
Accelerating Training of Deep Neural Networks
via Sparse Edge Processing

Sourya Dey(B), Yinan Shao, Keith M. Chugg, and Peter A. Beerel

Ming Hsieh Department of Electrical Engineering, University of Southern California,
Los Angeles, CA 90089, USA

{souryade,yinansha,chugg,pabeerel}@usc.edu

Abstract. We propose a reconfigurable hardware architecture for deep
neural networks (DNNs) capable of online training and inference, which
uses algorithmically pre-determined, structured sparsity to significantly
lower memory and computational requirements. This novel architecture
introduces the notion of edge-processing to provide flexibility and com-
bines junction pipelining and operational parallelization to speed up
training. The overall effect is to reduce network complexity by factors
up to 30x and training time by up to 35x relative to GPUs, while main-
taining high fidelity of inference results. This has the potential to enable
extensive parameter searches and development of the largely unexplored
theoretical foundation of DNNs. The architecture automatically adapts
itself to different network sizes given available hardware resources. As
proof of concept, we show results obtained for different bit widths.

Keywords: Machine learning · Neural networks · Deep neural net-
works · Sparsity · Online learning · Training acceleration · Hardware
optimizations · Pipelining · Edge processing · Handwriting recognition

1 Introduction

DNNs in machine learning systems are critical drivers of new technologies such
as natural language processing, autonomous vehicles, and speech recognition.
Modern DNNs and the corresponding training datasets are gigantic with millions
of parameters [14], which makes training a painfully slow and memory-consuming
experimental process. For example, one of the winning entries in the ImageNet
Challenge 2014 takes 2–3 weeks to train on 4 GPUs [16]. As a result, despite using
costly cloud computation resources, training is often forced to exclude large scale
optimizations over model structure and hyperparameters. This scenario severely
hampers the advancement of research into the limited theoretical understanding
of DNNs and, unfortunately, empirical optimizations remain as the only option.

Recent research into hardware architectures for DNNs has primarily focused
on inference only, while performing training offline [2,4,10,13,15,19]. Unfor-
tunately, this precludes reconfigurability and results in a network incapable of
dynamically adapting itself to new patterns in data, which severely limits its

c© Springer International Publishing AG 2017
A. Lintas et al. (Eds.): ICANN 2017, Part I, LNCS 10613, pp. 273–280, 2017.
https://doi.org/10.1007/978-3-319-68600-4_32



274 S. Dey et al.

usability for pertinent real-world applications such as stock price prediction and
spam filtering. Moreover, offline-only learning exacerbates the problem of slow
DNN research and ultimately leads to lack of transparency at a time when pre-
cious little is understood about the working of DNNs.

There has been limited research into hardware architectures to support online
training, such as [1,8,9]. However, due to the space-hungry nature of DNNs, these
works have only managed to fit small networks on their prototypes. While other
works [3,10–12,20] have proposed memory-efficient solutions for inference, none
of them have addressed the cumbersome problem of online training. Therefore,
a hardware architecture supporting online training and reconfiguration of large
networks would be of great value for exploring a larger set of models for both
empirical optimizations and enhanced scientific understanding of DNNs.

In this work, we propose a novel hardware architecture for accelerating train-
ing and inference of DNNs on FPGAs. Our key contributions are:

1. An architecture designed for FPGA implementation that can perform online
training of large-scale DNNs.

2. A pre-defined, structured form of sparsity that starts off with an algorithmi-
cally deterministic sparse network from the very outset.

3. Edge-based processing – a technique that decouples the available hardware
resources from the size and complexity of the network, thereby leading to
tremendous flexibility and network reconfigurability.

4. Hardware-based optimizations such as operational parallelization and junc-
tion pipelining, which lead to large speedups in training.

The paper is organized as follows. Section 2 analyzes our proposed form of
sparsity. Section 3 discusses our proposed technique of edge-based processing and
interleaving, along with hardware optimizations. Then Sect. 4 presents hardware
results and Sect. 5 concludes the paper.

