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Abstract. Finding good principles to choose the actions of artificial
agents like robots in the most beneficial way to optimize their control
of the environment is very much in the focus of current research in the
field of intelligent systems. Especially in reinforcement learning, where
the agent learns through the direct interaction with the environment,
a good choice of actions is essential. We propose a new approach that
allows a predictive ranking of different action sets with regard to their
influence on the learning performance of an artificial agent. Our approach
is based on a measure of control that utilizes the concept of mutual infor-
mation. To evaluate this approach, we investigate its prediction of the
effectiveness of different sets of actions in “mediated interaction” scenar-
ios. Our results indicate that the mutual information-based measure can
yield useful predictions on the aptitude of action sets for the learning
process.

Keywords: Reinforcement learning · Environment control · Q-learning ·
Mutual information · Mediated interaction learning · Physics-based simu-
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1 Introduction

One of the bigger visions in the field of intelligent systems is to endow an arti-
ficial agent with the ability to solve human-level problems. To deal with such
complicated tasks, the agent has to explore the learning domain autonomously
by performing actions that affect the environment directly and learn from these
effects. This important aspect is a distinct focus of reinforcement learning where
the agent learns through the direct interaction with the environment [11]. To
explore the terrain, the agent executes actions which alter its surroundings and
lead to a feedback how much the chosen action benefits the agent in its current
situation with respect to the primary learning goal. Therefore, actions play a cru-
cial role in reinforcement learning as they determine how much control the agent
has over the environment and by thus influence the effectiveness of exploration
and learning.

This motivates the following question: are there general features that distin-
guish action sets that facilitate exploration, learning and control (“good” action
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sets) from action sets for which exploration, learning and control is more diffi-
cult? Obviously, criteria to recognize such action sets would be of interest for
designing interactive learning algorithms that are fast and efficient.

In the present paper, we consider this question for choosing a good action
set for a reinforcement learning agent that has to learn a challenging “mediated
interaction” task that can only be solved when the agent recognizes to use a
“mediator object” as a tool to reach its goal. Using a simulation study with
simulated physics, we present results that indicate that a simple, entropy-based
measure can rank different possible action sets in a way that correlates well with
the learning performance in the reinforcement learning task.

By defining actions relative to a coordinate system, we connect the choice
of an action set with the choice of a coordinate system. In this way, we can
use our approach also to rank different options for choosing a coordinate system
that is “favorable” for the learning task at hand. Our findings are consistent
with the expectation that “good” coordinate systems should be those that make
uncertainty-reducing actions easy to express. For the task at hand, this turns out
to be better achieved with “relational” instead of “absolute” coordinate choices.

In the next section we briefly anchor our notation to define action sets for a
reinforcement learning agent and then describe our measure. Section 3 presents
the learning domain, Sect. 4 reports the experiments and results and Sect. 5
provides the conclusion.

2 Comparing Action Sets: Mutual Information as a
Measure of Control

The concept to maximize the information over the environment to gain more
control is studied in various fields [5,12]. In our approach, the mutual information
is employed to compare different action sets A, defined by different sensorimotor
coordinate systems that determine the agents motions. The ranking order is then
used as a criteria for predicting the agents learning performance while using the
respective action set.

Reinforcement learning is a class of machine learning algorithms for solv-
ing sequential decision making problems through maximization of a cumulative
scalar reward signal [11]. It can be defined by the standard formulation of a
Markov decision process (S,A, PA,R,S0), where S denotes the set of states
and A the set of admissible actions. PA is the set of transition matrices, one for
each action a ∈ A with matrix elements Pa

ss′ : S ×A −→ S ′ specifying the prob-
ability to end up in state s′ after taking action a when in state s. The probability
to execute action a in state s can be defined as Pa

s . Finally, R : S × A −→ R is
a scalar valued reward function and S0 ⊆ S is the set of starting states.

If the agent induces a state transition from state s ∈ S, the final state
s′ is within a subset of possible states S ′ ⊆ S. This can be described by the
uncontrolled probability Pss′ , which fulfills Pss′ =

∑
a Pa

s Pa
ss′ . To measure the

uncertainty about the next state, the entropy [6,9] Hs(S ′) of the current state
s can be computed.
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Hs(S ′) = −
∑

s′∈S′
Pss′ ln (Pss′) (1)

By introducing surprise [2] (or self-information) which is defined as the negative
logarithm of the probability, i.e. − ln(Pss′), the entropy can be interpreted as
the average surprise to end up in one of the possible states s′ that can be reached
within one transition step. Thus, a small entropy indicates a better prediction
of s′ while a large entropy implies a high uncertainty of the next state.

