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Abstract. The heterogeneous property in the next generation wire-
less network arises challenges of network selection problem. Existing
approaches are mainly implemented in static network environments while
cannot handle unpredictable dynamics in practice. In this paper, we pro-
pose a prediction and learning based approach, which considers both the
fluctuation of radio resource and the variation of user demand. The net-
work selection scenario is modeled as a multiagent coordination problem,
in which a population of rational agents compete to maximize their ben-
efits with incomplete information (no prior knowledge of network band-
width and other users’ demands). Terminal users adaptively adjust their
selections in response to the gradually or abruptly changing environment.
The system is shown to converge to Nash equilibrium, which also turns
out to be both Pareto optimal and socially optimal. Extensive simulation
results show that our approach achieves significantly better performance
compared with two existing approaches in terms of load balancing, user
payoff and the overall bandwidth utilization efficiency.

1 Introduction

The next generation wireless network is envisioned as a heterogeneous network
(HetNet) environment consisting of a variety of overlapping radio networks (e.g.,
WPAN, WLAN, WMAN) with various technologies [3]. Within the HetNet envi-
ronment, there is an overwhelming growth in the number of terminal users and
their varying bandwidth demands, meanwhile, network resource is limited and
may change dynamically due to the interferences from intrinsic or extrinsic fac-
tors (noises, channel interferences, natural disturbances, etc.). How to achieve a
good balance between increasing user demand and dynamically changing radio
resource in multi-user, multi-provider HetNet environments is challenging.

To tackle this challenge, effective techniques are required to help select the
most appropriate network from all available candidates to satisfy specific require-
ments. Commercial solutions usually involve rudimentary static network selec-
tion policies (e.g., always select the WLAN, always select the cheapest or the
fastest network) [11]. However, varying network characteristics and user prefer-
ences are omitted, which may often result in lower quality of service (QoS). Many
traditional methods in research literatures use multi-attribute decision making
algorithms (e.g., SAW, TOPSIS, ELECTRE, AHP&GRA) to evaluate and rank
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candidate networks in a preference order to guide the selection process [7]. This
may cause congestion when all users connect the so-called “best” network. Learn-
ing based methods are promising candidate solutions to model the network selec-
tion problem. A channel selection and Routing approach is proposed in [1] which
models the problem as Markov decision process to design the method of learning
the best resource allocation policies. Q-learning is used in [12] to maximize the
total reward in network selection decision. Reinforcement learning model is used
in [6] to find the best strategy to maximise the reward function expressed in
terms of call blocking and call dropping probabilities. Unfortunately, the above
works suffer from the following two limitations: (1) requiring too much state
information (the number of users, future bandwidth, etc.) as a prior, which is
costly or impractical; (2) only focusing on the static resource without considering
changing characteristics in practical environments.

To address the above problems, we model the network selection process as
a multiagent coordination problem, in which a population of rational termi-
nal users compete to select the “best” access networks to satisfy their varying
demands with incomplete information (no prior knowledge of changing band-
width and other users’ demands) within a dynamic HetNet environment. Our
approach is user-centric but does not require any central controller or additional
communications between users. The only information available to users is the
previous load and provided bandwidth of their connected networks. In addi-
tion, our approach is robust against failures of users: when they occasionally
join or leave, the system can self-organize quickly and adapt to a newly created
environment.

Simulation results show that the system guarantees convergence towards
Nash equilibrium, which is also proved to be Pareto optimal and socially optimal.
Extensive results demonstrate that our algorithm enables users to adaptively
adjust their selections in response to the change of bandwidth, and it signifi-
cantly outperforms either the learning or non-learning based approach in terms
of load balance, user payoff and the overall bandwidth utilization efficiency.

