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Abstract. There is an inherent need for autonomous cars, drones, and
other robots to have a notion of how their environment behaves and to
anticipate changes in the near future. In this work, we focus on anticipat-
ing future appearance given the current frame of a video. Existing work
focuses on either predicting the future appearance as the next frame of
a video, or predicting future motion as optical flow or motion trajecto-
ries starting from a single video frame. This work stretches the ability
of CNNs (Convolutional Neural Networks) to predict an anticipation of
appearance at an arbitrarily given future time, not necessarily the next
video frame. We condition our predicted future appearance on a contin-
uous time variable that allows us to anticipate future frames at a given
temporal distance, directly from the input video frame. We show that
CNNs5s can learn an intrinsic representation of typical appearance changes
over time and successfully generate realistic predictions at a deliberate
time difference in the near future.

Keywords: Action forecasting + Future video frame prediction
Appearance prediction *+ Scene understanding - Generative models -
CNNs

1 Introduction

For machines to successfully interact in the real world, anticipating actions and
events and planning accordingly, is essential. This is a difficult task, despite the
recent advances in deep and reinforcement learning, due to the demand of large
annotated datasets. If we limit our task to anticipating future appearance, anno-
tations are not needed anymore. Therefore, machines have a slight advantage, as
they can employ the vast collection of unlabeled videos available, which is per-
fectly suited for unsupervised learning methods. To anticipate future appearance
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based on current visual information, a machine needs to successfully be able to
recognize entities and their parts, as well as to develop an internal representation
of how movement happens with respect to time.

We make the observation that time is continuous, and thus, video frame-rate
is an arbitrary discretization that depends on the camera sensor only. Instead
of predicting the next discrete frame from a given input video frame, we aim
at predicting a future frame at a given continuous temporal distance At away
from the current input frame. We achieve this by conditioning our video frame
prediction on a time-related input variable.

In this work we explore one-step, long-term video frame prediction, from an
input frame. This is beneficial both in terms of computational efficiency, as well
as avoiding the propagation and accumulation of prediction errors, as in the
case of sequential/iterative prediction of each subsequent frame from the previ-
ous predicted frame. Our work falls into the autoencoding category, where the
current video frame is presented as input and an image resembling the antici-
pated future is provided as output. Our proposed method consists of: an encoding
CNN (Convolutional Neural Network), a decoding CNN, and a separate branch,
parallel to the encoder, which models time and allows us to generate predictions
at a given time distance in future.

1.1 Related Work

Predicting Future Actions and Motion. In the context of action prediction,
it has been shown that it is possible to use high-level embeddings to anticipate
future actions up to one second before they begin [23]. Predicting the future
event by retrieving similar videos and transferring this information, is proposed
in [28]. In [8] a hierarchical representation is used for predicting future actions.
Predicting a future activity based on analyzing object trajectories is proposed
in [6]. In [3], the authors forecast human interaction by relying on body-pose
trajectories. In the context of robotics, in [7] human activities are anticipated
by considering the object affordances. While these methods focus on predicting
high-level information—the action that will be taken next, we focus on predicting
low-level information, a future video frame appearance at a given future temporal
displacement from a given input video frame. This has the added value that it
requires less supervision.

Anticipating future movement in the spatial domain, as close as possible to
the real movement, has also been previously considered. Here, the methods start
from an input image at the current time stamp and predict motion—optical flow
or motion trajectories—at the next frame of a video. In [9] images are aligned to
their nearest neighbour in a database and the motion prediction is obtained by
transferring the motion from the nearest neighbor to the input image. In [12],
structured random forests are used to predict optical flow vectors at the next
time stamp. In [11], the use of LSTM (Long Short Term Memory Networks) is
advised towards predicting Eulerian future motion. A custom deep convolutional
neural network is proposed in [27] towards future optical flow prediction. Rather
than predicting the motion at the next video frame through optical flow, in [25]
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the authors propose to predict motion trajectories using variational autoen-
coders. This is similar to predicting optical flow vectors, but given the temporal
consistency of the trajectories, it offers greater accuracy. Dissimilar to these
methods which predict future motion, we aim to predict the video appearance
information at a given continuous future temporal displacement from an input
video frame.