Additionally the conditional entropy [6] Hs(S ′|A) of state s can be computed.
It measures the average surprise of state s to end up in a state s′, conditioned
on the actions a ∈ A, resulting in

Hs(S ′|A) = −
∑

a∈A
Pa
s

[
∑

s′∈S′
Pa
ss′ ln (Pa

ss′)

]

. (2)

The rate of influence enforced by the set of actions A on the uncontrolled tran-
sitions Pss′ of a state s is thus given by the difference of the state’s entropy (1)
and the conditional entropy (2) leading to

Ms(S ′,A) = Hs(S ′) − Hs(S ′|A). (3)

Equation (3) is known as the mutual information [6,9]. It measures the reduction
of uncertainty of the final states s′ ∈ S ′ due to the control of action set A. The
ranking order of the expected mutual information, which is (3) averaged over all
available states s ∈ S,

M(S ′,A) = Es∈S [Ms(S ′,A)] (4)

turns out to be highly correlated with the learning performance of the reinforce-
ment learning agent. Therefore, we propose to use the action set which leads to
the lowest uncertainty of events within the domain and to select the coordinate
system according to A∗ = argmaxAM(S ′,A).

This choice has the interpretation that the best coordinate system maximizes
the expected mutual information (4).

3 Learning Domain

To compare different action sets using the entropy-based measure of control,
we employ a 2D simulation world in which an agent has to solve a mediated
interaction task. The world is illustrated in Fig. 1 and consists of an agent, a
disc-shaped “target-object” and an L-shaped “mediator-object” (“tool”). The
simulated learning domain further utilizes the open source Box2D physics engine
[1] for interaction and collision handling.

The task of the agent is to bring the target-object into the shaded circle in
the center (“goal area”). To this end, the agent can at each time step “pick”
the target-object or the mediator-object and exert a (discretized) force/torque
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(a) Illustration of the used
sensory information

(b) An “extension-of-
reach” tool-using task

Fig. 1. The simulation world

at the chosen picking location. Picking locations (indicated by black dots in
Fig. 1a) are discretized and fixed at the objects: the target-object offers a single
picking location at its center, the mediator-object offers three picking locations,
two at its ends and one in the middle. Furthermore, there is an additional pick-
ing location in the center of the domain which deals as an unbiased starting
location for the agent and is further integrated to be an absorbing state that
increases the stability of applied learning algorithms. However, the agent can
only reach picking locations that lie inside the circular area. Therefore, when
the target-object is outside the circle, the agent must first “discover” that the
mediator-object can be used to extend the agent’s reach beyond the circle bound-
ary. We assume that the agent has a simple relational perception of the world
state consisting of the six scalar distances between the three picking locations on
the mediator-object and the center of the target-object, and the three distances
of the picking locations and the domain’s origin. They are visualized by the dot-
ted lines in Fig. 1a. Additionally, the sensory representation encodes the agent’s
current picking choice. Learning occurs in discrete episodes, each episode being
limited to 100 interaction-steps. If the agent is able to navigate the target object
in the goal area, it receives a fixed reward of R = 10. The learning is handled
by an ε-greedy Q-Learning algorithm with eligibility traces and linear function
approximation [13]. To make the learned algorithm more stable, artificial noise is
integrated into the system, that makes the agent execute a random action with a
probability of 0.1. For performing and evaluating the learning process, the RLPy
learning framework [3] is used. To adapt it to the specific needs of this work, it
is extended by the presented learning domain and some additional functions.

4 Experiments

Six different coordinate systems (Fig. 2) were designed that exploit the different
salient points within the learning domain (Fig. 1a). They are utilized by the agent
as action sets Ai that define in which way the objects can be moved through the
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(a) World System (b) Centroid-
Fixpoint System

(c) Fixpoint-Fixpoint
System

(d) Disc-Hook-Goal
System

(e) Disc-Hook-
Fixpoint System

(f) Goal-Hook-
Fixpoint System

Fig. 2. Illustration of the different coordinate systems, representing the different action
sets Ai

environment. All coordinate systems, except Fig. 2a, are not fixed in the world
but alter according to the objects positions.

The influence of each of these coordinate systems Ai – more precisely, its
associated action set, as described in Sect. 2 – on the agent’s learning perfor-
mance is now compared with their ranking according to the mutual information
measure M(S,Ai), introduced in (4). Estimating entropies from finite samples
of probability densities can be a challenging problem and has been discussed
in many works [8,10]. We here adopt the most basic approach to estimate the
entropy [10]. The probability densities Pa

ss′ and Pa
s used to compute M(S,Ai)

are approximated by tessellating the agent’s state space into N = 10·103 Voronoi
cells. In this space 200 · 103 tuples (s, a, s′) were counted while the agent was
performing a random walk. (1), (2) are then used to estimate the mutual infor-
mation. For each coordinate system the results are averaged over 20 runs of the
experiment while the standard deviation of the mean is used as the estimate of
the error.

To this end, we consider three exemplary learning scenarios:

Single-Object Interaction Scenario. At the beginning of a learning episode,
the positions of the mediator-object and the target-object are sampled from
the uniform distribution over the simulation world inside the agent’s interaction
range (e.g. Fig. 1a). The agent now has to learn how to move the target-object
into the goal area. After successfully solving the task instance or exceeding the
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limit of possible interaction-steps per episode, the task starts anew with different
initial object positions that are again within the agents interaction range.

