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Abstract. Despite the convenience brought by cloud computing, inter-
net users, meanwhile, are faced with risks of data theft, tampering,
forgery, etc. Fully homomorphic encryption (FHE) has the ability to deal
with the ciphertext directly, which can solve the problem of data security
in cloud computing. Therefore, fully homomorphic encryption (FHE) has
been widely used in cloud computing as well as multiparty computing,
functional encryption and private information retrieval, etc. However,
previous FHE schemes are based on standard (ring) learning with errors
(LWE) assumption and the most typical schemes were created by Braker-
ski (CRYPTO2012) and Gentry-Sahai-Waters (GSW) (CRYPTO2013).
Moreover, inspired by the work of Li et al. at ICPADS2016, they made
use of Brakerski’s scale-invariant technology and constructed a new FHE
scheme with errorless key switching under Dual-First-is-errorless LWE
(Dual-Ferr.LWE) problem. Hence, armed with Li et al.’s work, in this
paper, we use Gentry-Peikert-Vaikuntanathan’s scheme (i.e., under dual
LWE assumption) as building block to construct a FHE scheme. Lastly,
under the assumption of decisional learning with errors (LWE), we prove
that our scheme is CPA (chosen-plaintext-attack) secure.

Keywords: Cloud computing · Lattice based cryptography · Fully
homomorphic encryption · Dual learning with errors · First of errorless
LWE

1 Introduction

As a new mode of commercial applications, cloud computing services have greatly
changed people’s way of life. Cloud computing can be understood as a process
in which the user gives the computing task to the cloud server, and then, the
server returns the results of the computation to the user [23,24]. With the rapid
development of cloud computing, increasingly more people store data in the
cloud, but it cannot be overlooked that applications of cloud computing are also
accompanied by security risks, such as data storage, transmission security and
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user privacy [8,25,26]. The security problem of cloud computing which exerts a
negative effect on its application and popularization is a crucial issue in cloud
computing research. Fully homomorphic encryption is a new cryptographic tech-
nology based on computational complexity theory of mathematical problems,
which can provide a method to protect the privacy of the outsourcing data.

Moreover, the hard problem of lattice-based cryptography is considered as a
useful tool for the foundation of secure cryptographic constructions. Attractive
features of lattice cryptography include apparent resistance to quantum attacks
(in contrast with most number-theoretic cryptography), high asymptotic effi-
ciency and parallelism, security under worst-case intractability assumptions, and
solutions to long-standing open problems in cryptography.

FHE has long been a holy grail in cryptography [20]. However, it is only in the
past few years that candidate FHE schemes have been proposed. The first scheme
was constructed by Gentry [9], and his work inspired a tremendous amount of
research showing efficient improvements to his scheme (e.g. [21,22]), realizations
of FHE based on different assumptions (e.g. [2–7,12,15]), implementations of
FHE (e.g. [10,13,14]), etc.

1.1 Our Contribution and Techniques

We note that most of existing FHE schemes are constructed based on LWE
assumption. However, the FHE scheme based on dual LWE has only been pro-
posed by Brakerski [2] and just two constructions proposed by Li et al. [17–19].
Therefore, it is an interesting work to construct a FHE based on dual LWE
roughly following their novel techniques.

The main observation is that the errorless key-switching procedure [17]
doesn’t have noise elements and not against key recovery attack [16].

<cout, skout> = <cin, skin> (mod q)

Hence, we propose a variant of Key-Switching procedure based on Dual LWE

<cout, skout> = <cin, skin> + <cin,xin→out> (mod q)

We add some noise to the KeySwitch phase to make it work more efficiently
and security.

2 Preminary

In this section we introduce some notations and learning with errors problem for
both the search and decision variants. More details are as follows:

2.1 Notation

We use bold lower-case letters like x to denote column vectors; for row vectors we
use the transpose xT . We use bold upper-case letters like A to denote matrices
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and sometimes identify a matrix with its ordered set of column vectors. We will
be using norms in many of the inequalities in this work. For that reason, we will
give three well known norms and inequalities related to norms that we will use
in the following sections. l∞ norm is: ||v||∞ = max{|v1|, · · · , |vn|}; l1 norm is:
||v||1 =

∑n
i=1 |vi| and Euclidean norm is: ||v||2 =

√∑n
i=1 |vi|2.

