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Abstract. Exploiting high-level visual knowledge is the key for a great
leap in image classification, in particular, and computer vision, in general.
In this paper, we present a tool for generating knowledge-enriched visual
annotations and use it to build a benchmarking dataset for a complex
classification problem that cannot be solved by learning low and middle-
level visual descriptor distributions only. The resulting VegImage dataset
contains 3,872 images of 24 fruit varieties, over than 60,000 bounding
boxes (portraying the different varieties of fruits as well as context objects
such as leaves, etc.) and a large knowledge base (over 1,000,000 OWL
triples) containing a-priori knowledge about object visual appearance.
We also tested existing fine-grained and CNN-based classification meth-
ods on this dataset, showing the difficulty of purely visual-based methods
in tackling it.

1 Introduction

Object recognition and image classification have been hot research topics in the
last two decades. Recently, deep-learning methods have been able to achieve
impressive performance on thousands of object classes from the ImageNet
dataset. In spite of such progress, classification approaches are still predom-
inantly based on visual features, leveraging the power of statistical machine
learning to learn distributions of low and middle-level features. While this has
proved to be an effective strategy even for fine-grained classification problems
[13,17,31], there are cases where relying on visual appearance only might fail,
especially in specialized application domains (such as fruit variety identifica-
tion). For example, Fig. 1 (left image) shows four different varieties of cherry
(namely, bing, black tartarian, burlat and lapin) that cannot be easily identified
by only exploiting statistical distribution of visual descriptors. However, objects
in the “real-world” do not appear as isolated items, but come in a rich context
(the right-hand image in Fig. 1 shows the same cherry varieties in their natural
context), which is largely exploited by humans for visual categorization.
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Fig. 1. Example of fine-grained problem tackled in this paper. Left: Four different
cheery varieties, namely (left to right, top to bottom), bing, black tartarian, burlat
and lapin. Right: The same varieties in their natural context. Information about leaf
shape, distance between fruit and tree branches, peduncle length may support the
disambiguation between the four object classes.

Our main assumption is that, for a real breakthrough in computer vision,
computers need to emulate human visual process by combining perceptive ele-
ments (visual descriptors) and cognitive factors (structured knowledge). Such
combined perceptive-cognitive knowledge can be then exploited to solve com-
plex visual recognition tasks when low-level visual description fails to express
the differences among classes. However, while it is relatively easy to describe
visually images, e.g., by identifying variations in shapes, colors, etc., it is more
challenging and complex to annotate images according to specific knowledge as
the ones depicted in Fig. 1, which only experts, making use of domain knowledge,
would be able to do. Nevertheless, domain experts often do not wish to spend
time to provide image annotations, so how can we generate knowledge-enriched
visual annotations necessary to train machine learning techniques?. This paper
aims at addressing the above question, specifically through:

– An annotation tool which guides the visual annotation process according to
specialized domain knowledge model defined as a formal ontology, and which
allows non-experts to generate large-scale domain-specific annotations.

– A knowledge-enriched fine-grained image dataset for fruit variety classifica-
tion, which is hard to solve with typical visual-oriented approaches (e.g.,
GoogLeNet, Overfeat, VLFeat PHOW, KDES) without the use of domain
knowledge.

