The Formal Transformation of AADL Based
on Z-ColA

Fugao Zhang(g) and Zining Cao

College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
luwayzhg@l63. com, caozn@l63. com

Abstract. The Architecture Analysis and Design Language (AADL) is a
component-based semi-formal language. This paper proposes an expanded
component-interaction automaton with Z language (Z-ColA) based on the
characteristics of AADL, introducing the formal specification Language Z into
the component-interaction automata, then the formal transformation rules from
AADL to the Z-ColA is given, which is good for describing the data during
system interaction and the attributes in state transitions and data constraints.
Finally, a concrete example is shown.

Keywords: AADL - Component-interaction automata * Z language - Model
transformation

1 Introduction

With the development of the AADL, the research about the formal verification of the
AADL model has become a hot topic. Transforming from the AADL model into the
expanded automata is one of the main directions. The literature [1] proposed a series of
formal transformation rules converting the subset of the abstract AADL model into a
timed automata, and developed the AADL verification tool based on the OSATE. The
literature [2] transformed the AADL model into a generalized stochastic Petri net, and
evaluated the reliability of the model based on stochastic Petri nets analysis technology.
To specify some other aspects which are not limited to behavior and communication,
the literature [8] translates AADL to timed abstract state machine for timing and
resource aspects of a system. Some other researches such as literature [9] pays attention
to the formal verification of distributed real-time systems, it transforms AADL model
to another specification formalism like LNT language which is an input to CADP
toolbox for formal analysis.

Some early automata like I/O automata and interface automata do not describe the
interaction between components, which do not support the interface interaction between
components naturally. The literature [3] proposed the component interaction automata,
the advantages and disadvantages of component interaction automata and the verifica-
tion method based on the temporal logic are also mentioned. The literature [4] men-
tioned a modeling method based on the time component interaction automata and
introduced the definition, combination and verification algorithm of the time component

© Springer International Publishing AG 2017
X. Sun et al. (Eds.): ICCCS 2017, Part II, LNCS 10603, pp. 816-822, 2017.
https://doi.org/10.1007/978-3-319-68542-7_72

The Formal Transformation of AADL Based on Z-ColA 817

interaction automata. The literature [5] introduced the qos constraints into the compo-
nent interaction automata, and put forward a component model based on constraint
interaction automata.

AADL is the industry standard language for embedded real-time systems, and is
suitable for the specification of hierarchical components architecture. Embedded
real-time systems with data constraint are computing system with time constraints and
variable data constraints at the same time. Constraints between data variables are
certainly included in the requirements of these systems, so in order to describe the
constraints between data variables, we use the Z language to describe the states sets,
state transition and properties in the model. Z language is a formal specification lan-
guage based on the first order predicate logic and set theory, and is well suited for
describing the states transitions and data constraints. The literature [6] combined Z
language and interface automata, and put forward the definition of ZIA. ZIA is in a
style of interface automata but its states and operations are described by Z language.

Moreover, AADL is semi-formal and cannot be verified by the formal methods
directly, so this paper combines the Z language and the component interaction auto-
mata based on the characteristic of AADL. And then transforms the AADL model into
the Z-ColA model based on the formal transformation rules, so as to AADL can be
verified by logic formula or any other formal methods in the future work.

2 Component Interaction Automata with Z Language

The formal specification language Z is based on the first-order predicate logic and set
theory. Z language adopted strict mathematical theory, thus can produce concise,
precise, unambiguous, and provable specifications.

The schema [7] is a kernel notation in Z language that to aid the structuring and
modularization of the specification. A schema is constitute of variable declarations and
predicates represent the limitation of these variables, and the schema has vertical and
horizontal two forms.

Where S is the name of the schema, Dy . . .; D,, are the declarations partand Py; . . .; P,

are the predicates, and the horizontal form will be: S L [Di;...;Dw|P1; .. . Pyl
Furthermore, Z language use the identifier decorations to encode intended inter-
pretations. A variable ending with “?” represents an input variable, and the “!” rep-
resents the output. The decoration ‘> behind the variable represents the next state.
With the decorations, Z language can depict the next state variables and the current
state of the relationship between variables. Then the definition of component interac-
tion automata with Z language is as follows, which can be abbreviated by Z-ColA.

Definition 1. The component interaction automata with Z language can be depict as
M = (Q,00,A,V,I',FA,FV H), where,

(1) Q is a set of states that is finite and not empty, Qp C Q represents the set of the
initial states;

(2) Ais aset of the actions in the automata, and include the input, output and internal
actions respectively;

818

(©)

“)
(&)

(6)
)

F. Zhang and Z. Cao

V is a set of the variables in the automata, and include the input, output and
internal variables respectively;

I'CQx Y x Qis a set of transitions between states;

F* is a map, and maps any states in A to a operation schema in Z language, and
specifically, the input action maps the input operation schema in Z language, the
output action maps an output operation schema in Z language, and the internal
maps operation schema in Z language;

FY is a map, which maps any states in V to a state schema in Z language;

H is a tuple corresponding to a hierarchy of component names.