Lemma 1 ([1] Lemma 12). Let vector x be some vector in Z
m and let e ←

DZm,r. Then the quantity | xT · e | when treated as an integer in [0, · · · , q − 1]
satisfies

| xT · e |≤ ||x||rω(
√

log m) + ||x||√m/2

with all but negligible probability in m.

Lemma 2 ([11] Corollary 5.4). Let n and q be positive integers with q prime,
and let m ≥ 2nlg q. Then for all but a 2qn fraction of all A ∈ Z

n×m
q and for any

r ≥ ω(
√

log m), the distribution of the syndrome u = A · e mod q is statistically
close to uniform over Z

n
q , where e ← DZm,r.

2.2 Learning with Errors

We survey the main foundational work that directly underlies most modern
lattice-based cryptographic schemes. Here we just describe LWE, its hardness,
and a basic LWE-based cryptosystem in some detail.

Definition 1 (Learning with Errors Distribution). For a vector s ∈ Z
n
q called

the secret, the LWE distribution As,χ over Z
n
q × Zq is sampled by choosing a ∈

Zq uniformly at random, choosing e ← χ, and outputting
(
a, b = <s,a> +

e (mod q)
)
.

There are two versions of the LWE problem: search version, which is to find
the secret given LWE samples, and decision version, which is to distinguish
between LWE samples and uniformly random ones.

Definition 2 (Search − LWEn,q,χ,m). Given m independent samples (ai, bi) ∈
Z

n
q ×Zq drawn from As,χ for a uniformly random s ∈ Z

n
q (fixed for all samples),

find s.

Definition 3 (Decision − LWEn,q,χ,m). Given m independent samples
(ai, bi) ∈ Z

n
q × Zq where every sample is distributed according to either: (1)

As,χ for a uniformly random s ∈ Z
n
q (fixed for all samples), or (2) the uniform

distribution, distinguish which is the case (with non-negligible advantage).

3 Fully Homomorphic Encryption from GPV Scheme

In this section, we use GPV scheme [11] as a building block to construct a variant
of FHE scheme.
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3.1 New Key Switching

In this subsection, we construct a new key switching procedure.

– SwitchKeyGen: Pskin⇒skout
← SwitchKeyGen(skin, skout):

1. For the input secret key skin = [1, ein]T ∈ D
Z

nin×1
q ,r

and the output

secret key skout = [1, eout]T ∈ D
Z

nout×1
q ,r

, where the input secret key
ein ∈ D

Z
(nin−1)×1
2

and the output secret key eout ∈ D
Z
(nout−1)×1
2

;

2. Compute uin⇒out = Ain⇒out · eout ∈ Z
n̂in×1
q , let n̂in = nin × �log q�.

Powerof2q(skin) ∈ Z
n̂in
q , and choose a random matrix Ain⇒out which

from Z
n̂in×(nout−1)
q ;

3. Here in order to get the secure scheme and prevent one from learn-
ing all the secret keys, we add some noise x ← χnin×1(xin⇒out :=
Powerof2q(x) ∈ χ ˆnin×1) to the uin⇒out. Then compute:

bin⇒out = Ain⇒out · eout + Powerof2q (skin + x) ∈ Z
n̂in×1
q ;

4. Output Pin⇒out = [bin⇒out | −Ain⇒out] ∈ Z
n̂in×nout
q .

– SwitchKey cout ← SwitchKey(Pin⇒out, BitDecomp(cin)):
1. To switch a ciphertext from a secret key skin to skout, first compute

Pin⇒out · (skout) = bin⇒out − Ain⇒out · eout = Powerof2q(skin + x)(1)

2. Then output cout = PT
in⇒out · BitDecomp(cin) ∈ Z

nout×1
q , where we note

that BitDecomp(cin) ∈ Z
n̂in×1
q .

We usually omit the subscripts when they are clear in the context.