2 Related Work

The goal of this paper is three-fold: (a) proposing a new semantic annotation tool
driven by (b) domain knowledge through a formal ontology for (c) generating
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a fine-grained image dataset enriched with a large knowledge base. The impor-
tance of visual world semantics (and of context especially) in automated visual
recognition has been long acknowledged [6,14]. Recently, there have been signif-
icant advances in modeling rich semantics using contextual relationships [18,25]
such as object-object [6,20] and object-attribute [9,16] applied to scene classi-
fication [12] or object recognition [27]. In [27], the authors proved that context
information is more relevant for object recognition than the intrinsic object rep-
resentation, especially in cases of poor image quality (e.g., blurred images due to
large distances, occlusions, illumination, shadows). However, visual scenes pro-
vide richer semantics than object-object or object-attribute relationships, which
most of the existing methods do not take into account or do not exploit effectively
as they try to solve the recognition problem by brute force. Nevertheless, one of
the limitations to a larger use of high-level knowledge in computer vision is the
lack of structured resources modeling exhaustively the semantics of our world.
Indeed, so far, the largest resource of structured visual knowledge is the Ima-
geNet dataset that, however, captures only limited semantic relations, ignoring,
for instance, co-occurrence, dependency, mutual exclusion. The need for exhaus-
tive knowledge is also highlighted by the recent sprout of methods employing
high-level knowledge (mainly unstructured) for computer vision tasks: knowledge
transfer methods [10,15] and semantic relation graphs [4,21] have been adopted
to deal with the limits of traditional multi-class or binary models, which suffer
from being overly restrictive or overly relaxed, respectively. Compared to scene
graphs, computational ontologies are able to describe deeper scene semantics by
defining high-level attributes and imposing constraints about real-world object
appearance and their contextual and semantic relations, in an interoperable and
generalizable way.

However, including high-level knowledge in the learning loop needs large
semantically-annotated visual datasets, whose generation is an expensive process:
beside annotating objects in images, other semantic information, such as color,
shape, related-objects and their visual properties, etc., needs to be collected. This,
especially, holds in specialized application domains (e.g., fruit variety, bird, med-
ical images, etc.) where high precision is necessary to avoid affecting the learning
process. In such cases, annotations should be provided by domain experts, who
do not have enough time to spend into the process. To tackle this problem, one
possible solution is to extract and use domain-knowledge to guide/constrain anno-
tations done by non-expert users. So far, only few ontology-based image annota-
tion tools have been proposed [3,7,19], which are, however, mainly thought for
information retrieval rather than for computer vision.

Our proposed tool differs from the above ones and traditional tools [8,22]
in that it constrains and guides the annotation process according to specific
domain knowledge (codified as a formal ontology) where the visual attributes
are inferred through ontology reasoning, thus reducing greatly the knowledge
required to carry out the task.

We used our tool to generate knowledge-enriched visual annotations on fruit
variety images, thus providing a complex benchmark for fine-grained recognition.
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There are several benchmarking datasets for fine-grained classification of birds,
stonefly larvae, etc. [5,17,31] but they mainly contain per-instance segmentations
and do to provide any semantic visual descriptions of objects and their context.
The datasets most similar to ours are the ones for semantic scene labeling [2,24],
which, despite including context information, no exhaustive semantic relations
are defined.

3 Generating Knowledge-Enriched Visual Annotations

In this section we present a formal OWL ontology encoding specialized knowledge
for fruit variety categorization. The combination of such ontology with a tool
able to guide and constrain the annotation process allows to minimize expert
user intervention, thus providing the chance to create large-scale fine-grained
annotations by involving mainly non-expert users.

3.1 The Fruit Ontology

An ontology is a formalism providing, for a specific domain, a common machine-
processable vocabulary and a formal agreement about the meaning of the used
terms, which include important concepts, their properties, mutual relations and
constraints. Basic concepts of a domain correspond to owl:Class, whose expres-
siveness can be enhanced by adding attributes (as owl:DataProperty) and rela-
tions to other owl:Class (as owl:ObjectProperty). The vocabulary is designed and
validated by human users through axioms expressed in a logic language and the
concepts and properties can be enriched using natural language descriptions1

and links (e.g. rdfs:seeAlso property).
We developed a new ontology describing visually the fruit application domain

by involving three expert agronomists, who also supported the generation of
correct instances for the considered fruit varieties. Figure 2 shows the ontol-
ogy’s VOWL (Visual OWL) representation and some statistics generated using
Protégé2. We embedded this ontology in an annotation tool to speed up the
labeling process, making annotation of domain-specific images accessible for
non-expert users (see Sect. 3.2). Before describing the Fruit Ontology, let us
introduce some terminology to avoid ambiguities. We refer to an owl:Class as
an ontology class, and to an image class (i.e., a fruit variety) as a dataset class.
Furthermore, we use target class to indicate the main object class we want to
recognize (in our case Fruit), and context class for all the object classes that can
be considered as part of the context (in our case, Peduncle, Leaf, Petiole) of the
target class. Typically, target classes are objects which are spatially well-defined,
easily-recognizable and possibly not a constituent part of a larger object (e.g.,
a dog rather than its tail, a fruit rather than its peduncle). Context classes are,
instead, those that either are not classification targets or are more easily iden-
tified in relation to a target class. The Fruit Ontology contains two main class
1 http://www.w3.org/2005/Incubator/mmsem/XGR-image-annotation/.
2 http://protege.stanford.edu/.

