
Trilogy on Computing Maximal Eigenpair

Mu-Fa Chen(B)

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
mfchen@bnu.edu.cn

Abstract. The eigenpair here means the twins of eigenvalue and corre-
sponding eigenvector. The talk introduces the three steps of our study
on computing the maximal eigenpair. In the first two steps, we construct
efficient initials for a known but dangerous algorithm, first for tridiago-
nal matrices and then for the irreducible matrices, having nonnegative
off-diagonal elements. In the third step, we present two global algorithms
which are still efficient and work well for a quite large class of matrices,
even complex for instance.

Keywords: Maximal eigenpair · Efficient initial · Tridiagonal matrix
Global algorithm

1 Introduction

This paper is a continuation of [4]. For the reader’s convenience, we review
shortly the first part of [4], especially the story of the proportion of 1000 and 2
of iterations for two different algorithms.

The most famous result on the maximal eigenpair should be the Perron-
Frobenius theorem. For nonnegative (pointwise) and irreducible A, if Trace (A)
> 0, then the theorem says there exists uniquely a maximal eigenvalue ρ(A) > 0
with positive left-eigenvector u and positive right-eigenvector g:

uA = λu, Ag = λg, λ = ρ(A).

These eigenvectors are also unique up to a constant. Before going to the main
body of the paper, let us make two remarks.

(1) We need to study the right-eigenvector g only. Otherwise, use the trans-
pose A∗ instead of A.

(2) The matrix A is required to be irreducible with nonnegative off-diagonal
elements, its diagonal elements can be arbitrary. Otherwise, use a shift A + mI
for large m:

(A + mI)g = λg ⇐⇒ Ag = (λ − m)g, (1)

their eigenvector remains the same but the maximal eigenvalues are shifted to
each other.

c© Springer International Publishing AG 2017
W. Yue et al. (Eds.): QTNA 2017, LNCS 10591, pp. 312–329, 2017.
https://doi.org/10.1007/978-3-319-68520-5_19

Trilogy on Computing Maximal Eigenpair 313

Consider the following matrix.

Q =

⎛
⎜⎜⎜⎜⎜⎝

−12 12 0 0 · · ·
12 −12 − 22 22 0 · · ·
0 22 −22 − 32 32 · · ·
...

...
.

0 0 0 N2 − N2 − (N + 1)2

⎞
⎟⎟⎟⎟⎟⎠

. (2)

The main character of the matrix is the sequence {k2}. The sum of each row
equals zero except the last row. Actually, this matrix is truncated from the corre-
sponding infinite one, in which case we have known that the maximal eigenvalue
is −1/4 (refer to ([2]; Example 3.6)).

Example 1. Let N = 7. Then the maximal eigenvalue is −0.525268 with eigen-
vector:

g ≈ (55.878, 26.5271, 15.7059, 9.97983, 6.43129, 4.0251, 2.2954, 1)∗,

where the vector v∗ = the transpose of v.

We now want to practice the standard algorithms in matrix eigenvalue com-
putation. The first method in computing the maximal eigenpair is the Power
Iteration, introduced in 1929. Starting from a vector v0 having a nonzero com-
ponent in the direction of g, normalized with respect to a norm ‖ · ‖. At the kth
step, iterate vk by the formula

vk =
Avk−1

‖Avk−1‖ , zk = ‖Avk‖, k � 1. (3)

Then we have the convergence: vk → g (first pointwise and then uniformly) and
zk → ρ(Q) as k → ∞. If we rewrite vk as

vk =
Akv0

‖Akv0‖ ,

one sees where the name “power” comes from. For our example, to use the Power
Iteration, we adopt the �1-norm and choose v0 = ṽ0/‖ṽ0‖, where

ṽ0 = (1, 0.587624, 0.426178, 0.329975, 0.260701, 0.204394, 0.153593, 0.101142)∗.

This initial comes from a formula to be given in the next section. In Fig. 1 below,
the upper curve is g, the lower one is modified from ṽ0, renormalized so that
its last component becomes one. Clearly, these two functions are quite different,
one may worry about the effectiveness of the choice of v0. Anyhow, having the
experience of computing its eigensystem, I expect to finish the computation in
a few of seconds. Unexpectly, I got a difficult time to compute the maximal
eigenpair for this simple example. Altogether, I computed it for 180 times, not
in one day, using 1000 iterations. The printed pdf-file of the outputs has 64
pages. Figure 2 give us the outputs.

314 M.-F. Chen

The figure of g and v0

Fig. 1. g and v0

200 400 600 800 1000

1.0

1.5

2.0 The figure of − zk
for k = 0, 1, . . . , 1000.

Fig. 2. −zk for k = 0, 1, . . . , 1000

The figure shows that the convergence of zk goes quickly at the beginning of
the iterations. This means that our initial v0 is good enough. Then the conver-
gence goes very slow which means that the Power Iteration Algorithm converges
very slowly.