2 Network Selection Problem Definition

In HetNet environments, radio resource may loss or be disturbed in transmis-
sion process by various factors (network topology, routers, base stations, noises,
channel interferences, etc.) which greatly impact network performances [4,10].
Therefore, the available bandwidth of each base station allocated from its core
network dynamically changes and is less than the nominal value due to many
influence factors. In such dynamic environments, we assume that each user can
only have access to the state information of the base station it connected from
completed interactions and is lack of prior knowledge of any other networks or
terminal users. The cooperation between the user and its connected base station
is helpful and does not infringe upon any other’s interest.
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2.1 Multiagent Network Selection Model

In practice, each user makes independent decisions based on its local information
only. However, actions taken by users influence the actions of others indirectly.
Therefore, we model the problem as a multiagent coordination problem, in which
a population of rational users located in the same or different service areas with
no information about others learn to compete to maximize their payoffs given
that available bandwidth varies dynamically. Formally, the multiagent network
selection is modeled as a 6-tuple <BS,Bk(t), U, bi(t), Ai, Pi(t,a)>, where:

• BS = {1, 2, ...,m} is the set of available base stations (BS).
• Bk(t) denotes the provided bandwidth of BS k ∈ BS at time t.
• U = {1, 2, ..., n} is the set of terminal users.
• bi(t) denotes the bandwidth demand of user i ∈ U at time t.
• Ai ⊆ BS is the finite set of actions available to user i ∈ U , and ai ∈ Ai

denotes the action (i.e., selected base station) taken by user i.
• Pi(t,a) denotes the expected payoff of user i ∈ U by performing the strategy

profile a = {a1, ..., ai, ...an} ∈ ×j∈UAj at time t.

There are n users competing for m base stations in the system. The detail
definition of payoff based on the joint strategy profile a can be expressed as,

Pi(t,a) =
wi(t,a)
bi(t)

, wi(t,a) =

{
bi(t),

∑
j bj(t) ≤ Bai

(t)
Bai

(t)·bi(t)∑
j bj(t)

, otherwise
(1)

where wi(t,a) is the perceived bandwidth (a theoretical value without consider-
ing the transmission loss) of user i at time t, and j ∈ {j ∈ U |aj = ai, aj , ai ∈ a}
is the user who connect the same base station with user i.

2.2 Theoretical Analysis

Nash equilibrium (NE) is the most commonly adopted solution concept in game
theory. Under a NE, no player can benefit by unilaterally deviating from its
current strategy [11]. Underlying the multiagent network selection problem, a
NE is reached when there is no overload on any base station (this situation is
shown in later experiments). Under this condition, users’ perceived bandwidth
equals to their demands and all users’ payoffs reach maximum. Therefore, no
one is willing to change its strategy given that others’ strategies are unchanged.

Definition 1. a∗ ∈ ×i∈UAi is a Nash equilibrium if for all k ∈ BS,
∑

j bj(t) ≤
Bk(t), where j ∈ {j ∈ U |aj = k, aj ∈ a∗}.

However, a NE may not be desirable in general since it may not necessarily
correspond to the maximization of the system-level payoff. Fortunately, any NE
in our model is also Pareto optimal and socially optimal [11]. The two properties
guarantee both the system’s stability and system-level optimization.
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Theorem 1. Nash equilibrium, Pareto optimality and Social optimality are
equivalent in the multiagent network selection problem.

Proof. It can be deduced that if profile a∗ is a NE, each user’s payoff reaches
maximum and cannot be further increased. Therefore, it’s impossible to find
another outcome under which no user’s payoff is decreased while at least one
user’s payoff is strictly increased. This proves that a∗ is Pareto optimal. In addi-
tion, Pi(t,a∗) = max Pi(t,a) ⇒ ∑

i Pi(t,a∗) = max
∑

i Pi(t,a),∀a ∈ ×j∈UAj .
The sum of all users’ payoffs reaching maximum means a∗ is also socially
optimal.