http://www.w3.org/2005/Incubator/mmsem/XGR-image-annotation/
http://protege.stanford.edu/
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Fig. 2. The fruit ontology VOWL representation. High resolution image: zoom in, too
see classes and properties.

categories: the ones for visually describing target and context objects, and the
ones needed for the annotation process.
Application Domain Classes and Properties. Domain classes and prop-
erties encode a-priori and expert knowledge on fruit varieties in terms of both
visual appearance (colors, shape, edges, etc.) and their context relations (with
Leaf, Peduncle, Petiole, etc.). Three expert agronomists supported us in the
ontology design process by identifying for each target class (i.e., Fruit), the set
of related context classes and the visual features describing their appearance.
Both the target and context classes were mapped to ontology classes (Fruit, Leaf,
Peduncle, Petiole are defined as subclasses of a domain-agnostic PhysicalObject
class) and were enriched with as many owl:DataProperty (e.g., fruitHasStripes,
fruitHasColourDescription, fruitHasOvercolourDescription, etc.) as needed to
represent their visual appearance. Most of the physical features are defined as
classes themselves (e.g. Shape, Edge, FruitRusset, etc., similarly defined as sub-
classes of PhysicalProperty) for defining more articulated visual characteristics
(e.g., fruitRussetHasDistribution, fruitRussetHasType, etc.).

Ontology classes mapping target or context objects only differ in that target
classes include the relations fruitHasSpecies and fruitHasVariety (easily general-
izable to other domains) to Species and Variety ontology classes, which in turn
are defined as skos3 concepts in order to include a taxonomy of varieties (each
taxonomy term corresponds to a dataset image class). The physicalObjectHas-
Part and its inverse physicalObjectIsPartOf and their specialized sub-properties
(e.g., fruitIsInTree, fruitHasPeduncle) are used by the ontology reasoner to infer,
starting from the target class and exploiting property transitivity, all ontology
classes (e.g. Leaf, Peduncle, Petiole) related to its context.

3 http://www.w3.org/2004/02/skos/.

http://www.w3.org/2004/02/skos/
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Annotation Tool Specific Classes and Properties. The link between user
annotations and entities in the ontology is represented by the AnnotationSam-
ple class, whose properties hasBB (for “bounding box”) and hasImage specify
the location of an annotated object in an image. The AnnotationSample class
is specifically designed to speed up the annotation phase. For each new annota-
tion, an instance of AnnotationSample is created and associated with the corre-
sponding PhysicalObject subclass instance; this allows the tool to infer all corre-
sponding PhysicalObject subclass instance properties encoded into the ontology
without the need to specify manually all its properties. Annotator intervention
is needed only in cases a property may assume multiple values (e.g., Russet
for Canadian Reinette apple), from which, however, the tool displays samples
(also encoded in the ontology) to simplify the labeling work for non-experts (see
right-hand side in the bottom part of Fig. 3).

Fig. 3. User interface of the ontology-driven annotation tool. (Left image) Bounding
box annotation of a target object (ideally performed by an expert user). (Right image).
Annotation of context class objects (e.g., a leaf), with automatically-suggested labels
inferred from the one assigned to the bounding box associated to an object of the
target class. The right-hand side part is for disambiguating all those properties that
can assume multiple values (as per Instance definition) through visual comparison with
sample images (also encoded in the ontology instance).

Although the whole annotation schema and representation may seem overly
complex (especially if compared to the current “flat-structure” annotations made
public by dataset providers), they enable encoding annotations as ontology
instances, with one great advantage: the annotation correctness and meaning-
fulness is implicitly validated, as they have to match the ontology schema.