Lemma 3 (Correctness). Let skin ∈ Z
nin , skout ∈ Z

nout and cin ∈ Z
nin
q be

any vectors. Let Pin⇒out ← SwitchKeyGen(skin, skout) and set
cout ← SwitchKey(Pin⇒out, cin). Then:

<cout, skout> = <cin, skin> + <cin,x> (mod q) (2)

Proof. We will give a more detailed proof than that of [2] and [5].

<cout, skout> = BitDecomp(cin)T · Powerof2q(skin + x)
= <cin, skin> + <cin,x> (mod q)

Lemma 4. |£| is the noise inflicted by the key switching process, We bound |£|
using the bound on χ, therefore |£| := |<cin,x>| ≤ nin · B = O((m	log q
)2)B,
where x ← χnin .

Lemma 5 (Security). Let the input secret key skin ∈ Z
nin be any vector.If

we generate the output secret key skout ← GPV.SecretKeyGen(params) and
Pskin⇒skout

← SwitchKeyGen(skin, skout): then Pskin⇒skout
is computation-

ally indistinguishable from uniform random distribution over Z
n̂in×nout
q under

DLWEn,q,χ assumption.
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3.2 Our Construction

In this subsection, we use the new key-switching procedure as described in
Sect. 3.1 to construct a variant of FHE (vFHE) scheme which is based on GPV
scheme.

– params ← vFHE.Setup(1λ, 1L):
We choose security parameter λ, the number of level L and output the scheme
parameters params := (m,n, q, χ);

– (pk, evk, sk) ← vFHE.KeyGen(params) :

1. For i = L down to 0, we sample L + 1 secret vector ei ← DZm
q ,r and output:

sk := eL.
2. Set ui = fA(ei) = A · ei and compute pki := Pi = (ui | −A) = (Aei | −A);
3. For user’s secret key sk, for the convenience, we define ŝki:

ŝki−1 = (1, êi−1)
T =

(
BitDecomp(ski−1 ⊗ ski−1)

) ∈ {0, 1}((m+1)·�log q�)2

= BitDecomp
(

(1, ei−1)
T

)
⊗ BitDecomp

(
(1, ei−1)

T
)

Compute:

Pŝki−1⇒ski
← SwitchKeyGen(ŝki−1, ski)

= SwitchKeyGen
(

(1, êi−1)
T

, (1, êi)
T

)

4. Output: pk = P0, sk = (1, eL)T , evk = Pŝki−1⇒ski
, i ∈ [L].

– c ← vFHE.Encrypt(params, pk,m) :
1. Set m =

(
m, 0, · · · , 0

) ∈ Z
(m+1)×1
q , m ∈ {0, 1}, then choose s ← Z

n×1
q ,

xT := (x ← {0},xT
1 ← χ1×m) ∈ DZ1×(m+1) ;

2. Compute c := PT ·s+�q

2
�·m+x ∈ Z

(m+1)×1
q , where the size of ciphertext

is O((m + 1)log2 q).
– m′ ← vFHE.Decrypt(params, sk, c):

1. Compute <c, ẽ> = �q

2
� ·m+small (mod q), where secret keys sk := ẽ =

(1, e)T .
– vFHE.Evaluate(params, evk, c1, · · · , cl):

- Eval.Add(evk, c1, c2), cadd ← SwitchKey(P(i−1)⇒i, ĉadd) ∈ Z
n+1
q :

Assume w.l.o.g that both input ciphertexts are encrypted under
the same secret key ski−1. Where ĉadd := Powerof2(c1 + c2) ⊗
Powerof2((1, 0, · · · , 0)).

