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Abstract. The Photo Response Non-Uniformity (PRNU) noise can be
regarded as a camera fingerprint and used, accordingly, for source identi-
fication, device attribution and forgery localization. To accomplish these
tasks, the camera PRNU is typically assumed to be known in advance
or reliably estimated. However, there is a growing interest for methods
that can work in a real-word scenario, where these hypotheses do not
hold anymore. In this paper we analyze a PRNU-based framework for
forgery localization in a blind scenario. The framework comprises four
main steps: PRNU-based blind image clustering, parameter estimation,
device attribution, and forgery localization. Each of these steps impacts
on the final outcome of the analysis. The aim of this paper is to assess
the overall performance of the proposed framework and how it depends
on the individual steps.

1 Introduction

The wide diffusion of powerful image editing tools has made image manipulation
very easy. This impacts on many fields of life, and is especially dangerous in the
forensic field, where images may be used as crucial evidence in court. Therefore,
in the last decade, digital image forensics has grown tremendously, and new
methodologies have been developed to track an image source and determine its
integrity. In particular, the interest has focused on passive techniques, which
detect traces of manipulations from the analysis of the image itself, with no
need of collaboration on the part of the user. Some of these techniques rely on
intrinsic camera properties, like sensor defects or lens aberration, while other
rely on statistical features introduced both in-camera (e.g., demosaicking) and
out-camera (e.g., JPEG compression) processing.

Some of the most successful camera-based methods rely on the Photo
Response Non-Uniformity (PRNU), a sort of camera fingerprint contained in
every image taken by a specific device. Its use was first proposed in [17], both
for source identification and forgery localization. In this work we focus on PRNU-
based methods for forgery detection and localization.

To extract the PRNU pattern, the high-level image content is removed
through some sort of high-pass filtering, obtaining the so-called image residual.
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Even in the residual, however, the PRNU pattern represents a weak signal over-
whelmed by intense noise, both of random origin, and deriving from imperfect
image content removal. This makes all PRNU-based analyses quite challenging,
to begin with the very same camera PRNU estimation. Several approaches have
been proposed in the literature to reduce the influence of the scene content on
PRNU estimation. In [15] some forms of enhancement are considered, while in [7]
the use of a nonlocal denoising filter has been shown to reduce the scene content
in the residual image. A systematic analysis of post-processing methods aimed at
improving PRNU estimation has been recently presented in [1]. With reference
to the forgery localization task, several improvements have been proposed with
respect to the basic method of [17]. In [5] a predictor is estimated which locally
adapts the statistical decision test by taking into account image features, such
as texture, flatness and intensity, thus reducing the probability of false alarms.
In [9], instead, the problem is recast in terms of Bayesian estimation, using a
Markov random field (MRF) prior to model the strong spatial dependencies and
take decisions jointly rather than individually for each pixel. In [6,8] the prob-
lem of small forgery detection is addressed, resorting to image segmentation and
guided filtering to improve the decision statistics. Further improvements have
been recently proposed by considering the use of discriminative random fields
[4] or by introducing multiscale analysis [14].

All these methods rely on the assumption that a large number of images are
available, which are known to come from the camera of interest. However, such
an hypothesis is not reasonable in a real-world scenario. Therefore, in this paper
we propose and analyze a framework for image forgery localization in a blind
scenario [10]. We only assume to have a certain number of images, whose origin,
however, is unknown. Then we estimate one or more PRNU’s by means of a
blind source clustering algorithm and use them to establish the integrity of the
image under test.

In the following Section we describe the PRNU-based framework for blind
forgery localization, while in Sect. 3 present experimental results with reference
to various clustering approaches [2,3,18], in order to assess the overall perfor-
mance of the proposed framework and how it depends on the individual steps.
Finally, in Sect. 4 we draw some conclusions.

2 Camera-Based Forgery Localization Framework

In both camera identification and forgery localization tasks, the PRNU of the
camera of interest is given in advance, or is accurately estimated from a large
number of images coming from the camera. However, in many forensic scenarios,
and especially in investigation, no information is available on the origin of the
images under analysis, neither the probe nor the dataset. Often, however, it
is reasonable to assume that the images in the dataset come from just a few
different devices. With this assumption, we can pursue PRNU-based forgery
localization in a blind scenario, following the framework shown in Fig. 1 and
already outlined in [10].
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Fig. 1. A framework for PRNU-based forgery localization in a blind scenario.

The considered framework consists of four steps:

1. Residual-based image clustering
2. Cluster PRNU estimation
3. Camera assignment
4. Forgery localization.

The first two steps allow us to group together images coming from the same
camera and to estimate their PRNU. Then, in step 3, the test image is associated
with one of the clusters (or possibly none) by a PRNU-based correlation test.
Finally, the tampered area of the test image is localized by detecting the absence
of the selected PRNU. These steps are described in more detail in the following.