Mediated Interaction Scenario. This “extension-of-reach” scenario is struc-
tured like the first one, but the target-object is distributed outside the border
of the agent’s interaction range (e.g. Figure 1b). Now it is only possible for the
agent to solve this task by learning to exploit the mediator-object as a tool to
pull the target-object inside the agent’s interaction range.

Mixed Interaction Scenario. The last scenario is a mixture of the Single-
Object-Interaction and Mediated-Interaction task, where one of the men-
tioned scenarios is chosen at the beginning of each episode with equal probability.

To get a preferable general measure of the learning performance for every
Ai, each of them is utilized to learn the three presented learning scenarios. All
scenarios were learned over 500 ·103 steps. We evaluate the learning performance
for two kinds of linear function approximators, representing the sensor vector of
the learning domain. The first, more efficient real valued representation is based
on Gaussian radial basis functions (RBF) [4,7]. The second is a simpler binary
fixed sparse representation (FSR) [4].

For evaluating the efficiency of the learning processes, we depict the number
of learning steps as a function of the average reward per episode 〈R〉 that is
received by the agent. To compute 〈R〉, the learning performance under the
current policy was evaluated over 100 episodes for each of the 25 evaluated data
points. The results were then averaged over 20 distinct learning runs, where the
standard deviation of the mean is used as the error.

As an example, Fig. 3 shows the agent’s learning performance of the “Medi-
ated Interaction Scenario” for the two used state representations. An optimal
performance for solving the task is reached at 〈R〉 = 10. In both plots, the
learning performance is highly varying for each used coordinate system. Half of
the coordinate systems achieve completely different results within the learning
process for the two used state representations. Nevertheless there are 3 coordi-
nate systems (see Fig. 2a, c and d) that lead to similar results. These coordinate
systems include the two best ones and one with poor performance.

To evaluate the performance that takes all learned scenarios and state rep-
resentations under consideration, the global reward Rglobal is defined as the
sum over all 〈R〉, evaluated for the coordinate system Ai. Table 1 now ranks
the coordinate systems according to Rglobal and additionally lists the respective
expected mutual information of all available states M(S,Ai). Although the two
rankings are not exactly aligning, the coordinate system with the best and worst
global reward can be clearly identified by using the mutual information. This
two systems are the ones which performs best and worst in “all” evaluated sce-
narios. Three of the four not aligning frames are exactly the ones that behave
diverse for the different kinds of scenarios and representations, as e.g. illustrated
in Fig. 3. A further mentionable point is that the mutual information of similar
constructed coordinate systems like Fig. 2b and c is also similar. The ranking is
reliable within the facility of predicting the best action set. An efficient ranking
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Fig. 3. Time course of the agent’s average reward 〈R〉 of solving the “Mediated Inter-
action Scenario” using the different coordinate systems shown in Fig. 2. In the left
plot, the sensor vector is represented by binary features while in the right plot the
real-valued representation, based on RBFs, is used during learning.

Table 1. The ranking of the different movement frames according to Rglobal. The
movement frames where the ranking of M(S,Ai) differs from the ranking of Rglobal

are the ones between the “Disc-Hook-Goal System” and the “World System”.

Rglobal M(S,Ai) Coord. Systems Ai - Figure

1183.25 ± 36.3358 1.8147 ± 0.0020 Disc-Hook-Goal System - 2d

650.54 ± 38.2204 1.7786 ± 0.0028 Disc-Hook-Fixpoint System - 2e

547.015 ± 50.0568 1.7581 ± 0.0029 Fixpoint-Fixpoint System - 2c

471.995 ± 41.7003 1.8038 ± 0.0015 Goal-Hook-Fixpoint System - 2f

235.925 ± 23.3319 1.7645 ± 0.0032 Centroid-Fixpoint System - 2b

135.96 ± 9.23605 1.7364 ± 0.0028 World System - 2a

of the non-optimal sets might be hindered by the much larger space of solutions.
It is further undermined by the strong dependence of the learning performance
on the chosen set of parameters used by the learning algorithm. However, the
ranking still provides some orientation for the non-optimal candidates.

5 Conclusion

In this work, we investigate the impact of action sets arising from different sen-
sorimotor coordinate frames on the efficiency of learning mediated-interaction
scenarios. Therefore the learning performance of different action sets were eval-
uated on solving different single-object and multi-object interaction tasks while
using reinforcement learning methods. Additionally, the mutual information was
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computed for each action set which measures the reduction of uncertainty of the
agent’s next state due to the control of the used action set. After the empirical
demonstration that different action sets lead to different learning performances,
their performance ranking is compared with the ranking of their mutual infor-
mation within the environment.

We find that the concept of mutual information, conditioned on the chosen
action set, is well suited to predict the ranking of the general learning per-
formance. Although these two rankings are not exactly aligning to each other,
there are lots of similarities. In addition, the worst and the best action set can
be clearly identified. Based on these findings, further investigations in this mat-
ter may lead to a better understanding of the relationship between the mutual
information and the agent-environment interaction which can be used to guide
the choice of actions within difficult learning scenarios.
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