- Eval.Mult(evk, c1, c2), cmult ← SwitchKey(P(i−1)⇒i, ĉmult) ∈ Z
n+1
q :

Assume w.l.o.g that both input ciphertexts are encrypted under the
same secret key ski−1. Where ĉmult = � 2

q · (Powerof2(c1 ⊗ c2))
 = � 2
q ·

(Powerof2(c1) ⊗ Powerof2(c2))
.
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Lemma 6 (Correctness). Suppose the parameters r := B ≥ ω(
√

log n) · √
n

(refer to [2]), m = nlog q+2λ. A E-noise ciphertext of some message m ∈ {0, 1}
under secret key sk := ẽ ∈ Z

(m+1)×1
q under ciphertext vector c := PT · s + �q

2
� ·

m + x (mod q) ∈ Z
(m+1)×1
q . It holds that:

cT · ẽ := �q

2
� · m + x + xT

1 · e
︸ ︷︷ ︸

small

(mod q)

with m ∈ {0, 1} and |small| < E ≤ �q/2�/2. Then m ← Decrypt(sk,m).

Proof. Where x ← {0} × χm. Then For ∀xi ← χ, i = 1, |xi| ≤ B(where B � q
is a bound on the values of χ), x1 ← χm. By definition, We can get

<c, ẽ> = sT · P · ẽ + �q

2
� · m + x + xT

1 · e
︸ ︷︷ ︸

small

, (By Lemma 1)

= �q

2
� · m + small (mod q)

with ||small|| ≤ ||x|| + ||xT
1 · e|| ≤ E, the norm of the error elements is bounded

by Bχ · r · ω(
√

log m) + Bχ
√

m/2, i.e. ||Bχ · rω(
√

log m) + Bχ
√

m/2|| < E ≤ q
4 ,

for the sake of simplicity we set the norm of error elements expressed by E. ��

3.3 Homomorphic Operation Analysis

Choose m0,m1 ∈ {0, 1}, then generate the m0 =
(
m0, 0, · · · , 0

) ∈ Z
(m+1)×1
q and

m1 =
(
m1, 0, · · · , 0

) ∈ Z
(m+1)×1
q separately. Run the Encrypt(params, pk,mi),

i ∈ {0, 1}:

c0 = PT · s + �q

2
� · m + x ∈ Z

(m+1)×1
q ; c1 = PT · s + �q

2
� · m + x ∈ Z

(m+1)×1
q ;

Then run the Decrypt(params, sk, ci),∈ {0, 1} separately, we get:

<c0, ẽ0> = <c0, (1, e0)
T

> = �q

2
� · m2 + small0;

<c1, ẽ1> = <c1, (1, e1)
T

> = �q

2
� · m1 + small1

Homomorphic Addition Analysis

Lemma 7. For Eval.Add(evk, c0, c1), we have

ĉadd := Powerof2(c0 + c1) ⊗ Powerof2((1, 0, · · · , 0)) ∈ Z

(
(m+1)�log q�

)2

q

then we get cadd ← SwitchKey(P(i−1)⇒i, ĉadd) ∈ Z
n+1
q := [PT

(i−1)⇒i · ĉadd]q, for
<cadd, (1, eadd)> = <ĉadd, (1, êadd)> + <ĉadd,x> (mod q), there exists:

<ĉadd, (1, êadd)>(mod q) = �q

2
� · (m0 + m1) + errorAdd + k′ · q

where the |errorAdd + <ĉadd,x>| ≤ 2E + O
(
(m	log q
)2) · B<�q/2�/2.



262 G. Du et al.

Proof. For ||<ĉadd,x>|| ≤ (ninlog q)2 · B = O
(
(m	log q
)2) · B, where x ←

χ

(
(m+1)�log q�

)2

, by Lemma 4. For cadd = c1 + c2, by Lemma 3 there exists:

<ĉadd, ŝki−1> = �q

2
�(m1 + m2) + (small1 + small2)

︸ ︷︷ ︸
errorAdd

+ (k1 + k2)
︸ ︷︷ ︸

k′

·q

= �q

2
�(m1 + m2) + errorAdd + k′ · q.

The above Lemma 7 is proven using the Lemma 6 and Triangle-Inequality,
||errorAdd|| ≤ ||small1|| + ||small2|| ≤ 2E. By Lemmas 4 and 6, putting it
together, the bound on error of addition is |<c,x> + errorAdd| ≤ 2E +
O((m	log q
)2)B ≤ q

4 .