Let us have a look at the convergence of the power iteration. Suppose that
the eigenvalues are all different for simplicity. Denote by (λj , gj) the eigenpairs
with maximal one (λ0, g0). Write v0 =

∑N
j=0 cjgj for some constants (cj). Then

c0 �= 0 by assumption and

Trilogy on Computing Maximal Eigenpair 315

Akv0 =
N∑

j=0

cjλ
k
j gj = c0λ

k
0

[
g0 +

N∑
j=1

cj

c0

(
λj

λ0

)k

gj

]
.

Since |λj/λ0| < 1 for each j � 1 and ‖g0‖ = 1, we have

Akv0
‖Akv0‖ =

c0
|c0|g0 + O

(∣∣∣∣
λ1

λ0

∣∣∣∣
k)

as k → ∞,

where |λ1| := max{|λj | : j > 0}. Since |λ1/λ0| can be very closed to 1, this
explains the reason why the convergence of the method can be very slow.

Before moving further, let us mention that the power method can be also
used to compute the minimal eigenvalue λmin(A), simply replace A by A−1.
That is the Inverse Iteration introduced in 1944:

vk =
A−1vk−1

‖A−1vk−1‖ ⇐⇒ vk =
A−kv0

‖A−kv0‖ . (4)

It is interesting to note that the equivalent assertion on the right-hand side is
exactly the input-output method in economy.

To come back to compute the maximal ρ(A) rather than λmin(A), we add a
shift z to A: replacing A by A− zI. Actually, it is even better to replace the last
one by zI −A since we will often use z > ρ(A) rather than z < ρ(A), the details
will be explained at the beginning of Sect. 4 below. When z is close enough to
ρ(A), the leading eigenvalue of (zI − A)−1 becomes (z − ρ(A))−1. Furthermore,
we can even use a variant shift zk−1I to accelerate the convergence speed. Thus,
we have arrived at the second algorithm in computing the maximal eigenpair,
the Rayleigh Quotient Iteration (RQI), a variant of the Inverse Iteration. From
now on, unless otherwise stated, we often use the �2-norm. Starting from an
approximating pair (z0, v0) of the maximal one (ρ(A), g) with v∗

0v0 = 1, use the
following iteration.

vk =
(zk−1I − A)−1vk−1

‖(zk−1I − A)−1vk−1‖ , zk = v∗
kAvk, k � 1. (5)

If (z0, v0) is close enough to (ρ(A), g), then

vk → g and zk → ρ(A) as k → ∞.

Since for each k � 1, v∗
kvk = 1, we have zk = v∗

kAvk/(v∗
kvk). That is where the

name “Rayleigh Quotient” comes from. Unless otherwise stated, z0 is setting to
be v∗

0Av0.
Having the hard time spent in the first algorithm, I wondered how many

iterations are required using this algorithm. Of course, I can no longer bear 1000
iterations. To be honest, I hope to finish the computation within 100 iterations.
What happens now?

Example 2. For the same matrix Q and ṽ0 as in Example 1.1, by RQI, we need
two iterations only:

z1 ≈ −0.528215, z2 ≈ −0.525268.

316 M.-F. Chen

The result came to me, not enough to say surprisingly, I was shocked indeed.
This shows not only the power of the second method but also the effectiveness of
my initial v0. From the examples above, we have seen the story of the proportion
of 1000 and 2.

For simplicity, from now on, we often write λj := λj(−Q). In particular
λ0 = −ρ(Q) > 0. Instead of our previous v0, we adopt the uniform distribution:

v0 = (1, 1, 1, 1, 1, 1, 1, 1)∗
/
√

8.

This is somehow fair since we usually have no knowledge about g in advance.

Example 3. Let Q be the same as above. Use the uniform distribution v0 and
set z0 = v∗

0(−Q)v0. Then

(z1, z2, z3, z4z4z4) ≈ (4.78557, 5.67061, 5.91766, 5.918675.918675.91867).
(λ0, λ1,λ2λ2λ2) ≈ (0.525268, 2.00758, 5.918675.918675.91867).

The computation becomes stable at the 4th iteration. Unfortunately, it is not
what we want λ0 but λ2. In other words, the algorithm converges to a pitfall.
Very often, there are n−1 pitfalls for a matrix having n eigenvalues. This shows
once again our initial ṽ0 is efficient and the RQI is quite dangerous.

Hopefully, everyone here has heard the name Google’s PageRank. In other
words, the Google’s search is based on the maximal left-eigenvector. On this
topic, the book [8] was published 11 years ago. In this book, the Power Iteration
is included but not the RQI. It should be clear that for PageRank, we need to
consider not only large system, but also fast algorithm.

It may the correct position to mention a part of the motivations for the
present study.

