is marked (*) if it is statistically significant.

Table 3. Comparison results on UCI datasets

Method Stat Mean sd Min Max Method Stat Mean sd Min Max

W ine Quality (red) Auto-mpg

MLR 0.1144 0.0063 0.1019 0.1298 MLR * 0.1725 0.0222 0.1227 0.2182

CLR 0.1146 0.0070 0.0969 0.1299 CLR * 0.1726 0.0213 0.1212 0.2252

KPLANE 0.1133 0.0068 0.0981 0.1263 KPLANE 0.1531 0.0254 0.1045 0.2190

WCLR 0.1134 0.0076 0.0998 0.1307 WCLR 0.1536 0.0250 0.1116 0.2060

Concrete Forest Fires

MLR * 0.2640 0.0185 0.2233 0.3112 MLR 0.7379 0.6653 0.2561 2.3800

CLR * 0.2152 0.0169 0.1715 0.2468 CLR 0.7195 0.6858 0.2189 2.8200

KPLANE 0.2084 0.0167 0.1763 0.2471 KPLANE 0.6778 0.6519 0.2265 2.8540

WCLR 0.2029 0.0161 0.1578 0.2409 WCLR 0.7404 0.6638 0.2399 2.4160

Glass Housing

MLR 0.3182 0.0771 0.1730 0.5560 MLR * 0.2028 0.0394 0.1370 0.3163

CLR 0.3215 0.0877 0.1580 0.5045 CLR * 0.2010 0.0435 0.1169 0.3048

KPLANE 0.3273 0.0810 0.1731 0.4951 KPLANE 0.1649 0.0325 0.1249 0.3041

WCLR 0.3296 0.0734 0.1799 0.5025 WCLR 0.1690 0.0285 0.1191 0.2251

W ine Y acht Hydrodynamics

MLR 0.0424 0.0077 0.0277 0.0616 MLR * 0.4920 0.0770 0.3776 0.6820

CLR 0.0425 0.0070 0.0229 0.0566 CLR * 0.2416 0.0971 0.1245 0.4703

KPLANE 0.0440 0.0085 0.0280 0.0761 KPLANE * 0.1888 0.0948 0.0561 0.3877

WCLR 0.0445 0.0063 0.0303 0.0582 WCLR 0.0858 0.0191 0.0438 0.1367

The WCLR method obtained the best result (lowest average RMSE) in 2
(Concrete and Yacht) of the 8 datasets evaluated. For the datasets where WCLR
did not obtain the lowest average RMSE (Wine Quality (red), Auto-mpg, For-
est Fires, Glass, Housing and Wine), the observed difference in performance

CLR and K-Means with Automatic Weighting of the Variables 409

between WCLR and the method of best performance was not statistically signif-
icant. Moreover, in the Yacht dataset, WCLR had the best performance and the
observed difference in performance regarding the others methods was significant.

Finally, the results obtained from real datasets demonstrate that the inclu-
sion of an additional step of weighting the explanatory variables on the WCLR
method does not decreases its prediction performance and can result in more
meaningful clusters of individuals based on the explanatory variables and also
provides better fitted regression models for a predictive task.

4 Conclusion

This paper presented a Weighted Clusterwise Linear Regression method, WCLR,
with automatic weighting of the explanatory variables, that considers differences
in relevance among the explanatory variables aiming to obtain meaningful homo-
geneous clusters, w.r.t. these explanatory variables, and improved regression
models. For this purpose, the proposed method combine the standard cluster-
wise linear regression and a K-Means with automatic computation of relevance
weights to the variables. Because it learns simultaneously a prototype and a lin-
ear regression model for each cluster, WCLR is able to provide an appropriated
regression model for an unknown observation, based on the comparison between
each cluster prototype with the unknown observation, both described by the
explanatory variables.

The performance and usefulness of the WCLR method was shown with sev-
eral benchmarks datasets with a varied number of instances and variables. Over-
all, the proposed method behaved competitively relative to previous proposed
methods CLR and KPLANE considered in this paper. The results obtained
with the benchmark datasets demonstrate that the inclusion of an additional
weighting step, produced more meaningful clusters of individuals based on the
explanatory variables and thus provided better fitted regression models. In con-
clusion, on the considered datasets, the regression models provided by WCLR
presented a better or a similar performance in comparison with the regression
models provided by MLR, CLR and KPLANE methods.

References

1. Alpaydin, E.: Introduction to machine learning. In: Adaptive Computation and
Machine Learning. MIT Press (2014)

2. Brusco, M.J., Cradit, J.D., Steinley, D., Fox, G.L.: Cautionary remarks on the use
of clusterwise regression. Multivar. Behav. Res. 43(1), 29–49 (2008)

3. Camastra, F., Verri, A.: A novel kernel method for clustering. IEEE Trans. Neural
Netw. 27, 801–804 (2005)

4. Diday, E., Govaert, G.: Classification automatique avec distances adaptatives.
R.A.I.R.O. Informatique Comput. Sci. 11(4), 329–349 (1977)

5. Hathaway, R.J., Bezdek, J.C.: Switching regression models and fuzzy clustering.
IEEE Trans. Fuzzy Syst. 1(3), 195–204 (1993)

410 R.A.M. da Silva and F.A.T. de Carvalho

6. Huang, J., Ng, M., Rong, H., Li, Z.: Automated variable weighting in k-means type
clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 657–668 (2005)

7. Krstajic, D., Buturovic, L.J., Leahy, D.E., Thomas, S.: Cross-validation pitfalls
when selecting and assessing regression and classification models. J. Chem-inform.
6(1), 10 (2014)

8. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml

9. Manwani, N., Sastry, P.: K-plane regression. Inf. Sci. 292, 39–56 (2015)
10. Modha, D.S., Spangler, W.S.: Feature weighting in k-means clustering. Mach.

Learn. 52(3), 217–237 (2003)
11. Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to linear regression

analysis (2001)
12. Ryoke, M., Nakamori, Y., Suzuki, K.: Adaptive fuzzy clustering and fuzzy pre-

diction models. In: Proceedings of 1995 IEEE International Fuzzy Systems, pp.
2215–2220. IEEE (1995)

13. Späth, H.: Algorithm 39 clusterwise linear regression. Computing 22(4), 367–373
(1979)

14. Vicari, D., Vichi, M.: Multivariate linear regression for heterogeneous data. J. Appl.
Stat. 40(6), 1209–1230 (2013)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

PSO-RBFNN: A PSO-Based Clustering
Approach for RBFNN Design to Classify

Disease Data

Ramalingaswamy Cheruku1(B), Damodar Reddy Edla1,
Venkatanareshbabu Kuppili1, and Ramesh Dharavath2

1 Department of Computer Science and Engineering,
National Institute of Technology Goa, Ponda, India

{rmlswamygoud,dr.reddy,venkatanaresh}@nitgoa.ac.in
2 Department of Computer Science and Engineering,
Indian Institute of Technology (ISM), Dhanbad, India

ramesh.d.in@ieee.org

Abstract. The Radial Basis Function Neural Networks (RBFNNs) are
non-iterative in nature so they are attractive for disease classification.
These are four layer networks with input, hidden, output and decision
layers. The RBFNNs require single iteration for training the network.
On the other side, it suffers from growing hidden layer size on par with
training dataset. Though various attempts have been made to solve this
issue by clustering the input data. But, in a given dataset estimating the
optimal number of clusters is unknown and also it involves more com-
putational time. Hence, to address this problem in this paper, a Particle
Swarm Optimization (PSO)-based clustering methodology has been pro-
posed. In this context, we introduce a measure in the objective function
of PSO, which allows us to measure the quality of wide range of clusters
without prior information. Next, this PSO-based clustering methodology
yields a set of High-Performance Cluster Centers (HPCCs). The pro-
posed method experimented on three medical datasets. The experimen-
tal results indicate that the proposed method outperforms the competing
approaches.

Keywords: Particle Swarm Optimization · Clustering · Disease classi-
fication · Radial Basis Function Neural Networks · Optimal hidden layer
neurons

1 Introduction

In disease diagnosis procedure, a doctor has to analyze the data obtained from
patients reports for making decision. These evaluations are critical for early
diagnosis of disease and sometimes lead to erroneous diagnosis [1]. Hence, the
disease diagnosis is a key challenging task. There is a growing need for early
detection of diseases using classification systems with good accuracy. To address

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 411–419, 2017.
https://doi.org/10.1007/978-3-319-68612-7_47

412 R. Cheruku et al.

this need, Artificial Neural Networks (ANNs) are widely used in classification
systems. ANNs have proven useful in the analysis of disease specific dataset
[2–4].

Classification systems are reliable in the health care sector to explore hidden
patterns in the medical data. These classification systems aid medical profes-
sionals to enhance their diagnosis procedure. Multi-Layer Perceptron Network
(MLPNs) are most popular techniques for classification and use iterative process
for training. The Radial Basis Function Neural Network (RBFNN) are non-
iterative in nature and requires single iteration for training [5]. Hence, a lot
researchers are used RBFNN for classification and pattern recognition tasks in
the literature. The performance of these neural networks are on par with the
more widely used MLPN model. Moreover, RBFNNs learn applications quickly
and good at modelling non-linear data [6].

RBFNNs are made up of four layers namely input layer, hidden layer, output
layer and decision layer. The size of the input layer is determined by the dimen-
sionality of training patterns and output layer is by number of distinct classes in
training patterns. The size of the decision layer is one. The actual problem lies
in figure out hidden layer size. In most simple approach the size of the hidden
layer is determined by the size of training dataset, i.e., each pattern in training
dataset is assigned to single neuron. Even though this approach is simple, it is
not implementable in practical applications where the dataset size is big and
dimensionality of data is high [5].

So many researchers found the solution for above problem by clustering input
data. Once we create a group (cluster) we can assign a neuron to each group.
Tagliafen et al. [7] have used supervised fuzzy clustering and Pedrycz [8] have
used conditional fuzzy clustering for the determination of hidden layer neuron
positions. Cruz et al. [9] and Qasem et al. [10] have used bio-inspired algorithms
to find the clusters centers. Cheruku et al. [6] have used cluster validity index to
identify the best cluster center locations. In [11] authors have used fisher ratio
class separability measure in RBFNN for center selection.

1.1 Radial Basis Function Neural Network

The RBFNN [6] is a four layer feed forward architecture as shown in Fig. 1. The
construction of this type of network involves determination of number of neurons
in each layer.

– Input layer: The input layer is made up of D neurons where D is the dimen-
sionality of input vector. The input layer is usually completely linked to hid-
den layer neurons. There is no transformation happen at the input layer, this
layer simply forward the whatever inputs are present to it.

– Hidden layer: The hidden layer is made up of H (H << size of training
dataset) neurons. These hidden layer neurons are complexly connected with
output layer of size N neurons. At each hidden layer neuron, it is a nonlinear
transformation because of Gaussian activation function. The output value of
each hidden layer neuron is computed using Eqs. (1) and (2).

PSO-Based Clustering for RBFNN Classifier Design 413

Fig. 1. The RBFNN for classification task.

ϕi(I) =
1√

2Πσi

e− ||I − μi| |
2 (σi)

2 , i = 1, 2, . . . ,H. (1)

||I − μi| | =

√
√
√
√

D∑

j=1

(Ij − μj
i)2 (2)

– Output layer: The output layer is made up of N neurons, where N is the
number of distinct classes in input data. Transformation at output layer is
linear because response of the output layer neuron is a weighted sum of hidden
layer outputs, which is computed using Eq. (3).

0j(I) =
H∑

i=1

wjiφi(I), i = 1, 2, . . . ,H, j = 1, 2, . . . , N (3)

– Decision layer: The size of this layer is one. This layer determines the class
label of given input vector (I) present at input layer using Eq. (4).

class − label(I) = arg max
j

Oj(I), j = 1, 2, . . . , N. (4)

The weight vector w = [w11, w12, . . . , . . . , w1H]T1×H between ouput layer and
hidden layer is given by

w = φ+
L×H ∗ T (5)

where φ+ is the pseudoinverse of the φ matrix

φ =

⎡

⎢
⎢
⎢
⎣

φ1(I1) . . . φH−1(I1) φH(I1)
.
...

φ1(IL) . . . φH−1(IL) φH(IL)

⎤

⎥
⎥
⎥
⎦

L×H

(6)

414 R. Cheruku et al.

φ+ = (φTφ)−1φT (7)

where L is number of training patterns and H is number of neurons in hidden
layer [5].

The rest of the paper is organized as follows: In Sect. 2, the proposed PSO-
based clustering approach with new criterion function is discussed. The detailed
analysis, which includes the experimental results discussed in Sect. 3. Finally, in
Sect. 4 we concludes the paper based on experimental observations and provide
future directives.

2 Proposed Methodology

2.1 PSO Preliminaries

Particle Swarm Optimization (PSO) [12,13] is population based meta-heuristic
optimization algorithm. It is inspired from the behavior of bird flocking. We
encoded each particle in PSO to represent a set of cluster centers. Each particle
is evaluated using fitness function. For a better set of cluster positions the fitness
function need to be minimized. In every iteration each particle is updated using
pBest and gBest values, where pBest is the best solution of a particle obtained
so far and gBest is the best solution obtained so far by any particle in the
population. After obtaining these two best values, each particle velocity and
positions are updated using Eqs. (8) and (9) respectively.

vt+1
i = vt

i + c1 ∗ U t
1(pBestti − pti) + c2 ∗ U t

2(gBestti − pti) (8)

pt+1
i = pti + vt+1

i (9)

where, v is the particle velocity, p is the current particle (solution). pBest and
gBest are defined as stated before. c1 and c2 are learning factors.

2.2 Fitness Function

The fitness function used here is DaviesBouldin Index (DBI) [14,15], which is
introduced by David et al. in 1979. This DBI is a measure used to evaluating
how well the clusters centers are formed. For a high performance cluster centers
this value need to minimized.

fitness function = arg min
M

1
M

(
M∑

i=1

Di) (10)

where,
Di = arg max

j �=i
Ri,j , (11)

Ri,j =
si + sj

di,j
, (12)

PSO-Based Clustering for RBFNN Classifier Design 415

si =

√
√
√
√

T∑

j=1

(Aj − Ci)2, (13)

di,j is the Euclidean distance between cluster centers Ci and Cj , Aj is the
pattern assigned to cluster Ci, and T is the total number of patterns assigned
to cluster Ci.

Algorithm 1. Pseudo code for PSO-based clustering
Input: A finite set C = {c1, c2, . . . , ck} of initial centers
Output: The K High Performance Cluster Centers (HPCCs) for the dataset

1 K ← number of clusters
2 gBest ← []
3 for i ← 1 to Population do
4 Initialize each particle
5 Pvelocity = rand()
6 Pposition =rand(K)
7 pBest ← Pposition

8 Compute the each particle’s best position
9 if fitness(pBest) < fitness(gBest) then

10 gBest ← pBest

11 while maximum iterations or minimum error do
12 for i ← 1 to Population do
13 Pvelocity ← Updated particle velocity using Eq. (8)
14 Pposition ← Updated particle position using Eq. (9)
15 if fitness(Pposition) < fitness(pBest) then
16 pBest ← Pposition

17 if fitness(pBest) < fitness(gBest) then
18 gBest ← pBest

19 return gBest

2.3 PSO-Based Clustering

The pseudo code for PSO-based clustering algorithm shown in Algorithm1. This
Algorithm 1 takes number of clusters (K) as input and outputs K -HPCCs using
training dataset.

3 Experimental Results and Discussion

We have used three medical datasets obtained from UCI machine learning repos-
itory [16] whose detail specifications are shown in Table 1. For experimental
purpose all the datasets are partitioned into training and testing datasets. The
training dataset is constituted with 70% of patterns of each class and testing
dataset is constituted with remaining patterns.

416 R. Cheruku et al.

Table 1. Characteristics of datasets used in this paper.

Feature # patterns # features # classes

Pima Indian Diabetes (PID) 758 8 2

Wisconsin Breast Cancer (WBC) 683 10 2

Statlog Heart Disease (SHD) 297 13 2

In order to find HPCCs, PSO-based clustering approach shown in Algorithm1
is repeatedly executed until maximum number of clusters reached. Every time
Algorithm 1 is run with specific number of clusters (K). At the termination of this
algorithm, outputs the minimum fitness value corresponds to best K clusters.
This represents a point in the performance plot. This above procedure repeated
until K reaches max-clusters-count. The values obtained for each value of K is
denoted as point in the performance graph. This graph is shown in Fig. 2 and
find tuned parameters are listed in Table 2.

Fig. 2. Performance plot.

From the Fig. 2 it is clear that proposed PSO-based clustering approach using
training dataset obtained 66 HPCCs (minimum value is highlighted in Fig. 2).
After obtaining the HPCCs clusters, RBFNN classifier is designed. This PSO-
RBFNN classifier is experimented with testing dataset. In Table 3 listed the
performance of RBFNN classifier on three disease testing datasets.

Next, proposed method has been compared with conventional neural net-
work classifiers, such as Probabilistic Neural Network (PNN), Time Delay Neural
(TDN) network etc. These comparison results are shown in Table 4. It is observed
from the table results that the proposed PSO-RBFNN performed better in terms
of accuracy when compared to other conventional neural network classifiers.

Further, the proposed PSO-RBFNN is compared with other state-of-the-art
techniques in the same domain. These results are furnished in Table 5. From

PSO-Based Clustering for RBFNN Classifier Design 417

Table 2. Fine tuned parameters of PSO algorithm.

Parameter Value Explanation

Population 50 Population of particles

C1 2 Importance of personal best value

C2 2 Importance of neighborhood best value

Dimesnion of particles 1 to 150 Each particle dimension

max-clusters-count 150 maximum number of clusters

Table 3. Proposed method performance.

Model Dataset Accuracy (%) Sensitivity (%) Specificity (%) # HPCCs

PSO-RBFNN PID 72.60% 77.34% 63.75% 66

PSO-RBFNN WBC 97.86% 97.34% 98.15% 87

PSO-RBFNN CHD 85.76% 84.28% 88.12% 56

Table 4. Comparison of proposed method with conventional classifiers.

Model Accuracy (%) Ref

PID FFN 68.80 [2]

CFN 68.00 [2]

PNN 72.00 [2]

TDN 66.80 [2]

GINI 65.97 [2]

AIS 68.80 [2]

PSO-RBFNN 72.60

WBC RBF 96.18 [17]

PNN 97.00 [17]

GRNN 98.18 [17]

MLP 95.74 [17]

PSO-RBFNN 97.86

SHD RBF 79.10 [18]

CART 80.80 [18]

LDA 84.50 [18]

MLP+BP 81.30 [18]

PSO-RBFNN 85.76

418 R. Cheruku et al.

the table results it is clear that the proposed PSO-RBFNN obtained highest
accuracy and sensitivity, and competitive specificity for all three datasets. It
is also observed that the proposed method obtained slightly more number of
hidden layer neurons as compared to others.

Table 5. Comparison of proposed method with other RBFNN variants of same domain.

Dataset Model Accuracy (%) Sensitivity (%) Specificity (%) # HPCCs Year [Ref]

PID MEPGANf1f3 68.35 20.37 94.00 31 2013 [10]

Bee-RBF 71.13 ±1.06 – – 35 2016 [9]

RBFNN+CVI 70.00 77.34 56.25 43 2017 [6]

PSO-RBFNN 72.60 77.34 63.75 66 This study

WBC MEPSON 97.66 97.08 97.07 58 2013 [10]

MGAN 96.78 96.25 97.08 66 2013 [10]

Bee-RBF 96.79 – – 72 2016 [9]

PSO-RBFNN 97.86 97.34 98.15 87 This study

CHD MEPGANf1f2 80.79 67.69 91.88 56 2011 [19]

MEPDENf1f3 87.54 83.19 91.25 30 2011 [19]

Bee-RBF 59.10 – – 40 2016 [9]

PSO-RBFNN 85.76 84.28 88.12 56 This study

3.1 A Discussion

In terms of accuracy the proposed PSO-RBFNN is competitive with other meth-
ods. Whereas, in terms of number of HPCCs it is not parsimonious (generates
larger networks). It is due to the methods used for comparison in Table 5 employ
a multi-objective fitness function that takes into account the accuracy, parsimony
in terms of number of centers and the network regularization where as proposed
method uses single objective as fitness function i.e., DBI. Moreover, DBI index
used in this paper is dependent on both the dataset as well as the clustering
algorithm.

4 Conclusion and Future Work

In this paper, to design the effective RBFNN classifier we have used PSO-based
clustering approach along with DBI index as fitness function. The proposed
model experimented on three medical datasets. The experimental results proved
that PSO-RBFNN achieved highest accuracy when compared to conventional
neural network classifiers. The proposed PSO-RBFNN also achieved highest
accuracy and sensitivity at the cost of some more HPCCs when compared to
other RBFNN variants in the literature. As a future work we can use other
meta-heuristic algorithms, such as Spider Monkey Algorithm (SMO), Bat Algo-
rithm (BA) etc. for effective clustering approach.

PSO-Based Clustering for RBFNN Classifier Design 419

References

1. Assal, J., Groop, L.: Definition, diagnosis and classification of diabetes mellitus
and its complications. World Health Organization, pp. 1–65 (1999)

2. Bozkurt, M.R., Yurtay, N., Yilmaz, Z., Sertkaya, C.: Comparison of different meth-
ods for determining diabetes. Turk. J. Electr. Eng. Comput. Sci. 22(4), 1044–1055
(2014)

3. Amato, F., López, A., Peña-Méndez, E.M., Vaňhara, P., Havel, J.: Artificial neural
networks in medical diagnosis. J. Appl. Biomed. 11, 47–58 (2013)

4. Fukuoka, Y.: Artificial neural networks in medical diagnosis. In: Schmitt, M.,
Teodorescu, H.N., Jain, A., Jain, A., Jain, S., Jain, L.C. (eds.) Computational Intel-
ligence Processing in Medical Diagnosi, pp. 197–228. Springer, Heidelberg (2002).
doi:10.1007/978-3-7908-1788-1 8

5. Yegnanarayana, B.: Artificial Neural Networks. PHI Learning Pvt. Ltd., Delhi
(2009)

6. Cheruku, R., Edla, D.R., Kuppili, V.: Diabetes classification using radial basis
function network by combining cluster validity index and bat optimization with
novel fitness function. Int. J. Comput. Intell. Syst. 10(1), 247–265 (2017)

7. Tagliaferri, R., Staiano, A., Scala, D.: A supervised fuzzy clustering for radial basis
function neural networks training. In: 2001 Joint 9th IFSA World Congress and
20th NAFIPS International Conference, vol. 3, pp. 1804–1809. IEEE (2001)

8. Pedrycz, W.: Conditional fuzzy clustering in the design of radial basis function
neural networks. IEEE Trans. Neural Netw. 9(4), 601–612 (1998)

9. Cruz, D.P.F., Maia, R.D., da Silva, L.A., de Castro, L.N.: BeeRBF: a bee-inspired
data clustering approach to design RBF neural network classifiers. Neurocomputing
172, 427–437 (2016)

10. Qasem, S.N., Shamsuddin, S.M., Hashim, S.Z.M., Darus, M., Al-Shammari, E.:
Memetic multiobjective particle swarm optimization-based radial basis function
network for classification problems. Inf. Sci. 239, 165–190 (2013)

11. Mao, K.: RBF neural network center selection based on Fisher ratio class separa-
bility measure. IEEE Trans. Neural Netw. 13(5), 1211–1217 (2002)

12. Kennedy, J.F., Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan
Kaufmann, Burlington (2001)

13. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimiza-
tion algorithm and its applications. Math. Prob. Eng. 2015, 931256 (2015)

14. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern
Anal. Mach. Intell. 2, 224–227 (1979)

15. SOM-Tollbox: dBi Matlab implementation code. http://www.cis.hut.fi/
somtoolbox/package/docs2/db index.html. Accessed 30 Sept 2016

16. Lichman, M.: UCI machine learning repository (2013)
17. Swathi, S., Rizwana, S., Babu, G.A., Kumar, P.S., Sarma, P.: Classification of

neural network structures for breast cancer diagnosis. Int. J. Comput. Sci. Com-
mun. 3(1), 227–231 (2012)

18. University of North Carolina: Comparison results for datasets. http://fizyka.umk.
pl/kis-old/projects/datasets.html. Accessed 20 May 2017

19. Qasem, S.N., Shamsuddin, S.M.: Memetic elitist Pareto differential evolution algo-
rithm based radial basis function networks for classification problems. Appl. Soft
Comput. 11(8), 5565–5581 (2011)

http://dx.doi.org/10.1007/978-3-7908-1788-1_8
http://www.cis.hut.fi/somtoolbox/package/docs2/db_index.html
http://www.cis.hut.fi/somtoolbox/package/docs2/db_index.html
http://fizyka.umk.pl/kis-old/projects/datasets.html
http://fizyka.umk.pl/kis-old/projects/datasets.html

Clustering

Modularity-Driven Kernel k-means
for Community Detection

Felix Sommer(B), François Fouss, and Marco Saerens

LSM – LouRIM & ICTEAM, Université catholique de Louvain,
Chaussée de Binche 151, 7000 Mons, Belgium

{felix.sommer,francois.fouss,marco.saerens}@uclouvain.be

Abstract. The k-means algorithm is probably the most well-known and
most popular clustering method in existence today. This work evaluates
if a new, autonomous, kernel k-means approach for graph node clustering
coupled with the modularity criterion can rival, e.g., the well-established
Louvain method. We test the algorithm on social network datasets of
various sizes and types. The new method estimates the optimal kernel
or distance parameters as well as the natural number of clusters in the
dataset based on modularity. Results indicate that this simple black-box
algorithm manages to perform on par with the Louvain method given
the same input.

Keywords: Clustering · Graph theory · Modularity · Kernel k-means ·
Community detection

1 Introduction

Identifying user- or item-clusters has been of interest in many fields for various
reasons [45]. Specifically, in data mining and data analysis applications, grouping
similar items or users together can lead to interesting and useful insights (see,
e.g., [1]). Moreover, in social network analysis, researchers more and more use
segmentation to analyze groups, direct contacts, indirect relationships, etc. Social
network analysis shows connections between nodes with ties, edges, or links. The
nodes can be individual users or items linked in the network; the ties or links
are relationships and interactions [23].

A very popular clustering method is the k-means algorithm, as it is easy to
understand, implement, and able to run with reasonably limited computational
resources. To address the shortcomings of using a k-means on a graph structure,
approaches such as kernel k-means were developed [46]. Kernel k-means can use
various kernels derived from the distance-based or proximity-based data, and is
particularly useful in community detection, that is, finding similar nodes in a
given graph and grouping them together [46,47].

Today, the k-means algorithm is probably the most popular clustering algo-
rithm in existence. In this work we evaluate if a simple kernel k-means cou-
pled with modularity criterion—introduced by Newman and Girvan [36,38]—
can choose parameters and the natural number of clusters on its own, such that
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 423–433, 2017.
https://doi.org/10.1007/978-3-319-68612-7_48

424 F. Sommer et al.

it manages to rival the Louvain method. We show that with a properly chosen
distance used for the clustering, k-means indeed does just as well (but not bet-
ter) than the Louvain method, when compared using statistical measures and
rank-comparison on a set of community detection tasks.

Brief Related Work and Contributions. Varying the graph node distance
between a graph’s nodes can have a substantial influence on clustering effective-
ness. As shown in prior work [26,43], modern graph distances can improve clus-
tering solutions. However, clustering the nodes using a kernel k-means approach
still suffers a major drawback, in that the k-means algorithm always requires
that the number of clusters is given.

The modularity criterion is a standard measure for community detection in
various fields, including social network analysis [16]. While modularity has its
limitations (see, e.g., [19]), it is generally accepted that, by maximizing modular-
ity, a reasonable good community structure can often be obtained [32]. Further-
more, there are attempts to alleviate its limitations [32,39]. As such, modularity
is of interest for clustering tasks and, indeed, there have been many proposals
to use the modularity criterion in clustering (see, e.g., [3,5]). However, combin-
ing the modularity criterion with recent developments in graph distances and
applying this combination in order to empirically analyze the effects this could
have on nodes clustering has—to the best of our knowledge—not yet been done.

Following up on our prior work of empirically testing new distances [43], we
address the discussed shortcomings of using kernel k-means clustering typically
encountered. In this work we therefore (i) propose automatic kernel parameter
tuning, in order to improve clustering quality, without requiring user interac-
tion, using the modularity criterion, (ii) identify the natural number of clusters
present in a dataset, using also the modularity criterion, without knowledge of
the (correct) number of clusters beforehand, (iii) finally, compare this improved
kernel k-means approach, using the kernels presented in our previous work [43],
as well as additional kernels [26], to the Louvain method [2].

2 Background and Notation

Let G = (V,E) be a weighted undirected graph consisting of a set of n vertices
V and an edge set E. The graph is assumed to be connected and non-periodic
(regular). A cost matrix C consists of non-negative scalars cij ≥ 0, which rep-
resent the cost of following the edge linking nodes i and j. If not defined in
our problem, we can compute a cost matrix from an adjacency matrix A, using
the relation cij = 1/aij , where aij are the elements in A indicating the affinity
between nodes i and j. Also, we can derive G’s Laplacian matrix as L = D−A,
where the diagonal matrix D = Diag(Ae) contains the row sums of A with a
column vector full of ones, e.

In the following we give an overview of the kernels and distances used in our
experiments. We transform distances and dissimilarities into a kernel K using
the relationship K = − 1

2 HΔ(2) H, with the centering matrix H = I − E
n (see

Modularity-Driven Kernel k-means for Community Detection 425

[4]); E is an n × n matrix full of ones and n is the number of nodes; Δ(2) is a
squared distance or dissimilarity matrix.

Shortest-Path (SP) Distance. This distance is one of the most popular dis-
tances available. It is defined as the distance of the shortest-path between two
nodes. For details on this distance, please refer to the literature (e.g., [13]).

Due to space restrictions, for the following four distances and (dis-)similarities
already investigated in our previous work [43], we refer to this paper (Eq. (1)
through (4) in Sect. 3) or to [20] for details.

Randomized Shortest-Path (RSP) Dissimilarity. See also [29,40,48].

Free Energy (FE) Distance. See also [22,29].

Sigmoid Commute-Time (SCT) Similarity. See also [46,47].

Sigmoid Corrected Commute-Time (CCT) Distance. See also [44].

Communicability (Com) Kernel. This kernel is also known as the adjacency-
based exponential diffusion kernel and is based on the communicability distance
[18,21,30]. The communicability between a graph’s two nodes i and j is the
weighted sum of all walks starting at node i and ending in node j. As for most
kernels on a graph, more importance is attributed to shorter walks than to longer
ones. The kernel is defined by the following equation:

KCom = expm(tA), t > 0 (1)

Matrix-Forest (For) Kernel. This kernel is also known as the Regularized
Laplacian kernel and is based on the regularization of the graph Laplacian [9,
10,42]. It is defined as follows:

KFor = (I + tL)−1, t > 0 (2)

Heat Kernel (Heat). This kernel is also known as the Laplacian exponential
diffusion kernel [11]. The idea of the heat kernel stems from classical physics
where the diffusion of, e.g., heat is described by the heat equation, from which
this kernel can be derived:

KHeat = expm(−tL), t > 0 (3)

426 F. Sommer et al.

Plain Walk Kernel (Walk). This kernel is also known as the Neumann kernel
and has originally been proposed to compute document similarity [27], but has
equally been applied in the context of link analysis in social network analysis
[25]. It is also closely related to the Katz similarity [28] and the walk distance [8].
Note that ρ is the spectral radius of the adjacency matrix A, i.e., the absolute
value of A’s largest eigenvalue ρ(A) = maxi(|λi|) for A’s eigenvalues λ1, . . . , λn:

KWalk = (I − tA)−1, 0 < t < ρ−1 (4)

Logarithmic Kernels. The four kernels presented just beforehand equally
exist in logarithmic form. We refer to [6–8,26] as well as the indicated references
for details. Note that ln indicates application of element-wise natural logarithm.

Log. Communicability [26]: KlCom = ln(expm(tA)), t > 0 (5)
Log. Heat [26]: KlHeat = ln(expm(−tL)), t > 0 (6)

Log. Forest [7]: KlFor = ln(I + tL)−1, t > 0 (7)

Log. Walk [8]: KlWalk = ln(I − tA)−1, 0 < t < ρ−1 (8)

3 Methodology

In this section we present the investigated clustering methods as well as their
runtime parameters used in the experiments. We test the following techniques:

• an enhanced kernel k-means approach inspired from [46,47], that employs the
modularity criterion to estimate the optimal kernel or distance parameters as
well as the natural number of clusters,

• the Louvain method [2], which also estimates the natural number of clusters
on its own,

on 15 graph datasets, the smallest of which (Zachary’s Karate club, [49]) con-
tains 34 nodes. The largest graph (a Newsgroup graph, [34,46] with five classes)
contains 999 nodes. We analyze a total of nine Newsgroup datasets (400 to 999
nodes). The remaining are the classical Football [23], Political blogs [31] datasets,
and three artificial Lancichinetti-Fortunato-Radicchi (LFR) graphs [33].

3.1 Kernel k-means Coupled with Modularity Criterion

This method is a simple extension of the kernel k-means algorithm for commu-
nity detection [46,47]. This extended method optimizes kernel parameters and
automatically estimates the natural number of clusters present in the dataset.
The kernel k-means algorithm itself is the same as in our previous work, see
[43], and corresponds to a two-step iterative algorithm based on a distance—or
dissimilarity—matrix instead of features. Given a meaningful, symmetric dis-
tance matrix Δ, containing the distances Δij , the goal is to partition the nodes
by minimizing the total within-cluster sum of squared distances. For details, see
[20,46,47].

Modularity-Driven Kernel k-means for Community Detection 427

Fig. 1. Kernel k-means coupled with modularity
criterion flowchart.

The change between the
standard kernel k-means and
the kernel k-means coupled with
modularity criterion is found
in the two-step approach of
the latter, which is more eas-
ily explained using the flowchart
in Fig. 1. As shown in this flow-
chart, prior to the actual clus-
tering step, the optimize para-
meters step is executed. For the
present case we (very verbosely)
test 77 kernel parameters and
2 to 18 clusters per kernel and
dataset. We then identify the
optimum by choosing the kernel
parameter and number of clusters combination which shows the highest mod-
ularity. The chosen kernel parameter and the identified number of clusters are
passed to the kernel k-means algorithm, which is run in the actual clustering
step. The results obtained from the actual clustering step are analyzed and dis-
cussed in Sect. 4.

Let us briefly elaborate on the details of the kernel k-means approach. For
both the optimize parameters and the actual clustering steps it is important
to keep in mind that as the kernel k-means approach depends on a random
initialization of prototypes, it is necessary to test multiple trials with differ-
ent initializations. Among these trials we keep the partition showing the lowest
within-cluster sum-of-distances. It is furthermore necessary to average the results
to account for variance in the results and we thus repeat the trials procedure
multiple times. As shown in Fig. 1 for the optimize parameters step, we exe-
cute 10 runs, consisting of 10 trials each, while for the actual clustering step,
which generates the final results, we conservatively choose to take the average
of 50 runs, each of which consists of 50 trials.

The kernel k-means coupled with modularity criterion approach is tested
using the 13 different kernels, described in Sect. 2. The aforementioned 77 kernel
parameters are tested for each of the 13 kernels. Note that all the compared
methods find a natural number of clusters.

3.2 Louvain Method

The idea behind the Louvain method [2] is to first perform an iterative local
optimization (as in, e.g., [17]) for seeking local minimum of a specific criterion
(step 1) – in our case, the modularity criterion [35–38]. Then, the second phase,
called the nodes aggregation or coarsening, step whose purpose is to build a new
agglomerated graph (step 2), is performed. These two steps are repeated until
no further improvement of the employed criterion (modularity) can be achieved.
The details are described in the original work [2].

428 F. Sommer et al.

The Louvain method [2] was used as a baseline comparison method and it
equally determines the natural number of clusters for each dataset by itself. We
denote this method with the label LVN.

3.3 Evaluation Methods

To compare the algorithms’ performance, we compute three metrics for all
datasets and methods: the adjusted rand index (ARI) [24], the normalized
mutual information criterion (NMI) [12,15] as well as the classification rate (CR).
Furthermore, we run a Friedman-Nemenyi test-based [14,15] multiple compari-
son test [15], which allows for the aggregation of results over multiple datasets,
therefore comparing the differences for all algorithms simultaneously. Similarly,
we perform two-by-two Wilcoxon signed-rank tests (see, e.g., [41]) to ascertain
individual algorithms’ performances in a one-on-one rank comparison to identify
in a meaningful manner if one algorithm statistically significantly outperforms
another. We compare the kernel k-means coupled with modularity criterion with
its different kernels to the Louvain method.

4 Results and Discussion

Fig. 2. Friedman-Nemenyi multiple comparison test
aggregating results on all datasets for the individual
algorithms, based on NMI. A higher rank, i.e., a bar
shifted to the right, indicates better results; the length
of the bars shows the significance interval. If these bars
do not overlap the rank is considered significantly differ-
ent.

Both clustering methods—
kernel k-means coupled
with modularity criterion
and the Louvain method—
were run on the graph-
based community datasets
and ARI, NMI, and CR
metrics were computed
for all of them. It is
important to stress that
all methods were run
in a totally unsupervised
way, and thus evaluate
automatically the natural
number of clusters in each
dataset. We give the raw
numbers for the NMI in
Table 1, the results for the
ARI and CR show a very
similar pattern and we
thus omit those here. The
results of the Friedman-
Nemenyi multiple comparison test are shown in Figs. 2 and 3, and discussed
below, as are the results of the two-by-two Wilcoxon signed-rank tests.

Modularity-Driven Kernel k-means for Community Detection 429

In the following we discuss the results based on an analysis of the NMI. As
mentioned before, the results from the NMI, ARI, as well as CR metrics show
very similar patterns, and we thus restrict the analysis to NMI-based results.

Table 1. Normalized mutual information (NMI).

Dataset SCT CCT FE RSP SP Com For Heat Walk lCom lFor lHeat lWalk LVN

football 0.908 0.889 0.884 0.884 0.812 0.545 0.293 0.492 0.749 0.598 0.424 0.583 0.249 0.698

lfr1 0.976 0.990 0.981 0.983 0.890 0.052 0.027 0.051 0.003 0.475 0.500 0.511 0.485 0.962

lfr2 1.000 1.000 1.000 1.000 0.986 0.147 0.164 0.266 0.694 0.481 0.478 0.449 0.682 0.823

lfr3 1.000 0.997 1.000 1.000 0.989 0.087 0.130 0.159 0.502 0.520 0.379 0.376 0.729 0.827

news2cl1 0.608 0.638 0.584 0.581 0.434 0.018 0.032 0.032 0.249 0.291 0.243 0.253 0.462 0.573

news2cl2 0.356 0.396 0.359 0.346 0.296 0.008 0.027 0.100 0.394 0.584 0.123 0.207 0.233 0.432

news2cl3 0.579 0.584 0.590 0.598 0.616 0.333 0.053 0.117 0.357 0.682 0.553 0.611 0.496 0.586

news3cl1 0.697 0.706 0.702 0.696 0.660 0.096 0.032 0.125 0.245 0.489 0.471 0.478 0.748 0.699

news3cl2 0.656 0.689 0.711 0.706 0.572 0.068 0.035 0.040 0.294 0.345 0.343 0.281 0.572 0.661

news3cl3 0.642 0.605 0.681 0.678 0.720 0.067 0.031 0.033 0.380 0.295 0.255 0.248 0.423 0.673

news5cl1 0.641 0.643 0.648 0.651 0.614 0.087 0.019 0.032 0.284 0.259 0.273 0.291 0.504 0.684

news5cl2 0.616 0.630 0.643 0.633 0.596 0.185 0.026 0.024 0.291 0.345 0.214 0.234 0.374 0.634

news5cl3 0.573 0.624 0.615 0.571 0.480 0.034 0.021 0.021 0.369 0.300 0.337 0.281 0.383 0.572

polblogs 0.556 0.556 0.567 0.568 0.549 0.423 0.322 0.641 0.298 0.511 0.550 0.527 0.577 0.597

zachary 0.832 0.724 0.838 0.832 1.000 0.262 0.395 1.000 0.875 1.000 0.866 1.000 0.697 0.982

Fig. 3. Friedman-Nemenyi multiple
comparison test aggregating the results
of all datasets for the six best algo-
rithms. A higher rank, i.e., a bar shifted
to the right, indicates better results; the
length of the bars shows the significance
interval. If these bars do not overlap the
rank is considered significantly different.

It remains difficult to identify one
“best” clustering distance. Not surpris-
ingly, the results in Table 1 show that
the datasets have a significant impact
on clustering quality. Overall, it is how-
ever safe to say that based on the mul-
tiple comparison using all methods—
with the exception of the logarithmic
communicability (lCom) and logarith-
mic walk (lWalk) kernels—the modern
FE, CCT, RSP, SCT kernels outperform
the competition to a statistically signifi-
cant degree. Comparing only these best
kernels amongst each other (cf. Fig. 3)
confirms, that the most modern kernels
(FE, CCT, and RSP) have a (short)
edge on the competition. A two-by-two
Wilcoxon signed-rank test, comparing the NMI for the FE-distance to the five
best competitors (that is, SCT, CCT, RSP, SP, and LVN) shows, that the FE-
distance based kernel manages to outperform the SCT- and SP-distance to a
statistically significant degree (both p < 5 × 10−2), but not the others (CCT,
RSP, and LVN).

430 F. Sommer et al.

Comparing the results in Table 1 to those in [43] shows that, as expected,
the lack of knowledge of the true number of clusters has a detrimental effect
on clustering quality, which also cannot be compensated by optimizing kernel
parameters per dataset. This behavior should however be expected, as thus far no
method has been found to deliver consistently good clustering results, especially
with limited to no knowledge on the data.

However, when comparing to the Louvain method, given the same infor-
mation, i.e., the lack of the true number of clusters, the kernel k-means with
modularity criterion approach manages to perform on par, or even outperform
the Louvain method, albeit not to a statistically significant level. When com-
paring only the six best algorithms in a multiple comparison as shown in Fig. 3,
the simple FE kernel based k-means obtains results equivalent to the Louvain
method.

5 Conclusion and Future Work

This work presents a simple method for executing clustering in a black-box
fashion, while making use of recent advances in graph distances. We compare
13 different graph kernels and the Louvain method. The k-means clustering
performance depends on the dataset, but obtains results equivalent to, and thus
rivals, the Louvain method almost all of the time on the investigated datasets,
without needing additional input parameters. The method simply optimizes each
kernel’s parameters and predicts the number of clusters in the dataset based on
modularity. The results are strongly influenced by the choice of kernel, with the
most modern FE, CCT, and RSP kernels showing the best results. However,
these methods do not scale well on large datasets, while the Louvain method
does.

Future work will focus on (1) refining kernel parameters’ search space in order
to increase estimation speeds, and (2) further confirm the results on other, but
also larger, datasets.

Acknowledgements. This work was supported in part by the FNRS and UCL (FSR)
through a PhD scholarship. This work was also partially supported by the Immediate
and the Brufence projects funded by InnovIris (Brussels Region). We thank these
institutions for giving us the opportunity to conduct both fundamental and applied
research.

References

1. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas,
C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer,
Heidelberg (2006). doi:10.1007/3-540-28349-8 2

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech.: Theory Exp. 10, P10008 (2008)

3. Bolla, M.: Penalized versions of the Newman-Girvan modularity and their relation
to normalized cuts and k-means clustering. Phys. Rev. E 84(1), 016108 (2011)

http://dx.doi.org/10.1007/3-540-28349-8_2

Modularity-Driven Kernel k-means for Community Detection 431

4. Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications,
2nd edn. Springer, Heidelberg (1997)

5. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wag-
ner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20, 172–188
(2008)

6. Chebotarev, P.: A class of graph-geodetic distances generalizing the shortest-path
and the resistance distances. Discrete Appl. Math. 159(5), 295–302 (2011)

7. Chebotarev, P.: The graph bottleneck identity. Adv. Appl. Math. 47(3), 403–413
(2011)

8. Chebotarev, P.: The walk distances in graphs. Discrete Appl. Math. 160(10–11),
1484–1500 (2012)

9. Chebotarev, P., Shamis, E.: The matrix-forest theorem and measuring relations in
small social groups. Autom. Remote Control 58(9), 1505–1514 (1997)

10. Chebotarev, P., Shamis, E.: The forest metric for graph vertices. Electron. Notes
Discrete Math. 11, 98–107 (2002)

11. Chung, F., Yau, S.T.: Coverings, heat kernels and spanning trees. J. Comb. 6,
163–184 (1998)

12. Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., Marchal, G.:
Automated multi-modality image registration based on information theory. Inf.
Process. Med. Imaging 3, 263–274 (1995)

13. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd
edn. The MIT Press, Cambridge (2009)

14. Daniel, W.W.: Applied Non-parametric Statistics. The Duxbury Advanced Series
in Statistics and Decision Sciences. PWS-Kent Publishing Company, Boston (1990)

15. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

16. Devooght, R., Mantrach, A., Kivimaki, I., Bersini, H., Jaimes, A., Saerens, M.:
Random walks based modularity: application to semi-supervised learning. In: Pro-
ceedings of the 23rd International World Wide Web Conference (WWW 2014), pp.
213–224 (2014)

17. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, Hoboken
(1973)

18. Estrada, E.: The communicability distance in graphs. Linear Algebra Appl.
436(11), 4317–4328 (2012)

19. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc.
Natl. Acad. Sci. U.S.A. 104(1), 36–41 (2007)

20. Fouss, F., Saerens, M., Shimbo, M.: Algorithms and Models for Network Data and
Link Analysis. Cambridge University Press, Cambridge (2016)

21. Fouss, F., Yen, L., Pirotte, A., Saerens, M.: An experimental investigation of graph
kernels on a collaborative recommendation task. In: Proceedings of the 6th Inter-
national Conference on Data Mining (ICDM 2006), pp. 863–868 (2006)

22. Françoisse, K., Kivimäki, I., Mantrach, A., Rossi, F., Saerens, M.: A bag-of-paths
framework for network data analysis. Neural Netw. 90, 90–111 (2017)

23. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. 99, 7821–7826 (2002)

24. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
25. Ito, T., Shimbo, M., Kudo, T., Matsumoto, Y.: Application of kernels to link

analysis. In: Proceedings of the eleventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 586–592 (2005)

432 F. Sommer et al.

26. Ivashkin, V., Chebotarev, P.: Do logarithmic proximity measures outperform plain
ones in graph clustering? In: Proceedings of 6th International Conference on Net-
work Analysis (2016)

27. Kandola, J., Cristianini, N., Shawe-Taylor, J.: Learning semantic similarity. In:
Advances in Neural Information Processing Systems (NIPS 2002), vol. 15, pp.
657–664 (2002)

28. Katz, L.: A new status index derived from sociometric analysis. Psychmetrika
18(1), 39–43 (1953)

29. Kivimäki, I., Lebichot, B., Saerens, M.: Developments in the theory of randomized
shortest paths with a comparison of graph node distances. Phys. A: Stat. Mech.
Appl. 393, 600–616 (2014)

30. Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete structures.
In: Proceedings of the 19th International Conference on Machine Learning (ICML
2002), pp. 315–322 (2002)

31. Krebs, V.: New political patterns (2008). http://www.orgnet.com/divided.html
32. Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community

detection. Phys. Rev. E 84(6), 066122 (2011)
33. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-

munity detection algorithms. Phys. Rev. E 78(4), 46–110 (2008)
34. Lang, K.: 20 newsgroups dataset. http://bit.ly/lang-newsgroups
35. Newman, M.E.J.: Finding community structure in networks using the eigenvectors

of matrices. Phys. Rev. E 74(3), 036104 (2006)
36. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl.

Acad. Sci. 103, 8577–8582 (2006)
37. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford

(2010)
38. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-

works. Phys. Rev. E 69, 026113 (2004)
39. Reichardt, J., Bornholdt, S.: Detecting fuzzy community structures in complex

networks with a Potts model. Phys. Rev. Lett. 93(21), 218701 (2004)
40. Saerens, M., Achbany, Y., Fouss, F., Yen, L.: Randomized shortest-path problems:

two related models. Neural Comput. 21(8), 2363–2404 (2009)
41. Siegel, S.: Non-parametric Statistics for the Behavioral Sciences. McGraw-Hill,

New York city (1956)
42. Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Schölkopf, B.,

Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS, vol. 2777, pp. 144–158. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45167-9 12

43. Sommer, F., Fouss, F., Saerens, M.: Comparison of graph node distances on
clustering tasks. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN
2016. LNCS, vol. 9886, pp. 192–201. Springer, Cham (2016). doi:10.1007/
978-3-319-44778-0 23

44. von Luxburg, U., Radl, A., Hein, M.: Getting lost in space: large sample analysis of
the commute distance. In: Proceedings of the 23th Neural Information Processing
Systems conference (NIPS 2010), pp. 2622–2630 (2010)

45. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw.
16(3), 645–678 (2005)

46. Yen, L., Fouss, F., Decaestecker, C., Francq, P., Saerens, M.: Graph nodes cluster-
ing based on the commute-time kernel. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.)
PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 1037–1045. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71701-0 117

http://www.orgnet.com/divided.html
http://bit.ly/lang-newsgroups
http://dx.doi.org/10.1007/978-3-540-45167-9_12
http://dx.doi.org/10.1007/978-3-319-44778-0_23
http://dx.doi.org/10.1007/978-3-319-44778-0_23
http://dx.doi.org/10.1007/978-3-540-71701-0_117

Modularity-Driven Kernel k-means for Community Detection 433

47. Yen, L., Fouss, F., Decaestecker, C., Francq, P., Saerens, M.: Graph nodes clus-
tering with the sigmoid commute-time kernel: a comparative study. Data Knowl.
Eng. 68(3), 338–361 (2009)

48. Yen, L., Mantrach, A., Shimbo, M., Saerens, M.: A family of dissimilarity mea-
sures between nodes generalizing both the shortest-path and the commute-time
distances. In: Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2008), pp. 785–793 (2008)

49. Zachary, W.W.: An information flow model for conflict and fission in small groups.
J. Anthropol. Res. 33, 452–473 (1977)

Measuring Clustering Model Complexity

Stefano Rovetta(B), Francesco Masulli, and Alberto Cabri

DIBRIS, University of Genova, Via Dodecaneso 35, 16146 Genoa, Italy
{stefano.rovetta,francesco.masulli,alberto.cabri}@unige.it

Abstract. The capacity of a clustering model can be defined as the
ability to represent complex spatial data distributions. We introduce a
method to quantify the capacity of an approximate spectral clustering
model based on the eigenspectrum of the similarity matrix, providing
the ability to measure capacity in a direct way and to estimate the most
suitable model parameters. The method is tested on simple datasets and
applied to a forged banknote classification problem.

Keywords: Spectral clustering · Model complexity · Model selection

1 Introduction

The control of model complexity has always been a central focus in statistics and
machine learning. In supervised learning, this view has generated some of the
most fruitful lines of research, for instance statistical learning theory [15]. Unsu-
pervised methods, however, still lack a similarly complete treatment, especially
in the case of clustering where the objective itself is not so well-defined.

Model complexity has been defined in several ways in the realm of supervised
learning, but in the case of clustering the most usual definition is simply in terms
of the number of model parameters.

In [13] an approach to model complexity control was applied to an approx-
imated spectral clustering method based on landmarks. In this contribution,
we introduce a method to quantify the ability of the same model based on the
eigenspectrum of the similarity matrix. This provides the ability to measure,
in a direct way, the capacity of the model to represent complex spatial data
distributions and to estimate the most suitable model parameters.

2 Previous Work on Clustering Complexity

The study of the spectrum of particular proximity matrices is a vast area of
research. Spectral graph theory [2] is entirely devoted to the spectrum of nor-
malised graph Laplacians, while the older field of data mapping studies the
eigendecomposition of distance matrices [14]. However, the spectrum of a simi-
larity matrix has in some sense nicer properties than that of a distance matrix,

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 434–441, 2017.
https://doi.org/10.1007/978-3-319-68612-7_49

Measuring Clustering Model Complexity 435

and while the graph Laplacian enhances the separability of clusters, its normal-
isation destroys some useful insight into their diversity. For this reason, here we
consider spectra of similarity matrices with a normal similarity function, w ≤ 1.

In the literature, most approaches to unsupervised model complexity focus
on vector quantization (VQ) rather than clustering. These are often understood
as two applications of the same technique to different problems. In fact, the
most popular approaches to each of these problems, namely codebook-based
unconstrained vector quantization and central (k means) clustering, start from
the same objective, the average square distance from the nearest representative

J =
1
n

n∑

l=1

‖xl − y(xl)‖2 (1)

where xl ∈ {x1, . . . ,xn} ⊂ R
d are the input vectors and y ∈ {y1, . . . ,yc} ⊂ R

d

are cluster representatives (centroids), with y(xl) the nearest centroid to xl.
The goal of VQ, however, is to minimize this objective only; model com-

plexity is bounded only by the maximum allowable codebook size [7]. In this
framework, the capacity of a clustering model was studied by Buhmann, who
proposed an Empirical Risk Approximation framework [1] along the lines of
Vapnik’s Empirical Risk Minimization theory. Conversely, the objective of clus-
tering is summarization: clusters are required to be meaningful [9], highlighting
actual structure in the data or classes. As a consequence, for instance, the num-
ber of centroids in k means clustering is normally assessed by maximizing some
additional cluster validity criterion [8]. A good clustering solution has the min-
imum number of centroids that provides a sufficiently low distortion, whereas
VQ exploits the maximum codebook size allowed by resource constraints [6].

One line of research addressing the expressive capacity of clusters, as opposed
to the number of degrees of freedom of the model, is related to the “additive
clustering” framework [10]. To the best of our knowledge, this is the only work
that deals with this perspective.

3 Approximated Spectral Clustering

One well-known limit of spectral clustering, shared with all proximity-based
methods, is the n2 space complexity. Given a training set X of n observations,
spectral clustering consists of building the n × n similarity matrix W xx and
then the Laplacian matrix, built using W xx and the degree matrix D, defined
as Dij = δij

∑n
k=1 W xx

ik (δij = Kronecker delta). The leading eigenvectors of
the Laplacian, starting from the second one, are either used directly as cluster
indicators, or clustered with a quick-and-dirty method (e.g., k means or spherical
k means) that converges easily due to the enhanced separation of clusters.

Several versions of the Laplacian matrix are in use: the unnormalized
Laplacian L = D − W xx, the symmetrically normalized Laplacian Lsym =
I − D−1/2W xxD−1/2, the asymmetrical “random walk” Laplacian Lrw = I −
D−1W xx.

436 S. Rovetta et al.

Algorithm 1 [13]. ASC - Approximate Spectral Clustering
· select suitable w(), c, k
· generate landmarks Y by vector quantization on X with c centroids
· compute similarity matrix W xy between data X and landmarks Y using K()

· compute correlation matrix R = W xyW xy�

· compute degree matrix D = diag(R)
· compute the desired form of Laplacian L from R and D (unnormalized, sym, rw)
· compute E, first k + 1 (column) eigenvectors of L
· discard first eigenvector by removing first column from E
· cluster rows of E with k-means, obtaining a cluster membership for each row Ei

· attribute pattern xi to the cluster of row Ei

Our Approximated Spectral Clustering (ASC) method is shown in Algo-
rithm1. It builds on the results of Tan et al. [17] who applied perturbation
analysis to bound the clustering errors when the n × n data-data proximity
matrix W xx is replaced with a c × c landmark-landmark proximity matrix W yy,
where landmarks are found by vector quantization or k means clustering. The
method proposed in [13] uses instead a n × c data-landmark matrix W xy which
reflects more accurately the input data, as well as allowing an incremental oper-
ation. To measure model capacity, however, we exploit the properties of the
landmark-landmark matrix W yy which, as proven in [17], is a good proxy for
W xx. Note that, in a different setting (multidimensional scaling), the landmark-
landmark distance matrix was also employed in [3].

4 Measuring the Clustering Capacity of ASC

A central property of the ASC method is that cluster complexity is decoupled
from the number of clusters. The two main factors influencing complexity are:

1. The number of landmarks c;
2. The similarity function w(·, ·).
Note that, in the algorithm, the number of desired clusters k is selected as an
independent parameter with respect to c.

4.1 Role of c

A measure of model complexity is the number of possible, distinct model con-
figurations. Spectral clustering embeds n-dimensional data in a similarity space,
at most n-dimensional. This space is given by the rows of the similarity matrix.
In this subsection we assume for the moment a binary similarity function (either
two patterns are similar, or they are not). In this case there are in principle 2n

possible configurations for standard spectral clustering. For the approximated
ASC method, where the similarity is computed against landmarks only, this
number reduces to 2c for both W xy and W yy, which have rank c.

Measuring Clustering Model Complexity 437

Let UΣV
�

be the singular value decomposition of a similarity matrix. In
the case of W yy, which is square, symmetric, and positive definite, this is an
eigendecomposition, so V = U (eigenvectors), U and Σ are c × c, and Σ : Σij =
δijσi are the eigenvalues. Additionally,

∑c
i=1

√
σi = tr(W yy) = c.

The eigenvalues of a distance matrix have interesting properties. Those of the
leading one (Perron-Frobenius eigenvalue, or spectral radius) have been exten-
sively studied [18]. Here we explore the similarity matrix W yy, whose eigenvalues
in the case of a normal similarity function (w(x,y) ≤ 1, w(x,x) = 1) have a clear
interpretation in terms of clustering capacity, and are most commonly studied
in the case of adjacency matrices of graphs or networks [2].

The following are simple linear algebra facts about similarity matrices in the
case of a normal, binary similarity function.

– First limiting case – When W yy = 1c = the c × c matrix of all ones, then
σ1 = c and σi = 0 for all i : 2 . . . n.

Proof. Since 1c has rank 1 there is only one non-zero eigenvalue, correspond-
ing to the constant eigenvector. The value is c because

⎛

⎜⎜⎜⎝

1 1 . . . 1
1 1 . . . 1

...

1 1 . . . 1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

1
1
...

1

⎞

⎟⎟⎟⎠ = c

⎛

⎜⎜⎜⎝

1
1
...

1

⎞

⎟⎟⎟⎠ (2)

– Second limiting case – When W yy = Ic, the identity matrix of order c,
then σi = 1 for all i : 1 . . . n.
Proof. Ic is diagonal, so its diagonal values are the eigenvalues.

– General case – σi is the size of the i-th largest cluster.
Proof. Since w(·, ·) is normal, tr (W yy) = c and therefore

∑
i σi = c as well.

Reorder the rows and columns of W yy to make it block-diagonal. The eigen-
values of a block-diagonal matrix are the eigenvalues of the blocks (this can
be verified by decomposing the characteristic polynomial). Since the blocks
are composed of all ones, each block corresponds to the first limiting case
above, and the eigenvalue of each block is equal to its size.

4.2 Role of w

Although the number of landmarks c imposes a theoretical maximum of 2c to
the number of distinct configurations that can characterize a clustering, with
non-binary similarities several configurations may define a single cluster because
they happen to be “similar enough,” and “different enough” from the rest. So
the effective number of configurations is smaller than the theoretical maximum.
For concreteness, from here on we focus on the “heat kernel”

w(xi,yj) = e−β‖xi−yj‖2
. (3)

438 S. Rovetta et al.

Here coefficient β can be related to the inverse of a time parameter governing
diffusion, so that, for small β, xi and yj are more similar than for high β.

In general, the similarity function w decays with distance. This decay is
usually controlled by some parameter; in Eq. (3) this is the inverse diffusion
coefficient β. While the rank of a matrix is an integer, this coefficient influences
the value of the leading eigenvalue by making the rows of W yy more or less
similar to each other. As a consequence, the first eigenvalue will have real values,
anywhere between 1 and c.

The mechanism by which the similarity function induces groupings between
similar real-valued rows, and the limiting regimes by which this can or cannot
occur, have been studied in the context of spectral community detection in net-
works [4]. Essentially, this involves the presence of a gap between the noise-like
distribution of trailing eigenvalues, which are distributed according to Wigner’s
semicircle law [16], and the position of the leading eigenvalues which should be
sufficiently distinguishable from the noise-like background.

In the present work this behaviour is studied experimentally and demon-
strated in the experimental section.

4.3 Spectral Measures of Clustering Model Capacity

Since the sum of all eigenvalues is constant, the leading eigenvalue σ1 (spectral
radius) measures the degree of imbalance between the largest cluster and the
remaining ones, since an eigengap develops as soon as σ1 > 1.

A model with the tendency toward many clusters of similar size will have
a lower value of the leading eigenvector than another model that favours fewer
larger clusters. On the other hand, the overall distribution of cluster sizes is
reflected in the similarity matrix spectrum.

As a result of the previous discussion, indexes of clustering capacity could
be defined. One based on the leading eigenvalue of W yy shows a particularly
informative behaviour, and is presented in an absolute and a relative version:

h = c − σ1; h = 1 − σ1

c
. (4)

The absolute version directly measures the number of effective bits required
to express the leading cluster size, and indirectly the balance between clusters.
The relative version is independent of the model dimensionality and is the frac-
tion of total theoretical model capacity actually expressed by a particular model
implementation, as fixed by the number and position of landmarks and by the
similarity function and its parametrisation.

The graphs in the following section show the index h as well as its variation
from sample to sample (approximating a derivative), with peaks corresponding
to values of maximum sensitivity.

Measuring Clustering Model Complexity 439

5 Experiments

5.1 Datasets

In this section the properties discussed above are demonstrated on some training
sets, shown in Fig. 1. These datasets are sufficiently low-dimensional (d = 2, 4)
to be easily visualized, but they are quite structured, with different scales.

Fig. 1. Four simple datasets used in the experiments.

a. Synthetic clusters. A simple dataset with convex but noisy clusters. Clusters:
4. Dimensions: 4. Observations: 560. Source: Matlab as “kmeansdata”.

b. Multi-scale toy problem. Several clusters separated by different-sized gaps.
Clusters: 2 or 4 or 8 (depending on resolution). Dimensions: 2. Observations:
400. Source: original.

c. Iris. The standard benchmark dataset since 1936. Clusters: 2 (one is actually
two partly overlapping classes). Dimensions: 4. Observations: 150. Source:
originally from [5], available in Matlab as “fisheriris.”

d. Broken circles. Two noisy concentric circles, broken into two arcs each, with
structure at multiple scales and nonlinearly separable shapes. Clusters: 2 or 4
(depending on resolution). Dimensions: 2. Observations: 280. Source: original.

A real-world application is also presented. The data, “banknote authenti-
cation” from the UCI repository [11], consist of 4 wavelet features from 1372
images of authentic and forged banknotes.

5.2 Results on Toy Data

The toy datasets have been chosen to verify the behaviour of the capacity indexes
as a function of β. To make the results comparable, the graphs in Fig. 2 are based
on the relative capacity h. The dashed lines are the measure of capacity, or model
complexity (i.e., h(βi) for i = 1 . . . 100 values of β), while the solid lines represent
the absolute delta or variation in the capacity graph (i.e., |h(βi+1) − h(βi)|)
which highlights the region(s) of higher and lower sensitivity to variations of β.
These regions have been compared to phase transitions in physics due to the
discontinuity (or rapid change) in a measured quantity [4,12], such as the layout
of clusters. The criterion for choosing β is that of minimum sensitivity, so that
the system is far from phase transitions.

440 S. Rovetta et al.

Fig. 2. Value of h (dashed) and its absolute variation |h(βi+1)− h(βi)| (solid) for (a)
synthetic clusters, (b) multiscale toy problem, (c) iris, and (d) broken circles.

5.3 Results on Banknote Classification

The same analysis was used for dimensioning the ASC model for banknote clas-
sification. The number of clusters was chosen to be 2 and the optimal number of
landmarks, as indicated by the analysis exemplified in the previous subsection
(Fig. 2) to find the regions of maximum sensitivity to variations in β, was found
to be 20. The peak of Δh was at β = 100. After clustering with these parameters,
an external validation against the target classification was performed.

The validation yielded accuracy = 0.97, sensitivity 0.95, specificity >0.99.
These results are quite good, and yet obtained in an entirely unsupervised fash-
ion. In particular, only one forged banknote was not recognized. High specificity
is a desirable behaviour in this kind of application.

5.4 Discussion and Conclusion

The graphs for the toy problems clearly show the behaviour of h as a function
of β. The plots relative to the variation show peaks in correspondence of values
for which clusters change their shape (“phase transitions”).

The banknote classification problem is quite well separated, and therefore
easy as a supervised task, but the class distributions are elongated. This proves
challenging for centroid-based clustering, and makes parameter selection critical.
The good results obtained, comparable to supervised classification, indicate that
the parameter selection procedure is effective.

Measuring Clustering Model Complexity 441

Differently from most other available approaches, capacity, as represented by
indexes h/h, is not directly related to the number of cluster centroids. Rather,
it refers to cluster shape and geometry. In the case studied, with “heat kernel”
similarity, the main model parameters influencing these indexes are the number
of landmarks c and the inverse diffusion coefficient β.

Such a measure can be exploited to correctly dimension these model para-
meters in standard spectral clustering. Due to the ability of the ASC method
to work incrementally, it also has the potentiality to allow online adaptation of
parameters in time-varying stream clustering.

References

1. Buhmann, J., Tishby, N.: Empirical risk approximation a statistical learning theory
of data clustering. NATO ASI Ser. Ser. F: Comput. Syst. Sci. 57–68 (1998)

2. Chung, F.R.K.: Spectral Graph Theory (CBMS Regional Conference Series in
Mathematics, No. 92). American Mathematical Society, Providence (1997)

3. De Silva, V., Tenenbaum, J.B.: Sparse multidimensional scaling using landmark
points. Technical report, Stanford University (2004)

4. Decelle, A., Krzakala, F., Moore, C., Zdeborová, L.: Inference and phase transitions
in the detection of modules in sparse networks. Phys. Rev. Lett. 107(6), 065701
(2011)

5. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annu.
Eugen. 7(Part II), 179–188 (1936)

6. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer,
Boston (1992)

7. Gray, R.: Vector quantization. IEEE Acoust. Speech Signal Process. Mag. 1, 4–29
(1984)

8. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques.
J. Intell. Inf. Syst. 17(2–3), 107–145 (2001)

9. Handl, J., Knowles, J., Kell, D.B.: Computational cluster validation in post-
genomic data analysis. Bioinformatics 21(15), 3201 (2005)

10. Lee, M.D.: On the complexity of additive clustering models. J. Math. Psychol.
45(1), 131–148 (2001)

11. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml

12. Rose, K., Gurewitz, E., Fox, G.: Statistical mechanics and phase transitions in
clustering. Phys. Rev. Lett. 65, 945–948 (1990)

13. Rovetta, S.: Model complexity control in clustering. In: Bassis, S., Esposito, A.,
Morabito, F.C., Pasero, E. (eds.) Advances in Neural Networks. SIST, vol. 54, pp.
111–120. Springer, Cham (2016). doi:10.1007/978-3-319-33747-0 11

14. Torgerson, W.S.: Theory and Methods of Scaling. Wiley, New York (1958)
15. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)
16. Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions.

Ann. Math. 62, 548–564 (1955)
17. Yan, D., Huang, L., Jordan, M.I.: Fast approximate spectral clustering. In: Pro-

ceedings of the 15th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 907–916. ACM (2009)

18. Zhou, B., Trinajstić, N.: On the largest eigenvalue of the distance matrix of a
connected graph. Chem. Phys. Lett. 447(4), 384–387 (2007)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/978-3-319-33747-0_11

GNMF Revisited: Joint Robust k-NN Graph
and Reconstruction-Based Graph Regularization

for Image Clustering

Feng Gu1,2, Wenju Zhang1,2, Xiang Zhang1,2(B), Chenxu Wang2,
Xuhui Huang3, and Zhigang Luo1,2(B)

1 Science and Technology on Parallel and Distributed Processing Laboratory,
College of Computer, National University of Defense Technology, Changsha, China

2 Institute of Software, College of Computer, National University of Defense
Technology, Changsha, China

3 Department of Computer Science and Technology, College of Computer,
National University of Defense Technology, Changsha, China

gufengnudt@gmail.com, zhangxiang 43@aliyun.com, zgluo@nudt.edu.cn

Abstract. Clustering has long been a popular topic in machine learn-
ing and is the basic task of many vision applications. Graph regularized
NMF (GNMF) and its variants as extensions of NMF decompose the
whole dataset as the product of two low-rank matrices which respectively
indicate centroids of clusters and cluster memberships for each sample.
Although they utilize graph structure to reveal the geometrical structure
within datasets, these methods completely ignore the robustness of graph
structure. To address the issue above, this paper jointly incorporates a
novel Robust Graph and Reconstruction-based Graph regularization into
NMF (RG2NMF) to promote the gain in clustering performance. Par-
ticularly, RG2NMF stabilizes the objective of GNMF through the recon-
struction regularization, and meanwhile exploits a learning procedure to
derive the robust graph. Experiments of image clustering on two popu-
lar datasets illustrate the effectiveness of RG2NMF compared with the
baseline methods in quantities.

Keywords: k-NN graph · Graph regularization · Nonnegative matrix
factorization · Clustering

1 Introduction

As the basic task of many vision applications, clustering seeks to divide data
points into several groups composed of similar subjects. Up to now, it is still a
popular and challenging topic in machine learning for lack of prior information.
K-means is one of the most representative clustering methods, which assigns each
sample to the nearest cluster centroid. Due to its simplicity and effectiveness, it
has been widely applied in various applications like text and image clustering [1].

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 442–449, 2017.
https://doi.org/10.1007/978-3-319-68612-7_50

GNMF Revisited: RG2NMF for Image Clustering 443

Recent works [2] show that K-means can be treated as a constrained matrix
factorization problem.

Nonnegative matrix factorization (NMF, [3]) as a powerful matrix factoriza-
tion method has proven to be effective in clustering [4]. It decomposes an original
data matrix into the product of two lower-rank nonnegative matrices, where the
two matrices indicate centroids of clusters and cluster memberships of each sam-
ple respectively. NMF can induce the parts-based representation by a nonneg-
ativity constraint and provide the psychological intuition of a whole composed
of parts. Although NMF has enjoyed reasonable performance, it neglects impor-
tant prior knowledge for clustering such as the geometrical structure within the
datasets. To address this issue, Zhang et al. [5] minimized the gradient distance
to preserve the topology structure of samples. Cai et al. [6] explored the graph
regularized NMF (GNMF) to encode the geometric structure within the datasets
into k-NN graph. Yang et al. [7] proposed nonnegative graph embedding (NGE)
in the frame of graph-embedding framework. Apparently, their graph construc-
tion is completely independent of NMF and the clustering results may be not
optimal. To remedy this deficiency, Peng et al. [8] integrated graph and feature
learning procedures into a unified NMF model. Pei et al. [9] developed a concept
factorization with adaptive neighbors (CFANs) which performs dimensionality
reduction and finds the neighbor graph weights matrix simultaneously. However,
the constructed graph as noted above is fragile to noisy data to some extent.
Moreover, these methods regard the coefficient-based graph regularization term
as the part of the objective. And the objective value would obviously burden the
instability resulting from the fluctuation of coefficient matrix.

In order to defeat the preceding problems, this paper proposes a novel method
which jointly incorporates an ingenious Robust Graph and Reconstruction-based
Graph regularization into NMF (RG2NMF). Concretely speaking, RG2NMF
employs the reconstruction regularization to stabilize the objective of GNMF,
and meanwhile exploits the learning fashion to generate the robust graph.
Although our robust graph construction is formally independent of feature learn-
ing, it induces no performance degeneration in clustering for the sake of remov-
ing the effect of the irrelevant features. The experimental results on two image
datasets including Yale [10] and Webcam [11] show that RG2NMF outperforms
the representative baseline methods.

2 Robust k-NN Graph

In graph regularization, the quality of graph plays an important role in manifold
learning, and has a significant effect on related tasks like clustering. There are
several universal graph weight methods such as binary k-Nearest Neighbours (k-
NN) graph and heat kernel k-NN graph. However, k-NN graph is not robust to
noisy data since its construction relies on the pair-wise Euclidean distance which
is known to be sensitive to outliers. In this section, we propose a novel robust
k-NN graph construction method to overcome the aforementioned deficiency.

Let A∗i denote the i-th column and Aj∗ denote the j-th row of the matrix A.
Given a data matrix X ∈ Rm×n, where m and n denote the number of features

444 F. Gu et al.

and samples respectively, the construction of traditional k-NN graph of X can
be reformulated as a learning procedure as follows:

min
Spq∈{0,1}, ‖Sp∗‖0=k

n∑

p=1

n∑

q=1

‖X∗p − X∗q‖22 Spq (1)

where S is the weight matrix of the graph. It can be verified that k-NN graph is
identical to the symmetrized result of the solution to (1) using S ← max

(
S, ST

)
.

For clarity, we rewrite (1) as

min
Spq∈{0,1}, ‖Sp∗‖0=k

‖Y ‖2
F

=
m∑

i=1

‖Yi∗∗‖2F =
m∑

i=1

n∑

p=1

n∑

q=1

Y 2
ipq (2)

where ‖·‖
F

denotes the tensor Frobenius norm, ‖·‖F denotes the matrix
Frobenius norm, and Y is a 3-dimensional tensor whose entries are defined as
Yipq = Spq (Xip − Xiq). It is not difficult to find that the tensor Frobenius norm
loss function in (2) is sensitive to outliers. To enhance the robustness of ‖·‖

F
, we

detect the outliers by enforcing the non-outlier support constraint as follows:

min
Spq∈{0,1}, ‖Sp∗‖0=k,δi∈{0,1},‖δ‖0=m−c

m∑

i=1

δi ‖Yi∗∗‖2F (3)

where c denotes the number of outliers and the binary vector δ denotes the
non-outlier support, namely, δi = 0 if ‖Yi∗∗‖F is outlier and δi = 1 otherwise.

We alternatively update S and δ with the other variable fixed. To optimize
S when δ is fixed, (3) can be recast as

min
Spq∈{0,1}, ‖Sp∗‖0=k

n∑

p=1

n∑

q=1

∥∥∥X̃∗p − X̃∗q

∥∥∥
2

2
Spq (4)

where X̃ = diag (δ)X and the diagonal matrix diag (δ) contains the entries of δ
along its diagonal. Thus, the optimal solution of (4) is

Spq =

{
1, if X̃∗q ∈ Nk

(
X̃∗p

)

0, otherwise
(5)

where Nk(X̃∗p) denotes the k nearest neighbors of X̃∗p. Finally, we conduct a
symmetrizing step by using S ← max

(
S, ST

)
.

To optimize δ when S is fixed, assuming S is symmetric, the optimization
problem in (3) can be rewritten as

min
δi∈{0,1},‖δ‖0=m−c

Tr
(
diag (δ)X (D − S) XT diag (δ)

)
(6)

where D denotes a diagonal matrix whose element is Dii =
∑n

j=1 Sij . And the
optimal solution of (6) can be obtained by

δi =

{
0, if Xi∗ (D − S) XT

i∗ belongs to the c largest values
1, otherwise

(7)

GNMF Revisited: RG2NMF for Image Clustering 445

In summary, we present the total construction procedure of robust k-NN
graph in Algorithm1, which is considered to have converged when ||St −
St−1||2F /||St−1||2F is less than the tolerance or t is greater than the maximum
number of iterations.

As demonstrated above, the robust k-NN graph adopts the outlier detection
procedure. However, we can also give another interpretation from the perspective
of feature selection. The variable δ in (3) can be explained as feature indicator,
that is, δi = 1 signifies the corresponding feature to be kept. Moreover, (4) can be
interpreted as constructing graph based on data samples after feature selection.
We alternate graph construction and feature selection until stopping criterion
is satisfied. Since feature selection removes the noisy features, we can learn a
robust graph in the end.

Algorithm 1: Robust k-NN graph
Input: k, c
Output: S
Initialize ∀i, δi = 1;
t = 1;
repeat

Update S via (5);

S ← max
(

S, ST
)
;

Update δ via (7);
t ← t + 1;

until convergence;

Algorithm 2: MUR for RG2NMF
Input: X, r, k, c
Output: W and H
Construct graph S using Alg. 1;
Randomly initialize W , H;
t = 1;
repeat

Update W via (11);
Update H via (12);
t ← t + 1;

until convergence;

3 Joint Reconstruction-Based Graph Regularization and
Robust k-NN Graph

Although GNMF [6] has attracted increasing attention in recent years, it still
suffers from several problems. The objective of GNMF is

min
W≥0,H≥0

‖X − WH‖2F + λ Tr
(
H (D − G) HT

)
(8)

where G denotes a graph weight matrix and D is a diagonal matrix whose entries
are column sums of G. (8) is instable in evidence since it is dominated by the
second term, i.e., graph regularized term, with the reconstruction error term
fixed. It implies that we can yield any solution to (8). For purpose of tackling
the problem, we jointly introduce a reconstruction-based graph regularization
to replace the coefficient-based graph regularization. The reconstruction-based
graph regularization can be written as

Tr
(
WH (D − G) HT WT

)
(9)

Clearly, the value of (9) remains no change with the reconstruction error term
fixed. This can guarantee the resultant solution to be suboptimal other than
any feasible solution. To illustrate this point, we compared the coefficient-
based GNMF (C-GNMF) and reconstruction-based GNMF (R-GNMF) on Yale
dataset. Figure 1 displays that clustering capability of (9) outperforms the

446 F. Gu et al.

2 4 6 8 10 12 14
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Classes

A
C

(a)

R−GNMF
C−GNMF

2 4 6 8 10 12 14
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Classes

N
M

I

(b)

R−GNMF
C−GNMF

Fig. 1. Average accuracy (AC) and normalized mutual information (NMI) versus dif-
ferent numbers of classes on Yale dataset.

coefficient-based graph regularization in the case both regularization terms
employ traditional k-NN graph.

However, the traditional k-NN graph used in GNMF is sensitive to outliers
as mentioned earlier. Our robust k-NN graph is a great substitute for it. Similar
to that, we can embed our robust k-NN graph into the reconstruction-based
regularization term and obtain the resultant GNMF model termed RG2NMF.
Accordingly, the objective function of RG2NMF is

min
W≥0,H≥0

F (W,H) = ‖X − WH‖2F + λ Tr
(
WH (D − S) HT WT

)
(10)

where λ is a positive parameter. We can derive the following multiplicative
update rules (MUR) for W and H:

W = W
XHT + λWHSHT

WHHT + λWHDHT
(11)

H = H
WT X + λWT WHS

WT WH + λWT WHD
(12)

The total optimization procedure of RG2NMF is summarized in Algorithm 2,
for which the convergence criterion is set as

∥∥F t − F t−1
∥∥2

F
/
∥∥F t−1

∥∥2

F
� ε or

t � tmax, where ε is the tolerance and tmax denotes the maximum number of
iterations.

4 Experiments

This section verifies the effectiveness by comparing the clustering performance
of our method with the representative clustering methods including K-means,
NMF [3], GNMF [6], local coordinate concept factorization (LCF, [12]), non-
negative local coordinate factorization (NLCF, [13]) on Yale [10] and Webcam
[11] datasets. In clustering tasks, we learned the coefficients of examples and
chose K-means to cluster the coefficients. Each experiment was independently
conducted 5 times and then we validated the clustering performance in terms of
average accuracy (AC) and normalized mutual information (NMI).

GNMF Revisited: RG2NMF for Image Clustering 447

For fair comparison, we searched the best average result under combinations
of different parameter settings. For GNMF and RG2NMF, the parameter k was
set by {2, 3, 4, 5, 6, 8, 10}, and the regularization parameter was selected from
{0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 150, 200, 250}. As to LCF and NLCF,
they involved a regularization parameter whose proper value was selected from
the range {0.01, 0.03, 0.05, 0.08, 0.1, 0.3, 0.5, 0.8, 1, 1.3, 1.5, 1.8, 2, 5, 8, 10}.
And for RG2NMF, the number of the outliers c was set from {0, 50, 100, 150,
200, 250, 300, 350, 400, 450, 500, 550, 600}.

4.1 Case Study

To verify the effectiveness of our robust k-NN graph, we learned the robust
graph on Yale dataset and visualized δ according to its meaning of the feature
indicator. The parameters in Algorithm1 were set as k = 3 and c = 130. Figure 2
illustrates that our graph construction can remove the background features and
ensure that the selected features are reasonable, considering the background
features is definitely useless to cluster faces.

Fig. 2. Demonstration of selected images from Yale dataset (in blue box) and reshaped
δ (in red box). (Color figure online)

Moreover, we compared our robust k-NN graph with different graphs
including k-NN graph, l1-graph [14], low-rank graph [15] in the frame of our
reconstruction-based graph regularization on Yale dataset. As we can see from
Fig. 3, our robust k-NN graph is significantly superior to others in terms of
average accuracy (AC) and normalized mutual information (NMI).

2 4 6 8 10 12 14
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Classes

A
C

(a)

Robust k−NN Graph
k−NN Graph
Low−Rank Graph
l1 Graph

2 4 6 8 10 12 14
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of Classes

N
M

I

(b)

Robust k−NN Graph
k−NN Graph
Low−Rank Graph
l1 Graph

Fig. 3. Average accuracy (AC) and normalized mutual information (NMI) versus dif-
ferent numbers of classes on Yale dataset.

448 F. Gu et al.

4.2 Image Clustering

We used Yale face dataset and Webcam object dataset for comparison in this
section. The former contains 165 images of 15 individuals. The images were
cropped and resized to vectors with 32× 32 pixels. And the latter contains 795
images of 31 categories. We extracted their SURF features and quantized them
into 800-bin histogram with codebooks. Figure 4 shows the AC and NMI on Yale
and Webcam datasets under different numbers of classes. It is observed that our
RG2NMF consistently outperforms the baseline methods in all cases.

2 4 6 8 10 12 14
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Classes

A
C

(a)

RG2NMF
GNMF
NLCF
LCF
NMF
K−means

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Classes

N
M

I

(b)

RG2NMF
GNMF
NLCF
LCF
NMF
K−means

2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Classes

A
C

(c)

RG2NMF
GNMF
NLCF
LCF
NMF
K−means

2 4 6 8 10 12 14 16
0.45

0.55

0.65

0.75

0.85

Number of Classes

N
M

I

(d)

RG2NMF
GNMF
NLCF
LCF
NMF
K−means

Fig. 4. Average accuracy (AC) and normalized mutual information (NMI) versus dif-
ferent numbers of classes on Yale (a, b) and Webcam (c, d) datasets.

5 Conclusion and Discussion

This paper devises a new GNMF model termed RG2NMF by jointly integrat-
ing a robust graph and reconstruction-based graph regularization into NMF.
RG2NMF considers both the geometric structure of clean reconstruction data
space and robust k-NN graph to boost clustering performance. Experimental
results of image clustering on two popular image datasets verify the effectiveness
of RG2NMF. Furthermore, as a variant of NMF, it is still a promising method
to tackle the non-image data like text data. We plan to study the applicability
of our method on data of different nature in the future work.

Acknowledgments. This work was partially supported by National High-tech R&D
Program (under grant No. 2015AA020108) and National Natural Science Foundation
of China (under grant No. U1435222).

GNMF Revisited: RG2NMF for Image Clustering 449

References

1. Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan,
G.J., Ng, A., Liu, B., Philip, S.Y., et al.: Top 10 algorithms in data mining. Knowl.
Inf. Syst. 14(1), 1–37 (2008)

2. Bauckhage, C.: K-means clustering is matrix factorization. CoRR abs/1512.07548
(2015)

3. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788–791 (1999)

4. Shahnaz, F., Berry, M.W., Pauca, V.P., Plemmons, R.J.: Document clustering
using nonnegative matrix factorization. Inf. Process. Manag. 42(2), 373–386 (2006)

5. Zhang, T., Fang, B., Tang, Y.Y., He, G., Wen, J.: Topology preserving non-negative
matrix factorization for face recognition. IEEE Trans. Image Process. 17(4), 574–
584 (2008)

6. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix fac-
torization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8),
1548–1560 (2011)

7. Yang, J., Yang, S., Fu, Y., Li, X., Huang, T.S.: Non-negative graph embedding.
In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8.
IEEE (2008)

8. Peng, C., Kang, Z., Hu, Y., Cheng, J., Cheng, Q.: Nonnegative matrix factorization
with integrated graph and feature learning. ACM Trans. Intell. Syst. Technol. 8(3),
42 (2017)

9. Pei, X., Chen, C., Gong, W.: Concept factorization with adaptive neighbors for
document clustering. IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–10 (2016)

10. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recog-
nition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell.
19(7), 711–720 (1997)

11. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category mod-
els to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15561-1 16

12. Liu, H., Yang, Z., Yang, J., Wu, Z., Li, X.: Local coordinate concept factorization
for image representation. IEEE Trans. Neural Netw. Learn. Syst. 25(6), 1071–1082
(2014)

13. Chen, Y., Zhang, J., Cai, D., Liu, W., He, X.: Nonnegative local coordinate fac-
torization for image representation. IEEE Trans. Image Process. 22(3), 969–979
(2013)

14. Cheng, B., Yang, J., Yan, S., Fu, Y.: Learning with �1-graph for image analysis.
IEEE Trans. Image Process. 19(4), 858–866 (2010)

15. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation.
In: 27th International Conference on Machine Learning, pp. 663–670 (2010)

http://dx.doi.org/10.1007/978-3-642-15561-1_16
http://dx.doi.org/10.1007/978-3-642-15561-1_16

Two Staged Fuzzy SVM Algorithm
and Beta-Elliptic Model for Online Arabic

Handwriting Recognition

Ramzi Zouari(B), Houcine Boubaker, and Monji Kherallah

National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
ramzi.zouari@gmail.com, houcine-boubaker@ieee.org,

monji.kherallah@enis.rnu.tn

Abstract. Online handwriting recognition has been gaining more inter-
est in the field of document analysis due to the growth of data entry
technology. In this context, we propose a new architecture for online Ara-
bic Word recognition based on a pre-classification of their handwriting
trajectory segments delimited by pen-down and pen-up actions. To char-
acterize these segments, we extract their kinematic and geometric pro-
files characteristics according to the overlapped beta-elliptic approach.
The main contribution in this work consists on combining two stages
of Support Vector Machines (SVM). The first one is developed in fuzzy
logic (Fuzzy SVM) and allows computing the membership probabilities
of pseudo-words in different sub-groups. The second stage consists on
gathering the membership probabilities vectors of pseudo-words belong-
ing to the same word in order to predict the word label. The tests are
performed on 937 classes which represent the Tunisian town names from
the ADAB database. The obtained results show the effectiveness of the
proposed architecture which reached the rate of 99.89%.

Keywords: Online · Fuzzy · Pseudo-words · Beta-elliptic · Velocity ·
Unsupervised · Clustering

1 Introduction

During the two last decades, several researches have been made on online hand-
writing analysis field thanks to the emergence of new technologies in the field
of data entry (tablet PC, electronic pen, PDA, etc.). In this context, many
approaches have been done like writer identification, signature verification and
word recognition [1–3]. Unlike offline analysis, where only a scanned image of the
handwriting is available, online analysis provides dynamic informations such as
velocity profile and temporal order of the trajectory [4]. Among online handwrit-
ing systems, Arabic word recognition is one of the most important areas to deal
with, because the cursive style of the Arabic writing. Indeed, Arabic characters
change shapes according to their location in the word (beginning, middle, isolate

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 450–458, 2017.
https://doi.org/10.1007/978-3-319-68612-7_51

Two Staged FSVM Algorithm and Beta-Elliptic Model for OAHR 451

and at the end). Furthermore, there are delayed strokes written above or below
the character which may be a single or multi dots, Hamza or Chadda [5].

In the Arabic handwriting recognition process, a segmentation step is
required. It consists on dividing a word into sub-units. Different segmenta-
tion techniques have been proposed which are generally based on geometric
approaches. Sternby et al. [6] proposed a method that consists on segment-
ing trajectory at the vertical extreme points. Boubaker et al. [7] presented a
graphemes segmentation technique based on the detection of two types of topo-
logically particular points (Bottom of the ligature valleys and Angular points).
In the other hand, segmentation can be made according to the kinematic profile.
Tagougui et al. [8] decomposed the trajectory into segments representing pen
up or pen-down moments. Kherallah et al. [9] segmented the word into strokes
delimited between two consecutives extremums velocity points. The reliability
of a system is given by its recognition rate. It depends on several factors like
segmentation technique, extracted features and architecture of the system. In
some researches, a combination between online and offline features is investigated
[10,11]. The test results of this technique are conducted on ADAB database and
reached a recognition rates of 93.33% and 91.8% respectively. In other works,
the uses of multiple classifiers improves system performance. Tagougui et al. [12]
proposed a hybrid MLP/HMM model. The segmented strokes are trained with
a Multi-Layer Perceptron (MLP) to extract class script probabilities. Then, the
MLP outputs are decoded through HMMs to provide script level recognition.
This method achieved 96.4% recognition accuracy. Another hybrid TDNN-SVM
architecture has been proposed in [13]. The fuzzy outputs of the Time Delay
Neural Network (TDNN) are forwarded to the SVM classifier to predict the true
label class. This architecture was tested on LMCA database and achieved a rate
of 99.52%.

In this paper, we present a new architecture for online Arabic word recogni-
tion based on the association of two fuzzy SVM stages with beta-elliptic model.
The first stage aims to compute the pseudo-words probability memberships
within K groups, whereas the second puts the probabilities of pseudos-words
belonging to the same word in order to find its true label class.

The rest of the paper is organized as follows: in the Sect. 2 we present beta-
elliptic model. In the next part, the framework for online word recognition is
presented. The Sect. 4 presents experiments and results and finally we give a
conclusion with some future works.

2 Beta-Elliptic Modeling

Handwriting movement is generated by neurophysiologic excitations which may
be characterized by its velocity and trajectory profiles [14]. As for the sigma-
lognormal model [15] where the production of a handwriting trajectory is seen
as the vectorial superposition in time of concatenated strokes engendered by log-
normal shaped neuromuscular impulses [16], The beta-elliptic approach returns
the generation of a handwriting trajectory to the mobilisation of N neuromus-
cular subsystems whose effects in the velocity domain are modeled by the sum

452 R. Zouari et al.

of overlapped Beta impulses [17–19]. In fact, during each trajectory segment,
executed between two successive extrema speed times, two neuromuscular sub-
systems Si and Si+1 are mobilized to deputize progressively the dynamic of the
movement drive. In the geometric profile, the model predicts that the neurophysi-
ologic Beta shaped allure of the velocity tangential components Vi (t) and Vi+1 (t)
engendered by the neuromuscular subsystems Si and Si+1 respectively, combined
with constrains imposed by the relationship between the curvilinear velocity and
radius of curvature in handwriting trajectory (known as the power law) lead to
design an elliptic allure to the handwriting trajectory segment [20,21].

2.1 Handwriting Trajectory Segmentation

Curvilinear velocity profile Vσ(t) represents the resulting response to the finished
impulses. It can be calculated through the following formula:

Vσ(t) =

√(
dx

dt

)2

+
(

dy

dt

)2

. (1)

The curvilinear velocity curve shows a signal that alternates between extremums
of velocity (minima, maxima and inflexion points). These specific points define
the number of strokes (Fig. 1b).

700 750 800 850 900 950 1000
0

50

100

150

(a) Arabic handwriting Word.

0 0.2 0.4 0.6 0.8 1.0 1.2
0

100

200

300

400

500

600

700
Vσ(t)
Beta impulses

(b) Overlapped Beta impulsese.

0 0.2 0.4 0.6 0.8 1.0 1.2
0

100

200

300

400

500

600

700
Vσ(t)
Sum Beta
impulses

(c) Velocity profile modeling.

700 750 800 850 900 950 1000
0

50

100

150

(d) Word rebuilding by elliptic arcs.

Fig. 1. Beta-elliptic modeling.

Two Staged FSVM Algorithm and Beta-Elliptic Model for OAHR 453

2.2 Velocity Profile Modeling

According to the works of Alimi et al. [18], each stroke converges with a beta
impulse. Then, the curvilinear velocity can be approximated by an algebraic
addition of the successive overlapped beta impulses (Fig. 1c)

Vσ(t) ≈
n∑

i=1

Ki × βi(t, qi, pi, t0i, t1i). (2)

with

βi(t, qi, pi, t0i, t1i) =

{(
t−t0i

tci−t0i

)pi
(

t1i−t
t1tci

)qi
if t ∈ [t0i, t1i]

0 elsewhere.

}
(3)

tci =
(pi × t1i) + (qi × t0i)

p + q
(4)

– Ki: amplitude of ith beta impulse,
– pi, qi are intermediate parameters,
– t0i, tci, t1i are the moments witch correspond respectively to the start, the

maximum amplitude and the end of the Beta function (t0i < tci < t1i).

2.3 Trajectory Modeling

In the space domain, each stroke located between two successive extrema speed
times can be modeled by an elliptic arc that represents a simple quarter of
ellipse [19]. Boubaker et al. [20] have proposed two novel approaches of rebuilding
trajectory based on five points and oblique projection methods. They allow using
arcs of ellipses which are not limited by tops in order to reduce the error of
rebuilding (Fig. 1d).

3 Framework for Online Arabic Handwriting Recognition

3.1 Data Processing and Script Segmentation

In the preprocessing step, we have applied a Chebyshev second type low pass
filter to eliminate the noise generated by spatial and temporal sampling. Further-
more, the vertical dimension of the script lines is adjusted to obtain a normalized
script size. The script segmentation principle consists on decomposing the signal
into segments, called pseudo-words, defined as a continuous handwriting trajec-
tory delimited between pen-up and pen-down moments.

3.2 Features Extraction

The feature extraction step consists on calculating the dynamic and geometric
profiles of all pseudo-words. For each one, we calculate the beta-elliptic parame-
ters of the set of strokes that constitute it. In fact, each stroke is represented by
a number of 7 parameters (Table 1). So, the pseudo-word feature vector X is the
concatenation of the beta-elliptic parameters of its strokes.

454 R. Zouari et al.

Table 1. Beta-elliptic parameters

Parameters Explanation

Dynamic profile K Beta impulse amplitude

δt = (t1 − t0) Beta impulse duration

Rap = p
p+q

Rapport of beta impulse asymmetry or
culminating time

P Beta shape parameters

Geometric profile a Ellipse major axis half length

b Ellipse small axis half length

θ Ellipse major axis inclination angle

3.3 Pre-classfication Stage

This stage aims to classify all database pseudo-words into groups according to
their feature vectors X. Since the developed recognition algorithm is addressed
for multi-writer application, the pseudo-word trajectory shape and length change
from one person to another depending to the handwriting style. For this reason,
we can not manually associate a label for each pseudo word. We have apply
the K-means algorithm to classify automatically all pseudo-words into K groups
[22] (Fig. 2a). These groups are trained using Fuzzy SVM in order to associate
for each pseudo-word a set of scores Si=1,..,K (X) that represents the distance
separating it from the hyperplanes [23]. To turn these scores into probabilites,

ADAB
database

Trajectory low pass Filtering

Script Normalization

Word segmentation

Bêta-elliptic modeling

Pseudo-Word Clustering (k-means)

Sub-
group1

Sub-
Group2

Sub-
Groupk

………

Fuzzy SVM

P(X|G1) P(X|G2) P(X|Gk)……..

X

(a) Pseudo-words training process.

Beta-elliptic modeling

………
……….
SVM

TARGET

Word

pseudo-word1 pseudo-word2 pseudo-wordN..…
…

..…
…

P(X1|G1), …, P(X1|Gk)

P(X2|G1), …, P(X2|Gk)

P(XN|G1),…, P(XN|Gk)

Trained Fuzzy SVM of pseudo-Word clustering

(b) Word recognition process.

Fig. 2. Online handwriting recognition process.

Two Staged FSVM Algorithm and Beta-Elliptic Model for OAHR 455

we applied the Platt algorithm [24]. So, a pseudo word will be modeled by a
vector of size K that contains the membership probabilities to the K sub-groups.

3.4 Word Recognition Process

This step consists of recognizing a word from its pseudo-words. For this reason,
we gathered for each word the membership probabilities vectors of its pseudo-
words to form the input data to the second SVM which allows to establish a
relation between the fuzzy outputs obtained from the first stage and the desired
output (target) (Fig. 2b).

4 Experiments and Results

The experiments have been made on ADAB database. It is a multi-writer data-
base that was written by 166 writers. It includes a total of 21575 online Tunisian
towns names belonging to 937 different classes (Table 2). After the segmentation
process, we obtained a total of 114924 pseudo-words which are classified into K
groups according to the K-means algorithm. The number of clusters K is fixed at
100 since it returns the least within-cluster sums of points-to-centroid distances.
To check the effectiveness of the clustering algorithm, we chose randomly two
thirds of sub-groups samples for the training step and we associated the pseudo-
word from the test set to a sub-group with the higher membership probability.
Experiments have been made on Fuzzy SVM with different kernel functions and
the best results have been obtained with Radial Basis Function (Table 3).