Homomorphic Multiplication Analysis. Homomorphic multiplication has
an even more significant problem than the error growth: the dimension of the
ciphertext also grows extremely fast, i.e., exponentially with the number of mul-
tiplied ciphertexts, due to the use of the tensor product. To resolve this issue, [5]
introduced a clever dimension reduction—also called key switching technique.
But we make a little modification to the technique, as shown in the new key
switching procedure Subsect. 3.1, so that the new key switching procedure will
help us analyze the behave of error elements.

Lemma 8. If |k| ≤ O(m log q), then there exists:
〈
(Powerof2(c), BitDecomp

(
(1, ei−1)

T
)〉

= 〈c, (1, ei−1)
T 〉

=
⌊q

2

⌋
· m + small + kq.

Proof

|k| =

∣
∣
∣
〈
(Powerof2(c), BitDecomp

(
(1, ei−1)

T
)〉

− ⌊
q
2

⌋ · m − small
∣
∣
∣

q

≤ 1
2

· (m + 1)	log q
 + 1 = O(mlog q)

Lemma 9. For Eval.Mult(evk, c0, c1), we have ĉmult = �2
q
(Powerof2(c1 ⊗

c2))
 = �2
q
(Powerof2(c1) ⊗ Powerof2(c2))
, then we get

cmult ← SwitchKey(P(i−1)⇒i, ĉmult) := [PT
(i−1)⇒i · ĉmult]q ∈ Z

n+1
q .

Hence for <cmult, (1, emult)> = <ĉmult, (1, êmult)> + <ĉmult,x>(mod q),
there exists:

<ĉmult, (1, êmult)>(mod q) = �q

2
� · (m0m1) + errorMult(mod q)

where the ||errorMult+〈ĉmult,x〉|| ≤ 2E+2·O(m log q)E+ E2

q +O
(
(m	log q
)2)·

B ≤ q
4 .
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Proof. By Lemma 4, we get ||<ĉmult,x>|| ≤ O
(
(m	log q
)2) · B. For ĉmult =

�2
q

·(Powerof2(c1⊗c2))
 = �2
q

·(Powerof2(c1)⊗Powerof2(c2))
 by Lemma 3,

there exits

<ĉmult, ŝkmult> :=
〈
�2
q

· (Powerof2(c1) ⊗ Powerof2(c2))
,

BitDecomp
(

(1, ei−1)
T

)
⊗ BitDecomp

(
(1, ei−1)

T
)〉

=
〈(2

q
· (

Powerof2(c1 ⊗ c2)
)

+ cδ

)
,

BitDecomp
(

(1, ei−1)
T ⊗ (1, ei−1)

T
)〉

Observe that c∗
mult = 2

q · cmult = 2
q · c1 ⊗ c2 since cmult = 2 · c1 ⊗ c2, therefore:

〈c∗
mult, skmult〉 =

〈(2
q

· (
Powerof2(c1 ⊗ c2)

))
,

BitDecomp
(

(1, ei−1)
T ⊗ (1, ei−1)

T
)〉

=
2
q

⌊q

2

⌋2

· m1m2︸ ︷︷ ︸
Eq.1

+
2
q

⌊q

2

⌋
· Eq.2 +

2
q
qEq.3 +

2
q

· Eq.4 + 2 · Eq.5

=
⌊q

2

⌋
· m1m2 + errorMult (mod q)

For further convenience, we denote Eq. 2 =
((

m1 · small2 + m2 · small1
))

,
Eq. 3 = (small1k2 + small2k1), Eq. 4 = (small1small2) and Eq. 5 = qk1k2 +⌊

q
2

⌋
(m1k2 + m2k1). Hence, we easily observe that errorMult := 2

q · ⌊ q
2

⌋ · Eq. 2 +
2
q q · Eq. 3 + 2

q · Eq. 4 + 2 · Eq. 5.

We can get the result of ||errorMult|| ≤ 2E + 2 · O(m log q)E + E2 ≤ q
4 by

Lemmas 6 and 8.