A component interaction automata with Z language M consists of the following
elements, which can be represented by Fig. 1:

D
(@)
3
“4)
®

(6)

)

®)

0 =1{490,91.92,q3}:
Qo ={q0};
Al ={a,c}, A% = {d}, A" = {b};

VI={xixn}, VO = {y}, VI = {2}

Ir={M,a, +),(M,b,M),(M,c, +),(M,d,—)};
F¥(po) = So =[z: N|z = 0],

FY(p1) =8 é[)Cl? :N|x; € N;z=0],

FV(p2) = $2 21 : N;z: Njz = i),

FV(p3) = S5 é[xz? :N;y! : Nixy € N5z = xq],
FA(a) = Ay =[x17 : N|x; € N],

FAb) = Ay 20?7 : N;z: N|Z = z+x7],

FA(c) = Ac 20?1 N|x, € N],
FAd) = Ay é[xz EN;y : N;z: Ny = zxx2);
H={M};

M, a, +)

M, b, M)

Fig. 1. A component interaction automata with Z language.

The compointernal actions of each component automata is disnent automata is hier-

archical and composable if the joint with the action sets of all other component automata.

The Formal Transformation of AADL Based on Z-ColA 819

Definition 2. S = (Qc¢, Qco,Ac, Ve, e, Fé» F!,Hc), the Combination of Component
Interaction Automata with Z Language is combined by the sets of components where,

(1) i € N and the set of component name {(H;)} is disjoint of each other;

(2) Oc, Oco, is the combined automata states set and the initial states; and the set of
actions and variables of the combined automata Ac = U ;enA, Ve = Uien'V;

(3) T'cC{X xAc x (XU{£}},X € {(H;)} is the set of transitions between states of
the combined automata;

“4) Fé, F ‘c/ are maps of actions and states of the combined automata;

(5) Hc = {(H;:)},i € N is the corresponding to a hierarchy of component names.

When combining this kind of automata, the question that whether the components are
matched each other or not should be taken into account. When two components are input
and output module with each other, the input and output actions can be matched for an
internal action, marked as (X,t,X). The input part is My = (Q1, Q10,A1, V1,11,
F FY Hy), My = (Q2, 020,42, Va, 'y, F5, FY , Hy). The output part is S = (Qc, Qco,
Ac, Ve, I e, Fé, F ‘C/ , Hc). The synchronous actions are combined into the internal action,
and the others are interleaving. And there will be the combined set of states Q¢, the set of
actions A¢ and the set of transitions I'¢, then the new states and actions can be remapped
into the Z language, at last, the component name sets Hc = (H\, H;), then the work of the
combination of the Z component interaction automata is finished.

3 The Transformation of AADL to Z-ColA

AADL is a modeling language that supports early and repeated analyses of a system’s
architecture with respect to performance-critical properties through an extendable
notation, a unified framework, and precisely defined semantics. AADL subset includes
the components of thread, process, process group, system and the behavior annex. In
order to construct data constraint, we use Z schema to extend AADL based on its
behavior annex. The formal transformation rules is given in Table 1.

The main transformation rules include: one basic component in AADL to one
single Z-ColA; the in-ports and out-ports in the feature of AADL component to the set
of interaction in the Z-ColA; the states set in the behavior annex to the sets of states in
Z-ColA,; the transitions of states in AADL to the sets of states transitions in Z-ColA;
the guard of the states transitions to the input actions of the Z-ColA; the actions in the
behavior annex to the output actions of Z-ColA; the transitions without the output

Table 1. The transformation rules of the AADL to Z-ColA.

AADL model Z-ColA model

A single component One component interaction automata
The features of the component The ports of the Z-ColA

The states in behavior annex The sets of states in Z-ColA

The transitions of the states The sets of transitions in Z-ColA
The action of transitions The actions of Z-ColA

The component consist of subcomponents | The combined Z-ColA

820 F. Zhang and Z. Cao

actions to the internal actions in Z-ColA. And the Table 1 is the formal transformation
rules of the AADL to Z-ColA.

4 The Example of AADL Model Transformation

We present a specific metro control system to show our method to transform the AADL
to Z-ColA. The architecture of metro control system can is shown in Fig. 2. It includes
metro control system, the metro door control system and the platform door control
system. Control system receives the command from the metro control system, and send
command to control the open or closed of the metro door after data processing, and at
the same time, send the status of the metro door to the metro control system.

Metro door
control
system

Metro control ‘////////
/

system

Platform
door control
system

Fig. 2. The architecture of metro control system.

The entire system can be described by the system component metro_system in
AADL like Table 2, and consist of two subcomponents, the metro_controller process
component and door_system component. Whereby, the system component is consist of
door_controller and door process components, and each process component consist of
the corresponding thread components. Based on the transformation rules and the
specific AADL model, we can transform the AADL model of metro control system into
the Z-ColA model.

