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Abstract. A one-server discrete-time queueing model is studied with
two arrival streams. Both arrival streams are in batches and we distin-
guish between a stream of low-priority customers, who are put in a queue
which is served on a first-come-first-served basis, and a stream of (pri-
mary) high-priority customers, who are served uninterruptedly when the
batch of high-priority customers finds the server idle upon arrival. High-
priority customers are treated as retrial customers, but once in the orbit
they lose their high-priority status. The Late Arrival Setup is chosen with
Delayed Access. The high-priority retrial customers can be interpreted
as inbound calls, and the low-priority customers as outbound calls in a
call-center. The joint steady-state distribution of the queue length of the
low-priority customers and the orbit size of secondary retrial customers
is studied using probability generating functions. Several performance
measures will be calculated, such as the mean queue length of the low-
priority customers and the orbit size of the secondary retrial customers.

Keywords: Inbound and outbound calls · Discrete-time retrial queue
Priority customers · Generating functions

1 Introduction

In call-centers inbound calls have priority over outbound calls. Outbound calls
will be handled only when after the end of a call no inbound calls are coming
in, i.e. when a server would stay idle if he would not start answering outbound
calls. Inbound calls do not wait in a queue and when upon arrival they find a
busy tone they will try to call again some random time later. Outbound calls,
for instance in the form of e-mails sent to the call-center with a request to be
called back, will be handled by the center in the order of their arrival, when time
is available due to the absence of incoming calls.

To model this priority-scheme for inbound calls over requests for being called
back by the center we study a mixed retrial/delay model in discrete time with
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one server. More specifically, we consider a one-server queueing model in dis-
crete time with two types of customers. Time is divided in slots, and all events
[arrivals, start of a service and departures] are considered to occur at the slot
boundaries only. The high-priority customers [primary inbound calls] arrive in
batches following a general probability distribution. When upon arrival of a batch
of high-priority customers the server is idle, the complete batch is accepted for
an uninterrupted (batch-)service. When upon arrival of a batch of high-priority
customers the server is busy, the complete batch will be sent into orbit, and
the individual customers lose their high-priority-status. They will approach the
server individually [so-called secondary arrivals] some random time later, inde-
pendently from the other customers in the orbit.

The low-priority customers [outbound calls] also arrive in batches, possibly
following a different probability distribution, and they are put in a queue which
is served in the order of arrival [within a batch in random order]. The low-priority
customers are served individually and a low-priority customer is selected for ser-
vice only when the server is idle and no batch of primary high-priority customers
arrives in the idle slot. In case neither primary high-priority customers arrive nor
low-priority customers are present in the queue, then a possible secondary arrival
is selected for [an individual] service. The non-selected secondary customers are
resent into the orbit. When neither low-priority customers are present in the
queue at the end of the idle slot, nor any primary or secondary retrial customers
will have arrived in the idle slot, the server stays idle also the following slot.

Notice that the modeling assumption is made that in the time slot following
a (batch-)service completion the server always stays idle, even when the queue
of low-priority customers is not empty, to enable the start of the service of an
incoming batch of high-priority primary customers.

The service times of the high-priority [inbound calls] and the low-priority
[outbound calls] customers are all independent and follow [possibly] a different
general distribution. To resolve the conflict of simultaneous arrivals and depar-
tures we have chosen for the late arrival setup with delayed access, i.e. arrivals
have precedence over departures and a service of newly arrived customers can
only start at the time slot following the slot of the arrival at the earliest. For
an overview of discrete-time retrial queues with the late arrival setup we refer
to Nobel [7] and for the most complete monograph on retrial queues we refer to
Artalejo and Gómez-Corral [1].

So, in this paper we will extend the classical discrete-time one-server retrial
model of Nobel and Moreno [9] by adding a second type of customers [the out-
bound calls] who upon arrival are put in a queue. These low-priority customers
will be served one by one on a first-come-first-served basis. The retrial primary
customers [inbound calls] are given non-preemptive priority over the queued
customers [the outbound calls]. Rejected inbound calls lose their priority, but
they continue to act as retrial customers, and their service time remains unal-
tered. In Sharkawy [10] the high-priority retrial customers maintained their high-
priority status in the orbit, but it turned out to be impossible to derive a closed-
form expression for the probability generating function of the joint steady-state
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distribution of the queue size and the orbit size. For this technical reason in this
paper we made the modeling assumption that high-priority customers lose their
priority status once sent into the orbit.