3.2 The Annotation Tool

The presented ontology-driven annotation tool aims at guiding and constraining
users the labeling process within the concepts enforced by the ontology. It basi-
cally provides means to draw and assign labels (most of them are automatically
inferred through ontology reasoning) to bounding boxes for target and context
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classes and to specify attributes for them. Similarly to other annotation tools
[8,22], the interface presents the user with an image to work on, together with
several tools for browsing through images, zooming in and out, adding, editing
and removing annotations. However, unlike those other tools, part of the label
assignment responsibility is moved from the user to the tool itself, through a
two-phase annotation process. The two phases of the annotation process differ
by the degree of expert knowledge required and the amount of annotation work
to be carried out. The first annotation phase consists in assigning a dataset
image class (e.g., a fruit variety) to each image. This initial task requires expert
knowledge necessary to distinguish between dataset classes differing only by sub-
tle details. However, the amount of data to annotate is relatively small, since
the user is only asked to draw one bounding box per image and select the corre-
sponding dataset class, thus limiting the expert employment only to a fraction
of the whole labeling process. Once annotations have been “bootstrapped” by
specifying labels for the bounding boxes containing objects belonging to the tar-
get class, the second phase consists of annotating all the other objects present
in the image, corresponding (1) to the target class (i.e., the fruit), whose labels
are automatically inferred by ontology reasoning, based on the assumption that
they are equal to the one provided by experts; and (2) to context classes (i.e.,
peduncle, leaf, etc.). Annotating bounding boxes of objects related to a context
class, while being in general a task which requires expert knowledge, is simplified
by the presence of the associated object corresponding to the target class: its
label is employed by the tool to infer (through an ontology reasoner4) the subset
of context class instances which can be used to annotate the current bounding
box.

Figure 3 shows how the interface implements the above procedure. Firstly, the
(expert) user annotates (left part in Fig. 3) one object related to a target class
with the corresponding fine-grained class, by simply drawing a bounding box
around the object and selecting its label from a list (dynamically built from the
provided domain ontology), e.g. “cameoFruit”. Then, the (not necessarily expert)
user can continue the process by adding annotations for the other objects in the
image, whose labels are inferred based on the target class instance assigned by
the expert and on the ontology (right part in Fig. 3). In the example, the inferred
labels are “cameoLeaf”, “cameoPeduncle”, “cameoPetal”, since the target class
instance was labeled by the expert as “CameoFruit’. As a final consideration,
it should be noted that the above process transcends the specific application
domain for which the tool is employed, and the concepts to be annotated can be
simply configured at setup time by providing a custom ontology and specifying
the set of target classes (namely, those for which properties physicalObjectHas-
Species or physicalObjectHasVariety are defined) and context classes (related to
the target classes throughout a series of subproperties of physicalObjectHasPart
and physicalObjectIsPartOf.

4 http://owlapi.sourceforge.net/.

http://owlapi.sourceforge.net/
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3.3 The Fruit Image Dataset

The VegImage dataset is a collection of 3,872 images of three common fruit
species, namely, malus domestica (apple), prunus avium (cherry) and pyrus com-
munis (pear). For each fruit species several fruit varieties were included, 10 for
malus domestica, 7 for prunus avium and 7 for pyrus communis. Together with
fruit images, we also provide over than 60,000 bounding boxes (depicting the
different varieties of fruits, leaves, peduncles, etc.) and a large a knowledge base
(over 1,000,000 OWL triples) containing a-priori knowledge about colors, shapes
as well as context objects for the considered fruit varieties. A detailed list of fruit
varieties is shown in Fig. 4.