Table 2. ADAB database description

Number of words Number of pseudo words Writers

Set1 5037 40296 56

Set2 5090 25450 37

Set3 5031 15093 39

Set4 4417 22085 25

Set5 1000 4000 6

Set6 1000 8000 3

Total 21575 114924 166

Following the pevious stage, we have stored for each pseudo word a vector of
size K that contains its membership probabilities to the K sub-groups. The word
recognition step consists on gathering the vectors of pseudo-words belonging to
the same word in order to recognize the word label. The experiments were carried
out on a second SVM with different kernel functions. The best result has been
obtained with RBF kernel and have reached the impressive recognition rate of
99.89% (Table 4).

456 R. Zouari et al.

Table 3. Pseudo-word classification results

Kernel function

Linear Polynomial Sigmoid RBF

Recognition rate 84.14% 87.74% 89.99% 92.33%

Table 4. Word recognition Rates

Kernel function

Linear Polynomial Sigmoid RBF

Recognition rate 96.52% 96.92% 97.12% 99.89%

Compared to other works from the literature, the proposed system performs
better than the others which are conducted on ADAB database and based on
HMM, MLP and CNN networks (Table 5).

Table 5. Results comparison

Systems Architecture Database Recognition rate

Khlif et al. [10] HMM ADAB 93.33%

Tagougui et al. [11] MLP-HMM ADAB 96.45%

Elleuch et al. [12] CNN ADAB 91.8%

Best ICDAR 2011 [25] AUC-HMM1 ADAB 98.45%

Present work FSVM-SVM ADAB 99.89%

5 Conclusions and Future Works

We presented in this paper a new architecture for online Arabic handwriting
recognition. The beta-elliptic approach was used to model the dynamic and
geometric profiles of handwriting trajectory. The proposed system proceeds by
using the fuzzy logic in order to identify the membership probabilities of the
pseudo-words in different sub-groups. Thereafter, the membership probabilities
vectors of pseudo-word belonging to the same word are gathered to form the
input data to the second SVM in order to recognize the handwriting script. The
obtained result demonstrates the effectiveness of the proposed system compared
to others already exists in literature. As future work, we will interested to test the
proposed method also on other forms of script like digits and Latin handwriting
since the beta-elliptic model does not specific to Arabic handwriting.

Two Staged FSVM Algorithm and Beta-Elliptic Model for OAHR 457

References

1. Chaabouni, A., Boubaker, H., Kherallah, M., Alimi, A.M., El Abed, H.: Multi-
fractal modeling for on-line text-independent writer identification. In: International
Conference on Document Analysis and Recognition, pp. 623–627 (2011)

2. Hassäıne, A., Al-Maadeed, S.: An online signature verification system for forgery
and disguise detection. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP
2012. LNCS, vol. 7666, pp. 552–559. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34478-7 67

3. El-Sana, J., Biadsy, F.: Online Arabic handwriting recognition. U.S. Patent and
Trademark Office, vol. 1, no. 8, pp. 131–615 (2013)

4. Chaabouni, A., Boubaker, H., Kherallah, M., Alimi, A.M., El Abed, H.: Combining
of off-line and on-line feature extraction approaches for writer identification. In:
International Conference on Document Analysis and Recognition, pp. 1299–1303
(2011)

5. Tagougui, N., Kherallah, M., Alimi, A.M.: Online Arabic handwriting recognition:
a survey. Int. J. Document Anal. Recogn. (IJDAR), 16(3), 209–226 (2013)

6. Sternby, J., Morwing, J., Andersson, C.: On-line Arabic handwriting recognition
with templates. Pattern Recogn. 42(12), 3278–3286 (2009)

7. Boubaker, H., El Baati, A., Kherallah, M., Alimi, A.M., Elabed, H.: Online Ara-
bic handwriting modeling system based on the graphemes segmentation. In: 20th
International Conference on In Pattern Recognition (ICPR), pp. 2061–2064. IEEE
(2010)

8. Tagougui, N., Boubaker, H., Kherallah, M., Alimi, M.A.: A hybrid NN/HMM
modeling technique for online Arabic handwriting recognition, arXiv preprint
arXiv 1401.0486 (2014)

9. Kherallah, M., Haddad, L., Alimi, M.: A new approach for online Arabic handwrit-
ing recognition. In: Proceedings of the Second International Conference on Arabic
Language Resources and Tools, pp. 22–23 (2009)

10. Khlif, H., Prum, S., Kessentini, Y., Kanoun, S.: Fusion of explicit segmentation
based system and segmentation-free based system for on-line Arabic handwritten
word recognition. In: 15th International Conference on Frontiers in Handwriting
Recognition (ICFHR), pp. 399–404. IEEE (2016)

11. Elleuch, M., Zouari, R., Kherallah, M.: Feature extractor based deep method to
enhance online Arabic handwritten recognition system. In: Villa, A.E.P., Masulli,
P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 136–144. Springer,
Cham (2016). doi:10.1007/978-3-319-44781-0 17

12. Tagougui, N., Boubaker, H., Kherallah, M., Alimi, A.M.: A hybrid MLPNN/HMM
recognition system for online Arabic handwritten script. In: World Congress on
Computer and Information Technology (WCCIT), pp. 1–6. IEEE (2013)

13. Zouari, R., Boubaker, H., Kherallah, M.: Hybrid TDNN-SVM algorithm for online
Arabic handwriting recognition. In: Abraham, A., Haqiq, A., Alimi, A.M., Mez-
zour, G., Rokbani, N., Muda, A.K. (eds.) HIS 2016. AISC, vol. 552, pp. 113–123.
Springer, Cham (2017). doi:10.1007/978-3-319-52941-7 12

14. Boubaker, H., Chaabouni, A., Tagougui, N., Kherallah, M., Alimi, A.M.: Hand-
writing and hand drawing velocity modeling by superposing beta impulses and
continuous training component. Int. J. Comput. Sci. 10(5(1)), 57–63 (2013)

15. Reilly, C.O., Plamondon, R.: Development of a sigma-lognormal representation for
on-line signatures. Pattern Recogn. 42(12), 3324–3337 (2009)

http://dx.doi.org/10.1007/978-3-642-34478-7_67
http://dx.doi.org/10.1007/978-3-642-34478-7_67
https://arxiv.org/abs/1401.0486
http://dx.doi.org/10.1007/978-3-319-44781-0_17
http://dx.doi.org/10.1007/978-3-319-52941-7_12

458 R. Zouari et al.

16. Plamondon, R.: A kinematic theory of rapid human movements. Part I. Movement
representation and generation. Biol. Cybern. 72(4), 295–307 (1995)

17. Alimi, A.M.: Evolutionary neuro-fuzzy approach to recognize on-line Arabic hand-
writing. In: Proceedings of the International Conference on Document Analysis
and Recognition (ICDAR), vol. 1, pp. 382–386 (1997)

18. Bezine, H., Alimi, A.M., Sherkat, N: Generation and analysis of handwriting script
with the beta-elliptic model. In: 9th International Workshop on Frontiers in Hand-
writing Recognition, pp. 515–520. IEEE (2004)

19. Kherallah, M., Haddad, L., Alimi, A.M., Mitiche, A.: On-line handwritten digit
recognition based on trajectory and velocity modeling. Pattern Recogn. Lett.
29(5), 580–594 (2008)

20. Boubaker, H., Kherallah, M., Alimi, A.M.: New strategy for the on-line handwriting
modelling. In: 9th International Conference on Document Analysis and Recognition
(ICDAR), vol. 2, pp. 1233–1247 (2007)

21. Boubaker, H., Rezzoug, N., Kherallah, M., Gorce, P., Alimi, A.M.: Spatio-temporal
representation of 3D hand trajectory based on beta-elliptic models. Comput. Meth-
ods Biomech. Biomed. Eng. J. (CMBBE) 18(15), 1632–1647 (2015)

22. MacQueen, J: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, vol. 1, no. 14, pp. 281–297 (1967)

23. Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass
probability estimates. In: Proceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 694–699 (2002)

24. Platt, J.: Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Adv. Large Margin Classifiers 10(3), 61–74 (1999)

25. Kherallah, M., Tagougui, N., Alimi, A.M., Elabed, H., Mrgner, V.: Online Arabic
handwriting recognition competition. In: Proceeding of 11th International Confer-
ence on Document Analysis and Recognition, pp. 1454–1459 (2011)

Evaluating the Compression Efficiency
of the Filters in Convolutional Neural Networks

Kazuki Osawa1(B) and Rio Yokota2

1 School of Computer Science, Tokyo Institute of Technology, Tokyo, Japan
oosawa.k.ad@m.titech.ac.jp

2 Advanced Computing Research Division,
Advanced Applications of High-Performance Computing Group,

Global Scientific Information and Computing Center,
Tokyo Institute of Technology, Tokyo, Japan

rioyokota@gsic.titech.ac.jp

http://www.titech.ac.jp/english/, http://www.gsic.titech.ac.jp/en

Abstract. Along with the recent development of Convolutional Neural
Network (CNN) and its multilayering, it is important to reduce the
amount of computation and the amount of data associated with convolu-
tion processing. Some compression methods of convolutional filters using
low-rank approximation have been studied. The common goal of these
studies is to accelerate the computation wherever possible while main-
taining the accuracy of image recognition. In this paper, we investigate
the trade-off between the compression error by low-rank approximation
and the computational complexity for the state-of-the-arts CNN model.

Keywords: Convolutional neural networks · Low-rank approximation

1 Introduction

In recent years, a lot of deep learning models have demonstrated high accuracy
in many tasks of machine learning including image classification tasks. Since the
Convolutional Neural Network (CNN) of Krizhevsky et al. [1] showed overwhelm-
ing performance in ILSVRC [2] held in 2012, CNNs have received wide attention
in the field of image recognition and in many other field, and excellent models
have been developed and researched by many researchers. As a recent trend,
state-of-the-arts CNNs have more layers than before and improves the perfor-
mance to more complex tasks. Meanwhile, with the multilayering of networks,
the computational complexities and the space requirements involved in model
training and inference are increasing. It has been reported that it takes several
days or weeks for training the model, and convolution processing in multiple
convolutional layers occupies most of these times [3].

In order to solve this problem, several methods utilizing the resistance to
noise of CNN have been proposed. Courbariaux et al. [4] constrained the weights
and activities to +1 or −1, and Gupta et al. [5] used half precision fixed point
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 459–466, 2017.
https://doi.org/10.1007/978-3-319-68612-7_52

460 K. Osawa and R. Yokota

for calculation. They show that accuracy does not degrade. Several compres-
sion methods for convolutional filters using low-rank approximation have also
been proposed [6–10]. By reducing the rank of the tensor (matrix) constitut-
ing each filter and compressing it, the computational complexity and the space
requirement involved in the convolution process are reduced. However, quanti-
tative investigations on the compressibility of convolution filters have not been
reported in such studies. In this work, we investigate the compression efficiency
of the filter of the convolution layer for the state-of-the-arts CNN models.

2 Related Work

2.1 Convolutional Neural Networks

As a research field of artificial intelligence that finds consistent rules out of a
large amount of data, the development of machine learning is remarkable. Deep
learning is one of the most attractive machine learning methods in recent years
due to high recognition accuracy. Deep learning has a multilayered neural net-
work model inspired by the neural circuits of the human brain, and this “deep”
structure provides an effective solution to problems that require complex judg-
ment. In the field of image recognition, Convolutional Neural Networks (CNN),
which is one type of deep learning, exercises the highest recognition performance
in many benchmarks and contests [2,11], finally exceeding the image recognition
accuracy by human beings (called superhuman) [12].

ILSVRC. ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [2]
is a large-scale object recognition and image classification benchmark held since
2010. In this work, we are targeting state-of-the-arts CNNs that demonstrated
the best performance with ILSVRC 2014 and ILSVRC 2015. In ILSVRC 2014,
VGG ConvNet (VGG) [13] demonstrated the best performance in one of the
tasks of the object detection department (DET), and GoogLeNet [14] demon-
strated the best performance in the tasks of both DET and object classification,
localization department (LOC).

2.2 CNN with Low-Rank Approximation

Parameters of the deep learning model including CNN have redundancy. In
recent years, several studies exploiting this property by compressing the con-
volution filter to a low-rank for accelerating convolution have been reported.
Rigamonti et al. [6] separates the image convolution filter used in the field of
machine learning and computer vision, not only to CNN, to a smaller linear
filter (rank-1) and approximates it. Denil et al. [7] focuses on the redundancy of
the parameters of the deep learning model and accurately estimates the remain-
ing values from a given part of the weights. In the model for MNIST [15] and
CIFAR-10 [16], they succeeded in estimating the maximum 95% weight without
degrading recognition accuracy. Denton et al. [17] speed up the computation

Evaluating the Compression Efficiency of the Filters in CNN 461

of each layer by the CPU and the GPU twice without damaging the recogni-
tion accuracy of CNN for ILSVRC 2012 dataset by 1%. Jaderberg et al. [8] has
achieved a speedup of 4.5 times for pre-trained CNNs for scene text character
recognition at the expense of 1% recognition accuracy. Lebedev et al. [9] com-
presses the 4 dimensional filter of the convolution layer of the large scale CNN to
the low-rank using CP-decomposition. They achieves 8.5 times faster speed on
CPU, overwhelming the method of Denton et al., and Jaderberg et al. Also, by
merely impairing the recognition accuracy of AlexNet [1] by 1%, it has achieved
4 times faster than the second convolved layer. Tai et al. [10] applied a low-
rank approximation method of the convolutional layer filters to AlexNet, NIN,
VGG, GoogLeNet that are state-of-the-arts CNNs for CIFAR-10 and ILSVRC
12 dataset, achieved high speed. In addition, it reports the result of achieving
higher recognition accuracy than the model without filter compression. However,
in this study, they consider only the speed-up in each convolutional layer.

3 Compression of the Filters

3.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) of a real matrix A ∈ R
m×n is a matrix

decomposition technique that transforms A into the product of three matrices,
such as A = UΣV T, using orthogonal matrices U ∈ R

m×m and V ∈ R
n×n. Here

we think about a real symmetric matrix AAT ∈ R
m×m. Assume the eigenvalues

λi (i = 1, 2, . . . ,m) of AAT are in order, λ1 ≥ · · · ≥ λr > λr+1 = · · · = λm = 0,
then, σi :=

√
λi > 0 (i = 1, . . . , r) are called singular values of A. By using the

singular values of A, the matrix Σ is defined as,

Σ :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[

Δ O
]

if (m > n)

Δ if (m = n)
[
Δ

O

]

if (m < n)

,
Δ := diag(σ1, . . . , σr),
O : zero matrix.

(1)

Because σ1 ≥ · · · ≥ σr > 0, Σ is uniquely determined (U and V are
not uniquely determined). By using the eigenvectors uj ∈ R

m(j = 1, . . . , r)
of AAT corresponding to eigenvalues λj (j = 1, . . . , r) and the eigenvectors
vj := 1

σj
ATuj ∈ R

n of ATA) corresponding to eigenvalue λj (j = 1, . . . , r), A is
also represented as, A =

∑r
i=1 σiuivT

i .

3.2 Low-Rank Approximation Using SVD

Then, think about lowering the rank of matrix A ∈ R
m×n using SVD of it.

Suppose the SVD of A is A =
∑r

i=1 σiuivT
i , by using 1 ≤ k ≤ r, the matrix is

approximated as A ≈ ∑k
j=1 σjujvT

j =: Ãk. This is called low-rank approxima-
tion. The space requirement of A is O(mn), and that of Ãk is O(k(m + n + k)).

462 K. Osawa and R. Yokota

Suppose k are small enough, the space requirement of the approximated matrix
can be kept lower than that of the original. For a certain rank k, this approximate
form minimize the Frobenius norm ‖A− Ãk‖F which is the index of approxima-
tion error.

3.3 Compressing Filters in CNNs

We apply the low-rank approximation method using SVD to the 4 dimensional
filter in each convolutional layer of CNN. Our method respects C. Tai et al’s
method [10]. First, convert 4-dimensional tensor W ∈ R

C×d×d×K to matrix W ∈
R

Cd×dK . Here, C represents the number of input channels of the convolutional
layer, K represents the number of output channels, and d represents the size of
the kernels. Let j1 := (i1−1)d+i2 and j2 := (i4−1)d+i3, then (j1, j2) component
of W is (i1, i2, i3, i4) component of W. Now, we calc the low-rank approximation
of matrix W ∈ R

Cd×dK for certain rank k. We can get the low-rank matrix
W̃k := UW,kΣW,kV T

W,k.

3.4 Compression Efficiency

Our goal is to reduce computational complexity as much as possible without
degrading CNN recognition accuracy. Therefore, we are interested in how much
the filter after the low-rank approximation (W̃k) deteriorates compared with
the original one (W) and the computational amount that can be reduced at
that time. In order to quantitatively measure the error of the filter after the
approximation, the following relative norm using the Frobenius norm is adopted,

E(W,k) :=
‖W − W̃k‖F

‖W‖F
. (2)

This is because the sizes of the filters (Frobenius norm) are different in each
convolutional layer.

Let Z ∈ R
X×Y ×K be the output feature map to a convolutional layer. Then,

the computational complexity of normal convolution using W ∈ R
C×d×d×K

is O(d2KCXY). In Tai et al’s method [10], the computational complexity of
the convolution using rank k approximated filter W̃k ∈ R

Cd×dK is O(dk(K +
C)XY). Therefore, the difference in computational amount relative to original
convolution is represented by

D(W,Z, k) := dk(K + C)XY − d2KCXY

= dXY (k(K + C) − dKC) . (3)

Here if D(W,Z, k) < 0, the computational amount of the convolution with
approximation is lower than that without approximation.

Using (2) and (3), we examine the compressibility of the filter W , in the
convolutional layer its output is Z, for a desired approximation error e, by cal-
culating the smallest rank kmin as following,

kmin := min{k |E(W,k) < e}, (4)

and calculating the value of D(W,Z, kmin).

Evaluating the Compression Efficiency of the Filters in CNN 463

4 Experiments

4.1 CNN Model

We apply the low-rank approximation method to the pre-trained filters of VGG-
16 which is state-of-the-arts CNN model demonstrated the best performance in
ILSVRC, and investigated the relationship between rank k, approximation error,
and speeding-up. Specifically, we used pre-trained filters (https://github.com/
tensorflow/models/tree/master/slim) which is trained by ILSVRC2012 datasets.
The configuration of the convolutional layers, the filters before/after approxima-
tion, and the output sizes in VGG-16 are showed in Table 1 (k1 1, . . . , k5 3 are
the rank k for low-rank approximation method for conv1 1, . . . , conv5 3).

Table 1. Configuration of VGG-16 (convolutional layers)

Layer Original filter

C × d × d × K

Approximated filter C × d × d × K Output size

X × Y

conv1 1 3 × 3 × 3 × 64 3 × 3 × 1 × k1 1 k1 1 × 1 × 3 × 64 224 × 224

conv1 2 64 × 3 × 3 × 64 3 × 3 × 1 × k1 2k1 2 × 1 × 3 × 64 224 × 224

conv2 1 64 × 3 × 3 × 128 64 × 3 × 1 × k2 1 k2 1 × 1 × 3 × 128 112 × 112

conv2 2 128 × 3 × 3 × 128 128 × 3 × 1 × k2 2 k2 2 × 1 × 3 × 128 112 × 112

conv3 1 128 × 3 × 3 × 256 128 × 3 × 1 × k3 1 k3 1 × 1 × 3 × 256 56 × 56

conv3 2 256 × 3 × 3 × 256 256 × 3 × 1 × k3 2 k3 2 × 1 × 3 × 256 56 × 56

conv3 3 256 × 3 × 3 × 256 256 × 3 × 1 × k3 3 k3 3 × 1 × 3 × 256 56 × 56

conv4 1 256 × 3 × 3 × 512 256 × 3 × 1 × k4 1 k4 1 × 1 × 3 × 512 28 × 28

conv4 2 512 × 3 × 3 × 512 512 × 3 × 1 × k4 2 k4 2 × 1 × 3 × 512 28 × 28

conv4 3 512 × 3 × 3 × 512 512 × 3 × 1 × k4 3 k4 3 × 1 × 3 × 512 28 × 28

conv5 1 512 × 3 × 3 × 512 512 × 3 × 1 × k5 1 k5 1 × 1 × 3 × 512 14 × 14

conv5 2 512 × 3 × 3 × 512 512 × 3 × 1 × k5 2 k5 2 × 1 × 3 × 512 14 × 14

conv5 3 512 × 3 × 3 × 512 512 × 3 × 1 × k5 3 k5 3 × 1 × 3 × 512 14 × 14

4.2 Approximation Error and Computational Complexity

For several approximate error e ∈ {0.01, 0.02, . . . , 0.49, 0.50}, we calculate (4)
and (3) for each convolutional layer of VGG-16 (Fig. 1). By considering the
total computational amount of all convolutions and the compression efficiency
of each convolution, we can select the ranks for low-rank approximation. Possible
strategies for selecting ranks are

– If the computational amount that can be reduced is small relative to the total
amount, then we select HIGH rank in order to lower the approximation error.

– Otherwise, we select LOW rank in order to accelerate the convolution.
– HIGH or LOW ranks are determined by comparing with the ranks used by

Tai et al. [10].

https://github.com/tensorflow/models/tree/master/slim
https://github.com/tensorflow/models/tree/master/slim

464 K. Osawa and R. Yokota

(a) Conv1 (b) Conv2

(c) Conv3 (d) Conv4

(e) Conv5 (f) Original - C. Tai et al (shaded)

Fig. 1. (a)–(e): Trade-off between the approximation error (2) and the difference in
computational amount relative to original convolution (3) in each layer by using kmin

(4) for several error e ∈ {0.01, 0.02, . . . , 0.49, 0.5} (f): Comparison of computational
complexity with original convolution (while bar) and that with convolution by Tai et
al’s method (shaded bar)

For example, in conv1 1 (Fig. 1(a)), we cannot reduce the computational com-
plexity very much even if we set LOW rank (high approximation error). In
addition, in all layers of Conv5 (Fig. 1(e)) have same feature as conv1 1. So we

Evaluating the Compression Efficiency of the Filters in CNN 465

can understand that we should select HIGH ranks for these convolutional layers.
Similarly, for the remaining layers, we can select relatively LOW ranks.

5 Conclusions and Future Work

We evaluated the compressibility of the CNN filter in the low-rank approximation
quantitatively, which was not done in previous studies. As a result of investiga-
tions conducted on the VGG-16 model which is one of the CNNs of state-of-the-
arts, we could know the characteristics of the compression efficiency of the filters
of each convolutional layer. As a future possibility, by carefully considering the
characteristics of the CNN model obtained in this work, it is expected to acquire
the optimum ranks in the low-rank approximation. For future work, we have to
compare the results of this work and the low-rank approximation strategies used
in previous researches. Also, we have to examine the relationship between the
relative norm and the classification accuracy.

Acknowledgments. This work was supported by JST CREST Grant Number
JPMJCR1687, Japan.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Bartlett, P., Pereira, F.C.N., Burges, C.J.C., Bot-
tou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Sys-
tems, vol. 25, pp. 1106–1114 (2012)

2. Russakovsky, O., Deng, J., Hao, S., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large
scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252
(2015)

3. Jia, Y.: Learning semantic image representations at a large scale. Ph.D. thesis,
EECS Department, University of California, Berkeley, May 2014

4. Courbariaux, M., Bengio, Y.: Binarynet: training deep neural networks with
weights and activations constrained to +1 or -1. CoRR, abs/1602.02830 (2016)

5. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with
limited numerical precision. CoRR, abs/1502.02551 (2015)

6. Rigamonti, R., Sironi, A., Lepetit, V., Fua, P.: Learning separable filters. In: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2013

7. Denil, M., Shakibi, B., Dinh, L., Ranzato, M., de Freitas, N.: Predicting parameters
in deep learning. In: Neural Information Processing Systems (NIPS) (2013)

8. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. In: BMVC 2014 (2014)

9. Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., Lempitsky, V.: Speeding-up
convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553 (2014)

10. Tai, C., Xiao, T., Zhang, Y., Wang, X., et al.: Convolutional neural networks with
low-rank regularization. arXiv preprint arXiv:1511.06067 (2015)

http://arxiv.org/abs/1412.6553
http://arxiv.org/abs/1511.06067

466 K. Osawa and R. Yokota

11. Lin, T.-Y., Maire, M., Belongie, S.J., Bourdev, L.D., Girshick, R.B., Hays, J.,
Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common
objects in context. CoRR, abs/1405.0312 (2014)

12. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015)

13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556 (2014)

14. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Computer
Vision and Pattern Recognition (CVPR) (2015)

15. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)
16. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (canadian institute for advanced

research)
17. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear

structure within convolutional networks for efficient evaluation. In: Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in
Neural Information Processing Systems, vol. 27, pp. 1269–1277. Curran Associates
Inc (2014)

Dynamic Feature Selection Based on Clustering
Algorithm and Individual Similarity

Carine A. Dantas, Rômulo O. Nunes, Anne M.P. Canuto(B),
and João C. Xavier-Júnior

Federal University of Rio Grande do Norte - UFRN, Natal, RN, Brazil
carine-cad@hotmail.com, romulo.ciencomp@gmail.com, anne@dimap.ufrn.br,

jcxavier@imd.ufrn.br

Abstract. This paper introduces a new dynamic feature selection to
classification algorithms, which is based on individual similarity and it
uses a clustering algorithm to select the best features for an instance indi-
vidually. In addition, an empirical analysis will be performed to evaluate
the performance of the proposed method and to compare it with exist-
ing feature selection methods, applying to classification problems. The
results shown in this paper indicate that the proposed method had bet-
ter performance results than the existing methods compared, in most
cases.

Keywords: Feature selection · Clustering algorithm · Classification
task

1 Introduction

Classification techniques have been widely applied in different real world applica-
tions in the last decades. Basically, a classification model assigns a given instance
to a specific class considering that this instance has not been previously seen [1].
Nowadays, the number of features in different problem domains has grown enor-
mously. The majority of classification tasks explore domains with hundreds to
thousands of features [2]. Furthermore, an important question always needs to
be considered when dealing with a high number of features, which is the selection
of features to be used during the classification process [2]. A feature selection
method proposes to obtain a subset of attributes that replaces an original data
set, aiming at reducing dimensionality and at improving the model performance.

Several feature selection methods have been proposed in the literature, how-
ever, most of the existing methods select one subset of features and use this
subset to the whole testing set. In this paper, we propose a new dynamic fea-
ture selection technique based on individual similarity and using data clustering
algorithms to select features for classification tasks. In [15], an initial effort was
made in which a dynamic feature selection was proposed. However, in [15], a
subset of features is defined for a group of patterns. Unlike [15], this paper pro-
poses a real dynamic feature selection method, in which one subset of features
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 467–474, 2017.
https://doi.org/10.1007/978-3-319-68612-7_53

468 C.A. Dantas et al.

is selected for each test instance rather than to the entire data set. In order to
build this dynamic method, a clustering algorithm and a similarity measure are
used to select the best subset of features for an instance. In order to evaluate the
feasibility of the proposed method, an analysis will be conducted, evaluating an
important parameter of the proposed methods as well as comparing it to some
classical feature selection methods.

2 Related Work

Feature Selection methods applied to classification tasks has been widely studied
in the Machine Learning area. Its main aim is to reduce the data set dimensional-
ity, finding a more compact representation of the problem, without affecting the
performance of the classification algorithms. Several Feature Selection methods
have been proposed in the literature for classification tasks and can be found in
[7–10]. Surveys can be found on [11].

Many studies can be found Feature Selection methods for clustering tech-
niques, where the feature selection methods are used as a pre-processing step for
the clustering algorithms [12–14]. However, To the best of the authors knowl-
edge, very little has been done to explore the use of clustering algorithms in the
feature selection process for classification algorithms. In this paper, we will use
a feature selection method that uses a clustering algorithm during the feature
subset selection and the selected subset will be used for a classification algorithm.

Additionally, all feature selection methods presented above make a static
selection process, selecting a single subset to represent an entire data set. Unlike
them, the proposed method has a dynamic selection process, selecting one feature
subset to represent each instance individually.

3 The Proposed Method

In this section, the functioning of the proposed method will be presented. The
functioning of the proposed method can be summarized as follows. Suppose
that D is data set composed of i (instances) and a (attributes), where i is
divided in three sets: train set TR = {tr1, tr2, ..., trntr}, validation set V =
{v1, v2, ..., vnv} and test set T = {t1, t2, ..., tnt}, where ntr, nv, and nt are the
number of instances for training, validation, and test, respectively.

1. A clustering algorithm Alg is applied in V , that will group the validation
instances, that is represented by the following equation.

G = Alg(V) (1)

Where G = {g1, g2, ..., gj} and each group gj has central point pj , that is
defined with the group’s center of mass.

2. A function Fgj = cr(gj) is applied for each group gj as evaluation criterion
to define the important attributes of this group. In this stage any evaluation
criterion can be applied as F .

Dynamic Feature Selection Based on Clustering Algorithm 469

3. Based on the evaluation criterion function Fgj , all attributes are ranked, based
on its evaluation within gj .

Rj = rank(Fgj) (2)

4. When a testing instance ti needs to be classified, it is compared to the parti-
tion G, through a distance measure DIST :

DIST = disty(ti, py)|y = {1, .., j}. (3)

The main aim of DIST is to calculate the distance between the testing
instance and the group centroid.

5. A function P is applied to each value of DIST , disty, to define probability,
proby, of ti belong gy.

proby = P (ti, disty). (4)

This probability function is based on the test instance and its distance to
the group centroids. The probability will be high for small distances. This
probability will represent the proportion of features selected for each group to
compose the instance’s feature subset.

6. The feature subset NVi for each test pattern ti, is obtained picking the Nj

most important attributes for each group gj , as follows.

NVi = select(Nj , P robj) (5)

The values of Nj will be defined by the proportion for each group in Probj .
Suppose that a test instance ti has PROB = {30, 60, 10} for a problem with
100 features. If we will select a subset with 50% of the attributes, we will
select a subset of size 50. Based on PROB, 30% of the selected features will
be picked from group 1 (15 attributes), 60% of the selected features will be
picked from group 2 and 30% of the selected features will be picked from
group 3.

7. Finally, ti will be trained by classifier Ci using the NVi subset. The accuracy
is obtained through application of the test patterns in the trained classifier
Ci.

In using this method, each instance has a different feature subset. As a result,
we will have a dynamic feature selection method.

4 Methods and Materials

In order to analyze the performance of the proposed method, an experimental
analysis will be conducted. In this analysis, we will use the k -means clustering
algorithm [1] in the feature selection method, with k equals to the number of
classes of a data set. In addition, the obtained subsets will be applied in four
classifiers: k -NN (k -Nearest Neighbors), Decision Tree, SVM (Support Vector
Machine) and Naive Bayesian [1]. The evaluation criterion, Fgj , used in step 2 of

470 C.A. Dantas et al.

the proposed method (Sect. 3) is Pearson Correlation [6]. Finally, all algorithms
of this analysis were developed using MATLAB language.

For this analysis, we will use 15 data sets from UCI repository, varying the
number of attributes (A), instances (I) and class labels (C). Each database will
be represented by an identifier (Id). The data sets are: Ionosphere (Id: b1, A:
34, I: 351 and C: 2);Gaussian (Id: b2, A: 600, I: 60 and C: 3); Lung Cancer
(Id: b3, A: 56, I: 32 and C: 3); Breast Cancer Prognostic (Id: b4, A: 34, I:
198 and C: 2); Spam (Id: b5, A: 58, I: 4601 and C: 2); Arrhythmia (Id: b6,
A: 279, I: 452 and C: 13); Parkinsons (Id: b7, A: 23, I: 195 and C: 2); Jude
(Id: b8, A: 985, I: 248 and C: 6); Libras Movement (Id: b9, A: 91, I: 160 and
C: 15); Simulated (Id: b10, A: 600, I: 60 and C: 6); Micromass (Id: b11, A:
1301, I: 931 and C: 2); ADS (Id: b12, A: 1559, I: 3279 and C: 2); Semeion
Handwritten Digit (Id: b13, A: 256, I: 1593 and C: 2); Protein (Id: b14, A:
121, I: 583 and C: 5) and Hill-Valley (Id: b15, A: 101, I: 606 and C: 2).

For comparison purposes, the performance of the proposed method will be
compared to six existing dimensionality reduction methods (feature selection
and extraction), which are: Random, PCA [3], LDA [3], CFS [3], LLCFS [4] and
FSV [5]. In addition, we will compare the performance of the proposed method
to the use of the original data set (no feature selection).

In this paper, in order to obtain a better estimation of the accuracy rates,
a 10-fold cross validation method is applied to all classification algorithms. As
the clustering algorithm is a non-deterministic one, 10 runs will be performed.
Therefore, the values presented in this papers are the average of 100 cases (10
folds of 10 runs). In order to validate the performance of the proposed method
from a statistical point of view, we will apply the Friedman test which will be
used to identify if the obtained results in different methods will be detected by
a statistical test.

5 Results

This section presents the results of the empirical analysis and will be done in two
different ways. In the first analysis, one important parameter of the proposed
method will be evaluated, which is the size of the selected subset. In this paper,
we will use three different subset sizes, 25%, 50% and 75% of the original data
set. The purpose of this analysis is to evaluate the impact of the subset size in
the performance of the proposed method and to select the best size to be used
in the following analysis. In the second analysis, a comparative analysis between
the proposed method and some existing dimensionality reduction methods will
be made.

In both analyses, the performance is measured taking into consideration the
average ranking of the obtained results. These rankings are based on their accu-
racy, always assigning 1 to the best value (highest accuracy), followed by 2, ...,m
(where m is the number of analyzed methods) in descending order according to
its classification accuracy.

Dynamic Feature Selection Based on Clustering Algorithm 471

5.1 An Analysis of the Subsets Size

Table 1 presents the results of the average ranking of the different subsets size,
25%, 50% and 75% of the original data set, for each data set. In this table, each
column represents the results of each subset size. In addition, the best results
(achieved the lowest average ranking), for each data set (line), is highlighted in
shaded cells.

From Table 1, it can be observed that the best results were obtained when
using the subset size 75% was used in proposed method, since this size achieved
the best results in 7 of the 15 used data sets. It means that the best results
are obtained when a 75% of the features are selected. This is an expected result
since the best result was obtained by the largest feature subset.

Table 1. Ranking results and standard deviation of comparative between proportions

ID 25% 50% 75%

b1 2.09±0.800 2.13±0.786 2.18±0.817

b2 2.55±0.709 2.67±0.614 2.75±0.536

b3 2.42±0.714 2.41±0.719 2.46±0.714

b4 1.95±0.833 2.15±0.719 2.06±0.804

b5 2.29±0.897 1.72±0.734 2.04±0.710

b6 2.12±0.827 2.10±0.819 1.85±0.776

b7 2.33±0.776 2.10±0.802 2.08±0.772

b8 2.75±0.486 2.83±0.380 2.90±0.301

b9 2.59±0.646 1.975±0.726 1.67±0.738

b10 2.74±0.565 2.69±0.576 2.67±0.623

b11 2.70±0.557 1.96±0.699 1.60±0.707

b12 2.32±0.771 2.00±0.788 1.83±0.781

b13 2.46±0.755 2.00±0.712 1.70±0.762

b14 2.59±0.521 1.08±0.370 2.42±0.538

b15 2.78±0.518 2.76±0.484 2.80±0.473

Numb 4 4 7

In order to analyze the performance of the impact of the subset size in the
proposed method from a statistical point of view, we have applied the Friedman
test to compare the performance of the different subset sizes. Table 2 presents the
p-values of the Friedman test in which the shaded cells represent the statistically
significant performances. When the p-value is less than 0.05, then we applied the
post-hoc Friedman test for each pair of subset sizes. In addition, the last line of
Table 2 is the number of statistically significant results (first column) as well as
the number of wins of the compared methods, always in the A/B format, where
represents the number of wins of the first method and B represents the number
of wins of the second method.

From Table 2, we can observe that the difference in performance was statis-
tically significant for the majority of data sets (11 out of 15 data sets). Fur-
thermore, when we compare as subsets sizes among themselves, is observed that

472 C.A. Dantas et al.

Table 2. Friedman test results (p-values) for comparative between 3 subsets size

ID FRIEDMAN 25%-50% 25%-75% 50%-75%

b1 0.411 - - -

b2 0.001 0.020 0.001 0.168

b3 0.496 - - -

b4 0.004 0.009 0.015 0.098

b5 0.001 0.001 0.001 0.001

b6 0.001 0.910 0.001 0.034

b7 0.001 0.001 0.001 0.804

b8 0.001 0.012 0.001 0.001

b9 0.001 0.001 0.001 0.001

b10 0.088 - - -

b11 0.001 0.001 0.001 0.001

b12 0.001 0.001 0.001 0.413

b13 0.001 0.001 0.001 0.001

b14 0.001 0.001 0.034 0.001

b15 0.766 - - -

Numb 11 3/7 3/8 3/4

50% and 75% obtain better results than 25%. In addition, 50% was statistically
better than 25% in 7 data sets and 75% better than 25% in 8 data sets. When
we compare 50% with 75%, the subset size 75% is statistically better than 50%
in 4 data sets, while 50% is statistically better than 75% in 3 data sets.

Based on the results obtained in Tables 2 and 1, we can conclude that 25%
achieved the worst performance and 50% and 75% obtained similar performance.
In this sense, we decided to use 50% in the second part of this empirical analysis,
since 50% and 75% had similar performance and there is a larger reduction in the
number of features with 50%, providing a smaller representation of the original
problem.

5.2 Comparative Analysis: Classical Methods

As mentioned previously, a comparative analysis between the proposed method
and some existing dimensionality reduction methods will be made. For this com-
parative analysis, the proposed method with 50% of subset size will be used,
together with the use of random feature selection (RD), no feature selection
(NoFS) as well as well-known feature reduction methods, such as: PCA, LDA,
CFS, LLCFS and FSV, respectively.

For simplicity reasons, in this paper, we will only present the results of the
Friedman test, in order to present only the results of a statistical test. Table 3
presents the p-values of the Friedman test as well the pairwise post-hoc test, for
the cases the Friedman test proved to be statistically different.

When observing Table 3, we can observe that the performance of the different
dimensionality reduction methods proved to be statistically significant, in all 15

Dynamic Feature Selection Based on Clustering Algorithm 473

data sets. Additionally, we can see that the proposed method achieved better
results, when compared to all other analyzed methods. When comparing the
proposed method, in a two-by-two basis, the proposed method surpassed the
random method in 10 data sets, while also it surpasses NoFS, PCA, LDA, CFS,
LLCFS and FSV in 5, 11, 7, 8, 6 and 6 data sets, respectively.

In summary, this paper presented promising results, since the proposed
method achieved better performance than well-established dimensionality reduc-
tion methods.

Table 3. Friedman test results (p-values) of comparative with existing dimensionality
reduction methods

ID Fried MP-NFS MP-RD MP-PCA MP-LDA MP-CFS MP-LLCFS MP-FSV

b1 0.001 0.001 0.001 0.001 0.001 0.044 0.003 0.002

b2 0.001 0.001 0.001 0.001 0.001 0.666 0.296 0.321

b3 0.001 0.001 0.001 0.001 0.001 0.756 0.612 0.001

b4 0.001 0.007 0.001 0.029 0.001 0.001 0.001 0.001

b5 0.001 0.001 0.884 0.001 0.966 0.001 0.001 0.001

b6 0.001 1 0.001 0.001 0.001 0.001 0.991 0.997

b7 0.001 0.682 0.998 0.001 1 0.041 0.336 0.004

b8 0.001 0.071 0.822 0.001 0.001 0.064 0.208 0.061

b9 0.001 0.866 0.001 1 0.001 0.001 0.869 0.360

b10 0.001 0.628 0.001 0.001 0.001 0.002 0.001 0.996

b11 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

b12 0.001 0.999 0.001 0.001 0.899 0.465 1 0.922

b13 0.001 0.001 0.001 0.295 1 0.001 0.001 0.001

b14 0.001 0.001 1 0.001 0.001 0.001 0.001 0.001

b15 0.001 0.686 0.603 0.001 0.343 0.001 0.001 0.001

Numb 15 5/2 10/0 11/2 7/3 8/3 6/2 6/3

6 Final Remarks

This paper presented a new dynamic feature selection method based on indi-
vidual similarity. The aim of this proposed method is to select the best feature
subset for each instance rather than just one feature set for the entire data set.
An experimental analysis was necessary to evaluate the feasibility of the pro-
posed method, applying the obtained subsets in four classifiers (k-NN, Decision
Tree, SVM and Naive Bayesian) with 15 different data sets.

In the first part of the empirical analysis, the proposed method was evaluated
with different subset sizes. The proposed method obtained better results when
using 50% or 75% of the total number of features. Then, the proposed method
was compared with other dimensionality reduction methods (Random, PCA,
LDA, CFS, LLCFS, FVS). As a result of this comparative analysis, we could
observe that the proposed method provided the best results, when compared

474 C.A. Dantas et al.

to all feature selection methods. In addition, the use of the proposed method
achieved better performance than using the original data sets (no feature selec-
tion). Therefore, we can conclude that the proposed method is an efficient choice
for feature selection.

References

1. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)
2. Motoda, H., Liu, H.: Feature selection, extraction and construction. Commun. Inst.

Inf. Comput. Mach. Taiwan 5, 67–72 (2002)
3. Liu, H., Motoda, H.: Computational Methods of Feature Selection. CRC Press,

Boca Raton (2007)
4. Zeng, H., Cheung, Y.: Feature selection and kernel learning for local learning-based

clustering. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1532–1547 (2011)
5. Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and

support vector machines. In: ICML, vol. 98, pp. 82–90 (1998)
6. Pearson, K.: Mathematical contributions to the theory of evolution. III. Regression,

heredity, and panmixia. Philos. Trans. Roy. Soc. London 187, 253–318 (1896)
7. Chu, C., Hsu, A., Chou, K., Bandettini, P., Lin, C.: Alzheimer’s disease neuroimag-

ing initiative and others: does feature selection improve classification accuracy?
Impact of sample size and feature selection on classification using anatomical mag-
netic resonance images. Neuroimage 60, 59–60 (2012)

8. Bolón-Canedo, V., Porto-Dı́az, I., Sánchez-Maroño, N., Alonso-Betanzos, A.: A
framework for cost-based feature selection. Pattern Recogn. 647, 2481–2489 (2014)

9. Wang, J., Zhao, P., Hoi, S.C., Jin, R.: Online feature selection and its applications.
IEEE Trans. Knowl. Data Eng. 26, 698–710 (2014)

10. Chen, Z., Wu, C., Zhang, Y., Huang, Z., Ran, B., Zhong, M., Lyu, N.: Feature
selection with redundancy-complementariness dispersion. Knowl.-Based Syst. 89,
203–217 (2015)

11. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput.
Electr. Eng. Nagel 40, 16–28 (2014). Elsevier

12. Maldonado, S., Carrizosa, E., Weber, R.: Kernel penalized K-means: a feature
selection method based on kernel K-means. Inf. Sci. 322, 150–160 (2015)

13. Boutsidis, C., Magdon-Ismail, M.: Deterministic feature selection for k-means clus-
tering. IEEE Trans. Inf. Theory 59, 6099–6110. IEEE (2013)

14. Bhondave, R., Kalbhor, M., Shinde, S., Rajeswari, K.: Improvement of expectation
maximization clustering using select attribute. Int. J. Comput. Sci. Mob. Comput.
3, 503–508 (2014)

15. Nunes, R.O., Dantas, C.A., Canuto, A.M.P., Xavier-Jnior, J.C.: An unsupervised-
based dynamic feature selection for classification tasks. In: 2016 International Joint
Conference on Neural Networks, pp. 4213–4220. IEEE (2016)

Learning from Data Streams
and Time Series

Dialogue-Based Neural Learning to Estimate the
Sentiment of a Next Upcoming Utterance

Chandrakant Bothe(B), Sven Magg, Cornelius Weber, and Stefan Wermter

Department of Informatics, Knowledge Technology, Universität Hamburg
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

{bothe,magg,weber,wermter}@informatik.uni-hamburg.de
www.informatik.uni-hamburg.de/wtm/

Abstract. In a conversation, humans use changes in a dialogue to pre-
dict safety-critical situations and use them to react accordingly. We pro-
pose to use the same cues for safer human-robot interaction for early
verbal detection of dangerous situations. Due to the limited availability
of sentiment-annotated dialogue corpora, we use a simple sentiment clas-
sification for utterances to neurally learn sentiment changes within dia-
logues and ultimately predict the sentiment of upcoming utterances. We
train a recurrent neural network on context sequences of words, defined
as two utterances of each speaker, to predict the sentiment class of the
next utterance. Our results show that this leads to useful predictions of
the sentiment class of the upcoming utterance. Results for two challeng-
ing dialogue datasets are reported to show that predictions are similar
independent of the dataset used for training. The prediction accuracy is
about 63% for binary and 58% for multi-class classification.

1 Introduction

In human-robot interaction, one of the primary concerns is safety. In this paper,
we address safety as the condition of being protected from or unlikely to cause
danger or injury. A mobile robot serving a wrong drink, coffee instead of water,
in a cup might be an acceptable mistake, whereas serving the drink in a broken
cup might be an unacceptable risk. When the robot is verbally instructed to
perform this action, most probably the user also tells the robot that there is a
danger or a chance of risky situation.

Early recognition of hazards is crucial for safety-related control systems, such
as protective or emergency stop, which is an essential feature for personal care
robots [21]. The main goal of our research is to study the early detection of
safety-related cues through language processing. In the case of a wrong robot
action, the user might respond with an utterance which, although often not
easily understandable for the robot, carries feedback information for the last
action performed, which can help to understand the situation [12,23].

A possible conversation is shown in Fig. 1, the robot (R) perceives a sentence
from the person (P) with neutral sentiment and responds with a query whether
this means it should continue. Expecting a positive reply in case everything is

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 477–485, 2017.
https://doi.org/10.1007/978-3-319-68612-7_54

478 C. Bothe et al.

ok, the next utterance has a negative sentiment. Without understanding the
meaning of a sentence, the robot can stop or revert the last action just on the
basis of a failed response sentiment prediction. Furthermore, an estimate of the
user’s response sensitivity is necessary when the robot needs to ask safety-critical
questions [7].

R: Hello, how can I help you? Neutral
P: Can you bring me tea? Neutral
R: Yes, I can make some tea. Positive (context)
P: Oh, that cup seems broken. Neutral
R: Shall I continue the action. Neutral
P: No, don’t use the broken cup. Negative (context)
R: Okay, I will find another one. Neutral

Fig. 1. Example for preparing the contexts: labeled by sentiment analyser, previous
two utterances of the positive and negative class are taken as context.

Our goal is, as a first step, to learn from spoken language dialogues to pre-
dict the sentiment of the next upcoming utterance. As shown in Fig. 1, we use
two utterances as context, capturing a sequence with both speakers, to predict
the next utterance sentiment from the first speaker. Long short-term memory
networks (LSTM) have shown good performance on the text-classification tasks
(e.g. [2]) learning long-term dependencies. Since we want to extend our model to
longer contexts, we choose those networks and show that they could successfully
learn to estimate the sentiment of the next upcoming utterance.

2 Related Work

Responses from humans in an interaction have been used in various ways in
human-robot scenarios. In student/teacher learning scenarios, to facilitate learn-
ing, a teacher gives positive and negative feedback depending on the success of
the student [12]. Weston [23] has shown that the positive-negative sentiment
in the teacher’s response helps to guide the learning process. Other work [20]
describes context-sensitive response generation in the field of language under-
standing and generation. They report that there is a lack of reflecting the agents
intent and maintaining the consistency with the sentiment polarity. This con-
sistency of polarity means that unpredicted changes in polarity may be cues for
changing situations, so monitoring the sentiment over a dialogue can not only be
used for simple feedback signals but give evidence on, maybe not yet otherwise
perceivable, changes in the environment.

Sentiment analysis is an important aspect of the decision-making process
[17] and thus has received much attention in the scientific community. With
vast amounts of data available for analysis, many methods have been explored

Dialogue-Based Neural Learning to Estimate the Sentiment 479

recently, e.g. [10,22]. Deep learning has given rise to some new methods for
the sentiment analysis task, outperforming traditional methods [5,19]. Different
NLP tasks have been performed independently and in a unified way using deep
neural networks [4]. Especially in the field of text classification, the strength of
neural network approaches is evident, e.g. convolutional neural networks [11] or
recursive and recurrent neural networks [2,19]. A fixed-size context window can
solve the problem of the variable length of language text sequences, but this
fails to capture the dependencies longer than the window size. Recurrent neural
networks have the ability to use variable sequence length, and especially LSTM
networks have shown good performance [5].

The accessibility of large unlabelled text data can be utilised to learn the
meaning of words and the structure of sentences and this has been attempted by
word2vec [16]. The learned word embeddings are used for creating lexicons and
have a reduced dimensionality compared to traditional methods. This approach
has also been used for learning sentiment-specific word embedding for sentiment
classification [14]. Our approach utilises word embeddings to feed an LSTM
network similar to [2] in order to learn sentiment prediction.

3 Approach

3.1 Datasets

We have used two spoken interaction corpora for training our model from two
very different sources, child-adult interaction and movie subtitles. The first is
the child language component of the TalkBank system, called CHILDES1 [15],
where different child and adult speakers converse on daily issues. In this dataset,
we selected the conversations with children of age 12 and above, which have
significant verbal interaction and less grammatical mistakes [3]. The other corpus
is the Cornell Movie-Dialogues corpus [6], which is more structured, i.e. it is more
grammatically correct, and is also larger than the child-interaction corpus.

As our goal is to predict sentiment from a context as shown in Fig. 1, we
need sentiment annotation of the utterances. The child-interaction corpus (CHI)
already has word-level sentiment annotation, while the movie dialogues corpus
(MDC) has none. We thus used the natural language toolkit’s [13] Vader sen-
timent analysis tool [9] to create sentiment labels for each utterance. To avoid
imbalanced classes in our data, we empirically adjusted the thresholds of the sen-
timent level to 0.2 and 0.6 on the scale of 0 to 1 for both positive and negative
classes. Data samples were now extracted by selecting an utterance with a given
sentiment as ground truth and saving the previous two utterances as context.
We have created datasets for two experiments, creating contexts from utterances
with either negative/positive, or negative/neutral/positive classes. The dataset
details are shown in Table 1. While taking the previous utterances for each sam-
ple, we have the overlapping of utterances in the contexts, i.e. one utterance may
appear in two contexts. The two data-sets are processed for binary (pos-neg) and
multi-class (pos-neu-neg) classification.
1 http://childes.talkbank.org or http://childes.psy.cmu.edu.

http://childes.talkbank.org
http://childes.psy.cmu.edu

480 C. Bothe et al.

Table 1. Dataset details

Datasets CHI MDC

Raw utterances 11.1k 304k

Contexts (pos-neg) 4.1k 189k

Contexts (pos-neu-neg) 6.2k 283k

3.2 Model

For the experiments, we used the well-established recurrent long short-term
memory (LSTM) neural network [8], a special form of recurrent neural network,
shown in Fig. 2(a). The sequence of the words, represented by their numeric
indices in a dictionary, is first fed into the embedding layer which is imple-
mented as standard MLP layer, as shown in Fig. 2(b). The embedding layer
randomly initializes the normalised vectors, or can utilize already pretrained
embeddings, to represent each word index by a real-valued vector of a given size
of the embedding dimension which is then fed into the LSTM layer.

Fig. 2. (a) The long short-term memory unit with (b) our classification setup. Biases
are ignored for simplicity.

The LSTM unit receives an embedded word x as an input and outputs a
sentiment prediction y. It maintains a hidden vector h and a memory vector in
cell c responsible for controlling state updates and outputs. The LSTM consists
of a memory cell c, an input gate i, a forget gate f , and an output gate o, which
are updated at time step t as follows:

ft = σ (Wf ∗ ht−1 + If ∗ xt + bf) (1)

it = σ (Wi ∗ ht−1 + Ii ∗ xt + bi) (2)

ot = σ (Wo ∗ ht−1 + Io ∗ xt + bo) (3)

Dialogue-Based Neural Learning to Estimate the Sentiment 481

c̃t = tanh (Wc ∗ ht−1 + Ic ∗ xt + bc) (4)

ct = ft � ct−1 + c̃t (5)

ht = ot � tanh (ct) (6)

where σ is the sigmoid function, Wf , Wi, Wo, Wc are recurrent weight matrices,
If , Ii, Io, Ic are the corresponding projection matrices and bf , bi, bo, bc are
learned biases. The weight-projection matrices and bias vectors are initialized
randomly and learned during training. The gating functions of the LSTM helps
this RNN to mitigate the vanishing and exploding gradient problems and to train
the model smoothly. As an output, we get a hidden vector representation (h) of
the entire sequence of words which is then used as an input to a classifier. In the
sequence classification setup as shown in Fig. 2(b), given the current activation
function in the hidden state ht, the RNN generates the output according to the
following equation:

yt = g (Wout ∗ ht) (7)

where g(.) denotes an output activation function, in our case a softmax function
that gives the normalized probability distribution over the possible classes, and
Wout is an output weight matrix which can be stored to make the predictions.

3.3 Experiments and Results

Our aim is to recognise the sentiment polarity of the upcoming utterance, given
the recent utterances as the context. We have trained our classifier by concate-
nating the context utterances and using the label of the utterance following this
context as the training signal. The utterances have been labeled by the sentiment
analysis for either binary or multi-class classification as shown in Table 1. The
input to the network was always concatenated utterances and the prediction for
the upcoming utterance was taken from the classified output of an LSTM at the
end of the input sequence. The model was implemented using the Keras Python
library and Theano [1]. The input sequence length was fixed to the maximum
length in the utterances and padding was used to make them of the same length.

Table 2. Prediction accuracy on test data

Different setups Random guess Trained embeddings GloVe embed-
dings (100D)

CHI (10D and 100D) MDC (100D) CHI MDC

Binary 50.00% 59.30% 59.06% 52.44% 63.36% 54.97%

Multi-class 33.33% 54.60% 54.56% 48.36% 58.13% 51.71%

The training was done using categorical crossentropy as the loss function,
using stochastic gradient descent as the optimization method. Learning rate

482 C. Bothe et al.

and the number of hidden units were empirically determined for both datasets.
The hidden layer dimension was 64 for CHILDES and 512 for Movie-Dialogues
corpus. We randomly initialized the word embedding vectors with the dimension
of 10 and 100 for CHILDES and 100 for the other, and we also used the pre-
trained GloVe vectors of dimension 100 [18]. We trained the model on both the
datasets as described before and for two different set-ups. Each dataset was split
into training, validation and test data with a 60%-20%-20% split. The summary
of the test data prediction accuracies is shown in Table 2.

Utterances Sentiment of Next utterance Next utterance
current utterance sentiment hypothesis might be
[neg neu pos] [neg neu pos]

P1: please sit down [0.00 0.46 0.54] [0.45 0.04 0.51] Positive

P2: yeah thanks [0.00 0.00 1.00] [0.09 0.78 0.13] Neutral

P1: oh that chair is broken [0.44 0.56 0.00] [0.58 0.20 0.22] Negative

P2: oh no , yeah this chair is broken [0.46 0.34 0.20] [0.03 0.94 0.03] Neutral *

P1: yeah please use another one [0.00 0.40 0.60] [0.28 0.09 0.63] Positive

P2: okay thank you [0.00 0.18 0.82] [0.22 0.59 0.19] NeutralP
os

iti
ve

(c
on

te
xt

)
N

eg
at

iv
e

(c
on

te
xt

)

*

Fig. 3. Test example: prediction on some utterances. * indicates that the sentiment
recognition does not match the actual. (Color figure online)

The use of pre-trained embedding shows more accuracy than the random
initialization, also using different embedding dimensions produced very similar
results. We also implemented a simple chat-bot in Python, that receives the
utterances sequentially, to evaluate the trained model on a dialogue and monitor
the changing hypothesis of the sentiment of the upcoming utterances.

In Fig. 3, we present an example from test data. The utterances from the
conversation are processed one by one, and the progression of the statements is
shown with the predicted hypothesis and the ground-truths. Bold values in the
array [neg neu pos] represent the detected class, for the sentiment hypothesis of
the current and the next utterance. We also show two related contexts, positive
(green) and negative (red). For example, the utterance “oh no, yeah this chair is
broken” has a negative sentiment label and the model has the correct prediction
hypothesis. We can also see that the model failed to predict the positive class
for the utterance “yeah please use another one”.

Looking at the details of the distributions, the unpredicted increase in neg-
ative sentiment for the sentence “oh that chair is broken”, although overall still
classified as neutral (negative), could have been used already to detect a change
in sentiment and thus be aware of a possible change in the environment, the

Dialogue-Based Neural Learning to Estimate the Sentiment 483

safety situation, or just the user’s perception of the robot’s current action. The
same can be said for the misclassified utterance where P2 perceived a nega-
tive situation and might have no solution, interpreting the suddenly positive
sentiment of P1 in the next utterance to understand that the situation has a
solution or has been solved and nothing bad has happened. Overall, the results
show that it is possible to derive valuable cues by estimating the sentiment of
the next upcoming utterance, and the model can learn to keep track of the
sentiment through dialogues. The corpora used were auto-annotated with the
standard sentiment analysis tool which led to comprehensible results, although
a human-annotated corpus might still lead to better results.

4 Conclusion and Future Work

We have presented a learning approach to estimate the sentiment of the next
upcoming utterance within a dialogue. We have shown that the model can predict
the sentiment of an upcoming utterance to a certain degree, taking into account
that the used corpora are noisy and no system would be able to reliably predict
the upcoming sentiments simply due to the changing nature of human dialogues.
Detecting safety-related cues as early as possible is crucial, and a number of
false-positives can be accepted (or quickly resolved through a query within the
dialogue) if dangers can be avoided when they occur. We think that tracking
even a noisy sentiment through a dialogue can have a positive impact on the
safety of a robot, especially when combined with a multi-modal system.

While this work focuses on keeping track of the sentiment in dialog-based
context learning, our aim is to extend this to different language features con-
taining safety-related cues. Using not only simple auto-annotated sentiment as
labels but including annotations based on prosodic features might lead to a better
prediction since humans often involuntarily change their voice when perceiving
a dangerous situation while speaking. This work presents already a promising
step towards the main goal and can provide useful dialogue-based information
regarding the current safety context in human-robot interaction.

Acknowledgement. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement No. 642667 (SECURE).

References

1. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A.,
Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. 2012
Workshop on Deep Learning and Unsupervised Feature Learning NIPS (2012)

2. Biswas, S., Chadda, E., Ahmad, F.: Sentiment analysis with gated recurrent units.
Adv. Comput. Sci. Inf. Technol. (ACSIT) 2(11), 59–63 (2015)

3. Clark, E.V.: Awareness of language: some evidence from what children say
and do. In: Sinclair, A., Jarvella, R.J., Levelt, W.J.M. (eds.) The Child’s
Conception of Language, pp. 17–43. Springer, Heidelberg (1978). doi:10.1007/
978-3-642-67155-5 2

http://dx.doi.org/10.1007/978-3-642-67155-5_2
http://dx.doi.org/10.1007/978-3-642-67155-5_2

484 C. Bothe et al.

4. Collobert, R., Weston, J.: A unified architecture for natural language processing.
In: Proceedings of the 25th International Conference on Machine Learning - ICML
2008. vol. 20, pp. 160–167 (2008)

5. Dai, A.M., Le, Q.V.: Semi-supervised sequence learning. In: Neural Information
Processing Systems (NIPS), pp. 3079–3087. No. 28, Curran Associates, Inc. (2015)

6. Danescu-Niculescu-Mizil, C., Lee, L.: Chameleons in imagined conversations: a new
approach to understanding coordination of linguistic style in dialogs. In: Proceed-
ings of the Workshop on Cognitive Modeling and Computational Linguistics. ACL
(2011)

7. Fong, T., Thorpe, C., Baur, C.: Collaboration, dialogue, and human-robot interac-
tion. In: Jarvis, R.A., Zelinsky, A. (eds) 10th International Symposium of Robotics
Research (Springer Tracts in Advanced Robotics), pp. 255–266 (2003). doi:10.1007/
3-540-36460-9 17

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)

9. Hutto, C.J., Gilbert, E.: VADER: A parsimonious rule-based model for sentiment
analysis of social media text. In: Association for the Advancement of Artificial
Intelligence (Proceedings of Eighth International AAAI Conference on Weblogs
and Social Media), pp. 216–225 (2014)

10. Kim, S.M., Hovy, E.: Determining the sentiment of opinions. In: COLING 2004
Proceedings of 20th International Conference on Computational Linguistics, p.
1367 (2004)

11. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings
of the Conference on EMNLP, pp. 1746–1751 (2014)

12. Latham, A.S.: Learning through feedback. Educ. Leadersh. 54(8), 86–87 (1997)
13. Loper, E., Bird, S.: NLTK: the Natural Language Toolkit. In: Proceedings of ACL-

2 Workshop on Effective Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics. vol. 1, pp. 63–70 (2002)

14. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning
word vectors for sentiment analysis. In: Proceedings of 49th Annual Meeting of
the Association for Computational Linguistics, pp. 142–150 (2011)

15. MacWhinney, B.: The CHILDES project: tools for analyzing talk. Lawrence Erl-
baum Associates, Inc (1991). http://childes.psy.cmu.edu/

16. Mikolov, T., Corrado, G., Chen, K., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: Proceedings of International Conference on Learning
Representations (ICLR 2013), pp. 1–12 (2013)

17. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr.
2(12), 1–135 (2008)

18. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: Proceedings of Conference on EMNLP, pp. 1532–1543 (2014)

19. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts,
C.: Recursive deep models for semantic compositionality over a sentiment tree-
bank. In: Proceedings of Conference on EMNLP, pp. 1631–1642. Association for
Computational Linguistics (2013)

20. Sordoni, A., Galley, M., Auli, M., Brockett, C., Ji, Y., Mitchell, M., Nie, J.Y.,
Gao, J., Dolan, B.: A neural network approach to context-sensitive generation of
conversational responses. In: Association for Computational Linguistics (Human
Language Technologies: The 2015 Annual Conference of North American Chapter
of the ACL), pp. 196–205 (2015)

http://dx.doi.org/10.1007/3-540-36460-9_17
http://dx.doi.org/10.1007/3-540-36460-9_17
http://childes.psy.cmu.edu/

Dialogue-Based Neural Learning to Estimate the Sentiment 485

21. Tadele, T.S., de Vries, T., Stramigioli, S.: The safety of domestic robotics: a survey
of various safety-related publications. IEEE Robot. Autom. Mag. 21(3), 134–142
(2014)

22. Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic
classification. In: Proceedings of 50th Annual Meeting of the Association for Com-
putational Linguistics, pp. 90–94 (2012)

23. Weston, J.: Dialog-based language learning. In: Lee, D.D., Sugiyama, M., Luxburg,
U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing
Systems (NIPS) 29, pp. 829–837. Curran Associates, Inc. (2016)

Solar Power Forecasting Using Pattern
Sequences

Zheng Wang1, Irena Koprinska1(&), and Mashud Rana2

1 School of Information Technologies, University of Sydney, Sydney, Australia
{zheng.wang,irena.koprinska}@sydney.edu.au

2 Sydney Informatics Hub, University of Sydney, Sydney, Australia
mashud.rana@sydney.edu.au

Abstract. We consider the task of predicting the solar power output for the
next day from solar power output and weather data for previous days, and
weather forecast for the next day. We study the performance of pattern sequence
methods which combine clustering and sequence similarity. We show how the
standard PSF algorithm can be extended to utilize data from more than one data
source by proposing two extensions, PSF1 and PSF2. The performance of the
three PSF methods is evaluated on Australian data for two years and compared
with three neural network models and a baseline. Our results show that the
extensions were beneficial, especially PSF2 which uses a 2-tier clustering and
sequence matching. We also investigate the robustness of all methods for dif-
ferent levels of noise in the weather forecast.

Keywords: Solar power output � Pattern sequence similarity � Neural networks

1 Introduction

Solar energy is clean, renewable, easily available and cost-effective. PhotoVoltaic
(PV) solar panels are especially promising – they are easy to install and maintain, and
their cost continues to fall due to advances in PV technology. By 2050 it is expected
that Australia will produce 30% of its electricity using PV systems [1].

The generated solar power is dependent on meteorological factors such as solar
irradiance, rainfall and temperature. This makes its large-scale integration into the
power grid more difficult than the traditional energy sources and motivates the need for
accurate prediction of the produced solar power, to ensure reliable electricity supply.

In this paper we focus on simultaneously predicting the PV power output for the
next day at half-hourly intervals. Specifically, given: (1) a time series of PV power
outputs up to the day d: ½P1; . . .; Pd� where Pi is a vector of half-hourly power outputs
for day i, (2) a time series of weather vectors for the same days: ½W1; . . .;Wd�, where
Wi is the weather vector for day i, and (3) the weather forecast vector for the next day
d + 1: WFdþ 1, our goal is to forecast Pdþ 1; the half-hourly power output for day
d + 1.

Different approaches for PV power forecasting have been proposed. They use
statistical methods such as liner regression and autoregressive moving average [2, 3],
and machine learning methods such as: Neural Networks (NNs) [2, 4, 5], nearest

© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 486–494, 2017.
https://doi.org/10.1007/978-3-319-68612-7_55

neighbor [2, 5, 6] and support vector regression [7, 8]. In this paper we study the
application of Pattern Sequence Forecasting (PSF) methods, which have been very
successful in other energy time series forecasting tasks such as predicting electricity
demand and prices [9, 10] but haven’t been applied for solar power forecasting. The
original PSF method was proposed by Martínez-Álvarez et al. [9] and one of its distinct
features is that it predicts all values for the next day simultaneously, as opposed to
iteratively as in other methods.

While the original PSF algorithm uses only the time series of interest, PV data in
our case, we propose two extensions which utilize also the weather data for the pre-
vious days and the weather forecast for the next day. The importance of these three data
sources was studied in [6] and it was shown that the weather forecast was the most
useful source, followed by the weather data and the PV data. We investigate if the
proposed extensions can improve the accuracy of the traditional PSF algorithm.
Specifically, the contributions of this paper are:

1. We evaluate the performance of the standard PSF algorithm for solar power fore-
casting. We propose two extended versions, PSF1 and PSF2, which utilize also the
historical weather data and weather forecast data, and a 2-tier clustering and
sequence matching method in PSF2 to refine the prediction. More generally, we
show how PSF can be extended to use data from more than one data source.

2. We evaluate the performance of the three PSF methods on Australian PV and
weather data for two years. We compare the PSF methods with three NN methods
and a persistence forecasting model used as a baseline. NNs were chosen as they are
the most popular method for solar power forecasting.

3. We investigate the performance of all methods for three different levels of noise in
the weather forecast.

2 Data and Data Preprocessing

We use PV power and weather data for two years - from 1 January 2015 to 31
December 2016. The data is summarized in Table 1.

PV Data. It was collected from a rooftop PV plant, located at the University of
Queensland in Brisbane, Australia. The data is publicly available from http://www.uq.
edu.au/solarenergy/. For each day, we only selected the data during the daylight period
from 7 am to 5 pm.

Weather Data. It was collected from the Australian Bureau of Meteorology and is
available from http://www.bom.gov.au/climate/data/. For each day, we collected 14
meteorological variables. There are two weather feature sets – W1 and W2. W1
includes all 14 feature while W2 is a subset of W1 and includes only 4 features, the
ones used in weather forecasts.

Weather Forecast Data. The weather forecast feature set WF includes the same four
features as the weather set W2. This reduced set is the set of features typically available
from meteorological bureaus as weather forecast. Since the weather forecasts were not

Solar Power Forecasting Using Pattern Sequences 487

http://www.uq.edu.au/solarenergy/
http://www.uq.edu.au/solarenergy/
http://www.bom.gov.au/climate/data/

available retrospectively for 2015 and 2016, we used the actual weather data with
added noise at three different levels: 10%, 20% and 30%.

Data Preprocessing. The original PV power data was measured at 1-min intervals and
was aggregated to 30-min intervals by taking the average value of the interval. Both the
PV power and weather data we normalized to [0, 1].

There was a small number of missing values − 0.82% for the weather data and
0.02% for the PV data. They were replaced using the following nearest neighbor
method, applied firstly to the weather data and then to the PV data: (1) if a day d has
missing values in its weather vector Wd , we find its nearest neighbor with no missing
values, day s, using the Euclidean distance and the available values inWd . The missing
values in Wd are replaced with the corresponding values in Ws; (2) if day d has missing
values in its PV vector Pd , we find its nearest neighbor day s, by comparing weather
vectors, and then replace the missing values in Pd with the corresponding values in Ps.

3 Pattern Sequence Forecasting Methods

PSF [9] combines clustering with sequence matching and is illustrated in Fig. 1. Let Pi

be the 20-dimensional vector of the half-hourly PV output for day i. PSF firstly clusters
all vectors Pi from the training data into k1 clusters and labels them with the cluster
number, e.g. C1, C2, etc. as shown in Fig. 1. To make a prediction for a new day d + 1,
it extracts a sequence of consecutive days with length w, starting from the previous day
d and going backwards, and matches the cluster labels of this sequence against the
previous days to find a set of equal sequences ESd. It then follows a nearest neighbor
approach - finds the post-sequence day for each sequence in ESd and averages the PV
vectors for these days, to produce the final half-hourly PV predictions for day d + 1.
PSF was applied to electricity demand and electricity prices data in [9]; the results
showed that it is a very competitive approach outperforming ARIMA, support vector
regression and NNs.

Table 1. Data sources and feature sets

Data source Feature set Description

PV data for the current day
d and previous days

P
20 features

Half-hourly PV values between 7am and 5pm

Weather data for the current
day d and previous days

W1
14 features

(1–6) Daily: min and max temperature, rainfall,
sun hours, max wind gust and average solar
irradiance;
(7–14) At 9am and 3pm: temperature, relative
humidity, cloudiness and wind speed

Weather data for the current
day d and previous days

W2
4 features

Daily: min and max temperature, rainfall and solar
irradiance. W2 is a subset of W1.

Weather forecast for the next
day d + 1

WF
4 features

Daily: min and max temperature, rainfall and
average solar irradiance

488 Z. Wang et al.

PSF1 is the first extension of PSF that we developed and is shown in Fig. 2. In
contrast to PSF, where the clustering and sequence matching are done using the PV
data only, in PSF1 this is done using the W2 weather data for the previous days and the
weather forecast WF for the new day. The training data is clustered using the
4-dimensional W2 data into k2 clusters. To make a prediction for a new day d + 1,
PSF1 firstly uses the weather forecast for d + 1 (also a 4-dimensional vector containing
the same features as W2, which facilitates the comparison) to find the cluster label for
d + 1 by comparing it with the cluster centroids of the existing clusters, and assigning
it to the cluster of the closest centroid. It then extracts a sequence of consecutive days
with length w, from day d + 1 backwards (including d + 1), and matches the cluster
labels of this sequence against the previous days to find a set of equal sequences. It then
obtains the PV power vector for the last day of each equal sequence and averages these
vectors, to produce the prediction for d + 1.

PSF2 is the second extension of the traditional PSF that we propose. As Fig. 3
shows it involves clustering of the days in two different ways: based on the W1 and W2
weather data. Firstly, the training data is clustered using the W1 data (the full weather
data, containing 14 features) into k1 clusters. The days are labelled with the cluster
number, e.g. C1, C2, etc. as shown in Fig. 3. A sequence of consecutive days with
length w, from day d backwards (including d), is found. Secondly, the training data is

Fig. 1. The standard PSF method

Fig. 2. The proposed PSF1 method

Solar Power Forecasting Using Pattern Sequences 489

clustered using the shorter weather vector W2 into k2 clusters, denoted with K1, K2,
etc. The cluster label Kx for the new day d + 1 is found by obtaining the weather
forecast for d + 1 and comparing it with the cluster centroids. Thirdly, the cluster label
of the post-sequence days for the equal sequences from the first clustering is checked,
and if it is not Kx, the equal sequence is not included in obtaining the prediction for
d + 1. For the example in Fig. 3, the left most equal sequence is not included as the
cluster of the post-day is K1 which is different from K2, the cluster for the new day.
Finally, PSF2 averages the PV power vectors of the chosen the post-sequence days, to
produce the prediction for day d + 1.

In summary, PSF2 is an extension of PSF1. It utilizes better the available weather
data than PSF1 by using the full weather vector WF for the initial clustering (available
for the previous days) and the shorter weather vector W2 to match the weather forecast
for the new day, and refine the equal sequence selection from the previous step.

Parameter Selection. We follow the procedure described in the original PSF paper [9]
which uses the data for the first year (2015).

To select the number of clusters (k1 and k2), the clustering algorithm (k-means) is
run for different values (from 1 to 5) and the results are evaluated by computing the
Silhouette, Dunn and Davies-Bouldin indexes, and then taking the by majority vote.

To select the sequence length w, different values are evaluated (from 1 to 10) using
12-fold cross validation, where one fold corresponds to one month. The best w is the
one that minimizes the average error for the 12 folds. The selected parameters are: PSF:
k1 = 2, w = 2, PSF1: k2 = 2, w = 4, PSF2: k1 = 2, k2 = 2, w = 2.

4 Methods Used for Comparison

We compare the PSF methods with three NN methods and a persistence model com-
monly used as a baseline.

Fig. 3. The proposed PSF2 method

490 Z. Wang et al.

NN Models. The NN prediction models are multi-layer NNs with one hidden layer,
trained with the Levenberg-Marquardt version of the backpropagation algorithm. The
three NN models correspond to the three PSF models in terms of data source used, e.g.
NN and PSF use only PV data while NN2 and PSF2 use data from all three data
sources. The inputs and outputs for each model are shown in Table 2. For example,
NN2 uses as inputs the PV power for the previous day, the weather data for the
previous day and the weather forecast for the next day and predicts the PV power for
the next day; it has 20 + 14 + 4 = 38 input neurons and 20 output neurons.

The number of hidden neurons h was selected experimentally by varying it from 5
to 30, with an increment of 5, evaluating the performance on the validation set and
selecting the best NN. The selected h are: NN: h = 5; NN1: h = 15 for 10% and 20%
WF noise and h = 30 for 30% WF noise; NN2: h = 30 for 10%, 20% and 30% WF
noise.

Persistence Baseline. This baseline Bper considers the half-hourly PV power output
from the previous day d as the prediction for the next day d + 1, i.e. bPdþ 1 ¼ Pd .

5 Experiment Setup

Data Sets. We divided the PV power and the corresponding weather data into three
non-overlapping subsets: training – the first 70% of the 2015 data, validation: the
remaining 30% of the 2015 data and testing – the 2016 data. For the PSF models, the
whole 2015 data was used for determining the parameters (number of clusters and
sequence length) as in the original PSF paper [9]. For the NN models, the training data
was used to build the model, the validation set - to select the number of hidden neurons
and other parameters. The testing set was used to evaluate the accuracy of all models.

Evaluation Measures. We used two standard performance measures: Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE):

MAE ¼ 1
D� n

X
n

i¼1

Pi � bPi
�

�

�

�

�

�;RMSE ¼

ffi

Pn
i¼1 Pi � bPi

� �2

D� n

v

u

u

t

where Pi and bPi are the actual and forecasted half-hourly PV power outputs for day i,
D is the number of days in the testing set and n is the number of predicted daily values.

Table 2. Input and output of the neural models used for comparison

NN model Input Output

NN Pd (20) Pd+1 (20)
NN1 Pd (20), WFd+1 (4) Pd+1 (20)
NN2 Pd (20), Wd (14), WFd+1 (4) Pd+1 (20)

Solar Power Forecasting Using Pattern Sequences 491

6 Results and Discussion

Table 3 shows the accuracy results of all prediction models, for the three noise levels in
the weather forecast. Figure 4 presents graphically the MAE results in sorted order for
visual comparison. Table 4 shows the pair-wise comparison for statistically significant
differences in accuracy. The main results can be summarized as follows:

• Among the PSF methods, PSF2 is the most accurate for all three noise levels. PSF2
outperforms PSF in all cases and the improvements are statistically significant.
Thus, the extensions introduced in PSF2 – the use of weather and weather forecast
data, and the 2-tier clustering and sequence matching – were beneficial.

• PSF2 outperforms PSF1 in all cases. It uses a more refined sequence matching and
an additional data source – the full weather vector W1.

• PSF1 performs similarly to PSF. PSF1 uses the weather forecast for sequence
matching, while PSF uses the PV data. When the weather forecast is more accurate
(10% noise), PSF1 performs slightly better than PSF, but as the accuracy of the
weather forecast decreases (20% and 30% noise), PSF performs better. However, the
differences are statistically significant only for 20% noise, hence overall the two
methods perform similarly. An advantage of PSF1 over PSF is the faster training and
prediction as it uses a feature vector with smaller dimensionality (4 vs 20 features).

• In all cases NN2 is the most accurate model. It uses all data sources directly as
inputs – PV data, weather and weather forecast. The second best model PSF2 also
uses all data sources but in a different way. The core part, sequence matching, is
done using the weather and weather forecast data only, while the PV data is used
only in the last step. PSF2, however, is faster to train than NN2.

• All prediction models outperform the persistence baseline in all cases, except one
(NN1 for 30% WF noise) but the difference in this case is not statistically
significant.

• The last graph in Fig. 4 compares only the prediction models that are affected by WF
noise. We can see that as the noise increases, the accuracy decreases but this decrease
is smaller for NN2 and PSF2, as these models rely less on WF data – NN2 uses all
three data sources as inputs and PSF2 uses WF only for refining the solution.

Table 3. Accuracy of all methods

Method 10% noise in WF 20% noise in WF 30% noise in WF
MAE (kW) RMSE (kW) MAE (kW) RMSE (kW) MAE (kW) RMSE (kW)

PSF 119.17 149.52 119.17 149.52 119.17 149.52
PSF1 118.12 151.52 120.05 156.61 123.04 154.10
PSF2 109.19 139.75 109.63 140.79 112.17 142.70
NN 116.64 154.16 116.64 154.16 116.64 154.16
NN1 111.16 149.33 117.47 158.86 126.14 173.85
NN2 94.75 133.65 95.76 134.62 96.89 135.69
Bper 124.80 184.29 124.80 184.29 124.80 184.29

492 Z. Wang et al.

7 Conclusion

In this paper we study the application of pattern sequence methods for solar power
prediction from previous PV power and weather data, and weather forecast for the new
day. We show how the standard PSF algorithm can be extended to utilize data from
more than one data source by proposing two extensions, PSF1 and PSF2. We evaluate
the performance of the three PSF methods on Australian data for two years, and
compare them with three NN methods and a baseline. Our results show that the
extensions were beneficial - PSF2, which uses a 2-tier clustering and sequence
matching, was more accurate than PSF in all cases. PSF1 performed similarly to PSF
but was faster due to its smaller feature vector. Overall PSF2 was the second most
accurate method, after NN2 - a neural network that uses directly the data from the three
sources as inputs. However, PSF2 was faster to train than NN2. PSF2 and NN2 were
also the most robust methods to higher levels of noise in the weather forecasts. Hence,
we conclude that both PSF2 and NN2 are promising methods for solar power
forecasting.

Fig. 4. Comparison of prediction models (MAE)

Table 4. Pair-wise statistical comparison of MAE (two-sample t-test); * - stat.sign. at
p � 0.05, x – no stat.sign. difference. The three values in each cell correspond to 10%, 20%,
30% noise in WF respectively.

Method PSF1 PSF2 NN NN1 NN2 Bper

PSF x*x *** xxx *x* *** ***
PSF1 *** xx* *x* *** ***
PSF2 *** x** *** ***
NN *x* *** ***
NN1 *** **x
NN2 **

Solar Power Forecasting Using Pattern Sequences 493

References

1. Climate Commission: The critical decade: Australia’s future - solar energy (2013). http://
www.climatecouncil.org.au/uploads/497bcd1f058be45028e3df9d020ed561.pdf

2. Pedro, H.T.C., Coimbra, C.F.M.: Assessment of forecasting techniques for solar power
production with no exogenous inputs. Sol. Energy 86, 2017–2028 (2012)

3. Bacher, P., Madsen, H., Nielsen, H.A.: Online short-term solar power forecasting. Sol.
Energy 83, 1772–1783 (2009)

4. Rana, M., Koprinska, I., Agelidis, V.G.: Forecasting solar power generated by grid
connected PV systems using ensembles of neural networks. In: IJCNN (2015)

5. Chu, Y., Urquhart, B., Gohari, S.M.I., Pedro, H.T.C., Kleissl, J., Coimbra, C.F.M.:
Short-term reforecasting of power output from a 48 MWe solar PV plant. Sol. Energy 112,
68–77 (2015)

6. Wang, Z., Koprinska, I.: Solar power prediction with data source weighted nearest
neighbors. In: International Joint Conference on Neural Networks (IJCNN) (2017)

7. Rana, M., Koprinska, I., Agelidis, V.G.: 2D-interval forecasts for solar power production.
Sol. Energy 122, 191–203 (2015)

8. Shi, J., Lee, W.-J., Lin, Y., Yang, Y., Wang, P.: Forecasting power output of photovoltaic
systems based on weather classification and support vector machines. IEEE Trans. Ind. Appl.
48, 1064–1069 (2012)

9. Martínez-Álvarez, F., Troncoso, A., Riquelme, J.C., Aguilar-Ruiz, J.S.: Energy time series
forecasting based on pattern sequence similarity. IEEE Trans. Knowl. Data Eng. 23, 1230–
1243 (2011)

10. Koprinska, I., Rana, M., Troncoso, A., Martínez-Álvarez, F.: Combining pattern sequence
similarity with neural networks for forecasting electricity demand time series. In:
International Joint Conference on Neural Networks (IJCNN) (2013)

494 Z. Wang et al.

http://www.climatecouncil.org.au/uploads/497bcd1f058be45028e3df9d020ed561.pdf
http://www.climatecouncil.org.au/uploads/497bcd1f058be45028e3df9d020ed561.pdf

A New Methodology to Exploit Predictive
Power in (Open, High, Low, Close) Data

Andrew D. Mann(B) and Denise Gorse

Department of Computer Science, University College London,
London WC1E 6BT, UK

{A.Mann,D.Gorse}@cs.ucl.ac.uk

Abstract. Prediction of financial markets using neural networks and
other techniques has predominately focused on the close price. Here, in
contrast, the concept of a mid-price based on an Open, High, Low, Close
(OHLC) data structure is proposed as a prediction target and shown to
be a significantly easier target to forecast, suggesting previous works have
attempted to extract predictive power from OHLC data in the wrong con-
text. A prediction framework incorporating a factor discovery and mining
process is developed using Randomised Decision Trees, with Long Short
Term Memory Recurrent Neural Networks subsequently demonstrating
remarkable predictive capabilities of up to 50.73% better than random
(75.42% accuracy) on hourly data based on the FGBL German Bund
futures contract, and 42.5% better than random (72.04% accuracy) on a
comparison Bitcoin dataset.

Keywords: Machine learning · LSTMs · Decision Trees · Factor Min-
ing · OHLC data · Financial forecasting · Mid-price

1 Introduction

The accurate prediction of an asset’s direction has long been the goal of many
academics and industry practitioners, with predictive methodologies ranging
from the use of traditional technical analysis (TA) to more recent machine
learning (ML) techniques. This paper utilises ML technology in the form of
Randomised Decision Trees (RDTs) [1] and Long Short Term Memory Recur-
rent Neural Networks (LSTM RNNs) [2] as a key component in a process for
trend detection which takes advantage of the relative ease of prediction of the
mid-price (defined in terms of OHLC candlestick levels in Sect. 2.2) when com-
pared to the traditional close price prediction target. RDTs are used to identify
the most important factors from a rich factor universe generated from all possi-
ble combinations of OHLC lagged levels given L lags, using differences, ratios,
and pairwise operations. Within this context it is demonstrated that OHLC lev-
els have a remarkably high predictive potential, in contrast to the negative view
espoused by a majority of academics and some practitioners [3–5].

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 495–502, 2017.
https://doi.org/10.1007/978-3-319-68612-7_56

496 A.D. Mann and D. Gorse

2 Background

2.1 Literature Review

There exists no prior literature relating to a mid-price based on a candlestick
structure, as proposed here. The common definition of a mid-price is the price
halfway between the bid and ask; this has no relevance to the current work. There
have, however, been many studies focusing on the predictive power of candlestick
patterns. These studies have reported varying results, with most evidencing little
or no value in these patterns as predictors of close price movements.

On the negative side, Marshall et al. [3] find that the relationships between
OHLC levels have no useful information when applied to stocks in the Dow Jones
Industrial Average. Horton [4] confirms there is little to no value in candlestick
charting. Interestingly, Fock et al. [5] present negative results for both the DAX
stock index and the FGBL German Bund futures contract, which latter the
current work conflicts with (though it should be noted both that our target is
different– mid-price rather than close price– and that our OHLC-derived patterns
are not traditional candlesticks but data-mined constructions).

On the positive side, Xie et al. [6] find that candlestick patterns have signifi-
cant predictive power to forecast US equity returns. Lu et al. [7] find predictive
power in several patterns, but these are rare and the research in addition did
not sufficiently address the distinction between candlestick patterns being able
to yield profit and their being able to predict trends. One study, that of Lu
[8], finds that traditional patterns have little value but that novel ones may do
so; this finding is in line with observations made in the current work, though
it should again be emphasised that our use of the mid-price as target creates a
very different context.

Overall the evidence in the literature favours the dominant academic belief
that candlestick patterns have little value. The results presented below, albeit in
the context of mid-price prediction and utilising novel OHLC patterns as input
factors, may thus be somewhat of a surprise.

2.2 A Mid-Price Definition and Motivation

Two definitions of mid-price are used in the current work. Mid-price-1 is defined
as the price mid-way between a time interval’s high and low,

mid-price-1 =
high + low

2
, (1)

while mid-price-2 focuses on the real body of a candlestick (area of the candle-
stick between open and close) and is defined as

mid-price-2 =
open + close

2
. (2)

The predominant reason for investigating the use of a mid-price as a pre-
diction target was the observation that mid-price time series display far less

A New Methodology to Exploit Predictive Power in OHLC Data 497

noise than close price series. As an example, the time series of close price, mid-
price-1, and mid-price-2 were examined for 27,927 samples of the German Bund
futures data set used here. The standard deviation of price movements in this
example data set shows the close price has a standard deviation of 13.71 ticks1

compared to 11.64 and 10.52 ticks for mid-price-1 and mid-price-2 respectively.
Similar results were obtained for many other examples of financial time series
data, confirming the mid-price (in particular mid-price-2) as a less noisy target.

2.3 Machine Learning Models Used

Factor Importance Mining. Randomised Decision Trees [9] are used to rank
the importance of a factor to its target using the Gini impurity metric which
measures the frequency of an incorrect classification of an element in a feature
set if it was randomly allocated a classification; a higher value is thus a measure
of a more significant level of correlation between factor and target.

Mid-Price Prediction. LSTM RNNs are selected as the prediction model due
to their ability to detect persistent statistical patterns in sequences while avoid-
ing issues with vanishing gradients2; the addition of LSTM units to a RNN allows
the network to selectively remember and forget information while retaining long
and short term dependencies. The LSTM RNN is here trained to minimise a
mean square error loss function using residual back-propagation (RPROP) [10].
RPROP is a first-order optimisation algorithm acting independently over each
weight and accounting only for the sign of the partial derivative (ignoring mag-
nitude); this results in a computationally cheap locally adaptive scheme allowing
fast convergence in binary classification (here, to predict whether a price move-
ment is up or down).

2.4 Performance Metrics

Normalised Percentage Better than Random (NPBR) and a simple accuracy
were used as evaluation metrics. The latter measures the proportion of cor-
rectly predicted directional movements; it has the advantage of simplicity but
the weakness of being an unreliable indicator of performance in a strongly trend-
ing market, where there may be a tendency to overpredict the majority class.
NPBR (also known as the Kappa Statistic [11]) is a more robust performance
metric for imbalanced data sets, with a range of −100% to 100%, a score of 0%
being equivalent to chance. The metric is formalised as

t = n00 + n01 + n10 + n11, (3)
1 A tick is the minimum movement in a price series, which for the FGBL futures
contract is equivalent to 10 EUR.

2 Gradient calculations in layers further from the output accumulate progressively
more fractional derivative factors, which results in weight changes tending to zero
in lower layers and thus vanishing.

498 A.D. Mann and D. Gorse

Rtotal =
(n11 + n01)(n11 + n10) + (n00 + n01)(n00 + n10))

t
, (4)

NPBR =
(n11 + n00) − Rtotal

t − Rtotal
. (5)

In this n00 represents true negatives, n01 false positives, n10 false negatives,
and n11 true positives, these four quantities summing to the total number of
predictions, t. This measure allows a comparison against random, which is a
valuable metric to state.

3 Methodology

3.1 OHLC Factor Mining

All possible combinations are generated of one hour OHLC bars using differences
and ratios given L lags. This rich factor universe is then ranked for importance
in relation to a target (mid-price direction at t + 1) using Randomised Decision
Trees deriving their importance values from the Gini metric. The top N factors
are then selected. In this instance N = 100 as beyond the top 100 factors the
Gini metric curve flattens, as can be observed in Fig. 1.

Fig. 1. Ranked Factor Importance Curve

It is notable that the top ranked factors using this machine learning method-
ology do not include simple lags of the kind considered in the baseline exper-
iments of Sect. 4.1; in fact conventional lagged inputs do not appear anywhere
in the top 100 factors. This supports the later observation that factor mining in
itself, without further filtering as described below, gives rise to a large improve-
ment in prediction performance over that seen in the baseline experiments.

The top N factors are then filtered based on correlation to target and factor-
to-factor correlation, selecting factors which pass the tests |corrft| ≤ c1 and
|corrff| ≥ c2 respectively, with c1 and c2 optimised on the training set.

A New Methodology to Exploit Predictive Power in OHLC Data 499

3.2 Mid-Price Directional Prediction

Once the optimal factors have been selected they were standardised and used
to train the LSTM RNN with outputs in the range [−1,+1] and targets of −1
(down) and +1 (up). The net used to produce the results of the next section
had eight hidden units and a 2% weight decay; experiments were carried out
using other numbers of hidden units and differing amounts of weight decay, but
results were found to be robust to reasonable variations of these parameters. It
was decided to avoid the risk of overfitting by not optimising these network para-
meters; the results below, for an out-of-sample dataset, may thus be regarded as
generally indicative of the level of predictive power that can be achieved.

4 Results

4.1 Baseline Performance: Use of Close and OHLC Lags as Inputs

A baseline performance was established by investigating the prediction of both
close and mid (see Table 1) from close price lags and OHLC lags (defined as a
full set of OHLC lags, for two preceding time steps, a total of eight factors in
all). Lagged inputs are defined by the equation below,

δi =
(pi − pi−1)

pi−1
, (6)

where pi is the current price and pi−1 is the previous price.

Table 1. Baseline performance results

I/O configuration Accuracy NPBR

Close from Close Lags 51.74% 1.89%

Mid-1 from Close Lags 66.15% 32.27%

Mid-2 from Close Lags 69.64% 39.25%

Close from OHLC Lags 51.44% 0.60%

Mid-2 from OHLC Lags 71.34% 42.69%

The first line of Table 1 corresponds to traditional directional prediction; as
can be seen from the table results are poor, with only a 51.74% accuracy. However
it should be noted that the poor performance derives primarily from the use of
close price as a target rather than as a single lagged input. Replacing the target
at t+1 by either of the mid-prices, but retaining the simple close lag as input,
results in an immediate and large improvement in directional accuracy, with an
accuracy of 66.15% and 69.64% for mid-price-1 and mid-price-2 respectively. It
is thus possible to predict a mid-price to a high accuracy while continuing to use
traditional baseline close price lags as factors.

500 A.D. Mann and D. Gorse

It can also be seen from the table that using additional open, high, and low
(OHL) lagged inputs has only a very small effect on the network’s ability to
predict close direction; this may well explain why many traditional candlestick
patterns appear not to be predictive [3–5]. There is however a somewhat more
noticeable improvement in mid-price-2 prediction when additional OHL lagged
inputs are used; this suggests that mid-price-2 predictions might be improved
by a more intelligent selection of OHLC based factors.

At this point only two lags have been considered. The number of lags of
OHLC data could have an impact on predictive power and certainly has an
impact on the complexity of the model (fewer parameters being preferred).

Fig. 2. Factor Lag Experimental Results

Figure 2 shows training data NPBR peaks at three, six and nine OHLC lags.
However the maximum is reached at three, implying three lags of OHLC data is
sufficient in this context. (Interestingly, many candlestick patterns are created
from three lags of OHLC data, such as the Three Line Strike.)

4.2 Use of Mined OHLC Factors as Inputs

Table 1 was suggestive of the possibility that suitably configured OHLC data
might enhance mid-price-2 prediction. In the experiments below mined data as
described in Sect. 3.1 were used. The term Importance Mining in Table 2 refers to
test results using the top 100 importance-ranked factors, and Correlation Subset
to a reduced input set with those same factors now filtered.

Table 2. Factor mining performance results

I/O configuration Accuracy NPBR

Mid-2: Importance Mining 74.48% 48.75%

Mid-2: Correlation Subset 75.42% 50.73%

A New Methodology to Exploit Predictive Power in OHLC Data 501

It can be seen from Table 2 that factor importance mining does substantially
improve the LSTM RNN net’s performance, resulting in an increase in NPBR
from 42.69% (see OHLC input result in Table 1) to 48.75%. However from Table 2
correlation based filtering adds only a further 1.98% to the NPBR. In addition
the optimal values of the correlation thresholds c1 and c2 (see Sect. 3.1) were
found to be 0.2 and 1.0, respectively. These observations indicate both that it is
the use of the mined factors per se that is predominantly leading to the improve-
ment in performance, and that the LSTM RNN is able to operate effectively
without correlation based input screening.

At this point it might appear that the mid-price predictive power could be an
artifact of the FGBL futures contract. To allay this concern we apply the same
methodology to predict mid-price-2 (with no additional parameter optimisation).
Bitcoin was chosen due to its having very different dynamics, being an emerging
market highly sensitive to news, exhibiting high volatility, showing the effects of
price manipulation, and with low liquidity constraints.

Table 3. German bund vs. bitcoin performance

I/O configuration Close from close lags Mid-2 from correlation subset

Accuracy NPBR Accuracy NPBR

FGBL futures 51.74% 1.89% 75.42% 50.73%

Bitcoin 51.47% 0.64% 72.04% 42.5%

As can be seen in Table 3 the performance of Close from Close Lags is simi-
larly poor for Bitcoin as for FGBL futures. However the factor mining method-
ology (incorporating correlation based filtering with the same thresholds c1 and
c2 as for FGBL futures) produces a remarkable 42.5% NPBR on Bitcoin, even
though it was threshold-optimised on FGBL futures. Thus the predictive value
of the mid-price appears to be consistent across vastly different markets.

5 Discussion

It has been shown that use of the proposed mid-price (Eq. 2) as target can
result in up to a 75.42% prediction accuracy (50.73% NPBR) using appropriate
machine learning techniques. OHLC data was used to generate candlestick fac-
tors via Randomised Decision Trees which increased the predictive power of an
LSTM RNN from an initial 39.25% (Mid-2 from Close Lags) to this maximum
of 50.73% NPBR, showing OHLC data does have a high predictive value in rela-
tion to the mid-price. However it was demonstrated also that OHLC data did
not increase predictive power when forecasting the traditional close price target,
which is in line with [3–5]. Hence the results here, while they may be surprising,
are not at odds with the conclusions drawn in other work. The usefulness of

502 A.D. Mann and D. Gorse

OHLC data is not in predicting the close price, but predicting the mid-price,
which has been neglected in past research.

The discovery of the high predictive power of the mid-price is in itself a
significant result given the prevailing sentiment that no aspect of an asset’s price
behaviour can be predicted substantially above random. It is not immediately
obvious how to harness this high predictive power within a trading strategy,
as a mid-price prediction is not located at a specific moment in time but only
within an interval. However a trading strategy built around the mid-price is by
no means impossible, though it would necessarily require more for its execution
than the simple prediction of this value.