Predicting Future Appearance. One intuitive trend towards predicting
future information is predicting future appearance. In [26], the authors pro-
pose to predict both appearance and motion for street scenes using top cameras.
Predicting patch-based future video appearance, is proposed in [14], by rely-
ing on large visual dictionaries. In [29] future video appearance is predicted in
a hirarchical manner, by first predicting the video structure, and subsequently
the individual frames. Similar to these methods, we also aim at predicting the
appearance of future video frames, however we condition our prediction on a
time parameter than allows us to perform the prediction efficiently, in one step.

Rather than predicting future appearance from input appearance informa-
tion, hallucinating possible images has been a recent focus. The novel work in
[24] relies on the GAN (Generative Adversarial Network) model [13] to create
not only the appearance of an image, but also the possible future motion. This is
done using spatio-temporal convolutions that discriminate between foreground
and background. Similarly, in [17] a temporal generative neural network is pro-
posed towards generating more robust videos. These generative models can be
conditioned on certain information, to generate feasible outputs given the specific
conditioning input [15]. Dissimilar to them, we rely on an autoencoding model.
Autoencoding methods encode the current image in a representation space that
is suitable for learning appearance and motion, and decode such representations
to retrieve the anticipated future. Here, we propose to use video frame appear-
ance towards predicting future video frames. However, we condition it on a given
time indicator which allows us to predict future appearance at given temporal
distances in the future.

2 Time-Dependent Video Frame Prediction

To tackle the problem of anticipating future appearance at arbitrary temporal
distances, we deploy an encoder-decoder architecture. The encoder has two sep-
arate branches: one to receive the input image, and one to receive the desired
temporal displacement At of the prediction. The decoder takes the input from
the encoder and generates a feasible prediction for the given input image and the
desired temporal displacement. This is illustrated in Fig. 1. The network receives
as inputs an image and a variable At, At € RT, indicating the time difference
from the time of the provided input image, tg, to the time of the desired pre-
diction. The network predicts an image at the anticipated future time ¢y + At.
We use a similar architecture to the one proposed in [20]. However, while their
architecture is made to encode RGB images and a continuous angle variable
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to produce RGBD as output, our architecture is designed to take as input a
monochromatic image and a continuous time variable, At, and to produce a
monochromatic image, resembling a future frame, as output.

ENCODING Py

Fig. 1. Our proposed architecture consists of two parts: (i) an encoder part consisting of
two branches: the first one taking the current image as input, and the second one taking
as input an arbitrary time difference At to the desired prediction and (ii) a decoder
part that generates an image, as anticipated, at the desired input time difference, At.

More specifically, the architecture consists of the following;:

1. an encoding part composed of two branches:
— an image encoding branch defined by 4 convolutional layers, 3 pooling
layers and 2 fully-connected layers at the end;
— a time encoding branch consisting of 3 fully-connected layers.
The final layers of the two branches are concatenated together, forming one
bigger layer that is then provided to the decoding part.
2. a decoding part composed of 2 fully-connected layers, 3 “unpooling” (upscal-
ing) layers, and 3 “deconvolutional” (transpose convolutional) layers.

The input time-indicator variable is continuous and allows for appearance
anticipations at arbitrary time differences. Training is performed by presenting
to the network batches of {I,, At, I, } tuples, where I, represents an input image
at current relative time g, and At represents a continuous variable indicating
the time difference to the future video frame, and I, represents the actual video
frame at tq + At.

Predictions are obtained in one step. For every input image I, and continuous
time difference variable At, a {I, At} pair is given to the network as input, and
an image representing the appearance anticipation I, after a time interval At is
directly obtained as output. No iterative steps are performed.