In previous papers (Nobel and Moreno [8] and Nobel [6]) the priority has been
mainly modeled the other way around: non-preemptive priority of the queued
customers over the retrial customers. This is a natural hierarchy in mobile tele-
phony for modeling handover calls [high priority] versus new calls [low priority]
competing for the same target channel, see Nobel [6]. As pointed out before,
giving priority to the retrial customers over the queued customers leads to an
intractable model (see again Sharkawy [10]), and only to guarantee tractabil-
ity we made the admittedly somewhat awkward assumption that high-priority
retrial customers lose their priority once they have been sent into the orbit. In
Artalejo et al. [2] a [somewhat simplified] continuous-time counterpart of our
model with single arrivals is discussed, in which the retrial customers do not
lose their high-priority status once they are sent into the orbit, but the authors
only consider exponential service times, introduce a finite buffer size for the
low-priority customers and, most importantly, they give preemptive priority to
the retrial customers. These three characteristics of their model enable an algo-
rithmic analysis. We think that in a call center outbound calls should not be
interrupted by incoming inbound calls, and for that reason we have chosen for
non-preemptive priority for the inbound calls, but to get an analytic solution
we have to pay a price! Of course, it is also possible to give a practical applica-
tion in which our modeling assumption that the high-priority retrial customers
lose their priority status is more natural than in the call-center environment.
Take for instance a small military field hospital with one operation unit where
regularly scheduled patients [outbound calls!] and incoming emergency patients
[inbound calls!] have to be operated. When an ambulance with a group of emer-
gency patients arriving from the battlefield finds the operation unit busy they
will be sent away (maybe after some necessary minimal treatment), and subse-
quently they will compete individually with the regular patients, i.e. they lose
their high-priority [emergency] status. Although we had in mind a call-center
application when we started this paper, the above hospital example illustrates
that our technical assumption is quite realistic in another environment!

A discrete-time model with the easier priority setup, i.e. the queued cus-
tomers have priority over the retrial customers, has been studied in Choi and
Kim [3], but also they discuss only single arrivals and all customers follow the
same service-time distribution. Further, they have chosen the early arrival setup.
A continuous-time retrial model with priority for the queued customers has been
studied by Falin et al. [5], but also in that paper only single arrivals have been
considered. The model discussed in this paper can be seen both as an exten-
sion and as the discrete-time counterpart of that model, but above all as a first
attempt to reverse the priority of retrial customers versus queued customers. As
already indicated above, this reversed priority-scheme is mainly motivated by
the priority of inbound calls over outbound calls in a call-center.
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In the sections below we will study the joint steady-state distribution of the
length of the queue of low-priority customers [outbound calls] and the size of the
orbit with high-priority customers [inbound calls who lost their priority]. Not
surprisingly, the mathematical analysis of our mixed retrial/delay model differs
greatly from the analysis of the models discussed in the papers Choi and Kim [3]
and Nobel and Moreno [8]. The analysis is also more involved than the analysis
presented in Nobel [6].

As usual, we will derive the generating function of the joint steady-state
distribution of the number of low-priority customers in the queue, the number
of high-priority customers in the orbit and the residual service time of the (batch
of) customer(s) in service. Notice that we do not keep track of the type of the
ongoing service in the analysis. This generating function will be used to calculate
several performance measures, e.g. the mean queue length and the mean orbit
size. In Sect. 2 we describe the model in detail. In Sects. 3 and 4 we discuss the
steady-state distributions and the first moment of the orbit size and the queue
length. In Sect. 5 we will present some numerical results.

2 Description of the Model

For a detailed description of the discrete-time setup with late arrivals and delayed
access [LAS/DA] we refer to Nobel and Moreno [9]. Recall that due to this
LAS/DA setup in this classical retrial model the time slot after a departure the
server always stays idle for at least one slot, because arrivals have precedence
over departures. For the mixed retrial/delay model to be discussed in this paper
we make the technical assumption that the slot following the completion of a
(batch-)service the server always stays idle, also in case low-priority customers
are waiting in the queue. Imposing this idle slot guarantees the priority of the
(primary) retrial customers over the queued customers, by triggering the start
of the batch-service of any incoming batch of high-priority customers in this
idle slot at the start of the next slot, and so automatically blocking the possible
start of the service of a (queued) low-priority customer, or a secondary arrival
from the orbit. Only in case no primary batch of high-priority customers arrives
during the idle slot, the service of the longest waiting low-priority customer will
start his individual service the next slot. If no low-priority customers are present
in the queue or no batch of low-priority customers will have arrived during the
idle slot, then possibly a secondary arrival will start his individual service, and
in case there are no secondary arrivals, the server stays idle also the next slot.

We will now give the precise description of the discrete-time mixed
retrial/delay queueing model with one server and priorities for the primary
retrial customers. In each time slot primary high-priority customers [inbound
calls] arrive in batches. The batch sizes are mutually independent and follow a

general probability distribution
{

a
(H)
k

}∞

k=0
with probability generating function

(p.g.f.)

AH(z) =
∞∑

k=0

a
(H)
k zk.
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In every time slot also low-priority customers [outbound calls] arrive in batches.

These batch sizes follow a general probability distribution
{

a
(L)
i

}∞

i=0
with p.g.f.

AL(y) =
∞∑

i=0

a
(L)
i yi.

These batch sizes are again mutually independent and they are also independent
of the batch sizes of the high-priority customers. Each individual high-priority
customer requires a service time, measured as a number of time slots, which
follows the discrete probability distribution

{
b
(H)
j

}∞

j=1
with p.g.f.

BH(w) =
∞∑

j=1

b
(H)
j wj .

Similarly, every low-priority customer requires a generally distributed service
time with distribution

{
b
(L)
j

}∞

j=1
and p.g.f.