References

1. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn.
63, 3–42 (2006)

2. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

3. Marshall, B., Young, M., Rose, L.: Candlestick technical trading strategies: can
they create value for investors. J. Bank. Financ. 30, 2303–2323 (2005)

4. Horton, M.: Stars, crows, and doji: the use of candlesticks in stock selection. Q.
Rev. Econ. Financ. 49, 283–294 (2009)

5. Fock, J., Klein, C., Zwergel, B.: Performance of candlestick analysis on intraday
futures data. J. Deriv. 13(1), 28–40 (2005)

6. Xie, H., Zhao, X., Wang, S.: A comprehensive look at the predictive information
in Japanese candlesticks. In: International Conference on Computational Science
(2012)

7. Lu, T., Chen, Y., Hsu, Y.: Trend definition or holding strategy: what determines
the profitability of candlestick charting. J. Bank. Financ. 61, 172–183 (2015)

8. Lu, T.: The profitability of candlestick charting in the Taiwan stock market. Pac.-
Basin Financ. J. 26, 65–78 (2014)

9. Breiman, L., Friedman, R.A., Olshen, R.A., Stone, C.G.: Classification and Regres-
sion Trees. Wadsworth, Pacific Grove (1984)

10. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: the RPROP algorithm. In: IEEE International Conference on Neural
Networks, pp. 586–591 (1993)

11. Smeeton, N.C.: Early history of the kappa statistic. Biometrics 41, 795 (1985).
JSTOR 2531300

Recurrent Dynamical Projection for Time
Series-Based Fraud Detection

Eric A. Antonelo(B) and Radu State

Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg, Luxembourg City, Luxembourg

ericaislan.antonelo@uni.lu

Abstract. A Reservoir Computing approach is used in this work for
generating a rich nonlinear spatial feature from the dynamical projec-
tion of a limited-size input time series. The final state of the Recurrent
neural network (RNN) forms the feature subsequently used as input to
a regressor or classifier (such as Random Forest or Least Squares). This
proposed method is used for fraud detection in the energy distribution
domain, namely, detection of non-technical loss (NTL) using a real-world
dataset containing only the monthly energy consumption time series of
(more than 300K) users. The heterogeneity of user profiles is dealt with
a clustering approach, where the cluster id is also input to the classifier.
Experimental results shows that the proposed recurrent feature genera-
tor is able to extract relevant nonlinear transformations of the raw time
series without a priori knowledge and perform as good as (and sometimes
better than) baseline models with handcrafted features.

Keywords: Recurrent neural networks · Reservoir computing · Non-
technical loss · Eletricity fraud detection · Clustering · Energy distribu-
tion networks

1 Introduction

In the context of energy distribution networks, frauds are non-technical losses
(NTL) that may account for up to 40% of the total energy distributed in some
developing countries. Fraudsters alter (or bypass) the eletricity meter in order
to pay less than the right amount. Many different methods have been used for
devising fraud detection models [4,5]. These methods usually require feature
engineering on the consumptions time series data in order to train classifiers for
fraud detection. Other features can also be employed such as the ones derived
from customer data (e.g., spatial coordinates, neighborhood, type of residence,
etc.) and textual notes written by employees of the energy distribution network
responsible for reading the meters monthly - however, these notes are scarce.
Whenever a note is written with respect to a customer’s meter, there is a high
probability of fraud. In order to verify the fraud, an inspector is sent to the
field, i.e., a specialist makes a visit to the customer’s residence in order to check

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 503–511, 2017.
https://doi.org/10.1007/978-3-319-68612-7_57

504 E.A. Antonelo and R. State

the eletricity meter and confirm the fraud. Three outcomes are possible out of
an inspection: the fraud is confirmed, there is an anomaly incurring NTL (e.g.
faulty meter or fraud not affirmed), or there was no fraud (there may also be some
mislabeled data for the cases of bribery or other causes). Thus, the remaining
non-inspected customers are not used in the supervised learning of the model
(which can cause the so-called sample selection bias [6]). In this context, the
discovery or detection of frauds is necessary to decrease the NTL of the energy
distribution networks. Predictive models devised to this end have to be used with
parsimony since the cost to send a inspector to confirm the fraud is expensive.
Thus, only the most certain predictions (those with highest score) could be
used for sending inspections, for instance. Previous work on NTL detection has
employed different approaches, types of inputs and dataset sizes. For instance,
[9] focuses on feature engineering with random forest, logistic regression and
support vector machine as classifiers. A survey on this field is presented in [5],
citing also other approaches based on fuzzy systems, genetic algorithms, etc.

This work proposes a new general purpose temporal feature extraction based
on recurrent neural networks (RNNs) that projects the input stream u(t) into
a high-dimensional dynamic space x(t). This projector is called reservoir as
in Reservoir Computing (RC), whose recurrent weights are randomly initial-
ized [11]. The states x(t) of the resulting dynamical system form a trajectory
in the high-dimensional space that exhibits a short-term memory. This means
that when a snapshot is taken from the dynamical system (i.e., at t = ts), the
states x(ts) sums up the recent history of the input stream. The main idea is
to transform the temporal dimension of u(t) into a spatial dimension of the
snapshoted state x(ts). In this work, this last state is used as a feature for a
predictive model, which can be a regressor or a classifier. The proposed method
is applied to fraud detection in the energy distribution domain where million of
users with heterogeneous energy consumption profiles exist. Our work considers
that the short-length time series consumption data from each user is the sole
input available to the model. The proposed model also employs k-means clus-
tering to preprocess the heterogeneous input time series as well as to provide
cluster information as an additional relevant input. The resulting method is novel
as far as the authors know, specially in the fraud detection domain. The exper-
iments presented in this work show that the general-purpose recurrent feature
generator achieves predictive performance at least as good as models considering
handcrafted input features, and that large reservoirs and cluster information is
useful mainly when using Least Squares training.

2 Methods

2.1 Recurrent Dynamical Projection

Our proposed method views an RNN as an automatic temporal feature genera-
tor. It transforms an input stream into a set of spatial nonlinear features that
sums up the trajectory of the underlying input-driven dynamical system (see

Recurrent Dynamical Projection for Time Series-Based Fraud Detection 505

Fig. 1(a)). The RNN model we use is based on the Echo State Network (ESN)
approach [7,8]. The state update equation for the reservoir is given by:

x(t + 1) = f(Winu(t) + Wresx(t) + Wbias) (1)

where: u(t) represents the input at time t; x(t) is the M -dimensional reservoir
state; and f() = tanh() is the hyperbolic tangent activation function; Win and
Wbias are the weight matrices from input and bias to reservoir, respectively
and Wres represents the recurrent connections between internal nodes of the
reservoir. The initial state is x(0) = 0. The non-trainable weights Win, Wres

and Wbias are randomly generated from a Gaussian distribution N(0, 1) or a
uniform discrete set {−1, 0, 1}. After this random initialization, the matrix Win

(Wbias) is scaled by the parameter called input scaling υinp (bias scaling υbias).
Additionally, the Wres matrix is rescaled so that the reservoir has the echo state
property [7], that is, the spectral radius ρ(Wres) (the largest absolute eigenvalue)
of the linearized system is smaller than one [7]. This means that the reservoir
should have a fading memory such that if all inputs are zero, the reservoir states
also approach zero within some time period. The configuration of the reservoir
parameters are given in Sect. 3.

Fig. 1. (a) Recurrent Feature Generator (RFG). The reservoir is a non-linear dynam-
ical system usually composed of recurrent sigmoid units. Solid lines represent fixed,
randomly generated connections. The dashed lines show a hypothetical reservoir tra-
jectory, ending up into a final state x(N) that sums up the recent history of the signal.
(b) The learning machine with the temporal feature generated by RFG and the cluster
id as input. We call Temporal Machine the conjunction of RFG + the learning module.

In this work, the reservoir is used to generate a high-dimensional feature
at t = N (i), i.e., the reservoir states x(N (i)), where N (i) is the size of the ith

input time series u(i)(t), which in our case is the unidimensional monthly energy
consumption series. We should care that this input time series is short enough
compared to the size of the reservoir such that the reservoir has enough memory
to generate a dynamical state x(N (i)) summing up the main characteristics of
the input stream throughout time. For each ith time series, there is a feature
vector x(N (i)) generated using (1) and a corresponding label y(i) indicating the

506 E.A. Antonelo and R. State

class of the ith sample - fraud (1) or non-fraud (0). The mapping x(N (i)) → y(i)

is then learned by any regression or classification algorithm (Fig. 1(b)), such as
Regularized Least Squares (Ridge Regression) or Random Forest.

2.2 Clustering and Normalization

The time series data (u(i)(t)) may contain very heterogeneous streams that vary
on different scales. In our current application, this means that some customers
consume 1000 times more energy than others (e.g., industrial or commercial
customers in relation to residential clients). Even only using normalization, the
results would be sub-optimal since some samples (from high energy consumption
profiles) would drive the reservoir near the saturation region of the tanh function,
while others would take it to linear area around zero. We would like that the ith

sample (u(i)(t), t = 0, . . . , N (i)) be in a scale not very different from the rest of
the samples. At the same time, we can keep the information from the original
scale of the sample (consumption profile of the user) that might be lost after
rescaling. Both of these things can be easily accomplished by using a clustering
method such as k-means. The method work as follows: compute the mean m(i)

of u(i)(t); use k-means to group the samples into clusters β(i) based on the value
m(i); rescale each sample u(i)(t) by dividing it over the value of the center of the
cluster β(i). Now, all the samples will have less disparate scales. To compensate
the loss of information, we concatenate the one-hot encoding c(i) of the cluster
β(i) into the total input vector for the classifier (see Fig. 1(b)). The resulting
architecture is called Temporal Machine (TM). A similar approach with respect
to using the one-hot encoding of the cluster id as input to RC networks is taken
in [2]. In [1], a binary input vector is used for robot behavior learning through
subspace projection in the dynamical reservoir space.

3 Experiments

3.1 Datasets

The complete dataset obtained from a certain energy distribution network in
Brazil contains 3.6 M customers, from which at least 800 K were inspected for
fraud. In this work, we only consider samples that span at least N = 24 months
of collected energy consumption, while having a mean consumption over this
time period greater than zero. These constraints reduce the dataset to 313, 297
samples, each one consisting of a time series u(i)(t), t = 0, . . . , N − 1.

3.2 Settings and Results

We made experiments using regularized Least Squares (LS) (ridge regression)
[3], and random forest (RF)1 as the regressor/classifier in the learning module
of TM (Fig. 1(b)). These models are called TM-LS and TM-RF, respectively.
1 RF uses the method provided in the sklearn Python toolbox (version 0.17.1).

Recurrent Dynamical Projection for Time Series-Based Fraud Detection 507

Fig. 2. (a) Grid search on spectral radius vs. input scaling showing the AUC on val-
idation sets averaged over 10 runs each with different randomly initialized reservoirs.
(b) AUC test performance vs. reservoir size for TM-RF and TM-LS in dashed and solid
lines, respectively.

The RF method always uses 30 trees in the forest and a maximum depth of
20. Furthermore, comparisons to baseline models are made: instead of x(i) being
generated by the RFG, it is manually computed as an 8-dimensional feature
vector composed of the means and the standard deviations of the time series
over the following periods: the previous 24 months, 12 months, 6 months, and 3
months. Their corresponding acronyms are LS and RF (without TM) for Least
Squares and Random Forest, respectively. The reservoir size is M = 100, unless
otherwise stated. Two parameters of the reservoir in the RFG are optimized
with a grid search on a validation set: the spectral radius and the input scaling.
This is done ten times with reservoirs whose weights are randomly initialized
each time. The average AUC (area under the ROC curve) is shown in Fig. 2(a).
The maximum performance is achieved for high values of the spectral radius
(ρ(Wres) = 1) but low values of the input scaling (υinp = 0.3). With this optimal
set of parameters, the TMs were trained using Least Squares and Random Forest
on the first 80% samples and tested on the most recent 20% of the samples. The
resulting ROC curves on the test set are computed using each trained model
and also the baseline models LS and RF (Fig. 3). We can note that the TMs
using the RFG achieves comparable performance to the baseline models with
handcrafted simple features (mean and std). Additionally, the Random Forest
training method seems to have better test performance than the Least Squares
method. This can also be seen in Fig. 2(b), where M is varied while keeping other
parameters fixed, showing that greater reservoirs matter more to Least Squares
training (improving performance) than to the Random Forest method. Table 1
shows the same test AUC of the models in Fig. 3 plus two models where the
reservoirs have 500 neurons (TM500-LS and TM500-RF) and other two models
LS and RF without the cluster id as input. Note that the cluster id is important
when LS is used, but not as much as when RF is used as training method.

508 E.A. Antonelo and R. State

Fig. 3. (a) ROC curves on test sets (20% of the data) for 4 models: LS, RF, TM-LS
and TM-RF.

Table 1. AUC - fixed test set

Model Test AUC

LS (no cluster input) 0.604

RF (no cluster input) 0.654

LS 0.621

RF 0.656

TM-LS 0.627

TM-RF 0.649

TM500-LS 0.630

TM500-RF 0.653

Table 2. Average test AUC over sliding
evaluation

Model Average test AUC

LS 0.671

TM-LS 0.672

TM500-LS 0.678

RF 0.701

TM-RF 0.688

Another type of evaluation was made in order to observe how the predictive
model would perform on a sliding-through-time iterative train and test pro-
cedure. Figure 4(a) shows the results of this evaluation considering the Least
Squares method for training the models LS, TM-LS, and TM500-LS. Each point
is one iteration of the procedure, in which a grid search on spectral radius vs
input scaling is run with a validation set to find the best parameter configu-
ration, and then the model is evaluated on a different test set corresponding
to the current month. The next iteration will slide the current month into the
training dataset, and the new test set will be formed by samples of the following
month. On average, we can see that the first two models have equal performance
(the horizontal lines represent the average AUC). The latter uses a greater,
more complex reservoir (M = 500) that can perform a little better due to its
increased power for representation and temporal processing. The same proce-
dure now with Random Forest as learning method can be visually checked in
Fig. 4(b). The TM-RF model with 100 neurons in the reservoir is not as perfor-
mant as the RF model. However, both of them are better then the models based

Recurrent Dynamical Projection for Time Series-Based Fraud Detection 509

Fig. 4. Sliding evaluation: iterative training on data starting in 2015 throughout 2016,
testing each time on the following month (using AUC). Average AUC given by hor-
izontal lines. (a) All models trained by ridge regression (regularized Least Squares
estimate). (b) All models trained by Random Forest.

on LS, on average (Table 2). The results of the sliding evaluation show that the
performance is better throughout 2014 until the first quarter of 2015. In 2016,
the performance drops relative to the mean AUC. One possible explanation is
that detection of frauds may have explanatory variables other than the energy
consumption time series not considered in this work. As a matter of comparison,
[9] achieves AUC of 0.729 using random forests and handcrafted feature engineer-
ing. Their dataset is similar to the one used in this work, although being bigger,
filtered and preprocessed differently, without sliding evaluations performed.

510 E.A. Antonelo and R. State

4 Conclusion

In this paper, a fraud detection method based on Reservoir Computing is pro-
posed for detecting electricity theft having as input solely the energy consump-
tion time series of each customer. To deal with the heterogeneous user consump-
tion profiles, k-means clustering is employed for normalization of all the time
series according to the cluster it was assigned to. The RC approach allows us to
extract relevant temporal features from short-length time series by projecting
the input into a high-dimensional nonlinear space. The trajectory of this input-
driven dynamical system ends up into a final state which sums up the input time
series behavior over time. The input feature used for the classifier is exactly this
last state of the reservoir, showing comparable performance with baseline models
using handcrafted features. The method effectively converts the temporal dimen-
sion into a spatial one, and although it was used for detecting non-technical loss
in electricity grids (with real-world data) in this paper, it can also be used for
general-purpose time series-based classification tasks (e.g. fraud detection). How-
ever, as the reservoir without output feedback has a limited short-term memory
[7], the time series can not be indefinitely long. Furthermore, future work will
research methods to optimize the reservoir dynamics (e.g., Intrinsic Plasticity
[10]) in order to generate even better features. In the context of the real-world
task of NTL detection, the next crucial step is to consider additional input
variables such as user neighborhood, type of connection, etc. into a integrated
framework which corrects the existing sample selection bias, currently considered
an obstacle to the optimal use of such models.

Acknowledgments. The authors would like thank Jorge Meira and Patrick Glauner
from University of Luxembourg, and Lautaro Dolberg, Yves Rangoni, Franck Bettinger
and Diogo M. Duarte from Choice Technologies for useful discussions on NTL.

References

1. Antonelo, E.A., Schrauwen, B.: On learning navigation behaviors for small mobile
robots with reservoir computing architectures. IEEE Trans. Neural Netw. Learn.
Syst. 26(4), 763–780 (2015)

2. Antonelo, E.A., Flesch, C., Schmitz, F.: Reservoir computing for detection of steady
state in performance tests of compressors. Neurocomputing (in press)

3. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer, New York (2006)

4. Depuru, S.S.S.R., Wang, L., Devabhaktuni, V., Green, R.C.: High performance
computing for detection of electricity theft. Int. J. Electr. Power Energy Syst. 47,
21–30 (2013)

5. Glauner, P., Meira, J., Valtchev, P., State, R., Bettinger, F.: The challenge of non-
technical loss detection using artificial intelligence: a survey. Int. J. Comput. Intell.
Syst. (IJCIS) 10(1), 760–775 (2017)

6. Heckman, J.J.: Sample selection bias as a specification error. Econometrica 47(1),
153–161 (1979). http://www.jstor.org/stable/1912352

http://www.jstor.org/stable/1912352

Recurrent Dynamical Projection for Time Series-Based Fraud Detection 511

7. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural
networks. Technical report GMD Report 148, German National Research Center
for Information Technology (2001)

8. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and sav-
ing energy in wireless telecommunication. Science 304(5667), 78–80 (2004)

9. Meira, J.A., Glauner, P., Valtchev, P., Dolberg, L., Bettinger, F., Duarte, D., et al.:
Distilling provider-independent data for general detection of non-technical losses.
In: Power and Energy Conference, Illinois, 23–24 February 2017 (2017)

10. Schrauwen, B., Warderman, M., Verstraeten, D., Steil, J.J., Stroobandt, D.:
Improving reservoirs using intrinsic plasticity. Neurocomputing 71, 1159–1171
(2008)

11. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental
unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007)

Transfer Information Energy: A Quantitative
Causality Indicator Between Time Series

Angel Caţaron1 and Răzvan Andonie1,2(B)

1 Electronics and Computers Department, Transilvania University, Braşov, Romania
cataron@unitbv.ro

2 Computer Science Department, Central Washington University,
Ellensburg, WA, USA
andonie@cwu.edu

Abstract. We introduce an information-theoretical approach for ana-
lyzing cause-effect relationships between time series. Rather than using
the Transfer Entropy (TE), we define and apply the Transfer Informa-
tion Energy (TIE), which is based on Onicescu’s Information Energy.
The TIE can substitute the TE for detecting cause-effect relationships
between time series. The advantage of using the TIE is computational:
we can obtain similar results, but faster. To illustrate, we compare the
TIE and the TE in a machine learning application. We analyze time
series of stock market indexes, with the goal to infer causal relationships
between them (i.e., how they influence each other).

1 Introduction

Causal analysis is not merely a search for statistical correlations, but an inves-
tigation of cause-effect relationships. Although, in general, statistical analysis
cannot distinguish genuine causation from spurious covariation in every conceiv-
able case, this is still possible in many cases [15]. Causality is usually posed using
two alternative scenarios: the Granger causality and the information-theoretical
approach (based on the Kullback-Leibler divergence or the TE).

The Granger1 causality test [5] is a statistical hypothesis test for determining
whether one time series is useful in forecasting another. According to Granger,
causality could be reflected by measuring the ability of predicting the future
values of a time series using past values of another time series. The Granger test
is based on linear regression modeling of stochastic processes. More complex
extensions to nonlinear cases exist, but these extensions are more difficult to
apply in practice [6].

The TE, introduced by Schreiber [17], has been used to quantify the statisti-
cal coherence between time-series. It is able to distinguish driving and responding
elements and to detect asymmetry in the interaction of time-series. For instance,
in the financial market, based on the TE concept, Kwon and Oh [12] found that
the amount of information flow from index to stock is larger than from stock to

1 Clive Granger, recipient of the 2003 Nobel Prize in Economics.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 512–519, 2017.
https://doi.org/10.1007/978-3-319-68612-7_58

Transfer Information Energy 513

index. It indicates that the market index plays a role of major driving force to
individual stock. Barnett et al. proved that Granger causality and TE causality
measure are equivalent for time series which have a Gaussian distribution [1].
Hlaváčková-Schindler [8] generalized this result.

Our main contribution is an information-theoretical approach for analyzing
cause-effect relationships between time series. Rather than using the relatively
well-known Kullback-Leibler divergence and the TE (both based on a measure of
uncertainty - the Shannon entropy), we introduce the TIE, which is based on a
measure of certainty - the Onicescu Information Energy (IE) [14]. In general, any
monotonically growing and continuous probability function can be considered as
a measure of certainty and the IE is such a function. The IE is a special case
of Van der Lubbe et al. certainty measure [18] and was interpreted by several
authors as a measure of expected commonness, a measure of average certainty,
or as a measure of concentration, and is not related to physical energy. We
claim that the TIE can substitute the TE for detecting cause-effect relationships
between time series, with the advantage of being faster to compute.

An hot application area of causal relationships is finance. Most investors
in the stock market consider various indexes to be important sources of basic
information that can be used to analyze and predict the market perspectives. We
may be interested in the correlation (and beyond that, causality as well) between
two time series such as a market/bench index and an individual stock/ETF
products. An ETF (Exchange Traded Fund), is a marketable security that tracks
an index, a commodity, bonds, or a basket of assets like an index fund. In our
application, we compare the TIE and the TE in a machine learning application,
analyzing time series of stock market indexes with the goal to infer how they
influence each other.

The paper is organized as follows. First, we refer to previous work (Sect. 2).
Section 3 introduces the TIE. The financial application is presented in Sect. 4.
The paper is concluded in Sect. 5.

2 Related Work: TE for Financial Time-Series

An overview of causality detection based on information-theoretic approaches
in time series analysis can be found in [9]. Most of the information-theoretic
approaches in time series analysis are based on the TE. The recent literature on
TE applications is rich.

TE measures the directionality of a variable with respect to time base on the
probability density function (PDF). For two discrete stationary processes I and
J , TE relates k previous samples of process I and l previous samples of process
J and is defined as follows [17]:

TEJ→I =
n−1∑

t=1

p(it+1, i
(k)
t , j

(l)
t) log

p(it+1|i(k)t , j
(l)
t)

p(it+1|i(k)t)
, (1)

where it and jt are the discrete states at time t of I and J , respectively; i(k)t and
j
(k)
t are the k and l dimensional delay vectors of time series I and J , respectively.

514 A. Caţaron and R. Andonie

TJ→I measures the extend to which time series J influences time series I.
The TE is asymmetric under the exchange of it and jt, and provides information
regarding the direction of interaction between the two time series. In fact, the
TE is an equivalent expression for the conditional mutual information [9].

Accurate estimation of entropy-based measures is notoriously difficult and
there is no consensus on an optimal way for estimating TE from a dataset [4].
Schreiber proposed the TE using correlation integrals [17]. The histogram esti-
mation approach with fixed partitioning is the most widely used. This method
is simple and efficient, but not scalable for more than three scalars. It also has
another drawback - it is sensible to the size of bins used. Since estimating the
TE reduces to the non-parametric entropy estimation, other entropy estima-
tion methods have been also used for computing the TE [4,7,19]: kernel density
estimation methods, nearest-neighbor, Parzen, neural networks, etc.

Without intending to be exhaustive, we mention two papers which describe
time-series information flow analysis with TE. Other recent results can be found
in [3,13].

Kwon and Yang [11] computed the information flow between 25 stock mar-
kets to determine which market serves as a source of information for global
stock indexes. They analyzed the daily time series for the period of 2000 to
2007 using TE in order to examine the information flow between stock markets
and identify the hub. They concluded that the American and European markets
are strongly clustered and they are able to be regarded as one economic region,
while Asia/Pacific markets are economically separated from American and Euro-
pean market cluster. Therefore, they could infer that American and European
stock markets fluctuate in tune with a common deriving mechanism. The con-
siderable quantity of the TE from American and European market cluster to
the Asia/Pacific markets is the strong evidence that there is an asymmetry of
information flow between the deriving mechanisms.

Sandoval [16] used the stocks of the 197 largest companies in the world,
in terms of market capitalization, in the financial area, from 2003 to 2012. He
studied the causal relationships between them using TE. He could assess which
companies influence others according to sub-areas of the financial sector. He
also analyzed the exchange of information between those stocks and the net-
work formed by them based on this measure, verifying that they cluster mainly
according to countries of origin, and then by industry and sub-industry.

3 Transfer Information Energy

The information entropy of a discrete random variable I with possible values
{i1, i2, . . . , in} is the expected value of the information content of I [2], H(I) =
−∑n

t=1 p(it) log p(it), whereas the IE is the expected value of the probabilities
of the possible values of I [14], IE(I) =

∑n
t=1 p(it) · p(it).

We define the TIE:

TIEJ→I =
n−1∑

t=1

p(it+1, i
(k)
t , j

(l)
t)

(
p(it+1|i(k)t , j

(l)
t) − p(it+1|i(k)t)

)
, (2)

Transfer Information Energy 515

to quantify the increase in certainty (energy) of process I, knowing k previous
samples of process I and l previous samples of process J . Like the TE, the TIE
is non-symmetric and measures cause-effect relationships between time series I
and J . For computational reasons, we take k = l = 1.

Both (1) and (2) can be rewritten substituting the conditional probabilities:

TEJ→I =
∑

it+1,it,jt

p(it+1, it, jt) log
p(it+1, it, jt)p(it)
p(it+1, it)p(it, jt)

, (3)

TIEJ→I =
∑

it+1,it,jt

p(it+1, it, jt)
(
p(it+1, it, jt)

p(it, jt)
− p(it+1, it)

p(it)

)
. (4)

Comparing formulas (3) and (4), we observe that for TE we have 4 multi-
plications/divisions and one logarithm, whereas for TIE we have 3 multiplica-
tions/divisions and 1 subtraction. Considering all operations equivalent, the TIE
is theoretically 20% faster, which is obviously a rough theoretical estimate.

The histogram estimation of TE and TIE between two time series can be
computed in three steps: (a) Transformation of the continuous valued time series
into series with discrete values by binning; the result is a sequence of tokens
selected from an alphabet with as many symbols as the number of bins; (b)
Evaluation of the probabilities p(it+1, it, jt), p(it), p(it+1, it), and p(it, jt), for all
it and jt; and (c) Computation of TE and TIE by using Eqs. (3) and (4).

4 Transfer Energy Between Financial Time Series

We illustrate with all details the estimation of TI and TIE on a real-world data
set, to make the procedure reproducible.

Table 1. The 20 stock market indexes, obtained from the finance.yahoo.com web site.
We estimate the TE and TIE of all pairs from the 20 stock market symbols. Each
symbol represents a time series of daily closing prices recorded between Jan. 3, 2000–
Feb. 14, 2017.

Americas Asia/Pacific Europe

1: MERV 8: AORD 16: ATX

2: BVSP 9: SSEC 17: BFX

3: GSPTSE 10: HSI 18: GDAXI

4: MXX 11: BSESN 19: AEX

5: GSPC 12: JKSE 20: SSMI

6: DJA 13: N255

7: DJI 14: KS11

15: TWII

http://finance.yahoo.com/

516 A. Caţaron and R. Andonie

For 20 stock market indexes from Americas, Asia/Pacific and Europe
(Table 1), we estimate the TE and TIE for all pairs. The working days of the
markets across the world may vary from one country to another. Therefore, the
time series are aligned by time stamp and the missing values are replaced with
the previous available ones. We estimate TE and TIE as follows:

(a) Discretization: binning the time series
We slice the domain limited by the minimum and maximum values from the
whole data set into equally sized intervals which are then labeled by assigning
a symbol to each of them. The result is a sequence of characters, for which we
compute the probabilities needed in Eqs. (3) and (4).

When the binning is applied on the first log-returns of stocks, the narrow
bins provide more information content, thus a higher value of entropy H then
the large bins. Nevertheless, the correlation between the two choices of binning
is high in general, reflecting an important similarity of the approaches [16]. In
general, for shorter time series it is advisable to use larger bins in order to
avoid the excessive fragmentation (and thus very low or uniform probabilities of
symbols). We use 24 bins, noting that the binning strategy is less relevant in our
case, since we are not interested in absolute values for TE and TIE, but in their
relative values (for comparison). Fig. 1 depicts the binning and Table 2 shows a
numerical example of binning based on the first values of the DJI and HSI stock
indexes.

Fig. 1. Binning the time series. The left graph presents the raw values of the DJI stock
ranging between Jan. 3, 2000–Feb. 14, 2017. On the right side, we represent the log-
returns of closing prices and the slicing of the values domain, with 24 equal intervals
between minimum and maximum values. Each interval is labeled with a symbol (a
letter).

(b) Compute the marginal and joint probabilities in Eqs. (3) and (4)
We denote by TEt the term under the sum sign in (3) and by TIEt the term
under the sum sign in Eq. (4). The next step is to evaluate TEt and TIEt

by counting the number of each occurrence (Table 2). The string obtained by
binning the log-returns of the DJI stock starts with the symbols “g l m n l j
k k m k . . . ”. Therefore, p(i1) = 0.00673 is the probability of occurrence of
symbol “g”, p(i2) = 0.21054 is the probability of occurrence of symbol “l”,

Transfer Information Energy 517

Table 2. Illustration of the step by step calculation of TE and TIE. Binning the log-
returns of the DJI values is subject to slicing the values interval, limited by −0.082 and
0.105. The limits of log-returns of HSI are −0.135 and 0.134. The probabilities are the
relative frequencies of symbols or combination of symbols, while TE and TIE can be
calculated from the intermediary values TEi and TIEi, which are obtained from the
probabilities listed on column ti.

t0 t1 t2 t3

Closing prices of DJI 11357.51 10997.93 11122.65 11253.26

Log-returns of DJI −0.0321 0.0112 0.0116

Binned log-returns
of DJI

i1 : g i2 : l i3 : m

Closing prices of
HSI

17369.63 17072.82 15846.72 15153.23

Log-returns of HSI -0.0172 -0.0745 -0.0447

Binned log-returns
of HSI

j1 : k j2 : f j3 : i

(it+1, it) (i2, i1) : lg (i3, i2) : ml (i4, i3) : nm

(it, jt) (i1, j1) : gk (i2, j2) : lf (i3, j3) : mi

(it+1, it, jt) (i2, i1, j1) : lgk (i3, i2, j2) : mlf (i4, i3, j3) : nmi

p(it) p(i1) p(i2) p(i3)

p(it+1, it) p(i2, i1) p(i3, i2) p(i4, i3)

p(it, jt) p(i1, j1) p(i2, j2) p(i3, j3)

p(it+1, it, jt) p(i2, i1, j1) p(i3, i2, j2) p(i4, i3, j3)

TE =
∑

(TEt) TE1 TE2 TE3

TIE =
∑

(TIEt) TIE1 TIE2 TIE3

etc. The probability p(i2, i1) = 0.00179 is the probability of the sequence “gl”,
p(i3, i2) = 0.00942 is the probability of “lm”, etc. The string obtained by binning
the log-returns of the HSI stock starts with the symbols “k f i n o m l l l m . . . ”.
We obtain the probability of “gk”: p(i1, j1) = 0.00224, the probability of “gk”:
p(i2, j2) = 0.00224, etc. Next, p(i2, i1, j1) = 0.00067 is the probability of “lgk”,
p(i3, i2, j2) = 0.00022 is the probability of “mlf”, etc. For an accurate estimation,
a larger number of decimals is preferred.

(c) Estimate TE and TIE
We calculate TEt and TIEt. For the first step, TE1 = 0.000011 and TIE1 =
0.0000022, etc. Finally, we compute TE = 47.76 and TIE = 17.85, summing-up
the partial results.

The results are summarized in the heatmaps (Fig. 2). The lighter shaded
pixels are associated with a higher values of TE and TIE. We visually observe
that the two heatmap correlate well. In fact, Pearson correlation coefficient is
0.973, showing a strong correlation.

518 A. Caţaron and R. Andonie

Figure 3 illustrates the execution time for computing TIE and TI. For time
series with more than 1,000 values, the execution time for TIE becomes clearly
shorter. For an increasing number of values, the ratio TIE/TE of the executions
times decreases.

Fig. 2. The two heatmaps are calculated for TE (left) and TIE (right), between all
combinations of the 20 stock indexes.

Fig. 3. Execution time. The graph shows the ratio TIE/TE of the executions times,
for an increasing number of values. The time is computed for the DJI and HSI stocks
ranging between Jan. 3, 2000–Feb. 14, 2017. The relative efficiency of TIE increases
for larger time series. For 4357 points, the ratio is 0.49918.

5 Conclusions

According to our preliminary results, the TIE can substitute the TE for detect-
ing cause-effect relationships between time series, with the advantage of a
computational complexity reduction. This result is very interesting, since the
TE is already a standard concept (Scheiber’s paper [17] has at this moment
842 citations.

Transfer Information Energy 519

Even if its use as an information flow measure is debatable (see [10]), the
TE can be used as a measure of the reduction in uncertainty about one time
series given another. Symmetrically, the TIE may be viewed as a measure of the
increase in certainty about one time series given another. It is an open problem
if the TIE is an appropriate energy flow measure.

References

1. Barnett, L., Barrett, A.B., Seth, A.K.: Granger causality and transfer entropy are
equivalent for Gaussian variables. Phys. Rev. Lett. 103, 238701 (2009)

2. Borda, M.: Fundamentals in Information Theory and Coding. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-20347-3

3. Dimpfl, T., Peter, F.J.: Using transfer entropy to measure information flows
between financial markets. SFB 649 Discussion Papers SFB649Dpp. 2012-051, Son-
derforschungsbereich 649, Humboldt University, Berlin, Germany, August 2012

4. Gencaga, D., Knuth, K.H., Rossow, W.B.: A recipe for the estimation of informa-
tion flow in a dynamical system. Entropy 17(1), 438–470 (2015)

5. Granger, C.W.J.: Investigating causal relations by econometric models and cross-
spectral methods. Econometrica 37(3), 424–438 (1969)

6. Guisan, M.C.: A comparison of causality tests applied to the bilateral relationship
between consumption, GDP in the USA. Mexico. Int. J. Appl. Econom. Quant.
Stud.: IJAEQS 1(1, (1/3)), 115–130 (2004)

7. Hlaváčková-Schindler, K.: Causality in time series: its detection and quantification
by means of information theory. In: Emmert-Streib, F., Dehmer, M. (eds.) Infor-
mation Theory and Statistical Learning, pp. 183–207. Springer, Boston (2009).
doi:10.1007/978-0-387-84816-7 8

8. Hlaváčková-Schindler, K.: Equivalence of granger causality and transfer entropy:
a generalization. Appl. Math. Sci. 5(73), 3637–3648 (2011)

9. Hlaváčková-Schindler, K., Palu, M., Vejmelka, M., Bhattacharya, J.: Causality
detection based on information-theoretic approaches in time series analysis. Phys.
Rep. 441(1), 1–46 (2007)

10. James, R.G., Barnett, N., Crutchfield, J.P.: Information flows? A critique of trans-
fer entropies. Phys. Rev. Lett. 116(23), 238701 (2016)

11. Kwon, O., Yang, J.-S.: Information flow between stock indices. EPL (Europhys.
Lett.) 82(6), 68003 (2008)

12. Kwon, O., Oh, G.: Asymmetric information flow between market index and indi-
vidual stocks in several stock markets. EPL (Europhys. Lett.) 97(2), 28007 (2012)

13. Mao, X., Shang, P.: Transfer entropy between multivariate time series. Commun.
Nonlinear Sci. Numer. Simul. 47, 338–347 (2017)

14. Onicescu, O.: Theorie de l’information energie informationelle. C. R. Acad. Sci.
Paris Ser. A–B 263, 841–842 (1966)

15. Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge Uni-
versity Press, New York (2009)

16. Sandoval, L.: Structure of a global network of financial companies based on transfer
entropy. Entropy 16(8), 4443–4482 (2014)

17. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000)
18. van der Lubbe, J.C.A., Boxma, Y., Bockee, D.E.: A generalized class of certainty

and information measures. Inf. Sci. 32(3), 187–215 (1984)
19. Zhu, J., Bellanger, J.-J., Shu, H., Le Bouquin Jeannès, R.: Contribution to transfer

entropy estimation via the k-nearest-neighbors approach. Entropy 17(6), 4173–
4201 (2015)

http://dx.doi.org/10.1007/978-3-642-20347-3
http://dx.doi.org/10.1007/978-0-387-84816-7_8

Improving Our Understanding of the Behavior
of Bees Through Anomaly Detection Techniques

Fernando Gama1, Helder M. Arruda2, Hanna V. Carvalho3, Paulo de Souza4,
and Gustavo Pessin2(B)

1 Institute of Exact and Natural Sciences, Federal University of Pará,
Belém, PA, Brazil

fernando.mata@pq.itv.org
2 Applied Computing Lab, Instituto Tecnológico Vale, Belém, PA, Brazil

{helder.arruda,gustavo.pessin}@itv.org
3 SENAI Institute of Innovation in Minerals Technologies, Belém, PA, Brazil

hanna.carvalho@pq.itv.org
4 Data61, CSIRO, Sandy Bay, TAS, Australia

paulo.desouza@data61.csiro.au

Abstract. Bees are one of the most important pollinators since they
assist in plant reproduction and ensure seed and fruit production. They
are important both for pollination and honey production, which benefits
small and large-scale agriculturists. However, in recent years, the bee
populations have declined significantly in alarming ways on a global scale.
In this scenario, understanding the behavior of bees has become a matter
of great concern in an attempt to find the possible causes of this situation.
In this study, an anomaly detection algorithm is created for data labeling,
as well as to evaluate the classification models of anomalous events in a
time series obtained from RFID sensors installed in bee hives.

Keywords: Machine learning · Bees · Anomaly detection · Pollination

1 Introduction

Bees play a very important role in pollinating plant species. Basically, the
pollinating process consists of exchanging gametes between vegetable species,
which lead to the production of fruit of higher quality and greater abundance.
Worker bees are responsible for carrying the pollen of flowers, which remains
held between their bristles. More than one hundred thousand flowers can serve
a single hive [6]. In economic terms, bees are responsible for crop pollination
which is worth over USD 19 billion and earns about USD 385 million worth of
honey per year just in the United States. In Australia, the industry makes USD
92 million from bee production [2]. Small to large-scale farmers are interested in
breeding these insects. Estimates show that one-third of all food consumed by
mankind depends on the activities of pollinators [8,9].

Despite a global growth in the number of domestic beehives, the number of
bees has been declining in the United States since the 1940s, and in some Euro-
pean countries since the 1960s [10]. It is believed that there is a set of factors
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 520–527, 2017.
https://doi.org/10.1007/978-3-319-68612-7_59

Improving Our Understanding of the Behavior of Bees 521

responsible for this, such as the emergence of new types of parasites, pesticides,
the cultivation of monocultures, electromagnetic waves generated by cell towers,
genetically-modified vegetation and the inappropriate management of hives [11].

In an attempt to find a clearer explanation of this situation, several research
groups have carried out investigations into bees. For example, the digital beehive
project designed by [2], seeks to enable beekeepers to remotely monitor the
temperature and levels of humidity in hives, as well as to undertake a weight
control of honey bees GPS for the spatial location of beehives and bee counts.
The scheme is also able to transmit and interpret data from a set of tools that
can assess the health of the colony.

In a context of vulnerability, [4] adopts a approach that seeks to distinguish
between real medical conditions and false alarms through detecting sensor anom-
alies that employ prediction- based methods to compare and detect anomalies.
These anomaly detection methods establish the spatio-temporal correlation that
exists between the physiological parameters. In a theoretical field, [13] examines
the main design principles related to the anomaly detection techniques employed
in WSNs. It carries out analysis and makes comparisons of approaches that
belong to a similar technical category. In addition, it includes a brief discus-
sion about research areas that offer good prospects in the near future. Anomaly
detection is also examined by [3] who carry out a theoretical-practical study
that includes an evaluation of 19 unsupervised algorithms for anomaly detec-
tion which reveals the strengths and weaknesses of the different approaches. In
addition, there is an investigation of questions such as performance, computa-
tional effort, the impact of configuration parameters, as well as global and local
anomaly detection.

Knowing the behavior of bees is important because it can help producers
to have a better understanding of their activities. In a broader context, it is
hoped that this work can be beneficial to agriculture, biology and other related
fields. Detecting anomalies in a time series will automatically allow beekeepers
to take the necessary steps to understand which factors are causing the stress
(degree of disturbance) of a beehive. According to [5], an anomaly (outlier) is
an observation that greatly deviates from other observations. Another definition
defines anomalies as being patterns in data that do not conform to a well-defined
notion of normal behavior. In addition, [7] defines outlier as an observation in a
dataset that is inconsistent with other observations.

Thus, the objective of this article is to employ a proximity-based anomaly
detection method based on the Local Outlier Factor (LOF) algorithm for data
labeling and then to evaluate supervised models for the classification of anom-
alous events in a time series involving the data on bee activity obtained from
RFID sensors. Section 2 will outline the methodology adopted for this work.
Section 3 will show the preliminary results based on the different sizes of time
windows as well as the best window and the model that obtained the greatest
degree of precision. Finally, Sect. 4 concludes the study and makes suggestions
for future work.

522 F. Gama et al.

2 Methodology

2.1 Data Collection

This work forms a part of the Swarm Sensing project set out by [12]. Electronic
tags (RFID) were glued on bees to improve our knowledge of their behavior. The
data collection is carried out through an instrumental system shown in Fig. 1,
and covers a period from 1st–31st August 2015 when 1280 bees were analyzed,
160 in each hive. From the moment a bee passes through the RFID reader, a
movement is recorded and altogether, we recorded a total of 127,758 activities.
In this experiment, data were condensed as hourly, making a total of 744 records.
The level of activity was examined in an attempt to evaluate the bees behavior.
This consists of the ratio between the total number of movements in a given
period and the number of live bees at that time. If the activity level is 0.0, it
means no bee is carrying out any activity at that time. If it is 1.0, it means that
there is a single activity per bee at that time. During the experiment there were
between 240 and 320 live bees per day.

Fig. 1. Left: (1) Melipona fasciculata hive, (2) Intel Edison for RFID controlling and
data storage, (3) PVC box for storing electronic items, (4) RFID reading antenna,
(5) Plastic tube for bees’ passage. Right-top: The 8 hives overview. Right-bottom: Bee
with RFID tag attached to the chest.

After the selection of the variable for the activity level, we conducted research
in the database. It was noticed that although the temporal period had many
noises, there were few anomalies. In view of this, we decided to create a dis-
turbance in the dataset from the original database to force more anomalies to
appear (which was the main purpose of the investigation). Figure 2 illustrates a
part of a time window generated within a specified range that shows the data
level of bee activities within the time frame.

Improving Our Understanding of the Behavior of Bees 523

Fig. 2. The figure illustrates one section of the time series. The average number of
activities carried out by each active bee in the system in a time window of 3 h.

An unsupervised detection algorithm was employed to validate the data label-
ing which was called Local Outlier Factor (LOF) [1]. Basically, the algorithm
shows as output a score that indicates the outlier value. Scores with values close
to 1 indicate that the point belongs to the cluster and is in a region of homo-
geneous density. In contrast, values of density distant from 1, suggest that the
point is in a sparse region compared with its neighbors. Therefore, it can be
regarded as an outlier. In this work, the values of density above 1.5 are treated
as outliers; otherwise the instance is not an anomaly.

In making the density calculations of the algorithm, it is reasonable to choose
a good interval for k, that ranges from a minimum and maximum value defined
by the user. It is not recommended to use a much lower value for k in case there
are undesirable statistical fluctuations [1]. Table 1 shows the summarized test
cases for each window. The intervals were tested with regard to the limits on the
maximum size of neighbors relative to the time window (window size minus 1).
For example, the 12 h window displays the first test case with a minimum value
of k equal to 1 and maximum of k equal to 11.

We applied the LOF algorithm that generated a score for each of the 744
instances of the dataset to each test set in the table. As this involved inter-
vals of k, we obtained the density value for each instance in function of each k.
A heuristic was adopted to select the maximum value of the interval. For exam-
ple, in the case of window k1:k5, we obtained 6 values of density (score) for that
instance and the highest value among these 6 is selected. After labeling the data
for all the instances, the points classified by the algorithm were compared with
the points classified by non-specialists, by following the same procedure for all
the remaining test cases. Finally, i the best k interval was chosen for each time
window in accordance with the highest percentage of correct points suggested by
the algorithm compared with that suggested by non-specialists. After this last
task had been carried out, we obtained the datasets for each time window as a
basis for evaluating the models.

524 F. Gama et al.

Table 1. A summary of test cases for the determination of the k value (:) follows a
sequence, for example, k1:k5 is equivalent k1, k2, k3, k4, k5. The intervals for setting the
value of k are determined for different sizes of the time windows. The cells highlighted
in yellow represent the ranges chosen for each window.

Test cases

3h 6h 12h 24h

k1:k2 k1:k5 k1:k11 k1:k23

k2:k4 k2:k10 k5:k10

k2:k5 k3:k9 k10:k20

k3:k5 k4:k8 k11:k20

k4:k5 k5:10 k12:k20

k6:k10 ...

k21:23

...

2.2 Modeling

Multilayer Perceptron (Bagging), Random Forest (RF) and Support Vector
Machines (SVM) are models of machine-learning models that were tested in
each time window and the performances of each model were evaluated. Mini-
mal changes were made in the parameters of the models in accordance with the
Table 2. Moreover, we perform 10 runs for each model in all of the time windows.

Table 2. Parameter setting of the models. These parameters were applied to all the
time windows studied.

RandomForest Value

NumberIterations 100

NumberAttributes 0

NumberSlots 1

MLP (Bagging)
Value

BatchSize 100

HiddenLayers 1

LearningRate 0.3

Momentum 0.2

Epochs 500

ValidationSet 20

SVMachine
Value

C 1

Degree 3

Gamma 0

Coef0 0

Tolerance 0.001

Episolon 0.1

The models were evaluated by means of the Precision measurement that cor-
responds to the ratio of the number of true positives (TP) (that is, the number
of items that were correctly classified as belonging to the positive class) and the
total number of elements labeled as belonging to the positive class (including
not only true positives but also false positives (FPs)). Since we were faced with
a binary classification problem, we decided to evaluate the models on the basis
of the results obtained by the ROC curve. The ROC analysis is conducted as an
alternative to supplement the evaluation of the model. It is based on the rate of
true positives and the rate of false positives. The leave-one-out cross-validation

Improving Our Understanding of the Behavior of Bees 525

method was employed for partitioning the dataset. This method includes a spe-
cific case of another cross-validation method: k-fold. However, leave-one-out uses
k as the total that is equal to the total number of samples N (744 instances).
We believe that this method allows an in-depth investigation of the model and it
was found that the computational cost was not as significant as in our dataset.

3 Results

The results were obtained by running 10 executions for each of the assessment
measurements (precision and the ROC curve) and calculating the mean and
standard deviation from Fig. 3. The graph shows a greater variation in the results
of the models for the time windows of 3 h and 24 h. In the first window, the
RF obtained the best result (about 60%) followed by the MLP (Bagging) that
reached about 54% and SVM where the result was below expectations (about
29%). In the following windows (6 h, 12 h) the models behaved in a similar way
with results that were very close. RF obtain the highest result (about 59%) the
6 h window and MLP (Bagging) to the 12 h window (about 68%). However, the
models were very well suited to the 24 h temporal window where they achieved
the best results. The MLP (Bagging) obtained 96.66% followed by the SVM with
83.06% and RF with 81%.

We also calculated the mean and standard deviation of the models from
Fig. 4. It was found that in terms of accuracy, in the first time window (3 h),
SVM and MLP had the same result (50.4%), whereas the RF, in relation to

Fig. 3. (a) 3D area plot with axis (levelPrecision, model, timeWindow). The growth
of MLP (Bagging) was achieved when the time window was extended. Although the
progress of the SVM obtained a poor result of 28.62% in the first window (3 h), when
we increased the time window, the SVM achieved the second best result of 83.09%,
which was only lower than the MLP (Bagging) that had the best result of 96.62%.
(b) Standard Deviation Sampling in each of the models that involved the 10 executions.
In addition, the RF obtained the lowest variability in all the windows. In contrast, the
SVM model had the widest variation in the larger window (24 h).

526 F. Gama et al.

these, obtained 64.33%. With regard to the second window, in the three models,
from the third time window (12 h), where MLP (Bagging), RF and SVM had
the following degrees of precision 73.72%, 65.33%, 75.17%, respectively. However,
the last time window (24 h) had the best results and a similar behavior and was
able to achieve the same level of precision (98.4%).

Fig. 4. (a) Degree of precision in the 3 models studied. The actual increase in degrees
of accuracy occurred after the third window (12 h). The highest degree of accuracy is
given in Window 24, where the three models obtained similar results. (b) The sample
standard deviation was higher in the second window (6 h) whereas in the other windows
variation was minimal.

3.1 Discussion

On the basis of the results achieved from our work, we realized the importance of
using not only the rate of precision but the ROC analysis as well. For example,
when the precision level was increased for the three models, it led to a very
optimistic view of the studied scenario. The addition of a ROC analysis enabled
us to understand that although the three models had achieved the same degree
of precision, the bagging of MLPs is the most suitable, since it achieved a better
result than the other models. The difference was about 13.56% for the SVM
model and 15.62% for the RF algorithm.

In addition, an analysis of the most suitable model for the bees behavior in
the hives, allowed us to conclude that the best window to be used is the 24 h,
which achieved better results than the other windows. It is likely that this can
be explained by the behavior of the bees which work in a pattern that is related
to sunrise and sunset.

4 Conclusion and Suggestion for Future Work

In this study, three classification models were evaluated: a bagging of Multilayer
Perceptron (MLP), Support Vector Machines (SVM) and the Random Forest

Improving Our Understanding of the Behavior of Bees 527

(RF), in distinct time windows. It was found that MLP achieved the best result
and that 24 h was the best time window and the one which conformed best to all
the evaluated methods. It should also be underlined that an anomaly detection
algorithm can be used to label the dataset gathered from RFID sensors. This
extra kind of labeling was important to ratify the labeling by a non-specialist.

In future work, we believe that environmental variables, such as air temper-
ature and barometric pressure can assist in designing a robust model to help
obtain a better understanding of bee behavior. Although the initial results of
this work have been promising, we believe that the model needs to be strength-
ened by testing other methods which could be combined with our approach, as
well as the tuning of the parameters of the studied models.

References

1. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. In: ACM Sigmod Record, vol. 29, pp. 93–104. ACM (2000)

2. Foth, M., Blackler, A., Cunningham, P.: A digital beehive could warn bee-
keepers when their hives are under attack (2016). http://theconversation.com/
a-digital-beehive-could-warn-beekeepers-when-their-hives-are-under-attack-54375

3. Goldstein, M., Uchida, S.: A comparative evaluation of unsupervised anomaly
detection algorithms for multivariate data. PLOS ONE 11(4), 1–31 (2016). doi:10.
1371/journal.pone.0152173

4. Haque, S., Rahman, M., Aziz, S.M.: Sensor anomaly detection in wireless sensor
networks for healthcare. Sensors 15(4), 8764–8786 (2015)

5. Hawkins, D.: Identification of Outliers. Chapman and Hall, London (1980)
6. Henein, M., Langworthy, G., Erskine, J.: Vanishing of the bees (2009). http://

www.vanishingbees.com
7. Johnson, J.: Applied Multivariate Statistical Analysis. Prentice Hall, Upper Saddle

River (1992)
8. Klein, A.M., Vaissire, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A.,

Kremen, C.: Importance of pollinators in changing landscapes for world crops.
Proc. R. Soc. London B: Biol. Sci. 274(1608), 303–313 (2007)

9. Kluser, S., Peduzzi, P.: Global pollinator decline: a literature review (2007)
10. Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., Kunin,

W.E.: Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol.
25(6), 345–353 (2010)

11. Ratnieks, F.L.W., Carreck, N.: Clarity on honey bee collapse? Science 327(5962),
152–153 (2010)

12. Souza, P.A., Williams, R.N., Quarrell R.S., Budi, S., Susanto, F., Vincent, B.,
Allen, G.R.: Agent-based modelling of honey bee forager flight behaviour for swarm
sensing applications. Environmental Modelling and Software (2017, under review)

13. Xie, M., Han, S., Tian, B., Parvin, S.: Anomaly detection in wireless sensor net-
works: a survey. J. Netw. Comput. Appl. 34(4), 1302–1325 (2011)

http://theconversation.com/a-digital-beehive-could-warn-beekeepers-when-their-hives-are-under-attack-54375
http://theconversation.com/a-digital-beehive-could-warn-beekeepers-when-their-hives-are-under-attack-54375
http://dx.doi.org/10.1371/journal.pone.0152173
http://dx.doi.org/10.1371/journal.pone.0152173
http://www.vanishingbees.com
http://www.vanishingbees.com

Applying Bidirectional Long Short-Term
Memories (BLSTM) to Performance Data in Air

Traffic Management for System Identification

Stefan Reitmann1(B) and Karl Nachtigall2

1 Department of Air Transportation, Institute of Flight Guidance, German
Aerospace Center (DLR), Cologne, Germany

stefan.reitmann@dlr.de
2 Chair of Traffic Flow Sciences, Institute of Logistics and Aviation, TU Dresden,

Dresden, Germany
karl.nachtigall@tu-dresden.de

http://www.dlr.de/fl/

Abstract. The performance analysis of complex systems like Air Traf-
fic Management (ATM) is a challenging task. To overcome statistical
complexities through analyzing non-linear time series we approach the
problem with machine learning methods. Therefore we understand ATM
(and its identified system model) as a system of coupled and interde-
pendent sub-systems working in time-continuous processes, measurable
through time-discrete time series.

In this paper we discuss the requirements of a system identification
process and the attached statistical analysis of ATM emitted perfor-
mance data based on discussed benchmarking frameworks. The superior
aim is to show, that neural networks are able to handle complex non-
linear time-series, to learn how to rebuild them considering multidimen-
sional inputs and to store knowledge about the observation data set’s
behavior.

Keywords: Key performance indicator · Neural networks · LSTM ·
RNN · Time series analysis

1 Introduction

1.1 Ease of Use

Understanding and controlling the inner workings of a complex systems like
ATM at performance level regularly requires to understand the relationships
and interactions between all observed data points. These introduce interdepen-
dencies which basically states that no single system operates without affecting
other, which might also affect the relationships of the time series at performance
level. Because of these bidirectional relationships local decisions or performance
measurements are often problematic. To achieve a global multidimensional (>1
point of measurement) optimum or quantification of a system the local system’s
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 528–536, 2017.
https://doi.org/10.1007/978-3-319-68612-7_60

System Identification with BLSTM 529

emitted performance data’s influence on other parts of the whole needs to be
accounted. In the light of an increasing interest in research on performance based
airport management (PBAM) and today’s importance of Key Performance Indi-
cators (KPI) [1] in decision support systems (DSS) [2] this paper focuses on the
role of multivariate non-linear time series analysis at performance level.

This necessity is known in general and simplified in [3], implemented as a
trade-off-operation to balance performance in regard to different target values
within the system. The process takes place after determining if there are con-
flicting objectives that need to be balanced and involves several types of multi-
criteria decision-making techniques (MCDM). To avoid such a downstream adap-
tation of interdependencies via trade-offs the here described adaptive model is
executed online within the analysis. A similar approach is introduced in [4], where
so called “core-KPIs” are identified, which have an assumed relation to a set of
exogenous KPIs. Nevertheless, this connection is not proven mathematically.

1.2 Mathematical Background

The problem of analyzing KPI interdependencies in ATM is describable as
inverse problem by processing the causal factors of time series patterns from a set
of n ∈ N observations {y(t)} for a given set of inputs {x(t)} with t ∈ N, 0 ≤ t ≤ n
[3]. Our statistical approach via neural networks represents a self-trained admit-
tance function G(z) for further analysis of the problem as time-discrete control
system, which contains dependencies between input factors (KPIs). Training and
creating G(z) enables the ability to make predictions and use the knowledge as
an time-discrete controller. The requirements catalog in Table 1 shows up the
necessity of using neural networks for the given task. Also other mathematical

Table 1. Requirements catalog

Category Type Short description

General Adaptive character No certain system structure given

General Characteristic type Event based and periodic
measurements

General Complexity Irregular, nonlinear time series
handling

Measurement Time-delay Time-parallel and -delayed
measurements

Measurement Pattern recognition Regularities identification

Measurement Own dynamics Separation of processes

System knowledge Transitivity System reducing to principle
components

System knowledge Interdependencies Bidirectional relationships

System knowledge Level-of-Detail (LoD) Micro and macro views

530 S. Reitmann and K. Nachtigall

methods are able to handle complex non-linear data, but they mostly lack cer-
tain features to get preferred to LSTM (e.g. Gaussian Processes and Multivariate
adaptive regression splines (MARS)). The most important advantage of LSTM
is their ability to handle long-term dependencies between several time series,
which is very important for the recognition of interdepencies between them.

2 Machine Learning Approach

2.1 Long Short-Term Memory (LSTM)

The LSTM structure is implemented through the following functions:

i(t) = σ(Wxix(t) + Whih(t − 1) + Wcic(t − 1) + bi) (1)

f(t) = σ(Wxfx(t) + Whfh(t − 1) + Wcfc(t − 1) + bf) (2)

c(t) = f(t) ∗ c(t − 1) + i(t) ∗ tanh(Wxcx(t) + Whch(t − 1) + bc) (3)

o(t) = σ(Wxox(t) + Whoh(t − 1) + Wcoc(t) + bo) (4)

h(t) = o(t) ∗ tanh(c(t)) (5)

σ and tanh represent the specific, element-wise applied activation functions of
the LSTM. i, f, o and c denote the mentioned inner-cell gates, respectively the
input gate, forget gate, output gate, and cell activation vectors. c need to be
equal to the hidden vector h. The W terms denote weight matrices [4,5].

2.2 Bidirectional LSTM (BLSTM)

As we need to consider dependencies/correlations in both forward and backward
direction the conventional LSTM needs to get adjusted. Bidirectional LSTM
(BLSTM) are introduced, which are able to process data in both directions with
two separate hidden layers. Both hidden layers are connected to the same output
layer. A BLSTM computes the forward hidden sequence h and the backwards
hidden sequence h separately, the output layer y by iterating the backward layer
from t = T to 1 and the forward layer from t = 1 to T . To shorten the represen-
tation a BRNN is represented in (6) to (8), where H could be implemented by
the composite function (1) to (5) as done in [8,9].

−→
h (t) = H(W

x
−→
h

x(t) + W−→
hh

−→
h (t − 1) + b−→

h
) (6)

←−
h (t) = H(W

x
←−
h

x(t) + W←−
hh

←−
h (t − 1) + b←−

h
) (7)

y(t) = W−→
h y

−→
h (t) + W←−

h y

←−
h (t) + by (8)

System Identification with BLSTM 531

3 Application

3.1 Experimental Setup

We implemented the given BLSTM structure in Python 3.5 using the deep learn-
ing library KERAS with theano back-end. Training and testing were done on
GPU (NVIDIA Geforce 980 TI) using CUDA.

The used data for our simulation derived from the DLR-tool RUCSim (Run-
way Capacity Simulation) to recreate an ATM-scenario. The used flight sched-
ules are acquired from EC DDR2 data of Heathrow Airport (LHR) for period
March 2013. Only arrivals at Runway 27R are considered. In Table 2 a segment
of the RUCSim output header is depicted showing up the important PIs for the
application: flow, delay and demand.

Table 2. RUCSim output header

Flight ID . . . Average delay[s] . . . Flow Delay Demand

The BLSTM are characterized by the number of hidden layers (nhiddenlayer,
not KERAS layers), number of samples propagated through the network (batch-
size), the number of trained epochs (nepoch) and the fuzz factor (η).

Some of these parameters were compressed in pre-defined optimizers in
KERAS. For the following experiments the optimizers Adagrad (η = 0.01,
ε = 1e−08) and Adam (η = 0.001, ε = 1e−08) were used.

Fig. 1. Model conception in KERAS.

Figure 1 shows up the basic structure of the implemented network in KERAS.
Three input layers (Flow, Demand, Delay) connected to single BLSTM layers
were merged through an concatenate layer. The given structure is interpreted
as consistent BLSTM network with a multiple input - single output setting by
KERAS.

Furthermore we added a dropout layer to the merged BLSTM block with a
fraction rate of 0.2, which helps prevent overfitting.

532 S. Reitmann and K. Nachtigall

3.2 Data Preparation

The mentioned neural networks use, like majority of practical machine learning
approaches, supervised learning. For a given set of input variables {x(t)} and
an output variable {y(t)} one uses an algorithm to learn the mapping function
from the input to the output. The goal is to approximate the real underlying
mapping so well that one can predict output variables y ∈ {y(t)} by just having
input variables x ∈ {x(t)}.

Therefore and adjustment of the described datasets to a sliding window rep-
resentation for multivariate time series is needed. When phrased as a regression
problem the input variables are t − 2, t − 1, t and the output variable is t + 1
(Table 3).

Table 3. Adjusted multi-to-one dataset

X1 X2 X3 Y

? ? Demand (1) Flow (1)

Demand (1) Flow (1) Demand (2) Flow (2)

Demand (2) Flow (2) Demand (3) Flow (3)

Demand (3) Flow (3) ? ?

To train the supervised model, one may need to remove the first and last
rows in order to provide enough data for prediction.

As we work with bidirectional relationships these sliding window techniques
need to be applied in both directions. Forwards (prediction of t + 1) with {t −
2, t−1, t}, backwards with {t+2, t+3, t+4}. Training the model with historical
data enables the availability of prospective data.

Table 4. Bidirectional time series influences

Time Observation1 Observation2 Observation3

1 Demand (1) Flow (1) Delay (1)

2 Demand (2) Flow (2) Delay (2)

3 Demand (3) Flow (3) Delay (3)

Depicting Table 4 the influences among the whole viewed dataset on the
prediction of one certain data point is shown. In the given example the predicted
value is Flow (2), which depends on the its own past (t < 2, here Flow (1)) and
on the other observed KPIs Demand and Delay, here both future and past states
as well as the current value at t = 2, but not Flow (3), the future state and just
one further step of prediction.

System Identification with BLSTM 533

3.3 Simulation Results

The original datasets (solid line) were normalized (μ = 0 and σ = 1) and divided
into BLSTM training sets (2/3, ongoing learning process) and test sets (1/3,
independent prediction) with a total amount of 19324 data rows. For both sce-
narios A: nepoch = 20 and B: nepoch = 2000 the best network results are shown
in a segment of training data, a segment of test data and an overview about the
network outputs FlowBLSTM with a calculate Root-Mean-Square Error (RMSE)
without weighting over time.

Table 5. Overview optimizer-related results scenario A and B

Optimizer nlayer Windowwidth A: RMSE A: tCalc[s] B: RMSE B: tCalc[min]

Adagrad 4 5 22.68 23 14.48 05:38

Adagrad 4 50 34.96 22 33.05 05:56

Adagrad 40 5 31.66 25 7.36 07:02

Adagrad 40 50 33.51 25 34.21 07:29

Adam 4 5 29.34 26 5.18 07:32

Adam 4 50 34.39 21 41.37 07:19

Adam 40 5 31.95 23 4.94 07:42

Adam 40 50 32.70 27 39.13 08:39

(a) 200 ≤ t ≤ 300 (b) 1600 ≤ t ≤ 1700

Fig. 2. A: Flowtraining (t, Demand, Delay) and Flowtest (t, Demand, Delay), nepoch =
20

As shown in Table 5 optimizer Adagrad delivers the best results with a 4
hidden layer inlay and a window size of 5. No improvements could be made
with an enlargement of the network structure, still less with an enlargement
of the window size. This might be reasoned in the simple network structure in
connection with a higher learning rate by optimizer Adagrad. The calculation

534 S. Reitmann and K. Nachtigall

(a) 200 ≤ t ≤ 300 (b) 1600 ≤ t ≤ 1700

Fig. 3. B: Flowtraining (t, Demand, Delay) and Flowtest (t, Demand, Delay), nepoch =
2000

Table 6. Overall flow time series results for A and B

Dataset Time A: FlowBLSTM FlowObservation B: FlowBLSTM

Train 0 0.4442 0.273 0.295

Train 100 0.879 0.909 0.882

Train 200 0.804 0.796 0.789

Train 300 0.879 0.886 0.882

.

Train 1100 0.889 0.864 0.850

Train 1200 0.929 0.909 0.905

Test 0 0.663 0.568 0.572

Test 100 0.856 0.886 0.874

Test 200 0.837 0.841 0.834

Test 300 0.892 0.886 0.903

Test 400 0.904 0.932 0.925

Test 500 0.799 0.886 0.858

Test 600 0.844 0.909 0.873

time is lower than half a minute for all examples because of the low number
nepoch. Unlike scenario A optimizer Adam delivers in B the best results with a
more complex network structure covering 40 hidden layers and a window size
of 5. A RMSE of 4.94 towards the best value 22.68 for nepoch = 20 shows the
model parametrization improvements through a more complex learning process.
Nevertheless the network shows for both Adam and Adagrad inadequate results
with an increased window size of 50. The network might struggle from the high
number of inputs at a lower η.

System Identification with BLSTM 535

Both Fig. 2(a) and (b) show the network not matching the flow curve, but
recognizing its basic structure. A noisy tracing of the flow path over time, recog-
nizing peaks (like in Fig. 2 (b) at t = 30), is already realizable with a simple
structure and a low number nepoch.

More than the scenario A the trained model of B is able to rebuild an stepwise
change of the flow considering the side effects demand and delay. As depicted
in Fig. 3 the independent prediction basing on the model’s own outputs can
basically trace the curve. A higher number of hidden layers and more nepoch

might affect an improved reaching of the peaks as the tested curve is always
below the observation (Table 6).

4 Conclusion

We could show that BLSTM are able to rebuild non-linear time series and make
meaningful and valid predictions. In the current step of the research is focused on
understanding the BLSTM as a time-discrete control system of time-continuous
processes like in ATM.

Solid State Representation. As prior representations of BLSTM are made
in the first canonical form it is not possible to observe them for further studies.
A transformation of the given formulas (1)–(8) to a Solid State Representation
(SSR) needs to be done. As BLSTM are enrolled RNN structures the structure of
the SSR describes an iterative control system formalization over different levels
of time. Therefore knowledge about the initial state is essential.

Stability. In further steps we want to divide the derived SSR into a linear part
and the non-linearity of the time-discrete system. For the evaluation of a control
system an analysis of its stability is essential, because such a system is only
useful if it is able to process interference and to reach its initial state. For both
linear and non-linear part a Lyapunov stability analysis can be applied.

Dimension. Next to stability other properties of the BLSTM might be inter-
esting for understanding and value the network’s behavior. For the given appli-
cation cases of bifurcation might be dangerous. A detailed search for triggering
parameter sets might be useful to avoid oscillation in learning and prediction
behavior of the BLSTM. Capacity should be quantified through dimension the-
ory approaches describing sufficient sets of coordinates for describing the system
relevant outputs.

References

1. Parmenter, D.: Key Performance Indicators - Developing, Implementing and Using
Winning KPIs, p. 3. Wiley, Hoboken (2007)

2. Reitmann, S., Gillissen, A., Schultz, M.: Performance benchmarking in interdepen-
dent ATM systems. In: International Conference on Research in Air Transportation,
Philadelphia, USA (2016)

536 S. Reitmann and K. Nachtigall

3. ICAO: Manual on Global Performance of the Air Navigation System, Doc 9883, 1st
edn. (2009)

4. Airports Council International: Guide to Airport Performance Measures, pp. 6–16
(2012)

5. Reitmann, S., Nachtigall, K.: Pattern recognition and prediction of multivariate time
series with long short-term memory (LSTM). In: International Science & Progress
Conference, St. Petersburg, Russia (2016)

6. Hochreiter, S., Schmidhuber, J.: Long short term-memory. Neural Comput. 9(8),
1735–1780 (1997)

7. Hochreiter, S., Schmidhuber, J.: Learning to forget: continual prediction with
LSTM. Neural Comput. 12, 2451–2471 (2000)

8. Graves, A., Jaitly, N., Mohamed, A.: Hybrid speech recognition with deep bidi-
rectional LSTM. In: Automatic Speech Recognition and Understanding (ASRU)
(2013)

9. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architecures. Neural Netw. 18(5), 602–610 (2005)

Image Processing and Medical
Applications

A Novel Image Tag Completion Method Based
on Convolutional Neural Transformation

Yanyan Geng1(B), Guohui Zhang2, Weizhi Li3, Yi Gu4, Ru-Ze Liang5,
Gaoyuan Liang6, Jingbin Wang7, Yanbin Wu8, Nitin Patil9,

and Jing-Yan Wang10

1 Provincial Key Laboratory for Computer Information Processing Technology,
Soochow University, Suzhou 215006, China

yanyangeng@outlook.com
2 Huawei Technologies Co., Ltd., Shanghai, China

3 Suning Commerce R&D Center USA, Inc., Palo Alto, CA 94304, USA
4 Analytics and Research, Travelers, Hartford, CT 06183, USA

5 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
6 Jiangsu University of Technology, Jiangsu 213001, China

7 Information Technology Service Center, Intermediate People’s Court of Linyi City,
Linyi, China

jingbinwang1@outlook.com
8 Hebei University of Economics and Business, Shijiazhuang 050061, China

9 Savitribai Phule Pune University, Pune 411007, Maharashtra, India
10 Jiangsu Key Laboratory of Big Data Analysis Technology/B-DAT, Collaborative

Innovation Center of Atmospheric Environment and Equipment Technology,
Nanjing University of Information Science and Technology, Nanjing, China

Abstract. In the problems of image retrieval and annotation, complete
textual tag lists of images play critical roles. However, in real-world appli-
cations, the image tags are usually incomplete, thus it is important to
learn the complete tags for images. In this paper, we study the problem of
image tag complete and proposed a novel method for this problem based
on a popular image representation method, convolutional neural network
(CNN). The method estimates the complete tags from the convolutional
filtering outputs of images based on a linear predictor. The CNN para-
meters, linear predictor, and the complete tags are learned jointly by our
method. We build a minimization problem to encourage the consistency
between the complete tags and the available incomplete tags, reduce the
estimation error, and reduce the model complexity. An iterative algo-
rithm is developed to solve the minimization problem. Experiments over
benchmark image data sets show its effectiveness.

Keywords: Convolutional neural filtering · Image representation · Tag
completion · Image retrieval · Image annotation

J.-Y. Wang—The study was supported by the open research program of Jiangsu
Key Laboratory of Big Data Analysis Technology, Nanjing University of Information
Science and Technology, China (Grant No. KBDat1602).

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 539–546, 2017.
https://doi.org/10.1007/978-3-319-68612-7_61

540 Y. Geng et al.

1 Introduction

Image tagging problem is defined as assigning a set of textual tags to an tar-
geted set of images, and it has becoming more and more important for both
image retrieval and annotation applications [8]. In the ideal case, the tags of an
image should be accurate and complete. However, in the real-world applications,
the tags of images are usually incomplete, and it is necessary to complete the
tags of images. The problem of completing the tags of images are called image
tag completion [36]. To solve this problem, many approaches have been proposed
[7,15,18,19,33,34], but the performance of these works are not satisfying yet.
Meanwhile, convolutional neural network (CNN) has been shown to be an effec-
tive tool to represent images [9,20,21,35]. However, surprisingly, CNN has not
been applied to the problem of image tag completion.

In our paper, we propose a novel image tag completion method based on
the convolutional representation of the images and the linear prediction of the
tag assignment vectors. We first use a CNN model to represent the images to
the convolutional vectors, and then apply a linear predictive model over the
convolutional representations to obtain the complete tag assignment vectors of
the images. The possible effect of using convolutional transformation lies on the
potential of finding effective visual features for the task of tag prediction. To
learn the parameters of the CNN and the linear predictive model, we impose the
learned tag assignment vectors to be consistent to the available elements of the
incomplete tag vectors, minimize the prediction errors of the linear predicative
model over the image set. We also minimize the distance between tag assignment
vectors images which have large convolutional similarities. Finally, we apply the
sparsity penalty to the tag assignment vectors. To solve argued minimization
problem, we use gradient descent method. The experimental results over some
benchmark data sets show that the proposed convolutional representation-based
tag completion method outperforms the state-of-the-art tag completion methods.

2 Proposed Method

We suppose we have a set of images, denoted as I = {I1, · · · , In}, and a set
of candidate tags of these images, T = {T1, · · · , Tm}. To denote the assigning
relation between the images and the tags, we define a matrix of assignment,
T = [tji] ∈ {1, 0}m×n, and its (j, i)-th entity tji is set to 1 if Tj is assigned
to Ii, and 0 otherwise. T is the output of the model, and in our learning
process, it has been relaxed to realtime value matrix T ∈ R

m×n. We have a
existing assignment matrix ̂T = [̂tji] ∈ {1, 0}m×n, and its entities are of the
same meaning as T , but it is incomplete. We further define a binary matrix
Φ = [φji] ∈ {1, 0}m×n, where its (j, i)-th entity is defined to indicate if ̂tji is
missing, φji = 0, if ̂tji is missing, and 1, otherwise. The problem of image
tagging is transformed to the learning of a complete assignment matrix T from
I, ̂T , and Φ.

To complete the tags of an image, I, we propose to learn its convolutional
representation and the complete tag assignment vector jointly. Given the image

A Novel Image Tag Completion Method 541

I we use a sliding window to split the image to nI over-lapping small image
patches, I → [x1, · · · ,xnI

], where xi is the visual feature vector of the i-th
image patch. The convolutional representation of I is given as y = max(G) =
[y1, · · · , yr]�, where G = g

(

W�X
)

, where W = [w1, · · · ,wr] is the matrix of
r filters, g(·) is a element-wise non-linear transformation function, and max(·)
gives the row-wise maximum elements, and yk is the maximum entity of the k-th
row of G, yk = max(Gk,:). To learn the tag assignment vector t of an image from
its convolutional representation vector y, we use a linear function to predict t
from y, t ← f(y) = Uy − b, where U ∈ R and b are the parameters of the
predictive model for the assignment vector. To the learn the CNN parameter
W , linear predictor parameter U and b, and the complete tag matrix T , we
consider propose the following minimization problem,

min
T,U,b,W

⎧

⎨

⎩

O(T,U,b,W) =
n

∑

i=1

Tr
(

(ti − ̂ti)�diag(φi)(ti − ̂ti)
)

+λ1

n
∑

i=1

‖ti − (Uyi − b)‖2F + λ2

n
∑

i,i′=1

Sii′ ‖ti − ti′‖2F + λ3

n
∑

i=1

‖ti‖1

⎫

⎬

⎭

.

(1)

The objective function terms are introduced as follows.

– The first term of the objective is to encourage the consistency between the
available tags of ̂ti and the estimated tag vector ti of an image Ii. It is
defined as the squared Frobenius norm distance between tji and ̂tji weighted
by the φji is minimized with regard to tji. This term is popular in other tag
completion works.

– The second term is the squared Frobenius norm distance to measure the
prediction error of the linear model of linear predictor. This loss term is novel
and it has not been used in other works.

– The third term is the visual similarity regularization term. For a images
Ii, we seek its k-nearest neighbor set to present its visually similar images,
denoted as Ni. To measure the similarity between Ii and a neighboring
image Ii′ ∈ Ni is measured by the normalized Gaussian kernel of the
Frobenius norm distance between their convolutional representation vectors,
Sii′ = exp

(

−γ‖yi − yi′‖2F
)

/
∑

i′′∈Ni
exp

(

−γ‖yi − yi′′‖2F
)

, if Ii′ ∈ Ni, and
0 otherwise. If Sii′ is large, the Ii and Ii′ are visually similar, we expect their
complete tag assignment vectors to be close to each other, and minimize the
squared Frobenius norm distance between ti and ti′ weighted by Sii′ . This
term is not used by other tag completion works and it is novel in our work.

– The last term is a sparsity term of the learned tag vectors, and it is also
imposed by other works to seek the sparsity.

λ1, λ2, and λ3 are the weights of different regularization terms of the objective.
To solve the problem in (1), we use the gradient descent method and the

alternate optimization strategy. In iterative algorithm, we first fix the variables
to calculate the similarity measure Sii′ , and then fix the similarity measures to

542 Y. Geng et al.

calculate the sub-/gradient regarding to different variables. The sub-/gradient
functions with regard to the variables are calculated as

∇tiO(ti) = 2diag(φi)(ti − ̂ti) + 2λ1 (ti − (Uyi − b)) + 2λ2

n
∑

i′=1

Sii′ (ti − ti′)

+ 2λ3

n
∑

i=1

diag

(

1
|t1i|

, · · · ,
1

|tmi|

)

ti,

∇UO(U) = −2λ1

n
∑

i=1

(ti − Uyi + b)y�
i , ∇bO(b) = 2λ1

n
∑

i=1

(ti − Uyi + b) ,

∇wk
O(wk)=

n
∑

i=1

[

∇yi
O(yi)

]

k
∇wk

yi(wk),∇yi
O(yi)=−2λ1U

� (ti−(Uyi−b)) ,

∇wk
yi(wk) = ∇wk

g(w�
k xij∗)xij∗ , where xij∗ = arg maxxi∈Xi

w�xij .
(2)

For a variable, x ∈ {T,U,b,W}, the updating rule is x ← x − η∇Ox(x).

3 Experiments

In the experiments, we use three benchmark data sets of image, including Corel
data set, Labelme data set, Flickr data set. The Corel data set has 4,993 images
tagged by 260 unique tags, Labelme data set is composed of 2,900 of 495 tags,
while Flickr data set has 1 million images of over 1,000 tags. We perform two
groups of experiments, one group of image retrieval, and another group of image
annotation.

Image Annotation. Given an image, and a set of candidate tags, the problem
of image annotation is to predict its true complete list of tags relevant to the
image. This is an special case of image tag completion. We use the four-fold
cross-validation protocol to split the training/test subsets. We rank the tags
for each image according to the tag scores output of our model, and the top-
ranked tags are returned as the tags of the candidate image. The performance
measures of Precision@5 is used to evaluate the results. We compare our method
to the existing stat-of-the-art methods, including the methods proposed by Lin
et al. [19], Wu et al. [33], Feng et al. [7], Lin et al. [18], and Li et al. [15].
The results are reported in Table 1. From the results reported in Table 1, the
proposed method outperforms the compared methods over all the three data sets
on the four performance measures. This is an strong evidence of the advantage
of the CNN model for the tag completion and annotation of images. This is
not surprising because we use an effective convolutional reforestation method to
extract features from the images, and the CNN parameters are tuned especially
for the tag completion problem.

Image Retrieval. Then we evaluate the proposed method over the problem of
tag-based image retrieval [16]. This problem uses tags as queries to retrieve the

A Novel Image Tag Completion Method 543

Table 1. Results of image annotation measured by Precision@5.

Data sets Corel Labelme Flickr

Proposed 0.47 0.30 0.28

Lin et al. [19] 0.35 0.22 0.18

Wu et al. [33] 0.37 0.23 0.19

Feng et al. [7] 0.40 0.24 0.20

Lin et al. [18] 0.43 0.23 0.23

Li et al. [15] 0.44 0.25 0.24

Table 2. Results of image retrieval experiments measured by Pos@Top.

Methods Corel Labelme Flickr

Proposed 0.73 0.67 0.66

Lin et al. [19] 0.64 0.57 0.54

Wu et al. [33] 0.65 0.58 0.55

Feng et al. [7] 0.65 0.59 0.57

Lin et al. [18] 0.61 0.59 0.58

Li et al. [15] 0.68 0.62 0.60

Fig. 1. Convergence curve over Corel data set.

images from the database of images. In each data set of images, we remove some
tags of the images to set up the image tag completion problem, and then apply
the image tag completion algorithm to complete the missing tags. We measure
the retrieval performance by the positive at top (Pos@Top). The usage of this
performance measure is motivated by the works of Liang et al. [16]. The works
of Liang et al. [12,16] show that the Pos@Top is a robust and parameter-free
performance measure, which is suitable for most database retrieval problems.
Following the works of Liang et al. [12,16], we adapt this performance measure
to evaluate the results of the image retrieval problem in our experiments. The
retrieval results of different methods are reported in Table 2. We can observe
from this table that the proposed method outperforms the other methods over
all the three data sets.

544 Y. Geng et al.

Convergence of the Alternating Gradient Descent. We also plot the curve
of the objective values with regard to increasing iterations for the alternating
gradient descent algorithm. The curve of experiments over the Corel data set is
shown in Fig. 1. According to Fig. 1, the algorithm converge after 40 iterations.

4 Conclusion and Future Works

In this paper, we proposed a novel image tag completion method. We use the
CNN model to represent the image, and then predict the complete image tags
from the CNN representations. The complete tag assignment score vectors are
also regularized by the visual similarities calculated from the CNN representa-
tions. We develop an iterative algorithm to learn the parameters of the CNN
model, the linear predictive model, and the complete tags. The experiments
of the problems of image annotation and image retrieval based on image tag
completion over three benchmark data sets show the advantage of the pro-
posed method. In the future, we will extend our work of CNN model to other
machine learning problems beside image tag completion, such as computer vision
[17,23,31,37–39], portfolio choices [25–29], big data [5,6], and biomedical engi-
neering [1–4,10,11,13,14,22,24,30,32].

References

1. Cai, W.: Class D power amplifier for medical application. Inf. Eng. Int. J. (IEIJ)
4(2), 9–15 (2016)

2. Cai, W.: Low power SI based power amplifier for healthcare application. Int. J.
Pharm. Pharm. Sci. 8(9), 307–309 (2016)

3. Cai, W., Huang, L., Wen, W.: 2.4 GHZ class AB power amplifier for health-
care application. Int. J. Biomed. Eng. Sci. (IJBES) (2016). arXiv preprint
arXiv:1605.02455

4. Cai, W., Zhou, X., Cui, X.: Optimization of a GPU implementation of multi-
dimensional RF pulse design algorithm. In: 2011 5th International Conference on
Bioinformatics and Biomedical Engineering, (iCBBE), pp. 1–4. IEEE (2011)

5. Cheng, L., Kotoulas, S., Ward, T.E., Theodoropoulos, G.: Robust and efficient
large-large table outer joins on distributed infrastructures. In: Silva, F., Dutra, I.,
Santos Costa, V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 258–269. Springer,
Cham (2014). doi:10.1007/978-3-319-09873-9 22

6. Cheng, L., Kotoulas, S., Ward, T.E., Theodoropoulos, G.: Robust and skew-
resistant parallel joins in shared-nothing systems. In: Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge Manage-
ment, pp. 1399–1408. ACM (2014)

7. Feng, Z., Feng, S., Jin, R., Jain, A.K.: Image tag completion by noisy matrix recov-
ery. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8695, pp. 424–438. Springer, Cham (2014). doi:10.1007/978-3-319-10584-0 28

8. Fu, J., Wu, Y., Mei, T., Wang, J., Lu, H., Rui, Y.: Relaxing from vocabulary: robust
weakly-supervised deep learning for vocabulary-free image tagging. In: Proceedings
of the IEEE International Conference on Computer Vision, vol. 11–18-December-
2015, pp. 1985–1993. doi:10.1109/ICCV.2015.230 (2016)

http://arxiv.org/abs/1605.02455
http://dx.doi.org/10.1007/978-3-319-09873-9_22
http://dx.doi.org/10.1007/978-3-319-10584-0_28
http://dx.doi.org/10.1109/ICCV.2015.230

A Novel Image Tag Completion Method 545

9. Geng, Y., Liang, R.Z., Li, W., Wang, J., Liang, G., Xu, C., Wang, J.Y.: Learn-
ing convolutional neural network to maximize pos@top performance measure. In:
ESANN (2016)

10. Hobbs, K.H., Zhang, P., Shi, B., Smith, C.D., Liu, J.: Quad-mesh based radial dis-
tance biomarkers for alzheimer’s disease. In: 2016 IEEE 13th International Sym-
posium on Biomedical Imaging (ISBI), pp. 19–23. IEEE (2016)

11. King, D.R., Li, W., Squiers, J.J., Mohan, R., Sellke, E., Mo, W., Zhang, X., Fan,
W., DiMaio, J.M., Thatcher, J.E.: Surgical wound debridement sequentially char-
acterized in a porcine burn model with multispectral imaging. Burns 41(7), 1478–
1487 (2015)

12. Li, Q., Zhou, X., Gu, A., Li, Z., Liang, R.Z.: Nuclear norm regularized convolutional
max pos@top machine. Neural Comput. Appl. 1–10 (2016)

13. Li, W., Mo, W., Zhang, X., Lu, Y., Squiers, J.J., Sellke, E.W., Fan, W., DiMaio,
J.M., Thatcher, J.E.: Burn injury diagnostic imaging device’s accuracy improved by
outlier detection and removal. In: SPIE Defense+ Security, p. 947206. International
Society for Optics and Photonics (2015)

14. Li, W., Mo, W., Zhang, X., Squiers, J.J., Lu, Y., Sellke, E.W., Fan, W., DiMaio,
J.M., Thatcher, J.E.: Outlier detection and removal improves accuracy of machine
learning approach to multispectral burn diagnostic imaging. J. Biomed. Optics
20(12), 121305 (2015)

15. Li, X., Zhang, Y.J., Shen, B., Liu, B.D.: Low-rank image tag completion with dual
reconstruction structure preserved. Neurocomputing 173, 425–433 (2016)

16. Liang, R.Z., Shi, L., Wang, H., Meng, J., Wang, J.J.Y., Sun, Q., Gu, Y.: Optimizing
top precision performance measure of content-based image retrieval by learning
similarity function. In: 2016 23st International Conference on Pattern Recognition
(ICPR). IEEE (2016)

17. Liang, R.Z., Xie, W., Li, W., Wang, H., Wang, J.J.Y., Taylor, L.: A novel transfer
learning method based on common space mapping and weighted domain matching.
In: 2016 IEEE 28th International Conference on Tools with Artificial Intelligence
(ICTAI), pp. 299–303. IEEE (2016)

18. Lin, Z., Ding, G., Hu, M., Lin, Y., Sam Ge, S.: Image tag completion via dual-view
linear sparse reconstructions. Comput. Vis. Image Underst. 124, 42–60 (2014)

19. Lin, Z., Ding, G., Hu, M., Wang, J., Ye, X.: Image tag completion via image-
specific and tag-specific linear sparse reconstructions. In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pp.
1618–1625 (2013)

20. Lopes, A., de Aguiar, E., De Souza, A., Oliveira-Santos, T.: Facial expression recog-
nition with convolutional neural networks: coping with few data and the training
sample order. Pattern Recogn. 61, 610–628 (2017)

21. Ma, J., Wu, F., Zhu, J., Xu, D., Kong, D.: A pre-trained convolutional neural
network based method for thyroid nodule diagnosis. Ultrasonics 73, 221–230 (2017)

22. Mao, H., Liu, H., Shi, P.: Neighbor-constrained active contour without edges. In:
Mathematical Methods in Biomedical Image Analysis, pp. 1–7 (2008)

23. Mao, H., Liu, H., Shi, P.: A convex neighbor-constrained active contour model for
image segmentation, pp. 793–796 (2010)

24. Mo, W., Mohan, R., Li, W., Zhang, X., Sellke, E.W., Fan, W., DiMaio, J.M.,
Thatcher, J.E.: The importance of illumination in a non-contact photoplethys-
mography imaging system for burn wound assessment. In: SPIE BiOS, p. 93030M.
International Society for Optics and Photonics (2015)

546 Y. Geng et al.

25. Shen, W., Wang, J.: Transaction costs-aware portfolio optimization via fast löwner-
john ellipsoid approximation. In: Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, pp. 1854–1860. AAAI Press (2015)

26. Shen, W., Wang, J.: Portfolio blending via Thompson sampling. In: Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp.
1983–1989. AAAI Press (2016)

27. Shen, W., Wang, J.: Portfolio selection via subset resampling. In: Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence. AAAI Press (2017)

28. Shen, W., Wang, J., Jiang, Y.G., Zha, H.: Portfolio choices with orthogonal ban-
dit learning. In: Proceedings of the Twenty-Fourth International Conference on
Artificial Intelligence, pp. 974–980. AAAI Press (2015)

29. Shen, W., Wang, J., Ma, S.: Doubly regularized portfolio with risk minimization.
In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
pp. 1286–1292. AAAI Press (2014)

30. Shi, B., Chen, Y., Zhang, P., Smith, C.D., Liu, J., Initiative, A.D.N., et al.: Nonlin-
ear feature transformation and deep fusion for alzheimer’s disease staging analysis.
Pattern Recogn. 63, 487–498 (2017)

31. Tan, M., Hu, Z., Wang, B., Zhao, J., Wang, Y.: Robust object recognition via
weakly supervised metric and template learning. Neurocomputing 181, 96–107
(2016)

32. Thatcher, J.E., Li, W., Rodriguez-Vaqueiro, Y., Squiers, J.J., Mo, W., Lu, Y.,
Plant, K.D., Sellke, E., King, D.R., Fan, W., et al.: Multispectral and photoplethys-
mography optical imaging techniques identify important tissue characteristics in
an animal model of tangential burn excision. J. Burn Care Res. 37(1), 38–52 (2016)

33. Wu, L., Jin, R., Jain, A.: Tag completion for image retrieval. IEEE Trans. Pattern
Anal. Mach. Intell. 35(3), 716–727 (2013)

34. Xia, Z., Feng, X., Peng, J., Wu, J., Fan, J.: A regularized optimization framework
for tag completion and image retrieval. Neurocomputing 147(1), 500–508 (2015)

35. Yang, W., Chen, Y., Liu, Y., Zhong, L., Qin, G., Lu, Z., Feng, Q., Chen, W.:
Cascade of multi-scale convolutional neural networks for bone suppression of chest
radiographs in gradient domain. Med. Image Anal. 35, 421–433 (2017)

36. Yang, X., Yang, F.: Completing tags by local learning: a novel image tag completion
method based on neighborhood tag vector predictor. Neural Comput. Appl. 27(8),
2407–2416 (2016)

37. Zhang, P., Kong, X.: Detecting image tampering using feature fusion. In: Interna-
tional Conference on Availability, Reliability and Security, ARES 2009, pp. 335–
340. IEEE (2009)

38. Zhang, P., Shi, B., Smith, C.D., Liu, J.: Nonlinear metric learning for semi-
supervised learning via coherent point drifting. In: 2016 15th IEEE International
Conference on Machine Learning and Applications (ICMLA), pp. 314–319. IEEE
(2016)

39. Zhao, J.Y., Tang, M., Tong, R.F.: Connectivity-based segmentation for GPU-
accelerated mesh decompression. J. Comput. Sci. Technol. 27(6), 1110–1118 (2012)

Reducing Unknown Unknowns with Guidance
in Image Caption

Mengjun Ni(B), Jing Yang(B), Xin Lin(B), and Liang He(B)

Institute of Computer Applications, East China Normal University, No. 3663
Zhongshanbei Road, Putuo District, Shanghai, China
{mengjunni,jyang,xlin,lhe9191}@ica.stc.sh.cn

Abstract. Deep recurrent models applied in Image Caption, which link
up computer vision and natural language processing, have achieved excel-
lent results enabling automatically generating natural sentences describ-
ing an image. However, the mismatch of sample distribution between
training data and the open world may leads to tons of hiding-in-dark
Unknown Unknowns (UUs). And such errors may greatly harm the cor-
rectness of generated captions. In this paper, we present a framework
targeting on UUs reduction and model optimization based on recurrently
training with small amounts of external data detected under assistance
of crowd commonsense. We demonstrate and analyze our method with
currently state-of-the-art image-to-text model. Aiming at reducing the
number of UUs in generated captions, we obtain over 12% of UUs reduc-
tion and reinforcement of model cognition on these scenes.

Keywords: Image Caption · Recurrent neural network · Crowdsourc-
ing · Commonsense

1 Introduction

Computer Vision (CV) applications with high accuracy such as Image Cap-
tion can be widely used in Image Retrieval, Visual Disorder Assistance and so
on. With involvement of deep recurrent models, many technologies performing
extremely well compared to those in traditional ways, are hopeful to be available
in wild. However, there is still a huge gap between the performance of machine
and human in many scenarios of CV, especially those are rare in training dataset.
This kind of problem can be categorized as Unknown Unknowns (UUs), a kind
of mistakes that may arise when training data used for model is not representa-
tive of instances that appear at test time [1] and greatly decline the accuracy of
pattern recognition applications.

To demonstrate UUs in Image Caption, consider a task where the goal is
to generate natural description for a random image. Assume that training data
includes none male with long hair. Given a new image shown in Fig. 1 with a
person wearing both long hair and bushy beard, with standard description “A
man with his laptop sitting on the couch”, a well trained image-to-text model,
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 547–555, 2017.
https://doi.org/10.1007/978-3-319-68612-7_62

548 M. Ni et al.

Fig. 1. The flow in horizontal direction shows an example of UUs, while vertically, a
toy framework process eliminating UUs is displayed in numerical order.

even with deep recurrent, is very likely to describe the person as woman. Indica-
tors, like BLEU-4, METEOR and CIDEr [2,3], only measure the similarity and
consensus [4] between translated sentences and standard answers, may give the
description a high score by mistake for fitting all words except “woman”. These
UUs, hard to eliminate for the lack of commonsense that males can wear long
hair, greatly harm the correctness of generated captions and call for reduction.
In Image Caption, most of the UUs are hard to eliminate due to ubiquity and
unpredictability. Not clearly shown in traditional indicators like BLEU-4, UUs
can do much harm to the accuracy of CV applications in dark, and thus become
one of the serious obstacles to carry out CV applications in the open world.

We address the problem of eliminating UUs in Image Caption deployed in
the open world and formulate it as an optimization problem from outside of
the model with small amounts of external data carrying hints from crowds on
different scenarios to reinforce the model cognition from scene to scene. The for-
mulation assumes no knowledge of inner structure of the initial model is needed.

In this paper, we present a framework, with which optimization of a deep
recurrent model can be seen as crowds polishing a black box in a few separated
procedures with commonsense they are born with. In a few rounds of training
cycles, tons of UUs hiding in dark can be eliminated by system designers or even
end users with no understanding of model inner structures.

To address this task, we take NIC [2] as our black-box model with MSCOCO
dataset for training and validation. A four-step approach is proposed, which first
partitions the validation data where images with similar captions are grouped
together and then choose scenarios from these partitions with UUs we are inter-
ested in. The second step is to pre-screen candidate training data and vali-
date candidate images with rapid-crowdsourcing [5] for ultimate retraining and

Reducing UUs with Guidance in Image Caption 549

polishing of initial model. For standard descriptions, we collect true labels relying
on the combination of templates and crowd labor for simplified crowdsourcing
task and minimum cost. The final step is to add those images with true labels
for model retraining and cognition enhancing.

Main Contributions:

– Propose and illustrate that the framework can be used to optimize deep recur-
rent models with small amounts of external data from outside without inner
understanding. To the best of our knowledge, this is the first work dealing
with reduction of UUs with crowd commonsense knowledge as hints in deep
recurrent models.

– Demonstrate the effectiveness of our framework with experiments on the
state-of-the-art NIC model and achieve 12% to 26% UUs eliminated on chosen
scenes respectively.

2 Related Work

Unknown Unknowns. The challenge of capturing Unknown Unknowns, which
always hide in dark and are hard to detect, has become a critical issue, since
the day utility of AI technologies came into open world seems nearer [6]. The
problem of identifying UUs experienced the simplification from depending totally
on mankind for error search [7], to relying on machine-generated partitions with
features and confidence data to lighten the labor of oracle [1]. Still the problem of
how to make good use of these labeled data in UUs reduction on model deployed
in wild remains unsolved.

Commonsense in Image Caption. Commonsense is the kind of knowledge we
human beings take for granted, but hard for machines to acquire, represent and
apply [8,9]. In image caption tasks, we define the problems, such as detecting
a flying frisbee as football and being unable to tell the number of people in an
image, impacting the correctness of generated captions greatly and calling for
reduction as UUs due to lack of commonsense and work on elimination of those
errors.

Current State-of-the-Art Models. Although recent deep recurrent models
have a mainstream trend of using LSTMs [10,11] and RNNs [12], claiming to
perform better than traditional models in the field of Image Caption, UUs remain
covering the “eyes” of model from seeing truth behind camouflages. For instance,
yellow vehicle does not always mean school bus, but probably a private car
judging from its volume. These false perceptions are common in deep recurrent
models like NIC [2], for that traditional evaluation indicators aim at the fluency
of the generated sentence, and the correlation of captions with images, but not
much attention paid to components obviously inconsistent with the facts. Human
beings, unlike machine, rely on commonsense to cognise the open world, with
which current models need urgently to narrow the gap with human performance.

550 M. Ni et al.

In this paper, we present a framework relying on hints given by crowd during
the optimization of model in a way papa and mama teaching their own babies
knowledge. In the process of cognition reinforcement, initial model relies on
external knowledge from crowd to strength their understanding from scene to
scene, at the same time, reduce the number of UUs produced in captions.

3 Problem Definition

Conventional image caption tasks can be abstracted as translating images to
texts. Indicators such as BLEU-4 reflects the quality of generated captions com-
pared to standard answers. Avoiding common mistakes, however, is not com-
prehensively considered with these indicators. In generated captions, there are
still a great number of errors that are easy for people to prevent but difficult for
machines to find. UUs such as detecting a young boy as woman or old as young
are not rare. Reducing these mistakes may positively impact caption represen-
tations for given images.