– Google’s search–PageRank.
– Input–output method in economy. In this and the previous cases, the com-

putation of the maximal eigenvector is required.
– Stability speed of stochastic systems. Here, for the stationary distribution of

a Markov chain, we need to compute the eigenvector; and for the stability
rate, we need to study the maximal (or the fist nontrivial) eigenvalue.

– Principal component analysis for BigData. One choice is to study the so-called
five-diagonal matrices. The second approach is using the maximal eigenvec-
tor to analysis the role played by the components, somehow similar to the
PageRank.

– For image recognition, one often uses Poisson or Toeplitz matrices, which are
more or less the same as the Quasi-birth-death matrices studied in queueing
theory. The discrete difference equations of elliptic partial differential equa-
tions are included in this class: the block-tridiagonal matrices.

– The effectiveness of random algorithm, say Markov Chain Monte Carlo for
instance, is described by the convergence speed. This is also related to the
algorithms for machine learning.

Trilogy on Computing Maximal Eigenpair 317

– As in the last item, a mathematical tool to describe the phase transitions
is the first nontrivial eigenvalue (the next eigenpair in general). This is the
original place where the author was attracted to the topic.

Since the wide range of the applications of the topic, there is a large number of
publications. The author is unable to present a carefully chosen list of references
here, what instead are two random selected references: [8,11].

Up to now, we have discussed only a small size 8 × 8 (N = 7) matrix. How
about large N? In computational mathematics, one often expects the number
of iterations grows in a polynomial way Nα for α greater or equal to 1. In our
efficient case, since 2 = 81/3, we expect to have 100001/3 ≈ 22 iterations for
N + 1 = 104. The next table subverts completely my imagination.

Here z0 is defined by

z0 = 7/(8δ1) + v∗
0(−Q)v0/8,

where v0 and δ1 are computed by our general formulas to be defined in the next
section. We compute the matrices of order 8, 100, . . . , 104 by using MatLab in
a notebook, in no more than 30 s, the iterations finish at the second step. This
means that the outputs starting from z2 are the same and coincide with λ0. See
the first row for instance, which becomes stable at the first step indeed. We do
not believe such a result for some days, so we checked it in different ways. First,
since λ0 = 1/4 when N = ∞, the answers of λ0 given in the fourth column
are reasonable. More essentially, by using the output v2, we can deduce upper
and lower bounds of λ0 (using ([2]; Theorem 2.4 (3))), and then the ratio upper/
lower is presented in the last column. In each case, the algorithm is significant
up to 6 digits. For the large scale matrices here and in Sect. 4, the computations
are completed by Yue-Shuang Li.

2 Efficient Initials: Tridiagonal Case

It is the position to write down the formulas of v0 and δ1. Then our initial z0
used in Table 1 is a little modification of δ−1

1 : a convex combination of δ−1
1 and

v∗
0(−Q)v0.

Table 1. Comparison of RQI for different N .

N + 1 z0 z1 z2 = λ0 Upper/lower

8 0.523309 0.525268 0.525268 1 + 10−11

100 0.387333 0.376393 0.376383 1 + 10−8

500 0.349147 0.338342 0.338329 1 + 10−7

1000 0.338027 0.327254 0.32724 1 + 10−7

5000 0.319895 0.30855 0.308529 1 + 10−7

7500 0.316529 0.304942 0.304918 1 + 10−7

104 0.31437 0.302586 0.302561 1 + 10−7

318 M.-F. Chen

Let us consider the tridiagonal matrix (cf. ([3]; Sect. 3) and ([6]; Subsect. 4.4)).
Fix N � 1, denote by E = {0, 1, . . . , N} the set of indices. By a shift if
necessary, we may reduce A to Q with negative diagonals: Qc = A − mI,
m := maxi∈E

∑
j∈E aij ,

Qc =

⎛
⎜⎜⎜⎜⎜⎝

−b0 − c0 b0 0 0 · · ·
a1 −a1 − b1 − c1 b1 0 · · ·
0 a2 −a2 − b2 − c2 b2 · · ·
...

...
.

0 0 0 aN −aN − cN

⎞
⎟⎟⎟⎟⎟⎠

.

Thus, we have three sequences {ai > 0}, {bi > 0}, and {ci � 0}. Our main
assumption here is that the first two sequences are positive and ci �≡ 0. In order
to define our initials, we need three new sequences, {hk}, {μk}, and {ϕk}.

First, we define the sequence {hk}:

h0 = 1, hn = hn−1rn−1, 1 � n � N ; (6)

here we need another sequence {rk}:

r0 = 1 +
c0
b0

, rn = 1 +
an + cn

bn
− an

bnrn−1
, 1 � n < N.

Here and in what follows, our iterations are often of one-step. Note that if ck = 0
for every k < N , then we do not need the sequence {hk}, simply set hk ≡ 1. An
easier way to remember this (hi) is as follows. It is nearly harmonic of Qc except
at the last point N :

Qc \the last row h = 0, (7)

where B\the last row means the matrix modified from B by removing its last low.
We now use H-transform, it is designed to remove the sequence (ci):

Q̃ = Diag (hi)−1Qc Diag (hi).