BL(w) =
∞∑

j=1

b
(L)
j wj .

All service times are mutually independent and they are also independent of the
batch sizes of the arriving customers. A service time requires at least one time
slot, so b

(H)
0 = b

(L)
0 = 0. As said before, the low-priority customers are placed

in a queue, and are served individually on a first-come-first-served basis. Also
primary high-priority customers are served individually, but uninterruptedly as
a batch-service, i.e. after every individual service completion, the next customer
of the batch starts his service immediately in the next slot. Only at the service
completion of the last customer of the batch the server stays idle the next slot,
even if low-priority customers are present in the queue, to enable the start of a
batch-service in case a new batch of high-priority customers arrives in this idle
slot. Rejected high-priority customers behave as the customers in the classical
retrial queue, with the only difference that all incoming customers [inbound calls]
from the orbit have lost their high-priority status. They even have lower-priority
than the queued customers [outbound calls]. In each time slot retrial customers
in the orbit [inbound calls who have lost their high-priority] try to reenter the
system individually and independently with the so-called retrial probability r
[0 < r ≤ 1].

We are interested in the joint steady-state distribution of the number of low-
priority customers in the queue, the number of high-priority customers [strictly
speaking a misnomer, because customers once in the orbit have lost their high-
priority status] in orbit, and the residual service time of the (batch of) cus-
tomer(s) currently in service. To analyze the mixed retrial/delay queueing model,
we define a discrete-time Markov chain (DTMC) by observing the system at the
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epochs k−, that is at the start of the time slots k just after, possibly, a service
of a (low- or high-priority) customer has started, but before the arrivals during
time slot k have occurred. We define the following random variables,

Rk = the residual service time of the ongoing (batch-)service at time k−,

Lk = the number of low-priority customers present in the queue at time k−,

Qk = the number of high-priority customers in orbit at time k − .

We define Rk = 0 when at epoch k− the server is idle. Notice that the type
of the residual service time is not part of the state description. Introduce the
offered load

� := A′
L(1)B′

L(1) + A′
H(1)B′

H(1).

Then, the stochastic process {(Rk, Lk, Qk) : k = 0, 1, 2, . . .} is an irreducible ape-
riodic DTMC which is positive recurrent under the stability condition

a
(H)
0 [1 − �] − A′

L(1) − �A′
H(1) > 0.

This complicated stability condition is due to the modeling assumption that
a batch of primary high-priority customers is served uninterruptedly, imposing
only one forced idle slot after the completion of the last customer of the batch,
whereas all the other customers [low-priority and secondary customers arriving
from the orbit] force the server to stay idle after each [individual] service. So the
total used capacity, i.e. the fraction of time that the server is busy or waiting for
a possible arrival of a batch of high-priority customers, say σ, should be smaller
than 1, i.e.

σ := � + A′
L(1) + �A′

H(1) +
(
1 − a

(H)
0

)
(1 − �) < 1.

A formal proof of this stability condition can be given using Foster’s criterion
[see Nobel and Moreno [9] for the details].

3 The Joint Distribution of Queue Length and Orbit Size

In this section we will derive the joint probability generating function [p.g.f.] of
the steady-state distribution of the DTMC {(Rk, Lk, Qk) : k = 0, 1, 2, . . .}. Under
the stability condition we can define the following limiting joint distribution of
this DTMC

π(j,m, n) = lim
k→∞

IP(Rk = j;Lk = m;Qk = n), j,m, n = 0, 1, 2, . . . ,

with its associated three-dimensional generating function

Π(w, y, z) =
∞∑

j=0

∞∑
m=0

∞∑
n=0

π(j,m, n)wjymzn.
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In the following it is convenient to introduce also the partial generating functions,

Πjm(z) =
∞∑

n=0

π(j,m, n)zn and

Πj(y, z) =
∞∑

m=0

∞∑
n=0

π(j,m, n)ymzn =
∞∑

m=0

Πjm(z)ym.

To find the p.g.f. Π(w, y, z) we write down the system of balance equations,

π(0,m, n) = I{m=0}a
(L)
0 a

(H)
0 (1 − r)nπ(0, 0, n)

+
m∑

i=0

a
(L)
i

n∑
k=0

a
(H)
k π(1,m − i, n − k),

m, n = 0, 1, . . . , (1)

π(j,m, n) =
m∑

i=0

a
(L)
i

n∑
k=0

a
(H)
k π(j + 1,m − i, n − k)

+ a
(H)
0

m+1∑
i=0

a
(L)
i π(0,m + 1 − i, n)b(L)

j

+
m∑

i=0

a
(L)
i

j∑
k=1

a
(H)
k π(0,m − i, n)b(H)(∗k)

j

+ I{m=0}a
(L)
0 a

(H)
0

(
1 − (1 − r)n+1

)
π(0, 0, n + 1)b(H)

j ,

j = 1, 2, . . . ; m,n = 0, 1, 2, . . . . (2)

Notice how our technical assumption that after the completion of a [batch-]
service the server stays idle for at least one time slot plays its role in these
balance equations.