3 Experiments

3.1 Experimental Setup

We evaluate our method by generating images of anticipated future appearances
at multiple time distances, and comparing them both visually and through MSE
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(Mean Squared Error) with the true future frames. We also compare to a CNN
baseline that iteratively predicts the future video frame at kAt (kK = 1,2,...)
temporal displacements, from previous predictions.

Training Parameters. During training, we use the Adam optimizer [5], with
Ly loss and dropout rate set to 80% for training. Training is performed up to
500,000 epochs with randomized minibatches consisting of 16 samples, where
each sample contains one input image at current relative time ¢y = 0, a temporal
displacement At and the real target frame at the desired temporal displacement
At. On a Titan X GPU, training took approximately 16 h with, on average,
about 100,000 training samples (varying in each action category). We argue that
the type of action can be automatically detected, and is better incorporated
by training a network per action category. Thus, we opt to perform separate
preliminary experiments for each action instead of training one heavy network
to anticipate video frames corresponding to all the different possible actions.

Network Architecture. Given that the input, and thus also the output, image
size is 120 x 120 x 1 (120 x 120 grayscale images), in our encoder part, we
stack convolutional and pooling layers that yield consecutive feature maps of the
following decreasing sizes: 120 x 120, 60 x 60, 30 x 30 and 15 x 15, with an
increasing number of feature maps per layer, namely 32, 64 and 128 respectively.
Fully-connected layers of sizes 7,200 and 4,096 are added at the end. The sepa-
rated branch of the encoder that models time consists of 4 fully connected layers
of size 64, where the last layer is concatenated to the last fully-connected layer
of the encoder convolutional neural network. This yields an embedding of size
4160 that is presented to the decoder. Kernel sizes used for the convolutional
operations start at 5 x 5 in the first layers and decrease to 2 x 2 and 1 x 1 in
the deeper layers of the encoder.

For the decoder, the kernel sizes are the same as for the encoder, but ordered
in the opposite direction. The decoder consists of interchanging “unpooling”
(upscaling) and “deconvolutiton” (transpose convolution) layers, yielding feature
maps of the same sizes as the image-encoding branch of the encoder, only in the
opposing direction. For simplicity, we implement pooling as a convolution with
2 x 2 strips and unpooling as a 2D transpose convolution.

3.2 Dataset

We use the KTH human action recognition dataset [18] for evaluating our pro-
posed method. The dataset consists of 6 different human actions, namely: walk-
ing, jogging, running, hand-clapping, hand-waving and bozing. Each action is
performed by 25 actors. There are 4 video recordings for each action performed
by each actor. Inside every video recording, the action is performed multiple
times and information about the time when each action starts and ends is pro-
vided with the dataset.
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To evaluate our proposed method, we randomly split the dataset by actors,
in a training set—with 80% of the actors, and a testing set—with 20% of the
actors. By doing so, we ensure that no actor is present in both the training and
the testing split and that the network can generalize well with different look-
ing people and does not overfit to specific appearance characteristics of specific
actors. The dataset provides video segments of each motion in two directions—
e.g. walking from right to left, and from left to right. This ensures a good setup
for checking if the network is able to understand human poses and locations, and
correctly anticipate the direction of movement. The dataset was preprocessed as
follows: frames of original size 160 x 120 px were cropped to 120 x 120 px, and
the starting/ending time of each action were adjusted accordingly to match the
new cropped area. Time was estimated based on the video frame-rate and the
respective frame number.

3.3 Experimental Results

Our method is evaluated as follows: an image at a considered time, tg = 0
and a time difference At is given as input. The provided output represents the
anticipated future frame at time ¢y + At, where At represents the number of
milliseconds after the provided image.

The sequential encoder-decoder baseline method is evaluated by presenting
solely an image, considered at time ¢y = 0 and expecting an image anticipating
the future at to + At as output. This image is then fed back into the network in
order to produce an anticipation of the future at time ¢y + kAty, k =1,2,3,....