Ambrosia
#img 117
#bb 3602

Braeburn
#img 83
#bb 1464

Conference
#img 181
#bb 2586

Fuji
#img 181
#bb 3394

Golden Delicious
#img 324
#bb 5182

Granny Smith
#img 360
#bb 1723

Pink Lady
#img 239
#bb 2647

Reinette
#img 242
#bb 2178

Royal Gala
#img 150
#bb 1896

Stark Delicious
#img 411
#bb 3688

Bing
#img 67
#bb 2677

Black Tartarian
#img 45
#bb 1258

Burlat
#img 71
#bb 2568

Ferrovia
#img 77
#bb 5307

Lapins
#img 87
#bb 3037

Rainier
#img 140
#bb 3859

Stella
#img 31
#bb 1173

Abate
#img 286
#bb 4293

Anjou
#img 190
#bb 3008

Cameo
#img 70
#bb 813

Coscia
#img 167
#bb 2963

Doyenne du Comice
#img 77
#bb 1186

Kaiser
#img 111
#bb 1170

Williams
#img 165
#bb 4817
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Fig. 4. Example images from the fruit image dataset. Numbers in red are number of
images per class while in green the number of bounding boxes. (Color figure online)

Dataset Collection. The fruit variety images were mainly downloaded from
Google Images, Flickr, ImageNet, Yahoo Images. To increase appearance vari-
ability, we also downloaded YouTube documentary videos, from which we man-
ually selected key frames to avoid near duplicates in the dataset. For each of the
27 fruit varieties, about 1,000 images were manually selected to be included in
the dataset. Low-quality images or images depicting multiple fruit varieties or
people as main subjects were filtered out. After this screening, we asked three
expert agronomists to manually check all the resulting images. Thus, we collected
up to 500 images for each fruit variety.

Dataset Annotation. We performed a two-stage annotation phase using the
tool described in the previous section: (a) Image labeling: in this step, the
three agronomists annotated each image with a label decided through consensus
among them; (b) Bounding box annotation: ten non-expert users were asked
to draw bounding boxes (a distribution over fruit varieties is given in Fig. 4) for
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objects of both target (Fruit) and context classes (Peduncle, Leaf and Petiole),
and to disambiguate multi-valued attributes defined in the Fruit Ontology (e.g.,
russet for Canadian Reinette apple), which were finally double-checked by the
experts, being the only kind of annotations which could be subject to errors.

To test automatically the quality of the generated bounding boxes, we com-
pared them with the ones provided by Selective Search [28]. In detail, for each
image we ran selective search (SS) object localization (2,000 object proposals
per image) and we computed the maximum Intersection over Union (IoU) index
between each annotated bounding box and the ones provided by SS. The aver-
age IoU for each fruit class is given in Fig. 5 showing the high-quality of our
annotations taking into account also SS failures.

Fig. 5. Average IoU between generated bounding boxes and SS’ones.

Annotation Effort and Times. To test the performance of our annotation
tool, we used as evaluation criteria: (1) shifting working time from experts to
non-experts, while keeping annotation accuracy high and (2) reducing non-expert
annotation time.

Domain experts manually annotated 3,872 fruit images, while over 60,000
bounding boxes were provided by ten non-expert users. Bounding box attributes
were inferred automatically by the reasoner (through deductive inference) after
the corresponding bounding box class (e.g. Leaf ) and variety (e.g. Cameo) were
specified. The annotations of 3,872 fruit images by the three experts took about
13 days (average of 1.3 h per day per expert) for a total of 51 worker hours, while
the annotation of 105,284 bounding boxes took about 20 days (average of 4 h
per day per annotator). In total, annotating the whole image dataset took 861
worker hours: 810 (about 94% of the total) hours provided by non-experts and
the remaining 51 h by experts.

The average annotation time per bounding box for non-experts was 27.7 s,
which is impressive given that the Fruit Image Dataset deals with a specific and
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complex application domain, and considering that in COCO [11] the annotators
spent, on average, about 80 s per bounding box.

As a final note, our tool allows to tackle the issue recently reported in [29], i.e.,
high-quality annotations on domain-specific applications should be performed,
if not by experts, at least by citizen scientists, since unskilled workers perform
extremely bad. While this may hold for “traditional” annotation approaches,
encoding and incorporating domain knowledge in a tool able to constrain the
labeling process is a valid alternative, which allows non-expert annotators to
provide high-quality annotations, thus saving significantly expensive resources.