From Eq. (1) we get by multiplying both sides with zn and summing over
n = 0, 1, . . ., and subsequently multiplying both sides of the result by ym and
summing over m = 0, 1, . . .,

Π0(y, z) = a
(L)
0 a

(H)
0 Π00((1 − r)z) + AL(y)AH(z)Π1(y, z). (3)

From Eq. (2) we get, acting similarly,

Πj(y, z) = AL(y)AH(z)Πj+1(y, z)

+
a
(H)
0 b

(L)
j

y

[
AL(y)Π0(y, z) − a

(L)
0 Π00(z)

]

+AL(y)
j∑

k=1

a
(H)
k b

(H)(∗k)
j Π0(y, z)

+
a
(L)
0 a

(H)
0 b

(H)
j

z
[Π00(z) − Π00((1 − r)z)] . (4)
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Next, multiplying Eq. (4) by wj and summing over j = 1, 2, . . . gives after some
simple algebra, using Eq. (3) to get rid of Π1(y, z),

yz(w − AL(y)AH(z))Π(w, y, z)

= AL(y)z
[
a
(H)
0 w(BL(w) − y) + y(wAH(BH(w)) − AH(z))

]
Π0(y, z)

+ a
(L)
0 a

(H)
0 w [yBH(w) − zBL(w)] Π00(z)

+ a
(L)
0 a

(H)
0 wy [z − BH(w)] Π00((1 − r)z). (5)

So, the problem is to find the unknown partial generating functions Π0(y, z) and
Π00(z). Firstly, take w = AL(y)AH(z) in (5) to make the left-hand side zero.
This gives

AL(y)z
[

a
(H)
0 ω(y, z)[BL(ω(y, z)) − y]

+y[ω(y, z)AH(BH(ω(y, z))) − AH(z)]

]
Π0(y, z)

= a
(L)
0 a

(H)
0 ω(y, z) [zBL(ω(y, z)) − yBH(ω(y, z))] Π00(z)+

−a
(L)
0 a

(H)
0 ω(y, z)y [z − BH(ω(y, z))] Π00((1 − r)z). (6)

where ω(y, z) := AL(y)AH(z). Now consider the coefficient of Π0(y, z). Let

ψ(y, z) := a
(H)
0 ω(y, z)[BL(ω(y, z)) − y]

+y[ω(y, z)AH(BH(ω(y, z))) − AH(z)]

Then we have
∀z∃!y : ψ(y, z) = 0.

For real z ∈ (0, 1) this follows immediately

ψ(0, z) = a
(H)
0 a

(L)
0 AH(z)BL

(
a
(L)
0 AH(z)

)
> 0.

ψ(1, z) = AH(z)
[
a
(H)
0 BL(AH(z)) + AH(BH(AH(z))) −

(
1 + a

(H)
0

)]
≤ 0

with equality only for z = 1. Notice that ψ(1, 1) = 0.
Let y∗(z) be the unique solution, i.e. ψ(y∗(z), z) = 0 and introduce

φ(z) := ω(y∗(z), z) = AL(y∗(z))AH(z).

Notice that from ψ(y∗(z), z) = 0 we get

y∗(z) =
a
(H)
0 φ(z)BL(φ(z))

a
(H)
0 φ(z) + AH(z) − φ(z)AH(BH(φ(z)))

. (7)
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It is easy to see that y∗(1) = 1 and so also φ(1) = 1. Now from (6) and using
(7) we find the recursion

Π00(z) =
y∗(z)[BH(φ(z)) − z]

y∗(z)BH(φ(z)) − zBL(φ(z))
Π00((1 − r)z)

=

a
(H)
0 φ(z)BL(φ(z))

a
(H)
0 φ(z)+AH(z)−φ(z)AH(BH(φ(z)))

[BH(φ(z)) − z]

a
(H)
0 φ(z)BL(φ(z))

a
(H)
0 φ(z)+AH(z)−φ(z)AH(BH(φ(z)))

BH(φ(z)) − zBL(φ(z))
Π00((1−r)z).

Some algebra leads to a simple recursion,

Π00(z)=
a
(H)
0 φ(z)[z−BH(φ(z))]

a
(H)
0 φ(z)[z − BH(φ(z))] + z[AH(z) − φ(z)AH(BH(φ(z)))]

Π00((1−r)z).

Now introduce the so-called retrial function for the primary batch-service
model

Rb(z) =
a
(H)
0 φ(z)[z − BH(φ(z))]

a
(H)
0 φ(z)[z − BH(φ(z))] + z[AH(z) − φ(z)AH(BH(φ(z)))]

.

Notice that Rb(0) = 1 and after using L’Hôpital we find that

Rb(1) =
a
(H)
0 [1− B′

H(1)φ′(1)]

a
(H)
0 [1− B′

H(1)φ′(1)] +A′
H(1)− φ′(1)[A′

H(1)B′
H(1) + 1]

=
a
(H)
0 [1−A′

L(1)B′
L(1)−A′

H(1)B′
H(1)]−A′

L(1)

a
(H)
0 [1−A′

L(1)B′
L(1)−A′

H(1)B′
H(1)]−A′

L(1)− [A′
L(1)B′

L(1) +A′
H(1)B′

H(1)]A′
H(1)

.