3 Multiagent Network Selection Strategy

A user’s network selection strategy consists of two steps: selection and evaluation.
In selection procedure, the user learns to choose the best candidate network to
satisfy its special demand. Once the selection procedure is completed, evaluation
procedure will be triggered to update its strategy.

3.1 Selection

Algorithm 1 summarizes the selection procedure for user i ∈ U . For each available
base station k ∈ BS, the user checks whether it can satisfy its special demand
(Lines 1–11). If the user sends a connection request to a base station with no
historic information, which is the standard case at the beginning of the life-cycle,
this unpredictable base station will be added in a spare list for a later decision.
Otherwise, the user predicts the possible bandwidth and load on the base station.
If the predicted load plus the demand is below the predicted bandwidth, this base
station is added to the list of candidates (Lines 7–9). Then the user evaluates if
any candidate base station is expected. There might be three cases. In the case
where the list of candidate base stations predicted having adequate bandwidth
available is not empty (Line 12), the “best network selection” is determined
by the following policy: the base station with most expected free bandwidth
is chosen as the most appropriate connection currently. In particular, in the
case there is no available candidate, the user will randomly explore one from
all unpredictable base stations and gather its state information (Line 17). There
might be an exceptional case that no base station is generated from the algorithm
(Line 19). In this case, the original base station is used and flag is set into −1.

Each user maintains a historic information table tablek = (h0, ..., hp), (0 ≤
p < m) for each connected base station k. The table is composed of up to m
items hj = (tj , loadj , bwj), comprising observed time tj , load loadj and band-
width bwj . The oldest item will be overwritten if already m items are recorded.
Load prediction mechanism employs time series forecasting techniques to predict
future load value based on records of this table. It involves three major steps:
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• Create predictor set. Each user keeps a set of r predictors P (A, k) = {pi|1 ≤
i ≤ r}, which is created from some predefined set in evaluation procedure (fol-
lowing case 1), for each available base station k. Each predictor is a predictive
function from a time series of historic loads to a predictive load value.

• Select active predictor. One predictor pA ∈ P is called active predictor, which
is chosen in evaluation procedure (following case 2, 3), used in load prediction.

• Make prediction. Predict the possible load of the base station via the active
predictor and the historic load records.

A similar prediction mechanism can also be adopted to bandwidth prediction.

3.2 Evaluation

Evaluation procedure introduced in Algorithm 2 is divided into three cases based
on the selected base station.

Case 1. If the selected base station is visited for the first time (Line 1), the
user will create a new predictor set for this base station and record its load
and bandwidth information into the corresponding record table. All predictors
in the set are chosen randomly from a predefined set, hence users’ predictor sets
may be different from each other. The predefined set contains multiple types of
forecasting functions which differ in window sizes (e.g., average method, linear
regression, exponential smoothing, etc.) [2]. Different types of predictors are
suitable for different situations and environments.

Case 2. If flag = −1, it implies that currently historical records recommended
no appropriate base station (Line 5). In the case, some old records need to be
removed from the table according to a probability distribution relative to their
lifetime to get more up-to-date information for further predictions.
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Case 3. The general situation is that the user switched to a previously vis-
ited base station. The evaluation mainly involves two aspects: assessing the
performance of all predictors (Line 10) and dealing with the case of abruptly
changing bandwidth (Line 17). The assessment of predictors is resorted to
Q-learning. Specifically, Q-function in our approach is defined as the following
equation,

Qp(t) = (1 − α)Qp(t − 1) + αrp(t − 1), rp = 1 − |load − predload|
load

where p ∈ predictorSet denotes the predictor, Qp(t) is the Q-value of p, α is
the learning rate, and rp is the observed reward which denotes the predictive
accuracy of p. The predictor which forecasted a more exact value receives a
higher reward, else receives a lower reward.