2 Sparsity

The need for sparsity, or reducing the number of parameters in a network, stems
from the fact that both the memory footprint and computational complexity of
modern DNNs is enormous. For example, the well-studied DNN AlexNet [14]
has a weight size of 234 MB and requires 635 million arithmetic operations
only for feedforward processing [19]. Convolutional layers are sparse, but locally
connected, i.e. the spatial span of neurons in a layer connecting to a neuron
in the next layer is small. As a result, such layers alone are not suitable for
performing inference and therefore need to be followed by fully-connected (FC)
layers [14,16,18], which account for 95% of the connections in the network [19].
However, FC layers are typically over-parameterized [6,7] and tend to overfit to
the training data, which results in inferior performance on test data. Dropout
(deletion) of random neurons was proposed by [17], but incurs the disadvantage
of having to train multiple differently configured networks, which are finally
combined to regain the original full size network. Hashnet [3] randomly forced



Accelerating Training of DNNs via Sparse Edge Processing 275

the same value on collections of weights, but acknowledged that “a significant
number of nodes [get] disconnected from neighboring layers.” Other sparsifying
techniques such as pruning and quantization [11,12,20] first train the complete
network, and then perform further computations to delete parameters, which
increase the training time. In general, all of these architectures deal with the
complete non-sparsified FC layers at some point of time during their usage cycle
and therefore, fail to permanently solve the memory and complexity bottlenecks
of DNNs.

Contrary to existing works, we propose a class of DNNs with pre-specified
sparsity, implying that from the very beginning, neurons in a layer connect
to only a subset of the neurons in the next layer. This means that the origi-
nal network has a lower memory and computational complexity to begin with,
and there are no additional computations to change the network structure. The
degrees of fan-out and fan-in (number of connections to the next layer and from
the previous layer, respectively) of each neuron are user-specified, and then the
connections are algorithmically assigned. This ensures that no particular neu-
ron gets disconnected, while the algorithm provides good spatial spread ensuring
that activations from early layers can impact the output of the last layer.

As an example, consider MNIST digit classification over 5 epochs of training
using a (784, 112, 10) network, i.e. there are 784 input, 112 hidden and 10
output neurons. If it is FC, the total number of weights is 88,928 (which is
already less than other works such as [5]). Now suppose we preset the fan-
out of the input and hidden neurons to 17 and 5, respectively. This leads to
13,888 total weights, implying that the overall network has 15% connectivity, or
85% sparsity. Figure 1 compares the performance of sparse networks, keeping all
hyperparameters the same except for adjusting the learning rate to be inversely
proportional to connectivity, which compensates for parameter reduction. Notice
that 15% connectivity gives better performance than the original FC network.
Moreover, 3% connectivity gives > 91% accuracy in 5 epochs, which is within
4% of the FC case. This leads us to believe that the memory and processor

Fig. 1. Classification performance of a (784, 112, 10) network with varying connectivity
percentage, trained for 5 epochs on the MNIST dataset.



276 S. Dey et al.

requirements of FC layers in DNNs can be reduced by over 30x with minimal
impact on performance.

3 Edge Processing and Interleaving

A DNN is made up of layers of interconnected neurons and the junctions between
adjacent layers contain connections or edges, each having an associated weight
value. The 3 major operations in a network are: (a) feedforward (FF), which
primarily computes dot products between weights and the previous layer’s acti-
vation values; (b) backpropagation (BP), which computes dot products between
weights and the next layer’s delta values and then multiplies them with deriva-
tives of the previous layer’s activations; and (c) update (UP), which multiplies
delta values from the next layer with activation values from the previous layer to
compute updates to the weights. Notice that the edges feature in all 3 operations,
and this is where the motivation for our approach stems from.

We propose a DNN architecture which is processed from the point of view
of its edges (i.e., weights), instead of its neurons. Every junction has a degree
of parallelism (DoP), denoted as z, which is the number of edges processed in
parallel. All the weights in each junction are stored in a memory bank consisting
of z memories. All the activation, activation derivative and delta values of each
layer are also stored in separate memory banks of z memories each. The edges
coming into a junction from its preceding layer are interleaved, or permuted,
before getting connected to its succeeding layer. The interleaver algorithm is
deterministic and reconfigurable. It serves to ensure good spatial spread and
prevent regularity, thereby achieving a pseudo-random connection pattern. For
example, if 4 edges come out of the first input neuron of the (784, 112, 10)
network, they might connect to the 9th, 67th, 84th and 110th neuron in the
hidden layer.

Figure 2a depicts a memory bank as a checkerboard, where each column is
a memory. A single cycle of processing (say the nth) comprises accessing the
nth cell in each of the z weight memories. This implies reading all z values from
the same row (the nth), which we refer to as natural order access. Reading a
row implies accessing weights of edges connected to consecutive neurons in the
succeeding layer, since that’s how they are numbered. Figure 2b gives an example
where z is 6 and fan-in is 3. The interleaver determines which neurons in the
preceding layer are connected to those z edges. For ideal spatial spread, these
will be z different neurons. The interleaver algorithm is also designed to be clash-
free, i.e. it ensures that the activation values of these z preceding neurons are
stored in z different memories. Violating this condition leads to the same memory
needing to be accessed more than once in the same cycle, i.e. a clash, which
stalls processing. A consequence of clash-freedom and pseudo-random connection
pattern is that the activation memories are accessed in permuted order, as shown
in Fig. 2a, where there is only 1 shaded cell in each column.