In the denominator we recognize the stability condition!
Now we get by iteration

Π00(z) =
n−1∏
k=0

Rb

(
(1 − r)kz

)
Π00 ((1 − r)nz) .

Next, sending n to infinity we find

Π00(z) =
∞∏

k=0

Rb

(
(1 − r)kz

)
Π00(0). (8)

The problem is to calculate Π00(0), the steady-state probability that the system
is empty!

From (6) we find

Π0(y, z) =
a
(L)
0 a

(H)
0 ω(y, z)

{
[zBL(ω(y, z)) − yBH(ω(y, z))] Π00(z)
−y [z − BH(ω(y, z))] Π00((1 − r)z)

}

AL(y)z
[

a
(H)
0 ω(y, z)[BL(ω(y, z)) − y]

+y[ω(y, z)AH(BH(ω(y, z))) − AH(z)]

] .
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and using the recursion Π00(z) = Rb(z)Π00((1 − r)z) we get

Π0(y, z) =
a
(L)
0 a

(H)
0 AH(z)

{
[zBL(ω(y, z)) − yBH(ω(y, z))] Rb(z)

−y [z − BH(ω(y, z))]

}

z

[
a
(H)
0 ω(y, z)[BL(ω(y, z)) − y]

+y[ω(y, z)AH(BH(ω(y, z))) − AH(z)]

]

×Π00((1 − r)z). (9)

We know that Π0(1, 1) = 1 − A′
L(1)B′

L(1) − A′
H(1)B′

H(1). So we can find
Π00(1 − r), again using L’Hôpital, from (9),

1 − A′
L(1)B′

L(1) − A′
H(1)B′

H(1) = Π0(1, 1) = lim
y→1

Π0(y, 1)

= lim
y→1

a
(L)
0 a

(H)
0

{
[BL(AL(y)) − yBH(AL(y))] Rb(1)+

−y [1 − BH(AL(y))]

}

a
(H)
0 AL(y)[BL(AL(y)) − y]

+y[AL(y)AH(BH(AL(y))) − 1]

× Π00(1 − r)

=
a
(L)
0 a

(H)
0 {Rb(1)[B′

L(1)A′
L(1) − 1 − B′

H(1)A′
L(1)] + B′

H(1)A′
L(1)}

a
(H)
0 [B′

L(1)A′
L(1) − 1] + A′

L(1) + A′
H(1)B′

H(1)A′
L(1)

Π00(1 − r)

=
a
(L)
0 a

(H)
0 [1−A′

L(1)B′
L(1)−A′

H(1)B′
H(1)]

a
(H)
0 [1−A′

L(1)B′
L(1)−A′

H(1)B′
H(1)]−A′

L(1)− [A′
L(1)B′

L(1) +A′
H(1)B′

H(1)]A′
H(1)

Π00(1− r).

So, using the offered load � = A′
L(1)B′

L(1) + A′
H(1)B′

H(1) we find

Π00(1 − r) =
a
(H)
0 (1 − �) − A′

L(1) − �A′
H(1)

a
(L)
0 a

(H)
0

and this leads to

Π00(z) =
∞∏

k=0

Rb

(
(1 − r)kz

)
Π00(0)

=
a
(H)
0 (1 − �) − A′

L(1) − �A′
H(1)

a
(L)
0 a

(H)
0

Rb(1)
∞∏

k=0

Rb

(
(1 − r)kz

)
Rb ((1 − r)k)

=
a
(H)
0 [1 − �] − A′

L(1)

a
(L)
0 a

(H)
0

∞∏
k=0

Rb

(
(1 − r)kz

)
Rb ((1 − r)k)

.
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Now we can move to the next step in our search for a ‘closed form formula’ for
Π(w, y, z). Recall from (9) and the definition of Rb(z)

Π0(y, z) =
a
(L)
0 a

(H)
0 AH(z)

{
[zBL(ω(y, z)) − yBH(ω(y, z))] Rb(z)

−y [z − BH(ω(y, z))]

}

z

[
a
(H)
0 ω(y, z)[BL(ω(y, z)) − y]

+y[ω(y, z)AH(BH(ω(y, z))) − AH(z)]

]

×Π00((1 − r)z) (10)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
(L)
0 a

(H)
0 AH(z)

⎧⎪⎨
⎪⎩

a
(H)
0 φ(z) [zBL(ω(y, z))− yBH(ω(y, z))] [z − BH(φ(z))]+

−y [z − BH(ω(y, z))]

×{a(H)
0 φ(z)[z − BH(φ(z))] + z[AH(z)− φ(z)AH(BH(φ(z)))]}

⎫⎪⎬
⎪⎭

z

[
a
(H)
0 ω(y, z)[BL(ω(y, z))− y]

+y[ω(y, z)AH(BH(ω(y, z)))−AH(z)]

]

×{a(H)
0 φ(z)[z − BH(φ(z))] + z[AH(z)− φ(z)AH(BH(φ(z)))]}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×a
(H)
0 [1− �]−A′

L(1)− �A′
H(1)

a
(L)
0 a

(H)
0

∞∏
k=1

Rb

(
(1− r)kz

)

Rb

(
(1− r)k

) .