In this paper, we take NIC as our original black-box model M , which is a
deep recurrent model with complex inner structures, taking image data point x as
input and sentences R = {r1, r2, ..., rn} generated with scores S = {s1, s2, ...sn}
in order of confidence as output where si ∈ (0, 1). In the training process of M , a
set of N images X = {x1, x2, ..., xN} with standard captions C = {c1, c2, ..., cN}
are given as training data. The validation set V , as given to check the model
performance, contains standard caption set G. Our goal is to dispel UUs in
captions of M on targeted scenes with a small amount of external dataset
D = {d1, d2, ..., dm} labeled by crowds, m <<N. This process can be circu-
lated along with the discovery of UUs and optimize M from scene to scene, with
UUs eliminated step by step.

4 Proposed Method

In this section, we present a framework in four steps to address the problem of
reducing UUs, which occurs due to mismatch between distribution of training
data and the open world, with assistances of commonsense from crowds as hints.

Identifying Unknown Unknowns. The first step is to identify the UUs from
the validation set V . With none feature of clear meaning due to complex network
paths, we take key words extracted from standard captions G as classification
conditions. To simplify the task and concentrate our attention on the problem
of reducing UUs found in captions and optimization of M , we simply divide V
with apparent conditions. For instance, we separate images with people appear-
ing from those with none, and divide those with three and more as “a group of
people”. After scanning these rough partitions, the problem of “gender confu-
sion” emerges containing tons of UUs to be eliminated. We choose four typical
scenes, with most problems of mistaking girls as boys and boys as girls, as sub-
jects of study for further investigation.

Reducing UUs with Guidance in Image Caption 551

Fig. 2. Comparation between initial generated captions and the ones with assistance
of crowd commonsense.

Generating Similar Images. Having identified target scenes with UUs, we
then retrieve the images satisfying key words that appear in captions of cho-
sen scenes. The candidate images for training data may contain many unrelated
scenes. After being tested on M , these candidate images with none related com-
ponent can be removed from the dataset. Still, the candidate set contains irrel-
evant scenes and calls for assistance from crowds. Considering the amount of
human labour called for within the process, we manage to use rapid crowdsourc-
ing [5], with which one can easily remove the unrelated candidate images within
a short period of time and less labour cost. Left images that survive three rounds
of selection with similar scene are kept for later usage.

Labels from Crowds. In order to get true labels for captions, we design crowd-
sourcing tasks with templates of captions to lighten the workload of crowd work-
ers. In the tasks we release, crowd workers need only fill in the blanks with main
components of the images they see on the screen, relying on human common-
sense. For instance, a sentence with subject missing may calls for worker to fill
in words such as “woman” and “young boy”. In case the template does not
match up with the image, workers may choose to report the unrelated image,
or rewrite the sentence for the image strongly correlated. Each image has five
templates with different expressions, thus needs five true labels. Since we solve
separate scenes one by one, images in each round of UUs reduction share the
same templates with different main components. We rely on templates to sim-
plify the tasks and make it easier for workers to carry on for a longer period
before they lose interest. Also, much simpler tasks come with lower costs and
less supervision from crowd.

Reinforcement of Model. Chosen images with captions generated with the
combination of templates and crowd commonsense are then incorporated into the
training set. With the injection of a certain amount of data, we can compensate
for the problem of uneven distribution on training set. (Fig. 2 shows an example)
Experiments are focused on both the quantity of the injected data and the
effectiveness of our framework in both single and mixed scenes.

552 M. Ni et al.

5 Experiments

In this section, we first demonstrate the experimental setup and then verify the
effectiveness of our method with result data collected and statistically obtained.

Experimental Preparations. We run our experiment on a node of supercom-
puting cluster with Tesla K80 GPU, 2 cores, 64-bit Red Hat Enterprise Linux
Server release 6.7. For experimental validation, we firstly repeat the experiments
shown in [2] on MSCOCO dataset and achieve similar evaluation results on NIC
model (Table 1 shows the evaluation results with varying iteration times, in which
MM stands for million times). The repeating experiment takes over two weeks
to train and fine tune the model with 2 million iterations on a single Tesla
K80, in the case of CPU ten times slower. Thus, we attempt to compress the
experimental cycle and try training model with fewer iterations. After a series of
attempts, we finally chose 0.2MM(200,000 iterations) version with no fine tune
as our baseline which converges to 2.0 on loss function.

Table 1. Selection of the number of iterations.

Iterations BLEU-4 METEOR CIDEr

NIC-2MM 32.1 25.7 99.8

2MM 32.0 25.7 95.9

1MM 29.5 24.5 87.8

0.2MM 27.9 23.4 81.4

Dataset. We choose MSCOCO dataset which is frequently used in Image Cap-
tion. The diversity of image themes adapt to our experiment assumptions of
complex scenes with variable components and distribution of features which
may lead to appearance of UUs all over the dataset.

Evaluating Model Performance. In this section, we evaluate the performance
of our learning pattern for UUs reduction on both separate and mixed scenes. As
for the single scenes, we test our model on three different scenarios for “gender
confusion” UUs reduction. We assume that there is only one UU in each image.
In order to save time and computing resources, we compare the performance of
our model with the original model NIC within 0.2MM iterations.

As to the problem of “gender confusion”, we compare the model performance
on original training data and the ones with external added ones. Due to space
limitations, we only display the result of tennis scenario to represent other single
scenes. Data in Table 2 shows the number of UUs reduced with different number
of extra images, from 50 to 300. The model achieve best effect with 100 external
images, which can reduce 21 UUs from 89 wrongly captioned validation images.
With the increase of external data after it reaches 150, the improvement of model
begin to decline due to the data bias. Take tennis scene as an example, the model

Reducing UUs with Guidance in Image Caption 553

Table 2. Number of fixed captions in tennis scene with “gender confusion” UUs.

Original 50 100 150 200 250 300

Male / 6 5 12 8 5 2

Female / 3 16 8 7 9 13

Total / 9 21 20 15 14 15

Impro-Ratio / 10.11% 23.6% 22.47% 16.85% 15.73% 16.85%

may caption each image as “woman” and cause the problem of overfitting if we
add too many images labeled with “woman”.

In this paper, we concentrate on validating the effectiveness of our framework.
The problem of correlation between the number of external data m and the origin
distribution of training data is left for further studies. However, we make it clear
that the order of magnitude of external data is negligible compared to the one
of training set (m <<N). Within the example of tennis scene, we only choose
300 images for extension of training set which has over 800,000 images.

As to the problem of mixed scenes, we train the model with different permu-
tations and combinations among tennis, surfing, football scenarios respectively.
As is shown in Table 3, we both consider the evaluation indicators of the original
model and evaluate the ability of our framework in eliminating UUs. Compared
with the captions from original NIC model on three main indicators [2], as shown
in the first column, external data from single source of different scenes achieves
over 12% of elimination on UUs with the indicators basically unchanged. Under
the condition of two or more scenes combined, the model gains over 13% of UUs
reduction. Also, mixing different scenarios together may promote CIDEr and
BLEU-4 over the whole validation set to a certain extent. Last column of Table 3
shows that, with over 26% of UUs eliminated, our method can still maintain,
even promote, the performance of the model on original validation indicators
in mixed scenarios. And this promotion among mixed scenes is a great inspi-
ration to our future work, since the pattern of our framework is based on the
assumption of reducing UUs constantly found within the open world.

Table 3. Comparison on reduction of UUs in separate and mixed scenes.

Origin Tennis Surf Football tenSur tenFoo surFoo tenSurFoo

Modified / 15 14 23 28 38 27 65

Improv-Ratio / 16.85% 12.07% 58.97% 13.66% 29.69% 17.42% 26.64%

BLEU-4 27.9 27.9 28.1 27.7 28.1 27.7 27.9 28.2

METEOR 23.5 23.4 23.5 23.6 23.5 23.7 23.4 23.7

CIDEr 81.4 80.7 81.1 82.0 81.1 82.6 81.9 83.0

554 M. Ni et al.

6 Conclusions

In this paper, we present a framework for UUs reduction and performance
improvements for deep recurrent models. The approach assumes that no knowl-
edge of model inner structures is needed, which can be seen as a black box
deployed in wild. The process of polishing mainly relies on human commonsense
as hints for external data labeling and promote the model’s cognition on tar-
geted scenes with only a small amount of additional data. On both separate and
mixed scenarios, over 12% UUs are eliminated with cognition ability improved
on corresponding scenes and original evaluation indicators promoted in mixed
scenarios.

Problem of determining optimal value for m needs further studies, which
relates to the distribution of training and external data. Also in this paper, simul-
taneous occurrence of multi UUs is not concerned and may emerge in use. Above
all, our framework is not smart enough due to notable amount of supervision
which is difficult to eliminate. Fortunately, the discovery and elimination of UUs
with our framework may help system designers and end users, to improve the
model performance without even understanding model inner structures, which
conforms to the trend of AI solutions being used in the open world. We hope our
current job, though naive, on discovering new ways pushing AI application into
use while facing unpredictable new circumstances in open world will stimulate
more relevant researches.

Acknowledgement. This research is funded by the National Key Technology Support
Program (No. 2015BAH01F02), the National Nature Science Foundation of China (No.
61602179) and the Natural Science Foundation of Shanghai (No. 17ZR1444900).

References

1. Lakkaraju, H., Kamar, E., Caruana, R., et al.: Identifying unknown unknowns in
the open world: representations and policies for guided exploration. In: AAAI 2017,
pp. 2124–2132 (2017)

2. Vinyals, O., Toshev, A., Bengio, S., et al.: Show and tell: lessons learned from
the 2015 MSCOCO image captioning challenge. IEEE Trans. Pattern Anal. Mach.
Intell. 39(4), 652–663 (2016)

3. Devlin, J., Gupta, S., Girshick, R., et al.: Exploring nearest neighbor approaches
for image captioning. arXiv preprint arXiv:1505.04467 (2015)

4. Vedantam, R., Lawrence Zitnick, C., Parikh, D.: CIDEr: consensus-based image
description evaluation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4566–4575 (2015)

5. Krishna, R.A., Hata, K., Chen, S., et al.: Embracing error to enable rapid crowd-
sourcing. In: CHI Conference on Human Factors in Computing Systems, pp. 3167–
3179. ACM (2016)

6. Horvitz, E.: Artificial intelligence in the open world. Presidential Address. AAAI
(2008). http://bit.ly/2gCN7t9

7. Attenberg, J., Ipeirotis, P., Provost, F.: Beat the machine: challenging humans to
find a predictive model’s unknown unknowns. J. Data Inf. Qual. 6(1), 1–17 (2015)

http://arxiv.org/abs/1505.04467
http://bit.ly/2gCN7t9

Reducing UUs with Guidance in Image Caption 555

8. Davis, E., Marcus, G.: Commonsense reasoning and commonsense knowledge in
artificial intelligence. Commun. ACM 58(9), 92–103 (2015)

9. Cambria, E., Olsher, D., Rajagopal, D.: SenticNet 3: a common and common-sense
knowledge base for cognition-driven sentiment analysis. In: AAAI, pp. 1515–1521
(2014)

10. Donahue, J., Hendricks, L.A., Guadarrama, S., et al.: Long-term recurrent convo-
lutional networks for visual recognition and description. AB initto calculation of
the structures and properties of molecules, pp. 85–91. Elsevier (2014)

11. Fang, H., Platt, J.C., Zitnick, C.L., et al.: From captions to visual concepts and
back. In: Computer Vision and Pattern Recognition, pp. 1473–1482. IEEE (2015)

12. Karpathy, A., Li, F.F.: Deep visual-semantic alignments for generating image
descriptions. In: Computer Vision and Pattern Recognition, pp. 3128–3137. IEEE
(2015)

A Novel Method for Ship Detection
and Classification on Remote Sensing Images

Ying Liu1(&), Hongyuan Cui1, and Guoqing Li2

1 University of Chinese Academy of Sciences, Beijing 100049, China
yingliu@ucas.ac.cn, hongyuancui@163.com

2 Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences,
Beijing 100094, China
ligq@radi.ac.cn

Abstract. Ship detection and classification is critical for national maritime
security and national defense. As massive optical remote sensing images of high
resolution are available, ship detection and classification on optical remote
sensing images is becoming a promising technique, and has attracted great
attention on applications including maritime security and traffic control. Some
image processing-based methods have been proposed to detect ships in optical
remote sensing images, but most of them face difficulty in terms of accuracy,
performance and complexity. Therefore, in this paper, we propose a novel ship
detection and classification approach which utilizes deep convolutional neural
network (CNN) as the ship classifier. Next, in order to overcome the divergence
problem of deep CNN-based classifier, a residual network-based ship classifier
is proposed. In order to deepen the network without excessive growth of net-
work complexity, inception layers are used. In addition, batch normalization is
used in each convolution layer to accelerate the convergence. The performance
of our proposed ship detection and classification approach is evaluated on a set
of ship images downloaded from Google Earth, each in 256 � 64 pixels at the
resolution 0.5 m. Ninety-five percent classification accuracy is achieved.
A CUDA-enabled residual network is implemented in model training which
achieved 75� speedup on 1 Nvidia Titan X GPU.

Keywords: Ship detection � Ship classification � Deep convolutional neural
network � Residual learning

1 Introduction

Ship detection and classification in remote sensing images is of vital importance for
maritime security and other applications, e.g., traffic surveillance, protection against
illegal fisheries and sea pollution monitoring. With the increasing volume of satellite
image data, automatic ship detection and classification from remote sensing images is a
crucial application for both military and civilian fields. However, most of the con-
ventional methods face difficulty in accuracy, performance and complexity.

In recent years, deep learning, or deep neural network has shown great promise in
many practical applications. Since the early work of ship detection and classification, it

© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 556–564, 2017.
https://doi.org/10.1007/978-3-319-68612-7_63

has been known that the variability and the richness of image data make it almost
impossible to build an accurate detection and classification system entirely by hand.

In this paper, ship candidates are coarsely extracted by image segmentation
methods first, then actual ships are detected from all the ship candidates and finally
classified into 10 different ship classes by deep learning. The proposed method consists
of preprocessing (ship candidates extraction), ship detection and ship classification
model training. The specific contributions of this paper are as follows: (1) ship can-
didates were extracted by conducting image enhancement, target-background seg-
mentation and ship locating based on shape criteria; (2) a CNN model was
implemented for ship detection and 99% accuracy was achieved; (3) using the pro-
posed residual learning network, 95% classification accuracy was achieved; (4) incep-
tion module and batch normalization were proposed to use to optimize the training
efficiency. The flow diagram of the proposed ship detection and classification approach
is shown in Fig. 1.

The reminder of this paper is organized as follows. Section 2 overviews the related
work about this research; Sect. 3 describes the processing of ship candidates extraction;
Sect. 4 explains our proposed CNN model for ship detection; Sect. 5 explains the
proposed residual learning network of ship classification; Sect. 6 demonstrates the
experiments and analysis about the results; Sect. 7 conducts this paper.

2 Related Work

As SAR images have advantages which mainly include relatively little influence of
weather and time, ship detection in SAR images has extensively been studied [1–5].
The most common algorithms of ship detection are based on a constant false-alarm rate
(CFAR) detector with a certain SAR image background distribution such as Gauss
distribution [2], k-distribution and Gamma distribution [4] or other combination [5].
Han and Chong [1] took a brief review of ship detection algorithms in polarimetric
SAR images. Greidanus et al. [3] compared the performance of eight ship detection
systems based on spaceborne systems by running a benchmark test on RADARSAT
images of various modes. However, ship detection based on SAR has limitations. First,

Fig. 1. Flow diagram of the proposed ship detection and classification approach.

A Novel Method for Ship Detection and Classification on Remote Sensing Images 557

it cannot meet the needs of the application of real-time ship monitoring because of the
relative long revisit cycle of SAR. Second, the resolution of most satellite SAR images
is often not high enough to extract detailed ship information.

For ship detection and classification on optical images, traditional methods were
widely studied [6–9]. Zhu et al. [6] and Antelo et al. [7] extracted manually designed
features from images such as shapes, textures and physical properties. Chen and Gao
[8] and Wang et al. [9] exploited Dynamic Bayesian Network to classify different kinds
of ships. However, they cannot overcome the images’ variability and big volume
problems. Recently, as the emergence of deep learning architectures, an autoencoder-
based deep neural network combined with extreme learning machine was proposed
[10]. It outperformed some other methods in detection accuracy. However, it has some
limitations: (1) as the image resolution is 5 m, the extracted features are good enough
to detect ships from waves, clouds and islands. It cannot recognize different types of
ships; (2) as autoencoder model uses full connection totally which leads to a large
number of nodes and large computation.

3 Ship Candidates Extraction

First of all, CDF 9/7 wavelet coefficients are extracted from images. The original image
is decomposed into a low-frequency subband (LL) and several horizontal/vertical/
diagonal high-frequency subbands (LH, HL, and HH). Generally speaking, the low
frequency contains most of the global information, while the high frequency represents
local or detail information. Ship candidates are extracted from the low-frequency
subband LL by conducting image enhancement, target-background segmentation and
shape criteria-based ship locating.

In image enhancement, in order to remove uneven illumination, a morphological
operator, i.e., top-hat transform (THT), is used for ship candidates extraction and
background suppression. As ships are usually brighter than their surroundings, the
white THT is employed in the proposed work [shown in Fig. 2(a)].

Fig. 2. The process of ship candidates extracting.

558 Y. Liu et al.

In target-background segmentation, each input image is binarized by the Otsu
algorithm [11]. After that, connected regions are labelled. As the binarized image
usually remains small holes in sea waves or clouds, then the median filtering, mor-
phology dilation and erosion (circular structuring element with a radius of three) are
applied to fill the isolated holes. Finally, the masks of sea waves, clouds, islands and
ship candidates are segmented [shown in Fig. 2(b)]. In the following, ship candidates
will be further extracted by using the unique shape properties of ships.

In ship locating, the ship candidates are further extracted by using the unique shape
properties of ships, including the area, the major minor axis ratio and the compactness
[10]. Area equals the number of pixels in the corresponding connected region. Area is
used to cut off the clouds, sea waves and other obviously large/small false targets. By
using these shape criteria, we can obtain the coarse locations of ship candidates [shown
in Fig. 2(c)].

Note that some of the pseudo-targets may be included in the extracted regions;
however, they can be removed in the process of ship detection by CNN in Sect. 4.

4 Ship Detection by CNN

Ship detection by deep learning is the next step of our proposed method. It detects
actual ships from all the ship candidates and then the actual ships are classified into
different types by CNN.

In training, firstly, we solve a two-class (ship and non-ship) classification problem.
We constructed a CNN consisting of four convolutional, three max-pooling and a
fully-connection layer with a final 2-way softmax classifier for ship detection. Its
structure is shown in Fig. 3. After ship detection, all the actual ships are detected. To
classify all the ships into 10 different types, this model is used for ship classification by
changing the number ‘2’ to ‘10’ at the right end.

5 Ship Classification by Residual Learning Network

The above mentioned CNN exists some disadvantages: (1) with the network depth
increasing, accuracy gets saturated and then degrades rapidly; (2) as stacking more
layers, problem of vanishing/exploding gradients might appear, which hampers con-
vergence. Therefore, in order to improve the feature extraction ability and learning
ability of the model, a ship classifier based on residual learning network (ResNet) is
proposed in this section. In order to overcome the problem of vanishing/exploding

Fig. 3. Our proposed CNN model.

A Novel Method for Ship Detection and Classification on Remote Sensing Images 559

gradients, we propose to use residual function learned by using ‘shortcut’; for reducing
the computation, we propose to use ‘Inception’ model; for accelerating the convergence
speed of the iterative training, we propose to use Batch Normalization (BN) method to
normalize each layer.

5.1 Residual Learning Network

Theory and practice prove that the depth is very important to the success of neural
network, and deep networks can represent certain function classes far more efficiently
than shallow ones. However, as networks get deeper, some problems appear: (1) back
propagated gradients disappear; (2) training cost increases. Srivastava et al. [13] pro-
posed to modify the architecture of very deep feedforward networks such that infor-
mation flow across layers becomes much easier. This is accomplished through an
adaptive gating mechanism that allows for computation paths along which information
can flow across many layers without attenuation. The results of the layer can be
mapped to its subsequent layer directly, the training error keeps unchanged instead of
increased in a deepened network model. So, [14] introduces the concept of residual,
making the training converge easier.

Two types of underlying mappings are defined in this paper, Identity_block and
Conv_block shown in Fig. 4. Thus depth and width of the network are both increased.

5.2 Optimization of the Residual Learning Network

Batch Normalization (BN)
Training Deep Neural Networks is complicated because of the fact that the distribution
of each layer’ s inputs changes, as the parameters of the previous layers change during
training. This slows down the training by requiring lower learning rates. Therefore, we
propose to use the BN method in this section. In this way, a higher learning rate can be
used directly, which leads to faster training speed.

Fig. 4. Diagram of Identity_block (left) and Conv_block (right)

560 Y. Liu et al.

Inception Module
From AlexNet [12] in 2012 to GoogleNet [15] in most recent years, the main idea is to
make the network deeper and wider. However, increasing the network blindly has two
shorcomings: (1) over fitting; (2) large amount of computation. Inception refers to
adding a 1 � 1 convolutional layer behind the normal convolutional layer [14, 15]. As
increasing the scale of the network, the feature presentation increases with less com-
putation and parameters.

5.3 Ship Classifier Using Residual Learning Network

A ship classifier based on residual learning network proposed in this section is com-
posed of 5 Identity_block and 2 Conv_block alternately, as shown in Fig. 5.

6 Experiments

We conducted the training on a server with Intel Core i5-4460 CPU @3.20 GHz,
8.00 GB RAM and Titan X card. Matlab2014a and cuda 7.0 were used.

Images shown in Fig. 6(1) were downloaded from Google Earth and after ship
candidates extraction, a dataset consisting 1200 images (containing ships, clouds, sea
waves and islands) were obtained and used for performance evaluation each in
64 � 64 pixels, 4/5 used for network training and 1/5 for testing.

In order to be more convincing, another dataset shown in Fig. 6(2), consisting 1500
images (10 categories of ships) and each in 256 � 64 pixels with higher resolution
were also downloaded and used for performance evaluation.

After ship candidates extraction on Dataset (1), 1200 images were obtained con-
taining ships and nonships. Ship detection model in Sect. 4 was used to separate all the

Fig. 5. Proposed residual network for ship classification.

Fig. 6. Datasets

A Novel Method for Ship Detection and Classification on Remote Sensing Images 561

ships. Then using the same model, ships were classified into different types. Finally,
ship detection and classification accuracy on dataset (1) are 99% and 93%.

In dataset (2), with the same classification model, even higher classification
accuracy 95% was achieved, which is closely related to the higher spatial resolution.
Classifying error rate of each type of ship by CNN is shown in Table 1. With
equivalent number of parameters, ship classifier based on ResNet proposed in Sect. 5
was used to classify dataset (2), the same classification accuracy 95% was obtained.
The error rate of each type of ship is shown in Table 2.

The results show that, when the numbers of parameters in ResNet and CNN are
comparable, deep residual learning network can converge faster than simply stacked
CNN. ResNet converged at about 20th epoch, while CNN converged at about 50th
epoch (shown in Figs. 7 and 8).

Table 1. Misclassification rate in each type of ship by CNN on dataset (2).

Ship class C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Error rate 6.5% 3.3% 10% 13% 6.5% 6.5% 13% 3.3% 0% 3.3%

Table 2. Misclassification rate in each type of ship by ResNet on dataset (2).

Ship class C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

Error rate 13% 6.5% 3.3% 10% 10% 6.5% 3.3% 0% 3.3% 3.3%

Fig. 7. Accuracy of CNN (left) and ResNet (right)

Fig. 8. Loss value of CNN (left) and ResNet (right)

562 Y. Liu et al.

Seventy-five times (75�) speedup was achieved on a Titan X card.
So when data becomes complex, using deep residual learning network has

advantages.
As a comparison, Support Vector Machine (SVM) and Neural Network (NN) were

used for classification on dataset (2), and achieved 87% and 81% accuracy respectively
shown in Table 3.

7 Conclusion

In this paper, we proposed a ship detection and classification method on remote sensing
optical images. Ship candidates are extracted by conducting image enhancement,
target-background segmentation and ship locating based on shape criteria. Note that
there are still nonship targets in the ship candidates, so in the next step a CNN was
trained to detect actual ships from all candidates. Finally, using the proposed ResNet
model with the optimization techniques (Batch Normalization and Inception module),
we classified all the actual ships into different ships. The model was trained on remote
sensing images downloaded from Google Earth. Eventually, 99% detection accuracy
and 95% classification accuracy were achieved, which is comparable with some
state-of-the-art algorithms such as SVM and NN. Experiments showed that CNN, as a
deep neural network is a good model for automatically feature learning and extraction
and when dataset becomes complex, residual learning network has more advantages.
Up to 75� speedup was achieved on a server with a Titan X GPU which indicates its
potential for real-time processing.

Acknowledgments. This project was partially supported by Grants from Natural Science
Foundation of China #71671178/#91546201. It was also supported by Hainan Provincial
Department of Science and Technology under Grant No. ZDKJ2016021, and by Guangdong
Provincial Science and Technology Project 20162016B010127004.

References

1. Han, Z.Y., Chong, J.S.: A review of ship detection algorithms in polarimetric SAR images.
In: Proceedings of the 7th ICSP, 31 August–4 September, vol. 3, pp. 2155–2158 (2004)

2. Eldhuset, K.: An automatic ship and ship wake detection system for spaceborne SAR Images
in coastal regions. IEEE Trans. Geosci. Remote Sens. 34(4), 1010–1019 (1996)

3. Greidanus, H., Clayton, P., Indregard, M.: Benchmarking operational SAR ship detection.
In: Proceedings of the IGARSS, vol. 6, pp. 4215–4218 (2004)

4. Wackerman, C.C., Friedman, K.S., Li, X.: Automatic detection of ships in RADARSAT-1
SAR imagery. Can. J. Remote. Sens. 27(5), 568–577 (2001)

Table 3. Classifying accuracy on dataset (2)

Method CNN SVM Neural network

Accuracy 95% 87% 81%

A Novel Method for Ship Detection and Classification on Remote Sensing Images 563

5. Crisp, D.J.: The state of the art in ship detection in synthetic aperture radar imagery.
Australian Government Department of Defence, Edinburgh, Australia, DSTO-RR-0272
(2004)

6. Zhu, C.-R., Zhou, H., Wang, R.-S., Guo, J.: A novel hierarchical method of ship detection
from space-borne optical image based on shape and texture features. IEEE Trans. Geosci.
Remote Sens. (2010)

7. Antelo, J., Ambrosio, G., Gonzalez, J., Galindo, C.: Ship detection and recognition in
high-resolution satellite images. In: Proceedings of the IEEE International Geoscience and
Remote Sensing Symposium. IEEE (2009)

8. Chen, H.Y., Gao, X.G.: Ship recognition based on improved forwards-backwards algorithm.
In: Proceedings of the 6th International Conference on Fuzzy Systems and Knowledge
Discovery. IEEE (2009)

9. Wang, Q.J., Gao, X.G., Chen, D.Q.: Pattern recognition for ship based on Bayesian
networks. In: Proceedings of the 4th International Conference on Fuzzy Systems and
Knowledge Discovery. IEEE (2007)

10. Tang, J., Deng, C., Huang, G.-B., Zhao, B.: Compressed-domain ship detection on
spaceborne optical image using deep neural network and extreme learning machine. IEEE
Trans. Geosci. Remote Sens. (2014)

11. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn, pp. 742–745. Gatesmark
Publishing, Knoxville (2007)

12. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional
neural networks. In: NIPS (2012)

13. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. Computer Science (2015)
14. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. Computer

Science (2015)
15. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

564 Y. Liu et al.

Single Image Super-Resolution by Learned
Double Sparsity Dictionaries Combining

Bootstrapping Method

Na Ai1,2(&), Jinye Peng2, Jun Wang2, Lin Wang1,2, and Jin Qi2

1 Northwestern Polytechnical University, Xian 710129, China
aina@nwu.edu.cn

2 Northwest University, Xian 710127, China

Abstract. A novel single image super-resolution (SISR) method using learned
double sparsity dictionaries combining bootstrapping method is proposed in this
paper. The bootstrapping method we used is proposed by Zeyde et al. in [1],
which uses the input low-resolution (LR) image (as high-resolution image) and
its own scaled-down version (as LR image) as the training images. In our
previous work [15], with the output image obtained by the bootstrapping
method, two difference images can be computed and are used to learn a pair of
dictionaries as proposed in [1]. In this paper, we further improve the SISR
method by using four wavelet sub-bands of the two difference images as extra
information when learning the sparse representation model. We use the
K-singular value decomposition (K-SVD) method to obtain the dictionary and
the orthogonal matching pursuit (OMP) method to derive the sparse represen-
tation coefficients. Comparative experimental results show that our proposed
method perform better in terms of both visual effect and Peak Signal to Noise
Ratio (PSNR) improvements.

Keywords: Single image super-resolution � Bootstrapping method � Sparse
representation model � Double sparsity dictionaries

1 Introduction

The goal of single image super-resolution (SISR) is to restore a high-resolution
(HR) image yh 2 R

Nh�Mh from the observed low-resolution (LR) image zl 2 R
Nl�Ml . zl

is defined to be the LR version of the original image as zl ¼ S#ðh � yhÞ. It is assumed
that h is the blurring kernel which applies a low-pass filter to the original image, and S#

is the down-sampling operator which performs a decimation by a factor of s by dis-
carding rows and columns from yh. Given zl, the task is to estimate an output image
ŷ 2 R

Nh�Mh such that ŷ � yh. It is treated as a resolution enhancement method which
can be applied to many practical applications such as surveillance systems and medical
imaging systems, where high-resolution images are urgently needed while low cost
digital imaging sensors are often used.

This SISR problem is usually considered to be an ill-posed inverse problem with
much more unknowns than the observed data. So an effective image prior is needed to

© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 565–573, 2017.
https://doi.org/10.1007/978-3-319-68612-7_64

reconstruct a HR image from a single LR image. By using various priors to regularize
the inversion, existing SISR approach can be roughly classified into three categories:
the interpolation-based [3–7], example-based [8] and sparse representation model-
based [1, 9–13] methods. Nearest, bilinear and bicubic are conventional interpolation
schemes with the simple image “smoothness” prior. As images contain strong dis-
continuities, as edges and corners, the interpolated results often suffer from artifacts
such as jaggies, ringing and blurring. Therefore, more sophisticated priors considering
the varying structure of pixels, ranging from robust statistics [3, 4], Total-Variation [5]
and auto-regression model [6, 7] are adopted to overcome this drawback. The example-
based SISR methods use a training set which consists a large number of known LR and
HR image patch pairs as the prior [8]. The corresponding relationships between LR and
HR image patches are learned to reconstruct a new HR image.

The sparse representation model [9–11] is introduced to super-resolution (SR) work
firstly by Yang et al. in [12] by assuming a local Sparse-Land model on image patches
which serves as the regularization. Based on the assumption that each patch in a natural
image can be well represented by a linear combination of few atoms from a dictionary,
Yang et al. construct the dictionaries by using the randomly sampled patches of LR and
HR training images. This work is improved by themselves with an advanced dictionary
training strategy, where the LR and HR dictionaries are trained simultaneously,
ensuring that the LR image patch and its corresponding HR image patch have the same
sparse representation coefficients [13]. Zeyde et al. modified Yang et al.’s algorithm by
using the K-SVD method in dictionary training stage and the OMP algorithm in sparse
coding stage [1] which significantly reduce the computational complexity. In our
previous work [2], we propose to train a dictionary using the wavelet sub-bands of the
LR image instead of the first and second derivatives as proposed by Zeyde et al. [1].
Our trained dictionaries have the property of double sparsity and are proved to have
better generalization ability to various kind of natural images.

In recent years, the structural self-similarity based SR methods, which can over-
come the deficiency of the example-based learning methods to some extent, have been
proposed in several researches to solve the SR problem by using the LR image itself
instead of the database. Based on the observation that patches in a natural image tend to
redundantly recur many times inside the image, both within the same scale, as well as
across different scales, Glasner et al. [14] proposed a single unified approach which
combines the classical example-based SR methods with the information exploited by
the patch redundancies across all image scales. Zeyde et al. pointed out in [1] that by
exploiting the “scale invariant” patch redundancy property, one can learn a dictionary
pair by using the given LR image (as the HR image) and its own scaled-down version
(as the LR image) as the training sample images. Thus by learning the sparse repre-
sentation model, we can easily bootstrap the super-resolution task from the given LR
image itself. This is the so-called bootstrapping method in [1]. In our previous work
[15], we adopt the bootstrapping approach to get a scaled-up version of LR training
image, which is better than the bicubic scaled-up image. Then the difference image
between the bootstrapping result and the bicubic scaled-up image, and the difference
image between the HR training image and the bootstrapping result are computed and
used as the feature maps to train a pair of dictionary. The proposed method shows to

566 N. Ai et al.

gain better visual and Peak Signal to Noise Ratio (PSNR) improvement than Zeyde
et al.’s method in [1].

In this paper, we aim to propose a SISR framework that combines the sparse
representation model with the bootstrapping method more effectively. Two difference
images suggested in [15] are still used as the extra information but we further modify
the SISR method to taking full advantage of the double sparsity dictionary by learning
the sparse representation model proposed in [2]. The major improvement lies in the
four wavelet sub-bands of each difference image are used as the feature maps when
training the dictionary.

The remainder of this paper is organized as follows. Section 2 details the SISR
method based on sparse representation model and the bootstrapping approach. Section 3
presents how we apply bootstrapping method in the sparse representation framework.
Section 4 provides a number of comparative experimental results. Finally, we conclude
this paper in Sect. 5.

2 Sparse Representation Model and Self-learning Based
SISR

2.1 Sparse Representation Model-Based SISR

The sparse representation model assumes that each patch in a natural image can be well
represented by a linear combination of few atoms from a dictionary. The key to success
of sparse representation model based SISR method is to learn a dictionary pair fDl;Dhg
which establishes adequate relationship between the corresponding LR and HR
patches.

Suppose Xl = {x1, x2,…, xq} is the LR data set in which every column represents a
signal. The K-SVD method [15] is used to obtain the LR dictionary Dl by solving the
following minimization problem:

Dl;A ¼ min
Dl;A

Xl � DlAk k2F
s:t: ak

�� ��
0 �K0; 8k

ð1Þ

where K0 denotes the sparsity constraint. A side product of this training phase is the
representation matrix A ¼ a1; a2; . . .; aq

� �
which is corresponding to the LR data set

Xl. The HR dictionary Dh can be inferred directly from HR data set Xh and the sparse
representation matrix A as follows:

Dh ¼ XhATðAATÞ�1: ð2Þ

The LR data set used in [1] is formed by the patches collected from four feature
maps, which resulted from four derivatives [∂x, ∂y, ∂xx, ∂yy] applied to the LR image yl.
The HR data set is constructed by the patches taken from eh, which is the difference
between the HR image yh and LR image yl. The derivative operators are chosen to be
the feature extractor which will extract the local features (edges and texture content)

Single Image Super-Resolution by Learned Double Sparsity Dictionaries 567

that correspond to the high-frequency content of the LR image. The reason for this step
is the desire to focus the training on characterizing the relation between the LR patches
and the HR ones.

The optimization of feature extractor problem is still challenging and open as stated
in [1]. Inspired by this, one level stationary wavelet transform is chosen to be the
feature extractor in our previous work in [2] which have been shown to have better
performance than the simple derivative operators used by Zeyde et al. in [1].

With the dictionary pair fDl;Dhg, the OMP algorithm [15] is used to compute the
sparse representation matrix A of the test image data set over the LR dictionary Dl.
Then the reconstructed HR data is obtained by

Xout ¼ DhA: ð3Þ

Reshaping each column vector in Xout into a
ffiffiffi
n

p � ffiffiffi
n

p
patch, putting it in proper

location, and averaging in overlapped pixels, the reconstructed difference image ê is
obtained. Finally adding yl to ê, we get the SR output image ŷ.

2.2 Bootstrapping Method

It was also pointed out in [1] that by exploiting the “scale invariant” property [14], one
can learn a dictionary pair directly from the given LR image itself. Note that in order to
train the dictionary pair fDl;Dhg, the proposed algorithm needs only access to pairs of
LR and HR images. Using the given LR image zl as the HR image and its scaled-down
version zll as the LR image, the dictionary is learned, based on the relation between
these two images reflects also the relationship that should be used to scale-up zl to yh.
Thus by learning the sparse representation model proposed in [1], we can easily
bootstrap the super-resolution task from the given LR image zl itself. The bootstrapping
results is proved to be better than the conventional interpolation methods (e.g. bicubic).

Aiming at further improvement of SISR performance, our previously proposed
method in [15] integrate the bootstrapping approach into the sparse representation
model. We use the difference images between the bootstrapping results and the LR and
HR training images as the feature maps when training the dictionary. Then a
super-resolution image can be get by learning the sparse representation model proposed
in [1]. In this paper, we take a step further to use the four sub-bands of the difference
images as the extra information when training the dictionary. Hoping that by taking full
advantage of the double sparsity dictionary as proposed in [2], we can further improve
the SISR method’s performance.

3 Proposed Method

3.1 Preparation of Sample Images

We collect several high quality natural images as the training sample images. For each
HR training sample image yh, applying blurring kernel h1 and down-sampling operator
by a factor s, we get a corresponding LR image zl.

568 N. Ai et al.

3.2 Bootstrapping and Interpolation

LR image zl is further scaled-down by a factor of s, resulting the image zll. The image
pair zl; zllf g is used for dictionary training. The training phase, interpolation and feature
extraction within this subroutine are as same as described in [2] but a smaller patch size
is used. The trained dictionary is used to enable the reconstruction phase which scales
up zl to ym, the result of the bootstrapping algorithm which is better than the result of
conventional interpolations. The reconstruction phase of the bootstrapping approach is
exactly the same as the reconstruction phase of the example-based learning approach as
described in Sect. 2.1 which we need not to repeat.

On the other hand, zl is scaled-up using bicubic interpolation, generating the LR
image yl. As ym and yl have the same size as the original image yh, two difference
images can be computed by:

eh ¼ yh � ym
el ¼ ym � yl

: ð4Þ

3.3 Gather Data and Dictionary Learning

To form the LR data set, we decompose el with one level stationary wavelet transform
(SWT) into four sub-bands as suggested in [2]. We slide a

ffiffiffi
n

p � ffiffiffi
n

p
window on the

four feature maps from left to right, top to bottom. The four
ffiffiffi
n

p � ffiffiffi
n

p
patches extracted

inside the window at the same location k are now represented as four n dimensional
vectors. Then stacking those four vectors to form a 4n dimensional vector xkl . By
putting them column by column, the LR training data set Xl ¼ xkl

� � 2 R
n�c (where

c denotes the total number of patches) is obtained. The HR training data set Xh ¼
xkh

� �2Rn�c is constructed by the same way as gathering Xl. The K-SVD algorithm is
used to learn the LR dictionary Dl and the sparse representation matrix A can be
obtained by the OMP method [16]. Then the corresponding HR dictionary Dh can be
computed directly by Eq. (2).

3.4 Sparse Coding and Reconstruction

For a given LR test image, following the same interpolation and bootstrapping pro-
cedure, one can get the image yl and ym. By applying stationary wavelet transform to
el ¼ ym � yl, four wavelet sub-bands of el are obtained. Extracting four

ffiffiffi
n

p � ffiffiffi
n

p
patches from the feature maps at location k, which can be presented as four n dimen-
sional column vectors, then stacking the four column vectors to form the test LR signal
vector xkl . Sparse coding xkl over the trained dictionary Dl by OMP algorithm, we can
get the representation vector ak. Then a corresponding HR column vector can be
reconstructed by pkh = Dhak . Reshaping pkh to a

ffiffiffi
n

p � ffiffiffi
n

p
patch and putting it back to

location k, averaging the overlapped pixels and finally adding it to ym, the output image

Single Image Super-Resolution by Learned Double Sparsity Dictionaries 569

ŷ ¼ ym þ
X
k

RT
k Rk

" #�1 X
k

RT
kDha

k

" #
ð5Þ

is obtained [1] (where R2R
n�N denotes the data extraction operator). The major dif-

ference between the proposed method and our previous work in [15] is that we take a new
step to extractmore local features in the two difference images that correspond to the high-
frequency content. The reason for this step is to focus the training on characterizing the
relationship between the LR patches and their corresponding HR ones more adequately.

In brief, our proposal can be considered as an extension of our previous work in [15].
It is also a two-step resolution enhancement technique. The first step of bootstrapping
exploits the information learned from the input LR image itself. The second step of sparse
coding and reconstruction merges the information learned from external HR images.

4 Experimental Results

In this section, a number of experimental results are given to evaluate the performance
of the proposed SISR method. Several SISR approaches including the example-based
learning method and the bootstrapping method proposed by Zeyde et al. in [1], and our
previously proposed method in [15] are compared to the method proposed in this paper
both visually and quantitatively. To make a fair comparison between the performances
of the selected SISR methods, all the dictionaries used are retrained in accordance with
our degradation model.

4.1 Training Phase

We randomly select five natural grey images (shown in Fig. 1) to be the training
images. Each training image y j

h is blurred using a 5 � 5 Gaussian filter h1 with a
standard deviation 3 and down-sampled by a factor of s (s can be 2 or 3) to generate the
zl. Scale-up zl with the bicubic interpolation, the degraded LR image yl is created.

The parameters of dictionary training are set as follows: the patch size used is
7 � 7, the dictionary training procedure applied 50 iterations of the K-SVD algorithm,
with K = 512 atoms in the dictionary, and allocating K0 = 3 atoms for each repre-
sentation vector. The parameters involved in the bootstrapping subroutine are exactly
the same as described above except the atom number K is 144 and a smaller patch size
5 � 5 is used.

Fig. 1. Training images

570 N. Ai et al.

4.2 Testing Phase

The blurring kernel h2 used in test phase is the Kronecker product of a 1-D filter
[4, 4.5, 5, 4.5, 4]/22, which is slightly different from h1 in training phase. The
reconstruction algorithm is tested on 15 test images shown in Fig. 2. Part of the SR
results are presented in Fig. 3. The PSNR values and improvements for up-sample
factor s = 2 can be found in Table 1.

From the SR image results presented in Fig. 3, we can see that our method pro-
duces sharp edges and recovers more details, such as the head and the eye of the parrot
shown in Fig. 3(e). Although visual effect differences between the reconstructed
images might not be very obvious, the PSNR values of our SR results are almost the
highest as listed in Table 1. The average gains of PSNR values over Zeyde et al.’s
example-based learning method in [1] and our previously proposed model in [15] are
0.2882 dB and 0.0456 dB for s = 2, 0.2761 dB and 0.0277 dB for s = 3 respectively.

Fig. 2. 15 test images

Fig. 3. Visual comparison of SR results (upsample factor 2) on test image (8) by different SISR
methods. (a) Bicubic. (b) Zeyde et al.’s method [1]. (c) Bootstrapping method [1]. (d) Our
previously proposed method [15]. (e) Proposed method in this paper. (f) Original HR image.

Table 1. PSNR (dB) values of SR images using different methods (upsample factor s = 2)

Test
images

Bicubic Zeyde
et al.’s
method in
[1]

Bootstrapping
method [1]

Our previously
proposed method
in [15]

Proposed
method in
this paper

(1) 24.3399 26.4468 26.3388 26.8058 26.8912
(2) 20.9412 22.5122 22.4220 22.7229 22.7692
(3) 26.2802 28.0098 27.7941 28.2498 28.2894

(continued)

Single Image Super-Resolution by Learned Double Sparsity Dictionaries 571

5 Conclusion and Discussion

In this paper, we propose a two-step SISR method based on sparse representation
model-based method and the self-example based bootstrapping method. With the
output of bootstrapping method, two difference images can be computed as suggested
in [15] and their four wavelet sub-bands are treated as LR and HR data source. Then
the double sparsity dictionaries are learned using the sparse representation model
proposed in [2] to take full advantage of double sparsity dictionaries. Experimental
results demonstrate the effectiveness of our method. How to achieve better SISR results
using a better optimization method during the dictionary training procedure is an
important issue to be considered in our future research.

References

1. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In:
Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L.
(eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-27413-8_47

2. Ai, N., Peng, J.Y., Zhu, X., Feng, X.Y.: SISR via trained double sparsity dictionaries.
Multimed. Tools Appl. 74, 1997–2007 (2015)

3. Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10(10),
1521–1527 (2001)

4. Schultz, R.R., Stevenson, R.L.: A Bayesian approach to image expansion for improved
definition. IEEE Trans. Image Process. 3(3), 233–242 (1994)

5. Marquina, A., Osher, S.J.: Image super-resolution by TV-regularization and Bregman
iteration. J. Sci. Comput. 37(3), 367–382 (2008)

Table 1. (continued)

Test
images

Bicubic Zeyde
et al.’s
method in
[1]

Bootstrapping
method [1]

Our previously
proposed method
in [15]

Proposed
method in
this paper

(4) 26.9922 30.4620 29.8660 30.4912 30.4898
(5) 20.8722 22.6106 22.5286 22.9884 23.0505
(6) 25.3656 27.4640 27.3123 27.7503 27.7774
(7) 21.7853 24.8364 24.7411 25.5971 25.7780
(8) 25.7524 28.0133 27.9512 28.2774 28.2506
(9) 24.7153 26.7310 26.8078 27.1747 27.2723
(10) 24.9187 27.5101 27.3119 27.9207 28.0079
(11) 25.3411 27.3493 27.2318 27.7348 27.7943
(12) 27.5332 29.1333 28.9924 29.2377 29.2760
(13) 30.7498 32.1457 32.0275 32.2796 32.3228
(14) 26.5626 27.7127 27.6479 27.8014 27.8210
(15) 24.0617 25.2955 25.0660 25.3176 25.3145

572 N. Ai et al.

http://dx.doi.org/10.1007/978-3-642-27413-8_47

6. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive
sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7),
1838–1857 (2011)

7. Zhang, X., Wu, X.: Image interpolation by adaptive 2-D autoregressive modeling and
soft-decision estimation. IEEE Trans. Image Process. 17(6), 887–896 (2008)

8. Elad, M., Datsenko, D.: Example-based regularization deployed to super resolution
reconstruction of a single image. Comput. J. 50(4), 1–16 (2007)

9. Elad, M., Aharon, M.: Image denoising via learned dictionaries and sparse representation. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1,
no. 1, pp. 895–900 (2006)

10. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over
learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

11. Rubinstein, R., Zibulevsky, M., Elad, M.: Double sparsity: learning sparse dictionaries for
sparse signal approximation. IEEE Trans. Signal Process. 58(3), 1553–1564 (2010)

12. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of
raw image patches. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1–8 (2008)

13. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super resolution via sparse representation.
IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

14. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: Proceedings of
the 12th ICCV, pp. 349–356 (2009)

15. Ai, N., Peng, J.Y., Zhu, X., Feng, X.Y.: Single image super-resolution by combining
self-learning and example-based learning methods. Multimed. Tools Appl. 75(11), 6647–
6662 (2016)

16. Aharon, M., Elad, M., Bruckstein, A.M.: The K-SVD: an algorithm for designing of
over-complete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11),
4311–4322 (2006)

Single Image Super-Resolution by Learned Double Sparsity Dictionaries 573

Attention Focused Spatial Pyramid Pooling
for Boxless Action Recognition in Still Images

Weijiang Feng, Xiang Zhang(B), Xuhui Huang, and Zhigang Luo(B)

College of Computer, National University of Defense Technology, Changsha, China
zhangxiang 43@aliyun.com, zgluo@nudt.edu.cn

Abstract. Existing approaches for still image based action recognition
rely heavily on bounding boxes and could be restricted to specific appli-
cations with bounding boxes available. Thus, exploring the boxless action
recognition in still images is very challenging for lack of any supervised
knowledge. To address this issue, we propose an attention focused spatial
pyramid pooling (SPP) network (AttSPP-net) free from the bounding
boxes by jointly integrating the soft attention mechanism and SPP into
a convolutional neural network. Particularly, soft attention mechanism
automatically indicates relevant image regions to be an action. Besides,
AttSPP-net further exploits SPP to boost the robustness to action defor-
mation by capturing spatial structures among image pixels. Experiments
on two public action recognition benchmark datasets including PASCAL
VOC 2012 and Stanford-40 demonstrate that AttSPP-net can achieve
promising results and even outweighs some methods based on ground-
truth bounding boxes, and provides an alternative way towards practical
applications.

Keywords: Action recognition · Convolutional neural network · Soft
attention · Spatial pyramid pooling

1 Introduction

Recognizing human action in still images (such as a biker and a runner with the
green bounding boxes in Fig. 1 (a)) is still challenging due to large changes in
appearance and clutter background. Recently, although amounts of deep learn-
ing models [4,5,7,13] have been explored to do that with reasonable accuracy,
they highly depend on ground-truth bounding boxes and are not tailored for
practical situations where bounding boxes are not available just like Fig. 1 (b)).
Consequently, can we successfully recognize actions in Fig. 1 (b) without the
supervision of bounding boxes? This task of boxless still image based action
recognition is obvious more challenging than before because this requires us to
locate the actors just like the bounding boxes do meanwhile reducing the neg-
ative effect of action deformation without any supervised knowledge. Tackling
both issues are the key factors of boxless action recognition.

For human beings, we are easily attracted to the most salient regions of an
image such as the rider shown in Fig. 1 (b). Inspired by this insight, we can resort
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 574–581, 2017.
https://doi.org/10.1007/978-3-319-68612-7_65

Boxless Action Recognition from Still Images 575

Fig. 1. Training instances of actions with and without bounding boxes.

to the mechanism to highlight the salient image regions. Soft attention mecha-
nism was originally applied in machine translation [1] in order to automatically
find out relevant anchors of a source sentence to a predicted target word. This
property seamlessly meets the demand of boxless action recognition which plans
to locate image regions of an action. Thus, we exploit soft attention to replace
bounding boxes by assigning large weights to candidate regions of actions in an
unsupervised manner.

To bring into play the efficacy of soft attention, we have to incorporate the
spatial structures among pixels to reduce the negative effect of action defor-
mation before that. Spatial pyramid pooling (SPP, [12]) can achieve this goal
by partitioning the whole image into spatial patches from fine to coarse levels
and then aggregating features from these local spatial bins. It was first applied
for hierarchical feature representation and now has been introduced into con-
volutional neural networks (CNNs) such as SPP-net [6]. He et al. [6] developed
SPP-net to tackle the inconsistent image size problem in traditional CNNs for
the purpose of reducing information loss. Similar to SPP-net, we adopt the SPP
layer on top of the last convolutional layer to respect spatial structures among
pixels. But the big difference from SPP-net lies in that we assign weights to each
spatial bin with soft attention and then aggregate local spatial features based on
weighted summation. Obviously, our goal greatly differs from SPP-net as well.

Motivated by the observations above, this paper proposes an attention
focused SPP network (AttSPP-net) free from the bounding boxes by jointly
integrating the soft attention mechanism and SPP into a convolutional neural
network (CNN). Benefitting from soft attention, AttSPP-net can readily locate
the salient image regions of different actions. Furthermore, AttSPP-net exploits
SPP to boost robustness to action recognition as well as respect spatial struc-
tures among image pixels. This nontrivial joint way is simple yet effective and can
effectively address two issues above. To validate such claim, experiments of still
image based boxless action recognition on two public action benchmark datasets
including PASCAL VOC 2012 [3], and Stanford-40 [17] show the promise of
AttSPP-net compared with the state-of-the-art methods.

576 W. Feng et al.

2 Related Work

Still image based action recognition has long been a popular topic in visual
applications. For a comprehensive study on this topic, we refer interested readers
to the survey paper [14]. Here, we focus on convolutional neural network based
methods. Oquab et al. [13] utilized a CNN to extract features of the bounding
boxes and further obtain a small gain in performance against previous methods.
Hoai [7] employed the fc7 features of a network trained on ImageNet dataset
to weight different image regions. Gkioxari et al. [4] train body part detectors
based on the pool5 features and then combine them with the bounding box to
jointly train a CNN. Later on, they use a CNN to extract features from the
bounding box region and the candidate regions generated by the bottom up
region proposals method, and then combine the features of the bounding box
region and the most informative candidate region to make the final prediction [5].

The previous studies on still image based action recognition strongly rely on
the prior knowledge of the ground-truth bounding boxes. They can be regarded
as weak supervised methods and may be fragile in real-world applications.
Reversely, we explore effective AttSPP-net network with both soft attention
and spatial pyramid pooling layers free from the ground-truth bounding boxes
in a completely unsupervised manner.

Yu et al. [18] also conduct action recognition in still images without utiliz-
ing human bounding boxes. They first utilize a five-step iterative optimization
pipeline for unsupervised discovery of a foreground action mask of current image,
then design good and dedicated feature representation from the action mask for
recognition purpose. Compared with their complexity, the proposed AttSPP-net
makes straightforward and lightweight modification to the existing deep CNN
architecture.

3 Attention Focused SPP Network

In this section, we are readily to detail our network model, i.e., AttSPP-net. By
assigning large weights to feature bins of spatial pyramid pooling layer which
corresponds to salient image regions through a soft attention layer, AttSPP-net
can readily locate the action performer of interest, thus conducts action recogni-
tion without the supervision of ground-truth bounding boxes. The structure is
illustrated in Fig. 2. To facilitate the success of deep models in computer vision
community, we construct AttSPP-net based on the 19-layer VGGNet [16] with
the following novel modifications: (1) we replace the last pooling layer pool5 with
a SPP layer, and (2) we bypass a soft attention layer to the SPP layer. Particu-
larly, given an image I, AttSPP-net first extracts features with the convolutional
layers, and then pools the extracted features using three-level spatial pyramid
pooling. Subsequently, the soft attention assigns a weight to each spatial bin,
and AttSPP-net derives the aggregated features by weighted summation. Then,
AttSPP-net takes as the input of the fully-connected layers the aggregated fea-
tures, and in the final softmax layer outputs probabilities of each action.

Boxless Action Recognition from Still Images 577

Fig. 2. The schematic structure of our AttSPP-net. AttSPP-net is built based on
VGG19 with a SPP layer replacing the last pooling layer pool5 and a soft attention
layer bypassing the SPP layer.

3.1 The Spatial Pyramid Pooling Layer

AttSPP-net extracts features using convolutional layers of the 19-layer VGGNet
[16] trained on ImageNet [2] dataset. The last convolutional layer of VGGNet has
D (512 in our experiments) convolutional maps. On top of the last convolutional
layer, AttSPP-net applies SPP with h (3 in our experiments) levels. The SPP
layer here captures the spatial structures among pixels to reduce the negative
effect of action deformation. On each level i, SPP applies pooling in a unique scale
and obtains

(
2i−1

)2 spatial bins. Thus, at the SPP layer, AttSPP-net represents
each image as a feature matrix:

X = [X1,1,X2,1, · · · ,Xh,4h−1] ∈ R
s×D, (1)

where s = 40+· · ·+4h−1 = 4h−1
3 denotes total number of spatial bins, D denotes

feature dimensionality of each spatial bin, and Xi,j

(
i ∈ [1, h], j ∈ [1, 4h−1]

)
cor-

responds to the i−th scale and j−th region of each image. We refer to this feature
matrix X as the SPP features. Since each spatial feature column Xi,j is mapped
to different overlapping spatial regions in the input image space, AttSPP-net can
perform soft attention on these s features. This layer is same to that of SPP-net
[6], and the difference between AttSPP-net and SPP-net is the following soft
attention layer.

3.2 The Soft Attention Layer

AttSPP-net utilizes the soft attention mechanism to automatically focus on
salient image regions. For each spatial feature column Xi,j , the soft attention
layer generates a positive weight αi,j representing the relative importance to
give to the spatial bin when aggregating Xi,j together. To compute α, the soft
attention layer uses a perceptron network taking the SPP feature X as input:

578 W. Feng et al.

ei,j = WT Xi,j + b

αi,j = exp(ei,j)
∑h

i=1
∑4h−1

j=1 exp(ei,j)
, (2)

where W and b are parameters for the perceptron network.
Once the weights α are computed, AttSPP-net computes the aggregated

feature vector x ∈ R
D by taking the expectation of x directly:

Ep(α|X) [x] =
∑h

i=1

∑4h−1

j=1
αi,jXi,j . (3)

AttSPP-net then feeds x to the fully-connected layer fc6. AttSPP-net is smooth
and differentiable under the deterministic soft attention mechanism, and the
end-to-end learning can be optimized by standard back-propagation.

3.3 Learning

To train AttSPP-net, we use cross-entropy loss together with weight decay. The
loss over a mini-batch of training examples B= {Ii, yi}M

i=1 is given by

loss (B) = − 1
M

M∑

i=1

C∑

c=1

yi,c log ŷi,c + λ
∑

j
θ2j , (4)

where yi and ŷi are the one hot label vector and class probabilities vector of
image Ii respectively, C is the number of action classes, λ is the weight decay
coefficient, and θ represents all the model parameters.

We train our model with stochastic gradient descent (SGD) using back-
propagation. Based on the learned model parameters of 19-layer VGGNet, we
first fine-tune our network on the ImageNet dataset for the image classification
task. We set the learning rate to 0.001, the batch size to 32, and the weight decay
coefficient to 0.0002. We fine-tune for 100 K iterations on ImageNet dataset using
two K80 GPUs under Caffe [8] framework. After the fine-tuning, we train our
model on each action recognition dataset for 50 K iterations with a batch size of
20 using one K80 GPU core.

4 Experimental Results

In this section, we evaluate the effectiveness of AttSPP-net for action recog-
nition in still images on the PASCAL VOC 2012 Actions dataset [3] and the
Stanford-40 dataset [17] by comparing with two variants of AttSPP-net. One
is VGG19 SPP that removes attention layer of AttSPP-net, while the other is
the baseline VGG19 model which removes both the attention and SPP layer of
AttSPP-net. During test time, we estimate probabilities for all actions for every
example, and compute AP for each action and the mean AP.

Boxless Action Recognition from Still Images 579

4.1 PASCAL VOC 2012 Actions Dataset

The PASCAL VOC 2012 Action dataset consists of 10 different actions, Jumping,
Phoning, Playing Instrument, Reading, Riding Bike, Riding Horse, Running,
Taking Photo, Using Computer, Walking. Since AttSPP-net can only recognize
one action from one image for this moment, we ignore images occurred more
than one action in the same image. The final training dataset consists of 1865
images and the testing dataset contains 1848 images.

For this dataset, we use the validation set for testing and AttSPP-net obtains
a mean AP of 76.2%. We show the comparison of AttSPP-net with its variants
and the state-of-the-art in Table 1. Our experiments show that AttSPP-net per-
forms effectively, and achieves higher mean AP compared with its two variants.
In spite of no ground-truth bounding boxes available, AttSPP-net obtains higher
AP for some action categories like “Phoning” and “Reading”, though lower AP
for “Running”, “Walking” compared with Hoai [7] and Oquab et al. [13]. In
terms of mean AP, AttSPP-net behaves comparably with these two methods.

Table 1. Comparison of different approaches on the PASCAL VOC dataset.

AP(%) Jumping Phoning Playing

instru-

ment

Reading Riding

bike

Riding

horse

Running Taking

photo

Using

com-

puter

Walking Mean

AP

Oquab et al. [13] 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Hoai et al. [7] 82.3 52.9 84.3 53.6 95.6 96.1 89.7 60.4 76.0 72.9 76.3

Zhang et al. [18] 86.68 72.22 93.97 71.30 95.37 97.63 88.54 72.42 88.81 65.31 83.23

Gkioxari et al.

[4]

84.7 67.8 91.0 66.6 96.6 97.2 90.2 76.0 83.4 71.6 82.6

Gkioxari et al.

[5]

91.5 84.4 93.6 83.2 96.9 98.4 93.8 85.9 92.6 81.8 90.2

VGG19 74.86 66.34 82.33 66.21 82.35 84.82 67.63 56.38 78.19 48.67 71.27

VGG19 SPP 80.33 68.78 83.26 73.97 82.35 89.53 72.66 64.36 77.13 58.67 75.49

AttSPP-net 75.41 73.17 83.26 74.43 86.47 91.1 71.22 61.7 79.26 62 76.19

4.2 Stanford-40 Dataset

The Stanford-40 dataset contains images of humans performing 40 different
actions such as applauding, climbing, cooking, drinking, fishing, gardening, jump-
ing, phoning, running, and walking the dog. There are 9532 images in total with
180–300 images per action class, 4000 images for training, and 5532 images for
testing.

AttSPP-net achieves a mean AP of 81.62% on the test set, with performance
varying from 47.31% for texting message to 95.9% for climbing. Figure 3 shows
the AP performance per action on the test set. In Table 2 we compare our meth-
ods with other approaches on the Stanford-40 test set. The SB [17] method
jointly models the attributes and parts by learning a set of sparse bases and

580 W. Feng et al.

0.4 0.6 0.8 1

AP(%) on Stanford-40 dataset

applaudingblowing bubblesbrushing teethcleaning the floorclimbingcookingcutting treescutting vegetablesdrinkingfeeding a horsefishingfixing a bikefixing a cargardeningholding an umbrellajumpinglooking through a microscopelooking through a telescopeplaying guitarplaying violinpouring liquidpushing a cartreadingphoningriding a bikeriding a horserowing a boatrunningshooting an arrowsmokingtaking photostexting messagethrowing frisbyusing a computerwalking the dogwashing disheswatching TVwaving handswriting on a boardwriting on a book
VGG19
VGG19_SPP
AttSPP-net

Fig. 3. AP (%) of AttSPP-net on the Stanford-40 dataset per action.

obtains a mean AP of 45.7%. The EPM [15] method based on part based infor-
mation obtains a mean AP of 45.2%. The CF [9] method fuses multiple color
descriptors and obtains a mean AP of 51.9%. The SMP [10] method constructs
pyramids on different body parts and obtains a mean AP of 53.0%. The PD
[11] method does not use the bounding boxes but uses an action specific person
detector and obtains a mean AP of 75.4%. The R*CNN [5] method obtains a
mean AP of 90.9%, the best published result. Again, AttSPP-net achieves higher
mean AP than its variants. Similar to the results reported in Table 1, AttSPP-
net yields reasonable performance compared with the baseline methods in terms
of mean AP.

Table 2. Comparison of different approaches on the Stanford-40 dataset.

Method SB EPM CF SMP PD Zhang R*CNN VGG19 VGG19 SPP AttSPP-net

Mean AP(%) 45.7 45.2 51.9 53.0 75.4 82.64 90.9 77.21 79.92 81.62 (3rd place)

5 Conclusion

This paper develops a simple yet effective model termed AttSPP-net for action
recognition in still images. It is able to automatically pay attention to image
regions of the action without the supervision of the ground-truth bounding boxes
and also provides an alternative way for real-world situations. Experiments show
that AttSPP-net achieves higher mean action recognition accuracy than its vari-
ants VGG19 and VGG19 SPP, demonstrating the effectiveness of soft-attention
and spatial pyramid pooling. More importantly, AttSPP-net achieves promising
boxless action recognition performance in still images.

Acknowledgments.. This work is supported by National High Technology Research
and Development Program (under grant No. 2015AA020108) and National Natural
Science Foundation of China (under grant No. U1435222).

Boxless Action Recognition from Still Images 581

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint (2014). arXiv:1409.0473

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255 (2009)

3. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

4. Gkioxari, G., Girshick, R., Malik, J.: Actions and attributes from wholes and parts.
In: IEEE International Conference on Computer Vision, pp. 2470–2478 (2015)

5. Gkioxari, G., Girshick, R., Malik, J.: Contextual action recognition with r*cnn. In:
IEEE International Conference on Computer Vision, pp. 1080–1088 (2015)

6. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9),
1904–1916 (2015)

7. Hoai, M.: Regularized max pooling for image categorization. J. Br. Inst. Radio
Eng. 14(3), 94–100 (2014)

8. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding.
In: ACM International Conference on Multimedia, pp. 675–678 (2014)

9. Khan, F.S., Anwer, R.M., van de Weijer, J., Bagdanov, A.D., Lopez, A.M., Fels-
berg, M.: Coloring action recognition in still images. Int. J. Comput. Vis. 105(3),
205–221 (2013)

10. Khan, F.S., van de Weijer, J., Anwer, R.M., Felsberg, M., Gatta, C.: Semantic
pyramids for gender and action recognition. IEEE Trans. Image Process. 23(8),
3633–3645 (2014)

11. Khan, F.S., Xu, J., Van De Weijer, J., Bagdanov, A.D., Anwer, R.M., Lopez, A.M.:
Recognizing actions through action-specific person detection. IEEE Trans. Image
Process. 24(11), 4422–4432 (2015)

12. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid
matching for recognizing natural scene categories. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 2169–2178 (2006)

13. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level
image representations using convolutional neural networks. In: IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1717–1724 (2014)

14. Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput.
28(6), 976–990 (2010)

15. Sharma, G., Jurie, F., Schmid, C.: Expanded parts model for human attribute and
action recognition in still images. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 652–659 (2013)

16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint (2014). arXiv:1409.1556

17. Yao, B., Jiang, X., Khosla, A., Lin, A.L., Guibas, L., Fei-Fei, L.: Human action
recognition by learning bases of action attributes and parts. In: IEEE International
Conference on Computer Vision, pp. 1331–1338 (2011)

18. Yu, Z., Li, C., Wu, J., Cai, J., Do, M.N., Lu, J.: Action recognition in still images
with minimum annotation efforts. IEEE Trans. Image Process. 25(11), 5479–5490
(2016)

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.1556

The Impact of Dataset Complexity on Transfer
Learning over Convolutional Neural Networks

Miguel D. de S. Wanderley(B), Leonardo de A. e Bueno, Cleber Zanchettin,
and Adriano L.I. Oliveira

Centro de Informática - Universidade Federal de Pernambuco, Recife, PE, Brazil
{mdsw,lab6,cz,alio}@cin.ufpe.br

Abstract. This paper makes use of diverse domains’ datasets to ana-
lyze the impact of image complexity and diversity on the task of transfer
learning in deep neural networks. As the availability of labels and quality
instances for several domains are still scarce, it is imperative to use the
knowledge acquired from similar problems to improve classifier perfor-
mance by transferring the learned parameters. We performed a statistical
analysis through several experiments in which the convolutional neural
networks (LeNet-5, AlexNet, VGG-11 and VGG-16) were trained and
transferred to different target tasks layer by layer. We show that when
working with complex low-quality images and small datasets, fine-tuning
the transferred features learned from a low complexity source dataset
gives the best results.

Keywords: Convolution neural networks · Transfer learning · Dataset
complexity

1 Introduction

Transfer Learning is the process of reusing an already trained model on a given
source domain and continue the training on a target domain aiming to execute a
new but similar classification task [1]. As a result, the training time and complex-
ity may be reduced and problems with a small number of examples of the target
domain may be mitigated as the parameters previously learned can be reused.
Combined with the recent success of Convolutional Neural Networks (CNNs) on
image classification tasks [2–5], transfer learning has the potential to improve
research on several domains.

Yosinski et al. [6] and Soekhoe et al. [7] investigated the impact of layer spe-
cialization and dataset size on transfer learning. Though extensive, these studies
did not evaluate the effect of image complexity during the transfer learning
process. The definition of image complexity is mainly subjective and hard to
automatically treat or predict. A useful definition is that image complexity is a
rating of the quantity and density of details or intricacy of lines in the image [8].

The image size predictably influences the classifier performance, since it
changes the quantity of available data to set the layer’s parameters. Likewise,
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 582–589, 2017.
https://doi.org/10.1007/978-3-319-68612-7_66

Impact of Datasets Complexity on Transfer Learning over CNNs 583

image complexity may affect how layers generalize the features information dur-
ing the training process. Thus, it is pertinent to investigate the ability to reuse
features obtained from low quality and diverse datasets (Which are the most
common, frequent and available type of training images). It is also important
to provide additional insights on the process of network freezing and fine-tuning
when transferring knowledge from different datasets.

Our experiments aimed to statistically evaluate the ability to reuse features
learned by varying the domain and the complexity of source and target datasets.
We also investigate the most appropriate CNN layer to transfer, in either freeze or
fine-tuning conditions. The experiments were performed using LeNet [9], AlexNet
[2] and VGG networks [3] (with 5, 8, 11 and 16 layers, respectively) on MNIST
[10], SVHN [11] and CIFAR-10 [12] datasets.

It is important to highlight that the objective of this work is not to reach
state-of-the-art accuracy, which can be done through several epochs of training
and with an appropriated learning rate. Our main goal is to investigate trans-
fer learning comparative performance. As a direct extension of previous works,
this paper’s study is based on the hypothesis that transferring weights from a
simpler dataset to a more complex target dataset enables the network to learn
features more accurately. This may lead to better results on the classification
task, independent of domain.

1.1 Related Works

Demonstrating the potential of transfer mid-level features learned on deep neural
networks, Oquab et al. [13], Zeiler et al. [14] and Razavian et al. [15] pre-trained
CNNs on ImageNet1 (normally combined with others classifiers), to perform
classification tasks over different datasets (e.g. PASCAL VOC 2012, Caltech-
1012, Caltech-2563 and MIT-67 Indoor Scenes), the authors observed that the
transferred model generalizes well for most of the datasets. Furthermore, inves-
tigating how well features are transferred to different domain target tasks, in
[16] the authors trained an AlexNet on ImageNet and have conducted trans-
fer experiments on Caltech-101 (see footnote 2), Office4, Caltech-UCSD birds5

and SUN-397 Large-Scale Scene Recognition datasets, observing that in all the
experiments the benchmark scores were improved, demonstrating that ImageNet
features provide generalizable properties.

Analyzing how well transferred features performs among the layers of CNNs,
Yosinski et al. [6] used AlexNet network trained on splits of the ImageNet dataset
1 J. Deng et al., “Imagenet: A large-scale hierarchical image database”. IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2009.
2 L. Fei-Fei, R. Fergus e P. Perona, “Learning generative visual models from few train-

ing examples: an incremental Bayesian approach tested on 101 object categories”,
Computer Vision and Image Understanding, 2007.

3 G. Griffin, A. Holub e P. Perona, “Caltech-256 object category dataset”, 2007.
4 K. Saenko, B. Kulis, M. Fritz e T. Darrell, “Adapting visual category models to new

domains”, Computer Vision-ECCV, pp. 213–226, 2010.
5 P. Welinder et al., “Caltech-ucsd birds 200”, 2010.

584 M.D.S. Wanderley et al.

containing each one a half of the classes, called baseA and baseB. After training
the base models, the features of each layer were transferred to the same or to the
other dataset partition tasks. The authors observed that the first three layers of
the network represent general filters similar to Gabor filters and color blobs and
could be transferred to improve the classifier performance independently from
the datasets domains. The deeper layers, however, contain information specific
to the task and transferring them decreases the classifier performance, even when
applying fine-tuning on the transferred layers [6].

The Soekhoe et al. [7] study investigated the effect of the target dataset size
in the transfer learning also using the AlexNet model. The hypothesis evaluated
was that a transfer approach by freezing the first layers results in a higher clas-
sification accuracy if the target set is smaller, in contrast with larger datasets,
in which updating all layers gives better results. The authors varied the domain
and the size of the target dataset when testing the transferred weights of each
layer. They concluded that when transferring the first two or three layers to tar-
get datasets with less than a thousand instances per class, freezing the weights
boosts the performance over the baseline results.

2 Proposed Methodology

To evaluate our hypothesis, four well known convolutional networks were selected
based on their depth. The first network is LeNet-5 [9]. The second network is
AlexNet [2], also used on referenced works, winner of the ImageNet Large
Scale Visual Recognition Challenge 2012. The next two network architectures
chosen were VGG-11 and VGG-16, proposed by Karen Simonyan and Andrew
Zisserman (ConvNet configurations ‘A’ and ‘D’, respectively) [3], first and second
places winners of the localization and classification tasks at the ImageNet Large
Scale Visual Recognition Challenge 2014.

2.1 Networks Adjustments

Since our objectives do not cover evaluating the state-of-the-art performance
and efficiency, but only the relative performance of the transfer learning process
itself, some adjustments were done in the networks in order to better handle
with the datasets input shape (28× 28 pixels RGB images).

– Input layer setup to 28× 28 RGB images, in all networks configurations.
– Resize all convolutional layers and resize the number of units in the first Fully

Connected layers, proportionally to the new input layer,
– Amount of units in the last Fully Connected layer set to 10, to match the

number of classes in the datasets.

The comparison between the original networks layers configurations and the
adjusted layers are shown in the Table 1, the parameters of the convolutional
layer are denoted as “conv〈number of channels〉-〈receptive field size〉”. Final

Impact of Datasets Complexity on Transfer Learning over CNNs 585

Fully Connected layer and activation function are omitted for brevity. All remain-
ing parameters were kept as the original proposal (Max pooling layers, Local
Response Normalization layers, and Activation Functions – ReLU or Hyperbolic
Tangent). These new configurations fit better the 28× 28 RGB datasets’ input
since the original configurations were designed for different inputs.

Table 1. Convolutional neural networks layers configurations adjustments

VGG-11/VGG-16 AlexNet
Original Adjusted Original Adjusted

layers
(VGG-11/VGG-16)

input image
224x224RGB

input image
28x28RGB

layers
input image
224x224RGB

input image
28x28RGB

1 / 1, 2 conv3-64 conv3-8 1 conv11-96 conv11-12

2 / 3, 4 conv3-128 conv3-16 2 conv5-256 conv5-32

3, 4 / 5, 6, 7 conv3-256 conv3-32 3,4 conv3-384 conv3-48

5,6,7,8 / 8, 9, 10, 11, 12, 13 conv3-512 conv3-64 5 conv3-256 conv3-32

9, 10 / 14, 15 FC-4096 FC-512 6,7 FC-4096 FC-512

11 / 16 FC-1000 FC-10 8 FC-1000 FC-10

Lenet-5
Original Adjusted

layers input image 32x32 grayscale input image 28x28RGB

1 conv3-8 conv3-32

2 conv3-16 conv3-64

3 FC-42 FC-128

4 FC-84 FC-256

2.2 Image Datasets

The experiments transfer features from CNNs trained on a source task to a
different target task. The scenarios considered include three datasets with dif-
ferent complexities and domains. As resumed on Table 2, the first dataset is the
MNIST [10] database of handwriting digits (dataset “A”). Since these images
were preprocessed, this dataset has a low complexity. The second dataset is
Street View House Number (SVHN)[11] (dataset “B”), here considered
complex, but with the similar domain of MNIST, because of color and structure
variation of digits, as well as “distracting digits”close to the digits of interest.
The third dataset is the CIFAR-10 [12] database (dataset “C”) which includes
images from the real world, also a complex domain.

Dataset Adjustments. The images were reshaped to 28 × 28 RGB pixels and
all pixels’ color values were adjusted for variation between {0,1}, normalizing
the color scale for network processing. This preprocess was performed to avoid
bias on the training process and posterior harm to experiment results.

– MNIST: Color layers were included, changing the original shape from
28× 28× 1 (one gray scale color layer) to 28× 28× 3 (RGB colors layers).

586 M.D.S. Wanderley et al.

Table 2. Datasets overview

A: MNIST B: SVHN C: CIFAR-10

Train instances 60000 73257 50000

Test instances 10000 26032 10000

Original shape 28x28x1(grayscale) 32x32x3 (RGB) 32x32x3 (RGB)

Domain Simple digits Complex digits Real-world

Example

– SVHN: The original images were cropped (removing the most external borders
- 2 pixels) from 32× 32× 3 to 28× 28× 3, keeping content centered.

– CIFAR-10: The same cropping as SVHN was applied to obtain 28× 28× 3
images.

2.3 Transfer Learning

Training was set to 50 epochs (25 epochs for training the base model and 25
for training the transferred model) using a learning rate of 10−5. These values
experimentally showed promising results for our intended investigations. With
epochs and learning rate fixed, the variables of the transfer experiments are:

– Source dataset (S): the base dataset used for training the network, one of
{A,B,C} datasets.

– Target dataset (T): the second dataset used for training and for evaluation,
one of {A,B,C} datasets.

– Restored layers (n): first ‘n’ layers to be restored in the transfer
procedure. In the experiments, ‘n’ depends on the number of layers of
the model. The transferred layers sets for each network architecture are:
LeNet = {1,2,3,4}, AlexNet = {1,2,3,4,5,6,7}, VGG-11 = {1,2,4,6,8,10}, and
VGG-16 = {2,4,7,10,13,15},

– Freeze/Fine-tuning (±): the possibility of keeping the weights of the
restored layers without training (denoted as ‘-’) or train/fine-tuning the
weights of the restored layers (denoted as ‘+’).

To label each execution combination, the following notation was adopted:

‘〈Source dataset〉〈Restored layers〉〈Freeze/Fine-tune〉〈Target dataset〉’ →
‘Sn±T’.

For instance, a transfer procedure on a network first trained on the
MNIST(A) dataset (source), and then retrained on the SVHN(B) dataset (tar-
get), with the first four (n = 4) convolutional layers weights restored (the remain
layers initialized with random values) and fine-tuning (‘+’) on the restored lay-
ers, is represented as ‘A4 + B’.

Impact of Datasets Complexity on Transfer Learning over CNNs 587

3 Results and Discussion

The experiments’ results are shown in Fig. 1. The accuracy and standard devia-
tions are calculated from ten runs of each transfer scenario with 95% confidence.
For comparison, the baseline model without transfer and the model transferred
in the same dataset (called a selfer) are also included.

Fig. 1. Transfer results (accuracy, y-axis), with(‘+’) and without(‘-’) Fine-tuning,
through different n layers (n restored layers, x-axis) on MNIST(A), SVHN(B) and
CIFAR-10(C) datasets.

The results demonstrate how image domain and complexity impact the accu-
racy of transfer learning with deep convolution neural networks. The experiments
(Fig. 1) exhibit the same behavior reported on the Yosinski et al. [6]. The effec-
tiveness of feature transfer declines as baseline and target tasks diverge. Also,

588 M.D.S. Wanderley et al.

weights learned on the middle layers are less transferable than those on initial
or final layers, as can be seen throughout all ‘Sn-Target’ bar plottings (orange,
yellow and green).

Observing and comparing the freeze and fine-tuning approaches, it becomes
easy to notice how freezing loses performance as the transferred layer goes deeper.
This phenomenon stands out in contrast to the fine-tuning approach, which keeps
a substantial performance (equivalent to baseline dataset performance) through
deeper transferred layers, exactly as mentioned by Yosinski et al. [6], sometimes
performing better.

We also observed an additional performance improvement from transferring
the weights from a less complex source database to a more complex target, as
obtained in the VGG-11 and 16 transfers to target B(SVHN), starting from
layer 7. This behavior starts to be prominent on deeper networks like AlexNet
and VGG-16. Though especially noticeable on a same domain transfer process
(MNIST to SVHN transferring), the effect occurs even when transferring weights
between different domains. In this scenario, observed on the Target C transfers,
only the last one or two fine-tunned self-transfers resulted in significantly better
accuracy than An + C transfers.

Interestingly enough, fine-tuning selfer transfer performed similarly to the
base model until the second layer, from that point on, the transferred model
performs better than the baseline model. This can be explained by an improve-
ment in the training process of base layers, where detection of basic features was
improved using fine-tuning.

The Yosinski et al. [6] transfer experiments were done over partitions of the
same dataset (ImageNet), leading to the conclusion that the Mn±N and Nn±M
transferring scenarios are quite the same. Since we investigated the transferring
over distinct datasets (MNIST, SVHN, and CIFAR-10), our results corroborate
and expand the findings of [6], pointing out the significant impact of source
dataset complexity when transferring knowledge from a pre-trained CNN to
another dataset.

4 Conclusion

In this study, the effect of dataset domain and complexity on the generalization of
learned weights in CNNs was investigated. To this end, features were transferred
from pre-trained models to new networks. The LeNet-5, AlexNet, VGG-11 and
VGG-16 networks were trained to evaluate datasets with similar and different
domains, on images with different complexity. It was found that transferring
initial and middle layers’ features of simpler source datasets to complex target
datasets results in a significant performance boost over the baseline score even
when applied on different domain scenarios. The effect becomes more prominent
the deeper the network is. Further research should be done to extend these
conclusions to networks with more layers and on CNNs designs diverse from the
ones explored in this study as GoogLeNets [4] and ResNets [5].

The source code is available at: http://cin.ufpe.br/∼mdsw/icann17/

http://cin.ufpe.br/~mdsw/icann17/

Impact of Datasets Complexity on Transfer Learning over CNNs 589

References

1. Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., Zhang, G.: Transfer learning using
computational intelligence: a survey. Knowl.-Based Syst. 80, 14–23 (2015)

2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, vol. 25 (2012)

3. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(ICLR), San Diego (2015)

4. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Boston (2015)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

6. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks?. In: Advances in Neural Information Processing Systems
(NIPS 2014), vol. 27, Montral (2014)

7. Soekhoe, D., van der Putten, P., Plaat, A.: On the Impact of data set Size in trans-
fer learning using deep neural networks. In: The 15th International Symposium on
Intelligent Data Analysis, Stockholm (2016)

8. Palumbo, L., Ogden, R., Makin, A.D.J.: Examining visual complexity and its influ-
ence on perceived duration. J. Vis. 14, 3 (2014)

9. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324 (1998)

10. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/

11. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, Granada, Spain (2011)

12. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
University of Toronto, Toronto (2009)

13. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level
image representations using convolutional neural networks. In: 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition, Columbus (2014)

14. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.
8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1 53

15. Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf:
an astounding baseline for recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops (2014)

16. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.:
DeCAF: a deep convolutional activation feature for generic visual recognition. In:
International Conference on Machine Learning (2014)

http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1007/978-3-319-10590-1_53

Real-Time Face Detection Using Artificial
Neural Networks

Pablo S. Aulestia1, Jonathan S. Talahua1, Víctor H. Andaluz1,
and Marco E. Benalcázar2(&)

1 Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
{psaulestia,jstalahua,vhandaluz1}@espe.edu.ec

2 Departamento de Informática y Ciencias de la Computación, Escuela
Politécnica Nacional, Quito, Ecuador

marco.benalcazar@epn.edu.ec

Abstract. In this paper, we propose a model for face detection that works in
both real-time and unstructured environments. For feature extraction, we applied
the HOG (Histograms of Oriented Gradients) technique in a canonical window.
For classification, we used a feed-forward neural network. We tested the per-
formance of the proposed model at detecting faces in sequences of color images.
For this task, we created a database containing color image patches of faces and
background to train the neural network and color images of 320 � 240 to test
the model. The database is available at http://electronica-el.espe.edu.ec/
actividad-estudiantil/face-database/. To achieve real-time, we split the model
into several modules that run in parallel. The proposed model exhibited an
accuracy of 91.4% and demonstrated robustness to changes in illumination, pose
and occlusion. For the tests, we used a 2-core-2.5 GHz PC with 6 GB of RAM
memory, where input frames of 320 � 240 pixels were processed in an average
time of 81 ms.

Keywords: Real-time face detection � Histograms of oriented gradients �
Feed-forward neural networks

1 Introduction

Computer vision consists of a set of algorithms which allow us to analyze the content
of digital images through mathematical models that emulate the human visual system.
Object detection is one of the main problems of computer vision and is the base to
implement algorithms to interpret and understand the dynamic world using color,
grayscale or binary images. Computer vision represents a great challenge, especially
when we try to interpret or understand an image or sequences of images (i.e., video)
automatically. The main applications of computer vision include the identification and
localization of objects in given space, search and tracking of objects for autonomous
robots, and image restoration. Therefore, computer vision is an important field to do
research and object detection is a key topic for developing new algorithms.

© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 590–599, 2017.
https://doi.org/10.1007/978-3-319-68612-7_67

http://electronica-el.espe.edu.ec/actividad-estudiantil/face-database/
http://electronica-el.espe.edu.ec/actividad-estudiantil/face-database/

An object detection system is composed of the following modules: image acqui-
sition and preprocessing, feature extraction, classification and refinement of the
detection. The feature extraction problem has been extensively addressed using dif-
ferent methods such as extraction of edges, local binary patterns, segmentation and
blending of color spaces [1–3]. For example, in [4] authors propose the use of local
binary patterns (LBP). Histograms of oriented gradients (HOG) [5] and discrete-time
filters based on the HAAR wavelet transform [6] have also been used. The goal of these
methods is to represent a digital image in a given n-dimensional space of character-
istics. For a given application, we want the feature extractor module to be robust to
changes of illumination, orientation or position [7].

The classification stage implements a decision boundary to separate the different
object classes of a given image. The most common and classical methods for classi-
fication include the use of support vector machines (SVMs), k-nearest neighbors
(kNN), cascade classifiers, and logistic regression. These classifiers combined with the
feature extractors described above work well in images whose background is a
structured or a partially structured environment [8–13]. On the other hand, when the
conditions of the environment change, the performance of the detectors worsen. For
example, in [8–11] the performance of the classifiers is less than 94% and the detection
accuracy of the whole systems is lower than 90%. In [12, 13] the processing time per
image is greater than 200 ms. Additionally, there are other contributions [14–18] that
show a performance over 96% using advanced classifiers such as convolutional neural
networks (CNN). However, for training and testing these detectors, GPUs have been
used to accelerate the computations.

In the literature review presented in this paper, we can see that there exist object
detection models with relatively low computational cost. These models with relatively
simple structure perform well in structured or partially structured environments.
However, when the conditions of the environment change, their performance worsen.
On the other hand, there are complex models that exhibit good performance but
demand of high computational resources to be trained and tested. Therefore, more
research is needed to develop simple object detection models that exhibit both low
computational cost and good performance simultaneously.

In this work, we propose a real-time face detection system for unstructured envi-
ronments. The input to our system is a sequence of images (i.e., video). For feature
extraction, we use the HOG descriptor. For classification, we use a feed-forward
artificial neural network (ANN). We use a 2-core-2.5 GHz PC with 6 GB of RAM
memory to test the proposed model. The algorithm was split into several modules that
run in parallel to achieve real-time processing.

Following this introduction, in Sect. 2 we describe the materials and methods used
for the feature extraction and classification stages. In Sect. 3, we present the experi-
mental results of the complete system. Finally, in Sect. 4 we present the conclusions
and future work.

Real-Time Face Detection Using ANN 591

2 Materials and Methods

2.1 Materials

As an application case of the proposed model, we considered the problem of face
detection. To address this problem, we took 7117 photographs to create a database of
color images. To train the ANN, we used 5750 color images and the remaining 1367
images were used to validate the system of classification and detection. Out of the 5750
images, 2750 images contain faces with a frontal pose and the remaining 3000 images
are background (Fig. 1). The training images are patches with a size of 64 � 64 pixels.
The images for testing have a size of 640 � 480 pixels. Both sets of images are
represented in the RGB color space and are in the JPG format. These images were
taken from students and staff of the Universidad de las Fuerzas Armadas
ESPE-Ecuador. The age range of the people that were photographed is between 12 to
50 years. This data set is available at http://electronica-el.espe.edu.ec/actividad-
estudiantil/face-database/.

2.2 Face Detection

The first step of the proposed face detection model consists of extracting an image
patch I from the original image. We assume this patch belongs to the class Y2 0; 1f g,
where Y ¼ 1 and Y ¼ 0 represent the face and non-face classes, respectively. The
image patch I is obtained by observing the original image through a canonical window
W ; whose upper left corner is located at the pixel p ¼ ðx; yÞ. Second, from the patch I,
we extract a feature vector X using the HOG technique. Third, the vector X is fed to
classifier w : X ! f0; 1g based on an ANN. Fourth, if the result of wðXÞ is 1, then a
bounding box of the same size as W is placed at p ¼ ðx; yÞ (Fig. 2). Fifth, we shift W to
the pixel pþDp in the original image and repeat the previous steps. The value of Dp
controls the overlapping between adjacent windows. Finally, to deal with objects of
different sizes, we generate a pyramid of images by iteratively resizing the original
image until W contains the object of interest within its limits. In Fig. 3, we show a
pyramid of six images by reducing the size of the original image by a factor of 1.1.

We chose a canonical window W of 64 � 64 pixels. This size is a tradeoff between
the size of the objects that can be detected and the computational cost of the proposed

Fig. 1. Examples of faces.

592 P.S. Aulestia et al.

http://electronica-el.espe.edu.ec/actividad-estudiantil/face-database/
http://electronica-el.espe.edu.ec/actividad-estudiantil/face-database/

system. We assume the proposed system will operate in scenarios where the objects of
interest are located at a maximum distance of 2 m from the camera.

2.3 Histograms of Oriented Gradients

We used the HOG descriptor because it provides information about the orientations of
the edges that dominate each position of the image. This method is also invariant to
changes of illumination, pose and occlusion of the object to detect.

Gradient Calculation: The vertical and horizontal gradients of a pixel p ¼ ðx; yÞ of an
image I are dx ¼ Iðxþ 1; yÞ � Iðx� 1; yÞ and dy ¼ Iðx; yþ 1Þ � Iðx; y� 1Þ, respec-
tively. We calculate the orientation and magnitude of these gradients with hðx; yÞ ¼
arctan dy=dxð Þ and gðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p
, respectively.

Fig. 2. Illustration of a face detection system, where the faces detected are enclosed in bounding
boxes.

Fig. 3. Pyramid of images obtained by reducing the size of the original image by s = 1.1

Real-Time Face Detection Using ANN 593

Histogram Calculation: We split the input image I into non-overlapping cells of
8 � 8 pixels each (Fig. 4a). Then, we split the orientation between 0˚ and 180˚ into 9
intervals (Fig. 4b). Next, we calculated the value of the histogram h at the interval k,
h(k), by accumulating the gradients of the cell C using the following equation:

hðkÞ ¼
X

ðx;yÞ2C
wkðx; yÞgðx; yÞ; ð1Þ

where k = 1, 2, …, 9, wkðx; yÞ ¼ 1 if 20 � ðk � 1Þ� hðx; yÞ\20 � k and wkðx; yÞ ¼ 0
otherwise. Next, we concatenated the histograms of each cell inside a block of 2 � 2
cells obtaining thus the vector v0 ¼ h1; . . .; h4ð Þ, where hi, i = 1, 2, 3, and 4, denotes the
histogram of the ith cell in a given block (Fig. 4c). Then we normalized the vector v0

using the L2 norm obtaining the vector v. Finally, to obtain the one-dimensional HOG
vector, we concatenated all the normalized vectors v into the new vector
X ¼ v1; v2; . . .; vnð Þ, where n is the total number of blocks in a patch I. With these
configurations, the length of a HOG vector for an image patch of 64 � 64 pixels is
1764.

2.4 Classification

For the classification stage, we used a feed-forward ANN because this model is a
universal function approximator [19]. The ANN we used in this work has three layers:
input Lð0Þ, hidden Lð1Þ and output Lð2Þ. The hidden layer is composed of m neurons, and
a sigmoid transfer function f ð1Þ. The output layer is composed of a single neuron with a
sigmoid transfer function. This structure can be seen in Fig. 5. The response PðY ¼
1jXÞ of the ANN, for an input X ¼ ðv1; . . .; vnÞ, is given by the following expression:

PðY ¼ 1jX) = f ð2Þ[W ð2Þf ð1Þ(W ð1ÞX + bð1Þ) + bð2Þ], ð2Þ

where PðY ¼ 1jX) denotes the conditional probability that X belongs to a face, W ð1Þ

and W ð2Þ denote the matrices of weights of the layers Lð1Þ and Lð2Þ, respectively, and
bð1Þ denotes the bias vector for neurons of the layer Lð1Þ, and bð2Þ is the bias for the
neuron of the layer Lð2Þ.

Fig. 4. Illustration of the feature extraction stage using the HOG technique: (a) division of the
image patch into non-overlapping cells, (b) histogram of each cell, and (d) feature vector for an
image patch.

594 P.S. Aulestia et al.

The activation functions that we used in the artificial neural network are f ð1Þ ¼
f ð2Þ ¼ logsigðzÞ ¼ 1=ð1þ e�z Þ. To train the ANN, we created a database with patches
of faces and backgrounds. From these patches, we extracted their corresponding HOG
vectors. If a vector X belongs to a face, we labeled it with Y ¼ 1, otherwise, we labeled
it with Y ¼ 0. In this way, we obtained a training set D ¼ fðX1,Y1),. . .,(XN ,YNÞg
composed of N examples. Then, we use the full-batch back-propagation and the
gradient-descent algorithms to minimize the cost function �ln½PðDjb)], where PðDjb)
denotes the likelihood of the training set D given the parameters b ¼ W ð1Þ;W ð2Þ;

�

bð1Þ; bð2Þg of the ANN [20].

3 Experimental Results

3.1 ANN Training

For training the neural network, we used a training set composed of 5750 image
patches. The hidden layer of the ANN was composed of 4 neurons. With these con-
figurations, we obtained a training error of 0.2% after 100 epochs.

3.2 Validation of the Classification Module

To evaluate the performance of the classifier of the proposed approach, we used 959
images divided in two cases: positive (faces) and negative (non-faces). The ROC
(Receiver Operating Characteristic) curve was used to analyze the results. The AUC
(area under curve) for the classification module has a value of 97.4% (Fig. 6a). The
variation step of the threshold to obtain the ROC curve was of 0.001.

3.3 Validation of the Complete System

The system detects faces at six different scales. The input of the system is a video frame
of 320 � 240 pixels (scale 1). To obtain the remaining 5 scales, we reduced the size of
the original image by a factor of 1.1. For feature extraction, we used a canonical
window of 64 � 64 pixels. The face detection at each scale was done in parallel to

Fig. 5. Architecture of a feed-forward artificial neural network of three layers.

Real-Time Face Detection Using ANN 595

reduce the computational time and achieve real-time. We tested the system in different
environments to verify the robustness of the proposed approach to changes of illu-
mination, pose and occlusion as shown Fig. 7. The first row shows that the system
detects the faces in different light conditions. In the second row, the faces were detected
even though the light conditions are very low and there are occlusions on the object of
interest.

The performance of the whole system is 91.4% (Fig. 6b). This performance is
lower than the performance of the classification module because the complete system is
composed of an additional module to refine the detections. This module eliminates all
the detections that overlap in more than 10%, except for the one with the highest

Fig. 6. (a) ROC curve of the classification module AUC = 0.97, (b) error rate versus false
positives per image (FPPI) for the whole system.

Fig. 7. Face detection results for different lights conditions: (a) high, (b) moderate (c) medium
with overlapping of faces, (d) medium with occlusion, (e) low, and (f) low, with overlapping
faces.

596 P.S. Aulestia et al.

probability. Additionally, the performance of the whole system also decreases because
of an increase in the rate of false negatives. This increase of false negatives occurs
because there are faces in the test set that do not fit at any scale within the canonical
window of 64 � 64 pixels.

In Table 1, we show the averages of the time that it takes for each module of the
system to process a video frame. We can see that the average detection time per video
frame is 81 ms. This value shows a relatively high speed compared to other detectors
[14, 18].

These results obtained in this work evidence that our model is robust to changes of
light conditions. Although the detection of the proposed system is limited by the
maximum distance to which the object of interest can be located from the camera, the
system can correctly detect a face, even when there is occlusion. There are several
works that use traditional methods to detect faces, obtaining recognition accuracies
higher than 90% [14–18]. However, most of these works evaluate their systems with
still images and not with video frames. Additionally, some of these works are tested in
highly controlled environments, where the light conditions are roughly the same among
all the test images. Therefore, variations of brightness, which are not a problem for our
system, are a limiting factor for these models.

4 Conclusions and Future Work

In this work, we have presented a real-time object detection system. We used a feature
extractor based on the histograms of oriented gradients. The classifier is a feed-forward
neural network with 4 neurons in the hidden layer and 1 neuron in the output layer. We
tested this system at detecting faces, showing a detection rate of 91.4%. Even though
we used a shallow neural network with only 4 neurons in the hidden layer, we obtained
high performance in unstructured environments that included variations in brightness,
pose and occlusion. We tested the proposed model using not sophisticated computa-
tional resources. The average processing time of the complete algorithm is 81 ms for
each video frame of 320 � 240 pixels. To achieve this speed, we ran the different
scales of detection in parallel, combining high and low level languages (MATLAB and
C++). We also make publicly available the training and testing sets we used for this
work at http://electronica-el.espe.edu.ec/actividad-estudiantil/face-database/. Future

Table 1. Averages of the time of the modules that compose the proposed system.

Step Average time

Search of potential faces at different scales 31 ms
Feature extraction 16 ms
Classification 5 ms
Refinement of the detection 29 ms
Total 81 ms

Real-Time Face Detection Using ANN 597

http://electronica-el.espe.edu.ec/actividad-estudiantil/face-database/

work includes testing other classifiers different from neural networks. Additionally, we
will also test the proposed model at detecting other type of objects different from faces.

Acknowledgment. The authors thank the Consorcio Ecuatoriano para el Desarrollo de Internet
Avanzado -CEDIA-, and the Universidad de las Fuerzas Armadas -ESPE- for supporting the
development of this work.