Noting the significant data reuse between FF, BP and UP, we used oper-
ational parallelization to make all of them occur simultaneously. Since every



Accelerating Training of DNNs via Sparse Edge Processing 277

Fig. 2. (a): Natural order and permuted order access of memory banks. (b): reading
z = 6 weights (corresponding to 2 succeeding layer neurons) in each cycle. (c): junction
pipelining and operational parallelization in the whole network.

operation in a junction uses data generated by an adjacent junction or layer, we
designed a junction pipelining architecture where all the junctions execute all 3
operations simultaneously on different inputs from the training set. This achieves
a 3(L− 1) times speedup, where L is the total number of layers. The high level
view is shown in Fig. 2c. As an example, consider the (784, 112, 10) network.
When the second junction is doing FF on input n+1, it is also doing BP on the
previous input n which just finished FF, as well as updating (UP) its weights
from the finished BP results of input n − 1. Simultaneously, the first junction
is doing FF on the latest input n + 2, BP on input n − 1, and UP using the
BP results of input n− 2. Figure 3 shows the 3 simultaneous operations in more
detail inside a single junction. Notice that the memories associated with layer
parameters are both read from and written into during the same cycle. More-
over, the activation and its derivative memories need to store the FF results of
a particular input until it comes back to the same layer during BP. Hence these
memories are organized in queues. While this increases overall storage space,
the fraction is insignificant compared to the memory required for weights. This
problem is alleviated by using only 1 weight memory bank per junction for all
3 processes. Moreover, only 2 rows of this bank need to be accessed at a time,
which makes efficient memory management techniques possible.

A key contribution of our architecture is that z can be set to any value
depending on the area-speed tradeoff desired. z can be made small to process
a large network slowly using limited hardware. For powerful FPGAs, z can be
made large, which achieves tremendous increase in speed at the cost of a large
number of multipliers. z can also be individually adjusted for each junction
so that the number of clock cycles to process each junction is the same, which
ensures an always full pipeline and no stalls. Thus, the size and complexity of the
network is decoupled from the hardware resources available. Moreover, low values
of connectivity alleviate challenges with weight storage for very large DNNs.
Our architecture can be reconfigured to varying levels of fan-out and structured
sparsity, which is neither possible in other online learning architectures such as
[1,8,9], nor in architectures using forms of unstructured sparsity that suffer from



278 S. Dey et al.

Fig. 3. Operational parallelization in a single junction between layers k and k + 1,
showing natural and permuted order operations as solid and dashed lines, respectively.

the overhead of lookups and cache misses [18]. Thus, we achieve the ideal case of
one-size-fits-all – an architecture that can adapt to a large class of sparse DNNs.

As a concrete example of speedup, consider the network formed by the FC
layers of AlexNet. This has a (1728, 4096, 4096, 1000) neuron configuration
and accounts for 6% of the computational complexity [14,19]. Since the entire
AlexNet takes 6 days to train on 2 GPUs for 90 epochs, we estimate that training
only the FC network would take 0.36 days. The authors in [14] acknowledge the
over-parameterization problem, so we estimate from the data for Fig. 1 that the
same FC network with only 6% connectivity can be trained with minimal per-
formance degradation. Using our architecture, modern Kintex Ultrascale FPGA
boards will be able to support z = 256. This results in 4096 cycles being needed
to train a junction, which, at a reasonable clock frequency of 250 MHz, processes
each image through this sparse FC network in 16 µs. Training the network for
the complete 1.2 million images over 90 epochs is estimated to take half an hour,
which is a speedup of 35x over a single GPU.

4 Results

As proof of concept, we used Verilog Hardware Description Language to develop
the register-transfer level (RTL) design for our hardware architecture, and sim-
ulated using the MNIST dataset for different fixed point bit widths. The neuron
configuration is (1024, 64, 16) (we used powers of 2 for ease of hardware imple-
mentation and set the extra neurons to 0) and the fan-out for both junctions is 8,
resulting in an 87% sparse network. The first and second junctions have z = 512
and z = 32, respectively. Figures 4a, b and c show histograms for the classifi-
cation accuracy difference “fixed point - floating point” (i.e., more bars on the
positive side indicate better fixed point performance). Figure 4d indicates that
10-bit fixed point (we used 3 integer bits and 7 fractional bits) for all network



Accelerating Training of DNNs via Sparse Edge Processing 279

Fig. 4. (a), (b), (c): Classification accuracy difference histograms for 16-bit, 12-bit
and 10-bit fixed point, respectively, with floating point. (d): Detailed comparison view
of a portion of the network learning curves for 10-bit fixed point vs floating point.

parameters and computed values is sufficient to obtain classification performance
very close to that of floating point simulations. The plots are for 10,000 training
images over 10 epochs.