Finally, we can find the full p.g.f. Π(w, y, z)! Recall (5) and use the result (10)
for Π0(y, z) and Π00((1 − r)z),

Π(w, y, z)

=

AL(y)z
[
a
(H)
0 w(BL(w) − y) + y(wAH(BH(w)) − AH(z))

]
Π0(y, z)

+a
(L)
0 a

(H)
0 w [yBH(w) − zBL(w)] Π00(z)

+a
(L)
0 a

(H)
0 wy [z − BH(w)] Π00((1 − r)z)

yz(w − AL(y)AH(z))
.

Substitution of our previous results gives

Π(w, y, z) =
(
a
(H)
0 [1 − �] − A′

L(1) − �A′
H(1)

) ∞∏
k=1

Rb

(
(1 − r)kz

)
Rb ((1 − r)k)

×

AL(y)z
[
a
(H)
0 w(BL(w) − y) + y(wAH(BH(w)) − AH(z))

]

×

⎡
⎢⎢⎢⎣

AH(z)

⎧
⎨

⎩

[zBL(ω(y, z)) − yBH(ω(y, z))] Rb(z)
−y [z − BH(ω(y, z))]

⎫
⎬

⎭

z

⎡

⎣ a
(H)
0 ω(y, z)[BL(ω(y, z)) − y]

+y[ω(y, z)AH(BH(ω(y, z))) − AH(z)]

⎤

⎦

⎤
⎥⎥⎥⎦

+w [yBH(w) − zBL(w)] Rb(z)
+wy [z − BH(w)]
yz(w − ω(y, z))

. (11)
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4 The Queue Size and the Orbit Size

From expression (11) we find the marginal p.g.f.’s L(y) := Π(1, y, 1) and Q(z) :=
Π(1, 1, z) of the limiting distribution of the queue length and the orbit size,
respectively. After some simplifications we find

L(y) =
(
a
(H)
0 [1 − �] −A′

L(1) − �A′
H(1)

)( 1 − y

1 −AL(y)

)

×a
(H)
0 AL(y)(Rb(1) − 1)[1 − BH(AL(y))] + Rb(1)[1 −AL(y)AH(BH(AL(y)))]

a
(H)
0 AL(y)[BL(AL(y)) − y] + y[AL(y)AH(BH(AL(y))) − 1]

Q(z) =
(
a
(H)
0 [1 − �] − A′

L(1) − �A′
H(1)

) ∞∏
k=1

Rb

(
(1 − r)kz

)
Rb ((1 − r)k)

×
⎡
⎣Rb(z)[zBL(AH(z)) − BH(AH(z))] + BH(AH(z)) − z

z
{

a
(H)
0 [BL(AH(z)) − 1] + AH(BH(AH(z))) − 1

}

+
(1 − z) (Rb(z) − 1)

z (1 − AH(z))

]
.

To find the mean queue length L = L′(1) we write

L(y) = (1 − σ) × F (y) × N(z)
D(z)

where σ is again the total used capacity

σ = � + A′
L(1) + �A′

H(1) +
(
1 − a

(H)
0

)
(1 − �)

and

F (y) =
1 − y

1 −AL(y)

N(y) = a
(H)
0 AL(y)(Rb(1) − 1)[1 − BH(AL(y))] + Rb(1)[1 −AL(y)AH(BH(AL(y)))]

D(y) = a
(H)
0 AL(y)[BL(AL(y)) − y] + y[AL(y)AH(BH(AL(y))) − 1].

Differentiating L(y) gives

L′(y) = (1 − σ)
(

F (y) · N ′(y)D(y) − N(y)D′(y)
[D(y)]2

+ F ′(y) · N(y)
D(y)

)
.

So we want to calculate

L′(1) = (1 − σ) lim
y→1

(
F (y) · N ′(y)D(y) − N(y)D′(y)

[D(y)]2
+ F ′(y) · N(y)

D(y)

)
.
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After tedious calculations using L’Hôpital we find for the mean queue length

L = L′(1) =
1 − σ

A′
L(1)

· N ′′(1)
2D′(1)

− D′′(1)
2D′(1)

− A′′
L(1)

2A′
L(1)

where

N ′′(1) = a
(H)
0 (1 −Rb(1))

(
2A′

L(1)2B′
H(1) + A′

L(1)2B′′
H(1) + A′′

L(1)B′
H(1)

)
+

−Rb(1)
(
2A′

L(1)2B′
H(1)A′

H(1) + A′
L(1)2B′′

H(1)A′
H(1) + A′′

L(1)B′
H(1)A′

H(1)

+ A′′
L(1) + A′

L(1)2A′′
H(1)B′

H(1)2
)

D′(1) = a
(H)
0

(B′
L(1)A′

L(1) − 1
)

+ A′
L(1) + A′

H(1)B′
H(1)A′

L(1)

D′′(1) = 2a
(H)
0 A′

L(1)
(A′

L(1)B′
L(1) − 1

)
+ a

(H)
0 A′′

L(1)B′
L(1) + a

(H)
0 A′

L(1)2B′′
L(1)

+2A′
L(1)2A′

H(1)B′
H(1) + A′

L(1)2B′′
H(1)A′

H(1) + A′′
L(1)A′

H(1)B′
H(1) + A′′

L(1)

+A′
L(1)2A′′

H(1)B′
H(1)2 + 2A′

L(1) + 2A′
L(1)A′

H(1)B′
H(1).