In our approach, Boltzmann exploration mechanism [5] is adapted to explore
the active predictor. The probability xp of selecting predictor p is given by
xp(t) = eQp(t)/T

∑
k eQk(t)/T , where the temperature T > 0 balances the tradeoff between

exploration and exploitation.
The above process works well in the environment with static or gradually

changing bandwidth. However, it is slightly different in abruptly changing case.
When detecting that the difference between the observed bandwidth and pre-
dicted value of the base station in the last selection is larger than a thresh-
old Δ, the user will consider it encounters abruptly changing environments
(Line 17). At catastrophe points, all historic records are invalid and may mislead
to inaccurate predictions in future. In order to eliminate the adverse influence
and achieve rapid re-convergence, the record table should be cleared out. Then
the latest information is added as the only valid record for a later prediction.

4 Performance Evaluation

Parameter settings of our simulated scenario are given in Table 1. We consider
a variety of HetNet environments consisting of up to 900 users. On BS0 and
BS1, the provided bandwidth changes gradually and abruptly. On BS2, the
provided bandwidth keeps static. All experimental results are averaged over 50
independent runs. We make comparisons with two existing multi-user network
selection algorithms [8,9] in following aspects.

Table 1. Parameter settings

Access tech Network rep Base station Max bandwidth User demand

WLAN Wi-Fi BS0 25Mbps 32 kbps–128 kbps

WMAN WiMAX BS1 50Mbps

CDMA Cellular Network 4G BS2 5Mbps
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Load Balancing Analysis. Figure 1 depicts the load situations on the three
base stations in static and dynamic environments. We observe that under our
prediction and learning based algorithm (PLA), initially, all users randomly
selecting their base stations results in high levels of overload or underload on
different base stations. However after a few learning interactions, network band-
width becomes well-utilized without being overloaded. Meanwhile, the load (i.e.,
total bandwidth demand) on each base station dynamically changes with the
amount of provided bandwidth. This implies that the system converges to NE
and achieves load balance among the three base stations. It is worth to note that
the jitter on BS2 is because users are trying to join or leave this base station in
response to the abrupt changes on the other two base stations.

RAT selection algorithm (RATSA) [8] is similar to the best response, where
the user always selects the network with maximum expected bandwidth allo-
cated. Future provided bandwidth, user number on a base station and the
number of past consecutive migrations are required as prior knowledge. A user
switches its base station only if the value of allocated bandwidth from another
base station divided by currently perceive bandwidth is higher than a given
threshold η. For fair comparisons, we set η = 1.5 which gives RATSA the best
performance. The comparative figure shows an unbalancing phenomena that too
much unmet demand on BS0 and BS2, but too little utilization on BS1 over
some time. This indicates that users cannot sense the dynamic environment and
adjust their strategies timely. We also simulate the network selection scenario
using another Q-learning based approach (QLA) [9]. In QLA, it can be observed
that users are trying to adapt to the changing environment. However, it takes
a long time to get close to the varying bandwidth and cannot achieve complete
load balance.

Fig. 1. Load situations on three base stations.

Convergence. In our approach, the system takes a learning phase to achieve
convergence, i.e., when there is no overload on any base station (can be observed
in Fig. 1), the system converges to Nash equilibrium, which is also Pareto opti-
mal and socially optimal (Definition 1, Theorem 1). In gradually changing case,
once it converges to equilibrium, the state sustains over time. We call it first-
convergence and the average first-convergence time exponentially increases with
the user number from 860 to 900. Specially, in abruptly changing case, when
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Fig. 2. Convergence time Fig. 3. Comparisons of average performances

encountering catastrophe points, the equilibrium is broken but re-converges in
a number of steps. The average re-convergence time linearly varies with the
number of users (see Fig. 2).

User Payoff, Switching Rate and Bandwidth Utilization. Comparison
results of the three approaches in terms of average user payoff, switching rate
and bandwidth utilization are presented in Fig. 3. We observe that over 2000
interactions, PLA outperforms RATSA in average user payoff and bandwidth
utilization. The average switching rate of PLA is slightly higher because users
are trying to switch their connections to respond to the dynamics to get higher
payoffs in the initial phase and at catastrophe points. As for QLA, although we
can sense it is trying hard to adapt to the dynamic environments, it gives bad
performance of any of the three criteria compared to PLA.