Then

Q̃ =

⎛
⎜⎜⎜⎜⎜⎝

−b0 b0 0 0 · · ·
a1 −a1 − b1 b1 0 · · ·
0 a2 −a2 − b2 b2 · · ·
...

...
.

0 0 0 aN −aN − cN

⎞
⎟⎟⎟⎟⎟⎠

for some modified {ai > 0}, {bi > 0}, and cN > 0. Of course, Qc and Q̃ have
the same spectrum. In particular, under the H-transform,

(λmin(−Qc), g) → (
λmin

(− Q̃
)

= λmin(−Qc), Diag (hi)−1g
)
.

Trilogy on Computing Maximal Eigenpair 319

From now on, for simplicity, we denote by Q the matrix replacing cN by bN in
Q̃.

Next, we define the second sequence {μk}:

μ0 = 1, μn = μn−1
bn−1

an
, 1 � n � N. (8)

And then define the third one {ϕk} as follows.

ϕn =
N∑

k=n

1
μkbk

, 0 � n � N. (9)

We are now ready to define v0 and δ1 (or z0) using the sequences (μi) and
(ϕi).

ṽ0(i) =
√

ϕi, i � N ; v0 = ṽ0/‖ṽ0‖; ‖ · ‖ := ‖ · ‖L2(μ) (10)

δ1 = max
0�n�N

[√
ϕn

n∑
k=0

μk
√

ϕk +
1√
ϕn

∑
n+1�j�N

μjϕ
3/2
j

]
=: z−1

0 (11)

with a convention
∑

∅ = 0.
Finally, having constructed the initials (v0, z0), the RQI goes as follows. Solve

wk:

(−Q − zk−1I)wk = vk−1, k � 1; (12)

and define
vk = wk/‖wk‖, zk = (vk, −Qvk)L2(μ).

Then
vk → g and zk → λ0 as k → ∞.

Before moving further, let us mention that there is an explicit representation
of the solution (wi) to Eq. (12). Assume that we are given v := vk−1 and z :=
zk−1. Set

Msj = μj

s∑
k=j

1
μkbk

, 0 � j � s � N. (13)

Define two independent sequences {A(s)} and {B(s)}, recurrently:
{

A(s) = −∑
0�j�s−1 Ms−1,j

(
v(j) + zA(j)

)
,

B(s) = 1 − z
∑

0�j�s−1 Ms−1,jB(j), 0 � s � N.
(14)

Set

x =

∑N
j=0 μj

(
v(j) + zA(j)

) − μNbNA(N)

μNbNB(N) − z
∑N

j=0 μjB(j)
. (15)

Then the required solution wk := {w(s) : s ∈ E} can be expressed as w(s) =
A(s) + xB(s) (s ∈ E).

320 M.-F. Chen

To finish the algorithm, we return to the estimates of
(
λmin(−Qc), g(Qc)

)
(g(Qc) = g(−Qc)) or further (ρ(A), g(A)) if necessary, where g(A), for instance,
denotes the maximal eigenvector of A. Suppose that the iterations are stopped
at k = k0 and set (z̄, v̄) =

(
zk0

, vk0

)
for simplicity. Then, we have

(
λmin

(− Qc
)
, Diag (hi)−1g(Qc)

)
=

(
λmin

(− Q̃
)
, g

(
Q̃

)) ≈ (z̄, v̄),

and so (
λmin(−Qc), g(Qc)

) ≈ (
z̄, Diag (hi) v̄

)
. (16)

Because λmin(−Qc) = m − ρ(A), we obtain

(ρ(A), g(A)) ≈ (
m − z̄, Diag (hi) v̄

)
. (17)

Now, the question is the possibility from the tridiagonal case to the general
one.

3 Efficient Initials: The General Case (([3]; Subsect. 4.2)
and ([6]; Subsect. 4.5))

When we first look at the question just mentioned, it seems quite a long dis-
tance to go from the special tridiagonal case to the general one. However, in the
eigenvalue computation theory, there is the so-called Lanczos tridiagonalization
procedure to handle the job, as discussed in ([3]; Appendix of Sect. 3). Neverthe-
less, what we adopted in ([3]; Sect. 4) is a completely different approach. Here is
our main idea. Note that the initials v0 and δ1 constructed in the last section are
explicitly expressed by the new sequences. In other words, we have used three
new sequences {hk}, {μk}, and {ϕk} instead of the original three {ai}, {bi},
and {ci} to describe our initials. Very fortunately, the former three sequences
do have clearly the probabilistic meaning, which then leads us a way to go to
the general setup. Shortly, we construct these sequences by solving three linear
equations (usually, we do not have explicit solution in such a general setup).
Then use them to construct the initials and further apply the RQI-algorithm.