To calculate Q = Q′(1) first rewrite Q(z) as

Q(z) = (1 − σ)
∞∏

k=1

Rb((1 − r)kz)
Rb((1 − r)k)

(
N1(z)
D1(z)

+
N2(z)
D2(z)

)

with

N1(z) = [zBL(AH(z)) − BH(AH(z))] Rb(z) + BH(AH(z)) − z

D1(z) = z
[
a
(H)
0 (BL(AH(z)) − 1) + AH(BH(AH(z))) − 1

]

N2(z) = (1 − z) [Rb(z) − 1]
D2(z) = z [1 − AH(z)] .

Differentiating Q(z) gives

Q′(z)

1 − σ
=

∞∏
k=1

Rb((1 − r)kz)

Rb((1 − r)k)

(
N ′

1(z)D1(z) − N1(z)D′
1(z)

D1(z)2
+

N ′
2(z)D2(z) − N1(z)D′

2(z)

D2(z)2

)

+
∞∑

k=1

(1 − r)kR′
b((1 − r)kz)

Rb((1 − r)k)

∏
i�=k

Rb((1 − r)iz)

Rb((1 − r)i)

(
N1(z)

D1(z)
+

N2(z)

D2(z)

)

and we need to calculate

Q′(1)
1 − σ

= lim
z→1

(
N ′

1(z)D1(z) − N1(z)D′
1(z)

D1(z)2
+

N ′
2(z)D2(z) − N1(z)D′

2(z)
D2(z)2

)

+
∞∑

k=1

(1 − r)kR′
b((1 − r)k)

Rb((1 − r)k)
lim
z→1

(
N1(z)
D1(z)

+
N2(z)
D2(z)

)
.
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Again after tedious calculations we find

Q′(1) =
(1 − σ)N ′′

1 (1)
2D′

1(1)
− (1 − �)D′′

1 (1)
2D′

1(1)
+

(1 − σ)N ′′
2 (1)

2D′
2(1)

− �D′′
2 (1)

2D′
2(1)

+
∞∑

k=1

(1 − r)kR′
b((1 − r)k)

Rb((1 − r)k)
(12)

with

N ′′
1 (1) = Rb(1)

(B′
L(1)A′′

H(1) + A′
H(1)2B′′

L(1) + 2B′
L(1)A′

H(1)+

−B′
H(1)A′′

H(1) −A′
H(1)2B′′

H(1)
)

+R′
b(1)
(B′

L(1)A′
H(1) − B′

H(1)A′
H(1) + 1

)
+ B′

H(1)A′′
H(1) + B′′

H(1)A′
H(1)2

D′
1(1) = a

(H)
0 B′

L(1)A′
H(1) + A′

H(1)2B′
H(1)

D′′
1 (1) = 2a

(H)
0 B′

L(1)A′
H(1) + 2A′

H(1)2B′
H(1) + a

(H)
0 B′

L(1)A′′
H(1) + a

(H)
0 B′′

L(1)A′
H(1)2

+A′
H(1)B′

H(1)A′′
H(1) + A′

H(1)3B′′
H(1) + A′

H(1)2B′
H(1)2A′′

H(1)

and

N ′′
2 (1) = −2R′

b(1)
D′

2(1) = −A′
H(1), D′′

2 (1) = −A′′
H(1) − 2A′

H(1).

Of course, we also have to calculate the derivative R′
b(1). Recall that

Rb(z) =
a
(H)
0 φ(z)[z − BH(φ(z))]

a
(H)
0 φ(z)[z − BH(φ(z))] + z[AH(z) − φ(z)AH(BH(φ(z)))]

=
y∗(z)[BH(φ(z)) − z]

y∗(z)BH(φ(z)) − zBL(φ(z))

where
φ(z) = ω(y∗(z), z), ω(y, z) = AL(y)AH(z)

and y = y∗(z) is the unique solution of the equation

a
(H)
0 ω(y, z)[BL(ω(y, z)) − y] + y[ω(y, z)AH(BH(ω(y, z))) − AH(z)] = 0.

Now, introduce

N(z) = y∗(z)[BH(φ(z)) − z]
D(z) = y∗(z)BH(φ(z)) − zBL(φ(z)).