5 Conclusions

In this paper, a prediction and learning based approach is presented to tackle the
network selection problem with changing bandwidth in HetNet environments.
The performance of the approach is investigated under various conditions and
aspects. Extensive experimentations show that the system ideally converges to
Nash equilibrium, which also turns out to be both Pareto optimal and socially
optimal. Furthermore, our approach significantly outperforms state-of-the-art
approaches in terms of load balance, user payoff and bandwidth utilization.

Acknowledgements. This work has partially been sponsored by the National Sci-
ence Foundation of China (No. 61572349, No. 61272106), Tianjin Research Program of
Application Foundation and Advanced Technology (No.:16JCQNJC00100).

References

1. Barve, S.S., Kulkarni, P.: Dynamic channel selection and routing through rein-
forcement learning in cognitive radio networks. In: IEEE International Conference
on Computational Intelligence & Computing Research, pp. 1–7 (2012)

2. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. STS.
Springer, Cham (2016). doi:10.1007/b97391

http://dx.doi.org/10.1007/b97391


100 X. Li et al.

3. Charilas, D.E., Panagopoulous, A.D.: Multiaccess radio network enviroments.
IEEE Veh. Technol. Mag. 5(4), 40–49 (2010)

4. Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.: Impact of interference on multi-
hop wireless network performance. Wireless Netw. 11(4), 471–487 (2005)

5. Kianercy, A., Galstyan, A.: Dynamics of Boltzmann q learning in two-player two-
action games. Phys. Rev. E 85(4), 041145 (2012)

6. Kittiwaytang, K., Chanloha, P., Aswakul, C.: CTM-based reinforcement learning
strategy for optimal heterogeneous wireless network selection. In: Computational
Intelligence, Modelling and Simulation (CIMSiM), pp. 73–78. IEEE (2010)

7. Martinez-Morales, J.D., Pineda-Rico, U., Stevens-Navarro, E.: Performance com-
parison between madm algorithms for vertical handoff in 4G networks. In: Electri-
cal Engineering Computing Science and Automatic Control (CCE), pp. 309–314.
IEEE (2010)

8. Monsef, E., Keshavarz-Haddad, A., Aryafar, E., Saniie, J., Chiang, M.: Conver-
gence properties of general network selection games. In: 2015 IEEE Conference on
Computer Communications (INFOCOM), pp. 1445–1453. IEEE (2015)

9. Niyato, D., Hossain, E.: Dynamics of network selection in heterogeneous wireless
networks: an evolutionary game approach. IEEE Trans. Veh. Technol. 58(4), 2008–
2017 (2009)

10. Perkins, D.D., Hughes, H.D., Owen, C.B.: Factors affecting the performance of ad
hoc networks. In: IEEE International Conference on Communications, vol. 4, pp.
2048–2052 (2002)

11. Trestian, R., Ormond, O., Muntean, G.M.: Game theory-based network selection:
solutions and challenges. IEEE Commun. Surv. Tutor. 14(4), 1212–1231 (2012)

12. Xu, Y., Chen, J., Ma, L., Lang, G.: Q-learning based network selection for
WCDMA/WLAN heterogeneous wireless networks. In: 2014 IEEE 79th Vehicu-
lar Technology Conference (VTC Spring), pp. 1–5. IEEE (2014)


	A Prediction and Learning Based Approach to Network Selection in Dynamic Environments
	1 Introduction
	2 Network Selection Problem Definition
	2.1 Multiagent Network Selection Model
	2.2 Theoretical Analysis

	3 Multiagent Network Selection Strategy
	3.1 Selection
	3.2 Evaluation

	4 Performance Evaluation
	5 Conclusions
	References