Let A = (aij : i, j ∈ E) be the same as given at the beginning of the paper.
Set Ai =

∑
j∈E aij and define

Qc = A −
(

max
i∈E

Ai

)
I.

We can now state the probabilistic/analytic meaning of the required three
sequences (hi), (μi), and (ϕi).

– (hi) is the harmonic function of Qc except at the right endpoint N , as men-
tioned in the last section.

– (μi) is the invariant measure (stationary distribution) of the matrix Qc remov-
ing the sequence (ci).

– (ϕi) is the tail related to the transiency series, refer to ([3]; Lemma 24 and
its proof).

Trilogy on Computing Maximal Eigenpair 321

We now begin with our construction. Let h = (h0, h1, . . . , hN)∗ (with h0 = 1)
solve the equation

Qc \the last row h = 0

and define
Q̃ = Diag(hi)−1Qc Diag(hi).

Then for which we have

c0 = . . . = cN−1 = 0, cN =: qN,N+1 > 0.

This is very much similar to the tridiagonal case.
Next, let Q = Q̃. Let ϕ = (ϕ0, ϕ1, . . . , ϕN)∗ (with ϕ0 = 1) solve the equation

ϕ\the first row = P \the first row ϕ,

where
P = Diag

(
(−qii)−1

)
Q + I.

Thirdly, assume that μ := (μ0, μ1, . . . , μN) with μ0 = 1 solves the equation

Q∗ \the last row μ∗ = 0.

Having these sequences at hand, we can define the initials

ṽ0(i) =
√

ϕi, i � N ; v0 = ṽ0/‖ṽ0‖μ; z0 = (v0,−Qv0)μ.

Then, go to the RQI as usual. For k � 1, let wk solve the equation

(−Q − zk−1I)wk = vk−1

and set
vk = wk/‖wk‖μ, zk = (vk,−Qvk)μ.

Then (zk, vk) → (λ0, g) as k → ∞.
We remark that there is an alternative choice (more safe) of z0:

z−1
0 =

1
1 − ϕ1

max
0�n�N

[√
ϕn

n∑
k=0

μk
√

ϕk +
1√
ϕn

∑
n+1�j�N

μjϕ
3/2
j

]

which is almost a copy of the one used in the last section.
The procedure for returning to the estimates of

(
λmin(−Qc), g(Qc)

)
or further

(ρ(A), g(A)) is very much the same as in the last section.
To conclude this section, we introduce two examples to illustrate the effi-

ciency of the extended initials for tridiagonally dominant matrices. The next
two examples were computed by Xu Zhu, a master student in Shanghai.

322 M.-F. Chen

Example 4 (Block-tridiagonal matrix). Consider the matrix

Q =

⎛
⎜⎜⎜⎜⎜⎝

A0 B0 0 0 · · ·
C1 A1 B1 0 · · ·
0 C2 A2 B2 · · ·
...

...
.

0 0 0 CN AN

⎞
⎟⎟⎟⎟⎟⎠

,

where Ak, Bk, Ck are 40 × 40-matrices, B′s and C ′s are identity matrices, and
A′s are tridiagonal matrices. For this model, two iterations are enough to arrive
at the required results (Table 2).

Table 2. Outputs for Poisson matrix.

N + 1 z0 z1 z2 = λ0

1600 7.985026 7.988219 7.988263

3600 7.993232 7.994676 7.994696

6400 7.996161 7.988256 7.987972

Example 5 (Toeplitz matrix). Consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

1 2 3 · · · n − 1 n
2 1 2 · · · n − 2 n − 1
...

...
...

. . .
...

...
n − 1 n − 2 n − 3 · · · 1 2

n n − 1 n − 2 · · · 2 1

⎞
⎟⎟⎟⎟⎟⎠

.

For this model, three iterations are enough to arrive at the required results
(Table 3).

Table 3. Outputs for Toeplitz matrix.

N + 1 z0 × 106 z1 × 106 z2 × 106 z3 = λ0

1600 0.156992 0.451326 0.390252 0.389890

3600 0.157398 2.30731 1.97816 1.97591

6400 0.157450 7.32791 6.25506 6.24718

As mentioned before, the extended algorithm should be powerful for the tridi-
agonally dominant matrices. How about more general case? Two questions are

Trilogy on Computing Maximal Eigenpair 323

often asked to me by specialists in computational mathematics: do you allow
more negative off-diagonal elements? How about complex matrices? My answer
is: they are too far away from me, since those matrices can not be a generator of
a Markov chain, I do not have a tool to handle them. Alternatively, I have stud-
ied some more general matrices than the tridiagonal ones: the block-tridiagonal
matrices, the lower triangular plus upper-diagonal, the upper triangular plus
lower-diagonal, and so on. Certainly, we can do a lot case by case, but this seems
still a long way to achieve a global algorithm. So we do need a different idea.