Then differentiation gives

R′
b(z) =

D(z)N ′(z) − N(z)D′(z)
D(z)2

R′
b(1) = lim

z→1
Rb(z) =

N ′′(1) − Rb(1)D′′(1)
2D′(1)
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where we have

N ′′(1) = 2y∗′(1) (1 − B′
H(1)φ′(1)) − B′

H(1)φ′′(1) − B′′
H(1)φ′(1)2

D′(1) = 1 + B′
L(1)φ′(1) − B′

H(1)φ′(1) − y∗′(1)

D′′(1) = φ′′(1) (B′
L(1) − B′

H(1)) φ′(1)2 (B′′
L(1) − B′′

H(1))

+ 2B′
L(1)φ′(1) − 2B′

H(1)y∗′(1)φ′(1) − y∗′′(1),

and we recall that

Rb(1) =
a
(H)
0 [1 − B′

H(1)φ′(1)]

a
(H)
0 [1 − B′

H(1)φ′(1)] + A′
H(1) − φ′(1)[A′

H(1)B′
H(1) + 1]

.

The expressions for y∗′(1) and φ′(1) are given by

y∗′(1) =
A′

H(1)
[
a
(H)
0 B′

L(1) + A′
H(1)B′

H(1)
]

a
(H)
0 [1 − A′

L(1)B′
L(1)] − A′

L(1) [1 + A′
H(1)B′

H(1)]

φ′(1) =
A′

H(1)
[
a
(H)
0 − A′

L(1)
]

a
(H)
0 [1 − A′

L(1)B′
L(1)] − A′

L(1) [1 + A′
H(1)B′

H(1)]

and after many further calculations we find

y∗′′(1) =

(
a
(H)
0 B′

L(1) + A′
H(1)B′

H(1) + 1
)

× (
2A′

L(1)A′
H(1)y∗′(1) + A′′

H(1) + A′′
L(1)y∗′(1)2

)

+φ′(1)2
(
2a

(H)
0 B′

L(1) + a
(H)
0 B′′

L(1) + A′
H(1)B′′

H(1)
+ A′′

H(1)B′
H(1)2 + 2A′

H(1)B′
H(1)

)
+

−A′′
H(1) − 2y∗′(1)

(
A′

H(1) + φ′(1)
(
a
(H)
0 − A′

H(1)B′
H(1) − 1

))

a
(H)
0 − a

(H)
0 A′

L(1)B′
L(1) − A′

L(1)A′
H(1)B′

H(1) − A′
L(1)

φ′′(1) = A′′
H(1) + 2A′

L(1)A′
H(1)y∗′(1) + A′′

L(1)y∗′(1)2 + A′
L(1)y∗′′(1).

Plugging in all these results in (12) gives a closed form expression for Q = Q′(1).

5 Numerical Results

The starting position for our numerical results is

– All distributions geometric [batch size shifted to 0]

B′
H(1) = B′

L(1) = 2, A′
H(1) = 0.21, A′

L(1) = 0.09,

– So a
(H)
0 = 0.826,

– The offered load of L-customers is �L := A′
L(1)B′

L(1) = 0.18,



214 R. Nobel and M. Dekker

Fig. 1. The mean size of the orbit Q̄ as a function of A
′
L (1), with r = 0.5 and ρL = 0.18

constant.

– The offered loa4d of H-customers is �H := A′
H(1)B′

H(1) = 0.42,
– The total offered load is � = �L + �H = 0.60,
– The total used capacity is

σ = � + A′
L(1) + �A′

H(1) +
(
1 − a

(H)
0

)
(1 − �) = 0.885.

Firstly, we take the offered load of L-customers �L := A′
L(1)B′

L(1) constant and
A′

L(1) increasing. The numerical results are presented in Fig. 1.
Next, we keep the total offered load � = 0.6 constant, �H := A′

H(1)B′
H(1)

increasing. The results are presented in Fig. 2.
Finally, we keep the total offered load � = 0.65 constant, and again �H

increasing. The results are presented in Fig. 3.
From the Figs. 1, 2 and 3 we can draw the following conclusions.

– Keeping both the offered load of inbound calls �H = A′
H(1)B′

H(1) and the
offered load of outbound calls �L = A′

L(1)B′
L(1) constant we have seen that

• Increasing the arrival intensity A′
H(1) of inbound calls [and simultane-

ously decreasing the mean service time B′
H(1)] decreases the mean queue

length L of outbound calls and increases the mean orbit size Q of inbound
calls.

• Increasing the arrival intensity A′
L(1) of outbound calls [and simultane-

ously decreasing the mean service time B′
L(1)] increases the mean queue

length L of outbound calls and first decreases and then increases the mean
orbit size Q of inbound calls.

Keeping the total offered load � = �H +�L constant we have seen that increasing
the offered load �H of inbound calls [and simultaneously decreasing the offered
load �L of outbound calls]

– decreases the mean queue length L of outbound calls and increases the mean
orbit size Q of inbound calls.
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Fig. 2. The mean length of the queue L̄ and mean size of the orbit Q̄ as a function of
ρH , with � = 0.6 constant.

Fig. 3. The mean length of the queue L̄ and mean size of the orbit Q̄ as a function of
ρH , with offered load � = 0.65 constant.

– increases the mean orbit size Q of inbound calls for a moderate total offered
load, say � = 0.6,

– first increases and then decreases the mean orbit size Q of inbound calls for
a high total offered load, say � = 0.65.

For more numerical results we refer to Dekker [4].
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