5 Conclusion and Future Work

This work presents a flexible architecture that can perform both training and
inference of large and deep neural networks on hardware. Sparsity is preset,
which greatly reduces the amount of memory and number of multiplier units
required. A reconfigurable degree of parallel edge processing enables the archi-
tecture to adapt itself to any network size and hardware resource set, while
junction pipelining and operational parallelization lead to fast and efficient per-
formance. Our ultimate goal is to propel a paradigm shift from offline training
on CPUs and GPUs to online training using the speed and ease of reconfigura-
bility offered by FPGAs and custom chips. Future work would involve extension
to other types of networks, tackling memory bandwidth issues, and extensive
parameter space exploration to advance the limited theoretical understanding of
DNNs.

References

1. Ahn, B.: Computation of deep belief networks using special-purpose hardware
architecture. In: IJCNN-2014, pp. 141–148 (2014)



280 S. Dey et al.

2. Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., Temam, O.: Diannao: a
small-footprint high-throughput accelerator for ubiquitous machine-learning. In:
ASPLOS-2014, pp. 269–284. ACM, New York (2014)

3. Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y.: Compressing neural
networks with the hashing trick. In: ICML-2015, pp. 2285–2294. JMLR.org (2015)

4. Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu,
Z., Sun, N., Temam, O.: Dadiannao: a machine-learning supercomputer. In: 47th
IEEE/ACM International Symposium on Microarchitecture, pp. 609–622 (2014)

5. Cireşan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, big, simple
neural nets for handwritten digit recognition. Neural Comput. 22(12), 3207–3220
(2010)

6. Cun, Y.L., Denker, J.S., Solla, S.A.: Optimal brain damage. In: NIPS-1989, pp.
598–605. Morgan Kaufmann Publishers Inc., San Francisco (1989)

7. Denil, M., Shakibi, B., Dinh, L., Ranzato, M., Freitas, N.D.: Predicting parameters
in deep learning. In: NIPS-2013, pp. 2148–2156 (2013)

8. Eldredge, J.G., Hutchings, B.L.: Rrann: a hardware implementation of the back-
propagation algorithm using reconfigurable FPGAs. In: IEEE ICNN-1994, vol. 4,
pp. 2097–2102 (1994)

9. Gadea, R., Cerdá, J., Ballester, F., Mochoĺı, A.: Artificial neural network imple-
mentation on a single FPGA of a pipelined on-line backpropagation. In: ISSS-2000,
pp. 225–230. IEEE Computer Society, Washington (2000)

10. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.J.: EIE:
Efficient inference engine on compressed deep neural network. In: ISCA-2016, pp.
243–254 (2016)

11. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and huffman coding. In: ICLR-2016
(2016)

12. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: NIPS-2015, pp. 1135–1143 (2015)

13. Himavathi, S., Anitha, D., Muthuramalingam, A.: Feedforward neural network
implementation in FPGA using layer multiplexing for effective resource utilization.
IEEE Trans. Neural Networks 18(3), 880–888 (2007)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS-2012, pp. 1097–1105 (2012)

15. Sanni, K., Garreau, G., Molin, J.L., Andreou, A.G.: FPGA implementation of a
deep belief network architecture for character recognition using stochastic compu-
tation. In: CISS-2015, pp. 1–5 (2015)

16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

17. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15, 1929–1958 (2014)

18. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR-2015,
pp. 1–9 (2015)

19. Zhang, C., Wu, D., Sun, J., Sun, G., Luo, G., Cong, J.: Energy-efficient CNN
implementation on a deeply pipelined FPGA cluster. In: ISLPED-2016, pp. 326–
331. ACM, New York (2016)

20. Zhou, X., Li, S., Qin, K., Li, K., Tang, F., Hu, S., Liu, S., Lin, Z.: Deep adaptive
network: an efficient deep neural network with sparse binary connections. CoRR
abs/1604.06154 (2016). http://arxiv.org/abs/1604.06154

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1604.06154

	Accelerating Training of Deep Neural Networks via Sparse Edge Processing
	1 Introduction
	2 Sparsity
	3 Edge Processing and Interleaving
	4 Results
	5 Conclusion and Future Work
	References