4 Global Algorithms

Several months ago, AlphaGo came to my attention. From which I learnt the
subject of machine learning. After some days, I suddenly thought, since we are
doing the computational mathematics, why can not let the computer help us to
find a high efficiency initial value? Why can not we leave this hard task to the
computer? If so, then we can start from a relatively simple and common initial
value, let the computer help us to gradually improve it.

The first step is easy, simply choose the uniform distribution as our initial
v0:

v0 = (1, 1, · · · , 1)∗/
√

N + 1.

As mentioned before, this initial vector is fair and universal. One may feel strange
at the first look at “global” in the title of this section. However, with this uni-
versal v0, the power iteration is already a global algorithm. Unfortunately, the
convergence of this method is too slow, and hence is often not practical. To
quicken the speed, we should add a shift which now has a very heavy duty for our
algorithm. The main trouble is that the usual Rayleigh quotient v∗

0Av0/(v∗
0v0)

can not be used as z0, otherwise, it will often lead to a pitfall, as illustrated by
Example 1.3. The main reason is that our v0 is too rough and so z0 deduced
from it is also too rough. Now, how to choose z0 and further zn?

Clearly, for avoiding the pitfalls, we have to choose z0 from the outside of the
spectrum of A (denoted by Sp(A)), and as close to ρ(A) as possible to quicken
the convergence speed. For nonnegative A, Sp(A) is located in a circle with
radius ρ(A) in the complex plane. Thus, the safe region should be on the outside
of Sp(A). Since ρ(A) is located at the boundary on the right-hand side of the
circle, the effective area should be on the real axis on the right-hand side of, but
a little away from, ρ(A).

For the matrix Q used in this paper, since ρ(Q) < 0, its spectrum Sp(Q) is
located on the left-hand side of the origin. Then, one can simply choose z0 = 0
as an initial. See Fig. 3.

Having these idea in mind, we can now state two of our global algorithms.
Each of them uses the same initials:

v0 = uniform distribution, z0 = max
0�i�N

Av0
v0

(i),

where for two vectors f and g, (f/g)(i) = fi/gi.

324 M.-F. Chen

O
ρ(A)

Safe region

Sp(A)

Complex plane

Safe region

Sp(Q)

Oρ(Q)

Complex plane

Fig. 3. Safe region in complex plane.

Algorithm 1 (Specific Rayleigh quotient iteration). At step k � 1, for given
v := vk−1 and z := zk−1, let w solve the equation

(zI − A)w = v.

Set vk = w/‖w‖ and let zk = v∗
kAvk.

This algorithm goes back to [3], Subsect. 4.1 with Choice I.

Algorithm 2 (Shifted inverse iteration). Everything is the same as in Algo-
rithm1, except redefine zk as follows:

zk = max
0�i�N

Avk

vk
(i)

for k � 1 (or equivalently, k � 0).

The comparison of these algorithms are the following: with unknown small
probability, Algorithm1 is less safe than Algorithm 2, but the former one has a
faster convergence speed than the latter one with possibility 1/5 for instance.

With the worrying on the safety and convergence speed in mind, we examine
two examples which are non-symmetric.

The first example below is a lower triangular plus the upper-diagonal. It is
far away from the tridiagonal one, we want to see what can be happened.

Example 6 ([6]; Example 7). Let

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 · · · · · · 0 0
a1 −a1 − 2 2 0 · · · · · · 0 0
a2 0 −a2 − 3 3 · · · · · · 0 0
...

...
...

... · · · · · · N − 1 0
aN−1 0 0 0 · · · −aN−1 − N N
aN 0 0 0 · · · · · · 0 −aN − N − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

For this matrix, we have computed several cases:

ak = 1/(k + 1), ak ≡ 1, ak = k, ak = k2.

Among them, the first one is the hardest and is hence presented below.
For different N , the outputs of our algorithm are given in Table 4.

Trilogy on Computing Maximal Eigenpair 325

Table 4. The outputs for different N by our algorithm.

N + 1 z1 z2 z3 z4 z5 z6

8 0.276727 0.427307 0.451902 0.452339

16 0.222132 0.367827 0.399959 0.400910

32 0.187826 0.329646 0.370364 0.372308 0.372311

50 0.171657 0.311197 0.357814 0.360776 0.360784

100 0.152106 0.287996 0.343847 0.349166 0.349197

500 0.121403 0.247450 0.321751 0.336811 0.337186

1000 0.111879 0.233257 0.313274 0.334155 0.335009 0.335010

5000 0.0947429 0.205212 0.293025 0.328961 0.332609 0.332635

104 0.0888963 0.194859 0.284064 0.326285 0.332113 0.332188

The next example is upper triangular plus lower-diagonal. It is motivated
from the classical branching process. Denote by (pk : k � 0) a given probability
measure with p1 = 0. Let

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 p2 p3 p4 · · · · · · pN−1

∑
k�N pk

2p0 −2 2p2 2p3 · · · · · · 2pN−2 2
∑

k�N−1 pk

0 3p0 −3 3p2 · · · 3pN−3 3
∑

k�N−2 pk

...
...