References

1. Gil, P., Torres, F., Ortiz, F.: Detección de objetos por segmentación multinivel combinada de
espacios de color. Federación Internacional de Automatización, Real (2004)

2. Canny, J.: A computational approach to edge detection. Trans. Pattern Anal. Mach. Intell. 8,
679–698 (1986). IEEE

3. Zhao, G., Pietikaen, M.: Dynamic texture recognition using local binary patterns with an
application to facial expressions. Trans. Pattern Anal. Mach. Intell. 29, 915–928 (2007).
IEEE

4. Wolf, L., Hassner, T., Taigman, Y.: Descriptor based methods in the wild. In: Workshop on
Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition, pp. 1–14, France
(2008)

5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Computer
Vision and Pattern Recognition, pp. 886–893. IEEE, Francia (2005)

6. Tang, J., Gongjian, W.: Object recognition via classifier interaction with multiple features.
In: 2016 8th International Conference on Intelligent Human-Machine Systems and
Cybernetics, pp. 337–340. IEEE, China (2016)

7. Nixon, M., Aguado, A.: Feature Extraction and Image Processing for Computer Vision,
pp. 218–220. Academic Press, London (2012)

8. Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154
(2004). Springer, The Netherlands

9. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition
and clustering. In: The IEEE Conference on Computer Vision and Pattern Recognition,
pp. 815–823. IEEE, Boston (2015)

10. Guillaumin, M., Verbeek, J., Schmid, C.: Is that you? Metric learning approaches for face
Identification. In: 12th International Conference on Computer Vision, pp. 498–505. IEEE,
Kyoto (2009)

11. Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression for
multilabel classification. Mach. Learn. 76, 211–225 (2009). Springer

12. Fasel, I., Fortenberry, B., Movellan, J.: A generative framework for real time object detection
and classification. Comput. Vis. Image Underst. 98, 182–210 (2005). Elsevier

13. Ren, S., He, K., Girshick, R. and Sun, J.: Faster R-CNN: towards real-time object detection.
In: Neural Information Processing Systems Conference, pp. 91–99 (2015)

14. Liu, Y., Cao, Y., Li, Y.: Facial expression recognition with PCA and LBP features extracting
from active facial patches. In: IEEE International Conference on Real-time Computing and
Robotics, pp. 1–6. IEEE, Angkor Wat (2016)

15. Jia, J., Xu, Y., Zhang, S., Xue, X.: The facial expression recognition method of random
forest based on improved PCA extracting feature. In: 2016 IEEE International Conference on
Signal Processing, Communications and Computing, pp. 1–5. IEEE, Hong Kong (2016)

598 P.S. Aulestia et al.

16. Abdulrahman, M., Gwadabe, T., Abdu, F., Eleyan, A.: Gabor wavelet transform based facial
expression recognition using PCA and LBP. In: Signal Processing and Communications
Applications Conference, pp. 1–4. IEEE, Trabzon (2014)

17. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level
performance in face verification. In: The IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1701–1708. IEEE (2014)

18. Lagerwall, B., Viriri, S.: Robust real-time face recognition. In: Proceedings of the South
African Institute for Computer Scientists and Information Technologists Conference,
pp. 194–199. ACM New York, East London (2013)

19. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal
approximators. Neural Netw. 2, 359–366 (1989)

20. Hagan, M., Menhaj, M.: Training feedforward networks with the marquardt algorithm. IEEE
Trans. Neural Netw. 5, 989–993 (1994)

Real-Time Face Detection Using ANN 599

On the Performance of Classic and Deep Neural
Models in Image Recognition

Ricardo Garćıa-Ródenas(B), Luis Jiménez Linares,
and Julio Alberto López-Gómez

Department of Mathematics, University of Castilla la Mancha, Ciudad Real, Spain
{Ricardo.Garcia,Luis.Jimenez,JulioAlberto.Lopez}@uclm.es

Abstract. Deep learning has arisen in the last years as a powerful and
ultimate tool for machine learning problems. This article analyses the
performance of classic and deep neural network models in a challenging
problem like face recognition. The aim of this article is to study what
the main advantages and disadvantages deep neural networks provide
and when they will be more suitable than classic models, which have
also obtained really good results in some complex problems. Is it worth
using deep learning? The results show that deep models increase the
learning capabilities of classic neural networks in problems with high
non-linearities features.

Keywords: Deep neural networks · Convolutional neural networks ·
Face recognition · Object recognition

1 Introduction

Face recognition is a very popular research topic in artificial intelligence, com-
puter vision and machine learning. That is not a coincidence, since it can be
explained by two main reasons: On the one hand, face recognition is a prob-
lem with a large amount of practical applications ranging from user authentica-
tion [2,19], security [17] and video-games [7,12] to augmented reality [9,14].
Nowadays, plenty of private enterprises invest a lot of money in these kind
of applications, which explains face recognition continues being studied today
and it is one of the most promising areas in artificial intelligence. On the
other hand, face recognition exhibits loads of interesting features to the previ-
ously mentioned fields of computer science. For example, this problem has very
strong non-linear features. Therefore, image recognition and its classification is
a complex computational problem. Furthermore, images are usually represented
by multidimensional arrays which increase the complexity of the computation
and time needed to process them, which is critical in real-time applications.
Finally, the different features of an image and its strong dependence on them
(for example background, resolution or scale) make this problem so challenging.
For all these reasons, face recognition is a key topic in artificial intelligence since

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 600–608, 2017.
https://doi.org/10.1007/978-3-319-68612-7_68

On the Performance of Classic and Deep Neural Models 601

this area from computer science has tried to retrieve all the information and
knowledge from images. Besides, computer vision is in charge of building,
representing and reconstructing images with the purpose of understanding a
scene and programming tasks that the human visual system can do. Some appli-
cations of face recognition in computer vision are: 3D modeling [5,20], virtual
and augmented reality [9,14] and even craniofacial superimposition [8,11] among
others. Moreover, this problem is very famous and popular in the context of
machine learning, since images can be represented as matrixes which can be the
input to classifiers and clustering algorithms. In this way, there is a great variety
of works about machine learning applied to face recognition to detect emotions
[10], intrusions [15], classify images [16], among others. Furthermore, neural net-
works have been widely used to solve face and object recognition problems. In
this article, classic and deep neural network methodologies have been analysed
in order to study the main features of each one, when classic or deep models are
preferred and if deep learning really improves classic neural model’s results and
deserves further consideration.

The rest of the document is structured as follows: Sect. 2 makes a set of
experiments using classic neural networks in order to pose the results of these
methods. Section 3 explains the deep neural networks methodology in order to
study its main features. After that, Sect. 4 shows the experiments and the results
obtained using deep models, and finally, Sect. 5 exposes some conclusions and
further works.

2 Classic Neural Networks for Face and Object
Recognition Problems

In this section, some experiments using classic neural networks applied to face
and object recognition problems are carried out. To do that, two different
datasets have been selected. On the one hand, cars dataset has been used [3,4].
This is a common dataset used for benchmarking in object recognition and
applications of neural networks. It contains 1050 images where it is possible to
find or not a car. The problem is to classify the images into positive and neg-
ative classes, where positive are those that contain a car, and negative those
that do not. Then, it is a binary classification problem. On the other hand, a
face database has been made taking photos of the members of MAT (Models
and Algorithms for Transportation Systems) research group. In this case, the
problem is to recognize the member of the group in each photo. This problem is
a multi-class problem, since there is a total of seven members in the group and
within each one, twenty five photos were taken. After that, with the purpose
of obtaining a similar dataset, concerning to size of cars dataset, the images
obtained have been replicated and transformed through movements and rota-
tions in order to provide a larger dataset using the keras image data generator
module. After that, faces dataset had 1256 images. These datasets have been cho-
sen deliberately, since it is intended to study the performance of classic neural
networks in different classification problems.

602 R. Garćıa-Ródenas et al.

The experiments have been made using the 70% of the data for training and
the rest for testing. The images have been compressed into an array of twenty-
one statistical features, which have been extracted for each image. These include:
maximum, minimum and mean of the pixels, variance, standard deviation, quar-
tiles, kurtosis, etc. Thus, each image from the dataset can be represented as an
array which include all the computed features and the class attribute, reducing
the complexity of managing images as multi-dimensional arrays. This process is
shown in Fig. 1. The features extraction process can be as complex as it is wanted,
existing different kinds of statistical features in order to improve the image com-
pression. Usually, this process is the most expensive in terms of computational
and temporary cost in classic methodologies and it is highly dependent on the
problem features, which is an important drawback of classic neural networks.
In this case, to reduce the time needed to this process, these easy features have
been chosen.

Fig. 1. Image processing sample

Nine neural network models have been trained for both datasets: eight of them
are variations of a multilayer perceptron (MLP), changing the number of hid-
den layers, neurons per hidden layer and iterations of the training algorithm. In
these cases, Resilient Propagation (RProp) [18] algorithm has been used to train
the networks. This algorithm proposes a local adaption of the weight-updates
according to the behaviour of error function and the sign of the derivatives. The
last neural network is a probabilistic neural network (PNN) which employs con-
structive training [1] as underlying training algorithm. The main advantage of
this algorithm is that it does not need a network topology, since it adds hidden
layers according to the training process and avoids misclassifications.

The results of the nine networks applied to both datasets are shown in
Table 1. Accuracy and Cohen’s Kappa index κ have been shown. The first one
defines the percentage of well-classified instances, while the second one measures
the agreement between two raters who classify the data. If there is not agree-
ment, κ ≤ 0 and if they are in complete agreement, κ = 1. It is calculated as it
is shown in Eq. (1),

κ =
p0 − pe
1 − pe

(1)

On the Performance of Classic and Deep Neural Models 603

Table 1. Experiments using classic neural models

Neural network Cars dataset Faces dataset

Accuracy (%) Cohen’s Kappa Accuracy (%) Cohen’s Kappa

MLP 1

1 hidden layer

73.968 0.476 50.398 0.42210 neurons/hidden layer

100 iterations RProp

MLP 2

5 hidden layers

77.46 0.544 42.971 0.33510 neurons/hidden layer

100 iterations RProp

MLP 3

1 hidden layer

73.651 0.466 55.172 0.477100 neurons/hidden layer

100 iterations RProp

MLP 4

5 hidden layers

69.206 0.39 44.562 0.354100 neurons/hidden layer

100 iterations RProp

MLP 5

1 hidden layer

80.317 0.605 55.172 0.47710 neurons/hidden layer

1000 iterations RProp

MLP 6

5 hidden layers

66.032 0.313 50.398 0.42110 neurons/hidden layer

1000 iterations RProp

MLP 7

1 hidden layer

80.635 0.611 61.008 0.545100 neurons/hidden layer

1000 iterations RProp

MLP 8

5 hidden layers

73.016 0.458 45.358 0.366100 neurons/hidden layer

1000 iterations RProp

PNN
Theta minus = 0.2

80.317 0.604 51.194 0.43
Theta plus = 0.4

where p0 is the observed probability of agreement and pe is the expected prob-
ability of chance agreement. Analysing the results, it is possible to see that the
best model for both problems is MLP 7. It is a shallow MLP with a large number
of hidden neurons and iterations to train the network. The second best model
is MLP 5. It has only ten neurons in the hidden layer but employs 1000 itera-
tions to train the model. In the case of car dataset, the results of this model are
similar to the results provided by PNN model. Thus, it can be noticed that the
parameters which impact more in the performance of the models are the num-
ber of hidden neurons in the hidden layer and the number of training iterations.
In this case, the number of hidden layers does not provide any improvement.
Furthermore, the third best model is different now. In the case of cars dataset,
it is MLP 2. It uses only ten neurons in the hidden layer and 100 Rprop itera-
tions. In the case of faces dataset, the third best model is MLP 3, which uses the
same training iterations but 100 neurons in the hidden layer. Here, we can notice

604 R. Garćıa-Ródenas et al.

that it is possible to see that in cases of binary classification it is not necessary
as many neurons as in the case of a multi-class classification problem. Finally,
the probabilistic neural network appears in both cases as a good approximation
without the need of checking different configurations of a MLP, which are usually
chosen by trial and error. In the case of cars dataset, it provides the second best
result together with MLP 5 while in the face dataset, it provides a good mean
result. However, in both cases, there is a threshold that is difficult to improve.
In cars dataset it is an 80% of accuracy and a 60% in the case of faces dataset.

3 Deep Neural Networks in Object and Face Recognition

One of the main drawbacks of image compression by feature extractors is the
loss of information. Although a lot of different engineering mechanisms to extract
features in images have been developed, they are unable to detect features from
different abstraction levels, obtaining only a general representation highly depen-
dent on each individual image.

In order to solve this problem, deep neural models appear. They are composed
by different processing layers which will detect and learn representations and
features of different abstraction levels [13]. Now, the input data of the classifier
will be the multi-dimensional array which represent each image of the dataset,
and each layer of the network will learn different image characteristics in multiple
abstraction levels.

One of the most popular deep learning models are convolutional neural net-
works (CNNs). They are mainly used in image and video recognition, since they
usually receive multi-dimensional arrays as input and not a linear features repre-
sentation like it happens in classic models. CNNs are composed by convolutional
layers, which have a receptive field which deals with a portion of the real image.
In this way, the neurons in a convolutional layer are organised in feature maps in
such a way that each layer has the features extracted by the previous layers [6].
Thus, this portion of image, so called convolutional frame, is moving through the
rest of the dataset in order to learn image characteristics. The activation func-
tion in these layers is usually the ReLU activation function. After convolutional
layers, pooling layers are added to the model. These layers use the maximum
function value for each receptive field. In this manner, the activation is the max-
imum value of the output neurons, avoiding overfitting. Thus, in the example of
car dataset, the first layer will detect the edges of the image, the next one can
detect a component like a wheel, and finally, the last layer will determine if the
image contains or not a car. Using this approach, solving this problem do not
require expert knowledge or an expensive engineering process for feature extrac-
tion according with problem characteristics, in contrast with what happens in
classic models. An example of a CNN network is shown in Fig. 2.

On the Performance of Classic and Deep Neural Models 605

Fig. 2. An example of a convolutional neural network

4 Experiments and Results

This section defines the computational experiments carried out in order to check
the performance and capabilities of deep neural networks in face and object
recognition problems. To do that, cars and face datasets have been used again.
Four experiments based on CNNs have been defined which are called C1,C2,C3
and C4. They have been trained for one hundred epochs, using the same train
and test sets that in the experiments carried out in Sect. 2. The experiments
have been repeated ten times in order to normalize the results reached. Each
configuration has the following features:

– C1: It is a simple CNN which has one convolutional layer with a convolutional
frame of 5 × 5 pixels. After this layer, a max pooling and a dropout layer are
added in order to retrieve the results of the convolutional layer and prevent
from overfitting. Dropout is a regularization technique which disable certain
neurons in each layer using a Bernouilli probability distribution. Finally the
feature maps is flatten out into a fully-connected layer adding a dense layer
of 128 neurons.

– C2: This model is a variation of the previous one. In this case, the convo-
lutional frame is larger. In the case of the faces dataset it has 50× 50 pixels
while in the case of cars is 10 × 10 (since the images from cars dataset are
smaller). The dense layer of this model has 200 neurons in comparison with
the dense layer of C1 configuration.

– C3: The third configuration is a convolutional network which contains two
convolutional layers, in order to check the performance of these networks
when multiple convolutional layers are added in order to extract different
features from various abstraction levels. In this way, the network has one
convolutional layer followed by the max pooling and dropout layers. Later,
the output of the dropout layer will be the input of the second convolutional

606 R. Garćıa-Ródenas et al.

layer, which will have again its max pooling and dropout layers. Finally, the
feature maps obtained here is flatten out into a dense layer with 128 neurons.
In this configuration, the convolutional frame has 5× 5 pixels in both layers.

– C4: The last model is a variation of the third one. In this case, the convolu-
tional frame is augmented like in C2 configuration. Thus, it has 50× 50 pixels
in the case of faces dataset and 10 × 10 pixels in the case of cars. The dense
layer has again 200 neurons.

Table 2 shows the four configurations chosen in this article, the amount of para-
meters to be fixed in each model and the results obtained for each network in
terms of error (loss), accuracy and standard deviation.

Table 2. Experiments using convolutional neural networks

Cars dataset Faces dataset

N◦ parameters Loss Accuracy Std N◦ parameters Loss Accuracy Std

C1 3,541,762.0 0.1465 94.36% 0.1904 4,330,234.0 1.6061 70.55% 0.0283

C2 4,330,234.0 0.2378 91.46% 0.1492 2,322,443.0 1.6872 68.35% 0.0277

C3 659,234.0 0.2837 87.32% 0.1337 1,381,291.0 1.6674 67.03% 0.0247

C4 333,634.0 0.2285 89.37% 0.1502 613,451.0 1.8403 65.18% 0.0233

The results are very positive. On the one hand, in the case of cars dataset,
the four proposed models improve the results achieved by classic neural networks
models. However, the best model is C1, since it is the model which has the best
accuracy and it does not imply the largest number of parameters to optimize.
On the other hand, for the case of faces dataset, the results also improve the
performance of classic models, although these kind of deep networks need more
iterations to learn different features and obtain better results. In this case, the
best model is also C1, in terms of accuracy, but depending on the kind of appli-
cation it will be necessary to consider the rest of the models, which do not have
the best accuracy, but implies less parameters to optimize.

5 Conclusions

In conclusion, this article has studied the performance of deep learning
methods, concretely, convolutional neural networks, in face and object recog-
nition problems in comparison with classical neural networks based on feature
extractors. Although classic models remove the problem of managing images
as multi-dimensional array, using a linear representation based on features
extracted from images, they need a lot efforts in developing feature extractors
adapted to the problem at hand. Besides, these linear representations have the
disadvantage of loss information. In contrast, deep learning and CNNs provide a
new tool to solve this kind of problems without the need to have expert knowl-
edge about the problem, since the features extracted by features extractors and

On the Performance of Classic and Deep Neural Models 607

others appear in the convolution process to enrich the classification and they run
very well in multiclassification and large-scale problems. Furthermore, this app-
roach can be applied to other problems, without replacing the feature extractor.

Acknowledgment. The authors would like to express his thanks to the project with
number PEIC-2014- 003-P and to the authorities that give their support to its devel-
opment, the FEDER and the Junta de Comunidades de Castilla la Mancha.

References

1. Berthold, M.R., Diamond, J.: Constructive training of probabilistic neural net-
works. Neurocomputing 19(1–3), 167–183 (1998)

2. Abate, A., Nappi, M., Riccio, D., Sabatino, G.: 2d and 3d face recognition: a survey.
Pattern Recogn. Lett. 28(14), 1885–1906 (2007)

3. Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse,
part-based representation. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1475–
1490 (2004)

4. Agarwal, S., Roth, D.: Learning a sparse representation for object detection. In:
Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS (includ-
ing LNAI and LNB), vol. 2353, pp. 113–127. Springer, Heidelberg (2002). doi:10.
1007/3-540-47979-1 8

5. Barr, J., Bowyer, K., Flynn, P., Biswas, S.: Face recognition from video: a review.
Int. J. Pattern Recogn. Artif. Intell. 26(5), 1266002 (2012)

6. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1),
1–27 (2009)

7. Candès, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J.
ACM 58(3), 11:1–11:37 (2011)

8. Damas, S., Cordón, O., Ibáñez, O., Santamaŕıa, J., Alemán, I., Botella, M.,
Navarro, F.: Forensic identification by computer-aided craniofacial superimposi-
tion: a survey. ACM Comput. Surv. 43(4), 27:1–27:27 (2011)

9. Dantone, M., Bossard, L., Quack, T., Van Gool, L.: Augmented faces, pp. 24–31
(2011)

10. Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. Pattern
Recogn. 36(1), 259–275 (2003)

11. Ibáñez, O., Ballerini, L., Cordón, O., Damas, S., Santamaŕıa, J.: An experimental
study on the applicability of evolutionary algorithms to craniofacial superimposi-
tion in forensic identification. Inf. Sci. 179(23), 3998–4028 (2009)

12. Ilves, M., Gizatdinova, Y., Surakka, V., Vankka, E.: Head movement and facial
expressions as game input. Entertain. Comput. 5(3), 147–156 (2014)

13. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

14. Lee, J.D., Huang, C.H., Huang, T.C., Hsieh, H.Y., Lee, S.T.: Medical augment
reality using a markerless registration framework. Expert Syst. Appl. 39(5), 5286–
5294 (2012)

15. Li, Y., Li, W., Wu, G.: An intrusion detection approach using SVM and multiple
kernel method. Int. J. Adv. Comput. Technol. 4(1), 463–469 (2012)

16. Lu, D., Weng, Q.: A survey of image classification methods and techniques for
improving classification performance. Int. J. Remote Sens. 28(5), 823–870 (2007)

http://dx.doi.org/10.1007/3-540-47979-1_8
http://dx.doi.org/10.1007/3-540-47979-1_8

608 R. Garćıa-Ródenas et al.

17. Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient Iris recognition by characterizing
key local variations. IEEE Trans. Image Process. 13(6), 739–750 (2004)

18. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: the RPROP algorithm. In: IEEE International Conference on Neural
Networks, vol. 1, pp. 586–591 (1993)

19. Snelick, R., Uludag, U., Mink, A., Indovina, M., Jain, A.: Large-scale evaluation of
multimodal biometric authentication using state-of-the-art systems. IEEE Trans.
Pattern Anal. Mach. Intell. 27(3), 450–455 (2005)

20. Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.: A 3d facial expression database
for facial behavior research, pp. 211–216 (2006)

Winograd Algorithm for 3D Convolution
Neural Networks

Zelong Wang(B), Qiang Lan, Hongjun He, and Chunyuan Zhang

Computer Science Department, National University of Defense Technology,
Changsha 410003, China

{wangzelong15,cyzhang}@nudt.edu.cn, lanqiang nudt@163.com, hhj hi@sina.com

Abstract. Three-dimensional convolution neural networks (3D CNN)
have achieved great success in many computer vision applications, such
as video analysis, medical image classification, and human action recog-
nition. However, the efficiency of this model suffers from great compu-
tational intensity. In this work, we reduce the algorithmic complexity of
3D CNN to accelerate this model with Winograd’s minimal algorithm.
We benchmark a net model on GPU platform, resulting in a speed-up
by a factor of 1.2× compared with cuDNN, which is commonly used in
many current machine learning frameworks.

Keywords: Winograd algorithm · 3D CNN · Algorithmic complexity

1 Introduction

Recently, 3D image processing has been an important task in computer vision
and medical diagnosis. 3D CNN has shown good performance in human action
recognition [5] and video classification [16], revealing good ability for 3D image
processing. Nevertheless, the remarkable ability of 3D CNN’s extracting features
is accompanied by a large computational cost. In a 3D CNN model, convolution
layers dominate the computation consumption, taking the most computing time.
The computational complexity of 3D convolution layers grows cubically and
becomes a bottleneck in this model; therefore, it is necessary to reduce the
computation complexity of the 3D convolution layers, which is the largest part
of the calculation in 3D CNN.

In this work, we present an algorithm to accelerate 3D CNN using Wino-
grad’s minimal algorithm. In addition, we represent the algorithmic complex-
ities of several convolution layers with various parameter configurations. After
this, practical experiments are conducted and the result reveals that our method
obtains a considerable speed-up by a factor of 1.4× compared with cuDNN in
our test CNN model.

Related Work. Recent work exploited CNN algorithmic complexity to make
this model fast. Denton et al. [3] focused on decreasing the redundancy of CNN

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 609–616, 2017.
https://doi.org/10.1007/978-3-319-68612-7_69

610 Z. Wang et al.

models by linear compression techniques and reported experiments on Imagenet
[7], showing a considerable speed-up on convolution layers by a factor of two
to three times. Jaderberg et al. [4] demonstrated some tensor decomposition
schemes. They obtained a remarkable speed-up by a factor of 4.5×. Based on
previous work, Tai et al. [14] made progress on tensor decomposition ideas,
proposing an approach for training low-rank constrained CNNs. They illustrated
a good speed-up (1.5×) on a NIN [9] model.

Vasilache et al. [17] implemented convolutionwith fast fourier transform (FFT)
on a Torch [1] framework, decreasing the time for convolution operation. Mathieu
et al. [10] presented an algorithm with the Convolution Theorem, accelerating the
training and inference processes in CNN models. Wang et al. [18] reduced the algo-
rithmic complexity of a special CNN model by combining the FFT algorithm with
a spectral pooling technique, which is proposed by Rippel et al. [12]

Exploration on reducing convolution algorithmic complexity has been car-
ried out since the early years [2,15]. By developing the previous work of Cook
[2] and Toom [15], Winograd [19] presented a minimal filtering algorithm to
reduce the arithmetic complexity of a convolution operation. His invention made
great progress on signal processing technology. Creatively, Lavin and Gray [8]
utilised the Winograd algorithm on 2-dimensional (2D) CNN and benchmarked
a GPU implementation with the VGG [13] network. They obtained a state-of-art
performance.

2 Three-Dimensional Winograd Algorithm

2.1 Winograd Algorithm

In CNN models, convolution operation is extraordinarily similar to the finite
impulse response (FIR) filter. Let x0, x1, x2, · · · be the signal sequence at times
0, t, 2t, · · · , and we would like to compute the first m outputs with an n-tap
filter: zi =

∑n−1
j=0 xi+jwj , i = 0, 1, 2, · · · ,m − 1, where w0, w1, w2, · · · , wn−1 are

the weights of the taps of the filter. We denote this computation by F (m,n).
The ordinary algorithm for F (2, 3) needs 2 × 3 = 6 multiplications; however,
Winograd [19] developed an artful minimal algorithm to reduce the amount of
multiplications for F (m,n). Now we consider the minimal algorithm for F (2, 3),
which is used as an important kernel in the high-dimension case:

F (2, 3) =
(

z0
z1

)

=
(

x0 x1 x2

x1 x2 x3

)
⎛

⎝
w0

w1

w2

⎞

⎠ =
(

m1 + m2 + m3

m2 − m3 − m4

)

(1)

where m1 = (x0 − x2)w0, m2 = (x1 + x2)w0+w1+w2
2 , m3 = (x2 − x1)w0−w1+w2

2 ,
and m4 = (x1 − x3)w2. This algorithm needs only four multiplications for com-
puting mi (i = 1, 2, 3, 4). Theoretically, it has been proven that the amount of
multiplications for F (m, r) = m+r−1 [19]. Note that it also needs two additions
for m1 and m4, seven additions (w0 +w2 can be reused) and two multiplications
by a constant for m2 and m3.

Winograd Algorithm for 3D Convolution Neural Networks 611

Generally, the minimal algorithm for F (2, 3) can be written in matrix form
as Z = M [(Xx) � (Ww)], where � is denoted as element-wise multiplication,
x ,w are column vectors, and the specific matrices are:

M =
(

1 1 1 0
0 1 −1 −1

)

,X =

⎛

⎜
⎜
⎝

1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

⎞

⎟
⎟
⎠ ,W =

⎛

⎜
⎜
⎝

1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1

⎞

⎟
⎟
⎠ (2)

Note that the transformation matrices X,W,M are left multiplied by x ,w ,
and the intermediate result, respectively. According to the knowledge of linear
algebra, left multiplication by a matrix is equivalent to row transformation, and
right multiplication by a matrix is equivalent to column transformation. In other
words, the transformation matrices make row transformations for x ,w and the
intermediate result. This observation indicates how to develop a one-dimension
Winograd algorithm to multi-dimension cases.

2.2 Nesting Technique for F (2× 2, 3× 3) and F (2× 2× 2, 3× 3× 3)

Minimal 2D algorithms for computing m × n outputs with an r × s filter is
denoted by F (m × n, r × s). It has been documented in Lavin et al. [8] that
F (m × n, r × s) can be nested by minimal 1D algorithms F (m, r) and F (n, s).
Specifically, F (m×m, r × r) are obtained by nesting F (m, r) with itself and can
be expressed as: Z = M [(XxXT) � (WwWT)]MT , where w is an r × r filter,
x is an (m + r − 1) × (m + r − 1) image tile, and X,W,M are transformation
matrices. Using the similar notation above, we denote F (m × n × l, r × s × t) as
a minimal 3D algorithm for computing m×n× l outputs with an r × s× t filter.
In practice, we just considered F (m×m×m, r × r × r). Given an r × r × r filter
and an m × m × m image tile, F (m × m × m, r × r × r) can be generated by
nesting F (m, r) with itself on column, row and depth direction. We illustrated
the process in Fig. 1:

Generally, F (2 × 2 × 2, 3 × 3 × 3) is an important kernel when computing
large image size convolution layers due to the common usage of the filter size
of 3 × 3 × 3 in many 3D networks. However, there are other kernels such as
F (3× 3× 3, 2× 2× 2) and F (4× 4× 4, 3× 3× 3). Computation for these kernels
can be obtained by utilising our nesting technique demonstrated in Fig. 1, with
corresponding transformation matrices (X,W,M), which can be found in Lavin
et al. [8]

It has been proven that the minimal filtering algorithm for computing F (m×
n, r×s) requires μ(F (m×n, r×s)) = μ(F (m, r))μ(F (n, s)) = (m+r−1)(n+s−1)
multiplications. [20] With the similar idea, it is easy to prove that μ(F (m × n ×
l, r × s× t)) = μ(F (m, r))μ(F (n, s))μ(F (l, t)) = (m+ r − 1)(n+ s− 1)(l + t− 1).
Therefore, the standard algorithm for computing F (2 × 2 × 2, 3 × 3 × 3) uses
2 × 2 × 2 × 3 × 3 × 3 = 216 multiplications, while the minimal algorithm just
uses (2 + 3 − 1)3 = 64 multiplications. It is obviously a significant reduction in
the algorithmic complexity.

612 Z. Wang et al.

Fig. 1. The nesting skills for generating a minimal algorithm for a 3D case using
transformation matrices. For simplicity, we just considered F (2 × 2 × 2, 3 × 3 × 3).
As for the other choices for m and r, the procedure is the same as above, while the
W,X,M are different. Matrices and directions with the same colour are corresponding.
The matrices are responsible for leading transformation in the corresponding directions.

3 3D Convolution Network

A 3D convolution layer correlates an input image tensor X ∈ R
N×D×H×W×C

and a filter tensor W ∈ R
C×R×S×T×K , where N,C,K denote the batch size of

images, input channels, and output channels, respectively. D,H,W and R,S, T
denote the size of input images and filters. The output image O is given by the
expression: On,d̂,ĥ,ŵ,k =

∑C
c=1

∑R
r=1

∑S
s=1

∑T
t=1 Xn,d̂+r,ĥ+s,ŵ+t,cWc,r,s,t,k where

O ∈ R
N×(D−R+1)×(H−S+1)×(W−T+1)×K .

3.1 Winograd Algorithm for 3D Convolution Network

The Winograd minimal algorithm for F (m × m × m, r × r × r) can be utilised
to compute the output of a 3D convolution layer, where the size of the kernels
in the convolution layer is exactly r × r × r. In each channel, the input image
is divided into a range of tiles, whose sizes are all α × α × α (α = m + r − 1).
Neighbouring tiles overlap each other with r − 1 elements. The number of tiles
in every channel is P = �D

m��H
m��W

m �. For each tile, we can use the minimal
algorithm to compute F (m × m × m, r × r × r), then the results are merged
over all the channels. We denote xc,b ∈ R

α×α×α as the input tile b in channel c,
wk,c ∈ R

r×r×r as the filter k in channel c, and Ok,b ∈ R
m×m×m as the output tile

b in filter k, where b ∈ {1, . . . , P}, c ∈ {1, . . . , C}, k ∈ {1, . . . , K}. The minimal
algorithm for computing convolution layers is demonstrated in Algorithm 1. Note
that there are many optimisations which can be used in this algorithm. In each
for-loop, there are no data hazards, hence we can compute the transformation

Winograd Algorithm for 3D Convolution Neural Networks 613

Algorithm 1. Compute Convolution Layer with Winograd Algorithm F (m ×
m × m, r × r × r)
1: for k = 1, · · · ,K, c = 1, · · · , C do
2: Transform wk,c to uk,c;
3: end for
4: for c = 1, · · · , C, b = 1, · · · , P do
5: Transform xc,b to vk,c;
6: end for
7: for k = 1, · · · ,K, b = 1, · · · , P do
8: Compute yk,b =

∑C
c=1 uk,c � vc,b

9: end for
10: for k = 1, · · · ,K, b = 1, · · · , P do
11: Transform yk,b to Ok,b

12: end for

in parallel using GPU architecture. Moreover, the element-wise multiplication
can be converted to a matrix multiplication, which is suitable for GPU and
FPGA architectures due to their computational ability.

3.2 Algorithmic Complexity Analysis

In our fast convolution layer, the algorithmic complexity for multiplication is:
Cfast = NCK�H

m��W
n ��D

l �(m+r−1)(n+s−1)(l+t−1). In order to simplify the
equations, we assumed that H

m , W
n and D

l have no remainders. Also, we assumed
cubic filters and blocks, that is, r = s = t and m = n = l. With the hypothe-
sis above, the fast convolution layer’s algorithmic complexity for multiplication is
Cfast = NCKHWD (m+r−1)3

m3 while the standard convolution layer’s algorithmic
complexity for multiplication is Cstd = NCK(H −r+1)(W −r+1)(D−r+1)r3.
We compared the complexity of a variety of convolution layers that use the minimal
algorithm and the standard algorithm. The results are presented in Table 1.

Table 1. Theoretical algorithmic complexity of convolution layers with variety of para-
meter configurations. We assumed the kernel size is 3×3×3 and use F (2×2×2, 3×3×3)
as the minimal algorithm.

I/O channels Size of input and filter Comparison

Input Output D × H × W R × S × T Cfast Cstd
Cfast

Cstd

3 64 224 × 224 × 224 3 × 3 × 3 1.73 × 1010 5.7 × 1010 0.30

64 64 224 × 224 × 224 3 × 3 × 3 3.68 × 1011 1.21 × 1012 0.31

64 128 112 × 112 × 112 3 × 3 × 3 9.21 × 1010 2.94 × 1011 0.31

128 256 56 × 56 × 56 3 × 3 × 3 4.604 × 1010 1.39 × 1011 0.33

256 512 28 × 28 × 28 3 × 3 × 3 2.302 × 1010 6.22 × 1010 0.37

512 512 28 × 28 × 28 3 × 3 × 3 4.604 × 1010 1.24 × 1011 0.37

512 512 14 × 14 × 14 3 × 3 × 3 5.75 × 109 1.22 × 1010 0.47

614 Z. Wang et al.

4 Experiments

In this section, some practical experiments are conducted to evaluate our mod-
els. First of all, we implemented the convolution using the matrix-multiplication
method (Convolutional MM), which is used in some recent machine learning
frameworks [6,11]. We implemented 3D convolution layers with Convolution
MM using blas on CPU architecture and cublas on GPU architecture. Then
the run time of convolution layers implemented with Convolutional MM and
Winograd minimal algorithm were reported. After that we evaluated the 3D
minimal algorithm with a 3D CNN model on GPU architecture.

4.1 Implement Convolution Layer with Matrices Multiplication

In this evaluation, batch numbers were set at 32; there were 64 input channels,
128 output channels and the kernel size was 3 × 3 × 3. We fixed the above
parameters and recorded the run time with different input image sizes. The
result is presented on the left of Fig. 2.

Fig. 2. Left: the run time (seconds) of three methods. When the image size becomes
large, cublas has an advantage. But the Winograd algorithm holds the best performance
in all cases. Right: the architecture of our CNN model. The model is composed of four
convolution layers, two down-sampling layers, and some following layers (full connection
and softmax).

4.2 Evaluation of the 3D CNN Model

We further experimented with the 3D Winograd algorithm with cuDNN on a
3D CNN model, whose architecture is shown on the right of Fig. 2. The filter
size in the convolution layers was always 3 × 3 × 3. Down-sampling layers took
the maximum value in every 2 × 2 × 2 cube with a stride of 2. A comparison of
the results is illustrated in Table 2. It should be pointed out that the experiment
was performed on Nvidia GEFORCE GTX 1080 architecture with Intel Xeon
CPU E5-2620 v3 @ 2.40 GHz.

Winograd Algorithm for 3D Convolution Neural Networks 615

Table 2. Details of our 3D CNN model using the Winograd minimal algorithm on
GPU and cuDNN. We implemented our model with the two methods and compared
the run time (seconds). The result reveals good speed-up.

Convolution layers Input tensors Comparison of the methods

N C K D ×H ×W 3D Winograd 3D cuDNN Speed-up

Conv1 32 32 64 30× 30× 30 0.084879 0.0944664 111%

Conv2 32 64 64 28× 28× 28 0.094 0.15013 118%

Conv3 32 64 128 14× 14× 14 0.0113349 0.0207535 183%

Conv4 32 128 128 7× 7× 7 0.00448214 0.00697034 156%

Total 0.19469604 0.27232024 140%

5 Conclusion

In this paper, we introduced a new algorithm for 3D CNN based on the Winograd
minimal filter algorithm. We presented in detail a generic nesting technique to
generate three-dimensional computing kernels with one-dimensional computing
kernels in detail. The algorithm computes the minimal arithmetic complexity
convolution over small tiles of the input data. Using the algorithm on 3D CNN
leads to a significant reduction in multiplication and efficient GPU implementa-
tion due to the natural parallelism. We evaluated this algorithm on convolution
layers with a variety of parameter configurations and a specific CNN model. The
results show that our implementation on GPU is faster than both Convolution
MM with cublas and cuDNN(v5 GEMM).

Acknowledgements. This research is supported by the National Key Research
and Development program under No. 2016YFB1000401, the National Nature Sci-
ence Foundation of China under NSFC Nos. 61502509, 61402504, and 61272145; the
National High Technology Research and Development Program of China under No.
2012AA012706; and the Research Fund for the Doctoral Program of Higher Education
of China under SRFDP No. 20124307130004.

References

1. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a matlab-like environment for
machine learning. In: BigLearn, NIPS Workshop, no. EPFL-CONF-192376 (2011)

2. Cook, S.A.: On the minimum computation time for multiplication. Doctoral dis-
sertation, Harvard U., Cambridge, Mass, 1 (1966)

3. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear
structure within convolutional networks for efficient evaluation. In: Advances in
Neural Information Processing Systems, pp. 1269–1277 (2014)

4. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. arXiv preprint arXiv:1405.3866 (2014)

5. Ji, S., Xu, W., Yang, M., Kai, Y.: 3d convolutional neural networks for human
action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2013)

http://arxiv.org/abs/1405.3866

616 Z. Wang et al.

6. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding.
In: Proceedings of the 22nd ACM International Conference on Multimedia, pp.
675–678. ACM (2014)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

8. Lavin, A., Gray, S.: Fast algorithms for convolutional neural networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 4013–4021 (2016)

9. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013)

10. Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional networks
through FFTs. arXiv preprint arXiv:1312.5851 (2013)

11. Redmon, J.: Darknet: open source neural networks in C (2013–2016). http://
pjreddie.com/darknet/

12. Rippel, O., Snoek, J., Adams, R.P.: Spectral representations for convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 2449–
2457 (2015)

13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

14. Tai, C., Xiao, T., Zhang, Y., Wang, X., et al.: Convolutional neural networks with
low-rank regularization. arXiv preprint arXiv:1511.06067 (2015)

15. Toom, A.L.: The complexity of a scheme of functional elements realizing the mul-
tiplication of integers. In: Soviet Mathematics Doklady, vol. 3, pp. 714–716 (1963)

16. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3d convolutional networks. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 4489–4497 (2015)

17. Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S., LeCun, Y.:
Fast convolutional nets with fbfft: a GPU performance evaluation. arXiv preprint
arXiv:1412.7580 (2014)

18. Wang, Z., Lan, Q., Huang, D., Wen, M.: Combining FFT and spectral-pooling for
efficient convolution neural network model (2016)

19. Winograd, S.: Arithmetic complexity of computations. SIAM, Philadelphia (1980)
20. Winograd, S.: On multiplication of polynomials modulo a polynomial. SIAM J.

Comput. 9(2), 225–229 (1980)

http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.5851
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1511.06067
http://arxiv.org/abs/1412.7580

Core Sampling Framework for Pixel
Classification

Manohar Karki1(B), Robert DiBiano2, Saikat Basu1,
and Supratik Mukhopadhyay1

1 Louisiana State University, Baton Rouge, LA, USA
mkarki6@lsu.edu

2 Autopredictive Coding LLC, Baton Rouge, LA, USA

Abstract. The intermediate map responses of a Convolutional Neural
Network (CNN) contain contextual knowledge about its input. In this
paper, we present a framework that uses these activation maps from sev-
eral layers of a CNN as features to a Deep Belief Network (DBN) using
transfer learning to provide an understanding of an input image. We cre-
ate a representation of these features and the training data and use them
to extract more information from an image at the pixel level, hence gain-
ing understanding of the whole image. We experimentally demonstrate
the usefulness of our framework using a pretrained model and use a DBN
to perform segmentation on the BAERI dataset of Synthetic Aperture
Radar (SAR) imagery and the CAMVID dataset with a relatively smaller
training dataset.

1 Introduction

Pixel-wise prediction/classification has applications [9] in scene understanding.
The rise of machine learning has led to novel and automatic segmentation tech-
niques that require very little user input [2,8,15]. Deep learning in particular,
has enabled this as it makes it possible to learn data representations without
supervision. Core sampling has been used in engineering and science extensively
where a sample section from the cores used to understand the properties of
natural materials [16], climatic record from ice cores [11] etc. The lower layers
of a Convolutional Neural Networks (CNN) encode the pixels, while the higher
layers provide representation of objects comprising of those pixels that eventu-
ally help in understanding the entire image. Pixel wise classification and image
understanding can be improved with the local and global information that are
encoded in the different layers of a CNN; this information, stacked at different
pyramidal levels, can be viewed as a core sample that can enable better under-
standing of an image. Figure 2 shows map responses when an input image of a
cow is passed through the layers of a pretrained CNN.

In this paper1, we present a framework that is able to use the activation maps
from several layers as features for a Deep Belief Network (DBN) for using transfer
1 A previous version of this paper can be found at: https://arxiv.org/pdf/1612.01981.

pdf.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 617–625, 2017.
https://doi.org/10.1007/978-3-319-68612-7_70

https://arxiv.org/pdf/1612.01981.pdf
https://arxiv.org/pdf/1612.01981.pdf

618 M. Karki et al.

Fig. 1. Architecture of the core sampling framework.

learning to provide an understanding of an entire input image. Our framework
creates a representation that combines features from the test data and the con-
textual knowledge gained from the responses of a pretrained network, processes
it and feeds it to a separate DBN. We use this representational model to extract
more information from an image at the pixel level, thereby gaining understand-
ing of the whole image. Transfer Learning allows the use of the knowledge gained
from solving one problem to improve the solution to another [21]. Our framework
makes use of transfer learning, where core samples acquired from a previously
trained CNN is used to train a DBN. This strategy helps increase the overall
performance and speeds up training by avoiding training a very large network
on a huge dataset. The two-stage architecture of our core sampling framework is
given in Fig. 1. We use the VGG-16 [19] model to bootstrap our framework. This
model has been trained on the ImageNet dataset [12] comprising of an excess of
a million training images and 1000 classes. A core is a collection of pixels along
with their map responses stacked together (i.e. a collection of hypercolumns [9]).
It consists of vectors, each with k columns, where k is the number of interme-
diate maps in the VGG-16 model, with each component of the vector being a
map. The spatial correlation between the pixels and the constituent maps are
not maintained by the core. A random sample drawn from a core is called a core
sample. Core samples generated from input images are fed to the second stage
of our framework.

At the second stage, our framework consists of a Deep Belief Network (DBN)
for classification. DBNs are unsupervised deep learning models [10]. Since no
spatial correlation among the maps is preserved when we treat each pixel as a
separate data point, a CNN cannot be used in the second stage as the filters in
a CNN presume spatial correlation between adjacent maps. The DBN interprets
the input core samples to provide an understanding of the original input image.
Training VGG-16 on any reasonably large dataset takes a long time [19]. In our
core sampling framework we avoid training VGG-16, we only need to train the
DBN. This paper makes the following contributions:

1. We present a novel core sampling framework that uses a random samples of
activation maps from several layers of a CNN as features to a DBN using
transfer learning to provide an understanding of an input image. It combines
features from the test data and the contextual knowledge gained from the
responses of a pretrained network and then utilizes the representational and
discriminative ability of a DBN for pixel level classification.

Core Sampling Framework for Pixel Classification 619

2. We demonstrate the utility of our framework by showing its ability to auto-
matically segment two distinct types of datasets by using transfer learning:
the BAERI dataset [7] of Synthetic Aperture Radar (SAR) imagery and the
CAMVID dataset [5].

2 Related Work

Within the deep learning community, CNNs have been used extensively for image
recognition; deep CNNs have enabled recognition of objects in images with high
accuracy without any human intervention [3,12,14,18]. There has been some
research in using the information acquired from the intermediate layers of a CNN
to solve tasks such as classification, recognition, segmentation or a combination
of these [2,9,15]. Girshick et al. [8] use Region-based CNNs (R-CNNs) where
category-independent region proposals are defined during the pre-processing
stage, that are input to a CNN to generate feature vectors. A linear Support
Vector Machine (SVM) is then used to classify the regions. Unsupervised Sparse
auto-encoders have been used in [6] on Synthetic Aperture Radar (SAR) data to
classify different types of vehicles. They only deal with classification of images
already segmented into smaller regions containing the objects. We deal with
segmentation by classification at pixel level.

While introducing hypercolumns, [9] use maps from intermediate layers of
a CNN to segment and localize objects. They use a linear combination of K
x K classifiers across different positions of the images to classify each pixel.
Ladický et al. [13] use a Conditional Random Fields (CRF) based approach to
aggregate results from different recognizers. Zhang et al. [24] recover dense depth
map images and other information about the frames in video sequences such as
height above ground, global and local parity, surface normal, etc. They use graph
cut based optimization and decision forests to evaluate their features. The need
of video sequences limits their application. Both the previous approaches need
manual feature extraction. Another approach is to use deconvolution layers after
the convolution layers as a way to reconstruct segmented images as done in [17]
and [2]. SegNet [2] uses an encoder architecture similar to VGG-16. The decoder
is constructed by removing the fully connected layers and adding deconvolution
layers. It is used to transform low resolution maps to high resolution ones.

3 Core Sampling Framework for Pixel Classification

The first few layers of a CNN are used for accurate localization of an object and
the layers close to the output layer help to distinguish between different objects.
We use the pre-trained VGG-16 [19] model for bootstrapping the core sampling
framework. This network is trained on the ImageNet dataset which contains a
large variety of objects. This makes it a perfect model to construct a framework
that works for a variety of datasets [22]. The first layer of the network learns
Gabor Filters or Color blobs [22]. The deeper layers help to discriminate objects
and parts of objects while losing spatial and local information [23]. Hence, the

620 M. Karki et al.

Fig. 2. Response maps resized to original image size. Higher number indicates maps
from deeper layers.

combination of maps at different layers helps to capture the spatial as well as
the discriminative features. We can see from Fig. 2 that the deeper maps extract
abstract features but lose the detalied spatial information about the objects.
Each pixel’s value, combined with the map response values produced using the
pretrained model, is used as a data point. The map values are thus the features
for their respective pixels. The size of the core sampling data (processed output
data from the pretrained network, described in Sect. 3.2) gets large with the use
of response maps from multiple layers of the CNN. For this reason we use a
randomly sampled subset of pixels to train the DBN in the second stage.

3.1 Preprocessing and Data Augmentation

The BAERI dataset [7] consists of raw images at inconsistent intensity levels
and variable image sizes. Resizing the images would create images that are at
different scales which is undesirable. And because the pretrained network needs
images with dimensions 224 × 224, we added padding around images smaller
than that. For the same reason, we created sub-images (tiles) from larger images
before extracting the map responses. There is no resizing of images; hence no
scale normalization is done. We also generated more data by varying contrast
to improve robustness. The map responses are individually normalized and the
same normalization parameters are used for the corresponding features during
testing. All the images in the CAMVID dataset are of the same size (480 × 360)
and are at the same scale, being a standard dataset; hence not much preprocess-
ing or data augmentation needs to be done.

3.2 Core Sample: Intermediate Data Representation

The input images are normalized with the mean Red, Green and Blue (RGB)
values (the same procedure that was used while training the pretrained model).

Core Sampling Framework for Pixel Classification 621

From each image, we acquire map responses from each layer. Most of the map
responses are n ×n shapes (n ∈ 2i, i = positive integer). The map responses,
which are of various sizes, are resized to original image size using bilinear inter-
polation. These map responses are then stacked along with original input image.
From this point onwards, each pixel is a distinct data point with the map
response values as its features. We are expecting a data point to have a sin-
gle label value, when we train on this data in the second stage of our framework.
The map responses from each layer of the CNN are normalized using standard
feature scaling. We define a core as a collection of such map response values, one
per pixel for an input image. Core samples are random samples drawn from a
core. We feed the core samples to the second stage of our framework. Depending
upon the size of the image and the number of response maps on the pretrained
network, the number of features for the DBN can be high. We are limited by
the amount of data points that can be processed by our Graphical Processing
Unit (GPU). We define a hyperparameter χ, which is the total core samples that
we can process. The value of χ can be adjusted to provide a trade-off between
computational power and classification accuracy.

3.3 Pixel Level Prediction Using Deep Belief Network

DBNs consist of several layers of stochastic, latent variables that are first
updated with unsupervised training and then later with supervised learning
phase [10]. During the unsupervised learning phase, a Restricted Boltzmann
Machine (RBM) is used to train the layers. We use unsupervised pretraining
using RBMs followed by supervised learning using DBNs for the final pixel-wise
prediction. The unsupervised training helps us to cluster the features together
further, and helps to converge the training faster.

Why DBN: If we cluster images by average map response, we can see a CNN
gets more organized every layer as larger chunks are recognized. In simple cases
where many high level features/object parts are recognized, a standard two layer
network should be enough. In a standard CNN, the convolutional layers handle
the bulk of the data abstraction, and the fully connected layers are only receiving
the very abstracted data from the bottom layer. If the maps from the upper
layers are a major part of solving the problem, a DBN should be used to ensure
the data is properly abstracted. In [22], the authros showed how CNNs lose
generality as data travels through them; so this would certainly be the case when
trying to make predictions about images that differ significantly from those in
the original CNN training set (as is the case for our data). Similarly, the more
the classification problem diverges from simple object recognition, the less our
desired output distributions will resemble the internal distributions in the CNN,
and the more additional levels of abstraction will be desirable.

4 Experimental Results and Discussion

The BAERI dataset [7] consists of imagery collected from a Synthetic Aperture
Radar (SAR). The input single channel image consists of SAR values and the

622 M. Karki et al.

labels are the ground truth values at each of the pixels. Labels were obtained by
morphological image processing techniques for noise removal, i.e., opening and
closing. There are certain areas in the ground truth images that still contain some
noise with incorrect labels. As, we are classifying each pixel separately, the noise
must be taken into account during training. The values in the training images
were in the range between −40 and 25. In this dataset, the pixel classes are those
belonging to the ship class and the rest. There are only 55 images of variable sizes
available in this dataset with the total size of 68 megabytes. This dataset is quite
different from ImageNet because it contains SAR data not present in ImageNet.
As a result of transfer learning, the knowledge acquired from ImageNet based
on the wide variety of features abstracted at various levels by the pretrained
VGG-16 network prevented the sparsity of the BAERI dataset [7] from creating
any problem in training the DBN in the second stage. On this dataset, our frame
work was able to slightly outperform SegNet (see Table 1). The output images
of SegNet had less blobs that could be classified as noise but it also missed a
few of the smaller “ships” and had a larger area of pixels incorrectly classified
as ships around the main clusters compared to our algorithm. All results images
can be seen at [1].

Table 1. Results on BAERI dataset [7]

Metric Our method SegNet [2]

Accuracy (%) 99.24 98.08

Mean Squared Error (MSE) .0115 .0142

The CAMVID dataset [4,5] consists of 32 semantic classes of objects out
of which, like most of the other approaches [13,24], we evaluate our algorithm
on the 11 major classes and 1 class that includes the rest. These classes are
Building, Sky, Car, Road, Pedestrian, Column-Pole, Fence, Side-walk, Bicyclist,
Tree and Sign Symbol [5]. The training set includes input images, that are regular
three channel color images and the targets are segmented single channel images
(Fig. 3).

These consist of labeled images with 367 training, 101 validation and 233
test images of consistent sizes at the same scale. On the CAMVID dataset, our
framework outperformed both [13,24] on 10 of the 11 classes in terms of accuracy
and had a better per class accuracy (see Table 2). Both [13,24] and our framework
were trained on 367 labeled training images. As can be seen from Table 2, our
framework could not match the performance of SegNet on the CAMVID dataset
in terms of accuracy except for the Sky, Column-Pole, and Bicyclist classes
where it outperformed SegNet. However, while our framework was trained on
367 labeled images, SegNet was trained on 3500 labeled images. Compared to the
other approaches that only use 367 training images, our approach did better on
classes (underlined in Table 2) with limited pixels such as Column-Pole, Bicyclist,
Pedestrian and Sign-Symbol as well as the overall class average. We used the
theano [20] deep learning library and an Intel i7 six core server with TITAN X
GPU for our experiments. On this processor, the maximum χ value was 1003520

Core Sampling Framework for Pixel Classification 623

Fig. 3. Results on the CAMVID dataset [4,5]. The images from left to right: (a) original
image (b) ground truth (c) our alogrithm (d) SegNet [2]

Table 2. Results on CAMVID dataset [4,5]

Classes Our method Boosting (CRF +
Detectors) [13]

Dense depth
maps [24]

SegNet [2]

367 Training images 3.5 K Images

Building 71.0 81.5 85.3 89.6

Tree 62.6 76.6 57.3 83.4

Sky 96.8 96.2 95.4 96.1

Car 72.2 78.7 69.2 87.7

Sign-Symbol 52.3 40.2 46.5 52.7

Road 80.4 93.9 98.5 96.4

Pedestrian 56.4 43.0 23.8 62.2

Fence 48.1 47.6 44.3 53.5

Column-Pole 39.5 14.3 22.0 32.1

Sidewalk 77.3 81.5 38.1 93.3

Bicyclist 38.5 33.9 28.7 36.5

Class Avg. 63.2 62.5 55.4 71.2

core samples (approximately the same number of pixels as 20 full input images),
which is only 1.58% of the total available pixels on the CAMVID dataset. We
can expect improvements with a better processor by increasing this percentage.

624 M. Karki et al.

5 Conclusions

We presented a framework that takes activation maps from several layers of a
pretrained CNN as features to a DBN using transfer learning to aid pixel level
classification. We experimentally demonstrate the usefulness of our framework
by performing segmentation on Synthetic Aperture Radar (SAR) imagery and
the CAMVID dataset [4,5]. We intend to use the core sampling framework to
facilitate compression of images and texture synthesis.

Acknowledgement. The project is partially supported by Army Research Office
(ARO) under Grant #W911-NF1010495. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not nec-
essarily reflect the views of the ARO or the United States Government.

References

1. Results, baeri images. https://drive.google.com/open?id=0B0gFcrqVCm9pUy01
bWpheGs3RlU

2. Badrinarayanan, V., Handa, A., Cipolla, R.: Segnet: a deep convolutional encoder-
decoder architecture for robust semantic pixel-wise labelling. arXiv preprint
arXiv:1505.07293 (2015)

3. Bengio, Y.: Learning deep architectures for AI. Found. Trends R© Mach. Learn.
2(1), 1–127 (2009)

4. Brostow, G.J., Fauqueur, J., Cipolla, R.: Semantic object classes in video: a high-
definition ground truth database. Pattern Recogn. Lett. 30(2), 88–97 (2008)

5. Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and recognition
using structure from motion point clouds. In: Forsyth, D., Torr, P., Zisserman, A.
(eds.) ECCV 2008. LNCS, vol. 5302, pp. 44–57. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-88682-2 5

6. Chen, S., Wang, H.: Sar target recognition based on deep learning. In: 2014 Interna-
tional Conference on Data Science and Advanced Analytics (DSAA), pp. 541–547.
IEEE (2014)

7. Ganguly, S.: Baeri dataset. Personal Communication. https://drive.google.com/
open?id=0B0gFcrqVCm9peTdMdndTV0pQMFE

8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional net-
works for accurate object detection and segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 38(1), 142–158 (2016)

9. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object seg-
mentation and fine-grained localization. In: Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pp. 447–456 (2015)

10. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)

11. Kotlyakov, V.: A 150,000-year climatic record from Antarctic ice. Nature 316,
591–596 (1985)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

https://drive.google.com/open?id=0B0gFcrqVCm9pUy01bWpheGs3RlU
https://drive.google.com/open?id=0B0gFcrqVCm9pUy01bWpheGs3RlU
http://arxiv.org/abs/1505.07293
http://dx.doi.org/10.1007/978-3-540-88682-2_5
http://dx.doi.org/10.1007/978-3-540-88682-2_5
https://drive.google.com/open?id=0B0gFcrqVCm9peTdMdndTV0pQMFE
https://drive.google.com/open?id=0B0gFcrqVCm9peTdMdndTV0pQMFE

Core Sampling Framework for Pixel Classification 625

13. Ladický, Ľ., Sturgess, P., Alahari, K., Russell, C., Torr, P.H.S.: What, where and
how many? combining object detectors and CRFs. In: Daniilidis, K., Maragos, P.,
Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 424–437. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-15561-1 31

14. LeCun, Y., Jackel, L., Bottou, L., Cortes, C., Denker, J.S., Drucker, H., Guyon, I.,
Muller, U., Sackinger, E., Simard, P., et al.: Learning algorithms for classification:
a comparison on handwritten digit recognition. Neural Netw. Stat. Mech. Perspect.
261, 276 (1995)

15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic seg-
mentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3431–3440 (2015)

16. Lotter, N., Kowal, D., Tuzun, M., Whittaker, P., Kormos, L.: Sampling and flota-
tion testing of sudbury basin drill core for process mineralogy modelling. Miner.
Eng. 16(9), 857–864 (2003)

17. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmen-
tation. In: Proceedings of IEEE International Conference on Computer Vision, pp.
1520–1528 (2015)

18. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint (2014). arXiv:1409.1556

20. Theano Development Team: Theano: a Python framework for fast computation of
mathematical expressions. arXiv e-prints abs/1605.02688. http://arxiv.org/abs/
1605.02688

21. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine
Learning Applications and Trends: Algorithms, Methods, and Techniques. 1, p.
242 (2009)

22. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: Advances in Neural Information Processing Systems,
pp. 3320–3328 (2014)

23. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.
8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1 53

24. Zhang, C., Wang, L., Yang, R.: Semantic segmentation of urban scenes using
dense depth maps. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010. LNCS, vol. 6314, pp. 708–721. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15561-1 51

http://dx.doi.org/10.1007/978-3-642-15561-1_31
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://dx.doi.org/10.1007/978-3-319-10590-1_53
http://dx.doi.org/10.1007/978-3-642-15561-1_51
http://dx.doi.org/10.1007/978-3-642-15561-1_51

Biomedical Data Augmentation Using
Generative Adversarial Neural Networks

Francesco Calimeri1, Aldo Marzullo1(B), Claudio Stamile2,
and Giorgio Terracina1

1 Department of Mathematics and Computer Science,
University of Calabria, Rende, Italy

{calimeri,marzullo,terracina}@mat.unical.it
2 Department of Electrical Engineering (ESAT), STADIUS,

Katholieke Universiteit Leuven, Leuven, Belgium
Claudio.Stamile@esat.kuleuven.be

Abstract. Synthesizing photo-realistic images is a challenging problem
with many practical applications [15]. In many cases, the availability of a
significant amount of images is crucial, yet obtaining them might be not
trivial. For instance, obtaining huge databases of images is hard, in the
biomedical domain, but strictly needed in order to improve both algo-
rithms and physicians’ skills. In the latest years, new deep learning mod-
els have been proposed in the literature, called Generative Adversarial
Neural Networks (GANNs) [7], that turned out as effective at synthesiz-
ing high-quality image in several domains. In this work we propose a new
application of GANNs to the automatic generation of artificial Magnetic
Resonance Images (MRI) of slices of the human brain; both quantitative
and human-based evaluations of generated images have been carried out
in order to assess effectiveness of the method.

Keywords: Generative Adversarial Networks · MRI · Biomedical
imaging

1 Introduction

The availability of a large amount of data is a crucial issue for applications in
many domains. Indeed, proper data are essential in order to understand specific
scenarios (for instance, useful information are extracted for predicting the evo-
lution of systems or environments) and develop effective applications. This is
especially the case of the biomedical domain; however, in such context collecting
a significant amount of “good” data is not always an easy task, due, for instance,
to the high costs in terms of money and time required to perform screenings and

The work is partially funded by an EU MC ITN TRANSACT 2012 (316679) project
and the European Union’s Horizon 2020 research and innovation programme under
the Marie Sk�lodowska-Curie grant agreement No. 690974. Authors thank the Nvidia
GPU Education Center of the University of Calabria for the kind support.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 626–634, 2017.
https://doi.org/10.1007/978-3-319-68612-7_71

Biomedical Data Augmentation Using GANNs 627

analyses, or, as in the case of certain pathologies, to the number of case study
which is too limited for the creation of data banks large enough to train physi-
cians, experts, or artificial models. A possible way to overcome limited availabil-
ity, in some domains, is to artificially create new data. For many tasks, indeed,
this can be achieved by modifying initially available data [8]. As an example,
new instance images can be obtained by applying linear transformations (i.e.,
rotation, reflection, scaling, etc.) to already available ones. Unfortunately, the
same approach is not straightforwardly applicable to any task: for example, it
is difficult to generate new “artificial” data for a density estimation, unless one
has already solved the density estimation problem.

One of the most interesting alternatives, when dealing with image data, con-
sists of learning the latent manifold on which the input images lie, and then
sample realistic pictures (and their labels) from this manifold. We refer to Gen-
erative models as a class of machine learning algorithms which start from a
training set consisting of samples drawn from a distribution, and learn how to
represent an estimate of that distribution, or samples of it, to some extent. One
of the goals of this work is to apply such techniques to new generative areas,
not explored so far. In particular, we present the application of a specific type of
Generative Models, namely Generative Adversarial Neural Networks (GANNs),
to the generation of new, unseen, MRI (Magnetic Resonance Imaging) slices of
the human brain. Interestingly, the model produces samples very similar to real
MRI slices, which present realistic features. To the best of our knowledge, this
is one of the first attempts to apply GANNs to biomedical imaging, and brain
images in particular. We validated the generated images both analytically and
via an ad-hoc web platform, where human physicians and experts have been
invited to distinguish whether an image is real or artificially generated.

The remainder of the paper is structured as follows. In Sect. 2 we provide
a detailed description of our approach, and then illustrate related literature in
Sect. 3. Section 4 presents our experimental evaluation and eventually, in Sect. 5
we draw our conclusion.

2 Proposed Approach

In the following, we describe the background techniques and methods, and pro-
vide further details on the proposed approach.

2.1 Generative Adversarial Neural Networks

Generative Adversarial Neural Network is a generative model approach based on
differentiable generator networks [8]. GANNs are conceived for scenarios in which
the generator network must compete against an adversary, in a sort of forger-
police relation. Two actors are involved: the Generator network (the “forger”),
which directly produces samples x = g(z, θ(g)), where g is a given probability
distribution that describes the training set; the Discriminator (the “police”),
that attempts to distinguish between samples taken from the original data and

628 F. Calimeri et al.

samples drawn from the Generator; in other words, it estimates a probability
value given by d(x, θ(d)), indicating the probability that x is a real training
example rather than an artificial sample drawn from the model. The best way to
describe the GANN training process is as a zero-sum game as defined in game
theory, in which the Discriminator’s Generator’s payoffs are v(θ(g), θ(d)) and
−v(θ(g), θ(d)), respectively. During the learning process, each player attempts to
maximize its own payoff; in such a scenario, the Discriminator is called examine
an image and estimate whether it is “real” (i.e., taken from the training set) or
“artificial” (i.e. generated by the algorithm). This means that it must learn some
general rules that govern the distribution until, at convergence, the Discriminator
is no more able to distinguish Generator’s samples from real data, so its output
is 1

2 everywhere. On the other side, the Generator should learn how to generate
images that look more and more similar to the samples from the training set, in
order to fool the Discriminator and make it believe that they are real.

2.2 Laplacian Pyramid of Adversarial Networks

Several GANN models exist. As a first attempt, we take advantage from a recent
optimization method which uses a cascade of convolutional networks within a
Laplacian pyramid framework (LAPGAN), in order to generate images in a
coarse-to-fine fashion [4]. The goal is achieved by building a series of generative
models, each one able to capture image structure at a particular scale of a
Laplacian pyramid1. This approach allows to first generate a very low-resolution
version of an image, and then incrementally add details to it. The Generator (G)
and the Discriminator (D), indeed, are not trained directly on full-sized images:
the training starts with a downsampling at a minimum size which is increased
(e.g., doubled) during multiple steps, until the final size is reached. During these
steps another pair of G and D are trained to learn good refinements of the
upscaled images. This means that G learns how to improve the quality of its
input, adding good refinements, and, at the same time, D learns how refined
images look like. It is worth noting that this methodology is very closely related
to the one a human being typically employ to draw images: start with a rough
sketch, and then progressively add more and more details.

2.3 Generating MRI Slices of the Brain

Our approach uses a GANN to automatically generate MRI slices of the brain;
in our work the architecture described in [4], public available on github2, was
maintained “as is”, except for the size of the output, which has been increased by
adding one more convolutional layer. The framework makes use of another con-
volutional neural network, the Validator, in charge of assigning validation scores
to generated images and trained once before the Generator network. Artificial

1 Due to space constraints we omit a detailed description of Laplacian pyramid; we
refer the reader to [1].

2 https://github.com/aleju/sky-generator.

https://github.com/aleju/sky-generator

Biomedical Data Augmentation Using GANNs 629

images used to train the Validator are created by applying some transformations
to real images. These techniques are sometimes combined with each other.

Both the Generator and the Discriminator are convolutional networks trained
with stochastic gradient descent, where Adaptive Moment Estimation is used as
optimizer. The architecture of the Generator is basically a full laplacian pyramid
in one network; it starts with a linear layer, which generates 16 × 8 images,
followed by upsampling layers, which increase the image size to 32× 16, 64× 32
and then 128 × 64 pixels. The Discriminator is a convolutional network with
multiple branches. Rotations are removed by means of spacial transformer at
the beginning; three out of the four branches have also spatial transformers (for
rotation, translation and scaling), so they can learn to focus on specific areas of
the image. The fourth branch is intended to analyze the whole image.

3 Related Works

Artificial generation of natural images is a widely studied task in machine learn-
ing, and constituted an ambitious goal for many years [8]. Several efforts have
been spent to solve the problem of generating realistic high-resolution images,
and several novel approaches [5,6] have already been proven to be well-suited
for generating realistic images which look very similar to the ImageNet dataset
[11], also achieving impressive results at high resolutions.

As for the biomedical domain, the problem of automatically generated unseen
instances has been addressed by means of many different techniques. Many stud-
ies focussed on the reconstruction or the synthesis of an image starting from some
initial data [9], on the synthesis of a source MRI modality to another target MRI
modality [13], on the generation of multi-modal medical images of pathological
cases based on a single label map, also outperforming the state-of-the-art meth-
ods it has been compared against. Closer to our proposal, in [3], the Authors
tested the capability of GANNs in generating high quality retinal fundus images
from pairs of retinal vessel trees and corresponding retinal images. We use the
method proposed in [4], as an attempt to generate high-quality MRI slices in
order to augment biomedical datasets with a fast and inexpensive method.

4 Experimental Analysis

4.1 Dataset Description

The dataset consists of 46, 737 images representing MRI slices extracted from 77
subjects. Each subject underwent 8 MR scans. The MR protocol consisted in the
acquisition of a sagittal 3D-T1 sequence (1×1×1mm3, TE/TR = 4/2000 ms). In
order to have “pure” MRI images, no post-processing was applied to the images.

630 F. Calimeri et al.

Fig. 1. Real (left) images compared with artificial (right) images

4.2 Training Phase

The training process consists of multiple steps: at first, the Validator and the
Generator are trained for a predefined number of steps, 50 and 10, respectively;
then, the real training process, i.e., the zero-sum game, starts. Results shown in
the following refer to 800 epochs of training (Fig. 1). Since images are defined on a
grayscale, the framework was used with the grayscale parameter enabled, so that
only one input channel was used during the operations. In order to perform all
the tests, the following workstation was used: x86 64 CPU(s), Intel(R) Xeon(R)
CPU E5440 @ 2.83 GHz, Linux Debian 4.8.4-1, CUDA compilation tools, release
7.5, V7.5.17, NVIDIA Corporation GK110GL on Tesla K20c.

4.3 Evaluation

Rigorous performance evaluation of GANNs is an important research area, since
is not clear how to quantitatively evaluate generative models [8]. Indeed, finding
an images evaluation method in such a context is not straightforward. When
using statistical methods, for instance, it might not be sufficient to look at prob-
ability distributions among pixels or part of the images, as “geometric” relations
are crucial. Also, the task is quite different from a clustering or classification
problem, as the point is to find what kind of “features” allow one to tell if an
image is eligible to stay within a given group or not, and not only judge “similar-
ities”. This is why, besides quantitative tests, we also conduct human evaluation
to evaluate the quality of the generated images [15].

4.4 Quantitative Image Quality Assessment

We evaluate our approach by means of two different quantitative methods: (i)
Estimating the distributions of the real and the generated datasets by means
of the Kernel Density function and comparing their likelihood; (ii) comparing
the Inception Score of the two datasets. For the sake of the present work, for
each metric we considered two distributions similar if their distance, in terms of
score, is below the empirical threshold of 10%.

Kernel Density Function. The approach based on Kernel Density function
to evaluate generative models was originally introduced in [2] and applied on

Biomedical Data Augmentation Using GANNs 631

Table 1. Likelihood comparison

Samples Real Generated

100 37.31 33.90

1000 34.30 33.92

10000 34.02 33.93

Table 2. Inception score comparison
(± standard deviation in parenthesis)

Test Real Generated

100 1.92 (±0.26) 1.80 (±0.29)

1000 1.79 (±0.06) 1.89 (±0.08)

10000 1.80 (±0.03) 1.93 (±0.03)

GANNs in [7]. The method estimates the probability of the generated dataset,
by fitting a Gaussian Parzen window to the generated samples and reporting the
likelihood under this distribution. The bandwidth of the Gaussians is obtained
by cross-validating the validation set. In our approach, we compute the simi-
larity between the two datasets estimating their distribution by means of the
Kernel Density function, so that similar datasets should be represented by simi-
lar distributions. Figure 2 shows the comparison of the density distribution and
the estimated Cumulative Density function under real and generated datasets.

Inception Score. Inception Score [12] is an automatic method to evaluate
samples which is found to correlate well with human judgement. The proba-
bility p(y |x) is estimated by applying the Inception model [14] to every image
in the dataset, so that images belonging to the same distribution should have
low entropy. Consequently, if the generated images are distant from the esti-
mated distribution, the marginal should present high entropy. These assump-
tion are used to compute the Inception Score according to the equation IS =
exp(ExKL(p(y |x) || p(y)))), where KL is the Kullback-Leibler divergence and
results are exponentiated so the values are easier to compare. In this work we
compare the Inception Score computed on both generated and real dataset.
Tables 1 and 2 report a comparison of the likelihood and the Inception Score
between both the estimated distributions over 100, 1000 and 10000 samples.

4.5 Human Evaluation of Generated Images

The quality assessment of the generated images are evaluated by means of a
web platform3, where physicians and experts are called to distinguish between
real and artificial images. More in detail, two sets of 100 images (both 100 real
and 100 artificial) was prepared. Each user is proposed, one at a time, images
from a set of 20 randomly extracted from the two sets with, probability 1

2 .
During each trial, true positive (TP), true negative (TN), false positive (FP) and
false negative (FN) are collected, where positive is used to indicate real images
and negative is referred to artificial ones. In order to assess the quality of the
delineation, we compute Accuracy (Acc = TP

P+N), Precision (Prec = TP
TP+FP),

Recall (Rec = TP
TP+FN) and F1-score (F1 = 2∗Prec∗Rec

Prec+Rec) where P is the number

3 www.tinyurl.com/mrichallenge.

www.tinyurl.com/mrichallenge

632 F. Calimeri et al.

of positive samples and N the number of negative ones. We collected 15 tests
performed by different experts in neuroimaging field; they achieved (on average)
an accuracy, precision, recall and F1-score, to discriminate between real and
“artificial” images, of 0.52 ± 0.16, 0.55 ± 0.23, 0.58 ± 0.21, and 0.53 ± 0.17,
respectively. A detailed report of the performances obtained by each expert can
be found on the project website4.

Results obtained after human evaluation show the capability of our method to
generate “artificial” MR images similar to real one. The difficulty to differentiate
between the two is well underlined by the low values of F1-score obtained by
humans in the tests. Furthermore, in order to have a more detailed feedback, we
also asked our experts to write down comments describing how did they tell the
difference between real and “artificial” images. Among others, we received two
interesting observations: the first is about grey and white matter tissues contrast,
while and the second about image symmetry. Those two limitations are indeed
noticeable in the generated images: they present a low level of contrast between
the two tissues, and an high symmetry between the two hemispheres. Based on
the quantitative results and the comments obtained from the experts, we can
say that our method is definitely appropriate, and still features significant room
for improvement.

Fig. 2. Density function (left) and Cumulative Density function (right) comparison of
generated (orange) and real (blue) datasets (Color figure online).

5 Conclusion

In this paper we show the feasibility of learning to perform the synthesization
of unseen high-quality MRI slices of the human brain by means of Generative
Adversarial Neural Network (GANNs). The aim of the work is to ease inexpen-
sive and fast augmentation of biomedical datasets, in order to overcome the lack
of real images and allow physicians and machine learning algorithms to take
advantage from new instances for their training.

Applications of GANNs have been just started to be studied in literature,
and a large variety of applications are still open. As future work, we aim to

4 www.tinyurl.com/mrichallenge-reports.

www.tinyurl.com/mrichallenge-reports

Biomedical Data Augmentation Using GANNs 633

improve the quality of the generated images, to be more and more similar to real
MRI scans; to this aim, a comparison with alternatives models, such as Deep
Convolutional Generative Adversarial Networks (DCGAN) [10], will be of clear
interest, as they are currently emerging in literature. Furthermore, the generation
may be improved by allowing the network to add pathological symptoms and
provide unseen data of synthesized patients; this might also improve the study
of rare diseases. Another perspective is the combination of the generated slices
in order to compose a three-dimensional MRI. Eventually, we are planning to
better investigate quality and use of quantitative measures for the assessment of
the methods.

References

1. Burt, P.J., Adelson, E.: The laplacian pyramid as a compact image code. IEEE
Trans. Commun. 31, 532–540 (1983)

2. Breuleux, O., Bengio, Y., Vincent, P.: Quickly generating representative samples
from an RBM-derived process. Neural Comput. 23(8), 2053–2073 (2011)

3. Costa, P., Galdran, A., Meyer, M.I., Abrmoff, M.D., Niemeijer, M., Mendonça,
A.M., Campilho, A.: Towards adversarial retinal image synthesis. arXiv preprint
arXiv:1701.08974 (2017)

4. Denton, E.L., Chintala, S., Fergus, R.: Deep generative image models using a
Laplacian pyramid of adversarial networks. In: Advances in Neural Information
Processing Systems, pp. 1486-149 (2015)

5. Dosovitskiy, A., Springenberg, J.T., Brox, T.: Learning to generate chairs with con-
volutional neural networks. In: Computer Vision and Pattern Recognition, CVPR
(2015)

6. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics
based on deep networks. arXiv preprint arXiv:1602.02644 (2016)

7. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. Advances in Neural Infor-
mation Processing Systems (2014)

8. Bengio, Y., Goodfellow, I.J., Courville, A.: Deep Learning Book. MIT Press (2015,
in preparation). http://www.iro.umontreal.ca/bengioy/dlbook

9. Nie, D., Trullo, R., Petitjean, C., Ruan, S., Shen, D.: Medical image synthesis with
context-aware generative adversarial networks. arXiv preprint arXiv:1612.05362
(2016)

10. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

11. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large
scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

12. Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training gans.In: Advances in Neural Information Process-
ing Systems, pp. 2226–2234 (2016)

13. Sevetlidis, V., Giuffrida, M.V., Tsaftaris, S.A.: Whole image synthesis using a
deep encoder-decoder network. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince,
J.L. (eds.) SASHIMI 2016. LNCS, vol. 9968, pp. 127–137. Springer, Cham (2016).
doi:10.1007/978-3-319-46630-9 13

http://arxiv.org/abs/1701.08974
http://arxiv.org/abs/1602.02644
http://www.iro.umontreal.ca/bengioy/dlbook
http://arxiv.org/abs/1612.05362
http://arxiv.org/abs/1511.06434
http://dx.doi.org/10.1007/978-3-319-46630-9_13

634 F. Calimeri et al.

14. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the Incep-
tion Architecture for Computer Vision. arXiv:1512.00567, pp. 2818–2826 (2016)

15. Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., Metaxas, D.: Stack-
GAN: text to photo-realistic image synthesis with stacked generative adversarial
networks. arXiv preprint arXiv:1612.03242 (2016)

http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1612.03242

Detection of Diabetic Retinopathy
Based on a Convolutional Neural Network

Using Retinal Fundus Images

Gabriel Garćıa1, Jhair Gallardo1, Antoni Mauricio2, Jorge López2(B),
and Christian Del Carpio1

1 Medical Image Processing Group, Department of Mechanical Engineering,
Universidad Nacional de Ingenieŕıa, Bldg. A - Off. A1-221, 210 Tupac Amaru Ave.,

Lima, Peru
gabrconatabl@gmail.com, jhairgallardo@gmail.com, cdelcarpiod@gmail.com

2 Department of Computer Science, Research Institute of Computer Science,
Universidad Católica de San Pablo, Bldg P. José de Acosta, 4th Floor,

Urb. Campi ña Paisajista s/n, Arequipa, Peru
{manasses.mauricio,jorge.lopez}@ucsp.edu.pe

Abstract. Diabetic retinopathy is one of the leading causes of blind-
ness. Its damage is associated with the deterioration of blood vessels in
retina. Progression of visual impairment may be cushioned or prevented if
detected early, but diabetic retinopathy does not present symptoms prior
to progressive loss of vision, and its late detection results in irreversible
damages. Manual diagnosis is performed on retinal fundus images and
requires experienced clinicians to detect and quantify the importance of
several small details which makes this an exhaustive and time-consuming
task. In this work, we attempt to develop a computer-assisted tool to clas-
sify medical images of the retina in order to diagnose diabetic retinopathy
quickly and accurately. A neural network, with CNN architecture, identi-
fies exudates, micro-aneurysms and hemorrhages in the retina image, by
training with labeled samples provided by EyePACS, a free platform for
retinopathy detection. The database consists of 35126 high-resolution
retinal images taken under a variety of conditions. After training, the
network shows a specificity of 93.65% and an accuracy of 83.68% on
validation process.

Keywords: Diabetic retinopathy ·Deep learning · Convolutional neural
network · Medical image classification

1 Introduction

The recent success of convolutional neural network algorithms in natural imaging
applications is due to the fact that it is inspired by the hierarchical organization
of the human visual cortex, the use of database images on a scale of millions
and the development of hardware (GPU) fast enough to process the training
of millions of parameters. The results obtained have shown that in basic visual
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 635–642, 2017.
https://doi.org/10.1007/978-3-319-68612-7_72

636 G. Garćıa et al.

tasks (from the point of view of human vision) these algorithms are capable of
having a precision very close to that of a human. These facts have also allowed
to open many possibilities in medical applications in different areas.

Although deep learning has reduced the time of analysis in medical imaging,
including the diabetic retinopathy test, its computational cost far exceeds estab-
lished previous methods. According to [1], prior algorithms to intensive use of
convolutional neural networks can be categorized into 5 groups: preprocessing,
location and segmentation of the optic disc, segmentation of the retinal vascu-
lature, location of the macula and fovea, location and segmentation of patholo-
gies of diabetic retinopathy. In [2], an automatic system for the detection of
diabetic retinopathy was presented using fundus images extracting character-
istics such as the area of blood vessels, area of microaneurysms and texture.
The selected characteristics were trained using Naive Bayes to classify the dis-
ease in 3 states: Normal, Nonproliferative Diabetic Retinopathy (NPDR) and
Proliferative Retinopathy. While [3] focuses on detecting changes in the retina
that indicate diabetic retinopathy. Retinal images are first subjected to pre-
processing techniques by color normalization and then image segmentation in
order to detect blood vessels, microaneurysms, haemorrhages, the optic disc and
lipid clusters. In that line, [4] presents a new algorithm for detecting blood vessels
in the fundus images. The enhancement of the blood vessels in the image is car-
ried out using a pretreatment stage, followed by transformations on curves which
is applied to the equalized image. This improved image is used for removal of
blood vessels. The estimation of the exudates is obtained from the blood vessels
and the optical disc extracts from the image. The results show that the retinal
images improved by this method have a better PSNR and the area of exudates
shows the severity of the disease. By using an SVM classifier, [5] focuses on
the automatic detection of diabetic retinopathy by detecting exudates in the
background color of the retinal eye images and also classifies the severity of the
lesions. [6] performs its work with the same classifier but using the sequential
minimal optimization algorithm.

The works presented in [7] and [8] are among the first to solve the prob-
lem through neural networks, focusing on learning changes in blood vessels and
lipid clusters. In [9], the authors classify different states of Diabetic Retinopa-
thy (NPDR) and differentiate them from a healthy eye by analyzing fundus
images. A feature extraction stage is performed and then use a multi-layer per-
ceptron or “MLP algorithm” achieving 94.11% accuracy. More recently with the
inclusion of CNN architectures, works like [10–12] have improved the learning
ratios marked by other neural network architectures. In [10], is proposed the
use of a deep neural network (DNN) by means of the use of auto-encoders to
obtain an initialization model. Then they perform a supervised training using
“random forest” for the detection of blood vessels in the fundus images. They
obtained an accuracy of 93.27% and an area under the ROC curve of 0.9195.
While [11] presents a method using deep learning to perform the detection of
blood vessels in the fundus images. The structure or “ConvNet” that they pro-
pose is trained to segment the areas where the blood vessels of the areas that

Detection of Diabetic Retinopathy by a Convolutional Neural Network 637

do not contain them are located. Their experiments were carried out using the
“DRIVE” database, obtaining an average accuracy of 94.7% and an area under
the ROC curve of 0.9283. [12] propose a CNN approach to diagnosing diabetic
retinopathy from digital fundus images and accurately classifying its severity.
Developing a network with CNN architecture and data augmentation which can
identify the intricate features involved in the classification task such as micro-
aneurysms, exudate and haemorrhages on the retina and consequently provide
a diagnosis automatically and without user input. By using a high-end graphics
processor unit (GPU) on the publicly available Kaggle dataset and demonstrate
outstanding results, particularly for a high-level classification task. On the data
set of 80,000 images used its proposed CNN achieves a sensitivity of 95% and
an accuracy of 75% on 5,000 validation images.

2 Preprocesssing

Retinal images were provided by EyePACS [13], a free platform for retinopathy
detection. The database consists of high-resolution retinal images taken under a
variety of conditions. Both eyes images are provided to us for each patient. Each
case is rated on a scale of 0 to 4, depending on the level of degeneration and
these scales are used as labels in the algorithm. Figure 1, shows the illumination
variability and size in different images of the database.

Fig. 1. Sample of the EyePACS image bank.

It can be noticed that the images in Fig. 1 are not standardized. In other
words, each contains an non-regular black border, different aspect ratio, different
lighting and different color average. In images pre-processing, each one was scaled
by standardizing the size of the eyeball; then we ‘subtract the color mean’, and

638 G. Garćıa et al.

Fig. 2. Retinal fundus images after preprocessing.

thus map the mean to gray (128). Finally, we re-scaled the image to 256× 256.
The results are shown in Fig. 2.

We decided to separate the images into two sections: the right and the left
eye. The same network model will be used in each section and thus, we achieve an
specialized network type for the left eye and a similar network for the right eye.
In a future work it is possible to make a fusion of these two networks using their
fully connected layers. Another detail of the set of images is the class imbalance.
So for that, it was decided to perform a binary classification. Table 1 shows the
new division in classes.

Table 1. Binary classification labels of the data.

Class Name Number of images Percentage

0 Healthy 25810 73.48%

1 Diseased 9316 26.52%

The proportion between healthy and diseased cases is 2.74 to 1, respectively.
We decided to use two versions of data set for the tests. The first has a ratio
of 2.74 to 1, and the second has a ratio of 1 to 1 called 50/50. For this second
version, we simply took all the diseased cases and the same number of healthy
cases were chosen randomly. In both versions a data augmentation method was
used, which consists on flips and take parts of the images. A probability of 50%
was given for each image, If it gets positive, it is taken the 80% of the image in
length and height from a random border inside. In a similar way was performed
the flips.

Detection of Diabetic Retinopathy by a Convolutional Neural Network 639

3 Neural Networks

Different configurations of neural networks architectures were tested, all based
on convolutional networks. Table 2 shows the networks, number of layers and
training mode.

Table 2. Different neural network architectures

Network Distribution Layers Training mode Learning rate

Model1 50/50 6 From scratch 0.01

Model2 50/50 9 From scratch 0.01

VGG16 50/50 16 Pre-train 0.0001

VGG16noFC1 50/50 15 Pre-train 0.0001

VGG16noFC2 Original 15 Pre-train 0.0001

These models are inspired in the “Alex-net” model [14], they are convolu-
tional layers followed by “max-polling” layers and finally by a set of fully con-
nected layers. Moreover, all networks have a fixed momentum of 0.9, and the
fully-connected layer has a dropout of 0.65, making it highly robust, but with
low performance possibility in classification process.

Models 1 and 2 were trained from scratch. By testing of said model it was
analyzed the capacity of a convolutional network to learn the corresponding fil-
ters to classify the data. When trained from scratch, the networks must learn
basic filtering such as edge detection or corners in their first layers. A pre-trained
network already contains such filters, so the models VGG16, VGG16noFC1 and
VGG16noFC2 are based on the model VGG-net [15] already trained in the Ima-
geNet database [16]. The two latter ones allows the network to re-adjust the
filters according to the data used, resulting in a more robust result. Also, they
don’t have two Fully Connected Layers, but they have just one.

From the first four networks, VGG16noFC1 has a good performance, so we
decide to use a similar network, but this time using the Original distribution.
To equilibrate this difference, we use Class Weight, which consists in assign a
weight in the cost function of the data depending on the class. As we talked
before, the distribution was from 2.74 to 1, so the weight assigned are 1 to the
healthy Cases and 2.74 for the diseased ones. Furthermore, we assign it a decay
of 0.00005. This new network is called VGG16noFC2.

4 Results

After performing the tests to configure the hyperparameters of each network in
Table 2, we obtained the following results.

In Fig. 4, we can see that the network VGG16noFC2 is highly noised and
not uniform in the test set, although in the training set, it has a continuous and

640 G. Garćıa et al.

Table 3. Results of the training in the test set.

Network Epochs Accuracy Sensitivity Specificity

Model1 45 63.6% - -

Model2 91 66.4% - -

VGG16 80 74.3% 62% 86%

VGG16noFC1 75 72.70% 68% 77.60%

VGG16noFC2 80 83.68% 54.47% 93.65%

Fig. 3. Epochs vs accuracy and loss function for VGG16.

Fig. 4. Epochs vs accuracy and loss function for VGG16noFC2.

non-noise graphics. So it can be deduced that it has a low value of sensitivity,
and a high value of specificity, which can be verified in Table 3. As we can see
in Fig. 3, the graphics generated in the train set are continuous and they don’t
have noise, and in contrast, the test graphics has little noise, but it isn’t so

Detection of Diabetic Retinopathy by a Convolutional Neural Network 641

high. In Table 3 we can see that, although it is 9 points in percentage accuracy
below from VGG16noFC2, it is not so highly sensible as it. We can see it in the
sensitivity value of 62% in contrast with the 54.47%.

5 Conclusions and Future Work

In this work, we have implemented the most efficient CNN architectures to detect
diabetic retinopathy, beginning with a pre-processing stage that included the
normalization of the saturation values of each figure, as well as normalization
of measurements and elimination of noise. The second stage included training
by applying various values of hyperparameters and data distributions. At the
end, a 93.65% efficiency in specificity and 83.68% accuracy were obtained in
VGG16noFC2 but just 54.47% in sensitivity. Which means that true positive
rate is lower than true negative rate. These results leave a possibility of using
work as an effective method of discarding the disease in the future. For future
work, we will seek to expand the retina imaging database, make a fusion of
the two networks (right and left eye) using their fully connected layers as well as
improve the network architecture and develop cost functions that fit the database
model more closely.

Acknowledgments. The present work would not be possible without the funds of
the General Research Institute (IGI - UNI), The Office of Research (VRI - UNI),
The Research Institute of Computer Science (RICS - UCSP) and the support of the
Artificial Intelligence and Robotics Lab.

References

1. Prentasic, R.P.: Detection of diabetic retinopathy in fundus photographs (2013)
2. Maher, R., Kayte, S., Dhopeshwarkar, D.M.: Review of automated detection for

diabetes retinopathy using fundus images. Int. J. Adv. Res. Comput. Sci. Softw.
Eng. 5(3) (2015)

3. Thomas, N., Mahesh, T.: Detecting clinical features of diabetic retinopathy using
image processing. Int. J. Eng. Res. Technol. (IJERT) 3(8) (2014)

4. Singh, B., Jayasree, K.: Implementation of diabetic retinopathy detection system
for enhance digital fundus images. Int. J. Adv. Technol. Innov. Res. 7(6), 0874–
0876 (2015)

5. Gandhi, M., Dhanasekaran, R.: Diagnosis of diabetic retinopathy using morpho-
logical process and SVM classifier. In: 2013 International Conference on Commu-
nications and Signal Processing (ICCSP). IEEE (2013)

6. Sangwan, S., Sharma, V., Kakkar, M.: Identification of different stages of diabetic
retinopathy. In: 2015 International Conference on Computer and Computational
Sciences (ICCCS). IEEE (2015)

7. Shahin, E.M., et al.: Automated detection of diabetic retinopathy in blurred dig-
ital fundus images. In: 2012 8th International Computer Engineering Conference
(ICENCO). IEEE (2012)

8. Karegowda, A.G., et al.: Exudates detection in retinal images using back propa-
gation neural network. Int. J. Comput. Appli. 25(3), 25–31 (2011)

642 G. Garćıa et al.

9. Kanth, S., Jaiswal, A., Kakkar, M.: Identification of different stages of diabetic
retinopathy using artificial neural network. In: 2013 Sixth International Conference
on Contemporary Computing (IC3). IEEE (2013)

10. Maji, D., et al.: Deep neural network and random forest hybrid architecture for
learning to detect retinal vessels in fundus images. In: 2015 37th Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). IEEE (2015)

11. Maji, D., et al. : Ensemble of deep convolutional neural networks for learning to
detect retinal vessels in fundus images. arXiv preprint arXiv:1603.04833 (2016)

12. Pratt, H., et al.: Convolutional neural networks for diabetic retinopathy. Procedia
Comput. Sci. 90, 200–205 (2016)

13. Christine, N.: Your diabetic patients: look them in the eyes. Which ones will lose
their sight? (2015). http://www.eyepacs.com/diabeticretinopathy/

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: 26th Advances In Neural Information Processing
Systems (2012)

15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(ICRL), 114 (2015)

16. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-fei, L.: ImageNet: a large-scale
hierarchical image database. In: IEEE Computer Vision and Pattern Recognition
(CVPR) (2009)

http://arxiv.org/abs/1603.04833
http://www.eyepacs.com/diabeticretinopathy/

A Comparison of Machine Learning Approaches
for Classifying Multiple Sclerosis Courses Using

MRSI and Brain Segmentations

Adrian Ion-Mărgineanu1,2,3(B), Gabriel Kocevar1, Claudio Stamile1,2,3,
Diana M. Sima2,3,4, Françoise Durand-Dubief1,5, Sabine Van Huffel2,3,

and Dominique Sappey-Marinier1,6

1 CREATIS CNRS UMR5220 & INSERM U1206, Université de Lyon,
Université Claude Bernard-Lyon 1, INSA-Lyon, Villeurbanne, France

adrian@esat.kuleuven.be
2 Department of Electrical Engineering (ESAT),

STADIUS Center for Dynamical Systems,
Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium

3 imec, Leuven, Belgium
4 R&D Department, icometrix, Leuven, Belgium

5 Service de Neurologie A, Hôpital Neurologique, Hospices Civils de Lyon,
Bron, France

6 CERMEP - Imagerie du Vivant, Université de Lyon, Bron, France

Abstract. The objective of this paper is to classify Multiple Sclerosis
courses using features extracted from Magnetic Resonance Spectroscopic
Imaging (MRSI) combined with brain tissue segmentations of gray mat-
ter, white matter, and lesions. To this purpose we trained several classi-
fiers, ranging from simple (i.e. Linear Discriminant Analysis) to state-of-
the-art (i.e. Convolutional Neural Networks). We investigate four binary
classification tasks and report maximum values of Area Under receiver
operating characteristic Curve between 68% and 95%. Our best results
were found after training Support Vector Machines with gaussian kernel
on MRSI features combined with brain tissue segmentation features.

Keywords: Machine learning · Convolutional neural networks · Mul-
tiple sclerosis · Magnetic resonance spectroscopic imaging · Brain
segmentation

1 Introduction

Multiple sclerosis (MS) is an inflammatory disorder of the brain and spinal
cord [1], affecting approximately 2.5 million people worldwide.

The majority of MS patients (85%) usually experience a first attack defined as
Clinically Isolated Syndrome (CIS), and will develop a relapsing-remitting (RR)
form [2]. Two thirds of the RR patients will develop a secondary progressive
(SP) form, while the other third will follow a benign course [3]. The rest of MS
patients (15%) will start directly with a primary progressive (PP) form.
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 643–651, 2017.
https://doi.org/10.1007/978-3-319-68612-7_73

644 A. Ion-Mărgineanu et al.

The criteria to diagnose MS forms were originally formulated by McDonald in
2001 [4] and revised by Polman in 2005 [5] and 2011 [6]. They all rely on using
conventional magnetic resonance imaging techniques (MRI), such as T1 and
FLAIR, due to high sensitivity in visualizing MS lesions. More recently [7], 1H-
Magnetic Resonance Spectroscopic Imaging (MRSI) has been shown to provide
a better understanding of the pathological mechanisms of MS.

The objective of this study is to fully explore the potential of MRSI for auto-
matic classification of MS courses. To this purpose we use four different machine
learning approaches to classify individual spectroscopic voxels inside the brain.
We start by using simple machine learning methods (i.e. Linear Discriminant
Analysis (LDA)) trained on low-level features commonly used in MRSI, and
advance up to state-of-the-art methods (e.g. Convolutional Neural Networks
(CNN)) trained on high-level MRSI features.

2 Materials and Methods

2.1 Patient Population

This longitudinal study includes 87 MS patients who were scanned multiple times
over several years between 2006 and 2012. Diagnosis and disease course were
established according to the McDonald criteria [4,8]. This study was approved
by the local ethics committee (CPP Sud-Est IV) and the French national agency
for medicine and health products safety (ANSM), and written informed consents
were obtained from all patients prior to study initiation. More details for each
MS group can be found in Table 1.

Table 1. MS population details

CIS RR PP SP

Number of patients 12 30 17 28

Total number of scans 60 212 117 192

Total number of voxels 5916 18682 10830 17377

2.2 Magnetic Resonance Data Acquisition and Processing

All patients underwent magnetic resonance (MR) examination using a 1.5 Tesla
MR system (Sonata Siemens, Erlangen, Germany) and an 8 elements phased-
array head-coil.

MRI Acquisition. Conventional MRI protocol consisted of a 3 dimensional T1-
weighted (magnetization prepared rapid gradient echo-MPRAGE) sequence with
repetition time/echo time/time for inversion TR/TE/TI = 1970/3.93/1100 ms,
flip angle = 15◦, matrix size = 256× 256, field of view (FOV) = 256×256 mm,

A Comparison of Machine Learning Approaches 645

slice thickness = 1 mm, voxel size = 1× 1× 1 mm, and a fluid attenuated inver-
sion recovery (FLAIR) sequence with TR/TE/TI = 8000/105/2200 ms, flip
angle = 150◦, matrix size = 192 × 256, FOV = 240× 240 mm, slice thick-
ness = 3 mm, voxel size = 0.9× 0.9 × 3 mm.

MRSI Acquisition. MRSI data was acquired from one slice of 1.5 cm thick-
ness, placed above the corpus callosum and along the anterior commissure -
posterior commissure (AC-PC) axis, encompassing the centrum semioval region.
A point-resolved spectroscopic sequence (PRESS) with TR/TE = 1690/135 ms
was used to select a volume of interest (VOI) of 105× 105× 15 mm3 during the
acquisition of 24× 24 (interpolated to 32× 32) phase-encodings over a FOV of
240× 240 mm2.

MRI Processing. Three tissues of the brain, gray matter (GM), white matter
(WM), and lesions, were segmented based on T1 and FLAIR, using the MSmetrix
software [9] developed by icometrix (Leuven, Belgium).