For simplicity, we consider tg = 0ms and refer to At as simply ¢. It is impor-
tant to note that our method models time as a continuous variable. This enables
the model to predict future appearances at previously unseen time intervals, as
in Fig. 3. The model is trained on temporal displacements defined by the fram-
erate of the training videos. Due to the continuity of the temporal variable, it
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Fig. 2. Comparison of predictions for (a) a person walking to the left, (b) a person
walking to the right, (¢) a person waving their hands and (d) a person slowly clapping
with their hands. The third set of images in each group represent the actual future
frame—the groundtruth.
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can successfully generate predictions for: (i) temporal displacements found in the
videos (e.g. t={40ms, 80ms, 120ms, 160 ms, 200 ms}), (ii) unseen temporal dis-
placement within the values found in the training videos (e.g. t={60ms, 100ms,
140ms, 180ms}) and (iii) unseen temporal displacement after the maximal value
encountered during training (e.g. t=220ms).

40 80 120 160 200
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Fig. 3. Prediction of seen and unseen temporal displacements.
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Figure 2(a) illustrates a person moving from right to left, from the camera
viewpoint, at walking speed. Despite the blurring, especially around the left leg
when predicting for ¢ = 120 ms, our network correctly estimates the location of
the person and position of body parts. Figure 2(b) illustrates a person walking,
from left to right. Our proposed network correctly localized the person and the
body parts. The network is able to estimate the body pose, and thus the direction
of movement and correctly predicts the displacement of the person to the right
for any given time difference. The network captures the characteristics of the
human gait, as it predicts correctly the alternation in the position of the legs.
The anticipated future frame is realistic but not always perfect, as it is hard
to perfectly estimate walking velocity solely from one static image. This can be
seen at t = 200ms in Fig.2(b). Our network predicts one leg further behind
while the actor, as seen in the groundtruth, is moving slightly faster and has
already moved their leg past the knee of the other leg.

Our proposed network is able to learn an internal representation encoding
the stance of the person such that it correctly predicts the location of the person,
as well as anticipates their new body pose after a deliberate temporal displace-
ment. The baseline network does not have a notion of time and therefore relies
on iterative predictions, which affects the performance. Figure 2 shows that the
baseline network loses the ability to correctly anticipate body movement after
some time. Also in Fig.2(a) the baseline network correctly predicts the position
of the legs up to t = 80ms, after that, it correctly predicts the global displace-
ment of the person, but body part movements are not anticipated correctly. At
t > 160ms the baseline network shows a large loss of details, enough to cause
its inability to correctly model body movement. Therefore, it displays fused legs
where they should be separated, as part of the next step the actor is making.
Our proposed architecture correctly models both global person displacement and
body pose, even at t = 200ms (Fig. 4).
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Fig.4. Long distance predictions. For larger temporal displacements artifacting
becomes visible. The anticipated location of the person begins to differ from the
groundtruth towards the end of the total motion duration.

groundtruth predicted

Figure 2(c) displays an actor handwaving. Our proposed network successfully
predicts upward movement of the arms and generates images accordingly. Here
however, more artifacts are noticeable due to the bidirectional motion of hands
during handwaving, which is ambiguous. It is important to note that although
every future anticipation is independent from the others, they are all consistent:
i.e. it does not happen that the network predicts one movement for ¢; and a
different movement for ¢, that is inconsistent with the ¢; prediction. This is a
strong indicator that the network learns an embedding of appearance changes
over time, the necessary filters relevant image areas and synthesizes correct future
anticipations.

As expected, not every action is equally challenging for the proposed archi-
tecture. Table 1 illustrate MSE scores averaged over multiple time differences, t,
and for different predictions from the KTH test set. MSE scores were computed
on dilated edges of the groundtruth images to only analyze the part around the
person and remove the influence of accumulated variations of the background.
A Canny edge detector was used on the groundtruth images. The edges were
dilated by 11px and used as a mask for both the groundtruth image and the
predicted image. MSE values were computed solely on the masked areas. We
compare our proposed method with the baseline CNN architecture. The average
MSE scores, given in Table 1, show that our proposed method outperforms the
encoder-decoder CNN baseline by a margin of 13.41, on average, which is due
to the iterative process of the baseline network.