2.1 Residual-Based Image Clustering

To perform PRNU-based forgery localization one needs the true PRNU of the
camera. Otherwise, it can be estimated by averaging a large number of images
taken by the camera of interest. To this end, the first step of the proposed frame-
work aims at grouping together all images of the dataset coming from the same
camera. Since these share the same PRNU, they will exhibit a larger correlation
than images coming from different cameras. However, before computing corre-
lations, the high-level content of the images, which represents an interference
in this context, is removed by high-pass filtering, obtaining the so-called noise
residuals.

Let R = R1, R2, . . . , RN be the set of all noise residuals in the dataset. We
want to partition this set in M distinct clusters, where the number of clusters
is not know a priori. Therefore, the output of this step is a partition, P , of the
dataset, namely:
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P = {C1, C2, ..., CM} Ci ∩ Cj = ∅ ∀i �= j,

M⋃

i=1

Ci = R (1)

In the literature, a number of PRNU-based clustering methods have been
recently proposed [2,3,10,16,18], some of which will be considered in the experi-
ments. Ideally, we would like to obtain as many clusters as are the source devices
in the dataset, M = Mt, with Mt the number of devices, and all of them “pure”,
namely consisting only of images taken by the same device. In practice, the esti-
mated number of clusters may differ from the number of cameras and, even when
they coincide, the clusters may not be pure, comprising images coming from dif-
ferent sources. In all cases, the effect is a loss of accuracy in PRNU estimation.
When under-partitioning occurs, M < Mt, clusters are necessarily “impure”,
comprising also images coming from other cameras which act as additional noise
in the estimation. In case of over-partitioning, M > Mt, even pure clusters may
comprise only a fraction of all images taken by a camera, leading to a less reliable
estimate. The aforementioned effects may both show up in the same clustering
experiment. Of course, all deviations from perfect clustering tend to cause a
performance loss.

2.2 Camera Fingerprint Estimation

In the second step, each cluster is treated as “pure”, and used to estimate both
the PRNU and the predictor needed in the localization phase [5].

Given Nm images in the m-th cluster, one can perform a maximum-likelihood
(ML) estimate of the PRNU as [5]

K̂m =
Nm∑

i=1

[
Ii∑Nm

i=1 I2i

]
Ri (2)

In alternative, one can use the simpler sample average

K̂m =
1

Nm

Nm∑

i=1

Ri (3)

which ensures very close performance to the ML case, provided Nm is large
enough. On the other hand, when the cluster is too small, both estimates become
quite unreliable because the noise residuals, Ri, have a very small signal compo-
nent overwhelmed by noise. Whatever the estimator, some suitable steps follow
to remove non-unique artifacts originated by other camera processes.

Some clustering methods tend to generate a large number of small clusters,
even singletons, besides a few large ones. It makes sense to discard such small
clusters, due to the ensuing unreliable estimates. Therefore, we introduce a para-
meter, Nmin, left to the analyst to set, such that all clusters with Nm < Nmin are
automatically discarded, avoiding their involvement in the forgery localization
process.
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Besides the PRNU itself, the localization algorithm proposed in [9] needs a
predictor, which establishes the expected value of the correlation for a pristine
image. Therefore, for each cluster, we must also estimate the predictor parame-
ters, say Θm. To this end, the cluster must be further divided in two subsets,
Cm = C ′

m ∪ C ′′
m. The first one, C ′

m, is used to compute an internal PRNU, to
which images of the second set, C ′′

m, are correlated. The parameters of the pre-
dictor, Θm, are then designed to minimize the error between the predicted and
observed values of the correlation. Clearly, this further partition of the cluster
further stresses the need for it to be large enough. To reduce this problem, we
split clusters exactly in half for this task. Note, however, that the final estimate
of the cluster PRNU can be carried out from the whole set. Indeed, the test
image is completely alien to the cluster, and hence there is no reason to penalize
the estimation of the PRNU.

In conclusion, the output of this step is the set of estimated PRNUs and
predictor parameters, {K̂m, Θm,m = 1, . . . ,M}.