MRSI Processing. MRSI data processing was performed using SPID [10]
in MatLab 2015a (MathWorks, Natick, MA, USA). Three metabolites well-
studied in MS, N -acetyl-aspartate (NAA), Choline (Cho), and Creatine (Cre),
were quantified with AQSES [10] (Automated Quantitation of Short Echo time
MR Spectra), using a synthetic basis set which incorporates prior knowledge of
the individual metabolites. Maximum-phase finite impulse response filtering was
included in the AQSES procedure for residual water suppression, with a filter
length of 50 and spectral range from 1.7 to 4.2 ppm.

Quality Control. First, we removed a band of two voxels at the outer edges
of each VOI in order to avoid chemical shift displacement artifacts and lipid
contamination artifacts. Second, for each voxel inside a grid, we performed three
outlier detections, corresponding to each metabolite, using the median absolute
deviation filtering. Final selection includes voxels with a maximum Cramer Rao
Lower Bound of 20% for each metabolite, preserved by all three outlier detection
mechanisms. In the end, average voxel exclusion rate was 31%± 6% standard
deviation, and only 2 out of 581 spectroscopy grids had an exclusion rate higher
than 50%.

2.3 Classification Tasks and Performance Measures

We study four binary classification tasks, relevant from a clinical point of view:
CIS vs. RR, CIS vs. PP, RR vs. PP, and RR vs. SP. For each task we set the less
represented class between the two to be the positive class, or the class of interest.
Therefore, we set the positive class to CIS, CIS, PP, and SP, corresponding to
each task. When classifying, we perform a 2-fold stratified cross-validation at
the patient level, meaning that each patient will be assigned once to training,

646 A. Ion-Mărgineanu et al.

and once to testing. The training dataset includes all voxels from all patients
assigned to training. When testing, a voxel will be assigned to one of the two
classes. For each grid, we compute the probability to be assigned to the positive
class by measuring the percentage of voxels assigned to the positive class.

We compute and report three performance measures widely used in clas-
sification: AUC (Area Under receiver operating characteristic (ROC) Curve),
sensitivity, and specificity. The last two measures were computed for the optimal
operating point of the ROC curve. Using the general formulation of the confu-
sion matrix from Table 2, sensitivity, or true positive rate (TPR), is defined as

TP
TP+FN . Specificity, or true negative rate (TNR), is defined as TN

TN+FP .

Table 2. General confusion matrix.

Confusion matrix
Predicted condition

Predicted negative Predicted positive

True condition
Condition negative True Negative (TN) False Positive (FP)
Condition positive False Negative (FN) True Positive (TP)

The ROC curve can be created when the classification model gives probability
values of test points belonging to the positive class, by plotting Sensitivity (y-
axis) against 1-Specificity (x-axis) at various probability thresholds. A random
classifier has an AUC of 0.5 or 50%, while a perfect classifier will have an AUC
of 1 or 100%.

2.4 Feature Extraction Models

Model nr.1 (M1). We use the absolute values of the complex frequency spec-
trum cut by a pass-band filter between 1.2 and 4.2 ppm, so that we retain the
most useful information. In order to have a perfect alignment of all spectra for
all patients, we detect the highest peak in the low frequencies (NAA) and shift to
the NAA peak of a randomly assigned reference voxel. In this case, each voxel is
represented by the filtered frequency vector, which has 81 points. We normalize
each vector to its L2-norm.

Model nr.2 (M2). We use the three quantified metabolite concentrations
(NAA, Cho, Cre) to compute three ratios: NAA/Cho, NAA/Cre, and Cho/Cre.
Mean values and standard deviations for each MS group can be found in Table 3.

Model nr.3 (M3). For each voxel, we measure the percentage of each tissue
of the brain (GM, WM, lesions). In this case, each voxel is represented by 6
features: three metabolic ratios and three tissues percentages.

A Comparison of Machine Learning Approaches 647

Table 3. MS population: metabolite ratios - mean (standard deviation).

CIS RR PP SP

NAA/Cho 2.21 (0.24) 2.02 (0.25) 1.83 (0.18) 1.86 (0.32)

NAA/Cre 1.36 (0.1) 1.35 (0.11) 1.27 (0.11) 1.22 (0.12)

Cho/Cre 0.63 (0.07) 0.69 (0.08) 0.72 (0.1) 0.69 (0.1)

Model nr.4 (M4). For each voxel, we compute the spectrogram of its time-
domain signal. First, we interpolate the time-domain signal to 1024 points. We
compute the spectrogram using a moving window of 128 points, with an overlap
of 112 points. In the end, each voxel will be represented by a 128×57 image.
These values have been especially selected such that the final image is large
enough to be used as input in CNNs.

2.5 Classifiers

For each classification task and for each of the first three feature extraction
models, we used three supervised classifiers: (1) LDA [11] without adjusting for
class unbalance, (2) Random Forest [12] (RF) with 1000 trees, adjusted for class
unbalance by setting the class weight parameter to balanced subsample, and (3)
Support Vector Machines with radial basis function (SVM-rbf) [13], adjusted for
class unbalance by setting the class weight parameter to balanced, and tuned the
misclassification cost “C” by selecting its optimal value out of four values (0.1, 1,
10, and 100) over a 5-fold cross-validation loop. The gamma parameter was set
to auto. All classifiers were built in Python 2.7.11 with scikit-learn 0.17.1 [14].
Feature scaling was learned using the training set and applied on both training
and test sets, only for the second and third model.

For the last feature extraction model and for each classification task, we
built a CNN inspired by [15] using the Keras package [16] based on Theano [17].
Our architecture consists of 8 weighted layers: 6 convolutional (conv) and 2
fully connected (FC). All convolutional layers have a receptive field of 3× 3 and
the border mode parameter set to ‘same’. All weighted layers are equipped with
the rectification non-linearity (ReLU). Spatial pooling is carried out by 3 max-
pooling (MP) layers over a 2× 2 window with stride 2. The first FC layer has
64 channels, while the second one has only 2, because it performs the two-class
classification. The final layer is the sigmoid layer. To regularise the training,
we used a Dropout layer (D) between the two FC layers, with ratio set to 0.8.
A simplified version of our architecture is (conv-conv-MP-conv-conv-MP-conv-
conv-MP-FC(64)-D(0.8)-FC(2)-Sigmoid). When training each CNN, we used the
‘adadelta’ optimizer, the ‘categorical crossentropy’ loss function, and we split the
training dataset into 70-30 training-validation data. We stopped training after
200 epochs, and for each classification task, validation accuracy was at a stable
value over 85%, signalling that training was performed correctly.

648 A. Ion-Mărgineanu et al.

3 Results and Discussion

All performance measures can be found in Table 4. Maximum AUC values for
each classification task are highlighted in bold.

Table 4. AUC, Sensitivity, and Specificity values for all classifiers, feature extraction
models (M1-M4), and classification tasks.

Percentage [%] M1 M2 M3 M4

LDA RF SVM-rbf LDA RF SVM-rbf LDA RF SVM-rbf CNN

CIS vs. RR

AUC 65 50 63 53 55 66 63 76 77 71

Sensitivity 0 0 38 2 0 13 2 28 25 17

Specificity 100 100 83 100 100 99 100 96 100 98

CIS vs. PP

AUC 89 92 88 87 90 90 88 91 95 83

Sensitivity 68 68 63 67 72 78 65 77 83 73

Specificity 93 95 94 91 90 89 91 87 90 82

RR vs. PP

AUC 66 62 68 64 64 68 55 54 57 68

Sensitivity 21 17 50 29 37 56 0 0 0 28

Specificity 93 94 78 87 82 76 100 100 100 92

RR vs. SP

AUC 72 72 73 73 71 72 73 71 71 69

Sensitivity 60 54 57 40 43 48 51 38 29 56

Specificity 75 84 77 90 86 81 82 92 97 75

For CIS vs. RR we obtain a maximum AUC of 77% when combining metabo-
lite ratios with GM, WM, and lesions percentage. The increase in AUC for both
SVM-rbf and RF is higher than 10% when we compare M3 to M1 or M2, therefore
we can safely conclude that adding GM, WM, and lesions percentage, is indeed
beneficial when classifying CIS vs. RR courses. This is most probably due to the
fact that RR patients have more lesions than CIS patients. It is worth mention-
ing that the CNN, which takes as input only the MRSI spectrogram, performs
better than all other classifiers based on spectroscopic features.

For CIS vs. PP we obtain a maximum AUC of 95% when combining metabo-
lite ratios with GM, WM, and lesion percentages in each voxel. The increase in
AUC for SVM-rbf is higher than 5% when we compare M3 to M1 or M2. This
task is not too interesting from the medical point of view, because we know that
PP patients have a more aggressive form of MS and a higher lesion load than CIS
patients. Our results confirm the clinical background and provide an accurate
classification with high sensitivity for PP.

For RR vs. PP we obtain the lowest AUC value of the four classification tasks,
only 68%. It is interesting to see that adding GM, WM, and lesion percentages
did not improve the results, but on the contrary. This indicates an opposing
effect between brain segmentation percentages and metabolic ratios. Another
interesting fact is that maximum results obtained with M1, M2, or M4, are
exactly the same, indicating that spectroscopy is not sensitive enough to classify
these two MS courses.

A Comparison of Machine Learning Approaches 649

For RR vs. SP we obtain a maximum AUC value of 73%, if we use M1,
M2, or M3. There are two main observations to be made: (1) LDA trained on
metabolic ratios can be regarded as the best classifier for this task, due to a
simple feature extraction model and high computational speed, and (2) adding
brain segmentation percentages did not improve the results.

To our knowledge, there are only two other studies which report classification
results between MS courses, and both are based on diffusion MRI. Muthuraman
et al. [18] report almost a perfect accuracy of 97% for 20 CIS vs. 33 RR patients,
and Kocevar et al. [19] report F1-scores of 91.8% for 12 CIS vs. 24 RR patients,
75.6% for 24 RR vs. 17 PP patients, and 85.5% for 24 RR vs. 24 SP patients.
These results show that features extracted from diffusion MRI are clearly better
than MRSI features at discriminating MS courses.

The main goal of this study was to compare different levels of extracting
information from the MRSI voxels. To that extent, at the low-level we used only
3 metabolite ratios, at the mid-level we used the entire absolute frequency spec-
trum of 81 points, and at the high-level we used the MRSI spectrograms, of size
128×57. To boost the low-level features, we added the brain tissue segmenta-
tions percentages of WM, GM, and lesions. We used spectrograms as input to
state of the art classifiers (e.g. CNNs), and compared the results with widely
used machine learning algorithms (e.g. LDA, RF, SVM-rbf) trained on features
commonly used in MRSI. We observe that results obtained with CNNs are not
significantly worse or better than the rest. Thus, it means that there is an inher-
ent limitation of our particular MRSI protocol to classify MS courses.

Our results show that combining low-level MRSI features with brain tissue
segmentations percentages can improve classification between the least aggres-
sive MS course (CIS) and the moderate-severe courses (RR and PP). However,
there are obvious limitations on any level of the MRSI features when classify-
ing moderate (RR) from severe MS courses (PP and SP). In the future we will
incorporate diffusion MRI features and perform multi-class classification.

4 Conclusions

In this paper we performed four binary classification tasks for discriminating
between MS courses. We report AUC, sensitivity, and specificity values, after
training simple and complex classifiers on four different types of features. We
show that combining metabolic ratios with brain tissue segmentation percentages
can improve classification results between CIS and RR or PP patients. Our
best results are always obtained with SVM-rbf, so we can safely conclude that
building complex architectures of convolutional neural networks do not add any
improvement over classical machine learning methods.

Acknowledgments.. This work was funded by European project EU MC ITN
TRANSACT 2012 (No. 316679) and the ERC Advanced Grant BIOTENSORS
nr.339804. EU: The research leading to these results has received funding from the

650 A. Ion-Mărgineanu et al.

European Research Council under the European Union’s Seventh Framework Pro-
gramme (FP7/2007–2013). This paper reflects only the authors’ views and the Union
is not liable for any use that may be made of the contained information.

References

1. Compston, A., Coles, A.: Multiple sclerosis. Lancet 372(9648), 1502–1518 (2008)
2. Miller, D.H., Chard, D.T., Ciccarelli, O.: Clinically isolated syndromes. Lancet

Neurolog. 11(2), 157–169 (2012)
3. Scalfari, A., Neuhaus, A., Degenhardt, A., Rice, G.P., Muraro, P.A., Daumer, M.,

Ebers, G.C.: The natural history of multiple sclerosis, a geographically based study
10: relapses and long-term disability. Brain 133(7), 1914–1929 (2010)

4. McDonald, W.I., Compston, A., Edan, G., Goodkin, D., Hartung, H.P., Lublin,
F.D., McFarland, H.F., Paty, D.W., Polman, C.H., Reingold, S.C., et al.: Recom-
mended diagnostic criteria for multiple sclerosis: guidelines from the international
panel on the diagnosis of multiple sclerosis. Ann. Neurolog. 50(1), 121–127 (2001)

5. Polman, C.H., Reingold, S.C., Edan, G., Filippi, M., Hartung, H.P., Kappos, L.,
Lublin, F.D., Metz, L.M., McFarland, H.F., O’Connor, P.W., et al.: Diagnostic cri-
teria for multiple sclerosis: 2005 revisions to the McDonald criteria. Ann. Neurolog.
58(6), 840–846 (2005)

6. Polman, C.H., Reingold, S.C., Banwell, B., Clanet, M., Cohen, J.A., Filippi, M.,
Fujihara, K., Havrdova, E., Hutchinson, M., Kappos, L., et al.: Diagnostic criteria
for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurolog.
69(2), 292–302 (2011)

7. Rovira, À., Auger, C., Alonso, J.: Magnetic resonance monitoring of lesion evolu-
tion in multiple sclerosis. Ther. Adv. Neurolog. Disord. 6(5), 298–310 (2013)

8. Lublin, F.D., Reingold, S.C., et al.: Defining the clinical course of multiple sclerosis
results of an international survey. Neurology 46(4), 907–911 (1996)

9. Jain, S., Sima, D.M., Ribbens, A., Cambron, M., Maertens, A., Van Hecke, W., De
Mey, J., Barkhof, F., Steenwijk, M.D., Daams, M., et al.: Automatic segmentation
and volumetry of multiple sclerosis brain lesions from MR images. NeuroImage
Clin. 8, 367–375 (2015)

10. Poullet, J.B.: Quantification and classification of magnetic resonance spectroscopic
data for brain tumor diagnosis. Katholic University of Leuven (2008)

11. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann.
Eugen. 7(2), 179–188 (1936)

12. Breiman, L.: Random Forests. Mach. Learn. 45(1), 5–32 (2001)
13. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297

(1995)
14. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint (2014). arXiv:1409.1556

16. Chollet, F.: Keras (2015). https://github.com/fchollet/keras
17. Theano Development Team: Theano: a Python framework for fast computation of

mathematical expressions. arXiv e-prints abs/1605.02688. http://arxiv.org/abs/
1605.02688

http://arxiv.org/abs/1409.1556
https://github.com/fchollet/keras
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688

A Comparison of Machine Learning Approaches 651

18. Muthuraman, M., Fleischer, V., Kolber, P., Luessi, F., Zipp, F., Groppa, S.: Struc-
tural brain network characteristics can differentiate CIS from early RRMS. Front.
Neurosci. 10 (2016). Article no. 14

19. Kocevar, G., Stamile, C., Hannoun, S., Cotton, F., Vukusic, S., Durand-Dubief, F.,
Sappey-Marinier, D.: Graph theory-based brain connectivity for automatic classi-
fication of multiple sclerosis clinical courses. Front. Neurosci. 10, 478 (2016)

Advances in Machine Learning

Parallel-Pathway Generator for Generative
Adversarial Networks to Generate
High-Resolution Natural Images

Yuya Okadome(B), Wenpeng Wei, and Toshiko Aizono

Intelligent Information Research Department, Hitachi, Ltd., 1-280,
Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan

{yuya.okadome.qj,wenpeng.wei.bo,toshiko.aizono.jn}@hitachi.com

Abstract. Generative Adversarial Networks (GANs) can learn various
generative models such as probability distribution and images, while it
is difficult to converge training. There are few successful methods for
generating high-resolution images. In this paper, we propose the parallel-
pathway generator network to generate high-resolution natural images.
Our parallel network are constructed by parallelly stacked generators
with different structure. To investigate the effect of our structure, we
apply it to two image generation tasks: human-face image and road image
which does not have square resolution. Results indicate that our method
can generate high-resolution natural images with few parameter tuning.

Keywords: Generative Adversarial Networks · Deep learning · Gener-
ative models · Parallel structure

1 Introduction

Generative Adversarial Networks (GANs) [1,2] is an easily implementable and
powerful generative model. GANs is not only applied to the approximation of
probability distribution but also to the task of image generation [3], grasping
in the robotics field [4], and aging of the face image [5]. Many applications
of GANs are used for the task of image generation based on the success of
many deep convolutional neural networks. However, in order to generate a high-
resolution image, it is not easy to stably train networks due to the difficulty
of tuning to adjust many initial parameters by network designer. Generation of
high-resolution image based on the GANs has not been realized.

In this research, we propose the parallel-pathway structure of generation
to generate high-resolution natural images. Our parallel structure is capable of
generating the image with different aspect ratio by only changing the input of
generator and output of discriminator. In addition, while the number of para-
meters does not dramatically increase [8], the proposed network prevents the
collapse which is caused by conversion to “undesired” local optima, since each
network has different conversion speed.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 655–662, 2017.
https://doi.org/10.1007/978-3-319-68612-7_74

656 Y. Okadome et al.

We applied our method to two different image generation tasks: human face
and road. The generation task of human face includes different background, and
we show that our network allows for separation of the face and background.
In addition, we then demonstrate that our network with same parameter and
structure of hidden layers cound be applied generate road images with different
aspect ratio.

2 Related Work

Generating images are one of the important problems in computer vision.
Recently, image generation has become popular with a development of GANs
[1]. However, since the learning of original GANs is unstable [6], it is not easy
to generate high-resolution images. Therefore, some methods for stable learning
and generating high-resolution images are studied and proposed.

DCGAN [3] is proposed to improve the learning of GANs and generate vari-
ous images. In DCGAN, full-connection layers of GANs are replaced with con-
volution layers, and the learning is stabilized by setting the network structure,
initial weight of convolution layers, and activation function. However, collapse
of images is occurred when the condition of experiment is changed such as a
different resolution of images.

To stabilize the learning of GANs, some techniques such as minibatch dis-
crimination for preventing collapse of image are proposed [6]. By employing these
techniques, it is possible to achieve a stable and fast conversion. However, effi-
ciency of these techniques for image of different aspect ratio is not investigated.

StackGAN [7] is a method of conditional GANs [2] for image generation by
converting sentences to numeric vector and input it to generator. This GANs
has a structure of connecting two generators in series to generate high-resolution
images, and there are discriminator for each generator, i.e., this method has to
learn four networks. Therefore, the number of parameters and iterations for
learning dramatically increases.

3 Parallel-Pathway Generator Network

In this section, we introduce the structure of the parallel-way generator network.
To generate a high-resolution picture, we propose the network structure which
has the following properties:

– Parallel-way generator
– The structure of discriminator is same as previous work
– Robustness w.r.t. changing the resolution and aspect ratio of input image.

Since our proposed method does not have a structure connecting in series, the
increase in number of parameter become moderate [8]. It is expected that the
conversion of learning is not too slow while the capacity of the network increases.

PpGANs 657

3.1 Preliminaries of GANs

In GANs, the generator network (G) and discriminator network (D) are alter-
natively trained. D is a classifier and it classifies whether the input image is
from training dataset or fake generated by G. G is learned to deceive the D.
By competing D and G, generation distribution p of training dataset can be
approximated by G. This is the similar setting of two-player min-max with non-
cooperative game in the game theory [6].

In two-player min-max setting like GANs, the objective function becomes:

min
G

max
D

V (D,G) = Ex∼pdata
[log D(x)] + Ez∼pz

[log(1 − D(G(z))], (1)

where x and z are the true image obtained from data distribution pdata and
noise vector obtained from certain distribution pz (e.g., uniform distribution
and Gaussian distribution). The updates of D and G are based on following
equation:

∇θd
V (D,G) = ∇θd

Ex∼pdata
[log D(x)] + Ez∼pz

[log(1 − D(G(z))], (2)
∇θg

V (D,G) = ∇θg
Ez∼pz

[log(1 − D(G(z))]. (3)

By using mini-batch, each expectation becomes average of each mini-bach.
Conditional GAN [2,7,9] which condition c is added to z is the one of large

research area of GANs. By adding certain condition (e.g., word vector), the
generated image can be controlled. However, we don’t consider about the condi-
tional GANs since our aim is to generate a high-resolution natural image. The
extension of out proposed method to conditional GANs is one of our future work.

Fig. 1. Examples of human face with background. These figures are drawn from [12].

3.2 Structure of Our Network

To generate high-resolution natural images, it is necessary to separate various
objects. If the human and background cannot be separated in the case of the
structured images such as a human with various backgrounds (Fig. 1), it is not
possible to generate naturally looking images. To overcome this, our parallel-way
network is composed of networks to generate rough feature and detailed feature
(e.g., eye, heir, and bear).

Figure 2 shows the structure of our proposed network. The generator is com-
posed of two networks with different structure described above. Figure 2(A)

658 Y. Okadome et al.

Fig. 2. The structure of our network. Generator is constructed as multiple-way net-
work. The red and blue layers show the transposed convolution (Deconv) and convolu-
tion layer (Conv). The green layer shows the concatenation of result of each generator.
The k and s show the kernel size and stride. (Color figure online)

shows the network for generating rough feature. To handle the rough feature, the
stride of later two transposed convolution layers is set to 4. Note that, a convo-
lution layer is put after a transposed convolution layer to improve the capacity
of this network.

Figure 2(B) shows the network for generating detailed feature. This network
is constructed by only transposed convolution layer. The kernel size and stride
of transposed convolution layers are set to 4 and 2, respectively. By using this
setting, detailed feature compared to Fig. 2(A) can be generated. A batch nor-
malization layer [10] is put after each convolution and transposed convolution
layer in Fig. 2(A), (B).

The networks in Fig. 2(A) and (B) are concatenated after their own process.
The last convolution layer outputs the resulting image. In the last layer, there
are not any activation functions (e.g., tanh and sigmoid), i.e., the output is
directly estimated. Our network structure does not have full-connection layer
and is constructed by fully convolution layer. The advantage of this structure is
to reduce the number of parameters.

The structure of D is basically same as DCGANs. Since the image size is
different in our research, we added one convolution layer, and sigmoid activation
function is not used in the output layer.

PpGANs 659

4 Image Generation

We applied our network structure to the experiment of large-size image genera-
tion. In this experiment, we conducted two tasks: human-face image generation
and road image generation. The resolutions of human face and road generation
were set to 128 × 128 and 256× 128, respectively.

We used the computer with CPU: Xeon 2.4 GHz, Memory: 64 GB, GPU:
Nvidia Quadro M6000 12 GB for the experiments. The optimizer for training
networks was Adam [11], and the learning rate and momentum were set to
α = 0.002 and β1 = 0.5 for all experiment. We didn’t adjust the initial weight
of networks for our proposed network. Because of the limitation of graphics
memory, the number of networks of our parallel-way is two (the same structure
of Fig. 2), and mini-batch size for task of human face and road are set to 50 and
30, respectively.

4.1 Generation of Human Faces with Various Backgrounds

In this experiment, we used the celebA dataset [12] as the face image dataset.
This dataset included 202,600 face with various backgrounds images. Since the
original resolution of this dataset was 178× 218, images were cropped 178 × 178
and downsized to 128× 128. We implemented a DCGAN structure which was
similar to the Fig. 2(B) for comparison, and the weights of G and D networks
were randomly initialized by the Gaussian distribution with standard deviation
0.2 [3].

Figure 3 shows the results of the face image generation task. The collapse
is occurred in the result of DCGAN structure (Fig. 3(a)) since the only few
variations of face images are generated. Our network structure can generate
various face and more natural images (Fig. 3(b)) since the shadow, lighting, and
heir details are expressed. The separation of the face and background can be
achieved since sharp outline of the face is generated by our method. Our network
structure permits us to generate the high-resolution images.

4.2 Generation of Road Images

In this experiment, we used the DETRAC dataset [13] as a road image dataset.
The dataset included 83,792 road images. Since the original resolution of
this dataset was 960× 540, images were cropped 960 × 480 and downsized to
256× 128. The input reshapes of G (Fig. 2) were changed to 8× 4× 1024, and
input of output full-connection layer of D was also changed to 8× 4× 1024.
Other parameters were same as the previous face generation task.

Figure 4 shows the result of the road image generation task. The collapse is
also occurred in the result of DCGAN structure (Fig. 4(a)). Our method can
generate nearly natural road images (Fig. 4(b)) while some images has crossing
road. In generated images, it is clear on the shape of car, divisional strip, and
road sign. From this experiment, we show our method can generate the image
with different aspect ratio with out many parameter tuning.

660 Y. Okadome et al.

(a) The result of DCGAN structure.

(b) The result of our structure.

Fig. 3. The results of face image generation. Results are extracted from the generator
after 10 epochs training.

PpGANs 661

(a) The result of DCGAN structure.

(b) The result of our structure.

Fig. 4. The results of road generation. Results are extracted from the generator after
20 epochs training.

5 Conclusion

In this research, we proposed a parallel-pathway generator which parallelly stacks
networks of different structure. The experimental results of human face and
road image generation indicate high-resolution natural images without collapse
of training reducing the hand-tuned parameters.

Our future work is to investigate the theoretical aspects of parallel-way struc-
ture such as the stability and the conversion speed. Intuitively, it seems that our

662 Y. Okadome et al.

structure stacks networks with different conversion speed and this prevents to
converge the “undesired” local optima which leads to unsense images.

References

1. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural
Information Processing Systems (NIPS 2014), pp. 2672–2680 (2014)

2. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

3. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

4. Veres, M., Moussa, M., Taylor, G.W.: Modeling grasp motor imagery through deep
conditional generative models. IEEE Robot. Autom. Lett. 2(2), 757–764 (2017)

5. Antipov, G., Baccouche, M., Dugelay, J.-L.: Face Aging with Conditional Genera-
tive Adversarial Networks. arXiv preprint arXiv:1702.01983 (2017)

6. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs. In: Advances in Neural Information
Processing Systems (NIPS), pp. 2226–2234 (2016)

7. Zhang, H., Xu, T., Li, H., Zhang, S., Huang, X., Wang, X., Metaxas, D.: Stack-
GAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial
Networks. arXiv preprint arXiv:1612.03242 (2016)

8. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1–9 (2015)

9. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adver-
sarial text to image synthesis. In: Proceedings of The 33rd International Conference
on Machine Learning, vol. 3 (2016)

10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv:1502.03167 (2015)

11. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 (2014)

12. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
Proceedings of International Conference on Computer Vision (ICCV) (2015)

13. Wen, L., Du, D., Cai, Z., Lei, Z., Chang, M., Qi, H., Lim, J., Yang, M., Lyu,
S.: DETRAC: A New Benchmark and Protocol for Multi-Object Detection and
Tracking. arXiv CoRR (2015)

http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1702.01983
http://arxiv.org/abs/1612.03242
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980

Using Echo State Networks for Cryptography

Rajkumar Ramamurthy(B), Christian Bauckhage, Krisztian Buza,
and Stefan Wrobel

Department of Computer Science, University of Bonn, Bonn, Germany
ramamurt@iai.uni-bonn.de

Abstract. Echo state networks are simple recurrent neural networks
that are easy to implement and train. Despite their simplicity, they show
a form of memory and can predict or regenerate sequences of data. We
make use of this property to realize a novel neural cryptography scheme.
The key idea is to assume that Alice and Bob share a copy of an echo
state network. If Alice trains her copy to memorize a message, she can
communicate the trained part of the network to Bob who plugs it into his
copy to regenerate the message. Considering a byte-level representation
of in- and output, the technique applies to arbitrary types of data (texts,
images, audio files, etc.) and practical experiments reveal it to satisfy the
fundamental cryptographic properties of diffusion and confusion.

1 Introduction

The emerging field of neural cryptography is a sub-field of cryptography that
deals with artificial neural networks for encryption and cryptanalysis.

Early contributions in this area considered cryptographic systems based on
recursive auto encoders and showed that feed-forward networks trained via back-
propagation can encrypt plain-text messages in the activation patterns of hidden
layer neurons [3]. Later work introduced key-exchange systems where coupled
neural networks synchronize to establish common secret keys [6]; while the origi-
nal approach was not completely secure [7], more recent work showed that mod-
ern convolutional interacting neural networks can indeed learn to protect their
communication against adversary eaves-droppers [1]. Another popular idea is to
combine chaotic dynamics and neural networks [8,9,13–15]. For example, chaotic
neural networks were found to be able to generate random binary sequences for
encryption.

Given this short survey, the novel idea for neural cryptography proposed in
this paper can be seen as a hybrid approach that harnesses chaotic dynamics
and the deterministic outcome of a training procedure. Namely, we propose to
use echo state networks [4] both for encryption and decryption.

Considering the classic scenario where Alice and Bob exchange messages and
want to protect their communication against Eve’s eavesdropping, we assume
that both share an identical copy of an echo state network whose internal states
evolve according to a non-linear dynamical system. To encrypt a message (a
text, an image, etc.), Alice feeds it into her copy of the network and trains the
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 663–671, 2017.
https://doi.org/10.1007/978-3-319-68612-7_75

664 R. Ramamurthy et al.

output weights such that the network reproduces the input. She then sends these
output weights to Bob who uses them to run his copy of the network which will
regenerate the message. Eve, on the other hand, may retrieve the communicated
output weights, but without the corresponding echo state network (its structure,
input weights, and internal weights), she will not be able to decipher the message.
Our experiments with this kind of private-key or symmetric cryptography system
reveal the approach to be easy to use, efficient, scalable, and secure. Our work
differs considerably from [8,9,13–15] in which chaotic neural networks generate
binary sequences which are then mapped on to the given data whereas we train
echo state networks to reproduce the given data directly. A preliminary draft of
this paper has been made available on arXiv repository [11].

Next, we briefly summarize the basic theory behind echo state networks and
how to use them as auto encoders that memorize their input. We then discuss
how to harness them for cryptography and present experiments which underline
that our approach satisfies the fundamental cryptographic properties of diffusion
and confusion.

2 Echo State Networks as Memories

Echo state networks (ESNs) follow the paradigm of reservoir computing where a
large reservoir of recurrently interconnected neurons processes sequential data.
The central idea is to randomly generate weights W i ∈ R

nr×ni between input
and reservoir neurons as well as weights W r ∈ R

nr×nr between reservoir neu-
rons. Only the weights W o ∈ R

no×nr between reservoir and output neurons are
trained in order to adapt the network to a particular task.

At time t, the states of the input, output, and reservoir neurons are collected
in xt ∈ R

ni , yt ∈ R
no , and rt ∈ R

nr , respectively, and their evolution over time
is governed by the following non-linear dynamical system

rt = (1 − α)rt−1 + α fr
(
W rrt−1 + W ixt

)
(1)

yt = fo
(
W ort

)
(2)

where α ∈ [0, 1] is called the leaking rate. The function fr(·) is understood to act
component-wise on its argument and is typically a sigmoidal activation function.
For the output layer, however, fo(·) is usually just a linear or softmax function
depending on the application context.

To train an echo state network, one provides a training sequence of input
data x1,x2, . . . ,xT gathered in a matrix X ∈ R

ni×T together with a sequence
of desired outputs y1,y2, . . . ,yT gathered in Y ∈ R

no×T . The training sequence
is fed into the network and the internal activations that result from iterating
Eq. (1) are recorded in a matrix R = [r1, r2, . . . , rT] ∈ R

nr×T . Appropriate
output weights W o can then be determined using least squares

W o = Y RT (RRT + βI)−1 (3)

Using Echo State Networks for Cryptography 665

where β is a regularization constant. However, for a good practical performance,
the scale a of W i and the spectral radius ρ of W r have to be chosen carefully.
Together with the leaking rate α, these parameters are rather task specific, yet,
useful, commonly adhered to general guidelines are given in [10].

Because of its recurrent connections, the reservoir of an echo state network
can be understood as a non-linear high-dimensional expansion of the input data
that has a memory of the past. The temporal reach of this memory is called
“memory capacity” and bounded by the number of reservoir neurons [5]. An
entire input sequence (e.g. a text file) can therefore be stored in- and retrieved
from the reservoir provided the reservoir is large enough. Hence, our idea in this
paper is to produce an echo state network with a large reservoir and to train it to
memorize an input sequence. Once the training is complete, we let the network
run freely to (re)generate the memorized sequence.

3 ESN-Based Encryption and Decryption

We consider the classic cryptographic scenario where Alice and Bob want to
secure their communication against Eve’s eavesdropping. Using a secret key,
Alice converts her messages known as plaintexts into encrypted messages known
as ciphertexts. She then sends the ciphertexts to Bob who uses the same key to
convert them back into plaintexts.

Given this setup, our idea is to “memorize” a given message using an echo
state network at one end of a communication channel and to “recall” it at the
other end using the same network. If Alice and Bob share an identical copy of
the network, Alice can train it to memorize the data and transmits only the
resulting weights W o over the insecure channel. Bob then plugs these weights
into his copy of the network and runs it to reconstruct Alice’s message. In other
words, the weight matrices W i and W r and leaking rate α of the echo state
network constitute the secret key of our cryptographic system. Without it Eve
can not decipher the transmitted ciphertext W o.

3.1 Representing Data

In our practical implementations of the above scheme, we consider byte-level
representations of messages. This allows for flexibility and wide applicability
because, in the memory of a computer, texts or images are represented as a
byte-stream after all. To further increase flexibility, we consider a “one hot”
encoding of individual bytes where each of the 256 possible values is represented
as a 256-dimensional binary vector.

3.2 Memorizing Data

Given any byte sequence B = [b1, b2, . . . , bN] of input data, we train and apply
an echo state network as follows: First, we append a dummy byte b0 at the
beginning of the original sequence B so as to make the later recall process

666 R. Ramamurthy et al.

independent of the value of the original first byte in the sequence. Second, we
encode the resulting sequence to obtain H = [h0,h1, . . . ,hN] where each hi is a
binary vector of length 256. Given H, we then set the in- and output sequence
for an echo state network to

X = [h0,h1, . . . ,hN−1] (4)
Y = [h1,h2, . . . ,hN] (5)

where the indices of the vectors in sequences X and Y differ by one time step.
Given an echo state network with input weights W i and reservoir weights W r,
we then iterate the system in (1) and (2) and learn appropriate output weights
W o according to (3).

3.3 Recalling Data

Once W o has been determined, it can be plugged into an identical copy of the
echo state network at the other end of a communication channel. This network
can then regenerate the encoded message one element at a time. To this end, we
consider the dummy byte b0 and “one hot” encode it to obtain x0 = h0. Using
this as the first input to the network, we run the system in (1) and (2) to obtain
yt from xt. At each time step, we consider the network output yt, which is not
necessarily a binary vector, as a vector of probabilities for different bytes. We
thus subject it to the softmax function which returns a 1 for the most likely entry
and 0 s for all others. The resulting binary vector is then used as the input xt+1

for the next iteration of the network. Moreover, we decode the binary vectors
obtained in each iteration into bytes bt and collect them in a matrix S, which is
exactly the original sequence B memorized by the echo state network.

3.4 Working with “Data Chunks”

As the size N of data sequence increases, the size nr ∈ O(N) of a reservoir that
can memorize it increases, too. This makes the matrix multiplications W rrt
required for the network’s state updates expensive. In fact, the total cost for N
internal updates will be of order O(N3) and, to reduce this cost, we adopt a
“divide-and-conquer” strategy where we split the data into chunks of size m and
employ a small reservoir to memorize each chunk at an effort of O(m3). Hence,
for an entire sequence, i.e. for N

m chunks, efforts reduce to O(Nm×m3) = O(Nm2).

4 Experiments and Security Analysis

In our practical experiments, we found that echo state networks used as described
above can indeed memorize and perfectly recall different types of data such as
texts, images, audio files, videos, archives, etc. In this section we report results
obtained from different kinds of security analysis of our cryptographic scheme.
The parametrization of the echo state networks considered in these experiments
is summarized in Table 1.

Using Echo State Networks for Cryptography 667

Table 1. Echo state network configuration

Parameter Value

Chunk size m 200 (reservoir size nr chosen as 0.95 × m)

Leaking rate α 0.07

Spectral radius ρ of W r 1.0

Input scaling a of W i 0.5

Random seed Randomly chosen

Input connectivity Input neurons are connected to 30% of reservoir
neurons

Reservoir connectivity Reservoir neurons are connected to 30% of reservoir
neurons

Activation function f Logistic for the reservoir and softmax for the output

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Key sensitivity: (a), (e) original images; (b), (f) decrypted images using the
same key (echo state network) as used for encryption; both decrypted images are iden-
tical to the originals; (c), (d), (g), (h) decrypted images using slightly modified keys,
i.e. slightly modified echo state networks; here, all decrypted images differ considerably
from the original images.

Next, we discuss security analysis of the proposed scheme by following a
standard framework [2] which provides basic guidelines for testing fundamental
cryptographic properties.

Any cryptography system should be robust against common types of attacks
such as brute force attacks, chosen-plaintext attacks, and ciphertext-only
attacks. In a brute force attack, an attacker attempts to find the keys of the
system through trial and error. It is evident from the Table 1 that the key space
of our proposed system is very large and most of the parameters are unbounded.

668 R. Ramamurthy et al.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Plaintext sensitivity: (a), (f) original images; (b), (g) encrypted images; (c), (h)
original images with 1% of their pixels randomly distorted; (d), (i) encryptions of the
modified images; (e), (j) difference between encrypted original and encrypted modified
images (33.22% and 37.78%, respectively).

This renders brute force attacks extremely time consuming and practically infea-
sible.

Figure 1(a) and (e) show two original images one of which (Lena) was given
as a tiff file, the other (cat) as a png file. Both were encrypted and decrypted
using the same echo state network. Decryption produced the images in Fig. 1(b)
and (f) which are identical to the original ones. However, when decrypting with
networks with slightly modified parameters, i.e. when using slight variations of
the secret key, we obtained useless images as shown in Fig. 1(c), (d), (g), and (h).
These results are prototypical and show that the system is highly sensitive to the
secret key. This makes it robust against brute force attacks because decryption
is only possible if all the parameters of the secret key are set precisely.

Chosen-plaintext attacks are ones where an attacker has access to a set of
pairs of plaintext (a message) and corresponding ciphertext (weight matrix W o)
and attempts to crack the secret key via a comparative analysis of changes
between them. For instance, by analyzing changes in the ciphertexts of images
which differ by just a few pixels, it might possible to obtain part of the mapping
involved in encryption. Figure 2(a) and (f) show original images and Fig. 2(c)
and (h) show slightly distorted versions where 1% of the pixels were randomly
changed. The corresponding encrypted images (matrices W o) are visualized in
Fig. 2(b), (g), (d), and (i). Only small changes in the plaintext led to considerable
changes in the ciphertext; these differences are visualized in Fig. 2(e) and (j) and
amount to about 35%. Thus, our system is sensitive to slight modification of the
plaintext and therefore renders chosen-plaintext attacks very difficult.

Using Echo State Networks for Cryptography 669

(a) (b) (c) (d)

Fig. 3. Ciphertext sensitivity: (a), (b) plaintext distribution of the Lena image and its
ciphertext distribution; (c), (d) plaintext distribution of the cat image and its cipher-
text distribution. Since the ciphertext distributions are almost identical, this system is
robust against frequency analysis and ciphertext-only attacks.

In ciphertext-only attacks, an attacker has access to a set of ciphertexts,
however has some knowledge about statistical distribution of plaintexts. Using
frequency analysis of ciphertexts, for instance, exploiting the fact that “e” is the
most frequent character in English texts, one can map the most frequent parts in
a ciphertext to corresponding plaintexts. Figure 3 shows frequency distributions
for the plaintexts and ciphertexts of the images “Lena” and “cat”. Although the
plaintext distributions of two images differ, their ciphertext distributions are very
similar. From these distributions it is evident that most of the elements (≈50%)
in the ciphertext (W o) are zero and that the non-zero elements are uniformly
distributed. Thus, frequency analysis will be ineffective and the proposed system
is robust against ciphertext-only attacks.

According to Shannon [12], diffusion and confusion are the two fundamen-
tal properties of a good cryptography system. A system that has the diffusion
property is one where a small change in either plaintext or key causes a large
change in the ciphertext. A system with the confusion property is one where
the mapping between plaintext and ciphertext is complex. Our experimental
results indicate that the proposed system has both these properties. Also, our
approach satisfies similar cryptographic properties as satisfied by [9,13,14] and
offers better security than [15] which is prone to chosen-plaintext attacks [8].

environment

processor 2.7 GHz Intel Core i5
memory 8 GB
OS OS X El Capitan
language Python 3.5, Numpy

Fig. 4. Run times for encryption and decryption for different message sizes.

670 R. Ramamurthy et al.

To evaluate the runtime performance, we determined average encryption and
decryption times for messages of different sizes. Our results are shown in Fig. 4.
For instance, encrypting and decrypting a 3KB message took less than one second
each and runtimes were found to increase linearly with the message size. Our
approach therefore scales well and can be used in real-time applications.

5 Conclusion

In this paper, we proposed a novel neural cryptography scheme based on the
capability of echo state networks to memorize and reproduce sequences of input
data. The proposed system was found to be robust against common security
attacks and satisfies the fundamental cryptographic properties of diffusion and
confusion. Moreover, our approach is scalable, suitable for real-time applications,
and does not require special purpose hardware (such as GPUs) for computation.

References

1. Abadi, M., Andersen, D.G.: Learning to protect communications with adversarial
neural cryptography. arXiv:1610.06918 (2016)

2. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryp-
tosystems. Int. J. Bifurcat. Chaos 16(08), 2129–2151 (2011)

3. Clark, M., Blank, D.: A neural-network based cryptographic system. In: Proceed-
ings of the Midwest Artificial Intelligence and Cognitive Science Conference (1998)

4. Jäger, H.: The “echo state” approach to analysing and training recurrent neural
networks. Technical report 148, GMD (2001)

5. Jäger, H.: Short term memory in echo state networks. Technical report 152, GMD
(2002)

6. Kanter, I., Kinzel, W., Kanter, E.: Secure exchange of information by synchroniza-
tion of neural networks. Europhys. Lett. 57(1), 141–147 (2002)

7. Klimov, A., Mityagin, A., Shamir, A.: Analysis of neural cryptography. In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 288–298. Springer, Heidelberg
(2002). doi:10.1007/3-540-36178-2 18

8. Li, C., Li, S., Zhang, D., Chen, G.: Chosen-plaintext cryptanalysis of a clipped-
neural-network-based chaotic cipher. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN
2005. LNCS, vol. 3497, pp. 630–636. Springer, Heidelberg (2005). doi:10.1007/
11427445 103

9. Lian, S.: A block cipher based on chaotic neural networks. Neurocomputing 72(46),
1296–1301 (2009)

10. Lukoševičius, M.: A practical guide to applying echo state networks. In:
Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the
Trade. LNCS, vol. 7700, 2nd edn, pp. 659–686. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-35289-8 36

11. Ramamurthy, R., Bauckhage, C., Buza, K., Wrobel, S.: Using Echo State Networks
for Cryptography. arXiv:1704.01046 (2017)

12. Shannon, C.E.: Communication theory of secrecy systems. Bell Labs Tech. J. 28(4),
656–715 (1949)

13. Wang, X.Y., Yang, L., Liu, R., Kadir, A.: A chaotic image encryption algorithm
based on perceptron model. Nonlinear Dyn. 62(3), 615–621 (2010)

http://arxiv.org/abs/1610.06918
http://dx.doi.org/10.1007/3-540-36178-2_18
http://dx.doi.org/10.1007/11427445_103
http://dx.doi.org/10.1007/11427445_103
http://dx.doi.org/10.1007/978-3-642-35289-8_36
http://dx.doi.org/10.1007/978-3-642-35289-8_36
http://arxiv.org/abs/1704.01046

Using Echo State Networks for Cryptography 671

14. Yu, W., Cao, J.: Cryptography based on delayed chaotic neural networks. Phys.
Lett. A 356(45), 333–338 (2006)

15. Zhou, T., Liao, X., Chen, Y.: A novel symmetric cryptography based on chaotic
signal generator and a clipped neural network. In: Yin, F.-L., Wang, J., Guo, C.
(eds.) ISNN 2004 Part II. LNCS, vol. 3174, pp. 639–644. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-28648-6 102

http://dx.doi.org/10.1007/978-3-540-28648-6_102

Two Alternative Criteria for a Split-Merge
MCMC on Dirichlet Process Mixture Models

Tikara Hosino(B)

Nihon Unisys, Ltd., 1-1-1 Toyosu, Koto-ku, Tokyo 135-8560, Japan
Chikara.Hoshino@unisys.co.jp

Abstract. The free energy and the generalization error are two major
model selection criteria. However, in general, they are not equivalent.
In previous studies, for the split-merge algorithm on conjugate Dirichlet
process mixture models, the complete free energy was mainly used. In
this work, we propose, the new criterion, the complete leave one out cross
validation which is based on the approximation of the generalization
error. In numerical experiments, our proposal outperforms the previous
methods with the test set perplexity. Finally, we discuss the appropriate
usage of these two criteria taking into account the experimental results.

1 Introduction

When we choose a statistical inference method, there are two main purposes:
the one is to get a good description of given samples and the other is a good
prediction of future samples. Obviously, these two purposes are not completely
orthogonal, for example, if we find the good description of data, we will create
better predictive models by using the findings. Additionally, in the process of
statistical inference, we need to iteratively formulate each hypothesis as a statis-
tical model and compare them. The model selection criteria have a fundamental
role to this model comparison.

There are two famous model selection criteria, which are the free energy and
the generalization error. The free energy is a minus logarithm of the probability
of the hypothesis. Under the given triplet which are samples xn ≡ {x1, . . . , xn},
the model p(x|θ) and the prior of the parameters ϕ(θ), the free energy is defined
by

F ≡ − log
∫ n∏

i=1

p(xi, |θ)ϕ(θ)dθ. (1)

The free energy is also called the minus of marginal log likelihood or the
evidence [7] and it is well known that, in some case, it has ‘consistency’ which is
the property that if the model contains the true distribution, when the number
of samples goes to infinity, the criteria can select the true model that has min-
imum parameters. Except for simple models, the integration of Eq. (1) cannot
be analytically obtained and we need to use an approximation. The ‘BIC’ [11],
‘MDL’ [9], ‘WBIC’ [14] are well studied approximations.
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 672–679, 2017.
https://doi.org/10.1007/978-3-319-68612-7_76

Two Alternative Criteria for Model Selection 673

On the other hand, the generalization error is the direct measure of prediction
accuracy which is the distance of the true distribution q(x) and the estimated
predictive distribution p(x|xn). Under the same condition of the free energy, it
is defined by

G ≡
∫

q(x) log
q(x)

p(x|xn)
dx,

p(x|xn) =
∫

p(x|θ)p(θ|xn)dθ,

p(θ|xn) =
∏n

i=1 p(xi|θ)ϕ(θ)∫ ∏n
i=1 p(xi|θ)ϕ(θ)dθ

,

where p(θ|xn) is the posterior distribution. In most cases, the generalization error
cannot be obtained because we do not know the true distribution q(x). However,
in some case, the approximation of the generalization error such as ‘AIC’ [1],
‘WAIC’ [13] or ‘Leave one out cross validation’ [13] has ‘efficiency’ which is the
property that if the true distribution is the out of the model distribution, the
criteria can select the model which minimizes the generalization error.

We should use properly two criteria for our purpose because of their different
characteristics. In this paper, in order to focus this problem, we choose conju-
gate Dirichlet process mixture model which has efficient approximation of these
criteria. Our contributions of the paper are as follows.

– For split-merge MCMC on conjugate Dirichlet process mixture model, we
propose novel criteria ‘complete leave one out cross validation (LOOc)’ which
is based on the approximation of generalization error.

– We experimentally show that the proposed criteria is consistently superior to
the test set perplexity over previous methods.

– We discuss the appropriate usage of two criteria by considering the experi-
mental results.

2 Problem Settings

Dirichlet process mixture model is a non parametric Bayesian extension of finite
mixture models which simultaneously estimates model parameters and the num-
ber of mixtures. The definition is as follows,

G ∼ DP (G0, α)
θi|G ∼ G, (2)
xi|θi ∼ F (xi|θi),

where G is a base distribution and α(> 0) is the concentration parameter. When
G is integrate over its prior distribution in Eq. (2), we see that the model para-
meters θi follows a generalized Polya urn scheme [2]. The prior distribution of
θi is given by the following conditional distributions,

674 T. Hosino

θ1 ∼ G0,

θi|θ1, . . . , θi−1 ∼
∑i−1

j=1 δ(θj) + αG0

i − 1 + α
,

where δ(θj) is the distribution which is a point mass at θj . For each observation
xj , we introduce latent variable yj which indicates latent class k. Then, the Polya
urn scheme for sampling θi is equivalent for sampling yi from the distribution,

p(yi = k|yi−1) =
nk

i − 1 + α
,

p(yi = k∗|yi−1) =
α

i − 1 + α
,

where nk is the number of samples for which yj = k (j < i) holds and k∗ is the
new class which is not appear in the previous i − 1 samples. Moreover, in the
case of G0(θ) is a conjugate prior for the likelihood F (x|θ), the simple Gibbs
sampling of yi from the posterior distribution is obtained [8],

p(yi = k|xn, yn
−i) =

nk − 1
n − 1 + α

∫
F (xi|θ)dH(xn

−i,y
n
−i)

(θ),

p(yi = k∗|xn, yn
−i) =

α

n − 1 + α

∫
F (xi|θ)dG0(θ),

where (xn, yn) are so called “complete-data” and (xn
−i, y

n
−i) means excluding

ith sample (xi, yi) from (xn, yn). Furthermore, H(xn
−i,y

n
−i)

(θ) is the posterior
distribution of θ based on the prior G0, the likelihood F and samples (xn

−i, y
n
−i).

Next, we define two criteria, the first, the complete free energy is defined by

Fc(xn, yn) ≡ − log p(xn, yn) = − log

(∫ n∏
i=1

p(xi, yi|θ)ϕ(θ)dθ

)
. (3)

The second, the complete leave one out cross validation is defined by

LOOc(xn, yn) ≡ −
n∑

i=1

log p(xi|xn
−i, y

n
−i) = −

n∑
i=1

log
∑
yi

p(xi, yi|xn
−i, y

n
−i)

= −
n∑

i=1

log
∑
yi

exp
(− (

(Fc(xn, yn) − Fc(xn
−i, y

n
−i)

))
. (4)

In conjugate exponential models with complete data (xn, yn), the integration
of the parameters (3) can be performed analytically which enables us to construct
an efficient approximation algorithm. Moreover, it is noted that Fc and LOOc

have a relation indicated by Eq. (4) and we use this relation later.

3 Related Works

In Bayesian case, the asymptotic property of the free energy and the general-
ization error are clarified and efficient numerical approximation are proposed

Two Alternative Criteria for Model Selection 675

[13,14]. In these works, it was probed that Bayesian leave one out cross vali-
dation is asymptotically equivalent to mean of generalization error. Using these
works, MCMC method with leave one out cross validation was proposed [6].

At complete data methods, which use joint distribution with hidden variables,
the asymptotic Fc(xn, yn) was revealed [16]. Additionally, for model selection of
clustering, minimizing Fc instead of the negative likelihood was proposed [15].
Hyperparameter estimation of latent Dirichlet allocation by LOOc was proposed
and smaller test set perplexities than previous studies was reported [10].

Specifically, MCMC for the conjugate Dirichlet process, trying to large move
than the local Gibbs samplers, split-merge algorithm which uses Fc was proposed
[3,5]. However, for hierarchical Dirichlet process, their method reported no gain
of test set perplexity on real world data set [12].

4 Proposed Algorithm

We describe the proposed LOOc split-merge MCMC algorithm. The acceptance
probability of the proposed merge (split) state from the current state is described
by the following Eq. [5],

A(current → merge) = min
(

1,
p(merge)g(merge → current)
p(current)g(current → merge)

)
,

A(current → split) = min
(

1,
p(split)g(split → current)

p(current)g(current → split)

)
,

where p(current), p(merge) and p(split) are the probability of each state. In our
algorithm, we change these state probabilities p(state) from exp(−Fc(state)),
which is used by previous studies, to exp(−LOOc(state)). For transition kernel
g(state → state′), we use the same method as Dahl [3].

4.1 Concrete Example (Diagonal Gaussian Case)

We describe the concrete example of the proposed method where the components
of the mixture are diagonal Gaussian distributions. In the form of canonical
exponential family, the Gaussian distribution is given by the equation

p(x|s, μ) =
1

(2π)
1
2

exp
(

−s

2
x2 + sμx − s

2
μ2 +

1
2

log s

)
,

where s and μ are model parameters. The conjugate prior of the distribution is
given by the equation

p(s, μ) =
1
Z

exp
(

−s

2
φ1 + sμφ2 + (−s

2
μ2 +

1
2

log s)φ3

)
, (5)

where φ1, φ2, φ3 are the prior hyperparameter and Z is the normalizing constant.
In the conjugate exponential family which includes Gaussian distribution, the

676 T. Hosino

integration of the parameters μ, s are analytically executed and Z is explicitly
given by

Z(φ1, φ2, φ3) =
(2π)

1
2 Γ (φ3+1

2)

φ
1
2
3 (12 (φ1 − φ2

2
φ3

))
φ3+1

2

.

The posterior probability of parameters s, μ is obtained by the same form
of the prior distribution (5) by changing the each hypeparameter φ with the
sufficient statistics,

φ̂1 = φ1 +
n∑

i=1

x2
i , φ̂2 = φ2 +

n∑
i=1

xi, φ̂3 = φ3 + n.

Then, the free energy is given by

Fg(xn) =
n

2
log 2π − log

Z(φ̂1, φ̂2, φ̂3)
Z(φ1, φ2, φ3)

. (6)

Using above Eq. (6), on Gaussian Dirichlet process mixture which has K
components and concentration parameter α, the complete free energy is given
by

Fc(xn, yn)

= −K log α + log Γ (n + α) − log Γ (α) −
K∑

k=1

(log Γ (nk) − Fgk
(xn)), (7)

where Fgk
(xn) is the free energy of kth Gaussian component. Furthermore,

LOOc(xn, yn) is derived using the Eqs. (7) and (4).

5 Experiment

To compare the different characteristics of each criterion, we conducted two
experiments, the one is the model selection experiment for toy data set and
the other is the prediction error experiment for real world data set. In both
experiments, one MC step is composed by one Gibbs sampler and randomly
selected split or merge proposal. We execute 1000 MC steps for burn-in period
and collect 10000 samples after the burn-in period.

5.1 Experiment 1

Toy Data. The toy data are collected from two dimensional four components
mixture of Gaussian whose means are given by (3.0, 3.0), (−3.0, 3.0), (3.0,−3.0),
(−3.0,−3.0) and all variances are 1.0. In this example, the approximation of Fc

is appropriate, because the support of each component does not overlap [16].
We use 200 samples which are collected 50 samples from each component and
repeat the trial 10 times. To compare model selection abilities, we measure the
number of component which attain the best (minimum) of Fc and LOOc and
the mean number of components of posterior distribution for Fc and LOOc. We
set hyperparameter α = 1.0, φ1 = φ3 = 0.001 and φ2 = 0 in this experiment.

Two Alternative Criteria for Model Selection 677

Table 1. Estimated number of components (mean ± std). True is 4.

Fc best Fc all posterior LOOc best LOOc all posterior

4.0 ± 0.0 4.69 ± 0.83 8.3 ± 0.95 6.3 ± 1.45

Result. The results are shown by Table 1. It indicates that the minimum Fc

achieves the best performance, which is the perfect, for this experiment.

5.2 Experiment 2

Real World Data. We obtain the real world data set from LIBSVM: Data
[4]1. The dimension and the number of samples of each data set and the model
hyperparameters are shown by Table 2. These hyperparameters are determined
by preliminary experiments. On each data set, we repeat the trial 10 times. In
one trial, we divided samples randomly in half with a training and validation
set. For experimental statistics, we collect the test set perplexities and the mean
number of components from the posterior distribution. The test set perplexity
(TSP) is the estimation of the generalization error and defined by

TSP (xtest) ≡ −
n∑

i=1

log
1
M

M∑
m=1

p(xtesti
|xtrain, ytrainm),

where n is the number of the test samples, xtrain are training samples, ytrainm

are corresponding hidden variables of mth MC step, and M is the number of
collected MC samples.

Table 2. Real world data attributes and used hyperparameters

Data set Number of samples Dimension α φ1 φ2 φ3

iris 150 3 1.0 0.001 0 0.001

wine 178 13 1.0 0.1 0 0.1

svmguide1 7089 4 1.0 0.001 0 0.001

svmguide2 391 20 1.0 0.1 0 0.1

svmguide3 1284 21 1.0 0.001 0 0.001

Result. The test set perplexities are described by Table 3. It is shown that
the proposed split-merge by LOOc are consistently outperform conventional no
split-merge and split-merge by Fc. Moreover, we observe that, in all cases of the
experiments, the proposed algorithm attains the minimum test set perplexities.
Additionally, the mean numbers of components of each algorithm are shown by
Table 4. It is shown that the mean number of components of proposed algorithm
are consistently larger than ordinary methods.
1 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

678 T. Hosino

Table 3. Test set perplexities (mean ± std). The bold is minimum.

Data set No S-M S-M by Fc S-M by LOOc (proposed)

iris 17.46 ± 17.38 16.65 ± 16.24 2.5 ± 18.86

wine 248.80 ± 45.19 243.32 ± 40.73 205.11 ± 26.50

svmguide1 −4870.55 ± 138.46 −5015.47 ± 52.76 −5204.01 ± 54.18

svmguide2 699.05 ± 89.53 681.68 ± 86.72 583.57 ± 72.65

svmguide3 −16446.2 ± 675.44 −18883.4 ± 172.10 −19928.9 ± 244.96

Table 4. Number of components (mean ± std)

Data set No S-M S-M by Fc S-M by LOOc (proposed)

iris 4.47 ± 0.73 4.48 ± 0.72 6.81 ± 0.72

wine 4.10 ± 0.94 4.27 ± 0.88 6.74 ± 0.50

svmguide1 24.34 ± 1.73 27.65 ± 1.30 38.95 ± 1.20

svmguide2 4.05 ± 0.61 4.40 ± 0.73 7.36 ± 0.68

svmguide3 9.54 ± 1.45 15.55 ± 0.88 31.78 ± 2.38

6 Discussion

As suggested by Table 1, the proposed LOOc has slightly larger estimate of the
number of components. On the contrary, as suggested by Table 3, the ordinary
Fc is slightly conservative for minimizing the generalization errors on real world
data set. These results suggest that, in the model selection problem, if our pur-
pose is the description of the given data, we prefer the maximum of Fc, which
has accurate estimation of number of components in the separable case and
better interpretation capability because of each sample point belongs to a dis-
tinct cluster. On the other hand, if our purpose is small prediction errors, the
ensemble estimation with proposed LOOc has advantage which minimizes the
generalization error more directly than Fc.

7 Conclusion

In Split-Merge MCMC on Dirichlet process mixture, we proposed novel criteria
LOOc which is designed for the minimizing the generalization error. In numer-
ical experiments, we shows that our proposed algorithm consistently achieves
the smaller test set perplexities than existing free energy based methods. More-
over, the experiment clearly shows the difference of two alternative criteria and
suggests that we should use properly for our purpose. To clarify the theoretical
property of these criteria and comparing the other approximation methods such
as variational Bayes are future works.

Two Alternative Criteria for Model Selection 679

References

1. Akaike, H.: Information theory and an extension of the maximum likelihood prin-
ciple. In: 2nd International Symposium on Information Theory. Academiai Kiado
(1973)

2. Blackwell, D., MacQueen, J.B.: Ferguson distributions via pólya urn schemes. Ann.
Stat. 1(2), 353–355 (1973)

3. Dahl, D.B.: An improved merge-split sampler for conjugate dirichlet process mix-
ture models. Technical report 1, 086 (2003)

4. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector
classification. Technical report, Department of Computer Science, National Taiwan
University (2003)

5. Jain, S., Neal, R.M.: A split-merge markov chain monte carlo procedure for the
dirichlet process mixture model. J. Comput. Graph. Stat. 13(1), 158–182 (2004)

6. Kenji, N., Jun, K., Shin-ichi, N., Satoshi, E., Ryoi, T., Masato, O.: An exhaustive
search and stability of sparse estimation for feature selection problem. IPSJ Trans.
Math. Model. Appl. 8(2), 23–30 (2015)

7. MacKay, D.J.: Information Theory, Inference and Learning Algorithms. Cambridge
University Press, Cambridge (2003)

8. Neal, R.M.: Markov chain sampling methods for dirichlet process mixture models.
J. Comput. Graph. Stat. 9(2), 249–265 (2000)

9. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471
(1978)

10. Sato, I., Nakagawa, H.: Stochastic divergence minimization for online collapsed
variational Bayes zero inference of latent Dirichlet allocation. In: Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1035–1044. ACM (2015)

11. Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464
(1978)

12. Wang, C., Blei, D.M.: A split-merge MCMC algorithm for the hierarchical dirichlet
process. arXiv preprint arXiv:1201.1657 (2012)

13. Watanabe, S.: Asymptotic equivalence of Bayes cross validation and widely applica-
ble information criterion in singular learning theory. J. Mach. Learn. Res. 11(Dec),
3571–3594 (2010)

14. Watanabe, S.: A widely applicable Bayesian information criterion. J. Mach. Learn.
Res. 14(Mar), 867–897 (2013)

15. Welling, M., Kurihara, K.: Bayesian k-means as a “maximization-expectation”
algorithm. In: Proceedings of the 2006 SIAM International Conference on Data
Mining, pp. 474–478. SIAM (2006)

16. Yamazaki, K.: Asymptotic accuracy of Bayes estimation for latent variables with
redundancy. Mach. Learn. 102(1), 1–28 (2016)

http://arxiv.org/abs/1201.1657

FP-MRBP: Fine-grained Parallel MapReduce
Back Propagation Algorithm

Gang Ren1,2(B), Qingsong Hua3, Pan Deng1,2(B), and Chao Yang1,2,4

1 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100190, China

{rengang2013,dengpan}@iscas.ac.cn
3 School of Mechanical and Electrical Engineering,

Qingdao University, Qingdao 266071, China
4 State Key Laboratory of Computer Science,

Chinese Academy of Sciences, Beijing 100190, China

Abstract. MRBP algorithm is a training algorithm based on the
MapReduce model for Back Propagation Network Networks (BPNNs),
that employs the data parallel capability of the MapReduce model to
improve the training efficiency and has shown a good performance for
training BPNNs with massive training patterns. However, it is a coarse-
grained pattern parallel algorithm and lacks the capability of fine-grained
structure parallelism. As a result, when training a large scale BPNN,
its training efficiency is still insufficient. To solve this issue, this paper
proposes a novel MRBP algorithm, Fine-grained Parallel MRBP (FP-
MRBP) algorithm, which has the capability of fine-grained structure
parallelism. To the best knowledge of the authors, it is the first time to
introduce the fine-grained parallelism to the classic MRBP algorithm.
The experimental results show that our algorithm has a better training
efficiency when training a large scale BPNN.

Keywords: BPNN training · MapReduce model · Fine-grained
Parallelism

1 Introduction

BPNNs are a class of artificial neural networks that update connection weights by
back propagation of error [1–3]. Due to the excellent function approximation abil-
ity, they are one of the most popular artificial neural networks. MRBP algorithm
is a training algorithm based on MapReduce model [4], a parallel programming
model on Hadoop cluster [5], for BPNN. This algorithm uses the data parallel
capability of MapReduce model to improve the training efficiency and has shown
a good performance for training BPNN with massive training data [6–8].

However, it adopts the coarse-grained pattern parallel strategy to train
BPNN, that divides training patterns into multiple sub-groups and train BPNN
in parallel by these sub-groups [9–11]. This way lacks the capability of fine-
grained structure parallelism, that partitions the network into multiple small
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 680–687, 2017.
https://doi.org/10.1007/978-3-319-68612-7_77

FP-MRBP: Fine-grained Parallel MapReduce Back Propagation Algorithm 681

structures and trains these structures in parallel [12–14]. Thus, when training
a large scale BPNN, the training efficiency of the classic MRBP algorithm is
still insufficient. On the other hand, the existing structure parallel strategies are
only suitable for message passing clusters, where computing nodes can directly
communicate each other at any time [15] whilst there is only one global commu-
nication chance in MapReduce model on Hadoop clusters [4].

To address this issue, in this paper, we attempt to propose a fine-grained
structure parallel strategy suitable for Hadoop cluster and introduce fine-grained
structure parallelism into the classic MRBP algorithm to improve its training
efficiency. The main contributions of this paper are listed below.

(1) We propose a fine-grained structure parallel strategy, Layer-wise Parallelism,
Layer-wise Integration (LPLI) strategy, that is suitable for training BPNN
on Hadoop cluster.

(2) We propose a novel MRBP algorithm, FP-MRBP algorithm, that imple-
ments LPLI strategy on Hadoop cluster. To the best knowledge of the
authors, it is the first time to introduce the fine-grained structure paral-
lelism to the MRBP algorithm.

(3) A set of experiments are conducted to compare the performance of our
algorithm with the classic MRBP algorithm. The experimental results show
our algorithm has better training efficiency.

The remainders of this paper proceed as follows. Section 2 introduces the
training process of BPNN. The proposed FP-MRBP is introduced in Sect. 3.
Section 4 compares the performance of our algorithm with the classic MRBP
algorithm. In the end, we draw some conclusions about this paper.

2 BPNN

BPNN is a multi-layer network including an input layer, several hidden layers,
and an output layer. Figure 1 shows a BPNN with L layers. The l-th layer con-
tains nl neurons. Each neuron in a layer is connected to all neurons in the next
layer. Associated with each neuron i on layer l are an activation value ai(l) and
a threshold value θi(l), and attached to each connection, connecting neuron i on
layer l to neuron j on layer l + 1, is a weight wij(l, l + 1).

As shown in Fig. 3, a typical BPNN training process includes three phases: feed-
forward execution, back-propagation of error, and weight update. In feed-forward
phase, input portion of a training pattern is fed to the input layer. It is propagated
through layers to calculate activation values of all neurons in each layer. For neuron
i in the l-th layer, its activation value can be calculated as follows:

ai(l) = f(
nl−1∑

j=1

aj(l − 1) + θi(l)), (1)

where f(.) is a non-linear sigmoid function.

682 G. Ren et al.

In the back-propagation of error phase, error between network output and
target value is back-propagated to all the neurons through output weights. The
error of i-th neuron in the output layer can be calculated by:

δi(L) = (di − ai(L))f ′(.), i = 1, 2, · · · , nL, (2)

where di is the desired output pattern, f ′(.) is the first derivative of activation
function.

The error of i-th neuron in the l-th hidden layer can be calculated by:

δi(l) = f ′(.)
nl+1∑

j=1

wij(l, l + 1)δj(l + 1), (3)

The third phase updates weights in the light of error δi(l + 1) and activation
value aj(l). The new wij(l, l + 1) can be calculated as follow:

wij(l, l + 1) = wij(l, l + 1) + ηδi(l + 1)aj(l), (4)

where, η denotes the learning rate.

Layer L

Layer l+1

Layer l

Layer 1

Output layer

Hidden layers

Input layer

Fig. 1. BPNN

Structure
Integration

Structure 1 Structure 2 Structure m

Structure 1 Structure 2 Structure m

In
pu

t l
ay

er
H

id
de

n
la

ye
r

O
ut

pu
t l

ay
er

Fo
rw

ar
d

ph
as

e

E
rr

or
 p

ro
pa

ga
tio

n
ph

as
e

an
d

w
ei

gh
t u

pd
at

e
ph

as
e

Structure
Integration

Fig. 2. LPLI strategy

3 FP-MRBP Algorithm

3.1 Fine-grained Parallel Strategy

We propose a fine-grained parallel strategy, Layer-wise Parallelism, Layer-wise
Integration (LPLI) strategy. As shown in Fig. 2, we divide the hidden and output
layer into multiple parallel structures, each of which has multiple neurons, whilst
the input layer remains unchanged.

In the feed-forward phase, each parallel structure of the hidden layer first
calculates the activation values of its neurons according to Formula 1. Then all
the results are integrated together to prepare for calculation of activation values

FP-MRBP: Fine-grained Parallel MapReduce Back Propagation Algorithm 683

Fig. 3. Training process of BPNN

of neurons in the next layer. Repeat this iteration process until all the activation
values are worked out. The back-propagation phase adopts the same strategy to
calculate the errors of the output layer and hidden layer according to Formulas 2
and 3. Finally, we use the obtained errors to calculate and update the weights
according to Formula 4.

3.2 Parallel Implementation Using MapReduce on Hadoop Cluster

A job of MapReduce model includes two phases, map and reduce. Each phase has
several parallel tasks, called mappers and reducers, respectively. The input data
are first divided into multiple splits and then processed in parallel by different
mappers. A mapper reads each line in the input split successively. Each line is
seen as one key/value pair, the key is the line number and the value is the line
itself. It processes these pairs according to specific businesses, generating a list
of new key/value pairs. The transformation is listed as follow:

Mapper :: (key1, value1) −→ list(key2, value2). (5)

These new key/value pairs will be sent into reducers on other computing
nodes and these pairs with the same key2 will be merged by system as follows.

Merge :: list(key2, value2) −→ (key2, list(value2)). (6)

Next, the merged pairs are processed according to specific businesses, and the
calculated results are emitted. Conceptually, a reducer has the following type:

Reducer :: (key2, list(value2)) −→ (key3, value3). (7)

684 G. Ren et al.

We employ mappers to implement structure parallelism and reducers to
implement structure integration. The main implementation of a mapper is given
in Algorithm 1. The value1 contains activation values and errors of the under-
lying layer. The calculated results is put to value2. key2 is set to the current
number of layer.

Algorithm 2 presents the main implementation of a reducer for structure
integration. We let key3 = key2 and add all the value2 to value3. Finally,
(key3, value3) is emitted.

Algorithm 1. Mapper for parallel structurek of Layer l

Input: (key1, value1).
phase: current training phase, its range is {Feed, Error, Weight}.
Output: (key2, value2).

1 if phase == Feed then
2 Use value1 to calculate activation values according to Formula 1 and assign

the obtained results to value2.
3 else
4 if phase == Error then
5 Use value1 to calculate error values according to Formulas 2 and 3 and

assign the obtained results to value2.
6 else
7 Use value1 to calculate and update the weights according to Formula 4

and assign the obtained results to value2.
8 end
9 key2 = l;

10 EMIT(key2, value2);

11 end

Algorithm 2. Reducer for Structure Integration of Layer l

Input: (key2, list(value2).
Output: (key3, value3).

1 key3 = key2;
2 for each value2 in list(value2) do
3 value3 = value3

⋃
value2;

4 EMIT(key3, value3);

5 end

4 Experiments

We perform 4 groups of experiments to evaluate performance of our algorithm.
The first is to illustrate effect of different number of of parallel structures on per-
formance of our algorithm. The other 3 groups compare our algorithm with the

FP-MRBP: Fine-grained Parallel MapReduce Back Propagation Algorithm 685

classic MRBP algorithm in [6], the MBNN algorithm in [7] and the MRBPNN 3
algorithm in [8] for scalability in computing node, network and pattern size.

4.1 Scalability of Parallel Structure Size

The experimental data includes 1 million training patterns, the number of com-
puting nodes is 16. We consider three neural networks with 3 layers, [50, 50, 50],
[100, 100, 100] and [200, 200, 200]. We increase the number of parallel structures
from 1 to 16. As shown in Fig. 4, initially, the training times for three different
networks gradually decrease as more parallel structures are used. However, as
the number of parallel structures increases, the decrease tends to diminished.
Sometimes, the training times slightly increase. There are two reasons for this:
First, the increasing number of parallel structures will lead to higher commu-
nication costs. Second, the increased parallel structures cause the total number
of mappers to go beyond the maximum number of concurrency. At the same
time, we observe that the larger the network, the later the occur of performance
bottleneck. It shows that our algorithm is more effective for large-scale networks.

4.2 Scalability of Computing Node Size

This experiment is used to evaluate scalability of our algorithm in computing
node size. We increase the number of computing nodes from 1 to 16. From
the results shown in Fig. 5, we can see that as the number of computing nodes
increases, the training times of the 4 algorithms decrease. But the training times
of our algorithm are always less than the other 3 algorithms. Also, we observe
that when the number of computing nodes is small, the training times of the 4
algorithms are similar. But, with the increasing number of computing nodes, the
training times of the other 3 algorithms no longer decline whilst our algorithm
still maintains a downward trend. This illustrates that our algorithm has better
scalability in terms of the number of computing nodes.

4.3 Scalability of Pattern Size

This experiment is used for testing effect of different pattern size on performance
of our algorithm. We increase the number of training patterns from 100 thousand
to 1 million. From the results shown in Fig. 6, we can see that the training times
of our algorithm are always less than the other 3 algorithms. Moreover, the
growth rate of our algorithm is smaller and more stable. This illustrates that our
algorithm has a higher performance as the number of training patterns increases.

4.4 Scalability of Network Size

This experiment is used to compare performance of our algorithm with the other
3 algorithms in term of scalability of network size. The number of neurons per
layer is increased from 50 to 500. As shown in Fig. 7, the training times of all the

686 G. Ren et al.

algorithms increase exponentially as the number of neurons per layer increases.
But the growth rate of our algorithm is smaller than the other 3 algorithms. This
is because the amount of computation can be equally distributed into parallel
structures in our algorithm. This shows the effectiveness of fine-grained structure
parallelism of our algorithm.

Fig. 4. Scalability of parallel structure
size.

Fig. 5. Scalability of computing node
size.

Fig. 6. Scalability of training pattern
size.

Fig. 7. Scalability of network size.

5 Conclusion

In this paper we propose a novel MRBP algorithm, FP-MRBP algorithm, which
has the capability of fine-grained structure parallelism. To the best knowledge
of the authors, it is the first time to introduce fine-grained parallelism to the
classic MRBP algorithm. The experimental results show that our algorithm has
a better training efficiency when training a large scale BPNN.

FP-MRBP: Fine-grained Parallel MapReduce Back Propagation Algorithm 687

Acknowledgment. This work was supported by National Science Foundation
of China (Nos. 61100066, 91530323), National Key R&D Plan of China (No.
2016YFB0200603). The authors would like express sincere gratitude to all the authors
of the references in this paper. The authors also extend their thanks to all anonymous
referees for providing valuable comments on this paper.

References

1. Gupta, J.N.D., Sexton, R.S.: Comparing backpropagation with a genetic algorithm
for neural network training. Omega 27(6), 679–684 (1999)

2. Yang, S.E., Huang, L.: Financial crisis warning model based on BP neural network.
Syst. Eng.-Theory Pract. 25(12), 12–19 (2005)

3. Li, J., Cheng, J., Shi, J., Huang, F.: Brief introduction of back propagation neural
network algorithm and its improvement. In: Jin, D., Lin, S. (eds.) Advances in
Computer Science and Information Engineering. AINSC, vol. 169, pp. 553–558.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-30223-7 87

4. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceedings of the Conference on Symposium on Opearting Systems Design &
Implementation, pp. 107–113 (2004)

5. White, T.: Hadoop: The Definitive Guide. O’Reilly Media Inc., Sebastopol (2012)
6. Chu, C., Kim, S.K.: Map-Reduce for machine learning on multicore. In: Advances

in Neural Information Processing Systems, vol. 19, pp. 281–288 (2006)
7. Liu, Z., Li, H., Miao, G.: MapReduce-based backpropagation neural network over

large scale mobile data. In: International Conference on Natural Computation,
ICNC 2010, 10–12 August 2010, Yantai, Shandong, China, pp. 1726–1730 (2010)

8. Liu, Y., Yang, J., Huang, Y., Xu, L., Li, S., Qi, M.: MapReduce based parallel
neural networks in enabling large scale machine learning. Comput. Intell. Neurosci.
1–13, 2016 (2015)

9. Turchenko, V.: Computational grid vs. parallel computer for coarse-grain paral-
lelization of neural networks training. In: Meersman, R., Tari, Z., Herrero, P. (eds.)
OTM 2005. LNCS, vol. 3762, pp. 357–366. Springer, Heidelberg (2005). doi:10.
1007/11575863 55

10. Turchenko, V., Paliy, I., Demchuk, V.: Coarse-grain parallelization of neural
network-based face detection method. In: Proceedings of the 4th IEEE Workshop
on Intelligent Data Acquisition, 6–8 September 2007, pp. 155–158 (2007)

11. Turchenko, V., Grandinetti, L.: Efficiency analysis of parallel batch pattern NN
training algorithm on general-purpose supercomputer. In: Proceedings of the Inter-
national Work-Conference on Artificial Neural Networks, pp. 223–226 (2009)

12. Sudhakar, V., Murthy, C.S.R.: Efficient mapping of backpropagation algorithm
onto a network of workstations. IEEE Trans. Syst. Man Cybern. 28(6), 841–848
(1998)

13. Suresh, S., Omkar, S.N., Mani, V.: Parallel implementation of back-propagation
algorithm in networks of workstations. IEEE Trans. Parallel Distrib. Syst. 16(1),
24–34 (2005)

14. Ganeshamoorthy, K., Ranasinghe, D.N.: On the performance of parallel neural
network implementations on distributed memory architectures. In: Proceedings of
the IEEE International Symposium on Cluster Computing, pp. 90–97 (2008)

15. Chu, L., Wah, B.W.: Optimal mapping of neural-network learning on message-
passing multicomputers. J. Parallel Distrib. Comput. 14(3), 319–339 (1992)

http://dx.doi.org/10.1007/978-3-642-30223-7_87
http://dx.doi.org/10.1007/11575863_55
http://dx.doi.org/10.1007/11575863_55

IQNN: Training Quantized Neural Networks
with Iterative Optimizations

Shuchang Zhou1,2,3(B), He Wen3, Taihong Xiao3, and Xinyu Zhou3

1 University of Chinese Academy of Sciences, Beijing 100049, China
shuchang.zhou@gmail.com

2 State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences,

Beijing 100190, China
3 Megvii Inc., Beijing 100190, China

{wenhe,xiaotaihong,zxy}@megvii.com

Abstract. Quantized Neural Networks (QNNs) use low bitwidth num-
bers for representing parameters and intermediate results. The lowering
of bitwidths saves storage space and allows for exploiting bitwise opera-
tions to speed up computations. However, QNNs often have lower predic-
tion accuracies than their floating point counterparts, due to the extra
quantization errors. In this paper, we propose a quantization algorithm
that iteratively solves for the optimal scaling factor during every forward
pass, which significantly reduces quantization errors. Moreover, we pro-
pose a novel initialization method for the iterative quantization, which
speeds up convergence and further reduces quantization errors. Overall,
our method improves prediction accuracies of QNNs at no extra costs
for the inference. Experiments confirm the efficacy of our method in the
quantization of AlexNet, GoogLeNet and ResNet. In particular, we are
able to train a GoogLeNet having 4-bit weights and activations to reach
11.4% in top-5 single-crop error on ImageNet dataset, outperforming
state-of-the-art QNNs. The code will be available online.

Keywords: Quantized Neural Network · Uniform quantization · Itera-
tive quantization · Alternating least squares · Bitwise operation

1 Introduction

Deep Neural Networks have found wide-spread applications due to their ability to
model nonlinear relationships in massive amount of data and robustness to real
world noises. However, the modeling capacities of DNNs are roughly proportional
to their computational complexities. For example, DNNs that are widely used in
computer vision applications, like AlexNet [9], GoogLeNet [15] and ResNet [5],
require billions of multiply-and-add operations for an input image of scale of
224. Such high resource requirements impede applications of DNNs to embedded
devices and interactive scenarios.

Quantized Neural Networks (QNNs) [7,8,12] have been proposed as less
resource-intensive variants of DNNs. By quantizing some of weights, activations
c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 688–695, 2017.
https://doi.org/10.1007/978-3-319-68612-7_78

IQNN: Training Quantized Neural Networks with Iterative Optimizations 689

and gradients to low bitwidth numbers, QNNs typically require less memory,
storage space and computation, and have found applications in Image Classifi-
cation, Segmentation, etc [16]. However, as the quantization introduces approxi-
mation errors, QNNs are in general worse than their floating point counterparts
in terms of prediction accuracies.

In this paper, we focus on reducing the quantization errors of parameters
of QNNs to improve prediction accuracies. We first propose an optimization
formulation for the multi-bit quantization of weight parameters. As no closed-
form solutions exist for the optimization, we construct Iterative Quantization,
an Alternating Least Squares (ALS) [11] algorithm, to find the optimal scaling
factors for the quantization. The iterative algorithm is designed to use only sim-
ple matrix operations, and can be readily integrated into the training process.
Because the iterative optimization is only performed during training, there will
be no overhead added to the inference. Moreover, we propose to initialize the
optimization with values based on statistics of weights, to further reduce quan-
tization errors and number of iterations required for the optimization.

Numerical experiments on the quantization of weights of neural networks con-
firm the efficacy of our method in reducing quantization errors. We also train
QNNs by Iterative Quantization from scratch on the large-scale ImageNet [2]
dataset, and outperform the state-of-the-art QNNs in terms of prediction accu-
racies.

2 Quantized Neural Networks

We first introduce some notations. We define a utility function quantk that
converts floating point numbers in the closed interval [− 1

2 , 1
2] to fixed point

numbers as follows:

quantk(W) def==
1

2k − 1
round((2k − 1)(W +

1
2
)) − 1

2
, −1

2
≤ wi,j ≤ 1

2
∀i, j,

(1)

where wi,j are entries of matrix W, and the outputs of quantk are among
− 1

2 , − 1
2 + 1

2k−1
, − 1

2 + 2
2k−1

, · · · , 1
2 .

When quantizing parameters of a Neural Network, we would need first map
the parameters W to the closed interval [− 1

2 , 1
2] before applying quantk:

Definition 1 (k-bit Uniform Quantization [7,17]).

uniform-quantk(W) def== 2max(|W|) quantk(
W

2max(|W|)),

where the subscript k stands for k-bit quantization, and |W| is a matrix with
values being the absolute values of corresponding entries in W.

As −max(|W|) ≤ wi,j ≤ max(|W|), we have − 1
2 ≤ wi,j

2max(|W|) ≤ 1
2 . We can

then apply quantk to get the fixed point values. Finally we restore the value
range back to [− max(|W|),max(|W|)] by multiplying 2max(|W|).

690 S. Zhou et al.

As its outputs are discrete values, any quantization function will have zero
gradients, which invalidates the Back Propagation algorithm. To circumvent
this problem, we need convert quant to a Straight Through Estimator [6], by
substituting the gradients with respect to the quantized value for the gradients
of the original value.

3 Iterative Quantization of Neural Network

QNNs often incur significant degradations in prediction accuracies when
bitwidths are below 4-bit [7,12,17]. We note that for the uniform quantiza-
tion defined in Definition 1, the scaling factors are determined from extremal
values in one shot, which may be suboptimal. In this section we propose an
algorithm that iteratively optimizes the scaling factors, which generalizes the
uniform quantization method and reduces quantization errors.

3.1 Quantization as Optimization

To reduce quantization errors measured in Frobenius norm, we investigate the
following optimization formulation for k-bit quantization:

min
Λ,Q

‖ΛQ − W‖F (2)

where W contains weights of a fully-connected (convolutional) layer of a neural
network, Λ is a diagonal matrix containing floating point scaling factors1, and
Q contains fixed-point values in the closed interval [− 1

2 , 1
2]. Determining the

scaling factor Λ is important as it affects the value of the fixed point part Q.
The product ΛQ will be used to replace W during the inference.

3.2 Solution by Iterative Algorithm

The objective function of Formula 2 is non-convex and lacks a closed-form solu-
tion except for the special case of 1-bit [12]. Nevertheless, it can be solved by
the Alternating Least Squares algorithm, detailed in Algorithm 1.

It can be observed that only simple matrix operations are used in Algo-
rithm 1. Hence the iterative optimization can be readily integrated into the
computation graph of a QNN as a unrolled loop. Alternatively, as (Λi,Qi) are
iteratively updated, the iterations can be implemented as a Recurrent Neural
Network layer with (Λi,Qi) as state variables, which reduces memory footprint
during training.

The uniform quantization method from Definition 1 can be formulated as a
special case of Algorithm 1, by setting all entries of Λ0 to be 2max(|W|) and
having the number of iterations N = 1.

1 Floating point multiplication with Λ during inference can be avoided [17].

IQNN: Training Quantized Neural Networks with Iterative Optimizations 691

Algorithm 1. Iterative quantization for matrix W ∈ R
I×J

Require: Initialization values Λ0

Ensure : Quantized weights ΛNQN ≈ W
1 for t = 1 → N do
2 Qt ← quantk(clip((Λt−1)

−1W, − 1
2
, 1
2
)) ;

// The clipping function clip(x, l, h) = max(min(x, h), l) is used to

limit the value range to [l, h].

3 for i = 1 → I do

4 (Λt)i ← <(W)i,(Qt)i>
ε+<(Qt)i,(Qt)i>

;

// < ·, · > computes the inner product.

// (W)i, (Qt)i are the i-th row of W and Qt respectively.

(Λt)i is the i-th diagonal entry of Λt.

// ε is a small constant thas is used to avoid division by

zero.

5 end

6 end

3.3 Distribution of Weights and Initialization

When weights follow a well known distribution, the scaling factors Λ may be
determined from theoretical results of optimal uniform quantizers [14], which we
list in Table 1. As the theoretical optima are fixed points of Iterative Quantiza-
tion, when they are used as initialization values, the convergence of the iterative
algorithm can be accelerated.

Table 1. Comparison of maximal quantized value of optimal uniform quantizers for
uniform (over [−1, 1]) and standard normal distributions [14].

Statistics Uniform Normal

Maximum after optimal 2-bit quantization 0.5 0.798

Maximum after optimal 4-bit quantization 0.938 2.513

Mean of absolute value 0.5 0.798

However, the distribution of weights of Neural Networks may be quite com-
plex. Two illustrative examples are given in Fig. 1, where the second one has
many peaks. Hence it is not in general possible to determine optimal initializa-
tion values Λ0. Nevertheless, we observe that the ratio between mean of absolute
value and maximal quantized value is quite stable across different distributions
and different bitwidths. For example, when performing 2-bit quantization, the
ratios are 1 for both Uniform and Normal distributions.

We propose to initialize Λ0 with mean of absolute values scaled by an coef-
ficient γ when performing k-bit quantization as follows:

(Λ0)i = γ mean((|W|)i), (3)

692 S. Zhou et al.

Fig. 1. (a) Distribution of weights from a convolution layer in a GoogLeNet model.
(b) Distribution of weights before quantization from the last fully-connected layer in a
QNN version of AlexNet.

where (|W|)i is the i-th row of |W| and (Λ0)i is the i-th diagonal entry of Λ0.
For 2-bit case we set γopt = 2 = 2 × 0.5/0.5+0.798/0.798

2 , and for 4-bit we set
γopt = 5.02 ≈ 2 × 0.938/0.5+2.513/0.798

2 . The γ coefficient is 2 times the average of
ratios for Uniform and Normal distributions, as the maximual quantized values
are mapped to 1

2 in Definition 1.

4 Experiments

In this section, we conduct experiments to compare the performance of Iter-
ative Quantization with the non-iterative method (Definition 1). Experiments
are performed on machines equipped with Intel Xeon CPUs and NVidia TitanX
Graphics Processing Units.

4.1 Iterative Quantization of Weights of a Layer

We first experiment on the quantization of weights of the last fully-connected
layer of AlexNet, and test the convergence of our algorithm. Results are listed in
Fig. 2. It can be seen that the quantization errors decrease monotonically with
more iterations, which is a property of ALS. However, the initialization values
significantly impact the speed of convergence. In fact, initialization with the
approximate optimum γopt = 5.02 significantly reduces the number of iterations
required for convergence. On the other hand, quantization errors are still sub-
stantially reduced even when initializing with γopt, which justifies performing
the iterative optimization during training.

We will set #iter = 8 in remaining experiments unless noted, to strike a
balance between the training speed and the prediction accuracy.

4.2 Iterative Quantization for Training Neural Networks

We also apply Iterative Quantization to train QNNs from scratch. We use Ima-
geNet dataset that contains 1.2 M images for training and 50 K images for vali-
dation. While testing, images are first resized so that the shortest edge contains

IQNN: Training Quantized Neural Networks with Iterative Optimizations 693

Fig. 2. Relative errors against number of iterations for the 4-bit quantization. Weights
are from the last fully-connected layer of AlexNet. The errors are scaled so that the
error of non-iterative method is 1.

256 pixels, then the center 224-by-224 crops will be used as inputs. Following
the conventions, we report results in two measures: single-crop top-1 error rate
and top-5 error rate over ILSVRC12 validation sets [13].

For all QNNs in this section, weights and activations of all convolutional and
fully-connected layers have been quantized by specified bitwidths unless noted.
The activations are quantized by the method of DoReFa-net [17].

Table 2. Comparison of classification errors of QNNs trained with different methods.
FP stands for neural networks with floating point weights and activations. “FP weights
+ 2-bit activations” refers to models that have floating point weights and activations
quantized to 2-bit numbers. Results in rows prefixed with “non-iterative” are produced
from non-iterative uniform quantization.

Method AlexNet ResNet-18

Top-1 error Top-5 error Top-1 error Top-5 error

FP 42.9% 20.6% 31.8% 12.5%

FP weights + 2-bit
activations

43.5% 21.0% 38.9% 17.3%

Non-iterative 2-bit 45.3% 22.3% 42.3% 19.2%

Iterative 2-bit 43.2% 20.8% 41.8% 19.0%

Table 2 demonstrates the efficacy of Iterative Quantization for training
QNNs, exhibited by the improved prediction accuracies. For AlexNet, the QNN
trained with our method has almost the same top-5 error rate as the floating
point one.

Table 3 compares the GoogLeNet quantized with our method against the
state-of-the-art. The row marked with “QNN 4-bit” is from Hubara et al. [7].
To rule out factors like Image Augmentation, we also list the accuracies of their

694 S. Zhou et al.

Table 3. Comparison of classification errors of our method with the state-of-the-art
for the quantization of GoogLeNet.

Method Top-1 error Top-5 error

FP [7] 28.4% 8.8%

Our FP 28.5% 10.1%

Ristretto [4] 8-bit 33.4% -

QNN 4-bit [7] 33.5% 16.6%

Our 4-bit (#iter=4) 31.6% 11.9%

Our 4-bit (#iter=16) 31.2% 11.4%

floating point model. It can be seen that their FP model has better accuracies
than our FP model. In contrast, our quantized model outperforms their quan-
tized model. In particular, our method reduces the top-5 accuracy degradation,
which is the difference in accuracy between a QNN and its floating point ver-
sion, from 7.8 percentages to 1.3 percentages. In addition, with our initialization
method, the top-5 error rate only slightly increases by 0.5 percentages if we
reduce the number of iterations from 16 to 4.

5 Related Work

Our iterative quantization method is different from that of Gong et al. [3],
because QNNs restrict the transformation of weights to scaling. Lin et al. [10]
investigated optimal uniform quantization but did not integrate it into the train-
ing of DNNs, hence their method incurred severe accuracy degradations when
bitwidths are below 6. Anwar et al. [1] investigated an iterative algorithm for
quantization of pre-trained networks, which were later fine-tuned. However, such
operations were only performed a few times during the whole training process.
To the best of our knowledge, we are the first to integrate the iterative quanti-
zation into training of QNNs and perform experiments on a dataset of the scale
of ImageNet.

6 Conclusion

In this paper, we propose the method of Iterative Quantization for training
QNNs. We formulate the multi-bit quantization of weights of Neural Networks
as an optimization problem, which is solved by an iterative algorithm to min-
imize quantization errors, during each forward pass of the training. Moreover,
we propose a method to use statistics of weights as initial values, which further
reduces quantization errors and the overhead added to training.

IQNN: Training Quantized Neural Networks with Iterative Optimizations 695

References

1. Anwar, S., Hwang, K., Sung, W.: Fixed point optimization of deep convolutional
neural networks for object recognition. In: 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2015, South Brisbane, Queens-
land, Australia, April 19–24, 2015, pp. 1131–1135 (2015)

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

3. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a pro-
crustean approach to learning binary codes for large-scale image retrieval. IEEE
Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2013)

4. Gysel, P., Motamedi, M., Ghiasi, S.: Hardware-oriented approximation of convo-
lutional neural networks. CoRR abs/1604.03168 (2016)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27–30, 2016, pp. 770–778, June 2016

6. Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning.
Coursera Video Lect. vol. 264 (2012)

7. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized
neural networks: training neural networks with low precision weights and acti-
vations. CoRR abs/1609.07061 (2016)

8. Kim, M., Smaragdis, P.: Bitwise neural networks. CoRR abs/1601.06071 (2016)
9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-

volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105, December 2012

10. Lin, D.D., Talathi, S.S., Annapureddy, V.S.: Fixed point quantization of
deep convolutional networks. In: International Conference on Machine Learning
(ICML2016) (2015)

11. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28(2),
129–136 (1982)

12. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classi-
fication using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham
(2016). doi:10.1007/978-3-319-46493-0 32

13. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

14. Shi, Y.Q., Sun, H.: Image and Video Compression for Multimedia Engineering:
Fundamentals, Algorithms, and Standards. CRC Press, Boca Raton (1999)

15. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan,
D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7–12, 2015, pp. 1–9, June 2015

16. Wen, H., Zhou, S., Liang, Z., Zhang, Y., Feng, D., Zhou, X., Yao, C.: Training bit
fully convolutional network for fast semantic segmentation. CoRR abs/1612.00212
(2016)

17. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: DoReFa-Net: training
low bitwidth convolutional neural networks with low bitwidth gradients. CoRR
abs/1606.06160 (2016)

http://dx.doi.org/10.1007/978-3-319-46493-0_32

Compressing Neural Networks by Applying
Frequent Item-Set Mining

Zi-Yi Dou, Shu-Jian Huang(B), and Yi-Fan Su

National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China

141242042@smail.nju.edu.cn, huangsj@nju.edu.cn, suyf@nlp.nju.edu.cn

Abstract. Deep neural networks have been widely used contemporarily.
To achieve better performance, people tend to build larger and deeper
neural networks with millions or even billions of parameters. A natural
question to ask is whether we can simplify the architecture of neural
networks so that the storage and computational cost are reduced. This
paper presented a novel approach to prune neural networks by frequent
item-set mining. We propose a way to measure the importance of each
item-set and then prune the networks. Compared with existing state-of-
the-art pruning algorithms, our proposed algorithm can obtain a higher
compression rate in one iteration with almost no loss of accuracy. To
prove the effectiveness of our algorithm, we conducted several experi-
ments on various types of neural networks. The results show that we can
reduce the complexity of the model dramatically as well as enhance the
performance of the model.

Keywords: Neural networks · Frequent item-set mining · Deep learning

1 Introduction

In recent years, neural networks have been proven to be a powerful tool in many
fields, including object classification [1] and speech recognition [2]. Typically,
people have a tendency to build deeper and larger neural networks. In the field of
computer vision, starting with LeNet-5 which requires 431 thousand parameters
[3], Krizhevsky et al. designed AlexNet with 60 million parameters in 2012 [4]
and Sermanet et al. won the ImageNet competition using 144 million parameters
in 2013 [1]. For natural language processing tasks, a recent state-of-the-art neural
machine translation system requires over 200 million parameters [5].

It is true that enormous amount of parameters dramatically improve the
performance ,but we should be aware that there is significant redundancy in
the parameterization of several deep learning models [6]. Over-parametrization
can also lead to problems like over-fitting which can result in low generaliza-
tion ability. In addition , training and using such large neural networks requires

This work is supported by NSFC No. 61672277, 61472183 and the Collaborative
Innovation Center of Novel Software Technology and Industrialization, China.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 696–704, 2017.
https://doi.org/10.1007/978-3-319-68612-7_79

Compressing Neural Networks by Applying Frequent Item-Set Mining 697

long running time and costs much energy and memory. The trend of applica-
tions of machine learning shifting toward embedded devices, which have limited
storage size and computational ability, makes the problem of utilizing so many
parameters more severe.

All these issues have motivated the idea of neural network compression, which
aims to reduce the storage and energy required to run inference on large neural
networks without losing any accuracy. Several methods have been proposed to
tackle this problem and here we introduce a rather novel way to compress neural
networks based on frequent item-set mining which can be implemented easily and
achieve relatively high compression rate in one iteration.

2 Related Work

Network Pruning. Pruning the parameters from a neural network have been
investigated for several decades. Basically, many of the traditional algorithms,
such as penalty term methods or magnitude based methods, defines a measure
of each connection or node and remove the element with the least effect [7].