Table 1. Average MSE over multiple time distances and multiple video predictions,
on the different action categories of KTH. We compare our method with the iterative
baseline CNN; and show that our method on average performs better than the baseline
in terms of MSE (lower is better).

Method Jogging | Running | Walking | Clapping | Waving | Boxing | Avg
Baseline 30.64 40.88 30.87 43.23 43.71 46.22 | 39.26
Our method | 11.66 17.35 19.26 33.93 35.19 |37.71 |25.85
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3.4 Ambiguities and Downsides

There are a few key factors that make prediction more difficult and cause either
artifacts or loss of details in the predicted future frames. Here we analyze these
factors.

(i) Ambiguities in body-pose happen when the subject is in a pose that
does contain inherent information about the future. A typical example would
be when a person is waving, moving their arms up and down. If an image with
the arms at a near horizontal position is fed to the network as input, this can
results in small artifacts, as visible in Fig. 2(c) where for larger time intervals ¢,
there are visible artifacts that are part of a downward arm movement. A more
extreme case is shown in Fig. 5(a) where not only does the network predict the
movement wrong, but it also generates many artifacts with a significant loss of
detail, which increases with the time difference, ¢.

(ii) Fast movement causes loss of details when the videos provided for training
do not offer a high-enough framerate. Examples of this can be seen in Figs. 5(b)
and (c) where the increased speed in jogging and an even higher speed in run-
ning generate significant loss of details. Although our proposed architecture can
generate predictions at arbitrary time intervals ¢, the network is still trained on
discretized time intervals derived from the video framerate. These may not be
sufficient for the network to learn a good model. We believe this causes the loss
of details and artifacts, and using higher framerate videos during training would
alleviate this.

(iii) Decreased contrast between the subject and the background describes a
case where the intensity values corresponding to the subject are similar to the
ones of the background. This leads to an automatic decrease of MSE values, and
a more difficult convergence of the network for such cases. Thus, this causes to

t=40ms t= 80ms t= 120ms t=160ms  t=: 200ms
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Fig. 5. Examples of poorly performing future anticipations: (a) loss of details in waving,
(b) loss of details in jogging, (c) extreme loss of details in running, (d) loss of details
with low contrast and (e) artifacts in boxing.

predicted predicted
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loss of details and artifacts. This can be seen in Fig.5(d). Such effect would be
less prominent in the case in which color images would be used during training.
(iv) Excessive localization of movements happens when the movements of
the subject are small and localized. A typical example is provided by the boxing
action, as present in the KTH dataset. Since the hand movement is close to
the face and just the hand gets sporadically extended, the network has more
difficulties in tackling this. Despite the network predicting a feasible movement,
often artifacts appear for bigger time intervals ¢, as visible in Fig. 5(e).

Despite the previously enumerated situations leading our proposed architec-
ture to predictions that display loss of details and artifacts, most of these can
be tackled and removed by either increasing the framerate, the resolution of the
training videos, or using RGB information.

4 Conclusion

In this work, we present a convolutional encoder-decoder architecture with a
separate input branch that models time in a continuous manner. The aim is
to provide anticipations of future video frames for arbitrary positive temporal
displacements At, given a single image at current time (tg = 0). We show that
such an architecture can successfully learn time-dependant motion representa-
tions and synthesizes accurate anticipation of future appearance for arbitrary
time differences At > 0. We compare our proposed architecture against a base-
line consisting of an analogous convolutional encoder-decoder architecture that
does not have a notion of time and relies on iterative predictions. We show that
out method outperforms the baseline both in terms of visual similarity to the
groundtruth future video frames, as well as in terms of mean squared error with
respect to it. We additionally analyze the drawbacks of our architecture and
present possible solutions to tackle them. This work shows that convolutional
neural networks can inherently model time without having a clear time domain
representation. This is a novel notion that can be extended further and that
generates high quality anticipations of future video frames for arbitrary tempo-
ral displacements. This is achieved without explicitly modelling the time period
between the provided input video frame and the requested anticipation.
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