2.3 Camera Assignment

In this step we try to establish whether the probe image, Ip, is compatible with
one of the estimated PRNU’s, and which one. This decision is based on the
normalized correlation1

ρm = corr(Rp, Ip × K̂m) (4)

between the high-pass image residual, Rp, and each of the scaled fingerprints.
The probe image is assumed to come from the camera with the most corre-

lated PRNU
K̂max = arg max

m
corr(Rp, Ip × K̂m) (5)

which is therefore selected to perform forgery localization. However, it is also
possible that none of the cameras under analysis originated the probe image,
in which case all correlations should be small. To formalize this problem, let us
consider the two hypotheses

H0 : the probe image is alien to the dataset
H1 : the probe image comes from one of the dataset cameras

To design a statistical test we should know the distribution of ρ under both
hypotheses. This is not possible in our blind scenario, therefore we resort to a
Neyman-Pearson test, selecting a decision threshold, t, which guarantees a suit-
ably small false alarm probability PFA. Following [13], we assume the normalized
correlations to have a Gaussian distribution under H0

ρ ∼ N(0, 1/HW ) (6)

1 Here, and throughout this work, we assume the images to be perfectly aligned.
Otherwise, one can replace normalized correlation with Peak-to-Correlation Energy
(PCE) ratio [12], which works correctly also in the presence of image cropping.



574 D. Cozzolino et al.

where H and W are the image dimensions. Therefore

PFA = Pr(ρmax > t|H0) = 1 − (1 − Pr(ρm ≤ t|H0))M

= 1 − (1 − Q(t
√

HW ))M 
 MQ(t
√

HW ) (7)

with the latter approximation holding for small M and Q(t
√

HW ) � 1. By
inverting the above relation the desired threshold is obtained.

2.4 PRNU-Based Forgery Localization

In the last step of the framework, a PRNU-based forgery localization technique
is applied. Several such methods have been proposed in the last few years, and
they all share the same basic idea. When the image is tampered with, for exam-
ple through the splicing of some alien material, its PRNU is locally removed.
Therefore, a sliding-window correlation test is performed, and when the local
correlation index falls below a given threshold, a forgery is declared. Since the
correlation may also depend on the image content, the threshold must be adapted
locally by using the predictor with parameters Θmax estimated in step 2.

The output of this localization step is a binary decision mask that high-
lights the pixels that are considered as tampered. Given such a mask, and the
corresponding ground truth mask, one can compute a number of performance
indicators. However, it is worth pointing out that the output mask should be
always analyzed by a human interpreter. In fact, real-life image forgeries are
performed with a purpose, and they possess a semantics that is not easily cap-
tured by algorithms. The localization mask should be therefore regarded as a
diagnostic tool to support the expert decision.

3 Experimental Results

In this section we evaluate the performance of the proposed PRNU-based frame-
work for blind forgery localization. Experiments are carried out on six cam-
eras: Canon EOS-10D, Canon EOS-450D, Canon Ixus 95IS, Nikon D200, Nikon
Coolpix S5100, Sony DSC S780. For each camera we use 50 images as training
set to perform the PRNU-based clustering and to estimate the cluster PRNUs.
Performance is assessed on 50 more images per camera, different from those of
the training set. All images have the same size of 768 × 1024 pixels, and are
cropped from the same region of the full-size images. To study forgery local-
ization, we generate forged versions of the test images by pasting on them, at
the center, a square region of 128 × 128 or 256 × 256 sampled randomly from
another image. In addition, we repeat the experiments using JPEG compressed
images with a quality factor of 90. All the noise residuals are extracted by using
the BM3D denoising filter [11], and removing non-unique artifacts caused by
demosaicing and lens distortions as proposed in [5].

Localization results are given in terms of ROC curves, giving pixel-wise prob-
ability of detection, PD, and probability of false alarm, PFA, as a function of
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the decision threshold. As a synthetic measure, the area under the ROC curve
(AUC) is also computed. Before considering localization, however, we study the
performance of previous steps, to understand their impact on the accuracy.

3.1 Image Clustering and PRNU Estimation

We implemented three clustering algorithms, based on Normalized Cuts (NCut)
[2], on pairwise nearest neighbor (PCE-PNN) clustering [3,10], and on correla-
tion clustering [18], denoted as Marra2017. Note that NCut requires a threshold
parameter to be estimated on a training set, so we consider here an oracle version,
selecting a posteriori the best parameter. For PCE-PNN we used the threshold
used by the authors in the original paper. Other PRNU-based clustering meth-
ods [3,16] are not considered here because they have been shown in [2,18] to
provide a generally worse performance.

Table 1. Performance of clustering algorithms.

NCut-oracle PCE-PNN Marra2017
Set ARI TPR FPR ARI TPR FPR ARI TPR FPR

Original 0.872 84.31 1.21 0.839 75.74 0.00 0.960 94.79 0.26
JPEG (QF = 90) 0.647 61.07 2.77 0.819 79.02 1.50 0.921 93.58 1.33

Table 1 shows results of clustering algorithms on both original and JPEG
compressed images in terms of adjusted rand index (ARI), true positive rate
(TPR) and false positive rate (FPR). Marra2017 provides clearly the best results,
even better than the oracle version of NCut, with ARI always very close to 1
(perfect clustering).