The process component metro_controller can be transformed to the Z-ColA M;:

M, = ({Pmpl}a {pO}v{avb}’ {(M17a7 +)7 (M17b7 _)}aFAvFV7 (Ml))

The process component door_controller can be transformed to the Z-ColA M,:

My = ({po,p1,p2:p3}, {po}. {a, b, c,d}, {(M2,a, +), (M2, b, =), (Ma, ¢, +), (M2,d, —)},
FYFY (M),

The Formal Transformation of AADL Based on Z-ColA 821

Table 2. The AADL model of metro control system.

process door
features
X: in data port;
end door;

process door_controller
features
current_data: in data port;
new_feature: out data port;
new_feature2: out data port;
end door_controller;

process metro_controller
features
current_data: out data port;
new_feature: in data port;
end metro_controller;

system implementation door_system.impl
subcomponents
door:process door;
door_controller: process door_controller;
end door_system.impl;

system implementation metro_system.impl
subcomponents
door:system door_part;
metro_controller: process metro_controller;
end metro_system.impl;

The process component door can be transformed to the Z-ColA Mj:

M; = ({p07pl}a {P0}7 {aab}; {(M37a7 +)7 (M3aba _)}aFAvFvv (M3))

The system component can transformed by the combined of the Z-ColA. The
door_system component is combined by the door_controller and door process com-
ponents, and can be described by My:

My = <{P07P1}a {p0}7 {a7b}a {(M47a7 +)7 (M47b7 _)}aFA>FV7 (M4))

5 Conclusion

Based on the modeling language AADL, this paper presents an expended component
interaction automata with Z language named Z-ColA. So as to formally describe large
amount of data and data constraints in the system and expend the advantages of Z

822 F. Zhang and Z. Cao

language with automata, and take advantages of the two formal methods. It can be used
for the formal verification of the AADL in the future research work. Then the formal
transformation rules from AADL to Z-ColA are described formally, and apply our
method to a specific example of metro control system.

AADL is the industry standard language for embedded real-time systems. When an
embedded real-time systems with data constraint iS a computing system, we can
combine the Z language, at the same time, we can also generate the time component
interaction automata to describe the time constraints in the system, which both with
time constraints and variable data constraints. Similarly, when combine the component
automata, we can expend the process algebraic language to add the description of the
relationship between the components. In addition, we can also develop the tool to
realize the automatic transformation from AADL to Z-ColA as a plug of the AADL
tool OSATE in the future work.

Acknowledgments. This paper was supported by the Aviation Science Fund of China under
Grant No.20150652008, the National Basic Research Program of China (973 Program) under
Grant No.2014CB744903 and the National Natural Science Foundation of China under Grant
No.61572253.

References

1. Yang, Z., Hu, K., Ma, D., et al.: From AADL to timed abstract state machines: a verified
model transformation. J. Syst. Softw. 93(2), 42-68 (2014)

2. Wu, Y.: The study of formal verification of embedded software based on AADL. Shanxi
Normal University (2014)

3. Zimmerova, B., Vafekov4, P., Bene§, N., Cemn4, L, Brim, L., Sochor, J.: Component-
interaction automata approach (Coln). In: Rausch, A., Reussner, R., Mirandola, R., Plasil, F.
(eds.) The Common Component Modeling Example. LNCS, vol. 5153, pp. 146-176.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-85289-6_7

4. Yangli, J., Zhenling, Z.: Formal model of component real-time interaction behavior based on
automata theory. J. Comput. Sci. 37(9), 151-156 (2010)

5. Yuyu, Z.: The study of component behavior consistency based on constraints interaction
automata. Harbin Engineering University (2012)

6. Zining, C.: Temporal logics and model checking algorithms for ZIAs. In: International
Conference on Software Engineering and Data Mining, New York, pp. 57-62. IEEE Press
(2010)

7. Jonathan, B., Bowen, A.J.: Formal specification and documentation using Z: a case study
approach (2003)

8. Hu, K., et al.: Exploring AADL verification tool through model transformation. J. Syst.
Archit. 61(3—4), 141-156 (2015)

9. Mkaouar, H., Zalila, B., Hugues, J., Jmaiel, M.: From AADL model to LNT specification. In:
de la Puente, J.A., Vardanega, T. (eds.) Ada-Europe 2015. LNCS, vol. 9111, pp. 146-161.
Springer, Cham (2015). doi:10.1007/978-3-319-19584-1_10

http://dx.doi.org/10.1007/978-3-540-85289-6_7
http://dx.doi.org/10.1007/978-3-319-19584-1_10

	The Formal Transformation of AADL Based on Z-CoIA
	Abstract
	1 Introduction
	2 Component Interaction Automata with Z Language
	3 The Transformation of AADL to Z-CoIA
	4 The Example of AADL Model Transformation
	5 Conclusion
	Acknowledgments
	References