In recent years, the deep learning renaissance has prompted a re-investigation
of network pruning for modern models and tasks [8]. Admittedly, a lot of tra-
ditional pruning algorithms can achieve great performance. However, when it
comes to large deep neural networks, the high computational complexity cannot
be tolerated. In 2015, Han et al. proposed an algorithm that can remain efficient
in deep neural networks [9].

Inspired by Han et al.’s paper, several methods have been put forward to prune
the neural networks. DropNeuron [10] adds two more regularization terms into
the objective function and thus makes it possible to delete more neurons in neural
networks. Network Trimming prunes the neurons with zero activation [11].

To our knowledge, no one has ever applied association rule or frequent item-
set generation into pruning neural networks. In addition, only a few papers [8]
discuss their applications in recurrent neural networks, which are widely used in
areas like sentiment analysis or language models.

Frequent Item-Set Mining. Nowadays there are many sophiscated algorithms
for frequent item-set mining. One of the most popular algorithm is Apriori [12].
However, Apriori is inefficient in some scenarios. To resolve the issue, Lin et al.
use MapReduce to accelerate the algorithm [13]. Cut-Both-Ways (CBW) algo-
rithm first finds all frequent item-sets of a pre-defined length and then employs
search in both directions [14]. However, these methods all have exponential com-
plexity and thus cannot be applied in large scale problem.

3 Our Proposed Methods

In this section, we first give a brief overview of frequent item-set mining. Then we
illustrate how to apply it in neural networks. Finally we propose our algorithm
based on frequent item-set mining.

698 Z.-Y. Dou et al.

3.1 Frequent Item-Set Mining Task

Frequent item-set mining is often regarded as the first part of association rule
mining. the problem of frequent item-set mining can be defined as [15]:

Let IT = {it1, it2, ..., itn} be a set of n binary attributes called items. and
D = {t1, t2, ..., tm} be a set of transactions called the database.

Each transaction in D has a unique transaction ID and contains a subset of
the items in IT . Suppose T is a set of transactions of a given database, then the
support of an item-set X with respect to T is defined as the proportion of trans-
actions t in the database which contains item-set X, which can be expressed as

Supp(X) =
|{t ∈ T ;X ⊂ t}|

|T | . (1)

The task of frequent item-set mining is to discover all item-sets that satisfy
a user-specified minimum support minsup.

3.2 Frequent Item-Set Mining in Neural Networks

Symbols and Definitions. In this section, we first introduce some symbols
and definitions which will be used in later parts of the paper. Since our strategy
prunes the neural networks layer by layer, without loss of generality, the following
parts all consider one single layer.

Suppose the layer consists of m input nodes I = {i1, i2, ..., im} and n outputs
nodes O = {o1, o2, ..., on}, its weight matrix can be represented as a m×n matrix
W . In order to express whether there exists an connection between two nodes,
we need an extra connection matrix C, where C is an m×n boolean matrix and
Cab = 1 if and only if the output node ob is connected to the input node ia.

Therefore, the layer L can be represented as a tuple < I,O,W,C >. Normally,
for a fully connected layer, the elements of C all equal to one and our mission is
to turn as many elements in C into zero as possible without the loss of accuracy.

Item-Sets in Neural Networks. In order to apply frequent item-set mining
into pruning neural networks, we must first construct item-sets in neural net-
works. Based on the definition above, given a layer L =< I,O,W,C >, each
input node is connected to several output nodes Si, namely a subset of O. Each
element oi in O can be considered as an item. Thus, we can delete some nodes
from Si and take the rest of the nodes as an item-set. In the end, we can con-
struct m item-sets in total, which is then viewed as our set of transactions T .
In our approach, we specify a constant ε in advance and delete the nodes whose
absolute value of weights of connections to the input node are smaller than ε,
i.e.

oi ∈ tj ⇔ |Wij | > ε, for each tj ∈ T

In order to make this point clear, let’s consider a fully connected layer whose
m = 5 and n = 4. The weight matrix is shown in Fig. 1.

Compressing Neural Networks by Applying Frequent Item-Set Mining 699

Fig. 1. Three steps to apply frequent item-set mining in neural networks: separate each
row of W , view each ok as an item; construct set of transactions T ; applying frequent
item-set mining algorithm directly.

We view each output node as an item. First, we consider each row separately
and those connections whose weights less than ε = 0.2 are removed from the
item-sets. In the end, we get five item-sets from this layer.

Frequent Item-Set Mining in Neural Networks. Once we have constructed
the item-sets, we can directly use current frequent item-set mining algorithms
like Apriori to find out all the item-sets whose support is greater than the pre-
defined minsup. Then we can select the top m item-sets with the highest support
so that the basic architecture of neural networks remain the same.

Again, let us consider the previous example. After applying frequent item-set
mining, the result is shown in Fig. 1.

Importance Measure of Item-Sets. The support of one item-set cannot be
the only measure. If one item-set is frequent, i.e. its support is greater than a
constant, then all its subsets are frequent. Therefore, the sets with few elements
always have the highest support. As we can see from the figure, three out of
five frequent item-sets only consist of one element. To fix the issue, we should
measure the importance of an item-set not only in terms of its support. Here we
propose an importance measure of an item-set S:

Importance(S) =
|{t ∈ T ;S ⊂ t}|

|T | + λ ∗ e|S|/n (2)

Here n denotes the total number of output nodes, T represents the item-sets
constructed from neural networks and λ is a pre-defined hyper-parameter. The
first term on the right side is the original definition of support and the second
term tries to model the effect of the size of one item-set. In this way, we hope
the length of item-sets will counteract the influence of support.

3.3 FIMP Algorithm

The naive idea is to first use frequent item-set mining algorithm such as Apriori
to calculate the support of each item-set and then re-rank all the remaining
item-set according to their importance as defined in Eq. 2. Finally, we select m
item-set with the highest importance.

700 Z.-Y. Dou et al.

However, we should be aware that this simple idea has some potential draw-
backs. First, the computational cost is growing exponentially. Second, the item-
sets cannot be repetitive, which means that in extreme cases where m >> n,
there will be not enough item-sets.

Here we improve our former idea and propose an algorithm that can solve
all the drawbacks mentioned above. We call it FIMP algorithm, which is short
for Frequent Item-set Mining based Pruning.

In the first step, we construct all the item-sets in every layer as described in
Sect. 3.2, corresponding to the third matrix from the left in Fig. 1. Then, for every
item-set, we apply greedy search or beam search to calculate the importance of
its subsets. Then we choose the subset with largest importance and continue the
above procedure until during the search no subset has higher importance than
the current item-set. The full procedure is shown in Algorithm1. Si is a subset
of S with size(Si) >= size(S) − k, where k is a hyper-parameter.

Algorithm 1. FIMP Algorithm
Input: Neural Network N, ε
Output: Pruned Neural Network PN

1: for each layer with mi × ni nodes do
2: Construct item-sets following the procedure described in Sect. 3.2
3: for each item-set S do
4: while Importance(Si) > Importance(S) do
5: max id = argmax1≤i≤miImportance(Si)
6: S = Smax id

7: end while
8: end for
9: end for

4 Experiment

4.1 Baseline Models

We compare our model with two baseline methods: (1) The method proposed
by Han et al., where they simply remove the connection with least weight [9].
(2) DropNeuron proposed by Pan et al. where they add two more regularization
terms so that more neurons can be removed [10].

We list the percentage of connections left after pruning for each layer L,
represented as WL%, and the performance of the model before and after pruning.

4.2 Deep Antoencoder

First we conducted experiment on deep autoencoder. We considered the image
dataset of MNIST [16]. The number of training examples and test examples are

Compressing Neural Networks by Applying Frequent Item-Set Mining 701

60000 and 10000 respectively, the image sizes are 28 × 28 digit images and 10
classes. We used the same setting as [10], where they use 784 → 128 → 64 →
128 → 784 autoencoder and all units were logistic with mean square error as
loss.

Table 1. Results of pruning autoencoder

WFC1% WFC2% WFC3% WFC4% W total% NMSE
(before)

NMSE
(pruned)

Han et al .∗ 15.18% 46.29% 52.53% 17.54% 18.86% 0.011 0.011

Pan et al .∗ 16.00% 44.47% 54.11% 18.14% 19.50% 0.012 0.012

FIMP 14.27% 29.00% 39.94% 8.95% 13.34% 0.009 0.007

∗ Means the result is cited from Pan et al. [10]

The results can be seen at Table 1. Here we use the standard normalized
mean square error (NMSE) metric, i.e. NMSE =

∑N
t=1(yt−ŷt)

2
∑N

t=1 y2
t

, to evaluate the
prediction accuracy of the model. From the table, we can see that our method
can achieve greater compression rate compared with [9] and [10].

4.3 Fully Connected Neural Networks

We also implemented our algorithm on fully connected neural networks. Here we
mainly focus on the representative neural networks LeNet. LeNet-300-100 is a
fully connected network with two hidden layers, with 300 and 100 neurons each,
which achieves 1.6% error rate on MNIST. Unfortunately, we could not find any
pre-trained model of LeNet-300-100 on TensorFlow and it is hard for us to get
1.6% error rate. So we just use the best model we can find with 98.24% accuracy
and prune it. As we can see from Table 2, our compression rate is still higher
than the other two pruning strategies. Even though our accuracy is a little bit
lower, we should notice that the accuracy is actually higher after pruning, which
suggests that the relatively lower accuracy may result from the unsatisfied initial
model.

Table 2. Results of pruning LeNet-300-100

WFC1% WFC2% WFC3% W total% Accuracy
(before)

Accuracy
(pruned)

Han et al . ∗ ∗ 8% 9% 26% 8% 98.36% 98.41%

Pan et al .∗ 9.56% 11.16% 54.5% 9.91% 98.13% 98.17%

FIMP 6.19% 19.00% 38.50% 7.76% 98.24% 98.27%

∗ Means the result is cited from Pan et al. [10]
∗∗ Means the result is cited from Han et al. [9]

702 Z.-Y. Dou et al.

Figure 2 shows the sparsity pattern of the first fully connected layer of LeNet-
300-100 after pruning. The matrix size is 784 ∗ 300 and the white regions of the
figure indicate non-zero parameters. The figure demonstrates how FIMP affects
the network. Since digits are written in the center of image, it is no surprising
that the graph is concentrated in the middle and sparse on the left and right.

Fig. 2. Visualization of the first FC layer’s sparsity pattern of Lenet-300-100.

4.4 Convolutional Neural Networks

LeNet-5 is a convolutional network that has two convolutional layers and two
fully connected layers, which achieves 0.8% error rate on MNIST. Actually, our
algorithm is the same as the other strategy when pruning convolutional lay-
ers, thus we can just compare the performance of three algorithms on the fully
connected layers.

Table 3. Results of pruning LeNet-5

WFC1% WFC2% W total% Accuracy(before) Accuracy(pruned)

Han et al . ∗ ∗ 8% 19% 8% 99.20% 99.23%

Pan et al .∗ 1.44% 16.82% 1.49% 99.07% 99.14%

FIMP 2.95% 17.42% 3.00% 99.05% 99.12%

∗ Means the result is cited from Pan et al. [10]
∗∗ Means the result is cited from Han et al. [9]

The results are shown in Table 3. As we can see from the table, the second
algorithm did quite well in this task, however, our algorithm can still obtain a
similar result which is far better than the first algorithm.

Compressing Neural Networks by Applying Frequent Item-Set Mining 703

4.5 Recurrent Neural Networks

In this experiment we turn our attention to a recurrent neural network and use
it on a challenging task of language modeling. The goal is to fit a probabilistic
model which assigns probabilities to sentences. It does so by predicting next
words in a text given a history of previous words. We use the Penn Tree Bank
(PTB) dataset and perplexity, a common way of evaluating language models, to
evaluate the performance of models. We use LSTM model with 2 layers and the
hidden size is set to 200 (Table 4).

Table 4. Results of pruning LSTM on language model

W total% Perplexity(before) Perplexity(pruned)

Han et al . 10.21% 115.910 109.032

Pan et al . 11.37% 115.910 109.724

FIMP 9.33% 115.910 108.999

As we can see from the table, the perplexity after pruning is clearly lower
than the original one, which indicates better performance of the model.

5 Discussion and Conclusion

In this paper we present a novel way to prune neural network motivated by the
intuition that frequent pattern should be more important. We hope this method
could provide the reader with a new perspective toward pruning neural networks.
Although FIMP has shown promising results, there are still some unfinished
work. For example, we could add constraints that favor the emergence of repeat-
ing connectivity patterns so that higher compression rate could be achieved.
Also, we could try different measure of importance. Right now larger λ in Eq. 2
means more connections would be pruned and more time would be cost. In this
work we set λ to a small value like 1e − 5 and it now takes about half an hour
to prune a fully connected layer on a PC while the other two algorithms only
cost a few seconds. Although compared with training a large neural network this
amount of time is negligible, we may still find some way to speed up FIMP.

References

1. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat:
Integrated recognition, localization and detection using convolutional networks.
arXiv preprint arXiv: 1312.6229 (2013)

2. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Kingsbury,
B.: Deep neural networks for acoustic modeling in speech recognition: the shared
views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

http://arxiv.org/abs/1312.6229

704 Z.-Y. Dou et al.

3. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
Comput. 1(4), 541–551 (1989)

4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

5. Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025 (2015)

6. Denil, M., Shakibi, B., Dinh, L., de Freitas, N.: Predicting parameters in deep
learning. In: Advances in Neural Information Processing Systems, pp. 2148–2156
(2013)

7. Augasta, M.G., Kathirvalavakumar, T.: Pruning algorithms of neural networks—a
comparative study. Cent. Eur. J. Comput. Sci. 3(3), 105–115 (2013)

8. See, A., Luong, M.T., Manning, C.D.: Compression of Neural Machine Translation
Models via Pruning. arXiv preprint arXiv:1606.09274 (2016)

9. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Advances in Neural Information Processing Systems,
pp. 1135–1143 (2015)

10. Pan, W., Dong, H., Guo, Y.: DropNeuron : Simplifying the Structure of Deep
Neural Networks. arXiv preprint arXiv:1606.07326 (2016)

11. Hu, H., Peng, R., Tai, Y.W., Tang, C.K., Trimming, N.: A Data-Driven Neu-
ron Pruning Approach towards Efficient Deep Architectures. arXiv preprint
arXiv:1607.03250 (2016)

12. Borgelt, C.: Frequent item set mining. Wiley Interdisc. Rev.: Data Min. Knowl.
Discov. 2(6), 437–456 (2012)

13. Lin, M.Y., Lee, P.Y., Hsueh, S.C.: Apriori-based frequent itemset mining algo-
rithms on MapReduce. In: Proceedings of the 6th International Conference on
Ubiquitous Information Management and Communication, p. 76. ACM (2012)

14. Su, J.H., Lin, W.: CBW: an efficient algorithm for frequent itemset mining. In: Pro-
ceedings of the 37th Annual Hawaii International Conference on System Sciences,
2004, p. 9. IEEE (2004)

15. Agrawal, R., Imieliski, T., Swami, A.: Mining association rules between sets of
items in large databases. In: ACM SIGMOD Record, vol. 22, no. 2, pp. 207–216.
ACM (1993)

16. Lecun, Y., Cortes, C.: The mnist database of handwritten digits (2010)

http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1606.09274
http://arxiv.org/abs/1606.07326
http://arxiv.org/abs/1607.03250

Applying the Heavy-Tailed Kernel
to the Gaussian Process Regression
for Modeling Point of Sale Data

Rui Yang(B) and Yukio Ohsawa(B)

Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
yangruiacademic@gmail.com, ohsawa@sys.t.u-tokyo.ac.jp

Abstract. Heavy-tailed distributions such as student’s t distribution
have a special position in the statistical machine learning research due
to their robustness when handling Gaussian noise model or other models
within unknown types of noise. In this paper, we focus on using the
robust kernel as an alternative to the wildly used squared exponential
kernel for promoting the model’s robustness. Furthermore, we apply the
heavy-tailed kernel to the Gaussian process with Bayesian regression for
predicting the daily turnover of merchandises based on learning Point of
Sale (PoS) data. The experiment results show better and more robust
performs when comparing with other kernels.

Keywords: Heavy-tailed kernel · Robustness · Gaussian process ·
Bayesian regression · PoS data

1 Introduction

How to eliminate noise from real data confuses researchers for a long time.
So far, many researchers proposed various tools and theorems for defibrillating
the abnormal data sets. Such as Fourier transform [1] can transfer the wave
from the time domain to frequency domain, and high-frequency harmonic waves
will be treated as noise. Or classical Principal Component Analysis [2], this
linear algebraical method decomposes the covariance matrix, and orthogonal
vectors within lower eigenvalues will be treated as noise. In probability and
statistics domain, heavy-tailed distributions can also neglect noise, with their
tails heavier than exponential distributions’. Such as the Student’s T Distribution
has more stable mean value with unsmooth observations rather than Gaussian
distribution. On account of such features, heavy-tailed distributions perform well
again the noise data.

Naturally, various kernel functions generated from different distributions. For
instance, the Gaussian distribution without normalization coefficient is similar
to the equation of Gaussian kernel. Kernel functions observe the linear or non-
linear inner products, which can transfer absolute value to other target weights
by different definitions. Once a kernel function can satisfy the Mercers theorem

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 705–712, 2017.
https://doi.org/10.1007/978-3-319-68612-7_80

706 R. Yang and Y. Ohsawa

and is positive semi-defined, it can be judged as a legal kernel [9]. Common ker-
nels include Linear, Polynomial, Gaussian, Exponential, Generalized T-student
kernels, etc. They exhibit different performances in Support Vector Machine [10]
and other machine learning algorithms.

One technique utilizing the kernel function is Gaussian process [3]. It demon-
strates excellent performance since Rasmussen and Carl Edward published it.
This Bayesian nonparametric algorithm with general applicability has been fur-
ther developed over recent years. It assumes that all output f(xn) are following
the joint Gaussian distribution, which means f(xn) ∼ GP(0,Σ), and Σ is the
covariance obtained from kernel function f(x, x′). Kernels can transfer the dis-
tance between every input to a covariance matrix for representing the weight
of importance between every input value, and normally treat this matrix as the
covariance parameter in the joint Gaussian distribution. As the core part of the
Gaussian process, the performance of kernel function can affect the final result
of Gaussian process indeed.

Recently, other stochastic process methods such as student-t process [4,5],
the log-normal process [6] and some amelioration of Gaussian process [7,8] based
on various promoting methods were proposed. In our work, we prefer to use the
plain Gaussian Process due to its universality. In our assumption, the noise of
the data should be neglected at the parameter optimization step via the heavy-
tailed kernel, because the kernel function in these stochastic processes handles
the input data at the first step. If we don’t eliminate noise at first step, it will
hard to interpret the final performance is reasoning from which step.

In this paper, we focus on using a parameter-optimized robust kernel to
replace the wildly used RBF kernel to obtain a reliable result based on the point
of sale data. We highlight three major tasks in our work:

1. Apply the heavy-tailed kernel to Gaussian process.
2. Optimize kernel parameters by parameter optimizer.
3. Infer the regression result and predict new outputs of test data.

2 Gaussian Process

We give a brief review of the Gaussian process [3] here. Given a data set D =
(xn,yn)c,d

n∈R
, for an unknown function f : Rc → R

d (c and d represent for input
and output dimensions respectively), the hypothesis of Gaussian process is a
multivariate joint Gaussian distribution over function f, which can be written in
the following equation:

f ∼ GP(m, k) (1)

where m refers to the mean function and k is the covariance function. Usually, we
will use a kernel function to define the covariance function, such as the squared
exponential kernel:

Σij = k(xi, xj) = exp(−0.5(xi − xj)2) (2)

Except for squared exponential kernel, there are many other kernel functions
with various features, and we emphasize heavy-tailed kernel in our work.

Applying the Heavy-Tailed Kernel to the Gaussian Process Regression 707

3 Heavy-Tailed Kernel

For a heavy-tailed distribution, when the variable’s absolute value tends to a
large number, the corresponding probability also becomes higher than exponen-
tial distribution’s, which means that Ph(x) > Pe(x) when |x| >> 0. As for the
kernel function, this particular feature will lead to a higher value for kh(x, x′)
than ke(x, x′), which leads to a higher weight for those x′ far away from current
x in the covariance matrix.

In another word, a point far from the current position will have a higher
importance in heavy-tailed kernels than light-tailed kernels. In recent year,
another work in dimensionality reduction domain called t-SNE [14] which uses
student’s t kernel for embedding learning, has proved the strong performance of
t kernel with its robustness. So in this paper, we choose the Student’s T Kernel,
a robust kernel derived by Student’s T Distribution, to exemplify our hypothesis.

The Non-standardized student’s t distribution can be written as the following
equation [11],

p(x) = t(ν, μ, σ2) ≡ Γ ((ν + 1)/2)
Γ (ν/2)

√
νπσ2

(1 +
(x − μ)2

νσ2
)− ν+1

2 . (3)

And specialize for the kernel function, similar to the relationship between
Gaussian Kernel and Gaussian Distribution, the normalization coefficient is no
more needed and the mean value parameter is set as zero. The freedom parameter
ν is set as one (which degenerates into the standard Cauchy Distribution) for
reducing the calculation complexity and improving robustness.

So the only parameter is σ2, and the kernel function can be written as

k(x, x′) =
1

1 + τ ‖x − x′‖2 , (4)

where τ stands for the precision parameter which equals to σ−2.
The student’s t kernel has been proved as a Mercer kernel [9] and satisfies

properties above.

3.1 Optimization

We now consider the optimization of Student’s t Distribution. There exist some
approximate inference [15] and marginal likelihood maximization methods such
as variational inference, Laplace Approximation, Expectation Propagation and
MCMC sampling which are very famous and influential to different kinds of
tasks. Its a pity that some inference methods require the conjugate prior of
parameter distribution, but EM algorithm can be qualified for the Student’s t
Distribution.

708 R. Yang and Y. Ohsawa

3.2 EM Algorithm for Student’s T Kernel

EM algorithm and its extensions [12] are famous parameter optimization meth-
ods. Through mean-field inference is invalid on non-exponential family distrib-
utions, the likelihood functions can be optimized by other algorithms. The uni-
versal Expectation-Maximization method is adequate can be used for optimizing
the parameter of student’s t distribution. However, it is difficult to maximize the
likelihood function of the student’s t distribution, so we need to rewrite the dis-
tribution equation and use EM algorithm to optimize its hyper-parameter [12].
Due to the deviation of student’s t distribution from the Gaussian distribution
[16], the probability of a zero-mean student’s t distribution with freedom equals
to one can be transferred to the following equation:

P (xij |σ,wij) ∼ N (0, σ2w−1
ij) , (5)

where xij means the distance between input xi and xj and wij ∼ Gam(12 , 1
2).

E − Step : Evaluate the hyper-parameter by finding the expectation,

w
(i,j)
∗ = E[N(xij , σ

2)] =
2σ2

σ2 + x2
ij

(6)

M − Step : Substitute hyper-parameter back to log-likelihood function and
update σ∗,

σ2
∗ =

∑
ij wijx

2
ij

n
(7)

Repeat E-step and M-step until convergence. By now, we can observe the opti-
mized parameter of student’s t distribution, and for the kernel function, the only
difference is the normalization coefficient; thus the kernel function is

k(xi, xj) =
1

1 + τij ||xi − xj ||2 , (8)

where τij = w
(i,j)
∗ /σ2

∗ is the parameter of kernel function optimized from proba-
bility distribution via EM-algorithm.

4 Bayesian Regression

Once we obtained the covariance matrix from the kernel function, we can use a
uniform distribution to make new inputs for testing the joint Gaussian distrib-
ution and store it discretely. Then we can sample the observed result for several
times and approximate the real mapping function from inputs to outputs. The
Bayesian regression for a Gaussian process can be derived from the posterior
distribution conditioning on new inputs and training dataset D naturally [3]:

[
y
y∗

]

∼ N
([

μ
μ∗

]

,

[
Σ Σ∗

Σ�
∗ Σ∗∗

])

, (9)

Applying the Heavy-Tailed Kernel to the Gaussian Process Regression 709

where, y and xi in μ = m(xi) are from D ; Σ is the kernel function with parameter
optimized by EM algorithm, lay out μ∗ and Σ∗ from the new input x

(i)
∗ ∼

U(0, θ), θ ∈ R\{X} (X is the set of training input), and prediction target is new
output y∗. Thus, the posterior probability is [13]:

p(y(i)
∗ |x(i)

∗ , xi, yi) ∼ N (m(i)
∗ , k

(i)
∗) , (10)

where m
(i)
∗ = m(x(i)

∗) + Σ�
(X∗,x

(i)
∗)

Σ−1(yi − m(xi)), mean function m commonly

set as zero mean, and k
(i)
∗ = Σ∗∗ −Σ�

(X∗,x
(i)
∗)

Σ−1Σ
(X∗,x

(i)
∗)

, whose Σ
(X∗,x

(i)
∗)

and

its transfer are weight vectors between all new input X∗ and current input x
(i)
∗ .

5 Experiment

We designed an experiment to test kernel performances based on PoS data. PoS
data plays a significant role in financial activities, which is a time series data by
recording the retail transaction. Primary variables include date, barcode scan-
ning moment, name and brand of merchandise, amount, price, etc. Mining the
implicit consumption willing from PoS data always attract researchers’ eyesight.
In our experiment, we select typical merchandises and test days with intervals
for avoiding statistical errors. We test different kernels in the Gaussian Process
regression model and observe their performance in regression and prediction.

In our experiment, we analysis the number of commodities per day for
turnover volume prediction by comparing with other kernels.

We use “potato” to exemplify the performance of different kernels in Gaussian
Process regression, and then apply them onto other merchandises.

5.1 Data Processing and Analysis

First, we test t-kernel with freedom parameter equals to one to show the
regression curve. Once the regression result was observed from t-kernel
based on Gaussian process, we do same experiments for other two kernels,

kGaussian(x, x′) = exp(−‖x−x′‖2

2σ2) and kExponential(x, x′) = exp(−‖x−x′‖
2σ2), to

compare the regression and prediction performances.
Figure 1(a), (b) and (c) show the transaction tendency of “potato” from 2016-

07-31 to 2016-08-29 for blue points, and red points are the turnover volumes in
next several days. Red curve describes the predicting mean values, and the gray
area represents the mean value standard deviation of predicting distribution.

Figure 1(a), (b) and (c) represent for Gaussian kernel, Student’s T kernel
and Exponential kernel separately. From all three figures, we obtained some
interesting result. All three kernels can fit training data, but a small difference
between adjacent points. In last two days of training data, exponential kernels
red curve links two points directly. However G-kernel and T-kernel both have a
small zigzag. Other continuous points closed in y-axis also have similar phenom-
enon, which demonstrate a better performance in G-kernel and T-kernel about

710 R. Yang and Y. Ohsawa

Fig. 1. Experiment results of “Potato” (Color Figure Online)

the over-fitting problem. Prediction curve in G-kernel tends to zero rapidly. In
contrast, T-kernel and E-kernel can fit several points in the following days.

Based on such results, we made further explorations. We count the transac-
tion volumes per day of “potato” from 2016-01-01 until 2016-12-15 (351 days).
Then, pick out thirty consecutive days randomly 10 times (each period allows
partially overlap) as training data to predict the turnover volumes in next three
day. The predictive error rate function is defined as below:

Error(p, r) =
|Tp − Tr|
max(T)

, (11)

where, Tp refers to the predicted turnover volume in one day, and Tr is the real
volume. max(T) means the maximum turnover volume in one day during the
whole year. Then we compute the average mean error rate of the prediction in
following three days via different kernels (Gaussian, T with freedom parameter
equals to 1, Exponential, T with 5, T with 10, T with 100) and plot out their
average ranks. Figure 1(d) clearly demonstrates that, in the second and third
day, without out data support, the prediction results tend to a higher bias. So
we focus on exploring the first day’s performance for other merchandises, for
comparing kernels’ performances in predictive error rate.

5.2 Rank of Results

Figure 2 shows the rank of different kernels for the turnover volumes of nine
merchandises (bread, canned liqueur, cup noodle, green tea, milk, onigiri, onion,

Applying the Heavy-Tailed Kernel to the Gaussian Process Regression 711

Fig. 2. Rank of different kernels

salad and raw seaweed). Broken lines in Fig. 2 refer to the mean values of the
absolute difference between prediction results and real data values of these mer-
chandises. We can observe that Tν=1-kernel performs better than the G-kernel
and E-kernel in most of these merchandises.

Otherwise, when freedom parameter grows to a high value, the kernel per-
formance in the T-kernel performs analogously to the G-kernel. This is corre-
sponding to the phenomenon that Student’s t distribution becomes closer to the
Normal distribution as ν increases.

6 Conclusion and Future Work

The Gaussian process exhibit various performance with different kernel func-
tions. However, real data sets can hardly follow the ideal probability models.
Without assuming the distribution of noise, it is better to filter the noise via a
robust kernel. In this paper, we demonstrate significant preference of Student’s
t kernel, which is one of the heavy-tailed kernel, on the Point of Sale data.

In future, we will try to discover further optimization methods for robust
kernels. We use the universal EM algorithm for kernel optimization, but inference
methods perform very well in other models and data sets. How to combine heavy-
tailed kernel and inference methods together will become an attractive topic.

Acknowledgments. This work was supported by JST CREST Grant Number
JPMJCR1304, JSPS KAKENHI Grant Numbers JP16H01836, and JP16K12428. The
Point of Sale data was provided by KASUMI CO., LTD.

References

1. Brigham, E.O., Brigham, E.O., Rey Pastor, J.J., et al.: The Fast Fourier Transform
and its Applications. Prentice Hall, New Jersey (1988)

712 R. Yang and Y. Ohsawa

2. Jolliffe, I.: Principal Component Analysis. Wiley, Hoboken (2002)
3. Rasmussen, C.E.: Gaussian Processes for Machine Learning (2006)
4. Wang, Y., Tang, Q., Xia, S.-T.: Student-t process regression with independent

student-t noise. In: ECAI 2016: 22nd European Conference on Artificial Intelli-
gence, 29 August – 2 September 2016, The Hague, The Netherlands-Including
Prestigious Applications of Artificial Intelligence (PAIS 2016). vol. 285, IOS Press
(2016)

5. Shah, A., Wilson, A.G., Ghahramani, Z.: Student-t processes as alternatives to
Gaussian processes. AISTATS (2014)

6. Zvyagin, P., Sazonov, K.: Analysis and probabilistic modeling of the stationary ice
loads stochastic process with lognormal distribution. In: ASME 2014 33rd Inter-
national Conference on Ocean, Offshore and Arctic Engineering. American Society
of Mechanical Engineers (2014)

7. Tran, D., Ranganath, R., Blei, D.M.: The variational Gaussian process. arXiv
preprint arXiv:1511.06499 (2015)

8. Bauer, M., van der Wilk, M., Rasmussen, C.E.: Understanding probabilistic sparse
Gaussian process approximations. In: Advances in Neural Information Processing
Systems, pp. 1525–1533 (2016)

9. Souza, C.R.: Kernel functions for machine learning applications. Creat. Commons
Attrib. Noncommerc. Share Alike 3, 29 (2010)

10. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT press, Cambridge (2001)

11. Figueiredo, M.A.T.: Lecture Notes on the EM Algorithm. http://www.stat.duke.
edu/courses/Spring06/sta376/Support/EM/EM.Mixtures., Figueiredo (2004)

12. McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions. vol. 382, Wiley,
Hoboken (2007)

13. Ebden, M.: Gaussian processes for regression: a quick introduction. In: The Web-
site of Robotics Research Group in Department on Engineering Science, University
of Oxford (2008)

14. Jylanki, P., Vanhatalo, J., Vehtari, A.: Robust Gaussian process regression with a
student-t likelihood. J. Mach. Learn. Res. 12, 3227–3257 (2011)

15. Van Der Maaten, L.: Accelerating t-SNE using tree-based algorithms. J. Mach.
Learn. Res. 15(1), 3221–3245 (2014)

16. Ogunnaike, B.A.: Random Phenomena: Fundamentals of Probability and Statistics
for Engineers. CRC Press, Boca Raton (2011)

http://arxiv.org/abs/1511.06499
http://www.stat.duke.edu/courses/Spring06/sta376/Support/EM/EM.Mixtures.
http://www.stat.duke.edu/courses/Spring06/sta376/Support/EM/EM.Mixtures.

Chaotic Associative Memory with Adaptive
Scaling Factor

Tatsuuya Okada and Yuko Osana(B)

Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
osana@stf.teu.ac.jp

Abstract. In this paper, we propose a Chaotic Associative Memory
with Adaptive Scaling Factor. In the proposed model, the scaling fac-
tor of refractoriness is adjusted according to the maximum absolute
value of the internal state up to that time as similar as the conventional
Chaotic Multidirectional Associative Memory with Adaptive Scaling Fac-
tor. Computer experiments are carried out and we confirmed that the
proposed model has the same dynamic association ability as the conven-
tional model, and the proposed model also has recall capability similar
to that of the conventional model, even for the number of neurons not
used for automatic adjustment of parameters.

Keywords: Chatic associative memory · Dynamic association · Scaling
factor

1 Introduction

In recent years, various researches on neural networks have been conducted as
a method for performing flexible information processing found in the brains of
living organisms. Among them, researches on associative memory models simu-
lating associative memory functions of humans have also been conducted, and
many associative memories have been proposed.

On the other hand, chaos is attracting attention as one of methods for per-
forming flexible information processing. Chaos is a phenomenon that can not be
predicted over a long term occurring in a nonlinear system with deterministic
time evolution. It is observed in the brain and nervous system of living organisms
and is thought to play an important role in memories and learning in the brain
[1]. Chaotic neuron model [1] introducing chaos by considering spatio-temporal
summation, refractoriness, continuous output function seen in real neurons is
also proposed in artificial neural network research. In addition, the chaotic asso-
ciative memory composed of the chaotic neuron model is an auto-associative
memory having the same structure as the Hopfield network [2], and it is known
that it can recall the stored binary/bipolar patterns dynamically [1,3]. It is also
known that dynamic association ability improves by temporally changing scal-
ing factor of refractoriness which is a parameter of chaotic neuron model [4].

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 713–721, 2017.
https://doi.org/10.1007/978-3-319-68612-7_81

714 T. Okada and Y. Osana

However, dynamic association ability depends on parameters of chaotic neuron
model. Since appropriate parameters vary depending on the number of neurons,
the number of training patterns and so on, there is a problem that appropriate
parameters have to be determined by trial and error.

We have proposed some methods to automatically adjust parameters in het-
ero associative memories such as the Chaotic Multidirectional Associative Mem-
ory [5] and the Chaotic Complex-Valued Multidirectional Associative Memory
[6] composed of the chaotic complex-valued neurons [7]. However, the tendency
of appropriate parameters of chaotic neuron model is considered to be different
between hetero-associative memories and auto-associative memories.

In this paper, we propose a Chaotic Associative Memory with Adaptive Scal-
ing Factor. In this model, automatic parameter adjustment method are deter-
mined based on the relationship between the internal state and the parameters in
which the high dynamic association ability is obtained in the Chaotic Associative
Memory with Variable Scaling Factor. In the proposed model, the connection
weight is normalized by dividing by the number of neurons so that the range
that internal value does not depend on the number of neurons.

2 Chaotic Associative Memory with Variable Scaling
Factor

Here, we explain the conventional Chaotic Associative Memory with Variable
Scaling Factor [4] that is the basis of the proposed Chaotic Associative Memory
with Adaptive Scaling Factor. This model is an auto-associative memory com-
posed of a chaotic neuron model having a scaling factor of refractoriness that
varies with time. It can realize dynamic association of binary stored patterns by
internal state change by chaos.

2.1 Structure

The Chaotic Associative Memory with Variable Scaling Factor has the similar
structure as the Hopfield network [2] as shown in Fig. 1. Each neuron is a chaotic
neuron model with a scaling factor of refractoriness that varies with time and
are coupled to each other.

2.2 Learning Process

In the learning process of the Chaotic Associative Memory wit Variable Scaling
Factor, the connection weight is determined using correlation learning as similar
as the Hopfield network. When P patterns are memorized into the network
consisting of N neurons, the weight matrix w is determined as follows:

w =
P∑

p=1

x (p)x (p)T − PIN (1)

where x (p) is the p-th stored bipolar pattern vector, IN is a unit matrix (N ×N),
and T represents transposition.

Chaotic Associative Memory with Adaptive Scaling Factor 715

Fig. 1. Structure of chaotic associative memory with variable scaling factor.

2.3 Recall Process

The recall process of the Chaotic Associative Memory wit Variable Scaling Factor
has following four steps.

Step 1 : Input of Pattern
A pattern is given to the network. The input pattern is treated as it is as

output at time t = 0.
Step 2 : Calculation of Internal States

The internal states of the neuron i at the time t + 1, ui(t + 1) is given by

ui(t + 1) =
N∑

j=1

wij

t∑

d=0

kd
mxj(t − d) − α(t)

t∑

d=0

kd
rxi(t − d) (2)

where N is the number of neurons, km is the damping factor of the mutual
coupling term, kr is the damping factor of the refractoriness term, wij is the
connection weight between the neuron i and the neuron j, and xj(t) is the output
of the neuron j at the time t. α(t) is the scaling factor of the refractoriness at
the time t and is given by

α(t) = a + b sin
(
c · π

12
· t

)
(3)

where a, b, c are parameters that determine how to change the scaling factor of
refractoriness. a is the average value, b is the amplitude, and c affects the cycle.
Step 3 : Calculation of Output

The output of the neuron i at the time t + 1, xi(t + 1) is given by

xi(t + 1) = f(ui(t + 1)) (4)

where f(·) is output function. Here, we use the following sigmoid function.

f(u) = tanh
(u

ε

)
(5)

where ε is a steepness parameter.

716 T. Okada and Y. Osana

Step 4 : Repeat
Steps 2 and 3 are repeated.

3 Chaotic Associative Memory with Adaptive Scaling
Factor

Here, the proposed Chaotic Associative Memory with Adaptive Scaling Factor
is explained. This model is based on the Chaotic Associative Memory with Vari-
able Scaling Factor [4], and can realize dynamic association of bipolar patterns.
In this model, the scaling factor of refractoriness is determined based on the
maximum absolute value of the internal state up to the time t as similar as in
the conventional Chaotic Multidirectional Associative Memory with Adaptive
Scaling Factor [5]. In the proposed model, the connection weights are normal-
ized by dividing by the number of neurons so that the range of possible values
of the internal state does not depend on the number of neurons.

3.1 Structure

The structure of the proposed model is the same as the conventional Chaotic
Associative Memory with Variable Scaling Factor [4] mentioned in Sect. 2.1.

3.2 Learning Process

In the learning process of the proposed model, the connection weight is deter-
mined using correlation learning as similar as the conventional Chaotic Associa-
tive Memory with Variable Scaling Factor. In this model, each neuron receives
a signal from all neurons other than itself via its weight, so that as the number
of neurons constituting the network increases, the absolute value of the internal
state of the neuron increases. Therefore, in this model, normalization is per-
formed by dividing the connection weight matrix by the number of neurons so
that the range of possible values of the internal state does not depend on the
number of neurons.

In the proposed model, the connection weight matrix w is determined as
follows.

w =
1
N

(
P∑

p=1

x (p)x (p)T − PIN

)
(6)

3.3 Recall Process

In the proposed model, recall is realized using the same method as described in
Sect. 2.3, but instead of the scaling factor of refractoriness at the time t (α(t))
which varies depending on time, the scaling factor of refractoriness at the time
t when the maximum absolute value of the internal state up to the time t is
I(t)max (α(t, I(t)max)) is used.

Chaotic Associative Memory with Adaptive Scaling Factor 717

The scaling factor of refractoriness α(t, I(t)max) is given by

α(t, I(t)max) = a(I(t)max) + b(a(I(t)max)) sin
(
c · π

12
· t

)
(7)

where I(t)max is the maximum absolute value of the internal state up to the
time t, and it is given by

I(t)max = max{I(t), I(t − 1)max}. (8)

Here, I(t) is the average of the absolute values of internal states excluding the
refractoriness term at time t, and it is given by

I(t) =
1
N

N∑

i=1

∣∣∣∣∣∣

N∑

j=1

wij

t∑

d=0

kd
mxj(t − d)

∣∣∣∣∣∣
.

(9)

a(I(t)max) and b(a(I(t)max)) are given by

a(I(t)max) =

⎧
⎪⎨

⎪⎩

2.97 (I(t)max ≤ 3.4106)
−4.7006I(t)max + 19.002 (3.4106 < I(t)max ≤ 3.634)
1.92 (3.634 < I(t)max)

(10)

and

b(a(I(t)max)) = 0.9532a(I(t)max) − 0.0516. (11)

These equations are determined based on the relationship between the internal
state and the parameters a and b in the parameter in which the high dynamic
association ability is obtained in the Chaotic Associative Memory with Variable
Scaling Factor composed of 100 to 600 neurons (See Figs. 2 and 3).

Fig. 2. Relation between internal state
and a.

Fig. 3. Relation between a and b

718 T. Okada and Y. Osana

4 Computer Experiment Results

Here, we show the computer experiment results to demonstrate the effectiveness
of the proposed model under the condition shown in Table 1. The following
experiments are the average of 100 trials.

Table 1. Experimental conditions

Proposed model Conventional model

Coefficient in scaling factor a Eq. (10) 2.42 (N = 100) 2.97 (N = 200)

2.53 (N = 300) 2.13 (N = 400)

1.92 (N = 500) 1.93 (N = 600)

2.11 (N = 700) 2.15 (N = 800)

Coefficient in scaling factor b Eq. (11) 2.39 (N = 100) 2.64 (N = 200)

2.46 (N = 300) 2.07 (N = 400)

1.71 (N = 500) 1.67 (N = 600)

1.85 (N = 700) 1.91 (N = 800)

Coefficient in scaling factor c 2

Recall time 100000

Damping factor km 0.81

Damping factor kr 0.96

Steepness parameter ε 0.013

4.1 Comparison of Dynamic Association Ability with Proposed
Model and Conventional Model

Here, we compare the recall rate of the proposed model with the well-tuned
conventional Chaotic Associative Memory with Variable Scaling Factor [4]. The
coefficients a, b and the damping factors km and kr of the conventional model
use valuesobtained when the highest recall rate is obtained. Figure 4 shows the
recall rate when 2 to 20 patterns are memorized in each model.

From Fig. 4, it can be seen that the proposed model has the same dynamic
association ability as the conventional model.

4.2 Dynamic Association Ability of Proposed Model Composed of
700 and 800 Neurons

Here, we investigated whether a high recall rate can be obtained also in the case
of the number of neurons not used for determining the parameter automatic
adjustment method in the proposed model. Figure 5 shows the recall rate when
2 to 20 patterns are memorized in each model. From Fig. 5, it can be seen that

Chaotic Associative Memory with Adaptive Scaling Factor 719

Fig. 4. Dynamic association ability of the proposed model and the conventional model
(N = 100–600).

the proposed model also has recall capability similar to that of the conventional
model, even for the number of neurons not used for automatic adjustment of
parameters.

720 T. Okada and Y. Osana

Fig. 5. Dynamic association ability of the proposed model and the conventional model
(N = 700, 800)

5 Conclusions

In this paper, we have proposed the Chaotic Associative Memory with Adaptive
Scaling Factor. In the proposed model, the scaling factor of refractoriness is
adjusted according to the maximum absolute value of the internal state up to
that time. Computer experiments are carried out and we confirmed that the
proposed model has the same dynamic association ability as the conventional
model, and the proposed model also has recall capability similar to that of the
conventional model, even for the number of neurons not used for automatic
adjustment of parameters.

References

1. Aihara, K., Takabe, T., Toyoda, M.: Chaotic neural networks. Phys. Letter A 144
(6 and 7), 333–340 (1990)

2. Hopfield, J.J.: Neural networks and physical systems with emergent collective com-
putational abilities. In: Proceedings of National Academy of Sciences of the USA,
vol. 79, pp. 2554–2558 (1982)

3. Osana, Y., Hagiwara, M.: Separation of superimposed pattern and many-to-many
associations by chaotic neural networks. In: Proceedings of IEEE and INNS Interna-
tional Joint Conference on Neural Networks, Anchorage, vol. 1, pp. 514–519 (1998)

4. Osana, Y.: Recall and separation ability of chaotic associative memory with variable
scaling factor. In: Proceedings of IEEE and INNS International Joint Conference
on Neural Networks, Hawaii (2002)

5. Hayashi, N., Osana, Y.: Chaotic multidirectional associative memory with adaptive
scaling factor of refractoriness. In: Proceedings of IEEE and INNS International
Joint Conference on Neural Networks, Killarney (2015)

Chaotic Associative Memory with Adaptive Scaling Factor 721

6. Chino, T., Osana, Y.: Generalization ability of chaotic complex-valued multidirec-
tional associative memory with adaptive scaling factor. In: Lee, M., Hirose, A.,
Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8227, pp. 291–298. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-42042-9 37

7. Nakada, M., Osana, Y.: Chaotic complex-valued associative memory. In: Pro-
ceedings of International Symposium on Nonlinear Theory and its Applications,
Vancouver, pp. 16–19 (2007)

http://dx.doi.org/10.1007/978-3-642-42042-9_37

Short Papers

EvoCNN: Evolving Deep Convolutional Neural
Networks Using Backpropagation-Assisted

Mutations

Eli (Omid) David(B) and Nathan S. Netanyahu

Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel
mail@elidavid.com, nathan@cs.biu.ac.il

Abstract. In this abstract we present our initial results with a novel
genetic algorithms based method for evolving convolutional neural net-
works (CNN). Currently, standard backpropagation is the primary train-
ing method for neural networks (NN) in general, including CNNs. In the
past several methods proposed using genetic algorithms (GA) for train-
ing neural networks. These methods involve representing the weights of
the NN as a chromosome, creating a randomly initialized population
of such chromosomes (each chromosome represents one NN), and then
evolving the population by performing the steps (1) measure the fitness
of each chromosome (the lower the average loss over the training set,
the better), (2) select the fitter chromosomes for breeding, (3) perform
crossover between the parents (randomly choose weights from the parents
to create the offspring), and (4) mutate the offspring. While in smaller
NNs these methods obtained results comparable with backpropagation,
their results deteriorate as the size of NN grows, and are impractical for
training deep neural nets. Nowadays these methods have largely been
abandoned due to this inefficiency.

We propose a combination of GA-based evolution and backpropaga-
tion for evolving CNN as follows. Similar to the abovementioned meth-
ods we create an initial population of N chromosomes, each representing
the weights of one CNN, and then evolve the chromosomes by apply-
ing fitness evaluation, crossover, and mutations, but with several key
differences: (1) During crossover, instead of randomly selecting
weights from each of the two parents, randomly select entire fil-
ters from each parent (this ensures that a useful filter is copied in its
entirety, rather than being disrupted), (2) During mutation, mod-
ify weights by performing standard backpropagation, instead
of random changes; and then randomly set a small portion of
weights to zero (these steps allow for a more goal-oriented evolution,
and zeroing some weights encourages sparsity in the network and has a
regularizing effect). We refer to this method as EvoCNN.

To measure the performance of our method, we ran several exper-
iments on the MNIST handwritten digit recognition dataset. A stan-
dard CNN architecture was used containing the following layers: [Input
size 28 × 28]–[convolution with 128 filters of size 5 × 5]–[max-pooling]–
[convolution with 256 filters of size 3×3]–[max-pooling]–[fully connected
layer of size 1000]–[softmax layer of size 10].

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 725–726, 2017.
https://doi.org/10.1007/978-3-319-68612-7

726 E.O. David and N.S. Netanyahu

For a baseline to compare against, the CNN with backpropagation
alone resulted in test error of 0.82%. Training 20 separate CNNs and
then performing model averaging reduced the test error to 0.75%. Using
the EvoCNN method described above, we trained a population of 20
CNNs, with a crossover rate of 0.75 and mutation rate of 0.005. The test
result in this case was 0.51%, a new state-of-the-art for MNIST without
preprocessing, dataset augmentation (e.g., by distortions), and without
pretraining. Note that the entire time required for training a population
of 20 CNNs is similar to the time required for training 20 separate CNNs,
so the comparison shows a substantial improvement due to our method.

Stage Dependent Ensemble Deep Learning
for Dots-and-Boxes Game

Yipeng Zhang(B), Shuqin Li, Meng Ding, and Kun Meng

Sensing and Computational Intelligence Joint Lab, Beijing Information Science
and Technology University, Beijing, China

bipedalbit@gmail.com, {lishuqin2005,dmm,mengkurt}@bistu.edu.cn

Abstract. Depth first search based α − β search and stochastic Monte
Carlo tree search (MCTS) are two major solutions for computer gam-
ing. Since DeepMind introduced deep learning into Go gaming, ensemble
deep learning is widely noticed in the field. Dots-and-boxes game has
been contested in Computer Olympiad for years, and its largest solved
game size is of 4 × 5 boxes to date [2].

Complete α − β search offers the most accurate game state evalua-
tion but costs too much time for early game stages. For turns earlier
than 33 in 5× 5 boxes dots-and-boxes game, it cost at least a minute to
finish a complete search with our python program. MCTS offers control-
lable time cost but worse accuracy while a convolutional neural network
(CNN) could evaluate any game state in a few microseconds with promis-
ing accuracy depends on how well it trained. So it comes a demand to
combine CNN with existing algorithms with different form for different
game stages.

We format each game state into 17 stacked rich-meaning matrixes.
And after labeling randomly generated game state with 36–60 turn num-
ber by complete α−β searches, we run an algorithm based on game rules
and backstepping α−β search, to label more game state with 24–35 turn
number, making up the lack of real gaming data for CNN training and
validation. CNN is combined with α−β search by staightly acting as the
game state evaluating method. And for MCTS, we modify the balanc-
ing strategy namely the UCB1-TUNED fomula [1] by adding weighted
simulation win rate and CNN output together instead of just win rate.

v(si) = (1 − λ)Es + λEc + c

√
2lnN

ns(si)
min{0.25, Ds} (1)

Experiment confirms that α − β search and MCTS are both improved
in earlier game stages than endgame with the same search depth and
simulation sum. However when time limit for each turn is set 20 s, only
CNN combined MCTS beats tradition algorithms in 0–24 turns.

Keywords: Ensemble deep learning · Stage dependent · Computer
gaming

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 727–728, 2017.
https://doi.org/10.1007/978-3-319-68612-7

728 Y. Zhang et al.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed ban-
dit problem. Mach. Learn. 47(2–3), 235–256 (2002)

2. Barker, J.K., Korf, R.E.: Solving dots-and-boxes. In: AAAI (2012)

Conditional Time Series Forecasting
with Convolutional Neural Networks

Anastasia Borovykh1(B), Sander Bohte2, and Cornelis W. Oosterlee3

1 Dipartimento di Matematica, Università di Bologna, Bologna, Italy
borovykh a@hotmail.com

2 Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
s.m.bohte@cwi.nl

3 Delft University of Technology, Delft, The Netherlands
c.w.oosterlee@cwi.nl

Abstract. Forecasting financial time series using past observations has
been a significant topic of interest. While temporal relationships in the
data exist, they are difficult to analyze and predict accurately due to the
non-linear trends and noise present in the series. We propose to learn
these dependencies by a convolutional neural network. In particular the
focus is on multivariate time series forecasting. Effectively, we use mul-
tiple financial time series as input in the neural network, thus condition-
ing the forecast of a time series x(t) on both its own history as well as
that of a second (or third) time series y(t). Training a model on multi-
ple stock series allows the network to exploit the correlation structure
between these series so that the network can learn the market dynamics
in shorter sequences of data. We show that long-term temporal depen-
dencies in and between financial time series can be learned by means
of a deep convolutional neural network based on the WaveNet model
[2]. The network makes use of dilated convolutions applied to multiple
time series so that the receptive field of the network is wide enough to
learn both short and long-term dependencies. The architecture includes
batch normalization and uses a 1×k convolution with parametrized skip
connections from the input time series as well as the time series we con-
dition on, in this way learning long-term interdependencies in an efficient
manner [1]. This improves the forecast, while at the same time limiting
the requirement for a long historical price series and reducing the noise.
Knowing the strong performance of CNNs on classification problems we
show that they can be applied successfully to forecasting financial time
series, without the need of large samples of data. We compare the per-
formance of the WaveNet model to a state-of-the-art fully convolutional
network (FCN), and an autoregressive model popular in econometrics
and show that our model is much better able to learn important depen-
dencies in between financial time series resulting in a more robust and
accurate forecast.

Keywords: Convolutional neural network · Financial time series

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 729–730, 2017.
https://doi.org/10.1007/978-3-319-68612-7

730 A. Borovykh et al.

References

1. Borovykh, A., Bohte, S., Oosterlee, C.: Conditional time series forecasting with
convolutional neural networks. ArXiv e-prints (2017)

2. van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., Kavukcuoglu, K.: WaveNet: a generative model for
raw audio. ArXiv e-prints (2016)

A Convolutional Neural Network Based
Approach for Stock Forecasting

Haixing Yu1(B), Lingyu Xu1, and Gaowei Zhang2

1 Department of Computer Science, Shanghai University, Shanghai, China
sceptic@i.shu.edu.cn

2 Shanghai Advanced Research Institute,

Chinese Academy of Sciences, Beijing, China

Abstract. The Artificial Neural Network is widely applied to the fore-
casting of financial time series, and has got certain effects. The problem,
however, is that most of these methods is based on daily trading data.
When facing the high frequency trading data which is more powerful
in short-term forecasting, these methods become incapable. Inspired by
the development of Convolutional Neural Network in image recognition
tasks, this paper tries to apply the Convolutional Neural Network on the
high frequency financial trading data, and has achieved good results. We
collect the close price of Shanghai Composite Index from 2006 to 2008
and from 2014 to 2015, about 1000 trading days in total. The frequency of
the trading data is 5 min. The paper intends to forecast the stock’s future
trend of the next day from historical data, namely, go up or down. First,
we apply Hodrick-Prescott decomposition [1] on the original time series.
The Hodrick-Prescott filter(decomposition) is a mathematical tool used
in macroeconomics to separate the cyclical component ct and trend com-
ponent τt from a time series. After preprocessing, the proposed method
novelly transforms the time series into pictures. We apply GASF, GADF
and MTF algorithm [2] on the time series respectively, forming the R, G
and B channels of a picture. By transforming each of the time series into
picture mode, the trading time series produces a picture library. Finally,
the proposed method uses AlexNet architecture as feature extractor and
classifier. The net has five convolution layers, three pooling layers, and
two fully-connected layers.

In data set of time series from 2006 to 2008, we choose the training
data and the testing data randomly, and the proposed method can keep
the accuracy at about 0.55 on the binary classification problem. In data
set of time series from 2014 to 2015, we choose the last 16 training days
of the data set as testing data and the accuracy can reach up to 0.60.

Keywords: Stock forecasting · Convolutional neural network

“A convolutional neural network based approach for stock forecasting” Set as article
note.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 731–732, 2017.
https://doi.org/10.1007/978-3-319-68612-7

732 H. Yu et al.

References

1. Hodric, R.J., Prescott, E.C.: Postwar U.S. business cycles: an empirical investiga-
tion. J. Money Credit Bank. 29(1), 1–16 (1997)

2. Wang, Z., Oates, T.: Imaging time-series to improve classification and imputation.
Int. Conf. Artif. Intell. 1043(1), 3939–3945 (2015)

The All-Convolutional Neural Network with
Recurrent Architecture for Object Recognition

Yiwei Gu and Xiaodong Gu(B)

Department of Electronic Engineering, Fudan University, Shanghai 200433, China
xdgu@fudan.edu.cn

Abstract. Convolutional Neural Networks (CNNs) is a successful deep
learning model for many computer vision tasks, due to many properties it
shares with the visual system of brain. In this paper, we proposed an all-
convolutional neural network with recurrent architecture (AR-ConvNet)
for object recognition. There are two mainly differences between our
model and standard CNNs. We replaced all pooling layers in traditional
CNNs by convolution layers with strides 2. Thus we constructed a net-
work that solely consists convolution operations. Besides, inspired by the
succeed of recurrent neural networks in modeling of sequential data, we
introduced a recurrent architecture into convolution layers in the model.
The input of a convolution operation at time step t consists of both the
output of the previous layer and the output of the convolution operation
at time step (t− 1) in the same layer. Our model is tested on an object
recognition of small pictures benchmark, CIFAR-10. Result in Table 1
shows that, with replacing pooling by convolution operations and intro-
duction of recurrent architecture in convolution layer, our AR-ConvNet
can achieve very competitive performance and outperforms some well-
known state-of-art object recognition models on classification error. The
experiments we conducted illustrated that, with enough data and care-
fully training, convolution layer can learn the pooling function and all
necessary in-variances itself without losing performance. And with recur-
rent connecting, the structure of CNN involved kind of memory ability
and can go deeper without a huge increase on model parameters.

Table 1. CIFAR-10 classification error.

Model Maxout Prob Maxout NIN DSN AR-ConvNet

Error 11.68% 11.35% 10.41% 9.69% 8.94%

#params >6M >5M 1M 1M 1.2M

Keywords: Object recognition · Convolutional neural networks ·
Recurrent architecture

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 733–734, 2017.
https://doi.org/10.1007/978-3-319-68612-7

734 Y. Gu and X. Gu

Acknowledgments. This work was supported in part by National Natural Science
Foundation of China under grant 61371148.

Reference

1. Liang, M., et al.: Convolutional neural networks with intra-layer recurrent connec-
tions for scene labeling. In: Advances in Neural Information Processing Systems
(2015)

Body Measurement and Weight Estimation
for Live Yaks Using Binocular Camera
and Convolutional Neural Network

Siqi Liu1(B), Chun Yu1, Yuan Xie2, Zhiqiang Liu3, Pin Tao1,
and Yuanchun Shi1

1 Department of Computer Science and Technology,
Tsinghua University, Beijing, China

liusiqi14@mails.tsinghua.edu.cn, {chunyu,taopin,shiyc}@tsinghua.edu.cn
2 Computer Science Department,

Indiana University Bloomington, Bloomington, USA
xieyuan@iu.edu

3 Computer Technology and Application Department,
Qinghai University, Xining, China

2009990040@qhu.edu.cn

Abstract. Determining yaks’ live weight (LW) and body measurements
(BMs) which are important indicators of yaks’ growth status, health con-
dition and economic value is very costly when using scales and tapes.
Existing computer-aided studies [1, 2] are basically limited to restricted
space and fixed equipments, which cannot be widely applied. To address
this, we demonstrate a handheld, contact-less, accurate, real-time and
vision-based approach to automatically or semi-automatically measure
yaks’ LW and BMs in open spaces.

Using a binocular stereo camera, we capture 50,000 color and depth
images for 120 yaks (side images) from farms in Qinghai, China, together
with their actual weights obtained by scales. From each raw frame, we
extract yak’s foreground image by point cloud segmentation algorithms.
Due to the difficulty of collecting large number of observations, we utilize
data augmentation [3] to increase the dataset size to 300,000.

To calculate the BMs, we define and manually label 16 pivotal points
on yak’s body. Leveraging both these points and raw images, we extract
10 yak’s BMs, 6 of which are traditional features (body length, hip height,
belly width, back height, body diagonal length and heart girth). Besides,
we design 4 new features (average body height, body thickness, leg length
and surface area). Afterwards we build a random decision forest accord-
ing to the relevance between BMs and LW [4] to predict yak’s LW by the
10 extracted features and the labeled points. The error rate observed is
10.7% in terms of root mean square error (RMSE).

Furthermore, to acquire BMs and LW fully automatically, we train
and tune a five-layer convolutional neural network (CNN) to predict
LW directly from images of yaks, achieving a relatively lower error rate
of 8.4% which is significantly better than that of artificial estimation.
Additionally, we build another seven-layer CNN to recognize yak’s body
pivotal points from images. Each input image of the two CNNs above has

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 735–736, 2017.
https://doi.org/10.1007/978-3-319-68612-7

736 S. Liu et al.

6 channels including 3D world coordinates and RGB values. The average
RMSE of pivotal point prediction on test set is 6.34 cm, which, according
to local husbandry standards, is acceptable for calculating BMs.

This study is supported by Significant Science and Technology
Projects of Qinghai Province, China under Grant No. 2015-SF-A4-3.

Keywords: Convolutional neural network · Random decision forest ·
Computer vision · Binocular camera

References

1. Menesatti, P., Costa, C., Antonucci, F., Steri, R., Pallottino, F., Catillo, G.: A low-
cost stereovision system to estimate size and weight of live sheep. Comput. Electron.
Agric. 103, 33–38 (2014)

2. Tasdemir, S., Urkmez, A., Inal, S.: Determination of body measurements on the Hol-
stein cows using digital image analysis and estimation of live weight with regression
analysis. Comput. Electron. Agric. 76(2), 189–197 (2011)

3. Su, H., Qi, C.R., Li, Y., Guibas, L.J.: Render for CNN: viewpoint estimation in
images using cnns trained with rendered 3d model views. In: IEEE International
Conference on Computer Vision, pp. 2686–2694 (2015)

4. Heinrichs, A.J., Rogers, G.W., Cooper, J.B.: Predicting body weight and wither
height in Holstein heifers using body measurements. J. Dairy Sci. 75(12),
3576–3581 (1992)

A Modified Resilient Back-Propagation
Algorithm in CNN for Optimized Learning

of Visual Recognition Problems

Sadaqat ur Rehman1(B), Shanshan Tu2, and Yongfeng Huang1

1 Department of Electronic Engineering, Tsinghua University, Beijing, China
z-sun15@mails.tsinghua.edu.cn, yfhuang@tsinghua.edu.cn

2 Faculty of IT, Beijing University of Technology, Beijing, China
sstu@bjut.edu.cn

Abstract. Training of convolution neural network (CNN) is a problem
of global optimization. We hypothesize that the more smooth and opti-
mize the training of CNN goes, the more efficient the end rsult becomes.
Therefore, in this short paper, we propose a modified resilient back-
propagation (MRPROP) algorithm to improve the convergence and effi-
ciency of CNN, in which global best concept is introduced in weight
updating criteria, to allow the training algorithm of CNN to optimize
its weights more swiftly and precisely to find a good solution. Experi-
mental results demonstrate that MRPROP outperforms previous bench-
mark algorithms and helps in improving training speed and classification
accuracy on a public face and skin dataset [1] up to 4X (four times) and
2% respectively. In RPROP [2], the change in weight δw depends on
the updated value δx,y increased or decreased according to the error, in
order to reach a better solution. However, the previously updated values
are neglected after every iteration. It means that all the best values pre-
viously achieved in weight change would not be referring back. Hence,
there is no information sharing between the best values that have been
achieved at the previous iterations with the current result. Therefore, by
using the term “global best” concept in MRPROP, the information of
previous weight change is the only guide for the accurate results. Thus,
the past best value is selected in term of optimized solution from all
updated values of the current weight change and is used to update the
process. This variable is called global best “gbst”. The gbst selection pro-
cedure in MRPROP is: First, select two best updated values randomly
from all the current change in weight δw. Then, compare these two values
in term of optimized solution and choose the better one as gbst.

Keywords: Modified RPROP · Training algorithm · CNN optimization

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 737–738, 2017.
https://doi.org/10.1007/978-3-319-68612-7

738 S. ur Rehman et al.

References

1. Phung, S.L., Bouzerdoum, A., Chai, D.: Skin segmentation using color pixel classi-
fication: analysis and comparison. IEEE Trans. Pattern Anal. Mach. Intell. 27(1),
148–154 (2005)

2. Riedmiller, M., Braun, H.: A direct adaptive method of faster back propagation
learning: The RPROP algorithm. In: Proceedings of the IEEE International Con-
ference NN, CA, pp. 586–591 (1993)

Learning in Action Game by Profit Sharing
Using Convolutional Neural Network

Kaichi Murakami(B) and Yuko Osana

Tokyo University of Technology, Hachioji, Japan
osana@stf.teu.ac.jp

Abstract. In recent years, deep learning is attracting attention as one
that shows better performance than the conventional method in the field
of image recognition and speech recognition. Moreover, various studies
on reinforcement learning are being conducted as a learning method to
acquire an appropriate behavior sequence by interaction with the envi-
ronment [1]. The deep Q network [2] which is a combination of con-
volutional neural network [3] which is a representative method of deep
learning and the Q learning [4] which is a typical method of reinforcement
learning has been proposed. In the deep Q network, learning is realized
that can obtain scores equal to or higher than humans for multiple games.
In this research, Q Learning is used as a reinforcement learning method,
but it can be considered that it is possible to combine a convolution
neural network with another method such as Profit Sharing [5].

In this paper, we propose Profit Sharing using convolutional neural
network and realize learning of 2D action game. In the proposed method,
the value of each action corresponding to the input observation (game
play screen) is learned using the convolutional neural network. Here, the
value function in Profit Sharing is used. In the proposed method, play
every 5 seconds is handled as one episode. 2D action game shown in
Fig. 1 are trained in the proposed method, we confirmed that an agent
can learn actions that can reach the goal.

Keywords: Convolutional neural network · Profit Sharing · Action
game

Fig. 1. 2D Action Game.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 739–740, 2017.
https://doi.org/10.1007/978-3-319-68612-7

740 K. Murakami and Y. Osana

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press (1998)

2. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518, 529–533 (2015)

3. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

4. Watkins, C.J.C.H., Dayan, P.: Technical note: Q-learning. Mach. Learn. 8, 55–68
(1992)

5. Grefenstette, J.J.: Credit assignment in rule discovery systems based on genetic
algorithms. Mach. Learn. 3, 225–245 (1988)

Deep Learning for Adaptive Playing Strength
in Computer Games

Eli (Omid) David(B) and Nathan S. Netanyahu

Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel
mail@elidavid.com, nathan@cs.biu.ac.il

Abstract. In this abstract we present our initial results on the first suc-
cessful attempt to train computer chess programs to realistically exhibit
different playing strengths.

While the main target of research in computer chess has always been
achieving stronger playing strength, the seemingly easier task of creat-
ing realistically weaker programs remains challenging. Nowadays human
chess players from novice to grandmaster are easily defeated by state-of-
the-art chess programs, and thus gain little enjoyment or experience by
playing against such an overwhelmingly superior opponent. As a result,
commercial chess programs have always tried to allow the human user
to adjust their strength to best match theirs. Previous attempts used
by commercial chess programs involved either limiting the amount of
time or search depth used by the program, or randomly playing inferior
moves with some probability. All these methods have resulted in unre-
alistic playing style, which yields little benefit and enjoyment for the
human opponents (i.e., the computer program does not pass a Turing
test).

In our work, we train the chess program to exhibit a targeted playing
strength realistically, without any artificial handicap. To do so, we build
on our previous DeepChess [1] work which allowed us to train an end-
to-end neural network from scratch, achieving a state-of-the-art chess
program.

Here, instead of training the deep neural network on datasets of grand-
master chess players only, we train two separate neural networks using
DeepChess architecture. Using the ChessBase Mega Database, we extract
two hundred thousand positions from games where both players were
rated above 2500 Elo, and train the first neural network (to which we
refer as DeepChessStrong). Similarly, we train a second neural net-
work that using two hundred thousand positions from games where both
players were rated below 2300 (to which we refer as DeepChessWeak).

To compare the performance of these two chess programs, we con-
ducted 100 games at a time control of 30 min per game for each side.
The result was DeepChessStrong defeating DeepChessWeak by of
78.5% to 21.5%, corresponding to a rating difference of 225 Elo in favor
of DeepChessStrong.

These results present the first successful attempt at adaptive adjust-
ment of playing strength in computer chess, while producing realistic
playing style. This method can be extended to additional games in order
to achieve realistic playing style at different playing strength levels.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 741–742, 2017.
https://doi.org/10.1007/978-3-319-68612-7

742 E.O. David and N.S. Netanyahu

Reference

1. David, O.E., Netanyahu, N.S., Wolf, L.: DeepChess: End-to-end deep neural network
for automatic learning in Chess. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J.
(eds.) ICANN 2016. LNCS, vol. 9887, pp. 88–96. Springer, Cham (2016). doi:10.
1007/978-3-319-44781-0 11

http://dx.doi.org/10.1007/978-3-319-44781-0_11
http://dx.doi.org/10.1007/978-3-319-44781-0_11

Benchmarking Reinforcement Learning
Algorithms for the Operation of a Multi-carrier

Energy System

J. Bollenbacher(B) and B. Rhein

TH Köln – University of Applied Sciences, Cologne, Germany
{jan.bollenbacher,beate.rhein}@th-koeln.de

Abstract. Nowadays common energy infrastructures such as electric-
ity, natural gas and local district heating systems are mostly planned
and operated independently. There are several reasons to couple these
energy infrastructures and to optimize the resulting system as unit. One
approach is based on the concept of “energy hubs” (EH), which can
be considered as functional units to convert, store and dissipate mul-
tiple energy carriers [1]. Recent research combines the concept of EH
with machine learning concepts such as Reinforcement Learning (RL)
and introduce the Smart Energy Hub (SEH). There are approaches to
use RL to operate a SEH [2] and also to find the components’ optimal
sizing [3].

A SEH consists of a transformer, a gas turbine, a furnace and a heat
storage. It is feasible to choose a configuration out of a set of devices or to
operate without particular devices. Every device has different efficiencies
and costs. The load of electricity and heat must be provided by purchas-
ing and processing the proper amount of electricity and gas units. We
are facing two different problems, finding the optimal configuration and
the optimal policy w.r.t. the chosen configuration.

To solve these problems, we implemented a SEH as an RL environ-
ment. The application of RL enables us to find an optimal policy by
exploring the state space without any prior knowledge of the underly-
ing physical model. The used RL framework is very flexible and can be
adapted to other EH systems easily.

As our problem is a Continuous Control problem, we benchmarked
different RL algorithms using RLLab [4]. We were able to find a set of
optimal configurations and corresponding operation policies.

Keywords: Reinforcement learning · Smart engergy hub · Smart grids

References

1. Geidl, M., Andersson, G.: Optimal coupling of energy infrastructures. In:
PowerTech, pp. 1398–1403 (2007)

2. Rayati, M., Sheikhi, A., Ranjbar, A.M.: Applying reinforcement learning method to
optimize an energy hub operation in the smart grid. In: ISGT (2015)

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 743–744, 2017.
https://doi.org/10.1007/978-3-319-68612-7

744 J. Bollenbacher and B. Rhein

3. Sheikhi, A., Rayati, M., Ranjbar, A.M.: Energy hub optimal sizing in the smart
grid. Machine learning approach. In: ISGT (2015)

4. Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P.: Benchmarking deep
reinforcement learning for continuous control. CoRR (2016)

Differentiable Oscillators in Recurrent
Neural Networks for Gradient-Based

Sequence Modeling

Sebastian Otte(B) and Martin V. Butz

Cognitive Modeling Group, University of Tübingen,
Sand 14, 72076 Tübingen, Germany
sebastian.otte@uni.tuebingen.de

Abstract. Long Short-Term Memories (LSTMs) [1] trained with Back
Propagation Through Time (BPTT) are very powerful sequence learn-
ers, particularly for sequence labeling tasks, for which they are the most
commonly used technique nowadays. However, while sequences that con-
sist of multiple superimposed waves can be easily learned by approaches
such as Echo State Networks (ESNs) [2, 3], this task remains difficult for
gradient-based learning models, including LSTMs. One major reason for
this issue is that the latter networks are forced to interpret the data in
a sequentially, temporally correlated manner, which typically results in
learning the data along the sequence, that is, approximating the shape
of the signal. As a consequence, a typical LSTM network can learn a
single sine wave easily, but it will perform significantly worse than ESNs
on two or more waves in terms of long-range generalizations.

In this work, we have developed a simple pre-structured RNN that
consists of multiple independent recurrent submodules with only a few
cells per module, showing that such an architecture can learn such prob-
lems much better than fully connected RNNs. Next, we introduced neu-
rally implemented oscillator units, which are differentiable, and which
can be integrated in conventional RNNs and trained with BPTT in the
time-domain. As a result, these RNNs can compose their outputs from
multiple oscillating basis components, where learning effectively tunes
the frequencies, amplitudes, and phase-shifts of the wave generators. This
results in an entirely different, temporally more “global” learning behav-
ior. To evaluate our approach, we studied two architectures, namely,
LSTMs with integrated wave generators and LSTMs with wave genera-
tors that are encapsulated in a separate hidden layer. Our results show
that such RNNs, trained with plain BPTT, can learn signals of superim-
posed waves and even acoustic tones orders of magnitudes better than
LSTMs.

Keywords: Recurrent neural networks (RNNs) · Long short-term
memories (LSTMs) · Sequence modeling · Oscillating RNNs

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 745–746, 2017.
https://doi.org/10.1007/978-3-319-68612-7

746 S. Otte and M.V. Butz

References

1. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

2. Koryakin, D., Lohmann, J., Butz, M.V.: Balanced echo state networks. Neural Netw.
36, 35–45 (2012)

3. Otte, S., Butz, M.V., Koryakin, D., Becker, F., Liwicki, M., Zell, A.: Optimizing
recurrent reservoirs with neuro-evolution. Neurocomputing 192, 128–138 (2016)

Empirical Study of Effect of Dropout
in Online Learning

Kazuyuki Hara(B)

College of Industrial Technology, Nihon University,
1-2-1 Izumi-cho, Narashino-shi, Chiba 275-8575, Japan

hara.kazuyuki@nihon-u.ac.jp

Abstract. We analyze the behavior of dropout used in online learning.
Previously, we analyzed the behavior of dropout learning using the soft-
committee machine [1]. In this work, we use a three-layer network that
shows slow dynamics called a quasi-plateau. Quasi-plateaus are caused
by singular subspaces of hidden-to-output weights that do not exist in
the soft-committee machine [2]. The Fig. 1 shows the effect of the slow
dynamics of a three-layer network by using stochastic gradient descent
(SGD; left) and that of dropout (right) in a simulation. The overlap (R)
shows the similarity of the teacher and student network weights. From
the results, SGD converged slowly to a fixed point indicated by the circle,
and the hidden-to-output weights show that the network was in a quasi-
plateau state. Dropout converged to a fixed point quickly and the weights
show that the network was not in a quasi-plateau state. Therefore, dropout
did not fall into a quasi-plateau state. Dropout selects and neglects the
hidden unit weights of the student network in every learning iteration. It
is expected that a more intermittent interval of dropout may reduce the
effect. We performed 20 trials in which we changed the initial weights of
the student network and found that the effect of dropout remained until
an interval dropout of N iterations was reached (N = 1000).

Keywords: Dropout · Quasi-plateau · Interval dropout

 0.01

 0.1

 1

 1000 10000 100000

O
ve

rla
p:

 R

time:t=m/N

R11
R12
R21
R22

 0.01

 0.1

 1

 1000 10000 100000

O
ve

rla
p:

 R

time:t=m/N

R11
R12
R21
R22

Fig. 1. Comparison of SGD (left), and that of dropout (right).

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 747–748, 2017.
https://doi.org/10.1007/978-3-319-68612-7

748 K. Hara

References

1. Hara, K., Saitoh, D., Kondou, T., Suzuki, S., Shouno, H.: Group Dropout inspired
by ensemble learning. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu,
D. (eds.) ICONIP 2016. LNCS, vol. 9948, pp. 66–73. Springer, Cham (2016). doi:10.
1007/978-3-319-46672-9 8

2. Park, H., Inoue, M., Okada, M.: Slow dynamics due to singularities of hierarchical
learning machines. Prog. Theoret. Phys. Suppl. 157, 275–279 (2005)

http://dx.doi.org/10.1007/978-3-319-46672-9_8
http://dx.doi.org/10.1007/978-3-319-46672-9_8

Context Dependent Input Weight Selection
for Regression Extreme Learning Machines

Yara Rizk(B) and Mariette Awad

Department of Electrical and Computer Engineering,
American University of Beirut, Beirut, Lebanon

{yar01,mariette.awad}@aub.edu.lb

Abstract. Extreme learning machine (ELM) is a popular machine
learning algorithm due to its fast non-iterative training and good gen-
eralization [2]. However, it randomly assigns input weights and biases
from a uniform distribution regardless of the characteristics of the train-
ing data. Exploiting this data would produce a more specialized model,
instead of adopting a “one size fits all” approach. This could result in
better generalization while preserving ELM’s fast training.

Hence, we developed a context dependent input weight selection for
regression ELM (CDR-ELM) which is a non-iterative training algorithm
for supervised regression. First, k-means clusters input data into P clus-
ters based on the number of hidden layer neurons. Then, cluster head
differences are assigned to input weights as described in (1), and biases

are computed from cluster sizes as bi =
Nj

Nk
. Finally, ELM is trained

using least squares.

wi =
|E[x∈clusteri] − E[x∈clusterj]|
|E[y∈clusteri] − E[y∈clusterj]|

(1)

Six publicly available regression datasets were used to compare CDR-
ELM to ELM [2], backpropagation-trained ANN (ANN-BP), support
vector regression (SVR) and low discrepancy sequence (LDS)-ELM [1].
Relevant existing classification algorithms (C-ELM [5], C2ELM [3], CIW-
ELM [4]) were also extended to regression problems and compared to
CDR-ELM.

In general, CDR-ELM’s training time increased due to the additional
computations but it was still faster than SVR, ANN-BP and CIW-ELM,
especially on larger data sets. Furthermore, CDR-ELM’s repeatability
decreased compared to ELM (up to 60% higher variance on some data)
due to the k-means’ random initialization, but it still achieved the lowest
variance for some data (25% less than C-ELM and 50% less than ELM).

Finally, CDR-ELM achieved a lower testing MSE than ELM on some
datasets (e.g. concrete compress, housing and slump) but worse on
others. For example, CDR-ELM achieved a 19.4% reduction in MSE
compared to ELM but required twice as long to train the model.
CDR-ELM also achieved 11% reduction in MAE compared to ELM
on the housing data and was slower by a factor of 1.23. Therefore,
we concluded that CDR-ELM is not suitable for all types of prob-
lems. The algorithm’s lack of randomness can lead to over-fitting

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 749–750, 2017.
https://doi.org/10.1007/978-3-319-68612-7

750 Y. Rizk and M. Awad

on highly noisy data. Furthermore, sparsely distributed data would result
in unsuitable clusters which will negatively impact the quality of ELM
input weights.

Keywords: Extreme learning machines · Non-iterative training ·
Supervised learning · Regression

Acknowledgments. Supported by the National Council of Scientific Research in
Lebanon (CNRS-L).

References

1. Cervellera, C., Macciò, D.: Low-discrepancy points for deterministic assignment of
hidden weights in extreme learning machines. IEEE Trans. Neural Netw. Learn.
Syst. 27(4), 891–896 (2016)

2. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning
scheme of feedforward neural networks. In: Proceedings of the International Joint
Conference on Neural Networks, vol. 2, pp. 985–990. IEEE (2004)

3. Liu, X., Miao, J., Qing, L., Cao, B.: Class-constrained extreme learning machine.
In: Proceedings of ELM-2015, vol. 1, pp. 521–530. Springer (2016)

4. Tapson, J., de Chazal, P., van Schaik, A.: Explicit computation of input weights in
extreme learning machines. In: Proceedings of ELM-2014, vol. 1, pp. 41–49. Springer
(2015)

5. Zhu, W., Miao, J., Qing, L.: Constrained extreme learning machine: a novel highly
discriminative random feedforward neural network. In: IEEE International Joint
Conference on Neural Networks, pp. 800–807 (2014)

Solution of Multi-parameter Inverse Problem
by Adaptive Methods: Efficiency of Dividing

the Problem Space

Alexander Efitorov1(B), Tatiana Dolenko1,2, Sergey Burikov1,2,
Kirill Laptinskiy1,2, and Sergey Dolenko1

1 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State
University, Moscow, Russia

sasha.efitorov@gmail.com, dolenko@srd.sinp.msu.ru
2 Physical Department, M.V. Lomonosov Moscow State University, Moscow, Russia

Abstract. The considered multi-parameter inverse problem (IP) is
determination of concentrations of salts or ions in multi-component water
solutions of inorganic salts by Raman spectroscopy with subsequent spec-
tra analysis by a non-linear adaptive method (multilayer perceptron type
artificial neural networks (ANN)) or by a linear adaptive method (partial
least squares (PLS) method based on principal component analysis) [1].
Dividing the problem space into parts by data clustering simplifies the
problem within each cluster but reduces the number of samples. This
study compares efficiency of application of this approach for problems
with various complexity (determination of concentrations of five salts,
or ten salts, or ten ions) and with various distributions of samples over
concentration range of the components [2].

It has been demonstrated, that the approach is efficient for IP with
medium complexity (5 salts). The best clustering method was Kohonen
self organized map (SOM). However, division into physically grounded
sections of problem space by classification followed by applying a linear
PLS regressor within each class provided better results than clustering;
uniform sample distribution over the concentration range also required
nonlinear data preprocessing within each class. For a more complex prob-
lem (10 salts or 10 ions), the single regressor approach with strongly
non-linear ANN regressors turned out to perform better. The main rea-
son of the observed effects is decreasing representativity of data within
each section with increasing number of sections; so the results should be
checked on other problems with much larger amount of data available.

This study has been conducted at the expense of Russian Science
Foundation grant no. 14-11-00579.

Keywords: Inverse problems · Artificial neural networks · Partial least
squares · Clustering · Raman spectroscopy

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 751–752, 2017.
https://doi.org/10.1007/978-3-319-68612-7

752 A. Efitorov et al.

References

1. Efitorov, A.O., et al.: Optical Memory & Neural Networks (Information Optics),
vol. 24, no. 2, pp. 93–101 (2015)

2. Dolenko, S., Efitorov, A., Burikov, S., Dolenko, T., Laptinskiy, K., Persiantsev, I.:
Neural network approaches to solution of the inverse problem of identification and
determination of the ionic composition of multi-component water solutions. In:
Iliadis, L., Jayne, C. (eds.) EANN 2015. CCIS, vol. 517, pp. 109–118. Springer,
Cham (2015). doi:10.1007/978-3-319-23983-5 11

http://dx.doi.org/10.1007/978-3-319-23983-5_11

Hopfield Auto-Associative Memory Network
for Content-Based Text-Retrieval

Vandana M. Ladwani1, Y. Vaishnavi2, and V. Ramasubramanian1(B)

1 International Institute of Information Technology -
Bangalore (IIIT-B), Bangalore, India

{vandana.ladwani,v.ramasubramanian}@iiitb.org
2 PES Institute of Technology - Bangalore

South Campus (PESIT-BSC), Bangalore, India
vaishnaviy2@gmail.com

Abstract. We examine how the Hopfield auto-associative memory net-
work [1] can be adapted for text retrieval to realize its ideal functionality
as a content-based information retrieval system. Towards this, we exam-
ine various issues such as (i) how the capacity of the Hopfield net is
limited (far below the theoretical limit) for correlated patterns, and how
its capacity is significantly enhanced by the Pseudo-inverse learning rule,
and (ii) the performance characterization of retrieval under two types of
queries, namely, queries with substitution errors and partial queries. We
present results on large text databases and establish the practical scal-
ability of both the storage capacity and the retrieval robustness of the
Hopfield network for content-based retrieval of text data.

In this work, we use two data sets of text patterns (sentences made
of sequence of letters from the English alphabet and special characters,
with each character binarized by its 8-bit ASCII code), as shown in Fig.1.

Capacity Performance: Figure 2 shows the ‘capacity performance’
using Data-Set-1: y-axis is the number of sentences retrieved from the
Hopfield storage (on being presented with the full sentence as a probe
pattern) plotted against the number of sentences stored (in the x-axis),
ranging up to 10000 sentences (as defined above) within a specified error-
tolerance measured as the Hamming distance between the retrieved sen-
tence and the original sentence (that the query is) and for two learning
rules: (i) Hebbian and, (ii) Pseudo-inverse rule. While the capacity of
Hebbian learning can be seen to be very poor (being significantly lower
than the theoretical capacity of 0.14N), the capacity of Pseudo-inverse
rule is very significant, yielding close to the theoretical capacity of N−1,
i.e., up to 8500 sentences even with 0% error tolerance (or, in general,
close to N patterns for a Hopfield of size N neurons). This is a signif-
icant result, particularly on actual large text corpus, hitherto neither
attempted nor reported.

Query Performances: Figure 3 shows retrieval performances char-
acterizing the following two types of query patterns, for the Pseudo-
inverse learning rule using Data-Set-2.

Query with Substitution Errors: Figure 3 (Left-panel) shows the
retrieval performance (% retrieved sentences) for a range of ‘substitu-
tion errors’ (with respect to a full target sentence) for substitution error

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 753–755, 2017.
https://doi.org/10.1007/978-3-319-68612-7

754 V.M. Ladwani et al.

rates up to 40% as a family of curves for different ‘error tolerances’ (0 to
10%). The network retrieves 100% of the 2400 sentences stored with 0%
error tolerance for up to 15% substitution errors, gracefully degrading for
substitution errors in the range of 15% to 30%. This indicates the robust-
ness of the content-based retrieval mechanism of the Hopfield network
to retrieve 100% of the stored patterns from a large text database with
0% errors, under significant substitution errors, representative of queries
commonly typed, or derived from spoken queries after speech recogni-
tion, as in spoken-term detection or spoken document retrieval [2].

Partial Query: Figure 3 (Right-panel) shows an important perfor-
mance of the Hopfield network, where the query is a partial query, cen-
trally located within a target sentence. The retrieval performance (%
retrieved sentences) is shown for partial query lengths 50–100% (of the
full sentence length) for error tolerances 0 to 10%. While the retrieval per-
formance expectedly drops as the query length reduces from 100% (i.e.,
the full sentence, as stored), the network gives 100% retrieval down to
85% partial lengths, gracefully degrading as the partial query length low-
ers down to 70–75%, clearly establishing how the content-based retrieval
property of Hopfield network copes with partial queries.

Keywords: Hopfield network · Auto-associative memory · Text
retrieval · Content-based retrieval

Fig. 1. Data sets used and Hopfield network sizes

Fig. 2. Hopfield capacity performance

Hopfield Auto-Associative Memory Network 755

Fig. 3. Retrieval performance under substitution errors and partial query

References

1. Hopfield, J.J.: Neural networks and physical systems with emergent collective com-
putational capabilities. Proc. Natl. Acad. Sci. (USA) 79, 2554–2558 (1982)

2. http://trec.nist.gov/

From Deep Multi-lingual Graph Representation
Learning to History Understanding

Sima Sharifirad1(B), Stan Matwin1, and Witold Dzwinel2

1 Department of Computer Science, Dalhousie University, Halifax, Canada
s.sharifirad@dal.ca, stan@cs.dal.ca

2 Department of Computer Science, AGH University of Science and Technology,
Krakow, Poland

dzwinel@agh.edu.pl

Abstract. This research aims at understanding and developing a knowl-
edge representation that will show the differences and similarities
between two different languages and cultures around one concept in his-
tory considering the structure information of the two Wikipedia graphs.
World war II was considered as the concept of interest in two languages,
English and German. The solution was proposed and divided into differ-
ent steps of learning. Primarily, Positive Pointwise Mutual Information
(PPMI) and then Random Surfing were used to capture the structure
information of the undirected weighted Wikipedia graphs. After that, the
correlation between the two views were considered and complex features
were extracted using deep canonical correlation autoencoder (DCCAE).
For each language under consideration, the top one hundred most sim-
ilar pages to the page of interest in the other language were considered
using Jaccard similarity. Topics were extracted using Latent Dirichlet
Allocation (LDA) from those pages and the topics were considered along
with highly correlated words from DCCAE were fed into SVM for senti-
ment classification task. We compare our method with previous proposed
methods on word similarity tasks after deploying DCCAE for evaluation.
Based on our best knowledge, it is the first application of DCCAE in this
context.

Keywords: Deep canonical correlation autoencoder · Graph
representation

References

1. Alexei, V., Nello, C., John, S.T.: Inferring a semantic representation of text
via cross-language correlation analysis. Adv. Neural Inf. Proc. Syst. (NIPS) 15,
1497–1504 (2003)

2. David, R.H., Sandor, S., John, S.T.: Canonical correlation analysis: An overview
with application to learning methods. Neural Comput. 16(12), 2639–2664 (2004)

3. Paramveer, D., Dean, F., Lyle, U.: Multi-view learning of word embeddings via
CCA. Adv. Neural Inf. Proc. Syst. (NIPS) 24, 199–207 (2011)

4. Mathew, B.B., Christoph, H.L.: Correlational spectral clustering. In: Proceedings of
the 2008 IEEE Computer Society Conference Computer Vision and Pattern Recog-
nition, pp. 1–8 (2008)

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, p. 756, 2017.
https://doi.org/10.1007/978-3-319-68612-7

Adaptive Construction of Hierarchical
Neural Network Classifiers: New Modification

of the Algorithm

Sergey Dolenko(B), Vsevolod Svetlov, and Igor Isaev

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State
University, Moscow, Russia
dolenko@srd.sinp.msu.ru

Abstract. Multiple classification problems are usually hard to solve.
With increasing number of classes, classification algorithms rapidly
degrade, both by error rate and by computational cost. Multi-layer per-
ceptron (MLP) type neural networks (NN) solving such problems are
subject to the same effect: greater number of classes requires increasing
the number of neurons in the hidden layer(s) (HL) to build a more com-
plex separation surface, making the NN more prone to overtraining. An
alternative way is to build a hierarchical classifier system, uniting the
target classes into several groups and solving the recognition problem
within each group recursively at the lower-lying levels of hierarchy.

The authors of this study are developing an algorithm for adaptive
construction of such a hierarchical NN classifier (HNNC) [1]. Each node
of the constructed hierarchical tree is an MLP with a single HL consist-
ing of only a few neurons. Such an MLP is knowingly unable to recognize
all the required classes in a multiple classification problem. So after it
has been trained for a specified number of epochs, it is applied to all the
samples of the training set, and its output is analyzed. If the majority
of samples from some class k “vote” at the MLP output as belonging to
another class m, the desired output for class k is changed to be the same
as for class m. In this way, classes are united into groups, and as this
modification is performed in the way favorable for the MLP, we obtain a
system with positive feedback, rapidly converging to a trained NN with a
high rate of recognition into several adaptively formed groups of classes.
Afterwards, each group is subject to further recognition in an iterative
way, thus providing adaptive construction of a HNNC.

In this study, a new modification has been introduced into the algo-
rithm. Now the target classes may not only unite, but under some con-
ditions any target class may split into two new classes, possibly simpli-
fying class separation borders, increasing efficiency and stability of the
algorithm.

The presentation displays the results of the algorithm without and
with the new modification on several well-known benchmark problems.

This study was supported by RFBR grant no.15-07-08975-a.

Keywords: Multiple classification · Hierarchial classifier

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 757–758, 2017.
https://doi.org/10.1007/978-3-319-68612-7

758 S. Dolenko et al.

Reference

1. Svetlov, V.A., Dolenko, S.A.: Opt. Mem. Neur. Netw. (Inform.Opt.) 26(1) 40–46
(2017)

Automobile Insurance Claim Prediction
Using Distributed Driving Behaviour Data

on Smartphones

Chalermpol Saiprasert(B), Pantaree Phumphuang,
and Suttipong Thajchayapong

National Electronics and Computer Technology Center (NECTEC),
112 Pahonyothin Road, Klong Luang, Pathum Thani, Thailand

{chalermpol.saiprasert,suttipong.thajchayapong}@nectec.or.th

Abstract. Recently, a new disruptive technology known as insurance
telematics has been gaining market share in the car insurance industry. It
relies on insurance premiums calculated based on the risk profile of indi-
vidual driver which is measured via smartphones sensors. More dynamic
parameters such as mileage, driving behaviour and type of roads driven
are being used instead of the traditional parameters. With this approach
of using a more fine-grained and personalised driving data, we are able to
create a more granular risk differentiation for each driver based on actual
driving behaviour. As a result, policy holders who drive more cautiously
will possess lower risk profiles reflecting in lower insurance premium and
less likelihood to make a claim.

This paper proposes a preliminary study of a neural network based
algorithm to predict car insurance claims based on driving behaviour
data. A smartphone based driving behaviour evaluation tool is used to
collect driving data of users who subscribed to a policy with insurance
telematics. The algorithm is distributed to all drivers who have the appli-
cation installed on their smartphones. This is a previous work of the
authors proposed in [1]. Driving behaviour computations are performed
on the client smartphone in real-time where a driver will be able to assess
their own driving style in a distributed manner. The processed driving
data from each vehicle is then sent to a central server via 3G/4G channels
where all sudden driving events along with their geo-location are stored
into the main database. The input parameters used in this paper are as
follows: Average distance driven per trip, Average Speed, Number of sud-
den braking per km., Number of sudden acceleration per km., Number of
sudden left lane change per km., Number of sudden right lane change per
km., Number of sudden left turn per km., Number of sudden right turn
per km. and percentage of driving over speed limit per km. Feed-forward
neural network (FFNN) with back propagation is used for the classifica-
tion model. As FFNN is one of the least complex neural network models,
it would enable more flexibility in adjusting and interpreting the experi-
mental results. To minimise computational complexity, only one hidden
layer is used, while the number of nodes is selected empirically to find
the fewest number of nodes that give the highest accuracy. The number

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 759–760, 2017.
https://doi.org/10.1007/978-3-319-68612-7

760 C. Saiprasert et al.

of nodes in the input layer is equal to the number of input parameters.
For the output layer, two nodes are used for 2-class prediction, while
three nodes are used for 3-classed prediction. We have divided the clas-
sification into two settings. One is to have 2 predicted classes which are
‘claim’ and ‘no claim’. The second setting is to have 3 classes which are
‘no claim’, ‘claim 1-2 times’ and ‘claim more than 2 times’.

The experiment is performed on a real-world dataset insurance poli-
cies of over 600 actual policy holders over a 3month period. Fine grained
driving behaviour such as braking, accelerating, turning and changing
lanes are used in this paper. Within the same time period, the number
of accident claims of the participated drivers are recorded accordingly
to be used in the prediction model. For performance evaluation, a com-
parison is made between our proposed approach and three fundamental
machine learning algorithms often used in predicting automobile insur-
ance policies namely, Decision Tree, Naive Bays and K-Nearest Neighbor.
For overall performance in both the 2 classes and 3 classes prediction,
the proposed approach with attribute selection produces the highest pre-
diction accuracy of 76.12% and 77.61% respectively. On the other end of
the scale, the model with the poorest performance is Naive Bayes with
considerably lower accuracy for both 2 and 3 classes prediction. Naive
Bayes’s lower accuracies are due to the imbalance amongst classes, where
approximately 60% of drivers do not claim at all, while only 7% claim
for than twice.

Overall, the proposed algorithm can utilise driving behaviour data
alone to achieve more than 70% prediction accuracy. Preliminary results
in this paper have shown the potential of using driving behaviour data
to predict automobile insurance claim. Improvement can be further
achieved by incorporating with more usage-based insurance data [2].
Also, as driving behaviours can be influenced by traffic conditions, incor-
porating traffic transition information [3] would help improve the pre-
diction capability. These are subject to further investigation.

Keywords: Smartphone sensors · Insurance telematics · Driving
behaviours · Prediction models

References

1. Saiprasert, C., Pholprasit, T., Thajchayapong, S.: Detection of driving events using
sensory data on smartphone. Int. J. Intell. Transp. Syst. Res. 15, 17–28 (2017)

2. Handel, P., Skog, I., Wahlstrom, J., Bonawiede, F., Welch, R., Ohlsson, J.,
Ohlsson, M.: Insurance telematics: opportunities and challenges with the smart-
phone solution. IEEE Intell. Transp. Syst. Mag. 8, 1238–1248 (2014)

3. Thajchayapong, S., Barria, J.: Spatial inference of traffic transition using micro-
macro traffic variables. IEEE Trans. Intell. Transp. Syst. 16, 854–864 (2015)

A Fault-Tolerant Indoor Localization System
with Recurrent Neural Networks

Eduardo Carvalho1, Bruno Ferreira1, Geraldo P. R. Filho2, Jó Ueyama2,
and Gustavo Pessin3(B)

1 SENAI Institute of Innovation in Minerals Technologies, Belém, PA, Brazil
{eduardo.isi,bruno.isi}@sesipa.org.br

2 University of São Paulo, São Carlos, SP, Brazil
{geraldop,joueyama}@icmc.usp.br

3 Instituto Tecnológico Vale (ITV), Belém, PA, Brazil
gustavo.pessin@itv.org

Abstract. This paper proposes a fault-tolerant indoor localization sys-
tem that employs Recurrent Neural Networks (RNNs) for the localization
task. A decision module is developed to identify failures and it is respon-
sible for the allocation of adequate RNNs for each situation. Besides of
the proposal of the fault-tolerant system, we exploit several architectures
and models of RNNs in the system: Gated Recurrent Unit, Long Short-
Term Memory and Simple RNN [1]. In this work we extend [2] by means
of the evaluation of fault-tolerant policies and the use of RNNs instead
of Convolution Neural Networks. The system uses as inputs a collection
of Wi-Fi Received Signal Strength Indication (RSSI) signals, and the
RNN classifies the position of an agent according to this collection. A
fault-tolerant mechanism has been developed to support two types of
failures: (i) momentary failures, and (ii) permanent failures. Two are the
research questions we aim to answer: (1) “Can we locate agents in indoor
environments with Recurrent Neural Networks?”, and (2) “How differ-
ent types of failure impact the accuracy of the localization of the agents
in indoor environments”. For answering the first question, we ran GRU,
LSTM and SimpleRNN with 5, 10, 30 and 50 recurrent neurons. The
best accuracy was found with the GRU using 50 recurrent neurons. For
the second question, the investigation figured out that the architectures
with GRU were also the most suitable. Related to momentary failures,
we obtained an accuracy of 87% and for permanent failures, although it
depends on the affected node, the accuracy were between 73% and 81%.