In Fig. 2 we show a graphical representation of the results. For uncompressed
images (left) Marra2017 provides near-perfect results, with just a few extra clus-
ters for the Sony camera, removed because too small (Nm < Nmin). In this
condition, almost all available images can be used to estimate the PRNU’s. The
other methods show a higher fragmentation, but clusters are large and pure
enough to provide good estimations. Using JPEG compressed images, perfor-
mance impairs for all methods, but only slightly for Marra2017. On the contrary
PCE-PNN and NCut-oracle suffer more on this dataset, especially for the Nikon
D200 images, that will not allow a good PRNU estimate.

3.2 Image to Cluster Assignment

After clustering the images and estimating the cluster fingerprints, the probe
image is correlated with all PRNU’s. If the maximum correlation exceeds the
decision threshold, t, forgery localization is performed. Together with the 600
test images coming from the selected cameras, we use 600 (negative) images
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Fig. 2. Clustering results on original images (left) and JPEG compressed images (right)
for NCut-oracle, PNN-PCE and Marra2017. Colors refer to the devices (see legend)
while bar height indicate number of images in a cluster. (Color figure online)

taken from other sources, and cropped to the same size. Table 2 shows the detec-
tion performance for a threshold, t, set so as to obtain a theoretical false alarm
probability PFA = 10−3. In detail, the FPR is the fraction of negative images
that pass the test, while the TPR is the fraction of positive images (taken
by one of the cameras in the dataset) recognized as such. The FPR is always
very small, compatible with the theoretical level. The TPR is also quite large,
but almost 6% of the positives are rejected, a fraction that grows above 10%
with JPEG compressed images (almost 20% for PCE-PNN). Considering that
Marra2017 provides near-perfect clustering, these errors must be attributed to
the intrinsic problems of PRNU estimation. After correct detection, we could still

Table 2. Detection performance on original and JPEG compressed images.

Original JPEG (Qf = 90)
Set TPR FPR TPR FPR

NCut-oracle 94.3% 0% 89.2% 0%
PCE-PNN 94.0% 0.3% 81.0% 0.7%
Marra2017 93.9% 0% 89.6% 1.5%
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Fig. 3. Forgery localization results on original (top) and JPEG compressed images
(down) with forgeries of 256 × 256 (left), and 128 × 128 pixels (right).

have a wrong assignment, that is, the probe image could be associated with a
wrong camera/PRNU. However, our experiments show this event to be extremely
unlikely, with probabilities lower than 0.1% in all cases and not reported in detail
for the sake of brevity.

3.3 Forgery Localization

We conclude this analysis by studying forgery localization performance. Local-
ization is carried out by the algorithm proposed in [9], based on a MRF prior
and on the predictor of [5]. Together with the ideal case where the PRNU’s are
estimated from all available images, the case of real-world imperfect clustering
is also considered, with all methods discussed before.

Figure 3 shows the ROC curves for original (top) and JPEG compressed
images (down) with the two different forgery sizes. With large forgeries on
uncompressed images results are very good. The AUC’s are close to 0.9 with
both ideal and Marra2017 clustering, and only slightly smaller with the other
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clustering methods. Surprisingly, Marra2017 provides even a small improvement
with respect to ideal clustering, maybe because the discarded images are outliers
that impact negatively on the PRNU estimation. As expected, all results impair
somewhat when considering smaller forgeries and JPEG compressed images.
However, the performance obtained with blind clustering keep being very close
(equal for Marra2017) to those of ideal clustering.

Finally, we assess the performance when we renounce clustering altogether,
computing a single PRNU estimated by averaging all images in the dataset. This
“naive” approach makes sense, since the estimated PRNU will bear traces of all
camera fingerprints, although attenuated due to the large number of unrelated
images averaged together. Figure 4 shows a significant performance drop with
respect to the best clustering-based solution, both with original and JPEG com-
pressed images (only 256 × 256 pixel forgeries, for brevity) which fully supports
our findings.
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Fig. 4. Results for clustering-based and “naive” solutions on original (left) and JPEG
compressed images (right) with 256× 256 pixel forgeries.

4 Conclusion

In this paper we analyze a Camera-based framework for forgery localization in a
blind scenario using a controlled dataset. The framework is composed of different
steps, each of which is a possible source of error. The aim of our experiment is to
show the performance of each single step due to the errors of the previous steps.
As we see, for the original images the performance of all clustering algorithm
are high enough to create cluster with a low FPR that assure to estimate pure
PRNUs (all the images coming from the same camera device). This allow the
forgery detector to perform as well as in the ideal case. In the JPEG compressed
dataset, we note a performance drop when the clustering become less accurate
and fragmented. The comparison with the naive solution say us that the effort in
having a good clustering algorithm and pure PRNUs estimation is not pointless.
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