...
.

...
...

...
. −N + 1 (N − 1)

∑
k�2 pk

0 0 0 0 · · · · · · Np0 −Np0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

The matrix is defined on E := {1, 2, . . . , N}. Set M1 =
∑

k∈E kpk. When N = ∞,
it is subcritical iff M1 < 1, to which the maximal eigenvalue should be positive.
Otherwise, the convergence rate should be zero.

Now, we fix

p0 = α/2, p1 = 0, p2 = (2 − α)/22, . . . pn = (2 − α)/2n, · · · , α ∈ (0, 2).

Then M1 = 3(2 − α)/2 and hence we are in the subcritical case iff α ∈ (4/3, 2).

Example 7 ([6]; Example 9). Set α = 7/4. We want to know how fast the local
(N < ∞) maximal eigenvalue becomes stable (i.e., close enough to the converge
rate at N = ∞). Up to N = 104, the steps of the iterations we need are no more
than 6. To quicken the convergence, we adopt an improved algorithm. Then the
outputs of the approximation of the minimal eigenvalue of −Q for different N
are given in Table 5.

The computation in each case costs no more than one minute. Besides, start-
ing from N = 50, the final outputs are all the same: 0.625, which then can be
regarded as a very good approximation of λmin(−Q) at infinity N = ∞.

It is the position to compare our global algorithm with that given in the
last section. At the first look, here in the two examples above, we need about

326 M.-F. Chen

Table 5. The outputs in the subcritical case.

N + 1 z1 z2 z3 z4

8 0.637800 0.638153

16 0.621430 0.625490 0.625539

50 0.609976 0.624052 0.624997 0.625000

100 0.606948 0.623377 0.624991 0.625000

500 0.604409 0.622116 0.624962 0.625000

1000 0.604082 0.621688 0.624944 0.625000

5000 0.603817 0.620838 0.62489 0.625000

104 0.603784 0.620511 0.624861 0.625000

6 iterations, double of the ones given in the last section. Note that for the
initials of the algorithm in the last section, we need solve three additional linear
equations, which are more or less the same as three additional iterations. Hence
the efficiency of these two algorithms are very close to each other. Actually, the
computation time used for the algorithm in the last section is much more than
the new one here.

It is quite surprising that our new algorithms work for a much general class
of matrices, out of the scope of [3]. Here we consider the maximal eigenpair only.

The example below allows partially negative off-diagonal elements.

Example 8 (([9]; Example (7)), ([6]; Example 12)). Let

A =

⎛
⎝

−1 8 −1
8 8 8

−1 8 8

⎞
⎠ .

Then the eigenvalues of A are as follows.

17.5124, −7.4675, 4.95513.

The corresponding maximal eigenvector is

(0.486078, 1.24981, 1)∗

which is positive.
Here are the outputs of our algorithms. Both algorithms are started at z0 = 24

(Table 6).

Furthermore, we can even consider some complex matrices.

Example 9 (([10]; Example 2.1), ([6]; Example 15)). Let

A =

⎛
⎝

0.75 − 1.125 i 0.5882 − 0.1471 i 1.0735 + 1.4191 i
−0.5 − i 2.1765 + 0.7059 i 2.1471 − 0.4118 i

2.75 − 0.125 i 0.5882 − 0.1471 i −0.9265 + 0.4191 i

⎞
⎠ ,

Trilogy on Computing Maximal Eigenpair 327

Table 6. The outputs for a matrix with more negative elements.

n zn: Algorithm 1 zn: Algorithm 2

1 17.3772 18.5316

2 17.5124 17.5416

3 17.5124

where the coefficients are all accurate, to four decimal digits. Then A has eigen-
values

3, −2 − i, 1 + i

with maximal eigenvector

(0.408237, 0.816507, 0.408237)∗.

The outputs (yn) (but not (zn))of ([6]; Algorithm 14), a variant of Algorithm2,
are as follows (Table 7).

Table 7. The outputs for a complex matrix.

y1 y2 y3

3.03949 − 0.0451599 i 3.00471 − 0.0015769 i 3

We mention that a simple sufficient condition for the use of our algorithms
is the following:

Re (An) > 0 for large enough n, up to a shift mI. (19)

Then we have the Perron–Frobenius property: there exists the maximal eigen-
value ρ(A) > 0 having simple left- and right-eigenvectors.

Hopefully, the reader would now be accept the use of “global” here for our
new algorithms. They are very much efficient indeed. One may ask about the
convergence speed of the algorithms. Even though we do not have a universal
estimate for each model in such a general setup, it is known however that the
shifted inverse algorithm is a fast cubic one, and hence should be fast enough
in practice. This explains the reason why our algorithms are fast enough in
the general setup. Certainly, in the tridiagonal dominate case, one can use the
algorithms presented in the previous sections. Especially, in the tridiagonal situ-
ation, we have analytically basic estimates which guarantee the efficiency of the
algorithms. See [4] for a long way to reach the present level.