4 Comparison to Existing Datasets for Fine-Grained
Recognition

Table 1 compares the proposed Fruit Image dataset with three popular bench-
marking datasets for fine-grained image classification: Oxford-IIIT Pet [17],
Oxford Flower 102 [13] and Caltech-UCSD Birds [31]. Although the three
datasets all have a comparable number of images, the Fruit Image dataset is
more complete in the type of annotations it includes, as it contains several exam-
ples of images with multiple objects and all objects have associated parts (as
context objects) and attributes, beside being enriched with a large knowledge
base. Furthermore, although the number of images in the Fruit Image dataset
is much smaller than popular image classification (not fine-grained) datasets,
e.g., COCO (see Table 1), the number of annotations are comparable, especially
since our dataset provides several object annotations per image, completed with
bounding box locations, class labels and class-specific attributes. Such achieve-
ments would not have been practical if only few experts were asked to perform
all annotations; the approach described in Sect. 3.2 allowed us to involve non-
experts in a fine-grained annotation process, thus greatly speeding up the whole
task.

Table 1. Comparison between popular fine-grained (and not) datasets and our dataset.
Key: #C : number of classes; #I : number of images; I/C : average number of images
per class; O/I : average number of objects per image; P/O : average number of parts
per object; A/O : average number of attributes per object. For our dataset, the O/I
value refers to the number of target objects (i.e., fruits), whereas the P/O value counts
context objects as object parts; object attributes are the OWL triples, mostly inferred
by ontology reasoning, and only a tiny part manually annotated.

#C #I I/C O/I P/O A/O

PET 37 7, 349 198.6 1.0 0.0 0.0

Flower 102 102 8, 189 80.3 1.0 0.0 0.0

Birds 200 11, 788 58.9 1.0 12.0 31.5

COCO 80 123, 287 1, 541.1 7.3 − −
Fruit Image 24 3, 872 161.3 8.0 1.14 11.0
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Table 2. Results obtained by VLFeat PHOW, KDES, OverFeat and GoogleNet on the
proposed dataset and on three other fine-grained datasets.

Dataset Method

VLFEAT KDES OverFeat GoogleNet

Oxford-IIIT Pet 39.25% 45.47% 70.48% 86.14%

Oxford Flower 102 56.68% 24.63% 79.02% 90.04%

Caltech-UCSD Birds 14.62% 7.11% 59.2% 70.2%

Fruit Dataset 4.21% 24.4% 26.6% 36.1%

In order to test the complexity of the proposed dataset, we evaluated four
state-of-the-art classification methods on these four datasets: VLFeat PHOW
[30], KDES [1], OverFeat [23] and GoogleNet [26]. The comparison, in terms
of mean classification accuracy (see Table 2) shows that the tested algorithms
fail to tackle the proposed dataset. We believe that a cause for this failure is
that, unlike current fine-grained datasets, the proposed fruit dataset describes
an application domain where class discrimination is strongly based on a context
dependency between objects, which needs to be encoded and integrated into the
classification methods as a priori information.

5 Conclusions

In this paper we present a knowledge-driven annotation tool which exploits
specialized domain knowledge to generate semantic fine-grained annotations,
greatly reducing the efforts of domain experts, for classification problems that
cannot be solved by using only low and middle-level features. The tool was
used by three expert agronomists to provide high-level and coarse annotations
and by ten non-expert users who provided fine-grained annotations without any
knowledge on the application domain. The resulting VegImage dataset contains
3,872 images, over than 60,000 bounding boxes, and over than 1,000,000 OWL
triples, representing, to the best of our knowledge, one of the most comprehensive
resources for fine-grained classification and one the most exhaustive knowledge
bases in computer vision. As future work, we are working on building semantic
machine learning classifiers integrating classic learning methods with reasoning
approaches able to convert a set of detections into an ontology instance describ-
ing the application domain to be matched against correct instances as provided
by domain experts. The annotation tool, the image dataset, the knowledge base,
and the Fruit ontology will be made publicly available.
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