Lemma 10. By definition:

Δ :=
〈
cδ, ŝki−1

〉

=
〈 (

�2
q

· (Powerof2(c1 ⊗ c2))
 − 2
q

· (Powerof2(c1 ⊗ c2))
)

︸ ︷︷ ︸
cδ

, ŝki−1

〉

Now, since ||cδ||∞ ≤ 1
2 and since ŝki−1 ∈ {0, 1}

(
(m+1)�log q�

)2

, then
||ŝki−1||1 ≤ (

(m + 1)	log q
)2. It follows that |Δ| ≤ ||cδ|| · ||ŝki−1|| ≤ 1
2 · (

(m +
1)	log q
)2 = O(m2log2q).
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Proof. Because
〈
ĉmult, ŝki−1

〉
=:

〈
�2
q

·(Powerof2(c1⊗c2))
, ŝki−1

〉
, therefore:

〈
ĉmult, ŝki−1

〉
− Δ =

〈2
q

· (Powerof2(c1 ⊗ c2)), ŝki−1

〉

=
2
q
<c1, (1, e1)

T
> · <c2, (1, e2)

T
>

By Lemmas 4, 6 and 9, putting them together, the bound of multiplication noise
is ||�errormult
|| + ||<cmult,x>|| ≤ ||Δ|| + ||errrormult|| = O((m	log q
)2) +
2E + 2 · O(m log q)E + E2 ≤ q

4 .

Theorem 1. The decryption works correctly as long as

||error|| = max{2E + O((m	log q
)2) · B,

O((m	log q
)2) + 2E + 2 · O(m log q)E + E2} ≤ q

4
Proof. The proof of Theorem 1 is deferred to Lemmas 7 and 9. We omit further
details here.

Theorem 2. If the scheme vFHE with parameters n, q, |χ| ≤ B, L, then we
say the scheme vFHE is L-homomorphic.

Proof. Set the L is the circuit depth, then let Ei be a bound on the noise in the
ciphertext after the evaluation of i-th (i ∈ [L]) level of gates. Firstly, assume that
E0 := (r·ω(

√
log m)+

√
m/2)·Bχ, it hold that Ei+1 = (r·ω(

√
log m)+

√
m/2)·Ei.

Then, we get EL = (r · ω(
√

log m) +
√

m/2)L+O(1) · Bχ. Lastly, if EL < �q/2�/2
by Lemma 6, the scheme can decrypted successfully. ��

3.4 Security Analysis

We now sketch the security proof.

Theorem 3. The above system is IND-CPA-secure and anonymous, assuming
that LWE is hard.

Proof. The proof contains three steps:

– Firstly, we argue that the distribution of the syndrome u = Ae is statistically
close to uniform over Z

n
q follows directly from Lemma 2 and the public key

P0 := [u0,−A] is computationally indistinguishable from uniform distribu-
tion based on Lemma 5.

– Secondly, we argue that the evaluate key Psk0:sk1 , · · · ,PskL−1:skL
, we replace

all Pski−1:ski
, i ∈ [L] with uniform distribution in descending order (one by

one).
– Finally, we can use the leftover hash lemma to replace the ciphertext c with a

uniformly random value c′, which are indistinguishable from uniform assum-
ing the hardness of LWEn,m,q,χ. In this case, the challenge ciphertext is
statistically independent of the encrypted message.

This concludes the proof of the theorem. ��
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4 Conclusion

In Table 1, we provide a comparison between our scheme and the FHE schemes
[2,17], where all of the schemes are adaptive indistinguishable chosen plaintext
security and can be proved secure under the LWE assumption.

In this work, we revisited Brakerski’s key-Switching approach from LWE-
based FHE cryptosystems and constructed a Brakerski style of FHE scheme
based on dual LWE assumption. Besides, we also conducted a theoretical com-
parison of Brakerski [2] scheme and our scheme.

Table 1. Comparison four scheme

Scheme |pk| |sk| |evk| |bit| |Ct| Assumption

[2] O(mnlog q) O(nlog q) O(n2log q) 1 O(n · log q) LWE

[17] O(mnlog q) O(mlog q) O(m2log2 q) 1 O(m · log q) Dual-Ferr-LWE

vFHE O(mnlog q) O(mlog q) O(m2log2 q) 1 O(m · log q) Dual-LWE
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