Keywords: Fault tolerant · Indoor localization · Recurrent neural
networks · Gated recurrent unit · Long short-term memory

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 761–762, 2017.
https://doi.org/10.1007/978-3-319-68612-7

762 E. Carvalho et al.

Reference

1. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint (2014). arxiv:1412.3555

2. Ferreira, B.V., Carvalho, E., Ferreira, M.R., Vargas, P.A., Ueyama, J., Pessin, G.:
Exploiting the use of convolutional neural networks for localization in indoor envi-
ronments. Appl. Artif. Intell. 31(3), 279–287 (2017)

http://arxiv.org/abs/1412.3555

SNN Model for Highly Energy and Area
Efficient On-Chip Classification

Anmol Biswas(B), Aditya Shukla, Sidharth Prasad, and Udayan Ganguly

Department of Electrical Engineering, Indian Institute of Technology Bombay,
Bombay, India

anmolbiswas@gmail.com, aditya.adi2293@gmail.com, sidharth52@gmail.com,
udayan@gmail.com

Abstract. Classification is a common problem addressed in Spiking
Neural Network literature, but the models developed are often too com-
plex for hardware implementation, or on-chip learning. We present a
simplified model to an LIF-neuron differential equation [1] to convert
current to voltage spikes, synapses for voltage to current conversion and
a modified-STDP learning rule [2] to enable hardware implementation
(demonstrated by circuit-level simulation [3]). In this paper, we develop a
2-layered SNN model in MATLAB, based on Population Coding [4] and
laterally inhibiting output neurons - implementing a Winner-Take-All
mechanism [5] and train it under Supervision with our modified-STDP
learning rule [2]. Supervision is provided in the form of negative bias cur-
rents to output neurons of the incorrect class(es). The network is tested
on Fisher Iris and Wisconsin Breast Cancer databases, giving accuracy
results (95.3% and 96.5% respectively) comparable to literature in SNN
[6, 7]. The model is also simulated in a circuit simulator (SPICE) [3] to
show software-equivalent performance (i.e. no performance degradation
due to hardware implementation). For state-of-art SNN performance,
the smaller size of our network (about 3x fewer neurons) translates to
improved hardware density. Further, combination of the greater speed of
convergence (i.e. 18x fewer epochs) and 3x fewer neurons and synapse,
translates to equivalently reduced energy of learning.

Keywords: Spiking neural networks · Supervised learning · Two-layer
networks · Energy efficient implementation

References

1. Koch, C., Segev, I.: Methods in Neuronal Modeling; From Ions to Networks, 2nd
edn., p. 687. MIT Press, Cambridge (1999). ISBN0-262-11231-0

2. Guetig, R., Aharonov, R., Rotter, S., Sompolinsky, H.: Learning input correlations
through non-linear temporally asymmetric Hebbian plasticity (2003)

3. Shukla, A., Kumar, V., Ganguly, U.: A Software-equivalent Hardware approach to
Spiking Neural Network based Real-time Learning using RRAM array demonstra-
tion in SPICE (Submitted for IJCNN 2017)

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 763–764, 2017.
https://doi.org/10.1007/978-3-319-68612-7

764 A. Biswas et al.

4. Bohte, S.M., Kok, J.N., La Poutre, H.: Error Backpropagation in Temporally
Encoded Networks of Spiking Neurons (2002)

5. Gupta, A., Long, L.N.: Character recognition using spiking neural. In: IEEE Neural
Networks Conference, Orlando, FL (2007)

6. Xu, Y., Zeng, X., Zhong, S.: A new supervised learning algorithm for spiking neu-
rons. Neural Comput., 1472–1511 (2013)

7. Xin, J., Embrechts, M.: Supervised learning with spiking neural networks. In: IJCNN
(2001)

A Highly Efficient Performance and Robustness
Evaluation Method for a SNN Based

Recognition Algorithm

Sidharth Prasad(B), Anmol Biswas, Aditya Shukla, and Udayan Ganguly

Department of Electrical Engineering,
Indian Institute of Technology Bombay, Mumbai, India

sidharth52@gmail.com, anmolbiswas@gmail.com, aditya.adi2293@gmail.com,
udayan@gmail.com

Abstract. We have recently demonstrated a SNN based classifier that
enabled state-of-the-art performance with 3× area efficiency and 60×
energy efficiency for standard datasets (e.g. Wisconsin Cancer Database)
[1]. A hardware implementation was also demonstrated using a 2-array
scheme with a cross-bar of memristors with asynchronous signals to show
software equivalent performance [2]. Both learning and recognition (test-
ing) were done with spiking neurons. However, simulating the neural
dynamics for testing is computationally expensive which translated to
high energy consumption in hardware. Also, the output is only a digital
decision, namely the predicted class, which does not reflect the confidence
of the decision. In this paper, we present a methodology for a quick and
efficient performance evaluation - based on a DC analysis scheme termed
as “Current Space” method implemented in hardware with a cross bar
array. Here the input neurons produce analog dc voltage inputs for the
crossbar array with learnt resistances (weights) to produce analog cur-
rent levels at the output neurons. The relative current levels provide
an analog measure of the decision i.e. extent of separation of classes
(i.e. robustness) in the current space of the different output neurons as
opposed to a digital decision based on vigorous vs. no spiking in the
SNN network. This output signal is essentially equivalent to a software
dot-product of input signals with the learnt weight matrix, as is done
for ANNs. This method accurately reflects the classification accuracy of
SNNs (correlation of 0.98). It enables fast testing (i.e. 15000× faster) in
software which translates to a 25× energy reduction for recognition in
hardware by our method compared to SNN based recognition. We show
that robustness metric can be used to evaluate noise tolerance in the
network to produce a training completion criterion based on immunity
to noise.

Keywords: Spiking neural networks · Supervised hebbian learning ·
Crossbar arrays · Two-layer networks · Recognition · Robustness ·
Noise-tolerance

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 765–766, 2017.
https://doi.org/10.1007/978-3-319-68612-7

766 S. Prasad et al.

References

1. Biswas, A., Prasad, S., Shukla, A., Ganguly, U.: SNN model for highly energy and
area efficient on-chip classification. Submitted to ICANN (2017)

2. Shukla, A., Kumar, V., Ganguly, U.: A software-equivalent hardware approach to
spiking neural network based real-time learning using RRAM array demonstration
in SPICE. In: IJCNN (2017)

Metric Entropy and Rademacher Complexity
of Margin Multi-category Classifiers

Khadija Musayeva(B), Fabien Lauer, and Yann Guermeur

LORIA, University of Lorraine, CNRS, Nancy, France
{khadija.musayeva,fabien.lauer,yann.guermeur}@loria.fr

Abstract. This communication introduces a new bound on the proba-
bility of error of margin multi-category classifiers. We consider classifiers
based on classes of vector-valued functions with one component function
per category. The γ-dimensions [3] of the classes of component functions
are supposed to grow no faster than polynomially with γ−1. We adopt a
standard approach which starts with a bound on the risk in terms of a
Rademacher complexity [4]. In [5], this Rademacher complexity is upper
bounded by the sum of the ones of the component function classes. This
yields a bound at least linear in the number C of categories. In [1, 2], the
Rademacher complexity is bounded by a function of the metric entropy
using the chaining method [6] to obtain a sublinear dependency on C.
Then, the quality of the final result depends on the generalized Sauer-
Shelah lemma used. We establish that dimension-free lemmas (yielding
metric entropy bounds independent of the sample size) do not improve
the final convergence rate. Thus, we choose the lemma most favorable
with respect to C. In this way, we obtain a confidence interval growing
as the square root of C with convergence rate similar to those in [1, 2].
This behaviour holds true irrespective of the degree of the polynomial.

Keywords: Margin multi-category classifiers · Guaranteed risks ·
Rademacher complexity · Metric entropy

References

1. Guermeur, Y.: Lp-norm Sauer-Shelah lemma for margin multi-category classifiers
(2016). arxiv:1609.07953

2. Guermeur, Y.: Rademacher complexity of margin multy-category classifiers. In:
WSOM+ (2017) (to appear)

3. Kearns, M., Schapire, R.: Efficient distribution-free learning of probabilistic con-
cepts. J. Comput. Syst. Sci. 48(3), 464–497 (1994)

4. Koltchinskii, V., Panchenko, D.: Empirical margin distributions and bounding the
generalization error of combined classifiers. Ann. Stat. 30(1), 1–50 (2002)

5. Kuznetsov, V., Mohri, M., Syed, U.: Multi-class deep boosting. In: NIPS, vol. 27,
pp. 2501–2509 (2014)

6. Talagrand, M.: Upper and Lower Bounds of Stochastic Processes. Springer, Berlin
(2014)

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, p. 767, 2017.
https://doi.org/10.1007/978-3-319-68612-7

http://arxiv.org/abs/1609.07953

A Fuzzy Clustering Approach to Non-stationary
Data Streams Learning

A. Abdullatif1, F. Masulli1,2(B), S. Rovetta1, and A. Cabri1

1 DIBRIS - Department of Informatics, Bioingengering, Robotics and Systems
Engineering, University of Genoa, Via Dodecaneso 35, 16146 Genoa, Italy

francesco.masulli@unige.it
2 Sbarro Institute for Cancer Research and Molecular Medicine, College of Science

and Technology, Temple University, Philadelphia, PA, USA

Abstract. Multidimensional data streams are a major paradigm in data
science. They are always related to time, albeit to different degrees.
They may represent actual time series or quasi-stationary phenomena
that feature longer-term variability, e.g., changes in statistical distribu-
tion or a cyclical behavior. In these non-stationary conditions, a given
model is expected to be appropriate only in a temporal neighborhood of
the time when it has been validated/learned. Its validity may decrease
smoothly with time (concept drift), or there may be sudden changes,
for instance when switching from one operating condition to a new one
(concept shift). The proposed approach consists in studying a clustering
process able to adapt to streaming data, by implementing a continuous
learning exploiting the input patterns as they arrive. Based on this idea
we specifically exploit the ability of possibilistic clustering [2] to clus-
ter iteratively using both batch (sliding-window) and online (by-pattern)
strategies that track and adapt to concept drift and shift in a natural way.
Measures of fuzzy “outlierness” and fuzzy outlier density are obtained
as intrinsic by-products of the possibilistic clustering technique adopted.
These measures are used to modulate the amount of incremental learn-
ing according to the different regimes required by non-stationary data
stream clustering. The proposed method is used as a generative model to
assess and improve the accuracy of a forecaster based of a neural network
ensemble [1]. The generative model provides two kinds of information:
The first is used to partition the data for obtaining a specialized fore-
caster for each cluster; the second allows us to provide a soft rejection,
i.e., a fuzzy evaluation of outlierness that is a symptom of a possibly
anomalous pattern.

Keywords: Data streams learning · Graded possibilistic clustering

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 768–769, 2017.
https://doi.org/10.1007/978-3-319-68612-7

A Fuzzy Clustering Approach to Non-stationary Data Streams Learning 769

References

1. Abdullatif, A., Rovetta, S., Masulli, F.: Layered ensemble model for short-term traf-
fic flow forecasting with outlier detection. In: 2016 IEEE 2nd International Forum on
Research and Technologies for Society and Industry Leveraging a Better Tomorrow
(RTSI), pp. 1–6, September 2016

2. Masulli, F., Rovetta, S.: Soft transition from probabilistic to possibilistic fuzzy clus-
tering. IEEE Trans. Fuzzy Syst. 14(4), 516–527 (2006)

Data Stream Classification by Adaptive
Semi-supervised Fuzzy Clustering

Giovanna Castellano(B) and Anna Maria Fanelli

Computer Science Department, University of Bari Aldo Moro, Bari, Italy
{giovanna.castellano,annamaria.fanelli}@uniba.it

Abstract. The analysis and classification of data streams has attracted
much attention recently due to the increasing amount of applications
that produce streaming data. Most of the existing work relevant to data
stream classification assume that all data are completely labeled. How-
ever in many applications, labeled data are difficult or expensive to
obtain, meanwhile unlabeled data are relatively easy to collect. Semi-
supervised learning algorithms can solve this problem by using unlabeled
samples together with a few labeled ones to build classification models. In
[1] we introduced a data stream classification method based on an incre-
mental semi-supervised fuzzy clustering algorithm. The method assumes
that data belonging to different classes are continuously available during
time and processed as chunks. The clusters are formed from a chunk via
the SSFCM (Semi-Supervised FCM) clustering and when the next chunk
becomes available the clustering is run again starting from cluster proto-
types inherited from the previous chunk. The algorithm creates a fixed
number of clusters that is set equal to the number of classes. In real-
world contexts the underlying distribution of data may change over the
time, hence a fixed number of clusters may not capture adequately the
evolving structure of streaming data. To overcome this limitation in this
work we extend the method proposed in [1] by introducing the capability
to adapt dynamically the number of clusters. When the cluster quality
deteriorates from one data chunk to another, the number of clusters is
increased (by splitting some clusters) or also decreased (by merging some
clusters). The cluster quality is evaluated in terms of the reconstruction
error [2] that measures the difference between the original data and their
“reconstructed” counterpart derived using the clustering outcome (pro-
totypes and membership degrees). Preliminary experimental results on
the benchmark data set KDD-CUP99 show that the proposed adaptive
version of the data stream classification method outperforms the previ-
ous static version and is more robust in presence of outliers.

Keywords: Data stream classification · Semi-supervised clustering

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 770–771, 2017.
https://doi.org/10.1007/978-3-319-68612-7

Data Stream Classification by Adaptive Semi-supervised Fuzzy Clustering 771

References

1. Castellano, G., Fanelli, A.M.: Classification of data streams by incremental semi-
supervised fuzzy clustering. In: Petrosino, A., Loia, V., Pedrycz, W. (eds.)
WILF 2016. LNCS, vol. 10147, pp. 185–194. Springer, Cham (2017). doi:10.1007/
978-3-319-52962-2 16

2. Pedrycz, W.: A dynamic data granulation through adjustable fuzzy clustering. Pat-
tern Recogn. Lett. 29, 2059–2066 (2008)

http://dx.doi.org/10.1007/978-3-319-52962-2_16
http://dx.doi.org/10.1007/978-3-319-52962-2_16

The Discovery of the Relationship on Stock
Transaction Data

Wanwan Jiang(B), Lingyu Xu, Gaowei Zhang, and Haixing Yu

Shanghai University, No.99 Shangda Road, Baoshan District, Shanghai, China
jiangwanwan0327@163.com

Abstract. Recently, the discovery of relationship in financial markets
attracts much attention, however, there has been little work studying
the relationship on stock transaction data. Since it is essential for us to
have a deeper understanding of stock’s internal mechanism, we intend to
explore more relevant relations among the stocks determinants.

Based on the time series characteristics of the stock, we adopt a
sequence-to-sequence mapping method [1] to study the correlation among
any two properties of the stock. The traditional methods can only deal
with problems whose inputs and targets can be sensibly encoded with
vectors of fixed dimensionality, however, in many scenarios we can not
determine the length of sequence in advance, hence these methods are
impractical. In this paper we explore using the encoder-decoder-based
neural network for extracting the relationship of any two properties of
the stock. The advantage of that model is that it is good at dealing with
the mapping problem of variable-length sequences, which is character-
ized as follows: (1) both input and output are sequences; (2) the length
of the sequence is not fixed; (3) there is no correspondence between the
input and output sequence length.

First, we segment the time series DA and DB of stock properties
according to the length of the segment. Second, we obtain the corre-
sponding segmented time series sets D

′
A and D

′
B . Third, we take D

′
A

as the input sequence of the model, through training, we can predict
the corresponding output sequence, which is expressed as D

′′
B . Finally,

we determine whether there is a certain relationship between A and B
based on the degree of similarity between D

′′
B and D

′
B . We believe that

the higher the degree of similarity, the greater the correlation between
them.

The experimental results demonstrate that there are certain correla-
tions between four stock properties, among which the correlation between
Close&%Tuv and %Chg&%Tuv are more prominent. In addition, we
also conclude that the correlation strength is not the same when we
use different length of time series for testing, and the time series, whose
length are greater than 5, are more suitable to reflect the correlation
between the two attributes.

Keywords: Correlation coefficient · Time series · Neural network

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 772–773, 2017.
https://doi.org/10.1007/978-3-319-68612-7

The Discovery of the Relationship on Stock Transaction Data 773

Reference

1. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. Adv. Neural Inf. Process. Syst. 4, 3104–3112 (2014)

Confirmation of the Effect of Simultaneous
Time Series Prediction with Multiple Horizons

at the Example of Electron Daily Fluence
in Near-Earth Space

Irina Myagkova(B) and Sergey Dolenko

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State
University, Moscow, Russia

{irina,dolenko}@srd.sinp.msu.ru

Abstract. It is often necessary to make time series (TS) predictions
for several values of the prediction horizon. Usually such predictions are
made in autonomous mode, i.e. separately for each horizon value. Mean-
while, it is also possible to make simultaneous predictions for all the
desired horizons, or group prediction for several horizons at once.

In the preceding studies [1], it has been demonstrated that group
determination of parameters in solving multi-parameter inverse problem
with a multi-layer perceptron (MLP) may outperform autonomous deter-
mination if the approximated dependences of the grouped parameters on
the input features of the problem are similar and if the sets of significant
input features largely intersect. Last year it has been demonstrated, that
the effect also holds for MLP TS prediction with multiple horizons [2].

In the present study, efficiency of group prediction of TS with MLP
has been checked at the example of TS of electron daily fluence in near-
Earth space, which is characterized by rapid degradation of prediction
quality with increasing horizon. Relativistic electrons (RE) of the outer
Earth’s radiation belt are sometimes called “killer electrons” since they
can damage electronic components, resulting in temporary or even com-
plete loss of spacecraft. Daily fluence is summary daily flux of these
electrons; at geosynchronous orbit of about 35,000 km altitude it is of
interest due to the large number of satellites populating this region, and
it is predictable thanks to long TS of experimental data available.

For this problem, group prediction with average size of groups proved
to outperform autonomous and simultaneous prediction. Thus, the pos-
itive effect of group determination of outputs in multi-output problem
has been confirmed as a property of MLP as data processing algorithm.

This study has been performed at the expense of Russian Science
Foundation, project no. 16-17-00098.

Keywords: Time series prediction · Prediction horizon · Multi-output
problem · Mlti-layer perceptron · Electron daily fluence

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 774–775, 2017.
https://doi.org/10.1007/978-3-319-68612-7

Confirmation of the Effect of Simultaneous Time Series Prediction 775

References

1. Dolenko, S., Isaev, I., Obornev, E., Persiantsev, I., Shimelevich, M.: Study of influ-
ence of parameter grouping on the error of neural network solution of the inverse
problem of electrical prospecting. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.)
EANN 2013. CCIS, vol. 383, pp. 81–90. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41013-0 9

2. Myagkova, I., Shiroky, V., Dolenko, S.: Effect of simultaneous time series prediction
with various horizons on prediction quality at the example of electron flux in the
outer radiation belt of the earth. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J.
(eds.) ICANN 2016. LNCS, vol. 9887, pp. 317–325. Springer, Cham (2016). doi:10.
1007/978-3-319-44781-0 38

http://dx.doi.org/10.1007/978-3-642-41013-0_9
http://dx.doi.org/10.1007/978-3-642-41013-0_9
http://dx.doi.org/10.1007/978-3-319-44781-0_38
http://dx.doi.org/10.1007/978-3-319-44781-0_38

A Neural Attention Based Approach
for Clickstream Mining

Chandramohan T.N.(B) and Balaraman Ravindran

IIT Madras, Chennai, India
{chandramohan,ravi}@cse.iitm.ac.in

Abstract. E-commerce has seen tremendous growth over the past few
years, so much so that only those companies which analyze browsing
behaviour of users, can hope to survive the stiff competition in the mar-
ket. Analyzing customer behaviour helps in modeling and recognizing
purchase intent which is vital to e-commerce for providing improved
personalization and better ranking of search results. In this work, we
make use of user clickstreams to model browsing behaviour of users. But
clickstreams are known to be noisy and hence generating features from
clickstreams and using them in one go for building a prediction model
may not always capture the purchase/intent characteristics. There are
multiple aspects within the clickstreams which are to be taken in such
as the sequence (path taken) and temporal behaviour of users. Hence
we see clickstreams as having multiple views, each view concentrating
on one aspect or a component of clickstream. In this work, we develop
a Multi-View learning (MVL) framework that predicts whether users
would make a purchase or not by analyzing their clickstreams. Recent
advances in deep learning allow us to build neural networks that are able
to extract complex latent features from the data with minimal human
intervention. Separate models known as experts are trained on each view.
The experts are then combined using an Expert-Attention (EA) network,
where the attention part of the network tries to learns when to attend
to which view of the data. Multiple variants have been proposed based
on how EA network is trained. They are (1) Update only the weights of
the attention network while backpropagating the errors. (2) Update the
weights of both expert and attention networks while backpropagating
the errors. (3) A context of each expert is fed to the attention network
at intermediate layer besides the input fed at input layer. (4) Learn the
EA network from scratch. Yet another challenge is the extreme class
imbalance present in the data since only a small fraction of clickstreams
correspond to buyers. We propose a well informed undersampling strat-
egy using autoencoders. This simple undersampling technique was able
to reduce the imbalance to such levels that the performance improve-
ment was observed to be in the order of hundreds. Experimental results
show that using EA networks there is an improvement of 13% over single
view methods. Moreover, it was also noticed that MVL using EA net-
work was found to perform better than conventional MVL methods such
as Multiple Kernel Learning.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 776–777, 2017.
https://doi.org/10.1007/978-3-319-68612-7

A Neural Attention Based Approach for Clickstream Mining 777

Keywords: Clickstream · LSTM · Attention · Multi-view learning ·
Class-Imbalance

Classification of Quantitative Light-Induced
Fluorescence Images Using Convolutional

Neural Network

Sultan Imangaliyev1,4(B), Monique H. van der Veen2,
Catherine M.C. Volgenant2, Bruno G. Loos2, Bart J.F. Keijser2,

Wim Crielaard2, and Evgeni Levin3,4

1 VU University Medical Center Amsterdam, Amsterdam, The Netherlands
s.imangaliyev@vumc.nl

2 Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
3 Academic Medical Center, Amsterdam, The Netherlands

4 Horaizon BV, Rotterdam, The Netherlands

Abstract. Images are an important data source for diagnosis of oral
diseases. The manual classification of images may lead to suboptimal
treatment procedures due to subjective errors. In this paper an image
classification algorithm based on Deep Learning framework is applied to
Quantitative Light-induced Fluorescence (QLF) images [4]. The Convo-
lutional Neural Network [3] (CNN) outperforms other state of the art
shallow classification models in predicting labels derived from three dif-
ferent dental plaque assessment scores. Such result is possible because
our model directly learns invariant feature representations from raw
pixel intensity values without any hand-crafted feature engineering. The
model benefits from multi-channel representation of the images resulting
in improved performance when, besides the Red colour channel, addi-
tional Green and Blue colour channels are used. Previous studies on
this topic either focused on only single plaque scoring system without
providing detailed analysis of results [1] or used a smaller dataset of
non-QLF images and a shallow network architecture [2] to address the
problem. We expect that Deep Learning of QLF-images can help den-
tal practitioners to perform efficient plaque assessments and contribute
to the improvement of patients’ oral health. An extended version of
the manuscript with detailed description of the experimental setup and
the obtained results can be found at http://arxiv.org/abs/1705.09193 or
http://learning-machines.com/.

Keywords: Deep learning · Quantitative light-induced fluorescence

References

1. Imangaliyev, S., van der Veen, M.H., Volgenant, C.M.C., Keijser, B.J.F.,
Crielaard, W., Levin, E.: Deep learning for classification of dental plaque images.
In: Pardalos, P.M., Conca, P., Giuffrida, G., Nicosia, G. (eds.) MOD 2016. LNCS,
vol. 10122, pp. 407–410. Springer, Cham (2016). doi:10.1007/978-3-319-51469-7 34

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 778–779, 2017.
https://doi.org/10.1007/978-3-319-68612-7

http://arxiv.org/abs/1705.09193
http://learning-machines.com/
http://dx.doi.org/10.1007/978-3-319-51469-7_34

Classification of QLF-images Using Convolutional Neural Network 779

2. Kang, J., et al.: Dental plaque quantification using cellular neural network-based
image segmentation. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) Intelligent Com-
puting in Signal Processing and Pattern Recognition. LNCIS, vol. 345, pp. 797–802.
Springer, Heidelberg (2006)

3. LeCun, Y., et al.: Deep learning. Nature 521(7553), 436–444 (2015)
4. van der Veen, M.H., et al.: Dynamics of red fluorescent dental plaque during exper-

imental gingivitis - a cohort study. J. Dent. 48, 71–76 (2016)

Deep Residual Hashing Network
for Image Retrieval

Edwin Jimenez-Lepe(B) and Andres Mendez-Vazquez

CINVESTAV Guadalajara, Guadalajara, Mexico
{eejimenez,amendez}@gdl.cinvestav.mx

http://www.gdl.cinvestav.mx

Abstract. Conventional methods in Content-Based Image Retrieval use
hand-crafted visual features as input but sometimes such feature vectors
do not preserve the similarity between images. Taking advantage of the
improvements in the Convolutional Neural Networks (CNN) area we pro-
pose a Deep Residual Hashing Network (DRHN) based in the work of
[1] that generates binary hash codes based on the features learned.

The base of our model is a residual block which is formed by the
following operations: Convolution, Rectified Linear Unit (ReLU), Batch
normalization (BN) [2] and Element-wise addition. A Residual Group is
the join of n Residual Blocks. The architecture of the proposed model is
the next: Input → (Convolution → ReLU → BN) → six residual blocks
→ Average Pooling Layer (APL) → Hash Layer → Fully Connected
Layer with Softmax, where the APL calculates the average of all values
in a channel and Hash Layer length is denoted by h.

We exploit a previous proposed idea in the field [3]: in a supervised
manner the binary codes can be learned adding an extra hidden layer
to represent the main features that identifies the classes in a database,
hence to generate the binary code of h bits related to an image we bina-
rize the activation of the Hash Layer according to some threshold t.

The experimental results outperforms the state-of-the-art hashing
algorithms on the CIFAR-10 dataset, using a DRHN with n = 15 and
h = 48 we obtained a mean average precision (mAP) of 92.91 in the
image retrieval task, previous best known result for the same number of
bits was 89.73 [3].

Keywords: Convolutional neural networks · Content-based image
retrieval · Computer vision · Deep learning

References

1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

2. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint (2015). arxiv:1502.03167

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 780–781, 2017.
https://doi.org/10.1007/978-3-319-68612-7

http://arxiv.org/abs/1502.03167

Deep Residual Hashing for Image Retrieval 781

3. Lin, K., Yang, H.F., Hsiao, J.H., Chen, C.S.: Deep learning of binary hash codes for
fast image retrieval. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 27–35 (2015)

Model Evaluation Improvements for Multiclass
Classification in Diagnosis Prediction

Adriana Mihaela Coroiu(B)

Babes-Bolyai University, Cluj-napoca, Romania
adrianac@cs.ubbcluj.ro

Abstract. We are living in an age in which we are invaded by the
amount of available data. These data are increasing in an exponential
way. The art of making sense of all the data represent an issues nowadays.
Moreover, the ability to deal with different types of these data require
new approaches in the field of exploratory analysis. Therefore the extrac-
tion of relevant information, the discovery of relations between data and
the ability to generalize to new data represent a continuous challenge.

Exploratory data analysis becomes an impressive area of concern for
certain domains such as education, healthcare, biology, economics, geog-
raphy, geology, history or agriculture. Particularly, the purpose of this
paper is related to medicine and psychology. Some machine learning
advantages are being investigated in order to improve a treatment, a
diagnosis of a patient.

This paper, presenting a work in progress, discusses an approach to
a relevant supervised learning method from the art of machine learning
field: classification. Various aspects are considered, as preprocessing of
the input data; selection of the model applied to the data; evaluation of
the model; improving the performance of a model, selection of the most
relevant features to be included in the model and also learning a model
that is able to perform well on new data [1]. The computed metrics for
performance evaluation of a model are also highlighted.

The data sets (mixed data) used in our analysis are data from med-
ical field (kidney and lung disease: pulmonar-renal syndrome) and also
are suitable for multiclass classification. In this paper, the selected mod-
els are ensembles of decision trees such as Random Forest and Gradient
Boosted Regression Trees.

The model evaluation, the model improvements and feature selection
ultimately lead to building models able to generalize to new data with a
high value of accuracy. All these represent an added value in fields such
us medicine and psychology, where a physician or a psychologist may use
pattern and information as input in the treatment of a patient.

Keywords: Multiclass classification · Evaluation model · Features
selection

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 782–783, 2017.
https://doi.org/10.1007/978-3-319-68612-7

Model Evaluation in Diagnosis Prediction 783

Reference

1. Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., Mueller, A.:
Scikit-learn: machine learning without learning the machinery. GetMobile: Mobile
Comp. and Comm. 19(1), 29–33 (2015)

MMT: A Multimodal Translator for Image
Captioning

Chang Liu1(B), Fuchun Sun1, and Changhu Wang2

1 Department of Computer Science, Tsinghua University, Beijing, China
2 Toutiao AI Lab, Beijing, China

Abstract. Image captioning is a challenging problem. Different from
other computer vision tasks such as image classification and object detec-
tion, image captioning requires not only understanding the image, but
also the knowledge of natural language. In this work, we formulate the
problem of image captioning as a multimodal translation task. Analo-
gous to machine translation, we present a sequence-to-sequence recur-
rent neural network (RNN) model for image caption generation. Differ-
ent from most existing work where the whole image is represented by
a convolutional neural network (CNN) feature, we propose to represent
the input image as a sequence of detected objects to serve as the source
sequence of the RNN model. In this way, the sequential representation
of an image can be naturally translated into a sequence of words, as the
target sequence of the RNN model. To obtain the source sequence from
the image, objects are first detected by pre-trained detectors and then
converted to a sequential representation using heuristic ordering strate-
gies, that is, by the saliency scores of the detected objects. We propose
three ordering methods, descending, ascending and random, according
to the saliency scores, in order to study the influence of ordering over
RNN cells. To obtain the target sequence, the language words are repre-
sented as one-hot feature vector. The representations of the objects and
the words are then mapped into a common hidden space. The translation
from the source sequence to the target sequence is done by leveraging
LSTM. Extensive experiments are conducted to evaluate the proposed
approach on benchmark dataset, i.e., MSCOCO, and achieve the state-
of-the-art performance. The proposed approach is also evaluated by the
evaluation server of MS COCO captioning challenge and achieves very
competitive results. For example, we achieve CIDEr of 93.2, RougeL of
53.2 and BLEU4 of 31.1. We validate the contribution of each idea, that
is, sequential representation and ordering method, by comparison stud-
ies, and show that sequential representation indeed improves the perfor-
mance compared to vanilla CNN+ RNN based methods, and ascending
ordering outperforms the other two ordering methods.

Keywords: Image captioning · Deep learning · Natural language
generation

Acknowledgment: This paper is jointly supported by National Natural Science Foun-
dation of China under with Grant No.61621136008, 61327809, 61210013, 91420302
& 91520201.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, p. 784, 2017.
https://doi.org/10.1007/978-3-319-68612-7

A Multi-Channel and Multi-Scale Convolutional
Neural Network for Hand Posture Recognition

Jiawen Feng1(B), Limin Zhang1, Xiangyang Deng1,2, and Zhijun Yu3

1 Naval Aeronautical and Astronautical University, Yantai, China
fengjiawen777@163.com, iamzlm@163.com, xavior2012@aliyun.com

2 Institute of Electronic Engineering, Naval Engineering University, Wuhan, China
3 Naval Aeronautical and Astronautical University Training Base, Yantai, China

15684082191@163.com

Abstract. Hand posture recognition is a popular research topic in
computer vision, on account of its important real-world applications
such as sign language recognition. Understanding human gestures is
hard because of several challenges like feature extracting. Various algo-
rithms have been employed in gesture recognition, but many of the best
results were achieved by Convolutional neural networks (CNN), which
are powerful visual models that are widely applied to many fields of pat-
tern recognition, such as image classification [1], face recognition, speech
recognition, including hand posture recognition.

Inspired by [2] this paper proposes a multi-channel and multi-scale
convolutional neural network (MMCNN), provided by two channels with
diverse convolution kernel sizes, meanwhile, the input pictures are pre-
processed into different sizes. MMCNN could accept the different features
of the image as input, and then combines these features for image clas-
sification. The multi-channel structure is able to extract image features
from multiple spatial scales using convolutional kernels with different
sizes, and multi-scale structure input ensures the richness of the input
image characteristics.

Experiments were performed using two gesture databases, the pro-
posed MMCNN classifies 24 gesture classes with 98.4% accuracy, better
than the nearest competitor, enhancing the generalization ability of con-
volution neural networks.

Keywords: Convolution neural networks · Hand posture recognition ·
Multi-channel · Multi-scale · Convolution kernel

References

1. Le, Q.V.: Building high-level features using large scale unsupervised learning. In:
2013 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 8595–8598. IEEE (2013)

2. Barros, P., Magg, S., Weber, C., et al.: A multichannel convolutional neural net-
work for hand posture recognition. In: International Conference on Artificial Neural
Networks, Springer International Publishing, pp. 403–410 (2014)

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, p. 785, 2017.
https://doi.org/10.1007/978-3-319-68612-7

Semi-supervised Model for Feature Extraction
and Classification of Fashion Images

Seema Wazarkar1(B), Bettahally N. Keshavamurthy1, and Shitala Prasad2

1 National Institute of Technology, Ponda, Goa, India
{wazarkarseema,bnkeshav.fcse}@nitgoa.ac.in

2 NTU, Singapore, Singapore
shitala@ieee.org

Abstract. Fashion forecasting plays an important role in the growth of
fashion and textile industries. Popularity of social network provides a sta-
tistical way to predict the upcoming and outgoing fashion trends through
social content data analysis. Social image data is a most expressive form
of content data which is useful to get the fashion related information.
But, characteristics of social data such as heterogeneity, large volume,
etc. make this problem challenging. Hence, in this paper semi-supervised
feature extraction and classification model is proposed based on the joint
probability of multiple features. We conducted experiments on Fashion
10000 dataset [1] having images from Flickr.

First, feature extraction is done where Convolutional Neural Network
(CNN) based matching points (using labelled and unlabelled images)
along with five other features i.e. color, texture, regional, geometric and
face detection (using unlabelled image) are obtained. Due to the consid-
eration of multiple significant features, proposed approach is able to deal
with the heterogeneity in given images. Linear convolution is performed
to get the representative image with prominent features and it is com-
pared with labelled representative images of each class to get the number
of matching points for that class. Color and texture features are extracted
with the help of RGB components and gray level co-occurrence matrix,
respectively. Values of extent, eccentricity and orientation are considered
as regional features and Euler number as geometric feature. As most of
the social images with person consist fashion related information, face
detection is also carried out to show the presence of person in given image
and stored it as a feature. Then, class-conditional probabilities of all the
extracted features are computed and the maximum joint probability is
used while assigning the class label to the given image.

Obtained results show that incorporation of matching points using
CNN with other features, improves the accuracy than using only other
five features. In [2], search based classification using twelve global fea-
tures is carried out by B. Loni et al. on same fashion dataset where
0.7421 f1-score for visual only method is obtained. Using only six fea-
tures, approximately similar results are achieved with our proposed app-
roach.

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 786–787, 2017.
https://doi.org/10.1007/978-3-319-68612-7

Semi-supervised Model for Feature Extraction 787

Keywords: Classification · Feature extraction · Fashion images · Social
data

References

1. Loni, B., et al.: Fashion 10000: an enriched social image dataset for fashion and
clothing. In: ACM Multimedia Systems Conference, pp. 41–46 (2014)

2. Loni, B., et al.: Getting by with a little help from the crowd: practical approaches
to social image labeling. In: IWCM, pp. 69–74 (2014)

Identification of Differential Flat Systems
with Artifical Neural Networks

J. Hoedt(B), J. Kaste(B), K. Van Ende(B), and F. Kallmeyer(B)

Vehicle Dynamics, Volkswagen Group Resarch, Wolfsburg, Germany
{jens.hoedt,jonas.kaste,kristof.van.ende}@volkswagen.de

Abstract. The property of differential flatness in dynamic systems leads
to advantages in the field of analysis and control. These properties are
widely elaborated [1]. Flatness means, that the whole system dynamics
can be described by a flat output and a finite number of its derivatives.
The flatness property defines a diffeomorphism from the system mani-
fold to a trivial one. We use the bijective property of this map to design
artifical neuronal networks accordingly. The weights of the designed net-
works directly correspond to the parameterization of the diffeomorphism.
Training these networks result in a parameter estimation of the observed
system. One main objective is to get more insights in how to choose net-
work topologies for a given problem formulation. Parameter estimation
of mechanical models with neural networks is performed in [2], where the
authors estimate parameters of a dynamic aircraft system model directly
from the weights of a feed forward neural network. Using a flatness based
method leads in practice often to a static diffeomorphism which can
exactly be reproduced by feed forward neural networks. The considered
hidden layers correspond to the parameterization of measurements by
the flat output. Therefore several learning algorithms (e.g. Levenberg-
Marquardt, gradient descent with and without momentum, ADAM) and
initialisation values of the weights are evaluated. It can be shown that
it is not suitable to use a constant and overall learning rate if parame-
ters are not in similar domains. To overcome the necessity of using all
flat outputs and their derivatives as inputs for the neural networks we
integrate an algebraic derivative estimation into the net. Several models
have been tested to show the potential of this approach, for example, a
first order linear system up to a single track model of a vehicle. Finally
the method has been compared to a model based machine learning linear
regression approach.

Keywords: Differential flatness · Artificial neuronal networks · Para-
meter estimation

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 788–789, 2017.
https://doi.org/10.1007/978-3-319-68612-7

Identification of Differential Flat Systems with Artifical Neural Networks 789

References

1. Fliess, M., Lévine, J., Martin, P., Rouchon, P.: A lie-bäcklund approach to equiva-
lence and flatness of nonlinear systems. IEEE Trans. Autom. Control 44, 922–937
(1999)

2. Kirkpatrick, K., May Jr., J., Valasek, J.: Aircraft system identification using artifcial
neural networks. In: AIAA, pp. 2013–0878 (2013)

Adaptive Weighted Multiclass Linear
Discriminant Analysis

Haifeng Zhao1, Wei He1, and Feiping Nie2(B)

1 Key Lab of Intelligent Computing and Signal Processing of MOE
and School of Computer Science and Technology, Anhui University, Hefei 230601,

People’s Republic of China
{senith,Xiaohw}@ahu.edu.cn

2 School of Computer Science and Center for OPTical IMagery Analysis
and Learning(OPTIMAL), Northwestern Polytechnical University, Xi’an 710072,

Shanxi, People’s Republic of China
feipingnie@gmail.com

Abstract. In this paper, we propose a novel linear dimension reduc-
tion method called Adaptive Weighted Multiclass Linear Discriminant
Analysis (AWMLDA). The proposed approach is based on the Fisher’s
linear discriminant analysis (FLDA), which maximizes the ratio of the
sum of the between-class scatter and the within-class scatter. Since the
projection direction of FLDA overemphasized the large class distances
that causing the classes with small distances are still closed in the sub-
space, the solution of FLDA is suboptimal for the multiclass problem.
In the proposed method, firstly our method learn the transform matrix
by measuring the between-class scatter and the within-class scatter of
every pairwise classes rather than the sum measurement, and we use
the square root of the inverse covariance matrix

∑−1/2 to replace the
original within-class matrix. The method of AWMLDA considers every
distances of each pairwise, unlike MMDA [1] and WLDA [2] considered
the minimum between/maximum within class distances respectively. Sec-
ondly, we assign the weights for each pairwise to balance the distances
between each pairwise in the subspace and they can be updated with the
Cauchy-Schwarz inequality adaptively. The distances of weighted pair-
wise are more close in the subspace such that the neighboring classes can
be separated as well. Finally, we derive an efficient algorithm to solve
the optimization problem, and give the theoretical analysis in detail.
Experimental results demonstrate the effectiveness of AWMLDA when
compared with some other well-known multiclass LDA methods.

Keywords: Linear dimension reduction · Multiclass · Fisher’s linear
discriminant analysis · Adaptive weighted

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 790–791, 2017.
https://doi.org/10.1007/978-3-319-68612-7

Adaptive Weighted Multiclass Linear Discriminant Analysis 791

References

1. Bian, W., Tao, D.: Max-min distance analysis by using sequential SDP relaxation
for dimension reduction. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 1037–1050
(2011)

2. Zhang, Y., Yeung, D.-Y.: Worst-case linear discriminant analysis. In: Advances
in Neural Information Processing Systems, vol. 23, pp. 2568–2576. MIT Press,
Cambridge (2010)

Efficient Graph Construction Through
Constrained Data Self-Representativeness

L. Weng1,2, F. Dornaika1(B), and Z. Jin2

1 University of the Basque Country & IKERBASQUE, San Sebastian, Spain
2 Nanjing University of Science and Technology, Nanjing, China

Recently, graph-based semi-supervised learning (SSL) becomes a hot topic in
machine learning and pattern recognition1. Constructing an informative graph
is one of the most important steps in SSL. In this paper, we introduce an efficient
graph construction algorithm named constrained data self-representativeness
graph construction (CSRGC). It is known that data self-representation can pro-
vide a relationship between one data sample and other samples which also can
be regarded as a similarity measurement. Our proposed CSRGC graph exploits
data self-representation. It also integrates constraints that stipulate that similar
samples should also have similar edge weights. We propose to construct an affin-
ity matrix B that simultaneously exploits data self-representation and Lapla-
cian smoothness of the graph coefficients by solving the following minimization
problem:

B = arg min
B

‖X − XB‖2F + λ ‖B‖2F + ρTrace (BLB BT) (1)

where X is the data matrix, LB is the Laplacian matrix of the affinity matrix
B, and λ and ρ are two positive balance parameters. ‖ • ‖F is Frobenius norm.
Equation (1) is efficiently and iteratively solved by fixing the Laplacian matrix
and then solving for the affinity matrix. In practise, three iterations were found
enough to get a stable graph. To evaluate the performance of our proposed
method, we compare it with several other competing methods including KNN
graph and LLE graph, �1 graph, the simple linear coding graph (�2 graph) and
the Weighted Regularized Least Square (WRLS) method. For every graph con-
struction method, several values for the parameter are used. We then report the
best recognition accuracy. Table 1 shows the mean recognition rates on PF01
face dataset over ten random splits (Asian Face Image Database PF01. Data-
base, Intelligent Multimedia Lab, Dept of CSE, POSTECH, 2001) (103 Asian
persons each 17 images). Several labelled images per class are used (2–10 sam-
ples). Future work may apply the proposed method to other types of data such
as music and speeches.

1 Dornaika, F., Bosaghzadeh, A.: Adaptive graph construction using Data self-
representativeness for pattern classification. Inf. Sci. 325 (2015).

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part II, LNCS 10614, pp. 792–793, 2017.
https://doi.org/10.1007/978-3-319-68612-7

Efficient Graph Construction Through Constrained Data 793

Table 1. Recognition rates (%) on PF01 by label propagation over data driven graphs.

Graph construction method \l 2 4 6 8 10

kNN 35.5 43.3 47.0 50.6 53.8

LLE 34.6 43.6 51.2 64.9 73.7

�1 40.3 50.4 55.9 59.3 63.6

�2 54.3 69.8 76.6 80.7 85.1

WRLS 54.7 69.6 75.5 79.7 85.1

CSRGC 57.2 71.6 77.4 81.2 85.8

Author Index

Abdelwahed, Mehdi I-446
Abdullatif, A. II-768
Ai, Na II-565
Aiolli, Fabio II-183, II-279
Aires, João Paulo I-424
Aizono, Toshiko II-655
Almodfer, Rolla II-260
Alpay, Tayfun I-3
Andaluz, Víctor H. II-590
Andonie, Răzvan II-64, II-512
Andras, Peter I-121
Andry, Pierre I-446
Anguita, Davide II-331, II-385
Antonelo, Eric A. II-503
Anvik, John II-64
Araújo, Daniel II-359
Arie, Hiroaki I-35
Aronica, Salvatore I-454, I-457
Arruda, Helder M. I-254, II-520
Arsiwalla, Xerxes D. I-326, I-422
Aulestia, Pablo S. II-590
Awad, Mariette II-749
Azuma, Yoshiki I-199

Bahroun, Yanis I-354, I-364
Barančok, Peter I-418
Barros, Rodrigo C. I-424
Basilone, Gualtiero I-454, I-457
Basu, Saikat II-617
Bauckhage, Christian I-219, II-663
Bauer-Wersing, Ute II-200
Bazrafkan, Shabab I-432
Beerel, Peter A. I-273
Beigl, Michael II-233
Bekkouche, Bo I-397
Belić, Jovana J. I-129
Benalcázar, Marco E. II-590
Berberian, Nareg I-110
Biswas, Anmol II-763, II-765
Bogdan, Martin I-389
Bohte, Sander II-729
Boldt, Brendon II-268
Bollenbacher, J. II-743
Bonanno, Angelo I-454, I-457

Borovykh, Anastasia II-729
Bosco, Giosué Lo I-457
Bothe, Chandrakant II-477
Boubaker, Houcine II-450
Braun, Hans Albert I-423
Bueno, Leonardo de A. e II-582
Burgio, Giovanni I-458
Burikov, Sergey II-751
Butz, Martin V. I-227, I-262, II-745
Buza, Krisztian II-663

Cabessa, Jérémie I-245, I-334
Cabri, Alberto II-434
Caggiano, Vittorio I-19
Camastra, Francesco I-407, II-626
Canessa, Andrea II-192
Canuto, Anne M.P. II-467
Canuto, Anne II-359
Cao, Ru I-92
Carvalho, Eduardo II-72, II-761
Carvalho, Hanna V. II-520
Castellano, Giovanna II-770
Caţaron, Angel II-512
Chartier, Sylvain I-110, I-345
Chechik, Gal II-287
Chen, JiaXin II-305
Chen, Peng I-208
Chen, Wei I-373
Cherla, Srikanth II-111
Cheruku, Ramalingaswamy II-411
Chesmore, David II-349
Chmielewski, Leszek J. II-128
Chugg, Keith M. I-273
Ciaramella, Angelo I-407
Cimrová, Barbora I-418
Cipolla, Emanuele I-460
Cipollini, Francesca II-385
Cleder, Catherine I-451
Cleophas, Toine II-385
Cohen, Ido II-287
Coraddu, Andrea II-385
Corcoran, Peter I-432
Coroiu, Adriana Mihaela II-782
Cosovan, Doina II-250

Costa, Fabrizio II-155
Crielaard, Wim II-778
Cui, Hongyuan II-556
Cyr, André I-110

d’Avila Garcez, Artur II-111, II-120
da Silva, João C.P. II-376
da Silva, Ricardo A.M. II-402
Dantas, Carine A. II-467
David, Eli (Omid) II-91, II-287, II-725,

II-741
de Carvalho, Eduardo C. I-254
de Carvalho, Francisco de A.T. II-402
De Gernier, Robin I-425
de Souza, Paulo I-254, II-520
Del Carpio, Christian II-635
Delbruck, Tobi I-179
Delgado, Carla II-376
Delgado-Martínez, Ignacio I-60
Deng, Pan II-680
Deng, Xiangyang II-785
Dengel, Andreas II-165
Dey, Sourya I-273
Dharavath, Ramesh II-411
DiBiano, Robert II-617
Dillmann, Rüdiger I-43, II-3
Ding, Meng II-727
Dolenko, Sergey II-751, II-757, II-774
Dolenko, Tatiana II-751
Donat, Heiko I-43
Dornaika, F. II-792
dos Santos, Filipa I-121
Dou, Zi-Yi II-696
Duan, Pengfei II-260
Durand-Dubief, Françoise II-643
Dzwinel, Witold II-756

Echeveste, Rodrigo I-444
Edla, Damodar Reddy II-411
Efitorov, Alexander II-751
Eleftheriou, Evangelos I-281
Ellatihy, Karim I-389
Endres, Dominik I-291
Escuain-Poole, Lara I-431

Fabian, Joseph I-397
Fanelli, Anna Maria II-770
Farkaš, Igor I-418
Feng, Jiawen II-785

Feng, Weijiang II-574
Feng, Zhiyong I-92
Ferreira, Bruno II-761
Fiannaca, Antonino I-454
Filho, Geraldo P.R. II-761
Fischer, Lydia II-200
Fleer, Sascha I-68
Florea, Adrian-Cătălin II-64
Fontana, Ignazio I-454, I-457
Fortunato, Guglielmo I-60
Fouss, François II-423
Frajberg, Darian II-12
Fraternali, Piero II-12
Frick, Adam I-429
Friston, Karl I-227
Furusho, Wataru I-171

Gajowniczek, Krzysztof II-128
Gallardo, Jhair II-635
Galmarini, S. I-456
Gama, Fernando II-520
Ganguly, Udayan II-763, II-765
Gao, Min II-208
García, Gabriel II-635
García-Ródenas, Ricardo II-600
Garrido, Jesús A. I-434
Gavriluţ, Dragoş II-250
Geng, Yanyan II-539
Genovese, Simona I-454, I-457
Giacalone, Giovanni I-454, I-457
Gibaldi, Agostino II-192
Giese, Martin I-19
Gomes, Pedro A.B. I-254
Gonzalez-Ballester, Miguel Angel I-421
Gorse, Denise II-495
Graham, Bruce P. I-381
Granada, Roger I-424
Gros, Claudius I-444
Gu, Feng II-442
Gu, Xiaodong II-40, II-733
Gu, Yi II-539
Gu, Yiwei II-733
Guermeur, Yann II-767

Haelterman, Marc I-425
Hagen, Oksana I-419
Hamker, Fred H. I-449
Hao, Jianye I-92
Hara, Kazuyuki II-747

796 Author Index

Hasler, Stephan II-200
He, Ben II-56
He, Hongjun II-609
He, Liang II-547
He, Wei II-790
Heidemann, Gunther I-84
Hellgren Kotaleski, Jeanette I-129
Hernández-Alcaina, Alberto I-431
Herreros, Ivan I-422
Hinakawa, Nobuhiro I-155
Hoedt, J. I-417, II-788
Hoffmann, Matej I-101
Horcholle-Bossavit, Ginette I-245
Hori, Sansei I-437
Hosino, Tikara II-672
Hovaidi-Ardestani, Mohammad I-19
Hu, Jinxing I-373
Hu, Qinghua II-340
Hua, Qingsong II-680
Huang, Shu-Jian II-696
Huang, Xuhui II-442, II-574
Hunsicker, Eugénie I-364

Iannella, Nicolangelo I-429
Ichisugi, Yuuji I-163
Iliopoulos, Costas S. I-454
Imangaliyev, Sultan II-778
Ion-Mărgineanu, Adrian II-643
Isaev, Igor II-757
Ishii, Shin I-199, II-100
Ito, Saki I-35
Izquierdo, Eduardo J. I-236

Jablonski, Adrian II-233
Jackevicius, Rokas I-381
Jaquerod, Manon I-191
Jesus, Jhoseph II-359
Jiang, Wanwan II-772
Jimenez-Lepe, Edwin II-780
Jin, Z. II-792
Johnson, Melissa I-345

Kaiser, Jacques I-43, II-3
Kallmeyer, F. I-417, II-788
Kalou, Katerina II-192
Karatzoglou, Antonios II-233
Karki, Manohar II-617
Karpenko, Olena II-385
Kaste, J. I-417, II-788
Kawakami, Hajimu II-174

Keijser, Bart J.F. II-778
Kerkeni, Leila I-451
Kerzel, Matthias I-27
Keshavamurthy, Bettahally N. II-786
Kherallah, Monji II-450
Kitano, Katsunori I-155
Knopp, Benjamin I-291
Kocevar, Gabriel II-643
Kohjima, Masahiro II-146
Koprinska, Irena II-486
Král, Pavel II-368
Kreger, Jennifer II-200
Kumar, Arvind I-129
Kundu, Ritu I-454
Kuppili, Venkatanareshbabu II-411
Kuras, Ihor I-446
Kuroe, Yasuaki II-174

La Rosa, Massimo I-454
Ladwani, Vandana M. II-753
Lam, K.P. I-121
Lan, Qiang II-609
Langiu, Alessio I-454, I-457
Lanzoni, Alberto I-458
Laptinskiy, Kirill II-751
Lauer, Fabien II-767
Lauriola, Ivano II-183, II-279
Leblebici, Yusuf I-281
Lehman, Constantin I-84
Lemley, Joseph I-432
Lenc, Ladislav II-368
Leng, Biao II-80
Levin, Evgeni II-778
Li, Guoqing II-556
Li, Jianrong II-297
Li, Shu II-305
Li, Shuqin II-727
Li, Weizhi II-539
Li, Xiaohong I-92
Li, Yujian II-30
Lian, Yahong II-305
Liang, Dongyun II-394
Liang, Gaoyuan II-539
Liang, Ru-Ze II-539
Lima, Priscila II-376
Lin, Xin II-547
Linares, Luis Jiménez II-600
Linares-Barranco, Alejandro I-179
Lintas, Alessandra I-191
Liscovitch, Noa II-287

Author Index 797

Liu, Chang II-784
Liu, Hongjie I-179
Liu, Jingshuang II-208
Liu, Qiang II-242
Liu, Siqi II-735
Liu, Tao I-436
Liu, Wenjie II-242
Liu, Ying II-556
Liu, Zhaoying II-30
Liu, Zhichao II-49
Liu, Zhiqiang II-735
Liwicki, Marcus II-165
Lo Bosco, Giosue’ I-454
Loeffler, Hubert I-448
Loos, Bruno G. II-778
López, Jorge II-635
López-Gómez, Julio Alberto II-600
Low, Sock Ching I-427
Lu, Yao II-322
Luchian, Henri II-250
Lulli, Alessandro II-331
Luo, Zhigang II-442, II-574

Madrenas, Jordi I-437
Maffei, Giovanni I-309
Magg, Sven II-477
Mahjoub, Mohamed Ali I-451
Maiolo, Luca I-60
Maji, Partha II-21
Mann, Andrew D. II-495
Mapelli, Jonathan I-425
Martínez-Muñoz, Gonzalo II-224
Marzullo, Aldo II-626
Massar, Serge I-425
Masuda, Wataru I-11
Masulli, Francesco II-434, II-768
Masulli, Paolo I-317
Matwin, Stan II-756
Mauricio, Antoni II-635
Mazzola, Salvatore I-454, I-457
Mbarki, Mohamed I-451
Medhat, Fady II-349
Meltnyk, Artem I-446
Mendez-Vazquez, Andres II-780
Meneguzzi, Felipe I-424
Meng, Kun II-727
Meng, Xianglai II-80
Moeys, Diederik Paul I-179
Monteiro, Juarez I-424
Morie, Takashi I-437

Morioka, Hiroshi I-199
Mudhsh, Mohammed II-260
Mukhopadhyay, Supratik II-617
Mullins, Robert II-21
Murakami, Kaichi II-739
Murata, Shingo I-11
Musayeva, Khadija II-767
Myagkova, Irina II-774

Nachtigall, Karl II-528
Navarro, Xavier I-60
Netanyahu, Nathan S. II-287, II-725, II-741
Ni, Mengjun II-547
Nie, Feiping II-790
Nishimoto, Takashi I-199
Nunes, Rômulo O. II-467

O’Carroll, David C. I-397
Oba, Sigeyuki II-100
Odense, Simon II-120
Ogata, Tetsuya I-11, I-35
Ohashi, Orlando II-72
Ohsawa, Yukio II-705
Okada, Tatsuuya II-713
Okadome, Yuya II-655
Oliveira, Adriano L.I. II-582
Oneto, Luca II-331, II-385
Oosterlee, Cornelis W. II-729
Orłowski, Arkadiusz II-128
Ortiz, Michaël Garcia I-76, I-419
Osana, Yuko I-52, II-713, II-739
Osawa, Kazuki II-459
Otte, Sebastian I-227, I-262, II-745
Oztop, Erhan I-146

Palacio, Sebastian II-165
Pantazi, Angeliki I-281
Pasqualini, Edison I-458
Patil, Nitin II-539
Pazzini, Luca I-60
Pelowski, Matthew I-436
Peng, Jinye II-565
Pérez-Lemonche, Ángel II-224
Peric, Igor I-43
Pessin, Gustavo I-254, II-72, II-520, II-761
Phumphuang, Pantaree II-759
Pipa, Gordon I-84
Pissis, Solon I-454
Plastino, Angel R. I-300
Polato, Mirko II-183, II-279

798 Author Index

Polese, Davide I-60
Pons, Antonio J. I-431
Porubcová, Natália I-418
Prasad, Sidharth II-763, II-765
Prasad, Shitala II-786
Puigbò, Jordi-Ysard I-421
Pulido-Cañabate, Estrella II-224

Qi, Jin II-565
Qin, Zhengcai II-56
Quenet, Brigitte I-245

Ramamurthy, Rajkumar II-663
Ramasubramanian, V. II-753
Rana, Mashud II-486
Ravindran, Balaraman II-776
Raoof, Kosai I-451
Raue, Federico II-165
Reitmann, Stefan II-528
Ren, Gang II-680
Rhein, B. II-743
Riccio, A. I-456
Rigosi, Elisa I-397
Rios-Navarro, Antonio I-179
Ritter, Helge I-68
Rizk, Yara II-749
Rizzo, Riccardo I-454, I-457, I-460
Robinson, John II-349
Roennau, Arne I-43, II-3
Rong, Wenge II-208
Ros, Eduardo I-434
Rosenberg, Ishai II-91
Rosipal, Roman I-418
Ross, Matt I-110
Rössert, Christian I-425
Rovetta, Stefano II-434, II-768

Sabatini, Silvio P. II-192
Saerens, Marco II-423
Saiprasert, Chalermpol II-759
Sánchez-Fibla, Martí I-309
Sanetti, Paolo II-385
Sano, Takashi I-163
Sappey-Marinier, Dominique II-643
Saudargiene, Ausra I-381
Schleif, Frank-Michael II-313
Schmitt, Theresa I-227
Sentürk, Harun II-233
Serrestou, Youssef I-451

Sezener, Can Eren I-146
Shao, Yinan I-273
Sharifirad, Sima II-756
Shen, Yanyan I-373
Shi, Yuanchun II-735
Shoemaker, Patrick A. I-397
Sicard, Guillaume II-91
Sidler, Severin I-281
Sima, Diana M. II-643
Solazzo, E. I-456
Solinas, Sergio I-425
Soltoggio, Andrea I-354, I-364
Sommer, Felix II-423
Song, Guanglu II-80
Song, Jianglong II-242
Sperduti, Alessandro II-155
Staiano, Antonino I-407
Stamile, Claudio II-626, II-643
State, Radu II-503
Straka, Zdenek I-101
Su, Yi-Fan II-696
Sugano, Shigeki I-11
Sun, Fuchun II-784
Sun, Guangyu II-49
Sun, Shangdi II-40
Sütfeld, Leon I-84
Svetlov, Vsevolod II-757

T.N., Chandramohan II-776
Talahua, Jonathan S. II-590
Tamukoh, Hakaru I-437, I-439
Tanaka, Yuichiro I-439
Tanisaro, Pattreeya I-84
Tao, Pin II-735
Tchaptchet, Aubin I-423
Teichmann, Michael I-449
Temma, Daisuke I-52
Teplan, Michal I-418
Terracina, Giorgio II-626
Thajchayapong, Suttipong II-759
Thériault, Frédéric I-110
Tian, Chuan II-208
Tian, Tian II-216
Tieck, J. Camilo Vasquez I-43, II-3
Tietz, Marian I-3
Tomioka, Saki I-11
Torres, Renato II-72
Torres, Rocio Nahime II-12

Author Index 799

Tran, Son N. II-111
Tran-Van, Dinh II-155
Trapp, Philip I-444
Triesch, Jochen I-442
Tu, Shanshan II-737
Twiefel, Johannes I-3

Uchida, Shihori II-100
Ueyama, Jó II-761
Ulbrich, Stefan I-43, II-3
ur Rehman, Sadaqat II-737

Vaishnavi, Y. II-753
van der Veen, Monique H. II-778
Van Ende, K. I-417, II-788
Van Huffel, Sabine II-643
Vasu, Madhavun Candadai I-236
Vatamanu, Cristina II-250
Vella, Filippo I-460
Velychko, Dmytro I-291
Verschure, Paul F.M.J. I-309, I-421, I-422,

I-427
Verschure, Paul I-326
Viana, Thais II-376
Villa, Alessandro E.P. I-191, I-317, I-334
Volgenant, Catherine M.C. II-778
Vysyaraju, Sarat Chandra I-191

Wanderley, Miguel D. de S. II-582
Wang, Changhu II-784
Wang, Chenxu II-442
Wang, Guangxia II-340
Wang, Jingbin II-539
Wang, Jing-Yan II-539
Wang, Jun II-565
Wang, Lin II-565
Wang, Qi II-56
Wang, Shuqiang I-373
Wang, Zelong II-609
Wang, Zheng II-486
Watanabe, Sumio II-146
Wazarkar, Seema II-786
Weber, Cornelius I-137, II-477
Wedemann, Roseli S. I-300
Wei, Wenpeng II-655
Weisswange, Thomas H. II-200
Wen, He II-688
Weng, L. II-792
Wermter, Stefan I-3, I-27, I-137, II-477

Weyde, Tillman II-111
Wiederman, Steven D. I-397
Woźniak, Stanisław I-281
Wrobel, Stefan II-663
Wu, Bingzhe II-49
Wu, Charles II-49
Wu, Yanbin II-539

Xavier-Júnior, João C. II-467
Xiao, Taihong II-688
Xiao, Tengfei I-373
Xie, Yuan II-735
Xiong, Shengwu II-260
Xiong, Zhang II-208
Xu, Jungang II-56
Xu, Lingyu II-731, II-772
Xu, WeiRan II-216
Xu, Weiran II-322, II-394

Yamada, Tatsuro I-35
Yamazaki, Tadashi I-171
Yang, Chao II-680
Yang, Jing II-547
Yang, Rui II-705
Yokota, Rio II-459
Yoshikawa, Yuya II-137
Yu, Chun II-735
Yu, Dongchuan I-436
Yu, Haixing II-731, II-772
Yu, Hong II-305
Yu, Zhijun II-785
Yuan, Zhihang II-49

Ząbkowski, Tomasz II-128
Zanchettin, Cleber II-582
Zapata, Mireya I-437
Zhang, Changqing II-340
Zhang, Chunyuan II-609
Zhang, Chunyun II-322
Zhang, Guohui II-539
Zhang, Jianhua I-208, II-297
Zhang, Limin II-785
Zhang, Mingming I-436
Zhang, Ting II-30
Zhang, Wenju II-442
Zhang, Xiang II-442, II-574
Zhang, Yipeng II-727
Zhao, Haifeng II-790
Zhao, Wentao II-242
Zhao, Yinge II-394

800 Author Index

Zhou, Shuchang II-688
Zhou, Xiaomao I-137
Zhou, Xinyu II-688
Zhu, Chengzhang II-242
Zhu, Pengfei II-340

Zimmerer, David II-3
Zöllner, Marius I-43
Zouari, Ramzi II-450
Zucca, Riccardo I-427
Zwiener, Adrian I-262

Author Index 801

	Preface
	Organization
	Contents -- Part II
	Contents -- Part I
	Convolutional Neural Networks
	Spiking Convolutional Deep Belief Networks
	1 Introduction
	2 Related Work
	3 Architecture
	3.1 Spiking Convolutional Layer
	3.2 Learning Rule
	3.3 Lateral Inhibition
	3.4 Spiking Convolutional Deep Belief Network

	4 Results
	4.1 Experimental Setup
	4.2 Classification
	4.3 Reconstruction

	5 Conclusion
	References

	Convolutional Neural Network for Pixel-Wise Skyline Detection
	1 Introduction
	2 Related Work
	3 Skyline Extraction with CNN
	4 Evaluation
	5 Conclusions and Future Work
	References

	1D-FALCON: Accelerating Deep Convolutional Neural Network Inference by Co-optimization of Models and Underlying Arithmetic Implementation
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Layerwise Approximation and Convolution by Separability
	3.2 Rank Search and Layer Restructuring Algorithm
	3.3 The Modified Toom-Cook's Fast 1-D Convolution

	4 Results and Analysis
	5 Conclusions
	References

	Shortcut Convolutional Neural Networks for Classification of Gender and Texture
	1 Introduction
	2 Shortcut CNNs
	2.1 Model Description
	2.2 Learning Algorithm

	3 Results
	3.1 Datasets and Setup
	3.2 Gender Classification
	3.3 Texture Classification
	3.4 Different Settings

	4 Conclusion
	References

	Word Embedding Dropout and Variable-Length Convolution Window in Convolutional Neural Network for Sentiment Classification
	1 Introduction
	2 Word Embedding Layer Dropout
	2.1 Regularization and Dropout
	2.2 Dropout Training in Word Embedding Layer

	3 Variable-Length Convolution Window
	4 Experiments
	4.1 Results of Word Embedding Dropout
	4.2 Combination of Different Window Lengths

	5 Conclusions
	References

	Reducing Overfitting in Deep Convolutional Neural Networks Using Redundancy Regularizer
	1 Introduction
	2 Exploring Kernel Redundancy in Deep CNNs
	2.1 Correlation Between Two Kernels
	2.2 Distribution of Correlations in a Real CNN Model
	2.3 Visualizing High-Similarity Kernels and Features

	3 Correlationloss
	4 Experiment Results
	4.1 CIFAR10 and CIFAR100
	4.2 ImageNet

	5 Conclusion
	References

	An Improved Convolutional Neural Network for Sentence Classification Based on Term Frequency and Segmentation
	1 Introduction
	2 Related Works
	3 Model Description
	3.1 Input
	3.2 Convolution
	3.3 Pooling
	3.4 Regularization and Classification

	4 Experiments
	4.1 Datasets
	4.2 Hyperparameters and Training
	4.3 Pre-trained Word Vectors
	4.4 Experimental Results and Analysis

	5 Conclusions
	References

	Parallel Implementation of a Bug Report Assignment Recommender Using Deep Learning
	1 Introduction
	2 Related Work
	3 Deep Learning Bug Report Assignment Recommender
	3.1 Datasets
	3.2 Data Preparation
	3.3 Recommender Training
	3.4 Implementation Details

	4 Results
	5 Conclusions
	References

	A Deep Learning Approach to Detect Distracted Drivers Using a Mobile Phone
	1 Introduction
	2 Related Studies
	3 The Problem
	4 Methodology
	4.1 Convolutional Neural Network
	4.2 Experiments

	5 Conclusion
	References

	A Multi-level Weighted Representation for Person Re-identification
	1 Introduction
	2 Related Work
	3 Method
	3.1 The Proposed Representation Construction Network
	3.2 Quality Estimation Subnets
	3.3 Weighting Scheme with Triplet Loss

	4 Experiments
	4.1 Datasets and Data Augmentation
	4.2 Training and Testing
	4.3 Comparison with the Baseline and the State of the Art
	4.4 Comparison of Weighted Multi-level Feature and Non-weighted Multi-level Feature
	4.5 Cross-Dataset Testing

	5 Conclusion
	References

	Games and Strategy
	DeepAPT: Nation-State APT Attribution Using End-to-End Deep Neural Networks
	1 Introduction
	2 Background and Related Work
	2.1 Binary Code Authorship Attribution
	2.2 Malware Attribution

	3 Problem Definition: Nation-State APT Attribution
	3.1 The Challenges of Nation-State Attribution
	3.2 Using Raw Features in DNN Classifications in the Cyber Security Domain

	4 Implementation and Experimental Evaluation
	4.1 Raw Features Used
	4.2 Network Architecture and Hyper-Parameters
	4.3 Experimental Evaluation

	5 Concluding Remarks
	References

	Estimation of the Change of Agents Behavior Strategy Using State-Action History
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Model-Free Reinforcement Learning
	2.3 The Change of Action Policy During Learning Situation
	2.4 Inverse Reinforcement Learning
	2.5 Previous Work

	3 Proposed Method
	3.1 Derivation of the Gradient
	3.2 Estimation of Change of Temperature Hyper-parameter

	4 Results
	4.1 Experiment Setting
	4.2 Simultaneous Estimation of the Values and the Change Point

	5 Conclusion
	References

	Boltzmann Machines and Phase Transitions
	Generalising the Discriminative Restricted Boltzmann Machines
	1 Introduction
	2 Generalising the Discriminative Learning in RBMs
	3 Extensions to Other Hidden Layer Distributions
	4 Experiments
	4.1 MNIST Handwritten Digit Recognition
	4.2 USPS Handwritten Digit Recognition
	4.3 20 Newsgroups Document Classification

	5 Conclusions and Future Work
	References

	Extracting M of N Rules from Restricted Boltzmann Machines
	1 Introduction
	2 Extracting Conjunctive Rules from RBMs
	3 Extracting M of N Rules from RBMs
	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusion
	References

	Generalized Entropy Cost Function in Neural Networks
	Abstract
	1 Introduction and Problem Statement
	2 Literature Review on Similar Problems
	3 Theoretical Framework
	4 Numerical Experiment
	4.1 Implementation
	4.2 Results

	5 Summary and Concluding Remarks
	References

	Learning from Noisy Label Distributions
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Model Formulation
	3.2 Inference Based on Variational Bayesian Method

	4 Experiments
	5 Conclusion
	References

	Phase Transition Structure of Variational Bayesian Nonnegative Matrix Factorization
	1 Introduction
	2 Preliminaries
	2.1 Variational Bayesian Nonnegative Matrix Factorization
	2.2 Variational Free Energy (VFE)

	3 Theoretical Analysis
	3.1 Main Result
	3.2 Proof of Main Theorem

	4 Experiment
	5 Conclusion
	References

	Link Enrichment for Diffusion-Based Graph Node Kernels
	1 Introduction
	2 Notation and Background
	3 Method
	4 Empirical Evaluation
	4.1 Evaluation Method

	5 Results and Discussion
	6 Conclusion and Future Work
	References

	Context Information Learning and Self-Assessment in Advanced Machine Learning Models
	Classless Association Using Neural Networks
	1 Introduction
	2 Classless Association Model
	3 Experiments
	4 Results and Discussion
	5 Conclusion
	References

	Shape from Shading by Model Inclusive Learning Method with Simultaneous Estimation of Parameters
	1 Introduction
	2 Model Inclusive Learning Method with Simultaneous Estimation of Unknown Parameters
	3 General Framework of Proposed Shape from Shading by Model Inclusive Learning Method
	4 Problem Formulation and Proposed Learning Method
	4.1 Problem Formulation
	4.2 Proposed Learning Method

	5 Experiment
	6 Conclusion
	References

	Radius-Margin Ratio Optimization for Dot-Product Boolean Kernel Learning
	1 Introduction
	2 Notation and Background
	3 DPKs as Linear Combinations of mC-kernels
	4 The Proposed Algorithm
	5 Experimental Assessment
	6 Conclusions
	References

	Learning a Compositional Hierarchy of Disparity Descriptors for 3D Orientation Estimation in an Active Fixation Setting
	1 Introduction
	2 State of the Art
	3 Methods
	3.1 Simulating the 3D Environment and the Fixation Geometry
	3.2 Intermediate Representations
	3.3 Training the Architecture

	4 Results and Conclusions
	References

	A Priori Reliability Prediction with Meta-Learning Based on Context Information
	1 Introduction
	2 Methods
	3 Application
	4 Experiments
	5 Conclusion and Future Work
	References

	Attention Aware Semi-supervised Framework for Sentiment Analysis
	1 Introduction
	2 Background
	3 Methodology
	3.1 Unsupervised Learning
	3.2 Supervised Learning

	4 Experiment Study
	4.1 Datasets and Evaluation Metrics
	4.2 Results and Discussion

	5 Conclusion and Future Work
	References

	Chinese Lexical Normalization Based on Information Extraction: An Experimental Study
	1 Introduction
	2 Proposed Models
	2.1 LSTM Networks
	2.2 Bi-LSTM Networks
	2.3 Stacked Bi-LSTM
	2.4 LSTM with Chunk Encoding

	3 Experiment
	3.1 Data Collection
	3.2 Implement Details
	3.3 Result and Discussion

	4 Related Works
	5 Conclusion
	References

	Analysing Event Transitions to Discover Student Roles and Predict Grades in MOOCs
	1 Introduction
	2 Problem Description and Data Processing
	3 Experiments
	4 Conclusions
	References

	Applying Artificial Neural Networks on Two-Layer Semantic Trajectories for Predicting the Next Semantic Location
	1 Introduction
	2 Related Work
	3 Semantic Trajectories
	4 Neural Network Based Semantic Location Prediction - Design, Implementation, and Parameter Selection
	4.1 Feed-Forward Neural Networks (FFNN)
	4.2 Recurrent Neural Networks (RNN)
	4.3 Long-Short-Term-Memory Neural Networks (LSTM)
	4.4 Parameter Selection

	5 Evaluation
	6 Conclusion
	References

	Model-Aware Representation Learning for Categorical Data with Hierarchical Couplings
	1 Introduction
	2 Related Work
	2.1 Support Vector Machine Generalization Error Estimation
	2.2 Coupled Attribute Similarity Metric

	3 Model-Aware Representation Learning
	3.1 The MoreCatch Framework
	3.2 An SVM-Aware Representation Learning Method
	3.3 Algorithm for the SVM-Aware Representation Learning

	4 Experiments and Analysis
	5 Conclusion
	References

	Perceptron-Based Ensembles and Binary Decision Trees for Malware Detection
	1 Introduction
	2 Related Work
	3 Algorithms
	3.1 Parameter Adaptation
	3.2 BDT Steps

	4 Results
	5 Conclusions
	References

	Multi-column Deep Neural Network for Offline Arabic Handwriting Recognition
	Abstract
	1 Introduction
	2 Arabic Handwriting Characteristics and Challenges
	3 System Overview
	3.1 Deep Neural Networks
	3.2 MCDNN Architecture

	4 Experiments Results
	5 Conclusion
	Acknowledgments
	References

	Using LSTMs to Model the Java Programming Language
	1 Introduction
	2 Tokenizing Java Source Code
	2.1 Statement-Level AST Tokenization
	2.2 Method-Level Tokenization
	2.3 English and Java Source Corpora Used
	2.4 Vocabulary Comparison

	3 Language Modeling
	3.1 Neural Network Structure and Configuration
	3.2 Language Model Metrics

	4 Results
	5 Conclusion
	References

	Representation and Classification
	Classification of Categorical Data in the Feature Space of Monotone DNFs
	1 Introduction
	2 Related Works
	3 Boolean Kernels
	3.1 Monotone Conjunctive Kernel
	3.2 Monotone Disjunctive Kernel
	3.3 Monotone Disjunctive Normal Form (DNF) Kernel

	4 Experiments and Results
	5 Conclusions
	References

	DeepBrain: Functional Representation of Neural In-Situ Hybridization Images for Gene Ontology Classification Using Deep Convolutional Autoencoders
	1 Introduction
	2 Background
	2.1 FuncISH - Learning Functional Representations
	2.2 Deep Learning Techniques

	3 Feature Extraction Using Convolutional Autoencoders
	3.1 Auto-Encoders (AE)
	3.2 Convolutional Autoencoders (CAE)

	4 CDAE for GO Classification
	4.1 Reducing Vector Dimensionality

	5 Conclusion
	References

	Mental Workload Classification Based on Semi-Supervised Extreme Learning Machine
	Abstract
	1 Introduction
	2 Semi-Supervised Mental Workload Recognition
	3 Data Acquisition and Preprocessing
	3.1 Experimental Task Environment
	3.2 Experimental Subjects
	3.3 Experimental Procedure
	3.4 Determination of Target Classes
	3.5 Physiological Feature Extraction

	4 MWL Classification Results and Analysis
	4.1 Results of Semi-Supervised ELM
	4.2 Effect of Number of Unlabeled Data
	4.3 Effect of Number of Labeled Data
	4.4 Performance Comparison of Five Different Classifiers

	5 Conclusion
	References

	View-Weighted Multi-view K-means Clustering
	1 Introduction
	2 View-Weighted Multi-view K-means Clustering
	3 Optimization Algorithm
	3.1 Algorithm Derivation
	3.2 Time Complexity Analysis

	4 Experiment and Evaluation
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Conclusion
	References

	Indefinite Support Vector Regression
	1 Introduction
	2 Background and Basic Notation
	2.1 Support Vector Regression
	2.2 Indefinite Support Vector Classification

	3 Indefinite Support Vector Regression
	4 Experiments
	5 Conclusions
	References

	Instance-Adaptive Attention Mechanism for Relation Classification
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Embedding Layer
	3.2 Bidirectional GRU
	3.3 Attention Mechanism
	3.4 Classifying
	3.5 Regularization

	4 Dataset and Experimental Set
	5 Results and Discussion
	6 Conclusion
	References

	ReForeSt: Random Forests in Apache Spark
	1 Introduction
	2 ReForeSt: Random Forests in Apache Spark
	2.1 Data Preparation
	2.2 Tree Generation

	3 Experimental Evaluation
	4 Conclusion
	References

	Semi-Supervised Multi-view Multi-label Classification Based on Nonnegative Matrix Factorization
	1 Introduction
	2 The Proposed Method: NMF-SSMM
	2.1 Notations
	2.2 Formulation
	2.3 Optimization Algorithm for NMF-SSMM
	2.4 Complexity and Convergence Analysis

	3 Experiment
	4 Conclusion
	References

	Masked Conditional Neural Networks for Audio Classification
	1 Introduction
	2 Conditional Neural Networks
	3 Masked Conditional Neural Networks
	4 Experiments
	5 Conclusions and Future Work
	References

	A Feature Selection Approach Based on Information Theory for Classification Tasks
	1 Introduction
	2 Related Works
	3 The Feature Selection Approach
	4 Material and Methods
	5 Results and Discussion
	5.1 Analysis of Some MI-Based Methods
	5.2 Comparative Analysis

	6 Final Remarks
	References

	Two-Level Neural Network for Multi-label Document Classification
	1 Introduction
	2 Related Work
	3 Network Architecture
	4 Experiments
	4.1 Tools and Corpora
	4.2 System Configuration
	4.3 Results on the Czech Corpus
	4.4 Results on Reuters-21578

	5 Conclusions and Perspectives
	References

	Ontology Alignment with Weightless Neural Networks
	1 Introduction
	2 Related Works
	3 A Weightless Neural Network for Ontology Alignment
	4 Case Study - Software Ontologies
	5 Results
	6 Conclusions
	References

	Marine Safety and Data Analytics: Vessel Crash Stop Maneuvering Performance Prediction
	1 Introduction
	2 Vessel Crash Stop Maneuvering
	3 Proposed Data Driven Approach
	4 Results
	5 Conclusions
	References

	Combining Character-Level Representation for Relation Classification
	1 Introduction
	2 Related Work
	3 Model
	3.1 Word-Level
	3.2 Character-Level
	3.3 Combination
	3.4 Training

	4 Experiments
	4.1 Dataset
	4.2 Setup
	4.3 Results

	5 Conclusion
	References

	On Combining Clusterwise Linear Regression and K-Means with Automatic Weighting of the Explanatory Variables
	1 Introduction
	2 Clusterwise Linear Regression and K-Means with Automated Weighting of the Explanatory Variables
	2.1 WCLR Method

	3 Experimental Analysis
	3.1 Benchmark Datasets
	3.2 Hyper-Parameters Setting
	3.3 Assignment Criterion
	3.4 Performance Measure
	3.5 Model Selection
	3.6 Model Assessment

	4 Conclusion
	References

	PSO-RBFNN: A PSO-Based Clustering Approach for RBFNN Design to Classify Disease Data
	1 Introduction
	1.1 Radial Basis Function Neural Network

	2 Proposed Methodology
	2.1 PSO Preliminaries
	2.2 Fitness Function
	2.3 PSO-Based Clustering

	3 Experimental Results and Discussion
	3.1 A Discussion

	4 Conclusion and Future Work
	References

	Clustering
	Modularity-Driven Kernel k-means for Community Detection
	1 Introduction
	2 Background and Notation
	3 Methodology
	3.1 Kernel k-means Coupled with Modularity Criterion
	3.2 Louvain Method
	3.3 Evaluation Methods

	4 Results and Discussion
	5 Conclusion and Future Work
	References

	Measuring Clustering Model Complexity
	1 Introduction
	2 Previous Work on Clustering Complexity
	3 Approximated Spectral Clustering
	4 Measuring the Clustering Capacity of ASC
	4.1 Role of c
	4.2 Role of w
	4.3 Spectral Measures of Clustering Model Capacity

	5 Experiments
	5.1 Datasets
	5.2 Results on Toy Data
	5.3 Results on Banknote Classification
	5.4 Discussion and Conclusion

	References

	GNMF Revisited: Joint Robust k-NN Graph and Reconstruction-Based Graph Regularization for Image Clustering
	1 Introduction
	2 Robust k-NN Graph
	3 Joint Reconstruction-Based Graph Regularization and Robust k-NN Graph
	4 Experiments
	4.1 Case Study
	4.2 Image Clustering

	5 Conclusion and Discussion
	References

	Two Staged Fuzzy SVM Algorithm and Beta-Elliptic Model for Online Arabic Handwriting Recognition
	1 Introduction
	2 Beta-Elliptic Modeling
	2.1 Handwriting Trajectory Segmentation
	2.2 Velocity Profile Modeling
	2.3 Trajectory Modeling

	3 Framework for Online Arabic Handwriting Recognition
	3.1 Data Processing and Script Segmentation
	3.2 Features Extraction
	3.3 Pre-classfication Stage
	3.4 Word Recognition Process

	4 Experiments and Results
	5 Conclusions and Future Works
	References

	Evaluating the Compression Efficiency of the Filters in Convolutional Neural Networks
	1 Introduction
	2 Related Work
	2.1 Convolutional Neural Networks
	2.2 CNN with Low-Rank Approximation

	3 Compression of the Filters
	3.1 Singular Value Decomposition
	3.2 Low-Rank Approximation Using SVD
	3.3 Compressing Filters in CNNs
	3.4 Compression Efficiency

	4 Experiments
	4.1 CNN Model
	4.2 Approximation Error and Computational Complexity

	5 Conclusions and Future Work
	References

	Dynamic Feature Selection Based on Clustering Algorithm and Individual Similarity
	1 Introduction
	2 Related Work
	3 The Proposed Method
	4 Methods and Materials
	5 Results
	5.1 An Analysis of the Subsets Size
	5.2 Comparative Analysis: Classical Methods

	6 Final Remarks
	References

	Learning from Data Streams and Time Series
	Dialogue-Based Neural Learning to Estimate the Sentiment of a Next Upcoming Utterance
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Datasets
	3.2 Model
	3.3 Experiments and Results

	4 Conclusion and Future Work
	References

	Solar Power Forecasting Using Pattern Sequences
	Abstract
	1 Introduction
	2 Data and Data Preprocessing
	3 Pattern Sequence Forecasting Methods
	4 Methods Used for Comparison
	5 Experiment Setup
	6 Results and Discussion
	7 Conclusion
	References

	A New Methodology to Exploit Predictive Power in (Open, High, Low, Close) Data
	1 Introduction
	2 Background
	2.1 Literature Review
	2.2 A Mid-Price Definition and Motivation
	2.3 Machine Learning Models Used
	2.4 Performance Metrics

	3 Methodology
	3.1 OHLC Factor Mining
	3.2 Mid-Price Directional Prediction

	4 Results
	4.1 Baseline Performance: Use of Close and OHLC Lags as Inputs
	4.2 Use of Mined OHLC Factors as Inputs

	5 Discussion
	References

	Recurrent Dynamical Projection for Time Series-Based Fraud Detection
	1 Introduction
	2 Methods
	2.1 Recurrent Dynamical Projection
	2.2 Clustering and Normalization

	3 Experiments
	3.1 Datasets
	3.2 Settings and Results

	4 Conclusion
	References

	Transfer Information Energy: A Quantitative Causality Indicator Between Time Series
	1 Introduction
	2 Related Work: TE for Financial Time-Series
	3 Transfer Information Energy
	4 Transfer Energy Between Financial Time Series
	5 Conclusions
	References

	Improving Our Understanding of the Behavior of Bees Through Anomaly Detection Techniques
	1 Introduction
	2 Methodology
	2.1 Data Collection
	2.2 Modeling

	3 Results
	3.1 Discussion

	4 Conclusion and Suggestion for Future Work
	References

	Applying Bidirectional Long Short-Term Memories (BLSTM) to Performance Data in Air Traffic Management for System Identification
	1 Introduction
	1.1 Ease of Use
	1.2 Mathematical Background

	2 Machine Learning Approach
	2.1 Long Short-Term Memory (LSTM)
	2.2 Bidirectional LSTM (BLSTM)

	3 Application
	3.1 Experimental Setup
	3.2 Data Preparation
	3.3 Simulation Results

	4 Conclusion
	References

	Image Processing and Medical Applications
	A Novel Image Tag Completion Method Based on Convolutional Neural Transformation
	1 Introduction
	2 Proposed Method
	3 Experiments
	4 Conclusion and Future Works
	References

	Reducing Unknown Unknowns with Guidance in Image Caption
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Proposed Method
	5 Experiments
	6 Conclusions
	References

	A Novel Method for Ship Detection and Classification on Remote Sensing Images
	Abstract
	1 Introduction
	2 Related Work
	3 Ship Candidates Extraction
	4 Ship Detection by CNN
	5 Ship Classification by Residual Learning Network
	5.1 Residual Learning Network
	5.2 Optimization of the Residual Learning Network
	5.3 Ship Classifier Using Residual Learning Network

	6 Experiments
	7 Conclusion
	Acknowledgments
	References

	Single Image Super-Resolution by Learned Double Sparsity Dictionaries Combining Bootstrapping Method
	Abstract
	1 Introduction
	2 Sparse Representation Model and Self-learning Based SISR
	2.1 Sparse Representation Model-Based SISR
	2.2 Bootstrapping Method

	3 Proposed Method
	3.1 Preparation of Sample Images
	3.2 Bootstrapping and Interpolation
	3.3 Gather Data and Dictionary Learning
	3.4 Sparse Coding and Reconstruction

	4 Experimental Results
	4.1 Training Phase
	4.2 Testing Phase

	5 Conclusion and Discussion
	References

	Attention Focused Spatial Pyramid Pooling for Boxless Action Recognition in Still Images
	1 Introduction
	2 Related Work
	3 Attention Focused SPP Network
	3.1 The Spatial Pyramid Pooling Layer
	3.2 The Soft Attention Layer
	3.3 Learning

	4 Experimental Results
	4.1 PASCAL VOC 2012 Actions Dataset
	4.2 Stanford-40 Dataset

	5 Conclusion
	References

	The Impact of Dataset Complexity on Transfer Learning over Convolutional Neural Networks
	1 Introduction
	1.1 Related Works

	2 Proposed Methodology
	2.1 Networks Adjustments
	2.2 Image Datasets
	2.3 Transfer Learning

	3 Results and Discussion
	4 Conclusion
	References

	Real-Time Face Detection Using Artificial Neural Networks
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Materials
	2.2 Face Detection
	2.3 Histograms of Oriented Gradients
	2.4 Classification

	3 Experimental Results
	3.1 ANN Training
	3.2 Validation of the Classification Module
	3.3 Validation of the Complete System

	4 Conclusions and Future Work
	Acknowledgment
	References

	On the Performance of Classic and Deep Neural Models in Image Recognition
	1 Introduction
	2 Classic Neural Networks for Face and Object Recognition Problems
	3 Deep Neural Networks in Object and Face Recognition
	4 Experiments and Results
	5 Conclusions
	References

	Winograd Algorithm for 3D Convolution Neural Networks
	1 Introduction
	2 Three-Dimensional Winograd Algorithm
	2.1 Winograd Algorithm
	2.2 Nesting Technique for F(22,33) and F(222, 333)

	3 3D Convolution Network
	3.1 Winograd Algorithm for 3D Convolution Network
	3.2 Algorithmic Complexity Analysis

	4 Experiments
	4.1 Implement Convolution Layer with Matrices Multiplication
	4.2 Evaluation of the 3D CNN Model

	5 Conclusion
	References

	Core Sampling Framework for Pixel Classification
	1 Introduction
	2 Related Work
	3 Core Sampling Framework for Pixel Classification
	3.1 Preprocessing and Data Augmentation
	3.2 Core Sample: Intermediate Data Representation
	3.3 Pixel Level Prediction Using Deep Belief Network

	4 Experimental Results and Discussion
	5 Conclusions
	References

	Biomedical Data Augmentation Using Generative Adversarial Neural Networks
	1 Introduction
	2 Proposed Approach
	2.1 Generative Adversarial Neural Networks
	2.2 Laplacian Pyramid of Adversarial Networks
	2.3 Generating MRI Slices of the Brain

	3 Related Works
	4 Experimental Analysis
	4.1 Dataset Description
	4.2 Training Phase
	4.3 Evaluation
	4.4 Quantitative Image Quality Assessment
	4.5 Human Evaluation of Generated Images

	5 Conclusion
	References

	Detection of Diabetic Retinopathy Based on a Convolutional Neural Network Using Retinal Fundus Images
	1 Introduction
	2 Preprocesssing
	3 Neural Networks
	4 Results
	5 Conclusions and Future Work
	References

	A Comparison of Machine Learning Approaches for Classifying Multiple Sclerosis Courses Using MRSI and Brain Segmentations
	1 Introduction
	2 Materials and Methods
	2.1 Patient Population
	2.2 Magnetic Resonance Data Acquisition and Processing
	2.3 Classification Tasks and Performance Measures
	2.4 Feature Extraction Models
	2.5 Classifiers

	3 Results and Discussion
	4 Conclusions
	References

	Advances in Machine Learning
	Parallel-Pathway Generator for Generative Adversarial Networks to Generate High-Resolution Natural Images
	1 Introduction
	2 Related Work
	3 Parallel-Pathway Generator Network
	3.1 Preliminaries of GANs
	3.2 Structure of Our Network

	4 Image Generation
	4.1 Generation of Human Faces with Various Backgrounds
	4.2 Generation of Road Images

	5 Conclusion
	References

	Using Echo State Networks for Cryptography
	1 Introduction
	2 Echo State Networks as Memories
	3 ESN-Based Encryption and Decryption
	3.1 Representing Data
	3.2 Memorizing Data
	3.3 Recalling Data
	3.4 Working with ``Data Chunks''

	4 Experiments and Security Analysis
	5 Conclusion
	References

	Two Alternative Criteria for a Split-Merge MCMC on Dirichlet Process Mixture Models
	1 Introduction
	2 Problem Settings
	3 Related Works
	4 Proposed Algorithm
	4.1 Concrete Example (Diagonal Gaussian Case)

	5 Experiment
	5.1 Experiment 1
	5.2 Experiment 2

	6 Discussion
	7 Conclusion
	References

	FP-MRBP: Fine-grained Parallel MapReduce Back Propagation Algorithm
	1 Introduction
	2 BPNN
	3 FP-MRBP Algorithm
	3.1 Fine-grained Parallel Strategy
	3.2 Parallel Implementation Using MapReduce on Hadoop Cluster

	4 Experiments
	4.1 Scalability of Parallel Structure Size
	4.2 Scalability of Computing Node Size
	4.3 Scalability of Pattern Size
	4.4 Scalability of Network Size

	5 Conclusion
	References

	IQNN: Training Quantized Neural Networks with Iterative Optimizations
	1 Introduction
	2 Quantized Neural Networks
	3 Iterative Quantization of Neural Network
	3.1 Quantization as Optimization
	3.2 Solution by Iterative Algorithm
	3.3 Distribution of Weights and Initialization

	4 Experiments
	4.1 Iterative Quantization of Weights of a Layer
	4.2 Iterative Quantization for Training Neural Networks

	5 Related Work
	6 Conclusion
	References

	Compressing Neural Networks by Applying Frequent Item-Set Mining
	1 Introduction
	2 Related Work
	3 Our Proposed Methods
	3.1 Frequent Item-Set Mining Task
	3.2 Frequent Item-Set Mining in Neural Networks
	3.3 FIMP Algorithm

	4 Experiment
	4.1 Baseline Models
	4.2 Deep Antoencoder
	4.3 Fully Connected Neural Networks
	4.4 Convolutional Neural Networks
	4.5 Recurrent Neural Networks

	5 Discussion and Conclusion
	References

	Applying the Heavy-Tailed Kernel to the Gaussian Process Regression for Modeling Point of Sale Data
	1 Introduction
	2 Gaussian Process
	3 Heavy-Tailed Kernel
	3.1 Optimization
	3.2 EM Algorithm for Student's T Kernel

	4 Bayesian Regression
	5 Experiment
	5.1 Data Processing and Analysis
	5.2 Rank of Results

	6 Conclusion and Future Work
	References

	Chaotic Associative Memory with Adaptive Scaling Factor
	1 Introduction
	2 Chaotic Associative Memory with Variable Scaling Factor
	2.1 Structure
	2.2 Learning Process
	2.3 Recall Process

	3 Chaotic Associative Memory with Adaptive Scaling Factor
	3.1 Structure
	3.2 Learning Process
	3.3 Recall Process

	4 Computer Experiment Results
	4.1 Comparison of Dynamic Association Ability with Proposed Model and Conventional Model
	4.2 Dynamic Association Ability of Proposed Model Composed of 700 and 800 Neurons

	5 Conclusions
	References

	EvoCNN: Evolving Deep Convolutional Neural Networks Using Backpropagation-Assisted Mutations
	Stage Dependent Ensemble Deep Learning for Dots-and-Boxes Game
	References

	Conditional Time Series Forecasting with Convolutional Neural Networks
	References

	A Convolutional Neural Network BasedApproach for Stock Forecasting
	The All-Convolutional Neural Network with Recurrent Architecture for Object Recognition
	Reference

	Body Measurement and Weight Estimation for Live Yaks Using Binocular Camera and Convolutional Neural Network
	References

	A Modified Resilient Back-Propagation Algorithm in CNN for Optimized Learning of Visual Recognition Problems
	References

	Learning in Action Game by Profit Sharing Using Convolutional Neural Network
	References

	Deep Learning for Adaptive Playing Strength in Computer Games
	Reference

	Benchmarking Reinforcement Learning Algorithms for the Operation of a Multi-carrier Energy System
	References

	Differentiable Oscillators in Recurrent Neural Networks for Gradient-Based Sequence Modeling
	References

	Empirical Study of Effect of Dropout in Online Learning
	References

	Context Dependent Input Weight Selection for Regression Extreme Learning Machines
	References

	Solution of Multi-parameter Inverse Problem by Adaptive Methods: Efficiency of Dividing the Problem Space
	References

	Hopfield Auto-Associative Memory Network for Content-Based Text-Retrieval
	References

	From Deep Multi-lingual Graph Representation Learning to History Understanding
	References

	Adaptive Construction of Hierarchical Neural Network Classifiers: New Modification of the Algorithm
	Reference

	Automobile Insurance Claim Prediction Using Distributed Driving Behaviour Data on Smartphones
	References

	A Fault-Tolerant Indoor Localization System with Recurrent Neural Networks
	Reference

	SNN Model for Highly Energy and Area Efficient On-Chip Classification
	References

	A Highly Efficient Performance and Robustness Evaluation Method for a SNN Based Recognition Algorithm
	References

	Metric Entropy and Rademacher Complexity of Margin Multi-category Classifiers
	References

	A Fuzzy Clustering Approach to Non-stationary Data Streams Learning
	References

	Data Stream Classification by Adaptive Semi-supervised Fuzzy Clustering
	References

	The Discovery of the Relationship on Stock Transaction Data
	Reference

	Confirmation of the Effect of Simultaneous Time Series Prediction with Multiple Horizons at the Example of Electron Daily Fluence in Near-Earth Space
	References

	A Neural Attention Based Approach for Clickstream Mining
	Classification of Quantitative Light-Induced Fluorescence Images Using Convolutional Neural Network
	References

	Deep Residual Hashing Network for Image Retrieval
	References

	Model Evaluation Improvements for Multiclass Classification in Diagnosis Prediction
	Reference

	MMT: A Multimodal Translator for Image Captioning
	A Multi-Channel and Multi-Scale Convolutional Neural Network for Hand Posture Recognition
	References

	Semi-supervised Model for Feature Extraction and Classification of Fashion Images
	References

	Identification of Differential Flat Systems with Artifical Neural Networks
	References

	Adaptive Weighted Multiclass Linear Discriminant Analysis
	References

	Efficient Graph Construction Through Constrained Data Self-Representativeness
	Author Index