When talking about the eigenvalues, the first reaction for many people (at
least for me, 30 years ago) is that well, we have known a great deal about the
subject. However, it is not the trues. One may ask himself that for eigenvalues,

328 M.-F. Chen

how large matrix have you computed by hand? As far as I know, 2 × 2 only in
analytic computation by hand. It is not so easy to compute them for a 3 × 3
matrix, except using computer. Even I have worked on the topic for about 30
years, I have not been brave enough to compute the maximal eigenvector, we use
its mimic only to estimate the maximal eigenvalue (or more generally the first
nontrivial eigenvalue). The first paper I wrote on the numerical computation is
[3]. It is known that the most algorithms in computational mathematics are local,
the Newton algorithm (which is a quadratic algorithm) for instance. Hence, our
global algorithms are somehow unusual.

About three years ago, I heard a lecture that dealt with a circuit board
optimization problem. The author uses the Newton method. I said it was too
dangerous and could fall into the trap. The speaker answered me that yes, it is
dangerous, but no one in the world can solve this problem. Can we try annealing
algorithm? I asked. He replied that it was too slow. We all know that in the global
optimization, a big problem (not yet cracked) is how to escape from the local
traps. The story we are talking about today seems to have opened a small hole
for algorithms and optimization problems, and perhaps you will be here to create
a new field.

Acknowledgments. This paper is based on a series of talks: Central South University
(2017/6), 2017 IMS-China ICSP (2017/6), Summer School on Stochastic Processes at
BNU (2017/7), the 9th Summer Camp for Excellent College Students at BNU (2017/7),
Sichun University (2017/7), the 12th International Conference on Queueing Theory
and Network Applications (2017/8), the 2nd Sino-Russian Seminar on Asymptotic
Methods in Probability Theory and Mathematical Statistics & the 10th Probability
Limit Theory and Statistic Large Sample Theory Seminar (2017/9). The author thanks
professors Zhen-Ting Hou, Zai-Ming Liu, Zhen-Qing Chen, Elton P. Hsu, Jing Yang,
Xiao-Jing Xu, An-Min Li, Lian-Gang Peng, Quan-Lin Li, Zhi-Dong Bai, Ning-Zhong
Shi, Jian-Hua Guo, Zheng-Yan Lin for their invitations and hospitality. The author also
thanks Ms Jing-Yu Ma for the help in editing the paper. Research supported in part
by National Natural Science Foundation of China (No. 11131003 and 11626245) the
“985” project from the Ministry of Education in China, and the Project Funded by the
Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

1. Chen, M.F.: Eigenvalues, Inequalities, and Ergodic Theory. Springer, Heidelberg
(2005). https://doi.org/10.1007/b138904

2. Chen, M.F.: Speed of stability for birth-death processes. Front. Math. China 5,
379–515 (2010)

3. Chen, M.F.: Efficient initials for computing the maximal eigenpair. Front. Math.
China 11, 1379–1418 (2016)

4. Chen, M.F.: The charming leading eigenpair. To appear in Advances in Mathe-
matics (China) (2017)

5. Chen, M.F.: Efficient Algorithm for Principal Eigenpair of Discrete p-Laplacian.
Preprint

6. Chen, M.F.: Global Algorithms for Maximal Eigenpair. Preprint

https://doi.org/10.1007/b138904

Trilogy on Computing Maximal Eigenpair 329

7. Golub, G.H., van der Vorst, H.A.: Eigenvalue computation in the 20th century. J.
Comput. Appl. Math. 123, 35–65 (2000)

8. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of
Search Engine Rankings. Princeton University, Princeton (2006)

9. Noutsos, D.: Perron Frobenius Theory and Some Extensions (2008). http://www.
pdfdrive.net/perron-frobenius-theory-and-some-extensions-e10082439.html

10. Noutsos, D., Varga, R.S.: On the Perron-Frobenius theory for complex matrices.
Linear Algebra Appl. 473, 1071–1088 (2012)

11. Solomon, J.: Numerical Algorithms: Methods for Computer Vision, Machine Learn-
ing, and Graphics. CRC Press, Boca Raton (2015)

http://www.pdfdrive.net/perron-frobenius-theory-and-some-extensions-e10082439.html
http://www.pdfdrive.net/perron-frobenius-theory-and-some-extensions-e10082439.html

	Trilogy on Computing Maximal Eigenpair
	1 Introduction
	2 Efficient Initials: Tridiagonal Case
	3 Efficient Initials: The General Case ((;; Subsect.4.2) and (;; Subsect.4.5))
	4 Global Algorithms
	References

